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Introduction

Performance is one of the most important qualities of software programs. You can’t
have world-beating software without world-beating performance. For a long time,
hardware improvements meant that worrying about software performance seemed a
waste of time, but with Moore’s Law no longer automatically providing significant
automatic performance improvements, performance optimization is coming back to
the forefront of both computer science and engineering.

In addition, performance for end users seems to have gotten only marginally
better, whereas the performance of the underlying hardware has improved by many
orders of magnitude. Bill Gates quipped that “the speed of software halves every 18
months,” whereas Wirth’s law in A Plea for Lean Software states, “Software is getting
slower more rapidly than hardware becomes faster.”1

We are so used to this sorry state of affairs that industry veterans were surprised at
the original iPad’s fluid UI, despite having a CPU with “only” 1 GHz. That’s more
than 1,000 times faster than my Apple ][, and 40 times faster than my NeXT cube
that had a larger screen to deal with. If anything, the surprise should have been that it
wasn’t faster, especially when considering that it also had a GPU to handle the screen.

This book will try to give insights into the underlying reasons for these
developments in the context of Objective-C, Cocoa, and CocoaTouch, and attempt
to provide techniques for taking full advantage of the raw power of our amazing
computing machines—power that we tend to squander with reckless abandon. It will
also try to show when it is actually OK to squander that power, and when it is
necessary to pay careful attention. Programmer attention is also a scarce resource, too
often squandered attempting to optimize parts of the program that do not matter.

General themes will include latency versus bandwidth, and transactions costs
(overhead) versus actual work done, themes that are universal and manifest themselves
in different forms at every level of the hardware and software stack.

What you will notice is that due to the speed of our machines, any single
operation is, in fact, always more than fast enough, so the crucial equation is
items ∗ cost. Most optimization is about reducing one or both of the parts of that
formula, usually by breaking it up first.

1. Niklaus Wirth, A Plea for Lean Software (Los Alamitos, CA: IEEE Computer Society Press, 1995), pp. 64–
68. http://dx.doi.org/10.1109/2.348001

http://dx.doi.org/10.1109/2.348001
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One frequent method for reducing cost is to realize that cost is actually composed
of two separate costs, cost1 and cost2, and only one of these needs to be applied to all
items: items× (cost1 + cost2) → cost1 + items× cost2. I would probably call this
the fundamental optimization equation; a large part of the optimization techniques
fall into this category, and it is also fundamental to the organization of most of the
hardware/software stack we deal with every day.

This book has a very regular structure, with four basic areas of performance
discussed in turn:

1. CPU performance
2. Memory
3. I/O
4. Graphics and responsiveness

Although an effort has been made to keep the treatment of each subject area
independent, there is a logical progression, so at least a passing familiarity with earlier
topics helps with later topics.

Within each of these four broad topics, there are again four specific areas of
interest:

1. Principles
2. Measurement and tools
3. Pitfalls and techniques
4. Larger real-world examples of applying the techniques

Again, there is a logical structure: You need to have some idea about the principles
and know how to measure before you can meaningfully think about actual
performance optimization techniques, but again, you should also be able to dip into
specific areas of interest if you have a passing familiarity with earlier topics.

This structure yields a total of 4× 4 = 16 chapters, with a special chapter on Swift
tucked between memory and I/O for a total of 17. Swift is also used throughout the
book where appropriate, but it deserves a chapter of its own due to its unique
performance characteristics.

For me, software performance is a passion and a calling that has been a common
thread throughout my career. I have learned that performance is something you can’t
automate, nor can you leave it until the last minute. On the other hand, there are
many times when you shouldn’t worry about performance in order to have the
capacity to concentrate on performance where it is really needed. If that weren’t
paradoxical enough, having excellent base performance levels is often what makes it
possible to get to that state of not having to worry about performance most of the
time.

In short, this book is about making software that performs beautifully.



1
CPU: Principles

The interaction between CPU performance and Objective-C has a history going
back to the beginnings of Objective-C in the early 1980s and the first public release
of Smalltalk. Smalltalk is a dynamic object-oriented language and environment
implemented on top of a byte-coded virtual machine with garbage collection and
complemented by the first integrated bit-mapped graphical user interface (GUI). It
was this environment that Steve Jobs saw during his famous visit to Xerox PARC and
decided to popularize with the Lisa and Macintosh computers.

Although it provided amazing capabilities for the time, the Smalltalk environment
proved too much for even the emerging workstation-class microprocessors such as the
Motorola MC 68000, which was to be at the heart of both the Mac and Lisa, to
handle with acceptable performance.

Three approaches emerged to tackle this performance problem—two at the
extremes and one a compromise somewhere in the middle.

1. The first approach is represented by the Macintosh Toolbox and original
MacOS. The Macintosh completely dropped the expressiveness of Smalltalk’s
dynamic object-oriented approach and instead retained just the GUI, which
was reimplemented in MC 68000 assembly language. This made it possible to
popularize the GUI, but left the software engineering and environmental
advantages of Smalltalk behind.
In fact, Steve Jobs said that he was so enthralled with the GUI that he missed
the more important pieces of the PARC magic: object-oriented programming
and networking.

2. On the other end of the spectrum, the Smalltalk community decided to
innovate in implementation technologies to close the performance gap. This led
to important innovations such as just-in-time compilation and scavenging
garbage collection that dramatically increased performance.
Moore’s Law turned out to be an even bigger contributor, though. Even a naïve
Smalltalk-80-style bytecode interpreter on today’s hardware is roughly 100
times faster than assembly language on MC 68000 class machines even for basic
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integer operations directly supported by the CPU hardware, and such integer
computation represents pretty much a worst-case for Smalltalk.

3. The middle-ground approach is the one taken by Objective-C, a hybrid
language that integrates a Smalltalk-like dynamic object-runtime on top of the
C programming language. Objective-C emerged around the same time as the
original Macintosh on machines with comparable computational power.
Instead of discarding object techniques completely like the original Mac, or
relying purely on technological advances to make them tenable, Objective-C
makes both sets of techniques easily available at all times and leaves it to
developers to apply those technological options appropriately.

With the right set of decisions, this third approach—Objective-C—makes it
possible to achieve both best-of-breed performance and high levels of expressiveness
and productivity. However, with great power comes great responsibility: Used less
wisely, it is also quite possible to achieve expressiveness worse than C combined with
speed slower than Smalltalk. This book will give you the techniques to avoid the
latter and achieve the former.

A Simple Example
But enough theory, let’s see some actual code! The task will be simple and purely
CPU-bound: summing the integers from 1 to 1,000. We will implement two
Objective-C examples demonstrating the range of styles and corresponding
performance characteristics available with Objective-C and Cocoa. In addition, we
will look at the same example implemented in some other programming languages,
which we’ll use as reference points for the different Objective-C styles.

Note that this is not a useful method for computing the first n integers. In that
case, we would use the closed formula discovered by Gauss: n(n+1)

2 .
The first thing you might notice when you look at the Objective-C program

shown in Example 1.1 is that it looks like pure C. That’s OK; Objective-C is a pure
superset of C and therefore any C program is also an Objective-C program. Type in
the code shown in Example 1.1 and save the file as sumintc_ex1.m.

Example 1.1 Sum integers in Objective-C using primitive types

#include <stdio.h>

int main( int argc , char *argv[] )
{

int i,sum;
sum=0;
for (i=1;i<=1000 ;i++ ) {

sum+=i;
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}
return 0;

}

When you compile the code in Example 1.1 using cc -Os1 -Wall -o
sumintc_ex1 sumintc_ex1.m and then run it with time ./sumintc_ex1,
you will notice that the runtimes are really fast, on the order of a couple of
milliseconds. This is also to be expected, modern CPUs are extremely fast at simple
integer arithmetic, and the C program as written translates pretty directly to CPU
instructions.

The Perils of (Micro-)Benchmarking
However, let’s run a sanity check to see if we’re actually measuring something real.
When you compile and run Example 1.2, the program displays approximately the
same time as Example 1.1.

Example 1.2 Sanity check; an empty test program

int main( int argc , char *argv[] )
{

return 0;
}

What’s going on here? There are actually several problems.

1. A modern optimizer notices that the result of the computation isn’t used and
that there are no side effects of the computation itself, and therefore discards the
computation.

2. Even if it weren’t able to discard the result, the optimizer can and will actually
compute the result for this computation statically, so instead of generating code
for the loop it just generates code for the result.

3. The number of iterations is small enough, and CPUs fast enough, that total
running time is actually dominated by process start-up time; the actual running
time of the loop doesn’t matter.

In order to get measurable results, we need to make a couple of changes: First, we
need to make the task larger so that we are actually measuring it and not process
start-up overhead. We can do this by including an outer loop that simply runs the
actual loop we want to run a (large) number of times. Second, we use the result, for
example, by printing it to stdout. Note that both of these requirements combine in
a way that seems nonsensical at first: We reset the sum variable to 0 every time

1. These are the letters capital O and lowercase s.
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through the inner loop, but then output the value outside the outer loop. This is
because we want to print the output just once, but also don’t want to change the
nature of the task (such as summing to a larger target value). Third, we make the
parameters unavailable at compile time, in this case by passing them in on the
command line, and so we get the slightly more verbose program shown in
Example 1.3.

Example 1.3 Sum integers avoiding benchmark removal by the optimizer

#include <stdio.h>
#include <stdlib.h>

int main( int argc , char *argv[] )
{

int i,k,sum;
int limit=argc > 1 ? atoi(argv[1]) : 1000;
int step=argc > 2 ? atoi(argv[2]) : 1;
for (k=0;k<1000000; k++ ) {

sum=0;
for (i=1;i<= limit;i+=step ) {

sum+=i;
}

}
printf("%d\n",sum);
return 0;

}

On my current machine, a Mid 2015 MacBook Pro 15-Inch with a 2.8-GHz Intel
Core i7 processor, this yields a much more reasonable execution time of 0.238 s. As
we had scaled the result by doing 1 million iterations of the basic task, we know it
took 0.238 μs to execute. The one-time overhead that was completely drowning out
the task before is now less than approximately 3% of the total execution time and no
longer significant. Increasing the loop counts by a factor of 10 as a cross-check results
in execution times that are 10 times longer, so we can now be reasonably confident
we are measuring the right thing. Not that this is not a one-time thing; for example,
a future optimizer might figure out that the inner loop always computes the same
result, and therefore it may only do one iteration of the outer loop.

Another option would have been to compile without optimization using the -O02

flag, but that would have been unrepresentative as most production code will have
optimizations on and turning them off makes this code around 6 times slower.

2. Capital O and number zero.



A Simple Example 5

More Integer Summing
To check the other end of the Objective-C performance envelope, we maintain the
sum as a Foundation object, “NSNumber,” as shown in Example 1.4. The loop and
loop counter are still plain C, because Objective-C does not have pure object-
oriented looping constructs. We also decrease the outermost loop counter by a factor
of 100 for reasons that will soon become apparent.

Example 1.4 Sum integers using objects to represent numbers

#import <Foundation/Foundation.h>

int main( int argc , char *argv[] )
{

int i,k;
NSNumber* sum = nil;
for (k=0; k<10000; k++ ) {

sum=@(0);
for (i=1;i<=1000 ;i++ ) {

sum=@([sum intValue]+i);
}

}
NSLog(@"%@",sum);
return 0;

}

How fast this program runs crucially depends on the runtime selected using
compiler flags. First, we need to add -framework Foundation in order to
compile and link against the Foundation framework that provides the definition of
the NSNumber class and the NSLog() function: cc -Wall -Os -m32 -o
example1.4 example1.4.m -framework Foundation. Selecting the 32-bit
runtime using -m32 creates a program that runs in 2.38 s on my machine. Had we
kept the iterations the same it would have taken 238 s, almost 4 minutes, so 1,000
times slower than the previous test program.

The primary reason Objective-C with NSNumber types is so much slower than
with primitive types is object allocation—more specifically, heap allocation. When
using the 64-bit runtime that is the default now, the runtime for the sample program
drops to 0.114 s or 11.4 s normalized to a million iterations. This improvement is due
to the use of tagged pointers that can represent some objects directly in the object
pointer and therefore avoid heap allocation. In both cases, the compiler’s optimizer is
almost completely out of the picture; runs with and without optimization differ not
by a factor of 6 as for the example with primitives, but rather only by at most a few
percent less than the run-to-run variation. We will talk more about primitives,
objects, and tagged pointers in Chapter 3.
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Swift
Swift was developed as an alternative to and replacement for Objective-C. It is similar
to Objective-C in that it is a hybrid language, with the object-oriented parts similar
to and built on the same runtime as Objective-C. However, the hybrid nature is
much less pronounced because it is a unified design rather than one language grafted
onto another.

This is apparent in Example 1.5, which shows direct transliterations of both the
primitive integer and the object-based version. The two versions are much closer to
each other, with direct initialization of objects from primitive types possible and
type-inference taking care of most of the differences.

Example 1.5 Summation in Swift

Swift/primitives:
var a=0
for j in 0..<10_000_000 {

a=0
for i:Int in 0...1000 {

a=a + i
}

}
print("a=\(a)")

Swift/objects:
import Foundation

var a:NSNumber=0
for j in 0..<100000 {

a = 0
for i in 0...1000 {

a=a.integerValue + i
}

}
print("a = \(a)")

In terms of performance, Swift is not quite there yet, with the primitive version
approximately 50% slower and the object-based version a surprising three times
slower than Objective-C. In my testing, this seems to be typical, with primitive
operations usually fairly close to Objective-C performance, and in rare cases equal or
even slightly better, but with more complex operations lagging significantly.

While Example 1.5 was purposely coded in a similar style to the Objective-C
examples, Example 1.6 shows that a higher-level, more expressive style is also possible.
The higher-order function reduce is applied to the range object 0...1000 with
the reduction operator + and the starting value 0. It is very similar in expressiveness
to very high-level languages such as Ruby or Smalltalk (or functional languages).
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Example 1.6 Summation via reduction in Swift

var a=0;
for j in 0..<1000000 {

a = (0...1000).reduce(0, combine:+ )
}
print("a = \(a)")

With optimizations enabled, the Swift compiler is able to remove these
abstractions and produce code that is essentially equivalent to the primitive for-loop
from Example 1.5. This is extremely impressive and theoretically makes it possible to
routinely use such high-level abstractions even in performance-intensive code.

In practice however, there is a snag: With optimization disabled, the code runs
pretty much exactly 100 times slower, whereas with the previous examples the
difference was at most around a factor of six. Such a discrepancy is more than just
significant, it means that performance-wise the non-optimized version is a
completely different language, more like an interpreted language such as Ruby or
Smalltalk (and even slower than those) than an ahead-of-time compiled language.

You might think that this discrepancy doesn’t matter because performance is
always measured and programs are always shipped with optimizations enabled. And
you’d be right to a certain extent; witness the lengths I went through earlier in this
chapter to get useful measurements with optimizations enabled. All those problems
would have gone away by simply disabling optimizations.

There is a catch, though. Or more precisely, at least two: First, debug builds
default to having optimizations enabled, and those tend to be used almost exclusively
during development. With a 100 times performance difference, either your debug
build is going to be unusably slow, with an operation that would take half a second in
release taking almost a minute in debug, or the debug build is actually usable, in
which case the optimization actually isn’t needed and is just a waste of time.

The second, potentially even more troubling issue from a performance perspective
is that optimizations are opaque, not guaranteed to occur and undiagnosed if they
don’t occur. That means that a new version of the compiler can silently drop a
particular optimization, or non-obvious code changes can mean that a precondition
for an optimization is no longer met. These are likely to be isolated incidents, and
when the penalty is two to three times, they tend to be bearable. When the penalty
could be 100 times or more, that’s a performance mine waiting to go off.

In general, performance these days means predictable and controllable
performance, and this is neither. We will talk more about these aspects in later
chapters.

Other Languages
Example 1.7 shows integer summation code in a number of other high-level
languages. Most of these languages do not feature aggressive optimizers, so the
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various tricks needed to ensure that computation actually takes place are not
necessary. Table 1.1 and the graph in Figure 1.1 show how Objective-C compares to
these languages.

Example 1.7 Summation in various other languages

PostScript:
0 1 1000 { add } bind for

PostScript, self-timing and displaying:
%!
/Helvetica 25 selectfont 100 100 moveto
/intshow { 20 string cvs show } bind def
usertime

0 10000 { 0 0 1 1000 { add } for exch pop } bind repeat
exch usertime exch sub intshow ( ms result: ) show intshow

showpage

Smalltalk:
( 1 to: 1000 ) inject: 0 into: [ :a :b | a+b ].

Smalltalk + Higher Order Messaging:
( 1 to: 1000 ) reduce + 0.

Ruby:
print (1..1000).inject(0) {|sum,x| sum +x }

Considering that Objective-C was developed in response to Smalltalk’s
performance issues, it is interesting to see how Objective-C compares with Smalltalk.

· Squeak is a bytecode interpreter that closely follows the original Smalltalk-80
implementation of the early 1980s.

· Java is an object-oriented, bytecode language whose main implementation,
Oracle’s HotSpot VM, is a fairly direct descendant of the Strongtalk VM for
Smalltalk. Unlike Smalltalk, it also provides primitives in the language.

The result is interesting in that Objective-C brackets the Smalltalk/Java results.
When using primitives, Objective-C is slightly faster than Java when also using
primitives and 30 times faster than Java when using pure objects and 60 times faster
than reasonably modern Smalltalk using pure objects. However, Objective-C using
pure objects is slower than Java and comparable to Smalltalk when using tagged
objects, and massively slower when using heap-allocated objects.

