
M A N N I N G

Jim Bennett
FOREWORD BY James Montemagno

Creating native cross-platform mobile apps

www.allitebooks.com

http://www.allitebooks.org

A sneak peak...
By building Xamarin apps using the MVVM design pattern, you too can reuse
80% of your code across iOS and Android.

Picking the right thread...
We all hate mobile apps that are unresponsive. Here’s how to decide what to run
on a background thread.

UI layer

App
layer

UI logic
layer

iOS

C#

Business
logic layer

View

View
model

ModelC#

C#

C#

C#

C#

Android

C#

Binding

Does this
involve the UI?

No

Yes

UI thread

Does this use
external resources

(DB, web)?

No

Yes

Background
thread

Does this take
more than 100 ms
on a slow device?

No

Yes

Background
thread

UI thread or
background

thread

 www.allitebooks.com

http://www.allitebooks.org

Xamarin in Action
CREATING NATIVE CROSS-PLATFORM

MOBILE APPS

JIM BENNETT

M A N N I N G
SHELTER ISLAND
 www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Elesha Hyde
20 Baldwin Road Review editor: Aleksandar Dragosavljević
PO Box 761 Technical development editor: Gary Park
Shelter Island, NY 11964 Project editor: Kevin Sullivan

Copyeditor: Andy Carroll
Proofreader: Corbin Collins

Technical proofreader: Tomasz Cielecki
Typesetter: Dottie Marsico
Illustrator: April Milne

Cover designer: Marija Tudor

ISBN 9781617294389
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18
 www.allitebooks.com

http://www.manning.com
http://www.allitebooks.org

To the amazing Nat and Evie,
for your unwavering love and support whilst I was glued to my laptop.
 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

brief contents
PART 1 GETTING STARTED WITH XAMARIN1

1 ■ Introducing native cross-platform applications with Xamarin 3
2 ■ Hello MVVM—creating a simple cross-platform

app using MVVM 25
3 ■ MVVM—the model-view–view model design pattern 50
4 ■ Hello again, MVVM—understanding and enhancing our simple

MVVM app 81
5 ■ What are we (a)waiting for? An introduction to multithreading

for Xamarin apps 113

PART 2 BUILDING APPS... 153
6 ■ Designing MVVM cross-platform apps 155
7 ■ Building cross-platform models 195
8 ■ Building cross-platform view models 241
9 ■ Building simple Android views 288

10 ■ Building more advanced Android views 319
11 ■ Building simple iOS views 345
12 ■ Building more advanced iOS views 385
v

 www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSvi
PART 3 FROM WORKING CODE TO THE STORE............................409
13 ■ Running mobile apps on physical devices 411
14 ■ Testing mobile apps using Xamarin UITest 436
15 ■ Using App Center to build, test, and monitor apps 467
16 ■ Deploying apps to beta testers and the stores 505
 www.allitebooks.com

http://www.allitebooks.org

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi
about the cover illustration xxvi

PART 1 GETTING STARTED WITH XAMARIN 1

1 Introducing native cross-platform applications with Xamarin 3
1.1 Introducing Xamarin mobile apps 4

Vendor-specific native apps 5 ■ Cordova 6 ■ Xamarin native
apps 7 ■ Xamarin.Forms 10 ■ Xamarin developer tools 12
Mobile-optimized development lifecycle 13

1.2 Creating production-quality mobile apps 14
Design 15 ■ Develop 17 ■ Test 18 ■ Build 21
Distribute 22 ■ Monitor 22

1.3 Rinse and repeat… 23

2 Hello MVVM—creating a simple cross-platform
app using MVVM 25
2.1 What are UI design patterns? 26
2.2 MVVM—the design pattern for Xamarin apps 27
2.3 What is cross-platform code? 31

.NET Standard class libraries 32
vii

 www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
2.4 Getting started—creating your first solution 34
Requirements—what hardware or software do you need for each
mobile platform? 35 ■ Creating the solution 36 ■ What have we
just created? 42 ■ Building and running the apps 43

2.5 Is this really a cross-platform app? 47

3 MVVM—the model-view–view model design pattern 50
3.1 The model layer 52
3.2 The view-model layer 53

State and behavior 54 ■ Value conversion 65 ■ Testability 67

3.3 The view layer 68
3.4 Binding 69

Source and target 69 ■ Binding mode 70 ■ Binding is not
cross-platform 70 ■ Value converters 72

3.5 The application layer 74
3.6 Navigation 75

View-first 76 ■ View-model–first 76 ■ Which one to use? 78

3.7 Revisiting the square-root calculator app 78

4 Hello again, MVVM—understanding and
enhancing our simple MVVM app 81
4.1 A deeper dive into our Hello Cross-Platform World

app 82
The model 82 ■ The view model 82 ■ The application
layer 83 ■ The view 84

4.2 Expanding on our Hello World app 92
Using .NET Standard plugins to access device-specific code 93
Installing the Xamarin text-to-speech plugin 95 ■ Adding the
cross-platform code 97 ■ Inversion of control 98 ■ Wiring up the
Android UI 105 ■ Wiring up the iOS UI 106

5 What are we (a)waiting for? An introduction to multithreading
for Xamarin apps 113
5.1 Why do we need multithreaded code? 114
5.2 What are threads? 117

Buying coffee 117 ■ So what is a thread? 120 ■ A quick
roundup 121
 www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
5.3 UI thread and background threads 122
The UI thread 122 ■ Background threads 124

5.4 Using tasks to run code in the background 125
Task and Task<T> 126 ■ Chaining tasks 128

5.5 Task results 130
Polling to see if the task has finished 130 ■ Waiting on the
task 130 ■ Getting the result from a continuation 131
Task exceptions 132

5.6 Updating the UI 133
The UI task scheduler 135 ■ Using the power of MVVM 137

5.7 Async and await 139
The async and await keywords 139 ■ Writing your own async
methods 143 ■ Async commands 147

5.8 Make your app feel responsive 148
5.9 It’s time to start building things 150

PART 2 BUILDING APPS..153

6 Designing MVVM cross-platform apps 155
6.1 Introduction to designing a cross-platform app 156
6.2 Designing the UI and user flows 159

SquareRt—a simple app for calculating square roots 159
Countr—an app for counting multiple things 161
Defining user flows and UIs 162

6.3 Architecting the app 164
Which layer? 164 ■ Which thread? 167 ■ Mapping code to
layers and threads 169

6.4 Creating the solutions 171
6.5 Application properties 172

Android manifest 172 ■ iOS info.plist 175

6.6 SDK versions 177
Android SDK versions and the SDK manager 179
iOS SDK versions 185

6.7 Linking 187
Linking the apps 188 ■ Linker options 189 ■ Stopping the
linker from doing too much 191

CONTENTSx
7 Building cross-platform models 195
7.1 Building simple model layers 196
7.2 Unit testing 199

Creating a unit-test project 201 ■ Creating your first
test 205 ■ What do these tests tell you? 210

7.3 Building more complex model layers 211
Services, data models, and repositories 211 ■ Accessing
databases 214 ■ Adding a service layer 221
Accessing web services 228

7.4 A quick recap 238

8 Building cross-platform view models 241
8.1 The view-model layer 241

The view-model layer inside SquareRt 242 ■ The view-model
layer inside Countr 244

8.2 Adding state and behavior to SquareRt 248
State inside SquareRt 248 ■ Exposing behavior via
property changes 257

8.3 Adding state and behavior to Countr 260
Single-value properties 260 ■ Collections 262
Exposing behavior using commands 267
Messaging 272 ■ Navigation 278

8.4 A quick roundup 285

9 Building simple Android views 288
9.1 Building Android UIs 289

Material design 289 ■ Layout files 291 ■ Resources 292
Resource locations 292 ■ Editing layout files 293 ■ Layout
inflation 298

9.2 Creating the layout file for the SquareRt UI 299
Adding a toolbar 299 ■ Adding an image 304 ■ Adding an
EditText control 307 ■ Adding a result TextView control 312

9.3 Building the SquareRt view 313
What is an activity? 313 ■ The activity lifecycle 314
Creating an activity for the view 315 ■ Running the app 317

CONTENTS xi
10 Building more advanced Android views 319
10.1 Building the UI for Countr 320

Creating the UI for the master view 320 ■ Recycler views 322
Creating the UI for the recycler view items 323 ■ Floating action
buttons 326 ■ Creating the UI for the detail view 327
Menu items 328

10.2 Building the Countr activities 328
Setting up master recycler views 330 ■ The detail view 332
Running the app 334

10.3 App icons and launch screens 336
App icons 336 ■ Launch screens 338

11 Building simple iOS views 345
11.1 Building iOS UIs 346

iOS human interface guidelines 346 ■ Storyboards 348
Controls 350 ■ Different screen resolutions 351 ■ Auto layout
with constraints 353 ■ Image resources and asset catalogs 357
A quick recap 359

11.2 Creating the SquareRt storyboard 360
Adding our first view controller 361 ■ Adding an image 363
Adding a text field 368 ■ Adding the result label 371
Seeing the layout on different devices 371 ■ Size classes 372
A quick recap 376

11.3 Building the SquareRt view 376
What is a view controller? 377 ■ View lifecycle 377 ■ Creating
the view controller 378 ■ Wiring up controls to the view
controller 379 ■ Binding the view controller 381 ■ Another
quick recap 382 ■ Running the app 382

12 Building more advanced iOS views 385
12.1 Building the UI and view controllers for Countr 385

Creating the UI for the master view 386 ■ Navigation bars and
buttons 393 ■ Creating the UI for the detail view 395
A quick recap 397 ■ Running the app 398

12.2 App icons and launch screens 399
App icons 399 ■ Launch screens 402

12.3 Making the apps production-ready 406

CONTENTSxii
PART 3 FROM WORKING CODE TO THE STORE409

13 Running mobile apps on physical devices 411
13.1 Running Android apps on a real device 412
13.2 Signing Android apps for publishing 415

Setting the package name 415 ■ Keystores 416
Creating keystores and signing builds 416

13.3 Running iOS apps on a real device 420
What is a provisioning profile? 420 ■ Bundle identifiers 421
Creating a dummy app in Xcode 421 ■ Running your app on
a physical device 424

13.4 Creating iOS provisioning profiles 424
Certificates 425 ■ App IDs 429 ■ Devices 429
Provisioning profiles 432 ■ Running your app using the
new provisioning profile 433 ■ Troubleshooting 434

14 Testing mobile apps using Xamarin UITest 436
14.1 Introduction to UI testing 436

Writing UI tests using Xamarin UITest 437 ■ Setting up your
app for UI testing 439 ■ Running the auto-generated tests 443

14.2 Writing tests 448
The visual tree 449 ■ The REPL 450 ■ Identifying
controls 452 ■ Tapping the Add button 454 ■ Entering
text 455 ■ Finding controls based on their text 456
Assertions 457 ■ Proving your test by breaking things 460

14.3 Testing incrementing a counter 462
14.4 The app interface and app queries 463

The IApp interface 464 ■ Queries 465

15 Using App Center to build, test, and monitor apps 467
15.1 Introducing Visual Studio App Center 468

Apps 469 ■ Users and organizations 470 ■ API 470
CLI 471 ■ Getting help 471

15.2 Setting up builds 471
Creating your first App Center app 472 ■ Configuring the
Android build 473 ■ Configuring the iOS build 476

15.3 Testing your apps using Test Cloud 479
What is Test Cloud? 479 ■ Preparing your apps to be
tested ■ 479 ■ Creating a test run configuration 481

CONTENTS xiii
Running tests from the command line 484
Viewing the test results on App Center 487

15.4 Analytics and crash reporting 491
Adding the App Center SDKs 491 ■ Understanding
your audience 493 ■ Adding event tracking 497
Crash reporting 500

16 Deploying apps to beta testers and the stores 505
16.1 Distributing Android apps to beta testers 506

Enabling app distribution 506 ■ Auto updates 511

16.2 Publishing Android apps on the Google Play store 514
Setting up your account 514 ■ Creating your app 514
Alternative stores 522

16.3 Distributing iOS apps to beta testers 523
Enabling app distribution 523 ■ Auto updates 527

16.4 Publishing iOS apps on the Apple App store 530
Provisioning your app for publishing 530 ■ Setting up
your app 530

appendix A UI flows and threads for SquareRt and Countr 543
appendix B Using MVVM Light instead of MvvmCross 548

index 565

foreword
When Jim told me he was writing a book on Xamarin that was focusing on architec-
ture, design, testing, and best practices, I could not have been more excited. I knew
he was the perfect author for this style of book. The very first time I interacted with
Jim, we were both creating C# bindings around Bluetooth beacon libraries for iOS
and Android. I knew right away we would become great friends, and I’m glad he’s
joined Microsoft as one of our Developer Advocates to continue all of the great work
he was doing in the community.

Xamarin in Action is a resource that I wish I’d had by my side when I was starting
native cross-platform mobile development with Xamarin. This book walks you
through the key fundamentals of what Xamarin is and how the technology works in
Visual Studio, but it also guides you through best practices on building production-
quality mobile applications. From design to architecture to deployment, by the end of
this book you’ll have a full grasp of mobile development with Xamarin and you’ll
surely have fallen in love with it just as much as I have.

When Jim asked me if I would write a foreword for his book, and I started to read
the chapters, it brought me back to when I discovered Xamarin for the first time. This
may be where you are right now, getting ready to start your mobile development
career. I could think of no better way to introduce Xamarin in Action than by sharing
my Xamarin journey with you.

I can vividly remember the moment that made me want to become a mobile devel-
oper, changing my life forever. It was the fall of 2010, and I was attending my first
developer conference, the Professional Developers Conference in Redmond, Wash-
ington, at Microsoft headquarters. While there, I was introduced to Azure, the future
of cloud computing, and was handed my first smartphone. This tiny supercomputer
xv

https://forums.manning.com/forums/xamarin-in-action

FOREWORDxvi
not only fit into my pocket, but also enabled me to craft full-blown applications in C#
from Visual Studio that I could ship to people around the globe. It blew my mind. In
that instant, I knew I was done writing printer software and needed to move to Seattle
to be closer to the action.

Before I knew it, I’d accepted a job at a small startup, moved my life across the
country, and started my role as the sole mobile developer. On my first day, I was tasked
with creating native iOS, Android, and Windows applications in only two months. I
remember immediately freezing up, as I tried to figure out what I’d gotten myself
into, and how I was going to accomplish this as a C# developer who didn’t know
Objective-C or Java. I knew I would have to find a cross-platform framework if I was
going to be successful, and that it would need to integrate into my existing develop-
ment workflow and tools and, of course, be powered by C#. This was when I discov-
ered the Xamarin platform. I didn’t waste any time in downloading the tools and
started crafting my first native iOS and Android apps in C# and Visual Studio!

From my very first File > New experience, I was in love with Xamarin. It gave me
everything I could ask for in a platform, including native performance, access to every
single native API in C#, and a full native user interface that I could craft right from
Visual Studio. Xamarin truly made building cross-platform native apps fast, easy, and
fun, and I never looked back. After successfully shipping those initial apps in just a few
months (and several more over the next few years), I was so in love with Xamarin that
I accepted a job with the company as a developer advocate, so I could focus all my
energy on helping developers around the world transform their careers with the
power of Xamarin.

It’s not hyperbole when I say that I absolutely love this technology and know that it
can transform your business to be more productive and agile when crafting mobile appli-
cations. It even has the power to change your entire career. I’m living proof.

JAMES MONTEMAGNO

Principal Program Manager,
Mobile Developer Tools, Microsoft

preface
I've been involved in technology most of my life, and every year is more exciting for a
technologist than the last. Innovations keep coming faster and faster, making it some-
times hard (and always expensive) to keep up. One of the most exciting innovations
of the last decade has been the rise of the smartphone. The technology world
changed the day Steve Jobs announced the iPhone, and it has been going from
strength to strength ever since. I’ve been an avid iPhone user from the start, and I
even wrote a couple of apps using Objective-C during the iPhone’s early years. The
biggest thing I learned from that experience was that writing mobile apps is cool, but
using Objective-C is painful.

Fast-forward a few years, and I was a bored C# developer. I’d been building trading
systems for years, desktop apps designed to help other people make a lot of money
with unexciting technology, and I needed a change. At the start of my career I was pas-
sionate about coding, writing code in my spare time and devouring books and train-
ing courses. After a number of years in finance, that passion was dying. I looked
around for something to fire it back up, and I found the answer—Xamarin.

I'd spent years learning C#, and with Xamarin I could use those skills to build
mobile apps for both iOS and Android. No longer would I have to write Objective-C
code for iOS and Java code for Android. The world of mobile development had been
opened up to developers like me using C#, a language I not only was very comfortable
with, but also actively enjoyed using. I decided that Xamarin was the technology for
me, bought myself a license, signed up for Xamarin University, quit my job, and spent
four months in a co-working space learning Xamarin. I was hooked, and since then I
haven’t looked back. I’ve been so passionate about the technology that I wanted to tell
the world how easy it is to build cross-platform mobile apps.
xvii

PREFACExviii
One question that kept coming up in the community was, “How do I build a
production-quality app?” There are many great guides on how to use the iOS and
Android SDKs, but no end-to-end documentation on how to go from an idea to a
working, tested, shipped app—documentation that takes advantage of design patterns
like MVVM not only to build testable code, but also to take advantage of Xamarin’s
most powerful capability: the ability to share large portions of your code between plat-
forms. That was the inspiration for this book. Xamarin is a better way to write, test,
monitor, and deploy mobile apps, and this book aims to show you how.
 www.allitebooks.com

http://www.allitebooks.org

acknowledgments
This book has involved a huge amount of work over the past year and a bit. But in
spite of the countless hours I put in, it would never have happened without a lot of
hard work from some amazing people. This book isn’t the creation of a great writer;
instead, it’s the result of an enthusiastic developer standing on the shoulders of giants,
and it is these giants to whom I owe a huge amount of thanks.

First, I’d like to thank the team at Xamarin for creating a product that has excited
me beyond any technology that I've worked with before—especially Miguel de Icaza,
Nat Friedman, and Joseph Hill for founding such an awesome company to create an
awesome product; James Montemagno for kick-starting my involvement with the Xam-
arin community by inspiring me to write and speak; Jayme Singleton for her great
work building the Xamarin community and supporting all its members; and Mikayla
Hutchinson for always being happy to help no matter what dumb questions I ask her.

On the community side, I’d like to thank the Xamarin MVP community, past and
present, for welcoming me to the fold, being on hand to answer questions, and sup-
porting my writing, with special thanks to Dave Evans for giving me my first chance to
speak at a meetup—a defining moment in my community involvement. Part of what
has made this book so easy to write is the amazing framework that is MvvmCross, so I’d
like to also thank the MvvmCross team for their hard work and support, especially
Martijn van Dijk.

This book wouldn’t have been one-tenth as good as it is without the constant sup-
port, feedback, and teaching of my development editor at Manning Publications, Ele-
sha Hyde. The techniques you’ve taught me have made me a better communicator,
writer, and mentor, and I’ve been incredibly appreciative of your guidance every time
there was a bump in the road. I hope I’ve done you proud.
xix

ACKNOWLEDGMENTSxx
I’d also like to thank the reviewers who took time to read the manuscript at various
stages in its development: Andreas Berggren, Davide Fiorentino lo Regio, Dennis Sell-
inger, Eric Sweigart, Gareth van der Berg, Jason Smith, Jesse Liberty, Karthikeyarajan
Rajendran, Krishna Chaitanya Anipindi, Lokeshwar Reddy Vangala, Mario Solomou,
Michael Lund, Narasimha Baliga, Patrick Regan, Philip Taffet, Prabhuti Prakash, Ric-
cardo Moschetti, Richard Lebel, Stefan Hellweger, Steve Atchue, Thomas Overby
Hansen, and Zorodzayi Mukuya. This book is much better because of your feedback.
I’d especially like to thank Gary Park and Tomasz Cielecki (another member of the
great MvvmCross team) for their thorough technical review and their constant feed-
back.

Part of this book was written while fueled up on coffee and pancakes, so I’d like to
thank Sarah and the team at Soulshine in Browns Bay, New Zealand, for fueling my
writing every Saturday morning. The majority of this book was written while working
for a small but incredible company in New Zealand called EROAD, and I would love
to thank them for supporting my efforts, especially Jared Langguth for giving me a
chance to write Xamarin apps all day, every day, and Sam Williams for continuously
showing me the world of development from a different perspective.

Finally, there’s no way this book could have happened without the love and sup-
port of my family. My parents first got me into programming at an early age (even
helping copy out ZX Spectrum source code listings from books and magazines), and
they’ve always inspired me to do my best at everything I do and to always do what I
love. Thank you both for being there for me my entire life. My biggest thanks have to
go to my wife, Nat, and my daughter, Evie. Nat—thank you for being by my side as I
followed my passions wherever in the world they took us, and for supporting such a
huge personal project. Evie—thank you for being excited that Daddy was teaching
people to write apps for iPads. I hope one day you find something that excites and
drives you the way Xamarin mobile development has me. I love you both.

All the good parts of this book are thanks to these amazing people. All the mis-
takes are mine and mine alone.

about this book
Xamarin in Action has been written to help you build production-quality mobile apps—
five-star apps that are well architected, well tested, and deployed to the store with ana-
lytics and crash monitoring. This book covers the journey from idea to delivery, ensur-
ing that you build your apps the right way. It doesn’t try to replicate information that’s
easily available online in API docs; instead, it focuses on the concepts of a well-built
cross-platform Xamarin app, bringing together all the information you need without
bogging you down.

Who should read this book
Xamarin in Action is for developers who want to build cross-platform mobile apps using
C#, either because it’s a language they know, or because they want to take advantage
of the cross-platform capabilities of Xamarin. This book assumes a small amount of C#
knowledge, but all C# developers from beginner to advanced will be able to use it to
learn how to build mobile apps. Even if you’re an experienced native iOS or Android
app developer using Objective-C or Java, this book will help you easily transition to
building Xamarin apps. The underlying architecture of a Xamarin app is very differ-
ent from a native app, and so are the technologies and tools available. This book will
help teach you how to build apps using a cross-platform architecture and the tooling
inside Visual Studio.

How this book is organized
This book is split into three parts covering 16 chapters. Part 1 covers the architectural
concepts behind a well-written cross-platform Xamarin app, with a Hello World exam-
ple app to get you started:
xxi

ABOUT THIS BOOKxxii
 Chapter 1 discusses Xamarin and the benefits of building Xamarin mobile
apps. It also looks at the development lifecycle, covering all the steps in build-
ing production-quality mobile apps.

 Chapter 2 starts by looking at MVVM (model-view–view model), the design pat-
tern for building good-quality, testable, cross-platform apps, and then looks at
the structure of a Xamarin app. It then covers creating a basic Hello World
cross-platform mobile app.

 Chapter 3 dives into MVVM in more detail, looking at the different layers from
model, through view model, to view. It then covers the application layer and
navigation patterns.

 Chapter 4 revisits the example Hello World app from chapter 2, diving deeper
into how the MVVM design pattern was used to build the app. It then looks at
expanding the app using cross-platform Xamarin plugins.

 Chapter 5 is all about multithreading, covering the threading considerations
involved when building mobile apps and introducing async and await, a feature
of C# that makes it easy to build clean and easy-to-read multithreaded code.

Part 2 builds on this architecture and shows you how to build cross-platform apps
starting with the cross-platform code and moving on to platform-specific UI code.
You’ll take a couple of examples from the design stage through to fully working iOS
and Android apps:

 Chapter 6 introduces the two example apps that will be built throughout the
rest of part 2. It looks at how to design an app, considering what code goes in
what layer in the MVVM design pattern. Finally, it covers creating solutions for
the example apps and looks at the project and application properties for a
Xamarin mobile app.

 Chapter 7 focuses on the model layer, including building simple models, build-
ing more complex model layers with services and repositories, and accessing
SQLite databases and web services. It also introduces unit testing, showing how
easy it is to unit-test well-structured code.

 Chapter 8 moves up a layer and covers view models. It considers how state and
behavior are represented, covering properties, commands, and value conver-
sion. It also shows how to test UI logic using unit testing.

 Chapter 9 covers the view and application layers and starts the process of build-
ing the Android version of one of the example apps. It covers Android resource
files, layouts, UI controls, and activities.

 Chapter 10 focuses on the second of the example Android apps, covering recy-
cler views for showing lists of data and multiscreen navigation. It then shows
how to add polish to an app by creating app icons and splash screens.

 Chapter 11 moves from Android to iOS, working on the application and view
layers of the first example app, covering view controllers, UI controls, story-
boards, and auto layout and constraints.

ABOUT THIS BOOK xxiii
 Chapter 12 covers how to build the second example iOS app, looking at table
views and multiscreen navigation. It then covers app icons and launch screens.

Part 3 covers making a working app production-ready and shipping it to users:

 Chapter 13 looks at how to run apps on real devices, including setting up
Android devices for developers, configuring iOS devices, and generating iOS
provisioning profiles.

 Chapter 14 covers UI testing, the ability to write and run automated tests that
interact with your app the way a real person would.

 Chapter 15 introduces Visual Studio App Center, showing how it can be used to
build your apps, run UI tests against devices in the cloud, and set up your apps
to track usage information and crashes.

 Chapter 16 covers the final stage in an app’s journey: delivery to users. It looks
at using App Center to provide beta test builds to selected users and then shows
how to finally publish apps to the Google Play store and Apple App Store.

This book is sequential, with later chapters building on concepts explained in the pre-
vious chapters. It takes you on a journey from idea, through architectural concepts, to
building up each layer, and finally to testing and publishing your app. You’ll find it
easier to read the first two parts from start to finish, rather than dipping in and out of
different chapters. Part 3 can be read out of order, depending on your needs.

About the code
This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width

font like this to separate it from ordinary text. In some cases, the original source
code has been reformatted; I’ve added line breaks and reworked indentation to
accommodate the available page space in the book. In rare cases, even this wasn’t
enough, and listings include line-continuation markers ➥. Additionally, comments in
the source code have often been removed from the listings when the code is described
in the text. Code annotations accompany many of the listings, highlighting important
concepts.

Source code is available for all chapters in this book, with the exception of chap-
ters 1 and 3. Each chapter has one or more solutions, showing the example app or
apps discussed in that chapter, with all the source for the chapter fully implemented
and working. For example, chapter 7 has two apps with model layers that can be tested
using unit tests, but not a runnable app. By chapter 9, the first example app will run
and be fully working on Android.

All the source code has been tested using Visual Studio 2017 both on Windows
(with the Xamarin workload installed) and Mac based on the 15.4 release published
in October 2017. You’ll need to ensure that you have the Android SDK v7.1 or later
installed. (The latest one is installed by default, but if you installed a long time ago,

ABOUT THIS BOOKxxiv
you may need to update your SDK.) You’ll also need Xcode 9 or later installed on your
Mac for iOS builds.

The source code for this book is available for download from the publisher’s web-
site at https://www.manning.com/books/xamarin-in-action.

Software and hardware requirements
The most basic requirement for building Xamarin apps is a computer running Visual
Studio. Windows users will need Visual Studio 2017 with the Xamarin workload
installed. When you install VS2017 with the Xamarin workload, everything you need
should be installed for you, although it’s always worth ensuring you have updated to
the latest version of Visual Studio and updated your Android SDK to the latest stable
version.

Mac users will need the latest version of Visual Studio for Mac installed. The installer
should install and configure everything you need, with one exception—Xcode. You’ll
need to install Xcode from the Mac App Store. It’s also worth ensuring everything is up
to date, with the latest stable versions of VS for Mac, the Android SDK, and Xcode
installed.

If you want to build iOS apps from a PC, you’ll need access to a Mac with Visual
Studio for Mac installed, either on your network or via a cloud service such as Macin-
Cloud.

To publish to the stores, you’ll need developer accounts with both Google Play and
Apple. These aren’t free. Currently, the Google Play developer account is a one-time
fee of $25, and the Apple developer program is $99 per year. You’ll be able to run
your code on Android emulators and iOS simulators as you develop, but it’s always
worth having real hardware to test on, especially when you prepare to release to the
stores.

Online resources
If you need additional help:

 The forums at https://forums.xamarin.com are a great place to ask questions.
 There is a vibrant Xamarin community Slack team that you can join at

https://xamarinchat.herokuapp.com/, full of Xamarin developers and support
engineers.

 As always, Stack Overflow (https://stackoverflow.com/) has the answers to most
things you’ll want to know, and lots of top-notch Xamarin developers are on
hand to answer any additional questions you may have.

Book forum
Purchase of Xamarin in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go
to https://forums.manning.com/forums/xamarin-in-action. You can also learn more

https://www.manning.com/books/xamarin-in-action
https://forums.xamarin.com
https://xamarinchat.herokuapp.com/
https://xamarinchat.herokuapp.com/
https://forums.manning.com/forums/xamarin-in-action

ABOUT THIS BOOK xxv
about Manning’s forums and the rules of conduct at https://forums.manning
.com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

About the author
JIM BENNETT is a Senior Cloud Developer Advocate at Microsoft, specializing in cloud-
connected Xamarin apps. He has decades of experience building desktop and mobile
apps, mainly using C# and other Microsoft technologies. For the past four years, he
has been heavily involved in developing cross-platform mobile apps using Xamarin,
both at work and as personal projects. He’s a regular speaker on mobile development
at meetups and conferences, contributes to open source, and blogs about and evange-
lizes Xamarin whenever he can. He’s a former Xamarin and Microsoft MVP, he’s pas-
sionate about sharing knowledge and helping others to learn, and when he’s not
playing with his young daughter, he’s happy to spend hours discussing mobile devel-
opment over Thai food and good beer or whisky.

https://forums.manning.com/forums/about
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

about the cover illustration
The illustration on the cover of Xamarin in Action bears the caption “Bostandji bachi.”
The literal translation is “chief gardener,” but the Bostandjis of the Turkish sultan had
powers and responsibilities ranging far beyond the sultan’s gardens to his palaces and
supervising the police of the capital. The illustration is taken from a collection of cos-
tumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old
Bond Street, London. The title page is missing from the collection, and we’ve so far
been unable to track it down. The book’s table of contents identifies the figures in
both English and French, and each illustration also bears the names of two artists who
worked on it, both of whom would no doubt be surprised to find their art gracing the
front cover of a computer programming book 200 years later.

The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for the
day. The Manning editor didn’t have on his person the substantial amount of cash that
was required for the purchase, and a credit card and check were both politely turned
down. With the seller flying back to Ankara that evening, the situation seemed hopeless.
What was the solution? It turned out to be nothing more than an old-fashioned verbal
agreement sealed with a handshake. The seller proposed that the money be transferred
to him by wire, and the editor walked out with the bank information on a piece of paper
and the portfolio of images under his arm. Needless to say, we transferred the funds the
next day, and we remain grateful and impressed by this unknown person’s trust in one of
us. It recalls something that might have happened a long time ago.

The pictures from the Ottoman collection, like the other illustrations that appear
on Manning’s covers, bring to life the richness and variety of dress customs of two
xxvi

ABOUT THE COVER ILLUSTRATION xxvii
centuries ago. They recall the sense of isolation and distance of that period—and of
every other historic period except our own hyperkinetic present. Dress codes have
changed since then certainly, and the diversity by region, so rich at the time, has faded
away. It’s now often hard to tell the inhabitant of one continent from that of another.
Perhaps, viewed optimistically, we’ve traded a cultural and visual diversity for a more
varied personal life. Or a more varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life as it
was two centuries ago‚ brought back to life by the pictures from this collection.

Part 1

Getting started
with Xamarin

The traditional way to build a mobile app is to write it twice: once in Objec-
tive-C or Swift for iOS, and then again in Java for Android. This is a huge waste of
time, duplicating code across two languages. Luckily some of the most innovative
engineers in the world (according to Time magazine) have a solution—Xamarin.

Xamarin is a platform from Microsoft that allows you to build and ship iOS
and Android apps using .NET. It’s also part of a thriving mobile ecosystem con-
taining everything from mobile-specific cloud resources from Microsoft, DevOps
tools, and a huge community of open source software. At its most basic, it’s a way
to use the same language and technology across iOS and Android, allowing you
to reuse large amounts of code and third-party libraries across two very different
mobile platforms. The best practices around Xamarin are focused on keeping
this amount of code-sharing as large as possible.

This first part of the book covers the architectural concepts behind a well-
written cross-platform Xamarin app, focusing on the incredibly popular MVVM
design pattern. A good architecture will help you reuse the most code possible,
so it’s worth investing the time to learn these concepts, avoiding wasting time
writing swathes of code twice. Patterns such as MVVM allow you to test your code
faster and easier using unit tests, catching bugs earlier in the development cycle
and reducing the time manually testing (and bug fixing) further down the devel-
opment cycle. These are the foundations you’ll need to build production-quality
mobile apps.

2 PART 1 Getting started with Xamarin
Chapter 1 starts by discussing Xamarin and the benefits of building Xamarin
mobile apps. It also looks at the development lifecycle, covering all the steps in build-
ing production-quality mobile apps.

Chapter 2 looks at the MVVM design pattern as a way to increase your code reuse,
and to build a well-architected, testable app. Then it covers the creation of a Hello
World app that uses a popular MVVM framework.

Chapter 3 dives into MVVM in more detail, looking at the different layers from
model, through view model, to view. It then covers the application layer and naviga-
tion patterns.

Chapter 4 revisits the example Hello World app from chapter 2, diving deeper into
how the MVVM design pattern was used to build the app. It then looks at expanding
the app, using cross-platform Xamarin plugins.

Chapter 5 is all about multithreading, covering the threading considerations
involved in building mobile apps. It also introduces async and await, a feature of C#
that makes it very easy to build clean and easy-to-read multithreaded code.

1Introducing
native cross-platform

applications with Xamarin
Back in 2000 Microsoft announced a new software framework called .NET, along
with a new programming language called C#. Not long after this, a company called
Ximian (founded by Miguel de Icaza and Nat Friedman) started working on Mono,
a free implementation of the .NET framework and the C# compiler that could run
on Linux.

Fast forward 16 years, and Nat Friedman is standing on stage at the Xamarin
Evolve conference giving the keynote talk—physically in front of sixteen hundred
mobile developers and virtually in front of tens of thousands more. He’s speaking
about how Xamarin enables a mobile-optimized development lifecycle. Xamarin
(the company that grew out of the ashes of Ximian and that provides tools and
technology to build cross-platform mobile apps) had just been bought by Microsoft

This chapter covers
 What a Xamarin app is

 The mobile-optimized development lifecycle

 Building production-ready cross-platform apps
3

4 CHAPTER 1 Introducing native cross-platform applications with Xamarin
for a rumored half a billion U.S. dollars, and had become a key part of Microsoft’s
“mobile first, cloud first” strategy.

Xamarin is now a well-known term among the mobile developer community, and
it’s starting to be well known in other Microsoft-based developer circles. But what do
we mean when we talk about Xamarin mobile apps, and what does Xamarin give us
above and beyond other tools?

1.1 Introducing Xamarin mobile apps
To really see the benefits of Xamarin mobile apps, we first need to look at how apps
are built using vendor-provided development environments, or other cross-platform
tools like Cordova, and compare them to what Xamarin offers. We can do this by look-
ing at two main types of developers—an indie developer working on an app in their
spare time, and a corporate development team building an app for their customers.
We’ll start by considering what their differing needs are in terms of platform support,
and then we’ll compare the possible options.

Our example indie developer has come up with the idea of the millennium for a
killer app, FlappyFoo, that they want to sell to consumers on an app store. Our exam-
ple large corporation, FooCorp, wants to build a DailyFoo app to help their customers.

Figure 1.1 outlines the four different mobile development platforms you could
choose from:

 Vendor-specific apps using the development environments from Apple and
Google

 Cordova
 Xamarin native using Xamarin.iOS and Xamarin.Android
 Xamarin.Forms

UI layer

Application
layer

Business
logic layer

Xamarin.Forms appsXamarin apps

iOS

C#

C#

C#

C#

C#

Android iOS

C# C#

Android

Cordova apps

iOS

Provided by
framework

Provided by
framework

Android

Vendor-specific apps

iOS

Objective-C
Swift

 Java
Kotlin

Java
Kotlin

Objective-C
Swift

Java
Kotlin

Objective-C
Swift

Android

HTML/CSS/JavaScript C#

Figure 1.1 A comparison of the different mobile-development platforms

5Introducing Xamarin mobile apps
This diagram shows the programming languages used and where code can be shared
for each layer of the app—from the application layer (the thin wrapper around the
rest of the app that makes it into something that can be run on each platform), down
through the UI layer to the business logic layer. The boxes are not to scale—they’re
just a representation of the layers. Your app could be heavy on UI but light on logic, so
the UI layer would be bigger, or vice versa. Let’s look at each of these in more detail.

1.1.1 Vendor-specific native apps

Each OS comes with a different set of APIs, a different paradigm for building the user
interface, a different way of handling user interactions, and, most frustratingly, a dif-
ferent programming language (or choice of languages) for you to use. If you want to
build an app for Apple’s iOS-based devices such as iPhones and iPads, you need to
program in either Objective-C or Swift. For Android phones and tablets, you need to
program in Java (with Kotlin support coming soon).

For each platform you’ll end up building the entire app from the user interface
layer right down to any in-app business logic all in the vendor’s preferred language, as
shown in figure 1.2.

For our indie developer, this is a big problem. For FlappyFoo to be a success, it will
need maximum reach, and this means both iOS and Android versions. To achieve
this, the indie developer will have to learn two programming languages, and there’s
more to learn than just the language syntax—they’ll have to learn different tools, dif-
ferent ways of getting access to third-party code, the different words developers use to
express each concept, and the different design patterns that make up standard apps.
This is a big task.

Even if the indie developer is a polyglot and is happy in multiple environments,
there’s still the issue of time. They’ll have to code the same app twice, implementing
the same logic in different languages. Time to market is key, and if the developer hits
only one platform to start with, there’s nothing to stop copycats from flooding the
other platform quickly. FlappyFoo may dominate the iOS app store but could lose seri-
ous revenue to FlappyBar from another developer on Android.

UI layer

Application
layer

Business
logic layer

iOS

Objective-C
Swift

 Java
Kotlin

Java
Kotlin

Objective-C
Swift

Java
Kotlin

Objective-C
Swift

Android

Figure 1.2 Vendor-specific apps use
the same language for all layers but
different languages on each platform

6 CHAPTER 1 Introducing native cross-platform applications with Xamarin
For our corporate team, the biggest issue is cost. To reach multiple platforms usu-
ally means one team per platform with the associated developer and organizational
costs. This can be especially problematic if you consider the difficulties in finding, hir-
ing, and retaining good developers. Ideally you want to be able to release simultane-
ously on all platforms, and to replicate each new feature to both platforms and release
them simultaneously. This is hard if you’ve managed to employ five Android develop-
ers but only two iOS developers (a common scenario as it’s much easier to find Java
developers in the corporate environment to help with Android versions than it is to
find Objective-C or Swift developers).

Thinking of the corporation’s customers who use DailyFoo every day to track their
Foo, the last thing we want is for them to change platform, find out that the new plat-
form’s version is missing a killer feature from DailyFoo, and jump ship to MyBar from
BarCorp.

It’s not all bad, though. The one thing you can always be sure of when writing an
app using the vendor-provided tools is that you’re always building a truly native appli-
cation that will be as high performance as possible and that supports everything the
OS and devices have to offer. Whenever an OS update is released, the tooling is always
updated to match, giving you access to all the newest features that your users will want
to have. This is an important consideration, as app users are fickle. They’ll quickly
drop an app for a competitor if it’s not up to scratch, it’s slow, clunky, or just not well
integrated into their device.

1.1.2 Cordova

As already mentioned, using multiple languages
and development tools is a headache. One popu-
lar way around this is using Cordova. This is a set
of tools that allows you to create web applications
using HTML, JavaScript, and CSS to build a
mobile website, which is then wrapped in an app
and packaged up for each platform, as shown in
figure 1.3.

This has the big upside of a common lan-
guage and development environment—one tool-
set for the indie developer to learn, or one team
in a corporate environment. The downsides,
though, can seriously outweigh this upside. First,
you aren’t creating a native app—you’re creating
a web app. This means that the widgets you see in
the user interface are HTML widgets styled to look like native components. This might
fool your users now, but if an OS update changes the style, your apps won’t keep up
without a rebuild and will look out of date. Second, the OS and device-specific features
that are available to the native developer won’t be available to a Cordova developer.

UI layer

Application
layer

Business
logic layer

iOS

Provided by
framework

Provided by
framework

Android

HTML/CSS/JavaScript

Figure 1.3 Cordova apps:
HTML/CSS/JavaScript for the UI and
business logic wrapped into an app by
the Cordova framework.

7Introducing Xamarin mobile apps
The tooling does its best to provide some lowest-common-denominator plugins to
allow hardware and OS access, but these are written with the aim of being cross-
platform, so they only support the features common to both platforms. They’re also
later to market. If the vendor releases a new feature you want to take advantage of,
you’ll have to wait for the Cordova plugin to be created to support it, and this may
never happen.

Thinking of our indie developer, if they use Cordova to build FlappyFoo, it could
easily run slowly, especially on older devices. This can lead to a swath of one-star
reviews, a lack of sales, and the developer going hungry. Cordova apps also run in a
browser, so they’re limited by the speed and feature set of that browser—newer ver-
sions of the OS might have a fully featured, fast browser but older versions might be
lacking. This can lead to different capabilities or different levels of performance on
the same device but with different OS versions—something that’s very hard to test on
the hugely fragmented ecosystem of Android.

For our corporate development team building DailyFoo, an app that’s slow or that
looks out of date once an OS update comes out can create a negative image of the
FooCorp brand. If the MyBar app from the rival BarCorp supports 3D touch on iOS,
and DailyFoo doesn’t due to a lack of support from Cordova plugins, our fickle cus-
tomers might easily be tempted to switch.

1.1.3 Xamarin native apps

In my mind, Xamarin is the clear winner because it
combines the best of both the previous methods.
Fundamentally, Xamarin provides a set of .NET
wrappers around the native OS APIs based on
Mono—the cross-platform implementation of .NET
that grew out of Ximian. This provides a .NET
framework for Android and iOS, with libraries and
a C# compiler for each platform. It means you can
write apps in C# that target each mobile platform
natively, and because you’re using a single program-
ming language, you can easily abstract out all your
business logic (anything that doesn’t interact with
the device directly) into a set of libraries that can be
shared between platforms. You can even abstract
out a lot of the UI logic by using design patterns
like MVVM (model-view–view model, which you’ll learn about in more detail in chap-
ter 2). Figure 1.13 shows the code split and sharing between each layer.

Let’s take a closer look at those last points, as this is important and is the key rea-
son in my mind for using Xamarin:

 Xamarin provides wrappers around native APIs.
 Xamarin provides a compiler for each platform to produce native code.

UI layer

Application
layer

Business
logic layer

iOS

C#

C#

C#

C#

C#

Android

Figure 1.4 Xamarin apps are written
in C#, so you can share common
business logic and also have
platform-specific UIs.

8 CHAPTER 1 Introducing native cross-platform applications with Xamarin
This is key. The native APIs are wrapped in C# code so you can call them from your C#
code. You write your apps using the same idioms and classes as pure native code, but
using C#. On iOS you have a UIViewController class for each screen, but this is a C#
class, not the Objective-C one from the iOS SDK that you code against. On Android,
each screen is derived from a class called Activity, but it’s a C# class that wraps the
Java Activity class from the Android SDK.

The code you write is compiled code as well—this isn’t sitting inside some emula-
tor on the device; it’s compiled to native code that interacts with the same libraries as
an app written in the vendor’s language of choice and compiled with their tools. This
means your app is truly native. It uses native widgets on the UI, has access to every
device and OS feature the native API has access to, and is as fast as a native app.

XAMARIN APPS == NATIVE APPS This is the killer feature of Xamarin apps.
They’re written in C# and they have access to all the features of that language,
to a large part of the .NET framework that desktop developers are used to,
and to a whole host of third-party code. But the end result is native code—the
same as that created in Objective-C or Swift on iOS, or Java on Android.

On iOS the C# compiler takes your code and produces a native iOS binary using an
Ahead-Of-Time (AOT) compiler (figure 1.5).

On Android it creates IL code (the same as for C# apps running on Windows),
which is compiled at runtime using just-in-time (JIT) compilation (figure 1.6). This is
provided by a Mono runtime that’s built into your app and installed with it (but don’t
worry, you only get the bits of the Mono runtime you need, thanks to a very good
linker). Xamarin also has an AOT compiler for Android, but at the time of writing, it’s
still very much experimental.

WHAT ABOUT OTHER LANGUAGES? You can also write your apps using F# if you
prefer a more functional style of programming. F# is fully supported for iOS
and Android apps. If VB.NET is your thing, you can build .NET Standard
class libraries using it and call these from your iOS and Android apps built
using C# or F#. Those options are outside the scope of this book, though—
here we’ll just focus on C#.

iOS SDK
(Objective-C)

C# wrapper
(Xamarin.iOS)

C# app

iOS app
AOT compiler

Figure 1.5 Xamarin.iOS uses
an ahead-of-time compiler.

9Introducing Xamarin mobile apps
Because the language of choice is C#, the code libraries written to share code between
iOS and Android can also be shared with a UWP (Universal Windows Platform) app,
so you can easily target Windows 10 devices from desktops to tablets to phones to the
XBox One if you so desire.

For our indie developer, this is good news. They only have one language to learn,
and they only have to write the bulk of their app once, and then write the device-
specific layer once per platform they want to support. This gives a faster time to mar-
ket, which is vital for consumer apps. It also means the core logic code is tested the
same way on all platforms, bugs are fixed once, and improvements and new features
are created with fewer changes.

For our corporate development team, this is also a good thing as it means fewer
developers and less cost. Ideally there would be some developers who specialize in the
platform-specific idioms of each supported OS who can work on the UI or device-
specific logic, but the core of the development team can build the business logic once
in a single language. It’s also easier to build the development teams because C# devel-
opers are easy to find—much easier than Objective-C developers. The advantages for
the indie developer also apply here—less code to test and faster to market with bug
fixes and new features.

This is not a total utopia. Xamarin developers still have to write the UI layer and
anything that interacts with the device using platform-specific C# code and they still
need to understand the idioms of each platform, but they only have one language to
support. One syntax, one toolset, one way of using third-party code.

It’s easy to look at this and think of it as a partial failure—something that misses
the mark by not being totally cross-platform—but that’s really one of its strengths. By
having C# platform-specific APIs, you get the best of what the device has to offer. You
aren’t limited to a common subset; instead you can write each platform’s app in a way
that makes the most of the features of those devices. It also means you have access to
everything—when iOS adds a new feature, Xamarin wraps its API and it’s available to
you pretty much the same day. Your apps can be targeted to each platform, so they
look and feel like a pure, native app and take advantage of the unique features that

Android SDK
(Java)

C# wrapper
(Xamarin.Android)

C# app

Android app
(IL code,

Mono runtime,
JIT compiler)

IL compiler

Figure 1.6 Xamarin Android
uses a Just-in-time compiler
and a Mono runtime.

10 CHAPTER 1 Introducing native cross-platform applications with Xamarin
make Android and iOS so different, but behind the scenes you’re sharing around
75% of your code base. Table 1.1 shows some examples of this code sharing.

There’s one downside to using Xamarin for your mobile apps—you’re dependent on
them wrapping the SDKs and ensuring that the compilers work on all required plat-
forms. There’s an overhead to wrapping the SDKs, and although Xamarin has got
very, very good at it, there can still be a gap between an API being made available from
Apple and Google and Xamarin having it wrapped. This is usually not an issue, as
both Apple and Google release beta versions early enough for Xamarin to have time
to deal with any quirks.

The only thing that has been a problem is when the underlying compiler require-
ments change. This happened recently with Apple Watch apps: originally they were
compiled native code, but for watchOS 2 the Apple compiler changed to output byte-
code instead of native code. It took a long time for Mono to catch up and be able to
compile working watchOS 2 apps. This is the biggest risk with Xamarin—that Apple
or Google could completely change how they build apps, and by the time Xamarin
catches up, your app could have been late to market with a cool new feature or device
support.

Now that Xamarin is owned by Microsoft, I can see this being less of an issue as
they’ll have more resources to throw against such a problem.

1.1.4 Xamarin.Forms

Xamarin also offers a more cross-platform solution
called Xamarin.Forms that attempts to bring code
reuse up to 95–98% by abstracting out the UI and
device-specific code layers. Unlike Cordova apps
that use HTML, Xamarin.Forms apps are still native
apps. It uses an abstraction that sits on top of the
iOS and Android platforms and provides a lowest
common denominator experience, providing fea-
tures that are common to both platforms. By doing
this, you can get up to 98% code reuse. This is
shown in figure 1.7.

This abstraction is done using a set of UI classes
that represent features common to both, and when

Table 1.1 The amount of code in two popular apps reused between iOS and Android

iCircuit (http://icircuitapp.com)
TouchDraw

(http://elevenworks.com/home)

iOS 70% 61%

Android 86% 72%

UI layer

Application
layer

Business
logic layer

iOS

C# C#

Android

C#

Figure 1.7 Xamarin.Forms apps
have a cross-platform UI to share
even more code.

http://icircuitapp.com
http://elevenworks.com/home
http://elevenworks.com/home

11Introducing Xamarin mobile apps
the app is run, these are translated to the native equivalents behind the scenes. For
example, each screen you see is a Page, and this is rendered on iOS using a UIView-

Controller and on Android using an Activity. If you add a Button to this page, it’s a
UIButton on iOS and a Button widget on Android. Unlike Cordova, which uses
HTML to provide the cross-platform capability, Xamarin.Forms uses the actual, native
controls, so you get a true native experience. If the OS updates the look of the but-
tons, your Forms apps will look like the new version. This abstraction is exposed not
only as a set of C# classes you can use from your C# code, but you can also define your
UI using XAML—a variant of XML originally defined by Microsoft for building UIs.

XAML allows you to define your UI using a more declarative syntax, similar in
nature to HTML, and it’s very familiar to developers from a Windows desktop back-
ground who are used to building apps with WPF. If you’ve built WPF or Windows 10
apps, you’ll probably have come across XAML before. Xamarin.Forms uses a slightly
different variant of XAML than WPF/Windows 10, but most of the concepts are the
same. This similarity will increase over time because Microsoft is in the process of
defining XAML Standard, a single XAML syntax that will be used across all the Micro-
soft XAML tooling.

The downside is that you’re building one app for all platforms. Although it tries to
be as native as possible by using native controls, you can’t easily get around platform-
specific idioms. For example, if you have an app that has two screens to work on,
you’d navigate on Android using a drawer exposed by a hamburger menu, whereas on
iOS you’d use tabs. This difference isn’t easy to implement in Forms without a lot of
custom logic and custom UIs. If you want to go further than the lowest common
denominator (for example, adding platform-specific behavior to one control on one
platform) then you’d need to write a custom renderer for it—code that maps from the
Forms controls to the underlying control.

Forms does try to abstract away device-specific features like maps or the camera
using plugins, but again it’s a lowest common denominator model. The camera
plugin won’t give you live photos on iOS, and the maps plugin doesn’t give you the
same amount of control as Google Maps on Android.

For our indie developer, Forms might not be the best choice—the amount of work
it would take to make an app look and feel like a true native experience might out-
weigh the time savings by maximizing code reuse.

For corporate developers, it might be a better option. Certainly for in-house apps,
where you don’t always need a killer native experience, it’s a great tool, but for con-
sumer apps it might not provide all the features needed. I’m sure over time it will
carry on getting better and better—it’s under heavy development at the moment—but
it’s not quite there yet for a great consumer app.

This book focuses on native Xamarin mobile apps, but the principles of MVVM
that we’ll cover also apply to Xamarin.Forms apps.

12 CHAPTER 1 Introducing native cross-platform applications with Xamarin
1.1.5 Xamarin developer tools

As I’ve shown, Xamarin is far and away the best choice for mobile development—it
gives you the power and performance of a native app, providing access to everything
in the SDKs and on the devices, and it uses C# as a common language on all platforms
so you can share the majority of your code base. So how do you go about building a
Xamarin app?

For pure native apps, tooling is provided by the vendors: iOS apps are built using
Xcode on the Mac, and Android apps are built using Android Studio on Mac/Win-
dows/Linux.

For Xamarin apps, the best IDE around is Microsoft’s 20-year-old Visual Studio. It
comes with a ridiculous number of features and tools, and it has a huge range of
extensions to provide all manner of new features. It’s available as a community edition
for indie developers and small teams for free, and it tiers up from there depending on
how big your team is, what your support needs are, and whether you want enterprise
features like profilers or embedding assemblies (you can compare the different tiers
at www.visualstudio.com/vs/compare/). Xamarin is fully built into Visual Studio, pro-
viding a totally native experience where you can create a new app that targets iOS or
Android just as easily as you can create a desktop WPF app or a class library. You can
easily reference other projects, add in NuGet packages, and do everything with these
project types that you can do with any native Windows project. From there you can
build your Xamarin Android app and run it on an emulator (Visual Studio provides a
number of built-in Android emulators) or on a real device. You can also build and run
a Xamarin iOS app, albeit with some Apple-related restrictions.

Apple’s licensing rules for its SDK, compiler, and build tools require that you build
on a Mac. Seeing as our Xamarin apps wrap the SDKs and compile down to native code
using the Apple toolchain, you have to have a Mac. Luckily Xamarin iOS on Windows
takes away the pain of this and provides support inside Visual Studio on Windows for
building and debugging iOS apps using a remote Mac—all you need is a Mac with
Xamarin installed that you can connect to, and the magic just happens. Visual Studio
connects to the Mac to compile your code. The iOS SDK on the Mac includes an
iPhone/iPad simulator, which you can use to test your app, and a debugger that allows
you to debug apps running on a device connected via USB to your Mac, so initially you
still had to test your apps either by running the simulator on the Mac or using a device
plugged into it. But Xamarin now has that covered as well—at least for simulators. It
can share the screen from the simulator to your Windows box so you can debug on a
simulator as if it were all available on Windows. This means the Mac you need for build-
ing need not be next to you, or even on the same network. There are cloud services
that can rent you time on Macs, such as Mac In Cloud (www.macincloud.com). You can
use these for building your apps, and you can test these apps by debugging through
Visual Studio on a simulator that’s screen-shared back to your Windows box. Figure 1.8
shows an overview of this process. You only need access to a physical Mac if you want to
test on a real device.

www.visualstudio.com/vs/compare/
www.macincloud.com

13Introducing Xamarin mobile apps
So far, so cool. We’re building cross-platform mobile apps on Windows. But one of the
founding principles of the Mono project that inspired the Xamarin we know and love
is being able to run on different platforms, and Xamarin has you covered there. Visual
Studio is now available on the Mac, albeit in a cut-down version compared to Visual
Studio on Windows. Xamarin used to have an IDE called Xamarin Studio, and this
became the basis of Visual Studio for Mac. Visual Studio for Mac supports building
iOS and Android apps, as well as macOS apps, tvOS apps, and ASP.NET Core websites.
It has Azure integration allowing you to build both the mobile and web components
of your app ecosystem, and even to debug both mobile and web components inside
the same debugging session. Visual Studio on the Mac has the same licensing as for
Windows, so it’s free for indie developers and small teams, with paid plans available
for larger teams.

Which tool you use really depends on personal preference and the platforms you
want to support. In this book we’ll be covering Visual Studio on both Windows and
Mac.

CROSS-PLATFORM ALL THE THINGS! One other awesome thing to note is that
Microsoft has changed recently from a closed company that was Windows
only to one that supports open source and multiple platforms. They’ve even
open sourced parts of the .NET framework and the compiler and have made
it cross-platform. This means that bits of Mono are slowly being replaced with
the Microsoft implementations from their .NET framework. It also means
that the compiler in Visual Studio is the same on Windows as on Mac, with
both using the open source Roslyn compiler. When you compile on the Mac,
it’s the same compiler as on Windows.

1.1.6 Mobile-optimized development lifecycle

So far we’ve covered Xamarin apps, and, to a lot of people, this is what Xamarin is—a
.NET framework and compiler for iOS and Android based on Mono. But as well as

Mac
with Xamarin

installed

Windows PC
running

Visual Studio

Code sent to Mac to build

Simulator
runs on Mac

Build results sent
back to Visual Studio

Simulator screen is
shared to Windows PC

Figure 1.8 Visual Studio can connect to a Mac locally or in the cloud
to build and debug iOS apps in a simulator.

14 CHAPTER 1 Introducing native cross-platform applications with Xamarin
providing the tools to build cross-platform apps, Xamarin also provides the tooling
you need to do a lot more than just write the code.

One of the biggest concepts in the development world in recent years is DevOps—
the cultural shift to a model where development and operations are combined. Some
of the aims of DevOps include enabling individuals to be involved in all parts of the
development and release cycle, automating as much as possible, and moving to a con-
tinuous delivery model where code can be checked in, built, and tested automatically
and shipped to production with minimal human input. DevOps is a massive topic, well
outside the scope of this book, but there are a number of tools, either provided by
Xamarin or well integrated with other Xamarin tools, that can be used to help imple-
ment a good DevOps strategy.

During the Xamarin Evolve conference in April 2016, one of the main themes of
the keynote was the mobile-optimized development lifecycle (as illustrated in figure
1.9). During this keynote, a number of tools, both from Xamarin and their new par-
ent company Microsoft, were discussed. It was pretty clear that this was a key focus for
Xamarin as a company, and it’s only been growing with the introduction of Visual Stu-
dio App Center and the greater push towards DevOps. This is important as we con-
sider how to build production-quality mobile apps.

1.2 Creating production-quality mobile apps
It’s a long journey from a back-of-the-napkin idea to a fully working, deployed app of
sufficient quality to be usable and not get bad reviews. It’s easy for developers to jump
straight into coding, as this is the part we love, but if you want to build an app that’s
successful, you have to consider the whole software-development lifecycle. There’s no
point in diving into the code and building something that doesn’t look good or work
well because you haven’t considered the design of your finished app. During coding,
you have to keep testing and monitoring in mind so that you code in a way that sup-
ports them. For anything more than a prototype, you have to think about the whole
lifecycle before you write a single line of code. This lifecycle is very similar to the
mobile-optimized development lifecycle talked about at Xamarin Evolve, but it adds a
few more steps.

Develop Test Build Distribute Monitor

Visual Studio UITest,
Test Cloud

Visual Studio
App Center

Visual Studio
App Center

Visual Studio
App Center

Figure 1.9 The mobile-optimized development lifecycle is a continuously iterating cycle of
develop, test, build, distribute, and monitor.

15Creating production-quality mobile apps
In this book we’ll be building a production-quality app, so let’s look at the stages a
mobile app will need to go through on this journey. We’ll see what Xamarin can (or
can’t) help with.

1.2.1 Design

Designing an app is hard, especially for developers with no formal design training.
We’ve all seen some pretty shocking UIs, mainly for in-house apps where developers
have thrown all the content and controls onto the screen and left it at that. In the con-
sumer mobile world, this is no longer an option. Users can jump ship to another app
that does the same things as yours in the time it takes to download a few megabytes of
data from an app store. They have no loyalty to your app, and a bad app can remove
loyalty to your business.

For example, if you’re a bank and people use your app to interact with their
accounts every day and the experience is bad, they’d rather change their bank than
keep using your bad app. You can get away with it in a corporate environment where
your users are in-house and have to use whatever you put in front of them, but be pre-
pared for complaints that may not be good for your career progression—especially if
the CEO is one of the users.

There are several things to consider when designing an app:

 Consistency—Does your app look and work like other apps on the same plat-
form, especially the ones provided by the OS vendor.

For example, Android apps should follow the activity stack with the Back but-
ton doing what you’d expect. iOS apps should use tabs to switch between popu-
lar actions.

Starting with an MVP

If you are not embarrassed by the first version of your product, you’ve
released too late.

—Reid Hoffman

It’s good practice when building a mobile app to start with an MVP—a minimum viable
product. This is the smallest, simplest, fastest-to-market version you can deliver.
Once this is in consumers’ hands, you can monitor how it’s used and deliver features
based on what real people want. A lot of people think an app must be full-featured,
based on their idea of what a full feature set is, to be successful, but your users
might know better. It’s better to get an app out quickly and iterate based on real-world
feedback, because it’s very easy to be wrong about what an app should have.

For example, Flickr started out as an online role-playing game with a photo-sharing
tool, and only the photo-sharing part now survives. Be prepared to pivot!

16 CHAPTER 1 Introducing native cross-platform applications with Xamarin
 User experience—Is your app easy to use and intuitive? A user should be able to
just pick it up and know how to use it without any training. Being consistent
with other apps can help with this.

For example, avoid custom icons for buttons or menu items. Instead, use
ones that are industry standard or just use text. No one cares that you think hav-
ing your own custom icons will help promote your brand and make an app look
like it’s yours. Instead, they’ll dump it if they can’t understand how to use it.

 Flow—Does your app flow well? Is there an easy flow for a user to use the app?
When one action naturally leads to another, the journey between the actions
should be short and concise.

For example, if your app is for taking photos, the options for editing or shar-
ing a photo should be on the same screen where you view the photo you’ve
taken, not buried in a menu that involves multiple steps to navigate.

 Good looks—Does your app look good, are any images well drawn and appropri-
ate for the device size, is all text clear and readable, and are the colors consis-
tent and appropriate?

For example, an app could be run on a small phone, large phone, “phablet,”
small tablet, or large tablet. Any text on the screen must be readable in all for-
mats, images must be sized to look good on all device sizes, and on-screen items
should be spaced so that it’s clear what the user is looking at without UI ele-
ments blending into each other due to lack of space.

 Accessibility—Is your app accessible to users with differing abilities?
For example, if a user increases the default font size, is the app still usable?

Are any audio alerts also available as visual alerts? Some of this is dependent on
your target audience (for example, there is not much you can do to make a
music player accessible to a deaf person), but a well-designed app will consider
all possible users.

It might seem odd to introduce design now, at the start of the book, but it’s an import-
ant thing to think about when you build your app. Although Xamarin provides you
with the tools you need to write cross-platform apps sharing your core code, you still
have to build the platform-specific layer, which includes different UI code for iOS and
Android. As part of this UI layer, you need to consider what makes each platform dif-
ferent, and design each UI accordingly. For your app to be a success, it needs to be
intuitive and look good on each platform, and part of this is consistency with what
users of each platform are used to. I can’t overemphasize the word consistency
enough—your app shouldn’t only be consistent with the platform but with itself. Any
difference will cause user confusion, leading to a bad experience.

Ideally you either need skill as a designer, or access to someone with that skill. This
can be easy in a corporate environment, but maybe not so easy for an indie developer
doing everything on their own. The good news, though, is that the different OS ven-
dors have you covered. They’ve all published a set of guidelines on how to build apps
that not only look and work well, but are also consistent with other apps on that

17Creating production-quality mobile apps
platform. Google has Material Design, Apple has its Human Interface Guidelines.
We’ll come back to these later in this book when we look at building UIs.

USABILITY

One of the key things about design is how usable your app is. An app that looks slick
but is impossible to use is probably worse than an app that is bad to look at but works
well. When you are designing your app the relevant platform guidelines can help
ensure some consistency with other apps, but you are still responsible for ensuring a
great user experience. While you are thinking of design also try out your user experi-
ence virtually—either with online tools (of which there are plenty) or simple tools like
paper prototypes. With these you can mock up the UI and how it works and actually
try it out—have people use the virtual or paper version as if it was a real app and see if
it is natural to them. If they see the first screen of your app and have no idea what to
do then you could lose a customer. Sometimes you only have seconds to draw a user in
before they decide your app is no good and delete it, so it’s vital to make those first
user interactions simple and obvious. One very popular book on user experience
design sums up the most important principle in its title: ‘Don’t make me think!’.

1.2.2 Develop

This is the fun part—the bit we as developers love the most. Despite it being the best
bit, it can also be less fun if we don’t have good tools to help. A good developer can
code in a raw text editor, but it’s painful when you’re used to a full-featured IDE.
Luckily, as Xamarin developers, we’re spoiled. On Windows there is Visual Studio,
which is in my mind the best IDE around, especially when coupled with extensions
like ReSharper from JetBrains. On Mac there’s Visual Studio for Mac, which uses the
same compiler platform as Visual Studio on Windows. These IDEs give you code com-
pletion, easy-to-use refactorings, and in-editor indications of suspect or erroneous
code. They also provide full debugging support for Xamarin apps running either in
an emulator/simulator or on an actual device.

Seeing as all Xamarin apps are .NET apps using a platform-specific .NET frame-
work, you have access to a whole host of libraries built by third-party developers that
are also built on the .NET framework. Despite the differences between .NET on Win-
dows, iOS, and Android, there’s a core subset that’s common to all platforms, so any
libraries that target this subset can be used in all your apps, and any libraries that tar-
get a particular platform can be used against that platform. This gives you access to a
wealth of code that does all manner of things, from connecting to databases, handling
JSON, and constructing unit tests to providing frameworks for application develop-
ment. Access to these is provided by a packaging tool called NuGet (pronounced New-
Get)—these libraries are packaged into a zip file with multiple libraries separated by
whichever platform they target. At the time of writing, there are almost 57,000 unique
packages available on NuGet.org, and the tools to use these packages are built into
Visual Studio. You simply right-click, select Manage NuGet Packages, and from there
install whatever you need. We’ll look at these a bit more later because they’ll be used
in the apps built throughout this book.

18 CHAPTER 1 Introducing native cross-platform applications with Xamarin
Testing is an important part of coding—all good coders will write unit tests as they
code, if not before. Luckily Visual Studio on Windows and Mac helps in this endeavor,
providing a way to run or debug tests. With live unit testing in Visual Studio on Win-
dows, or extensions like ReSharper with dotCover or NCrunch, you can even see in
the editor which lines of code are covered by tests, color-coded to indicate which tests
pass and which fail, and with the tests continuously running so it moves from red to
green as you write code. You can also get IDE extensions to use things like behavior-
driven design (BDD), which allows you to write your tests in natural language.

When you code your app, you need to think about testing all the time, to the point
of choosing design patterns that help keep your code separated enough that it can be
tested easily and thoroughly. When we look at how to actually build an app later in this
book, we’ll be using MVVM, a design pattern that enables this, and we’ll think about
testing at every step.

All these tools make coding a lot of fun and reduce the drudge work by making it
easy to automate writing boilerplate code and easy to refactor, so you’re never fighting
with your code to improve it.

1.2.3 Test

Testing really goes hand in hand with coding. It’s something that should be continu-
ous, and ideally automated. Testing every feature of your app takes a long time, and
sometimes it’s very difficult to test every scenario, including the edge cases. If you can
automate this, not only does it save time but it means you can fully test your app at
every stage of development. That way you can catch bugs as soon as they appear, so
you know what changes introduced them and you can fix them while these changes
are fresh in your mind. If you don’t know about them till the end of development, it’s
a lot harder to determine what caused the bug and find a fix.

The ability to run unit tests inside your IDE is a good thing because you have to
think about how to test your code as you write. There are three types of testing to
think about: unit testing, UI testing, and manual testing.

UNIT TESTING

Unit testing is testing units of code, with a unit being the smallest possible isolatable
piece of code. These are black-box tests against the contract of a class, designed to test
that class in isolation. If that class has dependencies on other classes, those dependen-
cies should be mocked out and given predefined behavior to ensure you’re just test-
ing the one class in isolation.

For example, say you have a Counter class that has a Count property and an
IncrementCount method. The behavior of the class is that when you call Increment-
Count, the Count value goes up by 1. Here you can write a test that creates the class,
calls IncrementCount, and verifies that the Count has gone up by 1 and only 1. If it
doesn’t go up, the test fails; if it goes up by anything other than 1, the test fails. You
don’t care about the implementation of the class—how it increments is of no interest,
as this could change at any time. You just care about the contract—that Increment-
Count increments the Count by 1. Once this test is written, you can be sure this method

19Creating production-quality mobile apps
works, and if a bug appears in your app that looks like the Count is incremented by 2,
you can easily see that if the unit test passes, the error is elsewhere in your app.

Another example would be a SaveCount method on your Counter class that saves
the count to a web server by making a REST call passing some JSON. If your class is
well written, it shouldn’t talk to the web server directly but abstract that out to another
class (we’ll call it WebService) that actually makes the call. Your class just needs to
construct the JSON and tell the other class which REST endpoint to use, passing it the
JSON. In this case when you construct your Counter class instance, you have to pass it
the WebService instance so it has something to call. As is, this isn’t well separated into
a unit for testing, but we can change that.

If the WebService class implements an interface, IWebService, that defines the
method to make the server call, you can instead pass the interface in when you con-
struct your Counter. By doing this, you can mock the interface in your unit test—that
is, have inside the test another object that implements the interface that you have
control of. This way, you can call the SaveCount method and then inspect the call
that was made to your interface and verify that the correct endpoint was called with
the correct JSON.

UI TESTING

UI testing is the complete opposite of unit testing. Here you’re considering your app
as a whole and testing it as if you were a real user interacting with the app. Xamarin
provides a tool called UITest to enable this. It’s a library that allows you to write tests
that look like unit tests and that are run using NUnit (a popular unit-testing tool), but
these tests will launch your app on an emulator/simulator or physical device and per-
form interactions like tapping or swiping and allow you to query the UI to verify that
everything works as expected.

For example, in an app that has a count shown in a label and a button that you tap
to increment the count, you could write a UI test that launches the app, reads the
value of the count label, taps the button, then re-reads the label, ensuring that the
value has increased. Xamarin UITest does this by finding items inside the visual tree
(the representation of the UI on screen) based on their name, ID, or contents. Once
it finds these, you can read data or perform actions like tap, so a test could find the

Counter

IWebService

WebServiceMockWebService

Production appUnit test

Figure 1.10 Mocking is a simple
technique to allow you to unit test
without worrying about dependencies.

20 CHAPTER 1 Introducing native cross-platform applications with Xamarin
count label based on it having an ID of Count defined inside the Android layout or
iOS storyboard, and it could read the text property from there. UI tests can also call
backdoors—these are special methods embedded in your app to allow you make your
tests more easily. You can use these to do things like prepopulate data to avoid per-
forming lots of repetitive steps in the UI, or to emulate situations that are hard to do
through a UI test, like switching off WiFi on Android to test connectivity issues.

Once you have UI tests that run and pass on an emulator or your physical device, it
would be nice to run them on more devices. One of the downsides to mobile develop-
ment is the large number of possible devices and OS versions. On iOS this isn’t such
an issue because most people keep their OS up to date, and there’s only a small range
of devices. On Android it’s a massive problem as there are thousands of possible
devices, and OS updates aren’t available to all due to manufacturer and carrier-
provided tweaks. If Google updates Android, the device manufacturer needs to take
that update and apply it to their version of Android and give it to the carrier, who then
needs to apply it to their version before it’s available to be installed on the device. In a
lot of cases, the manufacturer or carrier won’t do this, especially for older devices,
meaning there’s massive fragmentation of OS versions on Android. At the time of
writing, 85% of iOS devices are on the latest version of iOS. On Android, only 7.5%
are on the latest, with 20% one version behind, 16% two versions behind, 33% three
versions behind, and the remainder on even earlier versions.

What Xamarin provides to get around this is a service called Test Cloud. This is
thousands of physical devices from different manufacturers with different OS versions
set up in a data center, and you can rent time on these devices to run your UI tests.
This way you can cover a wide range of device sizes and OS versions, and when you
review the results you see not only which tests pass or fail, but you can get screenshots
of every step, so you can see how the UI looks. This can be invaluable when you have a
bug that only manifests itself on one OS or one screen size and you don’t have an
emulator or physical device available that replicates it. This is integrated into Visual
Studio—one click to deploy your test and run it in the cloud.

MANUAL TESTING

Yup, you’re on your own with this one. Manual testing means you have to interact with
your app to try everything out. Ideally, if you’ve implemented good unit and UI tests,
you’ve verified that your app works correctly. Manual testing should then be a quick
sanity check to ensure any edge cases that can’t be tested using automation (such as
launching external apps) are working. You should also manually test as you go along,
to verify the usability of the app, verifying the user experience. Automated tests can
verify whether something works correctly, but you still need to interact with the app
yourself to see if things work intuitively. After implementing each feature in the app,
you should try it out to make sure it follows your app’s design (as well as the design
guidelines for each app), and to ensure it’s easy to use and gives good feedback.

For usability testing you should also consider hallway testing—going up to people
and getting them to try the app out and see what feedback they give. When you do
 www.allitebooks.com

http://www.allitebooks.org

21Creating production-quality mobile apps
this, you should try to mimic the real-world experience as much as possible. Just give
them the app and leave them to it with no help, much like an end user who has just
downloaded it from the app store. If they can’t work out how to use your app, you may
need to reconsider the user experience.

1.2.4 Build

Continuous integration (CI) is the process whereby you continuously integrate your
code changes into the core codebase and test it each time. In its simplest form, it’s
having something that detects when code is changed inside your source code reposi-
tory (such as on GitHub or BitBucket), builds your app, and runs your tests so you can
see straightaway if you’ve broken the build or introduced a bug. This is a huge topic so
I won’t cover it in much detail here, but I’ll touch on some areas that are relevant to
Xamarin developers. There are a number of different CI tools around, and they all
have some degree of support for Xamarin apps (even the most basic ones support
Xamarin, because the tooling works from the command line).

There are hundreds of possibilities for the kinds of builds you could set up from a
CI system. For example, you could have a check-in build that monitors your source
code repo, and every time new code is checked in, it builds it and runs all your unit
tests. You could then have another build that runs at the same time every night, get-
ting the latest code, building it, running the unit tests, and then running all of the UI
tests locally. Finally, you could have a release build that’s triggered manually, which
gets the code, builds it, runs the unit tests, runs the UI tests, and (if all passes) pack-
ages the build up and deploys it to the app store.

The main thing you want with these builds is the continuous feedback loop—every
check-in should be verified to see that it builds and the tests pass; if there are any
errors, the person checking in the code should be notified so they can fix the error
directly. Some CI systems can even take this further and provide precommit builds—
the code you want to commit is built and tests are run, and only if everything passes is
the code committed. If the build or tests fail, the commit is rolled back.

When choosing a CI system, you need to consider how good their support is for
Xamarin apps and how much time you want to spend configuring them. Jenkins, for
example, is a free tool and is fantastic for Java apps, but its Xamarin support is nonex-
istent at the time of writing, so setting up builds is a lot of work. Other tools have Xam-
arin support out of the box, so it’s easy to set up. The main one for Xamarin apps is
Visual Studio App Center.

App Center (https://appcenter.ms) is described as “Mission Control for your apps.”
You can connect to it using a GitHub or Microsoft account, point it to a Git repository
in GitHub, VSTS, or BitBucket, and then it’s trivial to set up builds. You choose which
type of app to build (iOS or Android), choose a branch to build from, point it at your
solution or project file, choose the build configuration, and away it goes. You can also
add signing certificates to allow your builds to run on real devices, and even launch your
app on a device once it’s built as a sanity check to ensure that it works.

https://appcenter.ms

22 CHAPTER 1 Introducing native cross-platform applications with Xamarin
1.2.5 Distribute

You’ve designed your app, coded it up, tested it, and built it. Now you need to get it
into the hands of your users. You could submit it to the relevant app store, but first it’s
good to put it in the hands of beta testers.

App Center allows you to set up alpha and beta users and distribute your app
directly to them. Once they have your app, you can push out updated builds as you fix
bugs or make tweaks, and when they relaunch the app your users will be prompted to
install these updates. This is direct to the users you want to do the testing, it’s not an
open marketplace. Your users will only be able to download your app if they’re regis-
tered against it, so you have complete control of the distribution.

1.2.6 Monitor

Once your app is released and being used, you should monitor it. If your users are
experiencing crashes, you can expect a slew of one-star reviews that will drive potential
new users away. Your app will have bugs in it (that’s a fact of software development),
but if you can monitor for these and fix the issues as soon as possible, you can mini-
mize the impact. If you know that crashes have happened, you can do something
about it immediately, and that will help with your app downloads. Remember, your
customers won’t file bug reports and eagerly await a fix. They’ll just download another
app that does the same thing as yours.

For the Xamarin developer, it’s easy to monitor for crashes using App Center. You
can integrate the App Center SDK into your app as easily as installing a NuGet pack-
age and adding one line of code. This will track all crashes and upload stack traces to
the App Center site so you can quickly see the line of code where it happened, get it
fixed, and get a new version deployed. This is an invaluable tool—the quicker you can
fix a crash, the less chance you have of losing users.

In addition, App Center allows you to do user and event tracking so you can see
not only the demographics of your audience but also how they’re using your app.
Again, this can be important in making your app as good as possible. If a particular
feature of your app is being used regularly, then it’s something to work on and
improve. If a feature is never used, then either it’s not wanted by your users or not
obvious, so you can strip it out or make it easier to discover. If your app is popular in a
particular country, you can add native language support for that country if it’s not
there already. You can also track the path a user takes through your app, and if popu-
lar features are hidden behind a lot of interactions, you can change the user experi-
ence to surface those features more quickly.

All this is easy to add to your Xamarin app—just one line of code per user action to
track what they’re doing. Demographic data comes as soon as you enable the SDK. If
you capture the right data and use it correctly, you’ll have a powerful tool to help
shape your app.

23Rinse and repeat…
1.3 Rinse and repeat…
Monitoring is the final step in the mobile-optimized development lifecycle, a cycle
that repeats with every iteration of your app. It’s no good resting on your laurels after
a release; it’s time to fix bugs and add new features. Figure 1.11 sums up the steps.

Develop

Test

Build

Distribute

Monitor

Visual Studio

Source code
control

Design

• Use Visual Studio on either Mac or Windows to develop your app
• For iOS, you need a Mac to build, for debugging, and to host the simulator
• Visual Studio on Windows can use a remote Mac for building iOS apps.
 You can debug on a remote simulator screen shared over the network,
 so the Mac doesn’t need to be physically accessible—it can be in the cloud.

• Code your app in a way that allows testing
• Unit test as much as possible
• Create UI tests to automatically test the user interface
• Use Test Cloud to run your tests or debug on devices you don’t have

• Use continuous integration (CI) to ensure that your code builds and that tests pass
• Run your unit tests and UI tests on a regular basis to get a fast feedback loop
• Consider continuous deployment—deploying builds that pass all tests to users
 regularly, via tools like App Center

• Deploy early versions of your app to alpha and beta testers to get as much real-world
 testing as possible
• Allow users to provide feedback and raise bugs
• Respond to this feedback and fix bugs quickly, then redeploy to the alpha and
 beta testers

• Monitor for crashes so you can quickly fix the bugs that cause them
• Monitor the details of your users so you can ensure you’re targeting the
 right audience
• Track the usage patterns of your app so you know what areas to focus on

• Use source code control
• Commit your code often
• Git is well integrated with Visual Studio

• On Android, follow Google’s material design guidelines
• On iOS, follow Apple’s human interface guidelines
• Think about usability and accessibility

UITest,
Test Cloud

Visual Studio
App Center

Visual Studio
App Center

Visual Studio
App Center

Figure 1.11 A summary of all the steps for each cycle of a production app

24 CHAPTER 1 Introducing native cross-platform applications with Xamarin
Keep your cycles small so it’s easy to change direction based on feedback from your
monitoring or your users. But don’t make them so small that your users are updating
their apps too often (next-day release is important for fixing bugs, but keep features
updates at least a week apart). Regular updates are important because they make your
users feel like your app is here to stay, and they’re good for promoting your app, as
the stores highlight recently updated apps.

Now that you’ve seen this lifecycle in detail, it’s time to put some of this into prac-
tice and write some code that demonstrates the power of Xamarin apps. In the next
chapter we’ll look at a design pattern that can help you build cross-platform Xamarin
apps by increasing the amount of cross-platform code that can be shared across iOS
and Android apps. Then we’ll follow tradition and build a cross-platform Hello World
application.

Summary
In this chapter you learned

 Xamarin native apps are apps built in C# using a version of the .NET framework
based on Mono that’s been customized to run on iOS and Android and using
libraries that wrap the native device SDKs.

 Xamarin apps are better than native apps written using the vendor tools
because you get all the power of a native app with all the features of the device
and OS, but they’re written in a common language, allowing you to share com-
mon logic and code between apps on different platforms.

 Xamarin has tools for the mobile-optimized development lifecycle, covering
developing, testing, building, distributing, and monitoring.

 There’s more to a production-quality mobile app than just coding. You first
need to consider the design of your app to ensure that it’s suitable for the plat-
form you’re targeting. You also need to code it well, ensure it’s fully tested, build
it in a reproducible way, deploy it, and monitor it for issues once it’s in the wild.

2Hello MVVM—creating a
simple cross-platform app

using MVVM
Typically at this point in a book, it’s traditional to build a Hello World app to show
off the technology in question. For this book, though, I’m going to go slightly against
tradition and start by discussing the MVVM (model-view–view model) design pat-
tern. Then we’ll get our hands dirty with some code toward the end of this chapter.

This chapter covers
 What MVVM is and why it’s the best choice for cross-

platform Xamarin apps

 What the MVVM design pattern is all about, and why you’d
want to use it to maximize your cross-platform code

 Getting set up with Xamarin and the MvvmCross extension

 Creating HelloCrossPlatformWorld, your first Xamarin mobile
app

 Running your app on iOS and Android
25

26 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
WE’RE DISCUSSING MVVM FOR CROSS-PLATFORM XAMARIN APPS The principles
discussed in this chapter are for using MVVM with Xamarin apps. Although
these follow the principles for MVVM on other platforms, such as desktop
Windows apps or the web, there’s a lot more to it for Xamarin apps. If you’ve
done MVVM before (maybe with WPF) it’s still worth reading this chapter as
there are some important differences.

2.1 What are UI design patterns?
Over time, developers have come across and solved
the same problems again and again. Out of this has
come a set of abstract solutions that can be applied
when building your code. These are known as design
patterns—repeatable solutions to common problems
that occur when designing and building software.

Building apps that interact with the user through
a user interface (UI) is no different. There are stan-
dard problems that developers want to solve, and a
number of patterns have come about as solutions to
these problems.

Let’s consider a simple square-root calculator
app called Sqrt that has a text box you can put a
number in, and a button. When you tap the button,
it calculates the square root of the number in the
text box and shows the answer on a label. An exam-
ple of this app is shown in figure 2.1.

The simplest way to write this app is to wire up the button to an event that takes the
value directly from the text box, calculates the square root, and writes the value to a
label. All this can be done in the code-behind file for the UI. Simple, and all in one
class. The following listing has some pseudocode for the kind of thing you might write.

MyAddButton.Click += (s, e) =>
{

var number = double.Parse(NumberTextBox.Text);
var sqrt = Math.Sqrt(number);
MyResultLabel.Text = sqrt.ToString();

}

Although this seems simple, it has a number of flaws.

Listing 2.1 Pseudocode for adding numbers by wiring to the UI directly

Listens for the Click
event of the button

The number comes from
reading the value from the

Text property of the text box.

Once the square root is calculated, the
Text property of the label is set directly.

Sqrt

400

√
20

Square Root

Figure 2.1 A simple square-root
calculator app that calculates the
square root of a given number

27MVVM—the design pattern for Xamarin apps
First, this isn’t easily testable. You can only test
this app by updating the value in the text box and
tapping the button. It would be better if you could
write unit tests so you could programmatically test
the code, covering multiple cases including edge
cases, such as missing inputs or large or negative
numbers. This way you could run a set of automated
tests quickly and repeatably every time you change
your code.

Second, this isn’t cross-platform. One of the rea-
sons for building apps using Xamarin is so that parts
of your app can be written in shared code that works
on both iOS and Android. If your calculation is
wired directly to the view, you can’t do this. Think
back to the layers introduced in chapter 1, shown in figure 2.2.

In a Xamarin app we have three layers:

 Application layer—This is a small part of the code that makes your app runnable
on each platform and has different platform-specific implementations for iOS
and Android.

 UI layer—The UI layer also has separate platform-specific implementations for
iOS and Android.

 Business logic layer—The business logic layer is shared between the two plat-
forms.

To fit the calculator code into this structure, you’d need to have your calculation code
in the cross-platform business logic layer, and the button, text box, label, and all the
wiring in the UI layer. This is the kind of problem all UI developers come across on a
daily basis, and, as you’d expect, there’s a design pattern to help with this—MVVM.

2.2 MVVM—the design pattern for Xamarin apps
MVVM (model-view–view model) is the most popular design pattern for cross-plat-
form apps built using Xamarin, and it has a history of being a very successful design
pattern for building Windows desktop apps using WPF, Silverlight apps, and now Win-
dows 10 UWP apps. It has even made its way onto the web with frameworks like knock-
out.js using it. When Xamarin designed Xamarin.Forms, whose goal was to have as
much code sharing as possible, the principles of MVVM were baked into the underly-
ing framework right off the bat.

Think back to the three layers in the Xamarin app. These three layers enable a rea-
sonable amount of code sharing, but we can do better. In the UI layer there are really
two layers—the actual UI widgets, and some logic around these widgets. For example,
we could put some logic around the answer label to make it only visible once the
square root has been calculated. This expands our three layers to four.

UI layer

Application
layer

Business
logic layer

iOS

C#

C#

C#

C#

C#

Android

Figure 2.2 Xamarin apps are
written in C# so you can share any
common business logic while
having a platform-specific UI.

28 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
Figure 2.3 shows the how the layers would look if
we could move this UI logic into shared code. If we
did this, the label in our example would be in the UI
layer, and the logic that decides whether it should
be visible or hidden would be in the cross-platform
UI logic layer. This is a great way to do things—we’re
maximizing code reuse by abstracting the UI logic
into cross-platform code.

MVVM helps with this splitting-out of the UI and
its logic. This pattern is named based on the three
layers that you use in your app, as shown in figure
2.4. Let’s look at these layers in the context of our
calculator example:

 Model—Your data and business logic.
The model is the data, business logic, and

access to any external resources (such as web
services or databases) defined in terms of the
domain, and this maps to the business logic layer in our Xamarin app. In our
example, the model contains the number, the logic to calculate the square root,
and the result.

 View—The actual UI, buttons, text controls, and all other widgets.
The view is the UI with all its widgets and layouts, and this maps to part of the

UI layer and holds the UI widgets (the text box, button, and label). This is a
passive view, so it doesn’t have any code to get or set the values or to handle
events, such as the button click.

 View model—The UI data and logic.
For our calculator app, this has properties that represent the numbers on

the model—the input value and the result. It also has a command property that
wraps the square root calculation logic on the model into an object (more on
commands in the next chapter). The view model knows about the model but
has no knowledge of the view.

In addition to these three layers, it has a binder, a binding layer that you can think of as
glue that connects the view model to the view. This removes the need to write boiler-
plate code to synchronize the UI—the binder can watch for changes in the view
model and update the view to match, or update the view model to match changes
made by the user in the UI. This binder is loosely coupled rather than tightly coupled,
and the connection is often made based on wiring up properties in the view and view
model based on their names (so in the case of a binding between a property called
Text and a property called Name, at runtime the binder will use reflection to map
these string values to the underlying properties).

UI layer

App
layer

UI logic
layer

iOS

C#

Business
logic layer

C#

C#

C#

C#

C#

Android

Figure 2.3 To maximize code reuse,
it would be good to have UI logic in
shared code.

29MVVM—the design pattern for Xamarin apps
For our calculator app, the binding would wire up the text box, button, and label on
the UI to the equivalent properties and a command on the view model.

There’s a bit of magic involved in making this binder work, and this is usually
implemented in an MVVM framework—a third-party library that gives you a set of
base classes providing the implementation of this pattern. I cover how this works later
in this chapter.

MVVM FRAMEWORKS There are multiple MVVM frameworks that work with
Xamarin native apps, such as MvvmCross, MVVM Light, and Caliburn.Micro.
Although each one has differences, they all follow the same basic principles
and do roughly the same things. Later in this book we’ll be using MvvmCross,
but everything in this book is applicable to most frameworks.

For example, as shown in figure 2.5, we could have a text box on our calculator app
UI that’s bound to a Number property. This means that at runtime it will try to find a
public property called Number on the view model that it’s bound to using reflection,

View

Binding

1. The binding keeps the data in
 sync between the view and the
 view model, and it wires events
 up to view-model commands.

2. The view model updates
 the model based on
 changes pushed from
 the binding layer. 3. State changes in the model are

 passed back to the view model,
 which can then notify the binding
 that something has changed, so
 the binding can keep the view in
 sync with the changes.

View model

Model

Figure 2.4 MVVM has a model, a view model, a view, and a binding layer that keeps the view
and view model in sync and connects events on the view to the view model.

Reflecting on reflection
If you’ve never heard of reflection before, it’s a part of the C# API that allows you to
query details about a class—you can discover properties, fields, methods, or events.
Once you’ve found out the details, you can also execute code. For example, you can
find a property based on its name and then get the value of that property from a par-
ticular instance of that class. Reflection is also common in other languages such as
Java—C# reflection is basically the same as Java reflection.

This is great for binding—if you bind a property called Name, the binding code can use
reflection to find a property on your view-model class with that same name, and then
it can get the value on your view-model instance.

30 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
and it will show the string contained in that property in the text box. If the user
changes the value inside the text box, it will update the value of the Number property
to match what the user has typed in. Conversely, if the value of the Number property on
the view model changes, the binding will update the text box to match.

The binder doesn’t care what the underlying class type is of the view model you’re
using, just that it has a public property called Number that it can extract the value from.
In some of the MVVM frameworks, it doesn’t even care if the property is there or not.
If it can’t find the property, it just treats it as an empty value. This loose coupling is what
makes MVVM especially powerful—it allows view models to be completely agnostic to
the view, so you can write unit tests against the view model that simulate the UI without
worrying about UI code getting in the way. It also supports code reuse, so a view could
be glued to any view model that has properties with the names it’s expecting.

Figure 2.6 expands on the previous figures by showing how these layers map to the
three layers of MVVM:

 App layer—The app layer is one that doesn’t really come under the pure MVVM
design pattern, but the different MVVM frameworks do provide some application-
layer features. This allows us to have some cross-platform code in our app layer
that can control app logic, such as which view is shown first and how the differ-
ent classes in the app are wired together, such as defining which view model is
used for each view.

 UI layer—The UI layer is our view layer, and this is platform-specific code.
 Binding—The binding between the UI layer and the UI logic layer is the

binder—the glue that connects the UI layer to its logic layer. This is usually a

The Text property of the TextBox is bound to a property
called “Number” on the view model. The binding looks
up the “Number” property on the view model and finds
it using reflection.

The binding listens for updates to the Text property of
the TextBox (usually via a text-changed event raised by
the TextBox). When the user changes the text, the binding
updates the Number property on the view model.

The binding also listens for updates to Number. When
the property changes, it updates the Text property of the
TextBox on the UI.

TextBox

public string Text {get;set;}

View model
Binding

public string Number {get;set;}

Sqrt

400

√
20

Square Root

Figure 2.5 Binding keeps the value on the view in sync with the value in the view model.

31What is cross-platform code?
mix of cross-platform and platform-
specific code provided by a third-party
framework.

 UI logic layer—The UI logic layer is our
view-model layer. It provides logic for
the UI and other device interactions in
a cross-platform way. Part of this logic is
value conversion—converting from data
in your domain objects to data on the
UI. For example, you could model a
user in your domain with a first name
and last name but on the UI want to
show the full name. The view model will
provide this value conversion by concat-
enating the names and giving one string
value that will be shown by the UI.

 Business logic layer—The business logic
layer is the model layer. This contains data, domain objects, logic, and connec-
tivity to external resources such as databases or web services. Again, this is cross-
platform.

A QUICK HISTORY LESSON MVVM has been around since 2005 and was devel-
oped by two architects from Microsoft, Ken Cooper and Ted Peters. It was pri-
marily created for use with the new UI technology stack coming out of
Microsoft called WPF, and it leverages the data binding that was a key feature
of WPF. In WPF you write your UI using XAML, a UI-based markup language,
and in this XAML you can bind the properties of a UI widget to properties
defined in the data context of the view—essentially the view model. This
allowed UI/UX experts to design the UI using more designer-based tools,
and to simply wire the widgets, based on their names, to code written inde-
pendently by developers.

2.3 What is cross-platform code?
Some of the layers in our MVVM-based app use cross-platform code—specifically, part
of the app layer, the UI logic (view-model) layer, and the business logic (model) layer.
The reason for this is simple—we’re building an app for both iOS and Android, so the
app will need to work the same way on both platforms, use the same type of data, and
have roughly the same UI logic. It makes a lot of sense to build this once and use the
same code on both apps—code that we write once and can run on iOS and Android.
The term cross-platform code has come up a lot already in this book, and it will continue
to be a theme throughout. But what exactly do we mean when we talk about cross-
platform code in C#?

UI layer

App
layer

UI logic
layer

iOS

C#

Business
logic layer

View

View
model

ModelC#

C#

C#

C#

C#

Android

C#

Binding

Figure 2.6 The different layers of MVVM fit
with the different layers of a Xamarin app.

32 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
2.3.1 .NET Standard class libraries

When Microsoft released the .NET Framework, they provided a set of APIs that work
on Windows, and with each version of the framework they added more APIs that
developers can use. Over time, support for more platforms was added, such as Micro-
soft’s Silverlight (apps running in a browser) or the Windows Store (apps running in a
sandbox and distributed via a Microsoft app store). These different platforms didn’t
provide the same capabilities, so code written against the core .NET Framework might
not work on Silverlight if it required APIs that Silverlight didn’t (or couldn’t) imple-
ment. The initial solution to this was portable class libraries (PCLs)—libraries that tar-
geted a common subset of the .NET APIs that would run on all platforms. Xamarin
took advantage of this, using the same model to allow you to write portable class
libraries that targeted the subset of the .NET Framework that runs on iOS or Android.

This worked after a fashion, but it caused a lot of confusion. PCLs come in pro-
files—a profile being a defined subset that will work on a particular combination of
platforms. One profile would work on iOS, Android, and Windows under .NET 4.5,
whereas another would also run on iOS and Android but require .NET 4.6. This
meant that not only would you need to choose the right profile for the platforms you
were targeting, but you’d also need any third-party libraries to also target a compatible
profile. If your profile included .NET 4.5 on Windows, you couldn’t use a library that
used a profile that needed .NET 4.6, for example.

Things are now a lot better, thanks to a new initiative from Microsoft called .NET
Standard. This is an attempt to standardize the different .NET platforms into a ver-
sioned set of APIs. Each platform, such as Xamarin iOS, Xamarin Android, or the
.NET Framework on Windows implements a particular version of the standard, as well
as all previous versions. This is an inclusive standard, so if a platform supports .NET
Standard 1.6, it also includes 1.5, 1.4, and so on, all the way back to 1.0. The idea

Cross-platform native apps are not truly cross-platform
In the Xamarin world we talk of cross-platform native apps, but these are not true
cross-platform apps where exactly the same app will run on all platforms. Neither is
it cross-platform in that all the code runs on all platforms (with a hidden app layer).

What I mean here is that we have two apps, one that runs on iOS and one that runs
on Android, both developed using the same language and sharing a large portion of
the code. They’re cross-platform in that the business logic (and ideally the UI logic)
is truly cross-platform, and the smallest possible device-specific UI and feature layer
is built to be platform-specific.

The MVVM design pattern is very well suited to helping you get as much code-sharing
as possible.

33What is cross-platform code?
behind this is simple—each version has more APIs available than the previous version,
and your code can use libraries that target the same or an earlier version of the
standard. For example, if your code targets .NET Standard 1.6, you can use a library
that targets 1.4. You can think of the .NET Framework on Windows as the most com-
plete set of APIs, and each .NET Standard version as a more complete implementa-
tion of the full .NET Framework.

You can read more on .NET Standard libraries, and see what version of the stan-
dard is implement by which version of each platform on Microsoft Docs at
http://mng.bz/sB0y. At the time of writing, Xamarin iOS and Android supports ver-
sion 2.0, so you can use code that targets 2.0 or earlier from your Xamarin apps. Be
aware, though, that targeting higher versions may limit the platforms you support. At
the time of writing, UWP only supports 1.4, so if you decide to add a UWP project to
your Xamarin apps to support Windows 10, you’ll need to ensure the core projects
used by your app target 1.4 or lower.

These .NET Standard libraries are perfect for the cross-platform layer in your
Xamarin apps. The set of APIs that .NET Standard libraries implement includes all
the bits that would work on all platforms—collections, Tasks, simple I/O, and net-
working. What isn’t included is anything that’s specific to a platform, such as UI code.
This is left up to platform-specific code to implement. .NET Standard is just an API
specification, it’s not the actual implementation. Under the hood, the code that
makes up the subset of the .NET APIs isn’t the same on all platforms, each platform
implements their features using the native API that the platform provides. But the
interface to it—the classes and namespaces—are the same.

When you write your cross-platform app,
you want as much code as possible inside
.NET Standard libraries, as this is the code
that’s shared. Thinking again about the layers
in our app, you can easily see which layers
would live in a .NET Standard library, as
shown in figure 2.7.

To map this to the project structure you’re
probably used to in a C# solution, you’d have
(at least) three projects. One (or more) would
be a .NET Standard project containing all
your cross-platform UI and business logic
code. Another would be an iOS app project
that contains the iOS application code and the
iOS UI code. And the last would be an
Android app that contains the Android-
specific UI and application code. This is illus-
trated in figure 2.8.

UI layer

App
layer

UI logic
layer

iOS

C# (.NET Standard)

Business
logic layer

View

View
model

ModelC# (.NET Standard)

C#

C#

C#

C#

Android

C# (.NET Standard)

Binding

Figure 2.7 The cross-platform layers in a
mobile app are implemented in .NET
Standard libraries.

http://mng.bz/sB0y

34 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
Now that you’ve seen some of the basics, let’s build a simple example app using the
MvvmCross MVVM framework.

2.4 Getting started—creating your first solution
As promised, you’re now going to create a Hello World app—a simple app that
doesn’t do very much but allows you to be sure your development environment is
working correctly, and to see how simple it is to create a working app. Because the big
strength of Xamarin is to allow you to create cross-platform apps with a large amount
of code sharing, you’re going to create two apps: one for iOS and one for Android.
They will share a common core library with all the business logic—inasmuch as you
can have business logic in a Hello World app. You’ll also leverage what you’ve learned
in this chapter and build it using MVVM. The MvvmCross framework you’ll be using
here will save you writing a lot of boilerplate code. This framework is hugely popular
with developers building cross-platform Xamarin apps, and it’s very actively main-
tained and enhanced.

MVVMCROSS We’ll be covering what you need to know about MvvmCross to
build your example apps in this book. If you want to read more about it (or
contribute to the framework—it’s fully open source and welcomes contribu-
tions) then head to https://mvvmcross.com.

We’ll be following these steps to achieve this:

 Creating and running a new cross-platform app—We’ll be creating a cross-platform
MvvmCross app using a Visual Studio extension that we’ll be installing. Once this
solution has been created, we’ll fire it up on iOS and Android as a sanity check.

 Proving the code is cross-platform—Just to prove we have a cross-platform app with
shared code, we’ll be tweaking the code in one place and seeing the effect it has
on both apps.

The Core project containing
the cross-platform code is

a .NET Standard library.

The Droid project contains
the Android app and is

Android-specific.

The iOS project contains the
iOS app and is iOS-specific.

Figure 2.8 A typical cross-platform app would contain a .NET Standard library with the core code,
an Android app with Android-specific code, and an iOS app with iOS-specific code

https://mvvmcross.com

35Getting started—creating your first solution
Despite using MvvmCross here and in the apps we’ll build in later chapters, the aim is
not to lock you into this framework. We’ll only be using some small parts of it, and the
principles behind those parts are pretty standard for the MVVM pattern. These princi-
ples are easy to apply when using other frameworks, such as MVVM Light.

2.4.1 Requirements—what hardware or software do you need
for each mobile platform?

In chapter 1 we discussed Xamarin’s platform support and the tooling you can use.
Here’s a quick refresher:

 If you have a Windows PC, you need to install Visual Studio 2017 and ensure the
“Xamarin” workload is ticked in the installer.

 If you have a Mac, you need to install Visual Studio for Mac, which includes
Visual Studio as well as the iOS and Android Xamarin components, the
Android SDK, and Google’s Android emulator. You also need to install Xcode
from the Mac App Store for iOS development.

 If you want to develop iOS apps using Visual Studio on Windows, you need to
have access to a Mac with Xamarin and Xcode installed.

 Always install or upgrade to the latest stable versions of all components, such as
the latest version of VS 2017, the latest VS for Mac, the latest Xcode, and the lat-
est Android SDK and tools. To install the latest Android SDK and tools, you’ll
need to use the Android SDK manager, available from Visual Studio by going to
Tools > Android > Android SDK Manager on Windows or Tools > SDK Manager
on the Mac.

This book doesn’t cover installation
The Visual Studio installers change pretty often, so it’s hard to keep up with them in
print. Although this book does outline what’s needed, it doesn’t cover installation and
configuration in detail.

At the time of writing, the Visual Studio for Mac installer gives you everything you
need on Mac, including Android SDKs and emulators. The only extra thing you need
to install is Xcode from the Mac App Store to build iOS apps.

On Windows, the Visual Studio 2017 installer installs everything, as long as you tick
the right options for cross-platform development, Android SDKs, and emulators,
which change a bit with each update. If you’re using a Windows virtual machine on
your Mac to run Visual Studio, you’ll need to enable your virtual machine to host a
nested virtual machine if you want to run the Android emulators—check the VM doc-
umentation for how to do this. If you use a PC, you’ll need an Intel CPU with virtual-
ization enabled (most modern CPUs have this). The system requirements for running
the emulators are listed at the Android Studio site (http://mng.bz/hkXV).

36 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
At this point I’m going to assume you already have everything you need installed. If
not, now would be a good time to do it.

For this little test app, we’re only going to test on the Android emulator and iOS
simulator, so don’t worry if you don’t have a physical device to use. If you do have a
physical device, then put it to one side for now and just use the emulator/simulator as
there’s a bit of device setup you need to do to run and debug apps on real devices. On
Android this is simple, but on iOS it’s a bit more complicated. We’ll be discussing this
in chapter 13.

As previously mentioned, we’ll be using the MvvmCross framework, and luckily for
us there’s an extension available for Visual Studio that allows us to create a new cross-
platform solution. This solution contains a core library and platform-specific apps for
all supported platforms (so on Visual Studio for Mac you get an iOS app and an
Android app; on Windows it’s iOS, Android, WPF, and UWP). Seeing as we’ll be
installing an extension, and the projects we create will need NuGet packages, you’ll
need internet access. This may sound obvious, but if you’re in a coffee shop, now
would be a good time to grab their WiFi password.

2.4.2 Creating the solution

Let’s look at how to install the extension and create our first solution.

CREATING THE SOLUTION USING VISUAL STUDIO FOR MAC

From Visual Studio, select Visual Studio > Extensions. This will bring up a dialog box
to allow you to add or remove extensions. From here, select the Gallery tab, ensure
the repository is set to Visual Studio Extension Repository, and look for MvvmCross
Template Pack under IDE Extensions, or by using the search (see figure 2.9). Select
this and click Install. Then click Install on the dialog box that pops up.

(continued)
If you get stuck, Xamarin has great documentation on its website (https://aka
.ms/XamDocs) covering everything you need for installation and setup. The site also
has helpful forums with a great community of users, and Xamarin’s own engineers if
you get a particularly strange problem. And obviously, there’s always Stack Overflow.

https://aka.ms/XamDocs
https://aka.ms/XamDocs
https://aka.ms/XamDocs

37Getting started—creating your first solution
Once this is installed, it’s a good idea to restart Visual Studio, as the new solution type
won’t appear in the right place until you do.

Once Visual Studio is restarted, you can start creating a new solution. You can
access the New Solution dialog box in three ways.

 From the menu by going to File > New > Solution
 Using the keyboard shortcut Shift-Command-N (++N)
 By clicking the New Project button at the bottom of the Get Started page shown

when you open Visual Studio for the first time. Whichever way you choose, you’ll
then be presented with the New Solution dialog box (figure 2.10).

The MvvmCross Template
Pack is under IDE
extensions in the tree.

Enter text in here
to search the
extension gallery.

Visual Studio has multiple repositories
covering stable versions of extensions
as well as alpha and beta versions.

Click Install to install the extension. You can install extensions from files instead
of from the repository if needed.

Figure 2.9 Selecting the MvvmCross Template Pack from the Visual Studio extension manager

38 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
Select Other >.Net, then select
MvvmCross Single Page Native Application
from the MvvmCross section.

Enter the project name here.
By default, the solution is given
the same name as the project.

You can change the folder the
project is created in here.

Visual Studio will, by default, create all the files
needed to push this to a Git repository, even
creating an appropriate .gitignore file for you.

Figure 2.10 The New Solution dialog boxes showing the MvvmCross cross-platform app
solution template, and setting the project name

39Getting started—creating your first solution
From this dialog box select Other > .NET from the left-side list, and then select Mvvm-
Cross Single Page Native Application from the list in the middle. Click Next. On the
next screen enter HelloCrossPlatformWorld as the project name and click Create.

This will create a new solution for you containing three projects: a .NET Standard
core project (HelloCrossPlatformWorld.Core), an iOS app (HelloCrossPlatform-
World.iOS), and an Android app (HelloCrossPlatformWorld.Droid), as shown in fig-
ure 2.11. Once the solution has been created, it will try to download all the NuGet
packages it needs—you’ll see the status bar at the top showing Adding Packages. This
may take a while, depending on the speed of your internet connection, and you may
be asked to agree to some license agreements as they download. You’ll need to let
them fully download before building the apps.

WHY NOT HELLOCROSSPLATFORMWORLD.ANDROID The convention for Android
apps is to use “Droid” in their names instead of Android. This is because the
project name becomes the default namespace, and if you have “<some-
thing>.Android” in your namespace, you can get a clash with the global
“Android” namespace. You end up littering your code with global::Android
.<whatever> in using directives or types, making it harder to read. Stick to
.Droid, it’s easier!

CREATING THE SOLUTION USING VISUAL STUDIO FOR WINDOWS

From Visual Studio select Tools > Extensions and Updates. Select the Online section on
the left, and use the search box to search for MvvmCross for Visual Studio (figure 2.12).
There are multiple extensions with the same and similar names, so ensure the one you
install is named “MvvmCross for Visual Studio” and is at least version 2.0. Select it and
click the Download button, and click Install in the dialog box that pops up.

Once this is downloaded, you’ll be prompted to restart Visual Studio to install the
extension, so close Visual Studio and wait for the extension installer to finish. After this
has finished, restart Visual Studio, and you can create the new solution in two ways:

 From the File menu by selecting File > New > Project
 By clicking the New Project option from the Start section of the Start Page

that’s shown whenever you open Visual Studio

Figure 2.11 The three projects that
are created for you in the new solution

40 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
From the New Project dialog box (shown in figure 2.13), select the MvvmCross section
under Visual C# on the left, choose MvvmCross Single Page Native Application from
the list in the middle, enter HelloCrossPlatformWorld as the project name, and click
OK. Windows has problems with paths longer than 256 characters, and some of the
directories that will be created when your app is built have long names, so you may
want to ensure your solution is created in a folder close to the root of a drive. If you do
it in C:\Users\<username>\Documents\visual studio 2017\Projects, your path may be
too long.

This will create five projects for you: a .NET Standard core project, an iOS app, an
Android app, and a couple of Windows apps covering WPF and UWP. We’re only
interested in supporting iOS and Android here, so you can delete the Universal Win-
dows and WPF projects by selecting them and pressing Delete or using Remove from
the right-click context menu. This will leave you with the same three projects as on
Visual Studio for Mac: the core project, the iOS app, and the Android app, as shown
in figure 2.14.

Choose Online to search the extensions
available in the Visual Studio gallery.

Updates shows updates to
extensions and Visual Studio.

Type here to search
the extension gallery.

Click Download to download
and install the extension.

Installed shows you the extensions
you already have installed.

Figure 2.12 Selecting the MvvmCross for Visual Studio extension from the Visual Studio
Extension manager

41Getting started—creating your first solution
You can change the
folder the project is
created in here.

Visual Studio will, by default, create
all the files needed to push this to a
Git repository, even creating an
appropriate .gitignore file for you.

Enter the project name. By
default, the solution is given
the same name as the project,
but you can change the solution
name if you want.

If you don’t want to select a template
from the tree, you can type “MvvmCross”
in here to quickly find it.

Select Templates > Visual C# > MvvmCross,
then select MvvmCross Single Page
Native Application.

Figure 2.13 The New Project dialog box, where you can create your new solution

Figure 2.14 The three projects
left in the solution after deleting
the unwanted ones

Connecting Visual Studio to a Mac for iOS development
I won’t be covering this in detail here, as this is well documented in Xamarin’s “Get-
ting Started” guide, on the developer site at http://mng.bz/KbiM, and it could poten-
tially change between the time of writing and when you are reading this.

Essentially, though, you need to allow remote login on a Mac that already has Xama-
rin and Xcode installed. Visual Studio then connects to this Mac to build your iOS app.
The process is pretty simple, and if you use a Mac hosted in the cloud, your provider
should be able to provide instructions about how to set it up.

http://mng.bz/KbiM

42 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
2.4.3 What have we just created?

The MvvmCross extension has given us three projects that we care about. We have a
cross-platform core project and two app projects. These projects reference MvvmCross
NuGet packages providing the MvvmCross MVVM framework.

The core project is a combination of two of our layers—the cross-platform business
logic layer and the cross-platform UI logic layer. These layers don’t need to exist in sep-
arate projects—they’re just conceptual layers. The core contains a view model for the
app plus some cross-platform application logic (we’ll discuss the application layer in
the next chapter). Figure 2.15 shows the structure of this project in the solution pad.

You’ll notice here that we don’t have any models. In this simple example, the
model is just a string that’s wrapped up inside the view model (and we’ll play with
this string a bit later). This isn’t normal—in a real-world case, the view model would
need something in the model layer so that it could represent the model layer’s state
and behavior. For now though, as this is a trivial Hello World, there’s no model layer.

The platform-specific app and view layers, as well as the binding, live inside the
two app projects—one for iOS and one for Android—as the code for these apps is

When you create this project, the NuGet packages may not be the latest
NuGet packages are versioned. You can install version 1.0 of a package from the
public NuGet server, and later the author could update it to version 1.1. You can then
easily update the NuGet package from inside Visual Studio.

Be wary though. Sometimes packages may not be backwards compatible. The Mvvm-
Cross extension may not always install the latest versions of the MvvmCross NuGet
packages, and if you update them, the code created by the extension will probably
still work, but there are no guarantees.

The core, cross-platform project

View models live in this folder.

App.cs contains cross-platform
application layer code.

Figure 2.15 The structure of the cross-platform core project

43Getting started—creating your first solution
platform-specific. The structure is shown in figure 2.16. In the upcoming chapters we’ll
go into more detail about how Android and iOS define their application layers and
their views.

2.4.4 Building and running the apps

We have two apps now, so let’s run them and see what happens. Figure 2.17 shows
what you’ll see when they’re running. In both cases we have an app that has an edit-
able text box and a label. If you change the text in the text box, the label will be
updated instantly.

Views live here in iOS and
consist of a storyboard
that defines the layout
and some code-behind.

Android defines views using two parts:
an XML layout file and some code-behind.
The XML files live here.

The code-behind for the views lives here.

Figure 2.16 The structure of the iOS and Android app projects

44 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
When you used the MvvmCross extension to create the solution, it created these two
apps for you, both using some shared common code.

ANDROID

Let’s start by taking the Android app for a spin.

SWITCHING FROM MAC TO WINDOWS The project and solution files created by
Visual Studio for Mac are fully compatible with Visual Studio on Windows,
and vice versa. This means if you use one tool and want to change to the
other, you can. It also means you can load anyone else’s solution, regardless
of what tools were used to create it.

The first thing to do is to ensure the Android app is the startup project, so right-click
it and select Set as Startup Project. Once this is selected, you’ll see options for choos-
ing the device to run it on in the menu.

On Visual Studio for Mac (on the left in figure 2.18), you’ll see two drop-down
menus in the top left, and from the second one you can choose the device to run on—

Figure 2.17 Our Hello Cross-Platform World apps running on both Android and iOS

45Getting started—creating your first solution
an emulator or a physical device (if you have one plugged in). Visual Studio uses the
emulators from Google and installs and configures two of these by default. You should
select the Accelerated x86 emulator, as this will be faster on a Mac; ARM-based emula-
tors run about 10 times slower than the x86 version.

Visual Studio for Windows installs the Visual Studio Emulator for Android as part
of its installer (assuming the option was ticked when you ran the installer), and it will
configure a few of these inside Visual Studio for you to use.

These emulators come in different hardware types and different Android OS ver-
sions. You’ll need to use an x86-based emulator (it’s much faster than the ARM ver-
sion), and all the x86 emulators are basically the same in terms of hardware, just using
a different version of the Android OS. For now, just choose the latest OS version, and
run the app either by clicking the Run button on the toolbar, or by choosing Run >
Start Debugging on Visual Studio for Mac or Debug > Start Debugging on Windows.
Sit back and relax as your app is built and the emulator is launched.

Be aware that the first time your app builds, it will take a very long time—there are
a number of SDK files that Xamarin needs to download in order to build an Android
app, and it downloads these the first time your app is built with no feedback in the
output except that it’s building. Don’t kill the build—if you do, you may have to man-
ually clean up half-downloaded zip files. If you do get errors about corrupt zip files,
you can find information on how to fix them in Xamarin’s Android Troubleshooting
guide at http://mng.bz/MKSQ.

DON’T RUN MORE THAN ONE ANDROID EMULATOR Android emulators can be a
bit fussy sometimes, as they run inside virtual machines. If you try to run more
than one, they can freeze up and not start. If you ever get this happening—
the emulator screen stays black and nothing happens—quit it and close all
other emulators you have running, and try again.

Figure 2.18 The Android device selection menus

http://mng.bz/MKSQ

46 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
This app doesn’t do much. It just shows off the very basic features of MvvmCross. If
you change the text in the text box, the label below will update to reflect this. We’ll
dive into what’s happening a bit more later, but for now you’re over the first hurdle—
you have an app that runs. Let’s crack on with iOS.

IOS
Building and running the iOS app is very similar to Android. First, ensure the iOS app
is the startup project, just as you did for the Android app.

Next you need to select the device to run on. This is slightly different from
Android. Android always builds the same code for emulators and physical devices, so
all you need to do is choose the device. On Visual Studio for Mac, this is the same—
from the drop-down menu choose a simulator or a physical device if one is available
(on the left in figure 2.19). From here, select the iPhone simulator of your choice,
though a recent one is always good.

Visual Studio for Windows is similar, though it breaks this out into two drop-down
menus—one to choose either a physical device or a simulator, and another that shows
the available devices or simulators (on the right in figure 2.19). In this case, choose
iPhoneSimulator from the first menu, and select the simulator of your choice from
the second.

Once the appropriate simulator is selected, run the app. If you’re using Visual Stu-
dio for Mac, the simulator will run on your Mac. If you’re using Windows, the simula-
tor will either launch on your Mac, or on your Windows PC if you have the iOS
simulator for Windows installed.

Once the simulator fires up, you’ll see the basic MvvmCross sample app. This is
identical to the Android app—edit the text and the label updates to match. Awe-
some—your Xamarin app is running on iOS without any extra work.

Figure 2.19 The iOS device selection menus

47Is this really a cross-platform app?
2.5 Is this really a cross-platform app?
One of the big upsides of Xamarin is being able to write cross-platform apps—sepa-
rate apps for each platform with shared core code. The question on your lips now is
probably “is this what we’re seeing here?” The answer is yes! The iOS and Android
projects have part of the application layer (the code to actually run an application),
and the view layer (the UI is defined in platform-specific code), but the core of every-
thing is in a shared core project. This is pretty simple to prove, so let’s make a simple
code change to demonstrate it.

In the apps you’ve run on Android and iOS, you have a text box with “Hello Mvvm-
Cross” in it, and a label that matches this text, updating whenever the text changes.
Let’s now change the initial value of this text.

In the Core project there’s a ViewModels folder (figure 2.20), and inside this is a
view-model class called FirstViewModel (in the FirstViewModel.cs file). Look at the
hello field, and you’ll see it’s initialized to Hello MvvmCross. Update this to be Hello

Xamarin in Action as follows.

string hello = "Hello Xamarin in Action";

This is a one-line code change in one file in shared code. If you build and run the
Android and iOS apps now, you’ll see that both have the new text showing in the text
box and label, as in figure 2.21.

The apps look the same and work the same. The only difference is the original
string value that’s shown on startup.

Listing 2.2 Updated hello field in FirstViewModel

The core, cross-platform project

View models live in this folder.

FirstViewModel is the one we
want to edit.

Figure 2.20 The structure of the core project showing the location of the FirstViewModel class

48 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
So how does this all work? Let’s look at this solution to see how it fits into our layers.
This app has two views, one on iOS and one on Android, a view model in shared cross-
platform code, and a string that acts as a model (figure 2.22).

Before we can go into much more detail about what’s happening here, there’s a lot
more about MVVM we need to discuss. In the next chapter we’ll take that deeper dive
into MVVM, and once you’ve seen in more depth how MVVM works we’ll look in
more detail at the code we’ve just built.

Figure 2.21 Both sample apps showing the new text, changed by changing only one line
of code

UI layer

App
layer

UI logic
layer

iOS

Business
logic layer

View

View
model

Model

C#

C#

C#

C#

Android

C# (.NET Standard)

C# (.NET
Standard)

Binding (from framework)

App

FirstView

UILabel
UITextField

FirstView

TextView
EditText

FirstViewModel

string Hello{get;set;}

C# (.NET
Standard) "Hello Xamarin

in Action"

Figure 2.22 Our UI code is in
the platform-specific UI layer;
our core class with its string
property is in the cross-platform
business logic layer.

49Summary
Summary
In this chapter you learned that

 A number of design patterns have evolved over time to help in making better
UI applications. The latest incarnation of these, MVVM, is very well suited to
building Xamarin apps, as it maximizes the amount of cross-platform code in
our apps.

 A cross-platform Xamarin app is not totally cross-platform. Instead it’s an app
where all platforms are written in the same language (C#) so that you can share
a large portion of your code.

 Cross-platform code is written in .NET Standard libraries that provide access to
a subset of .NET that works on all platforms.

 The MVVM pattern consists of three layers. You can write two of these layers,
the model and the view model, once inside a .NET Standard library and share
the code between your iOS and Android apps.

You also learned how to

 Use an extension in Visual Studio to create a cross-platform Xamarin app, with
projects for iOS and Android, and a .NET Standard library core project for
shared code.

 Run these apps inside the iOS simulator and Android emulator.

3MVVM—
the model-view–view
model design pattern
This chapter covers
 A more detailed look at what’s in the model, view model,

view, and binding layers

 How a view model provides cross-platform UI logic by
modeling state and behavior

 Using property-changed notifications

 Using commands

 How the binding layer glues the view and view-model layers
together

 Value conversion in the view model and value converters

 What happens in the application layer

 Navigation patterns for MVVM apps
50

 www.allitebooks.com

http://www.allitebooks.org

51
In the previous chapter we looked at the MVVM
UI design pattern, before creating our first cross-
platform example app. We’re going to examine that
example app in a lot more detail, but first we need
to look at the layers in an MVVM app in more
depth. To do this we’ll take an example calculator
app (figure 3.1) and look at how we’d write this
using MVVM.

To understand how to build this app we need to
look at how the user will interact with the UI, and
see how those interactions move up and down
through the layers of MVVM. Figure 3.2 shows a
high-level overview.

Square Root

View

Binding

View model

Model

Sqrt

400

√

√

Square Root

Sqrt

400

√

Square Root

Sqrt

400

√
20

Square Root

1. The app launches,
 creating the model,
 view, view model,
 and binding.

2. The user enters the
 number 400 into a text
 box, and this value is
 propagated down through
 the layers until it ends up
 as a number on the model.

3. The user taps the Square
 Root button, and this
 action is propagated
 down through the layers
 to the model, where the
 square root is calculated.

4. The result of 20 is
 calculated in the model,
 and the value propagates
 back up through the layers
 until it’s shown on the UI
 as text on a label.

Figure 3.2 A typical user interaction with our square-root calculator

Sqrt

400

√
20

Square Root

Figure 3.1 A simple square-root
calculator app that calculates the
square root of a given number

52 CHAPTER 3 MVVM— the model-view–view model design pattern
At the end of this chapter, we’ll revisit this app diagram, breaking each layer apart and
seeing all the interactions that take place between each layer. This chapter is theory
rather than practice, but it’s important in understanding how to structure your app to
get the most out of the cross-platform capabilities that Xamarin offers. The code
examples here are simple examples and pseudocode, not parts of a fully working app.
In the next chapter we’ll be taking what you learn here and using it to understand and
build on the example app you built in the previous chapter.

Let’s start by looking at how this app could be split between the different layers.

3.1 The model layer
The model layer is a cross-platform layer that represents your data, your business logic,
and your access to external resources such as databases or web services. The simple cal-
culator app doesn’t need to access any external resources, but if you did need to persist
data to a database or interact with web services, you’d do this in the model layer.

In our calculator example, the model layer would contain a square-root calculator
class that takes a number, calculates the square root, and makes the result available,
similar to the structure shown in figure 3.3.

The following listing shows a possible implementation. The class has a number
property, Number, a Sqrt method that calculates the square root of the number, and a
read-only Result property that stores the result.

public class SquareRootCalculator
{

public double Number {get; set;}
public double Result {get; private set;}

public void Sqrt()
{

Result = Math.Sqrt(Number);
}

}

Listing 3.1 A possible implementation of SquareRootCalculator

UI layer

App
layer

UI logic
layer

iOS

Business
logic layer

View

View
model

Model

C#

C#

C#

C#

Android

Binding (from framework)

C# (.NET Standard)

C# (.NET Standard)

C# (.NET
Standard)

SquareRootCalculator Figure 3.3 The model layer
with the classes for the
calculator app

53The view-model layer
The model layer is a layer—it contains one or more classes working together. As you’ll
see later in this chapter, you’ll usually have one view whose name is suffixed with View

for a screen (for example, SquareRootView), and one view model for that view with a
name suffixed with ViewModel (such as SquareRootViewModel). It’s normal to assume
that there should be a corresponding Model class providing the data and business
logic for that view model, but this doesn’t have to be the case. If you want to write your
code that way, go ahead, but don’t feel you have to.

There are many ways to build the model layer following many different patterns
and practices (such as domain-oriented or data-centric approaches). How you build
this layer is up to you, but there are a few main principles you should stick to to make
this layer the first M of MVVM:

 The code should be cross-platform—One of the reasons for using this pattern is that
it allows you to reuse as much code as possible.

 The code should be testable—Another key reason for using MVVM is testability—
the segregation of the UI from its logic means you can unit-test that logic, and
this same principle should apply here. Your model layer should be testable
using unit tests—your classes should be well written with single responsibilities
so tests can be clearly defined.

Again, thinking of our calculator app, the SquareRootCalculator class is
very easy to unit-test. You could write tests that set different values for Number,
call Sqrt, and verify the Result property. This is a trivial example, but even in a
more complicated app you’ll need to ensure that it’s testable. This way you can
ensure your model works without having to always build and run your app.

 The model should represent data and business logic at the domain level, not the UI level—
This is an important principle of the model layer—it should represent your
data and logic at a level that makes sense to your domain. Any value conversion
of the data in business terms to UI terms shouldn’t be performed at this layer.

Thinking again about our calculator app, the UI controls for entering values
and showing them usually deal with string values. Strings are no good here as
you need to calculate using numbers, so the model should always think in terms
of numbers. The other layers can deal with strings and conversions.

UNIT TESTING Unit testing is a massive topic, worthy of a book in its own
right, so I won’t be going into much detail about it here. All I will be covering
is how to approach writing your app using MVVM to help with writing your
unit tests. If you want to read more on this topic, I recommend The Art of Unit
Testing, Second Edition, by Roy Osherove (Manning, 2013).

3.2 The view-model layer
The view-model layer (the VM at the end of MVVM) is the UI logic layer. This layer is
responsible for two things:

54 CHAPTER 3 MVVM— the model-view–view model design pattern
 Value conversion—From data in the model layer represented in a way that makes
sense to your domain to the way data is represented in the UI

 UI logic—Such as logic that determines when to show data and when and how to
navigate between different views

There are a few basic principles behind a good view model:

 Just like the model layer, it should be cross-platform.
 Again, like the model layer, it should be easily testable using unit tests. You want

to have as high-quality an app as possible, so being able to test the UI logic
quickly and thoroughly using unit tests will help you achieve this goal.

 It must be bindable. Binding is the glue that connects the view model to the
view, and the view model will need to implement features such as property-
changed notifications that allow the binding layer to be aware of changes so
that it can keep the UI and view model in sync.

 It should be stateless. The view model is a value conversion and logic layer. It’s
not a data store, so its state should always come from the model layer. When the
UI changes the state (such as when a text box is updated) the binding tells the
view model that something has changed and that the view model is responsible
for updating the state in the model.

The view model is the meat of the MVVM pattern, and it will usually map one-to-one
against the different screens or to different sections of each view. In our calculator
app, we want a view model that wraps the model, called SquareRootViewModel (figure
3.4). If we had an app with multiple screens, maybe one for square roots and one for
cube roots, we’d also have two view models, SquareRootViewModel and CubeRoot-

ViewModel, each accessing the model layer. Because our model layer is a layer and
doesn’t map one-to-one with view models, we could have both square root and cube
root in the same model class, and that one model would be used by both view models.