In fact, Objective-C brackets all the languages we have here; it can be either faster
or slower than all of them, depending on how it is used. Although our example here
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Table 1.1 Arithmetic features and time to sum 1,000 integers in different languages

Language Objects Unlimited Execution
Precision Time (μs)

Objective-C (primitives) No No 0.2
Swift (primitives) No No 0.3
Java (primitives) No No 0.4
Strongtalk Yes Yes 5.2
Java (objects) Yes No 6.1
Objective-C (tagged objects) Yes No 11.4
Smalltalk-80 Yes Yes 12.7
Swift (tagged objects) Yes No 31
PostScript Sort of Yes 54.2
Ruby Yes Yes 55.3
Objective-C (objects) Yes No 238.1
MC 68000 Assembler/7.1 MHz No No (estimate) 3,000
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is very trivial, I have found this property to be generally true: Objective-C gives you
a wide range from which to choose when trading expressiveness for performance. It
is up to you to choose. That is the power of a hybrid language.

The Power of Hybrids
When Brad Cox created Objective-C, the choice of a hybrid language was very
deliberate. In addition to needing more performance than a pure Smalltalk could
provide, he envisioned two different purposes: one is implementing components
(called “Software-ICs”) efficiently, largely in C, and the other is connecting those
components together using dynamic message sending.

This hybrid pattern can often be seen where high performance meets dynamic
flexibility. One great example is the Unix shell, where filter components such as
grep or wc are written in C but hooked up very dynamically using the shell.
NumPy is popular for controlling numerical array processing routines written in C or
C++ from Python, and at the high end, supercomputing centers used the
string-based scripting language Tcl (generally slower than Ruby) to “steer”
computations in their clusters.

When performance problems occur in Objective-C, it is almost invariably because
this hybrid pattern was disregarded and Objective-C was treated as pure
object-oriented language. As Table 1.1 shows, Objective-C is a very bad pure
object-oriented language: It is slower than the other pure object-oriented languages,
especially with high rates of object creation, while delivering fewer features, being
less crash resistant and offering a far less interactive programming environment.

However, Objective-C is an awesome hybrid language, great for connecting coarse
grain objects with very fast and flexible dynamic message passing. In addition to
allowing the typical hybrid pattern of pre-fab components written in a fast/static
language connected by a flexible slower language, Objective-C also allows a more
gradual approach that doesn’t presuppose where the bottlenecks will be.

You may have wondered at the somewhat odd choice of PostScript in the selection
of languages to compare. The reason for this choice is that the particular PostScript
interpreter in question is actually written in Objective-C. And not only is it written
in Objective-C, it is written in a pure object-oriented fashion, with all PostScript
objects (stacks, strings, numbers, matrices) mapped straight to Objective-C objects.
Despite apparently contradicting the hybrid pattern and using a more pure
object-oriented approach, it outperforms the industry-standard PostScript interpreter
shipped with Mac OS X, which is written in straight C.

The contradiction is only superficial. While Objective-C is a hybrid, it is a single
hybrid language, with both parts reasonably well integrated. That means that
although you can take an approach in which you write your core in C or C++ and
then layer it in Objective-C wrappers, you can actually take a more productive
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approach in which you write your core in Objective-C and then optimize. We will
take a closer look at how to perform such optimizations in Chapter 3.

Trends
To say that CPU performance has improved dramatically in the quarter of a century
since the original Macintosh with its MC 68000 CPU was introduced is an
understatement of colossal proportions. Today’s machines are approximately 4,000
times faster, and that’s from a base that wasn’t too shabby to begin with. This
improvement has been achieved by increasing clock-frequencies, adding resources so
that most common instructions can execute in a single clock-cycle, and finally
duplicating functional units and adding control logic so multiple instructions from a
nominally sequential instruction stream can be analyzed and executed in parallel.

None of these advancements have come for free. Pipelining is usually required to
allow the many steps in decoding and executing instructions to overlap in order to
achieve throughput of one instruction per clock-cycle. In addition, higher
clock-frequencies require individual pipeline steps to be physically shorter and less
capable and thus the overall pipelines to be even deeper, increasing the cost of
pipeline hazards such as stalls or mispredicted branches, making maximum
throughput ever harder to achieve and actual performance ever harder to predict.

Whereas CPU and memory speeds were roughly matched in the MC 68000 days,
even allowing for some extra DRAM accesses to refresh the screen, today DRAM
access times are around 100 times too slow to directly supply the CPU with data.
This makes it necessary to place large and complex caches between the CPU and
main memory. Of course, caches make access times slower in the worst case, so again
we have to hope that the average case works in our favor, and predictability is also
adversely affected again. Another aspect here is that the relative performance of
components has changed over the years. Where it used to make sense to have
precompute tables of expensive computations, nowadays it is very often cheaper to
just compute rather than wait for main memory.

Finally, exploiting instruction-level parallelism (ILP) has meant putting a lot more
functional units onto the die, as well as additional control logic to detect and extract
potentially parallel instructions and to make sure their effects are made visible to the
running program as if they had executed sequentially.

As all of these mechanisms have now reached the point of diminishing returns, the
free ride that software developers have enjoyed over the last couple of decades has
come to a screeching halt. We can no longer rely on the next generation of CPUs to
cover both users’ increased expectations and our performance sins of the
past—performance sins that have eaten up much if not all of the gains made in
hardware.

In fact, many luminaries have quipped that software tends to get slower at a slightly
faster rate than hardware gets faster, and that was when hardware was still getting
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faster. A test pitting a Mac Plus against an Athlon powered PC in Word and Excel
application benchmarks showed the (Motorola MC 68000–powered) Mac Plus
beating the modern machine’s performance in 63% of the most common tasks and
over 50% of the tasks selected.3

So we not only cannot regress current performance by adding new features, we
probably also have to actually improve performance to meet user demands for
handling ever larger data sets. Although additional hardware-based performance is
available in the form of additional cores and GPUs, utilizing those additional
hardware resources is often harder than just not wasting CPU cycles quite as
egregiously as before.

Last but not least, a whole new generation of mobile devices such as the iPhone
confronts us with CPUs that have vastly lower performance available, not least
because of power limitations.

Cost of Operations
At its heart, optimization is the art of balancing cost with outcomes, ideally achieving
the best outcome at minimal cost. Balancing costs is hard without knowing what
those costs are, so it is important to really familiarize yourself with the costs of
common operations that are important for your application areas (and of course
measure, measure, measure, which we will cover in Chapter 2).

Tables 1.2 through 1.6 show the cost of common CPU-oriented operations on
different pieces of hardware. These costs are shown both in absolute terms and
relative to each other, which is why the tables are 2D, with specific operations listed
both in the rows and columns. If you want to find out how much one operation costs
in terms of another, just check the intersection of the column of one operation with
the row of the other.

All basic operations are individually incredibly fast on modern CPUs, so the times
in Table 1.2 are usefully expressed in nanoseconds (billionths of a second). The
absolute times of these operations are so far removed from the time scales that a
human being can intuitively grasp so as to be almost meaningless; this was illustrated
by the student from Bentley’s Programming Pearls who gave the running time of an
algorithm as 1.83, but wasn’t really sure whether it was milliseconds or microseconds.

Table 1.2 instead focuses on relative cost, so you can see that a message send is about
as costly as an integer division, and one object allocation costs the same as 45 message
sends. So if we are wrapping an integer division in a message send, our overhead is
100%, which is somewhat questionable but may be acceptable depending on our
circumstances. Wrapping an integer addition in a way that requires an object
allocation, on the other hand, would cause our relative overhead to be a factor of
1,000, so our program is 1,000 times slower than it needs to be in that area.

3. http://hallicino.hubpages.com/hub/_86_Mac_Plus_Vs_07_AMD_DualCore_You_Wont_Believe_
Who_Wins

http://hallicino.hubpages.com/hub/_86_Mac_Plus_Vs_07_AMD_DualCore_You_Wont_Believe_Who_Wins
http://hallicino.hubpages.com/hub/_86_Mac_Plus_Vs_07_AMD_DualCore_You_Wont_Believe_Who_Wins
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Table 1.2 Relative cost of common operations on MacBook Pro Retina, late 2013

Operation add multiply 1 ns message divide autorelease alloc 1/10th s

add 1 2.2 3.4 22 23 644 1,012 3.374e+08
multiply 1 1.5 9.8 10 291 457 1.523e+08

1 ns 0.3 0.66 1 6.5 6.7 191 300 1e+08
message 1 1 30 46 1.548e+07

divide 1 28 45 1.489e+07
autorelease 1 1.6 5.24e+05

alloc 1 3.333e+05
1/10th s 1

Table 1.3 Relative cost of common operations on iPhone 5S

Operation 1 ns multiply message divide autorelease alloc 1/10th s

1 ns 1 3.9 4.6 6.2 209.7 274 2147484
multiply 1 1.2 1.6 53 70 545600.5

message 1 1.3 45 59 464320.8
divide 1 34 44 346927.9

autorelease 1 1.3 10241.72
alloc 1 7837.331

1/10th s 1

Table 1.4 Relative cost of common operations on Simulator MacBook Pro 15-inch

Operation 1/10th s 1 ns multiply message divide autorelease alloc

1/10th s 1 -4.7e-07 -5.6e-07 -1.3e-06 -4.1e-06 -4e-05 -0.00017
1 ns -2.1e+06 1 1.2 2.8 8.8 85 370.8

multiply 1 2.3 7.3 70 307.2
message 1 3.1 30 132.9

divide 1 9.7 42
autorelease 1 4.4

alloc 1
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Table 1.5 Relative cost of common operations on iPhone SE

Operation 1 ns multiply message divide autorelease alloc 1/10th s

1 ns 1 2.2 3.3 4.5 92 121.9 2147484
multiply 1 1.5 2 42 56 977906.9

message 1 1.3 28 36 642574.4
divide 1 21 27 481606.6

autorelease 1 1.3 23263.07
alloc 1 17616.91

1/10th s 1

Table 1.6 Relative cost of common operations on iPhone 3G

Operation 1 ns add multiply divide message autorelease alloc 1/10th s

1 ns 1 9.7 23 92 140 6,700 9,400 1e+08
add 1 2.4 9.5 14 691 969 1.031e+07

multiply 1 4 6.1 291 409 4.348e+06
divide 1 1.5 73 102 1.087e+06

message 1 48 67 7.143e+05
autorelease 1 1.4 1.493e+04

alloc 1 1.064e+04
1/10th s 1

However, even high relative overhead will not matter if the operations in question
are not executed frequently, so the final column of Table 1.2 shows how many
operations of a particular kind can be executed in 1/10th of a second, which is
roughly the response time that most humans will perceive as instantaneous. So if we
want to maintain instantaneous response for our app, we could do up to half a billion
integer additions, but we had better not try to allocate more than around 400,000
objects.

Table 1.3 shows that phones still lag desktop and laptop CPUs by a significant
margin, even though the gains relative to an iPhone 3G shown in Table 1.6 are
enormous. Not only are all operations anywhere slower, but some of the relationships
between operations also change.

Computational Complexity
A discussion of the principles of CPU performance would not be complete without
some reference to computational complexity, the theory dealing with the resource
consumption of algorithms and the dreaded Big O. The bad news is that problems
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due to an algorithm in an unfortunate complexity class are usually really, really bad.
The good news is that because they are so bad, these problems tend to be easy to spot
and reasonably straightforward to fix.

For example, the code in Example 1.8 should at least raise an eyebrow: We are
trying to figure out which rows of a table view are selected, as determined by an array
of selected WLTask objects that is passed into the method. The outer for loop is
executed once for each row in the table view, so the overall loop is O(n) in the
number of rows. However, the check is performed using the indexOfObject:
method, which is O(m) in the size of the array. Multiplying yields O(m× n), which is
OK when only a single object is selected and therefore m is 1. However, what if the
user selects all of the objects? In this case, n = m and therefore O(m× n) becomes
O(n2). Oops!

Example 1.8 Slightly hidden quadratic algorithm via indexOfObject:

- (NSMutableIndexSet *)rowsOfSelectedTasks:(NSArray *)selectedTasks
{

NSMutableIndexSet *selectedRows = [NSMutableIndexSet indexSet];
for (int row = 0; row < (int)self.tableView.numberOfRows; row++)
{

WLTask *task = [self taskAtRow:row];
if (task != nil)
{

NSUInteger index = [selectedTasks indexOfObject:task];
if (index != NSNotFound)
{

[selectedRows addIndex:row];
}

}
}
return selectedRows;

}

We solved the problem by turning the NSArray that is passed as an argument into
an NSSet, which has amortized O(1) for checking presence. Example 1.9 has the
same problem but is more difficult to solve because the two sources of O(n)
complexity that combine into O(n2) are split over two methods. This makes the
source of the quadratic complexity harder to spot, and also makes it more difficult to
solve because there is no obvious place to construct a temporary NSSet.

Example 1.9 Hidden quadratic algorithm via occurs-check

-(void)addObjectIfAbsent:(id)newObject
{

if ( NSNotFound != [array indexOfObject:newObject] ) {
[array addObject:newObject];
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}
}

-(void)addObjects:(NSArray *)newObjects
{

for ( id obj in newObjects ) {
[self addObjectIfAbsent:obj];

}
}

By adding the presence check, which runs in linear time for an array, adding n
objects using this method now will take time on the order of n2. If you wish to have a
presence check, it would be better to add an additional NSMutableSet, which will
do the presence check in effectively constant time, restoring the overall operation to
linear time. This pattern of nesting a linear operation within a linear operation
resulting in a total quadratic operation is so common that is has been given the name
accidentally quadratic. Watch out for it in your code.

However, we will be dealing with constant factors instead of different complexity
classes most of the time.

Summary
Computers are fast. This trivial observation has surprising consequences. Most of our
code is less performance critical than it has ever been, because computers are so fast
that it doesn’t matter if you control your supercomputers with Tcl or your iOS
animations with Ruby or JavaScript. However, the parts of the code that are
performance critical are more performance critical than ever, and this is because we
do more with our computers and we no longer tolerate bad performance.

At the same time, the seemingly eternal promise of the Sufficiently Smart Compiler
that just takes our high-level code and magically makes it fast has not materialized,
and hardware is no longer making our existing code faster by itself. So we need to
optimize, and although automated help is appreciated, we need to make intelligent
decisions and have the instruments to gather the information needed for those
decisions and the tools to then turn those decisions into code.

Using the right toolbox and mindset, we can achieve great performance within the
constraints of our environment, while at the same time keeping our code clean,
expressive, and fun.
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CPU: Measurement and Tools

Measurement plays an absolutely crucial part in performance optimization. We
cannot control what we cannot measure, and controlling performance
parameters—hopefully by improving them—is the goal of the exercise. Without
measuring to control our results, we cannot be sure that what we are doing actually
improves the situation, rather than making it worse.

Another important aspect is analysis; after all, it helps tremendously to have a good
idea what may be the problem before we try to fix it. However, unlike verification,
measurement for analysis has just a helper function, being one of the sources for
forming our hypothesis about the nature of the problem. When a problem is obvious,
it can be expedient to skip measurement for analysis and act directly on the current
hypothesis. Of course, this increases the risk that you get your hypothesis wrong, and
verification will tell you that you missed and need to try again. So this is very much a
personal choice based on your experience, hit rate, and tolerance for extra work
because you guessed wrong.

Apart from the pure discovery step, performance measurement should be looked at
like scientific experiments designed to answer specific questions in relation to an
existing hypothesis, meaning the tools should always be used to answer a specific
question that you have. Just gathering lots of data and chasing numbers without a
specific performance hypothesis about the system and a specific question you want
answered by your measurements is rarely effective, unless you are happy with
spending a couple of days optimizing your system’s idle loop.1

Fortunately, Mac OS X has plenty of tools to answer a variety of questions you
might have about CPU performance. The task is made even easier by the fact that
CPU time is a quantity that is tracked for every process by the scheduler as part of
normal operations, and tends to be very deterministic for a given program. So in
many simple cases, that time tracked by the system can simply be queried and will be
accurate. If more fine-grain information is required, sampling tools can give

1. J.L. Bentley, Programming Pearls (Boston: Addison-Wesley, 2000).
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resolution down to the function and even statement level, though with greater
potential for error.

Command-Line Tools
Mac OS X includes a good number of command-line performance tools that can
provide good answers to simple performance questions. It is usually a good idea to try
to use the simplest tool available that is capable of answering your question.

So you might want to try these tools first when you have a performance question,
and bring out the big guns, with their associated overhead, if and when you need
more detailed analyses.

top
For example, you might want to consider having one top process running in a
Terminal window at all times. The top program is mostly a discovery tool and
provides a continuously updated display of a large number of system performance
parameters. Monitoring these parameters will give you a good idea of what the
system “looks” like when it is functioning normally and will alert you to abnormal
conditions such as a process suddenly consuming a lot of resources, including the
CPU.

Let’s look at some sample top output:
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In this case, we see that the sumintsm is using a lot of CPU capacity, essentially
all of one CPU, and that it’s been doing that for quite some time, accumulating a total
of over 9 s of CPU time. The CPU usage line in the header shows us that we have a
two-processor system, because the process taking almost 100% of one CPU is still
only taking slightly less than 50% of the total CPU capacity available in the system.
This sort of display suggests that we have something worth investigating more closely.

I tend to run top with the -u flag that sorts by current %CPU when running in a
general “tell me what the system is doing” mode so that the most active processes are
always near the top, but without that flag when I am trying to focus on a specific
process, so it stays in the same place in the output. Check out the man page for many
other sophisticated options to control display, analysis, and sampling rate.

time
We already used the time command earlier to give us measurements of the different
summation programs. It is one of the simplest performance measurement tools
available, as it just executes its argument and reports the CPU time and the wall clock
time taken by execution of the whole program. CPU time is broken down into time
spent in user-space and kernel space (sys).

As it provides only a few numbers and requires no setup, it is perfect for quickly
testing out algorithms that can be extracted into a command-line tool. Analysis of
larger programs is not supported, again, unless parts can be extracted into a tool. Let’s
look more closely at the time output running our test program:

$ time ./sumintsc

500500

real 0m0.764s
user 0m0.735s
sys 0m0.006s

The fact that real time is almost identical to user time means that the program
is almost certainly CPU bound, so focusing on CPU performance is the correct
approach for improving its overall performance. On an unloaded system, a large
difference between real and user + sys will mean that the program is not CPU bound,
but waiting either for I/O or for other programs. If not enough CPUs are available
for the system load, it could also mean that the kernel preempted the program. As
this is indistinguishable from the other situations, it is important to have sufficient idle
CPU resources in the system to run the test program. Fortunately, with modern
multicore computers, this is becoming less of a problem.

One thing to watch out for is that time exists both as a separate program in
/usr/bin/time and as a built-in shell command. You will usually get the built-in
command, but the man page explaining some extra options applies to the command
in /usr/bin.
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sample
While time and top give you a good first outside view of what a process is doing,
sample lets you take a quick peek inside. Say that you see some anomaly in the top
window you have running. You can quickly dash off a sample <processName>
in another Terminal window and it will write a sampling-based call tree both to the
standard output and to a file in /tmp that you can peruse at your leisure. Let’s look at
the sample output for our Objective-C integer summation program:

Analysis of sampling sumints_objc (pid 16000) every 1 millisecond
Process: sumints_objc [16000]
Path: /tmp/sumints_objc
Load Address: 0xc7000
Identifier: sumints_objc
Version: 0
Code Type: X86
Parent Process: bash [15800]

Date/Time: 2016-05-01 14:31:22.503 +0200
Launch Time: 2016-05-01 14:31:20.545 +0200
OS Version: Mac OS X 10.11.4 (15E65)
Report Version: 7
Analysis Tool: /usr/bin/sample
----

Call graph:
2704 Thread_1945987 DispatchQueue_1: com.apple.main-thread (serial)
2704 start (in libdyld.dylib) + 1 [0x96d726ad]
2267 main (in sumints_objc) + 197 [0xc7ef5]
+ 1922 +[NSNumber numberWithInt:] (in Foundation) + 68
+ ! 1818 -[NSPlaceholderNumber initWithInt:] (in Foundation) + 49
+ ! : 1526 CFNumberCreate (in CoreFoundation) + 636
+ ! : | 934 _CFRuntimeCreateInstance (in CoreFoundation) + 285
+ ! : | + 860 CFAllocatorAllocate (in CoreFoundation) + 134
+ ! : | + ! 835 __CFAllocatorSystemAllocate (in CoreFoundation) + 24
+ ! : | + ! : 702 malloc_zone_malloc (in libsystem_malloc.dylib) + 75
+ ! : | + ! : | 680 szone_malloc (in libsystem_malloc.dylib) + 24
+ ! : | + ! : | + 235 szone_malloc_should_clear (in libsystem_malloc.dylib)
+ ! : | + ! : | + 195 szone_malloc_should_clear (in libsystem_malloc.dylib)
+ ! : | + ! : | + ! 195 tiny_malloc_from_free_list (in libsystem_malloc.dyl

...
Total number in stack (recursive counted multiple, when >=5):

Sort by top of stack, same collapsed (when >= 5):
objc_msgSend (in libobjc.A.dylib) 288
CFNumberCreate (in CoreFoundation) 261
szone_malloc_should_clear (in libsystem_malloc.dylib) 237
_CFRuntimeCreateInstance (in CoreFoundation) 209
CFNumberGetValue (in CoreFoundation) 207
tiny_malloc_from_free_list (in libsystem_malloc.dylib) 195
_platform_bzero$VARIANT$sse42 (in libsystem_platform.dylib) 179
object_setClass (in libobjc.A.dylib) 168
_os_lock_spin_lock (in libsystem_platform.dylib) 139

...
Binary Images:

0xc7000 - 0xc7fff +sumints_objc (0) <398FF7DD-6AD1-3014-8597-4AD7BB60971E> /tm
0x8fe7a000 - 0x8feae67f dyld (0.0 - ???) <872065EE-ED21-3B30-96A5-2CC56D735FB7> /us
0x904ce000 - 0x904d9ff7 libChineseTokenizer.dylib (16) <AE3E240D-C4AC-39D0-882F-4F8
...

Sample output is broken up into four sections:
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1. A header giving various bits of metadata about the process being sampled. I
usually ignore and/or filter it.

2. The call graph, which is the meat of the information gathered.
3. A sorted list of the most expensive/most used leaf functions.
4. A trailer showing an overview of the code/libraries included in the running

process, which I also usually ignore.

Sample output contains a lot of information, not all of which is necessarily useful
at any particular time. In particular, the wealth of output can obscure the actually
relevant information. The Call graph section, for example, is used to convey the call
hierarchy, and children of a particular node are sorted so that the heaviest subtree is
shown first. We can easily see that allocating NSNumber objects using
_CFRuntimeCreateInstances takes approximately one third of the total time
spent. However, finding the other two thirds of the time is a bit trickier because
instead of other functions at that level we get to see the implementation details of
_CFRuntimeCreateInstances that are potentially interesting tidbits, but not
really actionable pieces of information.

The fact that sample output is textual opens the possibility to a wide variety of
ad-hoc postprocessing using Unix text tools from the command line. A simple
example using grep and head to remove uninteresting detail is shown below. It cuts
off the call graph at a specified depth and so allows us to see all the direct descendants
responsible for the runtime of our main function. It achieves this by removing all
lines that start with at least a specific number (in this case 14) of non-numeric
characters. As specific entries are indented and start with the number of samples
encountered, this effectively filters out all entries that are more deeply nested.

$ egrep -v "^[^0-9]{14}" samples.txt | head -20
Analysis of sampling sumintsm (pid 4710) every 1 millisecond
Call graph:

2704 Thread_1945987 DispatchQueue_1: com.apple.main-thread (serial)
2704 start (in libdyld.dylib) + 1 [0x96d726ad]
2267 main (in sumints_objc) + 197 [0xc7ef5]
+ 1922 +[NSNumber numberWithInt:] (in Foundation) + 68 [0x9d6c5d44]
+ 125 objc_msgSend (in libobjc.A.dylib) + 80,20,... [0x954d2ce0,0x954d2ca4
+ 111 +[NSNumber numberWithInt:] (in Foundation) + 86 [0x9d6c5d56]
+ 54 +[NSNumber numberWithInt:] (in Foundation) + 92,78,... [0x9d6c5d5c,
+ 53 +[NSNumber numberWithInt:] (in Foundation) + 46 [0x9d6c5d2e]
+ 1 -[NSObject autorelease] (in libobjc.A.dylib) + 0 [0x954d522a]
+ 1 DYLD-STUB$$objc_msgSend (in Foundation)
227 main (in sumints_objc) + 166 [0xc7ed6]
+ 207 -[__NSCFNumber intValue] (in CoreFoundation)
+ 20 -[__NSCFNumber intValue] (in CoreFoundation)
162 objc_msgSend (in libobjc.A.dylib) + 80,20,... [0x954d2ce0,0x954d2ca4,
40 main (in sumints_objc) + 184,151,... [0xc7ee8,0xc7ec7,...]
5 DYLD-STUB$$objc_msgSend (in sumints_objc) + 0 [0xc7f56]

If the filtering done by the command line turns out to be generally useful, it’s easy
to capture that know-how in a little script, like the following:

#!/bin/sh
file=$1
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numindent=$(($2*2+4))
echo $numindent
egrep -v "^[^0-9]{$numindent}" $file | sed 's/) +.*$/)/g' | head -20

This also cleans up the output a little more:

$ filtersample samples.txt 6
Call graph:

2704 Thread_1945987 DispatchQueue_1: com.apple.main-thread (serial)
2704 start (in libdyld.dylib)
2267 main (in sumints_objc)
+ 1922 +[NSNumber numberWithInt:] (in Foundation)
+ 125 objc_msgSend (in libobjc.A.dylib)
+ 111 +[NSNumber numberWithInt:] (in Foundation)
+ 54 +[NSNumber numberWithInt:] (in Foundation)
+ 53 +[NSNumber numberWithInt:] (in Foundation)
+ 1 -[NSObject autorelease] (in libobjc.A.dylib)
+ 1 DYLD-STUB$$objc_msgSend (in Foundation)
227 main (in sumints_objc)
+ 207 -[__NSCFNumber intValue] (in CoreFoundation)
+ 20 -[__NSCFNumber intValue] (in CoreFoundation)
162 objc_msgSend (in libobjc.A.dylib)
40 main (in sumints_objc)
5 DYLD-STUB$$objc_msgSend (in sumints_objc)

This type of analysis, showing a certain level of detail across several different
methods or functions, is very valuable but at the same time difficult to achieve with
GUI tools such as Instruments. Command-line tools make it possible to capture
specific recurring analyses as reusable scripts.

Xcode Gauges
Xcode includes lightweight profiling that is “always on” for programs launched by
Xcode. An overview is shown in the Debug Navigator, to the left of the main pane,
with labeled bar graphs for CPU, Memory, Energy, Disk, and Network Usage.
Clicking on any of the small graphs in the Debug Navigator brings up a more
detailed view for that particular aspect. Figure 2.1 shows the Debug Navigator in the
left pane and the detailed CPU view in the main editor area.

Instruments
If sample and time don’t give you the answers you need and the Xcode gauges
don’t yield enough resolution, you probably want to turn to Instruments, a very
versatile and powerful but also sometimes somewhat intimidating tool. Instruments
has a wide variety of data-gathering options integrated with a sophisticated GUI for
analyzing that data and finding the guilty parties. It is a very large tool, with excellent
Apple-provided documentation that is also under constant development. For detailed
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Figure 2.1 Xcode built in CPU profiling

use instructions, you should probably refer to that documentation; I will provide
some basics and usage scenarios that I have found useful.

As a sampling tool, Instrument’s output should generally be seen as indicative, not
definitive, because it is prone to aliasing effects like any other form of sampling. This
isn’t a problem if you use data gathering for hypothesis building as described at the
start of this chapter. While increasing the sampling frequency might seem an like an
obvious remedy to this problem, higher sampling frequencies actually tend to decrease
accuracy due to sampling overhead and jitter as well as increasing the resource
requirements and the chance of interfering with the process under observation.

Setup and Data Gathering
I usually start Instruments from Xcode, either by choosing the Profile option from the
Product menu or clicking a button on one of Xcode’s gauges. That way, Instruments is
already set up to look at your program. By default it will then present the selection
screen in Figure 2.2. I typically choose the Time Profiler instrument that is helpfully
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Figure 2.2 Instrument selection screen

already preselected. In fact, when launching from Xcode you can even skip the
selection step by defining a default instrument in XCode’s scheme editor for the
scheme you are profiling.

After having selected the Time Profiler instrument, Instruments will show a trace
document. The trace document window, from top to bottom, contains a toolbar, the
timeline pane that shows a timeline for every instrument in the trace document (there
can be multiple), the large detail pane that shows details (usually trace data) for the
instrument currently selected in the timeline pane, and finally the inspector pane to
the right of the detail pane showing more detail and configuration options of the
instrument in question.

Figure 2.3 shows a trace document configured with the single Time Profiler
instrument we selected previously. You can now configure your profiling target,
instrument, and profiling options. Alternately, you can just accept the defaults, which
are fine for a wide variety of profiling tasks, and click the big red record button at the
left of the toolbar to start your profiling session.
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Figure 2.3 CPU Instrument before profiling

Profiling Options
As I mentioned, the default profiling options are adequate for a wide variety of
profiling tasks. On the other hand, customizing your profiling session can transform
Instruments into a highly tuned profiling machine, and my guess is that once you’ve
used them you will quickly find them indispensable.

First, there are a number of variations for starting a profiling session in addition to
hitting Profile in Xcode. Using the device selector in the top left of the toolbar (to the
right of the record and pause buttons), you can profile programs that are already
running or launch arbitrary GUI or command-line programs on any attached device
enabled for debugging. You can even switch an iOS device to untethered profiling if
you need freedom of movement, for example, to profile code using the
accelerometers.

The Instruments Dock menu also has additional entries that allow you to start
profiling sessions without interacting with the Instruments UI. This can be important
if you want to capture information from an application running on the same
computer as Instruments itself without deactivating that application, which is what
would happen if you interact with the Instruments UI. An even more hands-off
approach is starting a profiling session using the instruments command-line tool.
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The command instruments -t "Time Profile" -l 2000 -D
sumintsm-cpu.trace sumintsm starts the sumintsm command-line program,
profiles it for 2 s (2,000 ms) using the Time Profiler instrument, and then writes the
resulting data to the trace document sumintsm-cpu.trace, appending run data if
the file already exists. The command-line program has a much smaller footprint than
the GUI application and doesn’t load any of the UI frameworks or resources.

I personally found this capability essential when I was tasked with measuring and
improving cold launch performance of various apps in the iWork suite. A cold launch
refers to a launch of the app right after boot and log-in, in which case the UI
frameworks are not yet memory resident. It is an important metric because it is very
visible to users. However, launching the Instruments GUI app loads the majority of
the GUI frameworks, meaning that with the app present any information gathered is
no longer representative of a cold launch.

Two other extremely useful options can be set in the Record Options sheet shown in
Figure 2.4 and available from the File menu: a time limit and window limit. Both limit
profiling to a specified number of seconds, the difference is that the time limit does it
from the start of the recording, the window limit from the end.

Figure 2.4 CPU Instrument with recording options
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The time limit is useful for creating consistent, repeatable, and thus comparable
profiles, for example by profiling an application for 2 s from launch and comparing
what happens in those 2 s with different optimizations. It can also be convenient to
simply not have to hit the stop button.

The window limit has two main use-cases that I am aware of: first, it allows you to
capture a profile of a specific activity that might require long setup in an application
without also capturing the long setup in the profile. A related but possibly more
significant case is if the setup is indeterminate: let’s say you have an event that you
want to profile, but that you can’t reproduce deterministically. With window limit set
to 10 s you can just let Instruments run continuously, and when you see the behavior
you are targeting, hit the stop button. Your trace will now contain the 10 s before
you hit stop, hopefully including the event you are interested in.

Although there will be some impact from having Instruments running, the fact
that we have multiple CPUs means that your target app can often run mostly
unimpeded by the profiling. Use of the window limit means that memory doesn’t fill
up, which will otherwise happen very quickly.

Setting a window limit will automatically activate the Defer flag, which means that
you can’t interact with Instruments until after profiling is done, in order to minimize
interference with the program being profiled. You can also set this flag manually
without the window limit option.

I prefer always having at least a time limit set, in order to prevent runaway profiling
sessions.

Finally, you can also configure the Instrument(s) being used. In the case of the
Time Profiler instrument, the choices roughly correspond to the real, user, and
sys components reported by the command-line time command: by default, Time
Profiler reports user time, meaning time spent running the CPU on behalf of the
user program. Selecting Record Waiting Threads corresponds to the real component,
meaning wall-clock time, so tracking time waiting for I/O is also included. This can
be useful at times, but will usually require some sophisticated data mining for
interactive programs in order to remove the time spent waiting for the user. Finally,
you can also look at time and call stacks spent in the kernel, corresponding to the
sys component. I’ve used this maybe once or twice in my career. Other instruments
will offer different configuration options.

Basic Analysis
Unlike earlier performance tools, Instruments allows you to start analyzing while the
profile is still being gathered. This can be convenient, but beware that such
interactions can negatively affect the program being profiled if it’s running on the
same machine, and therefore there can also be a negative impact on the quality of the
data you are gathering. Figure 2.5 shows a CPU trace during profiling: The record
button has been replaced by a stop button, the timeline is starting to fill (with a fairly
uninteresting rectangular graph because the sumintsm program is purely CPU
bound), and the details pane is starting to show functions.
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Figure 2.5 CPU Instrument during profiling

Each line in the Details view shows a single function or method. (Objective-C
methods are implemented as C functions, so I will just call them functions.) For each
function, it shows the total running time of that function and all its children
(functions it calls) in milliseconds, as well as the percentage of the entire trace’s
running time that total time represents and the time spent in the function itself,
without the calls to children. The little icon represents the source of the function, for
example, a head silhouette for user-supplied functions, a mug for Cocoa, and a little
gear for system functions. Finally, you have the name of the function in an outline
view, along with the name of the library.

I tend to wait with my analysis until the run is finished, but whether you start
analyzing the data during the run or afterward, you will probably start to drill down
using the exposure triangles in front of the function names. My first move is usually
to alt-click on the topmost exposure triangle; this will expand the entire profile
underneath, and since entries are initially sorted by time spent, this will automatically
reveal the most expensive branch in the call graph, shown in Figure 2.6. From there I
can start exploring.