3.2.1 State and behavior

When considering a UI, there are really two things to think about—state and behavior.

 State is the information you see on the screen, be it actual data, like text and
numbers, or a representation of the app’s state, such as buttons being disabled
or validation errors being shown around text boxes. State is a representation of
the data in the model in a way that maps to the UI, using properties, just like the
properties you’d put on a class.

 Behavior is the actions that happen when a user interacts with the UI. The view
model is the implementation of this. Behavior is represented using commands,
objects that encapsulate some kind of logic, which is fired by interacting with
the UI in a way that executes the command.

Think of driving a car. You’re driving at a certain speed, as indicated by the speedom-
eter. By pressing the accelerator you go faster; by pressing the brake you go slower.

55The view-model layer
The state is the speed—represented in miles or kilometers per hour. The car deter-
mines its speed by measuring the speed of rotation of the driveshaft and converting
this value into a vehicle speed. In this case, the driveshaft speed measurement is
exposed to the speedometer as a representation of the driveshaft speed but it’s con-
verted mathematically to the vehicle speed.

The behavior is the ability to change speed by pressing the accelerator or brake.
When you press the accelerator, the engine allows more fuel/air in, making the
engine go faster. When you press the brake, the wheels are slowed down using friction.
The representation of how to increase speed is pressing on the accelerator pedal. The
representation of how to decrease speed is pressing on the brake pedal.

The speedometer represents the engine speed, and the pedals represent the
behavior of changing speed, all in a driver-friendly way. This is analogous to our
MVVM layers. The model is the mechanicals of the car, and the view is the speedome-
ter and pedals. The view model represents the vehicle speed and speed-change behav-
ior to the speedometer and pedals in a way that’s consistent with the view.

If we consider our square-root app, we have one number and the ability to tap a
button to calculate the square root and see the result. The state here is the number we
want to calculate the square root of, as well as the result. The behavior is a command
that encapsulates the logic to calculate the square root. By tapping the button, you
command the view model to do something that does this calculation.

It probably sounds a bit contradictory to say that the view model represents state
and behavior after saying that one of the basic principles is that it should be stateless.
Let’s examine what’s meant by both things.

The view model represents the state of the UI in that all the values and logic that
define the data shown in the UI come from the state of the view model as exposed to
the view layer. The values in text box and label come from properties on the view
model. The setting that defines whether a control is visible or hidden comes from the

UI layer

App
layer

iOS

UI logic
layer

View

View
model

C#

C#

C#

C#

Android

Binding (from framework)

C# (.NET Standard)

C# (.NET
Standard)

SquareRootViewModel

Business
logic layer Model

C# (.NET
Standard)

SquareRootCalculator

Figure 3.4 The view-model
classes for the calculator app,
with a view model that wraps
the SquareRootCalculator

56 CHAPTER 3 MVVM— the model-view–view model design pattern
properties of the view model. In this sense, the view model provides a representation
of the state of the model layer to the UI.

As a class, though, the view model should be stateless, in that it gets its state from
the model layer and shouldn’t hold on to this state itself. The values in the text box
and label are read from the view model, but the original source is the model layer (fig-
ure 3.5). At any time you should be able to recreate the view model from the data in
the model layer, because it will not store any state itself.

The real state is in the model layer, and the view model converts that state into state
that’s appropriate for the view layer. The view model represents the state, but the model
contains the state. By having the view model as a representation, you can return the
state directly or perform value conversions on the state before returning it to the
binding layer.

PROPERTIES AND CHANGED NOTIFICATIONS

In its simplest form, a property of a view model is the same as any other property you
may have used in C# code. It has a getter and a setter—methods that return some data
or set the data. Internally in these methods, it could just return or update values, or it
could have some logic. In its simplest form, a property can get and set a value on the
model, as shown here.

public class SquareRootViewModel
{

SquareRootCalculator sqrtCalc;

public double Number
{

get { return sqrtCalc.Number; }

Listing 3.2 Pass-through property that gets and sets first number value on the model

View

Binding

3. The model holds the actual
 state and returns the value
 of its Result property to the
 view model.

2. The view model represents the
 state, but the model contains
 the state, so the Result property
 on the view model reads its value
 of Result from the property on
 the model.

1. The binding needs to bind
 to a property called “Result”,
 so it gets this value from the
 state represented by the Result
 property on the view model.

4. The view model returns its
 representation of Result to
 the binding layer. The binding
 layer is agnostic to where the
 value came from originally;
 it just cares that it sees a
 representation of state on
 the view model.

View model

Model

Result

public double Result {get;set;}

Figure 3.5 The view model is a representation of the state shown in the model.

The SquareRootViewModel view model
class. The convention is to name view
models with the suffix “ViewModel”.

The view model has an instance of
the model stored as a private field.

The view model exposes the number
to be used in the calculation through
the Number property.

The getter for the Number property is a simple
pass-through—it just returns the value of the
property on the underlying model.

57The view-model layer
set { sqrtCalc.Number = value; }
}

public double Result
{

get { return sqrtCalc.Result; }
}

}

So far, so simple. In fact, you’re probably wondering why we bother with a view model
at all if it just calls straight in to the model. The reason for using a view model is because
view models support property-changed notifications—the raising of an event to tell any-
one who’s interested that a property has changed. Remember the binding layer? This
keeps the UI in sync with the underlying data, and part of keeping this in sync is being
aware of when things change. Figure 3.6 is a recap of binding, highlighting this.

The way the binding layer does this is through property-changed notifications. These
are events raised by the view model telling anyone who’s interested that a property has
changed. In our case, the binding layer is interested, so it listens to these notifications.
When it gets one, it will read the new value of the property and update the UI to match.

The standard way of implementing property-changed notifications in C# is though
an interface called INotifyPropertyChanged. This interface has been around since
.NET 2.0 (over a decade ago), and has only one member, an event called Property-

Changed, which uses the standard event-handler delegate, passing an object that
defines the sender and some event arguments. These arguments are of type
PropertyChangedEventArgs, and this type only has one member of note—Property-

Name, the name of the property that has changed as a string. The following listing
shows this interface.

The setter is also a simple pass-through,
setting the value on the underlying model.

The Result is also a pass-through,
but it’s read-only on the model so
it’s only a getter, not a setter.

The Text property of the TextBox is bound to a property
called “Number” on the view model. The binding looks
up the “Number” property on the view model and finds
it using reflection.

The binding listens for updates to the Text property of
the TextBox (usually via a text-changed event raised by
the TextBox). When the user changes the text, the binding
updates the Number property on the view model.

The binding also listens for updates to Number. When
the property changes, it updates the Text property of the
TextBox on the UI.

TextBox

Text

View model
Binding

Number

Sqrt

400

√
20

Square Root

Figure 3.6 The binding listens to changes in the view model and updates the view accordingly.

58 CHAPTER 3 MVVM— the model-view–view model design pattern
public interface INotifyPropertyChanged
{

event PropertyChangedEventHandler PropertyChanged;
}

This event doesn’t include the value that’s changed, just the name. The binding layer
will subscribe to this event, and when it’s raised it will get the name of the property
from the event args, find the UI control (or controls) that’s bound to a property of
that name, read the new value from the view model, and update the UI.

NOTIFYING THAT ALL PROPERTIES HAVE CHANGED By convention, if you use an
empty string or null as the property name in the event args when raising this
event, it tells the binding layer that everything has changed, so it should
reread all values and update the UI. Be warned, though; not every MVVM
framework will obey this convention.

We can update the view model example to implement this. When the number
changes, or the result of the square root changes, we need to notify the binding of this
change via a property-changed notification. One thing to note here is that your view
model should only notify if something has actually changed—if the value hasn’t
changed, the event shouldn’t be raised.

Let’s add a Sqrt method for our view to illustrate this.

public class SquareRootViewModel : INotifyPropertyChanged
{

public event PropertyChangedEventHandler PropertyChanged;

void RaisePropertyChanged(string name)
{

PropertyChanged?.Invoke(this,
new PropertyChangedEventArgs(name));

}

Listing 3.3 The INotifyPropertyChanged interface

Listing 3.4 Adding property-changed notifications to our view model

The view model needs to implement
INotifyPropertyChanged.

The PropertyChanged event comes
from the INotifyPropertyChanged

interface.

The RaisePropertyChanged
method is a helper method to
raise the property-changed
event for a given property.

The event is raised using event
args that contain the name of the

property that has changed.

59The view-model layer
public double Number
{

get { return sqrtCalc.Number; }
set
{

if (sqrtCalc.Number == value) return;
sqrtCalc.Number = value;
RaisePropertyChanged("Number");

}
}

public void Sqrt()
{

sqrtCalc.Sqrt();
RaisePropertyChanged("Result");

}
...

}

Property-changed notifications are the way to tell the binding layer that something
has changed. You can notify about any property at any time—you don’t have to notify
about the property being changed. For example, if your view model had two proper-
ties for a person’s first and last names, and a property that reflected their whole name
as a concatenation of the first and last names, you’d want any changes to either the
first or last name to raise a property-changed notification for the whole name, as
shown in the following listing.

When the Number property is set, the new value
is compared to the old one, and if the value
hasn’t actually changed, nothing happens: no
update and no property-changed notification.

After the Number property
changes, a property-
changed event is raised.

After the Sqrt method on
the model is called, the
Result property is updated
so the event is raised.

Simplifying RaisePropertyChanged using an attribute
C# defines an attribute called CallerMemberName that you can set on a string param-
eter of a method, and it tells the compiler to use the name of the calling method or
property as the value for this parameter. This means you can define your property-
changed method as follows:

void RaisePropertyChanged([CallerMemberName]string name = null)

Then you can call it using RaisePropertyChanged() from inside your property set-
ter, without passing any explicit value for name to the method. The name of the prop-
erty this is called from will be automatically set as the name parameter. For example,
if you call this from inside the setter of the Number property, the value of the name
parameter will be “Number”. A number of MVVM frameworks, including MvvmCross,
use this for their raise-property-changed methods.

60 CHAPTER 3 MVVM— the model-view–view model design pattern
public string Name
{

get { return FirstName + " " + LastName; }
}

public string FirstName
{

get { return model.FirstName; }
set
{

if (model.FirstName == value) return;
model.FirstName = value;
RaisePropertyChanged("FirstName");
RaisePropertyChanged("Name");

}
}

COLLECTIONS AND COLLECTION-CHANGED NOTIFICATIONS

In addition to using individual properties, there’s a standard way in C# of notifying
the binding layer that the items in a collection have changed: using a similar interface
called INotifyCollectionChanged. This is generally used with list controls—UI wid-
gets that show a list or table of data. Just like with INotifyPropertyChanged, the bind-
ing layer subscribes to an event, and when it receives this event, it will tell the list
control to reload the changes.

Unlike INotifyPropertyChanged, this isn’t an interface that the view model
defines; instead, this is at the property level. The view model will expose a property of
a type that implements INotifyCollectionChanged, and when the binding layer
binds this property to a corresponding property on the list control, it will also sub-
scribe to the event on that property.

An example of this, with an app that shows a list of names, is shown in figure 3.7.
This interface just contains one member, an event called CollectionChanged. This
uses the standard event-handler delegate with event args of type NotifyCollection-

ChangedEventArgs. The following listing shows this interface.

public interface INotifyCollectionChanged
{

event NotifyCollectionChangedEventHandler CollectionChanged;
}

These event args contain a number of properties allowing you to describe the changes
that have been made to the collection. This, in turn, allows the bound list control to
respond appropriately if possible.

For most use cases, though, you don’t need to worry too much about this because
there’s a nice helpful collection that’s already part of the .NET Framework that han-
dles all of this for you—ObservableCollection<T>. The collection is derived from the

Listing 3.5 Property-changed notifications can be raised for any property at any time

Listing 3.6 The INotifyCollectionChanged interface

The Name property is
dependent on the values of
FirstName and LastName.

Because of this dependency,
when FirstName changes, it
raises a property-changed
notification for itself and for
the Name property.

61The view-model layer
generic List<T> and implements INotifyCollectionChanged. When you perform
any action that changes the list, it will raise the event with the correct arguments.

When the underlying ObservableCollection changes (such as when an item is
added to it), the event is raised, and the binding detects this and tells the list control
to update and show the changes. This is shown in figure 3.8.

Be aware, though, that ObservableCollection will raise the CollectionChanged

event for all changes, so if you’re adding thousands of items, the UI will update thou-
sands of times, which can slow or even lock up your UI. It’s probably better in this case
to create a new collection, add all the values to it, and then set your property to this

View

Jim

Bob

Alison

Kim

Names:
The ItemsSource property of the List is bound to a property
called “Items” on the view model. The binding looks up the
“Items” property on the view model and finds it.

The binding also listens for updates to the Items list. When
the collection changes, it updates the ItemSource property
of the List on the UI.

List
public IEnumerable

ItemSource {get;set;}

View model
Binding

Number

Figure 3.7 Collections can be bound to list controls, and when the collection changes, the list
control on the UI is updated.

When a new item is added to the Items observable
collection (in this case “Gary”), the CollectionChanged
event is raised.

The binding detects this event and tells the List control
to update itself to show the new entry. Gary then appears
on the end of the list.

List
New item is added to the list

View model
Items.Add("Gary");

View

Jim

Bob

Alison

Kim

Gary

Names:

CollectionChanged

Figure 3.8 When an observable collection is updated, an event is raised and the binding detects
this and tells the UI to update.

62 CHAPTER 3 MVVM— the model-view–view model design pattern
new collection—leading to only one UI update. The following listing shows an exam-
ple of this.

public ObservableCollection<string> Names {get; private set;}

void AddLotsToTheCollection(IEnumerable<string> lotsOfNames)
{

var newCollection = new ObservableCollection<string>(Names);

foreach (var name in lotsOfNames)
newCollection.Add(name);

Names = newCollection;
RaisePropertyChanged("Names");

}

OTHER IMPLEMENTATIONS OF ObservableCollection CAN MAKE THIS EVEN EASIER
There are a number of implementations of ObservableCollection available
in various open source projects that provide better support for bulk operations
by blocking the collection-changed event until all operations are complete.
One such implementation from MvvmCross is MvxObservableCollection,
which has an AddRange method that suppresses the collection-changed event,
adds all the items passed to the method, and then raises the collection-changed
event. This collection also provides methods for bulk deletes and replace-
ments and for suppressing the collection-changed event while you perform
custom operations.

COMMANDS

The properties of the view model define its state, so the next thing to look at is how
behavior is defined. The standard way to define behavior in MVVM is using the com-
mand pattern. In this pattern, everything needed to perform an action is encapsulated
in an object, and you tell this object that you want it to perform its action at a certain
time, giving it any extra information it needs about the particular time it’s run.

Think of a genie—your wish is its command. You tell the genie that you want a cof-
fee, and it obeys your command using its magic, and poof, a coffee appears, as shown
in figure 3.9.

You can think of the command pattern the same way. The command is an object
that encapsulates the ability to perform an action, such as a genie who encapsulates
the ability to grant your wish. You execute the command with an optional parameter,
commanding the genie to bring you coffee. The command then performs the
action—the genie brings you coffee.

In the C# world, ICommand is the interface for an object that implements this com-
mand pattern. It has a method you can invoke to execute the command with a param-
eter, a method you can call to see if you can execute the command with a parameter,

Listing 3.7 Creating a new collection and updating the property

A new observable collection is
created, copying the values from
the existing collection.

The public property for the
observable collection is updated
to the newly created collection.

A property-changed
notification is raised to tell the
UI to use the new collection.

63The view-model layer
and an event that gets raised when your ability to execute the command changes as
shown in the following listing.

public interface ICommand
{

void Execute(object parameter);
bool CanExecute(object parameter);
event EventHandler CanExecuteChanged;

}

As shown in figure 3.10, you can think of Execute as a method that commands the
genie to grant your wish, and the parameter as the thing you wish for. Traditionally, a
genie will only grant three wishes, so figure 3.11 shows that CanExecute will return
true while you have wishes remaining, but after your third wish will return false. The
CanExecuteChanged event is like the genie telling you after your third wish that you’ve
run out of wishes (and disappearing in a puff of smoke back into the lamp).

Listing 3.8 The ICommand interface

I command
you to give me

coffee

Your wish is
my command

Figure 3.9 Commanding a genie to bring
you coffee. It would have been eternal
wealth, but coffee was easier to draw.

Execute Less than 3

3

()

Genie checks
how many

wishes you’ve
already had

Sorry, you’re
out of wishes

3

If a wish is granted,
the Genie rechecks
how many wishes
you’ve already had

After 3 wishes, the
Genie disappears

back into his lamp

CanExecuteChanged

Your wish is
my command

Figure 3.10 Our genie is like the ICommand interface—we can make a wish (Execute) and see when we’ve run
out of wishes (CanExecuteChanged).

64 CHAPTER 3 MVVM— the model-view–view model design pattern
The command is exposed as a property on the view model, and the binding layer will
have a way to wire up the command to a widget on the UI.

The classic use case is with a button. Buttons usually have a click event, or a similar
event that’s run when the button is tapped. When a button is bound to a command,
the click event will Execute the command. The enabled state of the button would also
be bound to the CanExecute method, so if CanExecute returns true, the button is
enabled, and if it returns false, the button is disabled. This would be evaluated when
the button is first bound and every time the command raises the CanExecuteChanged

event. This is shown in figure 3.12.
In our calculator app, the Square Root button would be bound to a command

that, when executed, calls the Sqrt method on the model. If you haven’t entered a
number into the text box, you can’t calculate a square root, so in this case the Can-

Execute will return false and the button will be disabled. Once you enter text, the
CanExecuteChanged will be raised to tell the binding to re-evaluate CanExecute and
enable the button.

CanExecute Less than 3

false

true

3

()
Genie checks

how many wishes
you’ve already had

Figure 3.11 We can also ask the genie if we can have any more wishes (CanExecute).

public event EventHandler Click {get;}
public bool Enabled {get;}

View modelButton
Binding public ICommand SqrtCommand {get;}

Sqrt

400

√
20

Square Root

The Click event of the button is bound to a property
called “SqrtCommand” on the view model. The binding
looks up the “SqrtCommand” property on the view
model and finds it.

The binding listens for the Click event of the button.
When this is raised, the Execute method on the
command on the view model is called.

The Enabled property of the button is set based on
the return value of CanExecute of the command. If
the command raises the CanExecuteChanged event,
this is re-evaluated.

Figure 3.12 Events such as button clicks can be bound to commands, and these commands are
executed when the event is raised.

65The view-model layer
Commands don’t return a result, they just run and return once they’ve finished. The
way to return a result, if one is required, is by making changes to the state of the view
model and raising a property-changed event. Some commands don’t need to update a
state because they don’t do anything that requires feedback on the current UI. Com-
mands that do need to update, such as saving data and indicating that the data has
been saved, will do it by updating a property that causes the UI to change.

Usually you don’t need much fancy logic with a command—just create a command
object and give it a method to run when it’s executed. Unfortunately (and somewhat
surprisingly) there isn’t a default ICommand implementation built into the .NET
Framework that does this. Luckily there are plenty of example implementations
around the internet and others are built into the various MVVM frameworks. These
commands usually take in an Action that provides the method to run on execution,
and optionally a Predicate (a method that returns a Boolean) to use for the imple-
mentation of CanExecute. They also provide a method you can call to raise the Can-

ExecuteChanged event.
In our calculator view model, we can change the Sqrt method shown in listing 3.4

to a command, as follows.

public class SquareRootViewModel : INotifyPropertyChanged
{

...
public ICommand SqrtCommand {get; private set;}

public SquareRootViewModel()
{

SqrtCommand = new MvxCommand(o =>
{

sqrtCalc.Sqrt();
RaisePropertyChanged("Result");

});
}

}

In the constructor for the view model, the SqrtCommand is set to a new instance of
MvxCommand, the command class from MvvmCross that takes an Action<object> to
execute (Execute takes an object as its parameter, so the action needs to have an
object parameter). The action is invoked when the command is executed, and in this
example the action calls Sqrt on the model and raises a property change to indicate
the Result has changed.

3.2.2 Value conversion

The model contains data in a way that’s relevant to the domain or business logic; the
UI handles data in a format that can work with the widgets on screen. Some of the
time these formats will be the same, but other times they won’t match.

Listing 3.9 Adding a command to the view model

The Sqrt method has been
removed, and a new property
of type ICommand has been
added, called SqrtCommand.

Creates a new instance
of the command

66 CHAPTER 3 MVVM— the model-view–view model design pattern
When they don’t match, the view model will need to convert the state of the model
to a state that the UI can use. The view model will represent the state of the model
using the converted values. Similarly, if the UI is updated, this needs to be reflected by
updating the state represented by the view model. This means setting a value using
data in the format relevant to the UI, and then converting it to the format used by the
model. It’s the view model that’s responsible for this value conversion.

As you’ve probably noticed in our square-root calculator, the model deals with num-
bers as doubles. This is the business layer, so doubles are fine. UIs, on the other hand,
don’t normally deal in doubles. Text boxes like the one used for entering the number
usually deal in strings, and so do labels like the one we’re using to show the result.

This is where the view model comes in—part of its job is value conversion from the
model layer to the UI layer. In this case it should be responsible for converting from
strings in the UI to numbers in the model and vice versa.

Let’s look at how the view-model class code should work.

public class SquareRootViewModel
{

...
public string Number
{

get { return sqrtCalc.Number.ToString(); }
set
{

if (value == Number) return;
sqrtCalc.Number = double.Parse(value);
RaisePropertyChanged("Number");

}
}

public string Result
{

get { return sqrtCalc.Result.ToString(); }
}

}

VIEW MODELS ARE RESPONSIBLE FOR VALUE CONVERSION The layers above the
view model think in terms of the UI, and the layers below think in terms of
the business logic and domain. The view model is responsible for converting
from one to the other as data passes through this layer.

The model layer has data as doubles. The view-model layer converts these values to
strings, and represents the state of the model layer through string properties. This

Listing 3.10 Handling value conversion from the model (doubles) to UI (strings)

The Number property on
the view model is a string. To return a string, the

getter calls ToString()
on the double value
from the model.

Compares the value to the
existing value using the property
on the view model instead of the
property on the model. The
value is a string, so you need to
compare it with a string instead
of the double on the model.

To set a double on the model, the setter parses the string
into a double. This could fail, so in the real world you’d
need to ensure the string value is always a valid number—
most UI text boxes can limit which characters the user can
enter to numbers and decimal points.

Again, to return a
string the view model
calls ToString() on the
value from the model.

67The view-model layer
state is in the right format for the UI layer, so the binding layer can set the text on the
UI controls to these string values. Once a string value on the UI is updated, the bind-
ing layer updates the string representation of the number on the view model, which
converts the value to a double and updates the data on the model.

There are times where you might want platform-specific value conversion rather
than cross-platform conversion in a view model, and you can do this using a value con-
verter. We’ll look at these later in the chapter.

3.2.3 Testability

Like the model layer, the view-model layer should be built with testability in mind.
View models not only provide cross-platform logic, but when they’re well built you can
write unit tests to verify that their logic is correct: one code base for this logic, one set
of tests, one place to find and fix bugs. This is one of the major reasons behind the
original invention of MVVM—you can write unit tests against your UI logic. It’s very
easy to do thanks to the way view models encapsulate state and behavior. You can test
user interactions with the UI by writing test code that replicates the way the binding
would update the view model.

For example, to test a user typing into a text box, you don’t actually need a text
box. Instead you can write code that acts like the binding layer and sets the value of
the property on the view model that would be bound to the text box. To test updates
coming to the UI from the view model, you just need to listen for property-changed or
collection-changed events, and when these happen verify that the property or collec-
tion has the correct value. To test a user clicking a button, you just need to execute the
command and verify what happens.

When building your view models, you should always think about unit testing. Your
view models should be well decoupled and use techniques like interface over imple-
mentation, the same as for models. It’s also worth seeing what your MVVM framework
offers to help you with this. For example, some frameworks provide a messenger to
allow your view models to communicate indirectly with other view models (or other
classes in your app) without having to be aware of each other.

To improve the testability of the SquareRootCalculator view model, we should
decouple it from the model by exposing an interface on the model and passing an
instance of that interface when the view model is constructed inside our app. From a
unit test, we can create a mock model that implements this interface, and then use
this when we construct the view model. This way we have complete control over what
the model will do in the test.

As mentioned earlier, unit testing is a huge topic, and mocking is an important
part of it. It’s outside the scope of this book, but if you always build your model and
view-model layer code to prefer interface to implementation, you’ll be well set up for
unit testing.

68 CHAPTER 3 MVVM— the model-view–view model design pattern
3.3 The view layer
Put simply, the view layer is the UI. Everything that has to be platform-specific because
it deals with UI widgets is in the view layer. This layer should be as thin as possible and
just contain code to define which widgets are needed on screen and the values of any of
their properties that won’t change based on logic inside the view model. When you’re
building your view, if you find yourself adding any logic, move it to the view model.

Thinking back to our calculator example, we’d need to create two views called
SquareRootView, one in the iOS app and one in the Android. This naming is in keep-
ing with the convention of the view and view model having the same name with a dif-
ferent suffix, as shown in figure 3.13.

As this layer isn’t cross-platform, you can add all the fancy UI goodness you want in
this layer—nice looking widgets, animations, effects, and anything else you want that’s
specific to the platform to make your UI look amazing. Just remember that because
this layer isn’t cross-platform, everything has to be written twice, once for iOS and
once for Android, so everything that can be shared (such as logic) should be shared in
the view-model layer.

On both iOS and Android, there are two parts to any UI:

 A layout file—Contains details of the widgets defined in XML and can be used
with a visual designer. Android calls these layout resources; iOS has two types of
these, storyboards and XIB files.

 A code-behind file—Provides any logic needed by the UI and defines its lifecycle
(such as when the view is shown and when it’s hidden). On Android this is
called an activity; on iOS this is a view controller.

UI layer

App
layer

UI logic
layer

iOS

Business
logic layer

View

View
model

Model

C#

Storyboard (XML)

C#

Layout (XML)

C# C#

Android

C# (.NET Standard)

C# (.NET
Standard)

Binding (from framework)

SquareRootView SquareRootView

SquareRootViewModel

SquareRootCalculator

C# (.NET
Standard) Figure 3.13 The view layer is

not cross-platform so the views
have to be created twice.

69Binding
We’ll look at these layout and code-behind files in more detail in chapters 9 through
12 when we look at building UIs for iOS and Android.

There’s not much more to add about the view layer in terms of MVVM. Most of the
magic of MVVM is in the view-model layer, so the only thing to consider here is what
you can put in the view-model layer and what has to be in the view layer. As a good
rule of thumb, you want to do as much as possible in the layout file, and as little as pos-
sible in the code-behind. If you’re adding code that can’t be in the layout file for what-
ever reason, you should consider whether it’s generic logic that should be in the view
model (and therefore shared between platforms) or if it’s platform-specific and must
be in the view layer. For example, if you’re showing or hiding a label based on the
value of a property in the view model, the logic for this should also be in the view
model. If, on the other hand, you’re choosing which of a set of platform-specific ani-
mations you’ll use based on a property in the view model, this logic would go in the
view layer—albeit ideally in a separate, self-contained class that could be unit-tested.

3.4 Binding
Binding is the magic that links together the view and the view model in a loosely cou-
pled way. It’s responsible for connecting properties on the view to properties on the
view model and keeping them in sync, and for connecting events on the view to com-
mands on the view model so that these commands are run when the user interacts
with the UI. When binding, you link up a named property on the view to a named
property on the view model, and behind the scenes the binding framework will find
the actual properties with the given names and wire them up—setting the view to
match the value in the view model, and monitoring for changes so it can keep these
values in sync.

There’s nothing in the .NET Framework to help bind everything together. Instead,
you have to either write the logic yourself or use a framework such as MvvmCross,
MVVM Light, or Caliburn.Micro to do it.

There are a couple of binding concepts to be aware of—what the source and target
are, and what the binding mode is. You also need to be aware that binding isn’t really
cross-platform, so it can help if you need to bind to properties whose types aren’t sup-
ported in your cross-platform code.

3.4.1 Source and target

When you bind a view to a view model, you connect a target to a source:

 The source is the original source of data (the view model).
 The target is the original target of the data (the view).

It’s easy to see how these definitions can be confusing—for a text-entry box on a new-
user screen, the “source” of the data could be considered what the user enters, but
from a binding perspective the source is always the view model and the target is always
the view.

70 CHAPTER 3 MVVM— the model-view–view model design pattern
You will often hear the term binding source mentioned, and this refers to the
view model. The binding source is also sometimes referred to as the binding context
(Xamarin.Forms uses this name) or data context (if you’ve done WPF before, you’ll
recognize this).

3.4.2 Binding mode

There are four possible modes for binding:

 One time—The binding happens once when the view is bound. The value in the
view is set from the property in the view model once, and all changes are
ignored. This is useful for static text or images that can’t change.

 One way—The binding goes from source to target only. Every time the view
model changes, the view is updated. This makes sense for static controls such as
labels where the value in the view can never be user-updated, but the view
model may update due to changes from the model layer (such as getting a new
value from a web service).

 One way to source—The binding goes from target to source only. Every time the
value on the view changes, the view model is updated. This isn’t used very often.

 Two way—The binding goes from source to target and target to source. Every
time the property on the view model changes, the value on the view is updated,
and every time the value on the view changes, the property on the view model is
updated. For controls like text boxes, tick boxes, or radio buttons, this is usually
the default binding mode.

3.4.3 Binding is not cross-platform

Binding is platform-specific, and it’s always set in the view layer. It needs to be, as it
needs to understand the UI widgets to be able to set the data on them and listen for
updates.

In our square-root calculator, we need to bind the text box that the user uses to
enter the number to the Number property on the view model, bind the button to the
SqrtCommand property, and then bind the result label to the Result property.

The binding has to be platform-specific to understand the UI widgets well enough
to monitor for view-layer value changes. In figure 3.14 the binding needs to know how
to detect changes to the text in the text box (for example, by handling a text-changed
event), and how to detect a tap on the button (by handling a click event). On the view-
model side, the binding will listen for property-changed notifications from the
INotifyPropertyChanged interface to know when the view model has been updated.
Once it gets this notification, it needs to know how to instruct the UI to update, such
as knowing how to tell the label to show the result.

71Binding
BINDING USES REFLECTION, SO MAKE SURE YOUR PROPERTIES ARE VISIBLE Binding
needs to be able to find the properties on the source and target (view model
and widget). How good the binding framework is at finding these depends on
the framework, but it’s a good general practice to make your properties public
and to verify how the framework works.

Binding

public event EventHandler Click {get;}
public bool Enabled {get;set;}

View model

Button

Sqrt

400

√
20

Square Root

public string Number {get;set;}

public string Result {get;}

public ICommand SqrtCommand {get;}

public string Text {get;set;}
public event EventHandler TextChanged {get;}

The Text property of the TextBox is bound to a property called “Number” on the view model.
The binding finds Number and sets the Text property to be that value.

The binding knows about text boxes, so it listens to the TextChanged event. When this is raised,
 it will read the value in Text and set the Number property on the view model to that value.

The binding listens to the PropertyChanged event on the view model. When this is raised
for the Number property, it reads the value and sets it on the Text property of the text box.

The Text property of the label is bound
to a property called “Result” on the
view model. The binding finds Result and
sets the Text property to that value.

The binding listens to the PropertyChanged
event on the view model. When this is
raised for the Result property, it reads the
value and sets it on the Text property of
the label.

The Click event of the button is bound to a property called
“SqrtCommand” on the view model. The binding finds
SqrtCommand. It sets the Enabled property on the button
to the result of calling CanExecute on the command.

The binding knows about buttons, so it listens to the Click
event. When this is raised, it executes the SqrtCommand.

The binding listens to the CanExecuteChanged event on the
command. When this is raised, it re-evaluates CanExecute
and sets the Enabled property on the button accordingly.

TextBox

public string Text {get;set;}

Label

Figure 3.14 Binding connects the view and view model together in a loosely coupled way, but it needs to be
platform-specific to know which properties and events in the view layer to use.

72 CHAPTER 3 MVVM— the model-view–view model design pattern
3.4.4 Value converters

Binding your cross-platform view model to your platform-specific code is great, but
what about the times when types and even values are different between platforms? For
example, with text boxes on both iOS and Android, you can bind the text to a string
property in your view model—this works on both platforms. The problem comes if
you want to show or hide the text box. On Android, visibility is controlled by an enum
called ViewStates; on iOS it’s a Boolean called Hidden. Normally on your view model,
you want a readable property such as ShowLabel that returns true for the widget
being visible and false for it being hidden. This doesn’t map to the Android enum or
the iOS Hidden property (it’s the inverse, because on iOS true means the widget is
hidden, so not visible).

The way around this is through value converters. As you might recall, the view
model is a value-conversion layer (as well as a UI logic layer) so it can do some things,
but because it’s cross-platform it can’t convert values to platform-specific ones. This
means we must have a small part of our value conversion in platform-specific code,
using value converters. These are classes with the singular purpose of converting from
view-model types to view types, and converting back from view types to view-model
types. Although we want to keep as much UI logic in cross-platform code as we can,
platform-specific value converters are sometimes necessary, as they have to know
about the platform-specific implementations, and they can be encapsulated in a way
that makes them unit-testable.

When binding, you can tell the binding framework to use a particular value con-
verter. When a property on the view model is updated, the binding framework reads
the new value from the view model, converts the value using the value converter, and
sets the converted value on the view. Conversely, when the view updates, the binding
framework will read the value from the view, convert it back using the value converter,
and set the value on the view model. This is shown in figure 3.15.

In contrast to property-changed notifications, there isn’t a standard interface for
value converters available everywhere. Microsoft defined one called IValueConverter

for use in WPF applications, but this isn’t available in .NET Standard libraries, iOS, or
Android apps. Instead, a number of MVVM frameworks provide their own versions,
which are identical.

In MvvmCross there’s IMvxValueConverter. This interface is identical to IValue-

Converter and has two methods—Convert to go from source to target (converting
the view-model value to one the widget is expecting), and ConvertBack to go from tar-
get to source (converting from the widget value to one the view model is expecting).
This interface is shown in the following listing. To create a value converter, you can
implement this interface in your class and pass your class to the binding layer.

73Binding
public interface IMvxValueConverter
{

object Convert(object value, Type targetType,
object parameter, CultureInfo culture);

object ConvertBack(object value, Type targetType,
object parameter, CultureInfo culture);

}

Listing 3.11 The IMvxValueConverter interface

Android view

TextView
public ViewStates

Visibility {get;set;}

View model

public bool
ShowName {get;set;}

iOS view

UILabel
public bool Hidden

{get;set;}

The Hidden property of
the UILabel is bound to

a property called
“ShowName”on the

view model.

The Visibility property
of the TextView is bound

to a property called
“ShowName” on the

view model.

Hidden is updated using
the value that comes out
of the value converter.

Visibility is updated using
the value that comes out
of the value converter.

Binding looks up the “ShowName” property
on the view model and finds it.

Binding listens for updates to ShowName.
When the property changes, it passes the

value through the value converter.

BoolToHiddenValueConverter converts a Boolean
representing show from the view model to one
representing hide by inverting the value.

BoolToViewStatesValueConverter converts a
Boolean representing show from the view model
to a ViewStates enum value by converting true to
ViewStates.Visible and false to ViewStates.Gone.

View

Jim Jim

View

B
o
o
l
T
o
H
i
d
d
e
n
V
a
l
u
e
C
o
n
v
e
r
t
e
r

B
o
o
l
T
o
V
i
e
w
S
t
a
t
e
s
V
a
l
u
e
C
o
n
v
e
r
t
e
r

Figure 3.15 Value converters allow you to convert a value from the view model to a type that the
view is expecting.

Converts changes from the
source (view-model) value
to the target (view) value

Converts changes from the target (view)
value to the source (view-model) value

74 CHAPTER 3 MVVM— the model-view–view model design pattern
The first parameter in both these methods (value) is the value you want to convert.
These methods then return the converted value. The targetType parameter tells you
what type the method should convert to, though this is normally ignored as value con-
verters are usually pretty specific.

The parameter parameter can be useful if you want to have the value converter
support a few different conversions and tweak the behavior when it’s called. For exam-
ple, you could have a value converter that converts numbers that represent amounts
of money to strings in particular currencies, and use parameter to specify what cur-
rency to use (such as £ or $). The culture parameter is useful if you’re supporting
multiple languages, because it allows you to change your output based on the current
localization settings. For example, if you’re converting a number to a string, you can
change the decimal symbol to either a period or a comma based on the user’s country
by passing the culture info to the ToString method on the number.

As with commands, no value converters are provided out of the box with the .NET
Framework, but most MVVM libraries provide a few standard ones, such as converting
Booleans to visibility flags. For example, MvvmCross provides MvxVisibilityValueC-
onverter to map true values to visible and false values to invisible, and MvxInvert-

edVisibilityValueConverter to do the opposite.

3.5 The application layer
Most of the application layer is provided for you by the platform-specific code that’s
built into the Xamarin iOS and Android SDKs. When you create your app projects, a
few files will be autogenerated for you, containing some application configuration.
Any modifications to this will generally be platform-specific changes, such as handling
notifications on iOS or wiring up background services on Android.

There are some small things that can be configured in cross-platform code, but
this depends very much on your MVVM framework. The main thing you can control
here is the startup process.

Normally, the main Android activity or iOS view controller that’s loaded on appli-
cation startup is defined at the application level, but a good MVVM framework will
allow you to define this in cross-platform code. This is usually done by specifying the
first view model to use. This allows you to put logic in the application layer that can be
shared across both platforms and be unit tested.

A good example of a situation in which you might do this is an app that requires a
user login. When the app is first loaded, your shared application code can see if
there’s already a valid user account from some shared user-management code. If there
is a valid account, it can load the main screen of your app from its view model, and if
not, it can load the login screen view model. If this logic is in cross-platform code,
you’ll only have to write this once, not once per platform.

In addition, the application layer can define how the different classes in your app
are connected. For example, it can ensure that the SquareRootViewModel is con-
structed automatically using an implementation of SquareRootCalculator as the
ISquareRootCalculator constructor parameter.

75Navigation
3.6 Navigation
The view-model layer provides as much UI logic as possible, and part of this UI logic is
related to navigation—the act of moving from one screen to another in the app.

Imagine a company directory app that has two screens: one with a list of employ-
ees, and one that shows the details about an employee. The app provides navigation
from the list to a single employee—when you tap on a person’s name in the list on the
first screen, a new screen shows the details about that person, as shown in figure 3.16.

This kind of navigation is cross-platform in that regardless of how the UI is updated,
we want to provide this navigation on both platforms. Both platforms will show the
new screen and pass it data about which person was selected. The implementation on
each platform is very different.

 Android conceptualizes each screen as a separate activity that the user is under-
taking, and the user has to express an intent to change their activity.

 iOS thinks about each screen as a view on a part of the app, and the user segues
from one view to another.

Both implementations mean the same thing from the user’s perspective—you see a
different screen—but the terms used and the underlying classes and method calls are
very different.

My Company Directory

Lauren Ipsum

Aarti Effern

1. Tap on a name on
 the people screen.

2. The person screen
 appears, replacing
 the people screen.

Lauren Ipsum

Mobile Developer

Figure 3.16 Navigating from
one screen to another by
tapping on a name in the people
list

What is a “screen”?
Many different terms are used to define what we see on an app. At any one time, your
app will fill the screen of the device and display some UI widgets showing state or
providing behavior. At various times in your app, usually when you tap something, the
whole screen is replaced with another full screen of widgets.

In this book I’ll use the term screen to refer to each distinct full screen UI, so in our
calculator app there’s just one screen showing the square-root calculator. In the com-
pany directory app, there would be two screens—the first one showing the list of peo-
ple, and the second showing the details of a specific person.

76 CHAPTER 3 MVVM— the model-view–view model design pattern
To see how we can solve this problem in a cross-platform way using MVVM, we first
must consider what we really mean when we think of the screens in an app from an
MVVM perspective. When we see a screen in our app, what we’re really seeing is a view
and a view model—the view provides the UI widgets, and the view model provides the
state and behavior. When we change screens, we’re changing both the view and view
model that are shown. So what controls this changing of screens? Which layer handles
the navigation?

Something has to ensure that the right view model is bound to the right view, so there
needs to be a link between the view and the view model. There are two ways of doing
this: view-first and view-model–first. Both of these approaches rely on there being
something, usually in the app layer, that defines these links.

3.6.1 View-first

View-first means the view is the driver behind the navigation (figure 3.17). At app
startup, the app layer will load a view, and when the view is loaded, something (maybe
some code in the app layer, or even in the view itself) will create the corresponding
view model and bind it up. When you navigate to another screen, the view is responsi-
ble for this. It will know which view it needs to navigate to and will show that view,
which in turn causes its view model to be created and bound up.

3.6.2 View-model–first

View-model–first means the view model is the driver behind the navigation (figure
3.18). The app layer will load a view model at app startup, and this loading of the
view model will cause the view to be created, bound to the view model, and shown.
When you navigate to another screen, the view model is responsible for this. It will
know which view model to navigate to and will interact with something (usually pro-
vided by the MVVM framework you’re using) to create the new view model and its
associated view.

You can have multiple views and view models in a screen
In our simple examples, there’s one view and one view model per screen, but nothing
stops you from having more. You could have a screen made up of multiple parts, and
each part would be its own view and view model.

For example, with the company directory app on a tablet in landscape orientation,
there would be enough space to have the list of people on the left side and the details
about the person on the right. That’s one parent view showing two views and view
models. In portrait orientation, the app would show one view and view model for the
list, and tapping on a person would replace that view with the person view and view
model.

77Navigation
My Company Directory

PeopleViewModel PersonViewModel

Lauren Ipsum

Aarti Effern

1. App creates
 PeopleView.

3. Tapping on a name
 creates a PersonView
 and shows the screen.

4. PersonView creates
 PersonViewModel and
 binds to it.

Lauren Ipsum

Mobile Developer

PersonViewPeopleView

2. PeopleView creates
 PeopleViewModel
 and binds to it.

Figure 3.17 View-first navigation—the view drives the creation of view models and navigates to
other views.

My Company Directory

PeopleViewModel PersonViewModel

Lauren Ipsum

Aarti Effern

1. App creates
 PeopleViewModel.

3. Tapping on a name executes a
 command on PeopleViewModel
 that creates a PersonViewModel
 and shows it.

4. The framework creates
 PersonView and binds
 the view model to it.

Lauren Ipsum

Mobile Developer

PersonViewPeopleView

2. The framework
 creates PeopleView
 and binds the view
 model to it.

Figure 3.18 View-model–first navigation—the view model drives the creation of views using the
MVVM framework and navigates to other view models.

78 CHAPTER 3 MVVM— the model-view–view model design pattern
3.6.3 Which one to use?

The most popular approach by far is view-model–first. If you have the logic to load
views in the view layer, you have more platform-specific code, and this platform-
specific code is hard to test except manually. Writing unit tests against UI code is
harder than writing them against non-UI code. If the logic is in the view model, you
have more logic in your cross-platform layer, so there’s less code to write and more
code that you can unit-test.

Most MVVM frameworks provide a navigation service of some description—a ser-
vice that allows you to navigate to different views or view models. This service is always
exposed via an interface that you can use from your view models (and mock out for
testing) and it allows you to navigate in a way that’s not tightly coupled to a view class.
In some frameworks, this is done by navigating to a view model, and in others it’s by
navigating using a key (such as a unique string value) that has been linked to a view
and view model. MvvmCross navigates via view model, and it’s this navigation we’ll be
using in this book.

3.7 Revisiting the square-root calculator app
You’ve seen the square-root calculator app broken down layer by layer, so let’s take a
moment to step back and view the bigger picture, using a bigger picture. At the start
of the chapter I presented a figure that showed user interactions with the app. We’re
now in a position to expand on this figure, filling in all the different interactions
between the different layers. This is shown in figure 3.19.

Take a moment to study this diagram and follow the flow through the app. It shows
a lot of what we’ve talked about already.

The app starts up and launches a view and view model, ideally using view-model–
first navigation. As these are created, the binding wires up the state and behavior on
the view model to the UI—the properties are bound to a text box and a label, and the
command is bound to a button. As the user enters text, the view model is updated via
the binding, which in turn pushes the value to the model. Clicking the button exe-
cutes a command that calculates the square root and raises a property-changed notifi-
cation. This property change is detected by the binding, which updates the UI.

This flow seems simple, but it encompasses the bulk of MVVM:

 The model is a separate layer that has business logic and uses properties of
types that make sense in the business domain.

 The view model wraps the model layer and exposes state and behavior to the
layers above, converting the state from business types to UI types.

 The binding sits above the view model and “glues” it to the view.
 The view exposes the state and behavior via widgets on the screen that the user

can understand and interact with.

We have a model layer that’s distinct, cross-platform, unit-testable, easier to maintain,
and easier to evolve. We also have a view-model layer that’s distinct, cross-platform,

79Revisiting the square-root calculator app
Square Root

View

Binding

Sqrt

400

√

√

Square Root

Sqrt

400

√

Square Root

Sqrt

400

√
20

Square Root

View model

Number

Result

SqrtCommand

Number

Result

Sqrt

"400"

400

"400"

Execute

400

20

Sqrt()

"400"

"20"

400

20

"400"

"20"

400

20

"400"

"20"

400

20

Model

The app starts
and the view
and view model
are created.

The user types “400”
into the text box.

The binding detects
the text box’s text-
changed event, reads
the value inside the
text box, and passes
it to the property
on the view model.

The view model
converts the string
value of “400” to a
double value of 400
and passes it through
to the Number property
on the model.

The SqrtCommand on
the view model wraps
the Sqrt method on
the model. When the
command is executed,
the Sqrt method is
called and the Result
is set to 20.

The view model reads
the double value of
Result and converts
it to a string.

The binding
layer looks up
the properties on
the view and view
model. It adds
event handlers
for the text,
changing in the
number text
box and the click
of the Add button.
It also adds an
event handler
for the property-
changed event on
the view model.
Finally, it sets the
values on the view
based on the
values in the
view model.

Number gets/sets
Number on the
model, converting
from a double on
the model to a
string on the view
model. Result gets
Result from the
model, converting
it to a string.
The SqrtCommand
wraps a call to Sqrt
on the model.

The user taps
the Square
Root button.

The binding
detects the
button-tap event
and executes the
SqrtCommand on
the view model.

The view model raises a
property-changed event
with the property name
Result. The binding
detects the event
and reads the property.

The binding reads the
value of Result and sets
it on the result text box.

Figure 3.19 The complete square-root calculator, showing the interactions between all the layers
of MVVM

80 CHAPTER 3 MVVM— the model-view–view model design pattern
unit-testable, easier to maintain, and easier to evolve. We have a binding layer and a
thin UI layer that’s platform-specific.

Now you’re armed with more knowledge about MVVM. In the next chapter we’ll
take a look back at the Hello World example from chapter 2 and see what’s happening
in the code. We’ll also extend the app using a cross-platform Xamarin plugin to make
it say “Hello” to you.

Summary
In this chapter you learned that

 Models are cross-platform and unit-testable, and they represent data at the business-
logic or domain level, not at the UI level.

 View models are cross-platform and unit-testable, and they represent state and
behavior through properties and commands. View models act as a conversion
layer between data or actions at the UI level and data or methods in the model.

 The platform-specific view layer and the cross-platform view model communi-
cate though a binder, a loosely coupled layer that’s usually provided by a frame-
work that keeps the view (binding target) and view model (binding source) in
sync.

 To navigate between different screens in your app you can use view-first naviga-
tion to have the view manage the navigation, or view-model–first navigation to
have the view model manage it. View-model–first is preferable, as you can unit-
test this navigation.

 The .NET Framework has some interfaces and classes that help to implement
your app using MVVM, but to fully implement the pattern you can use a third-
party framework such as MvvmCross, MVVM Light, or Caliburn.Micro.

4Hello again, MVVM—
understanding and enhancing

our simple MVVM app
This chapter covers
 A detailed look into the code of the Hello Cross-Platform

World app from chapter 2

 MvvmCross classes that provide a base implementation of a
view model, a command, and some cross-platform app logic

 How to use MvvmCross to bind iOS and Android views to the
view model

 Using Xamarin plugins to add cross-platform wrappers around
platform-specific functionality

 Using inversion of control to loosely couple your code for unit
testing

 Creating and binding a command

 Adding code to the view model to make your app speak to you
81

82 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
4.1 A deeper dive into our Hello Cross-Platform World app
Now that we’ve covered MVVM in detail, it’s a good opportunity to review the Hello
Cross-Platform World app you built in chapter 2 to see what the code does, and how it
fits into the layers for a Xamarin app. You built the app using the MvvmCross exten-
sion, which created a simple Hello World app in which editing the value in a text box
updated a label to match. It was a cross-platform app, and we proved this by changing
a string in the core project and seeing that both apps were updated.

Let’s start working through the model layers from the bottom up.

4.1.1 The model

Starting from the bottom up, let’s think about the model. This is a simple app with a
single string value, so there really isn’t a model layer as such. You can think of the
hello string field as the model.

There’s not much else to look at here, so let’s jump to the more important view-
model layer.

4.1.2 The view model

In the HelloCrossPlatformWorld.Core project, you have a view model called First-

ViewModel (figure 4.1). This view model “wraps” the model (the hello string) and
exposes its value through its state—by exposing a property called Hello.

The first thing you may notice about this view model is that it has a base class—Mvx-

ViewModel. This class is provided by MvvmCross (all MvvmCross classes start with Mvx

and interfaces start with IMvx), and it gives you a basic implementation of a view model.
The main thing that it provides is property-changed notifications—it implements
INotifyPropertyChanged and has some methods to raise the PropertyChanged event.

FirstViewModel derives from
MvxViewModel, a base view-
model class from MvvmCross.

The hello string acts as a model
layer for this trivial example.

FirstViewModel lives in the ViewModels
folder of the HelloCrossPlatformWorld.
Core project.

Figure 4.1 The structure of the core project showing the location of the FirstViewModel class

83A deeper dive into our Hello Cross-Platform World app
If you look at the Hello property, you may also notice something interesting in the set
method.

public string Hello
{

get { return hello; }
set { SetProperty(ref hello, value); }

}

Normally in a view model, you’d check whether the field was different from the value,
and if so you’d set the field and raise the PropertyChanged event. Here, though, we’re
calling a method, SetProperty. This comes as part of MvxViewModel and wraps the
usual set logic—it will check the value and only update the property and raise the
property-changed event if it’s different. You also may notice that the string is passed by
ref. This means that a reference to the actual string field is passed instead of a copy,
so that inside the SetProperty method you can update the value of the field. It
doesn’t provide any extra magic, it’s just there to save on typing—three lines of code
become one.

This method will also return a Boolean value—true means the value changed and
was updated; false means it wasn’t updated. This is helpful if you need to perform
other actions if the value changed, such as raising property-changed notifications for
other properties that use this value.

4.1.3 The application layer

Before we look at the view, it’s worth taking a brief tour of the application layer. Mvvm-
Cross provides some code in the application layer: some is platform-specific in the two
app projects, and some is cross-platform in the core project. At the moment, all we
really care about is the cross-platform part. This is in a class called App inside App.cs,
as shown in figure 4.2.

Listing 4.1 Setting a value and raising a property-changed event

App.cs contains cross-platform
application layer code.

Figure 4.2 The cross-platform application layer code lives in App.cs in the core project.

84 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
The App class is derived from MvxApplication, an MvvmCross base application class.
This implements just one method—Initialize. The line in here that’s of interest to
us is the following.

RegisterNavigationServiceAppStart<ViewModels.FirstViewModel>();

This RegisterNavigationServiceAppStart call tells the MvvmCross application code
that when the app starts up, the first thing to show is the FirstViewModel. If you
remember back to MVVM navigation in the last chapter, you’ll see that this is view-
model–first navigation—the view model is registered as the app starts, so it’s the first
thing shown on launch. To show this view model, MvvmCross will look for the corre-
sponding view and show that.

You need to tell MvvmCross which view is the right view for each view model. Luck-
ily, though, you don’t need to explicitly tell it; you can do it by the name. By conven-
tion, the view and view model have the same names except for the suffix, and
MvvmCross uses this to determine which view to show for each view model. There are
other ways to tell it if you don’t want to follow this convention, but for now we’ll stick
to the naming convention. The view model here is called FirstViewModel, so to show
it MvvmCross will look for a view called FirstView.

Once the view is loaded, a new instance of the view-model class is created, and this
is set as the binding source of the view.

4.1.4 The view

Our view layer is split across the two app projects, so let’s look at them one by one,
starting with Android.

THE ANDROID VIEW

In the Android project, the Android view is defined as an Activity, which uses a lay-
out file to define the UI. (Activity is the Android code-behind class for a full-screen
window; we’ll look at these in more detail in chapter 9.)

The view activity lives inside a folder called Views, and it’s called FirstView (figure
4.3). Each Activity can build its UI in code, but more normally it loads the UI from a
layout resource—an XML file that defines the widgets and layout containers (special
widgets that don’t have any visible components but are used to lay out other widgets,
such as to arrange one below another in a vertical stack). The FirstView activity con-
tains nothing of interest to us here. The interesting bit is inside FirstView.axml—the
layout resource that it loads.

Listing 4.2 Registering the view model shown on app start

85A deeper dive into our Hello Cross-Platform World app
The layouts that define the UI live here.

FirstView.axml is the one we want to edit.

The Android app project

Project resources such as images
or layouts live here.

Android uses classes derived from Activity
for code-behind for the UI. These live here.

Figure 4.3 The structure of the Android app project showing the location of the FirstView.axml
layout file

86 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
In the Android project is a folder called Resources that holds any resource files the
app needs, such as images, strings, and layout files. You can find the layouts in the lay-
out folder. If you look in there, you’ll see the layout for our first view—FirstView.axml.
If you open this layout resource, you’ll get a tabbed view with one tab for a designer
(figure 4.4) and one for the raw source (figure 4.5). It’s the source view we’re inter-
ested in.

In this Source tab, you’ll see a number of nodes in the XML that each represent a
visual element. Some are layouts, which are elements that hold other elements and lay
them out a certain way, and some are widgets. We’ll go into these in more detail in
chapter 9. For now, these are the basics of the items in this layout:

 RelativeLayout—A layout element that allows you to position its children rela-
tive to the container or to each other. For example, you could put something at
the top of the container, or put something below a particular element.

 FrameLayout—A layout that contains either a single item or items that are laid
out one on top of the other (on the Z axis, so coming “out” of the screen).

 LinearLayout—A layout that stacks items either horizontally or vertically.

Figure 4.4 The FirstView.axml in the designer view

87A deeper dive into our Hello Cross-Platform World app
 EditText—A text-entry control.
 TextView—A static-text control.

The two nodes we’re interested in, EditText and TextView, are shown in the follow-
ing listing.

<EditText
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textSize="40dp"
local:MvxBind="Text Hello" />

<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textSize="40dp"
local:MvxBind="Text Hello" />

Listing 4.3 Binding widgets in the layout resource to the view model

Figure 4.5 The FirstView.axml in the source view

Both widgets have an
MvxBind attribute set.

88 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
The EditText is an editable text box—a text-entry control. TextView is static text—a
label. In the XML for these controls, you’ll see a number of attributes set that are in
the android namespace. These are standard control properties such as their sizing. In
addition, both of these controls have an interesting attribute in the local namespace.

local:MvxBind="Text Hello"

As you might expect from the attribute name, MvxBind is an attribute from Mvvm-
Cross that does binding. It comes from the local XML namespace (defined as
xmlns:local="http://schemas.android.com/apk/res-auto"), which is a special
namespace used to refer to all the resources that come from your app—either the
code you’ve written, or code from external libraries, such as the MvvmCross Android
NuGet packages. By setting these MvxBind attributes, you’re telling MvvmCross to bind
the Text property on both controls to a property called Hello on the binding
source—an instance of FirstViewModel. Figure 4.6 shows this binding.

THE IOS VIEW

Like Android, iOS has two files for a view: a designer file that defines the UI widgets
and layout, and a view controller file that provides the code-behind (we’ll look at
these in more detail in chapter 11). These live in the Views folder in the Hello-
CrossPlatformWorld.iOS project (figure 4.7).

Unlike in Android, the layout files (in this case, FirstView.storyboard) in iOS are
not very human-readable and are not meant to be edited in source. Instead, you
should use the designer to edit them. This means that you can’t add your binding

Listing 4.4 MvvmCross uses an attribute to specify binding in Android layout files

Binding

FirstViewModel

Hello
Hello Xamarin in Action

Hello Xamarin in Action

1. The TextChanged event on the EditText is fired.
 The binding detects this, reads the Text property, and
 updates the Hello property on the FirstViewModel.

2. The PropertyChanged event on the FirstViewModel is
 fired. The binding detects this, reads the Hello property,
 and updates the Text property on the TextView.

Figure 4.6 Binding detects the event on the view and updates the view
model, and it detects events on the view model and updates the view.

89A deeper dive into our Hello Cross-Platform World app
using attributes the way you did in Android. Instead you can add the binding in the
code-behind—in the FirstView view controller, located in FirstView.cs.

Let’s now look at the important parts of this code.

public partial class FirstView : MvxViewController
{

public override void ViewDidLoad()
{

base.ViewDidLoad();

Listing 4.5 On iOS, binding is done in the view controller

Part of the code-behind for the FirstView;
this file is autogenerated.

The storyboard for the FirstView; this file is
editable in the visual designer.

The iOS app project

Views (the UI layouts and code-behind)
live here.

Part of the code-behind for the FirstView;
this file can be edited.

Figure 4.7 The views in iOS live in the Views folder with a view controller called FirstView
and a storyboard called FirstView.storyboard.

FirstView derives from MvxViewController,
an MvvmCross class that derives from
UIViewController.

ViewDidLoad is called when the
view has been loaded, so as soon
as the UI widgets in the
storyboard are loaded and the
view is displayed.

90 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
var set = this.CreateBindingSet<FirstView, FirstViewModel>();
set.Bind(Label).To(vm => vm.Hello);
set.Bind(TextField).To(vm => vm.Hello);
set.Apply();

}
}

This code shows the FirstView class derived from MvxViewController—a MvvmCross
view controller class that in turn derives from the base iOS UIViewController. View
controllers are responsible for the lifecycle of the view—when it’s shown, when it’s
hidden, and various states in between. In this case, we’re hooking into when the view
is loaded (and all widgets are created) by overriding the ViewDidLoad method. Once
the view is loaded, the code creates a binding set—a collection of bindings between
the controls and the binding source (the view model).

If you double-click to open FirstView.storyboard, it will open in a designer. In this
you’ll see a single view with two controls: a label and a text box. If you click on each,
you’ll see that they both have names, as shown in figure 4.8.

The Label is bound to
the Hello property on
the view model.

The TextField is also bound
to the Hello property on
the view model.

Once the binding set is
created, it can be
applied to set the
initial values and start
listening for changes.

A binding set is a group
of bindings for a view

and view model.

The UILabel has the Name “Label.” This creates
a Label property on the view controller.

The UITextField has the Name “TextField.” This
creates a TextField property on the view controller.

Figure 4.8 The iOS storyboard has two controls: one called Label and one called TextField.

91A deeper dive into our Hello Cross-Platform World app
You may have noticed that as well as FirstView.cs and FirstView.storyboard, there’s also
a file called FirstView.designer.cs. This is autogenerated every time you change the sto-
ryboard, and it contains mappings from items on the storyboard to properties of the
FirstView class. If you open it, you’ll see the two properties shown in the following
listing.

[Outlet]
[GeneratedCode("iOS Designer", "1.0")]
UIKit.UILabel Label { get; set; }

[Outlet]
[GeneratedCode("iOS Designer", "1.0")]
UIKit.UITextField TextField { get; set; }

These properties represent the label and text box on the storyboard. The attributes
on them tell the tooling that these properties are autogenerated from the storyboard
designer (so there’s no point in touching this code because your changes will be lost
the next time the storyboard changes) and that it’s an Outlet—the iOS term for a
property that represents something on a storyboard. These two properties are of type
UILabel, which is the iOS class for a static text label, and UITextField, which is the
iOS text entry box.

FirstView.designer.cs contains a class called FirstView, just like the FirstView.cs
file, but both class declarations are marked as partial. If you haven’t come across this
before, it’s a way of saying that multiple files have pieces of the same class, and that the
compiler should stick it all together in one class when it compiles. It’s great for code
like this—we can write one file and have another that’s autogenerated based on a UI
designer, and both files come together to define the class.

Looking back to the binding code, we’ll bind these two properties to properties on
the view model inside FirstView.cs, as follows.

var set = this.CreateBindingSet<FirstView, FirstViewModel>();
set.Bind(Label).To(vm => vm.Hello);
set.Bind(TextField).To(vm => vm.Hello);
set.Apply();

This code starts by creating a binding set, of type MvxFluentBindingDescription-

Set—another MvvmCross class. This binding set is typed based on the view and the
view model, and once created it can be used to bind controls to properties on the view
model.

Listing 4.6 UI widgets named on storyboards are defined as properties

Listing 4.7 Binding iOS widgets to the view model

The binding set is
applied, setting the
initial values and
starting the listening
for updates.

The TextField is
bound to the
Hello property.

The Label is
bound to the
Hello property.

The binding
set is created.

92 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
When you bind to UI widgets, there’s usually only one property or event you’re
interested in. Labels show static text, so the majority of the time you’re only interested
in binding this text. The same goes with text boxes—usually you’re only interested in
binding to the text. With buttons you normally only want to bind to the click event.
Because of this, MvvmCross has some shortcuts, allowing you to bind to a widget with-
out specifying the property you’re interested in, and it will automatically pick the most
appropriate one.

That is what you’re seeing here. Unlike in the Android example, these bindings
aren’t to a particular property on the label and text field. Instead they’re bound
directly to the widgets, and they automagically pick the right property to bind to. In
the Android example, this is less easy because the binding was expressed as an attri-
bute in the XML file, but because we’re forced to create the binding in code on iOS,
we can take advantage of this.

Also unlike Android, the definition of the property on the view model (.To(vm
vm.Hello)) doesn’t appear to be to a string representation of the property. Instead,
it’s some kind of lambda function that points to the property. There isn’t any real
magic here—it uses this expression to get the name of the property to bind to from
code. You can still set a string value of "Hello" instead if you wish, but by doing it this
way you get IntelliSense code completion to help choose the right property and com-
piler checking if you update a property’s name and forget to change it here. (If you
use the built-in refactorings to rename the property, it also gets updated here auto-
matically.)

Once this binding set is created, you Apply it to bind the initial values and listen
for updates. Apart from the different syntax, this works the same way as on Android—
events on the UI controls cause the view model to be updated, and property-changed
events from the view model cause the view to be updated.

THIS SYNTAX CAN ALSO BE USED IN ANDROID You can bind Android in code in
exactly the same way as iOS if you want to. The attributes in the layout XML
are just another way to do it.

Now that you’ve seen MVVM in action with a real-world example, and you understand
what’s happening in the app, let’s expand on our example by adding some more fea-
tures, providing you with some hands-on exposure to more bits of MVVM.

4.2 Expanding on our Hello World app
In the tradition of typical first apps, we’re going to change our Hello World app to ask
for the user’s name and then say hello to them. Seeing as this is a mobile app and we
have access to a lot more than a boring old console, we won’t be displaying some text
to say hello—we can make the app say hello by using the iOS and Android text-to-
speech engines.

These are the steps we’re going to take:

93Expanding on our Hello World app
 Add a cross-platform plugin from Xamarin to help connect to the text-to-
speech engines on each platform.

 Add a button to the UI.
 Add code in our cross-platform layer that’s wired up to the button to run the

text-to-speech engine.

4.2.1 Using .NET Standard plugins to access device-specific code

As you’ve already seen, we want as much code as possible in the shared layers. The
problem occurs when we want to do something that’s device-specific, such as getting
our app to speak using a text-to-speech engine. The concept is very generic—we want
to call a speak method and have it read the words over the device’s audio output. The
implementation, however, isn’t generic. Android has an API for text to speech, and so
does iOS, but the APIs are not at all the same. What we need is a way to call a generic
speak method, and have the implementation worry about the platform-specific imple-
mentations.

Luckily for us there is such a thing that uses a pattern called bait and switch. What
we can do is create three libraries, each targeting a different thing—one .NET Stan-
dard, one Android-specific, and one iOS-specific. These libraries will have the same
assembly names, namespaces, and classes in each. The only difference is the imple-
mentation. The .NET Standard implementation will do nothing, the iOS one will
implement the functionality using iOS APIs, and the Android one will implement it
using Android APIs. To use these libraries, we reference the .NET Standard version
from the .NET Standard project, the iOS version from the iOS project, and the
Android version from the Android project.

At compile time, the .NET Standard core project is built against the .NET Stan-
dard implementation of the library, the iOS app against the iOS implementation, and
the Android app against the Android implementation. Each library contains the same
namespaces and classes, just different implementations. Runtime is where the magic
happens. The compiler sees that the assemblies have the same names, and in the out-
put directory the one referenced by the app “wins.” So when you’re compiling the iOS
app, the final output directory will contain the version of the assembly that was refer-
enced by the iOS app itself—the iOS library with the iOS implementation. For
Android it’s the same. Remember, these libraries have the same assembly names, so
only one can be in the output directory. When the app is run and a call is made to the
library, it can only be resolved to the platform-specific one, as that’s the only version
available. This means both the app code and the core project will call the platform-
specific version.

Figure 4.9 shows this in action in our text-to-speech example. Calls to Speak are
compiled against the assembly that’s referenced, and at runtime the actual call is
made to the version that’s referenced by the app project.

94 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
This is a popular pattern used by a number of cross-platform NuGet packages. Xama-
rin itself provides a number of plugins—NuGet packages that provide access to device-
specific functionality using the same bait and switch pattern. The text-to-speech exam-
ple is taken from one of Xamarin’s plugins, and they have other plugins to access
other device services, such as the camera. The limitation with these is they have to rep-
resent the lowest common denominator so that the functionality works on all plat-
forms—there’s no point in adding camera functionality for live photos, for example,
because this is only available on iOS and wouldn’t work on Android.

Android

TextToSpeech

Speak(string);

.NET Standard

Libraries

Run RunCompile

Mobile app

TextToSpeech

Speak(string);

.NET Standard

Uses .NET Standard
library at compile time

iOS

AndroidiOS

TextToSpeech

Speak(string);

Hello! Hello!

5. At runtime on iOS only, the iOS library is
 installed—all calls to Speak use the iOS
 version regardless of where they came from
 (iOS app or .NET Standard library).

6. At runtime on Android only, the Android
 library is installed—all calls to Speak use
 the Android version regardless of where
 they came from (Android app or .NET
 Standard library).

1. Libraries are added. Each project references
 a different library that has the same assembly
 name, namespaces, and class names.

2. The iOS library implementation of Speak
 uses the iOS text-to-speech APIs.

3. The .NET Standard implementation
 of Speak does nothing.

4. The Android library implementation
 of Speak uses the Android
 text-to-speech APIs.

Figure 4.9 Using bait and switch with a text-to-speech plugin to compile against a .NET Standard
version and then use the platform-specific code at runtime

95Expanding on our Hello World app
4.2.2 Installing the Xamarin text-to-speech plugin

Installing this plugin is really easy—you do it using the NuGet package manager.
On Visual Studio for Windows, right-click the solution in the Solution Explorer

and select Manage NuGet Packages for Solution. This will open the NuGet package
manager in the workspace (figure 4.10). Select Browse, and in the search box enter
TextToSpeech. In the list of packages that appears, select the one labeled
“Xam.Plugins.TextToSpeech”. The current version at the time of writing is 3.0.1, so
select this version from the package settings on the right (later versions may work, but
to ensure the following code works, use version 3.0.1). Select all the projects in the
projects list and click the Install button on the right side. This will install the NuGet
package into all three projects—the core project, the iOS app, and the Android app.

In the Browse tab you
can find packages to
install, either by browsing
all packages (sorted by
popularity) or by searching.

The Installed tab
shows all packages
installed in the
solution.

The Updates tab
shows packages
with updates
available.

The Consolidate tab shows all packages
that are used in multiple projects but
have different version in those projects.

Type here to search
the repository.

By default, packages come from the
official repository at nuget.org. You can
change this to an in-house repository or
a fileshare to use other NuGet packages.

Tick the projects
where you want
to add the NuGet
package. Here we
want to add it to
all projects.

Choose a version: The default
is the latest stable version,
but select 3.0.1.

Click Install to
install the package
into the selected
projects.

Package details: They usually
include a Project URL, which
provides documentation on use.

Figure 4.10 Adding the TextToSpeech plugin to all projects from the NuGet package manager

96 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
For Visual Studio for Mac, the process is similar but a bit longer—you have to add the
NuGet package to each project separately. Right-click on the core project and select
Add > Add NuGet packages. From the dialog box that pops up (shown in figure 4.11),
search for “TextToSpeech”, check the box next to Text to Speech Plugin for Xamarin
and Windows, select version 3.0.1 from the drop-down menu on the bottom right, and
click Add Package. Repeat this process for the iOS and Android projects. Luckily the
NuGet package manager shows any packages already in use at the top, so after adding
it to one project, it will appear at the top of the list for the other projects.

THERE’S AN EXTENSION TO HELP There’s an extension for Visual Studio for
Mac called NuGet Package Manager Extensions that provides solution-level
package management. This extension allows you to install or update packages
for multiple projects at the same time.

By default, packages come
from the official repository
at nuget.org. You can change
this to an in-house repository
or a fileshare to use other
NuGet packages.

Package details: They usually
include a Project Page, which
provides documentation
on use.

Tick the packages
you want to install.
(You can install
multiple packages
at once.)

Type here to search
the repository.

By default, only stable
packages are listed. Tick here
to show prerelease versions.

Click Add Package
to add the package
to your project.

Visual Studio puts any
packages already used in
your solution at the top.

Choose a version: The
default is the latest stable
version, but select 3.0.1.

Figure 4.11 Adding the TextToSpeech plugin to a single project from the Visual Studio for Mac Add Packages
dialog box

97Expanding on our Hello World app
4.2.3 Adding the cross-platform code

To add the code to speak the hello message, make the code changes shown in the fol-
lowing listing to the FirstViewModel class in FirstViewModel.cs in the HelloCrossPlat-
formWorld.Core project. This is the same place you updated the hello message in
chapter 2. This listing shows the complete class, not just the changes.

...
using System.Windows.Input;
using Plugin.TextToSpeech.Abstractions;

namespace HelloCrossPlatformWorld.Core.ViewModels
{

public class FirstViewModel : MvxViewModel
{

readonly ITextToSpeech textToSpeech;

public FirstViewModel(ITextToSpeech textToSpeech)
{

this.textToSpeech = textToSpeech;
SayHelloCommand = new MvxCommand(SayHello);

}

public ICommand SayHelloCommand { get; private set; }

void SayHello()
{

textToSpeech.Speak($"Hello {Name}");
}

string name = "";
public string Name
{

get { return name; }
set { SetProperty(ref name, value); }

}
}

}

These are the changes to the view model:

 A constructor parameter has been added to take and store an instance of the
ITextToSpeech interface.

 The existing Hello property and its backing field have been renamed so you
can use them to store the user’s name.

Listing 4.8 Updated FirstViewModel with code for speaking

New using directives allow
you to use ICommand and the
ITextToSpeech interface from
the text-to-speech plugin.

The view-model constructor takes
an instance of the ITextToSpeech

interface as a constructor
parameter and stores it.

SayHelloCommand
is set up once in
the constructor,
and it’s connected
to the SayHello
method. When the
command is
executed, it runs
this method.

This is a public
read-only
property for the
SayHelloCommand
that the UI can
bind to.

The SayHello method makes a call to the text-
to-speech interface that was passed to the
constructor to speak the hello message.

The Hello property has been
renamed to Name, and the
backing field has been changed
from “hello” to “name”.

98 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
 A new method has been added, SayHello. This method makes a call to the
Speak method on the .NET Standard text-to-speech library (remember that at
runtime it will use the platform-specific implementation) using a string built up
from the Name. This method call will make your app say “Hello [Name]” out
loud, using the text-to-speech engine on the device.

 A new read-only property called SayHelloCommand has been added. In the con-
structor, this command is created as an MvxCommand, a class that implements
ICommand and comes from MvvmCross. This command class takes an Action as
a constructor parameter, and when the command is executed, the Action is
invoked. In this case the Action is a call to the SayHello method.

One of the most useful and interesting changes is the addition of a constructor
parameter that takes an instance of ITextToSpeech. Passing in an interface is a great
way of making your code better. First, you’re segregated from the implementation of
the text-to-speech platform. If you wanted to use a different implementation, you
could, as long as it implemented the same interface. Second, and most importantly,
you can unit-test this. Remember, testing is one of the key benefits of using a pattern
like MVVM, and having the view model interact with the ITextToSpeech interface
rather than a concrete implementation allows you to use a mock implementation in
your unit tests, which can validate that the correct calls are made. Without this, you
can’t unit-test, you can only manually test that the right thing was called by listening
for the spoken text.

The obvious question now is how you pass this implementation into the construc-
tor in your app. You’ve changed the constructor, but where do you change the call to
the constructor to add the new parameter? The answer is that you don’t, at least not
directly. Instead you use a little bit of magic called inversion of control that can create
your view model for you and pass the right thing to the constructor.

4.2.4 Inversion of control

Think about making coffee at home. You need coffee, hot water, milk, sugar, and
some form of machinery. You’re in control of the coffee-making process—you know
which cupboard you keep your coffee in, where in the fridge the milk lives, and how
to operate your coffee-making technique of choice (grinder, French press, espresso
maker, or whatever). You’re in control, but that means you have to know everything
(figure 4.12).

Now imagine you’ve decided it’s too much like hard work, so instead you pop out
to the local coffee shop to get your morning cup of wake-up juice. Suddenly you don’t
have to worry about beans, milk, kettles, French presses, or other coffee parapherna-
lia. Instead you just ask for coffee and receive a hot cup of a tasty caffeinated beverage.
You’re no longer in control—you’ve given this control up to the barista (figure 4.13).
In return for this lack of control, you now have an easy way to get coffee. You’ve
inverted that control from you to elsewhere—they could change beans or change
their coffee machine and you wouldn’t know or care. As long as you get your coffee,
you’re happy.

99Expanding on our Hello World app
In code, we can do the same thing, as shown in the following listing. Imagine a theo-
retical class that makes coffee at home, and a person class that uses it.

public class MakeCoffeeAtHome
{

public Coffee MakeCoffee()
{
}

}

public class Person
{

public void WakeUp()
{

var coffeeMaker = new MakeCoffeeAtHome();
Drink(coffeeMaker.MakeCoffee());

}

Listing 4.9 A class that makes coffee

Figure 4.12 To make coffee at home,
you need to control everything.

Coffee
please

Figure 4.13 At a coffee shop, you
give up control of coffee-making

The coffee-making class

A class that represents a
person who desperately needs
coffee (such as the author)

When the WakeUp method is
called, the Person constructs an
instance of MakeCoffeeAtHome
and uses it to make coffee

100 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
public void Drink(Coffee coffee)
{
}

}

In this listing there’s a class called MakeCoffeeAtHome that makes coffee, and a class
called Person that constructs the coffee maker and calls it to get coffee. This code is
very tightly coupled—the Person class is in complete control of the coffee-making.
The downside is that Person is in complete control, which means that if anything
changes, we’ll have to change the Person class. For example, another developer might
add a constructor to the MakeCoffeeAtHome class so that it takes a logger to track the
amount of coffee being drunk—if that happened, this code would break. Similarly, if
we wanted to change to buying coffee from the local coffee shop instead of making it
ourselves, we’d need to rewrite our Person class. Another consequence of the code
being tightly coupled is that we can’t unit-test the Person class in isolation; we can
only test it with the MakeCoffeeAtHome class.

It would be better if we could invert the control and make it the responsibility of
something else to construct the coffee maker and pass it to the Person. This is shown
in the following listing.

public class Person
{

MakeCoffeeAtHome coffeeMaker;
public Person(MakeCoffeeAtHome coffeeMaker)
{

coffeeMaker = coffeeMaker;
}

public void WakeUp()
{

Drink(coffeeMaker.MakeCoffee());
}

}

This is a bit better—we’ve given up control of constructing the MakeCoffeeAtHome

class, so that if the class needs to change its constructor, the Person class doesn’t
break. Let’s take this one step further in the next listing and use an interface, so that
Person becomes easier to unit-test.

public Interface IMakeCoffee
{

Coffee MakeCoffee();
}

Listing 4.10 Changing Person to take a coffee maker as a constructor argument

Listing 4.11 Passing an interface to the Person constructor argument

The coffee maker is no longer
constructed by the Person.
Instead it’s passed in to the
constructor.

The coffee maker passed
to the constructor is
used to make coffee.

An interface used to
define something that
can make coffee

101Expanding on our Hello World app
public class MakeCoffeeAtHome : IMakeCoffee
{

public Coffee MakeCoffee()
{
}

}

public class Person
{

IMakeCoffee coffeeMaker;
public Person(IMakeCoffee coffeeMaker)
{

coffeeMaker = coffeeMaker;
}

}

This is better—we have an IMakeCoffee interface that’s passed to the Person class. We
can now unit-test the Person class in isolation by mocking the interface. We can also
now change from making coffee at home to buying it from a coffee shop without
changing the Person class; we just need a different implementation of the IMakeCof-

fee interface, as in the following listing.

public class CoffeeShop : IMakeCoffee
{

public Coffee MakeCoffee()
{
}

}

So far so good. We’ve inverted control of the coffee maker to somewhere else, and this
is one of the key parts of the inversion of control (IoC) design pattern—giving up con-
trol of how your code is wired together. The question now is where has this control
gone to? Passing IMakeCoffee in as a constructor parameter is all well and good, but
what is going to do this? Where in the code do we call this constructor?

What we need is a magic box. Something we can ask to give us a Person and have it
create the Person automagically. All it would need to know is which coffee maker to
use. We could tell it once to use a CoffeeShop when an instance of IMakeCoffee is
needed, and then whenever we ask for a Person, we’d get one created using Cof-

feeShop as the constructor parameter. The Person doesn’t care what’s used to con-
struct it, only that it’s constructed with something that implements IMakeCoffee.
Once we’ve told the magic box to use a CoffeeShop, we can stop thinking about how
to construct the Person and just have one created for us.

The good news is that we can use an inversion of control container to do this hard
work for us. This is a container class that you can think of as the magic box. You tell it
what types you have (this is referred to as registering types), and when you ask for an
instance of a type, it will look at the constructor of that type, create anything it needs,
and pass them in when constructing the type you wanted. Essentially, it injects the

Listing 4.12 A different implementation of the IMakeCoffee interface

The MakeCoffeeAtHome
class implements this
interface.

The Person class no longer cares
about the actual type of the coffee
maker. It just needs something that
implements the IMakeCoffee to be
passed in to the constructor, and it
can use this to make coffee.

CoffeeShop also implements the
IMakeCoffee interface, so Person
could be constructed using this,
and when it makes coffee, the
coffee shop would be making it.

102 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
dependency at construction time, so this concept is referred to as dependency injec-
tion—using a tool such as an IoC container to push dependencies into a class either by
using constructor parameters (constructor injection) or by setting properties after
construction. Figure 4.14 shows this.

Let’s think about this in terms of our Hello World app. If you compile the code with
the changes we made to the FirstViewModel, you’ll notice that it compiles with no
problems. We’ve added a new constructor parameter but this doesn’t break the code.

This is because MvvmCross uses an IoC container for everything it does. You never
explicitly create a view or a view model yourself; instead, you rely on the built-in
MvvmCross IoC container to do it for you. The built-in MvvmCross startup code will
find all your view models and register them inside the IoC container, so you don’t
have to do anything with them. Remember the App.cs file with its call to Register-

NavigationServiceAppStart<ViewModels.FirstViewModel>()? This tells the Mvvm-
Cross framework that when the app starts up it needs to do the following:

1 Create this view model by requesting it from the container.
2 Create the corresponding view by finding a class with the same name as the view

model (but with a View suffix).
3 Set the view model on the view to be the view model from the container.
4 Show the view.

CoffeeShop IMakeCoffee

User

Ask for an instance of Person.

An instance of Person comes
out, constructed using an
instance of CoffeeShop.

IoC container—the magic box!

Person
Personpublic Person

(IMakeCoffee mc)

CoffeeShop is registered as
implementing IMakeCoffee.

Person’s constructor needs an IMakeCoffee.
CoffeeShop implements this interface, so an
instance of CoffeeShop is passed in.

Figure 4.14 The magic box that is an IoC container—you tell it what types you have, and
when you ask for an instance of a type, any dependencies are resolved and then injected into
the constructor of the type you’ve requested.

103Expanding on our Hello World app
Our code compiles fine, but will it run? Nope. If you try it, the app will throw an Mvx-

IoCResolveException, as shown in figure 4.15.
The MvxIoCResolveException type tells us that the MvvmCross framework was

unable to resolve a type from the IoC container. The exception message tells us that
the exception occurred when constructing the FirstViewModel class as it couldn’t
find an implementation of ITextToSpeech in the container to use as the constructor
parameter. These exception messages are pretty easy to debug—they clearly state
which parameter type is missing and which class was being constructed when it failed
to find the type.

This is easy enough to fix—we need to register an instance of this interface with
the IoC container before the view model is created. The text-to-speech plugin has a
static class CrossTextToSpeech with a Current property that returns an implementa-
tion of the ITextToSpeech interface. We can register this in the container so that
every time this interface is requested, this static instance is returned.

The place to do this is inside the cross-platform application class, which lives in the
root folder of the HelloCrossPlatform.Core project in a class called App inside a file
called App.cs. This App class derives from MvxApplication, an MvvmCross base applica-
tion class that handles cross-platform application setup. The following listing shows the
code change you need to make to the App class, so go ahead and update your code.

using MvvmCross.Platform;
using MvvmCross.Platform.IoC;
using Plugin.TextToSpeech;

namespace HelloCrossPlatformWorld.Core
{

public class App : MvxApplication
{

public override void Initialize()
{

Mvx.RegisterSingleton(CrossTextToSpeech.Current);
...

}
}

}

Listing 4.13 Adding registration of the text-to-speech plugin to the App class

Figure 4.15 The exception thrown when MvvmCross can’t resolve a type from its
IoC container

A new using directive to give
access to the static Mvx IoC
container

Another new using
directive, giving access to
the text-to-speech plugin

The CrossTextToSpeech.Current
static instance of ITextToSpeech

is registered in the Mvx
container as a singleton.

104 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
This change calls RegisterSingleton on the Mvx container, passing the static instance
of the ITextToSpeech interface. RegisterSingleton tells the container that we only
ever want one instance of this interface—every time it’s requested, it will always return
the same instance. Every time our view model is created, we get a new view model, but
the same instance of the text-to-speech plugin gets passed to the constructor.

Now when our app starts up and the FirstViewModel is created, the container will
find the ITextToSpeech instance and pass it into the constructor. We’ve inverted con-
trol of how our view model interacts with the text-to-speech plugin by taking it away
from the view model and putting it inside our framework.

FINDING OUT HOW TO USE A PLUGIN OR NUGET PACKAGE When you’re using a
NuGet package for the first time, the hardest thing can be finding out how it
works and how to use it. Most good NuGet packages are documented either
on their own website or via a ReadMe inside the GitHub repo for the source.
There’s usually a link to this documentation shown in the NuGet package
manager. For the text-to-speech plugin, the docs are on GitHub at
https://github.com/jamesmontemagno/TextToSpeechPlugin.

This is a very powerful pattern. MvvmCross registers any view model derived from
MvxViewModel as part of its default startup, and we registered the ITextToSpeech

interface in the container manually. As a result, any time the view model is needed, it’s
created with the right constructor parameter. By registering everything we need via an
interface inside an IoC container, we end up with loosely coupled code. This isn’t just
limited to view models—ideally this should be used in your model layer as well. This
allows you to easily write unit tests against any class you want, mocking all the inter-
faces as you need them.

IoC all the things!
One other awesome thing to be aware of is that you don’t have to register inside your
core project—you can just as easily register inside your platform-specific code. This
way you can provide access to platform-specific code via an interface.

A popular example of this would be a dialog service—something you can call to show
a message popup to the user. You could define an interface for this inside your core
project and create two platform-specific implementations, one in iOS and one in
Android. Each implementation would use the relevant platform-specific code to show
a message popup.

Once you have the core interface and two platform-specific implementations, you can
register them inside the platform-specific part of the application layer. In addition to
the cross-platform MvxApplication class, MvvmCross also has some platform-spe-
cific setup code derived from MvxAndroidSetup on Android and MvxIosSetup on
iOS. You can find these inside the two Setup.cs files, one in the root of the Android
app, the other in the root of the iOS app, and in there you can register classes in the
Mvx container. At runtime your core project references the interface, and this is
resolved to the platform-specific version.

105Expanding on our Hello World app
Now that our core code is set up, let’s add a button to the UI, connect that to our com-
mand, and make the app really say, “Hello!”

4.2.5 Wiring up the Android UI

There are two steps in wiring up the Android UI—first, add a button to the UI, and
then wire it up to match the changes we’ve made. We’ll start with the UI.

Start by opening up the FirstView.axml resource from the layout resource folder
(figure 4.16). To wire up the new changes, you need to change the binding in the
EditText and TextView to use the renamed Name property, and add a button to speak
“Hello.” The following listing shows the changes to the two elements inside Linear-

Layout and the new element you need for the button.

<LinearLayout
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">
<EditText

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textSize="40dp"
local:MvxBind="Text Name" />

<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textSize="40dp"
local:MvxBind="Text Name" />

<Button
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textSize="40dp"
android:text="Say Hello"
local:MvxBind="Click SayHelloCommand"/>

</LinearLayout>

Changing from Hello to Name updates the binding to look for a property on the view
model called Name instead of one called Hello. This matches the name change we’ve
just made.

The button binds something called Click to something called SayHelloCommand.
MvvmCross is smart enough to know that Click is an event, so it expects this to be
bound to an ICommand. At runtime when the button is tapped, the Click event is fired
and Execute is called on the command.

Listing 4.14 The changes inside LinearLayout from line 20 onwards

Figure 4.16 The structure of the layout
folder inside the resources folder of the
Android app project, showing the location of
the FirstView.axml layout file

The binding for the EditText
is changed to the new Name
property.

The binding for the TextView
is changed to the new Name
property.

This button is new and is
bound to the new
SayHelloCommand that you
just added to your view model.

106 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
THERE’S A DESIGNER YOU CAN USE IF YOU DON’T LIKE XML The designer tab is
just that—a visual designer for laying out your UI. You can use it to add the
button: just drag it on from the toolbar, and you should be able to position it
in the LinearLayout below the other controls. You can then set the text and
textSize in the Properties window and only dive into the XML to add the
MvxBind attribute.

If you build and run this (but don’t build all as you’ll
get a compiler error for the iOS project that we’ll fix
later), you’ll see the new UI with the new button
(shown in figure 4.17). Enter your name, tap the Say
Hello button, and assuming you have the volume
turned up, you’ll hear the app saying hello to you!
Exciting stuff, getting an app to talk using shared
code (unless you’re in a crowded coffee shop and
everyone is now staring at you). To prove it’s shared,
lets get iOS talking to us as well.

4.2.6 Wiring up the iOS UI

Setting up the Android UI is pretty easy—just add another node to the XML. I’d love
to be able to say iOS was just as easy, but that would be a lie. iOS is a downright pain
when it comes to the UI. It used to be easy when there were only one or two screen
resolutions, but now that there are multiple iPhone and iPad screen sizes, it’s hard.

When there was only one screen size, everything was based on a concept called
frames—you’d set the exact pixel location and size of every control (essentially defin-
ing where the frame of the control would be). The first retina iPhones were also
easy—you used the same “pixels,” and the OS just doubled everything. Now that there
are a few more resolutions and screen sizes, everything uses something called autolay-
out, where you specify a set of rules called constraints for each control, and the layout is
calculated based on these rules and the size of the screen.

For example, you could set a constraint saying “make my button use half the screen
width and be fixed to the left side halfway up.” On every screen size, the button would
be in the same place relative to the screen—on the left side halfway up, regardless of
the height of the screen. This does make for nice lay-
outs, but setting these rules can be painful. I’ll cover this
in more detail in chapter 11, so for now just follow these
“simple” instructions to get a new button on the screen.

Open the FirstView.storyboard file from the iOS
project’s Views folder (figure 4.18). We’ll talk about sto-
ryboards in more detail in chapter 11, but for now think
of it as a visual designer for your view. This will show the
view as a large white box displaying the text entry con-
trol and label.

Figure 4.17 The new Android app
with its Say Hello button

Figure 4.18 The structure of
the Views folder in the iOS app
project, showing the location of
the FirstView storyboard

107Expanding on our Hello World app
When the designer opens up, go to the toolbox. On Visual Studio for Mac, this
should appear as a tabbed pad on the right side. If it’s not there, you can open it using
View > Pads > Toolbox. On Visual Studio for Windows, it should be docked on the left.
If it’s not there, you can show it using View > Toolbox.

Type button into the search bar on the toolbox, and drag a button to below the text
entry control, as in figure 4.19.

Once the button is there, click the Constraint editing mode button to enter a mode where
you can set the constraints. This will change the highlighting so you have a set of I-bar han-
dles around the button instead of the circle handles.This is shown in figure 4.20.

Figure 4.19 Dragging a button to the storyboard

Click here to enter constraint editing mode

These T-bar handles
are used to set spacing

for the four edges.

These I-bar handles
are used to set

width and height.This square handle is used to set the
horizontal or vertical center.

Button

Button

Figure 4.20 The constraint handles for constraining the size, distance to other controls, and
center alignment

108 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
Once these handles are visible, you can drag them to create the constraints. As you
drag them, you’ll see various widgets in the view either light up or be highlighted with
dashed lines. These are guides that show what you can constrain the properties of the
button to. Essentially, these constraints allow you to fix the position of the button, its
size, or its center point relative to other widgets, or relative to the screen. The high-
lights on screen show you what you can set that particular constraint to.

To get your button looking nice and sitting below the text field for all screen sizes,
you’ll have to constrain three things—the top of the button, its width, and its horizon-
tal center:

1 Drag the top T-bar handle (the one that looks like a very short T on the top in
the middle) over the text entry box. The top, middle, and bottom of the text
entry box and label will turn to dashed green lines, with the one that the mouse
is over highlighted in blue. Drop the T-bar on the bottommost dashed line of
the text entry box. This sets a top constraint of a certain distance from the bot-
tom of the text entry box. Don’t worry about the value of this distance for now.

2 Drag the bottommost I-bar handle (the one that looks like an I on its side or a
squashed H, not the one that looks like an upside-down T) onto the text entry
box above. When you do this, the screen will turn blue and the other controls
will be green. When you drag it over the text entry box, that will turn blue and
the rest of the screen will be green—this is the time to release the mouse button
or trackpad. This sets a width constraint to match the width of the text entry box.

3 Drag the square handle in the middle of the button to the middle of the screen
width-ways, just below the button. The screen will change so the outline of the
other controls are dashed green lines, with two other dashed green lines down
the horizontal middle and across the vertical middle of the view. Drop it on the
green line down the horizontal middle. This will constrain the middle of the
button to the middle of the screen.

Figure 4.21 shows these steps.
When you’re done, the button will have an orange highlight to it, as shown in fig-

ure 4.22. This is the designer’s way of telling you the button will be in a different place
at runtime. You can fix this by telling the designer to position the control based on the
constraints. To do this, exit constraint editing mode by clicking the Frame Editing
Mode button (the first button in the constraints section), then update the frames
using the Update Constraints From Frames button (the last button in the constraints
section). The button you’ve added should resize to be the same width as the text entry
box, sitting slightly below it.

The constraints themselves will be shown in the Layout tab of the Properties pad,
which can be shown in Visual Studio for Mac using View > Pads > Properties if it’s not
already displayed on the right side. On Windows it’s in the Properties window, which
should be docked on the right side, but if not you can display it using View > Proper-
ties Window. These tabs show the layout rules applied. The top spacing to the text

109Expanding on our Hello World app
Carrier 23%

1. Drag from the top T-bar to the
 bottom dashed line in the text field.

 The dashed line will turn from green
 to blue when the cursor is over it.

 This sets the top constraint. It anchors
 the top of the button to the bottom
 of the text field with fixed spacing
 between them.

2. Drag the bottom I-bar to the middle
 of the text field.

 The screen will go green as you drag,
 the text field will turn blue when the
 and cursor is over it. (Colors are
 removed here for clarity.)

 This sets the width constraint. It tells
 the button to always be the same width
 as the text field.

3. Drag the center square handle over
 the vertical dashed line in the center
 of the view.

 This sets the horizontal position
 constraint, telling the button to
 always have its center in the center
 of the screen.

Figure 4.21 The three steps to set up the constraints—set the top constraint, the width constraint,
and the horizontal center constraint.

Click the Update Frames Based on Constraints button to update
the designer and show what it will look like at runtime.

Before updating frames After updating frames

Figure 4.22 Lay out the constraints and click the Update Frames to Match Constraints button to see
what the view will look like at runtime.

110 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
field is set to a constant value, the width of the button is set to the width of the text
field, and the horizontal center of the button is set to the center of the superview—
that’s the view that contains it (in this case, the whole screen).

If you followed the previous instructions, you should have constraints like those
shown in figure 4.23. The value in the Top Space To constraint may be different from
the 14 shown in the figure because this value depends on where you dropped the but-
ton, but the rest should be the same. If yours doesn’t match, the easiest fix is to delete
the button and try again.

Once the layout is defined, you can set the text and the name of the button in the
Widget tab of the Properties pad. Set the Name property in the Identify section to “Say-
HelloButton” and the Title property in the Button section to “Say Hello”. Setting the
title updates what’s shown in the button; setting the name will create a property in the
code-behind for that button. You can see these values set in figure 4.24.

Let’s now bind this new button in the view to the command on the FirstView-

Model in our core project. If you open FirstView.cs and look in the ViewDidLoad

method, you’ll see the code that binds the original Hello property to UI widgets.
Make the changes in the following listing to bind the existing controls to the new Name

property, and to wire up the button to the SayHelloCommand.

Use the Layout tab to see the contraints.

The X center (horizontal center) is constrained
to the center of the Superview—the view
that contains this control.

The top of the button is constrained to 14 points
(in this case) from the bottom of the text field.

The width of the button is constrained to the
width of the text field.

Figure 4.23 The constraints showing in the Properties pad

111Expanding on our Hello World app
public override void ViewDidLoad()
{

base.ViewDidLoad();

var set = this.CreateBindingSet<FirstView, FirstViewModel>();
set.Bind(Label).To(vm => vm.Name);
set.Bind(TextField).To(vm => vm.Name);
set.Bind(SayHelloButton).To(vm => vm.SayHelloCommand);
set.Apply();

}

As with the UITextField and UILabel, MvvmCross has some smarts around UIButton—
the underlying type of a button on iOS. The standard event you’ll wire up to on a
UIButton is TouchUpInside, so by default this event is bound to the command. You can
override this if you want, by explicitly specifying it, but in this case you want the default,
so you don’t need to give an event name.

And that’s it—there’s no logic as such because everything is in the core project.
There’s just new UI bits and some binding. If you run this now, enter your name, and
tap the Say Hello button, you’ll hear your app say hello to you!

Listing 4.15 Updated ViewDidLoad method, binding the new properties and button

Set the text to display
in the button here.

If you enter a name here, a
new property will be created
in the FirstView.designer.cs
file with that name and with
the type UIButton.

Use the Widget tab to see
the widget’s properties.

Figure 4.24 Setting the widget properties for the button

The Label is bound to
your new Name property.

The TextField is
bound to your
new Name
property.The new UIButton named

SayHelloButton is bound to
your new SayHelloCommand.

112 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
One thing to notice with the text-to-speech is that when you make the call to speak,
it returns immediately and the UI isn’t locked up while the app is talking. You can test
this out by editing the text while the app is talking. Unfortunately, this isn’t always the
case—it’s very easy to call a method in your command that takes a long time to run
(such as hitting a web service), and if you aren’t careful, your UI will be unresponsive
during this call. Even worse, your app could be terminated by the OS if it’s unrespon-
sive for too long. I’ll discuss this in more detail and look at how you can handle multi-
ple threads in your apps in the next chapter.

Summary
In this chapter you learned that

 MvvmCross apps are built using the different layers of MVVM, and MvvmCross
has code for each layer, such as the base view-model and command types, bind-
ing, and support for view-model–first navigation.

 Plugins can provide extra device-specific functionality to your apps that’s acces-
sible from your cross-platform code.

 Inversion of control is a great pattern that allows you to define loose coupling
between classes, making it easier to change them without breaking existing
code, and making the classes easier to unit test.

 Having a mobile app talk to you with only a few lines of cross-platform code is
really cool!

You also learned how to

 Find and add plugins easily using the NuGet package manager.
 Add new controls to an Android UI by making simple changes to an XML file

(although you can use the designer).
 Add new controls on iOS and position them using constraints through the

designer, giving a really nice UI layout at the cost of complexity.
 Easily wire up controls to your view model using binding, allowing the same

code to be called from UI widgets on both iOS and Android.

5What are we (a)waiting for? An
introduction to multithreading

for Xamarin apps
When building apps, you always want to give your users the best experience possible.
The world of mobile apps is highly competitive, with app users willing to drop your
app for a competitor if you offer them a bad experience. There are many ways to
provide this bad experience, but one of the worst is having an app with a slow, lag-
ging UI, or one that locks up and becomes unresponsive. Fortunately, fixing apps
that lag or lock up is relatively easy, and in this chapter we’ll look at ways to do this.

This chapter takes a dive into multithreaded code for mobile apps, covering the
UI thread, Task, and async/await. If you’re an experienced C# UI developer

This chapter covers
 What is a thread, and what is multithreading?

 What the UI thread is, and why it’s special

 Using tasks to run code on background threads

 Using async and await to make your code cleaner
113

114 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
(maybe from years of building desktop WPF apps), you’ve used tasks before, and if all
your code uses async and await, you can feel free to skip this chapter. If your experi-
ence of multithreaded code is not UI-based, or not in C#, then read on! There are
some quirks to be aware of when writing UIs that use multiple threads, and there are
some awesome tools in the C# toolbox that can help.

5.1 Why do we need multithreaded code?
Think about an email app (something you probably use on a regular basis). This app
shows your current emails, and as you’re using it, it will go off to your email provider
and download any new emails. All this happens seamlessly—the UI of the app is
responsive at all times, allowing you to read and delete messages at the same time as
the app is fetching or sending new emails.

This is a nice app experience, and something most app users take for granted.
Apps will download data without interrupting what you’re doing as a user, maybe giv-
ing some feedback to show you that it’s doing something in the background, or show-
ing some dummy data while the app starts up. Figure 5.1 shows some examples of this.

USERS CAN NOTICE ANYTHING LONGER THAN ABOUT 100–200 MS Studies have
been done into what users perceive as a noticeable lag, and they’ve found that
anything over around 100–200 ms is noticeable as a brief delay. Microsoft now
recommends that anything taking longer than 200 ms be done in the back-
ground, and they’ve followed this philosophy in the .NET framework, making
anything longer than that async. Google and Apple recommend anything lon-
ger than 100 ms be run in the background. You can read more on this in

NewsNews
Search
People Travel

Loading…

Lauren Ipsum
Auckland

Loving the beach today!

Posted 4 hours ago

Lauren Ipsum
Auckland

Aarti Effem
Wellington

Out for lunch

Posted 5 hours ago

Progress dialog at the top
of the list being reloaded

NewsNews
Search
People Travel

Dummy loading data

NewsNews
Search
People Travel

Loading…

Progress dialog over
the whole screen

Figure 5.1 Apps performing operations in the background, such as loading data, usually
have some kind of indicator showing that something’s happening.

115Why do we need multithreaded code?
Jakob Nielsen’s “Response Times: The 3 Important Limits” article on the
Nielsen Norman Group website: www.nngroup.com/articles/response-times-
3-important-limits/.

You may have also seen apps that don’t provide such a nice experience and lock up
the UI for a short while. If they lock it up for too long, you may have killed the app
yourself, or in the case of Android seen a nice dialog that offers to kill it on your
behalf. This is something that we, as app developers, want to avoid.

The basic principle is simple—keep the screen and widgets working while you’re
loading data in the background. But what does this mean? What is “the background,”
and how can we as app developers load data in this way?

Let’s start by taking a quick look at the problem before we look at the solution. For
the purposes of illustration, we’ll look at our Hello Cross-Platform World app from
chapter 4. In this app we bound a command in the view model to a button, to say
hello to the user. But let’s pretend that before the app can say hello to the user, it
needs to make a call to a web service to do something.

Making a call to a web service from a mobile app can be slow, especially over a poor
cellular connection (remember, millions of smartphone users are based in the devel-
oping world, where network speeds are much slower than the 4G that some countries
have). We’ll change our code to call a method that does nothing for a few seconds, to
simulate this long call to a web service.

Make the following change in FirstViewModel, inside the FirstViewModel.cs file in
the HelloCrossPlatformWorld.Core project.

using System.Threading.Tasks;

public class FirstViewModel : MvxViewModel
{
...
void SayHello()
{

MakeLongWebServiceCall()
textToSpeech.Speak($"Hello {Name}");

}

void MakeLongWebServiceCall()
{

Task.Delay(TimeSpan.FromSeconds(5)).Wait();
}

}

Make this change and run the app (either on iOS or Android). If you tap the Say
Hello button, you’ll see the whole app lock up for five seconds before it says hello to
you. If you type in the text box, nothing will happen for those five seconds; the text
will only appear after the five seconds are up. If this was an email client, and it locked

Listing 5.1 Adding a long-running method to simulate a slow web service call

A new using directive allows
the code to use Task in the
new method.

In the SayHello method, the code calls a
new MakeLongWebServiceCall method to
simulate a long-running web service call.

The new method simulating
the long web service call

Waits for 5 seconds (don’t
worry too much about how
this works, we’ll look at it
later in this chapter).

www.nngroup.com/articles/response-times-3-important-limits/
www.nngroup.com/articles/response-times-3-important-limits/

116 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
up for that much time while downloading an email, it would be a very bad experience.
If that happened while a user was trying to delete the current email, and nothing hap-
pened when they tapped the Delete button, they might tap it again, and again, and
again. Once the app became responsive again, these multiple taps might turn into
multiple deletes, deleting too many emails. Not a good experience.

Let’s take this a bit further and imagine that our app needed to make many calls to
this web service, taking even longer. Change the timeout to 60 seconds using the code
in the following listing and run this on Android (not iOS this time).

void MakeLongWebServiceCall()
{

Task.Delay(TimeSpan.FromSeconds(60)).Wait();
}

Not only will your app be unresponsive for a really long time, but the OS will step in
and tell the user that the app isn’t responding, asking them if they want to wait or
close the app (figure 5.2).

Most users will tap OK at this point to close the app. If this happens too often, few
users will come back to your app. Instead they’ll download and use a competitor’s app.
Only Android gives this option—on iOS the app just locks up.

In the email app example, emails are downloaded in the background while the
app is still usable. Ideally we’d want to do the same thing in our app—our long-run-
ning web service call should happen in the background so that the app remains
responsive.

Listing 5.2 Increasing the timeout to 60 seconds

The timespan is now
increased from 5 seconds
to 60 seconds.

Figure 5.2 On Android, if an app
blocks for a long time, the user is told
and given a choice of waiting for it to
be responsive again, or closing it.

117What are threads?
But what do we mean when we say we want things happening in the background?
How can we use this “background” to run code? The answer lies in the world of
threads and multithreaded code.

5.2 What are threads?
As regular app users, we’ve all seen things happening in the background—tweets
downloading while we’re reading other tweets, and emails appearing while we’re writ-
ing new emails. You’ve probably heard of threads and multithreaded code, but what
do these terms mean? Before we look into how we can get our apps to remain respon-
sive while making long web service calls, let’s look at what a thread actually is.

5.2.1 Buying coffee

Imagine you head out to buy coffee for your team at work, and you go to a really slow,
inefficient coffee shop that only has one person working in it. You queue up, and
when it’s your turn you give your order to the barista, one coffee at a time. You order
one coffee, the barista makes it, you order the next, the barista makes it, you order the
next, and so on, and so on. Once you have your coffees you pay for them. You end up
standing there for a long time getting bored, and either you finally get your coffees or
you leave. Either way you’re not happy because you were gone from the office for such
a long time (and maybe even less happy because you got bored waiting and didn’t end
up with any coffee in return for your efforts). It’s not just you—the people behind you
in the queue might also get bored and leave before they’ve even ordered (figure 5.3).

Let’s look at a timeline of how this might happen, as shown in figure 5.4. As you can
see, there’s a lot of waiting around for each coffee to be made before you can finally
pay and take your coffees. You order, wait, order, wait, order, wait…

How could the coffee shop improve? The first thing they could do would be to take
your order up front, then make your coffees, and then call you once they’re done. You
place your order, leave your name, and have time to yourself to read the news or surf

Lots of
coffee
please

Figure 5.3 When you’re waiting for a large coffee order in a badly run coffee shop, you might just
give up before you get your coffee.

118 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
the internet. Then, when your coffees are ready, the barista would call out your name
and you’d pick up your coffees. Figure 5.5 shows the timeline of this approach.

This is slightly better—it still takes the same amount of time to get your coffees,
but at least you’re not as bored as before, and you’re less likely to give up and leave
before you get your coffee. This is no better for the rest of the queue, though. Those
poor, thirsty people will have to wait just as long for a tasty caffeinated beverage.

What else could the coffee shop do? How about adding more people? If they
employed another barista, the coffee could be made a bit quicker. One barista could
take the order, and the other could make the coffee. Figure 5.6 shows the timeline for
this better scenario.

This doesn’t make it better for us, but makes it a bit better for the other custom-
ers—they can now order while our coffee is being made, and they can also go off and
do other things while they wait. It’s better because customers aren’t waiting in line
bored for so long, but it still takes the same amount of time to make everyone’s coffee.

Let’s have one more go at making it better by adding additional baristas, as shown
in figure 5.7. This is even better—not only can all the customers place their orders
and then do whatever they like, instead of standing in a queue, but multiple coffees
can be made at the same time, meaning each customer gets their coffee quicker.

Ask for
latte Wait

Make latte

Get
latte

Ask for
flat white Wait

Time

Make flat white

Get
flat white Pay

Take
money

Order more
 coffee...

Make more
coffee...

Figure 5.4 Ordering one coffee at a time and having it made, then ordering another takes a long time.

Order
everything

Make latte

Free time doing other stuff

Time

Make flat white

Pay

Take
money

Take
order

Make
more coffee...

Call
name

Collect
coffee

Figure 5.5 If you can place your coffee order up front, you’re free to do other stuff while it’s being made.

119What are threads?
Order
everything

Make latte

Free time doing other stuff

Free time doing other stuff

Time

Make flat white

Pay

Take
money

Take
order

Make
more coffee...

Call
name

Take
order

Order
everything

Collect
coffee

Figure 5.6 Having two baristas means that one can take orders while the other makes coffee.

Order
everything

Make latte

Free time doing other stuff

Free time doing other stuff

Free time doing other stuff

Time

Pay

Take
money

Take
order

Make
more coffee...

Make
more coffee...

Make
more coffee...

Call
name

Take
order

Order
everything

Make flat white

Make espresso

Collect
coffee

Pay

Take
money

Call
name

Collect
coffee

Figure 5.7 Having multiple baristas to make coffee means the orders can be made more quickly.

120 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
This is a great model for a coffee shop—and coincidentally a great model for software
as well.

5.2.2 So what is a thread?

You can think of the staff members in the coffee shop as different threads—each one
is working on a separate thing at the same time. They have a series of tasks to do, and
they do them in order (a thread, like a barista, can only do one thing at a time). When
they have nothing to do, they just stand there doing nothing, waiting for something
else to do.

In computing terms, a thread is a thread of execution—a way for an app to split
the code it’s executing into one or more simultaneously running tasks. When an app
runs, it runs using at least one but usually more threads. Every application, be it a
mobile app, desktop app, console app, or website, runs in at least one thread. Just as a
coffee shop with no staff wouldn’t be able to make any coffee, there’s no way for your
code to run without a thread.

An email app will have one thread for the user interface, which will run the UI
code allowing the user to interact with a list of emails, tap one to read it, write a reply,
or perform other tasks the user wants to do, as shown in figure 5.8. It will also have
one or more background threads for talking to the email provider—downloading
emails or sending ones you’ve just written. These background threads will only inter-
rupt the thread that runs the UI when they need to, such as when a new email has

Scroll
emails

Time

Update
display

Open
email

Show
email

Close
email

Poll for new emails

UI
thread

Background
thread

Show
email list

Update
email list

1. All user interactions are handled quickly by the UI thread,
 as it’s not running any long-running actions.

2. The background thread is responsible
 for long-running actions like loading
 emails from the email provider.

3. When an email is downloaded, the background
 thread interrupts the UI thread just long enough
 for the UI to be updated to show the new emails.

Figure 5.8 In an email app there will be a UI thread that keeps the UI responsive and a background
thread to download emails.

121What are threads?
been downloaded and the list of emails needs to be updated. Think of an email app as
the server in our coffee shop example, but serving up emails instead of coffee. The
baristas are running around in the background fetching emails instead of drinks,
sending them, doing whatever tasks are needed, and only interrupting the server
when they need to (such as letting the server know when an email has been down-
loaded, instead of when a coffee is ready).

This division of work into multiple threads isn’t something that happens automati-
cally. You need to explicitly tell your app to use multiple threads, in the same way that
a coffee shop has to employ multiple baristas to make coffee. Multithreaded is the term
that describes code that uses multiple threads to handle its workload. Our ideal coffee
shop is multithreaded—it has multiple baristas (threads) creating coffee at the same
time (executing code at the same time).

5.2.3 A quick roundup

Let’s take a quick moment to review all this, as it’s important stuff:

 All code runs in a thread, and a thread runs code in sequence.
 An app can have multiple threads, each running different code at the same

time.

This sounds simple, but the devil’s in the details. Threading is actually a massive topic
(with scary terms like mutexes, semaphores, and critical sections), worthy of a book in its
own right. Luckily for us C# programmers, we don’t need to worry too much about
these details. But there are a few basic concepts you’ll need to know about, and a few
language constructs to learn about that encapsulate all the hard stuff, allowing us
developers to get on and write code.

What you really need to know about are the two different types of threads (UI and
background threads), tasks, and async/await. Let’s start with the two types of threads.

Multiple threads don’t always mean multiple things are happening at once
If you have two threads executing code, this code may or may not be running at the
same time.

Your mobile device probably has a multicore processor, which means it has a chip
that you can think of as being more than one chip glued together. It can have two bits
of code running at the same time by having multiple cores running different code—
one core runs one thread and one runs the other.

In addition, though, it can run multiple threads on the same processor by giving one
thread a bit of processing time, and then pausing it and giving the other thread some
processor time. It’s smart, so if one thread has to wait on something, like reading
from the network, it can use that waiting time to run the other thread.

If you’re feeling geeky and want to learn more, Google “preemptive multitasking”.

122 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
5.3 UI thread and background threads
In our coffee shop, we have two different types of employees—a server who interacts
with the customer, and baristas who take instructions from the server and make cof-
fee. In our email app example there are two types of threads—one that runs the user
interface (UI), and one or more that perform operations in the background, such as
fetching emails. All mobile apps are the same as the email app, having these two types
of threads. These thread types, like the two types of coffee shop employees, are actu-
ally very distinct and have very different characteristics.

5.3.1 The UI thread

The UI thread is something you hear a lot about when you’re building applications
with a user interface. It’s the main thread inside your app (you’ll often hear the UI
thread referred to as the main thread)—the server at the counter who takes your coffee
order. When buying coffee, you only interact with one person who takes your order
and calls you when your coffee is ready, and it’s the same with the UI thread. When
your user interacts with the user interface of your app, they’re interacting with the UI
thread. If that one server is busy doing something else, you can’t interact with them to
order coffee until they’re free. The same goes for the UI thread—if it’s busy, you can’t
do anything else on that thread until it’s free.

The UI thread has a simple but important job—running the user interface. It’s
responsible for everything the UI does. If you type a letter into a text box, the UI
thread detects the keypress, runs the code to draw the new character on the screen,
and raises the text-changed event. If you update a control, the UI thread is responsi-
ble for updating the screen, including calculating how controls should be laid out and
what should be shown. The UI thread runs animations, transitions between views, and
shows popups. Every interaction with the user via the screen and every change to the
screen is handled by this one thread.

You never need to create the UI thread—it’s created for you by the OS when your
app starts up, and it stays around till your app is closed.

A barista can only do one thing at a time. If a coffee shop has a single barista who
makes one coffee at a time, the customer has to wait for each coffee to be made. In
the same way, a thread can only do one thing at a time. It runs its tasks sequentially, so
the thread can’t do the next task until the previous task is complete, even if one task
takes a long time (figure 5.9).

The UI thread works using a queue of messages that it processes in order, and
these messages can come from the OS or from your code. When you touch a control
or type text, the OS detects this, creates a message, and sends it to the UI thread. The
UI thread then handles the message when it’s finished with the previous messages in
its queue.

This is easy enough to demonstrate—launch the modified Hello Cross-Platform
World app that you changed earlier in this chapter, enter some text, tap the Say Hello
button, and enter more text while the app isn’t responding. Try this on iOS, or if you

123UI thread and background threads
prefer to do it on Android reduce the wait time from 60 seconds down to about 20 sec-
onds to avoid the OS warning message. You’ll see the UI lock up for the wait time, and
as you type, nothing will appear on screen. When the wait has finished, you’ll sud-
denly see everything you’ve typed appear in the text box.

When you tap on the button, a message is raised by the operating system, which is
then handled by the UI thread, raising the click event (figure 5.10). This event was
bound to a command defined using an Action, which means the Action is also run on
the UI thread. Our action paused for a few seconds, meaning the UI thread was also
paused for a few seconds. For those few seconds, the UI was totally unresponsive
because it was busy in the pause. It can only do one thing at a time, so if it’s busy wait-
ing, it can’t respond to the messages from the OS in response to user input. Every-

Tap a
button Wait

Do something

See UI
update

Enter
text Wait

Time

Update the text box

See text
change

Do more
things...

Handle
more things...

Figure 5.9 The UI thread handles input from the user sequentially, so it has to finish handling one
input before it can handle another.

Tap
button

Button-click event executes long-running command

Enter
text Wait—UI is unresponsive

Time

Button-tap
message

Key-press
message

Update the
text box

See text
change

Message
queue

UI
thread

Figure 5.10 The UI thread handles messages from the OS resulting from user interactions,
and if it takes too long to handle a message, the UI appears unresponsive.

124 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
thing to do with the UI has to wait. Once the time is up and the command finishes,
the UI can then carry on processing the next message in its queue.

IF A BUTTON DOESN’T WORK, USERS WILL TAP IT TILL IT DOES If an app freezes,
users are likely to hammer the buttons or keyboard repeatedly until the app
responds, leading to your app handling all these events when the UI thread is
freed up. This could lead to app behavior that the user doesn’t expect—if they
tap a Delete button in an email client and the app doesn’t respond, they could
tap it a few more times and end up deleting more emails than they expected.

The UI thread lives as long as your app does, and your app only lives as long as the UI
thread. If an exception is thrown inside the UI thread and it’s not handled, the thread
is terminated and your app dies. For example, in an email app, if a connection to the
server can’t be established and an exception is thrown on the UI thread and not han-
dled properly, the app would die. Obviously this isn’t a good thing. It leads to one sim-
ple rule—don’t allow uncaught exceptions on the UI thread.

In the previous chapters, we looked at the layers of MVVM, and the UI fits very
much into the view layer. Threads, however, don’t fit into these nice simple layers—
they can span all layers. You can run code in the UI thread that starts in the view (such
as in a button click), then runs code in the view-model layer (such as the command
that handles the click), which then makes a call into the model layer. The code in
each layer will run in the UI thread. If this code is fast (less than 100–200 ms), this
isn’t a problem, but ideally anything slower shouldn’t be in the UI thread, but should
instead be run in a background thread to remove any obvious lag or lock-up in the UI.

5.3.2 Background threads

The UI thread is the single thread that runs the user interface. Background threads,
on the other hand, are threads that perform tasks in the background, such as down-
loading emails. These are our baristas—they’re given something to do by the server,
and they go off and do it, only interrupting the server when they need do, such as after
the coffees are made. In the same way, you can fire off background threads from your
UI, and these go off and do their thing, only interrupting the UI thread if they need to,
such as when an email is downloaded and the UI needs to update to show this.

Unlike the UI thread, background threads can be created, run code, and die with-
out killing the app. If a background thread is locked up doing something, the app
remains responsive. If it takes multiple minutes to download your email, nothing locks
up in your app (and no nasty messages are displayed on Android asking the user if
they want to close the app).

Also unlike the UI thread, you have to explicitly create background threads in your
code. Luckily for us as C# developers, this isn’t as hard as you might think, and once
again it follows the model of our coffee shop.

125Using tasks to run code in the background
5.4 Using tasks to run code in the background
So far we’ve established that you ask the server for coffee, and then the baristas make
it. Let’s dig a bit deeper into this.

You order a number of coffees, and the server takes the order and writes each item
down on a ticket. These tickets are passed over to the baristas who actually handle
them, usually by pinning them to a board. Each ticket represents a task for the baristas
to do—for example, make coffee, make tea, or warm up a muffin. The baristas handle
these tasks one by one, and once they’re finished they put the item on the counter so
the server can see that the order is progressing and then call you once everything is
done. The server creates tasks; the baristas handle these tasks and let the server know
when they’re done.

This model works for one barista, two baristas, three, four … as many as you have
space for (figure 5.11). Baristas themselves could also create tasks for other people,
such as the person who washes the dishes—shouting through to them to ask for more
cups when they get low. The barista carries on making coffee while the dishwasher is
preparing the clean cups, so no one is waiting. Baristas could even give tasks to the
server, such as asking them to check an order, interrupting the server’s ability to inter-
act with customers while they complete the task given to them.

You can also think of an email app as something that would create tickets inter-
nally to track work to be done. For example, once the app loads it will create a ticket
to download a list of new emails that will be handled by something. Once this list is
downloaded, it can create tickets to download the full contents of each new email.

Make
latte

Take
order

Order two
coffees

Make
flat white

Latte

Tickets

Flat
white

2. The first barista picks up the
 first ticket and is given the task
 of making a latte.

3. The second barista picks up the
 second ticket and is given the task
 of making a flat white.

1. The server writes tickets for all the
 coffees that need to be made and
 passes them to the baristas.

Figure 5.11 When you order coffee from the server, they give the baristas different tasks to
do, such as making a latte or a flat white.

126 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
In C# you can create “tickets” and pin them to the .NET equivalent of the pin board
so that something can pick them up and run them. These tickets are called tasks, and
they’re handed out by a task scheduler to be run on either a background thread or
the UI thread.

5.4.1 Task and Task<T>

In our coffee shop there are tasks that get assigned to baristas or dishwashers or the
server. In the .NET framework there are also tasks, represented by a class called Task

(which lives in the System.Threading.Tasks namespace). This class is similar to a
command in that it wraps an action that can be run. Unlike a command, these actions
can only be run once, and they’re not triggered by a user action but by a task sched-
uler that triggers the action on an appropriate thread. There’s also Task<T>, which
wraps a func that returns an instance of T. This is used if you need to get a return value
from your task, such as a list of emails downloaded from an email server.

When a server creates a ticket for a cup of coffee, the next available barista will
pick up this ticket and make the coffee (this is like a Task<T> with a return value of a
cup of coffee). The scheduling of coffee making is handled by the board that the tick-
ets are pinned to—baristas grab the next available ticket and start making the coffee.
If each coffee takes the same amount of time to make, the baristas will end up taking
tickets in turns, but if one coffee takes longer than another, one barista might end up
taking two or three tickets in a row before the other barista is finished making the
slower coffee and is available to pick up a ticket.

In this example, the pin board is a task scheduler. Tasks are created against a par-
ticular task scheduler, and this scheduler runs them on the relevant thread. By
default, tasks use a scheduler that runs the tasks on a background thread (we’ll look at
another task scheduler later in this chapter). The default task scheduler has a pool of
background threads and uses the next available one to run the next task—just as the
next available barista picks up the next coffee ticket. This abstracts away a lot of com-
plications, including creating and managing threads. You don’t have to do anything
yourself—the task scheduler does it all for you.

You can create a Task by just newing up an instance and passing it an Action to
run as the constructor parameter. For Task<T>, you pass it a Func<T>. Once it’s cre-
ated, you can call Start() to run it. Task even has a static factory method, Run, that
takes an Action or Func<T> as a parameter, creates the Task or Task<T>, and runs it
automatically. By default, these new tasks will all run in a background thread because
they use the default task scheduler (figure 5.12).

Earlier in this chapter we tweaked the Hello Cross-Platform World app to wait for a
short while before speaking, to simulate a long-running web service call. This locked
up the UI, so let’s change the code to use a Task to run the long call in the back-
ground. Make the code changes shown in the following listing, and run the app.

127Using tasks to run code in the background
void SayHello()
{

var task = new Task(() => MakeLongWebServiceCall());
task.Start();

textToSpeech.Speak($"Hello {Name}");
}

If you tap the Say Hello button now, you’ll see that the app remains responsive during
the wait. You’ll also hear the app say hello to you straight away.

In this code you’re creating a Task that will use the default task scheduler so it’ll
run on a background thread, and you’re passing it an Action to run. The call to Start

will tell the task scheduler to start running this task in the background. This call
returns immediately—it doesn’t wait for the Task to complete. The construction of the
Task happens on the UI thread (remember, the command that calls SayHello is called
from a button tap, which is handled on the UI thread), but the execution happens in
the background, which is why the rest of the method runs straightaway (figure 5.13).
We can simplify the code by using the static Task.Run method, which wraps the con-
struction and starts it in one call, as shown in the following listing.

void SayHello()
{

Task.Run(() => MakeLongWebServiceCall());
textToSpeech.Speak($"Hello {Name}");

}

Listing 5.3 Keeping the UI responsive by using a task

Listing 5.4 Creating a new task and running it, instead of using the Start method

Fetch
email

1. Tasks are created using the
 default task scheduler.

2. The task scheduler allocates
 the tasks to the next available
 background thread.

3. The tasks are run on multiple
 background threads.

Task
scheduler

Create
tasks

Send new
email

Fetch
email

Tasks

Send new
email

Figure 5.12 The task scheduler takes tasks and runs them on the appropriate thread.

The existing call to
MakeLongWebServiceCall is

converted to an Action and is passed
to the constructor of the Task.

The task
is started.

Task.Run is the same
as creating a task and
calling Start.

128 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
This is a nice pattern, but what if we wanted the app to say hello after the long method
has finished? For example, in an email app we’d want code that would go off to the
email provider and download emails, and once they’re downloaded it would tell the
user, in true Tom Hanks/Meg Ryan style, that they’ve got mail. If the message came
before the emails were downloaded, you’d have an unhappy app user.

Again, as C# developers we can do this easily, using task continuations.

5.4.2 Chaining tasks

Suppose one of our baristas needs both clean cups and more coffee beans, with the
cups being more urgent—they have only two cups, but enough beans for five more
cups of coffee. They could ask a dishwasher to get them both, one after the other—get
some clean cups then get some more beans. The task to fetch more cups comes first,
and once it’s complete the dishwasher can collect more beans (figure 5.14).

In an email app we’d want to do something similar—first the app would log in,
then it would download a list of all the new emails, and then it would start download-
ing the content of the new emails. All these tasks have to happen in order (after all,
the app can’t download the content of the emails before it knows which new emails to
get content for) and they must happen in the background so that the UI remains
responsive.

We can do this with our tasks in code: create a task to run some code, and tell it
that once it’s complete, another task should be run to execute other code. This is
thanks to a method on Task—ContinueWith. This method takes an Action<Task> as

Tap
button

Run task

Hear
words

Time

Create
task

Schedule
task

Say
hello

UI
thread

Background
thread

Task
scheduler

Figure 5.13 Running a task executes its code on a background thread.

129Using tasks to run code in the background
its parameter and returns a new Task to run that action. This new Task starts as soon
as the original Task is complete, and the original Task is passed to the action as its
parameter. If the original task was a Task<T>, the ContinueWith would take an
Action<Task<T>> as its parameter. In this action, you can add the code you want to
run after the task is complete. This is often referred to as task continuation.

We can use this in our example app to say hello to the user after the long-running
method has completed. The following listing shows the code for this, so make this
change and run the app.

void SayHello()
{

Task.Run(() => MakeLongWebServiceCall())
.ContinueWith(t =>

{
textToSpeech.Speak($"Hello {Name}");

});
}

As expected, the app will say hello to the user after a delay (feel free to adjust the
delay in MakeLongWebServiceCall to something like 5 seconds to speed up your wait-
ing time). During this delay, the app will remain responsive because everything is hap-
pening on a background thread, thanks to the default task scheduler.

Like Task<T>, ContinueWith can also create a task with a return value, so it can
return Task<T> instead of just Task. To do this, instead of passing in an Action<Task>

or Action<Task<T>>, you can pass in a Func<Task, T> or Func<Task<T>, TResult>.
These continuations, just like tasks, can have a return value, but they run in the back-
ground.

How do we get the return value from a task if it’s not like a method that returns a
value? We can get it from the task’s Result.

Listing 5.5 After a task has completed, it can start running another task

Ask for
cups

Ask for beans
after cups Cups

Time

Get cups

Beans

Get beans

Figure 5.14 Tasks can be chained, such as asking a dishwasher to bring more cups and
then fetch more coffee beans.

ContinueWith takes an
Action<Task>, passing the
Task that it was called on
into the action. The action
here contains the code to
say hello to the user.

130 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
5.5 Task results
In our coffee shop, some tasks have a result that comes back to the creator of the task,
and some don’t. If a barista is tasked with making coffee, the result is a cup of coffee
passed back to the server. If a dishwasher is tasked with cleaning up the floor, there’s
no result to pass back.

Tasks in C# are the same, and you can set the type of result by using a type argu-
ment. Task has no result and is like the dishwasher mopping the floor. Task<T> has a
result of type T and is like the barista making coffee. This Result is only available once
the task is finished—you can’t get a cup of coffee before the barista has made it.

An email app could create a task to download a list of all the new emails that need
to be downloaded. This list could be returned in the result of the task, and it would be
iterated through in other tasks to download the contents of each email.

There are three ways to get the result of a task: keep polling to see if it has finished,
force the task to wait, or use a continuation.

5.5.1 Polling to see if the task has finished

You can periodically poll the Task<T>, checking the IsCompleted property, and if it’s
true, the task has finished and you can get the Result (figure 5.15).

This isn’t always ideal as you need to run code to do the polling. This technique isn’t
often used.

5.5.2 Waiting on the task

Task has a method called Wait that blocks until the task is finished, and you can call
this to force your code to wait until the task has finished, as shown in figure 5.16. This
often isn’t ideal as it defeats the purpose of running tasks by using blocking code, but
sometimes it’s useful. It’s something that must be avoided on the UI thread, of course,
or you’ll end up with an unresponsive app.

A good example of using this approach would be when preloading data, such as an
email. An email app could quickly load the sender and subject details of all new emails
and then kick off a task to load the contents of each email. If the email is downloaded

Poll for new emails

Time

Finished
yet?

No

Finished
yet?

No

Finished
yet?

No

Finished
yet?

Yes

Get
result

UI
thread

Background
thread

Figure 5.15 Tasks can be continuously polled to see if they’ve finished.

131Task results
before the user taps on it to view the contents, the app can just show the contents. If
the email hasn’t fully downloaded, the app could show a progress dialog while calling
Wait on a background thread (so the UI remains responsive). Once the email is fully
downloaded, the Wait call will return and the app can show the email’s contents.

YOU’VE SEEN WAIT BEFORE Wait might sound familiar because we’ve used it
before. In the MakeLongWebServiceCall method in the examples we’ve been
working through, there was a call that was waited—Task.Delay(Time-
Span.FromSeconds(5)).Wait();.

Task.Delay is a factory method that creates and returns a new Task that
does nothing but wait for a period of time (in the first version of this method,
this was 5 seconds). The call to Wait blocks until this new task is finished, so
until the 5 second delay is up.

Task.Delay can be useful if you want something to run after a fixed period
of time, such as polling for new emails every minute.

5.5.3 Getting the result from a continuation

The best way to get the result is by using a continuation—if you’re interested in the
Result of a Task<T>, it’s usually because you want to do something with the result as
soon as the original task has completed (figure 5.17).

When you use ContinueWith, the continuation task isn’t started until the previous
task has finished, and the Action<Task<T>> that you pass in is called using the now-
finished task as its parameter. At this point, you can access the Result.

In our hypothetical email app we could use this for the user login—once the task
that logs the user in to their email provider finishes, it will often return some kind of
authorization token that can be passed to a continuation to be used to load emails for
that user.

Create
task

Run task

Wait on
task

Wait with an
unresponsive UI...

Time

Schedule
task

Handle
result

Task
finished

Task
scheduler

UI
thread

Background
thread

Figure 5.16 Waiting on a task blocks until the task has finished

132 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
5.5.4 Task exceptions

When a barista makes coffee, we naturally think of the happy path—they’re tasked
with making our coffee, and we get it once it’s made. There’s also the sad path—the
coffee machine is broken, there are no more beans, or the barista has had enough
and quits on the spot. These sad paths lead to the result of no coffee and an apology
from the server.

The same could happen in our email app—it could go off to the email provider to
get email, but if the device has no connection, the result wouldn’t be a list of new
emails; instead it would be a loss-of-connection message.

These sad paths are exceptions. We try to run a task, make coffee, or download
email, and something goes wrong so our task isn’t completed as expected. We don’t
have a result, and we have a reason for the failure. The same happens with C# tasks—
if they don’t succeed due to an exception, we don’t have a result. Instead we have a
failed task—also referred to as a faulted task.

When a task completes due to an exception, the IsCompleted property is set to
true, and so is the IsFaulted property. In addition, the Exception property is set to
an AggregateException, wrapping the exception thrown inside the task. If you don’t
do anything with this exception, it will be rethrown on the finalizer thread (a thread
used by the garbage collector), causing your app to terminate. There are a couple of
things you can do to stop this from happening:

 Call the Wait method on the task, and this method call will rethrow the excep-
tion so you can handle it appropriately.

Create
task

Run task Handle
result

Create
next task

Time

Schedule
task

Schedule
next task

Task
scheduler

UI
thread

Background
thread

1. A continuation is
 created on the task.

2. The first task finishes, and the
 continuation is run with the
 first task as its parameter.

Figure 5.17 Continuations are a good way to handle the result of a task because they run
after the task is complete and have access to the result of the original task.

133Updating the UI
 Access the Exception property—even if you do nothing with it, just reading the
value will stop the exception from being rethrown on the finalizer thread.

The right thing to do is to catch these exceptions and handle them gracefully, but
problems arise if you use a continuation. How can you tell the continuation that some-
thing has failed? You could catch the exception and report the failure via the Result,
using a value that has an explicit meaning of failure, but this isn’t always the best or
easiest way.

Instead, the better way is not to catch the exception at all. A task is complete once
the code is finished, either because the code has all run successfully, or because there
was an unhandled exception. Either way, IsCompleted will be true because the code
has completed. In the case of an exception, however, the Result will be the default
value for the type (for example, null for classes, 0 for numbers), the IsFaulted prop-
erty will be set to true, and the Exception property will be set to an AggregateExcep-

tion that wraps the exception that was thrown. If the code finished without an
exception, IsFaulted will be false and the Exception property will be null. We can
use these values in our continuation to see how the task ended and act accordingly.
The following listing shows some pseudocode for this.

public void DoSomething()
{

Task.Run(() => DoSomethingThatCanThrow())
.ContinueWith(t =>

{
if (t.IsFaulted)

ShowException(t.Exception);
else

...
});

}

Your code should always check to see if the task faulted, and if it did, you should
always access the Exception property at least once. If you do this, you can ensure that
the exception isn’t rethrown when the task is finalized, killing your app.

5.6 Updating the UI
In our coffee shop, the server is the single point of interaction. The customer gives
their order to the server, the server gets the baristas to make the coffee, and the server
calls the customer once the coffee is ready and hands it over (figure 5.18). This is
good from a customer perspective—they can go off and do whatever they want, and
once their coffees are ready, one person calls them and they collect their coffees. If
every time a barista finished making a single coffee they called the customer, a cus-
tomer who ordered multiple coffees would be going back and forth between reading
the news and collecting coffee.

Listing 5.6 Checking whether a task failed with an unhandled exception

Checks to see if the task
ended due to an exception

If the task did end due
to an exception, reports
the exception

If there wasn’t an
exception, carries on
with the continuation

134 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
In our coffee shop, the server is the one point of contact with the customer. The same
is true of the UI—only the UI thread can update the UI. It’s the only thread that can
update controls, change layouts, or load new screens. This is enforced; if you try to
update the UI from a background thread using a task, you’ll get an exception. For
example, if a task is run to download all new emails in an email app, the app’s UI will
need to be updated once the task is done to show these new emails. The code to
update the UI will need to be on the UI thread—if it’s inside the download task, and
therefore running on a background thread, it will crash the UI.

Let’s see this in action. We’ll jump up a layer from the view model to the view and
knock up a simple code example to show this by updating the iOS UI from a task.
Revert all the changes you’ve made to FirstViewModel in this chapter, and then in
FirstView (inside FirstView.cs in the Views folder of the HelloCrossPlatform-
World.iOS project) make the change shown in the following listing.

using System.Threading.Tasks;
...
public override void ViewDidLoad()
{

...
Task.Run(() => DoSomething());

}

void DoSomething()
{

Task.Delay(TimeSpan.FromSeconds(5)).Wait();
TextField.Text = "Foo";

}

Listing 5.7 Updating the UI from a background thread will give an exception

Order
coffee

Take
order

Collect
coffee

Get
coffee

Make coffee

Time

Figure 5.18 Only one server
interacts with customers: they hand
off tasks to baristas who make coffee
and then take back control to hand
the coffee to the customer.

Add this new using directive
at the start of the file.

At the end of the existing ViewDidLoad
method, add this code to create a new task,
and execute it on a background thread
calling the new DoSomething method.

The new method that’s
run in the task

After a delay, the UI is updated
by setting the Text property on
the TextField.

135Updating the UI
This code looks like it does something in the background and then updates the UI to
show “Foo”. But if you run the iOS app, it won’t do quite what you might expect.

If you are using Xcode 8 with the iOS 10 SDK, you’ll get a nice exception, shown in
figure 5.19.

This exception tells us that we’re on the wrong thread. We’re calling a UIKit method
that can only be invoked from the UI thread (UIKit is the name Apple gives to the
classes that it uses for UIs).

If you are using Xcode 9, then, instead of an exception, nothing will happen.
Xcode 9 has moved the checks from exceptions in code to a Main Thread Checker,
which is both a standalone app as well as a tool integrated into the Xcode debugger.
At the time of writing, this tool hasn’t been integrated into the Xamarin debugger.
The upside of this change is that your app won’t crash if a UI control is updated off
the UI thread. The downside is that UI updates might be missed.

How can we update the UI from code running on a background thread?

5.6.1 The UI task scheduler

In our coffee shop we have two types of people who can do work. We have a server
who deals with customer interaction, and baristas and dishwashers who work behind
the scenes to make coffee, make tea, or wash cups. These two groups are very distinct
and have very specific roles and limitations. You only have one server as a single point
of contact for the customer, but the behind the scenes staff can scale based on
demand—you’d need more baristas during the morning coffee rush than at the end
of the day.

You can think of threads in a similar way. When a thread is created, it lives inside a
synchronization context. A synchronization context is a group of one or more threads
that share the same characteristics, so if some code can run on one thread inside that
context, it can run on any thread. This is just like our coffee shop staff—all baristas
have the same characteristics and can make coffee, but only the server can interact
with the customer. When the task scheduler executes a task, it does so using a particu-
lar synchronization context, just as tasks in our coffee shop are given to specific peo-
ple. Baristas pick up tasks to make coffee, dishwashers pick up tasks to get more cups,
and the server picks up tasks to give the finished coffee to the customers.

By default, a task will be scheduled by the default task scheduler, which will
use threads from the default synchronization context (also referred to as the thread pool

Figure 5.19 Updating the iOS UI from a background thread gives a thread-access
exception.

136 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
synchronization context), which means it runs the tasks using one of the many pooled
background threads available. These background threads are created for you by the
task scheduler, so there’s nothing you need to do in your code to use them. These
threads share the same characteristics—they all run in the background, and they’re
all stopped when the UI thread stops. This is the default type of thread used when
you create a task using Task.Run or you construct a new instance of Task or Task<T>.

There’s another synchronization context that’s of interest to us—the UI thread
synchronization context. This context contains only one thread, the UI thread. Unlike
the default synchronization context, which is used by the default task scheduler, the
UI thread synchronization context isn’t easily available from a static property. Instead
we have to use a static method on the TaskScheduler class, FromCurrentSynchroni-
zationContext(). This will always return the synchronization context for the current
thread that it’s called on. If you call this from a task running in the background, you’ll
get back the default scheduler, but if you call it from the UI thread, you’ll get back a
task scheduler that you can use to run your tasks on the UI thread (figure 5.20).

This task scheduler will put your code onto the message queue that the UI thread pro-
cesses. Your code will sit in this queue behind any other messages that the UI thread is
already processing, such as UI events. Once the messages in front have been pro-
cessed (if any), your code will be run.

MARSHALING YOUR CODE ONTO THE UI THREAD You’ll often hear the term mar-
shaling when talking about multithreaded code. Marshaling essentially means
running code on a different thread—so, for example, when you run a task
using the UI task scheduler, you’re marshaling your code onto the UI thread.

Create
task

Run task

Handle
result

Time

Schedule
task

Task
scheduler

UI
thread

Background
thread

1. A continuation is created on the
 task to update the text using the
 UI thread task scheduler.

2. The task finishes, and the
 continuation is run back
 on the UI thread.

Figure 5.20 Continuations can be run on any task scheduler, so they can be set to run back on the
UI thread.

137Updating the UI
The usual pattern here is to create a task on the UI thread that does some work in the
background, and use a task continuation to execute some more code back on the UI
thread by telling the continuation which task scheduler to use. The following listing
shows how to do this.

public override void ViewDidLoad()
{

...
var scheduler =

TaskScheduler.FromCurrentSynchronizationContext();
Task.Run(() => DoSomethingLong())

.ContinueWith(t => TextField.Text = "Foo", scheduler);
}

void DoSomethingLong()
{

Task.Delay(TimeSpan.FromSeconds(5)).Wait();
}

If you make this change, build, and run this, once again everything will work. Let’s
break this down into steps:

1 The UI thread requests the task scheduler for the current synchronization con-
text, which will be the task scheduler for the UI thread.

2 The UI thread creates and runs a task.
3 The UI thread sets up a task continuation, giving it an action to run and passing

in the UI thread task scheduler. FromCurrentSynchronizationContext is evalu-
ated before the task is set up, so it would be called on the UI thread and the
resulting value would be passed to the call to ContinueWith, which sets up the
continuation.

4 The default task scheduler runs the first action on a background thread.
5 When this action is complete, the UI task scheduler runs the continuation

action.

5.6.2 Using the power of MVVM

If you have a view model with a command that’s bound to a UI control, such as a but-
ton, when the user clicks the button, the code inside the command is run on the UI
thread. By using continuations that use the UI task scheduler, you can write code
inside your command that executes on a background thread and then comes back to
the calling thread to perform any actions that will cause the UI to be updated.
Depending on the MVVM framework you’re using, though, you may not need to
worry too much about marshaling your code back onto the UI thread.

One way that you can cause the UI to update is by property-changed notifica-
tions—you bind a UI control to a property on the view model, update the property,

Listing 5.8 Using the UI task scheduler allows the UI to be updated from a task

When calling ContinueWith, you
can pass in a task scheduler that

you can use to run the task.

The UI update has been removed
from the DoSomething method as
it’s now in the continuation.

138 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
raise a property-changed notification, and the UI will update. This UI update has to
be done on the UI thread.

Luckily, all the good MVVM frameworks take care of this. In the binding layer, the
property-changed event is detected, the value to set is read, and the binding layer will
run the UI update on the UI thread, regardless of what thread is used to raise the
property-changed notification (figure 5.21). You can see this by changing your code to
update the property on the view model instead of updating the UI directly. If you do
this from a background thread, you can see the UI update with no exception being
thrown. The following listing shows this change.

public override void ViewDidLoad()
{

...
var vm = (FirstViewModel)ViewModel;
Task.Run(() => DoSomethingLong())

.ContinueWith(t => vm.Name = "Foo");
}

If you make this change and run the app, you’ll see the UI update. This is one of the
powers of a good framework like MvvmCross—abstracting away the hard stuff, leaving
you to focus on what your code should do instead of the complexities of how it should
be done.

Listing 5.9 Binding automatically marshals property changes into the UI thread

Create
task

Run task
Raise

property-changed
notification

Update
task

Time

Schedule
task

Task
scheduler

UI
thread

Background
thread

The binding layer will
automatically marshal
the UI update onto
the UI thread.

Figure 5.21 When a property-changed event is detected, the binding layer will marshal the call to
update the UI onto the UI thread automatically.

Each view derived from an MvvmCross base view
(such as MvxViewController or MvxActivity) has a
ViewModel property that gets the view model for
this view. It’s of type IMvxViewModel, so it needs to
be cast to the type of your view model.

The continuation is no longer
run using the UI task scheduler.
From the background thread,
the Name property on the view
model can be set, and the
binding handles updating the UI
on the right thread.

139Async and await
AVOID THE CAST TO FIRSTVIEWMODEL BY USING GENERICS The MvvmCross base
views are also available in a generic form that takes a type argument for the
view-model type. If you use these, the ViewModel property will be of the cor-
rect type and you won’t need the cast to FirstViewModel. To see this in
action, change the base type of the iOS view to MvxViewController<First-
ViewModel>. You can then change the continuation to be ContinueWith(t =>
ViewModel.Name = "Foo");.

It’s pretty clear that tasks are really rather useful. They allow you to package up some
code and fire it off to be run on another thread. Then you can create another task to
be run back on the calling thread once the first one completes. This is quite a popu-
lar pattern with UI apps—run code x in the background, and then run code y back
on the UI thread. It’s not perfect, and the way you handle return values and excep-
tions either by waiting on the task to complete or using a continuation can be down-
right clunky.

The good news for us C# developers is that, as a part of C# 5, Microsoft has added
cool new features to make this a whole lot easier—async and await.

5.7 Async and await
In C# 5.0 two new keywords were added, async and await. These don’t do anything in
terms of code; instead, they’re compiler hints, telling the compiler to handle code
marked with these keywords differently. Async is short for asynchronous—code that can
run multiple things at the same time. You’ll often hear of multithreaded code
referred to as asynchronous code.

5.7.1 The async and await keywords

The aim of the async and await keywords is to enable you to take the pattern of “run
code x in the background then run code y back on the current synchronization con-
text” and simplify it. You mark a method as async, and when you call other async

methods from this method, you mark the calls to run them with await. The await

tells the compiler that somewhere in the method that you’re calling, some work will
be done on a background thread using a task, and to hold off running the rest of the
calling method until the awaited method has finished what it’s doing. In the mean-
time, the current thread can process other code, and once the awaited method com-
pletes, the rest of the calling method finishes.

AWAIT DOESN’T CREATE A BACKGROUND THREAD FOR YOU There’s a common
misconception around async and await that they will actually run your code
in the background. This isn’t the case. Before we start digging into this in
more detail, it’s important to be aware of this.

Let’s start with a simple code example in the view layer inside our iOS app. We’ll make
the app wait and then update the UI. Start by changing the FirstView class, in First-
View.cs in the HelloCrossPlatformWorld.iOS project, by reverting the previous
changes made in this chapter and making the change shown in the following listing.

140 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
public override void ViewDidLoad()
{

...
Task.Delay(TimeSpan.FromSeconds(5));
TextField.Text = "Foo";

}

Read through the flow of this method. The OS calls a number of lifecycle methods
when screens are displayed—methods that are called when a screen appears, disap-
pears, or goes to other states. One of these lifecycle methods on iOS is ViewDidLoad,
which is called by the OS as soon as the view has fully loaded and is shown on screen.
This call runs on the UI thread as you’ve already seen, and it sets up the bindings in
the existing code that we haven’t changed, starts a task that waits for 5 seconds in the
background, and then updates the UI (figure 5.22). If you run this code, you’d see
what you expect—the UI shows “Foo” in the text field straightaway because the wait
happens in a task—off on another thread.

It would be better if the UI were updated after the 5-second wait, but without the UI
locking up for those 5 seconds. Let’s make a couple of small changes to this method to
achieve this in the following listing.

public override async void ViewDidLoad()
{

...
await Task.Delay(TimeSpan.FromSeconds(5));
TextField.Text = "Foo";

}

Listing 5.10 Running tasks in background doesn’t affect when rest of code runs

Listing 5.11 Adding async and await to our method

The existing binding code

Task.Delay is called to run a
background task to wait for 5 seconds.

The text field on the UI is updated.

Delay for 5 seconds

Time

ViewDidLoad

Start
method

UI
thread

Background
thread

Create
task

Update
text

Exit
method

Figure 5.22 Timeline of the ViewDidLoadmethod: the delay method starts, the
delay task is created and started on a background thread, the UI is updated, and
the method ends.

The method is marked
with the async keyword.

The call to Task.Delay is
prefixed by await.

141Async and await
Make these code changes and run the code again. The app will start up, wait 5 sec-
onds, and then update the text field. During the 5 seconds before the text field is
updated, try to interact with the app to see if the app is responsive. You’ll notice that it
is. Unlike calling Wait on your task, which blocks the thread for the 5 seconds, this
doesn’t block. The call to ViewDidLoad by the OS returns as soon as the call to Delay

is made, and the rest of the method call is called back on the original (UI) thread
later (figure 5.23).

The basic principle here is you can mark a method as async to tell the compiler that
you’re planning on using await in your method. Then you call await on a task (either
one you create or one that’s returned by a method) and the compiler, behind the
scenes, will take the rest of the code in the method and put it in a continuation using
the original synchronization context as the thread to run the continuation on.

AFTER AWAIT, THE CODE WILL RUN ON THE SAME SYNCHRONIZATION CONTEXT The
code before and after an await will run on the same synchronization context,
but not necessarily the same thread. The UI synchronization context has a
single thread, so if you await a method from the UI thread, the code that
comes after it will run on the UI thread; if you await from a background
thread, the code after the await may run on a different background thread.

You can think of the behavior of the code in listing 5.11 as analogous to the code in
the following listing.

public override void ViewDidLoad()
{

...
Task.Delay(TimeSpan.FromSeconds(5))

.ContinueWith(t => TextField.Text = "Foo",
TaskScheduler.FromCurrentSynchronizationContext());

}

Listing 5.12 await uses the original thread’s synchronization context

Delay for 5 seconds

Time

ViewDidLoad

Start
method

UI
thread

Background
thread

Create
task

Update
text

Continuation

Exit
method

Figure 5.23 If you await the delay task, the ViewDidLoad method finishes as soon as
the await is called, with the remainder of the method being called in a continuation back
on the original thread.

142 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
What’s the big upside to async and await? First, it makes your code much easier to
read. Imagine if instead of having one call to ContinueWith you had five. That would
be harder to read than just using await. Second, and probably most importantly, you
can use return values and exceptions as if there were no continuations involved.

Thinking again of our email app example, when the user launches the app, it needs
to call a web service to authenticate the user and then get back an authentication
token. Once authenticated, it needs to call another web service, passing the authenti-
cation token, to download a list of new emails, and then it needs to download the full
contents of each new email, again passing the authentication token. At each stage it
will want to update the UI: once you’re logged in it would show the emails, when it has
downloaded the list of new emails it will display a summary, and as each email is fully
downloaded the UI will be updated to show the details of each email. If at any time
these actions were to fail with an exception (such as if there was no network connectiv-
ity, a common occurrence with mobile apps), the code would need to stop download-
ing emails and handle the exception, maybe by showing a message to the user. The
following listing contains some pseudocode for this, using continuations.

public void HandleLogInAndDownloadEmails()
{

string token = null;
Task.Run(() => LogIn())

.ContinueWith(t1 =>
{

if (t1.IsFaulted)
ShowException(t1.Exception);

else
{

UpdateUIAfterLogIn();
Task.Run(() => DownloadEmailList(token))

.ContinueWith(t2 =>
{

if (t2.IsFaulted)
ShowException(t2.Exception);

else
{

UpdateUIWithNewEmails();
foreach (var email in t2.Result)
{

Task.Run(() => DownloadEmail(token, email))
.ContinueWith(t3 =>
{

if (t3.IsFaulted)
ShowException(t3.Exception);

else
UpdateUIWithDownloadedEmails();

}, TaskScheduler.FromCurrentSynchronizationContext());
}

}

Listing 5.13 Pseudocode for downloading emails and updating the UI

Starts a task to log in

Creates a continuation
back on the UI thread

If the original task threw
an exception, shows it

If the original
task didn’t throw

an exception,
updates the UI

Starts a continuation
for downloading the
emails, and so on,
and so on

143Async and await

f
t

}, TaskScheduler.FromCurrentSynchronizationContext());
}

}, TaskScheduler.FromCurrentSynchronizationContext());
}

This is very complicated code, partly because we’re switching threads so often and
partly because we need to keep querying the Task passed into the continuation for
any exceptions and for the return value.

Not only can async and await remove the need for continuations, but they also
help with return values and exceptions. As you already know, you can call await on a
Task, but what’s powerful about await is that it can return the result of a Task<T>. If
you await a Task, there’s no return value, so the await doesn’t return anything, but if
you await a Task<T>, the return value of the call is an instance of T, the one returned
by the task. If your task throws an exception, it’s normally swallowed up and only made
available through the Exception property on the Task passed to the continuation. But
if you use async and await, the Exception gets thrown as if you weren’t in a task.

Let’s rewrite listing 5.13 to do this, as follows.

public async Task HandleLogInAndDownloadEmails()
{

try
{

var token = await Task.Run(() => LogIn());
UpdateUIAfterLogIn();
var emails = await Task.Run(() => DownloadEmailList(token));
UpdateUIWithNewEmails();
foreach (var email in emails)
{

await Task.Run(() => DownloadEmail(token, email));
UpdateUIWithDownloadedEmails();

}
}
catch (Exception ex)
{

ShowException(ex);
}

}

The code in the preceding listing does the same as the code in listing 5.13, but it’s
cleaner and easier to read. It also seems to have a return type of Task, but it doesn’t
seem to return anything. Let’s look at why this is by looking at how we write async

methods.

5.7.2 Writing your own async methods

In the listings we’ve just looked at, the methods were marked with the async keyword,
which tells the compiler that the method will contain calls to await tasks. If you don’t

Listing 5.14 Using async and await to clean up our code

The method now returns
Task and is decorated with
the async keyword.

The token is
returned

rom the task
hanks to the

await call.
The UI can be

updated because
we’re back on the
calling thread (the

UI thread) after
awaiting the task.
We can continue

this pattern for the
rest of the method.The whole method can be wrapped

in a try/catch because await takes
care of throwing any exceptions.

144 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
have this keyword in your method, you can’t await. You can try this quickly by remov-
ing the async keyword from the ViewDidLoad method you changed earlier. Take it out
and your app won’t compile.

MARKING METHODS AS ASYNC

You can’t just mark any method as async—you can only use it on methods that have a
return type of void, Task, or Task<T>, and you can’t use it on methods without param-
eters or ref parameters. The async keyword isn’t part of the method signature, so you
can’t use it in interfaces, but you can add it when you’re overriding methods—you’ve
seen this already when you added it to the override of ViewDidLoad in the iOS app.
When you have an async method, the usual intent is for the caller to await it, and for
this to happen the method must have a return type of Task or Task<T>—remember,
you can only call await on a task, so if your method is a void method, there’s nothing
to await on.

When you mark the method as async, you don’t actually return an instance of Task
or Task<T>; you just return nothing or an instance of T, and the compiler does the rest
for you, wrapping everything in a task so that the method can be awaited. You saw this
in listing 5.14—the HandleLogInAndDownloadEmails method was marked as return-
ing a Task but it didn’t have an explicit return value.

You can mark a method that returns void as async, but this method can’t be
awaited as there’s no task to await. This isn’t normally an issue because there’s no
return value to worry about, but be aware that if you call an async void method, it
may not complete before the rest of your code runs because some parts of it will run
in the background. Ideally, you should never mark a void method as async unless you
have no other choice, such as with event handlers or overriding existing methods.

If you override a void method and make the override async, you need to be aware
that all the code won’t be finished before the method returns. For example, overrid-
ing a method like ViewDidLoad on the iOS view controller and making it async will
mean that the method will return once the first background task starts running. If you
had some code in it to set up the UI, such as creating bindings, and if this code comes
after the awaited task, it won’t be run until the task completes. This could mean that
your user will be using an app with a incomplete UI until the background task com-
pletes. It’s good practice to only await methods after all your UI setup is complete, or
to show some form of progress to the user so they’re aware something is happening
and that they need to wait.

Let’s take our last example and in the following listing write some async methods
to make the code cleaner.

async Task<string> LogIn() {}

async Task<IEnumerable<Email>> DownloadEmailList(string token){}

async Task DownloadEmail(string token, string email){}

Listing 5.15 Using async to make your code cleaner

The methods to
load data are
marked as async.

145Async and await
public async Task HandleLogInAndDownloadEmails()
{

try
{

var token = await LogIn();
UpdateUIAfterLogIn();
var emails = await DownloadEmailList(token);
UpdateUIWithNewEmails();
foreach (var email in emails)
{

await DownloadEmail(token, email);
UpdateUIWithDownloadedEmails();

}
}
catch (Exception ex)
{

ShowException(ex);
}

}

In this listing, the code is a lot cleaner, and it’s now the responsibility of the methods
that are called to create the tasks that run in the background.

Remember, just using async and await won’t create the tasks for you—you’re still
responsible for this, either directly by creating the task or indirectly by awaiting on
another method that creates a task. For example, in the case of hitting a web service,
there’s a NuGet package available from Microsoft called HttpClient that will do this
for you—it has some async methods that you can await that will create the task and
run the web call in the background, so all you need to do in your code is mark your
methods as async and await all the calls. This is one of the downsides of async and
await, you have to mark everything as async and return tasks. If your web service call
is buried ten calls down the call stack, all ten calls must be awaited and must return
tasks.

WHAT ABOUT ACTION AND FUNC? Just like methods, lambdas can be marked as
async, and can await tasks. This means you can create async actions and
funcs using the same keywords, using syntax like var myAction = new
Action(async () => await MyMethod()); or var myFunc = new
Func<int>(async () => await MyIntMethod());.

RETURNING TASKS INSTEAD OF USING ASYNC AND AWAIT

Async methods have a return type of Task or Task<T>, but you never actually return
the task yourself. Instead, you await other methods that return tasks and return the
relevant type, and the compiler weaves its magic over your code to manage all the
await statements and actually return a task at the end of the method that can be
awaited by the calling code.

There are no more
calls to Task.Run.

146 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
If you only have one call in your method that you await, and it’s the last (or only)
thing your method does, then instead of marking your method as async and awaiting
the call, you can simply return the task. See the following two listings.

public async Task MakeCoffee()
{

await myCoffeeService.MakeCoffee();
}

In this code, the MakeCoffee method is async, but all it does is await a call to myCof-

feeService.MakeCoffee(). To write less code, you can drop the async modifier and
just return the result of the call instead of awaiting it.

public Task MakeCoffee()
{

return myCoffeeService.MakeCoffee();
}

This code is functionally identical, and in fact is marginally faster. Using await means
the compiler has to generate code to track the threads in use and ensure that the code
after the await happens on the correct thread. And it has to do this for all async
methods in the current call stack. If you just return the task, this extra code is not
needed. It’s good practice to always return a task if your async method only awaits the
last method call.

CONFIGUREAWAIT

When you await a call to an async method, you’re telling the compiler that you want
to ensure that all code after the await runs on the same synchronization context as
the code before the await. The compiler creates code to capture the current synchro-
nization context, calls a method that’s awaited, and then runs the rest of the current
method using the original synchronization context. There’s a small compiler over-
head to this—capturing the synchronization context and switching back to it.

There are times, though, when you don’t care what thread the remainder of the
code in your current method runs on. For example, you might have a method that
awaits a database call, then does some CPU-intensive processing on the data, return-
ing results to a calling method that updates the UI. The processing can be done on
any thread—it’s only the update to the UI that needs to happen on the UI thread. The
following listing shows some pseudocode that illustrates this.

public async Task CalcAndUpdate()
{

var result = await Calc();

Listing 5.16 Using an async method when you could return a Task

Listing 5.17 Returning a Task instead of awaiting it

Listing 5.18 Performing a long calculation on the UI thread

From the UI thread,
await a call to Calc

147Async and await
myLabel.Text = result;
}

public async Task Calc()
{

var data = await LoadData();
return PerformLongCalculation(data);

}

In this code, the call to the LoadData method will load data on a background thread,
and then Calc will switch back to the current synchronization context (the UI thread)
to run the calculation. We don’t care which thread the PerformLongCalculation call
actually runs on, just that the label update happens on the UI thread. What we can do
is make a call to a method to tell the compiler that we don’t want to switch synchroni-
zation contexts after the await, and the rest of the Calc method can run on whatever
thread LoadData used to run. We can do this using the ConfigureAwait method on
Task.

public async Task Calc()
{

var data = await LoadData().ConfigureAwait(false);
return PerformLongCalculation(data);

}

By calling ConfigureAwait(false), we’re telling the compiler to remain on the same
thread used by the call we’re awaiting, but just for the remainder of the current
method, until another await. When we return to CalcAndUpdate, the code will switch
back to the calling synchronization context. Passing true to ConfigureAwait tells the
compiler that you do want to switch back to the original synchronization context—
which is the same as not calling it.

By identifying any awaited methods in code that will never need to interact with
the UI thread and marking them with ConfigureAwait, you can make a small perfor-
mance improvement. Not only does this save CPU time by avoiding storing the origi-
nal synchronization context and reverting back to it later, but if your code constantly
switches back to the UI thread to do simple work that could be run on a background
thread, it can slow down your UI. It’s generally a good idea to mark all calls you await
with ConfigureAwait in any classes that don’t interact with the UI, such as classes in
your model layer.

5.7.3 Async commands

We’ve looked at building short, concise async methods that will await on other async
methods, which in turn will await on calls to something like HttpClient, which will
create tasks to hit a web service on a background thread. This is a nice pattern, but
how do we call our new async method in the first place? As you’ve already seen, we

Listing 5.19 Using ConfigureAwait to avoid switching contexts

Back on the UI thread,
update a label

From the UI thread, await
a call to LoadData

Back on the UI thread,
perform a calculation

From the UI
thread, await a
call to LoadData

On the same thread used by
LoadData, perform a calculation

148 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
can override a void method on our view, mark that as async, and await our new
method there. We could also wire up an event to a login button, mark the event han-
dler as async (remember, event handlers are always void methods), and await our
method. Neither of these is really MVVM, so instead we could jump down into the
view-model layer and call the method inside a command that we can bind to our view,
either on a button-click or other event, such as a screen loading. Because our method
is async, we need a new type of command—an async command.

As you’ve seen already, the commands in the view model start on the UI thread, so
to run code in the background you need to create tasks. Luckily for us, all the good
MVVM frameworks have asynchronous implementations of ICommand that we can use.
In the case of MvvmCross, there’s MvxAsyncCommand. Unlike MvxCommand, which takes
an Action as its parameter, MvxAsyncCommand takes a Func<Task>—a call that returns
as a task that can be awaited.

Let’s see this in action. First, revert all the changes you’ve made to FirstView in
the iOS app in this chapter, and make the changes shown in the following listing to
FirstViewModel.

public FirstViewModel(ITextToSpeech textToSpeech)
{

this.textToSpeech = textToSpeech;
SayHelloCommand = new MvxAsyncCommand(() => SayHello());

}

async Task SayHello()
{

await Task.Delay(TimeSpan.FromSeconds(5));
textToSpeech.Speak($"Hello {Name}");

}

If you run this and tap the button, you’ll get the 5-second delay before hearing the
app say hello, and at all times the app remains responsive. The method run by the
command is an async method that awaits the call to Task.Delay, which in turn delays
for 5 seconds on a background thread before running the code to say hello back on
the UI thread.

5.8 Make your app feel responsive
As you’ve seen so far, it’s relatively easy to make your app responsive by executing
long-running tasks on a background thread. Unfortunately, this isn’t enough to make
your app a five-star experience. Not only do you need to do things in the background,

Listing 5.20 Creating an async command

The command you’re creating is now
an MvxAsyncCommand, and it takes a
Func<Task>. You can pass it a
method that returns a Task.

The SayHello method is
marked as async and

returns a Task. Remember,
you don’t explicitly return
an instance of Task—the

compiler handles it for you.

Calling await on Task.Delay
will await the 5-second call.

After the 5-second delay, the
call to say hello is made.

149Make your app feel responsive
but you also need to show visible feedback to the user that something is happening, so
they know that they need to wait.

There are a few popular ways to show feedback: using some form of spinner con-
trol in line with your UI while allowing user interactions to continue, using progress
dialogs that cover the screen and block activity until the progress is complete, or show-
ing dummy loading data, as in figure 5.24. An email app might use all of these meth-
ods to show progress in different ways at different times. When the app starts up, it will
need to authenticate the user, so it might show dummy data while this is happening.
Then once you’re logged in, it could show your email list with a spinner at the top to
show that it’s loading more emails. Finally, if you tap a new email that hasn’t been fully
downloaded, it might show a progress dialog, showing that you’re blocked from read-
ing the email until it has fully downloaded.

How you display progress to the user is very much dependent on your app. On
Android there’s a ProgressDialog class that creates a dialog that sits in the middle of
the screen, very much like the third example in figure 5.24. On iOS you have to hand-
roll this or use a third-party component, but it has a simple property you can set to
show a spinner in the status bar. Creating pull-to-refresh lists is easy on both plat-
forms—it’s built into the various list controls or included in easily accessible helpers.
Creating dummy loading data is something you’ll need to write yourself, as it would be
specific to your app.

You should always think about how to give feedback to your user when doing work
in the background. If your app appears to be doing nothing when it’s loading, you

NewsNews
Search
People Travel

Loading…

Lauren Ipsum
Auckland

Loving the beach today!

Posted 4 hours ago

Lauren Ipsum
Auckland

Aarti Effem
Wellington

Out for lunch

Posted 5 hours ago

Progress dialog at the top
of the list being reloaded

NewsNews
Search
People Travel

Dummy loading data

NewsNews
Search
People Travel

Loading…

Progress dialog over
the whole screen

Figure 5.24 If your app looks like it’s doing something during a long operation, the user will
be happier than if your app looks unresponsive.

150 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
probably need to add some user feedback. Ideally you should write this code in a plat-
form-specific class and expose the ability to show and hide progress indicators via an
interface that you make available to your view models via IoC, like the ITextToSpeech

interface in chapter 4. This way your commands can use it to show feedback, just like
in the following pseudocode.

public class MyViewModel : MvxViewModel
{

IProgressService progressService;

public MyViewModel(IProgressService progressService)
{

this.progressService = progressService;
DoSomethingLongCommand = new MvxAsyncCommand(() => DoSomethingLong);

}

public ICommand DoSomethingLongCommand {get; private set;}

async Task DoSomethingLong()
{

progressService.ShowProgressFeedback();
try
{

...
}
finally
{

progressService.HideProgressFeedback();
}

}
}

5.9 It’s time to start building things
Over the last few chapters, we’ve gone through MVVM looking at the cross-platform
model and view model, the binding and the view. We’ve looked at property-changed
notifications and commands and seen how to run code in multiple threads. These are
important principles that make up the foundations of building high-quality cross-plat-
form mobile apps.

Listing 5.21 Showing feedback to the user during a long-running command

An instance of IProgressService is passed in through constructor
injection and stored in a field. This interface has platform-specific

implementations to show some form of progress feedback to the user,
and to hide that feedback once the long-running action is complete.

Before a long-running action
starts, the progress feedback
is shown to the user.

After the long-running action is complete, the
progress feedback is hidden. This is done in a

finally block so that if the command throws an
exception, the feedback is still hidden.

151Summary
Now you’re ready to start building apps for real. In the next part of this book we’ll
start looking at building an app from the ground up, starting with designing the app,
the UI, the user flows through the app, and the structure of the code.

Summary
In this chapter you learned

 When building apps, you need to keep the UI responsive or users will stop using
your apps. To do this, you can use tasks to write asynchronous code that runs in
background threads instead of on the main UI thread.

 The UI thread is where everything on the UI happens. Exceptions on this
thread can kill your app, and updating the UI from another thread will throw
exceptions.

 C# has some awesome features that make it easy to write clean code that runs in
the background.

 As well as keeping your UI responsive, you need to show feedback to the user
that something is happening.

You also learned how to

 Run code in a background thread using a Task.
 Use continuations to run multiple tasks, including marshaling tasks back onto

the UI thread.
 Handle exceptions thrown inside tasks using continuations.
 Use async and await to make your code more readable.

Part 2

Building apps

Now that you’re familiar with the MVVM design pattern and how it can be
used to build testable, reusable code, this part of the book expands on that
knowledge. It shows how you can build cross-platform apps on iOS and Android,
starting with the cross-platform code and moving on to platform-specific UI
code, taking a couple of example apps from design through to fully working
apps. This part moves up, layer by layer, though MVVM, before diving into the
Android and iOS UIs.

Chapter 6 introduces two example apps that will be built throughout the rest
of this part. It looks at how to design an app, focusing on what code goes in what
layer in the MVVM design pattern. Finally, it covers creating the solutions for the
example apps and looks at the project and application properties for a Xamarin
mobile app.

Chapter 7 focuses on the model layer. You’ll see how to build simple models
and more complex model layers with services and repositories, and you’ll learn
how to access SQLite databases and web services. It also introduces unit testing,
showing how easy it is to unit-test well-structured code.

Chapter 8 moves up a layer and covers view models. It considers how state
and behavior are represented, covering properties, commands, and value con-
version. It also shows how to test UI logic using unit testing.

Chapters 9 and 10 cover the view and application layers on Android, recycler
views for showing lists of data, and multiscreen navigation. It then shows how to
add polish to an app by creating app icons and splash screens.

Chapters 11 and 12 focus on iOS, working on the application and view layers
of the first example app, covering view controllers, UI controls, storyboards, and

154 PART 2 Building apps
auto layout and constraints, table views, and multiscreen navigation. It then covers
app icons and launch screens.

After you’ve finished these chapters, you’ll have working iOS and Android apps
that will be made production-ready in the third part of this book.

6Designing MVVM
cross-platform apps
In the first part of this book we looked at the foundations of an MVVM-based cross-
platform mobile app. We looked at what the different layers in MVVM are all about
and how to structure your code inside them. We also looked at how threads work in
mobile apps and how you can keep your apps responsive when performing long-
running actions. Now it’s time to think about how you can start building a cross-
platform mobile app.

As developers, we’re often tempted to start a new app by firing up our IDE and
clicking File > New Project. But a little planning goes a long way, so before we start

This chapter covers
 Preparing for building cross-platform apps by considering the

differences between iOS and Android

 Designing the flows a user will take in an app, including which
layer and which thread to use

 Creating the solution for an app

 Configuring the properties for your app, including SDK
versions and linker settings
155

156 CHAPTER 6 Designing MVVM cross-platform apps
creating any code, let’s first think about what we’re building and then think about
how to build it. Then we can create a new solution and look at how it differs from the
kinds of solutions most C# developers are used to.

Throughout this part of the book we’ll be looking at two app examples—one very
simple and one slightly more complex—and I’ll use these apps to introduce the ideas
and concepts you’ll need to know to build production-quality cross-platform apps
using Xamarin and MVVM. In this chapter we’ll talk about designing these apps:
you’ll see how to create the solutions for them, and I’ll explain these solutions in
detail. The next few chapters will explain how you can build up your Xamarin apps
layer by layer, from the model, to the view model, to the view, looking at our two exam-
ple apps and at other features you can add to your apps in each layer.

6.1 Introduction to designing a cross-platform app
The Facebook app is popular on iOS and Android, catering to millions of users world-
wide. On both platforms it offers the same functionality, but the way it offers its fea-
tures is different on each platform. Figure 6.1 shows what these apps look like at the
time of writing.

On Android, all the buttons are on the top of the screen. This is because Android has
its three navigation buttons at the bottom of the device, either as physical or software
buttons. If an app has buttons just above these navigation buttons, it’s too easy to acci-
dentally tap a navigation button when you meant to tap an app button, so Android
apps don’t have buttons on the bottom as a good design practice.

iOS, on the other hand, doesn’t have easy-to-tap buttons at the bottom—it has a
hardware home button, allowing the iOS Facebook app to have some of its buttons on
the bottom. These buttons are used to select different views: your news feed, market-
place, notifications, and settings. They’re tab buttons, each one representing a
new tab in a tab control. (Tab controls consist of a number of pages indicated by tab

Search

STATUS PHOTO CHECK-IN

What’s on your mind?
What’s on your mind?

Search

Live Photo Check In

Facebook on Android Facebook on iOS

Figure 6.1 Apps like Facebook look and work differently on iOS and Android.

157Introduction to designing a cross-platform app
buttons in a bar, and tapping a tab button shows the page represented by that tab, sim-
ilar to the tabs on folders in a filing cabinet.)

On Android, swiping from right to left or left to right changes tabs; swiping on iOS
won’t change tabs, but swiping in the Facebook app will slide the screen out to show
the Messenger screen (making it look like the Messenger screen is below the main
screen—following the iOS human interface guidelines on depth). This is a simple but
important difference—Android has tabs at the top with swiping to change tabs,
whereas iOS has tabs at the bottom without swiping.

These differences may seem small, but they’re important. They involve navigation
paradigms that are common to each platform, making the apps consistent with other
apps on their own platforms, whether they’re apps that come with the OS or from
third parties. This means a new user can start using an app and already have an idea
how to navigate it.

With Xamarin you can build an app for multiple platforms in one Visual Studio
solution with lots of shared code, but you have to be careful with your UIs. You
shouldn’t always build identical apps on both platforms; instead, tailor the user inter-
face and user experience on each platform. You’ll want to maximize code reuse, but
not necessarily reuse the same UIs.

Luckily, some of this complexity is abstracted away from you—if you create tabs in
your apps using out-of-the-box tab controls, you’ll get the appropriate behavior, as
shown in figure 6.2. The problems come when you need something that doesn’t come
from an out-of-the-box control.

Google has released a Gmail app for both Android and iOS (figure 6.3). On iOS, to
write a new email you tap a button on the top toolbar. This is pretty standard for iOS
apps, using the top toolbar for action buttons. On Android it does something differ-
ent—instead of having a button on the top toolbar, it has a floating action button
(FAB). This is a round button near the bottom right of the screen (a little bit up from
the bottom to avoid the risk of accidentally tapping a navigation button), and it uses a

MyApp

News Weather

MyApp

Tabs on Android Tabs on iOS

Figure 6.2 Using out-of-the-box controls ensures your app will have a consistent look and feel
with the rest of the OS.

158 CHAPTER 6 Designing MVVM cross-platform apps
shadow effect (referred to as elevation in Android-speak) so it looks like it’s floating
above the page. This is a standard Android UI paradigm—a lot of Android apps use a
FAB for the most common action on a particular screen.

These differences aren’t provided for free by out-of-the-box controls. Instead, they’re
different controls added in different ways. On iOS the developers had to explicitly
add a toolbar button, and on Android they had to add the FAB.

As developers of cross-platform apps, we have to keep these differences in mind.
It’s easy as a consumer to use one platform and get used to the way it works, but to be
a successful cross-platform developer, you’ll need to get used to both platforms so you
can always think of your UIs in terms of each platform.

Inbox

Bob

Mum

Hi from Bob

Happy Birthday

Inbox

Bob

Mum

Hi from Bob

Happy Birthday

Gmail on Android Gmail on iOS

Figure 6.3 Android and iOS have different paradigms for the most popular action a user
might do—iOS uses toolbar buttons, whereas Android favors the floating action button.

Mobile apps are constantly changing
At the time of writing, Gmail uses the iOS toolbar button and Android FAB. This may
change in future releases because Google is really trying to push its own design
standard. It’s worth getting a few apps on different platforms and looking at their dif-
ferences to get an understanding of how apps can provide the same functionality in
different ways.

Android has also released a bottom-navigation component, to provide iOS-like tabs
at the bottom. This is pretty recent, but it may mean that Android apps will start to
support bottom navigation.

159Designing the UI and user flows
With this in mind, let’s now start to think about the design for a couple of apps.
One will be a single-screen square root calculator. The other will be a multiscreen
counter app (an app that you can use to count different things, like how many cups of
coffee you’ve had). We’ll take both these apps through from design, to looking at the
code structure, to creating a new solution and structuring the code.

6.2 Designing the UI and user flows
For the rest of this and the upcoming chapters, we’re going to focus our attention on
a couple of app examples. One is a simple square root calculator (like the example
from chapter 2), which we’ll call SquareRt, in keeping with the current trend for nam-
ing things by taking normal words and losing vowels. The other will be a counter app
supporting multiple counters, and we’ll call this one Countr. Let’s look at these in
turn and consider the design of their UIs and user flows. Later you’ll see how this
maps to the architecture of each app.

When I refer to the UI, I’m referring to the user interface presented to the user. By
user flows, I’m referring to the user’s experience—the actions the user can take to flow
through the app, the interactions they have with the UI, and the results of these inter-
actions on screen.

6.2.1 SquareRt—a simple app for calculating square roots

The aim of this app is to let the user enter a number and then to calculate its square
root. It’s a fairly simple task, so we don’t need a complex UI. This is also the kind of
app that could be the same on both iOS and Android.

Before we can start cutting code, we need to think about what to build. Thinking
about the UI is a good way to divide up the code. We’re using MVVM after all, so we
need to consider the model layer, the views, and their corresponding view models.
Once we know what UI we need, we can start to define our views, and then the view
models.

Apple requires high-quality apps
This is a simple app example for illustration, and not something that you should ever
build and try to submit to the app stores. Google has a fairly lax attitude toward the
quality of apps that can be submitted, whereas Apple is fairly draconian (although
both are strict about offensive material or copyright violations). If your app doesn’t do
anything of value (such as just calculating a square root), it’s very likely to be rejected
from the app store. According to Apple’s App Store guidelines, there are “lots of seri-
ous developers who don’t want their quality apps to be surrounded by amateur hour.”

You can read Apple’s “App Store Review Guidelines” at http://mng.bz/525T. The
Google guidelines are at http://mng.bz/KQbE.

http://mng.bz/525T
http://mng.bz/KQbE

160 CHAPTER 6 Designing MVVM cross-platform apps
A good way to define the UI is to think about the user flows—what actions the user
will want to take, and what the results of these actions will be. Once you have these
actions, you can start to map them to the UI and define what your UI should look like.
Let’s draw a simple flowchart of the only user flow through the SquareRt app, shown
in figure 6.4.

This flow is very simple—the user can only use this app for one thing. They need a way
to enter a number, something in the app needs to calculate the square root, and then
the square root is presented to the user. The UI for this is relatively easy to imagine—
you need a way to enter the number, a way to kick off the calculation, and a way to
show the results. Figure 6.5 shows some options.

The first two UIs in figure 6.5 have a text box where the user
can enter the number, and a button that kicks off the calcu-
lation. The third removes the button—from a user perspec-
tive, if they’re entering a number, they obviously want to see
the square root, so the app could calculate it automatically
every time the value in the text box changes. This is a good
option to consider—the less the user has to do, the better
the experience.

We’re going to use the third UI in this book (figure 6.6),
but it’s a good exercise to think about the other UIs, or to con-
sider other designs of your own, as we delve deeper into
designing this app.

User enters
a number

Square root
is calculated

Answer is
shown on UI

Figure 6.4 The SquareRt app is pretty
simple, with only one flow that the user
can take.

SquareRt

400

√
20

Square Root

SquareRt

400

20

√
Calculate

SquareRt

400

20

√

Figure 6.5 Some possible UIs for SquareRt, a simple square root
calculation app

SquareRt

400

20

√

Figure 6.6 Our final UI
for the SquareRt app

161Designing the UI and user flows
6.2.2 Countr—an app for counting multiple things

The SquareRt app is a very simple example, but most apps are a lot more complicated.
Our second example is an app called Countr that allows the user to define multiple
counters, and to increment them whenever they want, such as to track the number of
cups of coffee they’ve had, or the number of times they’ve been out for a run. This
app will need to show multiple counters, will need the ability to add or delete a
counter, and will need a simple way to increment each counter. Figure 6.7 shows these
user flows.

Showing lists is a very popular thing to do in mobile apps. Think about the apps you
use most often—probably most of them deal with lists or grids of data. Email apps
show a list of emails, Facebook shows a list of posts, Twitter shows a list of tweets, mes-
saging apps like WhatsApp show lists of messages. In all these apps you have a scrolla-
ble list of data. You read what’s on the page and then “push” the items up by swiping
up on the screen to see what’s below. This is a popular paradigm, so we’ll use it for our
Countr app, with the main part of the UI showing a list of counters.

As you’ve already seen, Gmail on iOS and Android have different ways for the user
to create a new email—a toolbar button on iOS and a FAB on Android. We’ll follow
this convention in our app with the iOS version having a toolbar button to add a new
counter, and the Android version having a FAB to do the same thing.

Often apps with lists use swiping to delete—email apps allow you to swipe an email
to the left to display a Delete button below the email, which you can tap to delete. This
paradigm would be good for deleting counters.

Another thing you see with lists is buttons against each item, allowing you to per-
form some action, such as retweeting a tweet in the Twitter app or liking a post in

User wants to
see counters

Counters are
loaded from

storage

All counters are
shown on UI

User adds
a counter

User enters
counter details

Counter is
created and

stored

New counter is
shown on the UI

User deletes
a counter

Counter is
removed from

storage

Counter is
removed
from UI

User increments
a counter

Counter is
incremented
and stored

Counter is
updated on

the UI

Figure 6.7 The user flows for the Countr app—showing, adding, deleting, and
incrementing counters

162 CHAPTER 6 Designing MVVM cross-platform apps
Facebook. Again, this is a popular paradigm, so we’ll use this in our Countr app to
increment a counter.

Unlike with our simple SquareRt app, the Countr app will have different UIs on
iOS and Android, at least when it comes to adding counters. This is something you
always have to keep in mind—Xamarin allows you to build cross-platform apps, but
you should always build the UIs in a way that’s right for each platform. Cross-platform
core, and a platform-specific UI. Don’t be tempted to build one UI for both plat-
forms—if it goes against the standard UI of one platform, it will only confuse users.

Figure 6.8 shows the different UIs we can use for this app on both iOS and
Android.

6.2.3 Defining user flows and UIs

We’ve just looked at the user flows for our two example apps. But the hard part can be
defining these flows, so how do you go about doing it? I like to use these steps:

1 Start by thinking about the high-level actions that the user will want to use your
app for, such as counting something.

2 From these high-level actions, think about how they can get the app in a state
where they can perform these actions, such as adding a counter so that they can
count something, and showing all the counters to see what they can count.

3 Think about the ancillary tasks they might want to perform around this state,
such as deleting a counter.

4 Think about the steps the user takes to perform each task or action, such as
viewing counters, and the end results, such as seeing the counters.

5 Think about the general tasks your app needs to do in order to go from the
starting point to the end result, such as loading counters from some kind of
storage.

By following these steps, you should be able to build some simple flowcharts for your
app, like the ones you’ve seen already. The flowchart should start with the high-level

New Counter

Counter Name

Countr

Android

Coffees

Tap +
Runs

4

1

+

+

New Counter DoneCancel

Counter Name

Countr Add

iOS

Coffees

Tap Add
Runs

4

1

+

+

Figure 6.8 iOS and Android UIs for the Countr app with different UI conventions on each platform,
such as an Add button in the toolbar on iOS, but a FAB on Android

163Designing the UI and user flows
action the user’s trying to achieve, starting from the place in your app where the user
will likely be when they kick off these actions. Then it should go through one or more
steps to achieve this action, either user-based steps (something the user has to do) or
system steps (something the app does). Finally, it ends with a result that may or may
not involve the user.

Figure 6.9 shows a simple example. The user wants to see counters, and the end
result is that the counters are shown. The step required to get there is to load counters
from storage.

Once you have these flows, it’s easy to start mapping them to a UI. Your UI needs to
provide a way to kick off each flow and provide the result. In this example, the UI
needs a way to kick off loading the counters from some kind of storage when it’s
opened and then showing all the counters. This means you need a UI with a control
that can show a collection of data, and the normal way to do this is using a vertically
scrolling list control. When you’re thinking about how to represent tasks and results
on your app’s UI, take a look at how other apps do it—sometimes there are standard
ways, like lists, that you can use to make your app easy to use. After all, if you’re using
a popular UI paradigm, your users will probably already be used to it, so they’ll be
comfortable in your app.

The Countr example demonstrates that you can create cross-platform apps that
have the same user flows, but with different UIs. I can’t stress enough how important it
is to always consider the differences between the UI paradigms on iOS and Android.
Using Xamarin, you can build cross-platform apps, but that doesn’t mean your apps
have to be exactly the same on both platforms. It’s worth spending time getting to
know how each platform works so that when you design your apps, you can keep these
differences in mind—even if the difference is as simple as using a FAB on Android
and a toolbar button on iOS.

There are many opinions about how to build a mobile app with a good user expe-
rience—the topic is worthy of a book in its own right (such as Usability Matters by Matt
Lacey, Manning, May 2018), but as a simple starting point I recommend looking at
your app the way we’ve looked at our two examples. Start by considering the user
flows—think about the interactions your user will have with your app. Then think
about how you can map those interactions to the UI in a way that makes sense on each
platform. It’s also good to think about how the user can achieve each flow in as few
steps as possible, in a way that makes sense on each platform.

We’ve now designed the user flows and sketched out the UIs, so let’s look at con-
verting these into an architecture that follows the MVVM design pattern.

User wants to
see counters

Counters are
loaded from

storage

All counters
are shown

on UI

Figure 6.9 The steps for showing
counters—the user wants to see them,
the app loads them, the app displays
them to the user.

164 CHAPTER 6 Designing MVVM cross-platform apps
6.3 Architecting the app
Now that we’ve worked out what the UI
should be, it’s time to start thinking about
the architecture. As you’ve seen in the pre-
ceding chapters, there are three layers and
two thread types to think of. You have to
consider what goes in the model layer,
what goes in the view-model layer, and
what goes in the view layer. And for the
code in the model and view-model layers,
you need to consider what code needs to
run on the UI thread and what can run in
the background.

6.3.1 Which layer?

As you start thinking about the structure of
your code, you need to consider which lay-
ers the different parts of the code go in.
Think back to the layer diagrams from pre-
vious chapters, as shown in figure 6.10.
Remember that the code responsible for UI interactions encompasses the view layer,
the view-model layer, and the binding—the view is the platform-specific UI widgets,
and the view model is the cross-platform UI logic bound to the view.

SQUARERT

For SquareRT, we want as much code as possible in the model and view-model layers.
This is cross-platform code that’s shared between the Android and iOS apps, and we
only want to write it once and reuse it on both platforms.

Let’s see how the SquareRt app code can be divided up between layers. We can take the user
flow we’ve defined and map it across the layers. This is shown in figure 6.11.

What we see from this exercise is that we need one view with a control that a user
can enter text into and one control to show the result. We also need a corresponding
view model that can bind to those controls, and a model layer that can do the calcula-
tion. This very quickly leads to three classes that are the main structure of our app, as
shown in figure 6.12.

COUNTR

Let’s repeat the same exercise with our Countr app, mapping the flows we’ve already
defined into our three MVVM layers. This is shown in figures 6.13 and 6.14.

UI layer

App
layer

UI logic
layer

iOS

C# (.NET Standard)

Business
logic layer

View

View
model

ModelC# (.NET Standard)

C#

C#

C#

C#

Android

C# (.NET Standard)

Binding

Figure 6.10 MVVM has three layers, with the
view layer being platform-specific and the view-
model and model layers being cross-platform.

165Architecting the app
UI layer

App
layer

UI logic
layer

iOS

C# (.NET Standard)

Business
logic layer

View

View
model

ModelC# (.NET Standard)

C#

C#

C#

C#

Android

C# (.NET Standard)

Binding User enters
a number

Square root
is calculated

Answer is
shown on UI

Figure 6.11 User flows can map to the MVVM layers, with user interactions
spanning the view and view-model layers.

UI layer

App
layer

UI logic
layer

SquareRtView

SquareRtViewModel

SquareRtCalculator

iOS

C# (.NET Standard)

Business
logic layer

View

View
model

ModelC# (.NET Standard)

C#

C#

C#

C#

Android

C# (.NET Standard)

Binding User enters
a number

Square root
is calculated

Answer is
shown on UI

Figure 6.12 Once you’ve mapped user flows to the MVVM layers, you can map classes to these as well.

View

View
model

Model

User wants to
see counters

Counters are
loaded from

storage

All counters
are shown

on UI

User enters
counter details

User adds
a counter

Counter is
created and

stored

New counter
is shown
on the UI

Figure 6.13 Mapping showing and adding counters to the view, view-model, and model layers

166 CHAPTER 6 Designing MVVM cross-platform apps
Again, just like with SquareRt, you can see a pattern of classes in these layers. We need
to display a list of counters that can be manipulated (such as adding and deleting
them), so we need a view and view model for the UI, as well as some kind of service
class in the model layer that stores and retrieves the counters from some kind of stor-
age. We also need something in the UI to add a new counter and enter its details, so
we need a view and view model for this new counter. This gives us the classes shown in
figure 6.15.

DIVIDING APPS INTO LAYERS

Once you’ve worked out your user flows, it should be obvious which parts of the flow
involve the UI and which parts don’t. Any direct interaction with the user needs some
kind of UI, and anything else doesn’t. This means it’s relatively simple to map user
flows to the MVVM layers. Anything that involves the UI lives in the view and view-
model layers (the UI in the view layer, and the state and behavior in view models), and
the core business logic lives in the model layer. Your flow could switch between layers as
many times as necessary—user does x, app does y in the background, it asks the user to
confirm on the UI thread, does z in the background, and then shows the user a result.

The process of adding a counter needs something in the UI layer that the user can
interact with to start the add flow, such as an Add button in the view and a command
to handle it in a view model. Next, the user needs to give the counter a name, so there
needs to be some kind of UI, such as a new screen with a text box where the user can
enter the name, and a corresponding view model to get this name. Then the app
needs to create the counter and store it somewhere, and this is handled in the model
layer. Finally, the user needs to see the new counter in the list, so the UI for showing

View

View
model

Model

User deletes
a counter

Counters is
removed

from storage

Counter is
removed
from list

User
increments
a counter

Counter is
incremented
and stored

Counter is
updated
on the UI

Figure 6.14 Mapping incrementing and deleting counters to the view, view-model, and
model layers

View

View
model

Model

CountersView

CountersViewModel

CountersService

CounterView

CounterViewModel

Counter

Figure 6.15 The Countr app maps
to a set of view, view-model, and
model layer classes.

167Architecting the app
the list of counters needs to be updated, which means an update in a list of counters
stored in a view model, which is reflected in a view.

6.3.2 Which thread?

We’ve divided our example apps up into layers to match the MVVM design pattern, so
the next thing to do is think about multithreading. As you saw in the previous chapter,
it’s important that our app remains responsive, so we should start thinking now about
what thread our code runs on.

There’s a very simple rule to follow here—if the UI lags or is unresponsive for
more than about 200 ms, the user will notice a perceptible lag. More than this and it
feels like the app has locked up, and it can take only a few seconds before a user is fed
up waiting and kills your app. You should always run any action that could take more
than about 100 ms on a background thread.

Of course, this isn’t always easy to judge, especially when you’re in the process of
developing your app. Most developers have high-powered versions of the latest and
greatest devices, but most users don’t. What takes 50 ms on your top-of-the-range
iPhone 7 might take 500 ms on an old iPhone 4s. Making a web call might be almost
instantaneous when calling a development web service running on your development
machine and accessing it over WiFi, but it might take multiple seconds in the real
world using 3G.

Here are some good basic guidelines:

1 Always test on a poor device—you can pick up older devices for not very much
money, either through clearance sales or secondhand from sites like eBay or
Craigslist. It’s worth having a device with the lowest specs you want to support
for testing.

2 Always assume anything involving the network will run slowly, so always make
network calls on a background thread.

3 When storing anything locally, or retrieving anything from a database such as
SQLite (a popular mobile database that comes as part of iOS and Android) or
from a file, always do this in the background.

4 If you’re not sure, do it in the background.

A good way to work out which code needs to run on the UI thread or a background
thread is to take each task and ask yourself a few questions: does it involve the UI, does
it need external resources, is it slow? Figure 6.16 shows a flowchart for this.

If you map your user flows by following this flowchart, you should be able to easily
work out in which thread your code should be run.

ANDROID HAS A TOOL THAT CAN HELP CHECK YOUR CODE Android has a strict
mode that you can enable to get feedback on your code, to see if it’s running
in the correct thread. You can use this to get feedback about whether an
action is taking too long on the UI thread. There are more details on Strict-
Mode in the Android developer’s reference: http://mng.bz/nDI5.

http://mng.bz/nDI5

168 CHAPTER 6 Designing MVVM cross-platform apps
When using third-party code, such as NuGet packages or Xamarin components, it’s
always good to check whether the code has any async methods. For example, if you
use HttpClient from the System.Net.Http namespace in the .NET Framework, you’ll
see it has methods like GetAsync, which returns a Task<HttpResponseMessage>.
Whenever an async method is exposed, you can usually be sure that internally it will
create a Task to run long-running actions on a background thread. You can await this
from the UI thread, and your app should remain responsive because the HttpClient

handles the threading for you. Obviously, there are no guarantees, so it’s good to
check the behavior first.

Let’s now think about the threading requirements of our example apps. We’ll take
each user flow and consider what needs to happen to achieve it. From there, we can
work out if each part of the flow needs to run on a background thread.

SQUARERT

The user flow for the SquareRt app has three parts—two that involve the UI (getting
the initial number and showing the result), and one that involves a calculation.
Although this is a relatively complex calculation, it’s pretty quick—it will run in frac-
tions of a millisecond, so we don’t have to think about background threads at all.
Everything can run on the UI thread (figure 6.17).

COUNTR

Unlike SquareRt, Countr does a bit more than just a single calculation. It includes a
simple calculation—incrementing a counter, which could be run on the UI thread

Does this
involve the UI?

No

Yes

UI thread

Does this use
external resources

(DB, web)?

No

Yes

Background
thread

Does this take
more than 100 ms
on a slow device?

No

Yes

Background
thread

UI thread or
background

thread

Figure 6.16 If your code involves the UI, it needs to run on the UI thread, but if it uses external
resources or is slow, it should run on a background thread.

User enters
a number

Square root
is calculated

Answer is
shown on UIUI thread

Background
thread

Figure 6.17 The SquareRt app doesn’t do anything that needs to run in a
background thread.

169Architecting the app
without any issues—but “storage” is the key word in these user flows when thinking
about threading. We haven’t discussed the storage of data yet (we’ll look at storage in
the next chapter), but any kind of storage involves making a call to something poten-
tially slow. If you write to a SQLite database, or a file, or a web service, it’s good prac-
tice to do it in a background thread to shield your UI from anything that might make
it unresponsive.

FILESYSTEM ACCESS CAN BE SLOW It’s often assumed that saving files by writ-
ing to flash memory in a mobile app is fast, because the hardware involved is
pretty quick. Although this is generally true, the flash memory has a filesystem
on top of it that may not be the best at handling concurrency. If it’s busy per-
forming a large file operation, such as saving a downloaded update, your fast
disk access might wait a short time before running, making the save take lon-
ger than expected.

In the user flows, you can do anything that involves the UI on the UI thread, and any-
thing that involves storage on a background thread. Even though the calculation to
increment a counter is fast, we still need to think about doing it on a background
thread because the result of the calculation will need to be stored. Figure 6.18 shows
how the incrementing of a counter would be handled across the UI thread and a back-
ground thread.

6.3.3 Mapping code to layers and threads

We’ve looked at how to map user flows onto MVVM layers and threads, and this is a
good exercise to go through as you start out building cross-platform mobile apps. Fig-
ure 6.19 shows a layout you can use to help map your user flows and code. Print out or
photocopy a few copies, or grab the SVG version from this book’s Git repository to use
with your favorite drawing tool if you’d like to save paper.

You should start by thinking about the distinct actions your user would want to per-
form with your app, as we’ve discussed. Then break them apart into separate steps—
what would a user do step by step, and what would the app do step by step. Draw these
flows on the diagram, thinking about which layer each should go into—UI interac-
tions go on the view layer with the corresponding view model, and steps the app takes

User increments
a counter

Counter is
incremented
and stored

Counter is
updated on

the UI
UI thread

Background
thread

Figure 6.18 The Countr app needs to access storage, so it’s better to do this on
a background thread before coming back to the UI thread to display the results.

170 CHAPTER 6 Designing MVVM cross-platform apps
View
U

I thread

U
I thread

M
odel

U
I thread

View
 M

odel

B
ackground thread

B
ackground thread

Figure
6
.1

9
To

help
w

ork
out

w
hich

layer
or

thread
to

use,
try

m
apping

your
user

flow
s

on
this

diagram
.

171Creating the solutions
internally go in the model layer. As you put things into the view-model and model lay-
ers, think about the threading—should they be on the UI thread or a background
thread? Steps that need external resources or that are slow always go on a background
thread.

Have a go at mapping our two example apps using this diagram and the flows
defined earlier (check appendix A to see how I did it). Then think about your own
app ideas and try mapping those. If you’ve used MVVM before and built UI-based
apps, you might find that you already think about these layers and threads automati-
cally, so you don’t need to use this diagram. But if this is all new to you, it’s a good ref-
erence point.

Now that we’ve thought about how to put the code in the correct layers and
threads, we’re ready to create our solutions. It’s time to fire up Visual Studio on your
platform of choice and get ready to code!

6.4 Creating the solutions
Once you’ve created a rough app architecture based on the sort of classes you want,
what layer those classes represent, and what thread your code should run on, it’s time
to fire up your IDE and create the actual solutions. In the rest of this chapter, we’re
going to create solutions much like we built the Hello Cross-Platform World example
in earlier chapters. Then we’ll look at at some new concepts that are important in
mobile app development—app property files, SDK versions, and linking.

Everything in the remainder of this chapter is relevant to both SquareRt and
Countr, and over the next few chapters we’ll start writing the code to turn the new
solutions into fully working apps. We’ll just be creating the solution for SquareRt
here, but everything we’ll discuss is relevant to both apps, so repeat the process for
Countr when you’re done with SquareRt.

The first thing to do is to create a new solution. We’ll be using the same Visual Stu-
dio extension we used in chapter 2 and creating the same project type. Name your
project SquareRt (or come up with your own name, of course). In Visual Studio for
Mac, create an MvvmCross Single Page Native Application from the Other > .NET sec-
tion. On Windows, choose MvvmCross Single Page Native Application under Visual
C# > MvvmCross, and delete the Universal Windows and WPF projects.

Now that you have your solution, let’s take a look at some of the ways that the pro-
jects in this solution will differ from what you’ve seen before in C# projects, such as
desktop or ASP.NET web applications. Mobile apps are different from other C# appli-
cations—they run on devices with limited hardware and with an OS that changes dra-
matically every year. This means your apps need to be very aware of the OS version
and what APIs are available, as well as be as small as possible. They also expose a whole
raft of properties to the OS and app stores via a file in the app package that provides
information about your app. Let’s start by looking at how these app properties are set.

172 CHAPTER 6 Designing MVVM cross-platform apps
6.5 Application properties
When you build and ship your mobile app, you have to bundle some information
inside your app. This is used by both the relevant app store and the OS to get informa-
tion about your app, such as its name, icon, supported OS version, and app version
number. Both iOS and Android ship an XML file containing this information.

We’ll look at a number of these properties here, but not the app icon. Mobile
apps have to run on devices of all shapes and sizes, so there are some complications
when it comes to images, and we’ll look at these for Android in chapter 9 and iOS in
chapter 11.

6.5.1 Android manifest

The AndroidManifest.xml file in the Properties folder of the solution is shipped with
your app package and provides information about your app to the Google Play Store
and the Android OS. This includes which SDK version you’re targeting (more on this
later in the chapter), what permissions your app needs, the app’s name, its version,
ID, and icon. In a native Java Android application built using Android Studio from
Google, the manifest will also contain information about the classes that make up
your app.

Luckily, as Xamarin developers, we don’t need to worry about explicitly adding this
information to the manifest XML file. Instead we mark the relevant classes with attri-
butes, and these get added automatically to the copy of the manifest file that’s pack-
aged inside the compiled application at build time. Again, this will be covered in
chapter 9, but you may have seen this already in the FirstView activity in the First-
View.cs file in the Views folder of the Android app—this class was marked with an
Activity attribute ([Activity(Label = "…")]), indicating that at build time it
should be added to the manifest as an activity with a particular label.

Although this is an XML file, there’s really no need to manually edit the XML.
Visual Studio comes with an editor for this: you can access it in Visual Studio for Mac
from the Project Options dialog or by double-clicking the AndroidManifest.xml file in
the Properties folder (figure 6.20); on Windows you can access it from the project
Properties tab (right-click the app and select Properties). If you open it by double-
clicking the file in the Solution Pad in Visual Studio for Mac, it opens in a tab with two
subtabs—one to edit the file using the same editor as the Project Options dialog, and
the other showing the raw XML (figure 6.20). In Visual Studio, double-clicking the
file in the Solution Explorer opens a tab with just the raw XML.

There are several items of interest to us now:

 Application name
 Package name
 Version number
 Version name
 Required permissions

173Application properties
APPLICATION NAME

The application name is the name of your application both in the Google Play Store
and on your device. You’ll notice in figure 6.20 that this is set to @string/Application-

Name, which is a resource reference. You’ll see these a lot in Android apps—rather
than hard-code a value, you reference a resource. These resources are in the
Resources folder, which contains a subfolder called values containing an XML file,
string.xml. If you open this file, you’ll see the following.

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="VersionName">1.0</string>
<string name="ApplicationName">SquareRt</string>

</resources>

If you want to rename the app, you can edit the value of ApplicationName in this
XML file, and the app will automatically be renamed next time you compile.

Listing 6.1 strings.xml contains strings that can be used anywhere in your app

The AndroidManifest.xml file lives in the Properties folder.

Figure 6.20 The Android Manifest file in the Solution Pad and in the editor

The version name
of the application

The name of the
application

174 CHAPTER 6 Designing MVVM cross-platform apps
We’ll cover these more in chapter 9, but the main reason for using resource files
for storing values is so that you can localize your app easily. In this example we only
have one strings.xml file, but you can have multiple resources based on the locale of
the app’s user—one file for U.S. English users, one for Chinese users, one for French
users, and so on. By containing all your strings in one file, it’s easy to get your app
translated—there’s only one XML file to translate. Localization is outside the scope of
this book, but you can find more information in Android’s “Localizing with
Resources” API guide: http://mng.bz/fb7Y.

PACKAGE NAME

The package name is the unique name for your application package, and it’s used to
identify your app on the Google Play Store. When you want to push app updates to
the store, this package name identifies which app is being updated. The normal form
for this name is to use your company or personal domain name reversed, suffixed with
an identifier for your app. For example, if I were creating this app for publication,
I’d have a package name of io.jimbobbennett.squarert. Once your app has been
published to the store, you can’t change this value, or the Play store will think you’re
publishing a different app.

Unlike the application name, there’s no need to define this in the strings.xml file
because this will never change to match a locale. Once this name is set and your app is
published, you can’t change it, so be sure to set it correctly before publishing.

VERSION NUMBER

This is the version number of your package (also referred to in the XML as the ver-
sion code). This number is used by the Google Play Store and the device to track
upgrades—if the package on the store has a higher version number than the one on
the device, the app can be upgraded. You can only push to the store an updated pack-
age with a higher version number than the one already in the store—it doesn’t have to
be 1 higher, you can increment it by however much you want, it just needs to be
higher.

There’s a limit on this number—it’s a large limit (2,100,000,000 to be exact), but it
can easily be reached if you use automated build tools that increment this number or
set it to values based on the current time or source code revision number. Once it’s
reached, you can no longer upgrade your app, so be careful with large numbers.

VERSION NAME

This is your internal version name for your app, and it’s a string that can be set in the
manifest or in the string.xml resource file, as shown earlier in listing 6.1. Most devel-
opers use a multipart version so that they can internally track releases. You can set this
to whatever is relevant to you.

REQUIRED PERMISSIONS

When you’re building mobile apps, you can closely integrate your app with the fea-
tures of the device as well as with other apps that come built into the OS, such as a
camera, contacts, and calendars. Obviously, there are privacy concerns with this—you

http://mng.bz/fb7Y

175Application properties
wouldn’t want a malicious app accessing your private details and uploading them to a
server somewhere, so both Android and iOS require your app to request permissions
from the user before you can do certain things. Android has a changing permission
model—on older OS versions, you’d specify the permissions you needed in the appli-
cation manifest, and at install time the user would be prompted to give your app these
permissions (and, at update time, if your app needed new permissions, the user would
be asked to confirm them before updating). In newer versions of the Android OS, you
can also ask for some permissions at runtime, explicitly popping up a dialog asking
the user’s consent before doing something.

The required permissions section allows you to request permissions up front by
ticking the boxes against the permissions that your app requires. These permissions
are shown to the user at install time, and the user has to agree to them before your
app can be installed. It’s always good to request as few permissions as you need, or
users might refuse to install your app. Certainly any permissions that don’t appear rel-
evant will cause a user to pause before installing. For example, our SquareRt app
doesn’t need permissions to access the user’s contacts or photos, and seeing a request
for these permissions would definitely make a user refuse to install the app!

6.5.2 iOS info.plist

Like Android, iOS also has a properties file that ships with the app package, called
info.plist (plist is short for property list). The info.plist file can be edited using a built-in
editor by double-clicking the file (figure 6.21), or on Visual Studio on Windows from
the iOS App project Properties tab.

The info.plist file in the iOS app contains the application settings that the OS
needs to know about, such as the name, icons, supported orientations (portrait or
landscape). This is an XML file that you can modify directly if you’re so inclined, but
Visual Studio has an editor that makes it easy to manipulate. The editor has three tabs:
Application, which allows you to change the main application settings; Advanced,
which configures things like the document types your app supports for extensions or
URL types so your app can handle being launched for links; and Source, which is a
key/value type editor for editing raw values without having to interact with the XML.
The XML syntax isn’t simple—you have to define nodes based on types, so you need
to know what type to use for what value. This editor is a great help, and even the
Source tab makes it easy for you by using the right types automatically.

Unlike Android, permissions aren’t requested here. Instead, some permissions are
granted by default (such as internet access) and others are requested at runtime.

These are the fields we care about:

 Application name
 Bundle identifier
 Version
 Build
 Devices
 Device orientations

176 CHAPTER 6 Designing MVVM cross-platform apps
APPLICATION NAME

As the name suggests, this is the application name that will be shown in the app store,
and by default it’s used as the name on the iOS SpringBoard. Unlike Android, you
can’t reference a string resource for this; it has to be set in the info.plist file on the
Application tab. You can, however, localize it. See the “iOS Localization” Xamarin doc-
umentation for more information: http://mng.bz/6B91.

On the iOS SpringBoard, your app really doesn’t have much space to display a
name, and if the name is too long, it’ll be truncated and end with ellipses. You can
usually get 12 characters or so, but your app name might be longer.

Luckily the display name shown for your app on the SpringBoard can be different
from the one shown on the store, so you can shorten it to fit. To change this, flip to
the Source tab and you’ll see a couple of values—Bundle Display Name and Bundle
Name. Bundle Name is the name of your app on the app store, and Bundle Display
Name is the name on the SpringBoard. You could set your bundle name to “SquareRt
Square Root Calculator”, and set the display name to “SquareRt”. Be aware, though,
that if you update the Application Name on the Application tab, both of these values
will be updated to match.

The info.plist file lives in the root of the iOS app.

Figure 6.21 The iOS info.plist file in the Solution Pad and the editor

http://mng.bz/6B91

177SDK versions
BUNDLE IDENTIFIER

The bundle identifier is a unique identifier for your app, and it’s essentially the same
as the Android package name—even down to the convention of using a reversed
domain name suffixed with the app name. Once it’s set on the app store, the bundle
identifier can’t be changed, and ideally you won’t want to ever change it. Your app is
signed with a certificate and a private key based on this bundle identifier, so if you
change the identifier, the signing profiles won’t work and will need to be re-created.
We’ll walk through doing this in chapter 13, but be warned, it’s not a nice process!

VERSION

Version is a string representation of a three-part version number (usually something like
major.minor.revision, such as 1.0.4) and it must be incremented each time you update
the app on the store. This is the public version number that’s shown on the store.

BUILD

Confusingly, iOS has a second one-, two-, or three-part version number that’s used to
define the build number. This is an internal build number, so it’s not shown in iTunes,
but it is used to determine if the app has been updated—just like the version code on
Android. For example, if you’re working on a release you want to publicly call 2.5.3,
you’d submit an app with the version set to 2.5.3 and the build set to anything you like,
such as 1. If this version gets rejected by Apple, you’d fix the issue and then upload a
build with the same version (2.5.3) but a different build (such as 2) so that the public
version stays the same but iTunes will know that you’ve submitted a new version.

Although this build number can consist of up to three parts, it’s usually simpler to
use a single build number and increment it with every build.

DEVICES

This field allows you to chose the type of device you want to target—iPhone, iPad, or
both. This means that you can target a particular platform—for example, if you’re
building an app that only makes sense on a larger device, you can limit it just to iPad.

DEVICE ORIENTATIONS

All mobile devices can be easily rotated, and a good app should work well in all orien-
tations or it should be locked to one orientation (something you see a lot in games—
they only work in landscape). By ticking the different boxes, you can choose which
orientations to support.

6.6 SDK versions
Every year at Apple’s WWDC (Worldwide Developers Conference) the senior VPs at
Apple unveil the new and awesome features of the next version of iOS—the operating
system for iPhones, iPads, and iPod Touches. The iPhone has been around for ten
years and has seen eleven different versions of the OS in that time, going from a
game-changing phone to a pocket supercomputer. The same is true for Android—
fourteen versions of the OS in eight years. Currently the operating systems have a
major update at least every year (more often for minor updates), and each update

178 CHAPTER 6 Designing MVVM cross-platform apps
brings a whole range of new APIs that you can use and deprecates older ones. Each
OS release comes with a newer version of the SDK providing these APIs, so new OS
releases are often referred to as new SDKs. This is different from the previous OS
models that C# developers would be used to—new Windows versions come out every
few years, and updates to the .NET Framework are also few and far between (although
this is a model that’s changing, with Windows 10 having regular updates).

As a developer, you want to use the latest features where possible, but you still want
to support older devices potentially running older OS versions. Supporting older OS
versions is less of a concern on iOS, where within weeks of a new OS being released,
the majority of users update, but it’s a big concern on Android. When Google released
Android, it was open source, so device manufacturers added their own features to the
OS before passing it to the carriers who also sometimes added their own features. This
means that when Google releases a new version of Android, or even a security patch,
not every device can install the update straightaway. Instead they have to wait for the
manufacturer to update their version, and possibly for the carrier to issue an update
as well. For new devices this does happen, but for older devices that are no longer
made, the updates may never be available. This results in the Android ecosystem
being particularly fragmented.

iOS 10 was released in September 2016, and by November it was on 79% of devices
(figure 6.22), iOS 9 was on 17%, and the remaining 4% were on older OS versions
(data from Mixpanel, https://mixpanel.com/trends/). This means most app devel-
opers can target the most recent two versions (iOS 9 and 10 at the time of writing),
and not worry about their app working on earlier versions.

On the other side of the mobile fence, the picture is not so rosy—Android Nougat
has been out for the same length of time but is on less than 1% of devices (figure
6.23), with the majority being on Marshmallow, Lollipop, and even 19% of users on
KitKat. Not only are users on older versions, but most of these users won’t be able to
upgrade—for example, I have a two-year-old tablet purchased from a major retailer in

iOS 10
(79%) iOS 9

(17%)

Others
(4%)

Figure 6.22 iOS users upgrade often, with
79% of users being on the latest iOS version
two months after launch.

Others (6%)

N (1%)

K (19%)

L (31%)

M (43%)

Figure 6.23 Android users don’t (or can’t)
upgrade as often as iOS users, with 1% being on the
latest Android version two months after launch.

https://mixpanel.com/trends/

179SDK versions
the UK that’s running Android Lollipop and will never be updated. This means that,
as cross-platform mobile developers, we need to support a lot more versions of
Android than we do of iOS.

6.6.1 Android SDK versions and the SDK manager

When you install Xamarin, it will also install the Android SDK for you. These are the
libraries and tools used by Xamarin to compile Android apps, and they’re the same
tools that the native development IDE (Android Studio) uses.

You can see what’s installed by going to Tools > SDK Manager from Visual Studio
for Mac, or going to Tools > Android > Android SDK Manager from Visual Studio in
Windows. This will load the Android SDK Manager, showing what versions of the
Android tools and SDKs are installed, as well as the images for creating Android emu-
lators. From here you can download new SDKs, download new emulator images, and
update the versions of the build tools.

One of the downsides of Xamarin development is that there are a lot of moving
pieces, some controlled by Xamarin, and others not (such as the Android SDKs). This
means it’s easy to get weird errors just by using combinations of the different tools that
don’t quite work together. As a general rule, I find it better to keep the SDK up to date
with the latest stable version.

Android SDKs are referred to in three different ways—by version number, by API
level (which can cover multiple version numbers), or by alphabetical confectionary-
based nickname (with some names covering multiple API levels). This is as confusing
as it sounds, and developers will mix and match their terminology. Google only sup-
ports (as in, provides security patches for) KitKat and above, and at the time of writing
the latest version generally available is Nougat (with Oreo being rolled out to a limited
set of Google devices). Table 6.1 shows how the names match up to API levels and to
versions for the most recent versions.

Table 6.1 The different Android code names, API levels, and versions
for the most recent and popular versions

Name API level Version

Jelly Bean 16–18 4.1–4.3.1

KitKat 19 4.4–4.4.4

Lollipop 21–22 5.0–5.1.1

Marshmallow 23 6.0–6.0.1

Nougat 24–25 7.0–7.1.1

Oreo 26 8.0

180 CHAPTER 6 Designing MVVM cross-platform apps
IMPROVEMENTS WITH APPCOMPAT AND GOOGLE PLAY SERVICES It’s not all bad
in the Android world. Google is working to back-port new features to older
Android versions using a thing called AppCompat (providing libraries for
using newer features on old OS versions) and by moving out a lot of the core
APIs into a set of Google services called Google Play Services. This means you
can still access newer features on older devices. This will be covered more in
chapter 9.

SETTING THE ANDROID SDK VERSION FOR THE APP

As already mentioned, the APIs available to Android developers change over time.
Nothing is ever deleted; instead, out-of-date APIs are marked as obsolete and new
APIs are added. For example, Android has a text-to-speech class, TextToSpeech

(http://mng.bz/T5u2). This has a method on it called Speak with two overrides. One
override was added in API 21, and the other was deprecated as of API 21. Not only was
it deprecated, but it also no longer works on devices running Lollipop (API 21) or
above.

When you build a Xamarin Android app, you can choose three different Android
SDK versions—the one to build against, the minimum your app should support, and
the target version that your app is intended to run against:

 The minimum API is used at install time—the Google Play store won’t let users
install an app that has the minimum set to a version higher than the device is
using.

 The build version is the SDK that’s used when compiling, so you can only use
APIs that are available in that version.

 The target version is used at runtime to ensure that everything works smoothly.

With the TextToSpeech API, if you wanted to use it in an app that supports KitKat and
above, you’d need to set your minimum version to API 19, and then compile against a
later version. This way your app will run on any device with KitKat and above, but
you’d be able to call both APIs. Xamarin only binds the libraries from API 15 and
above—you can target older versions if you want, and your app should run, but the
compiler won’t check that APIs that don’t exist on those versions aren’t called.

Obviously there’s a problem here—there are two different overrides of a method:
one that only runs on APIs 19 and 20, and one that only runs on APIs 21 and above.
What can you do? First, when a method is deprecated, it’s marked with the C#
Obsolete attribute, so if you’re compiling against a later SDK, you’ll get a compiler
warning if you call this method. This can really help you see what’s no longer available,
and this is a good reason to have warnings set to errors on your release builds! Second,
you can query the SDK version at runtime and call different code depending on which
OS version you’re running against. The following listing shows an example of this.

http://mng.bz/T5u2

181SDK versions
if (Android.OS.Build.VERSION.SdkInt >= Android.OS.BuildVersionCodes.Lollipop)
{

// Do things the Lollipop way
}
else
{

// Do things the pre-Lollipop way
}

A check is made against the current OS build, and if it’s Lollipop or later, one code
branch is run. If not, another is run. In the Lollipop and higher branch, the new Speak

method is called; in the branch for versions prior to Lollipop, the old override can be
called (and wrapped in an appropriate #pragma directive to suppress the warning).

Let’s look at this example in the context of the three different versions:

 Target framework—This is the version of the Android SDK you’re compiling
against. You can only use APIs that are available in this version. If you use an
API that wasn’t introduced until a later version, your app won’t compile. Nor-
mally this is set to Use Latest Installed Platform, which means that it will com-
pile against the latest version that’s installed from the Android SDK manager.

Listing 6.2 Checking the current Android SDK

Checks to see if the current OS has
an SDK version of Lollipop or later

Warnings should be errors in release builds
Warnings are the compiler’s way of suggesting something might be wrong, such as a
field being declared but not used, a variable being compared to itself in an if state-
ment, or a deprecated API being used.

To keep your code clean, it’s advisable to set all warnings as errors for your release
builds so that you can’t compile an app for release without fixing all warnings. You
can set this by ticking Treat Warnings as Errors in the Compile tab of the project Prop-
erties tab (project Options dialog for Visual Studio for Mac) for release builds. For
debug builds, this doesn’t matter so much, because it’s easy to get warnings during
development that you’ll clean up once your code is ready.

If you get a warning that you want to ignore instead of having it as an error (such as
calling an obsolete API inside an SDK version check), you can wrap the offending line
of code in a directive to tell the compiler to ignore it:

#pragma warning disable
// call obsolete code here
#pragma warning restore

You can read more about this in Microsoft’s C# Guide, at http://mng.bz/8f0K.

Tells the compiler to
stop ignoring warnings
from here onwards

Tells the compiler to
ignore all warnings
from here onwards

http://mng.bz/8f0K

182 CHAPTER 6 Designing MVVM cross-platform apps
 Minimum Android version—This is the lowest Android version that your app will
support. Your app won’t be available to devices with a lower version, so those
users won’t be able to install it from the Google Play store. This doesn’t mean
that there are any compiler checks to ensure it will work—you can have your
target as a later version and call APIs that aren’t available in the minimum ver-
sion. In this case your app will crash, so you need to make sure that if you call
any newer APIs, you use runtime SDK checks, like the one shown in listing 6.2.

 Target Android version—This is the version of the SDK that you’ve tested your
application against. This tells the Android OS not to enable any compatibility
behaviors to help your app work. This is outside the scope of this book, and it’s
easiest to leave this as Automatic, to use the same version as the target framework.

SETTING THE SDK VERSIONS USING VISUAL STUDIO FOR MAC

The target framework is a compiler setting, so this is set in the project options. You
can access this by double-clicking on your project in the Solution Pad (SquareRt
.Droid or Countr.Droid for this chapter’s examples), or by right-clicking the project,
selecting Options, and then selecting the General tab from the Build section (figure
6.24).

The minimum Android version and target SDK version aren’t used at compile time.
Instead, they’re checked at install time and runtime, which means they need to be set
in the Android manifest file (figure 6.25).

The two settings we care about in this file are the Minimum Android Version and
Target Android Version. The minimum should be set to the lowest version you want to
support. Unless there’s a particular API your app needs to use, I recommend setting this
to KitKat to target the most devices. This is the default setting for new Xamarin Android
apps. The target should be left as Automatic to use the latest installed platform.

SETTING THE SDK VERSIONS USING VISUAL STUDIO FOR WINDOWS

Unlike Visual Studio for Mac, Windows Visual Studio doesn’t have an explicit editor for
the AndroidManifest.xml file. Instead you can set the SDK versions from the project

The SDK to compile against can be selected here. It’s
usually good to leave it as Use Latest Installed Platform.

Figure 6.24 The SDK to compile against can be chosen from the Project Options.

183SDK versions
Properties tab (figure 6.26). Open these by right-clicking the project in the Solution
Explorer (SquareRt.Droid or Countr.Droid in this chapter) and selecting Properties, or
by selecting the project and pressing Alt-Enter. From the properties, select the Appli-
cation tab to configure the Target Framework to compile against, and select the
Android Manifest tab to configure the minimum and target SDK versions.

RUNNING AGAINST A PARTICULAR SDK VERSION

When Xamarin is installed, it will install the Android SDK for you. In the process, it
will install some system images for different Android devices and create emulators for
them using a version of the SDK that may not be the latest. The installed version may
vary over time, so it’s always worth installing the latest available stable SDK (at the time
of writing this is 26—Oreo). Each year Google will roll out a new version starting with
a beta version of the SDK, so unless you need to test against this beta, you should avoid
installing and using it.

At the time of writing, Xamarin creates emulators running Marshmallow (API 23).
This means that when you run your Android app, you can run it on an emulator tar-
geting Marshmallow (figure 6.27)—you already did this back in chapter 2 when test-
ing out the Hello Cross-Platform World app.

The minimum supported Android version
and the target versions are set here.

Figure 6.25 The Android manifest editor

184 CHAPTER 6 Designing MVVM cross-platform apps
You can find more information on configuring emulators in the “Android SDK Emu-
lator” section of the Xamarin documentation, including how to create emulators
using different versions of the SDK (http://mng.bz/4CZX).

The target Android to compile against can
be selected here. It’s usually good to leave
it as Use Compile using SDK Version.

The minimum Android version
to target is selected here.

The SDK to compile against can be selected here.
It’s usually good to leave it as Use Latest Platform.

Figure 6.26 The Visual Studio Android properties

Select a target device or emulator for debugging
from here. In this example, the selected emulator
is running API 23 – Android Marshmallow.

Figure 6.27 Setting the target Android device

http://mng.bz/4CZX

185SDK versions
6.6.2 iOS SDK versions

Setting iOS SDK versions is much, much simpler than Android. For starters, the OS
names match the SDK versions, and there’s only one version number, not a version
number, API level, and highly sugary codename. When you build iOS apps, you always
build against the latest SDK; the only option you have is to choose the minimum ver-
sion that your app will support. On iOS you only need to support two versions—the
latest and the previous. This will cover a large proportion of the iOS user base. This is
helped by the fact that Apple supplies the latest SDK version and will only accept sub-
missions of apps to the store using a recent version of the SDK.

Where Android has an SDK manager to allow you to install multiple versions of the
Android SDK, iOS has a much simpler model. Apple always wants you to use the latest
SDK version, and that’s pretty much all you can install. Every time you update Xcode
(Apple’s development environment that contains the tools Xamarin needs to build
iOS apps) you always get the latest SDK to compile against, and the macOS App Store
will always try to keep you on the latest version of Xcode. The way to compile against
older versions of the SDK is to install older versions of Xcode, something that Apple
doesn’t support.

That’s compiling taken care of—you always compile against the latest version of
the SDK. As with Android, though, your apps can run on older versions of the SDK.
You can control the minimum version that’s supported, and you can check at runtime
what OS your app is running on and call the relevant APIs.

SETTING THE MINIMUM SUPPORTED SDK
To control the minimum supported version, you can set the Deployment Target in your
iOS app’s info.plist file. This file lives in the root of the iOS app, and if you double-click
it, it will open in a property editor. You can edit the raw XML if you want, but it’s a com-
plicated schema, so it’s easier to use the property editor.

The field of interest here is the Deployment Target. From this drop-down list you
can choose the minimum iOS version to support (figure 6.28). Once this is set, your
app will only be able to be installed and run on devices running that version of iOS or
higher. Users on a lower version won’t be able to install your app.

As with Android, APIs don’t go away when a new version of the OS SDK is
released—they’re always available, but they’re deprecated when they’re no longer sup-
ported. Again, as with Android, you can see if you’re using a deprecated API by check-
ing for compiler warnings. You can also check the OS version at runtime and call the
relevant version of the API depending on what OS version your app is running under,
as shown in listing 6.3.

186 CHAPTER 6 Designing MVVM cross-platform apps
if (UIDevice.CurrentDevice.CheckSystemVersion (9,0))
{

// Code that uses features from Xamarin.iOS 9.0 and later
}
else
{

// Code to support earlier iOS versions
}

RUNNING AGAINST THE IOS SDK
When you launch your iOS app against the simulator, the simulator will default to
using the latest iOS version you have installed. This is because Xcode always installs the
latest versions of the SDK only, by default. If you want to test on earlier versions, you
can download simulators using Xcode, but you’re limited in how far back you can go—
at the time of writing, iOS 10 has been out for a couple of months, and the oldest sim-
ulator you can install is one running iOS 8.1. To install older versions from Xcode, go
to Xcode > Preferences and select the Components tab. This is shown in figure 6.29.

Listing 6.3 Checking the current iOS SDK

Select the minimum iOS version to
target by choosing a Deployment Target.

Figure 6.28 The Deployment Target can be set in the info.plist file.

Check to see if
the current OS
is iOS 9 or later

187Linking
You can also test against older versions using physical devices, but you’ll need to have
these devices already configured with the OS you want to use, as Apple doesn’t make
older versions of the OS available to download.

6.7 Linking
Mobile apps run on pretty constrained hardware. Mobile devices have less power, less
memory, less storage, and unreliable networking. This means your mobile apps need
to be optimized for a mobile environment: they need to be small so they don’t eat up
space (important on a device with only 16 GB of storage) and so they can be down-
loaded over a cellular connection without eating into users’ data plans too much.

For desktop developers, app size isn’t normally a consideration, but for mobile it’s
important, especially as there isn’t a .NET Framework available in the OS like there is
on Windows. Instead, your apps must ship everything they need to run, all self-con-
tained in one package—be it your code, NuGet packages, or the relevant bits of the
.NET Framework. This means your apps could potentially be huge. They could take up
a lot of space on the device (which could be a problem with a bottom-of-the-range

Figure 6.29 Xcode can download and install older versions of the simulator, but only recent versions are available.

188 CHAPTER 6 Designing MVVM cross-platform apps
device with only 8 or 16 GB of storage), and they could be too large to download over
a cellular connection, reducing the chance of users installing your app (for example,
Apple won’t allow users to download apps over 100 MB via cellular connections).

Luckily you can make your apps considerably smaller with the help of linking.

6.7.1 Linking the apps

Our coffee shop, from examples in previous chapters, has been particularly successful,
and it’s time to move to larger premises. Moving is hard work, so we’ll get the profes-
sionals involved. When our coffee shop moves, not everything comes with it—we only
want to move the things we need to reestablish our coffee shop elsewhere. We can
leave behind the blinds, the carpets, and the shelves. We need to decide which things
we really need and provide a list to the movers, so they take what’s needed and leave
the rest behind. This way the moving truck can be smaller, and our moving costs are
reduced.

This is something we also want to do to our code. When we build our apps and
ship them to our users, such as via an app store, we want our apps to be as small as pos-
sible, making them quicker to download and install—something that’s very important
for users who have expensive mobile data plans with no access to WiFi. Just like when
we move our coffee shop, we want to package up what’s needed for our app to run
and no more. We can do this using the linker.

The Xamarin tooling contains a linker that’s run on your code automatically after
compilation. The linker looks at the code you use and bundles that into the final app,
stripping out everything that’s not used (figure 6.30). It does this on a method, prop-
erty, field, and event basis, so even if you use string in multiple places, if you never
use the Substring method, the linker can strip out that one method and leave the
methods you do use.

public string UnusedMethod()

{}

private string_unusedField;

public bool CalledMethod()

(}

MyClass

MyClass

Linker

public bool CalledMethod()

(}

1. The linker looks for any
 code that isn’t explicitly
 referenced anywhere.

2. Any code not used is stripped
 out of the final binary.

Figure 6.30 The linker strips out any code that’s not explicitly used.

189Linking
Linking is configurable and can be turned off. It can just be used on the SDK to strip
out unused code from the OS SDK and relevant .NET Framework, or it can be used
everywhere to strip unused code from your assemblies and any NuGet packages.

This is a common concept with languages like C++, but it’s not used with C#—
there’s no SDK to strip out because the .NET Framework is part of the OS, and desk-
top PCs don’t have the hardware constraints of mobile devices.

6.7.2 Linker options

The linker can be configured on the iOS and Android app projects—it’s relevant for
your final apps, so it’s not something that can be configured on class libraries.

For Android, to configure the linker in Visual Studio for Mac, go to the project
options by double-clicking the Android app project in the Solution Pad, or by right-
clicking it and selecting Options. From there, select the Android Build tab on the left,
and then select the Linker tab in the right pane.

On Windows go to the project properties by right-clicking the project in the Solu-
tion Explorer and selecting Properties, or by selecting it and pressing Alt-Enter. From
the Properties tab, select the Android Options tab on the left, and then select the
Linker tab in the right pane (figures 6.31 and 6.32).

Android linker settings

Figure 6.31 The Android linker settings

190 CHAPTER 6 Designing MVVM cross-platform apps
For iOS you can configure the linker from the iOS Build tab of the project settings
(figure 6.33).

The setting we’re interested in here is called Linker Behavior (Mac) or Linking
(Windows), and it has three settings, available on a per-configuration (for example,
Debug or Release) basis:

 Don’t link—Don’t do any linking, leaving everything in place. This is the default
setting for debug builds and it leads to large apps but faster build times. This
isn’t recommended for release builds.

IF YOUR BREAKPOINTS AREN’T BEING HIT, CHANGE THE LINKER SETTINGS There’s a
known issue at the time of writing with Xamarin Android apps where if you use
Don’t Link, sometimes your breakpoints won’t get hit when debugging. If this
happens to you, change the linker settings to Link Framework SDKs Only.

 Link Framework SDKs Only (Link SDK Assemblies Only on Visual Studio for Mac)—
This setting will perform linking on all the assemblies provided by the .NET
Framework and Xamarin SDKs. It won’t link any of your code, or any NuGet
packages or external code you use. This is pretty safe, as it’s unlikely you’ll be

Figure 6.32 Linker settings, showing the options

iOS linker settings

Figure 6.33 The iOS linker settings

191Linking
accessing framework SDKs via reflection, and it removes most of the code you
won’t be using, leading to small final app sizes.

 Link all—This setting will run the linker over everything—your own code,
NuGet packages you use, and all the framework SDKs. This provides the small-
est final packages but it risks removing things you’ll need if you do any reflec-
tion. It’s the preferred option for release builds, but you’ll need to thoroughly
test your app to make sure nothing is stripped out that’s needed.

6.7.3 Stopping the linker from doing too much

When our coffee shop moves, we have to tell the movers what to move. When doing
this it’s easy to miss something—we could tell them to move a coffee machine, but
neglect to tell them to move the power leads and pipes. Similarly, when we link, the
linker relies on explicit calls to public methods, properties, and events to know what
to keep. It’s easy to use something without an explicit call, and the linker could strip
that out, leading to a crash at runtime. The usual culprit for this is reflection—where
we find a property or method based on its name and invoke it. Unfortunately, for
developers who use MVVM, reflection is used a lot. You can bind a property by name,
and this can be the only reference to it. The linker looks for references, doesn’t
understand that the string representation is a reference to the property, and
removes it.

Fortunately you can control the linker using a couple of techniques:

 Explicitly use the public property, method, or event somewhere
 Use the Preserve attribute

EXPLICITLY USE THE PUBLIC PROPERTY, METHOD, OR EVENT

By explicitly using the property or method, the linker will see the usage and will leave
it in. This doesn’t have to be functional code, just a reference somewhere. MvvmCross
uses this technique. It ensures code isn’t stripped out by the linker by using a file
called LinkerPleaseInclude.cs containing a class that uses code that would be refer-
enced by reflection. If you look in the root of the iOS and Android projects, you’ll see
this file (figure 6.34).

USE THE PRESERVE ATTRIBUTE

The Preserve attribute can be added to a class, or to the members on a class, to tell
the linker to not strip out code. If you set this at the class level, you need to set the
AllMembers property to true to ensure that all members are preserved. The following
listing shows this in action.

192 CHAPTER 6 Designing MVVM cross-platform apps
[Preserve(AllMembers=true)]
public class MyClass
{
...

}

public class MyOtherClass
{

[Preserve]
public int MyProperty {get;set;}

}

Unfortunately, this isn’t an attribute that’s available to .NET Standard libraries.
Instead, there are two versions of this attribute—one on iOS (Xamarin.iOS.Founda-
tion .Preserve) and one on Android (Android.Runtime.Preserve). To use this in a
.NET Standard library, you’ll need to define the attribute yourself. When you link an
iOS app, the linker won’t strip out anything with an attribute called Preserve on it,

Listing 6.4 Using the [Preserve] attribute to control the linker

LinkerPleaseInclude.cs
contains code to stop

the linker from stripping out
certain code that’s only
accessed by reflection.

th

Figure 6.34 MvvmCross provides a class that prevents certain methods, properties, and events
from being stripped out by the linker.

Setting AllMembers to true when
using the [Preserve] attribute
means everything in the class will
remain after linking.

If a class is used but has one member
that’s only accessed via reflection, this
property can have the attribute set to
ensure it’s not stripped out by the linker.

193Summary
regardless of the namespace of that attribute. On Android, it specifically looks for an
attribute in the Android.Runtime namespace called Preserve.

The simplest way to preserve code in a .NET Standard library is to define
Android.Runtime.Preserve yourself in your core project and use that—the name-
space matches, so the Android linker will use it, and the name matches, so the iOS
linker will use it. This is, unfortunately, over-complicated, so hopefully Xamarin will
improve on this in the future. The following listing shows an example implementation.

namespace Android.Runtime
{

public sealed class PreserveAttribute : System.Attribute
{

public bool AllMembers;
}

}

You can find more information about linking in the Xamarin developer docs:

 Linking on iOS—http://mng.bz/d55a
 Linking on Android—http://mng.bz/v7x1

You now have your solutions at the ready, you’ve worked out what code you need in
which layer and what code should run in the background and UI threads. You’ve also
seen some of the new features of Xamarin iOS and Android apps. Now you’re ready to
start coding the app proper. In the next chapter we’ll dive right into the core project
and start writing the cross-platform models and view models.

Summary
In this chapter you learned

 iOS apps are different from Android apps, so you should think about your UI in
terms of the platform your app is running on.

 By thinking about the user flows up front, you can start to build up a picture of
the classes you’ll need and what threads your code can run on.

 Unlike other C# apps, iOS and Android have OSs and SDKs that change regu-
larly, so you need to code for different OS versions if you want to use the latest
features.

 iOS users mainly use the latest two OS versions, whereas Android users have a
wide range of OS versions.

Listing 6.5 The [Preserve] attribute isn’t available in .NET standard

The attribute should be in the
Android.Runtime namespace to
ensure it works on Android, which
cares about the namespace, and
on iOS, which does not.

The attribute class name is
PreserveAttribute, so you

can reference it just by
using [Preserve] without the

attribute suffix.

The AllMembers field
can be set to true
when using this
attribute on a class to
ensure all members
are preserved.

http://mng.bz/d55a
http://mng.bz/v7x1

194 CHAPTER 6 Designing MVVM cross-platform apps
 Linking reduces your app size, but it can cause problems with code that’s not
explicitly used but instead is accessed via reflection.

 Mobile apps are shipped with a properties file that provides information on
your app to the relevant app store and OS.

You also learned how to

 Map your user flows to the different layers of MVVM.
 Map your user flows to different threads.
 Configure your app’s properties.
 Select appropriate SDK versions for compiling and running your app.
 Configure linking to ensure your app is as small as possible, while not removing

any code you need.

7Building cross-platform models
In the last chapter we started planning our mobile apps—we looked at the user
flows, thought about the UIs, worked out what code would be in each layer, and
thought about the threads our code should run on. Then we created a solution and
took a look at some of the options and settings available in mobile apps. We talked
about two apps: SquareRt (a simple square-root calculator) and Countr (an app for
counting things).

Now we’re going to get our hands dirty and write some code. In this chapter
we’re going to look at the model layer—looking at ways to build simple and more
complex cross-platform model layers, thinking about testing our code, and discuss-
ing databases and web services. Everything in this chapter is cross-platform—after

This chapter covers
 Creating simple model layers

 Creating and running unit-test projects to test your models

 Structuring more complex model layers with services,
repositories, and data models

 Using an ORM to access SQLite

 What REST services and JSON are

 Accessing web services from .NET Standard libraries
195

196 CHAPTER 7 Building cross-platform models
all, the big reason for using Xamarin is to share code and write all the business and UI
logic once. The examples will be relevant to both SquareRt and Countr, so by follow-
ing these examples you’ll be able to build up the model layer of both of these apps.

If you’re planing on coding along with this chapter, please make sure you’ve cre-
ated the relevant solutions as described in the previous chapter, or use the precreated
ones in the Git repository that accompanies this book.

7.1 Building simple model layers
The model layer is a cross-platform layer that represents your data, your business
logic, and your access to external resources such as databases or web services (figure
7.1). For some apps, the model layer is pretty thin, with only very basic logic. For oth-
ers, it’s much more in depth. One thing to remember, though, is that this layer should
be built in a way that makes sense to your domain—it should use classes, names, and
data types that make sense from a business perspective, not ones that necessarily make
sense from a UI perspective.

As you’ve already seen, view models map one-to-one with views (so for FooView you’d
have FooViewModel), but they don’t have to map one-to-one to a model class (so
there’s no need to have FooModel). Instead, you can create classes in the model that
provide data and business logic across multiple views and view models.

In the last chapter we looked at the user flow for the SquareRt app—the app is so
simple it only has one. Figure 7.2 shows what we came up with. This app is simple—it
only needs one thing in the model layer, the SquareRtCalculator. The sole job of this
class is to take a number and calculate its square root.

Let’s create this class now. Create a new class inside the SquareRt.Core project and
call it SquareRtCalculator. To do this, right-click the SquareRt.Core project (remem-
ber, models are cross-platform, so they’ll be in the cross-platform core projects), select
Add > New File (for Mac) or Add > New Item (on Windows), select a file type of Class,

UI layer

App
layer

UI logic
layer

iOS

C# (.NET Standard)

Business
logic layer

View

View
model

ModelC# (.NET Standard)

C#

C#

C#

C#

Android

C# (.NET Standard)

Binding

Figure 7.1 The model layer in an
MVVM-based mobile app is written
using cross-platform code.

197Building simple model layers
and enter the class name (figure 7.3). As this is a simple project, I won’t put this in a
folder. I’ll just put it in the root of the project.

The following listing shows the simple implementation of this class.

using System;

namespace SquareRt.Core
{

public class SquareRtCalculator
{

public double Calculate(double number) => Math.Sqrt(number);
}

}

Listing 7.1 Implementing the SquareRtCalculator class

UI layer

App
layer

UI logic
layer

SquareRtView

SquareRtViewModel

SquareRtCalculator

iOS

C# (.NET Standard)

Business
logic layer

View

View
model

ModelC# (.NET Standard)

C#

C#

C#

C#

Android

C# (.NET Standard)

Binding User enters
a number

Square root
is calculated

Answer is
shown on UI

Figure 7.2 The user flow for SquareRt that we mapped to classes in chapter 6

Figure 7.3 Adding the SquareRtCalculator class in Visual Studio for Mac (left) and Windows (right)

This new class is in the
SquareRt.Core namespace.

The Calculate method uses
the System.Math.Sqrt
method for the calculation.

198 CHAPTER 7 Building cross-platform models
So far, so simple—we have a class that uses a .NET Framework library to do the calcu-
lation for us. But we’re not finished here. We have one more thing to do. Back in
chapter 4 we discussed testability, including the concept of using interfaces instead of
concrete implementations. We looked at IoC containers and saw how we could regis-
ter classes by interface and then inject those implementations as dependencies in
other classes—for example, we could register our SquareRtCalculator using an
ISquareRtCalculator interface and pass that in when constructing a view model, as
shown in figure 7.4.

This is an important concept and one we shouldn’t neglect here, despite the simplic-
ity of our model layer. We need to expose our calculator through an interface and reg-
ister it with the IoC container. We can start by extracting an interface from our
SquareRtCalculator class, and then we can register it in the container.

Create a new file called ISquareRtCalculator in the same place as the SquareRt-

Calculator class. The following listing shows the code for this.

namespace SquareRt.Core
{

public interface ISquareRtCalculator
{

double Calculate(double number);
}

}

Listing 7.2 The ISquareRtCalculator interface

SquareRtCalculator ISquareRtCalculator

User

Ask for an instance of
SquareRtViewModel.

An instance of SquareRtViewModel
comes out, constructed using an
instance of ISquareRtCalculator.

IoC container—the magic box!

SquareRtViewModel
SquareRtViewModelpublic SquareRtViewModel

(ISquareRtCalculator calc)

SquareRtCalculator is registered
as implementing ISquareRtCalculator.

SquareRtViewModel’s constructor needs an
ISquareRtCalculator, and SquareRtCalculator
implements this interface, so an instance of
SquareRtCalculator is passed in.

Figure 7.4 Using an IoC container to pass instances of ISquareRtCalculator wherever
they’re needed

This new interface is in the
SquareRt.Core namespace, the same
as the SquareRtCalculator class.

This new interface has the
Calculate method on it.

199Unit testing
Once the interface is declared, the SquareRtCalculator class needs to implement it,
as shown in the next listing.

public class SquareRtCalculator : ISquareRtCalculator
...

The final step is to register this in the IoC container. To do this you need to modify the
App class in App.cs in the SquareRt.Core project, as shown in the next listing.

using MvvmCross.Platform;
using MvvmCross.Platform.IoC;

namespace SquareRt.Core
{

public class App : MvvmCross.Core.ViewModels.MvxApplication
{

public override void Initialize()
{

CreatableTypes()
.EndingWith("Service")
.AsInterfaces()
.RegisterAsLazySingleton();

Mvx.ConstructAndRegisterSingleton<ISquareRtCalculator,
SquareRtCalculator>();

RegisterNavigationServiceAppStart<ViewModels.FirstViewModel>();
}

}
}

We now have an interface, a class that implements it, and we’ve registered it in our
container. Although this example is simple, you’ll use this basic pattern again and
again when constructing your apps, so it’s a good habit to get into right off the bat.

When writing code, it’s always nice to be able to run it and see what happens. The
problem here is that we’ve written code in the model layer only—it’s not wired up to a
view model and view, so there’s no way to manually test that our code works through a
mobile app. We could wait until our app is complete to do our testing, but it would be
better to test this code as soon as it’s written. What we need is unit testing.

7.2 Unit testing
When making coffee using an industrial coffee machine in a coffee shop, you always
need to ensure that your coffee maker is working in tip-top condition. If it’s not up to
scratch, you could end up with nasty-tasting coffee, or worse, hot steam shooting out
at people. This is why you need to test the machine to make sure it’s working before
you can make the first cup of coffee each day. That’s not easy to do manually—testing

Listing 7.3 SquareRtCalculator now implements our new interface

Listing 7.4 Adding registration of the ISquareRtCalculator

SquareRtCalculator
now implements
ISquareRtCalculator.

A new using directive gives access
to the static Mvx IoC container.

A call is made to the Mvx
container to construct a new

instance of SquareRtCalculator
and register it using its

ISquareRtCalculator interface.

200 CHAPTER 7 Building cross-platform models
things like water pressure is hard without special tools. It’s a long process to do prop-
erly, and being long and boring it’s prone to human error.

Luckily, coffee machines have automated tests built in, so when they’re first turned
on they’ll check things like the water pressure, whether they have beans, and anything
else they need to ensure they’re working correctly. This automated testing is much
more reliable than human tests, it happens daily, with some tests, such as checking for
beans running continuously, and it allows the baristas to get on with making fantastic
hot drinks without worrying. This is something we can also do with our code—instead
of waiting until our app is complete to test its functionality manually in a way that’s
prone to human error, we can use unit testing to write automated tests that can be run
on a regular basis, ensuring not only that our code works but that it stays working.

Unit testing is a technique whereby you write some test code to check that your
code is working correctly. Unit refers to a small runnable unit of code, which is usually
taken to mean one public member on a class, such as a method or a property. You
want your units to be as small as possible, testing one thing and one thing only. Your
tests shouldn’t cover more than one unit of code, and they should only validate one or
two things—this way, if a test fails, it’s immediately obvious which unit of code is failing
under what scenario. If you write one huge test that tests a multitude of inputs and
outputs, it’s hard to spot what the actual problem is.

The purpose of unit testing is to test units of code in isolation with multiple inputs
to ensure that they’re working as expected, and that they keep working as expected.
Not only can you write unit tests to check your code now, but you can run these on a
regular basis (manually or, ideally, using a CI server) to ensure that your code contin-
ues to work even after other changes are made to the code base. After all, fixing a bug
while you’re writing your code has a minimal impact on when your code is released or
on your customers’ opinions of your app. If a bug makes it to your released app, how-
ever, it can take much longer to get a fix out to your users, leading to a poor customer
experience and bad reviews on app stores.

Unit testing is a huge topic, and one well worth mastering. A full discussion of this
topic would take a book in itself, and indeed many good books have been written on this
topic, such as The Art of Unit Testing, Second Edition, by Roy Osherove (Manning, 2013).

To test the Calculate method of our SquareRtCalculator, we could wait till we’ve
built the entire app and test it manually, but that’s not the best way to do it. By the
time the app is built, we could have forgotten how we wrote the code, making it slower
to fix any bugs. We could even have handed the app over to another member of the
team, who wouldn’t know our code. We’d also have to manually test a number of pos-
sible calculations to ensure that they were all working, which is time consuming and
potentially boring to do manually. And, of course, every time we tweak the app and
rerelease it, we’d have to test it all over again. This sounds extreme for a simple calcu-
lator, which will probably work the first time, but for more complex apps (the kind
you’d be likely to build in the real world), testing all of your code automatically as
you’re writing it is a huge time saver.

201Unit testing
7.2.1 Creating a unit-test project

Before you can write unit tests, you need a new project inside your solution that can
contain all your tests. It’s common practice to put your tests in a separate project,
rather than inside the project you’re testing, so that the tests aren’t shipped with your
final app. A unit-test project is a simple class library—just like the SquareRt.Core
project. The only difference is that it uses a unit-testing framework to define code as
tests that can be run, either using command-line tools, CI servers, or directly inside
Visual Studio.

Unit-testing frameworks are NuGet packages that provide attributes that you can use
to indicate that a particular method is a unit test, as well as classes and methods that
allow you to validate that your code is correct. They may also include extensions that
provide features to your IDE, allowing you to run tests and track passes and failures.

There are a number of popular frameworks (such as xUnit—https://github.com/
xunit/xunit), all open source and available for free with their own upsides and down-
sides. For this book I’ll use one called NUnit (https://nunit.org), as it comes built into
Visual Studio for Mac and it’s easy to use from Visual Studio.

CREATING A UNIT-TEST PROJECT IN VISUAL STUDIO FOR MAC

Visual Studio for Mac works with NUnit support out of the box, and it even ships with
a project template you can use to create a unit-test project with NUnit support. To cre-
ate a unit-test project, right-click the solution and select Add > Add New Project. From
the New Project dialog box, select Other > .NET on the left side, select NUnit Library
Project from the middle section, and click Next. On the next screen, enter the project
name as SquareRt.Core.Tests and click Create (figure 7.5). This will create a new project
and then automatically download and install the NUnit NuGet package. The project
will have a dummy test file in it called Test.cs, which you can delete.

Figure 7.5 Adding a new NUnit library project

https://github.com/xunit/xunit
https://github.com/xunit/xunit
https://github.com/xunit/xunit
https://nunit.org

202 CHAPTER 7 Building cross-platform models
This project will need to reference the SquareRt.Core project to be able to test it, so
right-click the References folder in the SquareRt.Core.Tests project, select Edit Refer-
ences, and in the Projects tab, check the box next to SquareRt.Core (figure 7.6).

CREATING A UNIT-TEST PROJECT IN VISUAL STUDIO FOR WINDOWS

Getting Visual Studio for Windows to work with NUnit is a little bit more work than
for the Mac. By default, it wants to use the Microsoft unit-testing framework, but I pre-
fer to use NUnit, as this is available on both Windows and Mac. To enable NUnit,
you’ll need to install another extension—go to Tools > Extensions and Updates, select
Online in the list on the left, and search for NUnit. From the list in the middle, select
the NUnit 3 Test Adapter (note the version number 3 in the name) and click the
Download button (figure 7.7). Follow the onscreen instructions, and then restart
Visual Studio.

Check the box here to add a reference
to the SquareRt.Core project.

Figure 7.6 Adding a reference to another project

Install the NUnit Test Adapter to use
the latest version of NUnit (3.x).

Use the NUnit Test Adapter to support NUnit 2
(the version of Visual Studio for Mac uses).

Figure 7.7 Adding the NUnit 3 extension to Visual Studio. You can also add the NUnit 2 extension to
support NUnit projects created by Visual Studio for Mac.

203Unit testing
A NUMBER OF POPULAR VISUAL STUDIO EXTENSIONS ALSO PROVIDE WAYS TO RUN
TESTS If you use extensions such as ReSharper from JetBrains (www.jetbrains
.com/resharper/) or CodeRush from DevExpress (www.devexpress.com/
products/coderush/), you already have the ability to run NUnit tests without
installing another extension. You’ll see all your tests and be able to run them
from the relevant ReSharper or CodeRush Test Runner window. See the docs
for these extensions for more details.

NUNIT CURRENTLY HAS TWO VERSIONS IN REGULAR USE NUnit has been grow-
ing and evolving for a number of years now, and at the time of writing, 3.5 is
the latest version. Version 3 has a number of incompatibilities with version 2
in the way the tools that run the tests work. When you create a new unit-test
project in Visual Studio for Mac, it will default to using NUnit 2.6.4, which
can’t be run in Visual Studio using the NUnit 3 test adapter. The “fix” is to
either upgrade the NUnit NuGet packages in the test project to the latest ver-
sion, or to use the NUnit Test Adapter extension (note the lack of NUnit
version number in the name), which supports NUnit 2 in Visual Studio.

Once you’ve added the extension, create a new project by right-clicking the solution
and selecting Add > New Project. Select Visual C# from the tree on the left, select
Class Library (.NET Framework) from the list in the middle, enter the project name
as SquareRt.Core.Tests, and click OK (figure 7.8). Although there’s a new project type
under Visual C# > Tests called NUnit Test Project, it’s not advisable to use this, as the
resulting project won’t work in Visual Studio for Mac. It’s always good to create proj-
ects that work in both, as you never know what environment other developers in your
team might want to use in the future.

Figure 7.8 Creating a new class library project to put our NUnit tests into

www.jetbrains.com/resharper/
www.jetbrains.com/resharper/
www.jetbrains.com/resharper/
www.devexpress.com/products/coderush/
www.devexpress.com/products/coderush/
www.devexpress.com/products/coderush/

204 CHAPTER 7 Building cross-platform models
WE’RE CREATING A .NET FRAMEWORK LIBRARY, NOT A .NET STANDARD LIBRARY
This is a .NET Framework library, rather than a .NET Standard library. At the
time of writing, .NET Standard is still new and the tooling isn’t quite perfect.
If you create a .NET Standard library, your tests won’t show up in the test
explorer, and they won’t be able to be run using Visual Studio for Mac. This
tooling is constantly being improved, however, so by the time you read this,
the .NET Standard unit test libraries may well work fully.

The project will contain a default Class1.cs class file, which you can delete. You’ll then
need to add the NUnit NuGet packages to this project manually by right-clicking the
newly created SquareRt.Core.Tests project and selecting Manage NuGet Packages.
Search for NUnit in the browse tab and install the latest version (figure 7.9).

This project will need to reference the SquareRt.Core project to be able to test it, so
right-click the References folder in the SquareRt.Core.Tests project, select Add Refer-
ence, and from the Projects tab check the box next to SquareRt.Core (figure 7.10).

Figure 7.9 Install the NUnit package into your test project.

Check the box here to add a reference
to the SquareRt.Core project.

Figure 7.10 Adding a reference to the SquareRt.Core project from the SquareRt.Core.Tests project

205Unit testing
7.2.2 Creating your first test

There is a huge range of techniques developers can use to build unit tests, and we’re
not going to go into too much depth here. Instead we’ll focus on a simple way to cre-
ate tests.

Once you have created the SquareRt.Core.Tests project, it’s time to create a first
unit-test class to test the calculator. We’ll start with a simple test to see if it can correctly
calculate the square root of 4. Create a new class in the root of the unit-test project
called SquareRtCalculatorTests. Add the code in the following listing to this class.

using NUnit.Framework;

namespace SquareRt.Core.Tests
{

[TestFixture]
public class SquareRtCalculatorTests
{

ISquareRtCalculator calc;

[SetUp]
public void SetUp()
{

// Arrange
calc = new SquareRtCalculator();

}

[Test]
public void Calculate_4_Returns2()
{

// Act
var squareRoot = calc.Calculate(4);
// Assert
Assert.AreEqual(2, squareRoot);

}
}

}

First you create one-unit test class for each model class that you want to test, usually
named something like ClassNameTests—in this case we’re testing the SquareRt-

Calculator class, so we have a test class called SquareRtCalculatorTests. This class is
decorated with the TestFixture attribute from NUnit, which marks this class as one
that contains unit tests (classes that contain unit tests are referred to as test fixtures).
Visual Studio has test runners that will look for classes in your solution that are
marked with this attribute, and will allow you to run the tests defined in these classes.

Second, you need to define any setup or tear-down code. This is code that’s run
before and after each test and is encapsulated in methods that return void, that take
no parameters, and that are marked with either the SetUp or TearDown attributes. In

Listing 7.5 A first unit-test class for the square-root calculator

A new using directive to
access the NUnit code

The TestFixture attribute tells NUnit
that this class is a test fixture.

An instance of the
ISquareRtCalculator

The SetUp attribute tells NUnit to run
this method before each and every test.