I was surprised to learn that many developers are not aware of the alt-click trick,
despite the fact that it appears to be a system-wide feature of outline views. It
certainly also works in Finder’s list view.
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Figure 2.6 CPU Instrument after profiling is completed and trace expanded

Drilling down can be approached from either side: start top-down with the total
program, and see where the time is going (Figure 2.6), or start at the highest cost leaf
functions and see where the requests for their services are coming from (Figure 2.7).

Source Code
Double clicking on a line of the CPU profile will reveal the source code of the
function or method in question, annotated with the profile information on a
line-by-line basis. As Figure 2.8 shows, the result is also colored to direct you
instantly to the hotspots.

If source code is not available—for example, if you didn’t compile with debug
symbols or if you are looking at a system library—Instruments will show you
annotated assembly code instead of source code, as seen in Figure 2.9.

If you want, you can also see the assembly code side by side with the source, as
shown in Figure 2.10.

Getting precise line-by-line hotspot information is much more precise than the
whole-function granularity of the normal call graph, and it can be absolutely
invaluable, as it points you directly to the specific code that is slow. Sometimes it
seems a bit too easy.
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Figure 2.7 CPU Instrument in “heavy” view

Figure 2.8 CPU Instrument showing source code
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Figure 2.9 CPU Instrument showing assembly code

Figure 2.10 CPU Instrument showing source and assembly code
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Data Mining I: Focus
The simplest form of data mining happens when you either click the right arrow next
to a line of the profile, or select Focus on subtree from the data-mining context menu
in Figure 2.11: The call graph displayed in the Details view now starts with the node
that was selected, with all percentages now relative to this node (which is at 100% by
definition). I use this mostly to get rid of symbols only involved in program start;
other than that, I generally prefer to see context.

Figure 2.12 shows the call graph of a slightly modified sumints program that
does the sums twice—once in the main function and once in a helper function.

The main users of the CPU are two calls to [NSNumber numberWithInt: one
in main and one in the helper. If we want to look more closely at the cost of
[NSNumber numberWithInt:, we might choose to focus, resulting in the focused
graph shown in Figure 2.13.

However, closer inspection reveals that this is not exactly what we want, because it
focuses only on a single instance of the [NSNumber numberWithInt: call, the
first one in this case (you can check that the total milliseconds shown is roughly the
same as the number previously shown for the first call).

However, what we want to see is the total cost of [NSNumber
numberWithInt:, no matter where it is called. Seeing the cost of a specific
function no matter where it is called is a frequent requirement, and for leaf functions
it is easily accomplished by switching to the inverted call graph. For functions in the
middle, there is no obvious way to accomplish this, which is why there is a specific
data-mining feature called Focus on calls made by . . . in the data-mining context menu
(Figure 2.11).

This is one of those features that you really have to know is there and why it’s
there in order to make use of it. The result can be seen in Figure 2.14. Once you’ve
used this multiple-focus feature, you won’t know how you ever managed without it.
To the best of my knowledge, it is the only way to get at this information, except for
doing further massaging of sample output.

Figure 2.11 Instruments data-mining context menu
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Figure 2.12 CPU Instrument non-focused

Figure 2.13 CPU Instrument focused on a single instance of a method
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Figure 2.14 CPU Instrument focused on all occurrences of a function

Data Mining II: Pruning
In analyzing trace data, you will often find that the data that is of interest to you is
drowned out by all the data that is not, and that effectively becomes noise. While this
is one reason to choose both your questions and your tools wisely, and focusing can
also help, the data-mining functions in Instruments can also directly remove such
noise.

In many situations, the “heavy” view will show a number of hotspots, and the
hotspots in question will be fairly generic system functions that you have no control
over. Favorites include objc_msgSend(), malloc(), and free(). These
functions most likely aren’t the actual problem, and you probably won’t be optimizing
them. They are part of the system.

Instead, the problem will be that these functions are getting called too often,
something that a sampling tool like Instruments cannot distinguish from the function
itself being slow, because it doesn’t count function entries and exits. Rather, it only
sees that the program counter was inside the function when the process got sampled.

While you can walk up the inverted call graph to find the actual culprits, this can
quickly become repetitive and tedious. Instead, you can simply prune these functions
so they do not appear in the call graph at all. There are two general methods for this,
one of which is actual “pruning,” meaning that these functions and the time spent in
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Figure 2.15 CPU Instrument data mining active: objc_msgSend() charged to caller

them is removed completely. This is rarely what you want because it distorts the
actual running time.

More useful in most cases is the option to Charge xxx to callers available from the
data-mining context menu, which removes the function from the display without
removing the time, which is simply and correctly attributed to the function’s callers.
The result of charging objc_msgSend() to callers can be seen in Figure 2.15.

One thing to keep in mind while looking at the call graphs is that although call
return does imply some partial temporal order, that order is very limited at best. If
you want to see what actually happens over time, use the time-track pane to select
different instances of time.

Internal Measurement
Instead of just poking at your program with external instruments, you can also add
instrumentation to the code itself. This will avoid or greatly reduce sampling artifacts,
increase precision, and also make data gathering potentially very simple: just run the
program. Internal measurement also allows you to focus on precisely the aspects you
want to measure, instead of having to extract that information from potentially large
amounts of superfluous data. On the other hand, inserting the measurement code
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may affect the routine being measured, and for that reason is often infeasible for
measuring routines that execute very quickly. It also means adding extra code with
potential bugs to the project, whereas external tools keep the original code clean.

If your applications log significant events using NSLog(), you are already doing
some internal measurement because the logs produced by NSLog() have a
millisecond-precision timestamp pre-pended. So if you have a log of application
activity, you already know how long it took to get from one of these significant events
to another, in real time (not CPU time). Due to the coarse nature, lack of precision,
and high overhead of this method, in addition to the clutter it might produce in the
logs, it should really not be used for any significant performance monitoring.
However, it can be extremely useful when all you have is a customer logfile.

More sophisticated measurement involves using the getrusage() system call to
get actual CPU usage information from the operating system, containing the same
information used by the time and top commands, but without the overhead of
starting up a separate process. Example 2.1 is a version of the integer summation
program from Chapter 1 amended with self-timing capabilities via getrusage().

Example 2.1 Adding self-timing to the integer summer

#import <Foundation/Foundation.h>

long long usermicros()
{

struct rusage usage;
getrusage( RUSAGE_SELF, &usage );
return usage.ru_utime.tv_sec * 1000000 + usage.ru_utime.tv_usec;

}

int main( int argc , char *argv[] )
{

int i,k;
long start=usermicros();
NSNumber* sum=nil;
for (k=0; k<100000; k++ ) {

sum=@(0);
for (i=; i<=1000; i++ ) {

sum=@([sum intValue]+i);
}

}
NSLog(@"%@ user: %lld microseconds",sum,usermicros()-start);
return 0;

}

This allows much smaller time intervals to be measured accurately and a lot of
measurements to be performed simultaneously. In fact, the performance tables shown
in Chapter 1 and used throughout the book were generated using this method.
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Testing
Once you have automated internal performance measurement in place, you can also
use it in unit tests in order to make performance requirements testable and to make
deviation from those requirements detectable automatically.

Unit tests are also crucial in ensuring that your code keeps working as you
optimize. Having the safety of the unit tests gives you the freedom to experiment
with faster implementations.

Fast unit tests are also important because that allows unit tests to be run
continuously with every build. (My full unit test suite of currently slightly over 1,000
tests runs in 1 to 2 s, which is a bit on the slow side but still acceptable.)

Xcode now includes performance tests as part of the XCTest framework. So far, I
have not found these performance tests very useful. First, they use Xcode user
interface magic that’s not transparent to store the test results. I prefer my tests to be
self-contained and fully specified in code and not rely on outside context, especially
machine- or user-specific context. Second, these performance tests can only be used
to guard against performance regressions, not drive performance improvements in a
test-first style.

Of course, there is a reason for asking existing performance levels in a performance
test, and then storing that on a per-host basis: Absolute performance levels are
machine dependent, and a test that succeeds on a high-spec Mac Pro might fail on a
MacBook Air. The answer to this conundrum is to run relative performance tests as
shown in Example 2.2. Instead of codifying a specific time in which the test must be
completed, we specify a ratio between a slow method and the faster method.

Example 2.2 Unit test codifies performance improvement

-(void)testPerformanceOfNewFastShouldBeTwiceOfOldSlow
{

long long timeslow=-usermicros();
... old slow implementation ...
timeslow += usermicros();
long long timefast = -usermicros();
... new fast implementation ...
timefast += usermicros();
double improvement = (double)timeslow / (double)timefast;
XCTAssertGreaterThan( improvement, 2.0 , @"should be faster");

}

This way, we can also codify performance improvements that we would like to see
into our tests and then use those failing test cases to drive the performance tests until
the performance test succeeds, just like we do with features in test-driven
development.
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Dtrace
dtrace can be regarded as a combination of external and internal measurement
devices on steroids, with kernel support and full scriptable tracing facilities. In short,
it can do almost anything, but that power comes at the price of even simple tasks
requiring significant know-how and effort. In my personal experience, the vast
majority of performance-measurement tasks are fairly straightforward and already
covered by existing tools.

Optimization Beyond the Call of Duty
Soon after starting to work at one particular company, I was asked to help a colleague
who had been tasked with an optimization problem; there was some problem with
mail indexing being slow. My brief was that he had been working at this problem for
about a month without any visible progress, and concern was spreading throughout
several groups.

My inquiry about the status of the investigation revealed that the developer in
question had been doing impressive work on string searching algorithms, with
comparative statistical analyses of several advanced variants of Boyer-Moore-type
string algorithms to find out which one would squeeze out the last percent of
performance for the types of data sets in question.

All good stuff, but 10 minutes of sampling and code review revealed that the
original program was using code that essentially looked like Example 2.3, except that
the function pointer was passed into the function in question.

Example 2.3 Inefficient string search

comparisonFunc=isCaseSensitive ? strncmp : strncasecmp
int len=strlen(target)
int max=strlen(source)-len;
for ( i=0; i< max; i++) {

if ( ! comparisonFunc( source+i, target, len ) ) {
// success

}
}

This is perfectly workable code, but it is slower than necessary for one and possibly
two reasons: First, we are calling the full string comparison function for every single
character of the potentially large input string, and second we are calling that function
through a function pointer.

The first problem is the crucial one. Although we will need to call the comparison
function to determine whether there is a full string match at a particular location in
the source, the vast majority of locations will not match, so the bulk of the work is
rejecting candidate locations, not matching them. With that insight, it becomes clear
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that we can reject most candidate locations much more cheaply by simply looking at
their first character, without incurring the overhead of a function call.

The second problem is only significant in that without the function pointer the
compiler could have done that job for us: string comparison functions belong to a
class of “special” functions that compilers are aware of and may generate specialized,
inlined code rather than a function call to a library function. However, the compilers
can’t see “through” the function pointer and thus can’t inline the code for us.

With that brief insight, the fix was simple: Pull out the first character of the string
comparison as shown in Example 2.4.

Example 2.4 Slightly more efficient string search

comparisonFunc = isCaseSensitive ? strncmp : strncasecmp
int len=strlen(target)
int max=strlen(source)-len;
for ( i=0;i< max;i++) {

if ( tolower( source[i] ) == tolower( target[0] ) &&
! comparisonFunc( source+i , target, len ) ) {

// success
}

}

Since strncasecmp() is defined as converting both its input strings to
lowercase, this is equivalent to calling the string functions. Another option would
have been to not use a function pointer in order to let the compiler use its inlining
prowess, but that would have meant duplicating the code—not a good option when
considering the alternatives.

The code in Example 2.4 is far from optimal. First, we do not adjust the string
pointer and length in the call to comparisonFunc() to reflect the fact that we’ve
already checked the first character. In fact, we can’t do that, because the first character
check is actually a bit too lenient: It always uses the tolower() function even in the
non-case-insensitive case, getting some false matches. These false matches for the first
character don’t matter for correctness because they will be filtered out by the call to
comparisonFunc().

All these performance deficiencies and the fact that the code is also much less
efficient than the advanced string algorithms being examined didn’t matter one bit:
The one line change not only improved performance by an order of magnitude, that
improvement was also sufficient to make the indexing process disk-bound, meaning
further algorithmic improvement didn’t affect performance. Elapsed time: less than an
hour.

Summary
This chapter introduced performance measurement from command-line tools via the
Instruments profiler to internal measurement and performance tests. While mastering
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these tools is important and can give you a great head start in improving your code’s
performance, it is important to always remember not to be blinded by the tools. The
measurements they help you gather are just means to support or refute hypotheses
you have formed about the performance, not ends in themselves. If you keep that in
mind, and optimize what needs optimization, you will already have a leg up on most
of your competition.



3
CPU: Pitfalls and Techniques

Having had a look at the parameters driving performance and techniques for
identifying slow code, let’s now turn to actual techniques for making code run fast.
We will look at efficient object representations and ways for those objects to
communicate and access data. We will also examine streamlining computation. In all
this, the objective will typically be to effectively combine the “Objective” and the
“C” parts of Objective-C to achieve the desired balance between performance and
encapsulation.

In general, the basic idea is for objects to have C on the inside and messages on the
outside, and for the objects themselves to be fairly coarse-grained, mostly static
entities. When following these principles, it is possible to start with a fully
object-oriented implementation without worries, but with the knowledge that it will
be possible to later optimize away any inefficiencies. It has been my experience that it
is quite possible to achieve the performance of plain C, and sometimes even beyond.

However, there are pitfalls that not only make an Objective-C program slow
(slower than so-called scripting languages), but even worse can be major obstacles to
later optimization efforts. These pitfalls usually lie in library constructs that are easy to
use but have hidden performance costs, costs that are not localized within a single
object where they could be eliminated, but present in interfaces and therefore spread
throughout the system and much harder to expunge.

The following will show different options for data representation, communication,
and computation, along with their respective trade-offs in terms of coupling,
cohesion, and performance.

Representation
One of the primary tasks of a program, especially an object-oriented program, is to
represent data. Due to the hybrid nature of the language, an Objective-C
programmer has many options available for this task.

Without any claims of completeness, structured data can be represented using a C
struct, Objective-C object, or various forms of key-value stores, most prominently
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Foundation’s NSDictionary and CoreFoundation’s CFDictionary, which are
both getting more and more use. Simple scalars can be represented as C float,
double, or int and their multitude of variations, Foundation NSInteger and
CoreGraphics CGFloat typedefs, and finally Foundation NSNumber and
CoreFoundation CFNumber objects. Note that the naming conventions are a bit
confusing here: The names NSInteger and NSNumber strongly suggest that these
two types are related—for example, with NSInteger being a specific subclass of
NSNumber—but in fact they are completely unrelated. NSInteger is a typedef that
resolves to a 32-bit int on 32-bit architectures and to a 64-bit long on 64-bit
architectures, whereas int is 32 bits in both cases. Similar with CGFloat, which
turns into a 32-bit float on 32-bit architectures and a 64-bit double on 64-bit
architectures. Example 3.1 shows a few of the possible number representations.

Example 3.1 Numbers as primitives and objects

#import <Foundation/Foundation.h>

int main()
{

int a=1;
float b=2.0;
NSNumber *c=[NSNumber numberWithInt:3];
CFNumberRef d=CFNumberCreate(kCFAllocatorDefault,

kCFNumberFloatType, (const void*)&b );
NSNumber *e=@(5);
NSLog(@"a=%d b=%g c=%@ d=%@ e=%@",a,b,c,d,e);
return 0;

}

In order to come to a good solution, the programmer must weigh trade-offs
between decoupling and encapsulation on one hand and performance on the other
hand, ideally getting as much decoupling and encapsulation without compromising
performance, or conversely maximizing performance while minimizing coupling.

Primitive Types
Possibly the easiest call to make is in the representation of simple scalar types like
characters/bytes, integers, and floating point numbers: use the built-in C primitive
types whenever possible, and avoid object wrappers whenever possible.

With the language supporting them natively, scalars are convenient to use and
perform anywhere from 10 to more than 100 times better than their corresponding
Foundation object NSNumber or its CoreFoundation equivalent CFNumber.
Table 3.1 gives the details: the first three columns are times for different arithmetic
operations on scalar types. The differences in timings for 32- and 64-bit addition and
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Table 3.1 Primitive operations in 32- and 64-bit architectures

Operation add multiply divide -intVal NS(int) CF(float) NS(float)

64-bit (ns) 0.67 0.79 14 15 44 169 190
32-bit (ns) 0.72 0.76 7.8 22 232 182 211

multiplication are probably measuring artifacts, though they were stable when
preparing these measurements and it is important to report actual results as measured,
not what we think the results should be.

Division is slower than the other arithmetic operations because dividers in CPUs
usually only handle a few bits at a time, rather than a full word, which also explains
why 64-bit division is significantly slower than 32-bit division.

Compared to entities that can usually be stored in registers and manipulated in a
single clock cycle (or less on superscalar designs), any object representation has
excessive overhead, and Objective-C’s fairly heavyweight objects are doubly so.
Foundation and CoreFoundation make this overhead even worse by providing only
immutable number objects, meaning any manipulation must create new objects.
Finally, scalars like numbers and characters tend to be at the leaves of any object graph
and therefore are the most numerous entities in a program, with every object
containing at least one but more likely many instances of them.

On the flip side, there is little variation or private data that would benefit from the
encapsulation and polymorphism that are made possible by an object representation,
and number objects are in many ways even less capable than primitive types, for
example, by not providing any arithmetic capabilities. This could change in the future
if Foundation or another framework provided a number and magnitudes hierarchy
similar to that of Smalltalk or LISP, where small integers automatically morph into
infinite precision integers, fractions, floating point, or even complex numbers as
needed. Alas, Foundation provides none of these capabilities, though the introduction
of tagged integers in the 64-bit runtime on OS X 10.7 along with the addition of
number literals in 10.8 could be a sign of improvements in the future.

Of course, there are times when an object is required by some other interface, for
example, when adding content to an NSArray or NSDictionary. In this case, you
must either use NSNumber or an equivalent or provide alternatives to those
interfaces—an option we will explore more later in the chapter.

One wrinkle of Table 3.1 is that although most times are similar between 32 and
64 bits, two numbers are different. The division result is about twice as slow on 64
bit, whereas the creation of integer NSNumber objects is six times faster. The
division result is easily explained by the fact that the integer division hardware on the
particular CPU used processes a fixed number of bits per cycle, and 64-bit operands
simply have twice as many bits. The multiply and add circuits, on the other hand,
operate on full 64-bit words at once.
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Table 3.2 Tagged and regular pointers

Bits 8–32/64 4–7 3 2 1 0

Regular pointer upper address bits 0
Tagged pointer value subtype tag id 1

The difference in allocation speeds for integer objects on the other hand has
nothing to do with the CPU differences and everything with the fact that Apple
introduced tagged integers in OS X, but only in the modern runtime, and only for
the 64-bit version of that runtime. Tagged integers are a technique taken from old
LISP and Smalltalk systems where the value of an integer object is encoded not in an
allocated structure pointed to by the object, as usual, but rather in the object pointer
itself. This saves the pointer indirection when accessing and especially the memory
allocation when creating or destroying the data (integers in this case). This
representation takes advantage of the fact that object pointers are at least word
aligned, so the lower 2 or 3 bits of a valid object pointer are always 0 on 32-bit and
64-bit systems, respectively. Table 3.2 shows how the tagged pointer representation
puts a “1” in the low bit to distinguish tagged pointers from regular pointers, another
7 bits for typing the value, and the remaining 24 or 56 bits to store a value.

In fact, it is puzzling that the performance for integer NSNumber creation isn’t
much better than it is, since all it takes is the bit-shift and arithmetic OR shown in
the makeInt() function of Example 3.2, possibly with some tests depending on the
source and target number type—operations that should be in the 1 to 2 ns total range.

Example 3.2 Summing manually created tagged NSNumber objects

#import <Foundation/Foundation.h>

#define kCFTaggedObjectID_Integer ((3 << 1) + 1)
#define kCFNumberSInt32Type 3
#define kCFTaggedIntTypeOffset 6
#define kCFTaggedOffset 2
#define kCFTaggedIntValueOffset (kCFTaggedIntTypeOffset+kCFTaggedOffset)
#define MASK (kCFNumberSInt32Type<<kCFTaggedIntTypeOffset)
#define kCFTaggedIntMask (kCFTaggedObjectID_Integer | MASK)

static inline int getInt( NSNumber *o ) {
long long n=(long long)o;
if ( n & 1 ) {

return n >> kCFTaggedIntValueOffset;
} else {

return [o intValue];
}

}

static inline NSNumber *makeInt( long long o ) {
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return (NSNumber*)((o << kCFTaggedIntValueOffset) | kCFTaggedIntMask);
}

int main( int argc , char *argv[] )
{

NSNumber* sum = nil;
for (int k=0;k<1000000; k++ ) {
sum =makeInt(0);
for (int i=1;i<=1000;i++) {
sum =makeInt(getInt(sum)+i);

}
}
NSLog(@"%@/%@ -> '%@'",sum,[sum class],[sum stringValue]);
return 0;

}

The reason of course is that Apple has so far hidden this change behind the
existing messaging and function call application programming interfaces (APIs) going
through CoreFoundation. We are also advised that the representation, including the
actual tags, is private and subject to change. What we are leaving on the table is
significant: The code in Example 3.2 runs in 1.4 s, compared to 11.4 s for the
Foundation/CoreFoundation-based code from Chapter 1.

Hopefully this will change in the future, and the compiler will become aware of
these optimizations and be able to generate tagged pointers for integer objects and
some of the other tagged types that have been added in the meantime. But as of OS
X 10.11 and Xcode 7.3, it hasn’t happened.

Strings
A data type that almost qualifies as a primitive in use is the string, even though it is
actually variable in length and doesn’t fit in a processor register. In fact, Objective-C
strings were the first and for a long time the only object that had compiler support for
directly specifying literal objects.

There are actually several distinct major uses for strings:

1. Human readable text
2. Bulk storage of serialized data as raw bytes or characters
3. Tokens or keys for use in programming

While these cases were traditionally all handled uniformly in C using char*
pointers, with some NUL terminated and others with a length parameter handled out
of band, conflating the separate cases is no longer possible now that text goes beyond
7-bit ASCII.

Cocoa has the NSString class for dealing with human readable text. It handles
the subtleties of the Unicode standard, delegating most of the details to iconv
library. This sophistication comes at a cost: roughly one order of magnitude slower
performance than raw C strings. Table 3.3 shows the cost of comparing 10- and
32-byte C-Strings with 10- and 32-character NSString objects.
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Table 3.3 NSString and C-String operations

Operation 1 ns !strcmp(10) strcmp(32) !nscmp(10) ns append nscmp(32)

1 ns 1 3.3 10 76 77 82
!strcmp(10) 1 3 23 23 25
strcmp(32) 1 7.5 7.6 8.2
!nscmp(10) 1 1 1.1
ns append 1 1.1
nscmp(32) 1

Although NSStrings are expensive, this is an expense well spent when the
subject matter really is human-readable text. Implementing correct Unicode handling
is complex, error prone, and inherently expensive. In addition, the option of having
multiple representations with a common interface is valuable, allowing string
representations optimized for different usage scenarios to be used interchangeably. For
example, literal NSStrings are represented by the NSConstantString class that
stores 8-bit characters, whereas the standard NSCFString class (backed by
CFString CoreFoundation objects) stores 16-bit unichars internally. Subclasses
could also interchangeably provide more sophisticated implementations such as ropes,
which store the string as a binary tree of smaller strings and can efficiently
insert/delete text into large strings.

Starting with OS X 10.10, string objects on the 64-bit runtime also got the tagged
pointer treatment that we previously saw for integers. This may seem odd, as strings
are variable-length data structures, arrays of characters. However, 64 is quite a lot of
bits, enough to store seven 8-bit characters and some additional identifying
information such as the length. In fact, when I myself proposed tagged pointer strings
back in 2007, I also had variants with eight 7-bit ASCII strings, or an even tighter
packing that ignores most of the control and special characters to use only 6 bits and
thus have room for 9 characters. I don’t know if any of those variants are
implemented.

Example 3.3 illustrates the different NSString implementation types: a literal is
an instance of __NSCFConstantString, a CF variant of NSConstantString.
Creating a mutable copy creates a new string object, whereas creating a copy of that
mutable copy creates a tagged pointer string because the string is only 5 characters
long. All of this is implementation dependent, but the differences are relevant when
looking at NSDictionary lookup performance.

Example 3.3 Show differences between normal, constant, and tagged strings

#import <Foundation/Foundation.h>

void printString( NSString *a ) {
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NSLog(@"string=%@ %p class: %@",a,a,[a class]);
}

int main()
{

NSString *cs=@"Const";

printString(cs);
printString([cs mutableCopy]);
printString([[cs mutableCopy] copy]);

}
cc -Wall -o taggedstring taggedstring.m -framework Foundation
./taggedstring
string=Const 0x108fe2040 class: __NSCFConstantString
string=Const 0x7fb359c0d630 class: __NSCFString
string=Const 0x74736e6f4355 class: NSTaggedPointerString

While great for human readable text, NSString objects are somewhat
heavyweight to be used for serialized data, which is handled more safely and
efficiently by the NSData class. Unlike NSString, which requires an encoding to
be known for text data and can therefore not be safely used on arbitrary incoming
data (it will raise an exception if the data does not conform to the encoding),
NSData can be used with arbitrary, potentially binary data read from the network or
a disk. For performance, it is possible to get a pointer to the NSData’s contents via
the -byte or -mutableBytes methods for processing using straight memory
access, whereas NSString (rightfully) protects its internal data representation, with
processing only possible by sending high-level messages or by copying the data out of
the NSString as 16-bit unichar character data or encoded 8-bit bytes.

When parsing or generating serialized data formats, even textual ones, it is
significantly more efficient to treat the serialized representation such as the JSON in
Example 3.4 as raw bytes in an NSData, parse any structure delimiters, numbers, and
other non-textual entities using C character processing, and create NSString objects
exclusively for actual textual content, rather than reading the serialized representation
into an NSString and using NSScanner or other high-level string processing
routines.

Example 3.4 Textual content of JSON file is shown in bold

[ { "name": "AAPL", "price": 650.1, "change": 20.41 },
{ "name": "MSFT", "price": 62.79, "change": -0.9 },
{ "name": "GOOG", "price": 340.79, "change": -5.2 }, ]

Even the strings that appear in such a file tend to be structural rather than actual
content, such as the dictionary keys in Example 3.4. These types of structural strings
are also represented as NSString objects in Cocoa, just like human-readable text.
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While convenient due to the literal NSString syntax (@"This is a constant
string"), this conflating of human-readable text and functional strings can at times
be unfortunate in terms of performance. Fortunately, many types of keys that are
more optimized exist—for example, basic C strings, message names, and instance
variable names.

Objects
Since you’re programming in Objective-C, it is likely that objects are going to be
your major data-structuring mechanism.

Use C inside the objects. The messaging interface hides the representation, and
users are none the wiser. Try to avoid using fine-grain, semantic-free objects to
implement the coarse-grain, semantics-bearing objects.

Accessors
Accessors are methods that just read or write an object’s internal data, corresponding
roughly to memory read and write instructions. According to good object-oriented
style, attributes of an object should not be accessed directly, certainly not from
outside the object, but preferably also from within. Objective-C 2.0 properties handle
the burden of creating accessors.

However, accessors should also at least be minimized and ideally should be
eliminated altogether, because they turn objects from intelligent agents that respond
to high-level requests for service to simple data-bearing structures with a higher cost
of access. Apart from a cleaner design, passing high-level requests into an object also
makes sense from a performance point of view because this means the transaction
costs of a message send is paid only once, at which point the method in question has
access to all parameters of the message and the object’s instance variables, instead of
using multiple message sends to gather one piece of data from the object at a time.

Of course, in reality, accessors or property definitions are a common feature of
Objective-C programs, partly because program architecture deviates from object-
oriented ideals and partly because accessors for object references in Objective-C are
also needed to help with reference counting, as shown in Example 3.5.

Example 3.5 Object accessors need to maintain reference counts

-(void)setInteger:(int)newInteger {
_integer=newInteger;

}
-(void)setObject:(id)newObject {

[newObject retain];
[_object release];
_object=newObject;

}
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As with other repetitive boilerplate, it makes sense to automate accessor
generation, for example, by using Xcode macros, preprocessor macros that generate
the accessor code. Alternately, the language can take over: Since Objective-C 2.0
properties can automatically synthesize accessors and with Automatic Reference
Counting (ARC), the actual reference counting code was moved from the accessors
to the code-generation of all variable access.

A caveat with using properties for generating accessors is that the generated code is
not under user control, with the default atomic read accessors up to five times
slower than a straightforward implementation, because they retain and
autorelease the result, place a lock around the read in case of multithreaded
access, and finally need to wrap all of that in an exception handler in order to release
the lock in case of an exception. An alternative is the accessor macros shown in
Example 3.6. These macros generate the correct accessor code just like properties.
However, this generation is under user control, meaning not only that you get to
decide what code gets run, but also that you can (a) change your mind and (b) extend
the idea further without having to modify the compiler, as I will show later.

Example 3.6 Accessor macros

#if !__has_feature(objc_arc)
#define ASSIGN_ID(var,value)\

{\
id tempValue=(value);\
if ( tempValue!=var) { \
if ( tempValue!=(id)self ) \
[tempValue retain]; \

if ( var && var!=(id)self) \
[var release]; \

var = tempValue; \
} \

}
#else
#define ASSIGN_ID(var,value) var=value
#endif

#ifndef AUTORELEASE
#if !__has_feature(objc_arc)
#define AUTORELEASE(x) ([(x) autorelease])
#else
#define AUTORELEASE(x) (x)
#endif
#endif

#define setAccessor( type, var,setVar ) \
-(void)setVar:(type)newVar { \

ASSIGN_ID(var,newVar);\
} \
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#define readAccessorName( type, var , name )\
-(type)name { return var; }

#define readAccessor( type, var ) readAccessorName( type, var, var )

#define objectAccessor( objectType, var, setVar ) \
readAccessor( objectType*, var )\
setAccessor( objectType*, var,setVar )

In OS X 10.11, the slowdown has apparently been reduced to around 35%, with
or without ARC enabled.

Due to the pervasiveness of accessors, this overhead is serious enough that teams at
Apple sped up whole programs by more than 10% just by switching properties from
atomic to nonatomic. An improvement of 10% may not seem much when we are
frequently talking about improvements of 10 to 100 times, but it is actually huge
when we are talking about the whole program, where significant engineering effort is
often expended for single-digit percentage improvements. And here we get double
digits with a single change that had no other effect. So why does atomic exist? And
why is it the default?

The idea was to protect against code such as that shown in Example 3.7. This code
has a stale reference to an object instance variable that was actually released when the
pointer went stale, similar to some early Unix malloc() implementations having a
free() function that delayed freeing its memory until the next call to malloc(),
in essence avoiding a potential crash in buggy code such as that in Example 3.7.

Example 3.7 Stale pointer reference

...
id myWindowTitle=[window title];
[window setTitle:@"New Window title"]; // windowTitle goes stale
[self reportTitle:myWindowTitle]; // crashes pre-ARC

....

The crash will occur if title is held onto by the window, and only by the
window, because in that case setTitle: will release the title and the reference to
this object in myWindowTitle will not only be stale, that is, no longer pointing to
the window’s title—but also invalid. Having auto-releasing accessors such as the ones
provided by the atomic keyword will prevent a crash in this case, but at the cost of
hiding the fact that the reference has, in fact, gone stale. I can see two potential
reasons for writing this code. The first is that of a simple but slightly premature
optimization if the title is used several times and we don’t want to go fetch it from the
window every time. In this case the code is simply wrong, because you’d actually
want to get the new value from the window after it was set, and atomic in this case
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just masks the incorrect code. A crash would alert the programmer to the fact that the
logic is amiss. The second case is that in which the programmer actually intended to
stash away the old value. In this case, the code is also plain buggy, because the
programmer is well aware that the new value will make the old value invalid—that’s
why they are stashing it! The corrected code in Example 3.8 not only doesn’t need
atomic, it also makes the intention of the code clear.

Example 3.8 Non-stale pointer reference

...
id oldWindowTitle=[[window title] retain] autorelease];
[window setTitle:@"New Window title"];
[oldWindowTitle doSomething]; // clear that we want old title

....

Note that ARC also prevents the crash, and therefore also hides the staleness of the
pointer, just like atomic did—by aggressively retaining objects even when they are
stored into local variables. The advantage is that you don’t have to think as much
about the lifetime of your objects. The disadvantage is that you don’t have to think as
much about the lifetime of your objects, and you get significantly more
reference-counting traffic, which impacts performance.

So while it is unclear whether atomic would be beneficial at all even if there were
no performance penalty, the significant slowdown in a very common operation makes
it highly questionable at best. The fact that the collection classes do not support this
pattern (for performance reasons) and iOS’s UIKit explicitly sets nonatomic for over
99% of its property declarations shows that Apple itself is not of one mind in this case.

Even slower than atomic accessors is access via key-value coding (KVC): A call
such as [aTester valueForKey:@"attribute"] is not only more verbose
than the equivalent direct message send [aTester attribute], and not only
more error prone because the compiler cannot check the validity of the string passed
to valueForKey:, it is also 20 times slower. If runtime parameterization of the
value to get is required, using [aTester performSelector:@selector
(attribute)]; is only twice as slow as a straight message send and 10 times
faster than valueForKey:.

You might expect from these basic performance parameters that technologies built
on top of KVC such as key-value observing (KVO) and Cocoa Bindings can’t be too
speedy, and you’d be right: Adding a single KVO observer adds a factor of 100 to the
time of a basic set accessor (600 ns vs. 6 ns) and a single binding a factor of 150
(900 ns).

KVO and bindings also do not protect against cascading update notifications,
which can lead to at least quadratic performance if there are transitive dependencies
(b depending on a and c depending on both a and b will result in c being evaluated
twice), and can lead to infinite recursion and crashes if there are dependency loops. So
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for larger data sets or complex dependencies, it is probably a good idea to investigate
using a proper constraint solver in the tradition of the 1978 Xerox PARC ThingLab
or later developments such as DeltaBlue, Amulet, or Cassowary. In fact, it appears that
Cassowary was adopted by Apple for Mountain Lion’s auto-layout mechanism.