In the SetUp method, the
instance of ISquareRtCalculator is
set to a new SquareRtCalculator.

The Test attribute marks a method
as a unit test that can be run.

The square root is calculated.

Assert.AreEqual is an NUnit
static method that will check
two values and throw an
exception if they’re different.

206 CHAPTER 7 Building cross-platform models
this case you don’t need any clean-up code, but you’re doing some setup—to save on
creating a new instance of the SquareRtCalculator in every test method, you’re creat-
ing it in the setup. This reduces the amount of identical code you’d have to write, and
if you ever change the constructor on the SquareRtCalculator class, you’d only have
to fix up the setup method instead of fixing a multitude of tests. This instance is
stored in a field of type ISquareRtCalculator—storing this as the interface is inten-
tional. Good unit tests should test the exposed interface of a class because it’s this
interface that would be passed to other classes (such as a view model), so if you test
the interface, you can be sure you’re testing all the members exposed to the classes
that’ll use this.

Finally you need to create the tests themselves. These are methods with a void

return type (or async Task if your test will be testing asynchronous code that you
want to await), and they don’t take any parameters. They’re also marked with the
Test attribute, and it’s this that tells the test runner that the method is a unit test. In
these methods you write any code that you want to test, and the way to flag a test as
failing is by throwing an exception.

This standard structure of a test fixture with multiple tests that are set up, run, and
then torn down is shown in figure 7.11.

The standard way to write a test is arrange, act, assert: set up your code, perform an
action, and then verify that the result of the action is correct:

 Arrange—This is where you set up your test. This setup includes creating any
classes you need and setting a relevant state. In this example, there’s minimal
setup—just creating a class—but in a lot of tests there might be other setup. For
example, if you were testing that a Name property correctly concatenates a
FirstName and LastName, your arrange step would be setting the values on the
FirstName and LastName properties.

Set up

For all tests in the fixture

Run testTest fixtureStart test

Tear down

Get results

If test throws an exception
then fail, otherwise pass

Figure 7.11 Test fixtures can contain multiple tests, with setup run before each test, and
tear down run after.

207Unit testing
 Act—This is where you perform the action under test, and it should ideally be a
single code statement, or, if necessary, the smallest number of statements possi-
ble. This is what you’re testing, so if this fails you want it to be immediately obvi-
ous what has failed, making it easier to debug and fix.

 Assert—Once the unit of code has been run, you need to evaluate the results,
outputs, or side effects of your code to ensure that the code ran successfully.
You assert that what you expect has happened, such as a calculation returning
the correct result or correctly modifying an object’s state. The way you assert
something is to check the relevant condition, and if the condition isn’t met,
throw an exception. NUnit has a static Assert class that can do this for you,
with methods to perform various assertions that throw exceptions if the asser-
tions fail.

A good test will ideally have only one assertion because the test should only
check one thing, but sometimes it’s more practical to have more than one. For
example, if you’re testing a SetName(string firstName, string lastName)

method that sets both the first and last names of an object, you might want to
write two assertions: one to assert that the first name is set correctly, and one to
assert that the last name is set. These should be kept to a minimum, though, as
you want to always be able to link a test failure back to a specific scenario to
make debugging easier.

In the case of our test, we’re setting up the SquareRtCalculator in the setup method
(arrange), we’re calculating the square root of 4 (act), and we’re verifying that the
result is 2 (assert). The verification is done using the Assert static class that comes
from NUnit, using its AreEqual method that takes two values and throws an exception
if they’re different. We can create more tests that follow this pattern to test other val-
ues, as shown in table 7.1.

NAMING YOUR TESTS It’s often said that the two hardest things in program-
ming are cache invalidation, naming things, and off-by-one errors. This is true
with unit tests, where naming your tests can be hard. Ideally the test name
should describe the test and contribute in part to documenting the behavior
of the class under test. TestCalculate would be a bad name for our test, but
Calculate_4_Returns2 describes the test as using the Calculate method and
passing in 4 with the expectation that the method will return 2. This is a good
patten to follow: UnitOfWork_StateUnderTest_ExpectedBehavior. Don’t

Table 7.1 Our tests follow the pattern of arrange, act, assert

Arrange Act Assert

Create
SquareRtCalculator

Calculate(0) Assert result is 0

Create
SquareRtCalculator

Calculate(4) Assert result is 2

208 CHAPTER 7 Building cross-platform models
worry about the length of the name—it’s better to have a longer, more
descriptive test name than a shorter confusing one. You can read more about
test naming in Roy Osherove’s “Naming standards for unit tests” blog entry at
http://mng.bz/qzym.

RUNNING YOUR TESTS IN VISUAL STUDIO FOR MAC

To run your tests, you can do one of two things—run them directly from the file, or
run them via the Unit Tests pad.

If you want to run unit tests directly from your code, you need to enable editor–
unit-test integration from the application Preferences by going to Visual Studio > Pref-
erences, selecting the Text Editor > Source Analysis tab on the left, and ticking Enable
Text Editor Unit Test Integration (figure 7.12).

After enabling this, if you look at your test fixture code, you’ll notice empty circles in
the left margin next to the class declaration for your test fixture, as well as in line with
each test method. You can click the circle next to the class declaration to run all the
tests in the fixture, or the circle by an individual test to run just that test (figure 7.13).
Selecting Run will run the tests and highlight success or failure with either a green cir-
cle with a tick in it if the test passes or a red circle with a lightning bolt in it for failure.
Selecting Debug will run your test through the debugger, so that you can set break-
points to debug any issues in your code. Select in Test Pad will open another pad that

Tick the Enable Text Editor Unit Test
Integration box to be able to run unit
tests from inside the code editor.

Figure 7.12 To run unit tests from inside the code editor, an option in the
preferences needs to be set.

http://mng.bz/qzym

209Unit testing
shows all the tests in your solution hierarchically by namespace, so that you can run all
tests or any selection you want.

The other option is to run your tests from the Unit Tests pad directly, which you
can view by selecting View > Pads > Unit Tests, or by selecting View > Test to have
Visual Studio change to a unit-testing layout, with the Unit Tests and Test Results pads
showing. You can then run your tests by double-clicking on them in the test pad.

RUNNING YOUR TESTS IN VISUAL STUDIO FOR WINDOWS

To run your tests in Visual Studio, click the Test menu and select Run > All Tests. This
will build your solution and then run all the tests it can find in a new Test Explorer
window that will appear on the left side. From there you can see all the tests and can
run or debug each one by right-clicking it (figure 7.14). If you can’t see the Test
Explorer, you can show it by selecting Test > Windows > Test Explorer.

Empty circles indicate a test that hasn’t been run.
Green means the test passed on the last run, and
red means the last run failed.

Click the circle at the
ttest-fixture level to
run or debug all tests
in the fixture.

Click the circle at
the test level to
run or debug an
individual test.

Figure 7.13 Unit tests can be run using the circles next to the test classes or methods.

210 CHAPTER 7 Building cross-platform models
7.2.3 What do these tests tell you?

If you run the SquareRtCalculatorTests fixture tests, you should see them all pass—
also referred to as going green. Unit-test results are often shown using green for pass
and red for fail, and you’ll often hear the colors used to define pass and fail states. If a
developer you’re working with tells you your tests are red, it means you have some fail-
ures. (If you want to see what a failure looks like, try changing the expected result
from 2 to something else, and run the test again.) This test tells you that your calcula-
tor can successfully calculate a square root using one input.

It would be easy to add more tests to cover more inputs, to both ensure that your
code works, and to explore different inputs. A good example would be to write a unit
test for –1. The square root of –1 is i, an imaginary number, and this is represented as
double.NaN in C# (NaN means “not a number”—something that can’t be repre-
sented by a simple decimal number). By writing a test for this, you could see what the
output is and make a decision about how you’re going to represent this in your UI—
maybe by always showing 0 as the result for negative numbers. Calculating the square
root of –1 is the kind of thing a user would do to play with your app, but it’s some-
thing that, as a developer, it’s easy to forget to consider if you were just doing manual

Individual tests can be selected and run or debugged.

You can run all tests using Run All. Or you can run only
failed tests or tests that haven’t been run yet, or repeat
the last run, using options from the Run dropdown.

Figure 7.14 Visual Studio can run tests in Text Explorer.

211Building more complex model layers
testing. By automating testing using unit tests, you’re more likely to consider the
inputs to your code and cover edge cases.

USE TEST CASES TO COVER MULTIPLE INPUTS You can test multiple inputs and
outputs using a single test method by defining multiple test cases. These are
test methods that take parameters defining the inputs and expected outputs
and then test against these. They have a different attribute on the method—
they use multiple TestCase attributes, which are created with a list of values
that get passed to the method for each test. You can read more on the Test-
Case attribute in the NUnit docs at http://mng.bz/Vj2M.

Unit tests don’t just make it easier for you to focus on one method when testing so
that you cover the possible inputs and outputs, they give you another very important
thing—cross-platform testing of your model layer. You use MVVM to share large
amounts of cross-platform code, and by decoupling the UI from the logic, you can
write unit tests to test large portions of your code, reducing the amount of slow, labori-
ous manual testing that you’d need to do. This is what you’re seeing here—you’ve
written some cross-platform code once, and unit-tested it. You don’t have to manually
test that the calculations work, just that the UI is wired up correctly. If you hadn’t used
MVVM and instead had wired up a button directly to the calculation code, you
wouldn’t have been able to test this except manually. If you’d written your app using
Swift on iOS and Java on Android, you’d have had to write this unit test twice.

IN REAL APPS THE LOGIC IS MORE COMPLEX THAN A SIMPLE CALL TO MATH.SQRT
This is a simple example of a method that makes a direct call to a system func-
tion, but it illustrates the principles. In a real-world app, your logic in the
model layer could be more complex, so you’d want to test a variety of inputs
and outputs. Thanks to MVVM and Xamarin, you can test complex model-
layer logic using unit tests, and test it once.

7.3 Building more complex model layers
The SquareRt app has a simple model layer, but our Countr app needs something a bit
more complex—including the ability to store counters somewhere. As a refresher, let’s
look at the Countr user flows that we discussed in chapter 6. Figure 7.15 shows these.

Let’s look at a popular way to structure more complex model layers using services,
data models, and repositories.

7.3.1 Services, data models, and repositories

In our hypothetical coffee shop, we have baristas that can turn beans, water, and
optionally milk into a delicious beverage. Beans are stored in cupboards behind the
counter, milk is in the fridge, and there are taps to provide a good supply of water. If a
customer comes in and orders an espresso, a number of things happen:

1 The barista gets some beans out of a bag in a cupboard.
2 The barista puts the beans in a grinder, and takes out ground coffee.

http://mng.bz/Vj2M

212 CHAPTER 7 Building cross-platform models
3 The barista puts the ground coffee into the espresso maker, which is plumbed
into the main water supply, puts a cup under the spout, and taps a button.

4 The espresso maker pushes hot water through the grounds and streams coffee
into the cup.

5 The barista hands over your coffee.

We can break this down into three categories—entities (coffee beans, cups), places
where entities are stored (cupboards), manipulators of entities (barista, espresso
machine). These lists are shown in table 7.1.

Let’s think about our Countr app in similar terms. We have an entity in the form of a
class that represents a counter. We need a place to store the counters, and something
to manipulate the counters, such as getting them all, adding new ones, removing
them, or incrementing them. A common pattern for doing this is to use a set of data
model classes, services, and data repositories:

Table 7.2 Grouping our coffee shop into entities, storage, and manipulators

Entities Storage Manipulators

Beans Cupboard Grinder

Milk Fridge Steamer

Water Pipes Barista

Cups Coffee machine

User wants to
see counters

Counters are
loaded from

storage

All counters are
shown on UI

User adds
a counter

User enters
counter details

Counter is
created and

stored

New counter is
shown on the UI

User deletes
a counter

Counter is
removed from

storage

Counter is
removed
from UI

User increments
a counter

Counter is
incremented
and stored

Counter is
updated on

the UI

Figure 7.15 The user flows for the Countr app: showing, adding,
deleting, and incrementing counters

213Building more complex model layers
 Data models—Data models are classes for simple data objects—objects that have
properties to represent state, but few if any methods. These should map to the
real-world entities that your app is concerned with.

 Services—Service classes provide the business logic that acts upon those data
models, such as creating them from different data, performing calculations,
uploading or downloading them from web services, or persisting them to repos-
itories.

 Repositories—Repositories are used to persist the data models, usually to a local
database such as SQLite.

Our MVVM model layer needs to expose state and behavior to the views via the view
models. Our services are the entry point into the model layer from the view models. If
we have a CountersViewModel that shows a list of Counter objects on the Counters-

View, it would use CountersService to retrieve a list of counters, which would ulti-
mately come from the CountersRepository. When a new Counter is created, it would
be created via the service, which in turn would store the new counter in the reposi-
tory. Figure 7.16 shows these two flows in action through the layers.

Table 7.3 Grouping our Countr app into entities, storage, and manipulators

Entities (data models) Storage (repositories) Manipulators (services)

Counter CountersRepository CountersService

Show counters

Show counters
on screen

Get counters
from service

Get counters
from repository

Get counters
from database

Return countersReturn counters Return counters

Add counter

Show new
counter

on screen

Create counter
using service

Create counter
and save to
repository

Save counter
to database

Return counter Return counter

CountersView CountersViewModel CountersService CountersRepository

Figure 7.16 The counters view talks to the view model, which in turn talks to the service, which talks to the
repository, which stores and retrieves data from a database.

214 CHAPTER 7 Building cross-platform models
By having separate services and repositories, we get a really good separation in our
code, with each layer being relatively thin so it’s much, much easier to unit-test. This
is one of the key goals of using the MVVM design pattern. It also means that in a
larger app you can share services between view models, and share repositories
between services.

For example, when creating a new email in an email app, you’d have a view and
view model for the new email screen, and this view model would access a service to
provide a list of contacts to help the user fill in the To and CC fields. You could also
have a service that provides access to the user’s photos or other documents for adding
attachments. The contacts service could also be used on a screen that shows your
inbox, putting pictures beside the sender of each email.

This model also applies to our Countr app—we can use a counters service to not
only get the list of counters to display on the main screen, but when the user adds a
new counter, the view and view model for an add-counter screen would also use the
same service to construct and store the new counter.

Let’s now build our service and repository, starting at the bottom with a database
and data models, and working our way up through the repository to the service.

7.3.2 Accessing databases

A repository is a class that provides the ability to store and retrieve data from some
kind of storage, and the most popular storage mechanism on mobile is a database
called SQLite (www.sqlite.org). SQLite is a small, fast, file-based, open source database
that has been around for over 15 years, and it comes embedded in iOS and Android.
Other databases are available (such as Realm—https://realm.io), but SQLite is the
most popular because it’s built into the OS. SQLite is very low level with a C API, but
there are C# wrappers for this API as well as some really nice open source ORM
(object-relational mapping) layers that you can use. ORM is a layer that abstracts data-
base tables, columns, and rows away from you—instead of worrying about how to
structure your data in the database, you can create tables based on a class, and per-
form basic CRUD (create, read, update, and delete) operations just by passing
instances of your class around, or by requesting data by class type.

The best ORM for SQLite, by far, is SQLite-Net (not to be confused with
SQLite.NET—it has a hyphen in the name instead of a period) from Frank Krueger.
It’s available in a NuGet package called SQLite-Net-Pcl, which you should add to all
the projects in the Countr solution (on Windows you can do this at the solution level,
but on Mac you have to add it to the individual projects one by one).

There are many different SQLite packages available, so make sure you install the
correct one! Also, be aware that despite the package having PCL in its name, in the
latest versions it’s a .NET Standard library, not a PCL. This book was written using ver-
sion 1.4.118, so install that version, although the latest version may also work. In Visual
Studio for Mac you can select the version from the drop-down list at the bottom right;
on Windows you can select it from the package settings at the right (figure 7.17).

https://realm.io
www.sqlite.org

215Building more complex model layers
We first need to define classes that can store the data we need to persist. Then we’ll
create a repository that can persist and retrieve those classes. This repository will, in
turn, use SQLite-Net to automatically create the relevant tables for us.

STORING MODELS IN THE DATABASE

For the Countr app, you need to be able to store counters and update them when the
counter is incremented. To do this, you need a class to represent the counter with a
name and a current value. Usually a class like this would be considered a data model as
it models data (not to be confused with the model layer), so you can create a folder in
the Countr.Core project called Models (right-click and select Add > New Folder).
Then, add a new class in this folder called Counter. The following listing shows the
contents of this class.

using SQLite;

namespace Countr.Core.Models
{

public class Counter
{

[PrimaryKey, AutoIncrement]
public int? Id { get; set; }

public string Name { get; set; }

Listing 7.6 A simple data class to represent a counter

When installing SQLite-Net-PCL, set the version
to 1.4.118, although the latest version may work.

Figure 7.17 The best ORM is SQLite-Net-PCL, but there are a number of NuGet packages available
with SQLite in the name, so be sure to install the correct one with the correct version.

The using directive gives access
to the SQLite-Net classes.

The Id property is an auto-
incrementing primary key.

216 CHAPTER 7 Building cross-platform models
public int Count { get; set; }
}

}

This class contains a Name property to store the name of the counter, and a Count

property to store the current value. It also has an Id property that’s marked with some
attributes that come from SQLite-Net and that provide instructions on how the table
for this class should be set up. When this class is stored in a SQLite table, it will go into
a table called Counter (tables are named by SQLite-Net to match the class name that’s
stored in them) that has three columns that map one-to-one with the public proper-
ties: an int column called Id, a string column called Name, and another int column
called Count. Table 7.4 shows the structure of this table with some example counters
already added to it.

You need a primary key column (a column that contains a unique key that you can use
to reference each counter), and ideally you don’t want to manage this yourself. This is
what the attributes on the Id property provide. The PrimaryKey attribute tells SQLite
to make this column the primary key, so it’s the unique ID used to reference individ-
ual counters, and the AutoIncrement attribute tells SQLite to automatically set the
value of this ID to the next available value when a new row is added. For example, if
you have three counters in the database with IDs 0, 1, and 2, and you add a new
counter, it would have its Id value automatically set to 3 when it’s added to the table.
This value is an int?—a nullable int. That’s because 0, the default value of an int, is a
valid ID. If the ID was an int and you created and saved a new counter, SQLite
wouldn’t know if it was a new counter or an update to a counter with an ID of 0.
Because you’re using an int?, the default value is null, so SQLite will know to insert
the counter.

All these properties have public getters and setters, and this is by design. There’s
also no constructor, so the compiler automatically creates a default (parameterless)
one for you. The way SQLite-Net works when loading data from a table is to construct
an object using its default constructor, and then set the properties via reflection using
the values from the columns. If you didn’t have a default constructor, SQLite-Net
couldn’t create the object, and if the properties didn’t have public setters, the values
couldn’t be set. When an object is saved, SQLite-Net uses reflection as well—the get-
ters need to be public so that the ORM can get the values to write to the columns in

Table 7.4 The Counter table, showing some example counters that a user
might create when they use the app

Id—int (primary key) Name—string Count—int

1 “Cups of coffee” 14

2 “Gym sessions” 8

3 “Cakes” 2

217Building more complex model layers
the table. It’s fine to add a custom constructor, just as long as you add a parameterless
one as well (the compiler won’t create a default constructor automatically if another
constructor is defined).

CREATING A REPOSITORY

Now that you have a data model, you need to set up a repository to store and retrieve
models from a database. By using SQLite-Net, you can deal with your data models
directly without having to manually store these objects across different columns in dif-
ferent tables. This makes the repository fairly simple.

Create a Repositories folder in the Countr.Core project, and add a new interface there
called ICountersRepository. The following listing shows the code for the interface.

using System.Collections.Generic;
using System.Threading.Tasks;
using Countr.Core.Models;

namespace Countr.Core.Repositories
{

public interface ICountersRepository
{

Task Save(Counter counter);
Task<List<Counter>> GetAll();
Task Delete(Counter counter);

}
}

This is a very simple interface that encapsulates the basic operations you’ll want to do
to maintain a store of counters—save a counter (either saving a new one or updating
an existing one), get them all, or delete one.

But when calling save, how do you know if you’re creating a new counter or updat-
ing an existing one? The same with delete—how do you know which one to delete?
The answer relies on the Id field on the Counter—the field marked with the Primary-

Key attribute. SQLite uses this primary key as the unique identifier of a row in a table,
so if you save a counter with an Id of 2, it will check for an existing row in the table
with the Id column set to 2. If it finds one, it will update that row to match the values
on the counter being saved; if not, it will create a new row. The same happens with
delete: if you delete a counter with an Id of 7, it will look for a row in the table with
that Id to delete; if there isn’t one, nothing will happen.

Let’s create the CountersRepository class now and set up SQLite. Then we’ll
implement the interface.

SQLite is very easy to set up—you create a connection to a database file by passing
it a filename, and the SQLite engine will create a database file if one with that name
doesn’t exist, or open it if it does. There’s a small catch, though—where to store the
database file. .NET Standard libraries contain APIs to reference the filesystem, but the
filesystem is different on iOS and Android, with different paths for storing local files.

Listing 7.7 The interface to the counters repository—simple and easy to understand

218 CHAPTER 7 Building cross-platform models
Luckily, there’s a Xamarin plugin that gives you a single method to call to get the path
for storing local data and that returns the correct value on each platform. To install
this plugin, install the PCLStorage NuGet package into all the projects in the solution
(figure 7.18). The code in this book was written against version 1.0.2, so use this ver-
sion if you have any problems.

Now that you have this plugin installed, you can use it to provide a path for your
SQLite-Net database connection. Create a new class called CountersRepository and
add the following code.

using System.IO;
using Countr.Core.Models;
using PCLStorage;
using SQLite;

namespace Countr.Core.Repositories
{

public class CountersRepository
{

readonly SQLiteAsyncConnection connection;

public CountersRepository()
{

var local = FileSystem.Current.LocalStorage.Path;
var datafile = Path.Combine(local, "counters.db3");
connection = new SQLiteAsyncConnection(datafile);
connection.GetConnection().CreateTable<Counter>();

}
}

}

Listing 7.8 Setting up the connection to a SQLite database

Figure 7.18 The PCLStorage NuGet package gives access to the filesystem from .NET Standard
libraries.

A using directive to bring in
the file storage plugin

This is the connection to
the database—async so
you can use async/await.

This path comes from
the file plugin and
provides the path to
the OS-specific local
storage.

All SQLite database files
use the .db3 extension.

SQLite
connections
are created

pointing to the
database file.

CreateTable will look for a table
that matches the given type, and

create it if it doesn’t exist.

219Building more complex model layers
The SQLiteAsyncConnection class gives you an asynchronous connection to the data-
base, allowing you to use async methods that you can await—these methods will han-
dle spawning tasks to run the database interactions from the calling thread. The only
downside is that it doesn’t provide any synchronous methods—something you need to
create the tables in the constructor of this repository. You can get a non-async version
of the connection from the async connection using the GetConnection() method,
and you can use this to create the table synchronously. This constructor will be called
during app startup while the app is on the splash screen, and it will be very fast, so
there should be no noticeable app slowdown for the user. Obviously, if you wanted to
do more complex database creation work, or migration between different database
structures, you should do this on a background thread while displaying something to
the user so they don’t think their app has locked up—maybe by adding an Init

method to the class, which gets called on a background thread during app startup.
Now that you have have your connection, let’s implement the repository interface.

The following listing shows the implementation. All the async methods call a single
async method on the SQLite connection, so instead of marking your methods as async
and awaiting the calls, you can just return the tasks directly.

using System.Collections.Generic;
using System.Threading.Tasks;
...

public class CountersRepository : ICountersRepository
{

...
public Task Save(Counter counter)
{

return connection.InsertOrReplaceAsync(counter);
}

public Task<List<Counter>> GetAll()
{

return connection.Table<Counter>().ToListAsync();
}

public Task Delete(Counter counter)
{

return connection.DeleteAsync(counter);
}

}

As you can see from this simple implementation, SQLite-Net makes your life really
easy when it comes to interacting with databases. This leads to an obvious question—if
it’s so easy to interact with databases, and each method in the repository is a single
SQLite-Net call, then why would you even bother creating a repository in the first
place? The answer is, once again, unit testing. You can’t easily unit-test code that inter-
acts with a database directly—you’d need a SQLite database. Although you can get

Listing 7.9 The implementation of the ICountersRepository interface

This class now
implements the
ICountersRepository
interface.

Saves a counter by
inserting or updating
it based on its Id

Retrieves all the rows
from the table and
converts them to a list

Deletes the counter
with an Id that matches
the one passed in

220 CHAPTER 7 Building cross-platform models
implementations of SQLite on Mac and Windows (the platforms that your unit tests
run on), they’re different from the implementation that runs on a device, and you’d
need a lot of setup code to create and configure these databases for each unit test. It’s
easier to create a very thin repository layer that you can mock out in unit tests. You
can’t test the repository, but you can mock it to test the services that use it.

YOU CAN UNIT-TEST SQLITE BY USING ON-DEVICE UNIT TESTS Xamarin provides a
way to run unit tests on a physical iOS and Android device or emulator. This
means you can write unit tests (or, more correctly, integration tests, as they test
the integration between your app code and the database) against a SQLite
database if you want to. You can find more details in the Xamarin iOS unit
testing guide at http://mng.bz/0tv6 and the Android troubleshooting guide
at http://mng.bz/mMWa.

Now that you have your repository, you need to register it in the IoC container.
You’ve seen already that you can easily register individual classes inside the container,
but MvvmCross has a simple way to automatically register multiple classes that are
similarly named. If you open App.cs from the Countr.Core project, you’ll see the fol-
lowing line.

CreatableTypes()
.EndingWith("Service")
.AsInterfaces()
.RegisterAsLazySingleton();

This tells MvvmCross to look inside the current assembly and find all classes with
names that end with Service and register them as singletons based on their interface
(registering them as lazy singletons to be precise, meaning they’re only constructed the
first time they’re accessed). Because it’s a common pattern to have service class names
end in Service, MvvmCross projects are set up to automatically register them, by
default. You can extend this to include repositories by adding a copy of the same code
but with a different name, as follows.

...
CreatableTypes()

.EndingWith("Repository")

.AsInterfaces()

.RegisterAsLazySingleton();
...

Once you’ve added this line, there’s no need to explicitly register your Counters-

Repository—MvvmCross will search the assembly, find the repository based on its name
ending in Repository, get its interface, and register the class against its interface.

Listing 7.10 MvvmCross projects register all services into the IoC container by default

Listing 7.11 Automatically registering all repositories into the IoC container

http://mng.bz/0tv6
http://mng.bz/mMWa

221Building more complex model layers
7.3.3 Adding a service layer

You have your data model (the Counter class) and your repository layer (the
CountersRepository class). Now you need to add a service layer on top. The view
models will interact with the services in this layer, which in turn will use the reposito-
ries to store and retrieve data. As a reminder, figure 7.19 shows these layers.

CREATING THE SERVICE

You need to create a new counter service that your view models can interact with, so
let’s start with the interface, as always. Create a Services folder, and in that folder cre-
ate a new interface called ICountersService, as in the following listing.

using System.Collections.Generic;
using System.Threading.Tasks;
using Countr.Core.Models;

namespace Countr.Core.Services
{

public interface ICountersService
{

Task<Counter> AddNewCounter(string name);
Task<List<Counter>> GetAllCounters();
Task DeleteCounter(Counter counter);
Task IncrementCounter(Counter counter);

}
}

The first three methods on this service are fairly self-explanatory—they allow the call-
ers to get, save, and delete counters. The fourth method is a bit different—it incre-
ments a counter. It may seem odd to be incrementing a counter from a service when
the Count value on the counter could be manipulated directly, but there’s a good rea-
son for this. If the Count property is 0 and is updated directly to 1, then the Counter

instance is updated, and this new count of 1 is held in memory. If the app dies and is
reloaded, what would the counter show? It would show 0 again. You need to persist all
changes to the repository to ensure that when the app restarts and all counters are
loaded, the correct values are available. By having the service control the increment-
ing of counters, it can ensure that the new values are always persisted to the database.

Listing 7.12 The interface for the counters service

CountersView CountersViewModel CountersService CountersRepository

Figure 7.19 The layers in the Countr app

Methods to create, delete,
and get all the counters

A method to increment
the counter

222 CHAPTER 7 Building cross-platform models
Now you have your interface. Let’s create the service, and then implement the
interface. Create a new class called CountersService. The following listing shows the
initial code for it.

using Countr.Core.Repositories;

namespace Countr.Core.Services
{

public class CountersService
{

readonly ICountersRepository repository;

public CountersService(ICountersRepository repository)
{

this.repository = repository;
}

}
}

Having the ICountersRepository interface as a constructor parameter for Counters-
Service tells the MvvmCross IoC container to pass in whatever implementation of the
ICountersRepository it has to this constructor when the class is created.

Let’s wire up the rest of the class now. Add the following code.

using System.Collections.Generic;
using System.Threading.Tasks;
using Countr.Core.Models;
...

public class CountersService : ICountersService
{
...
public async Task<Counter> AddNewCounter(string name)
{

var counter = new Counter { Name = name };
await repository.Save(counter).ConfigureAwait(false);
return counter;

}

public Task<List<Counter>> GetAllCounters()
{

return repository.GetAll();
}

public Task DeleteCounter(Counter counter)
{

return repository.Delete(counter);
}

Listing 7.13 The initial implementation of the counters service

Listing 7.14 Implementing the ICountersService interface

The repository comes
from a constructor

parameter and is
stored in a field.

A new counter is created
from a name, stored in the
repository, then returned.

Getting all counters
returns all counters
from the repository.

Deleting a counter deletes
it from the repository.

223Building more complex model layers
public Task IncrementCounter(Counter counter)
{

counter.Count += 1;
return repository.Save(counter);

}
}

Most of this code should be fairly self-explanatory. AddNewCounter constructs a new
counter based on the name given, saves it to the repository, and returns it. Increment-
Counter increments the Count value on the given counter and saves the incremented
version to the repository. GetAllCounters gets all counters from the repository, and
DeleteCounter deletes a counter from the repository. IncrementCounter, GetAll-
Counters, and DeleteCounter just return the tasks from the async methods they
call on the repository. AddNewCounter is marked as async and uses Configure-

Await(false) to tell the compiler that after the call to Save, the rest of the code in
the method can stay on the same thread that Save used to do its work.

We’re done with the model layer now—you have a repository that manages count-
ers using a SQLite database and a service layer that encapsulates all your interactions
with counters. But like the model layer for SquareRt, how can you test this? You could
wait until the app is built, but it’s better to write some unit tests, so that not only can
you test the code now, you can test your code again and again and again to ensure you
don’t break anything in the future. You can’t easily unit-test the repository, but you
can test your service.

UNIT-TESTING YOUR SERVICE LAYER

Before you can think about unit testing, you need to create a unit-test project. Create a
new project called Countr.Core.Tests in the same way as you did the SquareRt .Core.Tests
project—either using a new NUnit Library Project in Visual Studio for Mac or by creat-
ing a new .NET Framework Class Library in Visual Studio and adding the NUnit NuGet
package. Once the project is created, add a reference to the Countr.Core project.

As we’ve discussed, you can’t easily unit-test code that talks to a database, so you
can’t test your repository. Although the service doesn’t interact directly with a data-
base, it does use the repository, which in turn uses a database, so how can you unit-
test this?

What you need to do is not use your implementation of the repository. Instead, you
need to use a dummy implementation—one that not only doesn’t talk to a SQLite data-
base, but ideally one that you can control. For example, to test that the Increment-

Counter method on the service is working correctly, you need to ensure that it not only
increments the Count property, but that it saves the incremented value to the reposi-
tory—this checks that you haven’t got the save and increment lines the wrong way
around. If you have a repository that you can control, you could perform some kind of
assertion on the call to Save to ensure that the incremented counter is saved.

There’s a great pattern for creating dummy implementations, called mocking. In this
technique, you create an implementation of an interface and have complete control on

Incrementing a counter will increment
the Count property and then update
the counter in the repository.

224 CHAPTER 7 Building cross-platform models
a test-by-test basis, allowing you to configure what the methods on the interface do and
return, and also verify that the methods are called (figure 7.20).

There are a number of great open source tools to help with this, my favorite being
Moq (https://github.com/Moq). To install Moq, add the Moq NuGet package to the
Countr.Core.Tests project (figure 7.21).

Add a new folder called Services to the test project, and then add a CountersService-

Tests class. The following listing shows the initial implementation of this class.

using NUnit.Framework;
using Moq;
using Countr.Core.Repositories;
using Countr.Core.Services;

namespace Countr.Core.Tests.Services
{

[TestFixture]
public class CountersServiceTests
{

ICountersService service;
Mock<ICountersRepository> repo;

Listing 7.15 The initial implementation of the unit tests for the counters service

Counter

ICountersRepository

CountersRepositoryMock<ICountersRepository>

Production appUnit test

Figure 7.20 Mocking is a simple technique allowing you to unit-test without worrying about
dependencies.

Figure 7.21 Installing the Moq NuGet package gives you a simple way to mock interfaces in your unit tests.

https://github.com/Moq

225Building more complex model layers
[SetUp]
public void SetUp()
{

repo = new Mock<ICountersRepository>();
service = new CountersService(repo.Object);

}
}

}

The Mock<ICountersRepository> field is a mock of the ICountersRepository inter-
face. It has a property called Object that’s an ICountersRepository interface, which
you can pass to the constructor of the CountersService.

What’s powerful about this mock is what happens when you call the methods on
the interface. By default, these methods will do nothing and will return the default
value for the return type (for example, if you call the GetAllCounters method, it will
return null), but you can override this behavior. You can set up methods to return
whatever you want, perform actions when they’re called, or throw exceptions—this
can be for all calls to a method, or only when it’s called with specific parameters. You
can also get a count of how many times a method is called—either the total of all calls,
or a count of different calls with different parameters.

Let’s start with a simple set of tests for the IncrementCounter method. You want to
test two things—that the counter is incremented, and that the incremented value is
stored. Here’s the code for these two tests.

using System.Threading.Tasks;
using Countr.Core.Models;
...
[Test]
public async Task IncrementCounter_IncrementsTheCounter()
{

// Arrange
var counter = new Counter { Count = 0 };
// Act
await service.IncrementCounter(counter);
// Assert
Assert.AreEqual(1, counter.Count);

}

[Test]
public async Task IncrementCounter_SavesTheIncrementedCounter()
{

// Arrange
var counter = new Counter { Count = 0 };
// Act
await service.IncrementCounter(counter);
// Assert
repo.Verify(r => r.Save(It.Is<Counter>(c => c.Count == 1)),

Times.Once());
}

Listing 7.16 Testing the IncrementCounter method

In the test fixture setup, a new
mock repository is created so
that it’s ready for each test.

A new instance of the
CountersService created
using the mock object.

This asserts that the counter
now has a Count of 1.

Instead of returning void,
these tests are async Task

methods, so they can await
async methods on the service.

This verifies that the Save
method was called with a

counter with a Count of 1.

226 CHAPTER 7 Building cross-platform models
These two tests cover the basics of the IncrementCounter method. The Increment-

Counter_IncrementsTheCounter test ensures that the counter has an incremented
Count after the method has finished—a nice, simple sanity check. The interesting test
is the IncrementCounter_SavesTheIncrementedCounter test. This uses a method on
the mock repository called Verify that verifies that a method has been called. Let’s
look at the two arguments passed to Verify.

The first argument, r → r.Save(It.Is<Counter>(c → c.Count == 1)) is used to
define which method is being verified. It’s a lambda expression where the parameter is
the interface for the mock (in this case, the ICountersRepository interface), and you
call the method that you want to verify. You then specify what the parameters you’re ver-
ifying are. They can be fixed values, or you can use the static It class from Moq, which
allows you to specify certain conditions about the parameter. You can use It.IsAny<T>

to specify any value of type T, or use It.Is<T>(Func<T, bool>) to check for specific
properties of the instance of T. In this case we’re using It.Is<Counter>(c → c.Count

== 1) to say that we want to verify that this method was called using an instance of
Counter that has a Count property set to 1. This is a very important part of this test—you
need to ensure that the incremented value is saved, and that’s what the check for a
count of 1 is doing. If the service code saved the counter before incrementing it, this test
would fail because the counter passed to Save would have a value of 0.

The second argument, Times.Once(), is the number of times this method was
called with the given criteria. You don’t have to specify this argument, and if you
don’t, it verifies that the method was called at least once (with no upper limit on how
many times it was called). Here we’re saying it should be called only once. After all,
there’s no point in calling this method more than once. There are a number of alter-
natives, such as Times.Never, to ensure that the method is never called, or variants
that allow you to set the minimum, maximum, or exact number of times the method
must be called.

Table 7.5 shows a breakdown of these two tests. They both have the same arrange
and act—creating a counter with a count of 0 and incrementing it—but the assertions
are different. One test asserts that the count of the counter has incremented, and the
other test asserts that the new value has been saved.

This is powerful testing functionality—you can’t unit-test the repository, but you can
ensure that your services make the correct calls to it.

Table 7.5 The arrange, act, and assert for the CountersService tests

Arrange Act Assert

Create a counter with
a count of 0

_service.IncrementCounter(counter) Assert the counter’s count is
now 1

Create a counter with
a count of 0

_service.IncrementCounter(counter) Assert a counter with a count
of 1 is saved to the repository

227Building more complex model layers
The other thing you can do is control the return value from the different methods
on the interface using the Setup method. The following listing shows a test to verify
the GetAllCounters method on the service.

using System.Collections.Generic;
...
[Test]
public async Task GetAllCounters_ReturnsAllCountersFromTheRepository()
{

// Arrange
var counters = new List<Counter>
{

new Counter {Name = "Counter1" },
new Counter {Name = "Counter2" }

};
repo.Setup(r => r.GetAll()).ReturnsAsync(counters);
// Act
var results = await service.GetAllCounters();
// Assert
CollectionAssert.AreEqual(results, counters);

}

The Setup method allows you to set up the behavior of a method on the interface. You
specify the criteria for the method in the same way as the Verify method, and then
you can specify callbacks or the value that the method returns. Returns specifies the
return value of a normal method, and ReturnsAsync, which we’re using here, speci-
fies the return value of an async method. CollectionAssert is an NUnit helper class
that can assert on collections, and we’re using it here to assert that the results of the
call to GetAllCounters returns a collection that matches the collection returned from
the repository. Table 7.6 shows a breakdown of this test.

MOQ CAN ALSO BE USED TO SET UP PROPERTIES Setup is used to set up meth-
ods. For properties there’s a pair of similar methods: SetupGet and SetupSet
to set up the getter and setter for a property.

There’s plenty more on the service that needs to be tested, and as an exercise you can
think up some more tests that would cover all the methods of the service. Run these
tests now, though, and enjoy watching them pass.

Listing 7.17 Testing the GetAllCounters method

Table 7.6 The arrange, act, and assert the Return all counters tests

Arrange Act Assert

Set up a list of counters to
be returned from GetAll on
the repository

_service.GetAllCounters() Assert that the counters returned
from the service are the same as
the counters set up as the return
value for the GetAll method on
the repository

Sets up the GetAll
method to return a
defined list of counters

Asserts that the
collections contain
the same items

228 CHAPTER 7 Building cross-platform models
Once again, we’ve written one set of unit tests that allow us to test code that will
run on both iOS and Android. This is something we couldn’t do if we’d just wired up
events on the UI to code, or if we wrote our apps using Java and Objective-C/Swift.

7.3.4 Accessing web services

So far we’ve looked at a simple model layer for our SquareRt app, and a more com-
plex model layer for Countr that uses a SQLite database to save data. Calculations and
data persistence are popular things to have in the model layer, but there’s one other
thing a lot of model layers do that we should look at—making web service calls. Many
apps have some kind of service running over the internet to provide data—email apps
download and send emails via an email server, and social media apps like Facebook
and Twitter download and send posts or tweets over the internet.

By far the most popular way to do this is using REST services over HTTP. These are
stateless services whereby different URLs represent resources that you can interact
with using CRUD operations. You send HTTP verbs that describe the action you want
to do: send a GET request to a URL to request data, POST to create data, PUT to update
data, or DELETE to delete data. The URL you use describes details about the resource
you want to interact with; you can include a body with your request, such as the data to
PUT; you can use HTTP headers to specify details about the request, such as authoriza-
tion details; and you can add query parameters to the URL. Query parameters are a
way of passing information to a GET request using just a URL instead of sending a body
of data. You can send information to the HTTP request using JSON (a lightweight way
to represent data) or XML, and get results back as JSON or XML. JSON is becoming
the most popular as it’s simple and lightweight. This is shown in figure 7.22.

Headers:
ApiKey: "e5d7ab20"

URL:
/messages/1

Body:
Empty

HTTP GET request

Status code:
200

{
 "id": 1,
 "message": "Hi!"
}

Body:

HTTP GET response

Headers:
ApiKey: "e5d7ab20"

URL:
/messages/2

Body:

HTTP PUT request

{
 "id": 1,
 "message": "Hi!"
}

Empty

Status code:
200

Body:

HTTP PUT response

GET PUT

https://api.mycompany.io

Figure 7.22 REST APIs allow you to send requests to URLs using HTTP verbs, and to get data back.

229Building more complex model layers
REST APIs are a huge topic in themselves, and they’re outside the scope of this book,
but we’ll look at how to call a simple REST API and interpret the data from the model
layer. For a more detailed look at REST APIs, I recommend Irresistible APIs by Kirsten
L. Hunter (Manning, 2016).

USING MICROSOFT BING’S SEARCH API TO CALCULATE A SQUARE ROOT

When you’re building a commercial app, you may well have a set of REST services pro-
vided by your company or client that your app will need to interact with. There are
also many third-party APIs that your app can use to incorporate a wide variety of func-
tionality: performing calculations, manipulating images, getting data such as govern-
ment records, and using artificial intelligence services. One such service is Microsoft
Bing—the search engine from Microsoft. Not only can it search the web much like
other popular search engines, such as Google, but it can also be used for calculations.
You can try this out by going to Bing.com and searching for “square root 4”.

Microsoft has made a REST service for Bing available to developers to use inside
their apps, allowing a large number of searches per month for only a few dollars (and
a lot more searches per month if you’re willing to pay more). We can use this API in
our SquareRt app to calculate square roots instead of using System.Math.Sqrt.

Microsoft has a large number of APIs available to developers as part of its Azure
cloud, from simple searches to a whole host of artificial intelligence tools. You can see
all of these services from Microsoft’s Cognitive Services website at http://mng.bz/B97v.
You’ll need an Azure account to use these services, so if you don’t have one, click Free
Account, then Start Free, and follow the instructions to sign up. You’ll need a credit
card to sign up, but this is only used for verification, and at the time of writing you get
$200 worth of credit just for signing up. You can also sign up using Visual Studio Devel-
oper Essentials at www.visualstudio.com/dev-essentials/?WT.mc_id=xamarininaction-
book-jabenn to get $25 a month in credit for a year.

Once you’re signed in, head to the Azure portal at portal.azure.com. Click New on
the left side (if the menu on the left is minimized, the New option is a green plus
sign), select AI + Cognitive Services in the Azure Marketplace list that appears, and
then click Bing Search APIs.

Each thing on Azure that you sign up for (such as access to a cognitive service API,
a virtual machine, or a database) is referred to as a resource. All resources are part of
resource groups—logical groupings of resources that you can manage together. For
example, when you’re finished using a set of resources, you can delete the resource
group to remove all resources in one go. You’ll need to configure the Bing Search
APIs resource and make it part of a resource group.

Start by entering a name for this resource, such as SquareRt, select your Azure sub-
scription, set the pricing tier to S1 (this works out to $3 a month at the time of writ-
ing). You’ll then need to create a new resource group to put this resource into, so
ensure Create New is selected under Resource Group, and enter a name such as
SquareRt (figure 7.23).

www.visualstudio.com/dev-essentials/?WT.mc_id=xamarininaction-book-jabenn
www.visualstudio.com/dev-essentials/?WT.mc_id=xamarininaction-book-jabenn
portal.azure.com
http://mng.bz/B97v

230 CHAPTER 7 Building cross-platform models
Each resource group is run from a data center somewhere in the world, and you can
configure which data center to use from the Resource Group Location drop-down.
Choose the one closest to your physical location, read the terms and conditions at the
bottom, and tick the box to confirm you’ve read them. Finally, click the Create button
to create the resource.

Once the resource is created, you’ll see an overview page with details about the new
SquareRt resource. From here, select Resource Management > Keys on the left to see
some API keys that you can use to access these services from your own apps (figure 7.24).

Now that you have your API keys, you can use them to calculate square roots using
the Bing web service. When you make a call using this service, you get results back as a
JSON object. Because Bing search is a general-purpose API, you don’t just get back a
single number; instead you get back an object that contains the details of the
response, serialized as JSON. I’ve used the term JSON a lot, so who is this Jason fellow?

Enter the name for
your resource.

Click Create to create
the resource.

Select the Azure subscription
to use for this resource and
the pricing tier.

Create a new resource group,
give it a name, and set the
resource group location to the
closest one to your location.

Figure 7.23 Configuring the new Bing search API resource

231Building more complex model layers
JSON
JSON stands for JavaScript Object Notation, and it’s a simple, lightweight way of serializ-
ing data to a string. You can read more about it at www.json.org, but essentially it’s a
way of storing data in a string as a set of key-value pairs, and the value can be either a
single value such as a string or number, or it can be another set of key-value pairs to
represent another object. You can even represent lists of objects. Each string contain-
ing an object or an array of similarly typed objects is referred to as a JSON document
(you may have heard of document databases such as MongoDB—these store JSON
documents as indexable and searchable objects).

The following listing shows a JSON representation of an object that would come
back from a call to the Bing search API, with figure 7.25 showing a summary of the
objects that it represents.

{
"_type": "SearchResponse",
"computation": {
"id": "https://api.cognitive.microsoft.com/api/v5/#Computation",
"expression": "sqrt(40)",
"value": "6.32455532"

},
"rankingResponse": {
"mainline": {

"items": [
{

"answerType": "Computation",
"value": {

Listing 7.18 A JSON document representing the results of a Bing calculation search

This is the API key you can use to access this service from your app.
Use the blue button next to the key to copy it to your clipboard.

Figure 7.24 The Microsoft cognitive service APIs use API keys to control access.

www.json.org

232 CHAPTER 7 Building cross-platform models
"id": "https://api.cognitive.microsoft.com/api/v5/#Computation"
}

}
]

}
}

}

The curly braces ({ and }) represent an object, with the properties of the object
defined as a set of key-value pairs. The property name is the key, and it’s defined as a
string. The value is defined after the colon (:) as either a string representation of a
value, such as a string or a number, as an object wrapped in braces, or as an array
stored inside square brackets ([and]). The document in listing 7.18 consists of an
outer object (in JSON, objects don’t have named types) with three properties:

 _type—A string
 computation—An object with three properties (id, expression, and value)
 rankingResponse—An object that has a property called mainline, which is an

object with a property called items, which is an array of objects, each having an
answerType and value property, value being another object

JSON seems pretty complex, and parsing a string representation like this is a lot of
work. Luckily, once again someone else has done the hard work for us, and you can
install a NuGet package to take the complexities away. Newtonsoft.Json, also known as
Json.NET, is not only the most installed NuGet package ever (at the time of writing, it
has been installed over 42 million times), but it provides a simple way to convert from
JSON to C# classes and vice versa. Json.NET can also do value conversions, so if your

_type : string
computation : object
rankingResponse : object

JSON document

mainline : object

rankingResponse
object

id : string
expression : string
value : number

computation
object

items : array

mainline
object

item objects

value object

answerType : string
value : object

id : string

answerType : string
value : object

id : string

answerType : string
value : object

id : string

Figure 7.25 Overview of the JSON document returned from the Bing search service

233Building more complex model layers
C# class has a field of type double, it will look at the string value in the JSON and con-
vert it to a decimal number—such as converting "6.32455532" in the preceding JSON
document to a double value of 6.32455532. If you want to have any interaction with
JSON data, I strongly advise you to use Json.NET to make your life much easier.

We’ll use it here, so install the Newtonsoft.Json NuGet package. The code in this
book was written against version 10.0.3, but later versions should work (figure 7.26).

You saw an example JSON response from the Bing search API in listing 7.18, so let’s
think about a class that could encapsulate this data. All we really need is the computa-
tion’s value, so what do we need to do to get this?

We need to define a class hierarchy that matches the JSON document, just focus-
ing on what we need—in this case, a class that has a property called computation of a
type that has a property called value. One good thing Json.NET does is only deserial-
ize the values you have in your classes, ignoring all the others. This is good for us
because we only need the value property from the computation object. It would be a
pain to have to implement all the classes and properties in this JSON document just
for one field. This also prevents our app from breaking if new fields are added to the
JSON, such as if you add extra data that’s only used by a later version of your app.

We can define this in code by adding two new classes to the SquareRt project called
Computation and SquareRootResponse. The following listing shows these classes.

public class Computation
{

public double Value { get; set; }
}

public class SquareRootResponse
{

public Computation Computation { get; set; }
}

Using Json.NET, you can deserialize a string containing a JSON document to a class
that you can specify. It will take the properties in the JSON document and map them
to properties in the class based on the properties’ names. It’s also smart enough to

Listing 7.19 Classes that represent the JSON response from the Bing search API

Figure 7.26 Adding the Newtonsoft.Json NuGet package

The Computation class wraps the object
represented by the “computation” key
in the JSON document.

The Value field will map
to the “value” property.

The SquareRootResponse
class encapsulates the outer
object in the JSON response.

The “computation” property of
the JSON object is mapped to a
property called “Computation”.

234 CHAPTER 7 Building cross-platform models
ignore case (JSON uses lowercase for the first letter of each property, whereas C# by
convention uses uppercase). If you were to deserialize the JSON document in listing
7.18 to a SquareRootResponse, it would map the computation property in the JSON
document to the Computation property on the class, and map the properties of the
object assigned to the computation object to the properties on the Computation class.
Figure 7.27 shows this mapping.

It’s fairly simple to map other JSON documents to classes—all you need to do is build
a hierarchy of classes with properties that map to the JSON document. These proper-
ties don’t need to be strings—they can be classes in their own right, as demonstrated
by SquareRootResponse, or they can be data types such as numbers, like the Value

property of Computation. In the JSON, this is a string, but we’re mapping it to a dou-
ble and Json.NET takes care of the conversion.

Now we have a class that encapsulates what we need from the response. Let’s wire
this up to an HTTP call.

MAKING WEB SERVICE CALLS

When making a call to a web service, you need to use the device-specific network
stack—both iOS and Android have classes that can interact with web services that are
specific to the individual OS. The good news for us C# developers is that this is such a
normal thing to do that Xamarin and Microsoft have made sure the part of the .NET
Framework that allows easy interaction with HTTP endpoints is available in .NET
Standard libraries. This means you can hit web services from your core projects.

To make a call to a web service from a .NET Standard library, you can use Http-

Client—a class that under the hood uses the native network stack to make calls to
web services. This class has methods to make all the possible HTTP calls—GET, POST,
PUT, and DELETE.

To calculate a square root, you need to make a GET call to the Bing service. Bing, by
default, is a search engine, so you can create a URL that searches for the square root
of a particular number, and you can then specify that instead of a simple web search,
you’re interested in a performing a calculation. There are a whole host of options for

JSON document C# classes

SquareRootResponse

Computation

double value

_type
computation
rankingResponse

id
expression
value

Figure 7.27 The JSON properties are mapped to the properties of C# classes
based on their names.

235Building more complex model layers
this API, and you can read more on it in Microsoft’s Web Search API Reference at
http://mng.bz/4KQ3.

HttpClient, like a lot of modern .NET Framework classes, uses async and await,
so the first thing to do is change our ISquareRtCalculator interface to support this.
The following listing shows the changes to the interface.

using System.Threading.Tasks;

public interface ISquareRtCalculator
{

Task<double> Calculate(double number);
}

You also need to update the implementation of this calculator to not only use
async/await, but to make a call to the Bing search API to calculate the square root.

using System.Net.Http;
using System.Threading.Tasks;
using Newtonsoft.Json;
...
public class SquareRtCalculator : ISquareRtCalculator
{

readonly HttpClient httpClient = new HttpClient();

public SquareRtCalculator()
{

httpClient.DefaultRequestHeaders
.Add("Ocp-Apim-Subscription-Key",

"your API key");
}

public async Task<double> Calculate(double number)
{

var url = "https://api.cognitive.microsoft.com/bing/v5.0/search?" +
$"q=sqrt({number})&responseFilter=Computation";

var response = await httpClient.GetAsync(url).ConfigureAwait(false);
var json = await response.Content.ReadAsStringAsync().ConfigureAwait(false);
var squareRt =

JsonConvert.DeserializeObject<SquareRootResponse>(json);
return squareRt.Computation.Value;

}
}

Listing 7.20 Updating the square-root calculator interface to use async and await

Listing 7.21 Making a web service call from the square-root calculator

Creates a new
instance of HttpClient
to interact with web
services

Sets the API key on the
headers—this would be one of
the keys assigned to your Bing
search API subscription

Specifies the URL of the
endpoint to use for the search

Makes an HTTP GET call
to get the response

Gets the content of the
response as a string

containing a JSON document

Converts the JSON
document to your

new classes

Returns the value of the
calculation from the JSON

http://mng.bz/4KQ3

236 CHAPTER 7 Building cross-platform models
This is a complicated set of calls, so let’s break it down line by line.

 readonly HttpClient httpClient = new HttpClient();

This creates a new instance of the HTTP client class that you use to interact with
web services. You don’t need to create a new one for every request—you can
reuse the same one.

 _httpClient.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key",

"<your API key>");`

This adds a header that includes the API key to all the HTTP requests. You
should replace <your API key> with one of the API keys assigned to your
account when you set up your Bing search subscription.

 var url = "https://api.cognitive.microsoft.com/bing/v5.0/search
?q=sqrt({number})&responseFilter=Computation";
This is the URL used to perform searches against the Bing API. It sends a
request to https://api.cognitive.microsoft.com/bing/v5.0/search using a cou-
ple of query parameters. The standard way to send query parameters is using
the ? operator followed by queries in the form of key=value, separated using
the & character. In this example, you’re sending a query with the first parameter
set to "q=sqrt(<number>)" (where <number> is the number passed in to the
Calculate method), which is the same as entering a search query of
'sqrt(<number>)', into Bing. The second parameter is "responseFilter=

Computation", which tells Bing to run a computation instead of a search. This is
broken down in figure 7.28.

 var response = await httpClient.GetAsync(url).ConfigureAwait(false);
This will make the call to the web service and get a response object. This
response has a couple of interesting properties: StatusCode and Content. The
status code is the HTTP status code, so 200 for success, 404 if a URL isn’t valid,
or 418 if the endpoint is a teapot and you’ve sent a request to brew coffee (yes,
really). Anything in the 200 range is success, and anything in the 400 range is
an error. You can read more about the possible status codes on Wikipedia

Web service URL
First query parameter:

key is q, value is sqrt(40)

The & separates multiple
query parameters.

The ? indicates the end of the URL
and the start of the query parameters.

Second query parameter:
key is responseFilter,
value is Computation

https://.../search?q=sqrt(40)&responseFilter=Computation

Figure 7.28 HTTP requests can be suffixed with a ? followed by query parameters as
multiple key=value pairs separated by an &.

https://api.cognitive.microsoft.com/bing/v5.0/

237Building more complex model layers
(http://mng.bz/dfmF). This call will throw an exception if it times out, or if the
status code is in the 400 range. Here we’re not handling exceptions for the sake
of brevity, but in production code you should handle all possible exceptions
from this call.

This is an async method, and the implementation of HttpClient will use
background threads to do its work. When you call await httpClient.Get-

Async(url), a new task is created and run to make the call to the web service on
a background thread. ConfigureAwait(false) tells the compiler to keep using
this background thread to run the rest of the method until the next await.

 var json =

await response.Content.ReadAsStringAsync().ConfigureAwait(false);

The response contains the JSON for the search result, so this call will read the
content as a string that you can then deserialize to an object. Again, like Get-

Async, this will create a task to download the response on a background thread,
and the call to ConfigureAwait(false) will keep the rest of this method on
that background thread.

 var squareRt =

JsonConvert.DeserializeObject<SquareRootResponse>(json);

Once you have the string response, you can use the static JsonConvert class
from Json.NET to deserialize the string into an instance of the SquareRoot-

Response class, and you can get the calculated value from there.

The end result of this code is that you’ve sent a request to the Bing search API to cal-
culate a square root, and you’ve received a response that you can convert from JSON
to a set of C# classes that you can use to get the result as a double. Let’s test this out.

TESTING THIS CALL

Our unit tests are designed to test the methods on our classes, so as long as the inter-
face doesn’t change, the unit tests should still pass. This is one of the great things
about unit testing—you can refactor your implementations, and assuming you haven’t
made any errors when refactoring, your unit tests should work. We can prove this
here—you’ve changed the implementation of the Calculate method, so your tests
should still work.

HttpClient is implemented in all platforms, including Mac and Windows, so there
are no technical problems calling it from a unit test. In the real world you wouldn’t
necessarily do this in a unit test—instead you’d wrap the web service calls in another
class and mock it out (as we did for the database), but we’ll do it here as a simple way
to call the method and prove that the code works.

You can’t just run your test and have it work, though, because you did change the
interface slightly. You made the method async, so you need to tweak the test to be
async as well. Make the test return async Task, and await the Calculate call, as
shown in the following listing.

http://mng.bz/dfmF

238 CHAPTER 7 Building cross-platform models
using System.Threading.Tasks;
...
[Test]
public async Task Calculate_4_Returns2()
{

// Act
var squareRoot = await calc.Calculate(4);
// Assert
Assert.AreEqual(2, squareRoot);

}

You’ll also need to install the Newtonsoft.Json NuGet package into the unit-test pro-
ject. Once this package is installed, you should be able to run this test and have it
work, validating that the Bing API can correctly calculate square roots!

THERE’S A LOT OF BOILERPLATE CODE THAT YOU CAN AVOID When dealing with
web services, there’s a lot of boilerplate code you end up writing again and
again and again. To avoid this, there’s a NuGet package that allows you to
write a simple interface to your web service, decorating methods with attri-
butes to say which REST calls these methods map to, and the package will
build a class to implement the actual HTTP calls. This package is called Refit,
and it can be found at https://github.com/paulcbetts/refit. I highly recom-
mend trying this out, as it simplifies your code when dealing with REST APIs.

Now that you’ve tested your code, it’s worth deleting the Bing Search API resource
from your Azure account to avoid paying any more than you have to. You can do this
in one of two ways: by deleting the resource itself, or by deleting the whole resource
group. To delete the resource, select it in the Azure portal and click the Delete button
at the top, and then click Yes when asked to confirm. Deleting the entire resource
group follows the same process—select it and click the Delete resource group button,
but this time you’ll need to type in the resource group name to confirm the deleting,
making it harder to accidentally delete a resource group.

7.4 A quick recap
We’ve implemented a couple of different model types in this chapter: a simple one
and a more complex one. We’ve also looked at how you can interact with databases
and web services, and we’ve used a few NuGet packages along the way. Table 7.7 sums
up the NuGet packages we’ve used.

Listing 7.22 Making the Calculate_4_Returns2 test async

Table 7.7 The NuGet packages used in this chapter

NuGet package Description

NUnit Unit-testing framework

SQLite-Net-Pcl ORM for SQLite databases

The test now returns async Task so
that you can use await.

The Calculate call is async, so
you need to await it.

https://github.com/paulcbetts/refit

239A quick recap
We’ve also created a few interfaces and classes for our SquareRt and Countr apps.
Table 7.8 lists them for the SquareRt app, and table 7.9 covers the ones for the
Countr app.

Table 7.7 The NuGet packages used in this chapter (continued)

NuGet package Description

PCLStorage .NET Standard-based filesystem access

Moq Mocking tools for unit testing

Newtonsoft.Json Tools for serializing and deserializing C# classes to JSON

Table 7.8 Classes and interfaces we’ve created for the SquareRt app

Name Description

ISquareRtCalculator The interface for the calculation logic

SquareRtCalculator The implementation for the square-root calculation
logic (either using a direct calculation or the Bing
search services)

SquareRtCalculatorTests Unit tests for the square-root calculator

SquareRootResponse Class to represent the JSON response document
from the Bing search request

Computation Class to represent the computation section of the
JSON response document from the Bing search
request

Table 7.9 Classes and interfaces we’ve created for the Countr app

Name Description

Counter A data-model class for a counter

ICountersRepository The interface to a repository for storing and retrieving
counters

CountersRepository The interface of a repository for storing and retrieving
counters from a SQLite database

ICountersService The interface to a service that handles counters, includ-
ing reading from and writing to the repository and incre-
menting values

CountersService The implementation of the service that handles counters

CountersServiceTests Unit tests for the counters service

240 CHAPTER 7 Building cross-platform models
This is our model layer done. In the next chapter we’ll move up a layer to the view
models.

Summary
In this chapter you learned

 Model layers can be simple or more complex, and they can include any busi-
ness logic you need, such as calculations.

 Unit tests are a great way to test code without having to build an entire app.
 SQLite provides a simple, file-based database that you can access from a .NET

Standard library.
 .NET Standard libraries don’t have file access, so you need a plugin to allow you

cross-platform access to the filesystem.
 Complex model layers are better split into data models, repositories, and services.
 HttpClient provides a nice, cross-platform way to interact with web services.
 If your web service returns a status code of 418, it’s actually a teapot.

You also learned how to

 Create a unit-test project and run tests in that project
 Set up a SQLite database, create tables, and set up a class to store inside a table
 Mock interfaces to make it easier to unit-test dependencies between classes
 Use the Bing search API to calculate square roots

8Building cross-platform
view models
In the previous chapter we built the cross-platform model layers for our two apps,
SquareRt and Countr. We looked at how you can wrap up your model layer in ser-
vices and repositories that can be shared among different view models. Now it’s
time to move up a layer and start coding the view models.

8.1 The view-model layer
Like the model layer, the view-model layer is a cross-platform layer (figure 8.1). The
difference is that whereas the model layer represents your data and business logic

This chapter covers
 Creating simple and master/detail view models

 Adding state to view models using single-value and
collection properties

 Adding behavior to view models when properties change
and using commands

 Communicating between components using messaging

 View-model navigation
241

242 CHAPTER 8 Building cross-platform view models
in a way that makes sense to your domain (for example, using services), the view-
model layer represents the state and behavior of your UI and is written in a way that
makes sense to your view layer.

This means that, in general, you have one view model per view, so for FooView you’d
have FooViewModel, for BarView you’d have BarViewModel, and so on. This is very dif-
ferent from the model layer, where you have data models that represent the entities in
your business layer, and services and repositories to manipulate and store those enti-
ties. After all, different views can show or interact with the same entities.

Throughout this chapter, we’ll be looking at the responsibilities of the view model,
including the following:

 Encapsulating state from the model layer and representing it in a way that
makes sense to the view layer

 Providing value conversion between data in the model layer and the view layer
 Providing a way for the view layer to trigger behavior via commands or via prop-

erties changing
 Making the behavior in the model layer accessible to the view layer

In chapter 6 we looked at the user flows for our two apps, SquareRt and Countr. Let’s
review these again, and look at the state and behavior that the different view models
need to represent.

8.1.1 The view-model layer inside SquareRt

The SquareRt app is very simple and only has one user flow: a user enters a number,
and the square root is calculated. Figure 8.2 shows this flow and the classes you need
to implement it.

We’ve wrapped the calculation code in the model layer in the previous chapter,
SquareRtCalculator, and we also designed a UI for it. Let’s now think about how you
can wire this UI up to the model via a view model by looking at state and behavior.

UI layer

App
layer

UI logic
layer

iOS

C# (.NET Standard)

Business
logic layer

View

View
model

ModelC# (.NET Standard)

C#

C#

C#

C#

Android

C# (.NET Standard)

Binding

Figure 8.1 The view-model
layer in an MVVM-based
mobile app is written using
cross-platform code.

243The view-model layer
STATE

The first thing to think about is state—what data you show on screen. In this app the
state is represented by two numbers: one for input that the user can edit (the number
that the square root will be calculated from), and one for output that’s read-only (the
square root result). It’s these two pieces of state that we need to represent in the view
model, as shown in figure 8.3.

One thing to bear in mind is that the values used in the calculations are of type double,
whereas most text-entry controls deal with raw text and so have string values. This
means we’ll have to perform value conversion in the view-model layer.

BEHAVIOR

Once you have an idea of the state that you need to represent, you need to think
about the behavior. The behavior here is also very simple: when the input number is
changed, the app needs to calculate the new square root and update the result prop-
erty on the UI. This is shown in figure 8.4.

Although it’s normal to handle behavior using commands, sometimes it’s more
appropriate to handle simple behavior by using properties, such as when the value of
one property is directly dependent on the value of another. In this case, the trigger
for the behavior is one property changing, so there’s no need to wrap this up in a
command.

SquareRtView

SquareRtViewModel

SquareRtCalculator

View

View
model

Model

User enters
a number

Square root
is calculated

Answer is
shown on UI

Figure 8.2 The only user flow in SquareRt, and the view, view-model,
and calculator classes that you need to implement it

SquareRt

400

20

√ The input—the square
root of this number will
be calculated.

The output—the result
of the calculation will be
shown here.

Figure 8.3 The state that will be
represented by the view model

244 CHAPTER 8 Building cross-platform view models
The simple rule of thumb here is that if one property is dependent on the value of
another, it’s usually easier to implement the behavior as part of the property change.
If the behavior is triggered by an explicit user action, use a command.

8.1.2 The view-model layer inside Countr

SquareRt is a very simple app, but Countr is a bit more complicated. Rather than hav-
ing one simple user flow, it has four as shown in figure 8.5.

We also have a slightly more complicated UI, with two screens. Following the pattern of
one view model per screen, we’ll need to have two view models—one for the screen
showing the list of counters, and one for the screen to add a new counter (figure 8.6).

You’ll probably notice that this app, with one view model (and therefore one view)
that shows a list of data, and another view model (and view) for creating, viewing, or
editing an item, has a similar pattern to several other apps you use on a regular basis.

SquareRt

4

2

√

SquareRt

40

6.325

√

SquareRt

400

20

√

As the input property changes, the output will be recalculated.

Figure 8.4 The behavior that the view model will need to implement

User wants to
see counters

Counters are
loaded from

storage

All counters are
shown on UI

User adds
a counter

User enters
counter details

Counter is
created and

stored

New counter is
shown on the UI

User deletes
a counter

Counter is
removed from

storage

Counter is
removed
from UI

User increments
a counter

Counter is
incremented
and stored

Counter is
updated on

the UI

Figure 8.5 The user flows for
the counter app—showing,
adding, deleting, and
incrementing counters

245The view-model layer
For example, in an email app you’d have one view showing a list of emails in a mail-
box, such as your inbox or sent mails. When you tap a button to write a new email, a
new screen will appear where you can write your email. Once this email is sent, it’ll
appear in the list of sent mail. Tapping on an email in the inbox will show a new
screen with the contents of that email, as shown in figure 8.7. The same is true in an
address book app—these apps normally show a master list of people by name, and
when you tap a name it shows the details about that person. If you tap a button to cre-
ate a new contact, you get a new screen to create the contact, and once you’re done, it
appears in the master list.

Similarly CountersViewModel will contain a list of counters, which will each be repre-
sented by CounterViewModel instances that wrap each counter.

This pattern is called master/detail, and it refers to a master list that shows high-
lights of all the items your app needs to show, and a detail screen that can be used to
view or edit the details for a single item, or can be used to add a new item.

The normal navigation pattern for adding new items is via a button (on iOS this is
normally on the toolbar; on Android it can be a toolbar button or a floating action
button), which displays a blank detail screen where you can enter the details. This

View

View
model

Model

CountersView

CountersViewModel

CountersService

CounterView

CounterViewModel

Counter

Figure 8.6 The Countr app maps
to a set of views, view models, and
model-layer classes.

Inbox

Bob

Mum

Hi from Bob

Happy Birthday

Hi from Bob

Hi there, just wanted to drop
you a line to see how you
are doing.

Mail me back!

Bob

BobInbox

Bob

Mum

Hi from Bob

Happy Birthday

Reply Forward Delete

Master view/view model
Detail view models in

the master list Detail view/view model

Figure 8.7 Master/detail apps have a master list in one view and a detail view for seeing, editing,
or creating an individual item.

246 CHAPTER 8 Building cross-platform view models
detail screen will usually have Save and Cancel buttons in the toolbar. If your app sup-
ports viewing more details or editing an item, the normal navigation pattern is to tap
on the item in the list, and this will navigate to the detail screen, with a back button at
the top left so you can go back to the list. Details usually slide in from right to left on
top of the list and slide back out from left to right when done, mimicking papers
stacking up and unstacking.

In the Countr app we’ll use the master/detail pattern. The master list will show the
list of all counters, and the detail screen will be for adding new counters (figure 8.8).
If, in the future, we wanted to expand our app to support editing counters (such as
changing the name) or viewing more details (viewing when counts were increased, or
reports broken down by day, week, month), we could use the same pattern with a
detail screen containing all this info.

A popular technique for creating the view-model classes for master/detail apps is to
stick with two view models—a master view model that contains a list of instances of the
detail view model. The detail view model will contain all the state and behavior
needed by the detail screen.

STATE

The app will need two view models: CountersViewModel and CounterViewModel. The
state represented by CountersViewModel is a collection of counters that will be dis-
played on screen in a list. Each counter will be represented by an instance of Counter-
ViewModel, which has state in the form of the name and current count of the counter.
Both of these values will be read-only here, but we can also use CounterViewModel for
the add-new-counter screen, where the name will be set. This is shown in figure 8.9.

Counter Add

Coffees

Runs

4

1

+

+

New CounterCancel Done

Counter Name

When a new counter is created,
the detail view model is used.

Each counter is represented by an
instance of the detail view model.

The master list of all the
counters stored in the app

Figure 8.8 The Countr app has a list of counters and a detail screen to add a new counter.

247The view-model layer
BEHAVIOR

The two view models for this app have different behaviors, all triggered by user inter-
actions. This means you can implement behavior via commands, unlike SquareRt,
which will use property changes to trigger behavior (figure 8.10).

For CountersViewModel, the master view model, you’ll need to add behavior for an
Add button—this will need to navigate to a new screen so the user can set up a new
counter. For CounterViewModel, the detail view model, you’ll need to add behavior
for the Done button, which will navigate back to the master view after creating a new
counter, and for a Cancel button, which will navigate back to the master view without

Counter Add

Coffees

Runs

4

1

+

+

New CounterCancel Done

Counter Name

The name can be set for a new counter.Each counter shows its name and count.

A list of all
the counters

Figure 8.9 The state that will be represented by the two view models: a master view model and
a detail view model

Counter Add

Coffees

Runs

4

1

+

+

New CounterCancel Done

Counter Name

Tapping the +
button increments
the counter.

Swiping the
counter deletes it.

Tapping the Add
button shows the
new counter screen.

Tapping Cancel will close
the screen and not create
a new counter.

Tapping Done
will create a
new counter.

Figure 8.10 The behavior for the master and detail view models

248 CHAPTER 8 Building cross-platform view models
creating a new counter. You’ll also need to add behavior that’s used by the items in the
master list, allowing the user to increment or delete a counter.

8.2 Adding state and behavior to SquareRt
Now that we’ve reviewed the state and behavior for both of our apps, let’s write some
code to implement them, starting with the SquareRt app. Launch the SquareRt solu-
tion from chapter 7—use the version that does the calculation itself rather than the
one that uses the Bing API, because it will be much faster to run.

8.2.1 State inside SquareRt

The first thing we need to do is create the view model for the SquareRt app. Add a
new class called SquareRtViewModel to the ViewModels folder. The following listing
shows the initial code for this class.

using MvvmCross.Core.ViewModels;

namespace SquareRt.Core.ViewModels
{

public class SquareRtViewModel : MvxViewModel
{

readonly ISquareRtCalculator calculator;

public SquareRtViewModel(ISquareRtCalculator calculator)
{

this.calculator = calculator;
}

}
}

Once you’ve added this class, you can delete the FirstViewModel class. This class is
also referred to in the App class, inside the Initialize method. Inside this method, a
call is made to RegisterNavigationServiceAppStart to register the FirstViewModel

as the startup view model for the app. We’ll look at this call in detail later in this chap-
ter, but for now change this call to use the new SquareRtViewModel so that the project
compiles, as shown in the following listing.

public override void Initialize()
{

...
RegisterNavigationServiceAppStart<ViewModels.SquareRtViewModel>();

}

This class derives from MvxViewModel, the base view-model class from MvvmCross,
which provides features such as property-changed notifications.

Listing 8.1 Taking the calculator interface as a constructor parameter

Listing 8.2 Setting the app startup view model to be your new view model

The view model is derived
from the MvvmCross base
view model.

The constructor takes an instance
of the square root calculator.

249Adding state and behavior to SquareRt
You need to add a couple of properties to the view model to represent the value
you’ll calculate the square root of, and the result of the calculation. Although these
are simple properties, you do have to put some thought into how to create them. View
models are responsible for value conversion, converting values from a format that’s
relevant to the view to a format that’s relevant to the model layer, and vice versa. This
model layer deals with double values. In contrast, the UI has a text-entry control for
entering the input, as well as a label control to show the result, and these kind of UI
controls usually deal with string values.

You have two choices here—perform the value conversion inside the properties, or
do it in a value converter. Let’s look at both in turn.

VALUE CONVERSION INSIDE PROPERTIES

You have two properties to consider: one for the input and one for the result. The
result will be calculated when you implement the behavior inside the view model, so if
you’re going to perform value conversion inside the properties, you can also convert
the result value to a string as soon as it has been calculated. This means you can make
a simple string property for the result.

The following listing shows this property, so add this to the view model.

string result;
public string Result
{

get { return result; }
private set { SetProperty(ref result, value); }

}

This Result property is a simple string property with a string backing field. The get-
ter just returns the field value, so there’s nothing too exciting here. The setter is pri-
vate (after all, you’ll be calculating the value inside the view model, so there’s no need
to make the setter public), and it uses SetProperty to update the value. SetProperty
is a helper method provided by MvvmCross; it will check the existing value against the
new value, and if it has changed, it will update the value and raise the property-
changed event. If the value hasn’t changed, nothing happens.

PROPERTY-CHANGED NOTIFICATIONS ARE USED TO UPDATE THE UI The reason for
raising a property-changed notification is to tell the binding layer that the
property’s value has changed, so the UI should be updated. The binding layer
will re-read the property and set the new value on the relevant UI widget.

The SetProperty method will also return a Boolean—true if the value was different
and the property was updated, or false if the value was the same, and so wasn’t
updated. This is helpful if you want to perform other actions when the value changes.
For example, in a class with a Name property that concatenates FirstName and LastName,

Listing 8.3 string property uses a backing field and notifies when the value changes

Both the backing field and
property are of type string.

The getter just returns the
value of the backing field.

The setter uses SetProperty
to update the field.

250 CHAPTER 8 Building cross-platform view models
if the call to SetProperty inside the FirstName or LastName properties returns true,
then your view model can raise a property-changed notification for Name.

The result property is easy, but for the input property you actually have to do some
conversion. Helpfully, the .NET Framework provides a selection of ways to make this
conversion easy. One of these is the System.Convert static class, which has methods
that perform all kinds of conversions between the different primitive types, such as
double, int, long, and string. The following listing shows this in action.

using System;
...
double number;
public string Number
{

get { return Convert.ToString(number); }
set { SetProperty(ref number, Convert.ToDouble(value)); }

}

This is very much like the Result property, except the property is a string and con-
verts to and from a double backing field, which is of the right type to pass to the calcu-
lator in order to calculate the square root. This is shown in figure 8.11.

In this example, you’re not doing any validation, so if the value passed to Number isn’t
a number, such as the string "Not a Number", then the conversion would throw a
FormatException. Ideally you should always add validation before converting values,
but in this instance it shouldn’t be too much of a problem because when we construct
the UI in the next couple of chapters, we’ll restrict the text-entry controls to only
allow numbers.

Listing 8.4 Converting from a string to a double and vice versa

The property is of type string, but
the backing field is a double

The property getter converts
from a double to a string.

The property setter converts
from a string to a double.

string Number

double _number

Convert to
double

Convert to
string

Number entered See number
View

View
model

Figure 8.11 Value
conversion inside a property

251Adding state and behavior to SquareRt
UNIT-TESTING YOUR VALUE CONVERSION

In chapter 7 we discussed how our models couldn’t be tested manually because we
don’t yet have a working app, and the same applies to our view models. We can’t test
these manually, so we need to write some unit tests.

You can do this now by creating a ViewModels folder in the SquareRt.Core.Tests
project and adding a new test fixture class called SquareRtViewModelTests. You’ll be
mocking out the ISquareRtCalculator interface, so just like with the Countr tests in
the previous chapter, you’ll need to add the Moq NuGet package (figure 8.12). In addi-
tion, your view model derives from an MvvmCross base class, so you’ll need to add the
MvvmCross NuGet package as well (figure 8.13), making sure that the version of the
MvvmCross NuGet package that you add matches the version used in your core project.

There are many ways to string a double
There are many ways to represent a number as a string. For example, the number
1,234.56789 can be represented in a number of ways:

 1,234.56789
 1234.56789
 1,234.56789000

All of these are valid, but they’re not necessarily the format you want. When convert-
ing a number to a string, you can use format specifiers to dictate how the number
should be represented. Standard format specifiers are available, and you can create
custom formats if you need to. You can read all about formatting types in Microsoft’s
“Formatting Types in .NET” article at http://mng.bz/1Ijv.

You should also consider locale. In the U.S., a decimal point is a period (.), whereas
in some European countries it’s a comma (,). In the U.S., 1,000 means one thou-
sand, but in Denmark it’s one. You can read about supporting different locales when
converting to strings using the CultureInfo class in Microsoft’s documentation of
the Double.ToString method (http://mng.bz/LpJ0).

Figure 8.12 Adding the Moq NuGet package to the unit-test project

http://mng.bz/1Ijv
http://mng.bz/LpJ0

252 CHAPTER 8 Building cross-platform view models
The following listing shows the initial implementation of this test fixture.

using Moq;
using NUnit.Framework;
using SquareRt.Core.ViewModels;

namespace SquareRt.Core.Tests.ViewModels
{

[TestFixture]
public class SquareRtViewModelTests
{

Mock<ISquareRtCalculator> calculator;
SquareRtViewModel viewModel;

[SetUp]
public void SetUp()
{

calculator = new Mock<ISquareRtCalculator>();
viewModel = new SquareRtViewModel(calculator.Object);

}
}

}

In the SetUpmethod of this test fixture class, you initialize a mock ISquareRtCalculator

and create an instance of the view model using the mock that you can test in your test
methods. You can only test the Number property at the moment—the Result property
has a private setter so you can’t test it until you add behavior later in this chapter.

The following listing shows an example test to verify that you can get and set a
string value on the Number property correctly.

[Test]
public void Number_ConvertsToAndFromDoubleCorrectly()
{

// Act
viewModel.Number = "1234.4321";
// Assert
Assert.AreEqual("1234.4321", viewModel.Number);

}

Listing 8.5 Creating a view model from a mock calculator

Listing 8.6 Verifing that the Number getter returns same value passed to the setter

Figure 8.13 Adding the MvvmCross NuGet package to the unit-test project

A mock calculator
is created and used

to construct the
view model.

253Adding state and behavior to SquareRt
This is a simple test, and if you run it, it should pass with no problems. If you want to
see what happens if the string isn’t a valid number, change the test to pass in a differ-
ent string that is not a valid number.

Another thing to test here is the property-changed notifications. It’s a good sanity
check to ensure that the property raises a changed notification if the value changes, so
the next listing is a quick test to do this.

[Test]
public void SettingNumber_RaisesPropertyChanged()
{

// Arrange
var propertyChangedRaised = false;
viewModel.PropertyChanged +=

(s, e) => propertyChangedRaised = (e.PropertyName == "Number");
// Act
viewModel.Number = "1";
// Assert
Assert.IsTrue(propertyChangedRaised);

}

An easy way to test the PropertyChanged event is to wire up the event to a handler that
sets a bool flag to true if the event is raised with a property name that matches the
property you’re interested in. The name of the property that changed comes from the
PropertyName property of the event args.

If you run this, you’d expect the test to pass. Try it and see what happens. What
you’ll actually see is that this test fails…

This is a result of the way MvvmCross handles property changes. When you raise a
property-changed event, the UI needs to be updated, and as you saw back in chapter 5
this must happen on the UI thread. Rather than forcing you to always update proper-
ties on the UI thread (something that’s hard to do in a view model), most MVVM
frameworks help you out by marshaling these events onto the UI thread. This is what’s
happening here—MvvmCross is helpfully raising the property-changed event on the
UI thread using a dispatcher, a class whose sole purpose is to run code for you on the
UI thread (figure 8.14). When you run your code inside an app running on iOS or
Android, the MvvmCross setup code creates this dispatcher automatically based on
your app’s UI thread. Inside unit tests there’s no UI thread and no dispatcher, so
there’s nothing to run the code to raise your event.

There are a couple of workarounds. One is to create a mock dispatcher object and
set MvvmCross up to use it, but this is too much hard work for our needs right now.
Luckily there’s a simple shortcut—you can set a flag on your view model to raise the
property-changed events on the current thread, rather than using a dispatcher. This is

Listing 8.7 Verifing a property-changed notification is raised when the number changes

Wires up the
PropertyChanged

event

Checks that the property-
changed event was fired

Updates the Number property

254 CHAPTER 8 Building cross-platform view models
good enough for our tests, so make the change to the Setup method shown in the fol-
lowing listing, and re-run the test.

...
viewModel = new SquareRtViewModel(calculator.Object);
viewModel.ShouldAlwaysRaiseInpcOnUserInterfaceThread(false);
...

You should now see the test pass.

VALUE CONVERSION USING A VALUE CONVERTER

We’ve looked at value conversion inside a property, and you’ve seen how you can con-
vert a string from the UI to a double to use in your calculation. You’ve also seen that
you’ll need to convert the result of the calculation to a string to set the result prop-
erty when you implement the behavior inside your view model.

This seems a bit more complicated than we might like, with conversions happen-
ing in multiple places. If we extended the app to include more calculations (such as
adding a cube-root converter), we’d have to duplicate the conversion code, meaning
more places for bugs, and more code to change if we wanted to make any improve-
ments. Ideally, we’d want to do this conversion in one place, and that place is a value
converter. We want to maximize code reuse—that’s why we’re building Xamarin apps
using MVVM after all!

We looked at value converters back in chapter 3, but as a recap, a value converter
is a class whose sole job is to convert from one type to another. They’re used by the

Listing 8.8 Raising the property-changed events on the current thread

SquareRtViewModelAny thread

UI thread

MvxViewModel IMvxViewDispatcher

PropertyChanged

1. The SquareRtViewModel calls
 RaisePropertyChanged().

2. RaisePropertyChanged()
 is a method on the base
 MvxViewModel, and this calls
 through to the dispatcher.

3. The dispatcher is set up when
 the app starts up, so it uses
 the app’s UI thread. If the view
 model is created in a unit test,
 there is no UI thread to use.

4. If the dispatcher has a UI thread to run on, the PropertyChanged
 event is raised on the UI thread; otherwise the event is not raised
 as it has no thread to run on.

Figure 8.14 MvvmCross view models raise property-changed events using a dispatcher.

Tells the view model to raise
the property-changed events

on the current thread

255Adding state and behavior to SquareRt
binding layer to convert values from the type used by the view model to the type used
by the view, and vice versa. They have two methods: Convert and ConvertBack. Convert
converts from the view-model type to the view type, whereas ConvertBack converts
from the view type to the view-model type (figure 8.15). Value converters can use
types that are available in .NET Standard libraries, or they can be used for platform-
specific types. If they use platform-specific types, they need to live in the relevant iOS
and Android app projects, but if they use types available in .NET Standard libraries
(such as doubles and strings) they can live in the core project.

Create a folder in the SquareRt.Core project called ValueConverters, and in that
folder create a DoubleToStringValueConverter class. The following listing shows the
code for this converter.

using System;
using System.Globalization;
using MvvmCross.Platform.Converters;

namespace SquareRt.Core.ValueConverters
{

public class DoubleToStringValueConverter : IMvxValueConverter
{

public object Convert(object value, Type targetType,
object parameter, CultureInfo culture)

{
return System.Convert.ToString(value);

}

public object ConvertBack(object value, Type targetType,
object parameter, CultureInfo culture)

{
return System.Convert.ToDouble(value);

}
}

}

This converter implements an interface from MvvmCross, IMvxValueConverter,
which provides the same two methods that most value converters have: Convert and
ConvertBack. The implementation of this converter uses the same logic as you saw

Listing 8.9 A value converter to go from doubles to strings

ConvertBack Convert

double Number

Number entered See number
View

Value
converter

View
model

Figure 8.15 Using a value
converter to convert
properties

There is no standard value-
converter interface available

to Xamarin apps, so we’ll use
one provided by MvvmCross.

Converts the value to a string

Converts the value
back to a double

256 CHAPTER 8 Building cross-platform view models
earlier when converting values inside the view model itself, using the System.Convert

static class to perform the conversion.

UNIT-TESTING YOUR VALUE CONVERTER

You can now unit-test this converter to prove it works. Create a ValueConverters folder
in the SquareRt.Core.Tests project and add a new test-fixture class DoubleTo-

StringValueConverterTests. The following listing shows the code for some tests for
converting and converting back.

using NUnit.Framework;
using SquareRt.Core.ValueConverters;

namespace SquareRt.Core.Tests.ValueConverters
{

[TestFixture]
public class DoubleToStringValueConverterTests
{

[Test]
public void Convert_ConvertsADoubleToAString()
{

// Arrange
var vc = new DoubleToStringValueConverter();
// Act
var converted = vc.Convert(123.456, null, null, null);
// Assert
Assert.AreEqual("123.456", converted);

}

[Test]
public void ConvertBack_ConvertsAStringToADouble()
{

// Arrange
var vc = new DoubleToStringValueConverter();
// Act
var converted = vc.ConvertBack("123.456", null, null, null);
// Assert
Assert.AreEqual(123.456, converted);

}
}

}

If you run these tests, they should all pass.
Before you can use this value converter with your view model, you need to make

your view model use doubles only, with no conversion to or from strings. The next list-
ing shows the view-model properties.

double number;
public double Number
{

Listing 8.10 Unit-testing the value converter

Listing 8.11 For a value converter in the binding layer, properties should be doubles

Converts a double to a
string and ensures it’s

converted correctly

Converts a string
back to a double
and ensures it’s

converted correctly

All properties and backing
fields are doubles.

257Adding state and behavior to SquareRt
get { return number; }
set { SetProperty(ref number, value); }

}

double result;
public double Result
{

get { return result; }
set { SetProperty(ref result, value); }

}

You can also remove the unit tests for the view model that checked the conversion, and
change the test for the property changed to use the correct type. Delete the Number_

ConvertsToAndFromDoubleCorrectly test and change the assignment in SettingNumber_

RaisesPropertyChanged to set the view model to a double instead of a string. With
these changes made, the test should pass.

WHICH ONE TO USE

We’ve looked at value conversion inside properties and using value converters, so
which one should you use? As with all good programming questions, the answer is “it
depends.” A good rule of thumb is to think about how often this conversion needs to
happen, and how complicated it is:

 If it needs to happen for multiple properties across multiple view models, a
value converter is the best bet.

 If the conversion is slow (for example, involving a database lookup or a web ser-
vice call), you need to find a way to make it happen on a background thread, in
which case a value converter is out. Value converters are called by the binding
layer on the UI thread, so they must be fast. In this situation, it would be better
to create a Task to convert the value on a background thread when the prop-
erty to be converted is set.

 If the conversion involves multiple inputs, such as multiple properties, it’s eas-
ier to do the conversion on the properties inside the view model. Using a value
converter would be much more complex, as you’d need to pass multiple prop-
erties through.

 If the view type is platform-specific, it has to be in a value converter.

It comes down to whatever fits best for your code. I personally like to do it inside prop-
erties where I can. If I find I’m repeating the code, I refactor it into a value converter.

8.2.2 Exposing behavior via property changes

Our SquareRt app is a simple one, with a single user flow. Every time the number is
changed, the square root should be calculated, and this behavior is simple enough to
execute every time the number changes, rather than waiting for an explicit user
action like tapping a Calculate button.

Let’s add the code to implement this behavior in the SquareRtViewModel. The fol-
lowing listing shows the code you need if you’re doing value conversion inside the

All properties and backing
fields are doubles.

258 CHAPTER 8 Building cross-platform view models
properties, and listing 8.13 shows the code if you’re doing the value conversion in a
value converter.

public string Number
{

get { return Convert.ToString(number); }
set
{

if (SetProperty(ref number, Convert.ToDouble(value)))
Result = Convert.ToString(calculator.Calculate(number));

}
}

public double Number
{

get { return number; }
set
{

if (SetProperty(ref number, value))
Result = calculator.Calculate(number);

}
}

In both cases, the result is calculated and the property is updated. When the value is cal-
culated, it’s the Result property itself that gets updated, not the backing field. This way,
a property-changed event is raised, telling the UI to update and show the new value.

Now that we have the behavior defined, let’s write a couple of unit tests to verify
that the result is calculated and a property-changed event is raised whenever the num-
ber changes. The following listing shows these tests, which you can add to SquareRt-

ViewModelTests.

[Test]
public void SettingNumber_CalculatesResult()
{

// Act
viewModel.Number = 4;
// Assert
Assert.AreEqual(2, viewModel.Result);

}

[Test]
public void SettingNumber_RaisesPropertyChangedForResult()
{

// Arrange
var propertyChangedRaised = false;

Listing 8.12 Calculating square as a string when Number property changes

Listing 8.13 Calculating the square root whenever the Number property changes

Listing 8.14 Ensuring that the result changes when the number is set

After the number is set,
the result is calculated

and converted to a string.

After the number is set,
the result is calculated.

Tests that the result
is calculated from
the number

259Adding state and behavior to SquareRt
viewModel.PropertyChanged +=
(s, e) => propertyChangedRaised = (e.PropertyName == "Result");

// Act
viewModel.Number = 1;
// Assert
Assert.IsTrue(propertyChangedRaised);

}

If you run these tests, surprisingly they fail. That’s because we mocked the ISquareRt-

Calculator interface in the SetUp method. Mocks, by default, don’t do anything—
their properties are all default values for the type (0 for numbers, null for objects),
and all methods return the default values. In this case, the Calculate method is
returning a default value of 0 because we haven’t set it up.

Remember, this is a unit test—a test to verify a unit of code in isolation—and we’ve
mocked up the dependencies (in this case, the ISquareRtCalculator interface) so
that we have control inside our tests. For example, if you were using the version of the
square root calculator that used Bing search to calculate the square root instead of a
mock object, every unit test would take a while to run as it made a network call, slowing
down the tests. Also, running unit tests regularly (something that’s very good to do)
could easily exceed the number of Bing requests you can make at the lowest price tier,
so you’d have to pay more for each test to run. Mocks help eliminate these problems.

What you can do here is set up the mock to act the way you want and simulate the
expected behavior. Moq has a simple syntax where you can specify the behavior you
want for the methods and properties on your mock objects, either for all calls or for
specific calls, based on the parameters provided. This means that for the Calculate

method you could set it up to always return a specific value, or make it so that if you
call it with 4, it returns 2, or if you call it with 9 it returns 3, and so on. You could even
have it throw an exception if you call it with –1.

For these tests, we’ll set it up to always return 2. The following listing shows the
code changes you need to make.

[Test]
public void SettingNumber_CalculatesResult()
{

// Arrange
calculator.Setup(c => c.Calculate(It.IsAny<double>()))

.Returns(2);
...

}

[Test]
public void SettingNumber_RaisesPropertyChangedForResult()
{

// Arrange
calculator.Setup(c => c.Calculate(It.IsAny<double>()))

.Returns(2);
...

}

Listing 8.15 Setting up the Calculate method to return 2 at the start of each test

Verifies that a property-
changed notification is

raised for Result

The Calculate method
is set up so that if it’s
called with any
double value, it will
return 2.

260 CHAPTER 8 Building cross-platform view models
If you make these changes and run the tests, they should now pass.

8.3 Adding state and behavior to Countr
SquareRt is now all done, so open the Countr solution and we’ll turn our attention to
this app.

8.3.1 Single-value properties

Let’s start by looking at the CounterViewModel for the Countr app. This view model
needs to provide state for the name and count of a counter, backed up by an instance
of the Counter data model from the model layer.

Load up the Countr solution and create a new class in the ViewModels folder of
the Countr.Core project. The next listing shows the code for the first part of this
class—preparation.

using Countr.Core.Models;
using MvvmCross.Core.ViewModels;

namespace Countr.Core.ViewModels
{

public class CounterViewModel : MvxViewModel<Counter>
{

Counter counter;

public override void Prepare(Counter counter)
{

this.counter = counter;
}

}
}

This view model needs to represent a counter, so it makes sense to use an instance of
Counter as a backing store to hold this data. CounterViewModel has two jobs: in the
master list it represents an existing counter, and in the new counter detail view it rep-
resents a new counter (figure 8.16). For both jobs it needs to store and expose a
counter. Here you can take advantage of a slightly different base view-model class:
MvxViewModel<T>. This class provides an abstract Prepare(T parameter) method that
you override to prepare the view model and store the counter, and this method can be
called with either an existing counter or a new one.

You might think this is an odd way to do it. After all, for such a class you’d normally
have two constructors: a default one that creates a new counter, and one that takes an
existing counter as a parameter. You can’t do that here, though, because of the way
MvvmCross uses view models to navigate between views—something we’ll look at in
detail later on in this chapter.

Now that you have your Prepare method, let’s implement the Name and Count prop-
erties using the counter as a backing field. You won’t be able to use the SetProperty

Listing 8.16 The implementation of CounterViewModel wraps a Counter

This view model
derives from
MvxViewModel.

The view model uses
an instance of Counter
to hold the state.

The Prepare method provides an
existing counter as a backing
store for this view model.

261Adding state and behavior to Countr
helper method here—it needs a reference to the underlying field so that it can both
read and write the value. In this case, there’s no underlying field, just a property on the
backing object that can’t be passed by reference. Here’s the code for this.

public string Name
{

get { return counter.Name; }
set
{

if (Name == value) return;
counter.Name = value;
RaisePropertyChanged();

}
}

public int Count => counter.Count;

The getters for both the Name and Count properties are simple pass-through getters—
they just return the value on the underlying counter. The Count property is read-only
(it can only be edited via the + button, so it will be incremented using a command).
The Name property is not read-only as you’ll need to set it when creating a new
counter. It follows the standard logic you saw back in chapter 3—if the value hasn’t
actually changed, do nothing; if it has changed, update the property on the underly-
ing counter and raise a property-changed notification.

Let’s now write some unit tests to verify that we haven’t made any mistakes with this
view model. Create a ViewModels folder in the Countr.Core.Tests project and create a
new class in that folder called CounterViewModelTests. Once again, you’ll need to

Listing 8.17 Wrapping the properties on the underlying counter

Counter Add

Coffees

Runs

4

1

+

+

New CounterCancel Done

Counter Name

CounterViewModel is used for
the items in the counters screen.

CounterViewModel is also used
for the new counter screen.

Figure 8.16 The counter view model has two uses—it’s an item in the list of
counters, and it’s the view model for the add-new-counter screen.

The Name property getter returns
the value from the counter.

The Name property setter checks to see if the value
has actually changed, and if so sets the value on the
counter and raises a property-changed notification.

The Count property is read-only, so it
only has a getter that returns the
value from the counter.

262 CHAPTER 8 Building cross-platform view models
add the MvvmCross NuGet package, so add this to the tests project now. The following
listing shows the the contents of the CounterViewModelTests class.

using NUnit.Framework;
using Countr.Core.ViewModels;
using Countr.Core.Models;

namespace Countr.Core.Tests.ViewModels
{

[TestFixture]
public class CounterViewModelTests
{

CounterViewModel viewModel;

[SetUp]
public void SetUp()
{

viewModel = new CounterViewModel();
}

[Test]
public void Name_ComesFromCounter()
{

// Arrange
var counter = new Counter { Name = "A Counter" };
// Act
viewModel.Prepare(counter);

// Assert
Assert.AreEqual(counter.Name, viewModel.Name);

}
}

}

This is a simple sanity check to ensure that the counter is wired up correctly, and by
running this and watching it pass, you can see that everything is OK. As another sanity
check for the Count property, you can duplicate this test but verify that the count is
correctly passed through. You could also add a test to ensure that the property-
changed notification is raised when setting the Name property, just as we did for the
Number property of SquareRtViewModel. You can see examples in the source code that
accompanies this book.

We now have a working view model for a counter that we can use when creating a
new counter, as well as for the items in the list on the main view of the app.

8.3.2 Collections

We’ve looked at simple, single-value properties on our view model; now let’s turn our
attention to properties that represent collections of data. You’ve created one view
model to represent a counter, so now you need another view model to represent a list
of counters—CountersViewModel. Start by creating this class in the ViewModels
folder. The following listing shows the initial implementation.

Listing 8.18 Unit-testing the simple pass-through properties on the view model

Creates a new
counter view model
to use in all tests

Creates a new
counter with a
defined name

Prepares the
view model with
the counter

Asserts that the name on the
view model matches the counter

263Adding state and behavior to Countr
using MvvmCross.Core.ViewModels;
using Countr.Core.Services;

namespace Countr.Core.ViewModels
{

public class CountersViewModel : MvxViewModel
{

readonly ICountersService service;

public CountersViewModel(ICountersService service)
{

this.service = service;
}

}
}

Again this view model derives from MvxViewModel, and the constructor for the view
model takes an instance of ICountersService (the service in the model layer you cre-
ated in the last chapter), which it will use to load all the counters.

Now that you have your view model, you need to expose the list of counters. The
following listing shows the implementation of this.

using System.Collections.ObjectModel;
...
public class CountersViewModel : MvxViewModel
{

...
public CountersViewModel(ICountersService service)
{

...
Counters = new ObservableCollection<CounterViewModel>();

}

public ObservableCollection<CounterViewModel> Counters { get; }
}

This view model exposes a collection of CounterViewModel instances. The collection
is exposed as an ObservableCollection. This is a collection type that implements
INotifyCollectionChanged, an interface that fires an event whenever the collection
is changed. We looked at observable collections in chapter 3, and figure 8.17 recaps
how they can be used.

When you create your views, you can bind this collection to some form of list con-
trol, and whenever the collection changes (such as when you add or delete counters)
the collection-changed event will be fired, causing the binding to update the UI. This
is a read-only property, and it’s initialized when the view model is created—the
instance of ObservableCollection won’t change, just the contents, so there’s no need
to ever change the property’s value or raise a property-changed event. Observable

Listing 8.19 Counters view model constructed using instance of counters service

Listing 8.20 Exposing counters as observable collection of counter view models

This view model is derived
from the MvvmCross base
view model.

The constructor
takes an
ICountersService
instance, which
will be used to get
all the counters.

The Counters property is
an ObservableCollection of

CounterViewModel.

264 CHAPTER 8 Building cross-platform view models
collections are ideal when your collection will change, but they’re not necessary if
your collection is fixed and will never change. In the latter case you can store the
items in any collection, such as a List<T>, and expose this property either as a list or
as an IEnumerable<T>.

This observable collection is exposed as a collection of counter view models. The
ICountersService exposes a method to get all the counters from the repository, but
that returns a collection of Counter objects. To make these available as the right type,
you can’t just expose the counters from the service directly. Instead you need to wrap
them in view models. You also need to make a call to the service to load these counters
in a background thread and then update the collection back on the UI thread, as
shown in figure 8.18. The UI can only be updated on the UI thread, so you should
ensure that every update to the observable collection happens on the UI thread.

Ideally, you’d have an async method in your view model that’s called from the UI
thread, and helpfully MvvmCross provides a method you can use, called Initialize.
The Initialize method is a virtual method in the MvxViewModel base class that’s
called by the MvvmCross framework, and it’s in overrides of this method that you set
up your view model.

Counter

List Binding

Coffees

Cakes

1

2

+

+

Runs 7 +

public
ObservableCollection<CounterViewModel>

Counters {get;}

View Model

The list is bound to a property called “Counters” on
the view model. The binding looks up a property on
the view model called “Counters” and finds it.

The binding also listens for updates to the Counters
collection. When the collection changes, it updates
the list on the UI.

Figure 8.17 Collections can be bound to list controls, and when the collection
changes, the list control on the UI is updated.

UI thread

Background
thread

User wants to
see counters

Counters are
loaded

from storage

All counters
are shown

on UI

Figure 8.18 You can load counters on a background thread, but
you need to show them on the UI thread.

265Adding state and behavior to Countr
All screens in your app, regardless of platform, will undergo a lifecycle—they’re
created, shown, hidden, and then destroyed. iOS and Android implement this lifecy-
cle differently, but the basic principle holds true on both platforms. As part of this life-
cycle, after the view has been created and shown, MvvmCross will call Initialize on
the corresponding view model on the UI thread, allowing you to write code to set up
the view model (we’ll look at this view lifecycle in more detail in chapters 9 and 10).
The following listing shows this method and how you can create your view models
inside it.

using System.Threading.Tasks;
...
public override async Task Initialize()
{

await LoadCounters();
}

public async Task LoadCounters()
{

var counters = await service.GetAllCounters();
foreach (var counter in counters)
{

var viewModel = new CounterViewModel();
viewModel.Prepare(counter);
Counters.Add(viewModel);

}
}

In the LoadCounters method, you can make a call to the counters service to get all the
counters. Then, for each counter, you can create an instance of CounterViewModel,
prepared using that counter, which in turn is added to the observable collection. The
LoadCounters method will load the counters from a SQLite database (via the service
and repository), and this database access will be on a background thread. This means
that the UI could be fully visible before you’ve loaded your counters, but because
you’re using an observable collection, every time you add a counter view model to the
collection, the UI is updated.

The LoadCounters method gives us the first of the four user flows we identified for
the Countr app. It loads the counters from storage and makes them available to be
shown on the UI (figure 8.19).

No view model is complete without a unit test, so let’s create the fixture now. Cre-
ate a class called CountersViewModelTests in the ViewModels folder of the
Countr.Core.Tests project. The following listing shows the initial implementation of

Listing 8.21 Creating counter view models from counters loaded from service

Initialize comes from the MvxViewModel
base class, and it awaits another method.

LoadCounters loads the
counters from the service and
populates the observable
collection with view models
prepared with counters.

User wants to
see counters

Counters are
loaded from

storage

All counters
are shown

on UI

Figure 8.19 The first user flow in Countr,
loading and showing counters, is
implemented by the LoadCounters
method on the view model.

266 CHAPTER 8 Building cross-platform view models
this test fixture, creating a mock counters service and using that to create an instance
of the view model to test.

using Countr.Core.Services;
using Countr.Core.ViewModels;
using Moq;
using NUnit.Framework;

namespace Countr.Core.Tests.ViewModels
{

[TestFixture]
public class CountersViewModelTests
{

Mock<ICountersService> countersService;
CountersViewModel viewModel;

[SetUp]
public void SetUp()
{

countersService = new Mock<ICountersService>();
viewModel = new CountersViewModel(countersService.Object);

}
}

}

You can now test the LoadCounters method to simulate what would happen when this
view model is created by MvvmCross in the app. The following listing shows an async
unit test (which returns async Task instead of void, so that you can await code inside
it) to test this method.

using System.Threading.Tasks;
using System.Collections.Generic;
using Countr.Core.Models;
...
[Test]
public async Task LoadCounters_CreatesCounters()
{

// Arrange
var counters = new List<Counter>
{

new Counter{Name = "Counter1", Count=0},
new Counter{Name = "Counter2", Count=4},

};
countersService.Setup(c => c.GetAllCounters())

.ReturnsAsync(counters);
// Act
await viewModel.LoadCounters();

Listing 8.22 Creating an instance of the view model using a mock service

Listing 8.23 A test to ensure that the view model wraps the counters correctly

Creates a mock
counters service

Uses the mock
counters service

to create the
view model

Sets up the counters service
to return some counters

Calls LoadCounters on
the view model to create
the counter view models

267Adding state and behavior to Countr
// Assert
Assert.AreEqual(2, viewModel.Counters.Count);
Assert.AreEqual("Counter1", viewModel.Counters[0].Name);
Assert.AreEqual(0, viewModel.Counters[0].Count);
Assert.AreEqual("Counter2", viewModel.Counters[1].Name);
Assert.AreEqual(4, viewModel.Counters[1].Count);

}

This test starts by creating a list of Counter instances with some dummy data. It then
sets up the mock counter service to return this list when GetAllCounters is called.
Finally, it awaits a call to LoadCounters, and asserts that the list of CounterViewModel
instances contains view models that match the canned data. Run this test now, and you
should see that it passes.

That’s all you need for this view model. This is a standard pattern for master view
models when building a master/detail style app. The master view model loads the
models for its items from a repository, wraps them all in instances of the detail view
model, and exposes them in a collection. If the collection of items can change, they
should be exposed in an observable collection so the UI can be notified of any
changes. If the collection can’t change, a simple IEnumerable<T> or List<T> is fine.

8.3.3 Exposing behavior using commands

SquareRt has very simplistic behavior that could be implemented inside properties.
Countr, on the other hand, has more complex behavior that’s triggered by user inter-
actions, and for this we need to use commands. We looked at commands back in chap-
ter 3, so let’s have a quick recap now.

Commands are objects that encapsulate the ability to execute a particular action,
with optionally the ability to control whether the action can be executed. They imple-
ment ICommand, an interface with an Execute method that executes the action
wrapped up in the command and a CanExecute method that tells you if the command
can be executed or not. You can bind these to user actions on the UI, such as button
taps, so that when a button is tapped the command is executed. Commands allow you
to provide cross-platform handlers for UI widget events without having to resort to
platform-specific event handlers.

You can use commands for the remaining user flows in Countr. Let’s start by look-
ing at the simpler ones, beginning with incrementing a counter (figure 8.20). Count-
ers are not incremented directly; instead you use the CountersService to ensure the
incremented value is persisted to the repository (figure 8.21).

Asserts that the
counter view models
are created correctly

User increments
a counter

Counter is
incremented
and stored

Counter is
updated
on the UI

Figure 8.20 The second user flow in
Countr, incrementing a counter

268 CHAPTER 8 Building cross-platform view models
The first thing to do is pass an ICountersService to the CounterViewModel.

using Countr.Core.Services;
...
public class CounterViewModel : MvxViewModel<Counter>
{

...
readonly ICountersService service;

public CounterViewModel(ICountersService service)
{

this.service = service;
}

}

You’ve changed the constructor, so you need to update the code that uses it in the
CountersViewModel, as in the following listing.

public async Task LoadCounters()
{

...
foreach (var counter in counters)
{

var viewModel = new CounterViewModel(service);
...

}
}

Now you have a service. The next listing creates a command that calls it to increment
the counter.

using System.Threading.Tasks;
...
public CounterViewModel(ICountersService service)
{

Listing 8.24 Passing the counters service to the view model

Listing 8.25 Counter service needs to be passed to the constructor

Listing 8.26 Adding a command to the counter view model to increment the counter

Increment counter Save counter

Save

IncrementCounterCommand

Increment

View
model

Service

Repository

Figure 8.21 The counters service
increments a counter by first
incrementing the value and then
saving the newly incremented value.

A readonly field to store
the ICountersService

The counters service is passed
in as a constructor parameter
and stored in the backing field.

The service is passed to
the constructor of the
CounterViewModel.

269Adding state and behavior to Countr
...
IncrementCommand = new MvxAsyncCommand(IncrementCounter);

}

public IMvxAsyncCommand IncrementCommand { get; }

async Task IncrementCounter()
{

await service.IncrementCounter(counter);
RaisePropertyChanged(() => Count);

}

This is the first time you’ve used a command, so let’s break down what’s happening
here, line by line.

 public IMvxAsyncCommand IncrementCommand { get; }

This is a public property exposing the command as an IMvxAsyncCommand

interface interface. This interface is derived from ICommand, the base inter-
face for all commands, but it has extra helper methods on it to run async code.
This public property can be bound to a button or similar UI widget.

 IncrementCommand = new MvxAsyncCommand(IncrementCounter);

As we discussed in chapter 3, there’s no out-of-the-box implementation of
ICommand to use, but all MVVM frameworks provide an implementation. In this
case, we’re using MvxAsyncCommand—an implementation of ICommand that
wraps an async method, and it’s this method that’s passed in to the constructor.
When Execute is called on the command, it will call the IncrementCounter

method on the calling thread (if this command is executed from a button tap,
the calling thread will be the UI thread). This command is async, but there’s no
way button-tap events can await commands, so it’s fire-and-forget. It will call the
code on the correct thread, but there’s no way of knowing when the Execute

method has finished. This isn’t a problem for events, but it’s a problem for unit-
testing, where you want to know that the command has completed before
asserting on anything. Helpfully, MvxAsyncCommand also implements IMvxAsync-
Command (which derives from ICommand) and has async versions of the com-
mand methods, such as ExecuteAsync, which will execute the command and
can be awaited. If you were calling a non-async method instead of an async
method for our command’s implementation, you could use MvxCommand.

The Execute and CanExecute methods on ICommand take an object parame-
ter, but in a lot of cases this parameter is null. MvxAsyncCommand and Mvx-

Command encapsulate this by taking methods as their constructor parameters
that have no parameters. If you want to handle a parameter, you can use Mvx-

AsyncCommand<T> and MvxCommand<T>, where the generic type parameter T is
the type of the parameter you expect the command to be called with, and
where the corresponding actions passed to the command constructor will need

Creates a new MvxAsyncCommand
wrapping a method

The method called by the
command increments the
counter using the service
and then raises a
property-changed
notification for the count.

A public property that
exposes the command

270 CHAPTER 8 Building cross-platform view models
to have parameters of type T. Using a typed parameter instead of object means
MvvmCross will handle the conversion for you, throwing an exception if the
command is called with the wrong parameter type.

 async Task IncrementCounter()

This is the method called by the command. It’s an async method that will use
the service to increment the counter and save it to the SQLite database on a
background thread (thanks to the SQLite-Net implementation). Then it will
raise a property changed for the Counter property to tell the binding layer to
re-read the value. The value on the underlying counter will be incremented, so
the binding layer will read the new, incremented value and update the number
displayed on screen.

This command is implemented in our cross-platform view model, and it’s crying out
for some unit tests, so let’s add a couple. The following listing shows the code to add
to CounterViewModelTests.

using System.Threading.Tasks;
using Moq;
using Countr.Core.Services;
...
Mock<ICountersService> countersService;

[SetUp]
public void SetUp()
{

countersService = new Mock<ICountersService>();
viewModel = new CounterViewModel(countersService.Object);
viewModel.ShouldAlwaysRaiseInpcOnUserInterfaceThread(false);
...

}

[Test]
public async Task IncrementCounter_IncrementsTheCounter()
{

// Act
await viewModel.IncrementCommand.ExecuteAsync();
// Assert
countersService.Verify(s => s.IncrementCounter(It.IsAny<Counter>()));

}

[Test]
public async Task IncrementCounter_RaisesPropertyChanged()
{

// Arrange
var propertyChangedRaised = false;
viewModel.PropertyChanged +=

(s, e) => propertyChangedRaised = (e.PropertyName == "Count");

Listing 8.27 Testing the increment command

Defines and
creates a mock
counters service
that’s passed to
the view-model
constructor

Ensures all property-
changed events are raised

on the current thread

Awaits the call to
execute
IncrementCommand

Asserts that the
counter has been

incremented by
the service

Listens for property-
changed notifications to

the Count property

271Adding state and behavior to Countr
// Act
await viewModel.IncrementCommand.ExecuteAsync();
// Assert
Assert.IsTrue(propertyChangedRaised);

}

These tests take advantage of the ExecuteAsync method to await the execution of the
command asserting that the counter has been incremented by the service and that the
property-changed event has been raised. You don’t need to verify that the counter has
actually been incremented—you’ve verified that the increment method on the mock
service has been called, and you’ve also verified in other tests that the actual Increment-
Counter method on the CountersService works, so you can be pretty sure that this
code will all work together in your app and increment the counter.

You have your increment command, so the next command to look at is the one to
delete a counter (figure 8.22). In a lot of master/detail apps, users can delete items
from the list by swiping, so we’ll enable the same functionality here. This means you
need a command on CounterViewModel that allows it to delete itself. You’ve already
got everything you need in your view model, so the command is pretty simple, as
shown in the following listing.

public CounterViewModel(ICountersService service)
{

...
DeleteCommand = new MvxAsyncCommand(DeleteCounter);

}

public IMvxAsyncCommand DeleteCommand { get; }

async Task DeleteCounter()
{

await service.DeleteCounter(counter);
}

So far this command is pretty simple, and it’s not that different from what you’ve
already seen. It’s an async command that calls the counters service to delete the
counter. Once you’ve added this command, add a unit test for it. (If you get stuck,
there’s an example in the source code that accompanies this book.)

This isn’t quite the whole picture, though. This command deletes the counter from
the repository, and you know that if the counter is removed from the Observable-

Collection of counters held by the CountersViewModel, the UI will update, but we’re

Listing 8.28 A command in the counter view model to delete the counter

Awaits the call to execute
IncrementCommand

Asserts that the property-
changed notification has
been raised

User deletes
a counter

Counter is
removed

from storage

Counter is
removed
from UI

Figure 8.22 The third user flow
in Countr, deleting a counter

Creates a new
MvxAsyncCommand
for deleting counters

The public property
for the command

The command deletes the
counter from the service.

272 CHAPTER 8 Building cross-platform view models
missing the bit in between. How does the CountersViewModel know to remove the
counter from its collection? It doesn’t know, so you need to tell it, and the best way to
do that is via messaging.

8.3.4 Messaging

In our coffee shop, we have a server who takes coffee orders from customers and
writes them on slips of paper, which they pin up somewhere, and we have baristas who
pick up these pieces of paper in sequence and make the coffees. This is quite loosely
coupled—it doesn’t matter who pins the slips of paper up; the baristas just take them
and make the drinks, one after the other. As our coffee shop gets more popular, we
could employ multiple servers taking orders, or more baristas, and nothing needs to
change. We’ll just have more people pinning up slips of paper, and more people tak-
ing them off. The drinks are still made in order, and we still have a loose coupling
between server and barista.

We can follow a similar pattern in our apps by using a publish-subscribe model. In
our coffee shop we have servers publishing orders on slips of paper, and baristas sub-
scribing to these slips of paper. We can have parts of our app publishing messages and
other parts subscribing to those messages and responding accordingly (figure 8.23).

We could do exactly this for the delete command—when the counter is deleted, a
message could be published to a queue of some description, and the counters view
model could subscribe to this queue, get the message that a counter has been deleted,
and update its collection accordingly, as shown in figure 8.24.

Most MVVM frameworks provide a messaging service of some sort—something a class
can publish messages to and subscribe to messages from. MvvmCross has one available
as another NuGet package, so add the MvvmCross.Plugin.Messenger NuGet package

Publisher Message

Message Message

Messenger

Message

Publisher Message

Subscriber

Subscriber

Figure 8.23 A messenger allows different components of an app to publish or subscribe to messages.

CountersService CountersChangedMessage

IMvxMessenger

CountersViewModel

Figure 8.24 Using a messenger to send messages from the counters service to the counters view
model when the list of counters changes

273Adding state and behavior to Countr
(figure 8.25) to all the projects in the Countr solution, selecting the same version as
the other MvvmCross NuGet packages.

Messenger is an MvvmCross plugin component—an additional component that
provides extra useful functionality. Plugins are tightly integrated into MvvmCross;
they’re even automatically registered in the IoC container just by adding the NuGet
package to your app (MvvmCross finds the plugins by using reflection and registers
them inside its startup code). You can use this Messenger plugin to publish messages
from your counters service when a counter is deleted. You can then subscribe to these
messages from the counters view model, and whenever you receive a message, you can
reload the counters.

When subscribing to messages, you need to be able to filter them so that you only
receive the ones you’re interested in, and in the MvvmCross Messenger this is based
on the class type of the message. There’s a base message type, MvxMessage, and you
derive from this for each type of message you want to implement. You then publish a
message as an instance of your message class. On the subscriber side, you subscribe
based on a specific type, and you handle each received message either on the UI
thread or on a background thread.

To implement this, you’ll need to dip back down to the model layer briefly. Let’s
start by creating a message type. Add a new class to the Services folder called Counters-

ChangedMessage, and add the following code.

using MvvmCross.Plugins.Messenger;

namespace Countr.Core.Services
{

public class CountersChangedMessage : MvxMessage
{

public CountersChangedMessage(object sender)
: base(sender)

{}
}

}

Listing 8.29 A message you can publish, telling anyone that the counters have changed

Figure 8.25 Adding the MvvmCross Messenger plugin NuGet package to the Countr.Core project

This message derives
from the MvxMessage
base class.

The base class takes the sender
of the message as a constructor
parameter.

274 CHAPTER 8 Building cross-platform view models
This class defines the message, so you can publish it whenever you delete a counter.
The following listing shows the changes to the CountersService.

using MvvmCross.Plugins.Messenger;
...
readonly IMvxMessenger messenger;

public CountersService(ICountersRepository repository,
IMvxMessenger messenger)

{
this.messenger = messenger;
...

}

public async Task DeleteCounter(Counter counter)
{

await repository.Delete(counter).ConfigureAwait(false);
messenger.Publish(new CountersChangedMessage(this));

}

To use the Messenger, just add a constructor parameter of type IMvxMessenger to your
view model. The plugin is automatically registered in the IoC container, so you can just
add it as a constructor parameter, and it’ll automatically be populated when the IoC
container creates the counters service. Whenever a counter is deleted, the Publish

method is called with an argument of an instance of this new message type.
The original version of DeleteCounter used to just return the Task returned from

Delete, but now that you’re doing work after this call, you need to mark the method
as async, await the call to Delete, and use ConfigureAwait(false), because it doesn’t
matter what thread the rest of the method runs on.

You now need to handle this message in the counters view model, as shown in the
next listing.

using MvvmCross.Plugins.Messenger;
...
readonly MvxSubscriptionToken token;

public CountersViewModel(ICountersService service,
IMvxMessenger messenger)

{
token = messenger

.SubscribeOnMainThread<CountersChangedMessage>
(async m => await LoadCounters());

...
}

public async Task LoadCounters()
{

Counters.Clear();
...

}

Listing 8.30 Publishing the counters-changed message every time a counter is deleted

Listing 8.31 Subscribing to the new message type

The messenger comes from
a constructor parameter
and is stored in a field.

This method now
needs to be async
and to await the
Delete call.

Whenever a
counter is
deleted, the
message is
published.

A field to store a
subscription token

The messenger comes from
a constructor parameter.

Subscribes to all
CountersChangedMessage
messages on the UI thread

LoadCounters has been
tweaked to clear all
counters before reloading.

275Adding state and behavior to Countr
In CountersViewModel you’re subscribing on the main thread (the UI thread) for all
messages of type CountersChangedMessage, and when one is received, the Load-

Counters method is run. The code for LoadCounters has been changed slightly to
clear all counters before loading, so that you don’t keep adding the same counters to
the list again and again. You’re not going to have many counters in the list, so clearing
and reloading all the counters shouldn’t be too slow.

This may seem like overkill, using a Messaging component to detect changes in the
counters service, when you could just add an event to the service that the view model
subscribes to. But there are advantages to using the Messenger plugin:

 Weak subscription—You’ll notice that the SubscribeOnMainThread method
returns a MvxSubscriptionToken that you store as a field. Subscribing to mes-
sages is a weak subscription, in that the messenger doesn’t hold a reference to
the subscriber. This means that the garbage collector can collect your view
model whenever your code is finished with it; the Messenger won’t be holding a
reference that keeps the view model alive. If you’d used events, you’d have to
manually unsubscribe from the events before the garbage collector could col-
lect the view model, and this is something that’s easy to forget to do. The sub-
scription token keeps the subscription alive; as soon as the token is garbage
collected, the subscription ends. You can also unsubscribe at any time by dispos-
ing of the token using its Dispose method.

 Threading—When you subscribe to a message, you can choose to handle the
messages on the UI thread using SubscribeOnMainThread or a background
thread using SubscribeOnThreadPoolThread. This means you can handle mes-
sages using the appropriate thread. With CountersChangedMessage, you need
to handle it on the UI thread so that you can update the collection. If you’d
used an event for this, you’d need to find a way to ensure the event was always
handled on the UI thread—that’s not easy to do in your view models.

 Loose coupling—By using a messenger instead of events, you can loosely couple
the publisher to the subscriber. This way, anything can subscribe to the mes-
sages and not care where the message came from. You could refactor your code
to publish the change messages from the repository instead of the service, and
everything would still work. You could add more view models or services that lis-
ten to the counters-changed message and respond accordingly, and they
wouldn’t need to know about the counters service.

Messages let parts of your app communicate without being tightly coupled
Messages are very powerful. You can create as many message types as you need
and add properties to them to help you pass data around. In this app there’s one
message type, and when it’s received you clear and reload all counters.

276 CHAPTER 8 Building cross-platform view models
Now that you’ve added messages, it’s time for a unit test. The current unit tests
won’t compile with the new constructor parameter added to the view models, so you’ll
need to start by mocking out the messenger in both CountersViewModelTests and
CountersServiceTests. The following listing shows the code for doing this, so make
these changes to both unit tests.

using MvvmCross.Plugins.Messenger;
...
Mock<IMvxMessenger> messenger;

[SetUp]
public void SetUp()
{

messenger = new Mock<IMvxMessenger>();
...

}

After adding this code to both unit-test classes, add the messenger mock to the con-
structor calls for each view model by passing messenger.Object as the required
parameter. You can then test that the message is published when a counter is deleted
from the service by using the following code in CountersServiceTests.

[SetUp]
public void SetUp()
{
...
service = new CountersService(repo.Object,

messenger.Object);
}

[Test]
public async Task DeleteCounter_PublishesAMessage()
{

// Act
await service.DeleteCounter(new Counter());

Listing 8.32 Mocking out the messenger

Listing 8.33 Testing that the message is published when a counter is deleted

(continued)
For an app with only a few counters, this is fine, but for an app with a lot of items in
the master list, you’d probably want to be a bit smarter. For example, you could have
multiple message types. You could have one message type for a deleted item, with
a property on it identifying the item that was deleted. When this is received, just the
one item would be removed from the master list. You could then have another mes-
sage type for when a new item is created, with a property storing the item that was
added. When this is received, the new item could be added to the correct position in
the master list.

Passes the mock to the
service constructor

Deletes a counter
from the service

277Adding state and behavior to Countr
// Assert
messenger.Verify(m => m.Publish

(It.IsAny<CountersChangedMessage>()));
}

You’ve verified that the service publishes a message, so now let’s verify that Counters-
ViewModel handles the message correctly. The first thing to do is set this up, as shown
in the following listing.

using System;
...
Action<CountersChangedMessage> publishAction;
...
[SetUp]
public void SetUp()
{

...
messenger = new Mock<IMvxMessenger>();
messenger.Setup(m => m.SubscribeOnMainThread

(It.IsAny<Action<CountersChangedMessage>>(),
It.IsAny<MvxReference>(),
It.IsAny<string>()))

.Callback<Action<CountersChangedMessage>,
MvxReference,
string>((a, m, s) => publishAction = a);

viewModel = new CountersViewModel(countersService.Object,
messenger.Object);

}

When the SubscribeOnMainThread method inside the view model is called, it’s passed
an Action<CountersChangedMessage>. In the unit test, you set up this method with a
callback that’s invoked whenever the SubscribeOnMainThread method is called, and
in this callback you store the action that’s passed to the method. This allows you to
simulate the messenger flow.

In the real messenger, the subscription action is stored, and when a message is
published, all subscription actions for that message type are called. In the unit test you
can simulate this by storing the subscription action and calling it to simulate a mes-
sage being published. The following listing shows the code for a unit test that uses this
approach.

[Test]
public void ReceivedMessage_LoadsCounters()
{

// Arrange
countersService.Setup(s => s.GetAllCounters())

.ReturnsAsync(new List<Counter>());

Listing 8.34 Setting up the messenger for unit-testing

Listing 8.35 Unit-testing that the counters are reloaded when a message is received

Verifies that the messenger
publishes a message

An action to store
the subscription

Sets up the subscribe
method on the messenger

so the action is stored

Sets up a mock
return value from
GetAllCounters

278 CHAPTER 8 Building cross-platform view models
// Act
publishAction.Invoke(new CountersChangedMessage(this));
// Assert
countersService.Verify(s => s.GetAllCounters());

}

That’s three user flows down, one more to go—adding a new counter. This user flow
shows a new screen, so it’s time to look into view-model navigation.

8.3.5 Navigation

Back in chapter 3, we looked at two navigation patterns for MVVM: view-first and view-
model-first. View-first is where views drive navigation, with each view triggering the
loading of its view model, and where navigation consists of one view loading another.
View-model-first is where the view models drive navigation, with the view model trig-
gering which view is loaded, and where navigation is one view model showing another.

Like a lot of MVVM frameworks, MvvmCross uses view-model-first navigation. The
first screen of the app to be shown is defined by registering the app’s start view model.
Showing and closing views is controlled by a navigation service that view models can
use. MvvmCross has a built-in presenter that will find the relevant view for a view model
based on its name, so when you show a view model, it will find the relevant view and
show that on screen.