Public Access
When sending messages to access instance variables is too slow, those instance
variables can be made @public. In this case, access time is essentially the same as for
a C struct, (non-fragile instance variables mean that the offset is looked up in the
class instead of being hard-coded at compile-time, slightly affecting the result) but
then again so is safety and encapsulation: none of either. The case can therefore be
made that if @public access is required, one should use a struct instead. In fact,
there are some additional benefits to a struct, mainly that it can be allocated on the
stack in an auto variable, passed by value to a function, or directly embedded into
another object or struct or array, whereas an Objective-C object must be
expensively allocated on the heap and can only be accessed indirectly via pointer.

However, there are also some benefits to keeping such an open object a true
Objective-C object—namely, it can have additional functionality attached to it, access
can be granted or denied on a per-field basis, and it may be used compatibly with
other objects that are not aware of its publicly accessible instance variables. As an
example, the PostScript interpreter mentioned in Chapter 1 uses a string object that
has all its instance variables public, shown in Example 3.9, but at the same time can
be used largely interchangeably with Cocoa NSString objects.

Example 3.9 Full public string object definition

@interface MPWPSString : MPWPSCompoundObject
{

@public
unsigned char *bytes;
unsigned length,capacity;

}

Of course, breaking encapsulation this way makes evolution of the software harder
and should be considered as a last resort when all other techniques have been tried,
performance is still not adequate, and careful measurement has determined that the
access in question is the bottleneck.

Object Creation and Caching
As we have seen so far, object creation is expensive in Objective-C, so it is best to use
objects as fairly static and coarse-grained entities that exchange information via
messages, preferably with mostly scalar/primitive arguments. If complex arguments
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cannot be avoided and high rates of creation/exchange need to be maintained, both
Objective-C and Swift can resort to structs instead of objects, which like
primitives can be stack allocated, allocated in groups with a single malloc(), and
passed by value as well as by reference. However, this often means either switching
between objects and structs when modeling the problem domain, or even foregoing
object modeling altogether.

Another option to lessen or even eliminate the performance impact of object
creation when high rates of (temporary) object creation cannot be avoided, is object
caching: reusing objects that have already been allocated. The advantage of object
caching over using structs is that performance considerations do not interfere with
the modeling of the problem domain and all the code involved. Instead, a pure
performance fix can be applied if and when performance turns out to be a problem.

Table 1.2 shows that reusing just one object instead of allocating a new one, we
have not only saved some memory, but also CPU time equivalent to approximately
50 message sends, allowing us to use objects where otherwise we might have had to
revert to C for performance reasons. Object reuse was common in object-oriented
languages until generation-scavenging copying garbage collectors with “bump
pointer” allocation came online that made temporary objects extremely cheap. Alas,
C’s memory model with explicit pointers makes such collectors that need to move
objects nigh impossible, so object reuse it is!

In order to reuse an object, we have to keep a reference to it in addition to the
reference we hand out, for example, in an instance variable or a local collection. We
can either do this when we would have otherwise deallocated the object, or we can
keep a permanent reference. Then, when it comes time to create another object of
the desired class, we check whether we already have a copy of it and use that already
allocated copy instead.

Mutability and Caching
When is it safe to reuse an object? Immutable value objects, for example, can be
reused as often as desired, because different copies of the same value object are
supposed to be indistinguishable. Foundation uses this strategy in a number of places
for some global uniquing. Small number objects are kept in a cache once allocated,
and constant string objects are merged by the compiler and linker and shared.

In order to cache objects behind the client’s back, these objects must be
immutable, because sharing between unwitting clients becomes impossible if changes
made by one client become visible to another. However, immutability forces creating
a new object on every change, and creating a new (uncached) number object every
time a new value is needed is around 30 to 40 times more expensive than just setting a
new value, even if done safely via an accessor. So how can we reuse mutable objects?

One way, chosen by the UIKit for table cells, is to have a documented API
contract that guarantees reusability. Another is to take advantage of the Foundation
reference counting mechanism, which we use to track if the only reference left to the
object is the one from the cache, in which case the object can be reused. Instead of
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Table 3.4 Reference counts for object caching

in-use unused unused action

retain/release RC > 0 RC = 0 deallocate
object caching RC > 1 RC = 1 reuse

using the 1→0 transition to see whether the object needs to be deallocated, we use
the RC = 1 state to see whether the object can be reused, because the cache is
keeping a single reference. Table 3.4 summarizes this information.

Example 3.10 shows how this reference-count-aware1 cache can be implemented,
though the actual implementation that’s part of a generic object-cache class is much
more heavily optimized. The instance variables referenced here are defined in
Example 3.18 and discussed in detail in the “IMP Caching” section in this chapter.

Example 3.10 Circular object cache implementation

-getObject
{

id obj;
objIndex++;
if ( objIndex >= cacheSize ) {

objIndex=0;
}
obj=objs[objIndex];
if ( obj == nil || [obj retainCount] > 1 ) {

if ( obj != nil ) {
[obj release]; //--- removeFromCache

}
obj=[[objClass alloc] init];
objs[objIndex]=obj;

} else {
obj=[obj reinit];

}
return obj;

}

The MPWObjectCache keeps a circular buffer of objects in its cache that’s a C
array of ids. When getObject2 method is called to create or fetch an object, it

1. Though Apple generally recommends against calling retainCount, this use is not of the problematic
kind.
2. id is the default return type and elided.
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looks at the current location and determines whether it can reuse the object or needs
to allocate a new one and then bump the location. It assumes objects know how to
reinitialize themselves from an already initialized but no longer valid state. The
circular buffer structure gives objects that were vended by the cache some time before
we try to reuse them, similar to the young space in a generation-scavenging collector.
At around 9.5 ns per pop, allocating from the (optimized) object cache is around 15
times faster than straight object allocation, so this is a very worthwhile optimization.

Wraparound of the index is handled via an if-check rather than a modulo
operation, because a modulo is a division, and as we saw earlier in this chapter,
division is one of the few arithmetic operations that is still fairly slow even on
modern CPUs. A different way of implementing a modulo would be by and-ing the
low bits of the index, but that would restrict the cache size to powers of 2. Finally,
there are many variations of probing and retirement policies that will have different
performance characteristics, for example, attempting at least n consecutive slots or
using random probing. So far, this very simple algorithm has proved to be the best
balance for a wide variety of use-cases.

Another potential way of using reference counts is to stick to the 1→0 transition
the way traditional reference counting does and then override dealloc to enqueue
the object in a global cache instead of deallocating regularly. However, that sort of
approach, unlike the object cache presented here, couples the target class tightly to
the caching behavior and requires use of a global cache. I therefore recommend
against that type of global cache, despite the fact that it is quite popular. Not
requiring locking, scoping the cache to the lifetime of another object and the specific
circumstance of that object’s use patterns are a large part of what makes object
caching via a cache object powerful and fast.

Lazy Evaluation
Another use of caching is lazy evaluation of properties. When a message requests a
property of an object that is expensive to compute and may not even be always
needed, the object can delay that computation until the property is actually requested
instead of computing the property during object initialization. Alternately, the result
of an expensive computation can be cached if it is likely that the computation will be
used in the future and if it is known that the parameters of the computation haven’t
changed.

Lazy accessors have become common enough in my code that they warrant a
specialized accessor macro, shown in Example 3.11.

Example 3.11 Lazy accessor macro

#define lazyAccessor( type, var ,setVar, computeVar ) \
readAccessorName( type,var, _##var ) \
setAccessor( type, var, setVar ) \

-(type)var { \
if ( ![self _##var] ) { \
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[self setVar:[self computeVar]]; \
} \
return [self _##var]; \

} \

The accessor builds on the macros from Example 3.6 but also has a parameter
computeVar that defines the message to be sent to compute the result. When the
getter is called, it checks whether it has a result. If it has a result, it just returns it; if
not, it calls the computeVar method and then stores the result before returning it.
Another less frequent accessor macro is the relay accessor that simply forwards the
request to an instance variable.

Caching Caveats
There are only two hard things in Computer
Science: cache invalidation and naming
things.

Phil Karlton

With all this caching going on, it is important to remember that caching isn’t
without pitfalls of its own. In fact, a friend who became professor for computer
science likes to ask the following question in his exams: “What is a cache and how
does it slow down a computer?”

In the worst case of a thrashing cache with a hit rate of 0%, the cache simply adds
the cost of maintaining the cache to the cost of doing the non-cached computation,
and an easy way of reaching a 0% hit rate with the very simple cache policy used so
far is invalidating a cache item just before it is needed again, for example, by having a
linear or circular access pattern and a cache size that is smaller than the working set
size, even by just a single item.

Additionally, caches use up memory by extending the lifetime of objects, and
therefore increase the working set size, making it more likely to either push
working-set items to a slower memory class (L1 cache to L2 cache, L2 cache to main
memory, main memory to disk...) or even run out of memory completely on iOS
devices, resulting in the process being killed. Global, transparent caches like
CoreFoundation’s CFNumber cache fare worst in this regard, because they have
effectively no application-specific information helping them determine an
appropriate size, leading to caches with arbitrary fixed sizes, like 12.

In addition, they can have puzzling bugs and side effects that, because of their
transparent nature, are hard for clients to work around. Example 3.12 demonstrates
how different constant strings and number objects allocated by completely different
means but with the same numeric value turn out to be the same actual object, as
shown by logging the object pointer with the “%p” conversion directive.
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Example 3.12 Globally uniqued Foundation string and number objects in 32 bit

#import <Foundation/Foundation.h>

NSString *b=@"hello world";
int main( int argc, char *argv[] ) {

NSString *a=@"hello world";
printf("NSStrings a=%p=b=%p\n",a,b);
for ( int i=1; i<15; i++) {

NSNumber *c=[NSNumber numberWithLongLong:i];
CFNumberRef d=CFNumberCreate(NULL, kCFNumberIntType,&i);
printf("%d NSNumber: %p type: %s \

CFNumberCreate: %p type: %s\n",
i,c,[c objCType],d,[(id)d objCType]);

}
return 0;

}
cc -Wall -m32 -o uniqueobjs uniqueobjs.m -framework Foundation
./uniqueobjs
NSStrings a=0x6b014=b=0x6b014
11 NSNumber: 0x78e7ac30 type: i CFNumberCreate 0x78e7ac30 type: i
12 NSNumber: 0x78e7ac40 type: i CFNumberCreate 0x78e7ac40 type: i
13 NSNumber: 0x78e7ac60 type: q CFNumberCreate 0x78e7ab90 type: i
14 NSNumber: 0x78e7aba0 type: q CFNumberCreate 0x78e7abb0 type: i

At the time this test was run, the cutoff for the cache was 12, requests up to that
value get a globally unique, cached object, whereas values larger than that result in an
allocation. Also note that the objCType of all cached values is “i,” a 32-bit integer,
despite the fact that we specifically asked for a long long, type code “q”. Once
outside the cacheable area, the requested type is honored.

The reason for this odd behavior is that the cache used to always cache the first
object created for a specific value, regardless of the type requested. So if the first
request for the integer 5 was for a long long, then all subsequent requests for a “5”
would return that long long NSNumber. However, this could and did break code
that was not expecting a “q” (long long) type code in its NSNumber objects, for
example, object serializers that used the type code and did not handle the “q” code!
This bug was fixed by ignoring the requested type-code for the cached numbers and
using “i” instead, which is in fact just as incorrect as the other case, but in practice
appears to cause fewer problems. On the 64-bit runtimes, the cache is disabled
because all these small integers are implemented as tagged pointers.

Another pitfall is the use of NSDictionary or NSSet instances to cache
de-duplicate string objects. While they may reduce peak memory usage in some
cases, they can also increase memory usage by unnecessarily and arbitrarily extending
the lifetime of the stored strings. Furthermore, the fact that NSString objects have
to be created before they can be tested for membership means that the CPU cost has
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already been paid before the cache is tested, so the cache actually increases CPU use.
The way to improve this situation is to create a cache that can be queried using
C-strings, either with a custom cache or with a custom set of callbacks for
CFDictionary.

Pitfall: Generic (Intermediate) Representations
One of the fun features of the NeXTStep system that is the ancestor of OS X and
iOS was its programmable graphics and window system based on DisplayPostscript.
Just as the transition to OPENSTEP brought us Foundation with the basic object
model of NSString, NSNumber, NSDictionary, and NSArray, I happened to
be working on a kind of “PostScript virtual machine” that redefined PostScript
operators to return graphical objects in a structured format rather than paint them on
the screen, similar to the “distillery” code that to the best of my knowledge still
powers Adobe’s Acrobat Distiller PostScript to PDF converter to this day.

As I looked at my fresh install of OPENSTEP, I noticed that the binary object
sequence (BOS) format created by the interpreter’s printobject command
included numbers, dictionary, arrays, and strings, mapping perfectly onto the data
types provided by the brand new Foundation framework! So all I had to do was create
a generic mapper to convert BOS format to Foundation, access the information
encoded in those Foundation objects, and use that information to populate my
domain objects, which included paths, images, text, and various graphics state
parameters such as colors, transformation matrices, font names, and sizes.

While this approach allowed me to construct a prototype graphical object reader
reasonably quickly, the performance was “majestic.” In a complete surprise, the
limiting factor was neither the PostScript procedures that had to emulate the drawing
commands and produce output, nor the serialization operator in the PostScript
interpreter or the deserialization code, or even the somewhat pokey byte-oriented
communications channel. No, the major limiting factor was the creation of
Foundation objects, a factor I never would have thought of. After the shock of my
disbelief wore off, I replaced the parts that had converted the BOS to Foundation
objects with a simple cover object that kept the original data “as-is” but was able to
access parts using a generic messaging interface. The parser then accessed this
messaging interface instead of converted objects, and performance improved
threefold.

This was the first time I learned the lesson that generic intermediate object
representations, also known as data transfer objects, are just a Bad Idea™, at least if
you care about performance and are using Objective-C. While the general principle
holds true in other languages, Objective-C drives that message home with a
particular vengeance because of the 1:5:200 performance ratio between basic
machine operations, messaging, and object allocation.

Of course, I had to relearn that lesson a couple of times before it finally managed
to stick, but the reason why it is true is actually pretty simple: a generic representation
will usually have significantly more objects than a final object representation because
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it needs to use dictionaries (object header + key and value storage) instead of plain
old Objective-C objects (somehow the “POOO” acronym as analogous to Java’s
Plain Old Java Objects [POJO] never caught on), object keys where objects can use
instance variable offsets, and object values where objects can use simple scalar
primitive types. So not only will you be creating objects that are significantly more
expensive individually, but you will also need to create many more of these objects.
Multiplying out these two factors makes generic intermediate object representations
pretty deadly for performance in Objective-C and Swift.

Alas, Apple also makes this anti-pattern extremely convenient, so it has become
pretty much the default for accessing any sort of serialized representation. A typical
example is JSON parsing, with the only method directly supported by the
frameworks being converting the JSON to and from in-memory property lists, that
is, Foundation collections, NSNumber, and NSString objects. Even the plethora of
Swift JSON “parsing” examples that have sprung up on the Internet essentially all
first call NSJSONSerialization to do the actual parsing and generation.

Arrays and Bulk Processing
When dealing with a collection of entities accessed by integer indexes, Foundation
NSArray improves on plain C arrays (array[index]) with a number of
convenient services: automatic handling of memory management (retain /
release), automatic growth, sorting, searching, subarray generation, and a memory
model that allows efficient addition and removal of objects at both ends of the array.

What’s missing is a set of arrays of primitives types such as float, double, or int
with similar sets of services, as it should be clear by now that wrapping the scalar
values in NSNumber objects and sticking those in an NSArray will not perform
particularly well. Such a wrapper is easy to write, and a number of them exist; for
example, the author’s MPWRealArray, the arrays in FScript, or
SMUGRealVector.

As Figure 3.1 shows, the performance benefits of having a homogenous collection
of scalars are overwhelming: Summing the values in an array filled with 10,000
numbers is 5 times faster than summing NSNumbers in an NSArray even if the
individual numbers are accessed via a messages send, and 17 times faster when the
array is asked to perform the operation in bulk.

The differences are even more pronounced for creating such an array and filling it
with the values from 1 to 10,000: The homogenous array is 20 times faster than
creating the same values as an NSArray of NSNumbers, even when every real value
is added inefficiently using a separate message send. Moving to bulk operations,
where the loop is executed inside the real array, takes the difference to a factor of 270.

Better yet, representing the numbers as a contiguous C array of floats allows us to
use the vector processing tools built into OS X such as vDSP library. Using vDSP
functions, summing using the MPWRealArray code in Example 3.13 becomes yet
another 10 times faster than even the bulk processing scalar code, bringing the
performance relative to the NSArray + NSNumber combination to 1.3 μs.
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Figure 3.1 Time to create and sum a numeric 10,000-element array (microseconds)

Example 3.13 Summing using vDSP

@interface MPWRealArray : NSObject
{

int capacity;
NSUInteger count;
float *floatStart;

}

-(float)vec_reduce_plus
{

float theSum=0;
vDSP_sve ( floatStart, 1, &theSum, count );
return theSum;

}

This takes the time for a single addition to only 0.13 ns, showing off the true
power of our computing buzz saws. Creation is also another 4 times faster when
adding vector functions bulk real processing; at 3.5 μs for the entire array, this is now
1,000 times faster than creating an equivalent NSArray of NSNumbers.
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To bring this into perspective, a factor of 1,000 is close to the difference between
the clock speed of a Mac Pro and that of the author’s Apple ][+ with its 1-MHz 6502
processor!

Of course, you don’t have to use an array object. If performance is critical, you can
also always use a plain C array, which can store any type of primitive, struct, or
object. However, this method is without the conveniences of growability, taking care
of reference counting, safe access, or convenience methods.

Swift crosses the NSArray of Foundation with plain C arrays to get the Swift
array type: It provides most or all of the conveniences of an array object like
NSArray or MPWRealArray, while at the same time using generics to be applicable
to all types like a plain C array. The big advantage is that the temptation to use an
array of NSNumber objects or similar when you just wanted to store some integers or
reals has lessened dramatically. You just write [Int] when you want an array of
integers, or with type inference provide a literal array of integers. Access times are
reasonable and you still get growability and bounds checking.

The downside is that while it is harder to get unreasonably bad performance, it is
also currently hard to get the best possible performance. In my tests, the Swift
summation code was around 4 to 5 times slower than the equivalent Objective-C
code, though that is probably going to change as the optimizer is improved. Speaking
of the optimizer, unoptimized Swift array code was a shocking 1,000 times slower
than reasonably optimized Objective-C code, on par with the object-based code
provided here as a counterexample despite using primitives.

It is not exactly clear how Swift manages to be this slow without the optimizer,
the typical factor for C code being in the 3 to 4 range, and Objective-C often not
affected much at all. What is clear is that with this type of performance difference,
unoptimized debug builds are probably out of the question for any code that is even
remotely performance sensitive: when a task taking 100 ms optimized would take
almost 2 minutes in a debug build, you can’t really debug.

Dictionaries
The use of strings as keys mentioned in the “Strings” section of this chapter is usually
in conjunction with some sort of key-value store, and in Cocoa this is usually an
NSDictionary. An NSDictionary is a hash table mapping from object keys to
object values, so features average case constant O(k) read access time.3

However, the generic nature of the keys means that, as Table 3.5 and Table 3.6
show, k is a relatively large number in this case, 23 to 100 ns or 10 to 50 times slower
than a message-send. Furthermore, NSDictionary requires primitive types to be
wrapped in objects, with the performance consequences that were discussed in the
“Primitive Types” section in this chapter.

3. The average constant access time isn’t guaranteed by the documentation, but it has always been true, and
the CFLite source code available at http://opensource.apple.com confirms it.

http://opensource.apple.com
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Table 3.5 Cost of dictionary lookups by type of stored and lookup key, large key

Time to lookup by lookup key type (ns)

Stored keys Constant Regular Mutable CoreFoundation
string string string

Constant string 35 78 78 83
Regular string 78 80 80 85

Table 3.5 shows the more general cost of dictionary access, which is around 80 ns
per read if you don’t have hash collisions (when two or more keys map onto to the
same slot in the hash table). A single collision adds another 20 ns or so. The only time
that deviates from the roughly 80 ns standard is when you have constant strings both
as the keys of the dictionary and the key to look up. In this case, the lookup can be
more than twice as fast, probably due to the fact that constant strings can be
compared for equality using pointer equality due to being uniqued.

For small keys up to 7 characters, the tagged pointer optimization introduced in
OS X 10.10 also helps. As with constant strings, pointer comparison is sufficient here
because the value is stored in the pointer, but only if both strings are of the same type,
either both tagged pointers or both constant strings. Table 3.6 shows this effect:
When the key classes match, both constant strings and tagged pointer strings take
around 22 ns for a single lookup, but there is no benefit if the classes do not match.

So in order to get optimized dictionary performance, you need to make sure that
the class of the key used to store the value into the dictionary and the class of the key
used to retrieve the value match. If a string literal (@"key") was used to store the
value, it is best if a string literal is used to retrieve it.

If you cannot use a string literal on retrieval, your keys are short enough to fit in a
tagged pointer string. And if you retrieve values more often than you store them, it
may be helpful to convert the keys you use to store the values to tagged pointer
strings as was shown in Example 3.3: first do a mutable copy of the original key and
then a copy of the mutable copy. This will make your retrievals 2 to 4 times faster,
depending on the circumstances. (The detour via a mutable copy is necessary because

Table 3.6 Cost of dictionary lookups by type of stored and lookup key, small key

Time to lookup by lookup key type (ns)

Stored keys Constant Tagged Mutable CoreFoundation
string string string

Constant string 23 64 52 74
Tagged string 51 21 44 47
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all immutable strings, including constant strings, will just return self when asked to
copy themselves.)

Even with these optimizations for small and constant strings, it is therefore best to
look for alternatives to NSDictionary when there is a chance that performance
may be relevant, unless what is needed exactly matches the capabilities of
NSDictionary. The vast majority of dictionary uses are much more specialized, for
example, using only fixed strings as keys, and often having only a bounded and small
set of relevant or possible keys. The XML parser in Chapter 4 uses two types of
specialized dictionaries: MPWXMLAttributes for storing XML attributes that
supports XML semantics such as ordering and multiple values for a key and is tuned
for those use-cases, and the MPWSmallStringTable that maps directly from a
predefined set of C strings to objects.

MPWSmallStringTable does not use a hash-table but operates directly on the
byte-by-byte character representation, trying to eliminate nonmatching strings as
quickly as possible. While it is also approximately 4 times faster than NSDictionary
for the small constant string cases that NSDictionary is specially optimized for, its
main use is in dealing with externally generated string values, and for this use-case it
is anywhere from 5 to 15 times faster than NSDictionary.

Swift dictionaries, which are and use value types, and which benefit from generics,
are obviously faster than heavyweight NSDictionary objects that use slow objects,
right? Alas, that is currently not the case: In all my tests, Swift Dictionary access
was significantly slower than even NSDictionary. For example, a [String:Int]
map, which maps two value types and is therefore unencumbered by any legacy
Objective-C objects and “slow” dynamic dispatch, took anywhere from 140 ns to
280 ns per lookup, depending mostly on whether the key was a string literal or was
provided externally, respectively. This slowdown of 3 to 7 times, compared to
NSDictionary (and 17 to 25 times compared to MPWSmallStringTable) was
largely independent of compiler flags, though as typical of Swift, compiling without
any optimization causes a significant slowdown.

The easiest alternative to NSDictionary is to just define objects and use plain
messaging to access their contents, especially when the dictionary in question has a
reasonably small and mostly fixed set of keys. Not only is the first line of
Example 3.14 anywhere from 10 to 100 times faster, it is also a cleaner design because
message names are scoped by their class, whereas dictionary keys pollute the global
namespace and must therefore use unwieldy long names.

Example 3.14 One of these is 100 times faster

[myParagraph setLeading: 10.0];
[myParagraph setAttribute:[NSNumber numberWithFloat:10.0]

forKey:kMPWParaStyleLeading];

Why might one prefer to use a dictionary instead of an object? With the
nonfragile instance variables of the Objective-C 2.0 64-bit runtime and associated
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storage, future-proofing against additional required instance variable is no longer an
issue. Potentially sparsely populated objects can be handled by partitioning into one
or more subobjects to which the corresponding message are delegated and that are
allocated as needed.

As long as clients are provided with a messaging interface, the implementation can
be varied and optimized to fit. While it is tempting to provide a key-value based
interface instead, the flexibility it appears to offer is an illusion. Once an
NSDictionary-like key-value interface is provided to clients, the performance
characteristics are pretty much locked in, because mapping from NSString external
keys to messages or instance variable offsets internally is just about as costly in terms
of CPU usage as an NSDictionary proper. So instead, if an NSDictionary-based
internal representation is desired, it can and probably should be wrapped in an object
that maps its accessor messages to the dictionary.

The Macro in Example 3.15 allows you to add a messaging interface to a key in a
dictionary either statically by writing dictAccessor( var, setVar , [self
_myDict] ) in your implementation, where var is the key and [self
_myDict] is an expression that returns the dict to be used, or dynamically at
runtime, using the imp_implementationWithBlock() function to turn a block
into a method implementation.

Messaging
I’m sorry that I long ago coined the term
“objects” for this topic because it gets many
people to focus on the lesser idea. The big
idea is “messaging.”

Alan Kay

Whereas objects in Objective-C are little more than slightly specialized C
structures, the efficient and highly flexible message dispatch system is at the heart of
Objective-C. It combines true object encapsulation and the dynamicism of languages
such as Ruby or Smalltalk. Not only are Objective-C messages powerful, they are
also relatively cheap, only around twice the cost of a C function call and within an
order of magnitude of basic machine operations. Even an unoptimized message send
is around 10 times faster than keyed access via NSString, and 50 times faster than
object-creation, despite the fact that in the current Objective-C runtime, an
Objective-C selector, is really just a C string.

The reason that messaging via string selectors is so quick is that the compiler,
linker, and runtime conspire to guarantee that every C string representing an
Objective-C selector has a unique address, and therefore the Objective-C messenger
function objc_msgSend() does not have to concern itself with the string that the
selectors point at, but just uses the pointer itself as an uninterpreted unique integer
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Example 3.15 Generate and test dictionary-backed accessor method (statically or
dynamically)

#import <Foundation/Foundation.h>
#import <objc/runtime.h>
#define dictAccessor( objectType, var, setVar, someDict ) \

-(objectType*)var { return someDict[@""#var]; } \
-(void)setVar:(objectType*)newValue { \

someDict[@""#var]=newValue;\
}\

@interface MyObject : NSObject
@property (retain) NSMutableDictionary *dict;
@end
@interface MyObject(notimplemented)
@property (retain) NSString *a;
@property (retain) NSString *b;
@end
@implementation MyObject
-(instancetype)init {

self=[super init];
self.dict=[NSMutableDictionary new];
return self;

}
-(void)addDictAccessorForKey:(NSString*)key
{

SEL selector=NSSelectorFromString( key );
id (^block)()=^{
return self.dict[key];

};
imp=imp_implementationWithBlock( block );
class_addMethod([self class], selector, imp , "@:");

}
dictAccessor( NSString, b, setB , self.dict )
@end
int main()
{

MyObject *m=[MyObject new];

[m addDictAccessorForKey:@"a"];
m.dict[@"a"]=@"Hello";
m.b=@"World!";
NSLog(@"m.a: %@ m.b: %@",m.a,m.b);
return(0);

}



66 Chapter 3 CPU: Pitfalls and Techniques

value. In fact, as Brad Cox writes in Object-Oriented Programming: An Evolutionary
Approach, this selector-uniquing process was the main driver for converting
Objective-C from a set of C macros to an actual preprocessor, which then made it
possible to create a distinct syntax.

On Mac OS X 10.11 with Xcode 7.3.1, the code in Example 3.16 prints
selector: 'hasPrefix:', but the compiler already warns that cast of type
'SEL' to 'char *' is deprecated; use sel_getName instead. In
the GNU runtime, selectors are structure that reference both the message name and
its type encoding.

Example 3.16 Printing a selector as a C string using Apple’s runtime

#import <Foundation/Foundation.h>

int main()
{

SEL a=@selector(hasPrefix:);
printf("selector: %s\n",(char*)a);
return 0;

}

IMP Caching
Although developers new to Objective-C tend to worry most about message sending,
for example, compared to C++ virtual function invocation, the Objective-C
messenger function objc_msgSend() (or objc_msg_lookup() in GNU-objc) has been
highly optimized and is usually not a bottleneck.

In the rare cases that it does become a factor, it is possible to retrieve the function
pointer from the runtime and call that instead. The technique is known as IMP
caching because the type definition of an Objective-C method pointer is called an
IMP (implementation method pointer, or just IMPlementation). IMP caching can be
useful in a tight loop with a fixed receiver when the method itself is trivial and
therefore message dispatch is a major contributor. Example 3.17 shows a greater than
2.5-times improvement in runtime from 2.8 ns to 1.08 ns after subtracting loop
overhead.

Example 3.17 Replacing a plain message send with an IMP-cached message send

#import <MPWFoundation/MPWFoundation.h>
@interface MyInteger : NSObject
@property (assign) int intValue;
@end

@implementation MyInteger
@end
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int main()
{

MyInteger *myObject=[MyInteger new];
int a=0;
myObject.intValue=42;
for ( int i=0; i<1000; i++) {

a+=[myObject intValue];
}

IMP intValueFun=[myObject methodForSelector:@selector(intValue)];
for ( int i=0; i<1000; i++) {

a+=(int)intValueFun( myObject, @selector(intValue) );
}

}

Due to the dynamic nature of Objective-C, there is no automatic way of
determining at compile time whether this optimization is safe, which is one reason
the Objective-C compiler doesn’t do it for you. Fortunately, it is usually very easy for
a developer to make that determination. While there are numerous ways for the IMP
to change during execution (for example, loading a bundle that includes a category,
and using runtime functions to add, remove, or change method implementations or
even change the class of the object in question), all of these are rare events that
happen fairly predictably.

It is the developer’s job to ensure that either none of these events happen, or
alternately, that they do not have an impact on the computation.

A special case that needs to be considered when doing IMP caching is the nil
receiver. The Objective-C messenger quietly ignores messages to nil, simply
returning zero instead of dispatching the message. This short-circuiting protects
receivers from having to worry about a nil self pointer, and sender from having to
special case nil-receivers. IMP caching breaks this protection on several counts: If
the receiver is nil when requesting the IMP, a NULL function pointer will be
returned, and invoking such a NULL function pointer will crash the program. On the
other hand, if a correct function pointer was obtained from an earlier, non-nil object
pointer, calling that function pointer will call a method with a nil self pointer.
Any instance variable access from within that method will also crash the program.

So you will need to ensure both that you are not getting a NULL IMP and that
you don’t call an IMP with a nil receiver.

IMP caching can be particularly useful when sending messages to “known” objects
such as delegates or even self. Example 3.18 shows part of the actual header of the
object cache discussed in the “Mutability and Caching” section of this chapter. In
addition to the cache itself ( objs, cacheSize ) and the current pointer into the
cache objIndex, it also maintains IMP pointers for all the message sent in the
-getObject method from Example 3.10, allowing the actual -getObject to run
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without once invoking the messenger. In addition, it makes the IMP for the
-getObject method itself available in a @public instance variable, along with a
GETOBJECT() C-preprocessor macro to invoke it. The GETOBJECT macro is
actually slightly less code to write than a normal alloc-init-autorelease, is
8% faster even with a cache miss, is 15 times faster with a cache hit, and last but not
least decouples the user of the cache from the specific class used.

Example 3.18 Definition and use of an object cache for integer objects

@interface MPWObjectCache : MPWObject
{

id *objs;
int cacheSize,objIndex;
Class objClass;
SEL allocSel,initSel,reInitSelector;
IMP allocImp,initImp,reInitImp,releaseImp;
IMP retainImp,autoreleaseImp;
IMP retainCountImp,removeFromCacheImp;
@public
IMP getObject;

}

+(instancetype)cacheWithCapacity:(int)newCap class:(Class)newClass;
-(instancetype)initWithCapacity:(int)newCap class:(Class)newClass;
-getObject;
#define GETOBJECT( cache )

((cache)->getObject( (cache), @selector(getObject)))
...
@end
integerCache=[[MPWObjectCache alloc] initWithCapacity:20

class:[MPWInteger class]];
MPWInteger *integer=GETOBJECT( integerCache );
[integer setIntValue:2];

If IMP caching is insufficient and you have the source code of the method you
need to call available, you can always turn it into a C function, an inline function, or
even a preprocessor Macro.

Considering how little of a problem dynamic dispatch is in practice, and how easy
it is to remove the problem in the rare cases it does come up, it is a little surprising
how much emphasis the Swift team has placed on de-emphasizing and removing
dynamic dispatch from Swift for performance reasons.
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Forwarding
While close to C function call speeds on one end, Objective-C messages are flexible
enough to take the place of reified messaging and control structures on the other end.
For example, Cocoa does not have to use the Command pattern because messages
carry enough runtime information to be reified, stored, and introspected about so
something like the NSUndoManager can be built using the fast built-in messaging
system.

For your own projects, I would always recommend mapping any requirements for
dynamic runtime behavior onto the messaging infrastructure if at all possible, and
with a full reflective capabilities what is possible is very broad. The code in
Example 3.19 will execute the message to the object in question as a Unix shell
command, so [object ls] will execute the ls command, and [object date]
the date command. A more elaborate example would translate message arguments
to script arguments.

Example 3.19 Mapping sent messages to shell commands

#import <Foundation/Foundation.h>
@interface Shell:NSObject
@end
@interface Shell(notimplemented)
-(void)ls;
@end
@implementation Shell

-(void)forwardInvocation:(NSInvocation*)invocation {
system( [NSStringFromSelector( [invocation selector])

fileSystemRepresentation] );
}
-(void)dummy {}
-methodSignatureForSelector:(SEL)sel
{

NSMethodSignature *sig=[super methodSignatureForSelector:sel];
if (!sig) {

sig=[super methodSignatureForSelector:@selector(dummy)];
}
return sig;

}
@end

int main()
{

Shell *sh=[Shell new];
[sh ls];
return 0;

}
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Example 3.20 reads the file that is named by the sent message instead of executing
it, and perhaps somewhat more realistically, Example 3.21 looks up the selector in a
local dictionary.