You can think of navigating between screens as being like paper stacking up. Each
screen is like a sheet of paper, and when you navigate from one screen to another, the
new screen is stacked on top, like placing a new piece of paper on top of the stack.
When you close a screen, it comes back off the stack of paper, revealing the piece
underneath (figure 8.26). You’ll have seen this many times over in the apps you use,
such as email apps.

When you’re using MvvmCross, this is driven via the view models, so you navigate
from one view model to another, and the view for the new view model is stacked on
top. When you close a view model, the top view is removed from the stack. MvvmCross
also allows you to pass data from one view model to the next as they stack up, although
it doesn’t have anything out of the box for passing data back as you close view models
off the top of the stack.

Our last user flow is adding a new counter, and this involves navigating from the
counters master list screen to a new counter detail screen at the tap of a button (fig-
ure 8.27). From this screen, the user can either cancel adding a new counter and nav-
igate back to the master list, or they can enter the name of the new counter, save it,
and navigate back.

Let’s start by looking at the MvvmCross navigation service.

Calls the subscription action to
simulate a message being published

Verifies that after the
message is published, the
counters are reloaded

279Adding state and behavior to Countr
NAVIGATION SERVICE

MvvmCross has a built-in navigation service whose sole responsibility is to handle the
navigation between view models in your app, providing view-model-first navigation.
When you navigate to a view model, it will look up and navigate to the corresponding
view inside your platform-specific code based on its name (for example, navigating to
MyViewModel will cause it to look for a corresponding view called MyView). This naviga-
tion service is exposed via the IMvxNavigationService interface, which is automati-
cally registered inside the IoC container for you by the MvvmCross startup code. This
means you can import this interface into your view models and access navigation from
your cross-platform code.

This navigation service has a number of capabilities. You can use it to navigate to a
view model, navigate and pass data into the target view model, navigate and await a
result from the target view model, or close a view model to go back to the previous
view. You can also subscribe to events so you’re notified when navigation happens.
MvvmCross even supports URI-based navigation, so you can create deep navigation
stacks with multiple levels (such as long signup flows) and navigate up and down with
ease. We’re only going to touch on a couple of features of the navigation service
here—navigating to a view model passing some data, and closing a view model to nav-
igate back—but you can read more about the MvvmCross navigation service in the
MvvmCross documentation at http://mng.bz/tJ7a.

Inbox

Bob

Mum

Hi from Bob

Happy Birthday

Inbox

Bob

Mum

Hi from Bob

Happy Birthday

Hi from Bob

Hi there, just wanted to drop
you a line to see how you
are doing.

Mail me back!

Bob

Bob

Reply Forward Delete

2. View appears on top of the current view1. Navigate to next view model

Figure 8.26 Navigation is like sheets of paper being stacked up and unstacked.

User adds
a counter

User enters
counter details

Counter is
created

and stored

New counter
is shown
on the UI

Figure 8.27 The final user flow in Countr, adding a new a counter

http://mng.bz/tJ7a

280 CHAPTER 8 Building cross-platform view models
You navigate to a view model using the Navigate method on the navigation ser-
vice. There are a number of different variants of this, but the simplest takes a parame-
ter of the type of view model you want to navigate to. For example, Navigate(typeof
(MySecondViewModel)) would navigate to the MySecondViewModel view model. This is
an async method that you can await. When you call this method, it will

1 Create a new instance of the target view model, injecting all constructor param-
eters using the IoC container.

2 Call Prepare on the view model, passing in a parameter if needed.
3 Find the relevant view for the view model and create an instance of that.
4 Show the view, binding the view model to the view.
5 Call Initialize on the view model.

One of the other variants of interest to us is Navigate<TParameter>(Type type,

TParameter parameter). This will navigate to the view model with the type specified
in the first parameter, and prepare it with the parameter passed in. The target view
model needs to be derived from MvxViewModel<TParameter>, an abstract base class
that provides a method you have to override, called Prepare, which has a parameter of
TParameter. It’s this method that’s called to prepare the view model. This call to Prepare

happens on the UI thread before the view has been created. After the view is created,
another method, Initialize, is called, and it’s an async method, so it’s a great place
to load data or perform other asynchronous tasks. You may recognize this base view
model—it’s the one we used for CounterViewModel, meaning you can navigate to this
view model and prepare it with a Counter.

The final method on the navigation service of interest to us is the Close method.
This method takes a view model to be closed, and it will close the view that shows the
given view model. This is normally called from inside a view model, passing this as
the parameter to close the current view model, but you can also use it to close other
view models if you need to. For example, if you’re showing a view model as a progress
dialog during a long-running action, you could close it from the calling view model.

SETTING THE STARTUP VIEW MODEL

To get the app navigation working correctly, the first thing you need to do is set up
your app start (listing 8.36). When the app is loaded, MvvmCross will first show a
splash screen while it’s initializing. Then it will find the startup view-model type, and
using its built-in presenter it’ll find the relevant type for the first view, create the view,
create the view model, and show the view.

For Countr, the master list is the first screen that you want to show, so the app
should start up using CountersViewModel. You can tell MvvmCross to use this view
model when the app starts up by registering it as the app start in the App class in the
core project. Delete the FirstViewModel class from the ViewModels folder, as you
don’t need it any more, and make the following change.

281Adding state and behavior to Countr
public override void Initialize()
{

...
RegisterNavigationServiceAppStart<ViewModels.CountersViewModel>();

}

Once you’ve deleted FirstViewModel, the iOS app will no longer compile, which
shouldn’t be too much of a problem because you’re not running the mobile apps at
this point, just verifying your code using unit tests. If you want to be able to success-
fully build everything, just comment out the whole ViewDidLoad method in the
FirstView class in the Views folder of the Countr.iOS app. We’ll be working on the
view layer for the iOS app in chapter 11.

NAVIGATING TO A NEW VIEW

Next you need to add a command to the master view model in order to show the
detail view. MvvmCross has a navigation service that handles the navigation between
view models. This service is exposed as the IMvxNavigationService interface, and it’s
automatically registered in the IoC container so you can easily add it as a constructor
parameter on the view model. Once you have access to this navigation service, you can
use it to show a different view model.

The following listing shows the code you need to add to the CountersViewModel.

using Countr.Core.Models;
using MvvmCross.Core.Navigation;
...
readonly IMvxNavigationService navigationService;

public CountersViewModel(ICountersService service,
IMvxMessenger messenger,
IMvxNavigationService navigationService)

{
...
this.navigationService = navigationService;
ShowAddNewCounterCommand = new MvxAsyncCommand(ShowAddNewCounter);

}

public IMvxAsyncCommand ShowAddNewCounterCommand { get; }

async Task ShowAddNewCounter()
{

await navigationService.Navigate(typeof(CounterViewModel),
new Counter());

}

Listing 8.36 Setting up the counters view model as the app start

Listing 8.37 Adding a command to show the counter view model

Injects and stores an instance of
the MvvmCross navigation service

Creates the new
command

A public property for
the new command

Shows the counter view
model, initialized with a
new counter

282 CHAPTER 8 Building cross-platform view models

Exe
This view model now takes an instance of the IMvxNavigationService interface as
part of its constructor and stores it in a field. This code also adds a new async com-
mand that uses the async Navigate method on the navigation service to navigate to
the CounterViewModel, passing a new Counter as the preparation parameter.

UNIT-TESTING NAVIGATION TO A NEW VIEW

As well as being a powerful way to navigate between view models, the navigation ser-
vice also allows for easy unit-testing. It’s made available via an interface, so it’s trivial to
mock out. You can easily verify that your new command shows the relevant view model
by adding some more tests to the CountersViewModelTests unit-test class, as follows.

using MvvmCross.Core.Navigation;
...
Mock<IMvxNavigationService> navigationService;

[SetUp]
public void SetUp()
{

...
navigationService = new Mock<IMvxNavigationService>();
viewModel = new CountersViewModel(countersService.Object,

messenger.Object,
navigationService.Object);

...
}
...
[Test]
public async Task ShowAddNewCounterCommand_ShowsCounterViewModel()
{

// Act
await viewModel.ShowAddNewCounterCommand.ExecuteAsync();
// Assert
navigationService.Verify(n => n.Navigate(typeof(CounterViewModel),

It.IsAny<Counter>(),
null));

}

For this unit test you need to create a new mock of IMvxNavigationService, and once
it’s created, you pass it into the view model under test. You can then add a test to exe-
cute the new command using the ExecuteAsync method exposed by MvxAsync-

Command, and verify that it calls Navigate on the service to prove that the right view
model was navigated to. ExecuteAsync isn’t part of the standard ICommand interface;
instead, it’s a helper method on the MvvmCross commands, and it calls the underly-
ing async method passed to the constructor of the command, allowing you to await
the completion of the command.

Listing 8.38 Unit-testing the show-add-new-counter command

Creates a mock
of the navigation
service

Passes the mock navigation
service into the view model

cutes the
command

Asserts that the correct view
model was navigated to

283Adding state and behavior to Countr
CLOSING A VIEW AND NAVIGATING BACK

You now have the master view model set up as your app start, and you have a com-
mand that navigates to the counter view model using a new instance of Counter. The
next thing you need is to allow the user to cancel or save the new counter. To do this,
you need to add two commands to the counter view model. The following listing
shows the code you need to add to CounterViewModel.

using MvvmCross.Core.Navigation;
...
readonly IMvxNavigationService navigationService;
...
public CounterViewModel(ICountersService service,

IMvxNavigationService navigationService)
{

this.navigationService = navigationService;
...
CancelCommand = new MvxAsyncCommand(Cancel);
SaveCommand = new MvxAsyncCommand(Save);

}

public IMvxAsyncCommand CancelCommand { get; }
public IMvxAsyncCommand SaveCommand { get; }

async Task Cancel()
{

await navigationService.Close(this);
}

async Task Save()
{

await service.AddNewCounter(counter.Name);
await navigationService.Close(this);

}

The cancel command just calls Close (a method on the IMvxNavigationService that
closes a view model) passing in the view model to close (the current view model). This
causes the presenter to remove the current view from the stack and show the previous
one. The save command uses the counters service to create a new counter, and then
closes the view model using the navigation service.

The CounterViewModel constructor has changed, so you’ll need to add the code in
listing 8.40 to pass the navigation service when creating instances of this view model
inside CountersViewModel.

public async Task LoadCounters()
{

...

foreach (var counter in counters)

Listing 8.39 Adding save and cancel commands to the view model

Listing 8.40 Passing the navigation service to the counter view model

Injects and stores
an instance of the

MvvmCross
navigation service

Closes the view model,
removing the view
from the stack

Adds a new counter and then
closes the view model

284 CHAPTER 8 Building cross-platform view models
{
var viewModel = new CounterViewModel(service,

navigationService);
...

}
}

This is almost everything you need. The only thing missing is code that shows the new
counter on the master view. You don’t need to worry about the counter view model
telling the counters view model that there’s a new counter. Instead you can use the
same pattern for adding as you did for deletes. You can change the service to publish a
message when a new counter is added, keeping the master list up to date. The follow-
ing listing shows the code to add to the counters service.

public async Task<Counter> AddNewCounter(string name)
{

...
messenger.Publish(new CountersChangedMessage(this));
return counter;

}

UNIT-TESTING SAVING COUNTERS AND CLOSING VIEWS

You have your commands, so now you need to unit-test them. For the save command
you need to verify that the counter is saved to the counters service and that the view
model is closed. For the cancel command you need to verify that the counter isn’t
saved before the view model is closed. You can verify saving using the mock counters
service already set up in the unit tests, and you can verify closing the view model using
a mock navigation service.

The following code shows the test for the save command, so add it to the Counter-

ViewModelTests class.

using MvvmCross.Core.Navigation;
...
Mock<IMvxNavigationService> navigationService;
...
[SetUp]
public void SetUp()
{

...
navigationService = new Mock<IMvxNavigationService>();
viewModel = new CounterViewModel(countersService.Object,

navigationService.Object);
...

}
...
[Test]

Listing 8.41 The master list will automatically update

Listing 8.42 Testing the save command

Passes the navigation service
through to the

CounterViewModel constructor

Once a counter is
saved, publish the
message

Sets up the
mock
navigation
service

285A quick roundup
public async Task SaveCommand_SavesTheCounter()
{

// Arrange
var counter = new Counter { Name = "A Counter" };
viewModel.Prepare(counter);
// Act
await viewModel.SaveCommand.ExecuteAsync();
// Assert
countersService.Verify(c => c.AddNewCounter("A Counter"));
navigationService.Verify(n => n.Close(viewModel));

}

The code to test the cancel command is nearly identical, except you need to verify
that the save wasn’t called, as shown in the following listing.

[Test]
public void CancelCommand_DoesntSaveTheCounter()
{

// Arrange
var counter = new Counter { Name = "A Counter" };
viewModel.Prepare(counter);
// Act
viewModel.CancelCommand.Execute();
// Assert
countersService.Verify(c => c.AddNewCounter(It.IsAny<string>()),

Times.Never());
navigationService.Verify(n => n.Close(viewModel));

}

8.4 A quick roundup
This is pretty much everything you need. You’ve created a number of new classes for
the two apps. Table 8.1 shows the classes for the SquareRt app, and table 8.2 shows
them for the Countr app.

Listing 8.43 Testing the cancel command

Table 8.1 The classes and interfaces created for the SquareRt app

Name Description

SquareRtViewModel The view model for the square-root app containing
the state for the input number, the result, and the
behavior for performing the calculation whenever
the number changes. This class optionally con-
tains value conversion.

DoubleToStringValueConverter A value converter that convert from double val-
ues in the view model to string values used by
the view, and vice versa.

SquareRtViewModelTests Unit tests for SquareRtViewModel.

Executes the
command

Verifies that
the counter
was saved

Verifies that the view
model was closed

Verifies that
AddNewCounter
was never called

286 CHAPTER 8 Building cross-platform view models
You now have complete view models for both of the apps, covering the state and
behavior needed to implement all the user flows. You’ve also created unit tests to vali-
date your code.

The unit tests you’ve built here are not only great validators for your code, they
allow you to simulate the UI and verify that your app will work before you’ve even fin-
ished the app. When a property is changed, the binding layer will update the view, so
testing that a property-changed event is fired allows you to test that the UI is updated.
By testing commands, you can verify what will happen when users tap buttons in the
UI. By testing navigation, you can verify that your app will correctly flow from one view
to another. You can write unit tests that simulate everything a user can do with your
app, and most importantly you can write these tests just once. Xamarin is all about
building cross-platform mobile apps with large amounts of code sharing, and that’s
what you’re seeing with these view models—you can write and unit-test the UI logic
once, yet still use it to build apps that target both iOS and Android.

In the next chapters we’ll start building the platform-specific view layers, starting
with Android.

DoubleToStringValueConverterTests Unit tests for
DoubleToStringValueConverter.

Table 8.2 The classes and interfaces created for the Countr app

Name Description

CounterViewModel The view model representing an individual counter and the state of
the counter, such as its name and count, and encapsulating
behavior for incrementing and deleting a counter, as well as saving
a counter from a detail view and navigating back to the list view
when the user saves the new counter or cancels the creation.

CountersViewModel The view model representing the master list of counters, repre-
sented as an observable collection of CounterViewModel
instances. This observable collection will tell the view to update
whenever the list of counters changes. This view model also
encapsulates the behavior for navigating to a detail view to add a
new counter, as well as detecting changes in the list of counters
stored in the repository via a message.

CountersChangedMessage A message that’s published over the MvvmCross Messenger
whenever the list of messages stored in the repository changes,
such as when adding or deleting a counter.

CounterViewModelTests Unit tests for CounterViewModel.

CountersViewModelTests Unit tests for CountersViewModel.

Table 8.1 The classes and interfaces created for the SquareRt app (continued)

Name Description

287Summary
Summary
In this chapter you learned

 State and behavior can be easily unit-tested.
 When the types used by the view are different from the model, you need to pro-

vide conversion either inside a property or in a value converter.
 The master/detail pattern is a nice way to show lists of data, with a separate

screen that shows more details of an item in the list.
 MvvmCross has lifecycle methods to let you know when your view model is

being shown, and it has a way to pass data to a view model before it’s shown.
 Messaging is a great way to let parts of your app communicate with each other

in a loosely coupled way.
 MvvmCross has a navigation service to handle view-model-first navigation.

You also learned how to

 Add state to a view model
 Convert property values both in place and using value converters
 Unit-test properties and property-changed notifications
 Implement behavior in commands
 Create master and detail view models
 Use messaging to communicate between classes in your apps in a loosely cou-

pled way
 Navigate between view models, passing data using the MvvmCross navigation

service
 Unit-test navigation

9Building simple
Android views
In the previous two chapters we built the model and view-model layers for our two
apps. Now it’s time to turn our attention to the view layer. This layer uses platform-
specific code, so we’re going to look at it platform by platform—in this chapter and
the next, we’ll look at Android (figure 9.1), followed by iOS in chapters 11 and 12.

We’ll start here by looking at how to build an Android UI. Then we’ll build the UI
for SquareRt. In the next chapter we’ll look at Countr, and you’ll see a slightly more
advanced UI that uses recycler views to show lists of data, menus, and navigation.

This chapter covers
 Android resources

 Creating layout resources in the Designer and by editing
the source

 Adding images to support multiple screen densities

 Creating views using activities

 The activity lifecycle
288

289Building Android UIs
When building any UI-based app on any
platform, you need to understand the con-
cepts behind the app structure. Each plat-
form has a different structure. On Android
you structure your apps using activities—sin-
gle screens in your app that each represent a
single focused thing that a user would want
to do. When building Android apps using
MVVM, an activity is the same as a view.

As well as containing code, Android apps
also contain resources. These are non-code
items, including images and XML files that
define things such as constants, UI styling,
and the layout of the UIs that can be used by
activities to create the screens that users see.

9.1 Building Android UIs
Let’s start by thinking about the SquareRt app—an app with a single view. Figure 9.2
shows the UI that we’ll build.

When building a view, there are two parts to it: the activ-
ity that encapsulates the full screen view, and the actual UI.
You can define UIs in code, but that’s not the normal way to
do it. Instead, the usual and easiest way is by using a layout
file—an XML file that defines which controls should be
shown on the UI and how they’re laid out. These are
“inflated” by activities at runtime to create the UI that you
see on screen (note that this happens at runtime, not com-
pile time, so if your XML is wrong you may not know it until
your app is running and crashes). If you’ve done any HTML
or Windows desktop development using XAML, these lay-
out files should be similar to what you’ve seen before.

9.1.1 Material design

Before we design a UI on Android, it’s worth looking into Google’s design guide-
lines—material design (https://material.io). These guidelines aren’t targeted specifi-
cally at mobile apps, but at apps for all screen sizes, be they websites, desktop apps, or
mobile apps, both on smaller screens like phones and larger devices like tablets, lap-
tops, desktops, or even TVs. You’ve probably already seen Google’s material design in
action—Google uses it for all their mobile apps, like Google Maps or Gmail.

Material design has three key concepts:

 Material is the metaphor—When you build your app, you should think about the
real-world materials that would be used if your app were a physical thing, and

UI layer

App
layer

UI logic
layer

iOS

C# (.NET Standard)

Business
logic layer

View

View
model

ModelC# (.NET Standard)

C#

C#

C#

C#

Android

C# (.NET Standard)

Binding

Figure 9.1 The view layer in an MVVM app
is written in platform-specific code.

SquareRt

400

20

√

Figure 9.2 The UI for the
SquareRt app

https://material.io

290 CHAPTER 9 Building simple Android views
try to emulate that in the way users navigate
and the way the app is drawn. The main guide-
line here is to think in terms of pen and paper,
as this is a good metaphor for most apps.

For example, in a mail app, your inbox is
like a list on a piece of paper, and when you
select an email, another piece of paper would
move on top of it containing the mail message
(as shown in figure 9.3). By thinking in this
way, you can imagine a sense of depth: the
mail is on top of the list, so if it’s showing full
screen, it should appear by sliding over the
top; if it’s in a pop up, that pop up should have
an elevation above the list, shown on the flat
screen of your device using a shadow. When
you close it, you’re pushing the paper away, off
the current stack.

 Bold, graphic, intentional—Your UI should be crisp and clean, following the prin-
cipals of print-based design. It should use a well-defined color palette of com-
plementing and contrasting colors, have plenty of white space, and try to
provide emphasis for user actions, to help make it
obvious to users how they should interact with the
app. The meaning of any icons should be clear to
the user and should be consistent with other apps
or real-world actions.

A good example is the floating action button, a
popular pattern when building Android apps. This
is a crisp, round button with a contrasting color
and clear icon to make it stand out and indicate its
behavior. It’s used to provide a quick link to the
most popular action a user would want to take
during a particular activity. Thinking again about
our mail app, a floating Reply button when read-
ing an email provides a quick way for the user to
interact with the message they’re reading, as
shown in figure 9.4.

 Motion provides meaning—Your app should use the motion of on-screen compo-
nents to convey that a user-initiated action is happening, and to convey feed-
back to the user after the action is complete.

For example, when you tap an item in the mail app’s inbox, the message
you’ve selected could be opened by sliding it in on top of the inbox. This page

Inbox

Bob

Mum

Hi from Bob

Hi there, just wanted to drop
you a line to see how you
are doing.

Mail me back!

Bob

Bob

Reply Forward Delete

Figure 9.3 Use material such as a
stack of paper as a metaphor for
your design.

Hi from Bob

Hi there, just wanted to drop
you a line to see how you
are doing.

Mail me back!

Bob

Bob

Forward Delete

ck!

Delete

Figure 9.4 A distinct floating
action button is a clear way to
indicate a popular user action.

291Building Android UIs
moving across the screen reflects how you might pull a document from your
desk onto the stack of papers you’re currently reading. It’s a motion that not
only indicates to the user that something has happened, but it tries to mimic
the real-world behavior of the material—in this case, paper. When the user taps
the floating Reply button, it could reduce its elevation as it’s being tapped, and
then spring back up again, mimicking the real-world behavior of a button (fig-
ure 9.5). It could even animate from there by changing from a floating circle to
a square that expands to become the reply activity, again using motion to show
the user that something has happened, representing the flow from tapping the
Reply button to writing a reply.

It’s highly recommended that you follow Google’s material design standards when
building an Android app. It makes your app look consistent with other Android apps,
and done well it can add an amazing sense of polish to your finished app—thousands
of hours of UX research has gone into creating material design. The Android controls
are already styled based on this standard, so you can adopt it easily.

9.1.2 Layout files

Let’s start by defining the UI in a layout file. Open the SquareRt solution from the
previous chapter, expand the SquareRt.Droid project, and set it as the startup project.
Then delete the dummy first view that was created automatically when you created the
new solution by deleting the Views\FirstView.cs, Views\BaseView.cs, and Resources\
layout\FirstView.axml files. You won’t need them.

To create the layout for your UI, head to the Resources\layout folder and add a
new Android layout file called squarert_view.axml—you’ll find these under “Android”
in the Add New File dialog box.

USE LOWERCASE NAMES FOR XML FILES IN ANDROID The name may seem
odd—squarert_view, all in lowercase—but Android prefers lowercase for the
filenames of XML files. In some cases, if you refer to one XML resource from
another, the reference will fail if the name isn’t all in lowercase.

When this file opens up, it will be in a layout editor with two tabs—Designer and
Source tabs. The Designer gives you a design surface where you can add layouts and
controls from a toolbox and manipulate their properties. The Source code tab shows
the raw XML that makes up this layout.

Button moves down as it’s pressed,
then springs back up.

Figure 9.5 Screen objects
should move like real objects
to help users feel comfortable
with them.

292 CHAPTER 9 Building simple Android views
The Designer can be a bit troublesome, giving errors when you try to display the
layout and taking a long time to render everything. It depends on the same capabili-
ties as the Google emulators installed with Xamarin—if your emulator works, the
Designer should work. Your app will need to build in order for the layouts to render,
so if you’re having problems with the Designer, make sure you rebuild everything.

Layout files are a type of what Android refers to as resources—files that aren’t code
but are a part of your app.

9.1.3 Resources

Android apps are a mixture of two parts: code and resources. Resources are every-
thing in your app that’s not code, including images and XML files for defining lay-
outs, strings, colors, and constants. Resources in Xamarin apps are identical to
resources in native Java Android apps—you define them the same way, and you can
even reuse the content. For example, if you wanted to port a Java Android app to a
Xamarin app, you’d simply copy the entire resource directory over and use the
resources as is. The only thing you’d need to change is the file extensions for any lay-
out files. Although these are XML files, in Xamarin apps the file extension .axml is
used—this is so that the IDE can distinguish between layout files and normal XML
files, and load them in a visual designer instead of a raw XML editor.

9.1.4 Resource locations

All resources live in particular subfolders of the Resources folder, with the subfolder
names defining the types of resources. For example, all layout files must live in the
Resources\layout folder (or variants thereof); images live in Resources\drawable.
Android has a fixed set of resource folders, some of which are listed in table 9.1. You
can find the full list in the “App Resources” API guide: http://mng.bz/N41B.

Table 9.1 Available resource folders on Android

Folder Description

drawable Images such as .png files or vector images

mipmap Images used for the launcher icon only (the icon that’s shown on the Android home
screen). This is optional—you can always use the drawable folder for launcher
images. The reason for having a separate folder from drawable is that your launch
screen can use higher density images than your device.

layout UI layouts

menu XML files that define menus and toolbars

values XML files containing constant values, including colors, strings, and styles. These files
are parsed, and the values defined in them can be retrieved easily in code.

http://mng.bz/N41B

293Building Android UIs
Resources are identified by resource references, which are constant values that are avail-
able in both C# code and inside XML. In C#, these resource references get converted
to constant values in an autogenerated file called Resource.designer.cs, which lives in
the root of the Resources folder. (You should never need to touch this file as it’s auto-
generated from the resources and is rewritten every time resources are changed.)
These C# constants are put into a hierarchy of Resource.<type>.<id>, whereas in
XML files these are named in the format @<type>\<id>. For example, if you have an
image file in the drawable folder called Line.png, the resource reference for this in
C# is Resource.Drawable.Line, and in XML it’s @drawable\Line.

Some resource files are self-contained resources in that the one file contains an
entire resource. These include images and layout files—each image is a single image,
and each layout file is a single layout. The resource reference for these kinds of files is
@<type>\<filename without extension> or Resource.<type>.<filename without

extension> in C# code (so @drawable\Line or Resource.Drawable.Line).
Other resource files contain multiple resources defined in XML, and the identifi-

ers for these are set based on the type of the resource and the value of a name attribute
on the resource. For example, if you open the Resources\values\strings.xml file, it will
contain the following:

<string name="ApplicationName">SquareRt</string>

This defines a string resource called ApplicationName with the value of SquareRt,
and the reference for this will be @string\ApplicationName or Resource.String

.ApplicationName.

9.1.5 Editing layout files

You can edit layouts in two ways: using the Designer built into Visual Studio, or by edit-
ing the source XML directly.

The Designer is a drag-and-drop tool with a toolbox containing all the different con-
trols you can add, as well as a Properties window (referred to as the Properties pad in
Visual Studio for Mac) for configuring the views once they’re on the layout (figure
9.6). The Designer is based on the layout on a real device, and you can choose the
device type you want to use so you can see how your layout looks on various screen
sizes and orientations. You can even choose the API level to see how your app would
look on older or newer OS versions. The Designer is powerful, making it very easy to
build your layouts and see exactly what your app will look like.

If you prefer to edit the source XML by hand, you can use the tabs at the bottom of
the Designer to switch to the Source view and code up or tweak your layout manually.

If you look at the app in the Designer, it will seem pretty empty. If you flip to the
Source tab, you’ll see an XML file with a single element in it, as shown in figure 9.1.

294 CHAPTER 9 Building simple Android views
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent" />

This layout file has a single LinearLayout element in it with a number of properties
from the android XML namespace set. This is one of the standard Android UI ele-
ments. There are two types of these UI elements:

 Views (not to be confused with MVVM views) are controls—UI components that
users can interact with, such as buttons and text boxes. These are often referred
to as “widgets” in the Android documentation and mostly live in the
Android.Widget namespace.

Listing 9.1 The contents of a new, blank layout file

You can choose the device type, OS version,
and orientation used to display the layout
you’re designing.

The toolbox contains all the views and view
groups that you can add to your layout.

The Properties pad allows you to configure the
properties on the selected view in the layout.

You can flip between the designer and
a source view for editing the raw XML.

Figure 9.6 The Designer can be used to visually position and configure the views and view groups
in your layout.

295Building Android UIs
 View groups are layout controls that contain other views or view groups. The view
group is referred to as a parent, and the controls inside it are its children. Each
view group is responsible for laying out its children on screen. How the child
controls are laid out is determined by the type of view group used and the lay-
out properties set on the children.

By having view groups contain other view groups and views, you can build up a hierar-
chy of elements that define your UI (figure 9.7). This hierarchy can be as simple or as
complicated as needed, but simple is always better, especially in terms of perfor-
mance. Each layout file defines one and only one top-level UI element, and this is usu-
ally a view group.

VIEW GROUPS

Let’s take a look at a few of the most used view groups: linear layout, relative layout,
and frame layout.

Linear layout
Android.Widget.LinearLayout is a view group that lays out its children one after the
other in a single direction, either horizontally or vertically (figure 9.8). All children
are laid out in the order in which they’re added to the layout.

View

View group

View

View group

View View

View groups contain one or more
child controls and are responsible
for laying them out on screen.

Views are controls that users can
interact with (such as buttons) or
that show static content (such
as images or labels).

Figure 9.7 Android UIs are a hierarchy of view groups and views.

View1

View2
LinearLayout

View3

V
i
e
w
1

V
i
e
w
2

V
i
e
w
3

Figure 9.8 Linear layouts lay out their child views in a line, either
vertically (left) or horizontally (right).

296 CHAPTER 9 Building simple Android views
Relative layout
Android.Widget.RelativeLayout is a view group that lays out its children relative to
other views—either relative to the view group itself, or to other children. You set prop-
erties on each child to specify the layout rules (such as above view x, to the right of
view y, or in the center of the parent), and the relative layout will position everything
for you.

Table 9.2 shows some of the many properties you can set.

You can combine properties—such as combining layout_below and layout_align-

Right to put one item directly below another with the right edges of both aligned. You
can find a full list of properties in the Android documentation at http://mng.bz/o1VT.

Frame layout
Android.Widget.FrameLayout is a view group that’s a simple frame for holding one
or more children. You add children, and they’re laid out on top of each other in the
order they’re added. You can then position the children inside the frame relative to
the frame only, not relative to other controls.

Table 9.2 Some properties for relative layouts

Property Type Description

android:layout_centerInParent bool If true, this centers this child hori-
zontally and vertically within its
parent.

android:layout_below Resource reference Positions this child directly below
the element with its ID set to the
given resource reference.

android:layout_alignLeft Resource reference Aligns the left side of this child
with the left side of the element,
with its ID set to the given
resource reference.

View1

View2
RelativeLayout

View3

Aligned with the top of the relative layout

Aligned below View1, with its right side
aligned with the right side of View1

Aligned with the bottom of the relative layout

Figure 9.9 Relative layouts lay out their child views based on layout rules.

http://mng.bz/o1VT

297Building Android UIs
VIEWS

Views are controls that don’t contain any children, but provide either controls that
users can interact with, or static controls that show something on the UI (figure 9.10).

 TextView—Android.Widget.TextView is a static label that shows text that can’t
be edited.

 EditText—Android.Widget.EditText is a text-entry control. It’s derived from
TextView but has capabilities to edit text. When a user taps this control, the key-
board pops up, allowing text to be entered. This control can also be configured
to limit the values that can be entered, such as just allowing numbers.

 Button—Android.Widget.Button is a push button that can be tapped by the
user to perform an action.

 ImageView—Android.Widget.ImageView is used to show an image and can
scale the image to fit if necessary.

NEWER VIEWS AND VIEW GROUPS USING APPCOMPAT

As you saw back in chapter 6, Android is a horribly fragmented ecosystem. Unlike iOS,
where most users are on the latest OS version, most Android users are on older ver-
sions—either because they haven’t upgraded, or more likely because they can’t. Due
to the way Google has allowed manufacturers and carriers to modify the version of
Android they ship, end users have to rely on both manufacturers and carriers to make
Android updates available.

This can be a very slow process. For example, at the time of writing, in New Zea-
land, Android Nougat has been out for five months, and you can’t buy a phone or tab-
let off the shelf that runs it, except for imported devices. Samsung, which supplies a
large percentage of all Android devices, are only just rolling out support for Nougat
five months after release, and only for their latest devices. This fragmented ecosystem
means developers are unable to implement the latest and greatest Android features
because most of their customers won’t be able to take advantage of them.

Google is well aware of this problem and has taken steps to work around it.
They’ve done two things: first, they’ve extracted OS services like location, maps, and
game services and put them into separate apps that are installed and updated through

Press Me

Some text

Enter some text
Use an EditText to allow
users to enter text.

Use a TextView to
display static text.

Use an ImageView
to display images.

Use a Button for a user-tappable
control that performs an action.

Figure 9.10 Use different views to provide different controls for users to interact with.

298 CHAPTER 9 Building simple Android views
the Play store, called Google Play Services. Second, they’ve back-ported SDKs to ear-
lier versions using a set of support libraries that you can ship with your app, often
referred to as AppCompat. These support libraries allow you to use features that were
originally written for later OS versions on earlier versions. For example, with Lollipop,
Android introduced a new design paradigm called material design and shipped
updated controls that reflected the new design. To bring this to older OS versions,
they released a similar SDK as part of the support libraries, allowing you to create apps
that use material design and look the same on OS versions going back to Jelly Bean.

APPCOMPAT TERMINOLOGY The AppCompat library is one of a selection of
support libraries available, but the name AppCompat is often used to refer to
all the support libraries.

These support libraries come from a set of Google Java libraries, and Xamarin has
wrapped these as NuGet packages that you can easily add to any Xamarin.Android
app. The MvvmCross apps that you’ve already created reference these NuGet pack-
ages, so there’s nothing that you need to do to use them, but if you want to use them
in other projects, you’ll just need to add a couple of packages. (MvvmCross also pro-
vides helpers that can take advantage of these packages, or extend them to make them
easier to use, as you’ll see later in this chapter.) The main package you need to add is
Xamarin.Android.Support.v7.AppCompat, as this provides material design to pre-Lol-
lipop devices.

AppCompat provides different classes that implement the standard functionality
for Android, such as a different activity base class (one that provides nice colorful tool-
bars) and different controls. To allow you to support the widest range of OS versions,
and to ensure your users get as similar an experience as possible on all devices, it’s
best to always use AppCompat. You can read more about the support libraries in the
Android developer documentation at http://mng.bz/62Gf.

9.1.6 Layout inflation

Layouts contain an XML description of the views and view groups that you want in
your UI. To create the UI from a layout file, something needs to read this XML and
construct the classes for all the items in it, set the properties, and build the hierarchy
of items by setting the children of the view groups. This process is called inflation, and
it uses an Android class called LayoutInflater, which is available as a property on
Android activities or can be used behind the scenes by some helper methods on the
activity. The term inflation is also used when loading other XML resources, such as
menus.

http://mng.bz/62Gf

299Creating the layout file for the SquareRt UI
9.2 Creating the layout file for the SquareRt UI
To build up the UI for SquareRt, we’ll need to put a number of views on the screen.
We’ll need a toolbar across the top showing the app’s name, an ImageView showing
the square root symbol (), an EditText below the image to allow the user to enter a
number, and a TextView on top of the image to show the result. We’ll also need some
view groups to lay these controls out. Figure 9.11 shows the layout of these controls.

We’re going to build the UI using a mix of both the Designer and the Source editor—
both are powerful, so it’s good to know how to use both techniques.

9.2.1 Adding a toolbar

The first thing to put on this UI is a toolbar. Modern Android apps follow material
design, and part of this is a nice colorful toolbar on the top of every screen showing
details about the current task that the user is performing (such as a name), and pro-
viding menus and toolbar buttons where necessary. These toolbars are available in the
Android SDK on Lollipop and later, and in the support libraries for earlier OS ver-
sions. Because we want to support as many versions as possible, we’re going to use the
version of the toolbar from the support libraries.

ADDING THE TOOLBAR TO THE LAYOUT

We’ll start by adding the toolbar in code (we’ll flip over to the Designer later on). The
code for this is pretty boilerplate, so switch to the Source view, delete the Linear-

Layout, and add the code in the following listing.

RelativeLayout

AppBarLayout

ToolBar

RelativeLayout
(nested inside

the outer
RelativeLayout)ImageView

TextView

EditText

Figure 9.11 The layout of the views and view groups in the SquareRt UI

300 CHAPTER 9 Building simple Android views
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:local="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent">
<android.support.design.widget.AppBarLayout

android:layout_height="wrap_content"
android:layout_width="match_parent"
android:id="@+id/toolbar_layout">
<include

layout="@layout/toolbar" />
</android.support.design.widget.AppBarLayout>
<RelativeLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_below="@id/toolbar_layout" />

</RelativeLayout>

In this code you’re using a relative layout as the top-level element so that you can lay
out everything you need on screen in the way you want. The elements don’t need
namespaces, but every attribute that’s set on each element needs to be a fully qualified
name with the namespace as well as the attribute. Two namespaces are defined here:
android, which references the Android SDK, and local, which references the current
app (providing access to everything declared in the app and NuGet packages it uses,
such as the Android support and MvvmCross libraries).

SETTING THE SIZES

There are two very important attributes on every element: android:layout_width
and android:layout_height. These two attributes come from the base
Android.Views.View class, which is the base class for all UI components (both views
and view groups). They define the size of each view, and they must be set for every sin-
gle element in your layout file. If any items don’t have these set, you’ll get an excep-
tion at runtime.

You can set these to one of three possible values:

 match_parent—Make the view as large as possible to fill the available space in
the parent. This value was fill_parent prior to API 8, and you may see this
used in examples online—both will work and will do the same thing.

 wrap_content—Make the view as small as possible so it just takes up the space
needed by its children.

 A numeric value—Make the view a fixed size.

For the top-level element in a layout file that’s used for a full-screen UI, it’s pretty stan-
dard to use match_parent for both width and height to ensure your UI fills the entire
screen. For children of the top-level element, you can choose values that make sense
for your layout.

Listing 9.2 Adding a toolbar to the layout

The top level
element is now a
relative layout.

An app bar layout
contains the toolbar.

A nested relative layout
inside the top level element

The toolbar is included
from another layout file.

Sets the ID of the
AppBarLayout to
a new ID

301Creating the layout file for the SquareRt UI
If you want to use fixed sizes, you can express the size using different units.
Android devices come in all shapes and sizes, with different screen resolutions and
densities. These different densities mean you can have two devices the same size, but
one can have twice as many pixels each way, with each pixel a quarter of the size.
When viewing the same app on these two devices, you’d want them to look the same,
with everything on screen being the same physical size—the device with the higher
density would just look crisper and sharper. But if you have a view set to 30 pixels high
by 30 wide, it would be one quarter of the physical size on the higher density screen.

To get around this problem, Android uses the concept of density-independent pix-
els called dp—virtual pixels that should be the same physical size regardless of screen
density (figure 9.12). You can define sizes in your layout files using a numerical size
followed by dp—such as 30dp or 100dp. These map one-to-one with individual pixels
on a 160 DPI (dots per inch) screen, so a view with a width of 160dp would be 160 pix-
els wide (or one inch). On devices of different densities, the scaling changes, so on a
320 DPI device, each dp would be the equivalent of 2 pixels, with the 160dp-wide view
being 320 pixels wide (again, one inch). When you’re defining sizing in Android lay-
outs, you should always use dp instead of actual pixels.

THE ELEMENTS IN THE LAYOUT

This layout file has a RelativeLayout as the top-level element, and it currently has
two children—an android.support.design.widget.AppBarLayout and another rela-
tive layout.

The app bar layout is designed to hold toolbars, tab bars, and search controls, and
in this case we’ll be using it to hold a toolbar (figure 9.13). The app bar layout has the
attributes for height and width, with the width set to fill the screen and height set to
wrap_content to ensure this element is only as tall as need be.

The other attribute that’s set on this layout is android:id, and it’s set to
@+id/toolbar_layout. This is a special syntax—anything in these files that starts with
@ is a resource reference, and the + is indicates that this is a new ID that you’re creat-
ing. Taken together, @+id/toolbar_layout syntax tells the Android code to create a

160 DPI

Pixel size
200 x 200

DP size
200 x 200

320 DPI

Figure 9.12 Android supports
multiple device densities, so to make
things look the same on devices with
different densities, you can size them
using density-independent pixels.

302 CHAPTER 9 Building simple Android views
new ID called toolbar_layout and assign that ID to this element. Once this ID is
defined, you can use it anywhere in your C# code using Resource.Id.toolbar_

layout or you can reference it from inside this or any other layout XML file using
@id/toolbar_layout. The + is only for defining new IDs; you don’t use it when refer-
encing the ID or when defining other resource types.

The app bar layout’s child—the toolbar—is an element called include with one
attribute of layout="@layout/toolbar". These include elements are a way of includ-
ing one layout file in another, which is great if you want to share layout code. In the
case of toolbars, their layout is usually the same because you’ll usually want all toolbars
to look and act the same way. In this case, the layout is including the Resources\
layout\toolbar.axml file, which contains an AppCompat toolbar. This toolbar layout is
pretty boilerplate, so we won’t look at it here, but you can read all about toolbars in
the Android developer reference documentation: http://mng.bz/0jY8.

The top-level element has a second child, another relative layout, and you can use
it to lay out the rest of the UI. This element has an attribute set to position it in its par-
ent—android:layout_below="@id/toolbar_layout". This attribute tells the ele-
ment to position itself below the element in the parent relative layout with the ID of
toolbar_layout (the app bar layout). The height and width are set to match_parent,
but this layout doesn’t have a height that matches the parent; instead it has a height
that fills up as much space as possible after the other layout rules are applied, so it
matches the amount of space left inside the parent container while being below the
toolbar layout. This is why match_parent is a poor name—the values don’t match the
parent but rather mean the view will expand to fill the available space after obeying
the rest of the layout rules.

Once you have this basic layout in place, you can try flipping to the Designer and
seeing what the layout looks like. You’ll see a white rectangular screen with a blue tool-
bar at the top (figure 9.14). We’ll now add the rest of the controls to the layout. Figure
9.13 shows the hierarchy we’re aiming for.

ImageView

RelativeLayout

EditText TextView Toolbar

RelativeLayout

AppBarLayout

Figure 9.13 The hierarchy of views and view groups in our layout

http://mng.bz/0jY8

303Creating the layout file for the SquareRt UI
SOMETIMES THE DESIGNER WILL SHOW AN ERROR BUT STILL WORK Sometimes
the Designer doesn’t quite work properly—instead of seeing a white rectangle
with a blue toolbar, you’ll see a black rectangle with a black toolbar and a red
error bar with a Show Error button that does nothing. This occurs because
the Designer fails to use the Android support libraries correctly. If you see
this, the Designer will probably still work but just look odd. You may also see a
warning in the output along the lines of “The element RelativeLayout has
invalid child element android.support.design.widget.AppBarLayout,” which
you can ignore. Usually a restart of Visual Studio will fix the issue.

Figure 9.14 The basic layout for the view showing the toolbar

304 CHAPTER 9 Building simple Android views
9.2.2 Adding an image

You now have a basic layout with a toolbar—let’s add the square root symbol (), and
this time we’ll do it in the Designer. To add an image, first you need to supply an
image file, though to be more correct, you need to supply five image files.

These files are with the code that accompanies this book, in the Images\Square-
Rt\Droid folder. If you open this folder, you’ll see a number of folders with names that
start with drawable, each containing an image file called Line.png of a particular size.
Table 9.3 lists these folders and the resolutions of the images in them. Drag these
images to the SquareRt.Droid project, into the matching Resource\drawable folder
(so drag from drawable-mdpi to Resource\drawable-mdpi and so on).

Why do we need multiple versions of the same image? They will support multiple
screen sizes and resolutions—it’s the same as using dp for sizes instead of pixels.

DRAWABLES

Drawables are a type of resource that’s concerned with drawing things on the screen.
The most popular type of drawable is a bitmap image (such as a .png file). Android
allows you to define multiple versions of each resource, with each version targeting a
particular screen size range, resolution, or orientation. Each version is then stored in
a resource folder that includes the relevant device details in the name.

All resources are referred to in code by a unique identifier, which is assigned by
the compiler to all resources with the same type and name. All the Line.png images
you’ve added will be referred to using the same ID—Resource.Drawable.Line in C#
code or @drawable/Line in XML files. Every time you need to use this image, use the
identifier and the OS will pick the relevant version. The OS will check the screen den-
sity for the hardware it’s running on and load the most appropriate image.

The different image sizes allow your app to look roughly the same on all devices
and different densities. These densities are defined using DPI—the number of dots
per inch. Table 9.4 shows these densities, along with the name Android uses for
devices of that density, and the relative size of the images (when creating your own
images, scale them to these relative sizes to size correctly).

Folder Resolution

drawable 229x65

drawable-mdpi 305x86

drawable-hdpi 458x129

drawable-xhdpi 610x172

drawable-xxhdpi 915x258 Table 9.3 The different versions of
the Line.png image added to our app

305Creating the layout file for the SquareRt UI
The OS will fall back to a lower density if the image isn’t available, so if there isn’t an
image in the drawable-xxhdpi folder for an xxhdpi screen, it will use the one from
drawable-xhdpi.

This pattern of <folder name>-<screen resolution> can be used in any of the resource
folders, and you’re not limited to screen densities. For example, layout files are used
to define the UI, and you might want one UI for your app when running with the
screen in portrait orientation, and a different one when running in landscape—you
can define these in layout folders suffixed with -port or -land. You can also have differ-
ent UIs for larger or smaller screens (for example, you might want your app to look
different on a tablet than on a phone), and you can do this by specifying different
resources for screens with different sizes.

You can read more about this, including the huge range of possible folders for dif-
ferent resource variations in the “Providing Alternative Resources” section of the
Android documentation: http://mng.bz/d0M9.

ADDING AN IMAGEVIEW CONTROL

Now you have our image resource, so let’s show it in the layout. From the Designer
tab, locate ImageView in the toolbox (you can type the name in the toolbox search
box to filter the list) and drag this onto the layout in the Designer below the toolbar.

On Visual Studio for Mac, you should be able to find the toolbox on the right side
of the Designer. If you can’t see it, you can show it by selecting View > Pads > Toolbox
from the menu. On Windows, it’s usually docked and hidden on the left. You can
show by selecting View > Toolbox from the menu.

Once that’s done, you need to set the image and position the view by setting its
properties, which can be done using the Properties window. In Visual Studio for Mac,
these properties are grouped into tabs and are named with easy-to-read English ver-
sions of the XML attribute names. On Windows, all the properties are in a long list
and have the same names as the attributes in the XML.

Ensure the ImageView is selected in the Designer, and then find the src property
in the Properties window (in Visual Studio for Mac you’ll need to be on the Widget
tab to see it, and it’s called Src). It will have a default value set, and to the right of the
default value will be an ellipsis icon (…). Click this icon to launch the resource

Table 9.4 The approximate DPI values for the Android screen densities

Folder Density DPI Relative size

drawable Low ~120 dpi 0.75x

drawable-mdpi Medium ~160 dpi 1x

drawable-hdpi High ~240 dpi 1.5x

drawable-xhdpi Extra-high ~320 dpi 2x

drawable-xxhdpi Extra-extra-high ~480 dpi 3x

http://mng.bz/d0M9

306 CHAPTER 9 Building simple Android views
browser, which will show a window with all the resource references available in your
app (figure 9.15). Search for the line drawable resource, select it, and click OK. This
will update the image in the Designer to show the square-root symbol’s image.

Now that you have your image, you need to position it
in the center of the space below the toolbar. The Image-

View is sitting inside a relative layout, so all you have to
do is set a property to position the ImageView inside it.
Find the layout_centerInParent property (in Visual
Studio for Mac, it’ll be in the Layout tab and be called
Center in Parent), and tick it. You don’t need to manu-
ally set the layout_width and layout_height parameters
yourself (in Visual Studio for Mac, these are called Width
and Height and are in the Layout tab). When this control
was dragged onto the toolbox, these were both automati-
cally set to wrap_content, and this will size the view to
match the size of the image.

The ImageView will also have its id property set to a
default value of @+id/imageView1. You’ll be using this ID
later to position other views, so change it to a more
friendly name of @+id/square_root_symbol using the
Properties window (in Visual Studio for Mac you’ll find
the ID property in the Widget tab). Figure 9.16 shows
what the layout should now look like.

Figure 9.15 The resource
browser can be used to find and
select resource references.

Figure 9.16 The app with the
ImageView centered in the
area below the toolbar

307Creating the layout file for the SquareRt UI
9.2.3 Adding an EditText control

Next up is adding a text-entry control so the user can enter a number to calculate the
square root from. For this, we’ll mainly use the Designer, but you’ll have to switch to
the Source to add the finishing touches.

ADDING THE EDITTEXT CONTROL TO THE LAYOUT FILE

The control you need to use here is an EditText, but you won’t find it if you look in
the toolbox. Instead, there’s a whole section in the toolbox called Text Fields that con-
tains different preconfigured text-entry controls based on the type of data you want
your users to be able to enter. For example, you can drag a Date text field onto the lay-
out and have the control configured so you can only enter valid dates, or you can drag
a Password field on and have a control that masks the user input.

In our case, we’re dealing with numbers, so you need to drag a Number (Decimal)

text field from the toolbox over the image on the layout (which will be surrounded by
a green line when your mouse is over it), and drop it on the green line on the top.
The Designer is a bit flaky when dealing with relative layouts, so unless you drop it just
right, it may not add the control at all. Figure 9.17 shows where to drag it to.

If you’re having trouble, you can open the Document Outline pad (on Visual Stu-
dio for Mac it’s below the toolbox by default, behind the Properties pad; on Windows

Figure 9.17 Drag the Number text field over the top of the image.

308 CHAPTER 9 Building simple Android views
you can show it using View > Other Windows > Document Outline). Expand every-
thing and drag the text field into there, dropping it on the inner relative layout, as
shown in figure 9.18.

Once your control is added, you’ll see it with a blue border indicating that it’s
selected. Be careful not to click off it, as the empty white EditText control will disap-
pear into the white background of the layout. If you do click elsewhere and unselect
it, open up the document outline and click the control in there to select it again.

If you now look at the properties for this EditText control, you’ll see that the
inputType property (Input Type in Visual Studio for Mac in the Widget tab) is set to
numberDecimal. This will limit the keys on the keyboard so that users can only enter
numeric values and decimal points. You can also see this if you flip to the Source view,
where the android:inputType attribute is set to the same value.

POSITIONING THE EDITTEXT CONTROL

Now you need to position this control. You want it tall enough to show the text inside
it, and for it to be positioned over the top of the image, lining up with the bottom and
right side, with the left side being slightly indented to fit in the correct place. You can
configure all of this using the properties made available by the parent relative layout.
Figure 9.19 shows what we want to achieve.

Figure 9.18 Drag the Number text
field to the relative layout using the
document outline.

309Creating the layout file for the SquareRt UI
The properties you’ll need to set are shown in table 9.5, with their names in Visual
Studio on Mac and Windows listed. In Visual Studio for Mac, these are all in the Lay-
out tab.

Table 9.5 The properties to set to position the EditText control inside the image

Property (Windows) Property (Mac) Value Description

layout_width Width match_parent Makes the control as wide as
possible—not necessarily as
wide as the parent, but as
wide as possible based on the
other layout constraints

layout_height Height wrap_content Makes the control only as tall
as it needs to be to show the
text

layout_alignBottom Align Bottom @id/square_root_symbol Aligns the bottom edge of this
control with the bottom edge
of the ImageView

layout_alignRight Align Right @id/square_root_symbol Aligns the right edge of this
control with the right edge of
the ImageView

layout_alignLeft Align Left @id/square_root_symbol Aligns the left edge of this
control with the left edge of
the ImageView

layout_marginLeft Margin Left 60dp Adds 60dp of space to the left
edge

Align the control’s left and right
edges so it’s no further left or
right than the image.

Align the control’s
bottom with the
bottom of the image.

Set the height to match the size
of the text entered.

Indent the left edge of the control by
a small amount. This indent is applied
after the left edge is aligned.

400

Figure 9.19 The alignments you need to lay out the EditText control in the
right position relative to the image

310 CHAPTER 9 Building simple Android views
MARGINS AND PADDING When laying out controls, you can set the margin or
padding to add spacing between controls. Margins are space added outside a
control; for example, a left margin of 60dp means the control is sized and laid
out to ensure that there’s always a gap of 60dp on the left of the given control.
Padding is inside the control and is used for view groups or similar containers.
It means that all the children of the control should be sized and laid out to
ensure there’s the given padding is always included between the outer edges
of the child controls and the edges of the parent.

Some of these properties may seem to conflict with each other, but the layout engine
(the code built into Android that looks at your views, and sizes and positions them on
screen correctly) applies these in a priority order that makes your layout work. For
example, when aligning the left edge of the EditText control with the left edge of the
ImageView, the layout engine knows that you want a 60dp margin, so it positions the
left edge of the control 60dp to the right of the left edge of the ImageView.

You now have your EditText control in the right place, so you can now configure
the text properties to make the text in the control look nice. Ideally you’ll want the
text aligned to the right side, as this is the way numbers are normally aligned, and the
font should be large enough to be easily read.

Aligning the text is easy, using the Gravity property (in Visual Studio for Mac, this
is in the Widget tab). The Gravity property is used in a number of views to position the
contents of that view, and for text controls like EditText and TextView it positions the
text. By default, text is positioned on the left and centered vertically, but you can
change this using the various Gravity options. These options are a flags enum, so you
can do a binary OR on them to use multiple values at the same time, using the | opera-
tor. For example, if you wanted to position the text on the bottom right, you could set
it to bottom|right. In this example, we’ll set the gravity to right.

GRAVITY ALSO HAS START AND END Left and right will align the content of a
view to the left or the right, which is fine for languages that are read from left
to right, but for right-to-left languages such as Arabic or Hebrew this may put
things in the wrong place. Instead it’s better when building apps that will be
localized to support multiple languages to use start and end. In left-to-right
languages such as English, start is aligned left and end is aligned right; in
right-to-left languages, start is aligned right and end is aligned left.

The default text size for an EditText control is probably a bit small for what we need, so
you can make it larger. A size of about 40dp will give a nice text size, using the density-
independent pixels you saw earlier in the chapter. But although this will work, and do
a fine job, we can do better.

On Android devices there are options to increase or decrease font sizes to suit the
user’s accessibility needs—for example, making the default fonts larger for users with
visual impairments. If you set the font size using dp units, it won’t change based on the
user’s settings. If you want it to change, you can use sp (scalable pixels) instead of dp.
If the font size of the device is set to normal, the size in sp maps one-to-one with the dp

311Creating the layout file for the SquareRt UI
value (so 40sp is the same size as 40dp), but if the device’s font size is changed, the sp

size will be larger or smaller. Ideally you should always use sp for font sizes so that
they’re always sized according to the user’s preference. Let’s set the EditText control
to have a textSize property of 40sp (in Visual Studio for Mac, this property is in the
Style tab and is called “Text Size”).

BINDING

You have your EditText control styled now, so the last thing to do is bind it to the view
model. For this, flip to the Source view, as you’ll need to use a custom property pro-
vided by MvvmCross. Add the following line of code to the source.

...
<EditText

...
local:MvxBind="Text Number, Converter=DoubleToString"/>

...

This is a simple line of code, but it’s very important. This is our first binding, and it
binds the Text property of the EditText to the Number property of the view model,
using a converter. Let’s break this line down:

 local:MvxBind—The MvxBind attribute is defined inside the MvvmCross librar-
ies and is used to create a binding on the view. When the layout is inflated in an
activity (which we’ll wire up later in this chapter) a binding will be created.

 Text Number—This tells the binding to bind the Text property on the EditText

to the Number property on the view model.
 Converter=DoubleToString—This tells the binding to use a converter. Mvvm-

Cross does a lot based on names (such as determining which view is used for
which view model based on the class names), so the binding layer is smart enough
to look in your code for a converter called DoubleToStringValueConverter.

You can use this syntax any time you want to bind anything using MvvmCross inside a
layout XML file: to bind properties, or to bind events to commands (something we’ll
do when we look at Countr). You can even bind multiple things in the same statement
by separating them with a semicolon followed by a space. For example, if you wanted
to bind the text on a button to a property called Title, and the click handler to a
command called GoCommand, you could write the following line: local:Mvx-

Bind="Text Title; Click GoCommand".
This is all you have to do to wire up the view model to this UI control, and this is

what makes the MVVM pattern so powerful. One line of platform-specific code inter-
acts with many lines of cross-platform code.

Listing 9.3 Adding binding code to view to bind Number property on view model

Bind the Text property to the Number
property on the view model

312 CHAPTER 9 Building simple Android views
9.2.4 Adding a result TextView control

The final control you need to add is the result. This is a TextView, a control that shows
static text, so find Text View in the toolbox and drag it to the UI, dropping it over the
line at the top of the ImageView. Set the properties to position and style this control as
shown in table 9.6. There’s nothing new here; these are similar properties to those for
the EditText control.

The final thing to set up is the binding for the value, so flip to the Source tab and add
the following code.

...
<TextView

...
local:MvxBind="Text Result, Converter=DoubleToString"/>

...

That’s it—your layout is now done. Now it’s time to turn our attention to the view class
itself.

Table 9.6 The properties to set on the TextView

Property (Windows)
Property
(Mac)

Value Description

textSize Text Size 32sp Sets the font size for the
text in scalable pixels

gravity Gravity right Aligns the text of this text
view to the right

layout_width Width match_parent Makes the control as wide
as possible—not necessar-
ily as wide as the parent,
but as wide as possible
based on the other layout
constraints

layout_height Height wrap_content Makes the control only as
tall as it needs to be to
show the text

layout_above Above @id/square_root_symbol Positions this control above
the ImageView

layout_alignLeft Align Left @id/square_root_symbol Aligns the left edge of this
control with the left edge of
the ImageView

layout_alignRight Align Right @id/square_root_symbol Aligns the right edge of this
control with the right edge of
the ImageView

Listing 9.4 Adding binding code to view to bind Result property on view model

Binds the Text property to the Result
property on the view model

313Building the SquareRt view
9.3 Building the SquareRt view
We’ve defined the layout resource that defines the UI for the SquareRt view, so now
it’s time to build the UI itself, by defining an activity.

9.3.1 What is an activity?

In Android, an activity represents a single screen in your app, and it’s equivalent to an
MVVM view. The name is suggestive of the intention. It should be the place a user per-
forms an activity of some sort—a task or group of related tasks so that it represents a
real-world activity that the user would want to do. For example, in Countr we have two
screens: one for viewing multiple counters and performing actions on items in the list,
and one for creating a new counter. These screens are distinct activities, and each
would be modeled by an instance of the Activity class. In our SquareRt app, we only
have one task that the user will want to do—calculating the square root—so this app
will only require one activity.

An activity is a class derived from Android.App.Activity, which is a class in the
Android SDK. This class is responsible for everything to do with the screen that it
shows. AppCompat also has a base activity derived from this activity class called
Android.Support.V7.App.AppCompatActivity, which provides an activity that uses
material design. The activity is responsible for creating the view, including construct-
ing all the UI components, and it manages the lifecycle of the screen, including track-
ing when the activity is created, visible, hidden, or destroyed. All Android apps have
one main launcher activity, and this is the activity that’s loaded and shown when your
app first starts up.

When your app is packaged, installed, and run, the Android OS looks at the mani-
fest file to see what activities it has, including seeing what the main launcher activity is,
so all activities must be declared in the manifest. As Xamarin developers, we don’t
need to define all the activities in the manifest file manually. All we need to do is add
the [Activity] attribute to our activities, and the Xamarin tooling will add these to
the manifest for us. You can define your main launcher activity by setting the Main-

Launcher property on this attribute to true (something that’s already done for us on
the splash screen activity from MvvmCross). You can also set other properties about
your activity on this attribute, including its icon and title.

Most apps will start with a splash screen activity that shows a simple image while the
app is starting up, and this is such a popular thing to do that MvvmCross gives you a
splash screen out of the box using a class called MvxSplashScreenActivity. Our app
was configured to use this as the base class of the SplashScreen class when we created
it. The important thing to be aware of with this activity is that it starts up the Mvvm-
Cross framework, including launching the view for the view model that you’ve regis-
tered as your app start.

314 CHAPTER 9 Building simple Android views
9.3.2 The activity lifecycle

Each activity has a lifecycle, a set of methods that get called during the lifetime of that
activity, depending on whether the activity is being created, destroyed, shown, or hid-
den. These are all called on the UI thread. Figure 9.20 shows this lifecycle.

These lifecycle methods are all virtual methods on the Activity class, so you can over-
ride them as needed. For example, OnStart is called every time an activity becomes
the current activity and is visible to the user, so in an app that shows data from a web
service (such as a social media app) this would be a good place to kick off a back-
ground task to reload any data. The most important one to override is OnCreate—this
method is called when an activity is first created but before it’s shown on the UI, so it’s
here that you should build up your actual user interface by inflating a layout file.

By default, activities are recreated when the screen gets rotated. This means the
current activity is destroyed and goes through the destruction part of the lifecycle
(OnPause, OnStop, and OnDestroy are all called in order) and a brand new instance of
the class is constructed and goes through the creation lifecycle (OnCreate is called fol-
lowed by OnStart). The biggest upside of this is that it allows full support for different
layouts for landscape and portrait orientations. As mentioned earlier in this chapter,
resources can be loaded from different folders based on the device setup, so you can
create two different layouts with the same name, but one in the Resources\layout-land
folder and another in the Resources\layout-port folder, and every time the activity is
recreated as it’s rotated, the correct layout file will be loaded. MvvmCross handles this
activity recreation for you, so when a new activity is created it re-uses the same instance
of the view model. You don’t need to do anything to persist state in the view between
rotations—the view model handles it all for you.

Activity launched OnCreate

OnStart OnRestart

OnResume Activity is running

1. Another activity is
 navigated to or this
 activity is closed.

2. The user navigates
 back to this activity.

3. The activity is finished.

OnPause OnStop

OnDestroy

Activity is shut down

Figure 9.20 Each activity goes through a lifecycle as it’s shown, hidden, reshown, or destroyed.

315Building the SquareRt view
9.3.3 Creating an activity for the view

Android uses activities to define each screen, and these are analogous to MVVM views,
so to create the view for your app, you need to create an activity. In the Views folder,
add a new class called SquareRtView and add the code from the following listing.

using Android.App;

using Android.OS;
using MvvmCross.Droid.Support.V7.AppCompat;

namespace SquareRt.Droid.Views
{

[Activity(Label = "@string/ApplicationName")]
public class SquareRtView : MvxAppCompatActivity
{

protected override void OnCreate(Bundle bundle)
{

base.OnCreate(bundle);
}

}
}

This is the basic structure of our activity class. The base class is MvxAppCompatActivity,
an MvvmCross class that derives from AppCompatActivity (the base activity class for
screens that use AppCompat to support material design on pre-Lollipop devices), and
it comes with support for view models, including automatically setting the view model
when you navigate to this view.

FOR ACCESS TO UNDERLYING VIEW MODELS, A GENERIC VERSION CAN HELP
MvxAppCompatActivity has a property called ViewModel with the type of IMvx-
ViewModel, which is the base interface on the MvxViewModel base view-model
class. This way you can access your view model by its base interface and cast it
to the type you need. If you prefer to avoid the cast, you can use MvxAppCompat-
Activity<T>, where T is your view-model type. This provides a ViewModel
property of type T instead of IMvxViewModel, so you don’t have to cast it.

This activity is decorated with the [Activity] attribute, which tells the tooling to
automatically add your activity to the manifest when the app is compiled. This won’t
add the activity to the manifest in the Properties folder of your project, but it adds it
to the version that’s output at compile time. You can see this in action yourself by com-
piling the app and looking at the AndroidManifest.xml file in the Obj\Debug\android
folder. You’ll see that the activity has been added, albeit with a strange name that starts
with md5<something>. This is the magic that Xamarin has to do to avoid packaging
errors, and it’s probably nothing you’ll ever need to worry about. You can read more
about it under the heading “Android Callable Wrappers” in the Xamarin documenta-
tion: http://mng.bz/4G4C.

Listing 9.5 The code for the square root view

An attribute to mark this
class as an activity

The view derives from
a base MvvmCross
activity.

Overrides the OnCreate
method and calls the base

http://mng.bz/4G4C

316 CHAPTER 9 Building simple Android views
The Label property is one of a number of properties you can set on the [Activity]

attribute, and it’s used to configure the title that appears in the toolbar (toolbars, by
default, show the activity’s label, but this can be changed if you want). You’re not defin-
ing a specific name here though; instead you’re using another resource reference to
the ApplicationName string. Normally you can’t use resource references inside
strings—only in XML files—but the values you’re setting here are used to populate the
AndroidManifest.xml file. This means setting Label = "@string/ApplicationName"

will add an entry to the manifest that looks something like this:

<activity android:label="@string/ApplicationName"
android:name="md5b1836f203309c9917b270ff5361286e3.SquareRtView" />

Seeing as this is in an XML file, Android will be able to resolve the resource reference.
There are a number of other properties you can set to configure your activity

(such as setting the icon on the toolbar). You can read more on these in the Android
“App Manifest” API guide: http://mng.bz/bCXA.

SHOWING THE LAYOUT

You have an activity now, but it doesn’t do much. The next thing to do is to load the lay-
out so it shows on the UI. Each activity has a single content view—an instance of
Android.Views.View that is the top-level element to show on screen (and this is usually
a view group containing other views). Activity comes with a helper function that can
take a layout resource, inflate it (constructing and configuring all the views and view
groups defined inside it), and set the result as the content view for the activity. The fol-
lowing listing shows the code change to do this, so make this change to SquareRtView.

protected override void OnCreate(Bundle bundle)
{

...
SetContentView(Resource.Layout.squarert_view);

}

This code uses a resource reference to find the layout, inflate it, and set it as the con-
tent view. This SetContentView method exists on the base Activity class and uses a
layout inflater that comes as part of the Android SDK, but MvxAppCompatActivity has
its own implementation of this method that uses a custom layout inflator provided by
MvvmCross. The MvvmCross layout inflater uses the Android implementation to con-
struct the views, but it also reads the MvxBind attributes and builds up the bindings for
you automatically.

The last thing to do is to set up the toolbar. Each AppCompat activity has an action
bar that can show the title or provide navigation between activities (we’ll look at navi-
gation a bit more in the next chapter, with the Countr app). This action bar can be set
up to use any toolbar control. You have a Toolbar defined in your layout, so you can
set this up as the action bar using the following code.

Listing 9.6 The content view of an activity can be loaded from a resource

Sets the content view to
load from a resource

http://mng.bz/bCXA

317Building the SquareRt view
using Android.Support.V7.Widget;
...
protected override void OnCreate(Bundle bundle)
{

...
var toolbar = FindViewById<Toolbar>(Resource.Id.toolbar);
SetSupportActionBar(toolbar);

}

FindViewById will walk the UI looking for any view that has an ID set to the given
value, and will return the base Android.Views.View or null if it’s not found. The
generic version, FindViewById<T>, will look for a view with the given ID of type T and
return it as an instance of T if it’s found, return null if it’s not found, or throw an
exception if it’s found but is a different type. This is a relatively expensive call, espe-
cially if you have a complex UI, so if you need to access views in multiple places, you
should cache them in a field or property in the OnCreate method.

Once the toolbar is found, it’s set as the support action bar. The “support” part of
the name refers to using AppCompat, and it’s used when setting AppCompat toolbars.
There’s a SetActionBar method that’s used when you’re not using AppCompat tool-
bars, but ideally you should always use AppCompat to support as wide a range of
Android OS versions as possible.

9.3.4 Running the app

You’re done. This is all you need to do to create your view. You should now be able to
build and run the app using one of the preconfigured emulators and calculate some
square roots (figure 9.21).

When you run the app, the following things will happen:

1 The Android OS looks at the manifest, finds the
activity that’s set as the main launcher (the splash
screen that was auto-created for you and that can
be found in SplashScreen.cs in the root of the pro-
ject), and starts it.

2 The splash screen uses the MVVMCross framework
code to find the view model registered as the app
start in the App class in the SquareRt.Core pro-
ject—in our case this is SquareRtViewModel.

3 Based on the name of the view model that’s set as
the app start, it finds the SquareRtView activity and
launches it.

4 As the activity runs, the OnCreate method is called
by the Android OS as part of the activity lifecycle.

Listing 9.7 Setting up the toolbar

Finds a Toolbar in
the content view
with the given ID

Sets the
toolbar as
the action
bar

Figure 9.21 The working
SquareRt app

318 CHAPTER 9 Building simple Android views
5 In OnCreate, the layout file with the ID of squarert_view is inflated, creating
all the views and view groups defined in the file, and setting all the relevant
properties.

6 The MvvmCross framework finds all the MvxBind attributes that are set and cre-
ates the bindings so that every time the number in the EditText control
changes, the view model is updated, and every time the result on the view
model changes, the TextView control is updated.

7 The MvvmCross framework detects the Converter=DoubleToString on the
binding, looks for the first class in the assembly that implements IMvxValue-

Converter that has a name starting with DoubleToString, finds DoubleTo-

StringValueConverter in the SquareRt.Core project, creates an instance of it,
and uses it as a value converter on the binding.

You’ve now finished the simple view layer for SquareRt, so in the next chapter we’ll
take a look at Countr, and we’ll tidy up both our apps by improving their icons and
splash screens.

Summary
In this chapter you learned

 Google has guidelines, called material design, for building mobile apps.
 Android uses resources for non-code assets, and these can be made available in

different versions for devices of different sizes, orientations, or screen densities.
 Layouts are defined in XML and are used to define the controls on the UI.
 You can bind controls to properties and commands from inside the layout

XML, or in code if necessary (for example, when handling menu items).
 Android has layout controls that can position child controls inside them.
 Views are derived from activities, and these load their UIs from layout

resources.

You also learned how to

 Create layout resources using the Designer and by editing the source
 Add multiple images to support different screen densities

10Building more
advanced Android views
In chapter 9 we looked at the basics of creating an Android UI, including layout
files, images, and activities, and we ended up by building the complete UI for
SquareRt. In this chapter we’ll be looking at some more advanced Android UI top-
ics so we can build the UI for Countr: using recycler views to show lists of data, and
adding menu items to the Android toolbar, for example. We’ll then look at improv-
ing our apps’ icons and launch screens.

This chapter covers
 Using recycler views

 Configuring and handling menus

 Activity navigation and the Back button

 Setting app icons

 Styles, themes, and XML drawables

 MvvmCross application lifecycle and launch screens
319

320 CHAPTER 10 Building more advanced Android views
10.1 Building the UI for Countr
SquareRt is done, so let’s move on to Countr. Start by launching the Countr solution
from chapter 8 and the dummy first view activity and layout, just as you did for Squar-
eRt. This is a more complicated UI that has two screens, so you’ll need two activities
and two layouts. I’ll be showing you how to create these UIs in code as it’s easier to
show in a book, but feel free to try to achieve the same results using the Designer
(keeping in mind that you’ll have to switch back to the Source view to set up the
MvvmCross bindings).

Figure 10.1 shows the UI we want to create.

10.1.1 Creating the UI for the master view

The first view we’ll create for the Countr app is the master view, using the layout
shown in figure 10.2. It will have the same toolbar as the squarert_view layout, and it
will need to contain a widget for showing a list of counters, as well as a floating button
for adding a new counter.

Create a new layout resource called counters_view and add the following code to it.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:local="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent">
<android.support.design.widget.AppBarLayout

android:layout_height="wrap_content"
android:layout_width="match_parent"
android:id="@+id/toolbar_layout">
<include

android:id="@+id/toolbar"
layout="@layout/toolbar"
local:layout_scrollFlags="scroll|enterAlways" />

</android.support.design.widget.AppBarLayout>

Listing 10.1 The basic outline of the counters view layout

New Counter

Counter Name

Countr

Coffees

Tap +
Runs

4

1

+

+

Figure 10.1 The UI for Countr

321Building the UI for Countr
<FrameLayout
android:layout_below="@id/toolbar_layout"
android:layout_width="match_parent"
android:layout_height="match_parent">

</FrameLayout>
</RelativeLayout>

This is the same as the initial view code we wrote for the SquareRt layout file, except
here we’re using a FrameLayout below the toolbar layout instead of a relative layout.
We don’t need to position the other items on-screen relative to each other, so there’s
no need to use a relative layout.

The children of a frame layout are laid out on top of each other in the order
they’re added, so the first child is on the bottom, the next child is on top of the first
child, and so on (if you have two views of the same size in the same position, the sec-
ond will hide the first). Our frame layout needs two children to match the UI we’re
aiming for: a view that shows a list of counters, and a floating button that floats over
the list to add a new counter.

We need to start with the list of counters, and for this we need to add a recycler
view.

Below the toolbar layout
is a frame layout.

RelativeLayout

RecyclerView

AppBarLayout

FrameLayout

ToolBar

FloatingActionButton

Figure 10.2 The layout of the views and view groups in the master Countr UI

322 CHAPTER 10 Building more advanced Android views
10.1.2 Recycler views

A lot of apps need to show data as some form of list, and Android has a widget called
ListView that contains a scrollable list of views representing all the items in the list.
This is highly inefficient—if you have one thousand items in your list, the list view will
contain one thousand views, one for each item. Most of them won’t be visible on-
screen, but they’ll take up memory as well as UI thread time to draw and position
them.

To improve on this, Android added a widget called RecyclerView as part of its sup-
port library. It works the same way as far as the user is concerned, but it’s implemented
in a much more efficient way by recycling views. It creates only enough views to cover
what can be shown on the UI, and as the user scrolls, views that are no longer visible
are recycled and are moved to the other end of the list (figure 10.3).

Recycler views have a number of components that need to be set up. As well as creat-
ing the recycler view on the layout, you also need to set up a layout manager, an
adapter, and a view holder. The layout manager is responsible for laying out the items
in the recycler view, and Android supplies two out of the box for laying items out in a
vertical list or a grid (you can create your own layout manager if you need a different
layout). The adapter needs to know about the list of items that you want to show in the
recycler view, and it’s responsible for creating and updating the views that are shown
in the list, including updating them when the data changes. The view holder is a wrap-
per that stores the view for each item (usually loaded from a layout file) in the list,
allowing it to be recycled.

Recycler views take a bit of work to get working well, but luckily MvvmCross takes
some of the hard work out of the process by providing its own recycler view implemen-
tation. This MvxRecyclerView view derives from RecyclerView but it has its own

User scrolls
up

As a view scrolls off the
top, it’s recycled—moved
down to the bottom and
bound to a different item.

Figure 10.3 Recycler views reuse views
that are scrolled out of the visible part of
the screen to save on creating views.

323Building the UI for Countr
adapter that knows about observable collections. It can automatically create the views
needed to show the items, binding them to the items in the observable collection to
be handled. It also creates and manages view holders for you—you just need to specify
the layout file to use, and it creates all the view holders, inflating the layout you give it
and creating any bindings in that layout file to bind to each item in the collection
that’s used as the item source of the recycler view. The only thing you need to set up
manually is the layout manager.

If you want to set up your own recycler view, there’s some great RecyclerView doc-
umentation in the Xamarin documentation: http://mng.bz/79CO.

To add the MvvmCross recycler view to the UI, add the code in the following listing
to the counters_view layout.

<FrameLayout
...>
<mvvmcross.droid.support.v7.recyclerview.MvxRecyclerView

android:layout_width="match_parent"
android:layout_height="match_parent"
android:id="@+id/recycler_view"
local:MvxBind="ItemsSource Counters" />

...

This adds a recycler view to your layout, sets it to fill all the available space inside the
frame layout, and gives it the ID of @+id/recycler_view. It then binds the Items-

Source on the MvxRecyclerView to the Counters property on the view model—a
property of type ObservableCollection<CounterViewModel> that exposes all the
counters stored in the database.

You also need to tell the recycler view how to show the CounterViewModel

instances, and to do this you need to define another layout that you set as the item
template for the recycler view—item template is the MvvmCross terminology for the lay-
out resource that describes how to show and bind each item. Let’s now look at creat-
ing the UI for the item templates.

10.1.3 Creating the UI for the recycler view items

You now have the recycler view set up in your layout, but you haven’t defined the layout
for the items that are shown in the list—the CounterViewModel instances. You need to
define how they’re going to be shown, and this is done by creating a new layout file.
The layout needs to have a text view for the counter’s name, another text view that
shows the current count, and a button that the user can tap to increment the counter
(figure 10.4). This layout is used one per counter in the list, and when they’re created,
they are bound to the instance of the CounterViewModel that they’re showing.

Listing 10.2 Adding an MvvmCross recycler view to the layout

Binds the items source to the
Counters property of the view model

Creates a recycler
view that fills the
available space
and sets its ID

http://mng.bz/79CO

324 CHAPTER 10 Building more advanced Android views
The layouts for individual items are once again defined in layout XML files, so add
one called counter_recycler_view and start by adding the following code.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:local="http://schemas.android.com/apk/res-auto"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="50dp">

</RelativeLayout>

This is a simple relative layout for an item that’s as wide as the available space on the
screen but that’s only 50dp high, as this is all you’ll need to show the content.

You can now add the button to increment the counter. For this, you need an image
for a plus symbol. If you look in the images folder in the Git repository for this book’s
source, you’ll see an image called plus.png. Copy this from the various size folders to
the relevant folders in the app. Then add the code in the following listing to the rela-
tive layout.

<ImageButton
android:id="@+id/add_image"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentRight="true"
android:layout_centerVertical="true"
android:layout_marginRight="20dp"
android:src="@drawable/plus"
android:background="#00ffffff"
local:MvxBind="Click IncrementCommand" />

ImageButton is a widget that’s pretty much identical to a Button, except that it shows
an image instead of just showing text, and this image is set using the src property the
same way an ImageView does.

Listing 10.3 The initial layout for the individual items in the recycler view

Listing 10.4 Adding the image button to the layout

RelativeLayout

TextView TextView

ImageButton

Figure 10.4 The layout of the views and view groups for each item in
the recycler view

Configures how the button looks

Binds the Click event to
the IncrementCommand

325Building the UI for Countr
Most of the layout should be pretty familiar: the image button is laid out in the ver-
tical center of the parent relative layout, on the right side with a right margin of 20dp.
The ID is also set so that you can position another text view relative to it. The only new
property here is background. Buttons are normally styled using Android styles, and the
default style for buttons is to have a background color. You don’t want this background
color—you want the plus symbol to be on a white background—so the background is
set to #00ffffff, the hexadecimal representation of transparent white.

COLORS ARE DEFINED USING ARGB VALUES IN HEX When specifying colors in
Android resources, you use aRGB values defined using hexadecimal num-
bers, which are always prefixed with a #. The four bytes represent values for
the alpha (how transparent the color is, with 0 being transparent and FF
being opaque), red, green, and blue components. The alpha value is
optional, and if it’s not set, an alpha of FF is assumed. The values are set in
this order: <alpha><red><green><blue>.

This is also the first time we’ve bound an event to a command. It’s pretty simple—you
specify the name of the event on the control and the name of the command to bind
to. In this case, you’re binding the Click event of the ImageButton to the Increment-

Command command on the counter view model.
The next thing you need to add are some text views to show the name and count of

the counter. The following listing shows the code to add inside the relative layout.

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerVertical="true"
android:layout_alignParentLeft="true"
android:layout_marginLeft="20dp"
android:textSize="16sp"
local:MvxBind="Text Name"/>

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerVertical="true"
android:layout_toLeftOf="@id/add_image"
android:layout_marginRight="20dp"
android:textSize="16sp"
local:MvxBind="Text Count"/>

You now have your layout defined, so the last thing to do is to tell the recycler view to
use it to show the counters. To do this, flip back to the counters_view and add the
attribute in the following listing to the recycler view.

Listing 10.5 Adding text views for the name of the counter and its count

326 CHAPTER 10 Building more advanced Android views
local:MvxItemTemplate="@layout/counter_recycler_view"

This attribute tells the recycler view that every time it needs to create a new view for an
item, it should inflate the counter_recycler_view layout and bind it to the counter
view model. This is a recycler view, so only as many instances of the view as you need
are created. When a view is recycled, the view model that’s bound to it is changed, and
the binding layer will re-evaluate the properties and update the UI to reflect the new
view model.

ADDING UI AWESOMENESS WITH COORDINATOR LAYOUTS Android has another
layout called CoordinatorLayout that’s able to coordinate its behavior based
on other controls on the screen. For example, you can use a coordinator lay-
out as the top-level layout control for your activity, and set it up so that as you
scroll the recycler view, the toolbar disappears, only reappearing as you scroll
back to the top. You can read more about this in the Base Lab Blog’s “Nested
Scrolling with CoordinatorLayout on Android” entry: http://mng.bz/Anun.

10.1.4 Floating action buttons

The final thing to add to the counters UI is a floating action button. These are reason-
ably new UI components, and they’re designed to provide access to a common action
that a user wants to do on a screen. In the counters app, we’ll use this to create a new
counter, in the same way that Google’s Gmail app uses a floating action button to cre-
ate a new email. These floating buttons are a part of Google’s material design stan-
dard, and as such are available in the Android support libraries.

Add the following code to the frame layout in the counters_view layout, below the
recycler view.

<android.support.design.widget.FloatingActionButton
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="bottom|right"
android:layout_margin="16dp"
android:src="@drawable/plus"
local:MvxBind="Click ShowAddNewCounterCommand" />

This floating action button reuses the plus image that you’ve used in the recycler view
item layouts. It also binds the Click event to ShowAddNewCounterCommand on the
counters view model.

That’s everything for the master counters view.

Listing 10.6 The recycler view needs to be told what layout to use to show items

Listing 10.7 Adding a floating action button to the counters screen

Binds the click event

http://mng.bz/Anun

327Building the UI for Countr
10.1.5 Creating the UI for the detail view

Now let’s turn our attention to the detail screen, which needs to show an EditText

control where the user can enter the name of a new counter. It also needs Done and
Back buttons on the toolbar so the user can either save the counter or go back and
not add a counter. The layout for this is shown in figure 10.5.

You can start building the counter detail view by creating a new layout called
counter_view. Then copy the outline structure defined earlier in listing 10.1 into this
layout file: the outer relative layout, app bar layout, toolbar include, and frame lay-
out. Then add the following code to the frame layout. This code should look familiar
by now.

<EditText
android:layout_width="fill_parent"
android:layout_height="wrap_content"
local:MvxBind="Text Name" />

Listing 10.8 Adding an EditText control for the counter name

RelativeLayout

Back button AppBarLayout

FrameLayout

ToolBar MenuItem

EditText

Figure 10.5 The layout of the views and view groups in the detail counter UI

328 CHAPTER 10 Building more advanced Android views
That’s the layout done. Now you need to define a menu to add the Done button to the
toolbar. You don’t have to define the Back button in a layout; this is something you
can add in code later, as it’s a standard activity feature.

10.1.6 Menu items

Menus are defined in resources that are stored in the menu folder. They’re XML files
that contain a list of menu items and their configurations.

You need to add a menu to add the Done button to the toolbar, so create a folder
called menu in the Resources folder and add an XML file to that folder called
new_counter_menu.xml containing the following code.

<?xml version="1.0" encoding="utf-8" ?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:local="http://schemas.android.com/apk/res-auto">
<item android:id="@+id/action_save_counter"

android:title="Done"
local:showAsAction="always"/>

</menu>

These menu resources consist of a top-level menu element that contains one or more
item elements that define the menu. As you’ll see later in this chapter, you can inflate
one of these menu resources into a toolbar to get items on the menu. When these
items are inflated, the OS will work out how much space you have and show only as
many items as it can, with the rest being in an overflow menu that’s shown using verti-
cal ellipses (three vertical dots). Against each menu item, you can specify the text or
icon to show, and you can set whether you always want it on the menu, always want it
on the overflow, or want it wherever it fits best.

In this case, you just have text for the menu, and this is set with the
android:title="Done" property. This will be a popular option for the user to select,
so you’ll want this to always be on the menu instead in an overflow menu. This is set
using local:showAsAction="always". This menu also has an ID (android:id="@+
id/action_save_counter"), and it’s very important that this is set. There’s no direct
way to wire up code to a menu, either via Android or using MvvmCross. Instead, when
a menu item is tapped, a method in the Activity class is called with the ID of the
menu item that was tapped. By setting the ID, you can identify which menu item was
tapped inside the Activity.

That’s it for resources. Now it’s time to start on the view code itself.

10.2 Building the Countr activities
You have your layouts, so it’s time to work on the activities. You need to create two
activities: one for the master view and one for the detail view.

Listing 10.9 Menus are defined in XML

The menu is
defined as a
top-level
element.

Menu items are
elements under
the top-level
menu element.

329Building the Countr activities
Create two activities in the Views folder: one called CountersView and one called
CounterView. Add the following code to the CountersView.

using Android.App;
using Android.OS;
using Android.Support.V7.Widget;
using Countr.Core.ViewModels;
using MvvmCross.Droid.Support.V7.AppCompat;

namespace Countr.Droid.Views
{

[Activity(Label = "@string/ApplicationName")]
public class CountersView : MvxAppCompatActivity<CountersViewModel>
{

protected override void OnCreate(Bundle bundle)
{

base.OnCreate(bundle);

SetContentView(Resource.Layout.counters_view);

var toolbar = FindViewById<Toolbar>(Resource.Id.toolbar);
SetSupportActionBar(toolbar);

}
}

}

This code is the same as for the SquareRt activity, except that it uses a different layout
resource, and it uses the generic version of MvxAppCompatActivity so that the View-

Model property is of the correct type (you’ll be using it later).
Now add the same code to the CounterView activity, except using CounterView-

Model and the counter_view layout, and change the activity label to be “Add new
counter”, as shown in the following listing.

...
[Activity(Label = "Add a new counter")]
public class CounterView : MvxAppCompatActivity<CounterViewModel>
{

protected override void OnCreate(Bundle bundle)
{

...
SetContentView(Resource.Layout.counter_view);

}
}

As an exercise, you can try moving the “Add a new counter” label to a resource (the
source code that accompanies this book has it as a resource).

Listing 10.10 The counters master view

Listing 10.11 The counter detail view

Uses the generic
version of the

MvvmCross activity

Uses the
counters_view
layout

330 CHAPTER 10 Building more advanced Android views
10.2.1 Setting up master recycler views

Recycler views take a little bit of setup in the activities that use them. Recycler views
use layout managers to determine how to lay out the items that they’re showing, and
there’s no default for this, so you always need to set it up.

To set up the recycler view, add the following code to the CountersView activity.

using MvvmCross.Droid.Support.V7.RecyclerView;
...
protected override void OnCreate(Bundle bundle)
{

...
var recyclerView = FindViewById<MvxRecyclerView>(Resource.Id.recycler_view);
recyclerView.SetLayoutManager(new LinearLayoutManager(this));

}

This code finds the recycler view based on its ID, and then sets the layout manager for
it. This layout manager arranges items in a vertical list.

You also want to support swipe-to-delete. This is a nice feature to have, but it’s not the
easiest to set up. There’s no out-of-the-box swipe handling for recycler views. Instead you
have to write your own using a class called ItemTouchHelper from the support library.

First, you define a callback class—a class that derives from the ItemTouch-

Helper.Callback class, which has a set of abstract methods to implement touch call-
backs. Then you construct an ItemTouchHelper using the callback and attach this to
the recycler view. This is quite a standard pattern on a lot of Android SDK classes—
Java (the language used for the underlying Android SDK) doesn’t have events, so
unlike C#, where you can wire behavior up to events, Java relies on callback classes
with methods that are called when things happen. When Xamarin bound the Android
SDKs, they converted some callbacks to events to make it easier for C# programmers
to use them, but not all, and this is one they haven’t provided events for.

To create the callback, create a new class in the Views folder called SwipeItem-

TouchHelperCallback, and add the following code.

using Android.Support.V7.Widget;
using Android.Support.V7.Widget.Helper;
using Countr.Core.ViewModels;

namespace Countr.Droid.Views
{

public class SwipeItemTouchHelperCallback
: ItemTouchHelper.SimpleCallback

{
readonly CountersViewModel viewModel;

public SwipeItemTouchHelperCallback(CountersViewModel viewModel)
: base(0, ItemTouchHelper.Start)

Listing 10.12 Setting up the recycler view to use a linear layout manager

Listing 10.13 Creating the callback for swiping on the recycler views

Finds the recycler view
in the UI, and sets its

layout manager

This derives from
ItemTouchHelper.Callback,
the base callback class.

Stores an instance of
the CountersViewModel

that you can use to
delete a counter

Specifies the supported
swipe directions

331Building the Countr activities
{
this.viewModel = viewModel;

}
}

}

When the callback is constructed, it needs to call the base class constructor specifying
the drag and swipe operations you want to support. Drag-and-drop is useful if you
want to support rearranging items, but we don’t need it here. We just want to support
swiping from end to start (from right to left), and this is what you’re specifying by
passing 0 as the first argument to the base class constructor (meaning no drag
support) and ItemTouchHelper.Start as the second parameter (meaning you’re sup-
porting swiping toward the start).

The base callback class is an abstract class, so you have to implement a couple of
methods, as shown in the following listing.

public override bool OnMove(RecyclerView recyclerView,
RecyclerView.ViewHolder viewHolder,
RecyclerView.ViewHolder target)

{
return true;

}

public override void OnSwiped(RecyclerView.ViewHolder viewHolder,
int direction)

{
viewModel.Counters[viewHolder.AdapterPosition]

.DeleteCommand.Execute();
}

These two methods are abstract in the base class, so they have to be implemented.
OnMove is called whenever drag-and-drop takes place, and as this is something you’re
not supporting, you can just return true. OnSwiped is the interesting one—it’s called
whenever an item is swiped, and the parameters include an instance of the
ViewHolder class. ViewHolder is a backing class used to store data for each of the
items in the recycler view, and it has an AdapterPosition property that tells you the
position of the item that was swiped in the list—this position maps to the position of
the CounterViewModel inside the collection on the CountersViewModel. When a
swipe is detected, you can retrieve the counter view model from the counters view
model stored in the viewModel backing field, and execute DeleteCommand on it. This
will then delete the counter, which in turn will remove it from the observable collec-
tion in the view model, which will cause the UI to update to show the collection minus
the deleted item.

Listing 10.14 Implementing the required callback methods

When an item is
swiped, delete it.

332 CHAPTER 10 Building more advanced Android views
IT’S ALWAYS GOOD TO PROVIDE FEEDBACK TO THE USER When users are swip-
ing, it’s good to provide feedback as to what is happening, and a usual way to
do this is to have some kind of delete indicator with a red background under
the item as it’s swiped away. The callback has a method you can override
called OnChildDraw, which is called every time an item needs to be drawn,
such as when it’s swiped. You can override this method to add something
behind the item as it’s swiped away. The sample code that accompanies this
book does this, showing a red background as you swipe the item away.

Now that you have your callback, it’s time to wire it up to the recycler view in
CountersView via a touch helper. Add the following code to the bottom of the OnCreate

method.

using Android.Support.V7.Widget.Helper;
...
protected override void OnCreate(Bundle bundle)
{

...
var callback = new SwipeItemTouchHelperCallback(ViewModel);
var touchHelper = new ItemTouchHelper(callback);
touchHelper.AttachToRecyclerView(recyclerView);

}

That’s the master view finished, so let’s move on to the detail view.

10.2.2 The detail view

You’ve already created the basic shell of your CounterView, which provides most of
what you need, except for the toolbar and menu. You now need to provide a Back but-
ton so that the user can navigate back to the master view without adding a counter
(referred to as an Up button in Android), and you need to wire up the menu resource
for the Done button.

ADDING THE BACK BUTTON

The Back button is easy—toolbars have one built in, but it’s not shown by default. You
can show it by adding the following code to the OnCreate method.

protected override void OnCreate(Bundle bundle)
{

...
SupportActionBar.SetDisplayHomeAsUpEnabled(true);

}

This method turns on the Up button in the toolbar—the Back arrow on the left side
pointing left. This button doesn’t do the navigation by itself; instead you need to han-
dle it when it’s tapped manually.

Listing 10.15 Wiring up the callback to the recycler view

Listing 10.16 Showing the Back button on the toolbar

Creates the callback and
uses it to construct a touch

helper and then attach it
to the recycler view

Shows the Up button

333Building the Countr activities
All buttons and menu items in the toolbar are referred to as options in Android,
and you can create options either by turning them on in the toolbar (as you just did)
or by adding more menu options (as you’ll see later in this chapter). When any menu
item is tapped, the OnOptionsItemSelected method on the activity is called, with the
menu item that was tapped being passed as a parameter. To handle any toolbar menu,
you need to override this method, check the ID for the item that was tapped, and
respond accordingly. The following listing shows the code to handle the Up button.

using Android.Views;
...
public override bool OnOptionsItemSelected(IMenuItem item)
{

switch (item.ItemId)
{

case Android.Resource.Id.Home:
ViewModel.CancelCommand.Execute(null);
return true;

default:
return base.OnOptionsItemSelected(item);

}
}

The Up button has a hard-coded ID that comes from the Android SDK. If the options
item that’s selected has this ID, you can execute CancelCommand on the view model to
navigate back to the master view model, therefore closing the detail view and showing
the master view.

Listing 10.17 Handling the up button

Overrides the
OnOptionsItemSelected
method

ItemId is the ID of the menu item.

Android.Resource.Id.Home is the ID
of the Up button, and it comes from
the Android SDK.

Android devices have hardware Back buttons
Instead of using the Up button, the user could also tap the hardware Back button (all
Android devices have a Back button, either a physical button or a software button
that’s pretty much always visible). This will bypass the OnOptionsItemSelected
method and just close the current activity, removing it from the navigation stack and
going back to the previous activity. This isn’t a problem for us, as this will stop the
new counter activity and not save the counter, so it will be the same as tapping the
Up button.

If you don’t want the activity to close when the user taps the Back button, and instead
to perform some action (such as stopping the button from working or doing some kind
of cleanup or saving some data) you could override the OnBackPressed method on
the activity, and not call the base version.

334 CHAPTER 10 Building more advanced Android views
ADDING THE DONE MENU ITEM

We’ve handled the Up button, so now we need to add the Done button to save the
new counter. You’ve already defined a menu resource for this, so you need to add it to
the toolbar.

As part of the activity’s creation, the virtual activity method OnCreateOptionsMenu

is called by the Android OS to configure the toolbar, and you can override this to con-
figure your own toolbar menu items. Add the following code to the view to do this.

public override bool OnCreateOptionsMenu(IMenu menu)
{

base.OnCreateOptionsMenu(menu);
var toolbar = FindViewById<Toolbar>(Resource.Id.toolbar);
toolbar.InflateMenu(Resource.Menu.new_counter_menu);
return true;

}

As with layouts, the term for reading the menu XML and creating the menu items is
inflating. The toolbar can inflate the menu resource, adding the menu items to it.

You can now wire up this new menu item in the same way as the Up button: add
another case statement for the ID of the Done button to the OnOptionsItemSelected

method that executes SaveCommand on the view model. The following listing shows
this.

switch (item.ItemId)
{

case Resource.Id.action_save_counter:
ViewModel.SaveCommand.Execute(null);
return true;

...
}

10.2.3 Running the app

Your app is now fully implemented, so launch it in the default emulator and try creat-
ing some counters, incrementing them, and deleting them. Figure 10.6 shows the two
screens in the working app. You can also kill and relaunch the app, and see that the
counters have been persisted.

If you have any issues running the app, such as crashes or hangs, they may be
caused by known issues in different versions of Xamarin or MvvmCross. Check out the
Troubleshooting thread on the Xamarin In Action forum on the book’s website for
more details: http://mng.bz/9JAY.

Listing 10.18 Inflating menu items into the toolbar

Listing 10.19 Adding the Done button to the options menu handling

Overrides the
options menu
creation

Finds the
toolbar in the UIInflates the new counter

menu resource

If the Done menu item is tapped,
execute the save command

http://mng.bz/9JAY

335Building the Countr activities
When you run the app, the following things will happen:

1 The Android OS looks at the manifest, finds the activity that’s set as the main
launcher, and starts it (the splash screen that was automatically created for you
and that can be found in SplashScreen.cs in the root of the project).

2 The splash screen uses MvvmCross framework code to find the view model reg-
istered as the app start in the App class in the Countr.Core project—in this case,
it’s CountersViewModel.

3 Based on the name of the view model that’s set as the app start (CountersView-
Model), it finds the CountersView activity and launches it.

4 As part of the activity lifecycle, the OnCreate method is called by the Android
OS.

5 In OnCreate, the layout file with the ID of counters_view is inflated, creating
all the views and view groups defined in the file and setting all the relevant
properties. This method also wires up the layout manager for the recycler view
and sets the touch handler to support swipe-to-delete.

6 The MvvmCross framework finds all the MvxBind attributes that are set and cre-
ates the bindings, wiring up the counters observable collection in the view
model as the source for the items in the recycler view, and connects the click
event of the floating action button to the relevant command.

7 When a user swipes on a counter, the touch handler callback’s OnSwiped

method is called, and the code manually executes the delete command.

Figure 10.6 The fully working Countr app

336 CHAPTER 10 Building more advanced Android views
8 When a user taps the floating action button, the command is executed, which nav-
igates to the CounterViewModel. The MvvmCross framework finds the Counter-

View based on the name of the view model and shows this view. During the inflation
of the layout for this view, the MvvmCross layout inflater looks for the MxBind attri-
butes and binds the EditText to the name property on the view model.

9 In the counter view, if the user taps the Up button, the cancel command is exe-
cuted. If they tap the Done button, the save command is executed. Both com-
mands tell MvvmCross to close the current view model, which closes the view
and navigates back to the master view.

10.3 App icons and launch screens
You’ve completed both the SquareRt and Countr Android apps, but they still need a
bit of improvement. If you look at the Android launch screen, you’ll see that both
apps have a default MvvmCross icon, and if you launch either one of the apps, you’ll
see an MvvmCross launch screen. Let’s now improve these both.

10.3.1 App icons

The first thing to update is the app icon. Here I’ll only show you how to update the
icon for Countr, but the same principle applies for all Android apps, so feel free to
update the SquareRt icon too.

GENERATING APP ICON IMAGES

As with image resources, Android app icons come in different sizes so that they can
look the same on devices with different screen densities. This means that you’ll need
to generate multiple versions of the same icon. Table 10.1 shows the sizes you’ll need.

You could do this manually, but it’s a lot of work and not really necessary, as you’ll usu-
ally want an identical icon on all platforms and screen sizes. Luckily there are a pleth-
ora of tools and websites that can help by taking a large image and creating scaled-
down versions for the image sizes you’ll need. These are two of my favorites:

 MakeAppIcon (https://makeappicon.com)—On this website, you provide a large
image, and they email you a zip file containing all the icons you’ll need. It’s free
to use, but they also have Mac and Windows apps you can buy to do conversions

Density Size (pixels)

mdpi 48 × 48

hdpi 72 × 72

xhdpi 96 × 96

xxhdpi 144 × 144

xxxhdpi 192 × 192
Table 10.1 Sizes of Android launcher
images for different screen resolutions

https://makeappicon.com

337App icons and launch screens
on the desktop. They recommend providing an image at 1536 1536 pixels,
and they support Photoshop, JPEG, and PNG files. In the Images\Countr\App-
Icons folder in the source code that accompanies this book, you’ll find an
image called CountrIconSource.png. Upload this image (or create your own
image in your favorite drawing tool) to https://makeappicon.com. You’ll need
to give them your email address, and they do tick a “Subscribe to our newslet-
ter” checkbox by default, so uncheck this if you don’t want their newsletter.
After a couple of minutes, you’ll receive an email with a zip file of icons.

 Sketch (https://sketchapp.com—Mac only)—Sketch is an amazing vector-based
drawing tool, and it’s one of the best tools on a Mac for designing your
app and any app assets, like icons. There are a number of great templates avail-
able that do the same thing as MakeAppIcon—you give it one image, and
it creates all the different sizes for you. You can find a lot of these templates
on www.sketchappsources.com. The one I use is App Icon Template:
http://mng .bz/NOxV.

Create some icons using whatever method you prefer, or you can find some in the
Images\Countr\AppIcons folder in the source code that accompanies this book.

UPDATING THE APP ICONS

Android icons can be treated like any Android image resource and be added to the
drawable resource folders, but this isn’t the recommended way. It’s better to put them
in the mipmap resource folders—these are special drawable folders that follow the
same naming convention for different screen densities (for example, mipmap-hdpi,
mipmap-xhdpi, and so on) but they’re only used for launcher images. Some devices
have launchers that display larger images than normal for their screen density, so they
need access to different image densities. By default, all launcher images are called
ic_launcher.png (Google seems to like to start all icon names with ic_ to distinguish
icons used for the launcher, toolbars, and menus from other image assets).

To update the launcher images, copy yours (either created or downloaded) into
the relevant mipmap folders. If you used MakeAppIcon, the Sketch template men-
tioned previously, or the icons from the book’s source code, they’ll already be in the
correctly named mipmap folders, so just copy them over. Once they’re there, rebuild
the app and redeploy it to see the new icon. You may need to delete it from your emu-
lator to see the change.

The app icon is set inside the Android manifest file, so if you want to change it to a
different icon filename, you can do that there (figure 10.7).

Figure 10.7 The app’s icon can
be configured from the application
manifest.

https://sketchapp.com
https://www.sketchappsources.com
http://mng.bz/NOxV
https://makeappicon.com

338 CHAPTER 10 Building more advanced Android views
10.3.2 Launch screens

You’ve fixed your icon, so now let’s fix up the launch screen. Again I’ll focus on
Countr here, but you can follow the same steps to update SquareRt. Launch screens
are also referred to as splash screens (a term that MvvmCross seems to prefer and that’s
more popular with desktop apps), but launch screen seems to be the term preferred by
Google and Apple.

Out of the box, there’s nothing in Android to create explicit launch screens. In
fact, Google has been against launch screens in the past, calling them a UX anti-
pattern, but now they’re a part of the material design spec. The standard pattern for
them is to have the initial activity act as a launch screen, and this launch screen activity
should then load the main app activity.

ANDROID APPLICATION LIFECYCLE AND THE MAIN LAUNCHER ACTIVITY

All Android apps have a main application class derived from Android.App.Application

that defines the application name, icon, and theme, and that on startup will launch
your main launcher activity. You don’t need to have the application class explicitly
defined in your project—if no application class is found when your app is compiled,
one will be created for you automatically using the values defined in the application
manifest.

When this application class starts, it will look for an activity with the MainLauncher

property set to true, construct it, show it, and then start the activity lifecycle. For
MvvmCross apps, the main launcher is an activity derived from MvxSplashScreen-

Activity, and there’s one called SplashScreen in the root of Android projects. If you
look at the source for this activity, you’ll see that its constructor calls the base class con-
structor, passing a layout resource ID:

public SplashScreen() : base(Resource.Layout.SplashScreen)

If you look at the SplashScreen.axml layout file, you’ll see that it contains only a single
text view with the text “Loading…” and nothing else. If you run your app and watch it
load, you’ll see more on the launch screen—it will start with a black screen with Mvvm-

Cross written across it in white letters, and then a few seconds later the text “Load-
ing…” will appear at the top left (figure 10.8).

Figure 10.8 The launch screen shows a black screen with white text
for a few seconds (left) before showing the “Loading…” text (right).

339App icons and launch screens
The black screen with the MvvmCross text doesn’t come from the layout resource;
instead it comes from the activity’s style. All Android UI components, be they activities
or widgets, can be styled, and a style defines how the widget or activity looks on-screen,
including colors, fonts, layouts, and even what’s shown as the background.

When the Android application starts up, it launches the main launcher activity,
showing it on-screen. As soon as the activity is shown, it’s rendered using its style, and
then the activity lifecycle kicks off, calling the OnCreate method (figure 10.9). In this
method, MvvmCross sets up everything it needs to run the app—it initializes all its
internals, loads everything into the IoC container, and works out the views for the view
models. Once everything is loaded, it loads the layout resource and updates the UI to
show the Loading… message.

If you want to personalize the launch screen for your app, you’ll need to change the
splash screen activity’s style.

STYLES

Styles are defined in XML resources in the values folder. Usually styles are defined in a file
called styles.xml, but they can be defined in any XML file in that folder. Each style is an
XML style node with a name attribute that defines the name of the style. Styles can also
have parents, defined using the parent attribute, and they’ll inherit all the style settings
from the parent. (For example, if style A sets a font to bold, and style B uses style A as its
parent, anything styled with style B will also have its font set to bold.) This style node
then contains one or more item elements that define the values in the style.

Widget styles are outside the scope of this book. I’ll just be focusing here on appli-
cation and activity styles. You can read more on styling in the Android “Look and Feel”
API guide: http://mng.bz/l1TV.

If you open the SplashScreen.cs file and look at the Activity attribute on the class,
you’ll see the activity’s theme set using Theme="@style/Theme.Splash". The term
theme seems to be used interchangeably with style, but a theme is something you set for
the whole application in the application manifest or on an activity using the Theme

property in the Activity attribute. Themes can also be used to link styles together. For
example, as a part of setting the application theme, you can set individual styles to

Application
launched OnCreate

Splash screen
activity launched Activity loaded

Main launcher activity is found.

OnCreate

MvvmCross
initialized Layout loaded

Figure 10.9 When your app starts up, it loads the splash screen activity marked as the main
launcher, and this initializes MvvmCross before loading a layout.

http://mng.bz/l1TV

340 CHAPTER 10 Building more advanced Android views
apply to different types of widgets. All activities have a theme, either set explicitly as in
the SplashScreen activity, or set on the application in the manifest. If you don’t set a
theme in the manifest, and you don’t set one on your activity, your app will crash when
it tries to load the activity.

If you open the SplashStyle.xml file in the values folder, you’ll see the
Theme.Splash style, shown in the following listing.

<style name="Theme.Splash" parent="android:Theme">
<item name="android:windowBackground">@drawable/splash</item>
<item name="android:windowNoTitle">true</item>

</style>

This style element has the name Theme.Splash, and it inherits all the values from the
Android-supplied Theme style. It defines two elements:

 windowBackground—Identifies the drawable to show as the background for the
activity when it’s loaded

 windowNoTitle—Specifies whether the window should be shown without a title
bar

When this style is applied to the splash screen activity, it sets the value of these two
properties on the activity as it’s loaded and before it’s shown on screen. This means
that the activity is fully styled before the user sees it, showing @drawable/splash as the
activity’s background as soon as it’s loaded. This is shown while the activity is created,
and then the layout resource is loaded over the top. If you look at the Splash.png file
in the drawable folder, you’ll see a black background with the MvvmCross text on it—
this is what you’ll see when you launch the app, and it’s shown in figure 10.10.

Listing 10.20 The style for the splash screen

MvvmCross

Loading...

MvvmCross

Activity
loaded

Styled activity
shown on the UI

MvvmCross
initialized Layout loaded

OnCreate

Figure 10.10 When activities are shown, they’re drawn using their theme. This
happens before the activity lifecycle is run, OnCreate is called, and layouts are loaded.

341App icons and launch screens
STYLES FOR ANDROID V21 AND ABOVE In the resources folder, you’ll see two
“values” folders: values and values-v21. The values folder contains values that
apply to all devices and OS versions, whereas the values-v21 folder contains
styles for devices running API level 21 and higher, essentially allowing you to
style material design properties that aren’t available on older devices.
You can read more about this in the Android “Look and Feel” API guide:
http://mng.bz/X0vg.

If you want to update the launch screen, the simplest thing to do would be to change
the image. This would work, but it wouldn’t be ideal as these images are made to fit on
whatever device your app runs on, so depending on the aspect ratio or orientation,
the image could be distorted. Instead you can use an XML drawable.

XML DRAWABLES

On Android, drawables can be bitmap-based image files, such as PNG files, or they can
be XML files that have drawing instructions (similar to vector-based image formats,
such as SVG). Having a bitmap for a launch screen is no good, because it doesn’t scale
correctly for different aspect ratios. Although you can provide different bitmaps for
different screen densities, multiple devices with the same density might have different
aspect ratios, leading to the bitmap being stretched differently. Using an XML
drawable allows you to define a background once that scales correctly for any aspect
ratio or orientation.

We’ll only look at a simple drawable here that allows us to show a bitmap without
scaling, but there’s a lot you can do with XML drawables. You can read more on them
in the Android “Resource Types” API guide: http://mng.bz/qQMU.

Let’s start by creating a new XML file called splashscreen.xml in the drawable
folder. You can also delete the Splash.png image file, as we won’t be using it anymore.
For our new splash screen, we’ll have an image in the center with a colored back-
ground, so that it looks just like the app icon (figure 10.11).

The first step is to define the colored background. Listing 10.21 shows the code to
add to the splashscreen.xml file to do this.

Cshape bitmap

Figure 10.11 The layout of the
splash screen XML drawable

http://mng.bz/X0vg
http://mng.bz/qQMU

342 CHAPTER 10 Building more advanced Android views
<layer-list
xmlns:android="http://schemas.android.com/apk/res/android" >

<item>
<shape android:shape="rectangle" >

<solid android:color="#555555" />
</shape>

</item>
</layer-list>

For this drawable we need a background and an image, so we can use a layer list—this
is a drawable element that contains other elements, and it draws them one on top of
the other with the first item in the list drawn first, the second on top of that, and so
on. Our layer list only has a single item, defined by the item node and containing a
shape. Shapes can be rectangle, oval, line, or ring, and by default they scale to fill
the available space—so our rectangle will scale to fill the entire screen. This shape is
filled with a solid color of #555555, a nice dark gray.

The next thing to add is a bitmap in the middle. You can find the bitmap to use in
the images in the book’s source code. Copy the launch_image.png file from the vari-
ous Android drawable folders in the source code into the same drawable folders in
your app. Once the image is there, add it as a bitmap item to the bottom of the layer
list in the XML drawable.

<layer-list
xmlns:android="http://schemas.android.com/apk/res/android" >

...
<item>

<bitmap
android:gravity="center"
android:src="@drawable/launch_image" />

</item>
</layer-list>

This adds a new item to the layer list containing the bitmap image you’ve just copied.
When adding bitmaps, you can specify the gravity—the layout positioning. A gravity

of center maintains the image size and positions it in the horizontal and vertical cen-
ter. You can use any of the standard Android gravity values to position the bitmap
wherever you want, or resize it to fill the screen.

YOU CAN’T HAVE TEXT IN AN XML DRAWABLE One surprising omission from
XML drawables is text—there’s no way to render any form of text in your
drawable. The only way to include text is to create a bitmap containing the
text you want, and then use that.

Listing 10.21 Adding a gray rectangle to the splash screen XML drawable

Listing 10.22 Adding a bitmap to the splash screen XML drawable

Defines a layer list—a list
of drawables drawn one

on top of the other
Defines a dark
gray rectangle

Adds a bitmap item to show
a bitmap in the drawable

343App icons and launch screens
The splash screen is now complete, so you need to tell your app to use it. Open the
SplashStyle.xml file from the values folder, and update the window background to be
the new drawable, as shown in the following listing.

<style name="Theme.Splash" parent="android:Theme">
<item name="android:windowBackground">@drawable/splashscreen</item>
...

</style>

If you build and run the app, you’ll now see the nice new splash screen.

STYLING OUR APP

There is a huge array of things you can style in your apps—probably enough to war-
rant a separate book—but one simple one that’s worth looking at is colors. The built-
in Android styles have a set of named colors that are used for different parts of the UI,
and it’s really easy to override these to make your app look totally different. Figure
10.12 shows some of these named colors and how they’re used.

The colors for an app are defined as named color resources in a resource file called
colors.xml that lives in the values folder, and these are applied to the named colors
used in the styles.xml file. To change the color of your app, all you need to do is
change these values depending on your preferred app color scheme. Google has a
material design color tool to help you define your app color schemes: https://material
.io/color/.

Let’s change the default blue toolbar of the app to a much nicer orange color.
Make the following changes to the colors.xml file.

Listing 10.23 Updating background of splash screen style to be the new drawable

Sets the new background

ApptextColorPrimary

colorPrimaryDark

colorPrimary

windowBackground

navigationBarColor

Figure 10.12 Some of the standard named colors used in an Android app

https://material.io/color/
https://material.io/color/
https://material.io/color/

344 CHAPTER 10 Building more advanced Android views
...
<color name="primary">#FF9800</color>
<color name="primaryDark">#F57C00</color>
...

Make this change, and build and run the app—you’ll see that the app now has a nice
orange toolbar.

We’re now done with our Android apps. Over the last chapter and this one, you’ve
built two apps, one with a simple UI and another with a more complicated mul-
tiscreen UI with a recycler view. You’ve set up app icons and a launch screen. In the
next two chapters we’ll do the same thing, but on iOS.

Summary
In this chapter you learned

 Recycler views can be used to show lists of items.
 Menu items can be added to the toolbar.
 App icons come in different resolutions to support different screen densities.
 Activities can be styled, and their background drawable is shown while the activ-

ity is loading.

You also learned how to

 Configure a recycler view to bind to an items collection in a view model, and to
show these items using a custom layout.

 Add menus and handle when the user taps on them.
 Handle the toolbar Up button.
 Create XML drawables.
 Change app colors.

Listing 10.24 Updating some of the app colors

Updates the primary and
primaryDark colors

Be wary of poor Android performance
Android apps can suffer badly from poor performance, and this isn’t helped by the
“race to the bottom” for some Android device manufacturers focused on making the
cheapest devices possible by using older and slower hardware. When building com-
plicated Android apps, it’s worth trying to reduce the number of views in your layout,
as well as avoiding overdraw—the drawing of the same pixel multiple times with the
same color. For example, if your style has a red background, and you put a layout with
a red background on top, the OS has to draw each red pixel twice—once for the back-
ground and again for the layout. If your layout doesn’t have a background set, it will
still appear red (due to the red background underneath), but only one red pixel will be
drawn, improving performance.

You can read about improving performance in Android apps in Tomasz Cielecki’s
“Improving layout performance on Android” blog entry: http://mng.bz/r7MU.

http://mng.bz/r7MU

11Building simple iOS views
In the last two chapters we built the UIs for SquareRt and Countr on Android. In
this chapter and the next, we’ll build these view layers on iOS (figure 11.1). We’ll
start here by looking at how to build an iOS UI and then build the UI for SquareRt.
In the next chapter we’ll look at Countr, and you’ll see some slightly more
advanced UI techniques, including using table views to show lists of data, menus,
and navigation.

The iOS SDK is different from that of Android, but the basic principles for UIs
are the same—a UI layout is defined in an XML file, and there’s a class that loads
this layout and provides access to the layout’s UI components. Where on Android we
used Activity for the views, on iOS we use UIViewController (iOS, like macOS,
has MVC built in). Android uses layout XML files, and iOS uses storyboards.

This chapter covers
 iOS storyboard resources

 Laying out controls using auto layout and constraints

 Supporting multiple screen sizes using size classes

 Adding images to support multiple screen sizes using
asset catalogs

 Creating view controllers

 The view controller lifecycle
345

346 CHAPTER 11 Building simple iOS views
11.1 Building iOS UIs
Let’s start by thinking about our SquareRt app, which has a
single view. Figure 11.2 shows the UI that we want to build.

As in Android, we have to build two things to make this UI:
a layout file called a storyboard, and a code-behind view control-
ler class. We’ll look at what storyboards are and at the different
components that go into a UI, including some examples of
controls we can use. Then we’ll look at how iOS handles differ-
ent screen resolutions using auto layout, and we’ll wrap up
with images. Before we get started building the UI, though, it’s
worth taking a brief moment to consider design and to look at
the iOS human interface guidelines.

11.1.1 iOS human interface guidelines

Apple has put a huge amount of work into, and emphasis on, its human interface
guidelines. Not only does Apple strongly encourage developers to follow them, it will
even reject an app submission if it breaks some of the rules. For example, if you use
standard icons for the wrong actions, your app will be rejected.

These concepts are behind the guidelines:

 Deference—The UI should play second fiddle to the content. It should enhance
the content and provide an easy way to interact with it, but it should never get
in the way of or distract from the content.

A good example is a weather app, with a full-screen image behind the
weather details that can be associated with the current weather. This can
enhance the content by conveying the main theme (the current weather) with-
out distracting from the data, as shown in figure 11.3.

 Clarity—Your UI should be kept clear and simple. Use negative space (or
whitespace) to help your app look calm and clean. By including space around

UI layer

App
layer

UI logic
layer

iOS

C# (.NET Standard)

Business
logic layer

View

View
model

ModelC# (.NET Standard)

C#

C#

C#

C#

Android

C# (.NET Standard)

Binding

Figure 11.1 The view layer in an
MVVM app is written in platform-
specific code.

SquareRt

400

20

√

Figure 11.2 The UI for
the SquareRt app

347Building iOS UIs
the content, you can help focus the user’s attention
on what’s important, rather than making them look
though a lot of noise to find what they’re looking for.
Where’s Waldo might be a fun book, but a confusing
UI that forces the user to search for content doesn’t
make for a good experience. Your content should
also be limited to a small amount of data, with easy
navigation to more data that the user can use when
they’re ready. You should also ensure legibility by
using the standard system fonts, which are designed
to look good at all sizes, and chose your colors care-
fully to highlight and enhance content.

The weather app in figure 11.3 is a good demon-
stration of this. It keeps the content minimal and it
uses crisp, clear text with good spacing between the
content (figure 11.4).

 Depth—By displaying content in different layers, you can establish a hierarchy of
information. The more important information can be on top, to guide the
user’s focus, and the less important information can be hidden below, keeping
it from being a distraction. This can be accomplished by using translucency to
make a layer above very obvious (such as the folders on the iOS springboard),
or by using a transition that zooms down to more granular data or up to less
granular data (such as the iOS Calendar app that zooms in from year to month
to day and back out).

For example, our weather app could show an overview of the weather for
each day of the week, and tapping on a day could zoom in to show a more
detailed breakdown. This is shown in figure 11.5.

Saturday

Cloudy

Auckland

18°

9:00

12:00

15:00

Saturday 18°

0:00

3:00

6:00

9:00

12:00

15:00

18:00

21:00

Sunday 14°

0:00

3:00

6:00

9:00

12:00

15:00

18:00

21:00

Cloudy

Less clutter, more clarity More clutter, less clarity

Auckland

Figure 11.4 Lots of
negative space (or
whitespace) can enhance
clarity by helping to
reduce clutter.

Saturday

Cloudy

Auckland

18°

9:00

12:00

15:00

Saturday

Cloudy

Auckland

18°

9:00

12 00

Figure 11.3 A clear image
can summarize content and
not distract from it.

348 CHAPTER 11 Building simple iOS views
By following Apple’s human interface guidelines, you can make your app match the
experience that an iOS user expects and ensure that once you submit it to the app
store, your app won’t be rejected for breaching these guidelines.

You can read more on these guidelines on Apple’s Developer website: http://
mng.bz/GI7e.

11.1.2 Storyboards

Storyboards are XML files that allow you to define the layout of controls for one or
more screens in a single file. You can use them to create a whole application in one
layout file and visualize the flow from one screen to another to another, all the way
through your app. Each screen on the storyboard is backed by a view controller (a
class derived from UIViewController), and each view controller contains a single
view (referred to as the superview), which can contain multiple controls. This is shown
in figure 11.6.

Saturday

Cloudy

Auckland

18°

9:00

12:00

15:00

Saturday

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Auckland

18°

18°

21°

23°

16°

15°

18°

18°

18°

21°

23°

16°

15°

18°

Zoom in to show more details

Figure 11.5 Zooming
from one level to another
shows a natural hierarchy.

View controller

Storyboard

Code behind

View controller

View

Button

MyView : UIViewController
{
 UIButton MyButton {get;set;}
 ...
}

Figure 11.6 Storyboards can contain multiple view controllers, and each view controller has a single
view inside it that can contain one or more controls, as well as a backing class.

http://mng.bz/GI7e
http://mng.bz/GI7e
http://mng.bz/GI7e

349Building iOS UIs
Storyboards can also define transitions between screens that can be triggered by UI
elements, and the Apple term for these is segues. For example, you can wire up a but-
ton to trigger a segue to another view controller inside the layout file. We won’t be
using segues here, as these are a pure iOS concept. Instead we’ll be using view-model
navigation to show different screens.

THE IOS SDK HAS SOME ODD-LOOKING CLASS NAME PREFIXES The SDKs for iOS
are built using Objective-C, a nearly 40-year-old language that doesn’t have
namespaces. This means that to avoid the possibility of name collisions (mul-
tiple classes with the same name), class names are prefixed with an identifier
to group them, based on their functionality. The iOS SDKs mostly use two-
character identifiers, such as UI for any class that’s used for the UI (a group of
classes that are referred to as UIKit). The Xamarin wrappers keep these two-
character prefixes to make it easier to see which SDK class is being used, but it
also puts these classes into namespaces. For example, UIViewController is
part of UIKit, so in the Xamarin wrapper it’s UIKit.UIViewController.

Although storyboards are XML, they’re not really designed to be human-readable, so
unlike with Android, we’ll be doing everything inside a designer (figure 11.7). Also,
because they’re complex XML files, there’s an ongoing debate about how to best
build storyboards—you can create one storyboard that contains all your view control-
lers for your entire app, or you can create one storyboard per view controller. The

Figure 11.7 The storyboard designer in Visual Studio showing two view controllers

350 CHAPTER 11 Building simple iOS views
downside to one storyboard per controller is that you can’t define and use segues in
your layout files (not a problem for us, as we’ll be using view-model navigation), but
the upside is that it’s much easier when you have multiple developers working on the
same app. If multiple developers change the storyboard and commit to source, you’re
asking for a world of pain, and merge conflicts that are hard to fix, as the XML isn’t
particularly human-readable. Having one storyboard per screen reduces the chance of
multiple developers changing the same storyboard.

NIBS AND XIBS Storyboards were added to iOS 5; before that Apple used Nibs
and Xibs (layout files that define a single screen, as opposed to storyboards
where you can define multiple screens). Nibs were the original layout files
and contain binary data. Xibs are XML versions of Nibs, so they’re much bet-
ter for source code control. You can still use Nibs and Xibs if you want, but
storyboards are now preferred.

Storyboards in Xamarin apps are identical to the storyboards you’d use in a native
Objective-C or Swift iOS app (just like Android layout files). If you want to reuse a sto-
ryboard from an existing iOS app, you can just copy it in and it will work.

YOU CAN USE XCODE TO EDIT STORYBOARDS If you’re using Visual Studio for
Mac, you can also edit storyboards using Xcode if you want. Visual Studio will
create a dummy Xcode project with your storyboard, and any other resources
it needs (such as images). Any edits you make in Xcode are automatically syn-
chronized back to Visual Studio.

On Android, you design for multiple screen sizes and orientations by putting different
layout files in different folders in the Resources folder. iOS, in contrast, doesn’t have
different storyboards for different screen sizes. Instead you design one screen that will
resize and adjust itself to all the different supported screen sizes. When you size and
position controls on screen, you don’t do it based on pixels; instead you define a set of
rules (called constraints) against each control to say how it should be drawn. This is
very similar to the way relative layouts work on Android. You can, for example, say that
a text box should be centered horizontally and vertically in the screen and have a but-
ton below it. All the supported devices and orientations are grouped into separate
“size classes” based on their sizes. You can then configure the layout rules differently
for different size classes.

Once you’ve defined your layout in the storyboard designer, you can view it as if you
were using different devices to see how it would look on all possible screen sizes and ori-
entations. This allows you to design your screens for all available iOS devices. The lim-
ited number of iOS device sizes makes it really easy to design an app that looks amazing
for all your users, unlike on Android, where there’s a huge range of screen sizes.

11.1.3 Controls

Back in chapter 9, we defined a layout for SquareRt on Android, and now we’ll create
a similar layout on iOS. Unlike Android, iOS doesn’t have a relative layout control

351Building iOS UIs
that we can use to position everything. Instead we have to add all the controls to the
view, and then create constraints between them to position everything. Android has a
few layout controls for positioning controls, but iOS doesn’t really have these layout
controls—it has a stack layout that arranges items horizontally or vertically, but that’s
it. Constraints are the usual way to lay everything out.

iOS has all the standard user interaction controls, such as buttons, labels, and text
boxes that you’d want to use for most apps. These controls are sometimes referred to
as widgets, as they are for Android. Let’s look at a few of them, shown in figure 11.8:

 Label—UIKit.UILabel is a static label that shows text that can’t be edited.
 Text field—UIKit.UITextField is a text-entry control. When the user taps this

control, the keyboard pops up, allowing text to be entered. This control can
also be configured to limit the values that can be entered, such as just allowing
numbers.

 Button—UIKit.UIButton is a push button that can be tapped by the user to per-
form an action.

 Image view—UIKit.UIImageView is used to show an image, and it can scale the
image to fit, if necessary.

11.1.4 Different screen resolutions

Just like Android, iOS has support for different screen resolutions, but unlike
Android, iOS has a small number of device sizes, and Apple was very smart about how
it supports different screen resolutions, making things a lot simpler.

When the first iPhone came out 10 years ago, it had a 320 480 resolution—the
screen was 320 pixels wide by 480 pixels high. Images were drawn with the correct
pixel size, so to display an image that took up exactly half the screen, you’d draw an
image that was 180 240 pixels. When controls were laid out on layout files, this was
done using pixel positions and sizes, such as putting a button 100 pixels from the left
and 40 from the top, and sizing it to 120 pixels wide by 40 pixels high. This was set
inside the layout file or set programmatically in the view controller code.

Press Me

Some text

Enter some text
Use a UITextField to allow
users to enter text.

Use a UILabel to
display static text.

Use a UIImageView
to display images.

Use a UIButton for a user-tappable
control that performs an action.

Figure 11.8 Some of the controls available to iOS developers

352 CHAPTER 11 Building simple iOS views
After the iPhone, Apple released the iPad with a resolution of 768 1024 pixels
(figure 11.9). This meant that apps needed to be rewritten to handle the new screen
size (although you could just ignore iPads, and your app would be scaled up to not
quite fit on the screen). To make it easier to write apps, developers could create differ-
ent layout files for iPhones and iPads, or just handle the different layouts program-
matically in their view controllers.

The screen size for the iPhone stayed the same until the iPhone 4 came along with its
retina resolution. Retina resolution was simply double the resolution in each direction,
so 640 960 pixels (figure 11.10). As an app developer, you wouldn’t want your app to
be suddenly half the size—you’d want it to look the same on retina devices as it did on
non-retina devices, just taking advantage of the higher resolution to make fonts look
smoother and images sharper. Apple made everything just work by changing the lay-
out positioning to use points—a virtual measurement system (similar to Android’s dis-
play-independent pixels) that treated each iPhone screen as being 320 points by 480
points (and iPads as 768 points by 1024 points). These points mapped one point to
one pixel on the original iPhones, and one point to two pixels on the retina iPhones.
This meant everything just worked—your apps would look the same on all devices, ret-
ina and non-retina. A button that was 100 pixels wide on the first iPhone would be 100
points wide in the retina iPhone, so 200 pixels, making it the same physical size on
screen, just rendered at a higher resolution.

Over time, the array of iPhones and iPads has grown to include retina iPads with
double the resolution of the original iPad and larger phones, such as the iPhone 5
with its taller display and the phablet iPhone 7 Plus with its much larger screen. For
these larger screens, iOS still uses the idea of points rather than pixels. Table 11.1
shows the physical and logical resolutions of the currently available IOS devices.

1024 px

480 px

320 px

768 px

Figure 11.9 iPhones and
iPads have different screen
resolutions.

353Building iOS UIs
With this increase in the number of devices, Apple chose not to define different lay-
outs for all the devices, as this would be complicated and lead to developers not always
supporting all devices (especially when new devices are released). Handling all this in
code would also be too difficult. Instead, with iOS 6, Apple introduced a new way of
laying out controls: auto layout using constraints.

11.1.5 Auto layout with constraints

If you’ve ever been to a classical concert, ballet, or opera, you may have noticed that
the orchestra always seems to be arranged the same way. There’s a stage at the front,
the conductor stands in the middle with their back to the audience, the first violins
are on the conductor’s left, and the rest are laid out in a semicircle from left to right—
second violins, then violas, then cellos. Woodwinds are behind the violas, percussion
at the back (figure 11.11). This layout is consistent, regardless of the size or shape of

Table 11.1 Resolutions of current iOS devices

Device Screen resolution Points

iPhone Se 640 x 1136 320 x 568

iPhone6s 750 x 1334 375 x 667

iPhone 6s Plus 1080 x 1920 414 x 736

iPhone 7 750 x 1334 375 x 667

iPhone 7 Plus 1080 x 1920 414 x 736

iPad Mini 1356 x 2048 1024 x 768

iPad Air 1356 x 2048 1024 x 768

iPad Pro (9.7") 1356 x 2048 1024 x 768

iPad Pro (12.9") 2048 x 2732 1024 x 1366

480 px
480 pt

1 px = 1 pt 2 px = 1 pt

320 px
320 pt

960 px
480 pt

640 px
320 pt

iPhone Retina iPhone

Figure 11.10 Retina devices
have double the pixel resolution
of non-retina devices.

354 CHAPTER 11 Building simple iOS views
the concert hall or theater. Essentially, there are rules that determine how the orches-
tra should be laid out so that it looks the same in all concert halls.

With auto layout, instead of sizing and positioning controls exactly using points,
you create layout rules (called constraints) that size or position controls relative to
other controls or the parent view. At runtime, the specific positions are calculated by
considering all these rules, and the controls are laid out accordingly. This way, your UI
looks the same, regardless of the size or shape of your device, just like an orchestra
looks the same regardless of the size or shape of the concert hall they’re playing in.

Imagine you have an app that needs a button in the center of the screen. Laying
this out using point-based positioning in a layout file would be impossible—your but-
ton might be centered on an iPhone 6 but be off-center on an iPhone SE or 6 Plus or
iPad (figure 11.12). You could do it in code, but you’d need to write the code once for
each device size and orientation (remember, some apps work with the device in land-
scape as well as portrait orientation), and if a new device was released, your code
might not work.

With auto layout, you can
create a constraint that centers
the button horizontally and
vertically in its parent view. At
runtime, the OS will do all the
math for you and put the but-
ton in the correct place.
Regardless of what device you
run it on or the screen’s orien-
tation, the button will be in the
middle. You can also define off-

Percussion
(behind everything,
left of conductor)

Brass
(behind woodwinds,

centered on conductor)

Woodwinds
(centered on conductor)

Stage

Conductor (center of stage)

2nd violins
(behind 1st violins,
left of conductor) Cellos

(front, right of conductor)
1st violins

(front, left of conductor)

Figure 11.11 Orchestras are laid out relative to the conductor.

200 pt 200 pt

Figure 11.12 Positioning using explicit
values leads to bad layouts when
changing screen sizes or orientations.

355Building iOS UIs
sets using points—for example, you could put a button 50 points below the vertical
center.

To lay out a UI, you have to provide enough constraints that the layout engine can
work out where to put everything. Too few constraints and the layout can’t be calcu-
lated, too many and there won’t be a single layout that satisfies them all.

ANATOMY OF A CONSTRAINT

A constraint is a relationship between the sizes or positions of two components of the
view, such as controls or the parent view. Constraints can be used to define the top,
bottom, leading, or trailing edge positions, the position of the horizontal or vertical
centers, and the height and width (figure 11.13).

LEADING AND TRAILING EDGES Rather than use “left” and “right,” iOS uses
“leading” and “trailing” edges to support both left-to-right and right-to-left
languages. If the device is set up for a left-to-right language such as English or
Spanish, the leading edge is the left side and the trailing edge is the right. For
right-to-left languages such as Arabic or Hebrew, the leading edge is the right
and the trailing edge is the left.

Constraints are described as equations showing the relationship between two values,
and iOS does a whole lot of algebra to satisfy all the equations. Let’s look at a simple
example of positioning a button 20 points below a label, as shown in figure 11.14. The
equation for this is shown in figure 11.15.

Top

Bottom

Right or trailingLeft or leading Center Y

Center X

Width

Height

Figure 11.13 Constraints can be
used to set the width, height, left,
right, top, bottom, and centers.

Button.Top = (1.0 x Label.Bottom) + 20

Item 1 Attribute 1 Multiplier ConstantItem 2 Attribute 2

Figure 11.15 The constraint equation for putting a button
20 points below a label

Click Me!

Hello World!
20 points

Figure 11.14 A button
positioned 20 points
below a label

356 CHAPTER 11 Building simple iOS views
COORDINATES ARE BASED ON THE TOP LEFT Like most UI systems, the top-left
coordinate is 0,0, with horizontal values increasing as you move right and ver-
tical values increasing as you move down. A label positioned at 0,100 would be
above a button positioned at 0,120.

This constraint tells the iOS auto layout engine that the top of the button should be
set to the value of the bottom of the label multiplied by 1, plus 20. This means that if
the bottom of the label was 120 points from the top of the screen, the top of the but-
ton would be (1 x 120) + 20 = 140 points from the top. This constraint sets the top of
the button based on the label, but it could also be defined the other way around, set-
ting the bottom of the label as the top of the button minus 20. Either way will work
just as well.

Each constraint describes the relationship between at least one attribute on a con-
trol or superview and either an attribute on another item, a constant value, or a
combination of the two:

 Items —These are controls or views in your layout.
 Attributes —These are the height, width, top, bottom, left, right, horizontal cen-

ter, or vertical center of the control or view. Views have margins that default to 8
points, so if one of the items is the superview, the attributes can use these mar-
gins if you want. For example, you can constrain to the leading margin rather
than the leading edge.

The parent view in a view controller sits at the top of the screen with the sta-
tus bar overlapping it, so if you want to position something below the status bar
so that it’s not overlapped, you can use the top layout guide attribute instead of
the top. This is only available on the top-level view in a view controller.

You can apply a multiplier to an attribute, so if you want a button to be twice
as wide as a label, you can set the multiplier to be 2.0.

 Constants —You can set a constant in points, and this is used as is, or it’s added
(or subtracted if you use a negative constant) to the attribute value if the con-
straint has two items. With a single item in the constraint, a top attribute with a
constant of 20 sets the top to 20. If there are two items, having a top attribute on
the first item with a constant of 20 and a second item with a bottom attribute
will put the first item 20 points below the bottom of the second.

Constraints are used to set position and size, but for some controls, such as image
views, buttons, and labels, you don’t need to set the size yourself. These controls have
what’s known as an intrinsic size, so rather than sizing them yourself, they’re automati-
cally sized to their contents—for example, image views will resize themselves to fit the
image inside them unless you tell them otherwise. Labels are the same—they have an
intrinsic size based on the length of the text inside them.

By using a combination of attributes and constants, you can define pretty much
any rule you need.

For auto layout to work successfully, every control must be fully constrained; there
must be enough constraints defined to position and size everything. It’s all well and

357Building iOS UIs
good saying that the button should be 20 points below the label, but if there are no
constraints to set the position of the label (so the button can be positioned below it)
or to set the position of the button (so the label can be positioned above it), the auto
layout will fail, causing a crash at runtime.

The easiest way to get a working layout is to start with an anchor point—some-
where on the screen you can anchor one control to—and then to lay out all the rest of
your controls based on that one control. For example, in our SquareRt UI we want the
square root symbol in the center of the screen, so when we create this view and set the
constraints, we’ll position this first, and then lay out all other controls based on it.

You don’t have to use constraints to lay out your controls—you can use point-based
sizes and positions, but if you do, your app won’t look right on all devices unless you
write a lot of code to lay out your app for all possible screen sizes and orientations.
We’ll be using constraints for our app, as this is the easiest and recommended way to
build UIs.

You can read more about auto layout and constraints in Apple’s Auto Layout
Guide at http://mng.bz/SVKv.

11.1.6 Image resources and asset catalogs

When Apple introduced the retina iPhone 4, it mapped pixels to points to allow your
apps to work without any changes, with one pixel in an image taking up four pixels on
a retina screen—two pixels in each direction. This was great for making your app look
and work the same, but you could also take advantage of the higher resolution screen
by providing higher resolution images that would be rendered with one pixel in the
image taking up one pixel on the retina screen. These images have the same names,
but the higher resolution version has a suffix of @2x. For example, if you had a PNG
image called Face.png to display on the screen, you would create two images—one
with a pixel resolution of 180 240 for non-retina iPhones called Face.png, and one
with a resolution of 360 480 for retina iPhones called Face@2x.png (figure 11.16).

iPhone

Face.png Face@2x.png

Retina iPhone

Figure 11.16 @2x images are twice the resolution, but they’re the same size
on screen.

http://mng.bz/SVKv

358 CHAPTER 11 Building simple iOS views
In your code, you’d refer to the image by the name Face, and the OS would automati-
cally load the correct version depending on the screen resolution—both images
would take up the same physical size on screen. If the higher resolution image wasn’t
there, the OS would just use the lower one and render it at the correct point size (fig-
ure 11.17).

With the iPhone 6 Plus, Apple needed to handle an even higher screen resolution, so
for this device (as well as the newer iPhone 7 Plus) it introduced @3x images—three
times the resolution of non-retina images. Again, you can just use a non-retina version
or a @2x image, and the OS will scale it to fit, but by using @3x you get a better-looking
image. Currently, you can’t buy a non-retina iPhone, and since iOS 9 there hasn’t been
a version of iOS that runs on non-retina devices, so there’s no need to provide the non-
retina version of an image in any apps you write unless you want to target older phones
(remember, unlike Android, iOS users update, and 95% of users are on iOS 9 or 10).
Instead, you should always provide the @2x and @3x versions.

Images can live in one of two places. First, there’s a Resources folder where you
can put all your images, including different size variations. Unlike Android, the differ-
ent sized images have different filenames, so they can live in the same folder. This is
not the ideal place to keep images, particularly if you have lots of images.

In iOS 7, Apple introduced a better place to put images, called asset catalogs, as
shown in figure 11.18. Asset catalogs contain image sets—named collections that store
images of all supported resolutions. You can provide your @2x and @3x images inside
an image set, and even provide separate iPhone and iPad images or images for Apple
watch apps. Each named image set is treated as a named image, so if you have an
image set called Face, you can use it as if it were an image in the Resources folder
called Face—the right size for the device will be used. Each asset catalog can contain
multiple image sets, and you can have multiple asset catalogs, allowing you to organize
your images however you want.

iPhone

Face.png Face.png

Retina iPhone

Figure 11.17 If no @2x image is available, images are rendered at twice the
pixel size on retina devices, with one image pixel taking up 4 pixels on screen.

359Building iOS UIs
Asset catalogs can also be used for your app icon, allowing you to provide the many
versions needed for different devices and for searching (iOS uses a different icon size
for search results). These catalogs can also support other file types, including videos,
audio files, and binary data. You can even have some resources download on demand,
rather than being part of the initial app download. This is useful for large media such
as large game maps or videos.

11.1.7 A quick recap

Before we create our first storyboard, let’s quickly recap what we’ve covered:

 Storyboards —A storyboard is a way to visually define the UI for one or more
screens. On a storyboard you can add one or more view controllers to represent
the UI for each screen, and you can drag controls onto them from the toolbox
to create their views.

 Screen resolutions —Different devices have different screen resolutions, and iOS
makes this easier by dealing with screen sizes using points, which are virtual pix-
els. Points were designed with the aim that controls or images with the same
point size will look the same on all devices.

Figure 11.18 Asset catalogs make organizing your images easier. They can include images
for all resolutions of iPhones and iPads or images that work on both.

360 CHAPTER 11 Building simple iOS views
 Constraints—Controls on the UI aren’t sized and positioned based on precise
pixel values. Instead, they’re normally positioned relative to other controls on
the screen, and sized based on other controls or their intrinsic size (the size of
their content, such as the size of the text in a label, given its font type and size).
Constraints provide rules for laying out the UI by specifying the size and posi-
tion of controls relative to other controls or the parent view, such as positioning
a control in the center of the screen, or making two controls the same width.
You can set offsets to other controls, such as the distance between the bottom of
one control and the top of the one below it, using points. When the UI is
drawn, iOS will position and size everything automatically depending on the
screen size and orientation. As you change orientation, the screen layout will be
recalculated.

 Anchor points—When working out what constraints you need to design your UI,
it’s easiest to start with an anchor point—a control that’s in a fixed position in
the view (such as in the center)—that you can position other controls relative
to.

 Images—To handle different screen sizes and resolutions, images can be pro-
vided in different resolutions so that the images look sharper on higher resolu-
tion devices. If different sizes aren’t provided, smaller images are scaled up to
fit or larger images are scaled down. Images can be defined in an asset catalog,
providing a named image set for images of different resolutions.

11.2 Creating the SquareRt storyboard
Let’s start by creating a storyboard for the SquareRt app. Open the SquareRt solution
and head to the SquareRt.iOS app. Expand the Views folder and delete the First-
View.cs and FirstView.Storyboard files—you won’t be using them. Then add a new sto-
ryboard called SquareRtView.storyboard (figure 11.19).

This should open the storyboard up in the designer, but if not, double-click it to
open it. The storyboard designer works by connecting to a Mac build agent, so if
you’re using Visual Studio on Windows, you’ll need to have an active and connected
Mac build agent.

IF NOTHING SHOWS UP, TRY BUILDING THE APP Sometimes nothing will show up
in the storyboard designer in Visual Studio. If this happens, try rebuilding
your app—this usually fixes it.

On Visual Studio for Mac, when you open the storyboard designer, the toolbox, Prop-
erties, and Document Outline pads will open up. If you can’t see these, you can open
them from the View > Pads menu. On Visual Studio on Windows, the same windows
may not be visible, and if not they can be opened from the View menu.

361Creating the SquareRt storyboard
11.2.1 Adding our first view controller

When you create a storyboard, it’s empty. The first thing you need to add to it is a view
controller. View controllers are full screens—they contain a single view (an iOS UI lay-
out control that contains other views or controls) that fills the screen, and it’s that
view that you add your controls to. You must have a view controller to design anything.
For example, you can’t just add a button to a storyboard.

View controllers come in different types, but they all derive from the UIView-

Controller class, which you can use for a basic, empty screen. There are also view
controllers for things like tabbed screens or lists. You just need a basic view controller
for the SquareRt app because it’s a simple single-screen app, so drag a view controller
from the toolbox to the designer (figure 11.20).

The view controller you’ve created isn’t an instance of a UIViewController;
instead, it’s just the UI that will be applied to a view controller. Later in this chapter,
after we’ve designed the UI, we’ll create the view controller backing class and wire it
up to the view controller on the storyboard.

The view controller is shown in the designer as a large white rectangle with a
slightly shorter rectangle inside it. The outer rectangle is the view controller, and the
inner one is the single view that the view controller contains. If you click the view, it

Figure 11.19 Adding a new storyboard

362 CHAPTER 11 Building simple iOS views
will be highlighted, showing that it’s filling the whole screen. The default view is a sim-
ple view with a few properties you can configure, such as the background color. This is
good enough for what we need, but you can delete that view and replace with another
if you need anything specific, such as a scroll view allowing you to scroll through con-
tent that’s too large for the screen, or a web view to display full-screen web content.

SELECTING A VIEW CONTROLLER To select a view controller in a storyboard,
you have to click the outer rectangle at the bottom of the designer. If you
click in the middle, it will select the superview.

The Properties pad for the view, and for any control you add to it, shows three tabs:
Widget, Layout, and Events. The Widget tab shows the properties of the control or
view, such as its name, coloring, font size, source image, or whatever is relevant to the
particular control. The Layout tab defines the layout of the control inside its parent
view, and this is where you can edit any constraints you define to position the control.

Select the device and
orientation for viewing
the UI.

The toolbox contains all the view controllers
and controls that you can add to your UI.
Drag a view controller from here to add it
to the storyboard.

The single view inside
the view controller

Click here to select
the view controller.

The Properties pad can be used to configure
the control. The Widget tab manages the
control properties, the Layout tab manages
the position and size, and the Events tab
manages any events fired by the control.

Use the document outline for
a detailed breakdown of the
components of the UI.

Figure 11.20 Adding a new view controller to a storyboard

363Creating the SquareRt storyboard
The Events tab is used to wire up events against the control, such as button clicks. We
won’t be using the Events tab; after all, we’re using MVVM, so things like click events
will be bound to commands!

We want the app to have a visible title, so set the Title property on the view control-
ler to be SquareRt.

11.2.2 Adding an image

Let’s add a first control to the UI. We want to start with an image showing the square
root symbol () in the center of the screen, and then position the rest of the controls
around it.

ADDING THE IMAGE FILE

Before you can create the control, you need to add the image file you’ll use. We’ll add
this to an asset catalog, and by default iOS apps come with an asset catalog called
Assets.xcasset you can use. Asset catalogs are shown as a special folder inside your iOS
project, just like NuGet packages or project references (figure 11.21).

If you double-click the asset catalog, it will open in an editor that allows you to create
new image sets and assign the images. On the left is a list of image sets, and on the
right are the contents of the selected image set.

To add the image you want, right-click the list of image sets on the left and select
New Image Set (figure 11.22). This will create a new image set called Image. You can
double-click it to change the name, so do this and rename it to Line. On the right you
can assign images for the different resolutions (@2x, @3x, and so on) for different
devices. We want to set universal images—images that will be used for both iPhone
and iPad. Click the box above 2x in the Universal section, and select the Line@2x.png
image from the images\SquareRt\iOS folder from the book’s source code. Do the
same for the 3x image.

USING VECTOR IMAGES If you don’t want to create multiple sizes of each
image, you can create vector images as PDFs and put them into the Vector
box on the image set. These images will be scaled to fit at compile time, auto-
matically generating the relevant sizes for you. It may sound weird to use
PDFs, because these are usually associated with documents (you might even
be reading this book as a PDF), but they’re vector-based files just like other
more popular formats, such as SVG, and they can be exported using tools like
Sketch and Adobe Illustrator. You can read more about this in Xamarin’s
“Application Fundamentals” guide, at http://mng.bz/Krwf.

Figure 11.21 Asset catalogs are
shown as a special folder in your
iOS project.

http://mng.bz/Krwf

364 CHAPTER 11 Building simple iOS views
ADDING THE CONTROL

Now that you have your image file, it’s time to put it on the screen. Open up the story-
board and drag an image view from the toolbox to the view controller. When you add
the image view, it should be highlighted in blue to show that it’s selected, and the
Properties pad will show its properties.

On the Widget tab of the Properties pad, there’s a property called Image with a
drop-down list of all the images that have been added to the app. From that list,
choose Line, the image you just added, and you should see it rendered inside the
image view, albeit sized weirdly. By default, image views are added to storyboards at a
fixed size of 240 128, and they’re positioned wherever you drop them.

LAYING OUT THE CONTROL

All controls must be fully constrained—they must have enough constraints defined to
size and position everything. You could set the size, but that’s not necessary here
because image views default to the size of the image inside them if no other size rules
are defined. For this image view, you just need to set the position.

To create a constraint, you need to set the image view to layout mode and use the
constraint drag handles. When you dragged the image view onto the view controller, it
was highlighted and circular handles were displayed on each corner and in the mid-
dle of each edge. You can use these handles to set a fixed size if you want to, but we
want to set constraints. If you click the Constraint editing mode button, it will change
to show the constraint handles. You saw these handles in chapter 4; figure 11.23 shows
these handles.

We want to position the image in the center of the screen, and to do this we’ll need
two constraints: one for the horizontal center and one for the vertical.

Drag the square center drag handle over the center of the superview in the view
controller, as shown in figure 11.24. You’ll see two green dashed lines appear at the
horizontal and vertical centers of the superview. First drag to the left-to-right center-
line, and you’ll see it turn blue. Drop the handle here to set the vertical center con-
straint. Then do the same using the top-to-bottom line to set the horizontal center
constraint.

Right-click here and select New Image Set
to add a new image set.

Click each box to set the image.

Figure 11.22 New image sets are added from the asset catalog, and images can be added to each
image set for the different resolutions.

365Creating the SquareRt storyboard
You can look at these constraints in two places. With the image view selected, select
the Layout tab in the Properties pad and you’ll see these constraints listed. You can
also look at the Document Outline pad, where you’ll see them as children of the
superview, not the image view (figure 11.25).

Constraints are children of the superview because they’re rules that are used to lay
out everything; they’re not specific to one control. For example, if you created a con-
straint to position a button under a label, this constraint could also be thought of as

These T-bar handles
are used to set spacing

for the four edges.

These I-bar handles
are used to set

width and height.This square handle is used to set the
horizontal or vertical center.

Button

Button

Figure 11.23 Constraint handles for constraining the size, distance to other controls, and center
alignment

Figure 11.24 To create the center constraints, first drag the center constraint
handle and drop it on the horizontal dashed guideline. Then drag and drop it onto
the vertical one.

366 CHAPTER 11 Building simple iOS views
positioning the label on top of the button, so it wouldn’t make sense for this con-
straint to be a child of the button or the label.

When these constraints are created, the designer assumes the position of the
image view on-screen is where you want it to sit relative to the center of the superview.
In my case, the image view was slightly above and to the left of the center when I
dragged the handles, so the constant values set on the constraints put my image 11
points to the left of center and 46 points above. We want the image to be in the center,
so we need to set the constants to be 0.

To do this, you need to open the constraints in the Properties pad and edit the val-
ues. You can select the constraints in two ways: select the image view and find them in
the Layout tab of the Properties pad, click on the cog at the left, and choose the Select
and Edit option (figure 11.26). Or find them in the Document Outline pad and
double-click them. Either approach will select the constraint in the Properties pad.

Once the constraint is selected in the Properties pad, go to the Widget tab to see its
settings: items, attributes, multiplier, and constants. In my case, I had the following:

 ImageView.CenterX = (1.0 x View.CenterX) + 0*
 ImageView.CenterY = (1.0 x View.CenterY) + 156*

Figure 11.25 Constraints are visible in the Layout tab of the Properties pad, or in the Document
Outline pad.

367Creating the SquareRt storyboard
Your values will probably be different, depending on where on the screen you
dropped the image view. To position the image in the dead center of the image view,
change the value of the constants to 0, either by typing in a new value or by using the
up/down spinners next to the value.

Once the constraints are set, you’ll notice that the image view doesn’t move to its
new position. Instead, you’ll see the highlight change from blue to orange when the
image view is selected. This indicates that the location and size of the control in the
designer isn’t where the control will be when you run the app. You’ll also see a rectan-
gle with a dashed orange outline. This indicates where the control will be positioned
and how large it will be. If you select the image view and click the Update Frames but-
ton in the designer toolbar, the image view will move and be resized to reflect the lay-
out at runtime—sizing itself to the size of the image in the view, and positioning itself
at the center of the superview (figure 11.27).

Now you have your image in the center. Let’s put a text-entry control below it so
the user can enter a number that you can calculate the square root from.

Figure 11.26 Constraints can be selected from the Layout tab of the Properties pad (or by double-
clicking the Document Outline pad), and their properties can be edited in the Properties pad.

368 CHAPTER 11 Building simple iOS views
11.2.3 Adding a text field

The control for allowing a user to enter text is UITextField, called Text Field in the
toolbox. Drag one of these onto the view controller. The default font is a bit small, and
users can enter any values they want into it, so we’ll increase the font size and limit it to
numbers. Both these changes can be made in the Properties pad. We’ll also add some
placeholder text to guide the user as to what they should do, and we’ll align the text to
the right as numbers are usually aligned. By default, text fields also have a border with
rounded corners that doesn’t resize when the font size is increased, so we’ll change this
to no border by setting the border style. These changes are shown in figure 11.28.

To change the font, click the T on the right edge of the Font setting and select a
size of 40 in the popup. This will set it to use the default system font, but sized at 40
points. As on Android, these font sizes are based on a virtual size so that they look the
same on all devices—a font with a size of 40 will look the same on retina and non-ret-
ina devices, or on larger devices like iPads or iPhone Pluses.

IOS SUPPORTS DYNAMIC TYPE SIZES BASED ON USER SETTINGS As well as being
able to set a fixed size font, you can set a named font size. In the font settings
popup under the font drop-down, you’ll see some named text styles. These
map to different font sizes depending on the user’s text preferences, set for
the device in the Settings app. If you use these sizes, the fonts in your app will
resize to respect the user’s settings. You can read more about this in Apple’s
Human Interface Guidelines, at http://mng.bz/6M4B.

Click here to update the designer to match the constraints.

Figure 11.27 Once the constraints are set, you can update the designer to show what the UI will
look like at runtime.

http://mng.bz/6M4B

369Creating the SquareRt storyboard
To limit the user to only being able to enter numbers, set the Keyboard Type property
to Decimal Pad. To set the placeholder text, update the Placeholder property value to
“Enter number”. To set the alignment, click the right-align button in the Alignment
section. To remove the border, click the first button for the Border Style property—
the one with the picture of a dashed-line border. The text will also default to “Text,” so
clear the Text property.

Next up are the constraints. As on Android, you need to position this text field rel-
ative to the image. You need to align the right edges, inset the left edge of the text
field from the left edge of the image view, and align the bottom of the text field with
the bottom of the image (figure 11.29). We’ll be setting the width based on the left
and right constraints, but like image views, text fields have intrinsic sizing so you don’t
need to set the height—it will be set automatically from the font size.

To set the bottom constraint, select the text field, click the Constraint editing
mode button, and then drag the bottom T-bar handle (it will be an upside-down T).
You’ll see dashed horizontal green lines showing what you can constrain the bottom
edge to, including the edges of the superview and the top, middle, and bottom of the

Align the text to the right.

Rounder borders don’t resize with
larger fonts, so use no border instead.

Tap the T to configure the font.

Set the placeholder text to show
when no value has been entered.

Figure 11.28 Setting the properties for the text field from the Properties pad

370 CHAPTER 11 Building simple iOS views
image view (figure 11.30). Drag the handle over the dashed line at the bottom of the
image view, which will turn blue, and drop it. Just like when you placed the image
view, the constraint that’s created will assume that the current position of the text field
is where you want it, so it will set a constant that you’ll need to change to 0.

To set the left and right constraints, do the same with the T-bar handles on the left and
right sides, dragging them over the green dashed lines on the left and right sides of the
image view. For the right side, set the constant to 0, and on the left set the constant to
60. Once you’re done, click the Update Frames button to position the text field.

This will provide enough constraints to position the text field relative to the image
view. If you select the text field and look at the Layout tab in the Property pad, you’ll
see the three constraints (shown in figure 11.31). You can also look at the layout of the
image view and see five constraints—the two to position the image view, and the three
that position the text field relative to the image view.

That’s two out of three controls done. Now it’s time to position the result.

Constrain the trailing (right-hand) edge
to the trailing edge of the image view.

Constrain the leading (left-hand) edge to
the leading edge of the image view. Use a
constant of 60 to indent it by 60 points.

Constrain the bottom edge to the
bottom edge of the image view.

There’s no need to set a size. Text fields
have an intrinsic size based on font size
that’s used by default.

Figure 11.29 The constraints to position the text field, relative to the image

Bottom constraint Leading constraint Trailing constraint

Figure 11.30 Set the constraints by dragging the T-bar handles to the dashed lines displaying the
edges of the image view.

371Creating the SquareRt storyboard
11.2.4 Adding the result label

The result is just static text, so we can use a UILabel, called Label in the toolbox. Drag
one of these above the image view. We’ll make the font the same size as that in the
text-entry control, and we’ll right-align the text. Set the properties in the same way as
you did for the text field.

For the constraints, constrain the bottom of the label to the top of the image view
and add a bit of spacing by setting the constant to 15. Then constrain the left and
right edges of the label to the left and right edges of the image view (figure 11.32).

11.2.5 Seeing the layout on different devices

By default, the storyboard designer shows how your app will look on a generic
device—essentially a square device. This isn’t a real-world representation, as no
iPhones or iPads are square, but it’s ideal for creating an initial layout. Once your view
is laid out, you can see how it looks on different devices and orientations by selecting
from the View As options in the storyboard toolbar.

These options allow you to view your app as it would appear on the currently avail-
able device sizes, as shown in figure 11.33. It doesn’t list all devices—just one of each
of the possible sizes. For example, at the time of writing I can select iPhone 6 Plus but

Figure 11.31 The
constraints for the
text field

Figure 11.32 The
constraints for the
result label

372 CHAPTER 11 Building simple iOS views
not iPhone 6s Plus or iPhone 7 Plus—these devices are all the same size and resolu-
tion, so there’s no real need to have them all available in the menu. You can also use
the orientation button to toggle between portrait and landscape.

If you play with these options, you’ll see the storyboard update for each device and
orientation, and everything should look good—the constraints we set will always put
the image in the middle of the screen and position everything else around it, so the
UI should work on all sizes and orientations. You’ll also notice as you change these
options that the button on the far left of the storyboard toolbar will change. This but-
ton sets the view to show different size classes.

11.2.6 Size classes

Sometimes you’ll want to tweak what your UI shows for devices of different sizes, or
when your app is running in different orientations. For example, you might want to
increase a font size on larger devices, or you may want to lay things out differently for
an app running in landscape. To help with this, Apple introduced the concept of size
classes.

WHAT ARE SIZE CLASSES?
Size classes are the way the iOS SDK groups different device sizes and orientations
together, based on similarities between screen size or aspect ratio. You can use these
different size classes to provide support for configuring certain controls or constraints
differently, depending on the size or aspect ratio. When viewing your UI in the story-
board designer, you can select the generic device and choose a size class to see how it
would look on a range of devices (that’s instead of selecting a specific device in the
storyboard). Table 11.2 shows the size classes for the currently available devices.

Figure 11.33 The SquareRt view on an iPhone 4s, iPhone 6, and iPad

373Creating the SquareRt storyboard
CONFIGURING CONTROLS BASED ON SIZE CLASSES

Some apps look different in portrait and landscape orientations, with their UIs
restructured to take advantage of the available space. For example, when viewing a
photo in the iOS Photos app in portrait mode, the app takes advantage of the tall
aspect to put a toolbar with some editing buttons on the bottom of the screen. In
landscape orientation, there’s less height, so to show as much of the photo as possible,
the toolbar buttons are moved to the top navigation bar—this bar is now wider, so it
has more room for buttons. You can see this in figure 11.34.

You can configure controls differently for different size classes. For example, you can
show or hide controls based on whether the app is in portrait or landscape orienta-
tion. You can also configure constraints based on size classes, so you could set an
image view to be in the center for portrait and bottom for landscape. When you con-
figure controls, you can choose which range of size classes to use in each direction, so
you can choose any, compact, or regular for both the height and width. For example,
you could have a control that’s visible for any height and compact width, which would
only show on non-Plus iPhones in landscape and portrait, on iPhone Plus in portrait
only, and not on iPads.

Table 11.2 The size classes for the currently available iOS devices

Device Portrait (width/height) Landscape (width/height)

iPad (Air, Mini, Pro) Regular/regular Regular/regular

iPhone Plus (6 Plus/7 Plus) Compact/regular Regular/compact

iPhone 7/6s/SE Compact/regular Compact/compact

The editing tools are in different positions
portrait and landscape to help provide the
most amount of space for viewing the photo.

Figure 11.34 The iOS Photos app has a different UI for landscape and portrait orientations.

374 CHAPTER 11 Building simple iOS views
In the Widget tab of the Properties pad for controls, there’s a Views section, at the
bottom of which is the configuration for size classes. By default, you’ll see “w Any h
Any” with a ticked checkbox marked Installed next to it. This shows that the control is
available for all size classes—in Apple’s terminology installed means a control is avail-
able for a particular size class, and Any refers to both regular and compact sizes (fig-
ure 11.35).

To set the size classes for a control, click the cog and choose the size class that you
want the control installed for. You can choose multiple options, and you’ll see Regular
represented by an R and Compact by a C (for example, “w C h R” means compact
width and regular height). You need to make sure that only the ones you want are
ticked, so untick “w Any h Any” (this is usually unticked when you add a new size
class). You can also use the – button on the left to remove size classes.

Constraints can be configured the same way. If you select a control, head to the
Layout tab in the Properties pad, find a constraint, and edit it using the Select and
Edit option from the cog, you’ll see that the constraint also has size classes at the bot-
tom of the Widget tab. This allows you to configure a control so it’s positioned differ-
ently for different orientations.

For example, SquareRt might not look so good in landscape orientation—it has a
text field in the middle of the screen, so the keyboard would cover the text-entry con-
trol on the iPhone. Ideally we’d want to lay the screen out differently for small iPhones
in landscape, so that everything fits. It would be better if everything were moved up so
that the result label was right at the top of the screen—but only for landscape on small
phones (as shown in figure 11.36). On the iPhone Plus and iPads in landscape, having
everything in the vertical center is fine, as it is for all devices in portrait.

Figure 11.35 The
installed size classes
for a view

Figure 11.36 UIs sometimes need
to be laid out differently to look good
in different orientations.

375Creating the SquareRt storyboard
To make this change to SquareRt, you need to configure the CenterY constraint on
the image view to apply to everything except iPhones in landscape, and then create a
new constraint on the result label to put it at the top just for landscape iPhones.
Remember, the layout engine will look at all constraints to work out where it should
put everything, so constraining the top of the result label to the top of the screen will
be enough for the layout engine to determine where to put everything: the result
label goes at the top, the image view goes underneath, and the number entry aligns its
bottom to the image view.

Small iPhones in landscape use the compact width and compact height size classes,
so you’ll need a constraint just for this one size class to fix the label to the top. Add a
new top constraint by selecting the result label, clicking it again so the constraint han-
dles are visible, dragging the top T-bar handle to the top of the superview, and setting
the constant to 0. Then install the Compact/Compact size class by clicking the cog
next to “w Any h Any” and selecting Compact > Compact. This will add a new entry of
“w C h C”. Then untick “w Any h Any.”

This adds your new constraint, but you have a conflict—for landscape iPhones the
result label should be at the top, but you still have the constraint putting the image in
the center. You need to configure that center constraint to only apply when the size
class is not Compact/Compact. To do this, you need to uninstall the Any/Any size
class and add Regular/Any and Any/Regular—this covers any device or orientation
where either the width or height is not compact. Select the CenterY constraint from
the Document Outline or the Layout tab of the properties for the image view and add
Regular > Any and Any > Regular from the cog menu (figure 11.37).

This will position everything at the center or top depending on the device, as shown
in table 11.3.

Figure 11.37 Configuring constraints to only be installed for specific size classes

376 CHAPTER 11 Building simple iOS views
If you want to learn more about what you can do with size classes, there’s a great tuto-
rial, “Adaptive Layout Tutorial in iOS 11: Getting Started,” available at http://mng
.bz/5cah.

Once you’ve set this all up, you should be able to change the selected device, ori-
entation, or size class and see the UI update to match. Play with the different sizes and
orientations and see what happens. See how the different constraints cause the UI to
update in different ways, depending on the size and orientation. Now is also a good
time to play with different layouts and see if you can lay out the controls differently.

11.2.7 A quick recap

We’ve covered a lot so far, so let’s quickly recap before moving on to the code behind:

 View controllers—When building storyboards, you can add view controllers by
dragging them from the toolbox. Each view controller has a single child view
referred to as the superview, and you add controls to this view.

 Controls—To add controls such as labels, images, or text fields, drag them from
the toolbox. You can configure their properties from the Widget tab of the
Properties pad.

 Constraints—You can set constraints from the designer by clicking the controls
until the constraint handles appear, and then dragging them to the other item
in the constraint relationship, such as another control or the superview. You
can then configure the constraints more accurately in the Layout tab of the
Properties pad.

 Size classes—iOS groups devices into size classes based on similar size character-
istics. You can tweak controls and constraints so that they’re only applicable for
certain size classes.

11.3 Building the SquareRt view
When you created the view controller in the storyboard, you weren’t creating a class.
Instead you were defining a UI that can be used by an instance of a view controller.
Now that you have the UI defined, it’s time to create the view controller proper and
wire up the storyboard.

Table 11.3 The location of the controls on different iOS devices and orientations

Device Portrait Landscape

iPad (Air, Mini, Pro) Center Center

iPhone Plus (6 Plus/7 Plus) Center Center

iPhone 7/6s/SE Center Top

http://mng.bz/5cah
http://mng.bz/5cah
http://mng.bz/5cah

377Building the SquareRt view
11.3.1 What is a view controller?

A view controller is an object derived from UIViewController that manages a set of
views and controls that make up part of your application’s user interface. Usually a
view controller is an entire screen, but it can also be a part of the screen. For example,
tab controls are view controllers, with each tab being its own view controller. Each view
controller has a single root view that fills the entire space on screen, and this is often
referred to as the superview. From an MVVM perspective, a view controller is a view,
and it will have a corresponding view model.

A view controller is analogous to an Android activity—it represents a full-screen
task that the user is doing. When you navigate to another task using another screen,
your app will load a new view controller. The SquareRt app is a single-screen app, so it
only needs one view controller.

In non-MVVM apps, you’d define a startup storyboard in the info.plist file, and
when your app starts up, it would load this storyboard, find the view controller that’s
marked as the initial view controller, create the relevant view controller class for it,
and launch it. This happens behind the scenes in your app, and you configure it sim-
ply by setting the startup storyboard. For our MvvmCross apps, we don’t need to do
this. Instead, when the app starts up, the MvvmCross code will find the startup view
model, then find the relevant view based on its name, and launch the view controller.

11.3.2 View lifecycle

Each view controller has a lifecycle—a set of methods that are called as the view is
loaded, it appears on screens, it disappears, and it unloads. These are methods in the
base UIViewController class that you can override, and they’re always called on the
UI thread. Figure 11.38 shows this lifecycle.

The most used method in this lifecycle is ViewDidLoad, which is called after the view
has been loaded from a storyboard or Nib file. At this point the UI will be fully cre-
ated, and any properties that are wired up to controls (you’ll see these later in this
chapter) are fully set and available for use. If you need to do any configuration of the
UI in code, this is the method to do it in.

View controller
created

View loaded
from storyboard ViewDidLoad() ViewWillAppear() ViewDidAppear()

View controller
destroyed ViewDidDisappear()ViewDidUnload() ViewWillDisappear()

Close view
controller

Figure 11.38 The lifecycle of a view controller from being created and loading the view to closing the view
controller and unloading the view.

378 CHAPTER 11 Building simple iOS views
Unlike Android, view controllers aren’t recreated when you rotate the screen.
There’s nothing you have to do manually—the view will readjust itself automatically
based on the constraints you set. If there’s anything you need to do in code when the
screen rotates, you can override the ViewWillTransitionToSize method.

11.3.3 Creating the view controller

The first thing to do when creating a view controller is create the class itself, so in the
Views folder create a new view controller called SquareRtView (the view controller
option will be in the iOS section of the New File dialog box). This will create two code
files, SquareRtView.cs and SquareRtView.designer.cs, with the designer file nested
underneath the view. These files both contain a single SquareRtView class, with partial
class definitions in each file. The designer file is autogenerated, so if you make any
manual changes to it, they’ll be lost. A Xib file will also be created, in this case called
SquareRtView.xib, which can be deleted, because you’ll be using the storyboard
you’ve already created instead a Xib file.

Because we’re using MvvCross, you’ll need to make a couple of small changes to
the view controller code.

The first thing you need to do is change the base class to one that comes from
MvvmCross, to provide some basic MVVM functionality.

Second, you need to tell MvvmCross that your view controller will load its UI from
a storyboard—using both an attribute and by changing the constructor. Traditional
iOS apps start from a storyboard that will create the view controller backing class, and
you navigate to another view controller in the storyboard using a segue—it’s essen-
tially view-first navigation. We’re using view-model–first navigation, so you need to tell
the MvvmCross framework how to load the view from the view model.

Listing 11.1 shows the code changes you need to make in SquareRtView.cs.

using MvvmCross.iOS.Views;
...
[MvxFromStoryboard]
public partial class SquareRtView : MvxViewController
{

public SquareRtView(IntPtr handle) : base(handle)
{
}

}

The MvxFromStoryboard attribute tells MvvmCross that the view controller needs to
load its view from a storyboard (as opposed to loading it from a Nib or creating it
manually).

The MvxViewController base class derives from UIViewController but provides
MVVM functionality, such as having a property called ViewModel that provides access
to the view model for the view. The ViewModel property is of type IMvxViewModel, the

Listing 11.1 Setting up the view controller for MvvmCross

This attribute tells MvvmCross that the UI
for this view comes from a storyboard.

Uses a constructor that
takes a native handle

Derives from a
base MvvmCross
view controller

379Building the SquareRt view
base interface for MvvmCross view models. There’s also a generic version of MvxView-
Controller, which takes a type derived from IMvxViewModel as its type argument, and
if you use this the ViewModel property will be of the right type. For example, if you use
MvxViewController<SquareRtViewModel>, the view-model property will be of type
SquareRtViewModel.

The constructor that was provided when the file was generated can be deleted—it
was for view controllers that use Xib files, and it passes the name of the Xib file to the
base UIViewController so that it can create the UI. You’re using a storyboard here, so
this constructor is redundant. Instead you need to add a constructor that takes an
IntPtr and passes this to the base class. This IntPtr parameter is a native handle to
the native view controller class and is outside the scope of this book—we just need to
define this constructor to allow our app to work.

Once your view controller class is defined, you need to wire it up to the view con-
troller on the storyboard.

11.3.4 Wiring up controls to the view controller

To wire up the SquareRtView view controller to the storyboard, open up the story-
board and select the view controller in it (remembering to click the bottom rectan-
gle). In the Widget tab of the Properties pad, there will be a Class drop-down showing
all the view controller classes available in your app. Select SquareRtView (figure
11.39). This tells the storyboard that SquareRtView is the backing class to use, but this
is a one-way thing—the storyboard knows about the view controller, but the rest of the
app doesn’t know about this link.

When you navigate to the SquareRtViewModel, the MvvmCross framework needs to
know which view to load. It could find the view controller by name, but then it
wouldn’t know which storyboard to use to load the UI. Instead, what you need to do is
set an ID on the view controller in the storyboard so that when you navigate, Mvvm-
Cross knows which view controller to use from the storyboard, and therefore which
backing view-model class to load. To set this ID you need to set the value of the Story-
board ID on the Widget tab of the Properties pad to SquareRtView.

Next up, you need to wire up your controls. In the Android version of this app, you
bound the controls inside the .axml file, but you can’t do this with storyboards as
there’s no way to define any custom properties. Instead, you need to bind in code, and
to do that you need access to the controls that you’ve added. This is easy enough to
do—the Widget tab on the Properties pad for controls has a Name field, and setting
this will create a property inside the view controller backing class for that control with

Figure 11.39 The backing
class and storyboard ID needs
to be set on the view
controller in your storyboard.

380 CHAPTER 11 Building simple iOS views
the name you enter. Set the name for the text field to be NumberEntry and for the
label to be ResultLabel.

If you open up the SquareRtView.cs file, you won’t see these properties. Instead,
open the SquareRtView.designer.cs file and you’ll see them there. This is the purpose
of the designer file—when you give controls names, properties for them are created
in this file (figure 11.40). The following listing shows the contents of the file after set-
ting the name on the text field.

[Register ("SquareRtView")]
partial class SquareRtView
{

[Outlet]
[GeneratedCode ("iOS Designer", "1.0")]
UIKit.UITextField NumberEntry { get; set; }

void ReleaseDesignerOutlets ()
{

if (NumberEntry != null)
{

NumberEntry.Dispose ();
NumberEntry = null;

}
}

}

The code in this file is autogenerated, so if you make any changes, they will be lost.
The Register attribute tells the compiler to register this class with the iOS runtime—
that’s way outside of the scope of this book, but doing so allows the iOS runtime to
interact directly with the class, which is needed so that this class can be used by the sto-
ryboard designer.

The property that’s created for the number entry control is private and is of type
UITextField. This designer file contains a part of the SquareRtView class, so you can
access this property in the SquareRtView.cs file. The Outlet attribute is used to define
a property that’s set from a control on the storyboard—the term iOS uses for controls
in the view controller that are on the storyboard is outlets, and this property tells the

Listing 11.2 Designer files contain properties for named controls on the storyboard

UIKit.UITextField NumberEntry { get; set; }

UIKit.UILabel ResultLabel { get; set; }

Figure 11.40 Setting the name on the controls adds a property with that name to the designer file.

This attribute registers this
class with the iOS runtime.

The property for the control

Cleanup code to dispose
of the control after the
storyboard closes

381Building the SquareRt view

t
Xamarin runtime to use the property as the outlet for the storyboard control. These
properties are set once the storyboard is loaded.

The ReleaseDesignerOutlets method is called automatically by iOS when the
view controller closes, and the generated code inside it calls Dispose on the controls
and marks them as null so that the garbage collector can clean them up.

The SquareRtView.designer.cs is an autogenerated file, so for the purposes of this
book we can just accept that it has some magic and use its properties. The magic,
though, is all based on how Xamarin apps talk to the native SDKs. Xamarin apps have
two objects for each control: an instance of the underlying native iOS control, and an
instance of a .NET wrapper object. The wrapper exposes the same properties and
methods as the underlying native class, and these are implemented by calling the
property or method on the native object. This is a very advanced topic, so if you want
more information, check out Xamarin’s iOS guide: http://mng.bz/f5q4.

11.3.5 Binding the view controller

Once your view has been loaded from the storyboard, you need to bind the controls
to your view model. You can do this in ViewDidLoad, the lifecycle method that’s called
after your view has been loaded from a storyboard. At the time this is called, all the
properties for your controls will have been set. If you open SquareRtView, you’ll see
that this method was created for you when the new view controller class was added.

To bind your view model to the view in code, you start by creating a binding set—
this is a collection of bindings used by MvvmCross. In the set you add bindings for the
relevant controls and then you apply the binding set, which binds the controls. The
following listing shows the code you need to add to the bottom of the ViewDidLoad

method.

using MvvmCross.Binding.BindingContext;
using SquareRt.Core.ViewModels;
using SquareRt.Core.ValueConverters;
...
public override void ViewDidLoad()
{

base.ViewDidLoad();

var set = this.CreateBindingSet<SquareRtView, SquareRtViewModel>();
set.Bind(ResultLabel)

.To(vm => vm.Result)

.WithConversion<DoubleToStringValueConverter>();
set.Bind(NumberEntry)

.To(vm => vm.Number)

.WithConversion<DoubleToStringValueConverter>();
set.Apply();

}

Listing 11.3 Creating the binding set for SquareRtView

Creates the
binding set

Binds the result label to the resul
property on the view model

Binds the number entry to the
number property on the view
model

Applies the binding set

http://mng.bz/f5q4

382 CHAPTER 11 Building simple iOS views
This code starts by creating a binding set between the SquareRtView and the Square-

RtViewModel. This is strongly typed so that you can easily bind properties on the view
model directly, rather than using string names. It then binds the ResultLabel label
control to the Result property on the view model, using DoubleToStringValue-

Converter from the core project. The same is done for the NumberEntry control,
binding it to the Number property. Finally, the binding set is applied, and this will read
the values from the view model, update the view, and listen for changes to both the
view-model properties and the UI controls.

11.3.6 Another quick recap

Before we run the app, let’s have another recap:

 View controllers—The UIViewController class is the base class for all view con-
trollers. On storyboards you define the layout for a view controller, and in code
you define the actual backing class.

 MvvmCross has a view controller base class—MvvmCross provides MvxViewController
as a backing class for a view controller that supports binding. You can wire this
up to a storyboard by setting the MvxFromStoryboard attribute and setting the
storyboard ID on the view controller on the storyboard.

 Named controls become properties—If you name a control on a storyboard, a corre-
sponding property is created in the designer file for the view controller class.

 Binding—Controls can be bound to properties on the view model, using con-
verters if required.

EVERYTHING YOU DO WITH A STORYBOARD YOU CAN ALSO DO IN CODE You don’t
have to use storyboards if you don’t want to—you can just create a UIView-
Controller and build the UI in code, adding a parent view and controls, and
setting up constraints. Some developers prefer this as they find it easier to set up
constraints either by writing them manually, or by using helper libraries such as
Fluent Layout (https://github.com/FluentLayout/Cirrious.FluentLayout). The
big downside to coding your UIs is that you lose the ability to visualize your
layout at design time, which can be painful if you’re iterating a UI with a
designer. The upside is that storyboards can add extra views to your UI, which
may slow down a very complicated UI—something you can optimize by hand
when creating your views in code.

11.3.7 Running the app

Everything is now done for SquareRt—your UI has been created and bound to the
view model. It’s time to try it out, so select an appropriate simulator and run the app.
Try it on an iPhone as well as an iPad to see how the auto layout makes it look awe-
some on all devices. Also try rotating the simulators using the Rotate Left and Rotate
Right options in the Hardware menu (or by using the shortcut keys -← or →-) to
see that it looks great in both landscape and portrait orientations (figure 11.41).

https://github.com/FluentLayout/Cirrious.FluentLayout

383Building the SquareRt view
IPADS DON’T HAVE A DECIMAL KEYBOARD If you try the app on an iPad simula-
tor, you’ll notice that the keyboard shows everything, not just numbers. This
is a limitation of iPads. I guess Apple thought that having only a tiny keyboard
wouldn’t look as good. For our purposes, it’s not a problem, but in a real-
world app you’d want to do something to work around this, such as by build-
ing a custom keyboard-like control for number entry.

SCALING THE SIMULATOR If the simulator is too large to fit on screen, you can
change the scale using the Scale option in the Window menu.

When you run the app, the following things will happen:

1 iOS will start your app and start the MvvmCross framework, which finds the view
model registered as the app start in the App class in the SquareRt.Core project—
in our case, SquareRtViewModel.

2 The MvvmCross framework will find the storyboard and view controller with the
ID of SquareRtView, finding it in the SquareRtView.storyboard file.

3 The storyboard will be launched, which in turn will create an instance of the
SquareRtView view controller.

4 The view controller will start its lifecycle and load the UI from the storyboard,
laying out all the controls using the constraints specified for the current device
and orientation.

5 The ViewDidLoad method will be called, and the view controller will bind the
controls to the view model.

6 The binding will use DoubleToStringValueConverter in the SquareRt.Core
project, creating an instance of it and using it as a value converter on the binding.

7 If the screen is rotated, the layout engine will re-evaluate all the constraints and
lay out the screen again.

Figure 11.41 SquareRt running on an iPhone in portrait and landscape, and on an iPad

384 CHAPTER 11 Building simple iOS views
Summary
In this chapter you learned

 Apple defined how best to design iOS apps in its Human Interface Guidelines.
 iOS defines user interfaces using storyboards.
 UI controls are positioned using constraints that define relationships between

the positions of controls, and these are resolved at runtime to absolute posi-
tions based on the screen size and orientation.

 Different size classes can be used to configure screens differently for different
device sizes and orientations.

 Views are derived from view controllers, which are loaded from storyboards.
 MvvmCross can bind controls to view models in code after the UI has been

loaded.

You also learned how to

 Create images that support multiple screen sizes using asset catalogs.
 Lay out controls by defining constraints in the storyboard designer.
 Configure constraints based on size classes.
 Bind controls in view controllers.

12Building more
advanced iOS views
In the last chapter you built the UI for SquareRt on iOS, using storyboards, view
controllers, images, some controls, and constraints. In this chapter we’ll look at
some more advanced iOS UI topics and build the UI for Countr, using table views
to show lists of data, and adding menu items to the navigation bar. We’ll then look
at our app’s splash screen and improve that, before finally tweaking our app icons.

12.1 Building the UI and view controllers for Countr
Let’s start working on Countr. Open the Counter.iOS project and delete the
dummy FirstView.cs, FirstView.designer.cs, and FirstView.storyboard files from the

This chapter covers
 Creating table views

 Navigation bar buttons

 Setting app icons

 Launch screens

 The Appearance API
385

386 CHAPTER 12 Building more advanced iOS views
Views folder, as these won’t be needed. For Countr, you need to create two views: the
master view showing all counters, and the detail view for adding a new counter. Figure
12.1 shows the UI we want to create.

On Android, when you have an app with multiple screens, every screen is generally
an activity, and you use the toolbar’s Back button to navigate back, closing the current
activity. On iOS it’s different—you have multiple view controllers, one for each screen,
and these live inside a parent navigation view controller. This navigation view control-
ler provides a toolbar at the top that shows the current view controller’s title, and
when you navigate to a new view controller, it shows a Back button with the title of the
previous view controller in it.

When using MvvmCross, you don’t need to explicitly add a navigation view control-
ler, as the framework adds it for you and uses it to navigate between screens. That
means you just need to create view controllers for the two screens in the Countr app,
and let MvvmCross handle the navigation.

12.1.1 Creating the UI for the master view

For the master view you’ll be creating the storyboard at the same time as the view con-
troller. Start by creating a new view controller in the Views folder called CountersView
(and delete the CountersView.xib file that’s automatically created), and add a story-
board called CountersView.storyboard.

TABLE VIEWS

For the master view, you need a full-screen list of all the counters and a toolbar button
for adding a new counter. Like Android, iOS has a control designed to show lists of
data, called UITableView. This control has a data source that provides the list of items
to show, and it will create only enough rows to show the visible data, reusing them as
you scroll. Each row uses a control called a cell, derived from UITableViewCell, to
show the data.

TABLE VIEW CONTROLLERS

Screens whose only jobs are to show lists of data are popular, so iOS has a UITableView-
Controller—a view controller that comes preconfigured with a full-screen

New Counter DoneCancel

Counter Name

Countr Add

Coffees

Runs

4

1

+

+

Figure 12.1 The UI for Countr

387Building the UI and view controllers for Countr
UITableView, accessible through a property called TableView. In addition, MvvmCross
has its own implementation of UITableViewController that supports binding, which
can make your life easier.

To create a table view controller, you have to add one to your storyboard and then
wire it up to code behind. Start by opening the storyboard, finding Table View Con-
troller in the toolbox, and dragging it to the designer. You want to set the class for this
view controller to CounterView, but if you look in the Class drop-down in the Proper-
ties pad, you won’t see this view listed. That’s because the designer is smart enough to
only allow you to use view controllers derived from UITableViewController as the
backing class for a table view. Open up the CountersView.cs file and make this a table
view controller. The following listing shows the code you need to add for this.

using MvvmCross.iOS.Views;
...
[MvxFromStoryboard]
public partial class CountersView : MvxTableViewController
{

public CountersView(IntPtr handle) : base(handle)
{
}

}

Once this class derives from MvxTableViewController (which in turn derives from
UITableViewController) you can update the class in the properties for the story-
board to be CountersView, and you can also set the Storyboard ID to CountersView so
that MvvmCross knows which storyboard to navigate to when the app starts up. The
Title property should also be set to Countr as well, so the app name appears at the top
of the app when it’s running.

TABLE VIEW DATA SOURCES

Table views build rows using a table view source—a class that derives from
UITableViewSource. This class provides information to the table view about how
many rows of data there are, and what cell needs to be used for each row. When you
implement a data source, you need to provide it with two things: information about
the actual source data and details on which cells to use.

The data for the table view will come from the view model, in the form of an Observable-

Collection<CounterViewModel>, so you need to create a data source that you can wire
up to this observable collection. MvvmCross comes to your aid here—it has its own data
source that can be bound to an observable collection, and it will wrap it in a way that
provides all the data the table view needs, including telling the table view when the col-
lection is updated so that it can update the rows. To use the MvvmCross data source, the

Listing 12.1 CountersView needs to be a table view controller

Tells MvvmCross this comes
from a storyboard

Derives from
the MvvmCross
table view
controller

Uses a constructor that
takes a native handle

388 CHAPTER 12 Building more advanced iOS views
first thing to do is to create a new class called CountersTableViewSource in the Views
folder. The following listing shows the code for this.

using MvvmCross.Binding.iOS.Views;
using UIKit;
...
public class CountersTableViewSource : MvxTableViewSource
{

public CountersTableViewSource(UITableView tableView)
: base(tableView)

{
}

}

CountersTableViewSource derives from MvxTableViewSource, an implementation of
UITableViewSource that can be bound to a collection. The constructor for this class
needs the table view itself, so that it knows which table view to update when the collec-
tion changes. To use this table view source, you need to create it and pass it to your
table view. Add the following code to CountersView to wire this up.

using Countr.Core.ViewModels;
using MvvmCross.Binding.BindingContext;
...
public override void ViewDidLoad()
{

base.ViewDidLoad();

var source = new CountersTableViewSource(TableView);
TableView.Source = source;

var set = this.CreateBindingSet<CountersView,
CountersViewModel>();

set.Bind(source).To(vm => vm.Counters);
set.Apply();

}

Once the table view source has been created, you can create a binding set, just as you
did when binding the number and result properties in SquareRt to controls, and you
can use it to bind the counters to the table view source. This binding keeps everything
in sync—the table view is initialized with any counters already in the view model, and
when the collection changes, the table is updated automatically.

You have your data, so now you need a cell to show it.

TABLE VIEW CELLS

Despite the name table view, these views aren’t really tables—they have multiple rows but
only one column, so they’re essentially simple lists. Even so, they’re called table views,

Listing 12.2 The table view data source for the counters table

Listing 12.3 Creating a table view source

This class derives
from the
MvvmCross table
view source.

Passes the table
view through to
the base class

Creates the table
view source Passes the

source to
the table

Creates a
binding set for
the counters
view and view
model

Binds the source to the
counters on the view model

389Building the UI and view controllers for Countr
and just like in a data table, each element is referred to as a cell. Because there’s only one
column, each row is represented by a single cell.

For Countr, we need one cell for each counter in the app, and because we’re using
MVVM, we want to bind each counter to a row. A cell isn’t like a cell in an Excel
spreadsheet, which only contains a single value. Here a cell is like the view inside a
view controller—it can contain any number of controls, all laid out using constraints.

Every row in the table is an instance of UITableViewCell or a derived class.
UITableViewCell provides a basic UI for a row, with two labels for a title and subtitle,
an image, and an accessory indicator (used to indicate that something can happen,
such as an arrow to indicate that a new screen will be shown by tapping the item). This
is good enough for some simple tables, but if you want to customize it, you can do so
by deriving a class from UITableViewCell, with a UI defined in the storyboard.

Table views are like Android’s recycler view in that they recycle cells—they only cre-
ate enough cells to fill the screen, and as cells are scrolled off the screen, they’re
reused at the other end with new data (in our case, bound to a different counter). You
can mix and match cells in a table view, so when you create one, you give it an identi-
fier based on the type of cell. This identifier is a simple string and is a fixed value for
each type of cell. Table views get their cells from the table view source. In the table
view source, when you need to provide a cell to the table view, you start by asking the
table view to provide a cell for a given identifier, and if it has one available that’s been
scrolled off the UI, you’ll get that. Otherwise you’ll get a new instance of the cell.
Either way, you then configure the cell to show the data you want, and you return it to
the table view. This is shown in figure 12.2.

User scrolls
up

"ImageCell"

"TextCell"Cell identified as "TextCell"

Hello

Cell identified as "ImageCell"

"ImageCell"

"TextCell"

"ImageCell"

"TextCell"

"ImageCell"

"TextCell"

As a cell is about to be scrolled
on, the table view will ask the
view source for a cell for that row.

The table view source will work
out what type of cell is needed
and request a cell with that
identifier (in this case, “TextCell”)
from the table view.

The table view will return a cell
with that identifier if it has one,
or create a new one.

Figure 12.2 Table views can have multiple named cell types, and they’ll reuse cells of the right types
as needed.

390 CHAPTER 12 Building more advanced iOS views
You need a custom cell to show your counter, so let’s start by creating one. The first
thing to do is create a new table view cell called CounterTableViewCell (Table View
Cell is an option in the Add New File dialog in iOS). This will create three files:
CounterTableViewCell.cs, CounterTableViewCell.designer.cs for the class itself (once
again, the .designer file is autogenerated), and CounterTableViewCell.Xib. The Xib
file can be deleted, as you’ll be designing your cell using a storyboard (unfortunately
there isn’t an easy way to create just the cell and designer files without the Xib).

Once you have the class, you can design the cell. You can do this in the storyboard
for the counters view. When you design a table view controller in a storyboard, you can
also add what are called cell prototypes—layouts for cells that you can give an identifier
to. When your table view source requests a cell from the table using that identifier, the
table view knows to use this layout for the cell. These layouts have backing classes
defined, just like view controllers, and when the layout is used, it’s the backing class
that’s created. Figure 12.3 shows the prototype for a cell you can use to show a counter.

Open the CountersView.storyboard and look at the view controller. You’ll see a white
box at the top of the table view inside the view controller. This is a prototype cell, and
it’s this you need to configure for your counter cell. (If you look at the properties of
the table view, you’ll see a property called Prototype Cells set to 1, which means the
table has one cell prototype—you can increase this if you need more.)

Click the prototype cell to see its properties, and set the Class drop-down to
CounterTableViewCell and the Identifier to CounterCell. This identifier is what you
use in your table view data source to get a new CounterTableViewCell. For this UI,
you need two labels, one to show the counter name and one to show the count, and a
plus button. For the plus button, add a new image set to the asset catalog called Plus,
and add the different sized plus images from the images\Countr\iOS folder in the
source code that accompanies this book.

Figure 12.3 The prototype cell for a counter containing two labels and a button, laid out with one label on the
left of the cell, the button on the right, and the second label to the left of the button

391Building the UI and view controllers for Countr
Once the images have been added, drag the following controls to the cell prototype:

 A label called CounterName, centered vertically and left-constrained to the left
side of the superview with a constant of 20 to give it some space.

 A button called IncrementButton, centered vertically and right-constrained to
the right side of the superview with a constant of 20 to give it some space. Set
the image to be Plus.

 Another label called CounterCount, centered vertically and right-constrained to
the left side of the button with a constant of 20.

Once these controls are added, you’ll be able to see them in the CounterTableView-
Cell.designer.cs file.

Next up is to use this cell, so you need to change your table view source to generate
one and return it. Open CountersTableViewSource.cs and add the following code.

using Foundation;
...
protected override UITableViewCell GetOrCreateCellFor(UITableView tableView,

NSIndexPath indexPath,
object item)

{
return (CounterTableViewCell)tableView

.DequeueReusableCell("CounterCell");
}

The GetOrCreateCellFor method is called by the MvvmCross table view source to get
the cell for a particular row. This code will ask the table view for a cell with the identi-
fier of "CounterCell" using the DequeueReusableCell method (often referred to as
dequeuing the cell), which will return one that has been scrolled out of view or create a
new one. The prototype cell you created had an identifier of "CounterCell", so the
table view will use this prototype to create the new cell, constructing an instance of
CounterTableViewCell and setting its UI to match the one defined in the storyboard.
The MvvmCross table view will then bind the item at the given position to the cell.

INDEX PATHS Rather than use a simple integer value for row numbers, iOS
uses NSIndexPath. This does more than hold a simple row number, it also
handles sections. You can structure your table to group rows into sections. For
example, a contacts app might group by the first letter of the contacts’ names.
If you had two sections in your table, and the first section had five rows and
the second had three, you wouldn’t refer to the last row in the second section
as row eight. Instead, it would have an NSIndexPath with a section of two and
a row of three. You can read more about grouping rows in the Apple Devel-
oper Documentation at http://mng.bz/6lKR.

You’ve created your cells, defined their UI, and set up your view source to construct
them—the last thing you need to do is add code to bind everything. Each cell needs to

Listing 12.4 Returning the new cell from the table view source

Gets or creates a cell for the
identifier "CounterCell"

http://mng.bz/6lKR

392 CHAPTER 12 Building more advanced iOS views
be bound to an instance of CounterViewModel (because the source data for the table
is an ObservableCollection<CounterViewModel> from the counters view model). To
do this, you need to add some binding code to the CounterTableViewCell class.

Start by deleting the provided constructors and fields, and add the code in the fol-
lowing listing.

using System;
using Countr.Core.ViewModels;
using MvvmCross.Binding.BindingContext;
using MvvmCross.Binding.iOS.Views;
...
public partial class CounterTableViewCell : MvxTableViewCell
{

public CounterTableViewCell(IntPtr handle) : base(handle)
{

this.DelayBind(() =>
{

var set = this.CreateBindingSet<CounterTableViewCell,
CounterViewModel>();

set.Bind(CounterName).To(vm => vm.Name);
set.Bind(CounterCount).To(vm => vm.Count);
set.Bind(IncrementButton).To(vm => vm.IncrementCommand);
set.Apply();

});
}

}

Most of this code is the same as you’ve seen before, binding properties or a command
to controls. The only new thing is DelayBind. Unlike view controllers where you can
bind when the view is loaded, you don’t have a way to know when cells are fully set up
with all the controls created, ready to bind. Delayed bindings are run when the data
context is set for the first time. The data context is set in the MvvmCross table view
source after the cell has been dequeued—you can be sure at this point that it has been
fully constructed and the UI set.

In general, if you don’t know when the UI will be set and the controls will be ready,
you can use a delayed binding, and you define this in the constructor. Otherwise, you
can bind in a method such as ViewDidLoad.

SWIPE TO DELETE

Unlike Android, swipe-to-delete is baked into iOS and is really easy to implement.
This is implemented in the table data source, this time by overriding the Commit-

EditingStyle method. By default, swiping on a table view does nothing, but as soon
as you override this method, swipe-to-delete is magically turned on. The following list-
ing shows the code for adding this to CountersTableViewSource.

Listing 12.5 Binding the table view cell to a counter

Derives this cell from
the MvvmCross cell

base type

Binds the
controls to
the view
model

393Building the UI and view controllers for Countr
using Countr.Core.ViewModels;
...
public override void CommitEditingStyle(UITableView tableView,

UITableViewCellEditingStyle editingStyle,
NSIndexPath indexPath)

{
var counter = (CounterViewModel)GetItemAt(indexPath);
counter.DeleteCommand.Execute(null);

}

This method is called by iOS when you swipe the cell from right to left and tap the
Delete button that appears. GetItemAt is a method on MvxTableViewSource that will
look in the underlying collection for the object that’s at the given NSIndexPath, and
once you have this object, you can cast it to a CounterViewModel and execute Delete-

Command. This command, behind the scenes, will cause the collection to be updated,
raising a collection-changed event that will be picked up by MvxTableViewSource. This
data source in turn will tell the table view to update, removing the row from the table.

12.1.2 Navigation bars and buttons

When building iOS apps that have multiple screens, you need a way of indicating to
the user what screen they’re on, and of showing a way to get back to the previous
screen. On Android you do this using the toolbar that’s included in the layout, and
which is used to navigate to another activity. iOS has a different way of doing this—it
uses navigation controllers.

Navigation controllers are a type of container view controller. They are view con-
trollers (and derive from UIViewController), but they don’t have much of a UI them-
selves. Instead they’re used to hold other view controllers and provide a way to
navigate between them. Each contained view controller can be thought of as a screen,
with the navigation controller providing a toolbar at the top and handling navigation
between them (figure 12.4).

Listing 12.6 Implementing swipe-to-delete

Gets the counter
from the
NSIndexPath

Executes the
delete command

UINavigationController Contained view
controller

Navigation bar
MyApp

Figure 12.4 Navigation controllers
are a type of container view
controller that provides navigation
between other view controllers.

394 CHAPTER 12 Building more advanced iOS views
Navigation view controllers are instances of UINavigationController and provide a
toolbar at the top of the screen that shows the title. Underneath this toolbar, they
show the view controller for the current screen. When you navigate to another screen,
a new view controller is created and is shown inside the navigation controller, updat-
ing the navigation bar to show the title of the new screen. The navigation bar also pro-
vides a Back button that shows the name of the previous screen, so that users know
where they’re navigating back to. This is shown in figure 12.5.

MvvmCross uses a navigation controller, but it does so behind the scenes, creating one
that’s used to show the startup screen and handle navigation to new pages. When you
call ShowViewModel inside your view model, the view controller that’s created for the
relevant view is hosted inside the same navigation view controller.

You can also use the navigation bar as a toolbar—it can have buttons on the left
and right and can host a control in the middle. By default, the left button is a Back
button, and it’s only used if you’ve navigated to the current page from another page
(the first page of your app won’t have a left button, and the second page will have a
Back button showing the name of the first page). The middle section by default shows
a static label with the title of the view controller, but this can be changed to any con-
trol, such as showing an image instead of a title. The right button provides a single
toolbar button, usually for the most popular creative action (similar to the floating
action button in Android). This is shown in figure 12.6.

LEFT AND RIGHT ARE FLIPPED FOR RTL LANGUAGES For right-to-left languages
like Hebrew and Persian, the left bar button item is on the right, and the right
bar button item is on the left.

The left and right buttons are of type UIBarButtonItem, which is a control that’s
designed to put buttons on navigation bars. These buttons can be configured with any
text or an image, but iOS also provides a set of standard buttons (called system buttons
because they’re defined in the UIBarButtonSystemItem enum) for the most common
tasks, such as Refresh, Add, and Done.

Settings

User

Notifications

>

>

Notifications< Settings

Email

Push

>

>

Email

Daily

Weekly

Never �

< Notifications

Figure 12.5 Out of the box, iOS handles navigating forwards and backwards, including
updating the navigation bar to show the previous page name.

395Building the UI and view controllers for Countr
You can use the standard Add button in your master page. To add this button to the
navigation bar and bind it to your view model, add the following code to Counters-

View.

public override void ViewDidLoad()
{

...
var button = new UIBarButtonItem(UIBarButtonSystemItem.Add);
NavigationItem.SetRightBarButtonItem(button, false);
...
set.Bind(button).To(vm => vm.ShowAddNewCounterCommand);
set.Apply();

}

This code will create the bar button as the system-provided Add button, add it to the
right side of the navigation bar, and bind it to the add-new-counter command on the
view model. This button will navigate to the add counter screen, so let’s now imple-
ment that screen.

DON’T MISUSE SYSTEM BUTTONS If you plan on using system buttons, make
sure you only use them for their intended purposes. For example, if you want
a Delete button, don’t use the Stop button (an X). Apple will reject your app
for misuse of the system buttons. You can see the system buttons in Apple’s
UIKit documentation at http://mng.bz/4741.

12.1.3 Creating the UI for the detail view

The counter detail view is a very simple screen, with a text field for entering the name
of the new counter, and a Done button to save it. To create this view, start by creating
the relevant files in the Views folder: a new view controller called CounterView (don’t
forget to delete the CounterView.Xib file that’s created automatically when you add a
new view controller), and a storyboard called CounterView.storyboard.

Listing 12.7 Adding a bar button item to the navigation bar and binding it to a command

Left bar button item:
If this page comes from
navigating from a previous page,
this item will by default show a
back arrow and the name of the
previous view controller.

Title:
The title of the view
controller—this can be
text or any control you
want (such as an image).

Right bar button item:
Used for popular user actions.

Figure 12.6 Navigation bars have buttons on the left and right with a title in the middle.

Creates the bar button item
using the system Add item

Sets the button
as the right bar

button
Binds the button to the add-

new-counter command

http://mng.bz/4741

396 CHAPTER 12 Building more advanced iOS views
For the UI, drag a new view controller onto the storyboard, set its class to Counter-

View, and set the storyboard ID to CounterView. Drag a text field onto this view con-
troller, set its name to be CounterName, clear the text property and set the placeholder
text to be "Counter name". Because this is a text field, you don’t need to set the size
(remember, it has an intrinsic size based on its content), but you do need to set the
position. Constrain the top to the top layout guide (when you drag the top T-bar han-
dle, the superview will have a big green box at the top labeled “Top layout guide”),
and constrain the left and right sides to the left and right sides of the superview. Ide-
ally, the text field should be indented a bit instead of being hard up against all edges,
so set the constant for each constraint to 20. Figure 12.7 shows these properties and
constraints.

Once the UI is created, open the view controller and add the following code to set the
right base class and tell MvvmCross that this view controller comes from a storyboard.
This code is the same as you’ve used for other view controllers.

using MvvmCross.iOS.Views;
...
[MvxFromStoryboard]
public partial class CounterView : MvxViewController
{

public CounterView(IntPtr handle) : base(handle)
{
}

}

Next you need to override the ViewDidLoad method and create the navigation bar
item to save the counter (we’ll use the system-provided Done item for this). Then you
need to bind this button and the counter name text field to the view model. The fol-
lowing listing shows this code, which again is similar to code you’ve already written.

Listing 12.8 Setting the counter view to use the MvvmCross base view controller

Figure 12.7 The properties and constraints for the counter name text field

397Building the UI and view controllers for Countr
using Countr.Core.ViewModels;
using MvvmCross.Binding.BindingContext;
...
public override void ViewDidLoad()
{

base.ViewDidLoad();

var button = new UIBarButtonItem(UIBarButtonSystemItem.Done);
NavigationItem.SetRightBarButtonItem(button, false);

var set = this.CreateBindingSet<CounterView, CounterViewModel>();
set.Bind(CounterName).To(vm => vm.Name);
set.Bind(button).To(vm => vm.SaveCommand);
set.Apply();

}

That’s all you have to do for the detail view. You don’t need to wire up the Back button
to anything—the navigation controller will detect the Back button being tapped and
will close the view controller for you.

12.1.4 A quick recap

Before you run Countr, let’s have a quick recap:

 Table views—iOS uses table views to display lists of data—these are single-
column tables showing data in rows called cells. You can add table views in the
same way as any other control, but if you want to have a full-screen table view,
it’s easier to use a table view controller—a view controller that has a full-screen
table view as its superview. Table views use cell recycling, so they only create
enough cells to fill the UI, and as cells are scrolled off the top they’re reused on
the bottom.

 Table views data sources—Table views have data sources that map the source data
to cells. They’re responsible for providing cells populated with data on
demand, and they update the table view when the source data changes. Table
view data sources can also be used to implement swipe-to-delete.

 Table view cells—Rows in table views are cells, and they’re defined using cell pro-
totypes—reusable views that are used to display each row.

 MvvmCross table view helpers—MvvmCross has its own table view controller and
data source that supports binding.

 Navigation—iOS provides navigation controllers—container view controllers
that provide navigation among other view controllers and that automatically
add a toolbar at the top that has a Back button. You can also add buttons to this
navigation bar.

Listing 12.9 Creating the navigation bar item and binding controls

Creates the
navigation
bar button

Binds
controls
to the view
model

398 CHAPTER 12 Building more advanced iOS views
12.1.5 Running the app

The Countr app is now fully implemented, so launch it in one of the simulators and
play at creating counters, incrementing them, and deleting them. You can also kill
and relaunch the app and see that the counters have been persisted. Figure 12.8
shows what the two screens in the app should look like.

If you have any issues running the app, such as crashes or hangs, they may be caused by
known issues in different versions of Xamarin or MvvmCross. Check out the trouble-
shooting thread on the Xamarin In Action forum at http://mng.bz/9JAY for more
details.

When you run the app, the following things will happen:

1 iOS will start your app and start the MvvmCross framework, which creates a nav-
igation controller to host the app and then finds the view model registered as
the app start in the App class in the Countr.Core project—in this case, Counters-
ViewModel.

2 The MvvmCross framework finds the storyboard and view controller with the ID
of CountersView, finding it in the CountersView.storyboard file.

3 This storyboard is launched, which in turn creates an instance of the Counters-

View view controller. This view controller is hosted inside a navigation view
controller.

4 The view controller starts its lifecycle and loads the UI from the storyboard, lay-
ing out all the controls using the constraints specified for the current device
and orientation.

5 The ViewDidLoad method is called, and the view controller binds the controls
to the view model.

6 The table view data source is created and bound to the Counters property on
the view model. This is passed to the table view and updates the rows on screen.
Each row is created using the CounterCell prototype, and the counter view

Figure 12.8 The fully working Countr app

http://mng.bz/9JAY

399App icons and launch screens
model is bound to this cell using a delayed binding, so that it only binds after
the UI is fully constructed.

7 The navigation bar button is created and bound to a command on the view
model.

8 When a user taps the Add toolbar button, the command is executed, which nav-
igates to the CounterViewModel. The MvvmCross framework finds the Counter-

View based on the name of the view model, finds the storyboard based on the
storyboard ID of CounterView, and launches this storyboard, which in turn cre-
ates the CounterView view controller, binding all the controls and creating
another navigation bar button.

9 In the counter view, if the user taps the Back button, the view controller is
closed and the previous view controller (the counters screen) is shown. If they
tap the Done button, the save command is executed, and this closes the current
view model, which closes the view controller and navigates back to the master
view.

10 If a counter is added or removed, the table view data source detects these
changes and tells the table view to update its rows.

11 When a user swipes on a counter, the table view source’s CommitEditingStyle
method is called, and the code manually executes the delete command.

12.2 App icons and launch screens
We’ve completed both our iOS apps, but they still need a bit of improvement. If you
look at the iOS home screen, you’ll see that both of our apps have a default Mvvm-
Cross icon, and when you launch the apps you’ll see MvvmCross launch screens. Let’s
improve these both.

As we did for Android in chapter 10, we’ll only look at Countr here, but the same
principles apply to all apps, so feel free to update SquareRt too.

12.2.1 App icons

In chapter 10 we generated app icons for our Android apps. Whichever method you
used would also produce iOS app icons as an image set ready to be added to an asset
catalog. MakeAppIcon will provide icons for both platforms, and most Sketch app
icon templates also export icons for iOS and Android.

Android needed five app icons, which may seem like a lot, but it’s nothing com-
pared to iOS—Apple went icon-crazy with iOS, and you need to provide icons for a
whole range of devices at different resolutions, as well as a different icon for when
users search for your app, another one if you integrate with the iOS settings app, and
different sizes for older OS versions if you support them. To cover all iPhones and
iPads, you need 20 icons, and for most apps these will be 20 identical icons at different
sizes. Figure 12.9 shows all these different icons.

400 CHAPTER 12 Building more advanced iOS views
Figure 12.9 iOS supports a huge range of app icon sizes for different devices, uses, and OS versions.
These are the possible icons for iOS devices; you can also configure different icons for Apple Watch apps.

401App icons and launch screens
You can see all the icons in your asset catalog. By default, apps have a special image set
in their asset catalog called AppIcon, and this is for app icons. It’s not like the image
sets for normal images, with normal, @2x, and @3x icons for universal, iPad, or
iPhone. Instead it has images for all possible iOS, macOS, and watchOS screen sizes
and usages. Table 10.2 lists some of these sizes. Although this is a lot of icons, you’ll
usually want to use the same base icon for everything, so tools like MakeAppIcon
really help.

Once you generate your icons, you can update them in one of two ways: by manually
using the asset catalog or by copying the files in. To update using the asset catalog,
open the AppIcon image set and then either drag the image with the right resolution
onto the relevant image (for example, drag an image at 120 120 onto the 2x image
labelled iPhone App iOS 7-10 60pt), or click on the image in the image set and select
the file.

Once you generate your icons, you can update them in one of two ways: manually
using the asset catalog, or by copying the files in.

To update using the asset catalog, open the AppIcon image set, and then either
drag the image with the right resolution onto the relevant image (for example, drag
an image at 120 120 onto the 2x image labelled iPhone App iOS 7-10 60pt), or click
the image in the image set and select the file. This is rather painful, as there are a lot
of images to update, so it’s easier to copy the files in.

To copy the files in, open Explorer or Finder and open the Countr.iOS folder.
Then open the Assets.xcassets folder. In there will be a set of folders for each image

Table 12.1 Image sizes of iOS icons for different uses

Size Filename Used for

120 x 120 Icon-60@2x.png Home screen on retina iPhone

180 x 180 Icon-60@3x.png Home screen on retina HD iPhones (the “Plus” phones:
6s Plus and 7 Plus)

76 x 76 Icon-76.png Home screen on non-retina iPads

152 x 152 Icon-76@2x.png Home screen on retina iPads

167 x 167 Icon-83.5@2x.png Home screen on iPad Pros

40 x 40 Icon-Small-40.png Spotlight (searching for apps)

80 x 80 Icon-Small-40@2x.png Spotlight on retina devices

120 x 120 Icon-Small-40@3x.png Spotlight on retina HD devices

29 x 29 Icon-Small.png Settings

58 x 58 Icon-Small@2x.png Settings on retina devices

87 x 87 Icon-Small@3x.png Settings on retina HD devices

402 CHAPTER 12 Building more advanced iOS views
set, named <ImageSetName>.imageset. There will also be a slightly different one for
the app icons called AppIcon.appiconset. Open the AppIcon.appiconset folder and
you’ll see some images as well as a JSON file called Contents.json. These are the differ-
ent images in the image set, and the JSON file is used to specify which image is used
for each purpose. You’d normally never edit this JSON file—it’s created and updated
by the asset catalog editor when you add or change image sets. If you replace the
images, you must keep the names the same or they won’t match what’s in the JSON
file, but if you use a tool like MakeAppIcon, you won’t only get the images, but also a
new Contents.json file, so you can just replace the entire folder.

To update your app icon, open the Images\Countr\AppIcons\iOS folder from this
book’s source code, and copy the entire contents of AppIcon.appiconset into the asset
catalog folder in your app. Rebuild and rerun your app, and you’ll see that the icon
has been updated on both the home screen and the search screen. If the icon doesn’t
update, you’ll need to delete the app from your device or simulator, do a full rebuild,
and try again.

12.2.2 Launch screens

Our app now has a nice icon, but we still need to fix up the launch screen. The default
launch screen shows the app’s title along with a copyright message, so it would be
good to show something a bit nicer. Unlike on Android, launch screens on iOS aren’t
views. Instead they’re baked into the OS and are shown while the application itself is
starting up.

IOS APPLICATION LIFECYCLE

You saw in the last chapter that iOS view controllers have a lifecycle—a set of methods
that are called as the view controller is created, shown, hidden, and destroyed. The
same is true for the underlying application. When your app is run, an application class
is created automatically for you, and as the application goes through its lifecycle, it will
make callbacks to a delegate class (a class that implements a particular interface that’s
used to handle callbacks, because Objective-C doesn’t have events). This class is
referred to as your application delegate, and it derives from UIApplicationDelegate.

All iOS apps have an application delegate class in the root of the project, and it’s
usually called AppDelegate.cs. The following listing shows the class declaration.

[Register("AppDelegate")]
public partial class AppDelegate :

MvxApplicationDelegate
{

...
}

This class derives from MvxApplicationDelegate, which in turn derives from
UIApplicationDelegate, and it provides some lifecycle handling that MvvmCross
uses internally. It also has a Register attribute that’s used to tell the Xamarin tooling

Listing 12.10 The application delegate class derives from an MvvmCross base class

The app delegate derives
from an MvvmCross class.

The app delegate has a
Register attribute on it.

403App icons and launch screens
that this class should be exposed to the underlying iOS runtime so that it can be
accessed by core SDK classes. This allows the main iOS application class to use this del-
egate for its lifecycle.

The app delegate overrides one method, FinishedLaunching, and this is called
when the application has finished launching and is ready for user code to be run. By
default, this code shows a Window, which is the UI container for the app itself. In
MvvmCross apps there’s also some setup code to ensure that the IoC container is ini-
tialized and that the initial view model is set and started.

There are other methods on this delegate that you can override to handle launch
options if you want to implement 3D touch or handle notifications. You can read
more about app delegates in Xamarin’s API documentation at http://mng.bz/K01c.

DON’T CALL THE BASE METHODS Delegates are based on an Objective-C princi-
ple called protocols. These are like interfaces, but you only implement the
methods you want, not everything. The base delegate classes don’t do any-
thing at all, so you shouldn’t call the base methods when overriding. In fact,
the Xamarin iOS SDK will throw an exception if you do.

When your app starts up, it will immediately show the launch screen. It will then work
through the application lifecycle (shown in figure 12.10), calling methods on the
application delegate, before finally calling FinishedLaunching, in which MvvmCross
will initialize everything and load the first view. This means your launch screen will be
shown throughout the startup process, unlike in Android where you need to show an
activity while initializing everything.

App launched Launch screen
shown FinishedLaunching()

MvvmCross
initialized

App startup
view launched

Figure 12.10 The application lifecycle starts by showing the launch screen. Then the app delegate methods
are called, and this loads the first view.

http://mng.bz/K01c

404 CHAPTER 12 Building more advanced iOS views
UPDATING THE LAUNCH SCREENS

iOS launch screens can be a static image, a storyboard, or a Xib. Storyboards and Xibs
are preferred over static images as they can be sized for different screen sizes, orienta-
tions, and resolutions. Images are a hangover from before iPads when there were only
one or two screen sizes to support. Although storyboards are the preferred way of
defining UIs from the views in your app, you can still use a Xib for a launch screen if
you want. After all, Xibs are for defining single screens, and a launch screen will only
ever be a single screen.

The default MvvmCross apps have a launchscreen.xib file in the Resources folder
that’s used, so you can edit this. Xib files are edited the same way as storyboards, the
only difference being that they only have a single view in them and don’t need a view
controller.

If you open the launchscreen.xib file in a designer, you’ll see some static controls
on it—two labels, with one showing the name of the iOS project (such as SquareRt
.iOS) and the other showing a copyright message. This isn’t great, so let’s make it look
like the provided icon by doing the following:

1 Delete the two labels.
2 Set the background color of the view by selecting it, and then in the Property

pad open the Background drop-down in the Layout tab, and select Dark Gray

Color.
3 Add a new image set to the asset catalog called AppLaunchImage, and add the

three AppLaunchImage images from the Images\Countr\iOS source code folder
to the 1x, 2x, and 3x universal images.

4 Drag a new image view from the toolbar to the view, and constrain it to the center
of the view. Set the Image property in the Property pad to be AppLaunchImage.

Figure 12.11 shows what the launch screen should look like when you’re done.

Set the background color
to Dark Gray Color.

Add an image view, set the image
to AppLaunchImage, and constrain
it to the horizontal and vertical
centers of the superview.

Figure 12.11 Creating a launch screen
with a dark gray background and an image
in the center

405App icons and launch screens
LAUNCH SCREENS ARE CONFIGURED IN INFO.PLIST The launch screen is config-
ured in the info.plist file, so if you want to delete the Xib and replace it with a
storyboard or a static image, you can configure this by opening the plist and
updating the Launch Images section.

Build and run your app, and you’ll see that you now have a nice shiny splash screen to
go with your nice shiny icon. If the splash screen doesn’t update, you’ll need to delete
the app from your device or simulator, do a full rebuild, and try again.

STYLING THE APP

We have a nice icon and a nice launch screen, but the app is still a bit plain, with a
white title bar, white background, and black text. It would be good to add a splash of
color, such as making the title bar orange like we did for the Android app. Unlike
Android, iOS doesn’t have XML-based styles. Instead it has an Appearance API where
you can set in code the default colors for various UI widgets. In your app delegate you
can set these defaults, and they’ll be applied everywhere in your app. Note that these
are defaults that you’ll be setting—you can still override them explicitly on an individ-
ual basis.

Open AppDelegate.cs and add the following code to the start of the Finished-

Launching method.

public override bool FinishedLaunching(UIApplication app,
NSDictionary options)

{
UINavigationBar.Appearance.BarTintColor = UIColor.Orange;
UINavigationBar.Appearance.TintColor = UIColor.DarkGray;
var attrs = new NSDictionary(UIStringAttributeKey.ForegroundColor,

UIColor.DarkGray);
UINavigationBar.Appearance.TitleTextAttributes
new UIStringAttributes (attrs);

...
}

On the UINavigationBar class is a static property called Appearance of type UINavigation-
BarAppearance. It contains a set of properties that define the look and feel of the UI.
These properties also exist on UINavigationBar—if you set them on an instance of
UINavigationBar, they will apply to that single instance, but if you set them on the
Appearance, they’ll apply to all navigation bars. This is a nice way of doing it because
you can play with the look and feel of a control on a storyboard, and once you’re
happy with the way it looks, set the properties using the Appearance API and have that
look and feel apply everywhere.

The preceding listing sets the BarTintColor on the Appearance property to
orange, which sets the background color for the navigation bar. You also set the Tint-

Color, which sets the tint that’s applied to any buttons on the navigation bar. When
you ran the app earlier, you may have noticed that the plus button was blue, despite

Listing 12.11 Setting the default appearance for the navigation bar

406 CHAPTER 12 Building more advanced iOS views
the image being dark gray. This is because iOS applies a tint to all buttons so that they
look the same, and this tint defaults to blue. By setting the bar tint color, you can
change this for all buttons on the navigation bar.

The last thing you set is the appearance attributes of the title. When dealing with
labels, there are a number of things that can be configured, such as the text color,
font, and font size, so you need to set attributes to specify which property you want to
override. In this case you just want to override the text color, so you need a set of
string attributes that just contains a single entry for the foreground color. You do this
by creating a NSDictionary (a dictionary class like Dictionary from the .NET Frame-
work, but from the underlying iOS SDK) containing a key-value pair with the key as
UIStringAttributeKey.ForegroundColor, a string constant for the foreground color,
and the value as the color dark grey. You could configure other attributes by adding
more entries to this dictionary.

If you build and run the app now, it should look nicer, with an orange navigation
bar. You can configure pretty much anything on the UI by using the Appearance API,
so try it out and see what other improvements you can make to your apps.

12.3 Making the apps production-ready
Congratulations—you’ve built two cross-platform native apps using Xamarin and the
MVVM design pattern!

In the first part of this book, you learned how you could use the MVVM design pat-
tern to build cross-platform native apps, and in this part you got your hands dirty with
some code and built two apps. Each app has a cross-platform model layer containing
business logic, and a cross-platform view-model layer containing UI logic. You’ve also
built platform-specific view layers so that your apps have native UIs and look and act
like the platform on which they run.

This isn’t the end of our apps’ stories. The next step is to release the apps to the
stores, ready for users to download them and enjoy the fruits of your labor. Before you
can do this, you need to make sure your apps are production-ready, and the next part
of this book will focus on achieving this. We’ll look at how you can sign your apps so
that they can run on physical devices, how to test your UIs on local devices and using
Xamarin’s Test Cloud, how you can automate builds and instrument your apps to get
crash reports and usage information using Visual Studio App Center, and how you can
distribute your apps to beta testers and then the actual Google and Apple stores.

Summary
In this chapter you learned

 Table views are used to show lists of data.
 App icons come from asset catalogs.

407Summary
You also learned how to

 Configure a table view using a table view source and prototype cells, and then
bind this to a collection.

 Add toolbar buttons to the navigation bar and bind these to commands.
 Update the launch screen.
 Use the Appearance API to configure the colors on the UI.

Part 3

From working code
to the store

Once your app builds and runs, there’s still a ways to go to get a produc-
tion-quality app on the iOS and Android stores. In this part of the book, you’ll
take one of the example apps from the previous chapters and work through the
steps to get it running on real devices, test the UI, add analytics to ensure it
works once deployed, and then roll it out to the stores.

Chapter 13 looks at how to run apps on real devices (which is harder than
you might think), including setting up Android devices for developers, configur-
ing iOS devices, and generating iOS provisioning profiles.

Chapter 14 covers UI testing—the ability to write and run automated tests
that interact with your app the way a real person would.

Chapter 15 introduces Visual Studio App Center and shows how it can be
used to build your apps, run the UI tests from chapter 14 against devices in the
cloud, and set up your apps to track usage information and crashes.

Finally, chapter 16 covers the final stage in your app’s journey: delivery to
users. It looks at using App Center to provide beta-test builds to select users, and
then it shows how to finally publish apps to the Google Play store and Apple App
Store.

13Running mobile apps
on physical devices
In part 2 of this book we built two apps for iOS and Android using the MVMM
design pattern. In this part, we’re going to look at how to take our apps from work-
ing code to production-ready apps released to the Apple App Store and Google
Play store. We’ll start in this chapter by looking at how to sign our apps so that we
can run them on real devices. Then, over the next three chapters, we’ll look at writ-
ing automated UI tests to validate that our apps work, look at using Visual Studio
App Center to build our apps, run our UI tests in the cloud, monitor for crashes,
and provide analytics to trace how how users are using our apps, and finish up by
deploying to beta testers and the Google Play and Apple App stores.

This chapter covers
 Setting up Android devices for debugging

apps

 Signing Android apps

 Creating iOS provisioning profiles

 Debugging on iOS devices
411

412 CHAPTER 13 Running mobile apps on physical devices
So far, we’ve tested our apps by running them on Android emulators and iOS sim-
ulators. These virtual devices are good enough for simple testing purposes, but we
really need to run our apps on physical devices—after all, the end goal is to have an
app we can sell in the store to people using phones and tablets, not emulators and
simulators.

When Apple designed iOS, it wanted to protect users from malicious apps that
could steal your data or run up huge phone bills by calling premium-rate telephone
numbers. Apple made sure all apps are sandboxed, and only apps approved by Apple
and published in their App Store could be run on any device. That’s great for end
users, but not so great for developers. As developers, we can get around this a little bit,
but only by configuring our apps to run on one or more specific devices. With
Android, Google hasn’t provided the same level of safety, but it does have some
options turned on by default to stop apps from unknown sources being run (for
example, apps that were downloaded from the internet directly instead of from the
Play store), and you need to do some device setup before you can debug an app.

We’ll start this chapter by setting up an Android device for debugging and run our
apps on it. Then we’ll look in more detail at how we can sign our Android apps so
they’re ready for distribution via the Play store. We’ll see a quick, dirty, and free way to
debug your app on an iOS device, and then we’ll look in more detail at how you can
sign your iOS apps using an Apple Developer account and run them on a selection of
real devices.

Parts of this chapter deal with running on actual devices, so you’ll need a real
Android device and a real iOS device to test on. If you don’t have one or both of these,
feel free to skip the relevant sections, but as you start developing real-world apps, it
will be worth getting some real devices to test on, even if they’re cheap second-hand
phones or tablets. After all, real devices are much less performant than an emulator
running on top of desktop hardware, and emulators won’t have some of the features
of real devices that you many want to use in your apps, such as cameras, accelerome-
ters, and Bluetooth.

13.1 Running Android apps on a real device
We’ll start by looking at Android—first at how to run apps on a real device, and then
at signing apps to prove to Google and the world that they really came from us and
haven’t been manipulated by third parties.

The easiest way to run your apps on your Android device is to put the device in
developer mode, plug it into your PC or Mac, and run your apps on it using the debug-
ger. To put your device in developer mode, find the build number in the Settings app
and tap it seven times (figure 13.1). Yup, really, seven times—not a joke.

The location of the build number varies, depending on the manufacturer, but it’s
easy enough to find. Open the Settings app, find the About Device tab (on older
Android versions, this will be under the General tab). Look for a field called Build
Number, or Software Information, and tap that. Then look for Build Number. Once

413Running Android apps on a real device
you’ve found this, tap it seven times. After a few taps, you’ll see a toast saying some-
thing like “You’re now 2 steps away from being a developer,” with a number that
counts down as you tap. After seven taps, a toast will appear saying that you’re in devel-
oper mode, and a new Developer Options menu will appear under Settings.

Once your device is in developer mode, turn on USB debugging. This is a two-step
process:

 Turn on USB debugging—Tap the Back button to go back to the main Settings
menu, and then tap Developer Options. There are a huge number of developer
options you can tweak, but we’re only interested in the Debugging section, where
you’ll see an option called USB Debugging. Turn this on, and then tap OK when
you’re asked if you want to allow USB debugging (figure 13.2).

After you tap the build number a few times,
this toast will appear, counting down until
developer mode is turned on.

The build number is in the About Phone/Tablet/Device
setting in the Settings app. It may be in a sub-item called
Software Information, depending on the device manufacturer.

Tap here seven times to
enable developer mode.

Figure 13.1 Tap the build number seven times to enable developer mode.

Figure 13.2 Turn on USB debugging and tap OK at the prompt.

414 CHAPTER 13 Running mobile apps on physical devices
 Allow USB debugging from a particular PC or Mac—Once USB debugging is turned
on, connect your Android device to your Mac or PC with a USB cable. Once you
do this, you should see a popup on the device asking for permission to allow
USB debugging from your PC (although you’ve turned USB debugging on
from the device, you still have to allow it for each connected PC or Mac). This is
shown in figure 13.3.

When the box pops up, check the Always Allow From This Computer check
box to avoid having to accept it every time, and then tap OK. If you don’t see
this box, unplug your device, make sure Visual Studio is running, and then plug
it back in again. This setting is on a per PC or Mac basis, so if you use multiple
developer machines, allow it on each one that you use.

Once USB debugging has been enabled, you’ll be able to select your device in the
drop-down just as you selected emulators, as shown in figure 13.4. Give it a try now by
opening up either the SquareRt or Countr solution, setting the Droid app as the
startup project, selecting your device, and clicking the Run button. Your app will
build, and it should launch on your device. You should be able to debug it in the same
way as when it runs on an emulator.

Figure 13.3 Once USB debugging is turned on, you need to
allow individual computers to connect and debug.

Figure 13.4 When you have a device configured and plugged in, you can select it for debugging.

415Signing Android apps for publishing
13.2 Signing Android apps for publishing
The end goal with our Android apps is to have something up on the Google Play store
that users can download and use. This means our users need to be able to not only
install our apps, but also be able to install any updates we release with new features or
bug fixes. For this store flow to work, we need a unique way of identifying our apps so
that the Play store can know which apps a user has purchased or downloaded, and
what versions they have on their devices, so that the store can update older versions to
the latest release. This identity is made up of three parts: the package name, version
number, and signing keystore. Version number was discussed in chapter 6, so here
we’ll only look at the package name and keystore.

13.2.1 Setting the package name

We looked at the package name and version number back in chapter 6, but to recap,
the package name is the unique identifier for an app, and it’s usually a reverse domain
name suffixed with the app name (such as io.jimbobbennett.countr). The version
number is an integer that defines the build for an app. When you publish an app to
the store (something we’ll look at in chapter 16), Google will use the package name to
uniquely identify the app and the version number to manage updates. When you pub-
lish a new version of an app, you increment the version number so that Google knows
there’s an update.

As this will be the first build of our apps, we don’t need to worry about the version
number, but now would be a good time to set the package name. This defaults to
com.companyname.<app name>, so for Countr this will be set to com.companyname
.Countr, and for SquareRt it would be com.companyname.SquareRt. When you pack-
age up your app to run it on an emulator or device, or when you’re preparing for a
store release, an Android package (APK) file is created. This package contains your
app code and all your resources, and it’s named <package name>.apk, so for Countr it
would be com.companyname.Countr.apk. You can see this in the output folder of the
Droid project (for example, Countr.Droid\bin\Debug) after you deploy to a device or
emulator by running the app (packages aren’t created when you compile, just when
you deploy).

The package name is set in the application manifest, accessible on Windows in the
project properties and on Visual Studio for Mac by double-clicking the AndroidMani-
fest.xml file in the Properties folder. Update this to a suitable reverse domain name
(your domain if you own one, or a suitable unique name, suffixed with the app
name). For example, I’d use io.jimbobbennett.countr. This is essentially the same as
the iOS bundle identifier, so you can set it to the same value you used for that. Once
it’s set, redeploy the app and take a look in the output folder—you’ll see the APK with
the new name.

416 CHAPTER 13 Running mobile apps on physical devices
13.2.2 Keystores

This leads to the obvious question—if your app is uniquely identified by its package
name and version number, what’s to stop someone else from releasing an app with the
same package name that contains malicious code? The answer is the keystore. When
you package up your apps, sign them with a keystore file that contains one or more
private keys that are yours and yours alone. When you update an app on the Google
Play store, if the update isn’t signed with the same key, it will be rejected.

Whenever you run an app on an Android device, it must be signed with a key-
store—even when you’re debugging. Xamarin makes this part pretty easy—it creates a
default keystore that’s used to sign your apps. This is ideal for debugging, but when
you want to release your app to the store, you have to sign with your own keystore file
(we’ll look at how to create one in the next section). The Xamarin default keystore is
created every time you install Xamarin and will be different for different developers,
and it will change if you need to reinstall the Xamarin tools. When you publish to the
Google Play store, you have to sign all releases of your app with the same key, or Goo-
gle won’t know that the releases all come from you—it will reject updates signed with
a different key.

Keystores can be reused across multiple apps. This means you can have one key-
store and use it to sign all your apps, if you want. By doing this, you lose a bit of secu-
rity—if someone gets hold of your keystore and password, they have control of all your
apps, but you also make your life easier because you only have one keystore and pass-
word to manage. It’s up to you which you prefer—some developers use a single key-
store for all apps and some use multiple keystores. Do what works for you.

13.2.3 Creating keystores and signing builds

When you’re ready to publish your app for other people to use, package it up and sign
it with your keystore—a process known as archiving. This is essentially the same as what
happens under the hood when you run your app on a device or emulator—an APK
file is created and signed, except in this case you’re specifying a particular keystore to
use rather than using the default one that Xamarin creates for you. As a part of this
process, you can create a new keystore file if necessary.

To start the process, set your Droid app as your startup project, and from Visual
Studio for Mac select Build > Archive For Publishing, or from Windows select Build >
Archive. This will compile your app, create an unsigned APK file, and open up the
Archive Manager, shown in figure 13.5. The Archive Manager shows all the archives
you’ve created for your project, and from there you can sign them. Select the newly
created archive for your app and click Sign and Distribute in Visual Studio for Mac, or
Distribute on Windows.

417Signing Android apps for publishing
A dialog will pop up, allowing you to select how you want to distribute your build—
either as an ad hoc build or directly to the Google Play store (figure 13.6). We’re not
planning to release to the store yet, so select Ad Hoc to create an APK that’s saved
locally. The next step is to select the keystore you want to use to sign the app, and it’s
here that you can create a new keystore. Click Create a New Key in Visual Studio for
Mac, or the big green plus button on Windows.

Figure 13.5 Android APKs can be managed from the Archive Manager.

418 CHAPTER 13 Running mobile apps on physical devices
In the dialog that pops up (figure 13.7), enter an alias for the keystore (this will
become the filename), add a password, and then set at least one piece of information
in the personal information section. Click OK. This will generate your keystore, con-
taining a private key protected by your password. On Windows, these keys are created

Figure 13.6 Selecting the distribution channel

419Signing Android apps for publishing
in your home directory under <home>\AppData\Local\Xamarin\Mono for Android\
Keystore\<alias>\<alias>.keystore. On Mac, they’re created in ~/Library/Developer/
Xamarin/Keystore/<alias>/<alias>.keystore, where <alias> is the alias you gave it
when creating it. Keep this file, alias, and password safe—back it up, ideally to a secure
cloud store, and back up your password using a cloud-based password manager. If you
lose this keystore, you won’t be able to publish updates to your app.

KEEP YOUR KEYSTORE SAFE You must keep your keystore and its password
safe. Make sure it’s secure and backed up, preferably to a secure cloud ser-
vice. If your key is stolen, the thieves could use it to sign malicious versions of
your app. If it’s lost or you forget your password, you won’t be able to update
your app on the store.

After creating (and backing up) the keystore, select it, and click Save As in Visual Stu-
dio on Windows, or Next and then Publish on Mac. Choose a destination to save the
archive to, and enter your keystore password when prompted. Your APK will then be
signed and saved. This APK is the end result of all your hard work so far—you now
have an Android app designed, built, and archived, ready for distribution. You can
send this APK to beta testers or distribute it to the Google Play store.

That’s Android done, so let’s move on to iOS.

Figure 13.7 Creating a keystore file involves giving it a name, a password, and
one piece of personal information.

420 CHAPTER 13 Running mobile apps on physical devices
13.3 Running iOS apps on a real device
It’s pretty easy to get debugging working on an Android device. On iOS it’s not so easy
and involves something that iOS developers dread—provisioning profiles (figure 13.8).

13.3.1 What is a provisioning profile?

Provisioning profiles are used to tie up three things:

 A signing certificate—Signing certificates are used to verify that your app really
does come from you and not from an imposter.

 An app ID—App IDs identify one or more apps and matches the bundle identi-
fier in your app’s info.plist. Bundle identifiers are usually reverse domain names
suffixed with the name of your app (for example, I’d use io.jimbobbennett
.countr for Countr), so app IDs will either match this or use a wildcard for the
app names (such as io.jimbobbennett.*).

 Device UDIDs (or store release)—All iOS devices have a unique device ID (UDID).
When you create a provisioning profile, you can create one of two types of pro-
files—a development or ad hoc profile that you can run on test devices, or a
store profile for when your app is released to the App Store. Development and
ad hoc provisioning profiles need a list of UDIDs for the devices they can be
run on, and once this list is set, you can only use this profile to run on those
devices (to change this list, regenerate the profile). For store profiles, you don’t
need to set a UDID list, but these profiles can only be used to sign builds that
will be deployed to the store and can’t be used for local testing.

Your provisioning profile is embedded into your app package when you compile for
devices. The build step that does this first verifies that the certificate used in the pro-
file is yours and that it’s in your keychain. Then it verifies that the app ID matches.
When you run your app on a device, the device itself will refuse to allow the app to be
installed if the UDID isn’t in the profile. This is just for physical device builds—simula-
tors don’t need provisioning profiles.

You used to need a paid Apple Developer account to create a provisioning profile
and run on a physical device, but Apple recently relaxed that requirement and will
allow you to use Xcode (Apple’s IDE) to generate a temporary profile for your device
for development and testing purposes. This profile only lasts a week and needs to be
regenerated every time it expires.

Figure 13.8 Provisioning profiles aren’t the most popular thing
with developers…

421Running iOS apps on a real device
Later in this chapter we’ll look at profiles in more detail (and you’ll need a paid
Developer account for this), but to start with, let’s just use Xcode to create a profile.
Xcode is only available on Macs, and you should already have it installed or you
wouldn’t have been able to build iOS apps with Xamarin. If you’re on a Mac, launch it
(it should be in your Applications folder). If you’re using Windows with a remote Mac
build host, you’ll need to log in to your Mac, either directly or remotely.

13.3.2 Bundle identifiers

Xcode doesn’t know anything about Xamarin and can’t be used to load your Xamarin
app, but you can trick it a bit. All apps are identified by their bundle identifier in their
info.plist, and if you have multiple apps with the same bundle identifier, you can reuse
the provisioning profile for both of them. When you submit an app to the store, the
bundle identifier needs to be unique, so you can’t use the same ID for multiple apps
that you want to put on the store, but there’s nothing stopping you from creating a
dummy app with the same bundle ID just to get a profile. You can create this dummy
app by creating an app in Xcode with a bundle identifier that matches your apps, let-
ting Xcode create the profile, and then using it in your Xamarin app.

The first thing to do is get your bundle identifier. Open the SquareRt solution (or
Countr—it doesn’t matter, as the steps are pretty much the same), and then open the
info.plist file in the SquareRt.iOS project. In the Identity section there should be a Bun-
dle Identifier that defaults to com.companyname.SquareRt (figure 13.9).

This is a two-part thing made up of an organization identifier and a product name,
the organization identifier being com.companyname in this example, and the prod-
uct name being SquareRt. When creating multiple apps, you should follow the same
convention using the same organization identifier but different product names.
Choose a suitable identifier, such as a reverse domain name if you have your own
domain, or something with your own or your company name in it, suffixed with the
product name, .SquareRt (for example, I use io.jimbobbennett.SquareRt).

13.3.3 Creating a dummy app in Xcode

To create a dummy app, open up Xcode and create a new project by selecting File >
New > Project. Select Single View Application from the iOS tab and then click Next. In
the next screen, set the Product Name to SquareRt and the Organization Identifier to
whatever you set as the first part of the bundle identifier in your info.plist. The end
result should be that the read-only Bundle Identifier field matches the bundle identifier

Figure 13.9 The bundle identifier is set in the info.plist file.

422 CHAPTER 13 Running mobile apps on physical devices
in your Xamarin app, so if you used com.companyname.SquareRt, the product name
should be SquareRt, the organization identifier should be com .companyname, and you
should see the bundle identifier showing com.companyname .SquareRt. This is shown
in figure 13.10.

Figure 13.10 Create a new iOS Single View app with a bundle identifier that matches your
Xamarin app.

423Running iOS apps on a real device
Next, add an account—Xcode will only create profiles for valid Apple IDs. Click the
Add Account button and log in with a valid Apple ID (or use Create Apple ID if you
don’t have one). This can be any Apple ID, including the account you use with iTunes
to buy songs and apps. Once you’ve logged in with your Apple ID, you can close the
dialog that popped up (figure 13.11).

The Add Account button will be replaced with a drop-down where you can select your
team—rather than have individual profiles for single developers, Apple thinks of pro-
files as belonging to teams, so that everyone developing an app can share the same
profile. If you’ve logged into Xcode before, the Add Account button won’t show and it
will display the team drop-down straight away. A default team is created for you, called
<Your Name> (Personal Team), so select this from the drop-down and click Next,
select a folder to save your app to, and click Create.

Once your app is created, connect your device using a USB cable and then select it
as the active device in the drop-down at the top left (figure 13.12). When it’s selected,
Xcode will automatically generate a provisioning profile for you that lasts seven days.

Once this profile has been created, switch back to Visual Studio. You should then
be able to select your device, ready to run your app. Visual Studio for Mac usually
shows the device the first time. If you don’t see your device straight away on Windows,
try unplugging it and plugging it back in, or restarting Visual Studio.

Figure 13.11 Xcode needs a valid Apple ID to create profiles, and it will
automatically create a default team for you from your Apple ID.

Figure 13.12 Once your device is plugged in, select it from the
drop-down in the top left.

424 CHAPTER 13 Running mobile apps on physical devices
13.3.4 Running your app on a physical device

Once you’re ready to run your app, there’s one more step. If you try to run the app, it
will install on your device but not start up. Instead, if you launch it, it will show an
error like the one in figure 13.13.

This is because Apple likes to be really secure. Not only do you need to set up the tem-
porary provisioning profile on your Mac, you also need to allow it on your device. If
you try to run the app manually, you’ll be presented with an alert telling you it’s from
an untrusted developer. Open the Settings app, go to General > Device Management,
select your Apple ID, and tap the Trust <your Apple ID> button. Then tap Trust on
the dialog that pops up.

Once that’s done, you can launch the app in a debugger, and you should see it run
on your device. You can now run and debug your app on the device as you would in
the simulator—setting breakpoints, evaluating variables, and stepping through code.

TRUST LASTS ONLY WHILE YOU HAVE AN APP FROM THAT APPLE ID INSTALLED When
you trust the Apple ID, your phone will allow all apps from that Apple ID to
run. If you installed Countr and SquareRt using provisioning profiles based
on the same Apple ID, you’ll only need to trust it once and both apps will
work.

This trust only lasts as long as you have at least one app installed. Once you
have no more apps installed from a particular Apple ID, the trust is revoked
and you have to trust it again the next time you install one of your apps.

13.4 Creating iOS provisioning profiles
As you might expect, iOS signing is completely different from signing for Android—
the biggest difference being cost. Anyone can create signed APKs for free. You only
need to pay if you want to distribute via the Google Play store, and it’s a one-time cost
of $25 (at the time of writing). For iOS, when you want to sign your apps to run on
devices other than your own, or you want to avoid re-signing via Xcode every seven
days, or you want to publish to the store, you must be a fully paid-up member of the
Apple Developer program. This currently costs $99 every year.

Figure 13.13 The first time you install an
app using a provisioning profile from Xcode,
you need to trust it.

425Creating iOS provisioning profiles
To sign up, head to https://developer.apple.com, sign in with your Apple ID, and
follow the instructions to purchase a Developer account. The Apple Developer site is
pretty helpful and it changes frequently, so I won’t cover the specific steps here. Be
aware, though, that Developer accounts are tied to either an individual developer or
to a business, and each account only lets you publish under the account owner. If you
have an account at work as part of a business membership, you won’t be able to use
that account to publish your personal apps.

iOS signing is based on provisioning profiles—you provision your app to run as an
ad hoc build on a fixed set of devices or to run on any device when distributed via the
store. As you’ve already seen, a provisioning profile ties a certificate to an app ID and
optionally to one or more devices, so let’s create a provisioning profile for debugging
using a real device, similar to what we created with Xcode earlier, but one that won’t
expire every seven days. We’ll start by looking at certificates.

13.4.1 Certificates

A certificate is used to sign your apps to certify that they’re from you. They can be
thought of as similar to Android keystores, but with a few important differences. You
need different certificates for different things, so you create one certificate for debug-
ging your app on devices, a different one for distribution via the store, and perhaps
others for using push notifications, using Apple Pay, or building VoIP apps. The other
big difference from Android is that your certificates are stored in the Apple Developer
portal, so Apple keeps copies of all your certificates—eliminating the worry about los-
ing them.

You can create certificates in one of three ways—from the Apple Developer portal,
using Xcode from your development Mac or Mac build host, or by using Visual Studio
for Mac and a tool called Fastlane.

CREATING CERTIFICATES USING XCODE

Launch Xcode and ensure you’ve signed in using the Apple ID you used to sign up
with the Apple Developer Program. Click Xcode > Preferences, select the Accounts
tab in the dialog box that appears, and then select your Apple ID on the left side.
You’ll see the details of your Apple ID on the right. Click the Manage Certificates but-
ton at the bottom.

This will open another dialog showing all your installed certificates (which will
probably be empty). Click the plus button at the bottom and select iOS Development
(figure 13.14). This will create a certificate for you, install it in your macOS keychain,
and upload it to the Apple Developer portal.

CREATING CERTIFICATES USING VISUAL STUDIO FOR MAC AND FASTLANE

To help with automating the whole Apple app maintenance process, an open source
set of tools called Fastlane was created (Fastlane is now maintained by Google). It pro-
vides a whole range of tools that connect to Apple’s Developer services, allowing you
to manage certificates, app IDs, and provisioning profiles, and even upload apps to
the store with screenshots and metadata. Fastlane isn’t officially supported by Apple,

https://developer.apple.com

426 CHAPTER 13 Running mobile apps on physical devices
but it’s used by a huge number of developers and works really well. Fastlane’s full
capabilities are outside the scope of this book, but you can use it via Visual Studio for
Mac to create certificates. You can read more about Fastlane at https://fastlane.tools.

The first step is to install Fastlane. You can find instructions on Fastlane’s Docs
page about how to install it via Homebrew, Ruby, or downloading a zip file
(https://docs.fastlane.tools). Pick your favorite method and install it (I prefer to
download the zip file and run the installer, as there are no other dependencies).

Next, launch Visual Studio for Mac, select Visual Studio > Preferences, and then
select Publishing > Apple Developer Accounts from the left side. To add a new Devel-
oper account, click the green plus button under Apple IDs. You’ll see a dialog box tell-
ing you that you’ll be redirected to Fastlane to log in (figure 13.15), so click OK and
enter your Apple ID and password in the terminal that will appear. Your credentials
will be stored in your Apple keychain, not uploaded to Fastlane or Xamarin.

You may then see a dialog from macOS asking for permission for Visual Studio to
access the new credentials in the keychain—if this pops up, click Always Allow.

Figure 13.14 You can manage iOS certificates from Xcode.

https://fastlane.tools
https://docs.fastlane.tools

427Creating iOS provisioning profiles
Once your Apple ID has been added, click View Details and you’ll see another dialog
box showing your certificates and provisioning profiles. From here, click Create Cer-
tificate > iOS Development (figure 13.16). This will create your certificate, install it in
your macOS keychain, and upload it to the Apple Developer portal.

CREATING CERTIFICATES USING THE APPLE DEVELOPER PORTAL

You can create certificates from the Apple Developer portal, but I highly recommend
using Xcode or Visual Studio for Mac, as these are much easier.

To create a certificate from the Developer portal, follow these steps:

1 Log in to https://developer.apple.com, and in the menu click Account > Certif-
icates, Identifiers, and Profiles.

2 Select Certificates > All on the left side, and click the plus button at the top right.
3 Choose iOS App Development, and click Continue.
4 Follow the on-screen instructions to create a certificate-signing-request file

using Keychain Access on your Mac. Then click Continue.
5 Click Choose File and select the CertificateSigningRequest.certSigningRequest

file that was created by Keychain Access. Then click Continue.
6 Click the Download button to download the certificate. Then double-click the

downloaded file to install it in your keychain.
7 Click Done to return to the list of certificates (figure 13.17).

Figure 13.15 You can add an Apple Developer account from the Visual Studio for Mac preferences.

https://developer.apple.com

428 CHAPTER 13 Running mobile apps on physical devices
Once that’s done, you’ll see your newly created certificate. From here you’ll also see
any certificates that you create using Xcode or Visual Studio for Mac. By clicking a cer-
tificate, you can download it (for example, if you need to set up a new Mac developer
machine, or you want to use the same certificate for multiple Macs) or you can revoke
the certificate so that it can no longer be used.

Figure 13.16 Visual Studio for Mac can be used to create new certificates.

Figure 13.17 You can also manage iOS certificates from the Apple Developer portal.

429Creating iOS provisioning profiles
13.4.2 App IDs

Once you have a signing certificate, you can sign any of your apps to verify that they’re
yours, so the next step is to create an App ID to identify each of your apps. These are
identifiers for one or more apps, and they’re used to tie your certificate to those apps.
App IDs also allow you to specify certain services that your app can support, such as
iCloud access, push notifications, or Siri (these are outside the scope of this book).
App IDs have to be created from the Apple Developer portal, and there are two types
of App ID you can create: explicit or wildcard.

 Explicit App IDs—Explicit App IDs are based on a reverse domain name, which
should be the same as the bundle identifier in your app (for example,
com.companyname.Countr). These IDs can be used to tie a provisioning pro-
file to a single app and must be used if you want to include certain services in
your app, such as push notifications or Apple Pay.

 Wildcard App IDs—Wildcard App IDs contain a wildcard and so can be used for
multiple apps. For example, an App ID of com.companyname.* could be used
for any app with a bundle ID that starts with com.companyname, so com
.companyname.Countr as well as com.companyname.SquareRt. Wildcard App
IDs can’t be used with most Apple services, such as push notifications.

We’ll use a wildcard App ID for now as we don’t need any of those services for our
two apps.

App IDs can only be created from the Apple Developer portal, so log on to
https://developer.apple.com and in the menu select Account > Certificates, Identifi-
ers and Profiles. Choose Identifiers > App IDs on the left side and then click the plus
button on the right.

Enter a description for your App ID, such as Xamarin In Action apps, and then select
Wildcard App ID in the App ID Suffix section (figure 13.18). Enter a wildcard bundle
ID using the same format that you used when setting the bundle ID for your apps, but
use * instead of the app name. For example, if the bundle IDs you’ve used for your two
apps are com.companyname.Countr and com.companyname.SquareRt, you’d set your
wildcard bundle ID as com.companyname.*. You don’t need any app services for
these apps, so leave those all unchecked and click Continue. Check the values in the
next screen and then click Register to create your App ID.

13.4.3 Devices

Provisioning profiles can either be linked to one or more devices that can be used for
debugging or for distribution to beta test users (we’ll look at distribution in more
detail in chapter 16), or they can be set up for store builds and be used for any device,
as long as your app is distributed via the store.

To create a provisioning profile linked to devices, you have to first register those
devices on the Apple Developer portal, and Apple has some hard limits on these
devices. You’re limited to 100 devices of each product family (so 100 iPhones, 100

https://developer.apple.com

430 CHAPTER 13 Running mobile apps on physical devices
iPads, 100 Apple Watches, and so on) per membership year. This means you can add
up to 100 of each device and no more, and then you can’t register any more for a year,
even if you unregister these devices.

To register a device, you first need its UDID, which you can easily get from Xcode.
Plug your device in, open Xcode, and select Window > Devices. From here you’ll see
all connected devices as well as all simulators that Xcode has installed for you, as
shown in figure 13.19. Select your device from the list on the left, and you’ll see all the
details about it on the right. Under Device Information you’ll see the Identifier.
Double-click this value and copy it to the clipboard.

Figure 13.18 App IDs are created from the Apple Developer portal (some parts of the form have
been removed to save space).

431Creating iOS provisioning profiles
Once you have your device ID, head to the Certificates, Identifiers and Profiles section
of the Apple Developer portal, select Devices > All on the left, and click the plus but-
ton on the right. Enter a name for your device and the identifier from Xcode, click
Continue, and then click Register (figure 13.20). You can also upload a tab-separated
file from here with multiple device IDs if you want.

The UUID of your device—this text can be
selected and copied to the clipboard.

Figure 13.19 You can find device identifiers for plugged-in devices using Xcode.

Figure 13.20 From the Apple Developer portal you can register individual devices or
upload a file with multiple devices.

432 CHAPTER 13 Running mobile apps on physical devices
13.4.4 Provisioning profiles

You have an iOS development certificate and you’ve registered your App IDs and
device, so now now you can create a profile. Once again, you have to do this from the
Certificates, Identifiers and Profiles section of the Apple Developer site, so from there
select Provisioning Profiles > All on the left and click the plus button on the right.

From here you can create profiles for iOS and tvOS apps, and there are three types
of profiles you can create:

 App development—Use this to debug your app on real devices.
 Ad hoc—These profiles are used to distribute your app to a limited number of

devices for beta testing.
 App Store—Use this when you’re ready to distribute your app to the store.

We’ll be looking at distributing your app with ad hoc and store profiles later in this
book, so for now select iOS App Development and click Continue. In the next screen,
select the App ID you created earlier in the drop-down and click Continue. Next,
check the certificate you created and click Continue. Then select your device and
click Continue. Finally, give your profile a name, such as Development, and click Con-
tinue. This will create the provisioning profile. Just like certificates, these are stored
on the Apple Developer portal, so there’s no need to keep backup copies.

Once your profile is created, install it on your Mac. You can do that in one of three
ways: you can download it from the Developer portal using the Download button (fig-
ure 13.21) and then double-click it in the Finder to install it, or you can download it
using Xcode or Visual Studio for Mac.

Figure 13.21 After creating a provisioning profile, you can download and install it from
the Developer portal.

433Creating iOS provisioning profiles
To install from Xcode, go to Xcode > Preferences, click the Accounts tab, select your
Apple ID, and click the Download All Profiles button. From Visual Studio for Mac,
click Visual Studio > Preferences, select Publishing > Apple Developer Accounts on
the left side, select your Apple ID, click the View Details button, and then click the
Download All Profiles button. This is shown in figure 13.22.

13.4.5 Running your app using the new provisioning profile

Now that you have a provisioning profile created, you can use it when debugging your
app. If you’re using Visual Studio for Mac for your development, restart it if you down-
loaded and installed the profile manually or downloaded it using Xcode. If you’re
using Visual Studio on Windows, restart it regardless of how you installed the provi-
sioning profile. Once you’ve restarted Visual Studio (if needed), you should be able to
plug your device in, select it, and run your apps on it.

By default, when you build an iOS app, Xamarin is smart enough to choose a pro-
visioning profile automatically, based on the bundle ID of your app and the UDID of
the device you’re trying to run on. If you need to manually select a different profile,
you can do that from the iOS Bundle Signing section of the iOS app properties (fig-
ure 13.23). Most of the time, though, these should be left at their default setting of
Automatic.

Click Download All Profiles to download all the provisioning
profiles from the Apple developer portal for this Apple ID.

Figure 13.22 Provisioning profiles can be downloaded and installed from Xcode or Visual Studio for Mac.

434 CHAPTER 13 Running mobile apps on physical devices
13.4.6 Troubleshooting

When you run your app on your device, if something isn’t configured correctly, you’ll
get the following compiler error when you try to run your app:

“Error: No installed provisioning profiles match the installed iOS signing identities.”
This means that the provisioning profiles that Xamarin knows about don’t tie up

with the device you’re trying to run on. There are a number of steps you can take to
find out what’s wrong:

 Make sure your app is set to use the automatic profiles—In the iOS app properties,
head to the iOS Bundle Signing tab and ensure that Automatic is selected for
Signing Identity and Provisioning Profiles.

 Make sure the certificate is installed on your Mac—If you created your certificate
using the Apple Developer portal instead of using Visual Studio for Mac or
Xcode, make sure you’ve downloaded it and installed it on your Mac.

 Make sure the App IDs match—Double-check your bundle identifiers in your app
and the App ID used to create the provisioning profile to make sure they match
and that there are no spelling mistakes. If you made a mistake on the Apple
Developer site, delete and recreate the App ID, which will invalidate the provi-
sioning profile that uses it, so this will need to be re-created and re-downloaded.

 Make sure the device UDID is correct—Double-check the device UDID shown in
Xcode against the one in the Developer portal. Again, if this needs to be
changed in the Developer portal, you’ll need to recreate your provisioning
profile.

Figure 13.23 You can change the Provisioning Profile in the iOS bundle settings of the
project properties, but it’s best left on Automatic.

435Summary
 Ensure that the profile has been downloaded and installed—Make sure that the provi-
sioning profile has been downloaded by either re-downloading it manually
from the Apple Developer site and double-clicking it to install it, or by clicking
the Download All Profiles button from the details dialog of the Apple Devel-
oper Accounts tab of the Visual Studio for Mac preferences, or by clicking the
Download All Profiles button on the Accounts tab in the Xcode preferences.

 Restart Visual Studio—Profiles are only loaded when the IDE starts up, so make
sure you restart Visual Studio.

You’ve now signed iOS and Android apps. In the next chapter we’ll take these apps
and create some automated UI tests for them, to validate that everything works.

Summary
In this chapter you learned

 Android and iOS have security around apps to ensure you only run approved
apps on your devices.

 Android apps are signed with a keystore that you must keep safe.
 Android apps are identified by a package name. iOS apps are identified by a

bundle identifier, and these are normally both reverse domain names suffixed
with the app name.

 To run iOS apps on devices, you need a provisioning profile, which links a sign-
ing certificate with an App ID and optionally one or more devices.

 You can create temporary provisioning profiles using Xcode.

You also learned how to

 Turn on developer mode on an Android device and enable USB debugging.
 Create a new keystore and use it to sign an Android APK.
 Create a temporary provisioning profile using Xcode.
 Create an iOS signing certificate using Xcode, Visual Studio for Mac, and the

Apple Developer portal.
 Register an App ID and iOS devices in the Apple Developer portal.
 Create and use provisioning profiles.

14Testing mobile apps using
Xamarin UITest
As we’ve built our apps, we’ve written a lot of unit tests to verify the model and view-
model layers, but we’ve written nothing to test the view layer. Although this layer is
small, there could still be issues that aren’t spotted until the app is out in the wild.
Fortunately, we can write automated tests to help catch such bugs before users see
them, causing them to uninstall our apps and move to a competitor’s offerings.

14.1 Introduction to UI testing
One of the great things about the MVVM design pattern is that it allows us to maxi-
mize the code in our cross-platform model and view-model layers. Not only have we
written the bulk of our code just once, but we’ve managed to write unit tests for it,

This chapter covers
 What UI testing is

 Using Xamarin UITest to do UI testing

 Using the REPL

 Interacting with controls

 Asserting that the UI is correct
436

437Introduction to UI testing
so we have some degree of confidence that the code works. These unit tests are great,
but they don’t cover two important questions: have we used the correct controls on
our view and bound them correctly, and does our app actually run on the device?

It’s great to have a property on a view model that’s bound to a text field so that the
user can enter the name of a counter, but what if we accidentally used the wrong con-
trol, such as a label instead of a text box? Or maybe we used the right control but for-
got to add the binding code? What if in our app we used a feature that was only added
to the Android SDK in API 21, but our app manifest shows that our app will run on
API 19 and higher? This is where UI testing comes in—it allows us to run our apps on
emulators, simulators, and devices and write automated tests in code against it.

The concept behind UI testing is simple: you run your app and have something
interact with it as if it were a user by using the user interface components (such as tap-
ping buttons or entering text in text boxes), and you validate that everything is work-
ing by ensuring the app doesn’t crash and that the results of the user’s actions are
shown on the UI as expected. This kind of testing was first used with desktop apps,
where the aim was to make testing more reliable and cheaper—after all, humans are
expensive, and they can get bored and make mistakes or miss problems after testing
the same screen many, many times. Automated UI testing also allowed for better time
usage, with tests being run overnight and developers discovering whether they’d bro-
ken anything the next morning.

For desktop apps, UI testing was reasonably simple—launch the app and test it,
maybe testing on a few different screen sizes but always on one OS with maybe one or
two different versions, because desktop OSs don’t change very often. With mobile,
things have become more complicated. There are two major OSs that you’ll want to
support with your cross-platform apps, and there are multiple versions of these OSs
available. You also have different hardware with different screen sizes. On iOS this
isn’t too bad—you only need to support a small number of OS versions (maybe just
the current and previous one) and a small number of different devices. On Android,
however, as you’ve already seen, it’s a mess with multiple OS versions in regular use, a
huge range of screen sizes available, and worst of all, customizations to the OS from
both the hardware manufacturers and carriers.

This is why UI testing is hugely important for mobile apps. There’s no way a
human could test on a wide range of devices without needing a lot of time or lots of
humans involved in the process (expensive) and without them all going mad as they
install the app on yet another device and run the same test for the millionth time.

14.1.1 Writing UI tests using Xamarin UITest

You write UI tests in essentially the same way that you’d write a unit test: you decide
what you want to test and then write some code to create the test. This code will use
some kind of framework that can launch your app and interact with it as if it were a
real user.

438 CHAPTER 14 Testing mobile apps using Xamarin UITest
There are a number of different frameworks for testing, and table 14.1 lists some
of these.

In this book we’ll be focusing on Xamarin UITest because it’s very well integrated into
Visual Studio. For testing Android apps, you can use either Windows or Mac, but for
testing iOS apps you’ll need to use a Mac—iOS testing isn’t supported on Windows at
the moment.

Xamarin UITest is based on a testing framework called Calabash that was written in
Ruby and is fully open source and maintained by Xamarin. UITest is a layer on top of
Calabash that allows you to write your tests in C# and run them using NUnit. These
tests are written in the same way as unit tests using the arrange, act, assert pattern
(shown in figure 14.1), with the arrange part launching the app and getting it to the
relevant state for testing, the act part interacting with the UI as if it were a user, and
the assert part querying the UI to ensure it’s in the correct state.

Table 14.1 UI testing frameworks

Framework Platforms Language Description

Espresso Android Java This is Google’s testing framework for
Android apps, so it has deep integration
with Android: https://goo-
gle.github.io/android-testing-support-
library/docs/espresso/.

XCTest iOS Objective-C/Swift This is Apple’s UI testing framework, so
it has deep integration with iOS:
https://developer.apple.com/
reference/xctest.

Appium iOS/Android Any
(Java/C#/PHP/Ruby,
and so on)

An open source cross-platform testing
framework based on Selenium, a web UI
testing framework: http://appium.io.

UITest iOS/Android C#/F# This is Xamarin’s testing framework,
which is heavily integrated into Visual
Studio for Windows (Android) and Mac
(iOS and Android):
https://docs.microsoft.com/en-us/
appcenter/test-cloud/uitest/?WT
.mc_id=xamarininaction-book-jabenn.

https://docs.microsoft.com/en-us/appcenter/test-cloud/uitest/?WT.mc_id=xamarininaction-book-jabenn.
https://google.github.io/android-testing-support-library/docs/espresso/
https://google.github.io/android-testing-support-library/docs/espresso/
https://developer.apple.com/reference/xctest
http://appium.io

439Introduction to UI testing
14.1.2 Setting up your app for UI testing

In this chapter we’ll just be focusing on the Countr app, as there’s more to test there,
so you can open the completed Countr solution from the previous chapter.

When you built the model layer in the app you added a new unit test project that
tested both the model and view-model layers. For our UI tests, we’ll need a new pro-
ject that will contain and run the UI tests.

CREATING THE UI TEST PROJECT

Add a new UITest project to the Countr solution: On Visual Studio for Windows, right-
click the solution, select Add > New Project, and from the Add New Project dialog box
select Visual C# > Cross-Platform on the left, and select UI Test App in the middle (fig-
ure 14.2). On Mac, right-click the solution, select Add > Add New Project, and select
Multiplatform > Tests on the left and UI Test App in the middle, and then click Next.
Name your project Countr.UITests and click OK (on Windows) or Create (on Mac).

Arrange:
The app is launched on the target device,
and the test framework connects to it.

Assert:
The tests look at the UI and ensure that it is
in the correct state, looking for the correct
value on labels and so on.

Act:
The test connects to the device and interacts
with it as if it were a user, performing actions
like tapping buttons and entering text.

Countr Add

Coffees 4 +

New Done

Runs

New Done<Countr <Countr

Runs

Countr Add

Coffees 4 +

app = AppInitializer.
 StartApp(Platform.iOS);

Countr Add

Coffees

Runs

4

1

+

+

app.WaitForElement
 (c => c.Marked("Runs"));

Figure 14.1 UI tests, like unit tests, follow the arrange, act, assert pattern.

440 CHAPTER 14 Testing mobile apps using Xamarin UITest
Once the test project has been added, it will install two NuGet packages that UITest
needs: NUnit and Xamarin.UITest. It’s worth at this point updating the Xamarin.UITest
NuGet package to the latest version, as they often push out bug fixes to ensure it

Figure 14.2 Adding a new UITest project using Visual Studio for Mac (left) and
Windows (right)

441Introduction to UI testing
works on the latest mobile OS versions. Do not, however, update NUnit. UITest will
only work with NUnit 2, not NUnit 3, so if you update this package, your tests won’t
work and you’ll need to remove the package and re-install NUnit 2.

The UI test project has two files autogenerated for you: AppInitializer.cs and
Tests.cs:

 AppInitializer.cs—This is a static helper class with a single static method that’s
used to start your app. UITest has an IApp interface that represents your run-
ning app, and this interface has methods on it for interacting with the UI ele-
ments in your app or, to a limited extent, the device hardware (for example,
rotating the device). The StartApp method in the AppInitializer class
returns an instance of IApp that your tests can use. This method uses a helper
class from UITest called ConfigureApp to start the app, and this helper class has
a fluent API that allows you to configure and run your app. The autogenerated
code in the app initializer doesn’t do much to configure the app; it just specifies
the app’s type (Android or iOS) based on the platform passed in to the
method.

 Tests.cs—This file contains a UI test fixture that you can run. This test fixture
class has a parameterized constructor that takes the platform to run the tests on
as one of the values from the Platform enum, either Platform.iOS or Plat-

form.Android. It also has two TestFixture attributes, one for each platform.
This means that you really have two test fixtures—one Android and one iOS.
This fixture has a setup method that uses AppInitializer to start the app
before each test and a single test that calls the Screenshot method on the IApp

instance, which is returned from the app initializer, to take a screenshot.

SETTING UP YOUR ANDROID APPS FOR UI TESTING

By default, Xamarin Android apps are configured in debug builds to use the shared
mono runtime (mono being the cross-platform version of .NET that Xamarin is based
on). When you deploy your app to a device or emulator, it takes time to copy the code
over, so anything that can make your app smaller reduces install time, which is good.

Xamarin Android apps use a mono runtime to provide the .NET Framework, and
this is a large piece of the code bundled in your app. Rather than bundling it in, you
can use a shared version that is installed separately for debug builds, making your app
smaller. Unfortunately, when doing UI tests, you can’t use the shared runtime, so you
have two options:

 Don’t use the shared runtime—You can turn off the shared mono runtime from
the project properties. In Visual Studio for Windows, you’ll find it in the
Android Options tab at the top of the Packaging page. On Mac, it’s on the
Android Build tab at the top of the General page. Untick the Use Shared Mono
Runtime box to turn this off, but be aware that this will increase your build
times.

442 CHAPTER 14 Testing mobile apps using Xamarin UITest
 Release builds—Release builds don’t have the shared mono runtime turned on.
After all, when you build a release version, it’s usually for deployment, such as
to the store, and your users won’t have the shared mono runtime installed. The
downside to using a release build is that you need to grant your app permission
to access the internet so that it can talk to UITest. This isn’t a problem if your
app already accesses the internet, but if it doesn’t, you many not want to ask
your users for this extra permission, as they might not want to grant it. If you
want to use a release build, you can grant this permission in Visual Studio by
opening the project properties, heading to the Android Manifest tab, and find-
ing the Internet permission in the Required Permissions list and ticking it. On
Mac, double-click the AndroidManifest.xml file in the Properties folder and
tick the permission (figure 14.3).

For the purposes of this book, we’ll use release builds for Android, so open the
Android manifest and add the Internet permission.

SETTING UP YOUR IOS APPS FOR UI TESTING

Apart from the issue of the shared mono runtime, UITest just works with Android out
of the box—UITest can connect to your running Android app on a device or an emula-
tor and interact with it. iOS, on the other hand, isn’t quite as simple. Due to the stricter
security on iOS, you can’t simply have anything connect to a simulator or device and
interact with the app. Instead you need to install an extra component into your iOS
apps that you initialize before your UI tests can run. To do this, add the Xamarin
.TestCloud.Agent NuGet package (figure 14.4) to the Countr iOS app (Test Cloud is
the Xamarin cloud-based testing service that we’ll look at in the next chapter, and
you’ll see the name used in a few places with UITest).

Once this NuGet package is installed, you’ll need to add a single line of code to ini-
tialize it. Open AppDelegate.cs and add the code in the following listing.

public override bool FinishedLaunching(UIApplication app,
NSDictionary options)

{
#if DEBUG
Xamarin.Calabash.Start();
#endif
...

}

Listing 14.1 Enabling the Calabash server for debug builds only

Figure 14.3 Adding the internet permission to AndroidManifest.xml

For debug builds, start
the Calabash server

443Introduction to UI testing
This code starts the Calabash server for debug builds only. The Calabash server is an
HTTP server that runs inside your app, and the UITest framework connects to it so it
can interact with your app. Apple is very strict about security in its apps and would
never allow an app with an open HTTP port like this on the App Store. To avoid this,
the Calabash server is only enabled for debug builds—for release builds this code
won’t get run, the linker will strip it out, and your app won’t be rejected from the App
Store (at least not due to the Calabash server).

14.1.3 Running the auto-generated tests

UI tests are run in the same way as any other unit tests—you can run them from the
Test Explorer (Windows) or Test pad (Mac).

UI tests rely on having a compiled and packaged app to run, so the first step is to
build and either deploy to a device, emulator, or simulator or run the app you want to
test. Note that just doing a build isn’t enough for Android—a build compiles the
code, but it doesn’t package it up. The easiest way to ensure you have a compiled and
packaged app is to run it once.

On Android, create a release build; for iOS use a debug build to enable the Cala-
bash server. You also need to set what device, emulator, or simulator you want to run
your tests on in the same way that you’d select the target for debugging.

GETTING READY TO RUN THE TESTS

If you open the Test pad or Test Explorer, you may not see the UI tests if the project
hasn’t been built (figure 14.5). If you don’t see the tests, build the UITest project, and
the tests should appear.

If you expand the test tree in Visual Studio for Mac, you’ll see two fixtures:
Tests(Android) and Tests(iOS). These are the two fixtures declared with the two Test-

Fixture attributes on the Tests class. When you run the tests from Tests(Android), it
will construct the test fixture by passing Platform.Android to the constructor, which in

Figure 14.4 Adding the Xamarin Test Cloud Agent NuGet package

444 CHAPTER 14 Testing mobile apps using Xamarin UITest
turn will use the AppInitializer to start the Android app. Tests(iOS) is the same, but
for the iOS app. Under each fixture you’ll see the same test, called AppLaunches.

In Visual Studio, you won’t see the same hierarchy out of the box, so drop down
the Group By box and select Class to see the tests grouped by test fixture (figure 14.6).
You can only test Android apps with Visual Studio, so feel free to comment out the
[TestFixture(Platform.iOS)] attribute in the Tests class to remove these tests from
the Test Explorer.

Before you can run the test, make a small tweak. Despite the fact that the test calls
app.Screenshot, this test won’t spit out a screenshot. For some reason, UITest is con-
figured to only create screenshots if the tests are run on Xamarin’s Test Cloud, so you
need to change this configuration to always generate screenshots. To do so, add the
following code to AppInitializer.cs.

public static IApp StartApp(Platform platform)
{

if (platform == Platform.Android)
{

Listing 14.2 Enabling local screenshots for UI tests

Figure 14.5 The Test Explorer (Windows)
and Test pad (Mac)

Figure 14.6 Grouping tests in
the Visual Studio Test Explorer

445Introduction to UI testing
return ConfigureApp
.Android
.EnableLocalScreenshots()
.StartApp();

}

return ConfigureApp
.iOS
.EnableLocalScreenshots()
.StartApp();

}

By default, the StartApp method doesn’t do anything to configure the app that’s
being tested, which means that it expects that the app to be tested is a part of the cur-
rent solution. You also need to configure UITest so it knows which apps in the solution
it should use, as there could be multiple apps.

SETTING THE APP TO TEST IN VISUAL STUDIO FOR MAC

Open the Test pad and expand the Countr.UITests node. Under this you’ll see the test
fixtures, as well as a node called Test Apps, shown next to a stack of green arrows.
Right-click this and select Add App Project. In the dialog box that appears, tick
Countr.Droid and Countr.iOS, and then click OK. You’ll see these two apps appear
under the Test Apps node.

If you right-click one of them, you’ll see a number of options, including a list of
possible target devices to run against, with Current Device ticked. This list is used to
set which device the UI tests should be run against when you run them from the pad.
If you leave Current Device selected, it will use whatever target is set from the main
toolbar, but if you always want the tests to run against a particular emulator, simulator,
or device, you can select it from here.

YOU CAN ALSO CONFIGURE THE APP IN CODE If you want to run an app outside
the solution, or run the tests outside the IDE (such as from a CI server), you
can configure which app to run and which device to run it on using the Con-
figure App fluent API. See the Xamarin developer docs at http://mng.bz/
fE5S for more information on how to do this.

SETTING THE APP TO TEST IN VISUAL STUDIO

UITest uses NUnit to run tests, so you need to ensure Visual Studio is configured to run
NUnit tests. Back in chapter 7 we installed the NUnit 3 test adapter, but to use UITest
you’ll also need to install the NUnit 2 adapter. Select Tools > Extensions and Updates,
and then select the Online tab on the left and search for NUnit 2. Select NUnit 2 Test
Adapter in the list in the middle and click the Download button (figure 14.7). You’ll
need to close Visual Studio for this to be installed, so relaunch it after the install and
reload the Countr solution.

Visual Studio only supports testing Android, so delete the [TestFixture(Platform

.iOS)] attribute from the Tests class. This will stop iOS tests from showing up in the
Test Explorer.

Calls EnableLocalScreenshots
on the fluent configuration
API to turn on screenshots

http://mng.bz/fE5S
http://mng.bz/fE5S
http://mng.bz/fE5S

446 CHAPTER 14 Testing mobile apps using Xamarin UITest
Unlike Visual Studio for Mac, there’s no way on Windows to set the test apps. Instead
you need to configure this in code by giving it the path to the Android APK, which is
in the output folder and is named based on the Android package name with the .apk
file extension. Release builds also have a suffix of -Signed to indicate that they’ve been
signed with your keystore. You set the package name in the Android manifest in the
last chapter, based on a reverse domain name (mine was set to io.jimbobbennett
.Countr), and you can find this file in Countr.Droid\bin\Release if you’ve built using
the release configuration or Countr.Droid\bin\Debug for the debug configuration.
We’ll be using release Android builds for the purposes of this book, so add the follow-
ing code to point UITest to the right APK, substituting in your package name.

if (platform == Platform.Android)
{

return ConfigureApp
.Android
.EnableLocalScreenshots()
.ApkFile ("../../../Countr.Droid/bin/Release/

➥<your package name>-Signed.apk")
.StartApp();

}

Replace <your package name> in this code with the name of your package (for exam-
ple, I’d use io.jimbobbennett.Countr). This assumes your UI test project has been
created in the same directory as all the other projects, so the folder for Countr.UITests
is at the same level as the folder for Countr.Droid. If not, change the path in this code
to match your folder structure.

Listing 14.3 Configuring UITest to use the Countr.Droid APK file

Figure 14.7 Installing the NUnit 2 test adapter

Configures the app to
use the release APK

447Introduction to UI testing
When tests are run, they’ll be run on the device or emulator that you’ve selected
for the build configuration, just as for debugging your apps. This makes it easy to
change the device that tests are run on by changing the drop-down in the toolbar, just
as you’d change the target for debugging, as shown in figure 14.8.

RUNNING THE TEST

Once the test apps have been configured, you can run the tests by double-clicking
them in the Test pad in Visual Studio for Mac, or by right-clicking them in the Visual
Studio for Windows Test Explorer and selecting Run Selected Tests. If you’re testing
Android, set the build configuration to release, and for iOS set it to debug.

Figure 14.8 The device to
test on is set in the same way
as the device for debugging.

Request for network access on iOS
When you run Countr or the UI tests on iOS, you may get a dialog box popping up
asking if Countr.iOS.app can accept incoming connections, as shown below. This is
the macOS firewall detecting the Calabash HTTP server running in your app, so if you
see this, click Allow.

Click Allow if you get
asked whether Countr
can accept incoming
network connections.

448 CHAPTER 14 Testing mobile apps using Xamarin UITest
When the test is run, the following things happen:

1 The unit test runner loads the test fixture, passing the relevant platform to the
constructor.

2 Before each test, the BeforeEachTest method marked with the SetUp attribute
is called, and this in turn calls the StartApp method on AppInitializer. This
will configure the app for the relevant platform, enable screenshots, and launch
the app, returning an IApp instance that’s stored in the app field on the test
class and that can be used to interact with the app.

3 UITest knows which app to start and what device to launch it on based on the
TestApps setting or the configured APK, so it will launch the relevant emulator,
simulator, or device and start the app.

4 On iOS, before the app is launched, another app will be installed on the simula-
tor or device, called “Device Agent”. This is part of the iOS XCTest framework,
which UITest uses under the hood and is needed to control your app. You can
just ignore this app; if you delete it, it will be reinstalled next time the test is
run.

5 The test case is run—in our case, a test called AppLaunches, which calls the
Screenshot method to capture a screenshot.

6 The screenshot is captured and placed in the output directory of the UI test pro-
ject. This screenshot can be found at Countr.UITests/bin/Debug/screenshot-
1.png.

7 The test will pass, as nothing went wrong.

As a first test this is OK, but not great. It shows that the app launched, which in itself is
a valuable test, but it doesn’t tell us much more than that. The screenshot is not of
much use either—on iOS it will be the first screen, but on Android it might just be the
splash screen, depending on how long the app takes to launch. Let’s now look at writ-
ing some proper tests.

14.2 Writing tests
Our apps are running inside a simple UI test, but how can we take this further and
write some useful tests? First, let’s define a couple of tests that we want to run, and
then we’ll look at how we can implement them:

 Adding a counter—This test should add a new counter and verify that it has been
added. It would involve the following steps:

Step Description

Arrange Start the app (this happens in the BeforeEachTest method).

Act Tap the Add button, add a name for the counter, and tap the Done button.

Assert Verify that the new counter is visible with a count of 0.

449Writing tests
 Incrementing a counter—This test should take an existing counter, increment it,
and verify that the count has gone up by one. It would follow these steps:

These are simple tests. We’ll start by building the structure of the test methods, and
then we’ll look at how we can fill in the tests. Add the following code to Tests.cs.

[Test]
public void AddingACounterAddsItToTheCountersScreen()
{

// Arrange
// Act
// Assert

}

[Test]
public void IncrementingACounterAddsOneToItsCount()
{

// Arrange
// Act
// Assert

}

14.2.1 The visual tree

UITest views your app as a visual tree. This concept should be familiar to you if you’ve
done UI development before with WPF or HTML, but essentially it’s a hierarchical
representation of everything that’s visible on the screen, and it should map to the UI
that you’ve designed in your storyboard or Android layout file. For example, for the
counters screen in Countr, the visual tree on Android when showing two counters
would be something like the tree shown in figure 14.9.

This tree is a hierarchy, so there are parent/child and sibling relationships. The
RelativeLayout has a TextView as one of its children, a RecyclerView as its parent,
and another RelativeLayout as its sibling.

UITest has a number of methods on the IApp interface that interact with your app,
and they know which controls to use based on an app query. App queries are func-
tions that look inside the visual tree of your app for a control that matches a specific
thing—this can be based on some kind of identifier, text inside the control, or its class
type. You can also query based on relationships, such as finding parent, child, or sib-
ling controls. When you write a UITest test, you use app queries to find the controls

Step Description

Arrange Start the app (this happens in the BeforeEachTest method) and add a
new counter.

Act Tap the Increment button for the new counter.

Assert Verify that the new counter has a count of 1.

Listing 14.4 Test methods ready for implementing our UI tests

450 CHAPTER 14 Testing mobile apps using Xamarin UITest
that you want to interact with. Working out exactly what app query to write can be easy
when you know the visual tree for your app, but sometimes it’s more difficult and
requires writing complicated queries. Luckily, there’s a REPL that makes it easy to see
your app’s visual tree and try out queries while your app is running.

14.2.2 The REPL

A Read-Evaluate-Print loop (REPL) is a command-line tool that allows you to execute
commands inside some kind of context. You may have used something similar before,
such as the Interactive window in Visual Studio, where you can run C# code that has
access to the current application stack while debugging.

You can launch the UITest REPL by using the IApp.Repl() method, so update one
of the new tests to call this method with the following code.

[Test]
public void AddingACounterAddsItToTheCountersScreen()
{

app.Repl();
...

}

Once this code has been added, run the test. It will hit this line, launch the REPL in a
terminal or command-line window, and wait (figure 14.10). The Repl() method will
only return once the REPL has closed, either by closing the command-line window or
using the exit command, so you should only use this method when building your
tests. You should remove it once your tests are written, or your tests will never finish.

Listing 14.5 Launching the REPL from a UI test

Window
 |= RelativeLayout
 |= Toolbar
 |= FrameLayout
 |= RecyclerView
 |= RelativeLayout
 |= TextView
 |= TextView
 |= ImageButton
 |= RelativeLayout
 |= TextView
 |= TextView
 |= ImageButton
 |= FloatingActionButton

Figure 14.9 The visual tree on Android and how it maps to the UI

Adds a call to
launch the REPL

451Writing tests
You may also find that you can’t stop your tests from inside Visual Studio while the REPL
is running, so if you need to stop your tests, you’ll need to manually close the REPL.

Once you’re in the REPL, the most useful command is tree, which shows the
visual tree. Type this and press Enter. Figure 14.11 shows the visual tree on iOS, and
figure 14.12 shows the visual tree on Android.

Figure 14.10 The REPL running in a command-line window

Figure 14.11 The visual tree for Countr on iOS inside the REPL

Figure 14.12 The visual tree for Countr on Android in the REPL

452 CHAPTER 14 Testing mobile apps using Xamarin UITest
This visual tree is a representation of the visual tree inside your app, flattened a bit to
be more useful. It shows the controls using the underlying types from the OS, and it
shows some string-based properties on the controls, such as the text of a button. The
tree will look different on iOS and Android because the controls are different on each
platform.

THE REPL IS A FULL-FEATURED C# REPL AS WELL UITest app queries are written
in C#, so to make the REPL work, Xamarin had to provide full C# capabilities
inside it, with a field called app pointing to your IApp instance. This means
you can run other C# code if you want, just as in the Immediate window in
Visual Studio, and if you call a variable by its name with no operators or meth-
ods, the value will be printed to the console.

The first step of our first test involves tapping the Add button to add a new counter, so
we need to write a query for this.

14.2.3 Identifying controls

There are a number of different ways to query for a control, such as based on the class
or the text inside it, but for our Add counter button, this might be problematic. On
iOS, it’s a text-based button showing the text Add, but on Android it’s a floating action
button with an image inside it and no text. We could write different queries for differ-
ent platforms, but this isn’t ideal—we want to have as much cross-platform code as
possible, both in our apps and our tests.

The easiest thing to do is to assign some kind of unique ID to the navigation bar
button on iOS and the floating action button on Android, and use this to identify the
control. That way we can use this identifier in the test, and it will work on both plat-
forms. Identifiers are easy to add—on Android you can use the id property in the lay-
out AXML file, and on iOS you can add an AccessibilityIdentifier property.

Let’s start with Android. Open the counters_view.axml layout file and add the fol-
lowing code.

<android.support.design.widget.FloatingActionButton
android:id="@+id/add_counter_button"
...
/>

On iOS, open the CountersView.cs file and add the following code. We’re doing this
in code because the navigation bar button is created in code, but for controls on a sto-
ryboard, this can be set using the Properties pad.

Listing 14.6 Adding an ID to an Android floating action button

Adds the ID to the
floating action button

453Writing tests
public override void ViewDidLoad()
{

...
var button = new UIBarButtonItem(UIBarButtonSystemItem.Add);
button.AccessibilityIdentifier = "add_counter_button";
...

}

CASING FOR ID NAMES In this example I’ve used lowercase names with under-
scores for the IDs simply because this matches the Android standard, and it
means we can stay consistent with the standard for IDs used for identifying
controls in UI tests, as well as for relative layout references and other uses. It’s
up to you what naming convention you use, but you must use the same value
on iOS and Android for the UI tests to work.

After making these changes, build and deploy the app, and then rerun the UI tests
and look at the tree in the REPL. In the Android tree you’ll see this:

[FloatingActionButton] id: "add_counter_button"

On iOS, you’ll see this:

[UINavigationButton > UIImageView] id: "add_counter_button", label: "Add"

Now that you have your IDs set, it’s time to write your first query. In the REPL, type
app. and you’ll see a load of autocomplete options identifying the methods on the
IApp instance. app is an instance of IApp pointing to your app, and it’s the same as the
app field in the Tests class. That means everything you write in your REPL can be
used in your tests. One of the auto-complete options is Query, which can be used to
perform an app query and return all the controls that match the query.

App queries are lambda functions using the same syntax as C#, so start by typing
app.Query(c => c. . The parameter to the function, c in this case, is of type AppQuery,
which has a stack of methods that can be used to run different queries. All methods
return the AppQuery instance, so you can chain multiple calls if needed.

After typing the period (.), you’ll see an autocomplete list showing all the possible
methods, such as Child, Id, Marked, and Text. You need to use the Id method, passing
the ID you’ve just set as the parameter. Run the command app.Query(c => c.Id

("add_counter_button")) and look at the results. Queries return a list of all items
that match the query, and in this case there’s a single item: the floating action button
or navigation bar button (depending on platform). This query and its result is shown
in figure 14.13. We’ll look at a whole range of different app queries you can run later
in this chapter.

Listing 14.7 Adding an ID to an iOS navigation bar button

Sets the accessibility identifier
on the navigation bar button

454 CHAPTER 14 Testing mobile apps using Xamarin UITest
14.2.4 Tapping the Add button

Once you’ve found the Add counter button, you can tap it easily. In the app field,
there’s a method called Tap that takes an app query. This will run the query and tap
the first item it finds that matches the query. If nothing matches the query, it will
throw an exception.

If you type app. again, you’ll see Tap in the autocomplete list. Run the Tap command
using the same app query as before: app.Tap(c => c.Id("add_counter_button")). The
REPL has a command history, so you can always just tap the Up arrow to see the query
again and edit the command to use Tap instead of Query. If you watch your app while
this command is running, you’ll see the new counter screen appear. We’ll look at
some of the other methods on IApp later in this chapter.

This gives you the first part of the Act step of your add new counter test, so let’s
add this to the test. Add the following code to tap the button before the REPL is
shown.

Tree

Query

Results

c.Id(“add_counter_button”)

[[object CalabashRootView] > PhoneWindow$DecorView]
 [LinearLayout > FrameLayout]
 [FitWindowsLinearLayout] id: "action_bar_root"
 [ContentFrameLayout > RelativeLayout] id: "content"
 [AppBarLayout] id: "toolbar_layout"
 [Toolbar] id: "toolbar"
 [AppCompatTextView] text: "Countr"
 [FrameLayout]
 [MvxRecyclerView] id: "recycler_view"
 [FloatingActionButton] id: "add_counter_button"
 [View] id: "navigationBarBackground"
 [View] id: "statusBarBackground"

[FloatingActionButton] id: "add_counter_button"

Figure 14.13 Querying by ID returns only those items in the tree that
match the ID.

455Writing tests
[Test]
public void AddingACounterAddsItToTheCountersScreen()
{

// Arrange
// Act
app.Tap(c => c.Id("add_counter_button"));
app.Repl();
// Assert

}

THE REPL HAS A COPY COMMAND The REPL has a copy command that copies
the entire command history to the clipboard. This is useful for writing tests in
the REPL and then copying them to the clipboard to paste into your own
tests.

The next step is to enter the counter name into the text box.

14.2.5 Entering text

Entering text is as simple as tapping buttons—there’s an EnterText method on the
IApp interface that takes an app query and a string containing the text you want to add.
Once again, though, how do you know which control to enter the text into. If you run
the tree command again, you’ll see a different tree—after all, the app has navigated to
the add new counter screen, but there’s nothing in common between the iOS UITex-

tField and Android AppCompatEditText. As before, you need to add some IDs.
Add the following code to the counter_view.axml layout file in the Android project

to add the Android IDs.

<EditText
android:id="@+id/new_counter_name"
...
/>

On iOS, this time you can do it from the storyboard instead of the code. Open Counter-
View.storyboard, select the counter name text field, and set the Identifier property
in the Accessibility section of the Widget tab to be new_counter_name, as shown in
figure 14.14.

Now if you build, deploy, and run the UI test to tap the Add button, and you
launch the REPL and look at the tree, you’ll see that the text box has an identifier of
new_counter_name. You can now use the EnterText method to set the text by running
app.EnterText(c => c.Id("new_counter_name"), "My Counter"). This will find the
first element matching the query, and enter the text, character by character, simulat-
ing what would happen when a user types the text.

Listing 14.8 Tapping the add new counter button from the test

Listing 14.9 Add an ID to the Android text-entry field

Taps the add counter button

Adds an ID to the text-entry field

456 CHAPTER 14 Testing mobile apps using Xamarin UITest
Add the following code to the test before the REPL.

[Test]
public void AddingACounterAddsItToTheCountersScreen()
{

// Arrange
// Act
app.Tap(c => c.Id("add_counter_button"));
app.EnterText(c => c.Id("new_counter_name"), "My Counter");
app.Repl();
// Assert

}

DISCONNECT THE HARDWARE KEYBOARD On iOS, text is entered by tapping the
keys on the software keyboard. This means that if you’re using a simulator to
run your tests, you’ll need to disable the hardware keyboard from inside the
simulator by ensuring Hardware > Keyboard > Connect Hardware Keyboard is
unchecked. If you don’t, any UI test that enters text will fail with “Timed out
waiting for keyboard.”

14.2.6 Finding controls based on their text

After setting the name, you need to tap the Done button to add the counter. This time
there’s a similarity between the button on both platforms—they both have a button
with the text set to “Done.” This means that rather than having to set an identifier, you
can query for the text directly. From the REPL, query for this using app.Query(c =>

c.Text("Done")), and you’ll see the Done button.
If you do this on Android, you might notice something interesting—the text of the

button is “Done” in the tree, but on screen it’s “DONE”, all in capitals. This is because
the default button style on Android capitalizes the text, but just the text on the display,
not on the underlying control. This is very helpful, as text queries are case sensitive:
querying for “Done” gives one result, but querying for “DONE” gives none. When
building your app, you can set the text for controls using normal casing on both iOS

Listing 14.10 Entering text from the test

Figure 14.14 Setting the Accessibility Identifier from a storyboard

Enters text into the counter
name text box

457Writing tests
and Android, you can query for it in the same way on both platforms, but you can still
have Android buttons automatically show on screen in uppercase.

Text queries can query for any text on a control—so for labels it will match the static
text that’s showing, for text boxes it will match the text entered by the user, and for but-
tons it will match the button text. If you use this query with the Tap command, it will
tap the Done button and add the counter, navigating back to the counters screen.

Try it out and then add it to the unit test so it matches the following listing.

[Test]
public void AddingACounterAddsItToTheCountersScreen()
{

// Arrange
// Act
app.Tap(c => c.Id("add_counter_button"));
app.EnterText(c => c.Id("new_counter_name"), "My Counter");
app.Tap(c => c.Text("Done"));
app.Repl();
// Assert

}

14.2.7 Assertions

The Arrange (handled by the BeforeEachTest setup method) and Act steps are done.
Now it’s time to move on to Assert, where you assert that you can see a new counter
with the name of My Counter and a count of 0.

The easiest way to do asserts is to use an app query for what you’re looking for, and
assert the results of the query by using some helper methods on the IApp interface.
IApp has two useful methods for this: WaitForElement and WaitForNoElement. Both
take an app query. The first will wait for at least one element that matches the query,
timing out if nothing is found after 10 seconds and throwing an exception. The other
will wait until no elements match the query, and again will throw an exception if there
are elements that match the query after 10 seconds. The 10-second timeout is configu-
rable, so it can be made longer if needed (such as if your app is running a slow action).

For this assertion, ensure that you can see the new counter with the name of My
Counter on the counters screen. If you look at the tree in the REPL, you’ll see there’s
a label with the text “My Counter” as part of the tree view or recycler view, but if you
do a text query for “My Counter” you wouldn’t be able to distinguish between the
counter showing on the counters screen or the text box on the add new counter
screen showing the same text. Essentially, the test couldn’t assert that the Done button
had actually done anything. What you want is to verify that you can see the text in the
right place, and you can do this by using multiple app queries.

The first thing to do is to add some more IDs so you can identify the labels in the
table view or recycler view that show the name and count. To do this on Android, add
the code in the following listing to the counter_recycler_view.axml layout file to add
the ID of “counter_name” to the name label and “counter_count” to the count label.

Listing 14.11 Tapping the Done button

Taps the button with
the text “Done”

458 CHAPTER 14 Testing mobile apps using Xamarin UITest
<TextView
...
local:MvxBind="Text Name"
android:id="@+id/counter_name"/>

<TextView
...
local:MvxBind="Text Count"
android:id="@+id/counter_count"/>

For iOS, once again you can do this from the storyboard by selecting the labels in the
cell prototype in the CountersView.storyboard file and setting the Identifier proper-
ties in the Accessibility section. Select the counter name label and set the identifier to
be “counter_name”; then select the counter count label and set the identifier to be
“counter_count”.

Once you have these identifiers in place, rebuild and redeploy the apps, and then
rerun the UI test. Once the REPL loads, run the tree command and you’ll see that the
two labels now have their IDs set. You now have two ways to query the counter name:
you can query based on the ID (but that doesn’t tell you what text is showing), or you
can query based on the text (but that won’t tell you if the text is on the counters screen,
or if you’re still on the add new counter screen and the text is in the text box).

To solve this problem, you can combine the queries. The app query methods are
part of a fluent interface—one that returns the same object that the method was
called on, allowing you to essentially chain methods. This means you can combine
queries for the ID and the text. Try it out by running the command app.Query(c =>

c.Id("counter_name").Text("My Counter")). This will search for all items that have
an ID of counter_name, and from those results will return only the ones with the text
set to My Counter (figure 14.15). You can chain as many queries as you like—the first
query in the chain queries the entire visual tree, and each subsequent query queries
the result of the previous query.

You’ll see that this query will return a single result, the label showing the new
counter in the list, and you can write an identical query to prove that the count is 0 by
querying for the ID “counter_count” and the text “0”. You can turn these queries into
assertions in your test by using the WaitForElement method, as shown in listing 14.13.
Also, you can remove the Repl call, because you don’t need it for this test anymore.

Listing 14.12 Adding IDs to the counter view used by the recycler view

Sets the counter name label ID

Sets the counter count label ID

459Writing tests
Tree

ID query

Results

c.Id(“counter_name”))

[[object CalabashRootView] > PhoneWindow$DecorView]
 [LinearLayout > FrameLayout]
 [FitWindowsLinearLayout] id: "action_bar_root"
 [ContentFrameLayout > RelativeLayout] id: "content"
 [AppBarLayout] id: "toolbar_layout"
 [Toolbar] id: "toolbar"
 [AppCompatTextView] text: "Countr"
 [FrameLayout]
 [MvxRecyclerView] id: "recycler_view"
 [RelativeLayout]
 [AppCompatTextView] id: “counter_name” text: "My Counter"
 [AppCompatTextView] id: "counter_count" text: "0"
 [AppCompatImageButton] id: "add_image"
 [RelativeLayout]
 [AppCompatTextView] id: "counter_name" text: "Another Counter"
 [AppCompatTextView] id: "counter_count” text: "0"
 [AppCompatImageButton] id: "add_image"
 [FloatingActionButton] id: "add_counter_button"
 [View] id: "navigationBarBackground"
 [View] id: "statusBarBackground"

[AppCompatTextView] id: "counter_name" text: "My Counter"
[AppCompatTextView] id: "counter_name" text: "Another Counter"

Text query

Results

.Text("My Counter")

[AppCompatTextView] id: "counter_name" text: "My Counter"

Figure 14.15 Querying by ID and text returns only those items in the tree that match the
ID and text.

460 CHAPTER 14 Testing mobile apps using Xamarin UITest
[Test]
public void AddingACounterAddsItToTheCountersScreen()
{

// Arrange
// Act
app.Tap(c => c.Id("add_counter_button"));
app.EnterText(c => c.Id("new_counter_name"), "My Counter");
app.Tap(c => c.Text("Done"));
// Assert
app.WaitForElement(c => c.Id("counter_name").Text("My Counter"));
app.WaitForElement(c => c.Id("counter_count").Text("0"));

}

After making this change, run the test, and you’ll see it pass.

14.2.8 Proving your test by breaking things

You now have a test that passes, but ideally you should make your test fail at least once,
just to be sure that the test is working as expected. There are many ways to break the
app, but a simple way would be to comment out one of the bindings (to simulate what
would happen if you had a bug in your code due to forgetting a binding). Try com-
menting out the bindings in CountersView, as follows.

public override void ViewDidLoad()
{

...
//var set = this.CreateBindingSet<CountersView, CountersViewModel>();
//set.Bind(source).To(vm => vm.Counters);
//set.Bind(button).To(vm => vm.AddNewCounterCommand);
//set.Apply();

}

If you make this change, build and deploy the app, and re-run the test, you’ll see it
fail. If you look in the output, you’ll see the error shown in figure 14.16.

This error shows you that the query for the control with the ID of
“new_counter_name” didn’t find anything, and the stack trace points to the call to
EnterText in the AddingACounterAddsItToTheCountersScreen test. This tells you
that when the query was run, the new counter name text box wasn’t showing, so now
you need to find out why.

There are multiple ways to debug a UI test. By debug, I mean see what’s happening
on screen when your test runs. When a UI test is running through the debugger, you
can only debug the test itself. You can’t step into the app or attach the debugger to the
app, so if you need to debug a problem inside your app, you’ll need to run it and man-
ually work through the tests steps to get there.

Listing 14.13 The complete test, asserting that the new counter has been found

Listing 14.14 Commenting out some bindings to simulate a bug in the code

The assertions, verifying
the text is correct for

the new counter

Comments out
the bindings

461Writing tests
To see what’s happening when the test runs, you can do one of the following:

 Debug the UI test—UI tests can be debugged just like any other unit test. You can
set breakpoints, step through, evaluate variables, and do anything else you’d
normally do in a debugger. The usual way to debug a UI test is to set a break-
point on the line that fails, then debug the test by right-clicking it in the Test
Explorer or Test pad and selecting Debug Test. This will launch the test in a
debugger and break on the breakpoint.

To do this for your test, set a breakpoint on the call to app.EnterText(c =>

c.Id("new_counter_name"), "My Counter"), and debug the test. When the
breakpoint is hit, take a look at the app and you’ll see that it’s still on the count-
ers screen, not the add new counter screen. This suggests that tapping add_

counter_button didn’t work, and you can test this theory by manually tapping
the button and seeing what happens. When you run a UI test, it’s the same as if
you manually followed all the steps, so you can interact with the app yourself at
any time to try things out. (Some developers even use UI tests to get their app
to a known state that takes multiple steps, saving themselves the boring repeti-
tion of getting there manually.)

 Use the REPL—The REPL is a great way to investigate issues. Debugging can help
find the line that failed, but sometimes the REPL can help you find out why it
failed. For example, if an automation ID was missing, you could see this from the
tree (a regular scenario, especially when using multiple layout files on Android
to support multiple screens). You can launch the REPL from any point in your
test by making a call to app.Repl(), either by adding this manually to the code
or by breaking on a breakpoint and calling it from the Immediate window.

If you want to try the REPL as a debugging tool, try uncommenting the bind-
ing code in CountersView so that the add new counter button works again, but
remove the ID from the add new counter button in the iOS CountersView or
Android counters_view.axml. Build and deploy the app, and put a breakpoint
on the call to EnterText. When the app breaks on this breakpoint, open the

Figure 14.16 The output of a test failure, showing that the query for “new_counter_name” didn’t
give any results

462 CHAPTER 14 Testing mobile apps using Xamarin UITest
Immediate window (View > Debug Pads > Immediate in Visual Studio for Mac,
or Debug > Windows > Immediate in Visual Studio) and run app.Repl(). You
can then call tree to see that the Add button doesn’t have an ID set.

 Take screenshots—At each step in your test, you can save a screenshot by making a
call to app.Screenshot("<name>"). The name you pass should be an identifier
for where in the test the screenshot was taken—these names aren’t used for
local screenshots, but if you use Test Cloud (we’ll look at it in the next chapter),
these names will be shown against each screenshot. Screenshots are a great way
to see the state of the app as the test is run, and they can be especially useful if
you have a flappy test—one that passes most of the time but fails occasionally
(for example, a test that relies on an external resource, such as a web service
that’s sometimes not available or a network that times out or loses connection).

To debug your issue using screenshots, add the following code to your test
fixture.

[Test]
public void AddingACounterAddsItToTheCountersScreen()
{

...
app.Tap(c => c.Id("add_counter_button"));
app.Screenshot("About to enter text");
app.EnterText(c => c.Id("new_counter_name"), "My Counter");

If you look in the output folder of the UI tests, which will be Countr.UITests/
bin/Debug if you run your tests as a debug build, you’ll see a screenshot called
screenshot-1.png. This is the state of the app before the EnterText method was
called, so if your app was working you’d see the add new counter screen. You
can see main counters screen instead, so it’s obvious that something isn’t work-
ing when the Add button is tapped.

 App Center crash reports—If your app crashes during a UI test, you won’t be able
to see, in a debugger, which line of code is causing the crash. If you wired up
your app to App Center crash analytics, you would be able to see the crash
details in App Center.

Once you’re done, revert all changes to the bindings and IDs, rebuild and redeploy
the app, and re-run the test to ensure it passes.

14.3 Testing incrementing a counter
Time to finish the tests by adding the last one—testing incrementing a counter. This
test increments a counter and ensures that the count has been correctly incremented,
so as part of the Arrange step you’ll need to create a new counter. You can do this by
reusing the test code from the previous test, as follows.

Listing 14.15 Taking a screenshot of the test as it runs

Take a screenshot

463The app interface and app queries
[Test]
public void IncrementingACounterAddsOneToItsCount()
{

// Arrange
app.Tap(c => c.Id("add_counter_button"));
app.Screenshot("About to enter text");
app.EnterText(c => c.Id("new_counter_name"), "My Counter");
app.Tap(c => c.Text("Done"));
// Act
// Assert

}

For the Act step, you need to tap the Increment button. Once again, this is different
on iOS and Android, so you need to set an ID. On Android, the ID for the image but-
ton in the counter_recycler_view.axml layout file has already been set to add_image, so
that the count label could be positioned to the left of it, so you can reuse this ID on
iOS. Open CountersView.storyboard and set the accessibility identifier for the Incre-
ment button to be “add_image”. Once this ID is set, you can add a call to tap the but-
ton, and an assert that the count text is now “1”, as shown in the following listing.

[Test]
public void IncrementingACounterAddsOneToItsCount()
{

...
// Act
app.Tap(c => c.Id("add_image"));
// Assert
app.WaitForElement(c => c.Id("counter_count").Text("1"));

}

Run this test, and it should be a nice green color. You now have two UI tests that
ensure you can add counters and increment them, and you have some confidence
that you’ve built an app that works.

UI tests should not be the only tests you run. They’re a great way to ensure that
your view is bound correctly and that all the parts of your app work together, but they
should always be used in conjunction with thorough unit testing.

14.4 The app interface and app queries
Let’s take some time to recap the IApp interface and look at what else is available on
this interface. We’ll also look in more detail at app queries.

Listing 14.16 Creating a new counter in the Arrange step of the test

Listing 14.17 Tapping the Increment button and asserting on the new value

Creates a
new counter

Taps the Increment
counter button Asserts that

the counter
count is now 1

464 CHAPTER 14 Testing mobile apps using Xamarin UITest
14.4.1 The IApp interface

The IApp interface has a number of methods that can interact with your app. Some
take app queries and interact with the controls that match the query, and others act on
the app as a whole. Table 14.2 shows some of the general methods on this interface.

Table 14.3 shows some of the methods that take app queries.

Table 14.2 IApp interface methods

Method Description

Back Navigates back using the iOS navigation bar or Android Back
button. On Android, this uses the hardware Back button, so if
the keyboard is showing, this will dismiss the keyboard rather
than going back. If your screen has any text-input controls that
would show the keyboard, you should dismiss the keyboard
first.

DismissKeyboard Hides the keyboard if it’s visible.

Repl Shows the REPL.

SetOrientationLandscape and
SetOrientationPortrait

Changes the orientation of the device.

Screenshot Takes a screenshot (only works in Test Cloud unless the app is
configured to allow local screenshots).

Invoke Invokes a backdoor method, allowing you to interact with hid-
den features in your app. You can read more about these in
Xamarin’s documentation at http://mng.bz/MSXX.

Table 14.3 IApp interface methods that take app queries

Method Description

Query Returns all the items in the visual tree that match the query.

Tap and DoubleTap Taps (or double-taps) the first item in the visual tree that matches the
query (if there are multiple matches, only the first is tapped), and throws
an exception if none is found.

EnterText and
ClearText

Enters text into or clears all text from the first item that can accept text
and matches the query. If there are multiple matches, the text is only
entered into the first one. If there are no matches, an exception is thrown.

Flash Makes all controls that match the query flash. This is useful when writing
complicated queries and you want to test them out.

ScrollDownTo and
ScrollUpTo

These methods take two queries: one for a scrollable container, and one
for an item to find. They scroll up or down inside the control that matches
the scrollable container query for an item that matches the item query.

WaitForElement Waits for an element that matches the query and throws an exception if
none are found in a certain period of time (defaults to 10 seconds).

http://mng.bz/MSXX

465The app interface and app queries
You can read more about this interface and about how the different methods work in
Xamarin’s documentation at http://mng.bz/J9co.

14.4.2 Queries

An app query defines the criteria used to find items in the visual tree. App queries
have a fluent interface, with methods you call to define criteria that all return another
app query instance, which you can then call another method on to build up more
detailed criteria. Some of these methods are shown in table 14.4.

You can also query using strings instead of app query objects, and this is the same as
using Marked. For example app.Tap("FooBar") is the same as app.Tap(c => c.Marked

("FooBar")).
App queries can also be used to find parents, children, and siblings, so they can be

used to walk around the tree if necessary. You can find more information on building
up app queries in the Xamarin documentation at http://mng.bz/kyx0.

THERE’S A LOT MORE YOU CAN DO WITH APP QUERIES AND UITEST In this chapter
I’ve only lightly touched on app queries and the capabilities of UITest. You
can write some pretty advanced queries, including walking the visual tree
based on parent, child, and sibling relationships and even invoking iOS or
Android methods on controls and querying based on the results (such as
finding all switches that are on). You can also expose methods inside your
app (called backdoors) that you can call from the IApp instance, or invoke

WaitForNoElement Waits for no elements that match the query and throws an exception if any
is found after a certain period of time (defaults to 10 seconds).

Table 14.4 AppQuery methods

Method Description

Id Finds controls that have an Android resource ID or iOS accessibility identifier set
to the specified ID.

Text Finds controls that have text that matches the query, such as the text on labels,
text boxes, or buttons.

Marked This is a combination of Id and Text, so finds anything that has an ID or text
matching the given string.

Button The same as Marked, but only for buttons.

Switch The same as Marked, but only for switches.

TextField The same as Marked, but only for text fields.

Table 14.3 IApp interface methods that take app queries (continued)

Method Description

http://mng.bz/J9co
http://mng.bz/kyx0

466 CHAPTER 14 Testing mobile apps using Xamarin UITest
native methods on existing controls. This invoking of native methods can be
useful when UI testing components that draw on the screen, such as chart or
graphing controls—you can’t check what’s drawn using a UI test, but you can
expose data through a native method that you can call and verify. You can
read more about the capabilities of UITest in the Xamarin developer docs at
http://mng.bz/cpM5.

Your app is now well tested and well on the way to being production-ready. In the next
chapter we’ll look at setting up Visual Studio App Center to automatically build your
apps, run your UI tests on a range of real devices in the cloud, and set up user analyt-
ics and crash reporting so that you can track how your users use the apps and what
issues they have once you release them to your beta and production users.

Summary
In this chapter you learned

 Xamarin UITest allows you to write automated UI tests in C#.
 UITest can be used to interact with controls, including tapping buttons or read-

ing values.
 Apps have a visual tree made up of a hierarchy of controls.
 You can write tests against the visual tree.

You also learned how to

 Use the REPL to query your app’s visual tree and interact with it.
 Use app queries to find controls on screen.
 Write UI tests using the same arrange, act, assert pattern you’ve already used for

unit tests.

http://mng.bz/cpM5

15Using App Center to build,
test, and monitor apps
Back in chapter 1 we discussed the mobile-optimized development lifecycle that’s
ingrained in all the mobile tools offered by Xamarin and Microsoft. It’s shown
again in figure 15.1.

In previous chapters we’ve looked at the first couple of steps in this lifecycle:
develop and test. We’ve written apps and built unit tests and UI tests. Now we need
to consider the remainder of this lifecycle, and to do this we need to take advantage
of another tool from Microsoft and Xamarin called Visual Studio App Center. If you’re
excited about DevOps (and I hope you are) then this chapter is for you. If not, this
chapter should be relaxing after the intense learning of the previous chapters—it’s
more about learning how to configure and use App Center than about learning new

This chapter covers
 Getting started with Visual Studio App Center

 Setting up app builds in App Center

 Running UI tests on real devices in the cloud
using App Center

 Capturing and analyzing user data including
analytics, behavior, and crash reports
467

468 CHAPTER 15 Using App Center to build, test, and monitor apps
concepts. The end product should be worthwhile—a built and tested app set up for
crash reporting and user analytics, ready to be released to users in the next chapter.

15.1 Introducing Visual Studio App Center
Visual Studio App Center is billed as “Mission Control for apps,” and it provides a one-
stop shop for managing the mobile-optimized development lifecycle in your mobile
apps, covering part of test as well as build, distribute, and monitor:

 Test—App Center integrates with Test Cloud, which allows you to take the UI
tests you wrote in the last chapter and run them on real devices in the cloud.
(In this case, the “cloud” is a warehouse in Denmark with racks and racks of
phones and tablets.)

 Build—App Center has tools that can take your code and build it either on
demand or when you push to source code control.

 Distribute—From App Center you can distribute your builds to beta testers,
including adding notifications inside your app when an update is available. In
an upcoming release you’ll also be able distribute to the Google Play and Apple
App Stores.

 Monitor—Using App Center you can not only get analytics about the users who
are using your apps, you can also get automatically uploaded crash reports if
your app crashes for your users.

In this chapter and the next we’ll be looking at using App Center to perform all these
steps in the lifecycle, starting in this chapter with build, test, and monitor, and looking
at distribution in the next chapter. This is slightly out of order in terms of the lifecycle,
but it makes sense to developers—we need to set up the build before we can test it,
and we need to add analytics before we distribute so that we can see the results as soon
as possible.

You can access App Center at https://appcenter.ms (figure 15.2). At the time of writ-
ing, it’s free for light usage, with paid plans if you need more features. You can log in
by clicking the Get Started button, and then create an account using either a Microsoft
account (you probably set one of these up when installing Xamarin, if you didn’t
already have one), or by connecting it to your GitHub, Facebook, or Google account.

Develop Test Build Distribute Monitor

Visual Studio UITest,
Test Cloud

Visual Studio
App Center

Visual Studio
App Center

Visual Studio
App Center

Figure 15.1 The mobile-optimized development lifecycle is a continuously iterating cycle of develop,
test, build, distribute, and monitor.

https://appcenter.ms

469Introducing Visual Studio App Center
Once you’ve connected to App Center, it’s worth setting up an App Center password
associated with the email address used by the service you connected with. This will
allow you to log in from the command line later, which is necessary for running UI
tests. To do this, click the cog icon next to your name to see the user settings, go to the
Password tab, and click the Send Set Password Email button. You’ll receive an email
with a link to follow to set a password. Click this link and set a password.

15.1.1 Apps

App Center is built on the concept of apps, with each app being a single, releasable
app for a single platform. Although you may think of Countr as a single app available
on iOS and Android, from the perspective of App Center it’s actually two apps, one
Android and one iOS.

APP CENTER COVERS MORE THAN JUST MICROSOFT PRODUCTS As part of the
new “Any developer, any platform” approach, Microsoft has made sure that
App Center works for all mobile developers, not just Xamarin developers.
App Center supports native iOS and Android apps built using Objective-C,
Swift and Java, Xamarin, Windows UWP, and React Native—and it actually
supported native iOS and Android before Xamarin. This means that if you
work with a mixture of app technologies, you can still use App Center to man-
age everything.

Figure 15.2 Visual Studio App Center—Mission Control for apps

470 CHAPTER 15 Using App Center to build, test, and monitor apps
For each app, App Center provides a number of services:

 Build—App Center can connect to a source code repository (currently GitHub,
VSTS, and BitBucket are supported). For each branch in your repo you can
create a build to compile your solution or an individual project using any avail-
able build configuration either on demand or whenever the code is updated in
the repo. You can sign your build using an Android keystore or iOS provision-
ing profile and even launch it on a real device, using Test Cloud as a sanity
check to ensure that your app runs and doesn’t crash on startup.

 Test—Xamarin has a huge data center in Denmark with thousands of real
devices that you can run your app on using automated UI testing. App Center
can be used to configure, start, and display the results of these test runs.

 Distribute—App Center can distribute your app, as soon as it’s built, to beta tes-
ters or to the Google Play or Apple App Stores. Beta test users will get an email
with a link to download your app so that they can test it, and they can even get
notifications inside their apps that an update is available. I’ll cover distribution
in chapter 16.

 Crashes—Most apps will crash at some point, and App Center has an SDK you
can add to your apps to track crashes. If your app crashes, the App Center SDK
will track this, and the next time your app is run and is online, it will upload the
crash details, including the stack trace, to App Center.

 Analytics—It’s always good to know how your users are using your app, so that you
can track pain points and see what features are popular or are not being used, so
you know which areas to work on. It also helps to see user demographics—if your
app is in English but is popular in Italy, you might want to offer it in Italian, for
example. The App Center SDK can help to track this kind of information.

15.1.2 Users and organizations

When you log in to App Center, you’re logged in as a user, and you can have apps
assigned to you as an individual. Users can also be part of an organization—essentially
a named group of users with different permissions. You can be an admin user and have
full control over the organization, or a collaborator who can just create and manage
apps inside the organization. You can read more on organizations in Microsoft’s docu-
mentation at http://mng.bz/ge1o.

15.1.3 API

App Center was written API-first—that is, the development team at Microsoft created
public APIs for managing your apps, and then the web portal was written to use these
APIs. This means that anything you can do in the App Center web portal, you can also
do using a public REST API. You can easily integrate App Center into any existing
build or CI tools that you already use. For example, if you already have an automated

http://mng.bz/ge1o

471Setting up builds
build and release process using a tool like Jenkins, you can replace the steps for build-
ing your app with calls to App Center, and use that to run your builds. Microsoft’s API
documentation is available at http://mng.bz/szn6.

15.1.4 CLI

App Center also has a command-line interface that you can use to do everything App
Center can do from a command line. Microsoft’s App Center docs have more infor-
mation on the CLI, covering the huge range of features it offers: http://mng.bz/Bkin.
We’ll get this set up and use it later in this chapter to run automated tests.

15.1.5 Getting help

App Center has excellent documentation. Just click your name at the bottom of the
menu and select Docs & APIs (or you can find it at http://mng.bz/fS43). You can also
interact directly with the App Center team at Microsoft if you get stuck, find bugs, or
have feature suggestions—just click the blue and white speech-bubble button. From
there you can start conversations with the team, see their responses, and see messages
about new features.

15.2 Setting up builds
App Center apps are based on code for a mobile app from a source control repository,
so before you can set up a build, you need to put the source code for your app into a
repository that App Center can access. At the time of writing, App Center supports
three providers: Git repos in GitHub (https://github.com) and BitBucket
(https://bitbucket.org), and Git or TFS repos in Visual Studio Team Services
(https://www.visualstudio.com/team-services/). Source code control is outside the
scope of this book, so if Git is new to you, I recommend Learn Git in a Month of Lunches
by Rick Umali (Manning, 2015). For the rest of this section, you’ll need to have a basic
understanding of Git, including being aware of branches, commits, and pushes.

In this chapter and the next, we’ll just be looking at setting up Countr, but feel free
to set up SquareRt as well, for practice. You’ll need to add your Countr code to one of
the three source code repository providers. Each one has comprehensive documenta-
tion to get you started. I personally use GitHub, because you can use a GitHub
account to log into App Center, and this automatically gives App Center access to your
repos, but use whichever you feel most comfortable with.

IDEALLY YOU NEED A PRIVATE REPO The different source code repository pro-
viders have both private and public repositories available. Later in this chap-
ter we’ll be adding an app secret to our app to wire up analytics and crash
detection, and ideally this value should be kept private. This means it’s worth
creating a private repo to put your code into.

http://mng.bz/fS43
http://mng.bz/szn6
http://mng.bz/Bkin
https://github.com
https://bitbucket.org
https://www.visualstudio.com/team-services/

472 CHAPTER 15 Using App Center to build, test, and monitor apps
15.2.1 Creating your first App Center app

Once your code is in source control, the next step is to create an app in App Center.
We’ll begin by creating an Android app, then create the iOS one.

From the App Center landing page, click the Add New App button at the top right.
A panel will slide out on the right where you can enter details for your app (fig-

ure 15.3). Set the name as Countr - Android, add a description, set the OS to Android
and the Platform to Xamarin, and then click Add New App. This will create the app
and show a Getting Started page with details on how to set up the App Center SDK
for crash reporting and analytics (we’ll look at that later in this chapter).

Figure 15.3 Setting up your app in App Center

473Setting up builds
The next step is to configure a build, and to do this you need to connect App Center
to your source code repository. Click the Build tab on the menu on the left, select
your repository provider of choice (figure 15.4), and follow the instructions to con-
nect it to App Center. Once it’s connected, choose the repo that you put the source
code for Countr into.

15.2.2 Configuring the Android build

Once you’ve set up your repo, the Build tab will show all available branches in that
repo, so if you set up a new Git repo you’ll probably only see one branch called “mas-
ter”. Click the master branch, and then click Set Up Branch. A panel will slide out
with options to configure your branch, as shown in figure 15.5.

This configuration is divided into four sections:

 Build App—In this section you can configure how your app should be built.
– Project—The first option is the project to build—your solution could contain

multiple Android apps, so here you can select the one to build. Our solution
only has one Android app, so Counter.Droid should be selected.

– Configuration—From here you can set the build configuration you want to
compile with: either Debug or Release (or any others if you have more set
up). You’ll need a release build for running UI tests later (to avoid having to
uncheck the Shared Mono Runtime option in your Android project), so set
this to Release.

– Mono Version—Here you can select which version of Mono (the open source
version of the .NET Framework that runs on macOS) to use when compiling
your app. At the time of writing, Mono 5 has been released with a whole
swath of improvements and new features, but there have also been some
bugs. You can choose to use the latest version (currently Mono 5) or use
Mono 4.

Figure 15.4 To create a build, you first need to connect App Center to your source code repository.

474 CHAPTER 15 Using App Center to build, test, and monitor apps
– Build Frequency—The build frequency can be set to either on every push to
this branch, or manually, on demand. Leave this set to Build This Branch on
Every Push—this way every time you push one or more commits to your
repository, the app will be rebuilt.

 Sign Builds—App Center can sign your builds using your Android keystore. You
can take advantage of this to sign your build using the keystore you created
back in chapter 13. Turn on Sign Builds, upload your keystore from the very
safe place where you keep it, enter the alias you used when creating it in the
KEY_ALIAS, and then enter your keystore password into both the KEYSTORE_

-PASSWORD and KEY_PASSWORD fields (when you set up a keystore using Xama-
rin, it uses the same password for the keystore as for the signing key inside it).

 Test on a Real Device—By turning this option on, your app will be launched on a
real device inside App Center’s Test Cloud service, and the test will verify that
your app launched successfully. It won’t run the UI tests you wrote in the previ-
ous chapter; it will just launch the app and check for a crash (we’ll look at run-
ning UI tests in Test Cloud later in this chapter). This is a great sanity check

The project inside your solution to
build—this drop-down will only show
valid Android apps.

The build configuration to use

The version of Mono for Xamarin to use
when building and linking this app

When to build this branch, either on
every push to the source code repo, or
on demand

Turn this option on to have App
Center sign your builds. You will need
to provide a keystore, an alias, and
your keystore password.

If you turn this option on, App Center
will launch your app once on a real
device using Test Cloud as a sanity
check that your app can at least launch
without crashing.

Turning this on allows you to distribute
your final builds. We’ll look at this in the
next chapter.

Figure 15.5 App Center can build your branch, as well as sign it, test it, and set it up for distribution.

475Setting up builds
that your build has worked and that your app at least starts up. You have no con-
trol over which device it will run on—it will be a compatible one with at least
your app’s minimum SDK installed, but other than that you have no control. It
will also make your build take longer, as you’ll have to wait for an available
device. This runs using UITest, so use a release build so the shared Mono run-
time isn’t used, as discussed in chapter 13.

You’ll need a valid Test Cloud subscription for this to work, but as part of
your App Center free trial, you’ll get a valid subscription; turn this option on.

 Distribute Builds—These options allow you to distribute final builds to either
beta testers or the store. We’ll look at this in chapter 16, so leave this off for
now.

Once your build is configured, click Save. This will queue up a first build under the
master branch, as shown in figure 15.6.

Under each branch is a list of all the builds for that branch, and this will only have one
entry so far—the build that was kicked off by setting up the branch. If you click the
build, you can see more information about it, including a full build log. Figure 15.7
shows the bottom of the build log.

Once your app has built, you’ll see the build marked as a success, as well as how
long the build took and logs detailing everything that happened. The build has taken
your code from your source code repository, restored the NuGet packages you use,
compiled your Android app, signed the APK using your keystore, installed it on a
device, and launched it to verify that everything has worked. You’ll also have an option
to download the Android APK and build logs if you want to. If your app didn’t build,
check the build output and fix up whatever is causing the issue.

This is your Android app set up and built. Now let’s set up the iOS app.

Figure 15.6 All builds for a branch can be seen by clicking on the branch.

476 CHAPTER 15 Using App Center to build, test, and monitor apps
15.2.3 Configuring the iOS build

Although you’re building a cross-platform Xamarin app, you’re really building two
apps, one iOS and one Android. This means you have to set up your iOS app as a sep-
arate app in App Center. Repeat the same steps as for the Android app, but call the
app Countr - iOS and set the OS to iOS.

As before, select the master branch to set up the build. The Build App section has
a few different options than the Android version, as shown in figure 15.8:

 Build app
– Project—Unlike Android, you can only select the solution you want to build

here, not the project. This means you should only have one iOS app in your
solution, to avoid confusion—if you have more than one, it might be worth
breaking them out into separate solutions. This setting should default to
Countr.sln.

– Configuration—This is the same as the Android configuration section. To be
able to run a launch test on your builds using UITest, you need to use the
Debug configuration, so set this to Debug instead of Release.

– Mono Version—Here you can select which version of Mono to use when com-
piling your app. At the time of writing, Mono 5 has been released with a

Figure 15.7 Your Android app should build successfully.

477Setting up builds
whole swath of improvements and new features, but also some bugs. Here you
can choose to use the latest version (currently Mono 5) or to use Mono 4.

– Xcode Version—You can configure which version of Xcode to use when build-
ing. Only recent versions are available (for example, at the time of writing
8.3.2 is the latest, and you can only select versions starting at 8.0), but this is
useful if you need an earlier version. You can just leave the default setting,
which will be the latest released version.

– Build Type—Unlike Android, iOS builds come in two types—simulator and
device builds. Set this to Device Build so that you can run a launch test on a
real device (launch tests aren’t available on simulators).

– Build Frequency—Leave this set to Build This Branch on Every Push.
 Sign Builds—App Center can sign your iOS builds using your certificate and

provisioning profile.
– Provisioning Profile—The easiest way to set the provisioning profile is to head

to the Apple Developer site (https://developer.apple.com), log in, go to the

The solution to build—this solution
should only contain one iOS app.

The build configuration to use

The version of Mono and Xcode for Xamarin
to use when building and linking this app

The type of build to create, either for a
real device or a simulator

When to build this branch, either on every
push to the source code repo, or on demand

Turn this option on to have App Center sign
your builds. You will need to provide a
provisioning profile and a certificate.

If you turn this option on, App Center will
launch your app once on a real device using
Test Cloud as a sanity check that your app
can at least launch without crashing.

Turning this on allows you to distribute
your final builds. We’ll look at this in the
next chapter.

Figure 15.8 iOS builds have a few more options than Android builds.

https://developer.apple.com

478 CHAPTER 15 Using App Center to build, test, and monitor apps
provisioning profiles section of Certificates, Identifiers and Profiles, and
download your developer profile. Once it’s downloaded, upload it to App
Center.

– Certificate—App Center needs your signing certificate as a .p12 file. You can’t
download this from the Apple Developer website; instead you need to export
it from your keychain. Open Keychain Access on your Mac and search for a
certificate whose name starts with iPhone Developer (figure 15.9). Select this
certificate and click File > Export Items, enter a name, select a sensible loca-
tion, and click Save. When you’re prompted, enter a password to use to
encrypt this certificate.

From App Center, upload this .p12 file and enter the password you used.

 Test on a Real Device—Turn this option on to sanity check your app on a real iOS
device.

 Distribute Builds—Leave this off for now.

Once your build is set up, click Save and watch the logs to see it build and run the
launch test. Again, if the build fails, check the build output and fix up any issues.

Figure 15.9 Use Keychain Access to export your certificate.

479Testing your apps using Test Cloud
15.3 Testing your apps using Test Cloud
When your apps were built, App Center uploaded them to a real device for a simple
launch test. When you write your own UI tests and run them locally, you can run them
against simulators or actual devices, but there’s a limit to how many devices you can
feasibly own and use. When running UI tests from the IDE, you can only target one
device at a time, and although there are ways to run tests on multiple devices at the
same time, this requires complicated configuration for Android and a lot of Mac build
servers for iOS. Ideally, you’ll want to test on a wide range of devices of all configura-
tions running all manner of OS versions, but this means a massive hardware spend
and a long time to run all the tests. Fortunately, Test Cloud offers an alternative.

15.3.1 What is Test Cloud?

Test Cloud is a cloud-based device lab containing many thousands of real Android and
iOS devices that you can run your UI tests on, and it’s available as part of App Center.
You can create a test session with a selection of devices, submit your tests to it, and it
will wait for those devices to become available, install your app on them, and run your
UI tests.

You can then see the results in a dashboard, where you can break them down by
OS, device type, device manufacturer, OS version, or whatever you need to analyze any
test failures. You can also see screenshots of your app running, track memory usage,
and even download the device log.

This is a paid service (with a 30-day free trial, of course, to lure you in), but it
removes the cost of buying and maintaining your own devices, plus the time of setting
up and running tests manually.

15.3.2 Preparing your apps to be tested

Test Cloud runs UI tests against a signed and packaged application: an APK (Android
package) for Android or an IPA (iOS application archive) for iOS. Android apps
should be release builds, but iOS apps should be debug builds so that the Calabash
server is enabled.

There are two ways to get this package: downloading the build from App Center,
or building locally. At the time of writing you can’t automatically test a build inside
App Center (apart from the launch test). You have to run tests from your local dev
box.

DOWNLOADING PACKAGES FROM APP CENTER

When App Center builds and signs your app, it creates an app package—an IPA on
iOS and an APK on Android. If you select an individual build for a branch, you’ll see a
Download button at the top right (figure 15.10). Click this and select Download Build
to download the APK or IPA.

480 CHAPTER 15 Using App Center to build, test, and monitor apps
BUILDING LOCALLY

To generate the Android APK locally, set the build configuration in Visual Studio to
release and run your app on a device or emulator—this will compile your app and
package it as an APK.

For iOS, IPAs aren’t built by default for debug builds in Visual Studio, so you need
to configure your builds to generate them by checking the Build iTunes Package
Archive (IPA) option in the iOS IPA Options section of the project properties (figure
15.11). With this option ticked, you’ll get an IPA every time you build your app, so tick
it, set the configuration to debug (remember that you need debug to have the Cala-
bash server enabled), and rebuild. Your IPA needs to be a device build, so make sure
it’s built against a physical device (simulator builds won’t work on Test Cloud), and if
you don’t have a device at hand, select Generic Device. Don’t worry about which pro-
visioning profile is used for the device build; Test Cloud will re-sign it with their provi-
sioning profile.

COMPILING THE UI TESTS

You’ll need to make sure your UI test project has been built from Visual Studio. The
configuration doesn’t matter. You just need to remember which configuration you
used, because you’ll need the path to it later when you run the tests.

Figure 15.10 You can download the packaged build from App Center.

481Testing your apps using Test Cloud
15.3.3 Creating a test run configuration

When you want to use Test Cloud, you start by creating a test run configuration, and
this configures which OS your app supports and what devices you want your test to be
run on. You can then assign tests to a series, allowing you to group multiple test run
configurations. For each run configuration, you’re given the command that you can
run locally to upload your app to Test Cloud and start the test run.

You can access Test Cloud from the Test tab in App Center for one of your apps.
Select this tab, and then click the New Test Run button at the top of the screen. Once
you click this, you’ll be presented with a panel containing a wizard that will allow you
to configure the test run.

The first panel allows you to select the devices you want to run your UI tests on.
This includes a range of devices and OS versions (for example, on iOS there are 160
different combinations ranging from iPhones to iPads and OS versions from 8 up),
and you can search this list to find the device and OS configurations you want to run
on. You can type in the search box to filter by name, or click the funnel icon to filter
by device type, OS, CPU, or other values. If you click the information icon to the right,
you’ll see a popup giving detailed device information. For now, just select a couple of
devices—any device will do.

Once you’ve selected your devices, you can save your selection using the Save Set
button, and you’ll be prompted to enter a name for the device set. This device set will
be remembered, and the next time you create a test, you’ll be able to reuse this set or
create a new configuration.

After selecting the devices you want, click the Select <x> Devices button (figure
15.12).

Figure 15.11 To create an IPA file with every build, turn on Build iTunes Package Archive.

482 CHAPTER 15 Using App Center to build, test, and monitor apps
In the next panel (figure 15.13) you can configure the test run details.

Figure 15.12 Selecting the devices to test on

You can group tests with
similar characteristics into
different test series.

The launch-tests series is created
when you first run a launch
test on a real device from the
build. The master series is
created when you first create a
UI test run, and by default new
test runs are created in this series.

Click Create new... to create a
new test series.

App Center supports multiple
test frameworks including Appium,
XCUITest, Espresso on Android,
and Xamarin UITest.

Figure 15.13 Configuring the test series and testing framework

483Testing your apps using Test Cloud
 Test Series—Test series are named groups for grouping tests based on whatever
criteria you want. You should see two test series: launch-test was created when
you selected to run a launch test for your app at build time, and master is a
default test series created for you. Select master for now.

 System Language—Your tests can be run on devices configured with one of a
small selection of system languages, so if you need your devices to run in a dif-
ferent language, select it here.

 Test Framework—Test Cloud supports a number of frameworks, including the
native Apple and Google frameworks, Appium, and UITest. Your tests were writ-
ten using UITest, so select this option.

When you click Next, you’ll be presented with a final panel with details about your test
run and instructions on how to run it (figure 15.14). At the moment, you can’t launch
a test run from App Center. Instead, you have to run it from the command line. Don’t
click the Done button yet, as the contents of this panel are necessary to run the tests.

Figure 15.14 The last panel shows commands to run to execute the test series.

484 CHAPTER 15 Using App Center to build, test, and monitor apps
15.3.4 Running tests from the command line

To run your tests, you’ll need to have Node.js installed—the App Center command-
line tools are implemented as a Node.js JavaScript package that can be run from the
command line. If you haven’t heard of Node.js before, it’s a JavaScript runtime that
can run JavaScript libraries such as the App Center tools, among others. Head to
https://nodejs.org and install Node.js before continuing.

Once Node.js is installed, install the App Center tools using the Node.js package
manager.

For macOS, launch a Terminal window and run this command:

sudo npm install -g appcenter-cli

On Windows, launch a command prompt as an administrator and run this command:

npm install -g appcenter-cli

Once Node.js is set up, navigate to the root of the Countr solution using the Windows
command prompt or macOS terminal.

If you’ve never used the App Center command-line interface (CLI) before, you’ll
need to log in. Enter the following command:

appcenter login

This will launch a browser window where you’ll need to log in to App Center. Once
you’ve logged in, you’ll be given an access code that you’ll need to copy and paste into
the command prompt or terminal to complete the log in.

Once you’re logged in, it’s time to run the tests. On the last panel, you’d have seen
a command to run:

appcenter test run uitest --app "Countr-iOS" --devices <your devices>

➥ --app-path
pathToFile.ipa --test-series "master" --locale "en_US"

➥ --build-dir pathToUITestBuildDir

The <your devices> part will be a short hex string showing a unique identifier for the
devices you selected, or the name used if you saved the device set. A couple of values
in this command need to be replaced before you can run it:

 pathToFile.ipaorpathToFile.apk—This is the IPA or APK to upload and test
against. If you downloaded the build from App Center, set this value to be the
path to the downloaded build. If you built it locally, set this to the local package—
for example, Countr.iOS/bin/iPhone/Debug/Countr.iOS.ipa would point to
your Countr iOS debug IPA, or Countr.Droid/bin/Debug/io.jimbobbennett
.Countr-Signed.apk for the Android version.

 pathToUITestBuildDir—This is the path to a folder containing the assemblies
that contain the actual UI tests. This should be set to the output directory of the
UI test project, so use Countr.UITests\bin\Debug.

https://nodejs.org

485Testing your apps using Test Cloud
Make these changes to the command, and then run it. It’ll take a few minutes to run,
so while it’s running, let’s look in more detail at what we have run.

YOU MAY BE ASKED FOR TELEMETRY INFORMATION The first time you run an
App Center command from the command line, you might be asked if you
want to enable telemetry—analytics around how you use the CLI tools that Mic-
rosoft is gathering to help improve the user experience. Enter y to enable
telemetry, n to disable it.

BREAKDOWN OF THE COMMAND

Let’s take a look at the command and its parameters in more detail. The appcenter

command is used to interact with all the available functionality in App Center. Table
15.1 shows the different parameters used to submit tests.

Table 15.1 The parameters for the App Center command

Part Description

test run uitest Tells App Center you want to run some Xamarin UI
tests.

--app "<app name>" Sets the app name for the test you want to run. App
names on their own refer to apps owned just by you.
For an app owned by an organization, use the format
"Organization name/app name"—for example,
"Xamarin-In-Action/Countr-Android". The
name should be in quotes because app names can
have spaces in them.

--devices <your devices> A unique ID defining what devices to use. If you
saved your device set, it will be the name you set
when saving (prefixed with your organization name if
your app is part of an organization). Otherwise it will
be a unique ID generated by Test Cloud that refer-
ences your devices.

--app-path pathToFile.ipa/apk The path to the IPA or APK for your app. If you used
the one built by App Center, this is the path to wher-
ever you downloaded it. If you built it locally, this will
be under the current folder, so
Countr.iOS/bin/iPhone/Debug/Countr.iOS.ipa to
point to your Countr iOS debug IPA or
Countr.Droid/bin/Release/io.jimbobbennett.Countr-
Signed.apk for Android.

--test-series "master" The series to run your test under. Tests can be
grouped by series so you can compare different test
runs or builds. For example, you could have a
develop series for builds that you’re actively work-
ing on that just tests recent changes, and a
release series for your release candidates that
tests everything.

486 CHAPTER 15 Using App Center to build, test, and monitor apps
WHAT HAPPENS WHEN YOU RUN THIS COMMAND

When you run this command, it will start by uploading your IPA or APK and tests to
Test Cloud. It will then validate that your app package will work on the devices you’ve
selected (for example, checking that it supports the OS version on the device). Once
that’s validated, it will wait for the devices to be ready. When one is ready, it will start
the test on that device, and as the others become available, the tests will start on those
devices. If you use a popular device, you could be waiting a while—Xamarin is adding
more devices all the time, but there can still be a wait. Once the tests are run, you’ll see
the pass and fail counts in the command-line window. Figure 15.15 shows this process.

How long this takes depends on the speed of your network connection (after all, you
have to upload a multi-megabyte package) and the availability of the devices. My last
run, for example, took 10 minutes. The output follows (with repeated lines replaced
with ellipses to make the output much shorter):

Preparing tests... done.
Validating arguments... done.

--locale "en_US" The device language to use, which is useful if you
want to test your app with multiple languages. Test
Cloud only supports a limited set of languages at the
moment, but this list should grow over time as Micro-
soft has always been superb at supporting multiple
languages.

--build-dir pathToUITestBuildDir The path to the folder containing the assemblies that
have your UI tests. These need to be compiled
assemblies, so make sure it points to an output path
and that your tests are built (for example,
Countr.UITests\bin\Debug).

Table 15.1 The parameters for the App Center command (continued)

Part Description

Upload package
and UI tests

Validate against
selected devices

Wait for
devices

Run on device n
when ready

Run on device 2
when ready

Run on device 1
when ready

Generate
results

Figure 15.15 The App Center CLI uploads your binaries, validates them, and then runs the tests on
the selected devices.

487Testing your apps using Test Cloud
Creating new test run... done.
Validating application file... done.
Uploading files... done.
Starting test run... done.
Test run id: "865a554c-5d0d-45d4-b748-5c15b8bec2ce"
Accepted devices:
- Apple iPad Air 2 (10.3.2)
- Apple iPhone 7 (10.3.2)

Current test status: Validating
...
Current test status: Running on 2 devices (0 / 2 completed, 0 pending)
...
Current test status: Running on 1 device (1 / 2 completed, 0 pending)
...
Current test status: Tests completed. Processing data.
Current test status: Done!
Total scenarios: 3
3 passed
0 failed
Total steps: 10

This shows that the three tests ran and passed. You’ll also receive an email from App
Center with the test results.

Now let’s open up App Center to see more details.

15.3.5 Viewing the test results on App Center

To see the results of your tests, open up App Center for your app and select the Test
tab. In there you’ll see a summary of all your test runs (figure 15.16).

Figure 15.16 The Test dashboard gives an overview of all your tests runs for your app.

488 CHAPTER 15 Using App Center to build, test, and monitor apps
This shows the number of tests over time and the peak memory usage of your app as
line charts. Underneath these charts is a list of all the test runs in chronological order,
with the most recent at the top. As you move your mouse over the lines in the charts,
the corresponding test runs for that point will be highlighted. You can click the lines
or the test runs in the list to see the details of an individual run.

Even though you’ve only run your tests once, you’ll see two tests showing: the test
run you just did with three tests in it, and a run with a single test. The single test run
was the launch test performed by your build, so not only can you tell from the build
tab that it was successful, you can also see more details on it in here.

Click the test run you’ve just done to see a dashboard showing more details. This
dashboard shows a summary of the run, with the date and time, the time taken, the ver-
sion of your app, how long the test took, charts showing the success and failure break-
down by test and device, and a list of all the tests run. The list of tests includes the peak
duration and memory usage, as well as the status. This is shown in figure 15.17.

Figure 15.17 The Test dashboard, giving an overview of the latest test run

489Testing your apps using Test Cloud
You shouldn’t see any failures for your tests, but to see what failures look like, try
breaking the app (just as we did back in chapter 14 to show UI test failures) and rerun
the tests—not forgetting to revert the breaking code once the tests are done. Figure
15.18 shows what a test run with a failing test looks like.

When you click a test in the list, you’ll be shown a breakdown of that test (figure 15.19).
The left panel will show a tree of all the tests in the run, with the test you clicked
expanded. It will show a list of steps that match up to the calls to IApp.Screenshot()

that you added to your UI tests back in chapter 14 to capture named screenshots at var-
ious points in the test. As you click each step, you’ll see the screenshot that was cap-
tured for each of the devices in your test run, and this screenshot will be updated as
you click into the different steps. You can then click an individual device to see more
details, such as the test duration, memory usage, and CPU usage at each screenshot.
You can also access device information and even the system log (useful sometimes for
debugging test failures). This is shown in figure 15.20.

Figure 15.18 The Test Cloud dashboard showing a failing test

490 CHAPTER 15 Using App Center to build, test, and monitor apps
Figure 15.19 The details of a test run

Figure 15.20 For each test you can see a screenshot from an individual device, as well as device metrics.

491Analytics and crash reporting
The ability to see screenshots can be an incredibly powerful tool. When you design
your app, it’s hard to know how it will look on all devices. You can use simulators to
test all available iOS devices, but this is time consuming. Testing all possible Android
devices manually would take a huge amount of time and require a lot of configured
emulators or a large pile of physical devices. By using Test Cloud inside App Center
and capturing screenshots, you can build up UI tests that work through your app, cap-
turing screenshot after screenshot from all the screens in your app. You can then use
the App Center dashboard to review these screenshots and quickly compare multiple
devices. This is a fast way of seeing how your app looks, and it’s a great way to justify
the expense of App Center—the cost of paying developers to check apps on multiple
devices is way higher than the cost of App Center!

You’ve now got your app building on iOS and Android and tested in the cloud.
The next step in preparing for release is to set up analytics and crash reporting, so
that once your beta test and production users have your app, you can not only analyze
how the app is used, but also monitor for any crashes in order to fix them as soon as
possible.

15.4 Analytics and crash reporting
When you finally release your app to your users, you want them to have the best expe-
rience possible. Good experiences lead to repeated use, good reviews, and recommen-
dations; bad experiences lead to users deleting your app and giving bad reviews (with
bad reviews leading to potential users skipping your app for a competitor’s). One way
to guarantee a bad experience is to have an app that crashes. You can test your app to
reduce the chance of crashes, but they’re a fact of life—users always seem to end up
doing something developers didn’t expect, causing a crash. Even extensive unit and
UI testing can’t cover everything.

You may not be able to prevent your app from crashing, but you can monitor for
crashes, find out what causes them, and fix it as soon as possible. Your users may well
forgive a crash if they get a fix pretty swiftly, and this is where crash monitoring comes
in. App Center has an API you can add to your app that will monitor for crashes, and
once the app is restarted it will upload a crash report so that you, as the developer, can
see what caused the crash and fix it.

To help give users the best experience possible, you should also take time to
understand your audience—to see what type of devices or OS versions they use, see
what parts of the world they live in, and discover what languages they speak. You can
use this information to tailor your app to give your users a five-star experience. App
Center also has an API to help with this.

15.4.1 Adding the App Center SDKs

To enable crash reporting and analytics, the first thing you need to do is install the App
Center NuGet packages, so head back to Visual Studio and load your app. Install Micro-
soft.AppCenter.Crashes and Microsoft.AppCenter.Analytics into the Countr.Core,
Countr.Core.Tests, Countr.iOS, and Countr.Droid projects (figure 15.21).

492 CHAPTER 15 Using App Center to build, test, and monitor apps
Once the NuGet packages are added, configure the SDK inside each project. Part of
this configuration is to connect the SDK with the particular app inside App Center, so
that it knows where to send the crashes and analytics. This connection is configured
using an app secret that’s generated for you when you create your app—this secret is a
GUID that’s unique to your app and can be found by selecting Settings from the
menu. On the Settings tab, you’ll see the app secret at the top right.

SETTING UP THE SDK ON ANDROID

The SDK needs to be configured as early on in your app’s lifecycle as possible, so the
easiest place to do this is inside the splash screen. This way everything is configured as
soon as the app starts up, and any crashes that happen during startup can be caught.

Add the following code to the SplashScreen class in the Droid project.

using Microsoft.AppCenter;
using Microsoft.AppCenter.Analytics;
using Microsoft.AppCenter.Crashes;
...
protected override void OnCreate(Android.OS.Bundle bundle)
{

base.OnCreate(bundle);

AppCenter.Start("<your app secret>",
typeof(Analytics),
typeof(Crashes));

}

Replace <your app secret> with the value of the app secret for your Android app.
Remember, the iOS and Android versions are different apps in App Center, and they

Listing 15.1 Adding App Center to Countr.Droid

Figure 15.21 Adding the App Center NuGet packages

Adds an override
for the OnCreate
method

Starts App Center using
your app’s secret

493Analytics and crash reporting
have different app secrets, so make sure you use the right one. This line tells App Cen-
ter to start both analytics and crash reporting.

App Center requires three permissions: ACCESS_NETWORK_STATE, INTERNET, and
READ_EXTERNAL_STORAGE. The SDK will automatically add these permissions for you
when you compile your app, so you don’t need to add them manually and you won’t
see them ticked in the Android manifest file.

SETTING UP THE SDK ON IOS
On iOS, the best place to configure App Center is in AppDelegate, so add the follow-
ing code to the FinishedLaunching method override, again replacing <your app

secret> with the value of the app secret for your iOS app.

using Microsoft.AppCenter;
using Microsoft.AppCenter.Analytics;
using Microsoft.AppCenter.Crashes;
...
public override bool FinishedLaunching(UIApplication app,

NSDictionary options)
{

AppCenter.Start("<your app secret>",
typeof(Analytics),
typeof(Crashes));

...
}

15.4.2 Understanding your audience

Audience data is invaluable in enabling you to make decisions about your app. If you
have a large number of customers in certain countries using languages that your app
is not available in, then perhaps it’s time to add translations for that language. If users
are on old OS versions, you may need to perform extra testing or support. If you’ve
targeted your UI toward phones, but most users are on tablets, maybe you need to
rethink your UI. All this information can be found in App Center’s analytics.

Once you’ve added the App Center SDK to your apps, fire one of them up and play
with it for a while. Then open App Center for the app you’ve been using and head to
the Audience page under the Analytics tab in the menu. It make take a minute or two
for this information to update, but when it does you’ll see a breakdown of the usage
for your app.

At the top of this page are a couple of filters, allowing you to filter the information
you see based on app versions or date ranges. The preview version of App Center only
supports 90 days of data, but once it’s fully released you should be able to pay more to
access more data if needed. From here you can see how many users use your app daily,
how long they spend in your app, which versions of your app they use, their device
types, OSs, languages, and locations.

Listing 15.2 Adding App Center to Countr.iOS

494 CHAPTER 15 Using App Center to build, test, and monitor apps
 Active Users—This panel shows a graph with three lines, giving the number of
unique devices that have used your app over the past day, week (seven days),
and month (30 days)—the day starts at midnight UTC, so it may not reflect a
local “day” for you (figure 15.22). This panel can give you a great indication
about the increase in app users, and by looking for sudden peaks, you can see
when larger numbers of people started using your app—maybe you can tie it
back to a marketing push or a new app version. If you see this number trailing
off, maybe it’s time to add new features and do a marketing push to highlight
these to your users, to keep them coming back.

 Engagement—It’s all well and good seeing that new users are signing up for your
app, but you also need to consider how engaged they are. Are they regularly
coming back as opposed to using it once and deleting it, and are they spending
enough time in your app to get the most from it? The Engagement tab can give
you this information (figure 15.23). The Daily Sessions Per User shows how
many times per day your app is run on each unique device, displaying a graph
with a count against dates; the Session Duration shows how many users are
using your app for a certain period of time, split into buckets ranging from a
few seconds to over an hour.

 Devices—The Devices section shows the top four devices that your users have
used, the number of users on each device type, and a percentage breakdown
(figure 15.24). It also shows the top four OS versions, and what percentage of
the users on those versions are on each.

Figure 15.22 Active users shows how many unique users use your app each day.

495Analytics and crash reporting
Figure 15.23 Engagement can show you how many times each user uses your app, and
for how long.

Figure 15.24 Devices gives a
breakdown by device type and OS.

496 CHAPTER 15 Using App Center to build, test, and monitor apps
 Country/Region and Languages—This section gives a breakdown by country,
showing a map identifying the countries your users are based in. Darker shad-
ing of a country means a higher percentage of users. This country data is taken
from the country of the mobile carrier, so it’s only available on devices with a
SIM card—most of the data will come from phones, with much less from tablets
because a lot of tablets don’t have cellular connectivity. This section also shows
the name and percentage of users in the top seven countries. The language
data shows the top seven major language settings from the device. English
would include British users, along with New Zealand English, Australian
English, and US English. This is shown in figure 15.25.

 Versions—The versions section shows the top 20 app versions that your users are
using (figure 15.26).

Figure 15.25 Breakdown by country and language

Figure 15.26 Versions breaks down your app usage by app version.

497Analytics and crash reporting
15.4.3 Adding event tracking

Just by adding the App Center SDKs and calling the Start method, you get user ana-
lytics, and this is useful for understanding more about your users. The next thing you
want to learn is what your users are doing with your app, what steps they take, or how
often they use certain features. You can use this information to understand what users
do most often and how they do it, and maybe this can help you improve your app. For
example, in the Countr app, if users are deleting counters a lot and immediately add-
ing new ones with the same names, they’re probably trying to reset the counter to 0.
This would suggest you should add a “reset count” option.

As well as tracking what users do, you can also attach information to these events, so
that you can learn more about their behavior. For example, in a news app you could
track not only that a user wants to see the entire story behind a headline, but also what
story they tap on, to determine what stories are more popular. In a camera app you
could track not only that the user has shared a photo, but where they shared it to.

MONITORING AND PRIVACY If you’re monitoring users, you need to consider
their privacy. These analytics don’t capture any personally identifiable infor-
mation by default, but you could easily add user-identifiable data, such as
tracking a login with the username they’ve used. It’s good practice to have a
privacy policy, so that users know that you’re capturing data, what data you’re
capturing, and what you plan to do with it. Also check the laws in the coun-
tries in which you operate, as there may be legal considerations.

SIMPLE EVENT TRACKING

The simplest event tracking is to track a named event. In Countr, a good event to track
would be the user tapping the plus button to add a new counter. The App Center SDK
works in cross-platform code as well as in platform-specific app projects, so you can
add the event tracking to your view model.

Open CountersViewModel in the Countr.Core project, and add the following code.

using Microsoft.AppCenter.Analytics;
...
void ShowAddNewCounter()
{

Analytics.TrackEvent("Show add new counter");
...

}

Listing 15.3 Tracking when the user shows the add new counter screen

Tracks the event

498 CHAPTER 15 Using App Center to build, test, and monitor apps
You can use this to track an event with any name you want, within limits—you can only
have 200 distinct event names in use, and each name must be less than 256 characters
in length.

When you call TrackEvent, the data is queued up and sent in the background, usu-
ally pretty instantly. This means the thread isn’t blocked. If the device is offline, this
data is persisted and sent the next time the device is connected to the internet. This
data is also persisted between sessions, so if the device is offline and the app is termi-
nated, the data will be sent the next time the app is run with the device online.

ADDING DATA TO EVENTS

Events can have properties attached as key-value pairs in a Dictionary<string,

string>, allowing you to provide custom data to your events. Again, as with events,
there are some limits to the data you can provide—each key and value is limited to 64
characters, and you can only add up to five properties to each event.

You can use this to track when the user saves a new counter, tracking not only the
event but the name the user has assigned to the counter. This information could be
useful. For example, if certain counter names are used a lot, you could offer that
name as a predefined default somehow.

To add data to an event, add the following code to the CountersService in the
Countr.Core project.

using Microsoft.AppCenter.Analytics;
...
public async Task<Counter> AddNewCounter(string name)
{

...
var props = new Dictionary<string, string>();
props.Add("Counter Name", name);
Analytics.TrackEvent("Add new counter", props);

return counter;
}

You can repeat this same pattern to track when the user deletes or increments a
counter.

Listing 15.4 Tracking when the user adds a new counter and the counter’s name

Creates the
properties dictionary

Tracks the event
with the properties

499Analytics and crash reporting
SEEING THE EVENTS

Once you’ve started collecting data, you can see it in App Center in the Events page
under the Analytics tab. Again, like analytics, you can filter based on time periods or
particular app versions (figure 15.27).

For each event, you can see how many times it was tracked (including a delta since the
previous time period), for how many users it was tracked, and an average number of
times the event was tracked per user and per session. This gives a great overview of the
popularity of a feature. You might hope that for Countr you’d see an increment
counter event tracked for most of your users for each session, meaning that the app
was being used on a regular basis for its intended purpose of counting things.

You can click an event to drill down into more information. When you do, it shows
a breakdown over time of that event:

 Counts—Three panels provide the counts for the events—how many times the
event was raised (figure 15.28). You can view a graph that shows on a day-by-day
basis how many users executed the code that raised this event and the total
number of times the event happened. You can also see the average count per
user and per session.

Figure 15.27 App Center shows you all events, including the total count and for how many users this event was
tracked.

500 CHAPTER 15 Using App Center to build, test, and monitor apps
 Event properties—For events with properties, App Center will show all the proper-
ties that have been sent against this event (remember, you can only send five
unique properties against each named event). For each of these properties, it will
show the top 10 values with a count of how many times the event was raised with
that value, and the change in that count over time. This is shown in figure 15.29.

15.4.4 Crash reporting

App Center is able to provide crash reporting for your app. If your app crashes, the
SDK can detect details about the crash and upload this information to App Center the
next time the app is started. Once you have a crash report, you can fix the bug that
caused it and hopefully get a fix to your customers before they uninstall your app and
leave a bad review.

Figure 15.28 You can see the number of users who raised an event, and the total
number of times the event was raised.

501Analytics and crash reporting
The App Center SDK does this by hooking into the .NET unhandled exception han-
dler, as well as the OS-specific unhandled exception mechanisms. This means any
exception that’s unhandled, be it in .NET code or native code, will be caught and sent
up to App Center. When a crash does happen, there’s no guarantee that anything in
your app will actually be working for the remainder of its life, so the exception details
will be saved locally, and when your app is restarted the crash data will be sent.

NOT ALL EXCEPTIONS WILL BE CAUGHT App Center can catch most exceptions,
but not all. Out-of-memory exceptions won’t be caught because there’s no
memory left to catch them with. Also, due to a limitation with the Xamarin
runtimes, stack overflow exceptions won’t be caught.

To see this in action, you can create a fake crash and see the report in App Center. To
create an exception, you can add a throw statement to throw a new exception. Add
the following code to the CountersService in the Countr.Core project.

public Task IncrementCounter(Counter counter)
{

throw new System.Exception("Crash");
...

}

Make this change and then run the app. When you increment a counter, it will crash.
Relaunch the app so that the crash report can be uploaded, and then head to App
Center and open the Crashes tab (figure 15.30). As with the analytics and events, you
can filter this data by date range or version.

Listing 15.5 Crashing your app when you increment a counter

Figure 15.29 For events with properties, you can see the number of times the event was raised with
specific values.

Throws an exception

502 CHAPTER 15 Using App Center to build, test, and monitor apps
The first part of this tab shows two graphs. The first shows the percentage of users per
day that are crash-free—those who managed to use your app for the day without expe-
riencing any crashes. The second shows a total count of crashes each day in the
selected time period. This allows you to make a decision about how important a crash
fix is—if you have 100 users and 50 of them get a crash each day, then it’s pretty
important. But if you have millions of users and only one or two get a crash, maybe it
can wait for your next scheduled release.

The second part shows a list of crash groups—groups of crashes that are the same.
For example, if in one version of your app 100 users got the same crash in the same
place, you wouldn’t see 100 rows here. Instead you’d see one row for that crash show-
ing it happened to 100 users. This makes it easier to manage crashes.

If you click a crash group, you can see more details of the crash (figure 15.31). You
can see details of the affected users, including how many users got the crash and how
many times, and which devices it occurred on. This is useful information. For exam-
ple, you might only get a crash on a particular OS version or a particular device,
meaning you need to source a device or simulator matching those characteristics for
testing your fix.

The stack trace gives you a breakdown of where the crash happened. In the exam-
ple in figure 15.31, you can see it happened in IncrementCounter, which is expected,

Figure 15.30 The Crashes tab shows crash-free users per day and a list of the crashes received.

503Analytics and crash reporting
as this is where you put the throw. The stack trace looks a little weird, with the excep-
tion actually happening in CountersService+<IncrementCounter>d__6.MoveNext

(), a method that doesn’t exist. This is one of the downsides to async/await—the com-
piler creates some magic behind the scenes to handle the thread-switching, and this
appears in the stack trace. You have to look at the created method names and look
for things that match your code, such as the IncrementCounter buried inside the
compiler-created method name.

The default stack trace tries to only show you relevant code, and it highlights what
it thinks are methods from your code, not the SDKs. You can expand the stack trace to
see the full trace, including all SDK methods, if you need to.

The stack trace information is created using symbol information—data that links
the calls inside your binary to the source code. For Android, this is stored inside the
app package, but for iOS this isn’t available. This means that you’ll need to provide a
symbol file in order to see a stack trace on iOS. If you built your app using App Center,
it will automatically get the symbol file from the build, but if you built locally you may

Figure 15.31 Crash groups show details on affected users and the stack trace of the crash.

504 CHAPTER 15 Using App Center to build, test, and monitor apps
need to provide the symbol file. The Symbols tab under Crashes will show you if there
are crashes with missing symbols, and from there you can upload your symbol files.
These files are created at the same time as the IPA when you compile your app, and
they’re output to the same place and have the file extension .dsym.

Crash groups have a status—Open, Closed, or Ignored. All new crashes default to
Open, and you can change the status as needed. Once you fix a crash, you can mark it
as Closed to show it’s no longer an issue and can be ignored. You can also mark
crashes as Ignored if needed. For example, if you’re developing something and get a
crash as part of your development work, and you fix it before the code is released, you
can mark that crash group as Ignored. You can filter crashes on the dashboard based
on their status, and the filter defaults to Open, only showing open crashes.

REVERT THE THROW! Once you’ve played with the crash reports, don’t forget
to remove the throw!

You’ve built your app, tested it on real devices in the cloud, and set it up to track your
users and report crashes. You’re finally ready to put it in the hands of your users. In
the next chapter we’ll look at using App Center to distribute your app to beta test
users, before finally uploading it to the store.

Summary
In this chapter you learned

 App Center is “Mission Control for apps” and provides services for the mobile-
optimized development lifecycle.

 You can use App Center to build and test your apps as well as viewing analytics,
user events, and crash reports.

You also learned how to

 Set up apps and builds in App Center.
 Run UI tests on real devices in the cloud using Test Cloud from inside App Center.
 Add the SDKs to your apps to capture analytics, user events, and crash reports.
 View analytics on your apps and see what steps users are taking inside your apps.
 See crash reports and use them to manage app crashes.

16Deploying apps to
beta testers and the stores
In the previous chapter you added some final release prep to your app—you
turned on analytics and crash reporting, set up builds in App Center, and ran some
UI tests on a range of devices in the cloud. You’re finally ready to put your app into
the hands of your users, starting with beta test users and then finally releasing to
the stores.

In this chapter you’ll see how to use App Center to distribute your apps to beta
testers, including automatically updating these installs whenever you push out a
new release. We’ll then follow up by looking at how you can actually release your
apps to the stores, including what information you need to provide with your apps.
As in the previous chapters, we’ll only be focusing on Countr here. We’ll also be
looking at one OS at a time, starting with Android.

This chapter covers
 Using App Center to distribute apps to beta

testers

 Publishing Android apps to the Google Play Store

 Publishing iOS apps to the iOS App Store
505

506 CHAPTER 16 Deploying apps to beta testers and the stores
16.1 Distributing Android apps to beta testers
Before you think about a final, production release of your app to the app stores, it’s
worth putting it in the hands of some beta testers first. This way you can get real-world
feedback, address usability issues, and find and fix bugs. If you just put it out to the
stores immediately, you’d risk bad reviews. It would be a shame for your app to fail
because of one-star reviews that could have easily been avoided with a little beta test-
ing. Ideally you want to allow beta test users to play with your app as soon as possible,
even before the app is finished—the quicker you get feedback, the sooner you can
change your app.

Visual Studio App Center makes it easy to distribute apps to beta testers. From App
Center you can register test users via email and notify them every time a new build is
ready. You can even set your app to check for updates every time it’s launched, and, if
an update is available, to automatically update itself.

16.1.1 Enabling app distribution

Enabling app distribution is incredibly easy on Android. You set up the users you want
to test your app, and they make a small settings tweak on their devices. Then you
either automatically distribute your app on every build, or distribute manually when-
ever you want to release an update.

REGISTERING USERS

App Center has the concept of collaborators—people who are collaborating on your
app or are part of your organization in various capacities. Each app collaborator is
registered by an email address and has one of three possible roles:

 Manager—This role has complete control over an app, including managing all
settings, adding collaborators, and configuring services like testing, distribu-
tion, and analytics.

 Developer—Developers can create builds against branches and run them, or run
UI tests.

 Viewer—This role is for app users only—they can see and download builds. This
is the role you need for your beta testers.

To create a collaborator, head to the Settings tab for your Android app inside App
Center, click the Edit button in the Collaborators section (it looks like a pencil), and
then add your collaborators’ email addresses (figure 16.1). For beta test users, you’ll
set the role to be Viewer.

Once you assign a collaborator, they’ll receive an email inviting them to collabo-
rate on your app. They’ll need to click the Accept Invitation link in the email, which
will open a web page where they can accept the invitation and create an App Center
account if they don’t already have one (using a username and password, or by con-
necting via Facebook, Google, GitHub, or a Microsoft account).

Once they’ve accepted the invitation and created an account, there’s one last thing
they’ll need to do—allow apps from unknown sources. Although Android has mini-
mal security, later versions will by default block the installation of apps from outside of

507Distributing Android apps to beta testers
the Google Play store. This block is easy to turn off from the Settings app—head to
Personal > Security, and then under Device Administration turn on the Unknown
Sources option (figure 16.2). Be aware that some device manufacturers like to tweak
the Settings app, so this option may be in a different place in the settings.

Use this dropdown to select the collaborator’s role.

Enter an email address and click Return to add a collaborator.

Figure 16.1 You add and configure app collaborators from the Settings tab.

Turn this option on to allow installation
of apps from App Center.

Figure 16.2 Allow apps to be installed from unknown sources.

508 CHAPTER 16 Deploying apps to beta testers and the stores
Be warned, turning the Unknown Sources setting on allows apps to be installed from
any unknown source—both your apps from App Center and more nefarious apps
from other places. The user will still need to explicitly tap an Install button to install
an app, but less technically savvy users may need a bit of security training before turn-
ing this option on.

CREATING DISTRIBUTION GROUPS

App Center allows you to group and manage collaborators by adding them to distribu-
tion groups, which are named groups of collaborators. These distribution groups allow
you to distribute different builds to different people. For example, you could have a
QA group that gets every build of your app for thorough testing and a Beta Testers
group that only gets manually distributed builds at major milestones. Collaborators on
your app can belong to multiple groups. When you create users, they are all by default
added to a distribution group called Collaborators that’s created for you when you
first create your app.

You can manage these groups by selecting Distribute > Groups from your app in
App Center. To add a new distribution group, click the New Group button at the top
right, enter a group name, and enter the collaborators to add to the group, as shown
in figure 16.3. You can start entering the names of users who are already set up for
your app, and you’ll see an autocomplete box with their details that you can select
from. Or you can enter an email address to add new users, and they’ll be invited to
sign up with App Center and become a collaborator.

DISTRIBUTING BUILDS

Once you have your collaborators, you can distribute your app to them in one of two
ways: automatic distribution on every build, or manual distribution.

Automatic distribution is the simplest way to provide updated builds. Every time
your app is built (either manually or by pushing code to a branch set up to build on

Figure 16.3 Add distribution groups to allow you to distribute different builds of your app to different
users.

509Distributing Android apps to beta testers
every push), your users get notified about it and can install or update your app. This is
great for pushing bug fixes and new functionality to your test group. It also ensures
that your app builds successfully inside App Center, including passing a launch test,
before it’s distributed.

To turn automatic distribution on, head to the Build tab for your Android app,
select the master branch, click the spanner button to configure the branch, scroll to
the bottom, and check the Distribute Builds option (figure 16.4). If you’ve set up mul-
tiple distribution groups, you’ll be able to select one of those groups here, and the
app will only be automatically distributed to the group you select. This defaults to the
Collaborators group.

Once you click Done, your branch will be built and an email will be sent to all collabo-
rators in the selected distribution groups, letting them know there’s a new version of
your app available. They’ll need to open this email on their Android device and follow
the link provided to install your app. This is shown in figure 16.5

Figure 16.4 Distribution can be configured on each branch.

Figure 16.5 After each build, users will get an email with a link to download and install your app
from App Center.

510 CHAPTER 16 Deploying apps to beta testers and the stores
Once users receive the email, they can tap the Install button on the email which will
take them to a web page inside App Center where they can download your app. This
page shows some details about the version they’re installing, such as the version num-
ber and release notes, and it has a Download button that downloads the APK to their
device. Once it’s downloaded, they’ll be able to open the downloaded APK to install it.

To manually distribute an APK, you’ll need to build it yourself and then upload it
to App Center for distribution to your users. Although this is less convenient than the
automatic distribution, it does give you more control over your releases. For example,
if one user has a particular issue on their device, you could create a new distribution
group just for that one user, create a possible fix or add more logging to your local
source code, create a local build, and manually distribute it just to the affected user. If
your code changes fix their issue, you can then push them to your source code repo
and redistribute to everyone.

To manually deploy your app, create an archive signed with your app’s keystore—
we looked at the process for doing this back in chapter 13. Once you have your APK,
select Distribute > Releases inside App Center and then click the Distribute New
Release button at the top right. A panel will slide out (figure 16.6) with a number of
steps you can follow to distribute your app. Start by clicking the Upload APK button
and select your APK, or drag and drop your APK file over the button. Your APK will
then be uploaded, which may take a while depending on the speed of your internet
connection. Once your release is uploaded, click the Next button.

In the next panel, you can optionally add release notes describing your changes. In
the third panel, you choose which distribution group to send the release to. Clicking
Distribute in the final panel will distribute your release. All the users in your distribu-
tion group will receive an email with a link to download the new release, in the same
way as with automatic releases.

Figure 16.6 To distribute your app manually, you start by uploading the APK.

511Distributing Android apps to beta testers
MANAGING RELEASES

The Releases section of the Distribute tab also allows you to manage your releases.
From here you can see all the releases of your app, with details against each including
the APK size, version number, and which distribution group it went to (figure 16.7).

You can also use this tab to download releases, which is useful if you deleted the email
with the app link, if you want to install an older version for upgrade testing (to make
sure you have no data loss when upgrading from an older version of your app to a
newer one), if you want to install on a device that doesn’t have email set up on it, or if
you want to get someone outside of the release’s distribution group to install that
release. If you don’t want anyone installing a particular release you can also delete it.

16.1.2 Auto updates

It’s pretty good to notify users with an email and have them click a couple of links to
download an update. But what would be much better is if your app were able to detect
that an update was available and could allow users to update from inside the app.
Happily for us, this is something that App Center supports, and it’s really easy to
implement.

To make auto updates work, enable this feature inside your app. Open the Countr
solution and add the Microsoft.AppCenter.Distribute NuGet package to the
Countr.Droid app. Then enable it by adding distribution to the call to AppCen-
ter.Start in the splash screen. Open SplashScreen.cs and add the following code.

using Microsoft.AppCenter.Distribute;
...
protected override void OnCreate(Android.OS.Bundle bundle)
{

base.OnCreate(bundle);

Listing 16.1 Adding App Center distribution to Countr.Droid

Figure 16.7 Manage releases from the Releases section of the Distribute tab.

512 CHAPTER 16 Deploying apps to beta testers and the stores
AppCenter.Start("<your app secret>",
typeof(Analytics),
typeof(Crashes),
typeof(Distribute));

}

This tells App Center that as well as supporting
analytics and crash reporting, you also want to
support auto updates. As you’d expect, your
users will need to install this version first before
they can auto update—just adding this code to
the latest builds won’t auto update any earlier
builds that don’t have this turned on. In-app
updates also only work for Release configuration
builds, not Debug builds. Commit the changes
enabling distribution to your source code con-
trol so that your app builds, and install this ver-
sion on your device using App Center.

Once your app starts up for the first time after
enabling in-app updates, it will need to quickly
connect to App Center to register the installation
(figure 16.8). Your app will launch, then switch to
a web browser, then back to your app.

Once distribution has been enabled, the app
will check on every startup to see if an update is
available, and if there is one, it will tell the user
and prompt them to install the update. What
defines whether an update is available? Just run-
ning another build with the same or updated
source code isn’t enough; instead you need to
increment the version number. Back in chapter 6
you saw that Android defines two versions: a ver-
sion number (or code) and a version name. The
version name is your internal way of representing the version as a string; here the ver-
sion number is what we’re interested in. This is a numerical value that’s used to tell
Android, App Center, and (as you’ll see later) the Play store that there’s an update to
the app.

Every time you want an update to be made available to users, you need to incre-
ment this version number. For now you can manually increment it inside the applica-
tion manifest. App Center does offer a way to auto increment this as part of your
builds, but that’s outside the scope of this book.

Adds distribution to the
App Center startup

Figure 16.8 When you launch your
app for the first time, it will connect to
App Center to enable in-app updates.

513Distributing Android apps to beta testers
To see this in action, you’ll need to update the version number. You can do this in
Visual Studio for Mac by double-clicking the AndroidManifest.xml file in the Proper-
ties folder and incrementing the Version Number field in the manifest editor (figure
16.9). In Visual Studio on Windows, right-click on the Countr.Droid project file, select
Properties, select the Android Manifest tab, and increment the Version Number. If
you prefer editing XML files manually, it’s the android:versionCode attribute on the
manifest node that you need to increment. It doesn’t matter how much you incre-
ment this value—all that matters is that the new value is higher. Once you’ve updated
the version, commit the change and push it to your source code repository. App Cen-
ter will then build your changes and make the update available.

Once the code has been built, restart your app on your Android device. Update
checks are only run when your app starts up from being terminated, not when it is
restored to the foreground, so you may need to explicitly kill your app before
relaunching it. This check will connect to App Center and check for an updated ver-
sion, and when it finds one a dialog will be shown asking if you want to download the
update now or delay for a day (figure 16.10). Tap Download and the app update will
download in the background. Once the app has downloaded, a dialog will pop up to
install it, so tap Install and your app will be updated.

Increment the version number to enable
an in-app update to your latest version.

Figure 16.9 To indicate that a new version of your Android app is available, increment the version
number in the manifest.

Figure 16.10 Upon launching
your app after an update has been
distributed, you’ll be asked if you
want to update.

514 CHAPTER 16 Deploying apps to beta testers and the stores
16.2 Publishing Android apps on the Google Play store
Once you’ve sent your app to your beta testers, they’ve given feedback, and you’ve
used this feedback to make your app ready for release, the next step is to publish your
app to a store so users can download and install it. Google has an app store that’s
baked into Android, called the Google Play store. You can publish your apps to this
store, and any Android user will be able to open the store app on their device and dis-
cover and download your app. This store also manages updates, so if you release an
updated version to the store, users will be able to easily install the update. Depending
on their settings, your app may even be updated automatically with no user interven-
tion required.

16.2.1 Setting up your account

Before you can publish to the Google Play store, you need to set up an account and
pay a registration fee. Start by heading to http://play.google.com/apps/publish/ and
then sign in with a valid Google account. You’ll then be presented with a few steps to
work through to sign up for a developer account. These steps should be self explana-
tory, and I won’t go into details here as they do change on a regular basis and vary
from country to country, and depending on whether you want to charge for your app.
The main thing to be aware of is the fee—you’ll need to pay a U.S. $25 registration fee
to create an account. The good news is that unlike Apple, this is a one-time charge,
not a yearly fee. Once you’ve signed up, you’ll be logged into the Google Play console.

16.2.2 Creating your app

Once you have your account set up, the next step is to create your app. From the Google
Play console, click the Publish an Android App on Google Play button (figure 16.11).

The first step in publishing an app is giving it a name. Your name can be up to 50
characters in length and doesn’t have to be unique, although if you use the name of
another app, you may run into problems. If you try to call your app Facebook, for
example, you’ll probably be kicked off the store. Google also requires all names to be

Figure 16.11 Click the Publish an Android App button to create a new app on the Play Store and
then enter the app’s name.

http://play.google.com/apps/publish/

515Publishing Android apps on the Google Play store
suitable for all store users of all ages, so if you use profanity or a title that’s not appro-
priate for all ages, your app will not make it to the store. Enter the app name you want
to use into the Create Application dialog box and click Create.

UPLOADING YOUR APK
Once you’ve created your app, upload your APK to the Play store. You can’t set your
app’s content rating (the appropriate-age rating for your app) until you’ve uploaded
an APK.

The first step is to download the APK from App Center. You can download the APK
you want to publish by selecting the Build tab, clicking the master branch, selecting
the most recent build, and clicking Download > Download Build.

YOUR APP WILL SHARE ITS ANALYTICS ACROSS DEVELOPMENT, BETA TESTING, AND
THE STORE You’ll notice we’re using the same App Center app for develop-
ment, beta testers, and the store. This means that crashes and app analytics
that come from debugging the app will be mixed in with those from the beta
testers and the final users who get the app from the store. This isn’t ideal. In a
production app you’d set up multiple apps with different app secrets for devel-
opment, beta testing, and production, and set these using compiler flags with
multiple build configurations. That’s outside the scope of this book, but you
can read more about build configurations in Jon Goldberger’s “Demystifying
Build Configurations” article on Xamarin’s blog at http://mng.bz/40uO.

The second step is to upload the APK that was built by App Center to the Play store.
From the Google Play console, select App Releases from the menu on the left. From
the app releases page, you can manage alpha, beta, and production releases. We’re
only going to create a production release, as we’ve used App Center to manage our
beta already, so click the Manage Production button and then Create Release on the
next page.

GOOGLE PLAY APP SIGNING Google recently added the ability to store and
manage your keystores inside their developer console. By using this, you can
upload your keystore to Google and have them manage your app signing for
you. You download a new keystore that Google creates and use this to sign
your apps for publishing to Google; then Google re-signs them with their
stored keys. This topic is outside the scope of this book, but you can read
more about it in Google’s documentation at http://mng.bz/RWTt.

You should now see a screen allowing you to configure a new production release. If
you see an option to sign up for Google Play App Signing, click Not Now to continue.
Click the Upload APK button and select the APK you downloaded from App Center.
After the APK has been uploaded, click the Save Draft button.

Once your APK has been uploaded, you’ll see it appear in the APKs to Add section,
showing the version code from the application manifest. You can also add a release
name here—this is an internal name you can use to identify releases, and it defaults to
the version name of your app. You can change this name to help track your releases,

http://mng.bz/40uO
http://mng.bz/RWTt

516 CHAPTER 16 Deploying apps to beta testers and the stores
such as setting it to an internal code name for a particular release based on the features
of that release, or to anything that makes sense to you. This name only appears in the
Play console, not on the store. You can also add release notes detailing what’s new in
this version—that’s not much use for the first version of your app, but as you add
updates you can detail them here. Once you’ve filled this all in, click the Save button.

SETTING THE CONTENT RATING

Every app published on the store needs to have a content rating. This defines the age
your app is suitable for and it covers the content of your app, so consumers can decide
if it’s appropriate for them. This content rating can also limit in which countries your
app can be published—some local laws prohibit certain content.

To set your content rating, head to the Content Rating tab, and from here you can
fill out a questionnaire that’ll be used to automatically set your content rating. Start by
clicking the Continue button.

On the first page of the questionnaire, enter your email address and select the type
of app you’re publishing. For Countr this is “Utilities, productivity, communication or
other”. Work through the questions—the answers should all be No—and then click
Save. Once it’s saved you can click Calculate Rating to calculate the rating for your
app—this should be suitable for everyone. Once it’s calculated, click Apply Rating to
set this rating for your app. When you finally publish your app, you’ll be emailed a
content-rating certificate as part of Google’s app review process.

ADDING PRODUCT DETAILS

Once you’ve uploaded your APK, add a range of details about your app that will
appear on the store listing. These include text descriptions of your app, screenshots,
and information about what type of app you’ve submitted. Just like with the app’s
name, this content will be available to everyone, so it needs to be suitable for all ages
regardless of the app type. If you include a screenshot containing nudity, your app
won’t be published (even if you’re publishing an adult content app or a medical/ edu-
cational app). You can read Google’s policy on this content in the Google Play Devel-
oper Policy Center, at http://mng.bz/6Kn2.

Head to the Store Listing tab to enter this information. These fields are required:

 Title—This is the app name you entered when creating your app—you can
change it from here if you need to.

 Short description—This is a single-line description of your app that’s used on the
store as a tagline. This should be a short, snappy sentence to entice users into
reading more about your app or installing it. It can be up to 80 characters.

 Full description—This is where you can enter a more detailed description about
your app, covering its features, how it can help users achieve their goals or solve
their problems, or anything else that explains your app to your target audience.
You can enter up to 4000 characters here.

 Screenshots—You can attach screenshots to your store listing, either as JPEGs or
PNGs. The minimum length of any side is 340 px, and the maximum is 3840 px.

http://mng.bz/6Kn2

517Publishing Android apps on the Google Play store
You have to attach at least two, and you can add phone screenshots or tablet
screenshots. Although these images are called “screenshots,” you aren’t limited
to screenshots. Some developers like to attach images containing screenshots
with annotations around them, highlighting the features of their app. If you want
to capture a screenshot from your device, you’ll need to determine the combi-
nation of keys that captures one—usually it’s pressing the volume-down button
and the power button at the same time, but it varies from device to device.

It can be a pain regenerating simple screenshots from your app for phones
and tablets every time you prepare a release, so what some developers do is cre-
ate UI tests that put the app in a state that looks good and then capture a
screenshot. They can then run these tests in Test Cloud against a phone and a
tablet and download the resulting images.

 High res icon—This is a version of your app icon that’s shown on the store listing,
so it needs to be larger than the icons that go with your app. It has a required
size of 512 × 512 pixels. It also needs to be a PNG file. If you used MakeAppIcon
back in chapter 10, you would have received a high res icon as part of the zip file
you downloaded. If not, there’s one you can use in the source code that accom-
panies this book, called playstore-icon.png, in the Images\Countr\AppIcons\
Android folder.

 Feature graphic—The feature graphic is a banner image that’s displayed across
the top of the Play store listing. This needs to be 1024 × 500 pixels in size and
should be something that highlights your app, such as cover art, an app and
company logo, or a useful part of a screenshot.

 Application type and category—Tell the Play store what type of app you’re submit-
ting (an application or a game) and what category to put it under. This way
your app will appear in the correct store listing. For Countr, the type would be
Applications and the category would be Tools.

 Contact details—Provide an email address that your users can use to contact you.
This is publicly displayed, so be warned—you may get some spam! You can also
provide your website and phone number if you need to provide support to your
customers.

 Privacy policy—Provide a privacy policy if you’re handling any user data, or you
need to tick the box to say that you aren’t providing a privacy policy at this time.
If your app does anything with users’ personal data, you have to provide a pri-
vacy policy—personal data includes anything that would allow the user to be
identified, any financial information, health information, or contact details
such as a phonebook.

This is your one chance to hook a user who has discovered your app on the store,
so it’s worth putting a lot of effort into making this content very high quality, with
well-chosen screenshots and well-written text. You can also provide translations of
your content into different languages. You can manage translations from the Manage

518 CHAPTER 16 Deploying apps to beta testers and the stores
Translations drop-down, choosing to either manually upload translations or pay some-
one to do it for you.

Once you’ve added all the required information, click the Save button.

PRICING AND DISTRIBUTION

The last step before you can publish your app is to set the price for your app and
where and how it should be distributed. To do this, head to the Pricing & Distribution
tab. We’ll be distributing a free app here, but if you want to charge for your app, you
need to set up a merchant account first—contact your bank if you want to do this. By
default your app will be set to free, so leave it like this for now.

There are a number of options you can set here, including various Google pro-
grams for families, education, Android TV, or Android Car, but those are outside the
scope of our app. These are the fields you should set:

 Countries—From here you can set the countries your app is available in. Which
countries you choose is up to you—the more you choose, the more customers
you can get, but this could lead to higher support requirements. Also, be aware
that the local laws of each country are different, so you’ll need to ensure that
your app is compliant with the law in all countries. Also, watch out for blocked
services, such as Facebook being blocked in China—if your app needs Face-
book, you should uncheck China in the Countries list. Countr should be fine
everywhere in the world, so you can just select the Available radio button at the
top of the country list to select everything.

 Contains ads—Declare if your app has any ads in it. This information is shown
on the Play store listing so users can decide before they download your app if
they want to put up with ads or not. If your app has ads and you don’t declare it,
you risk being kicked off the store.

 Content guidelines—You must tick this box to declare that your app meets Goo-
gle’s content guidelines, which are available at http://mng.bz/Var3. If you
don’t follow these guidelines, your app will be kicked off the store.

 U.S. export laws—Google hosts apps on servers in the United States, so when a
user outside the United States downloads your app, it’s classed as exporting the
software. This means you have to follow the U.S. export laws, especially in
regard to encryption (including making web calls over HTTPS). You need to
tick this box to say your app complies with all these laws. Google has more infor-
mation about this at http://mng.bz/yDT3.

PUBLISHING

Once you’ve provided all the required information, you’ll be able to publish your app
to the store.

You should see Ready to Publish in the top banner on each page (figure 16.12). If
you see a Why Can’t I Publish? button at the top right of the page, something hasn’t

http://mng.bz/Var3
http://mng.bz/yDT3

519Publishing Android apps on the Google Play store
been set properly. You can click this button to see what to do to finalize your app for
publication.

To publish your app, head to the App Releases tab and click the Edit Release but-
ton in the Production section. Click the Review button, verify the details, and then
click the Start Rollout to Production button (figure 16.13) and confirm the dialog
that’s displayed. Your app won’t be published immediately; instead it will be reviewed
and analyzed by Google to ensure that everything is working and that you’re not
doing anything dodgy inside your app. Most of the time this is automated, but Google
may manually verify your app if it’s deemed necessary. With an app like Countr, it
should pass review pretty swiftly, but if Google finds any problems, you’ll be contacted
to help resolve them.

Figure 16.12 Once your app is ready to publish, the top banner will update to show this.

Figure 16.13 After reviewing your release, you can roll it out to the store.

520 CHAPTER 16 Deploying apps to beta testers and the stores
It usually takes anything up to a few hours for the first release of an app to be
approved (though it can be much less—I published Countr in about 30 minutes),
with updates being approved more quickly. You won’t be notified when it’s pub-
lished—only if there are problems—so keep checking back to see if it’s been success-
ful. Once it has been published, you should be able to open the Google Play store app
on any Android device and install the app (figure 16.14). Be warned, though, there
are millions of apps on the store, so it may not be easy to find!

Congratulations! You’ve published your first Xamarin Android app to the Google Play
store. Now is definitely the time to pat yourself on the back and celebrate a job well
done. But for an app to be successful, there’s still more work to do. You need to moni-
tor the analytics in App Center to see how and where your app is being used, and keep
an eye out for crashes or bugs. If a bug is found, you’ll have to fix it and get an update
out as soon as possible.

GOOGLE HAS TOOLS FOR MANAGING APP ROLLOUTS Google has a huge range of
tools and capabilities to help you manage your app, including staged rollouts
by country or random percentage of users, A/B testing to evaluate how well fea-
tures are received, and management for paid apps, in-app purchases, or app
subscriptions. You can read more on using the Google Play console to manage
and publish your apps in Google’s Play Console Help, at http://mng.bz/w99p.

Figure 16.14 Once your app has been
reviewed, it will appear on the Play store.

http://mng.bz/w99p

521Publishing Android apps on the Google Play store
REVIEWS AND RATINGS

Once your app has been released, users can download it, enjoy the fruits of your labor,
and give you feedback via the Play store in the form of star ratings and reviews (figure
16.15). The higher the star rating, the more likely people are to download your app
and the higher up the search results it will end up. Conversely, if your app has a low
rating, people will avoid it. Reviews are also a great way to get detailed feedback—for
example, if you get a 1-star rating with a comment about a bug, you can fix it and pub-
lish an update.

You can monitor reviews from the User Feedback tab in the Play store console. From
there you can see ratings broken down by time, app version, country, or other user
details. You can also see reviews from users and reply to these, maybe providing sup-
port to a user who is having issues with your app, or notifying a user of a bug fix that
has been published.

It might be tempting to try to get your rating up by getting people to give you fake
ratings (or buying them—there are “click farms” where you can hire people to install
and rate your app by the thousand), but if you get caught doing that your app might
be kicked off the store, or worse, your developer account might be terminated. This
could be a huge problem for an enterprise. If you can’t publish mobile apps, it could
be the end of your business.

PUBLISHING UPDATES

At some point after your first release, you’ll probably want to update your app—to fix
bugs or add new features. Once your app has been released to the store, all updates
are managed by the store. App Center only provides automatic updates to builds that
are distributed via App Center, so anyone who installs your app from the store won’t
receive any updates unless you push them to the store.

Updates are pushed to the store by creating a new production release in the same
way you created the initial release for your app. Once your app is published the Play
store, the developer console changes, giving more options to manage your release. To
upload a new APK, head to the Release Management section on the left side and
select the App Releases tab as you did when uploading the APK the first time around.
Work through the same steps as before, clicking Manage Production then Create

Figure 16.15 Ideally you want to aim for a 5-star rating to get more downloads.

522 CHAPTER 16 Deploying apps to beta testers and the stores
Release, and uploading a new APK downloaded from App Center. It’s also worth
updating the release notes to reflect what has changed. Personally, I feel it’s worth
providing entertaining and detailed release notes—not the boring “Bug fixes and
other improvements” that is usual for apps like Facebook. Once you upload a new
APK, you can see which version will be superseded by the new version, and you can
enter a new release name to track this new version.

You can only upload APKs that are for apps with the same package name and
signed with the same keystore and a higher version code. If the package name of the
new APK doesn’t match, or the version code is the same or lower, it will be rejected.
The same is true if the keystore is different (which is why it’s vital to keep the keystore
safe).

Once you’ve uploaded a new APK with an incremented version code, click Save
and then Review. Review the release to make sure everything is in order and then click
Start Rollout to Production. Once again, Google will analyze your app for compliance,
and if everything is successful, the updated APK will be available on the store. Existing
users will then be able to download and install your update.

16.2.3 Alternative stores

Although Google Play is the major app store for Android users, it’s not the only one—
Android is an open OS, which means other stores can be set up to distribute apps.
This is important for app developers, as it may make sense to publish your app to mul-
tiple stores, especially if you want to target the Chinese market.

At the time of writing, Google Play is not available in China, so if you want to make
your app available to a Chinese audience, you’ll also need to publish it on at least one
of a number of Chinese Android stores. These include Baidu App store
(http://shouji.baidu.com/), Tencent App Gem (http://android.app.qq.com/), and
Xiaomi App Store (http://app.xiaomi.com/). These stores are all in Chinese, so
you’ll need access to Chinese translations of both your app and your product details
to be successful. If your app accesses a backend, you’ll also need to verify that it’s avail-
able in China—some cloud services are blocked by the “Great Firewall,” including
some of the big names such as Facebook and Google (but not Microsoft’s Azure). If
your app relies on a Facebook login, you’ll either need to avoid rolling out to China
or add a different login method.

Outside of China, the other big app store to be aware of is Amazon’s Appstore for
Android—found by going to your local Amazon site and looking for “Appstore for
Android” under the Departments menu, and this is available worldwide. If you want to
publish your apps on this store, you can do so at https://developer.amazon.com.

Publishing to the Chinese and Amazon stores is outside the scope of this book.

http://shouji.baidu.com/
http://android.app.qq.com/
http://app.xiaomi.com/
https://developer.amazon.com

523Distributing iOS apps to beta testers
16.3 Distributing iOS apps to beta testers
We’ve looked at Android, and now it’s time to look at iOS. Although the principles are
the same as for Android, there is, as always, the fly in the ointment that is provisioning
profiles.

16.3.1 Enabling app distribution

In the last chapter you set up a Debug build for your iOS app in App Center so that
you could run the on-device launch tests, as well as run UI tests in Test Cloud. You also
signed it with your development provisioning profile. This served your purposes then,
but going forward you’ll need different build setups. You need to sign your app with
different iOS provisioning profiles depending on where you want to distribute to, and
create release builds so that you can enable auto updates.

You can set up distribution groups for your iOS app the same way as previously
described for Android. The process for setting up distribution groups in App Center
is identical. The only difference is that you need to get a bit more information from
your iOS beta test users so that you can create provisioning profiles that include their
devices.

PROVISIONING IOS USERS

Back in chapter 13 you created a development provisioning profile for your device.
This profile was linked to the device UDID (the unique identifier for your device
that’s set by iOS) and it allowed you to run your app through a debugger on the
device. To distribute your app, we need one of two other types of provisioning profile:

 Ad hoc—Ad hoc provisioning profiles are used for distributing to beta testers.
Just like with development profiles, these are tied to a specific set of device
UDIDs and have the same rules about the number of registered devices—a limit
of 100 of each type per membership year. When your app is signed with an ad
hoc profile, you can install it on any of the registered devices using distribution
tools like App Center, Apple’s TestFlight, or iTunes. Unlike with Android,
there’s no need to turn on any permissions to allow users to run your apps.
Instead, permissions are enabled via the ad hoc provisioning profile.

 App Store—App Store provisioning profiles are used to sign your app for distri-
bution via the store. Apps signed with this profile can run on any compatible
device with no limitations, except that you can only distribute these apps via the
App Store.

APPLE ALSO HAS ENTERPRISE PROVISIONING PROFILES Apple has an enterprise
developer program for large organizations, where you can build apps and
provision them for distribution just to a limited number of in-house users, not
to the store. This allows you to build internal apps that only work for your
users and don’t require the full Apple release process or public store distribu-
tion. You can read more about this in Apple’s Developer library at
https://developer.apple.com/programs/enterprise/.

https://developer.apple.com/programs/enterprise/

524 CHAPTER 16 Deploying apps to beta testers and the stores
Before you can create these provisioning profiles, you need to create a new certifi-
cate—in chapter 13 you created a developer certificate, but for ad hoc and store pro-
files you require a distribution certificate. You can create one in the same way as the
developer certificate, using the Apple Developer portal or Fastlane from inside Visual
Studio for Mac, but instead of selecting iOS App Development for the certificate type,
select App Store and Ad Hoc from the Apple Developer portal, or iOS Distribution
from Visual Studio for Mac. Once you have the certificate in your keychain, export it
as a .p12 file because you’ll need to upload this to App Center later on.

To distribute your app to beta test users, you’ll need an ad hoc provisioning profile
set up using the UDIDs of all your beta test users’ devices. This is where iOS becomes
a pain—every time you sign up a new beta test user, you need to get the UDID of their
device. You can find it in a number of different ways:

 From Xcode—If the device owner has Xcode installed, they can launch it with the
device connected, select Window > Devices, and select their device in the left
pane. The device UDID will be shown as the identifier on the right, as shown in
figure 16.16.

 From iTunes—This is the only way to get the UDID on Windows, and it also
works on macOS. Plug the device in, select the device in iTunes, and select the
Summary tab. You’ll see a serial number on the right, and if you click the serial
number it will change to show the UDID (figure 16.17).

Figure 16.16 You can get device UDIDs from the Devices window in Xcode.

Figure 16.17 You can get device UDIDs from the Device window in iTunes.

525Distributing iOS apps to beta testers
 From the macOS terminal—If your device is plugged in to your Mac, you can get its
details using the Instruments app from the terminal. Launch the terminal and
run instruments -s devices. This will show a list of all connected devices,
both physical and simulators, with their UDIDs (figure 16.18).

Once you have the UDIDs of your beta testers, enter them into the Devices section of
the Apple Developer site, as you did in chapter 13.

Now that you have a certificate and the beta test devices registered, you can create
the profiles. Create a new profile as before, but instead of selecting iOS App Develop-
ment, select Ad Hoc, select your app ID, select the new distribution certificate, check
all the devices you want your profile to support, and name it something like Beta test.
Once it’s created, download a copy of it so you can upload it to App Center later.

SETTING UP THE AD HOC BUILD

The next thing to do is to set up an ad hoc build to distribute to beta testers. From
your iOS app in App Center, select the Build tab, select the master branch, and open
the Configure Build panel by clicking the spanner button at the top right.

WE’LL BE REUSING THE SAME BRANCH FOR ALL BUILDS As discussed earlier for
Android, we’re going to use the same branch for development, beta test, and
store builds. In a production app, you’d ideally set up multiple apps, each
with a different provisioning profile, and set the app secrets in different
builds using compiler flags.

Configure this branch to build the Countr.sln solution using a release configuration,
select Device Build and Build This Branch on Every Push, and then upload the provi-
sioning profile you created for ad hoc distribution and the distribution certificate .p12
file you exported. Make sure the Test on a Real Device setting is unchecked (you can’t
test release builds on real devices), and check the Distribute Builds option, selecting
the distribution group you want your app to be distributed to. Click Save, and this will
save the configuration and start a build.

Once the build completes, an email will be sent out to all collaborators in the
selected distribution group with a link to install the app, just as for your Android builds.

The steps for installing the app are a bit different than Android. Before you install
the app for the first time, install an App Center provisioning profile to allow installs of
apps from App Center—this is part of Apple’s strict security (figure 16.19). Once you
click the See Details button in the email, you’ll be guided through the steps. The first
page tells you that you need to install the profile and gives instructions about what to
do. Tap Install, and you’ll be redirected to the Settings app on the device, where you

Figure 16.18 You can get device UDIDs from the macOS terminal using Instruments.

526 CHAPTER 16 Deploying apps to beta testers and the stores
can install the profile (you’ll need to enter your passcode to approve the install). You
only need to do this the first time you install any app from App Center on a device.

Once this profile is installed, you’ll see the same install page as you did for Android.
Tap the Install button, tap Install in the dialog that pops up, and the app will be
installed. You’ll see it appear on the iOS home screen. This is shown in figure 16.20.

Figure 16.19 Before you can install a beta build from App Center, install the App Center distribution
profile.

Figure 16.20 Once the
App Center profile is
installed, you can install the
app on your device.

527Distributing iOS apps to beta testers
16.3.2 Auto updates

iOS apps support automatic updates in the same way as Android apps, although the
setup is a bit more complicated. Start by adding the Microsoft.AppCenter.Distribute
NuGet package to the Countr.iOS app. Then enable distribution inside AppDelegate
.cs by making the changes shown in the following listing.

using Microsoft.AppCenter.Distribute;
...
public override bool FinishedLaunching(UIApplication app,

NSDictionary options)
{

AppCenter.Start("<your app secret>",
typeof(Analytics),
typeof(Crashes),
typeof(Distribute));

...
}

Once that’s done, make a change to the info.plist file to tell your app how to open the
App Center updater. Open info.plist and switch to the Advanced tab. Click Add URL
Type under the URL Types section, and enter appcenter-<your app secret> into
the URL Schemes field, where <your app secret> is your app secret from App Cen-
ter (figure 16.21).

Once you’ve made this change, check your code in and push it to your repository to
trigger a build. Install this build on your device, and launch it. The first time your app
starts, it will open a web page to enable in-app updates, just like the Android version,
and then return to your app (figure 16.22).

Listing 16.2 Adding App Center distribution to Countr.iOS

Adds distribution to the
App Center startup

Enter the App Center URL scheme here.
This is: appcenter-<your app secret>

Figure 16.21 Adding the App Center URL schema to the info.plist

528 CHAPTER 16 Deploying apps to beta testers and the stores
Just like with Android, iOS apps need to have their version numbers incremented so
that App Center can detect an update. The version number is defined in the info.plist
file and is made up of multiple parts—a version and a build (figure 16.23). The
version is a three-part code in the format of major.minor.revision, and the build is a sin-
gle-integer build number for a particular version. An update is defined as one of the
following:

 The same version but a higher build number
 A higher version with any build number (higher or lower)

If you keep the version number the same, increment the build number; if you incre-
ment the version number, you can increment or reset the build number if you want.
This means if you’re updating version 1.0 build 1, you can either use 1.1 build 1 or 1.0
build 2.

To test auto updates, increment one of these fields and push your changes to your
source code provider. Once the app is built, restart the app on your device and you’ll
be prompted to install the update (figure 16.24). Tap Update Now and your app will
be terminated, the new version downloaded and installed.

Figure 16.22 The first time
your app starts, it will enable
in-app updates.

529Distributing iOS apps to beta testers
Increment the build or the version to enable
an in-app update to your latest version.

Figure 16.23 For your app to detect an update, either the build or version needs to be incremented.

Figure 16.24 When you launch your
app after an update is available, you’ll
be prompted to install the update.

530 CHAPTER 16 Deploying apps to beta testers and the stores
16.4 Publishing iOS apps on the Apple App store
Now that you’ve beta tested your app, it’s time to upload it to the store. All iOS apps
are distributed using the iOS App Store. Unlike Android there are no other stores
available.

16.4.1 Provisioning your app for publishing

Before you can publish to the App Store, you need an explicit App ID for your app.
Back in chapter 13 you created a wildcard App ID that you could use from any app,
but for the store you need an explicit one that’s only used by a single app. From the
Apple Developer site, select the App Ids tab, click the plus button, and create a new
explicit app ID using the same prefix that you used for your wildcard ID, but ending
in Countr instead of *. For example, I would use io.jimbobbennett.Countr.

To publish your app to the store, you need an App Store provisioning profile. Cre-
ate and download one in the Apple Developer site, signed using the distribution cer-
tificate you created for an ad hoc profile and using the new explicit App ID. You won’t
need to specify any device UDIDs for this profile—it will allow any device to run your
app, providing it’s distributed using the App Store.

The next step is to set up the build in App Center using your App Store provision-
ing profile and distribution certificate. Ensure the Test on a Real Device and Distrib-
ute Builds settings are both turned off. Save this and wait for the build to finish. Once
it’s finished, click the Download button and select Download Build to download the
app’s IPA.

16.4.2 Setting up your app

Setting up apps for release to the iOS App Store is similar to doing so for the Google
Play store—you need to create an app, set up some metadata, upload a binary, and
await approval.

ITUNES CONNECT

iOS apps aren’t configured using the Apple Developer site. Instead they’re set up in
iTunes Connect. This is the Apple portal for configuring apps available on Apple’s
stores—covering iOS, tvOS, and macOS. You can access it at https://itunesconnect
.apple.com, logging in with your Apple ID (figure 16.25).

Click the My Apps button, click the plus button, and select New App to add a new
iOS app.

In the dialog that pops up (shown in figure 16.26), select the iOS platform and
enter the app name that you want to appear on the App Store (this is limited to 50
characters). This app name has to be unique across all the millions of apps on the
store, so you’ll need to be creative with the name. For example, Countr is already
taken, and there are a number of apps with names starting with Countr, so I’ve used
the name Countr - Count anything.

After entering the name, select the primary language of your app. Then select the
bundle ID for your app, using the explicit App ID you set up in the Apple Developer

https://itunesconnect.apple.com
https://itunesconnect.apple.com
https://itunesconnect.apple.com

531Publishing iOS apps on the Apple App store
Figure 16.25 iTunes Connect is used to manage all apps released to the Apple App Stores.

The platform for your app

The name for your app: this
has to be unique across the
app store.

The primary language for your
app: the app information will
default to be in this language.

The explicit App ID for your
app: this is the App ID used
when creating the store
provisioning profile.

An internal identifier for your
app: this is not shown on
the store.

Figure 16.26 To create a new app, enter the name and bundle ID.

532 CHAPTER 16 Deploying apps to beta testers and the stores
site. This must match the bundle ID in your info.plist file or you won’t be able to
upload your IPA. Finally, enter a SKU—a unique identifier for your app, such as a
code name for your current release. This is an internal identifier and won’t be shown
on the App Store.

Once all this information is entered, click Create.

WILDCARD APP ID WON’T WORK You can select a wildcard App ID here, such as
com.mycompany.*, but if you do, it will ask for a suffix and create this as an
explicit App ID automatically. This means that if your App Store provisioning
profile was signed using a wildcard App ID, it won’t match this app, and you
won’t be able to upload the app.

Once your app is created, you’ll see the app management screen where you can con-
figure the store listing and app versions. App management in iTunes Connect is bro-
ken down into two parts: general app settings, including app information and pricing,
and version settings against different versions of your app. As with the Google Play
store, all the metadata and images you add to your app must be suitable for all audi-
ences, or your app will be rejected. Before we set this all up, let’s upload the IPA.

UPLOADING THE IPA
Unfortunately, for iOS apps, you can’t upload your IPA using iTunes Connect. Instead
you need to use a tool on your Mac called Application Loader that comes as part of
Xcode. You can launch this either by finding it using Spotlight (it’s buried inside the
Xcode package, not easily accessible from the Application folder) or by launching
Xcode and selecting Xcode > Open Developer Tool > Application Loader. Once it
loads up, log in with your Apple ID.

From Application Loader, select Deliver Your App (figure 16.27), click Choose,
and then select the IPA you downloaded from App Center. Application Loader will
check iTunes Connect for an app that matches the bundle ID and will show a screen
with the details of your app. Click Next, and Application Loader will connect to
iTunes Connect, validate your IPA, and upload it. This may take a few minutes because
it does some static code analysis on your app to make sure you aren’t using any private
APIs or doing anything you shouldn’t.

Once your app has been uploaded, it will be analyzed in more depth by Apple, and
if any issues are found you’ll be emailed about them. This analysis will take about half
an hour. Once your app is ready, you’ll receive an email letting you know it’s finished
processing.

YOU MAY GET A WARNING ABOUT PUSH NOTIFICATIONS Once your app has been
submitted in Application Loader, you may get an email warning you that your
app registers with the push notification service but doesn’t include entitle-
ments for push. Countr doesn’t use push notifications, so we haven’t set them
up, but the App Center SDK includes push-notification code. You can ignore
this warning.

533Publishing iOS apps on the Apple App store
Once your app has been uploaded, head back to iTunes Connect to finish setting it up.

APP INFORMATION

The first thing to set up is the app information, and you can access this from the App
Information tab on the left side of iTunes Connect. In this tab you can set up some
basic information about your app. These are the required fields:

 Subtitle—This is a short description of your app that’s used on the store as a tag-
line. This should be a short, snappy subtitle to entice users into reading more
about your app or installing it. It can be up to 30 characters and is only shown
on the App Store on devices running iOS 11.

 Privacy Policy—If your app does anything with users’ personal data, you have to
provide a privacy policy. Personal data includes anything that would allow the
user to be identified, such as account registration, any financial information,
health information, or contact details such as a phonebook. You can leave this
blank for Countr—we don’t collect any information.

 Category—You can set a primary and (optionally) a secondary category to cate-
gorize your app correctly on the App Store. The primary category for Countr
would be Utilities, and if you wanted to set a secondary category you could use
Productivity.

Figure 16.27 Application Loader is used to upload IPAs to Apple.

534 CHAPTER 16 Deploying apps to beta testers and the stores
PRICING AND AVAILABILITY

From the Pricing and Availability tab you can set a price for your app and which coun-
tries it’s available in. Set the price to be free—it will be labeled as 0 in your local cur-
rency (for example, for me it’s NZD 0). Once you’ve set a price, your app will default
to being available in all countries. You can leave this as is or click the Edit button to
choose a limited set of countries to release your app to.

PAID APPS REQUIRE DIFFERENT CONTRACTS If you want to charge for your app,
you’ll need to sign a paid developer agreement. When you signed up for the
Apple Developer program, you will have signed a free app agreement, so to
charge for your app you’ll need to head to the first page of iTunes Connect
and access the Agreements, Tax, and Banking section to sign the relevant
agreement and set up your merchant account.

APP VERSIONS

Once you’ve set the app information and pricing, the next stage is to set up a new ver-
sion of your app. Each time you want to release your app, you create a new version,
configure any metadata to go out with the version, submit it for review, and then pub-
lish it. Versions are numbered and usually tie up with the version information inside
your app’s info.plist file. Each new version should have a higher version number, and
if you have to submit multiple builds for a version (for example, if Apple finds a bug
in your app) then you increment the build, leaving the version the same, and push up
a new IPA.

When your app was created, an initial 1.0 version was created, and you can see this
on the left side of iTunes Connect. If you click on this version, you can set up its meta-
data, attach a build to it, and submit it for review. This is the required metadata:

 Screenshots—You need at least one screenshot from the largest devices of each
form factor, so a 5.5" device if your app supports iPhones, and a 12.9" device if
your app supports iPads. The easiest way to generate these is either using the
simulator or Test Cloud, run on an iPhone 7 Plus and an iPad Pro. You can add
other screen sizes if you want to, but if you don’t, the larger ones will be scaled
down.

 Description—This is where you can enter a more detailed description about your
app, covering its features, how it can help your users achieve their goals or solve
their problems, and anything else required to explain your app to your target
audience. You can enter up to 4000 characters here.

 Keywords—Keywords are used to help people search for your app. This is a
comma-separated list of words or phrases relevant to your app and that will help
people find it. For example, you could enter count, counter, track as the keywords,
and your app would be shown to people searching using any of those three
words. How high up the ranking it will be displayed depends on the popularity
of your app, how good the reviews are, or if Apple likes you. You can use up to
100 characters here.

535Publishing iOS apps on the Apple App store
 Support URL—This is a link to a website providing support for your app. You
have to provide this URL, but Apple is pretty flexible about what the URL
points to, as long as the URL provides ways to contact you. For example, you
could use your Twitter account URL or a Facebook page. I use the URL of my
blog, because there are links on there to contact me.

 Build—You can upload as many IPAs as you like using Application Loader.
From the Build section you can select which build you want to publish with your
release. Click Select a Build Before You Submit Your App, select the appropri-
ate build from the popup, and click Done.

 App Icon—This is the large app icon that will be shown on the App Store for
your app, and it needs to be a PNG or JPEG at a resolution of 1024 × 1024 pix-
els. If you used MakeAppIcon to generate your app icon, it will have generated
an app icon for the store along with the rest of the icons, called iTunesArt-
work@ 2x.png, so upload this file. You can also find it in the source code that
accompanies this book in the Images\Countr\AppIcons\iOS folder.

 Version—This is the public version of your app, and for a first app this will
default to 1.0. You should change this to match the version number you set
inside your info.plist file to make it easier to track app releases.

 Rating—Specify a content rating for your app to ensure it’s only made available
to the right audience. To set the rating, click the Edit button next to the Rating
section and fill in the questionnaire. Countr is suitable for everyone, so you
should be able to select None for all categories.

 Copyright—Enter a copyright message for your app, such as 2017 - My Company.
You don’t need to add the copyright symbol at the start.

 App Review Information—Provide additional information to assist Apple with its
reviews. This includes contact information, such as your name, phone number,
and email. You can also provide a dummy account for Apple to use if your app
requires a sign-in, and by default they tick the “Sign-in required” box, so untick
this because Countr doesn’t need any user sign-in.

 Version Release—Once you’ve set up your app, you submit it for review, and once
it’s approved it can be published to the store. You can choose how this publish-
ing happens: whether it should happen automatically, as soon as the app is
approved; happen automatically after a given date; or require a manual pub-
lish. You can set this choice here—the default is to automatically publish as
soon as it’s approved. You’ll normally want to publish immediately unless you
have a marketing campaign or release event lined up.

By default, all the content you provide here is in the language you selected as the pri-
mary language for your app. You can provide different language versions using the
language drop-down at the top right of the Version page.

Once all this metadata is set up, click the Save button, and then click the Submit
for Review button at the top right. You’ll then need to answer three questions:

536 CHAPTER 16 Deploying apps to beta testers and the stores
 Export Compliance—This is to check to see if your app uses any form of encryp-
tion. Select No here for this example, as Countr doesn’t use any form of
encryption, but if you’re publishing an app that does use encryption for any-
thing, you’ll need to select Yes and answer further questions because the
United States has restrictions on the export of encryption. Note that if you
make any web calls using HTTPS, you’ll need to select Yes, as HTTPS uses
encryption. You can read more about this in the iTunes Connect “Resources
and Help” at http://mng.bz/brT6.

 Content Rights—This is to verify that your app doesn’t display any third-party
content, and if it does, that you have the relevant permissions to do so. Countr
doesn’t use any third-party content, so you can select No.

 Advertising Identifier—iOS provides a unique identifier for each device, used for
advertisement tracking. Countr doesn’t show any ads, so select No this time, but
if you use this for ad tracking you must answer Yes or your app will be rejected
and you’ll need to submit a new IPA and start again. Apple will scan your IPA
for usage of the API that provides this.

Once you’ve answered these questions, click Submit. Your version will then move to
“Waiting for review” and be reviewed by Apple. You should also get an email confirm-
ing this. Most apps are reviewed within 48 hours, so it may take a few days to get
approved. If your app is rejected, you’ll be told why (and be given a link to the rele-
vant section of their app guidelines), and you can then make any changes that Apple
suggests and resubmit your app. The approval process is varied, as real people are
involved—you can have one person approve your app, then push up a bug fix before
publishing, and have another reject your app for something that was there when the
first person approved the app. Apple’s decision is final, though, so it’s very hard to
fight them on anything. You can read the guidelines at http://mng.bz/525T.

You can update your app metadata while it’s waiting for review, but not once it is in
review. You also can’t change the IPA. If you need to upload a new IPA, remove the
app from review using the link that will appear at the top of the app version page,
upload a new binary, and then resubmit for review.

Apple is really good at keeping you updated—you’ll get emails as your app moves
through the different states, such as when someone starts the review and when it’s
approved. You can also install the iTunes Connect app from the iOS App Store, called
Connect, that allows you to manage your releases (figure 16.28). Through this app,
Apple will send you push notifications when the states change. The different states are
shown in table 16.1.

http://mng.bz/brT6
http://mng.bz/525T

537Publishing iOS apps on the Apple App store
Table 16.1 The different states for your app in iTunes Connect

State Description

Prepare for Submission This is the state all new versions start in.

Waiting for Review Your app has been submitted for review and is waiting for someone at
Apple to start the review. You can change any of the app metadata at
this point, but if you want to upload a new IPA, remove your app from
review.

In Review Someone at Apple is currently reviewing your app.

Rejected Your app has been rejected by Apple. There will be a link on the version
page to the resolution center where you can see the issue and reply to
the reviewer.

Pending Agreement Your app can be approved before you’ve signed the relevant contracts—
for example, if your app isn’t free and you haven’t signed the paid apps
agreement. You can find the agreements to sign in the Agreements, Tax,
and Banking section available from the iTunes Connect front page.

Ready for Sale Your app has been released to the store and is available for download.

Figure 16.28 Apple is great at updating
you about the progress of approving your
app. There’s even an app to manage it,
called Connect.

538 CHAPTER 16 Deploying apps to beta testers and the stores
Once your app has been approved, it should be published automatically, assuming
you left the version release option set to Automatically Release This Version. If you
need to manually release, select the version from the list on the left side of iTunes
Connect and click the Make App Available button at the top right—this button will
have replaced the Submit for Review button.

Congratulations—you’ve now published your Xamarin app to the iOS App Store
(figure 16.29) as well as the Google Play store! A cross-platform job well done. You
may struggle to find your app on the App Store to begin with—the iOS App Store
takes a while to publish your app globally and index it for searching, and even links
from inside Apple’s Connect app may fail for a while. Be patient, it should show after
an hour or so.

Figure 16.29 The Countr listing on the iOS App Store

539Publishing iOS apps on the Apple App store
STORE DISTRIBUTION IS HARD It’s a lot of work with a number of manual steps
to distribute to the Apple App Store. To make your life easier, a lot of this pro-
cess can be automated using Fastlane. You’ve already used Fastlane to gener-
ate provisioning profiles from Visual Studio for Mac, but it can do a whole lot
more than just profiles. Head to https://fastlane.tools to learn more, or check
out the Xamarin University video about Fastlane at http://mng.bz/e1i0.

REVIEWS AND RATINGS

You can find reviews and ratings for your app inside iTunes Connect by selecting the
Activity tab on the top and choosing Ratings and Reviews on the left side (figure
16.30). You can break down ratings and reviews by app version, user’s location, or
date. If a user gives a review, you can respond to it, maybe letting them know that their
problem is fixed or helping them if they’re stuck.

Apple is very strict on rating manipulation—your developer account will be termi-
nated if you try to fudge the numbers.

PUBLISHING UPDATES

Once your app has been published, it’s time to think about updates—bug fixes or
more features. All updates are managed by the App Store. Just like with Android, App
Center updates are disabled for store builds.

You can create a new version using the + Version or Platform button on the left
side of iTunes Connect. You can only have one unreleased version of your app at any
time, so you can’t create a new version until your previous version has been approved.
You also can’t delete versions—if a version needs to be fixed up, you have to change
that version instead of deleting it and starting again.

Figure 16.30 Review ratings and reviews from users via the Activity tab.

https://fastlane.tools
http://mng.bz/e1i0

540 CHAPTER 16 Deploying apps to beta testers and the stores
YOU CAN ONLY DELETE PUBLISHED APPS If you build an app and then decide to
delete it, you’ll find you can’t unless it has been published. Even if Apple has
rejected your app and you can’t publish it, you can’t delete it.

When you add a new version, all the metadata and screenshots from the previous ver-
sion are copied over. You’ll then need to update this information to reflect your new
app version, updating screenshots to match your latest app UI and adding details
about what’s new to the app description. You’ll need to upload a new build as well, with
an incremented version number. This increment should be to the version number in
the info.plist file, not just the build number. You can increment the build number if
you want, leave it, the same or reset it, but you need to always increment the version
number to indicate a new app version.

Once your new version is ready, click the Submit for Review button to submit your
new version for review, and wait while it goes through the approval process.

MAKE SURE ANYTHING NEEDED FOR REVIEW IS STILL RELEVANT The reviews for
updates are usually faster than for the initial version, but Apple still does thor-
ough checks. This means anything you set up to help with the initial review
needs to still be valid. For example, if you provided a demo account to use,
this account should still be working.

Summary
In this chapter you learned

 App Center can be used to distribute apps to beta testers.
 Apps distributed by App Center can have in-app updates to help push new ver-

sions to your testers.
 To publish your app, you can use the Google Play store for Android apps and

the iOS App Store for iOS apps.
 There are alternative Android app stores that you may want to target, especially

if you want to publish to Chinese users.

You also learned how to

 Set up App Center distribution groups.
 Enable in-app updates in your app using the App Center SDK.
 Create and publish Android apps using the Google Play store.
 Create and publish iOS apps using the iOS App Store.

Where to next?
Over the course of this book you’ve learned about Xamarin, from developing a simple
Hello World app, through learning about the MVVM design pattern, to planning and
designing an app, writing a cross-platform model layer and view-model layer, and plat-
form-specific view layers. You’ve run your apps on devices, tested them with auto-
mated UI testing, set them up to track how they’re used and detect crashes, and

541Where to next?
distributed them to beta testers and the store. You’ve been through the entire mobile-
optimized development lifecycle and seen how tools from Xamarin and Microsoft can
make this journey easy and fun.

To some, Xamarin is just wrappers around the iOS and Android SDKs and the tool-
ing to compile mobile apps, but really it’s a whole lot more. It offers the ability to
build a large percentage of your mobile app once, sharing 70–80% of code between
iOS and Android. It’s a way to write apps for iOS and Android using one language,
and a language that in my opinion is the best around—it gives you great power com-
bined with simplicity, allowing you to write clean, easy-to-read code, with a simple syn-
tax for building multithreaded apps. C# is very important to its creators and has an
exciting roadmap of features and improvements coming up.

Xamarin is the tooling that allows you to write mobile apps on a Mac or on Win-
dows, easily switching from one to the other if needed. Xamarin gives you the power
to automate your mobile app testing, writing your tests in C#, the same language you
use to write your apps. It opens up a huge world of NuGet packages providing amaz-
ing cross-platform functionality, as well as giving you plugins that allow you to access
platform-specific features, like the camera, from cross-platform code.

The marriage of Microsoft and Xamarin has only strengthened these capabilities.
Xamarin tools are now built on top of powerful tools from Microsoft, such as the open
source Rosyln C# compiler. Microsoft brings more to the mix in the form of App Cen-
ter, providing a one-stop shop to introduce mobile app devops. It also has Azure, the
best cloud service for developers—something you can access using open source, cross-
platform NuGet packages from Xamarin apps as easily as Windows developers can
from their applications.

Xamarin has an amazing community of passionate developers from all around the
globe and all walks of life. As you continue your journey as a Xamarin developer, I
urge you to get involved with the community, whether online, through local events
like meetups, or thorough big international conferences such as //Build or Microsoft
Connect.

If you want some amazing online content, check these out:

 The MvvmCross documentation at http://www.mvvmcross.com.
 The great forums at https://forums.xamarin.com.
 The vibrant Xamarin community Slack team (which you can join) at

https://xamarinchat.herokuapp.com/, full of Xamarin developers and support
engineers.

 The Xamarin show on Microsoft’s Channel 9, with incredible content updated
regularly, at https://channel9.msdn.com/Shows/XamarinShow.

 Planet Xamarin, a really useful aggregator of Xamarin blogs from world-class
developers, at www.planetxamarin.com.

 The Xamarin podcast at www.xamarinpodcast.com, or MergeConflict by James
Montemagno from Xamarin and Frank Krueger (the developer behind,

https://forums.xamarin.com
https://xamarinchat.herokuapp.com/
https://channel9.msdn.com/Shows/XamarinShow
http://www.mvvmcross.com

542 CHAPTER 16 Deploying apps to beta testers and the stores
amongst others, SQLite-Net-PCL, a C# and F# IDE for the iPad called Continu-
ous, and the newly released Xamarin Live Player) at http://www.mergeconflict
.fm. MergeConflict covers a wide range of development topics relevant to
mobile developers.

The future of Xamarin is exciting. Every year over the past few years has been the best
year yet for mobile app developers, a trend I don’t see stopping.

Now, go build apps!

http://www.mergeconflict.fm
http://www.mergeconflict.fm
http://www.mergeconflict.fm

appendix A
UI flows and threads

for SquareRt and Countr
In chapter 6 we looked at the user flows for SquareRt and Countr, and you saw how
to break them down by layer (view, view model, or model), and by thread (UI or
background). Let’s now look at a full breakdown of these flows with the help of the
handy diagram that was introduced in figure 6.19.

A.1 SquareRt
There’s only one user flow in SquareRt, shown in figure A.1.

Mapping this to the different layers and threads is relatively simple. The calculation
is fast, so it can can run on any thread. Figure A.2 shows this flow broken down.

User enters
a number

Square root
is calculated

Answer is
shown on UI

Figure A.1 The SquareRt app is
pretty simple, with only one flow
that the user can take.

View User enters a numberUI thread

UI thread

Model

UI thread

View model

Background thread

Background thread

Answer is shown on UI

View model
passes value

straight to view

View model
passes value
straight to model

Square root
is calculated

Figure A.2 The SquareRt user flow is trivial: the view handles the user interactions, the view
model passes values straight through, and the model can calculate on the UI thread.
543

544 APPENDIX A UI flows and threads for SquareRt and Countr
A.2 Countr
Countr has four user flows, as shown in figure A.3.

A.2.1 Loading counters

The first user flow is loading counters from storage and showing them on the UI. Load-
ing from storage happens in the model layer and on a background thread. The list of
counters is then shown in the UI, back on the UI thread. Figure A.4 shows this flow.

User wants to
see counters

Counters are
loaded from

storage

All counters are
shown on UI

User adds
a counter

User enters
counter details

Counter is
created and

stored

New counter is
shown on the UI

User deletes
a counter

Counter is
removed from

storage

Counter is
removed
from UI

User increments
a counter

Counter is
incremented
and stored

Counter is
updated on

the UI

Figure A.3 The user flows for the Countr app: showing, adding, deleting, and
incrementing counters

View User wants to
see counters

UI thread

UI thread

Model

UI thread

View model

Background thread

Background thread

Counters are
shown on UI

View model updates
its observable

collection of counters

View model loads
counters from the
counters service

Counters are loaded
from storage

Figure A.4 The first user flow for Countr loads counters on a background thread and then updates
the UI from the UI thread.

545Countr
A.2.2 Adding a counter

The second user flow is adding a counter. For this, the counters view model needs to
navigate to a new screen where the user can enter the details of a new counter. Then
the model layer saves this counter, the counter view model navigates back, and the
counters view model updates the UI to show the new counter.

This user flow can be broken down into three parts: navigation to a new screen,
creating the counter, and updating the counters list. Figure A.5 shows the flow for nav-
igating to a new screen, figure A.6 shows the flow for entering and saving a new
counter, and figure A.7 shows the flow for updating the counters list.

View User adds a counterUI thread

UI thread

Model

UI thread

View model

Background thread

Background thread

New counter screen
is shown

Navigate to
counter view model

Figure A.5 Navigation to a new screen occurs on the UI thread in the view-model layer.

View UI thread

UI thread

Model

UI thread

View model

Background thread

Background thread

New counter
screen closes

User enters
counter name

User taps
Done button

Counter name
is updated

View model
passes value
straight to
model

View model
passes
counter to
the service

Counter is stored

Counter view
model is closed

Figure A.6 Saving the counter happens in the model layer on a background thread.

546 APPENDIX A UI flows and threads for SquareRt and Countr
A.2.3 Deleting a counter

The third used flow is deleting a counter. The UI initiates the deletion from the UI
thread, which deletes the counter from storage on a background thread, before
finally updating the UI back on the UI thread. This is shown in figure A.8.

View UI thread

UI thread

Model

UI thread

View model

Background thread

Background thread

Counters are
shown on UI

Counters view model
detects new counter

Counter is stored Counters are
loaded from storage

View model loads counters
from the counters service

View model updates
its observable

collection of counters

Figure A.7 Once the counters have been updated, the view model loads the counters from storage via
the model layer on a background thread, and then it updates the UI from the UI thread.

View UI thread

UI thread

Model

UI thread

View model

Background thread

Background thread

Counters are
shown on UI

Counter
is deleted

Counter is removed
from storage

Counters are
 loaded from storage

View model deletes the
counter using the service,
then reloads the counters

View model updates
its observable

collection of counters

Figure A.8 Counters are deleted from storage on a background thread, the counters are reloaded on
a background thread, and the UI is updated back on the UI thread.

547Countr
A.2.4 Incrementing a counter

The final user flow is incrementing a counter. The counter is incremented on the UI
thread, causing the UI to update, and then the updated counter is saved to storage on
a background thread. Figure A.9 shows this final user flow.

View UI thread

UI thread

Model

UI thread

View model

Background thread

Background thread

Increment counter
button is tapped

Incremented counter
is shown on UI

View model raises a
property-changed notification
to update the UI

Counter is
incremented

Counter is saved
to storage

Figure A.9 When a counter is updated, the updated counter is stored on a background thread and
the UI is updated on the UI thread.

appendix B
Using MVVM Light

instead of MvvmCross
This book focuses on building cross-platform apps using MVVM, and although the
concepts are agnostic to the framework you’re using, my examples focused on the
MvvmCross framework. There are a range of different MVVM frameworks, each
with their own quirks, features, and ways of doing things. You’ve seen MvvmCross;
this appendix looks at a different framework called MVVM Light.

The question of which framework to use has a standard technology answer—it
depends! Each framework has its own strengths and weaknesses. MvvmCross is a
heavyweight, opinionated framework. It provides a lot for you out of the box, which
has the upside of making it easier to get started because you have less code to write,
but the downside is that it’s harder to do things that are different from the Mvvm-
Cross way. MVVM Light, on the other hand, is much more lightweight and provides
only what you need to implement the basics of MVVM. You have to do more your-
self, but in return you have more control.

Sometimes the best reason for choosing a framework is experience. If in the
past you’ve built Windows apps using MVVM Light, it makes sense to keep using
the framework you know. If you don’t have experience with any MVVM frameworks
that support Xamarin apps, you could try out a simple app in each framework to
see which feels more comfortable. You can always switch frameworks if needed, but
remember that the lighter the framework, the easier it is to change. It’s easier to
change from MVVM Light to MvvmCross than the other way around, especially if
you’ve used a lot from the MvvmCross ecosystem.

B.1 MVVM Light
MVVM Light is an open source MVVM framework created by Laurent Bugnion, a
Cloud Developer Advocate working at Microsoft. As the name suggests, it’s a light-
weight framework, in that it doesn’t do too much for you. It just provides you with
the basics. Although it’s lightweight, it does have everything you need to build
548

549The view model layer
apps. It’s also very mature, having been around for eight years, and it supports all the
various Windows technologies as well as Xamarin apps.

Out of the box it provides a base view model to handle property-change notifica-
tions, a command implementation, a binding layer, an IoC container, a navigation ser-
vice to support view-model-first navigation, a dispatcher helper to marshal calls onto
the UI thread, and a messenger. For iOS and Android apps it also has helpers for table
views and recycler views.

This appendix isn’t a full tutorial on MVVM Light. It just looks at the features MVVM
Light provides, showing you how to get started porting Countr to MVVM Light. There’s
an example version of Countr using MVVM Light in the source code that accompanies
this book, and the MVVM Light website at http://www.mvvmlight.net has tutorials you
can use, and a link to a PluralSight course.

B.2 Installing MVVM Light
The easiest way to create an MVVM Light project is to create a standard Xamarin app
and then add the MvvmLight NuGet packages. There are two main packages to
choose from: MvvmLight or MvvmLightLibs. The MvvmLight NuGet package installs
the required libraries and creates some example view and view model files. The Mvvm-
LightLibs package just installs the required libraries. To port Countr, you would
remove the MvvmCross packages and then install MvvmLightLibs.

These libraries provide everything necessary for your core cross-platform project
as well as your iOS app. For Android, there are two more NuGet packages to install.
MvvmLightAndroidSupport provides support for recycler views, and the third-
party JimBobBennett.MvvmLight.AppCompat NuGet package provides support for
AppCompat.

B.3 The model layer
The only difference in the model layer is the messenger. Just like MvvmCross, MVVM
Light has a messenger—GalaSoft.MvvmLight.Messaging.Messenger—and this
exposes an interface called IMessenger. This is a simple interface, with methods to
register and unregister for a message, and to send a message to all registered recipi-
ents. Messages can be any class—there’s no need to derive from a particular base class,
unlike MvvmCross with its base MvxMessage class. This means the existing Countr
model layer can be reused just by changing the messenger and removing the message
base class.

B.4 The view model layer
Just like MvmCross, MVVM Light has a base view-model class, GalaSoft.MvvmLight
.ViewModelBase. This class has similar capabilities to the base view model in Mvvm-
Cross, providing support for property-changed notifications and a Set method to
update a value inside a property if it has changed, raising the property-changed event.

http://www.mvvmlight.net

550 APPENDIX B Using MVVM Light instead of MvvmCross
Commands are provided using GalaSoft.MvvmLight.Command.RelayCommand. Just
like the MvvmCross MvxCommand class, this command wraps an action. One feature
that’s not provided in MVVM Light is support for async commands—there’s no way to
create an async RelayCommand that you can await the execution on.

This lack of async support also extends to navigation. MVVM Light has a naviga-
tion service, exposed via GalaSoft.MvvmLight.Views.INavigationService, that pro-
vides view-model-first navigation, but the methods on this interface aren’t async.
Navigation works slightly differently in MVVM Light and MvvmCross. Instead of navi-
gating to a view model, as you do in MvvmCross, you navigate to a page key—a string
that defines a view and view-model relationship, and as you’ll see later in this appen-
dix, this is defined in the view layer. In our CountersViewModel, the NavigateTo

method would be used when using MVVM Light, with a string-based page key to
define where to navigate to, and a parameter can be passed to the target view model.
These parameters aren’t passed to a particular method on the target view model;
instead, the view that’s navigated to needs to pull out the parameter. You’ll see this
later in this appendix.

How you define these page keys is up to you. My preferred way to specify these keys
is using the name of the view model, so to navigate to the counter view model, you’d
use code such as this:

navigationService.NavigateTo(nameof(CounterViewModel), new Counter());

Closing a view is done with the GoBack method on the navigation service. This will
close the current view, showing the previous one.

MVVM Light has an IoC container, accessible using the static Default property on
the GalaSoft.MvvmLight.Ioc.SimpleIoc class. View models, services, and reposito-
ries can be registered inside this container and resolved using constructor injection,
just like with MvvmCross. The difference is that MVVM Light wraps a lot of this in a
view-model locator—a static class used to register services and get view models. Mvvm-
Cross has some setup code provided by the framework, and inside this setup code you
initialize the content of the IoC container. MVVM Light, on the other hand, relies on
you doing this inside your own app code. The traditional way is to create a static view-
model locator, and inside the static constructor register everything. You then expose
methods or properties on the view-model locator to return view models from the IoC
container. The following listing shows an example implementation for Countr.

public static class ViewModelLocator
{

static ViewModelLocator()
{

SimpleIoc.Default.Register<CountersViewModel>();
SimpleIoc.Default.Register<CounterViewModel>();

Listing B.1 Registering services and providing properties to get view-model instances

The view model locator
is a static class.

The static constructor
registers view models in
the IoC container.

551The view model layer

ar
SimpleIoc.Default.Register<ICountersService, CountersService>();
SimpleIoc.Default.Register<ICountersRepository, CountersRepository>();
SimpleIoc.Default.Register<IMessenger, Messenger>();

}

public static CountersViewModel CountersViewModel
{

get { return SimpleIoc.Default.GetInstance<CountersViewModel>(); }
}

public static CounterViewModel CounterViewModel
{

get
{

return SimpleIoc.Default
.GetInstanceWithoutCaching<CounterViewModel>();

}
}

}

In the static constructor, the view models are registered into the IoC container. The
static Default property on the SimpleIoc class returns a singleton instance of the con-
tainer that you can use anywhere in your code if you want to, although like with the
MvvmCross IoC container, constructor injection is preferred as it’s easier to test. The
constructor also registers your services, repositories, and any other classes you want to
resolve, such as the messenger.

The properties that return view models are used by views to get their binding con-
text, and you’ll see this in action later in this appendix, when we look at views. The
thing to note here, though, is that the IoC container has two methods for retrieving
objects from it. The first is GetInstance, which returns a singleton, so the same
instance every time. The second is GetInstanceWithoutCaching, which returns a new
instance every time. We only ever want one counters view model, so the property
returns the same instance. For the counter view model, we want a new one every time,
so we use GetInstanceWithoutCaching to return a new instance.

Messages, such as the message sent by the counters service whenever the counters
are updated, are handled in the view-model layer by registering an action with the
messenger using the Register method. This generic method has a generic argument
of the type of message you’re registering for, and it takes an action to be executed
when the message is received. Unlike the MvvmCross messenger, this doesn’t return a
token that you keep hold of to keep the subscription alive. Instead, you also pass the
instance of the owner to it, and as long as the owner hasn’t been garbage-collected,
the action will be called.

The other difference from MvvmCross is that there’s no way to register to receive a
message on the UI thread. Instead, all messages are handled on the thread that
was used to send them. To handle messages on the UI thread, use the MVVM Light

Services and
repositories
e registered
by interface.

Returns a new instance of
the CounterViewModelReturns a singleton instance of

the CountersViewModel

552 APPENDIX B Using MVVM Light instead of MvvmCross
dispatcher helper. This is a class that’s only available in your platform-specific app
code and can marshal calls onto the UI thread. The trick to making this work inside
your cross-platform code project is to register a callback inside your view-model loca-
tor that’s used to run code on the UI thread, and, as you’ll see later in this appendix,
set this callback to use the dispatcher helper. The core project’s view-model locator
code is shown in this listing.

static Action<Action> dispatcher;
public static void RegisterDispatcher(Action<Action> dispatcherAction)
{

dispatcher = dispatcherAction;
}

public static void RunOnUIThread(Action action)
{

dispatcher(action);
}

The RunOnUIThread method uses the callback to run a given action, so this can be
used with messenger to ensure a message is handled on the UI thread:

messenger.Register<CountersChangedMessage>(this, m =>

➥ViewModelLocator.RunOnUIThread(async () => await LoadCounters()));

B.5 The view layer
As you’d expect, the platform-specific implementation is different on each platform,
so let’s look at them one by one, starting with Android.

B.5.1 The Android view and application layer

The MVVM Light Android support comes from a separate NuGet package, and there
are two packages to use. MvvmLightAndroidSupport provides Android support for
non-AppCompat activities and recycler views, and JimBobBennett.Mvvm-
Light.AppCompat provides support for AppCompat activities. I always recommend
using AppCompat to provide the largest amount of OS support, so install both NuGet
packages. The layout files and activities created in this book can be pretty much
reused, with a few tweaks to make them support MVVM Light instead of MvvmCross.

SETTING UP THE NAVIGATION SERVICE

In your initial activity, such as your splash-screen activity, initialize the navigation ser-
vice and set up the mappings from page keys to views. The code to do this is shown in
the following listing.

Listing B.2 Registering a callback to run code on the UI thread

Uses the callback to run code

Registers a callback for code
to run on the UI thread

553The view layer
private static bool initialized;

protected override void OnCreate(Android.OS.Bundle savedInstanceState)
{

...

if (!initialized)
{

initialized = true;

var navigationService = new AppCompatNavigationService();
navigationService.Configure(nameof(CountersViewModel),

typeof(CountersView));
navigationService.Configure(nameof(CounterViewModel),

typeof(CounterView));
ViewModelLocator.RegisterNavigationService(navigationService);

}
}

This code registers all the views with the navigation service using a string-based page
key, in this case the name of the relevant view model. When you navigate based on a
page key, it will create the relevant activity and show that.

With MvvmCross, you set the app start—the view model to navigate to after the
splash screen. MVVM Light doesn’t have this. Instead, in the OnResume method of the
splash screen, you need to manually navigate to the appropriate page key:

protected override void OnResume()
{

base.OnResume();
ViewModelLocator.NavigationService.NavigateTo(nameof(CountersViewModel));

}

RETRIEVING VIEW MODELS AND NAVIGATION PARAMETERS

The view model for the new view will come from the view-model locator. The follow-
ing listing shows an example of this for the counters view.

CounterViewModel viewModel;

protected override void OnCreate(Bundle savedInstanceState)
{

...
viewModel = ViewModelLocator.CounterViewModel;

}

Listing B.3 Setting up the Android navigation service

Listing B.4 Getting view models inside Android activities

Ensures that the navigation service
is only initialized once

Creates the Android
platform-specific

navigation service

Sets up the page keys
for the different views

Registers the navigation service
with the view-model locator

Gets the view model from
the view-model locator

554 APPENDIX B Using MVVM Light instead of MvvmCross

A
b

When a parameter is passed to the navigation service, it can be retrieved using the
platform-specific GetAndRemoveParameter method. This method is platform spe-
cific—it works slightly differently on iOS and Android to handle the different way data
is passed around. When navigating from activity to activity in Android, data is passed
using an Intent, and the navigation service can use this intent to get the parameter
that was passed. The following listing shows how to retrieve the counter parameter in
the counter view model.

var navigationService = (AppCompatNavigationService)ViewModelLocator

➥.NavigationService;
var counter = navigationService.GetAndRemoveParameter<Counter>(Intent);
viewModel.Prepare(counter);

Once this parameter has been retrieved, it can be passed to the existing Prepare

method on the view model. Unlike MvvmCross, there are no lifecycle methods on the
view model that are called automatically by the view. You’ll need to call methods like
LoadCounters on the counters view model manually from the OnCreate method of
your activity, instead of relying on methods such as Prepare and Initialize being
called.

BINDING

When using MVVM Light, binding is configured purely in code in your activity—
there’s no way to do it in the layout AXML file. Bindings for properties are created
using the SetBinding extension method from the GalaSoft.MvvmLight.Helpers

namespace, and this binds a property on the view model to a control. Both the view
model and control need to be a field or property on the activity. The bindings that are
created aren’t stored anywhere by default, so they’ll be garbage-collected if you don’t
explicitly store them somewhere in your code (and once they’re garbage-collected,
the bindings will no longer work).

The standard pattern is to have a field or property for the view model, a property
for the control that retrieves the control from the layout, and a field containing a col-
lection of bindings. The following listing shows how to create the binding for the
counter name EditText control in the counter view.

EditText _counterName;
EditText CounterName => _counterName ??

(_counterName = FindViewById<EditText>(Resource.Id.counter_name));

readonly List<Binding> bindings = new List<Binding>();

protected override void OnCreate(Bundle savedInstanceState)
{

...

Listing B.5 Getting the parameter passed to the navigation service

Listing B.6 Binding the counter name to an edit text

A property that gets the
EditText, caching the value

 list of
indings

555The view layer
bindings.Add(this.SetBinding(() => viewModel.Name,
() => CounterName.Text,
BindingMode.TwoWay));

}

The SetBinding extension method must be called on the view.
Commands are bound in a different way than other properties. Instead of using

SetBinding, the SetCommand extension method is used. It’s called on the widget that
you want to configure the command against, such as a button, and the call takes the
name of the event to wire up, and the command on the view model to connect to.
This mechanism is quite powerful, in that you can wire up any event to a command.

The following listing shows an example of wiring up the click event of the add new
counter floating action button to the command on the counters view model.

AddCounterButton.SetCommand(nameof(FloatingActionButton.Click),

➥viewModel.ShowAddNewCounterCommand);

RECYCLER VIEWS

Like MvvmCross, MVVM Light has helpers for recycler views. Instead of providing its
own implementation, MVVM Light provides an implementation of a recycler view
adapter that will keep the control in sync with an observable collection. The adapter is
created using an extension method on ObservableCollection called GetRecycler-

Adapter. This method takes a layout for each item and an action that binds an item in
the collection to that layout, and it returns an adapter that can be set on the recycler
view.

Listing B.8 shows how this adapter is created, and listing B.9 shows an implementa-
tion for the action that binds each item.

ObservableRecyclerAdapter<CounterViewModel, CachingViewHolder> adapter;

protected override async void OnCreate(Bundle savedInstanceState)
{

...
adapter = viewModel.Counters

.GetRecyclerAdapter(BindViewHolder,
Resource.Layout.counter_recycler_view);

RecyclerView.SetAdapter(adapter);
...

}

Listing B.7 Binding the click event of a floating action button to a command

Listing B.8 Creating an adapter from an observable collection

Creates and stores a
binding from the Name
property on the view
model to the text
property on the EditText

556 APPENDIX B Using MVVM Light instead of MvvmCross
void BindViewHolder(CachingViewHolder holder,
CounterViewModel counterVm,
int position)

{
var name = holder.FindCachedViewById<TextView>

(Resource.Id.counter_name);
var count = holder.FindCachedViewById<TextView>

(Resource.Id.counter_count);
var incrementButton = holder.FindCachedViewById<ImageButton>

(Resource.Id.add_image);

holder.DeleteBinding(name);
holder.DeleteBinding(count);

holder.SaveBinding(name,
new Binding<string, string>(counterVm,

() => counterVm.Name,
name,
() => name.Text,
BindingMode.OneWay));

holder.SaveBinding(count,
new Binding<int, string>(counterVm,

() => counterVm.Count,
count,
() => count.Text,
BindingMode.OneWay));

incrementButton.SetCommand(nameof(ImageButton.Click),
counterVm.IncrementCommand);

}

When an item in the recycler view is recycled, it needs to have all its bindings reset to
stop it showing the old item. The code in BindViewHolder is called by the adapter,
passing in a view holder, the item view model, and the position in the collection. The
view holder is a helper class that stores the underlying controls to avoid a UI lookup
each time the item is re-bound, along with a list of bindings. These bindings are
deleted, and new bindings are created to the new item.

CONFIGURING THE DISPATCHER HELPER

You have two options for the dispatcher helper, depending on whether you want
to support AppCompat or not: JimBobBennett.MvvmLight.AppCompat.AppCompat-

DispatcherHelper is the one to use when using AppCompat, and GalaSoft.Mvvm-

Light.Threading.DispatcherHelper is for when you’re not using AppCompat. Both
variants have a static CheckBeginInvokeOnUI method that takes an action and runs it
on the UI thread, and you can register this method with the view-model locator to run
code on the UI thread:

ViewModelLocator.RegisterDispatcher(DispatcherHelper.CheckBeginInvokeOnUI);

This code needs to be added to the splash screen when setting up the navigation setting.

Listing B.9 The BindViewHolder method resets the bindings

557The view layer
B.5.2 The iOS view and application layer

Unlike Android, iOS support is in the standard MvvmLightLibs NuGet package, so
there’s nothing extra to install. The view controllers can be reused from the Mvvm-
Cross version of Countr with a few modifications, and so can the storyboards.

SETTING UP THE NAVIGATION SERVICE

Just like Android, there’s a platform-specific navigation service that needs to be con-
figured, with views set up via page keys. The difference is that there’s no inherent nav-
igation in iOS like there is in Android. In Android, one activity can navigate to
another, but in iOS you need to put your view controllers inside a UINavigation-

Controller to get the same navigation stack. MvvmCross will create one of these for
you, but with MVVM Light you need to create it yourself. MVVM Light also expects
the view controllers in your navigation stack to be in the same storyboard, instead of
in one storyboard per view, but you can copy and paste from the existing storyboards.

This means that you need only one storyboard for your app, and this storyboard
will need to contain a navigation controller marked as the initial view controller, as
well as all the view controllers for all your views, as shown in figure B.1. The counters
view controller will need to be set as the root view controller in the navigation control-
ler, so that this view is shown on startup (remember, MVVM Light doesn’t define an
app start view model). This storyboard will also need to be configured as the main
interface for your app in the info.plist file (figure B.2).

When you construct the navigation service, pass in the navigation controller, so
that it can be used to navigate between views. By the time the FinishedLaunching

method in the AppDelegate is called, the main storyboard will have been loaded, and
the root view controller of the app’s window will be the navigation controller. The fol-
lowing listing shows how this can be used to configure the navigation controller.

public override bool FinishedLaunching(UIApplication application,

➥NSDictionary launchOptions)
{

var navigationService = new NavigationService();
navigationService.Initialize((UINavigationController)Window

➥.RootViewController);
...

}

The views are then registered with the navigation service, and the navigation service is
registered with the view-model locator in the same way as on Android.

Listing B.10 Navigation service created using the root view controller of the window

558 APPENDIX B Using MVVM Light instead of MvvmCross
Figure B.1 The main storyboard needs to contain a navigation controller as the initial view controller, have the
counters view as the root view controller in the navigation controller, and contain the counter view.

Figure B.2 The main interface needs to be set to your storyboard in the info.plist file.

559The view layer
RETRIEVING VIEW MODELS AND NAVIGATION PARAMETERS

Just like on Android, view models are retrieved from the view-model locator. The navi-
gation parameters are also retrieved in a similar way, except the view controller is
passed to the GetAndRemoveParameter method on the platform-specific navigation
service, instead of to an Intent, as shown in the following listing.

var navigationService = (NavigationService)ViewModelLocator.NavigationService;
var counter = (Counter)navigationService.GetAndRemoveParameter(this);
viewModel.Prepare(counter);

BINDING

Binding on iOS uses the same mechanism as Android—extension methods that
return bindings that you persist in your view controller. The only real difference is
that you don’t need to manually create properties for the controls; these are created
for you when you name a control in the storyboard designer. Commands are also
bound using the same extension method as Android.

TABLE VIEWS

MVVM Light provides helpers to help bind table view controllers to observable collec-
tions. Unlike like with Android, there’s a base class to use for your table view control-
ler, ObservableTableViewController<T>, where the generic parameter T is the view
model for each item.

The table view source is created using an extension method on an observable col-
lection called GetTableViewSource, just like how the recycler view adapter was cre-
ated on Android. This extension method takes an action to bind a cell and a cell
prototype identifier. You can optionally pass a func that returns a new Observable-

TableViewSource<T>, which is used if you need to override the behavior of the basic
table view source (for example, if you need to implement swipe to delete). This
method returns a fully configured table view source that you can pass to the table view
and that will keep your table in sync with your observable collection. The following
listing shows an example of this.

UITableViewSource tableViewSource;

public override async void ViewDidLoad()
{

...
tableViewSource = viewModel.Counters.GetTableViewSource(BindCounterCell,

"CounterCell");
TableView.Source = tableViewSource;

}

Listing B.11 Getting the parameter passed to the navigation service

Listing B.12 Creating the table view source from the counters observable collection

560 APPENDIX B Using MVVM Light instead of MvvmCross
In this code, BindCounterCell is a method that binds the cell to the item view model,
and "CounterCell" is the prototype identifier for the table view cell class that’s
defined on the storyboard.

Unlike on Android, there’s no view holder to store all the bindings against each
cell, so it’s best to use the cell class to manage the bindings. This way, each cell can
store a list of bindings that are then deleted and recreated when the binding context
changes. The following listing shows how this can be implemented in the counter cell.

List<Binding> bindings = new List<Binding>();
CounterViewModel viewModel;

public void Bind(CounterViewModel counterVm)
{

foreach (var binding in bindings)
binding.Detach();

bindings.Clear();

viewModel = counterVm;

bindings.Add(this.SetBinding(() => viewModel.Name,
() => CounterName.Text));

bindings.Add(this.SetBinding(() => viewModel.Count,
() => CounterCount.Text));

IncrementButton.SetCommand(viewModel.IncrementCommand);
}

This Bind method can then be called from the BindCounterCell action passed to the
GetTableViewSource extension method:

private void BindCounterCell(UITableViewCell cell,

➥CounterViewModel counterVm,

➥NSIndexPath path)
{

((CounterTableViewCell)cell).Bind(counterVm);
}

CONFIGURING THE DISPATCHER HELPER

The iOS dispatcher helper is the static class GalaSoft.MvvmLight.Threading

.DispatcherHelper, and it’s initialized with an object owned by the main thread, so
that it knows which thread should be used to dispatch calls to the UI thread. Once ini-
tialized, it has a CheckBeginInvokeOnUI method, just as on Android, and you can reg-
ister this in the view-model locator, as follows.

public override bool FinishedLaunching(UIApplication application,

➥NSDictionary launchOptions)
{

...
DispatcherHelper.Initialize(application);
ViewModelLocator.RegisterDispatcher(DispatcherHelper.CheckBeginInvokeOnUI);
...

}

Listing B.13 Binding a counter view model to the counter cell

Listing B.14 Registering the iOS dispatcher helper

Clears out any existing bindings

Rebinds the
counter name,
count, and
increment
command

561Summary
Summary
MvvmCross and MVVM Light have similarities in that they provide everything you
need to build Xamarin apps using MVVM-based view models, a navigation service, a
messaging service, commands, and helpers for list controls. They differ in the imple-
mentation and the details of what they provide, as outlined in the following tables.

Table B.1 Model layer differences between MvvmCross and MVVM Light

MvvmCross MVVM Light

Messaging MvxMessenger
Using the MvvmCross messenger,
you can subscribe to messages on
the UI thread or a background
thread. All messages need to derive
from MvxMessage.

Messenger
Using the MVVM Light messenger,
you can only subscribe to messages
on the current thread, and you have
to use a platform-specific dispatcher
helper to marshal code onto the UI
thread. Messages can be any object.

Table B.2 View-model layer differences between MvvmCross and MVVM Light

MvvmCross MVVM Light

Base view model class MvxViewModel
Provides property-changed notifica-
tions and a SetProperty method
to update a property and raise the
notification. Also provides lifecycle
methods that are called on naviga-
tion and as the view lifecycle hap-
pens.

ViewModelBase
Provides property-changed notifica-
tions and a Set method to update a
property and raise the notification.
No lifecycle methods.

Commands MvxCommand and
MvxAsyncCommand
Two command implementations are
provided, both taking an action to run
when the command is executed and
optionally a func to evaluate to see if
the command can execute. One
implementation is synchronous, and
the other is async and supports
async and await in the action that’s
run on execution, meaning that the
Execute method won’t complete
until the async implementation has
finished.

RelayCommand
Only one command implementation
is provided, taking an action to run
when the command is executed and
optionally a func to evaluate to see if
the command can execute. This
doesn’t support async, so if the
implementation uses async and
await, the Execute method will
complete as soon as the first await
is hit.

562 APPENDIX B Using MVVM Light instead of MvvmCross
Navigation IMvxNavigationService
The MvvmCross navigation service is
created automatically and provides
view model navigation, and has
async navigation methods. View
models are created on navigation
and made available to the views for
binding. Parameters passed to the
next view model are handled in the
view model.

INavigationService
The MVVM Light navigation service
has to be manually created. Naviga-
tion is via a string-based page key
instead of via view models, and the
navigation methods don’t have
async support. View models aren’t
created on navigation; a view-model
locator is used to get the view model
for a view. Parameters passed to the
next view model need to be retrieved
in the view and passed to the view
model.

IoC Mvx
An IoC container is provided with a
single place to register items in it.
View models don’t need to be regis-
tered, MvvmCross classes (such as
the navigation service) are automati-
cally registered, and classes with the
same name can be registered in
bulk. If the class being registered
needs to be a singleton, this is con-
trolled at registration time.

SimpleIoc
This IoC container is one that you
populate manually, usually in the
view model locator, but there’s no
one predefined place to do it. You
have to manually register everything,
including view models. Access to a
singleton instance or multiple
instances is handled when retrieving
items from the container.

Table B.3 Android view layer differences between MvvmCross and MVVM Light

MvvmCross MVVM Light

Views Views are discovered by name, so
the view for MyViewModel is called
MyView. The first view is shown
based on the start view model regis-
tered in the cross-platform app
setup. The view model for a view is
automatically set.

Views are registered with the naviga-
tion service with a string page key.
The first view needs to be manually
shown. The view model for a view
needs to be manually retrieved from
the view-model loader and set.

Binding Controls can be bound in the layout
AXML files or in code.

All binding happens in code.

Recycler views There’s a set of base classes for
recycler views and their adapters
that provide binding to observable
collections.

The standard recycler view is used
with a custom adapter that binds to
an observable collection.

Table B.2 View-model layer differences between MvvmCross and MVVM Light (continued)

MvvmCross MVVM Light

563Summary
Table B.4 iOS view layer differences between MvvmCross and MVVM Light

MvvmCross MVVM Light

Views Views are discovered by name, so
the view for MyViewModel is called
MyView. The first view is shown
based on the start view model regis-
tered in the cross-platform app
setup. Each view has its own story-
board file. The view model for a view
is automatically set.

Views are registered with the naviga-
tion service with a string page key.
One storyboard is used for every-
thing, and this needs to include a
navigation view controller that the
navigation service can use. The first
view needs to be set as the root of
the navigation service or be manu-
ally navigated to. The view model for
a view needs to be manually
retrieved from the view-model loader
and set.

Binding All binding happens in code. All binding happens in code.

Table views There’s a set of base classes for
table view controllers and their data
sources that provide binding to
observable collections.

There’s a set of base classes for
table view controllers and their data
sources that provide binding to
observable collections.

index

Symbols

@+id/toolbar_layout 301

A

ACCESS_NETWORK_STATE
permission 493

action buttons, floating 326
Active Users panel 494
activities

building 328–336
detail view 332
running apps 334–336
setting up master recycler

views 330–332
creating for views 315–317
lifecycle of 314
overview of 313

Activity attribute 172
Activity class 8, 314
ad hoc builds 525–526
AdapterPosition property 331
Add button, tapping 454–455
AddNewCounter 223, 285
AddRange method 62
advertisement tracking 536
analytics, in Visual Studio App

Center 491–504
adding event tracking

497–500
adding SDKs 491–493
audience data 493–496

anchor points 360
Android operating system

building apps on 44–46
building UIs for 289–298

layout files 291–298
layout inflation 298
material design 289–291
resource locations

292–293
resources 292

building views for
app icons 336–337
Countr app activities

328–336
creating layout files for

SquareRt app UI
299–312

launch screens 338–344
SquareRt app views

313–318
UI for Countr App

320–328
configuring App Center

builds 473–475
distributing apps to beta

testers 506–513
auto updates 511–513
enabling app distribution

506–511
distributing builds 508–510
distribution groups 508
lifecycle of apps 338–339
managing releases 511
manifest 172–175

application name
173–174

package names 174
required permissions

174–175
version names 174
version numbers 174

overview 552–556
package kits, building

locally 480
publishing apps on alterna-

tive stores 522
publishing apps on Google

Play Store 514–522
creating apps 514–522
setting up accounts 514

registering users 506–508
running apps on 44–46
running apps on devices

412–414
SDK versions 179–184

running against particular
version 183–184

setting 180–182
setting using Visual Stu-

dio for Mac 182
setting using Visual Stu-

dio for Windows
182–183

setting up apps for UI
testing 441–442

setting up SDKs in Visual
Studio App Center
492–493

signing apps for
publishing 415–419

creating keystores and
signing builds
416–419

keystores 416
setting package

names 415
view layers for Hello Cross-

Platform World app
84–88
565

566 INDEX
Android operating system
(continued)

view layers in MVVM Light
552–556

binding 554–555
configuring dispatcher

helper 556
recycler views 555–556
retrieving navigation

parameters 553–554
retrieving view models

553–554
setting up navigation

services 552–553
wiring UIs 105–106

Android package kits. See APKs
(Android package kits)

Android UIs 291–292
Android.Widget.Button 297
Android.Widget.EditView 297
Android.Widget.ImageView

297
Android.Widget.TextView 297
AOT (Ahead-Of-Time)

compiler 8
API (application programming

interface), in Visual
Studio App Center
470–471

APKs (Android package kits)
building locally 480
uploading 515–516

App Center. See Visual Studio
App Center

App class 84, 199
App development 432
App IDs 420
app layer 30
app queries, with Xamarin

UITest 465–466
App Store 432
AppBarLayout 300
appcenter command 485
AppCompat libraries, views

with 297–298
AppIcon image set 401
AppInitializer.cs file 441
AppLaunches test 448
Apple App Store

app versions 534–539
availability of apps in 534
iTunes Connect 530–532
pricing apps in 534
publishing apps on 530–540

provisioning apps for
publishing 530

setting up apps 530–540
publishing updates on

539–540
rating apps on 539
reviews of apps on 539
setting up app information

533
uploading IPA files 532–533

Apple Developer portal, creat-
ing certificates using
427–428

application layers 74, 83–84
apps

architecting 164–171
choosing layers 164–167
choosing threads 167–169
mapping code to layers

and threads 169–171
building and running 43–46

on Android 44–46
on iOS 46

content ratings 516
creating for Visual Studio

App Center 472–473
distributing Android apps to

beta testers 506–513
auto updates 511–513
enabling app distribution

506–511
distributing builds 508–510
distributing iOS apps to beta

testers 523–528
auto updates 527–528
enabling app distribution

523–526
distribution groups, on

Android 508
dividing into layers 166–167
dummy, creating in Xcode

421–423
icons for Android 336–344

generating app icon
images 336–337

updating 337
icons for iOS 399–402
IDs 429
in Visual Studio App Center

469–470
lifecycle of

on Android 338–339
on iOS 402–403

linking 188–189
making appear responsive

148
managing 511

pricing and distribution
in Apple App Store 534
in Google Play Store 518

product details, in Google
Play Store 516–518

production-ready 406
properties 172–177

Android manifest 172–175
iOS info.plist 175–177

publishing Android apps
on alternative stores 522
on Google Play Store

514–522
publishing iOS apps on

Apple App Store
530–540

provisioning apps for
publishing 530

setting up apps 530–540
registering 506–508
reviews and ratings

in Apple App Store 539
in Google Play Store 521

running iOS apps on devices
420–424

bundle identifiers 421
creating dummy apps in

Xcode 421–423
provisioning profiles, over-

view of 420–421
running apps on physical

devices 424
setting to test in Visual Studio

for Mac 445
for Windows 445–447

setting up for UI testing
439–443

creating UI test projects
439–441

on Android 441–442
on iOS 442–443

signing Android apps for
publishing 415–419

creating keystores
416–419

keystores 416
setting package names 415
signing builds 416–419

styling
for iOS 405–406
on Android 343–344

testing using Test Cloud
479–491

creating test run
configurations 481–483

567INDEX
apps, testing using Test Cloud
(continued)

preparing apps to be
tested 479–480

running tests from com-
mand line 484–487

viewing test results on App
Center 487–491

versions 534–539
See also cross-platform apps;

mobile apps
assertions 457–460
asset catalogs 357–359
async 139–148

commands 147–148
keywords 139–143
writing methods 143–147

marking methods as
async 144–145

returning tasks instead of
using async 145–146

async method 264
attributes 356
audience data 493–496
auto layout, with constraints

353–357
auto updates

of Android apps 511–513
of iOS apps 527–528

autogenerated files 380
auto-generated tests, running

443–448
preparing to run tests

443–445
setting apps to test in Visual

Studio for Mac 445
setting apps to test in Visual

Studio for Windows
445–447

AutoIncrement attribute 216
autolayout 106
await 139–148

keywords 139–143
writing async methods

143–147
ConfigureAwait 146–147
marking methods as async

144–145
returning tasks instead of

using await 145–146

B

Back button, adding 332–333
backdoor methods 464

bait and switch pattern 93
BarTintColor 405
BDD (behavior-driven design)

18
BeforeEachTest method 448,

457
behaviors

collections 262–267
exposing

using commands 267–272
via property changes

257–260
messaging 272–278
navigation

closing views and navigat-
ing back 283

navigation service
279–280

setting startup view models
280–281

to new views 281–282
unit testing closing views

284
unit testing navigation to

new views 282
unit testing saving

counters 284
of view-model layers 54–65,

243–244, 247–248
collections and collection-

changed notifications
60–62

commands 62–65
properties and changed

notifications 56
beta testers

distributing Android apps to
506–513

auto updates 511–513
enabling app distribution

506–511
distributing iOS apps to

523–528
auto updates 527–528
enabling app distribution

523–526
Bind method 560
BindCounterCell method 560
binding 69–74

EditText control 311
in MVVM Light

for Android 554–555
for iOS 559

modes 70
sources 69–70

targets 69–70
value converters 72–74
view controllers 381–382

binding context 70
binding controls 382
binding layer 28, 30
binding source 70
BindViewHolder method 555
Bing, calculating square root

with search API
229–230

bitmaps 342
bool flag 253
Bugnion, Laurent 548
build numbers, for iOS

info.plist 177
builds

ad hoc 525–526
distributing, of Android apps

508–510
setting up in Visual Studio

App Center 471–478
configuring Android builds

473–475
configuring iOS builds

476–478
creating App Center apps

472–473
signing 416–419

bundle identifiers 177, 421
business logic layer 27, 31
Button method 465
Button widget 11

C

CalcAndUpdate 147
Calculate method 207
CallerMemberName attribute

59
CanExecute method 64, 269
CanExecuteChanged event

63–64
cells, in table views 388–392
CenterY consistent 375
certificates 420

creating
using Apple Developer

portal 427–428
using Fastlane 425–427
using Visual Studio for Mac

425–427
using Xcode 425

full discussion 425–428

568 INDEX
chaining tasks 128–129
CheckBeginInvokeOnUI

method 556, 560
CI (continuous integration) 21
clarity 346
class libraries, .NET Standard

32–34
CLI (command-line interface)

471, 484
Close method 280
closing views

and navigating back 283
unit testing 284

code
cross-platform 31–34

.NET Standard class
libraries 32–34

adding 97–98
device-specific, accessing

with .NET Standard
plugins 93–94

mapping
to layers 169–171
to threads 169–171

multithreaded, advantages of
114–117

running in background with
tasks 125–129

chaining tasks 128–129
Task 126–128

code validators 286
code-behind file 68
collaborators 506
CollectionChanged event 60
collections 60–62, 262–267
command pattern 62–65
command-line interface, in

Visual Studio App
Center 471

commands
async 147–148
exposing behaviors using

267–272
CommitEditingStyle method

392, 399
compiling UI tests 480
computation 232, 239
ConfigureAwait 146–147
configuring

controls based on size classes
373–376

dispatcher helper in MVVM
Light

for Android 556
for iOS 560

constants 356
constraints, auto layout with

353–357
content ratings, setting in Goo-

gle Play Store 516
continuations 131
controllers, in table views

386–387
See also view controllers

controls 350–351
adding 364
configuring based on size

classes 373–376
finding based on text 456
identifying 452–453
laying out 364–367

Convert method 72
ConvertBack method 72
Converter=DoubleToString

318
CoordinatorLayout 326
Cordova framework 6–7
Count property 221
Counter class 19
CounterCell 560
CounterCount label 391
CounterName label 391
counter_recycler_view 324, 555
counters

adding 545
deleting 546
incrementing 462–463, 547
loading 544
saving, unit testing of 284

Counters property 398
CountersRepository class 217,

220
CountersService class 222
CountersServiceTests 224
CountersTableViewSource 392
CountersViewModel 213
CounterTableViewCell 388
CounterView activity 329
counter_view layout 320, 326
counter_view.axml layout file

455
CounterViewModel 245, 329
CounterViewModelTests class

265
Countr app 164–166

activities for 328–336
detail view 332
running apps 334–336
setting up master recycler

views 330–332

layers for 164–166
running

on Android 334–336
on iOS 398–399

states and behaviors, adding to
collections 262–267
exposing behaviors using

commands 267–272
messaging 272–278
navigation 278
single-value properties

260–262
threads for 544–547

adding counters 545
choosing 168–169
deleting counters 546
incrementing counters

547
loading counters 544

UI flows for 544–547
adding counters 545
deleting counters 546
incrementing counters

547
UI for 320–328, 385–399

designing 161–162
floating action buttons

326
for detail view 327–328,

395–397
for master view 320–321,

386–393
for recycler view items

323–326
menu items 328
navigation bars and

buttons 393–395
recycler views 322–323
running apps 398–399

view controllers for 385–399
for detail view 395–397
for master view 386–393
navigation bars and

buttons 393–395
running apps 398–399

view-model layers inside
244–248

behaviors 247–248
states 246

crash reporting, in Visual Stu-
dio App Center
500–504

cross-platform apps
creating production-quality

mobile apps 14–22
building 21

569INDEX
cross-platform apps, creating
production-quality
mobile apps (continued)

designing 15–17
developing 17–18
distributing 22
monitoring 22
testing 18–21

creating using MVVM 27–31,
47–48

creating solutions 34–46
cross-platform code 31–34
UI design patterns 26–27

designing for MVVM
156–159

application properties
172–177

architecting apps 164–171
creating solutions 171
designing UI 159–163
designing user flows

159–163
linking 187–193
SDK versions 177–187

Xamarin mobile apps 4–14
Cordova 6–7
mobile-optimized develop-

ment lifecycle 13–14
vendor-specific native apps

5–6
Xamarin developer tools

12–13
Xamarin native apps 7–10
Xamarin.Forms 10–11

cross-platform models
building model layers

196–199, 211–238
accessing databases

214–220
accessing web services

228–238
adding service layers

221–228
data models 211–214
repositories 211–214
services 211–214

unit testing 199–211
creating projects 201–204
creating tests 205–210
results of 210–211

cross-platform view models
adding states and behaviors

to Countr app 260
collections 262–267
exposing behaviors using

commands 267–272

messaging 272–278
navigation 278
single-value

properties 260–262
adding states and behaviors

to SquareRt app 248–
260

exposing behaviors via
property changes
257–260

states inside SquareRt app
248–257

view-model layers 241–248
inside Countr app

244–248
inside SquareRt app

242–244
CrossTextToSpeech class 103
CubeRootViewModel 54
culture parameter 74
Current property 103

D

data models 211, 213–214
data sources, in table views

387–388
databases

accessing 214–220
storing models in 215–217

Default property 550
default synchronization context

135
deference 346
DelayBind 392
DELETE request 228
DeleteCommand 393
DeleteCounter 223
deleting

by swiping 392–393
counters 546

dependency injection 102
depth 347
design patterns, UI 26–27
detail view

Back button 332–333
Done menu item 334
UI for 327–328, 395–397

developer tools, for Xamarin
12–13

devices 429–431
orientations in iOS info.plist

177
running Android apps on

412–414

running iOS apps on
420–424

bundle identifiers 421
creating dummy apps in

Xcode 421–423
provisioning profiles, over-

view of 420–421
running apps on physical

devices 424
running mobile apps on

creating iOS provisioning
profiles 424–435

signing Android apps for
publishing 415–419

with iOS info.plist 177
dispatcher helper, configuring

in MVVM Light
for Android 556
for iOS 560

distribution certificate 524
distribution groups, creating

for Android apps 508
Done menu item 334
DoubleTap method 464
DoubleToStringValueConverter

255, 285, 383
drawables 304–305
dummy apps, creating in Xcode

421–423

E

EditText control 327
adding 307–311
binding 311
positioning 308–311

EditText counter 554
EditText node 87
EnterText method 455
event properties 500
events

adding data to 498
public, explicit use of 191
seeing 499–500

Exception property 133, 143
exceptions, for tasks 132–133
Execute method 561
ExecuteAsync method 271
explicit App IDs 429

F

Fastlane, creating certificates
using 425–427

faulted tasks 132

570 INDEX
FindViewById 317
FinishedLaunching method

403
FirstView class 84, 90
FirstViewModel class 47, 84,

97, 248
Flickr 15
floating action buttons 326
FooViewModel 196, 242
frame layouts, view groups 296
FrameLayout 86, 321
frames 106
FromCurrentSynchronization-

Context() method 136

G

GET request 228
GetAll method 227
GetAllCounters method 223,

225
GetAndRemoveParameter

method 554, 559
GetAsync 168
GetInstance method 551
GetInstanceWithoutCaching

method 551
GetItemAt method 393
GetOrCreateCellFor method

391
GetRecyclerAdapter method

555
GetTableViewSource method

559–560
GoBack method 550
Google Play Store 521–522

adding product details
516–518

pricing and distribution of
apps in 518

publishing Android apps on
514–522

creating apps 514–522
setting up accounts 514

publishing updates 521–522
reviews and ratings of apps

521
setting content ratings in

516

H

Hello property 83, 97
Hello World app 82–112

accessing device-specific
code with .NET Stan-
dard plugins 93–94

adding cross-platform code
97–98

application layer 83–84
installing Xamarin text-to-

speech plugin 95–96
inversion of control (IoC)

98–105
model layer 82
view layer 84–92

Android view 84–88
iOS view 88–92

view-model layer 82–83
wiring Android UI 105–106
wiring iOS UI 106–112

Hidden property 72
HttpClient class 234

I

IApp interface 464–465
IApp.Repl() method 450
ICommand interface 62
icons 336–344, 399–402

generating app icon images
336–337

updating 337
ICountersService 268
Id property 216
ImageButton widget 324
images

adding 304–306, 363–367
adding controls 364
adding image files 363
adding ImageView control

305–306
drawables 304–305
laying out controls

364–367
generating for app icons

336–337
resources for 357–359

ImageView control 305–306
IMvxAsyncCommand 269
IMvxNavigationService 562
IMvxValueConverter interface

72
INavigationService 562
IncrementButton 391
IncrementCount 18
IncrementCounter 223
incrementing counters

462–463, 547

inflating 334
info.plist 175–177

application names 176
build number 177
bundle identifiers 177
device orientations 177
devices 177
version number 177

Initialize method 554
INotifyCollectionChanged

interface 60, 263
INotifyPropertyChanged 58
inputType property 308
installing

MVVM Light framework 549
Xamarin text-to-speech

plugin 95–96
integration tests 220
INTERNET permission 493
inversion of control (IoC)

98–105
iOS operating system

building and running apps
on 46

building UIs 346–360
asset catalogs 357–359
auto layout with

constraints 353–357
controls 350–351
image resources 357–359
iOS human interface

guidelines 346–348
screen resolutions

351–353
storyboards 348–350

building views
app icons 399–406
building SquareRt view

376–383
building UI for Countr

app 385–399
building view controllers

for Countr app
385–399

creating SquareRt
storyboard 360–376

launch screens 399–406
production-ready apps

406
configuring App Center

builds 476–478
creating provisioning profiles

424–435
app IDs 429
certificates 425–428

571INDEX
iOS operating system, creating
provisioning profiles
(continued)

devices 429–431
provisioning profiles

432–433
running apps using provi-

sioning profiles 433
troubleshooting 434–435

distributing apps to beta
testers 523–528

auto updates 527–528
enabling app distribution

523–526
info.plist 175–177

application names 176
build number 177
bundle identifiers 177
device orientations 177
devices 177
version number 177

lifecycle of apps 402–403
overview 557–560
provisioning users of

523–525
publishing apps on Apple

App Store 530–540
provisioning apps for

publishing 530
setting up apps 530–540

running apps on devices
420–424

bundle identifiers 421
creating dummy apps in

Xcode 421–423
provisioning profiles

420–421
SDK versions 185–187

running against iOS SDK
186–187

setting minimum sup-
ported SDK 185

setting up apps for UI testing
442–443

setting up SDKs in Visual Stu-
dio App Center 493

view layers for Hello Cross-
Platform World app
88–92

view layers in MVVM Light
557–560

binding 559
configuring dispatcher

helper 560

retrieving view models and
navigation parameters
559

setting up navigation
services 557

table views 559–560
wiring UIs 106–112

IPA files, uploading 532–533
IProgressService 150
IsCompleted property 130
ISquareRootCalculator 74
ISquareRtCalculator interface

259
items 356
ItemTouchHelper class 330
ItemTouchHelper.Callback

class 330
ITextToSpeech 98, 103–104
iTunes Connect 530–532
IValueConverter 72
IWebService interface 19

J

JimBobBennett.MvvmLight
.AppCompat package
552

JIT (just-in-time) 8
JSON (JavaScript Object

Notation) 231–234
JsonConvert class 237

K

Keychain Access 427
keystores 416–419
keywords 534

L

Label property 316
launch screens 336–344,

399–406
Android application lifecycle

338–339
iOS application lifecycle

402–403
main launcher activities

338–339
styles 339–341
styling apps 343–344,

405–406
updating 404–405
XML drawables 341–343

layer list 342
layers

choosing 164–167
for Countr app 164–166

dividing apps into 166–167
mapping code to 169–171

layout files
editing 293–298

view groups 295–296
view groups using

AppCompat 297–298
views 297
views using AppCompat

297–298
for Android UIs 291–292
for SquareRt app UI,

creating 299–312
EditText control 307–311
images 304–306
result TextView control

312
toolbars 299–303

layout properties 296
layout_above parameter 312
layout_alignBottom parameter

309
layout_alignLeft parameter

309
layout_alignRight parameter

309
layout_height parameter 306
layout_marginLeft parameter

309
layouts

adding toolbars to 299–300
frame, view groups and 296
inflation of 298
linear, view groups and 295
of toolbars 301–303
on different devices 371–372
relative, view groups and 296
showing 316–317

layout_width parameter 306
lifecycle methods 287, 554
linear layouts, view groups 295
LinearLayout element 86, 294
linkers

controlling 191–193
explicit use of public

events 191
explicit use of public

method 191
explicit use of public

properties 191
Preserve attribute 191–193

options 189–191

572 INDEX
linking
apps 188–189
controlling linkers 191–193

explicit use of public
events 191

explicit use of public
method 191

explicit use of public
properties 191

Preserve attribute
191–193

linker options 189–191
LoadCounters method

265–266, 554
LoadData method 147
loose coupling 275

M

Mac In Cloud 12
Mac platform, Visual Studio for

creating unit-test projects in
201–202

running tests in 208–209
setting SDK version using

182
macOS terminal 525
MainLauncher property 338
MakeAppIcon 336
MakeLongWebServiceCall

method 115
manifest, for Android 172–175

application names for
Android 173–174

package names 174
required permissions

174–175
version names 174
version numbers 174

Marked method 465
master views

creating UIs for 320–321,
386–393

swipe to delete 392–393
table view cells 388–392
table view controllers

386–387
table view data sources

387–388
table views 386

recycler views, setting up
330–332

master/detail pattern 245, 287
match_parent value 300

material design 289–291, 318
menu items 328
messaging 272–278, 287
metadata 540
methods

public, explicit use of 191
writing for async 143–147

ConfigureAwait 146–147
marking methods as async

144–145
returning tasks instead of

using async or await
145–146

Minimum Android version 182
mobile apps 4–14

building 21
creating 14–22
designing 15–17
developing 17–18
distributing 22
mobile-optimized develop-

ment lifecycle 13–14
monitoring 22
running on physical devices

creating iOS provisioning
profiles 424–435

in Android 412–414
in iOS 420–424
signing Android apps for

publishing 415–419
testing 18–21

manual testing 20–21
UI testing 19–20
unit testing 18–19

testing using Xamarin UITest
app interface 463–466
app queries 463–466
testing incrementing

counters 462–463
UI testing 436–448
writing tests 448–462

vendor-specific native apps
5–6

Xamarin developer tools
12–13

Xamarin native apps 7–10
Xamarin.Forms 10–11

mobile platforms 35–36
mock calculator 252
mocking 223
Model class 53
model layers 52–53

building 196–199, 211–238
accessing databases

214–220

accessing web services
228–238

adding service layers
221–228

data models 211–214
repositories 211–214
services 211–214

for Hello Cross-Platform
World app 82

in MVVM Light framework
549

models
data models 211–214
storing in databases 215–217
See also cross-platform mod-

els; cross-platform view
models

modes, for binding 70
monitoring mobile apps 22
Moq 224
motion 290
multithreading

async and await 139–148
async commands 147–148
keywords 139–143
writing async methods

143–147
background threads 124
making apps appear

responsive 148
multithreaded code, advan-

tages of 114–117
running code in background

using tasks 125–129
chaining tasks 128–129
Task 126–128

task results 130–133
from continuations 131
polling tasks 130
task exceptions 132–133
waiting on tasks 130–131

threads 117–121
defined 120–121
example of 117–120
overview of 121

UI threads 122–124
updating UIs 133–139

UI task scheduler 135–137
with MVVM 137–139

MVVM (model-view-view
model) design pattern

application layer 74
binding 69–74

modes 70
sources 69–70

573INDEX
MVVM (model-view-view
model) design pattern,
binding (continued)

targets 69–70
value converters 72–74

creating cross-platform apps
47–48

creating solutions 34–46
cross-platform code 31–34
UI design patterns 26–27

designing cross-platform
apps 156–159

application properties
172–177

architecting apps 164–171
creating solutions 171
designing UI 159–163
designing user flows

159–163
linking 187–193
SDK versions 177–187

model layer 52–53
navigation 75–78

choosing type of 78
view-first navigation 76
view-model-first navigation

76
overview of 27–31
updating UI with 137–139
view layers 68–69
view-model layers 53–67

state and behavior 54–65
testing 67
value conversion 65–67

MVVM Light framework
installing 549
model layers 549
view layers 552–560
view model layers 549–552

MvvmLightAndroidSupport
package 552

Mvx container 562
MvxAppCompatActivity 329
MvxAsyncCommand 561
MvxBind attribute 88, 311
MvxCommand 65, 561
MvxFluentBindingDescription-

Set class 91
MvxFromStoryboard attribute

378
MvxIoCResolveException 103
MvxMessage class 549
MvxRecyclerView 323
MvxViewModel class 82, 561
MyViewModel 562

N

name parameter 59
Name property 29, 216
named controls 382
native apps 24
Navigate method 280
navigation 75–78, 278, 283

bars 393–395
buttons 393–395
closing views, unit testing 284
retrieving parameters in

MVVM Light
for Android 553–554
for iOS 559

setting startup view models
280–281

to new views 281–282
type of, choosing 78
unit testing saving counters

284
view-first navigation 76
view-model-first navigation

76
navigation controllers 397
navigation services 279–280,

287
in MVVM Light

for Android 552–553
for iOS 557

.NET Standard specification
accessing device-specific

code with plugins
93–94

class libraries 32–34
New Solution dialog box 38
notifications

changed 56
collection-changed 60–62

NotifyCollectionChangedEvent
Args 60

NSIndexPath 391
NuGet 17
Number property 30, 59, 311
numberDecimal setting 308

O

object parameter 65
Object property 225
ObservableCollection

method 61, 555
OnBackPressed method 333
OnCreate method 315, 317,

335, 492, 554

OnCreateOptionsMenu
method 334

one time binding 70
one way binding 70
one way to source binding 70
OnMove method 331
OnOptionsItemSelected

method 333
OnSwiped method 335
Outlet 91

P

packages
downloading from App

Center 479
names

for Android 174
setting 415

PCLs (portable class
libraries) 32

permissions, for Android
174–175

pixels 301
plugins, .NET Standard

93–94
PluralSight 549
polling tasks 130
positioning EditText control

308–311
POST request 228
Predicate method 65
Prepare method 260, 554
Preserve attribute 191–193
pricing of apps

in Apple App Store 534
in Google Play Store 518

PrimaryKey attribute 216–217
privacy policy 533
product details, in Google Play

Store 516–518
production-ready apps 406
profiles 32
properties 56, 172–177

Android manifest 172–175
application names

173–174
package names 174
required permissions

174–175
version names 174
version numbers 174

exposing behaviors via prop-
erty changes 257–260

574 INDEX
properties (continued)
iOS info.plist 175–177

application names 176
build numbers 177
bundle identifiers 177
device orientations 177
devices 177
version numbers 177

public, explicit use of 191
single-value 260–262
value conversion inside

249–251
PropertyChanged event 58, 83,

253
PropertyChangedEventArgs 57
protocols 403
provisioning

apps for publishing on Apple
App Store 530

iOS users 523–525
provisioning profiles 432–433

creating for iOS 424–435
app IDs 429
certificates 425–428
devices 429–431

overview of 420–421
running apps using 433
troubleshooting 434–435

Publish method 274
publishing

Android apps
on alternative stores 522
on Google Play Store

514–522
iOS apps on Apple App Store

530–540
provisioning apps for

publishing 530
setting up apps 530–540

signing apps for 415–419
creating keystores

416–419
keystores 416
setting package names 415
signing builds 416–419

updates
in Apple App Store

539–540
in Google Play Store

521–522
PUT request 228

Q

queries, with Xamarin UITest
463–466

query flash 464
query parameters 236

R

RaisePropertyChanged method
58

rankingResponse object 232
ratings

in Apple App Store 539
in Google Play Store 521

READ_EXTERNAL_STOR-
AGE permission 493

recycler views 322–323, 562
creating UI for items

323–326
in MVVM Light 555–556
master, setting up 330–332

RecyclerView widget 322
Register attribute 402
Register method 551
registering users, of Android

apps 506–508
RegisterNavigationServiceApp-

Start 84
RegisterSingleton 104
relative layouts, view groups

296
RelayCommand 550, 561
release builds 442
releases of Android apps,

managing 511
REPL (read-evaluate-print

loop) 450–452
repositories 211, 213–214,

217–220
ReSharper 203
resource references 293
Resource>Id.toolbar_layout

302
resources

for Android UIs 292
locations 292–293

responsiveness 148
result labels 371
Result property 53, 249
reviews of apps

in Apple App Store 539
in Google Play Store 521

RunOnUIThread method 552

S

SaveCount method 19
SayHello method 97–98, 148
SayHelloCommand property

98
screen resolutions 351–353, 359
screenshots 462
ScrollDownTo method 464
ScrollUpTo method 464
SDKs (software development

kits) 177–187
adding in Visual Studio App

Center 491–493
setting up on Android

492–493
setting up on iOS 493

manager 179–184
versions for Android

179–184
running against particular

version 183–184
setting 180–182
setting using Visual Studio

for Mac 182
setting using Visual Studio

for Windows 182–183
versions for iOS 185–187

running against iOS SDK
186–187

setting minimum sup-
ported SDK 185

service classes 213
service layers

adding 221–228
unit testing 223–228

services 211–214, 221–223
See also navigation services;

web services, accessing
Set method 549, 561
SetBinding method 554–555
SetCommand method 555
SetOrientationLandscape 464
SetOrientationPortrait 464
SetProperty method 249, 561
SetUp method 205, 252
signing

apps for publishing 415–419
creating keystores 416–419
keystores 416
setting package names 415
signing builds 416–419

builds 416–419
certificates 420, 478

SimpleIoc class 551

575INDEX
single-value properties
260–262

size classes 372–376
configuring controls based

on 373–376
overview of 372–373

Sketch 337
software development kits. See

SDKs (software develop-
ment kits)

Speak method 180
splash screen 335
SQLite 214
SQLiteAsyncConnection class

219
Sqrt method 58–59, 65
SqrtCommand property 65, 70
square root symbol 304, 363
square root, calculating

229–230
SquareRootCalculator class 53,

74
SquareRootResponse class 233
SquareRootView 68
SquareRootViewModel 54, 74
SquareRt app

behaviors, adding 257–260
layers for, choosing 164
layout files for UI, creating

299–312
adding EditText control

307–311
adding images 304–306
adding result TextView

control 312
adding toolbars 299–303

running
on Android 317–318
on iOS 382–383

states, adding 248–260
choosing states 257
unit testing value

conversion 251–254
unit testing value

converters 256–257
value conversion inside

properties 249–251
value conversion using

value converters
254–256

storyboard for, creating
360–376

adding images 363–367
adding result labels 371
adding text fields 368–370

adding view controllers
361–363

layouts on different devices
371–372

size classes 372–376
threads for 168, 543
UI flows for 543
UI for, designing 159–160
view-model layers inside

242–244
behaviors 243–244
states 243

views for, building 313–318,
376–383

activities 313
activity lifecycle 314
creating activities for views

315–317
view controllers, binding

381–382
view controllers, creating

378–379
view controllers, overview

of 377
view controllers, wiring up

controls to 379–381
view lifecycle 377–378

SquareRtCalculator class 196
SquareRtViewModel class 248
Start() method 126
states 248–260

choosing 257
collections 262–267
messaging 272–278
navigation

closing views and navigat-
ing back 283

navigating to new views
281–282

navigation service 279–280
setting startup view models

280–281
unit testing closing views

284
unit testing navigation to

new views 282
unit testing saving

counters 284
of view-model layers 54–65,

243, 246
collections and collection-

changed notifications
60–62

commands 62–65
properties and changed

notifications 56

single-value properties
260–262

value conversion
inside properties 249–251
unit testing 251–254
using value converters

254–256
storyboards 348–350, 359–376

images 363–367
layouts on different devices

371–372
result labels 371
size classes 372–376
text fields 368–370
view controllers 361–363

StrictMode 167
styles 339–341
subfolders 292
SubscribeOnMainThread

method 275, 277
SwipeItemTouchHelper-

Callback class 330
swiping, to delete 392–393
Switch method 465
synchronization context 135
system languages 483
System.Threading.Tasks

namespace 126

T

table views
cells 388–392
controllers 386–387
data sources 387–388
in MVVM Light 559–560
swipe to delete 392–393

Target Android version 182
Target framework version,

Android 181
target parameter 74
targets, for binding 69–70
Task 126–128
task continuation 129
task scheduler, for UI 135–137
Task.Delay method 131
Task.Run method 127
tasks

chaining 128–129
exceptions 132–133
polling 130
results 130–133
returning instead of using

async or await 145–146

576 INDEX
tasks (continued)
run code in background with

125–129
waiting on 130–131

TaskScheduler class 136
TearDown attribute 206
Test attribute 206
Test Cloud

overview of 479
testing apps using 479–491

creating test run
configurations 481–483

preparing apps to be
tested 479–480

running tests from com-
mand line 484–487

viewing test results on App
Center 487–491

test fixtures 205
test framework 483
test series 483
testing

apps using Test Cloud
479–491

creating test run
configurations 481–483

preparing apps to be
tested 479–480

running tests from com-
mand line 484–487

viewing test results on App
Center 487–491

calls 237–238
compiling UI tests 480
creating test run

configurations 481–483
incrementing counters

462–463
manual testing 20–21
mobile apps 18–21, 465–466
running test from command

line 484–487
UIs 19–20, 436–448

running auto-generated
tests 443–448

setting up apps for
439–443

writing UI tests using Xam-
arin UITest 437–438

viewing results on App
Center 487–491

view-model layers 67
writing tests 448–462

assertions 457–460
entering text 455–456

finding controls based on
text 456

identifying controls
452–453

proving tests by breaking
things 460–462

REPL (read-evaluate-print
loop) 450–452

tapping Add button
454–455

visual trees 449–450
See also unit testing

Tests.cs file 441
text

adding fields for 368–370
entering 455–456
finding controls based on

456
Text property 28
TextField method 465
TextToSpeech class 180
TextView control, adding 312
TextView node 87
Theme.Splash style 340
thread pool synchronization

context 136
threading 275
threads 117–121

choosing 167–169
defined 120–121
example of 117–120
for Countr app 544–547

adding counters 545
choosing 168–169
deleting counters 546
incrementing counters

547
loading counters 544

for SquareRt app 168, 543
mapping code to 169–171
overview of 121

toolbars
adding 299–303
elements in layouts 301–303
sizes of 300–301

ToString method 74
two way binding 70

U

UDID (unique device ID) 420,
523

UI (user interface)
defining 162–163

designing 159–163
design patterns 26–27
for Countr app 161–162
for SquareRt app 159–160

for Android 289–298
editing layout files

293–298
layout files 291–292
layout inflation 298
material design 289–291
resources 292
resources locations

292–293
for Countr app 320–328,

385–399
creating for detail view

327–328, 395–397
creating for master view

320–321, 386–393
creating for recycler view

items 323–326
floating action buttons

326
flows for 544–547
menu items 328
navigation bars and

buttons 393–395
recycler views 322–323
running apps 398–399

for iOS 346–360
asset catalogs 357–359
auto layout with

constraints 353–357
controls 350–351
image resources 357–359
iOS human interface

guidelines 346–348
screen resolutions

351–353
storyboards 348–350

for SquareRt App
creating layout files for

299–312
flows for 543

testing 19–20, 436–448
compiling tests 480
running auto-generated

tests 443–448
setting up apps for

439–443
writing tests using Xamarin

UITest 437–438
updating 133–139

UI task scheduler 135–137
with MVVM 137–139

577INDEX
UI (user interface) (continued)
wiring

for Android 105–106
for iOS 106–112

UI layer 27, 30
UI logic layer 31
UIBarButtonItem 394
UIKit.UIButton 351
UIKit.UIImageView 351
UIKit.UILabel 351
UIKit.UITextField 351
UILabel property 91
UINavigationBar class 405
UINavigationController 557
UITableViewCell class 389
UITextField property 91
UIViewController class 8, 361,

382
unit testing 18–19, 199–211

closing views 284
creating projects 201–204

in Visual Studio for Mac
201–202

in Visual Studio for
Windows 202–204

creating tests 205–210
going green 210
new views 282
results of 210–211
running tests

in Visual Studio for Mac
208–209

in Visual Studio for
Windows 209–210

saving counters 284
service layers 223–228
value conversion 251–254,

256–257
updating

app icons 337
launch screens 404–405
publishing updates

in Apple App Store
539–540

in Google Play Store
521–522

UIs 133–139
UI task scheduler

135–137
with MVVM 137–139

uploading
APKs 515–516
IPA files 532–533

USB debugging 413

user flows
defining 162–163
designing 159–163

for Countr app 161–162
for SquareRt app 159–160

user interface. See UI (user
interface)

V

value conversion 54
in view-model layer 65–67
inside properties 249–251
unit testing 251–254
value converters for 254–256

value converters
for binding 72–74
for value conversion 254–256
unit testing 256–257

versioned packages 42
versions

names, for Android 174
numbers

for Android 174
for iOS info.plist 177

view controllers
adding 361–363
binding 381–382
building for Countr app

385–399
creating UI for detail view

395–397
creating UI for master

view 386–393
navigation bars and

buttons 393–395
running apps 398–399

creating 378–379
overview of 377
wiring up controls to

379–381
view groups 295–296

AppCompat with 297–298
frame layouts 296
linear layouts 295
relative layouts 296

view layers 68–69
for Hello Cross-Platform

World app 84–92
for Android 84–88
for iOS 88–92

in MVVM Light 552–560
for Android 552–556
for iOS 557–560
view model layers 549–552

view models
retrieving in MVVM Light

for Android 553–554
for iOS 559

startup, setting 280–281
ViewDidLoad method 90, 110,

134, 377, 383, 396, 398
view-first navigation 76
ViewHolder class 331
view-model layers 53–67,

241–248
for Hello Cross-Platform

World app 82–83
inside Countr app 244–248

behaviors 247–248
states 246

inside SquareRt app 242–244
behaviors 243–244
states 243

state and behavior 54–65
collections and collection-

changed notifications
60–62

commands 62–65
properties and changed

notifications 56
testing 67
value conversion 65–67

ViewModel property 139
ViewModelBase 561
view-model-first navigation 76
views

AppCompat with 297–298
closing

and navigating back to
283

unit testing 284
creating activities for

315–317
detail views 332

adding Back button
332–333

adding Done menu item
334

creating UI for 327–328
for Android

app icons 336–337
building Countr app

activities 328–336
building UI for Countr

App 320–328
creating layout files for

SquareRt app UI
299–312

launch screens 338–344

578 INDEX
views (continued)
for iOS

app icons 399–406
building UI for Countr

app 385–399
building view controllers

for Countr app
385–399

creating SquareRt
storyboard 360–376

launch screens 399–406
production-ready apps

406
for SquareRt app

binding view controllers
381–382

creating view controllers
378–379

for Android 313–318
for iOS 376–383
running apps 382–383
view controllers, overview

of 377
view lifecycle 377–378
wiring up controls to view

controllers 379–381
lifecycle of 377–378
master view

creating UI for 320–321
recycler view, setting up

330–332
navigating to 281–282
new, unit testing 282
recycler views 322–323

ViewStates 72
virtual pixels 301
Visual Studio

for Mac
creating certificates

425–427
creating solutions with

36–39
creating unit-test projects

in 201–202
running tests in 208–209
setting apps to test in 445
setting SDK version 182

for Windows
creating solutions with

39–41
creating unit-test projects

in 202–204
running tests in 209–210
setting apps to test in

445–447
setting SDK version

182–183
Visual Studio App Center

468–471
analytics in 491–504

adding event tracking
497–500

adding SDKs 491–493
audience data 493–496

API 470–471
apps 469–470
CLI 471
crash reporting 500–504
downloading packages from

479
getting help with 471
organizations 470
setting up builds 471–478

configuring Android
builds 473–475

configuring iOS builds
476–478

testing apps using Test Cloud
479–491

creating test run
configurations 481–483

overview of Test Cloud
479

preparing apps to be
tested 479–480

running tests from com-
mand line 484–487

viewing test results on App
Center 487–491

users 470
viewing test results on

487–491
visual trees 449–450
void method 144

W

Wait method 132
WaitForElement method 464
WaitForNoElement method

465
web services, accessing 228–238

calculating square root with
Bing search API
229–230

JSON 231–234
making web service calls

234–237
testing calls 237–238

WebService class 19
wildcard App IDs 429
windowBackground element

340
windowNoTitle element 340
wrap_content value 300
wrappers 7
WWDC (Worldwide Develop-

ers Conference) 177

X

Xamarin
developer tools 12–13
native apps 7–10

Xamarin UITest
testing mobile apps using

app interface 463–466
app queries 463–466
testing incrementing

counters 462–463
UI testing 436–448
writing tests 448–462

writing UI tests using
437–438

Xamarin.Forms 10–11
Xcode

creating certificates using
425

creating dummy apps in
421–423

Ximian 3
XML drawables 341–343

From idea to store
The mobile optimized developer lifecycle of a Xamarin app: Here’s a summary
of all the steps you’ll need to follow.

Develop

Test

Build

Distribute

Monitor

Visual Studio

Source code
control

Design

• Use Visual Studio on either Mac or Windows to develop your app
• For iOS, you need a Mac to build, for debugging, and to host the simulator
• Visual Studio on Windows can use a remote Mac for building iOS apps.
 You can debug on a remote simulator screen shared over the network,
 so the Mac doesn’t need to be physically accessible—it can be in the cloud.

• Code your app in a way that allows testing
• Unit test as much as possible
• Create UI tests to automatically test the user interface
• Use Test Cloud to run your tests or debug on devices you don’t have

• Use continuous integration (CI) to ensure that your code builds and that tests pass
• Run your unit tests and UI tests on a regular basis to get a fast feedback loop
• Consider continuous deployment—deploying builds that pass all tests to users
 regularly, via tools like App Center

• Deploy early versions of your app to alpha and beta testers to get as much real-world
 testing as possible
• Allow users to provide feedback and raise bugs
• Respond to this feedback and fix bugs quickly, then redeploy to the alpha and
 beta testers

• Monitor for crashes so you can quickly fix the bugs that cause them
• Monitor the details of your users so you can ensure you’re targeting the
 right audience
• Track the usage patterns of your app so you know what areas to focus on

• Use source code control
• Commit your code often
• Git is well integrated with Visual Studio

• On Android, follow Google’s material design guidelines
• On iOS, follow Apple’s human interface guidelines
• Think about usability and accessibility

UITest,
Test Cloud

Visual Studio
App Center

Visual Studio
App Center

Visual Studio
App Center

Jim Bennett

R
ewriting the same app for iOS and Android is tedious,
error-prone, and expensive. Microsoft’s Xamarin dras-
tically reduces dev time by reusing most application

code—typically 70% or more. The core of your iOS and
Android app is shared; you write platform-specifi c code only
for the UI layer. And because Xamarin uses C#, your apps
benefi t from everything this modern language and the .NET
ecosystem have to offer.

Xamarin in Action teaches you to build cross-platform mobile
apps using Xamarin and C#. You’ll explore all the layers of a
Xamarin app, from design to deployment. Xamarin expert
Jim Bennett teaches you design practices that maximize code
reuse and isolate device-specifi c code, making it a snap to
incorporate the unique features of each OS.

What’s Inside
● Understanding MVVM to maximize code reuse
 and testability
● Creating cross-platform model and UI logic layers
● Building device-specifi c UIs
● Unit and automated UI testing
● Preparing apps for publication with user tracking
 and crash analytics

Readers should have some experience with C#. Mobile devel-
opment experience is helpful, but not assumed.

Jim Bennett is a Senior Cloud Developer Advocate at Micro-
soft, specializing in Xamarin mobile apps.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/xamarin-in-action

$54.99 / Can $72.99 [INCLUDING eBOOK]

Xamarin IN ACTION

.NET/MOBILE

M A N N I N G

“A guide to best practices for
building production-quality

mobile applications.”
—From the Foreword by

James Montemagno, Microsoft

“True to its name,
this book helps you get

 going and doing!”—Prabhuti Prakash, Atos

“A well-rounded, up-to-date
companion for your journey

into native cross-platform
 development.”

—Mario Solomou, Appointai.com

“Your search for the best
 Xamarin book ends here!”

—Lokeshwar Reddy Vangala
Micro Focus

See first page

	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	About the code
	Software and hardware requirements
	Online resources
	Book forum
	About the author

	about the cover illustration
	Part 1 Getting started with Xamarin
	1 Introducing native cross-platform applications with Xamarin
	1.1 Introducing Xamarin mobile apps
	1.1.1 Vendor-specific native apps
	1.1.2 Cordova
	1.1.3 Xamarin native apps
	1.1.4 Xamarin.Forms
	1.1.5 Xamarin developer tools
	1.1.6 Mobile-optimized development lifecycle

	1.2 Creating production-quality mobile apps
	1.2.1 Design
	1.2.2 Develop
	1.2.3 Test
	1.2.4 Build
	1.2.5 Distribute
	1.2.6 Monitor

	1.3 Rinse and repeat…
	Summary

	2 Hello MVVM—creating a simple cross-platform app using MVVM
	2.1 What are UI design patterns?
	2.2 MVVM—the design pattern for Xamarin apps
	2.3 What is cross-platform code?
	2.3.1 .NET Standard class libraries

	2.4 Getting started—creating your first solution
	2.4.1 Requirements—what hardware or software do you need for each mobile platform?
	2.4.2 Creating the solution
	2.4.3 What have we just created?
	2.4.4 Building and running the apps

	2.5 Is this really a cross-platform app?
	Summary

	3 MVVM— the model-view–view model design pattern
	3.1 The model layer
	3.2 The view-model layer
	3.2.1 State and behavior
	3.2.2 Value conversion
	3.2.3 Testability

	3.3 The view layer
	3.4 Binding
	3.4.1 Source and target
	3.4.2 Binding mode
	3.4.3 Binding is not cross-platform
	3.4.4 Value converters

	3.5 The application layer
	3.6 Navigation
	3.6.1 View-first
	3.6.2 View-model–first
	3.6.3 Which one to use?

	3.7 Revisiting the square-root calculator app
	Summary

	4 Hello again, MVVM— understanding and enhancing our simple MVVM app
	4.1 A deeper dive into our Hello Cross-Platform World app
	4.1.1 The model
	4.1.2 The view model
	4.1.3 The application layer
	4.1.4 The view

	4.2 Expanding on our Hello World app
	4.2.1 Using .NET Standard plugins to access device-specific code
	4.2.2 Installing the Xamarin text-to-speech plugin
	4.2.3 Adding the cross-platform code
	4.2.4 Inversion of control
	4.2.5 Wiring up the Android UI
	4.2.6 Wiring up the iOS UI

	Summary

	5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps
	5.1 Why do we need multithreaded code?
	5.2 What are threads?
	5.2.1 Buying coffee
	5.2.2 So what is a thread?
	5.2.3 A quick roundup

	5.3 UI thread and background threads
	5.3.1 The UI thread
	5.3.2 Background threads

	5.4 Using tasks to run code in the background
	5.4.1 Task and Task<T>
	5.4.2 Chaining tasks

	5.5 Task results
	5.5.1 Polling to see if the task has finished
	5.5.2 Waiting on the task
	5.5.3 Getting the result from a continuation
	5.5.4 Task exceptions

	5.6 Updating the UI
	5.6.1 The UI task scheduler
	5.6.2 Using the power of MVVM

	5.7 Async and await
	5.7.1 The async and await keywords
	5.7.2 Writing your own async methods
	5.7.3 Async commands

	5.8 Make your app feel responsive
	5.9 It’s time to start building things
	Summary

	Part 2 Building apps
	6 Designing MVVM cross-platform apps
	6.1 Introduction to designing a cross-platform app
	6.2 Designing the UI and user flows
	6.2.1 SquareRt—a simple app for calculating square roots
	6.2.2 Countr—an app for counting multiple things
	6.2.3 Defining user flows and UIs

	6.3 Architecting the app
	6.3.1 Which layer?
	6.3.2 Which thread?
	6.3.3 Mapping code to layers and threads

	6.4 Creating the solutions
	6.5 Application properties
	6.5.1 Android manifest
	6.5.2 iOS info.plist

	6.6 SDK versions
	6.6.1 Android SDK versions and the SDK manager
	6.6.2 iOS SDK versions

	6.7 Linking
	6.7.1 Linking the apps
	6.7.2 Linker options
	6.7.3 Stopping the linker from doing too much

	Summary

	7 Building cross-platform models
	7.1 Building simple model layers
	7.2 Unit testing
	7.2.1 Creating a unit-test project
	7.2.2 Creating your first test
	7.2.3 What do these tests tell you?

	7.3 Building more complex model layers
	7.3.1 Services, data models, and repositories
	7.3.2 Accessing databases
	7.3.3 Adding a service layer
	7.3.4 Accessing web services

	7.4 A quick recap
	Summary

	8 Building cross-platform view models
	8.1 The view-model layer
	8.1.1 The view-model layer inside SquareRt
	8.1.2 The view-model layer inside Countr

	8.2 Adding state and behavior to SquareRt
	8.2.1 State inside SquareRt
	8.2.2 Exposing behavior via property changes

	8.3 Adding state and behavior to Countr
	8.3.1 Single-value properties
	8.3.2 Collections
	8.3.3 Exposing behavior using commands
	8.3.4 Messaging
	8.3.5 Navigation

	8.4 A quick roundup
	Summary

	9 Building simple Android views
	9.1 Building Android UIs
	9.1.1 Material design
	9.1.2 Layout files
	9.1.3 Resources
	9.1.4 Resource locations
	9.1.5 Editing layout files
	9.1.6 Layout inflation

	9.2 Creating the layout file for the SquareRt UI
	9.2.1 Adding a toolbar
	9.2.2 Adding an image
	9.2.3 Adding an EditText control
	9.2.4 Adding a result TextView control

	9.3 Building the SquareRt view
	9.3.1 What is an activity?
	9.3.2 The activity lifecycle
	9.3.3 Creating an activity for the view
	9.3.4 Running the app

	Summary

	10 Building more advanced Android views
	10.1 Building the UI for Countr
	10.1.1 Creating the UI for the master view
	10.1.2 Recycler views
	10.1.3 Creating the UI for the recycler view items
	10.1.4 Floating action buttons
	10.1.5 Creating the UI for the detail view
	10.1.6 Menu items

	10.2 Building the Countr activities
	10.2.1 Setting up master recycler views
	10.2.2 The detail view
	10.2.3 Running the app

	10.3 App icons and launch screens
	10.3.1 App icons
	10.3.2 Launch screens

	Summary

	11 Building simple iOS views
	11.1 Building iOS UIs
	11.1.1 iOS human interface guidelines
	11.1.2 Storyboards
	11.1.3 Controls
	11.1.4 Different screen resolutions
	11.1.5 Auto layout with constraints
	11.1.6 Image resources and asset catalogs
	11.1.7 A quick recap

	11.2 Creating the SquareRt storyboard
	11.2.1 Adding our first view controller
	11.2.2 Adding an image
	11.2.3 Adding a text field
	11.2.4 Adding the result label
	11.2.5 Seeing the layout on different devices
	11.2.6 Size classes
	11.2.7 A quick recap

	11.3 Building the SquareRt view
	11.3.1 What is a view controller?
	11.3.2 View lifecycle
	11.3.3 Creating the view controller
	11.3.4 Wiring up controls to the view controller
	11.3.5 Binding the view controller
	11.3.6 Another quick recap
	11.3.7 Running the app

	Summary

	12 Building more advanced iOS views
	12.1 Building the UI and view controllers for Countr
	12.1.1 Creating the UI for the master view
	12.1.2 Navigation bars and buttons
	12.1.3 Creating the UI for the detail view
	12.1.4 A quick recap
	12.1.5 Running the app

	12.2 App icons and launch screens
	12.2.1 App icons
	12.2.2 Launch screens

	12.3 Making the apps production-ready
	Summary

	Part 3 From working code to the store
	13 Running mobile apps on physical devices
	13.1 Running Android apps on a real device
	13.2 Signing Android apps for publishing
	13.2.1 Setting the package name
	13.2.2 Keystores
	13.2.3 Creating keystores and signing builds

	13.3 Running iOS apps on a real device
	13.3.1 What is a provisioning profile?
	13.3.2 Bundle identifiers
	13.3.3 Creating a dummy app in Xcode
	13.3.4 Running your app on a physical device

	13.4 Creating iOS provisioning profiles
	13.4.1 Certificates
	13.4.2 App IDs
	13.4.3 Devices
	13.4.4 Provisioning profiles
	13.4.5 Running your app using the new provisioning profile
	13.4.6 Troubleshooting

	Summary

	14 Testing mobile apps using Xamarin UITest
	14.1 Introduction to UI testing
	14.1.1 Writing UI tests using Xamarin UITest
	14.1.2 Setting up your app for UI testing
	14.1.3 Running the auto-generated tests

	14.2 Writing tests
	14.2.1 The visual tree
	14.2.2 The REPL
	14.2.3 Identifying controls
	14.2.4 Tapping the Add button
	14.2.5 Entering text
	14.2.6 Finding controls based on their text
	14.2.7 Assertions
	14.2.8 Proving your test by breaking things

	14.3 Testing incrementing a counter
	14.4 The app interface and app queries
	14.4.1 The IApp interface
	14.4.2 Queries

	Summary

	15 Using App Center to build, test, and monitor apps
	15.1 Introducing Visual Studio App Center
	15.1.1 Apps
	15.1.2 Users and organizations
	15.1.3 API
	15.1.4 CLI
	15.1.5 Getting help

	15.2 Setting up builds
	15.2.1 Creating your first App Center app
	15.2.2 Configuring the Android build
	15.2.3 Configuring the iOS build

	15.3 Testing your apps using Test Cloud
	15.3.1 What is Test Cloud?
	15.3.2 Preparing your apps to be tested
	15.3.3 Creating a test run configuration
	15.3.4 Running tests from the command line
	15.3.5 Viewing the test results on App Center

	15.4 Analytics and crash reporting
	15.4.1 Adding the App Center SDKs
	15.4.2 Understanding your audience
	15.4.3 Adding event tracking
	15.4.4 Crash reporting

	Summary

	16 Deploying apps to beta testers and the stores
	16.1 Distributing Android apps to beta testers
	16.1.1 Enabling app distribution
	16.1.2 Auto updates

	16.2 Publishing Android apps on the Google Play store
	16.2.1 Setting up your account
	16.2.2 Creating your app
	16.2.3 Alternative stores

	16.3 Distributing iOS apps to beta testers
	16.3.1 Enabling app distribution
	16.3.2 Auto updates

	16.4 Publishing iOS apps on the Apple App store
	16.4.1 Provisioning your app for publishing
	16.4.2 Setting up your app

	Summary
	Where to next?

	Appendix A UI flows and threads for SquareRt and Countr
	A.1 SquareRt
	A.2 Countr
	A.2.1 Loading counters
	A.2.2 Adding a counter
	A.2.3 Deleting a counter
	A.2.4 Incrementing a counter

	Appendix B Using MVVM Light instead of MvvmCross
	B.1 MVVM Light
	B.2 Installing MVVM Light
	B.3 The model layer
	B.4 The view model layer
	B.5 The view layer
	B.5.1 The Android view and application layer
	B.5.2 The iOS view and application layer

	Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