Example 3.20 Mapping sent messages to file contents

#import <Foundation/Foundation.h>
@interface Filer:NSObject
@end
@interface Filer(notimplemented)
-(NSString*)hello;
@end
@implementation Filer

-(void)forwardInvocation:(NSInvocation*)invocation {
NSString *filename=NSStringFromSelector( [invocation selector]);
NSString *contents=[[NSString alloc]

initWithContentsOfFile:filename
encoding:NSISOLatin1StringEncoding
error:nil];

[invocation setReturnValue:&contents];
}
-(NSString*)dummy { return @""; }
-methodSignatureForSelector:(SEL)sel
{

NSMethodSignature *sig=[super methodSignatureForSelector:sel];
if (!sig) {

sig=[super methodSignatureForSelector:@selector(dummy)];
}
return sig;

}
@end

int main()
{

Filer *filer=[Filer new];
NSLog(@"filer: %@",[filer hello]);
return 0;

}

Example 3.21 Mapping sent messages to dictionary keys

-(void)forwardInvocation:(NSIvocation*)invocation {
id result=[[self dictionary] objectForKey:

NSStringFromSelectr([invocation selector])];
[invocation setReturnValue:&result];

}
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Uniformity and Optimization
Although there is no actual performance benefit for the implementations of
Examples 3.19 to 3.21, the benefit comes from using the fastest plausible interface, an
interface that can be kept the same all the way from reading files (3.20) via using
runtime introspection to look up keys (3.21), generating accessors to a keyed store at
runtime or compile time (3.15) or switching to an accessor for an actual instance
variable, and finally IMP caching that message send. You don’t have to start out fast,
but you have to use interfaces that allow you to become fast should the need arise.

The more I have followed Alan’s advice to focus on the messages, the better my
programs have become, and the easier it has been to make them go fast.

Methods
Objective-C methods generally fall into two rough categories: lean and mean C data
manipulation on one hand and high-level coordination using message sends on the
other.

For the data-manipulation methods, all the usual tricks in the C repertoire apply:
moving expensive operations out of loops (if there is no loop, how is the method
taking time?), strength reduction, use of optimized primitives such as the built-in
memory byte copy functions or libraries such as vDSP, and finding semantically
equivalent but cheaper replacements. Fortunately, the compiler will help with most of
this if optimization is turned on. In fact, instead computing the end-results of the
loops, LLVM/clang managed to optimize away most of the simple loops from our
benchmark programs unless we specifically stopped it.

In order to keep data manipulation methods lean and mean, it is important to
design the messaging interface appropriately, for example, passing all the data required
into the method in question, rather than having the method pull the data in from
other sources.

High-level coordination methods should generally not be executed very often and
therefore do not require much if any optimization. In fact, I’ve had excellent
performance results even implementing such methods in interpreted scripting
languages. A method triggering an animation lasting half a second, for example, will
take less than 0.2% of available running time even if it takes a full millisecond to
execute, which simply won’t be worth worrying about.

Pitfall: CoreFoundation
One of the recurring themes in this chapter has been leveraging C for speed and
making careful tradeoffs between the “C” and the “Objective” parts of the language
in order to get a balance between ease of use, performance, and decoupling and
dynamicism that works for the project at hand.

However, it is possible to get this terribly wrong, as in the case of
CoreFoundation. CoreFoundation actually throws out the fast and powerful bits of
Objective-C (messaging, polymorphism, namespace handling) and manages to
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provide a cumbersome monomorphic interface to the slow bits (heap allocated
objects). It then encourages the use of dictionaries, which are an order of magnitude
slower still. The way CoreFoundation provides largely monomorphic interfaces to
CoreFoundation objects that actually have varying internal implementations means
that each of those functions, with few exceptions, has to check dynamically what
representation is active and then run the appropriate code for that representation. You
can see this in the OpenSource version of CoreFoundation available at
http://opensource.apple.com/source/CF.

An Objective-C implementation leaves that task to the message dispatcher,
meaning that both method implementations can be clean because they will only be
called with their specific representation, also making it easier to provide a greater
number of optimized representations.

While I’ve often heard words to the effect that “our code is fast because it just uses
C and CoreFoundation and is therefore faster than it would be if it were to use
Objective-C,” this appears to be a myth. I’ve never actually found this claim to be
true in actual testing. In fact, in my testing, pure Objective-C equivalents to
CoreFoundation objects are invariably faster than their CoreFoundation counterparts,
and often markedly so. Sending the -intValue message shown in Example 3.17 is
already 30% faster than calling the CoreFoundation CFGetIntValue() function,
despite the message-passing overhead. Dropping down to C using IMP caching
makes it over 3 times faster than the CoreFoundation equivalent.

The same observations were made and documented when CoreFoundation was
first introduced, with users noticing significant slowdowns compared to the
non-CoreFoundation OPENSTEP Foundation (apps twice as slow on machines that
were supposed to be faster4). This obviously does not apply to the NSCF* classes that
Apple’s Foundation currently uses; these cannot currently be faster than their
CoreFoundation counterparts because they call down to CoreFoundation.

Multicore
As we saw in Chapter 1, Moore’s Law is still providing more transistors but no longer
significant increases in clock frequency or performance per clock cycle. This shift in
capabilities means that our single-threaded programs are no longer getting faster just
by running them on newer hardware. Instead, we now have to turn to multithreading
in order to take advantage of the added capabilities, which come in the form of
additional cores. Getting multithreading right is a hard problem, not just due to the
potential for race conditions and deadlocks, but also because the addition of thread
management and synchronization actually adds significant overhead that can be
difficult to break even on, despite the additional CPU resources that are unlocked
with multithreading.

4. http://www.cocoabuilder.com/archive/cocoa/20773-does-ppc-suck-or-has-apple-crippled-
cocoa.html#20773

http://opensource.apple.com/source/CF
http://www.cocoabuilder.com/archive/cocoa/20773-does-ppc-suck-or-has-apple-crippled-cocoa.html#20773
http://www.cocoabuilder.com/archive/cocoa/20773-does-ppc-suck-or-has-apple-crippled-cocoa.html#20773
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Due to the pretty amazing single-core performance of today’s CPUs, it turns out
that the vast majority of CPU performance problems are not, in fact, due to limits of
the CPU, but rather due to suboptimal program organization.5 I hope the factors 3 to
4, 10 to 20, and 100 to 1,000 of often easily attainable performance improvements I
have presented so far will convince you to at least give the code-tuning option serious
consideration before jumping into multithreading, which at best can achieve a
speedup to the number of cores in the system—and this is only for perfectly
parallelizable, so-called “embarrassingly parallel” problems.

S(N ) =
1

(1 − P) + P
N

(3.1)

Amdahl’s Law (Equation 3.1), relating the potential speedup (S ) due to
parallelization with N cores (S(N )) to the fraction of the program that can be
parallelized (P ) shows that the benefit of newer cores peters off very quickly when
there are even small parts of the program that cannot be parallelized. So even with a
very good 90% parallelizable program, going from 2 to 4 cores gives a 70% speedup,
but going from 8 to 12 cores only another 21%. And the maximum speedup even
with an infinite number of cores is factor 10. For a program that is 50% parallelizable,
the speedup with 2 cores is 33%, 4 cores 60% and 12 cores 80%, so approaching the
limit of 2.

While I can’t possibly do this topic justice here, it being worthy of at least a whole
book by itself, I can give some pointers on the specifics of the various multithreading
mechanisms that have become available over the years, from pthreads via
NSThread and NSOperationQueue all the way to the most recent addition,
Grand Central Dispatch (GCD).

Threads
Threading on OS X is essentially built on a kernel-thread implementation of POSIX
threads (pthreads). These kernel threads are relatively expensive entities to manage,
somewhat similar to Objective-C objects, only much more so. Running a function
my_computation( arg ) on a new POSIX thread using pthread_create, as
in Example 3.22, takes around 7 μs to of threading overhead on my machine in
addition to the cost of running my_computation() by itself, so your
computation needs to take at least those 7 μs to break even, and at least 70 μs to have
a chance of getting to the 90% parallelization (assuming we have a perfect distribution
of tasks for all cores).

Creating a new thread using Cocoa’s NSThread class method
+detachNewThreadSelector:… adds more than an order of magnitude of
overhead to the tune of 120 μs to the task at hand, as does the NSObject
convenience method -performSelectorInBackground:… (also Example 3.22).

5. James R. Larus. “Spending Moore’s dividend,” Communications of the ACM No. 5 (2009).
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Taking into account Amdahl’s Law, your task should probably take at least around
1 ms before you consider parallelizing, and you should probably consider other
optimization options first.

Example 3.22 Creating new threads using pthreads, Cocoa NSThread, or convenience
messages

pthread_create( &pthread, attrs, my_computation, arg );
[NSThread detachNewThreadSelector:@selector(myComputation:)

toTarget:self
withObject:arg];

[self performSelectorInBackground:@selector(myComputation:)
withObject:arg];

So, similar to the balancing of OOP vs. C, getting good thread performance
means finding independent tasks that are sufficiently coarse-grained to be worth
off-loading into a thread, but at the same time either sufficiently fine-grained or
uniformly sized that there are sufficient tasks to keep all cores busy.

In addition to the overhead of thread creation, there is also the overhead of
synchronizing access to shared mutable state, or of ensuring that state is not
shared—at least, if you get it right. If you get it wrong, you will have crashes, silently
inconsistent and corrupted data, or deadlocks. One of the cheapest ways to ensure
thread-safe access is actually pthread thread-local variables, accessing to such a
variable via pthread_getspecific() is slightly cheaper than a message send. But
this is obviously only an option if you actually want to have multiple separate values,
instead of sharing a single value between threads.

In case data needs to be shared, access to that data generally needs to be protected
with pthread_mutex_lock() (43 ns) or more conveniently and safely with an
Objective-C @synchronized section, which also protects against dangling locks
and thus deadlocks by handling exceptions thrown inside the @synchronized
section. Atomic functions can be used to relatively cheaply (at 8 ns, around 10 times
slower than a simple addition in the uncontended case) increment simple integer
variables or build more complex lock-free or wait-free structures.

Work Queues
Just like the problem of thread creation overhead is similar to the problem of
object-allocation overhead, so work queues are similar to object caches as a solution
to the problem: They reuse the expensive threads to work on multiple work items,
which are inserted into and later fetched from work queues.

Whereas Cocoa’s NSOperations actually take slightly longer to create and
execute than a pthread (8 μs vs. 7 μs), dispatching a work item using GCD
introduced in Snow Leopard really is 10 times faster than a pthread, at 700 ns per
item for a simple static block, and around 1.8 μs for a slightly more complex block
with arguments like the one in Example 3.23.
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Example 3.23 Enqueuing GCD work using straight blocks

dispatch_async(
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0),
^{ [self myComputation:arg];} );

I personally prefer convenience messages such as the -async Higher Order
Message (HOM),6 which simplifies this code to the one shown in Example 3.24 at a
cost of an extra microsecond.

Example 3.24 Enqueuing GCD work using HOM convenience messages

[[self async] myComputation:arg];

In the end, I’ve rarely had to use multithreading for speeding up a CPU-bound
task in anger, and chances are good that I would have made my code slower rather
than faster. The advice to never optimize without measuring as you go along goes
double for multithreading. On the flip side, I frequently use concurrency for
overlapping and hiding I/O latencies (Chapter 12) or keeping the main thread
responsive when there is a long running task, be it I/O or CPU bound (Chapter 16).
I’ve also used libraries that use threading internally, for example, the vDSP routines
mentioned earlier or various image-processing libraries.

Mature Optimization
We should forget about small efficiencies,
say about 97% of the time; premature
optimization is the root of all evil.

D.E. Knuth

Optimizing Objective-C programs is, in the end, not necessarily hard. In fact, this
very amenability to optimization in general and late-in-the-game optimization in
particular is a large part of what makes this language popular with expert
programmers: you really can leave the “small efficiencies,” a few of which we’ve
shown, for later.

Although Knuth’s quote above is well-known, what is less well-known is that it is
just an introduction to extolling the importance and virtues of optimization. It
continues as follows:

Yet we should not pass up our opportunities in that critical 3%. A good
programmer will not be lulled into complacency by such reasoning, he will be wise
to look carefully at the critical code; but only after that code has been identified.

6. Implementation can be found at https://github.com/mpw/HOM.

https://github.com/mpw/HOM
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And the section before the one in question couldn’t be more different:

The conventional wisdom shared by many of today’s software engineers calls for
ignoring efficiency in the small; but I believe this is simply an overreaction to the
abuses they see being practiced by penny-wise-and-pound-foolish programmers,
who can’t debug or maintain their “optimized” programs. In established
engineering disciplines a 12% improvement, easily obtained, is never considered
marginal; and I believe the same viewpoint should prevail in software engineering.
Of course I wouldn’t bother making such optimizations on a one-shot job, but
when it’s a question of preparing quality programs, I don’t want to restrict myself
to tools that deny me such efficiencies.

“Structured Programming with Go To Statements,” Knuth, 1974.

The quote is embedded in the paper “Structured Programming with Go To
Statements” from 1974, which is largely about achieving better performance via the
use of go to statements. It is in fact, in large part, an advocacy piece for program
optimization, not against it, containing such gems as the idea that engineers in other
disciplines would be excluded from practicing their profession if they gave up
performance as readily as programmers.

What makes Objective-C so powerful is that once you have the information as to
what needs optimization, you can really pounce, smash-bits, and exploit all the
hardware has to give. Both until that point and for the parts that don’t need it, you
can enjoy the remarkable productivity of a highly dynamic object-oriented language.

Swift takes a different approach: make everything much more static up-front and
then let the compiler figure it out. While superficially sound, this approach inverts
Knuth’s dictum by making microperformance a deciding factor in not just application
modeling, but language design. In addition to the approach being questionable in
principle, it currently just doesn’t work: Swift is not just slower than optimized
Objective-C, it is often significantly slower than non-optimized Objective-C,
without any further recourse than waiting for the compiler to get better or rewriting
your code in C. So that questionable premature optimization doesn’t even pay off.

That said, a little bit of structural forethought and planning is extremely helpful in
order to enjoy the benefits of late optimization: You should have an idea of the order
of magnitude of data you will be dealing with (one, a thousand, a million?), what
operations you need to support, and whether the machine you are targeting can
handle this amount of data, at least in principle.

As you are designing the system, keep in mind the asymmetric 1:5:50:200
relationship for primitive operations : messaging : key-value access : object creation
that we have illuminated throughout this chapter. With that in mind, see if your most
numerous pieces of data can be mapped to primitives, and try to keep your interfaces
as message-centric as possible. The messaging system has a nice sweet spot in the
relationship between cost and expressiveness.

The arguments of those messages should be as simple (primitive types preferred)
and expressive as possible. Large-volume data should be contained in bulk objects and
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hidden behind bulk interfaces. Key-value stores, if needed, should be hidden behind
messaging interfaces and temporary objects should be avoided, especially as a
requirement for an interface. If temporary objects can’t be avoided, try to keep your
APIs defined in such a way that you will be able to “cheat” with object caches or
other techniques for reusing those objects when the time comes.

Fortunately, these measures tend to simplify code, rather than make it more
complicated. Simpler, smaller, well-factored code is not only often faster than
complicated code, because code that isn’t there doesn’t take any time to run, it also
makes a much better basis for future optimization efforts because modifying a few
spots will have a much greater impact.
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4
CPU Example: XML Parsing

My forays into XML parsing started long before Cocoa had acquired XML parsers,
at a company (www.infopark.com) building a Web Content Management System
(CMS) in Objective-C on Solaris and a bunch of other Unix platforms. Apple had
just been acquired by NeXT (or was it the other way around?), so even Cocoa was
actually called OPENSTEP and barely starting to morph into Yellow Box on
Rhapsody.

You will therefore not see any “newfangled” technologies such as Swift, ARC, or
even Objective-C 2.0 properties. However, historical accuracy is only one small
reason; after all, it would have been easy to update the code. The more important
reason is that these technologies are not adequate at these performance levels. When
the placement of a single -retain can make a significant difference in overall
performance, you can’t have the compiler insert them semi-randomly and hope the
optimizer will get rid of all of them.

One of the cooler features of the CMS was that it had a website importer that
could suck in your existing website and bring it into full multiuser online editing and
version control all with the click of a button, similar to the way NeXT’s Enterprise
Object Framework and WebObjects could automatically connect to a legacy database
(mainframe with the 3270 adapter), extract the schema, and automatically create a
simple online CRUD app within seconds—where teams of programmers had often
struggled for months.

Alas, the magic of the auto import was hampered by the fact that it took
nonmagical amounts of time, so I started to look at how to make it a bit more
magical on the performance front.

One of the main culprits turned out to be our custom HTML “tag-soup” parser,
which simply broke up the input into the categories tag and not tag, and then
processed that tag soup to extract metadata such as the title, converted URLs in
image, and anchor tags into database references if they resolved to other imported
content or external reference objects if they did not.

The basic parser had been constructed using the parser construction toolkits flex
and bison, which seemed like the obvious tools for the job. It clocked in at a

http://www.infopark.com
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disappointing 200 KB/s on a then state-of-the art SPARC Ultra that had replaced
our pokey but reliable SPARCStation 5 as main (shared) development box.

Considering the clock speed of the machine of upwards of 100 MHz, the memory
access speed below 100 ns, it seemed we should be able to do at least an order of
magnitude better.

An HTML Scanner
Instead of analyzing the complex, table-driven code created by the parser-generator,
it seemed simpler to use an experimental additive approach: build the simplest
possible solution to the most relevant and hopefully performance-dominant
subproblem of the original problem and then enrich while keeping performance
impacts of the enrichments as minimal as possible.

The very least that an HTML parser has to do is look at every character in the
source file and figure out whether it belongs to a tag or to text that is outside a tag,
splitting the HTML source <b>bold text</b> into the open tag <b>, the text
bold text and the close tag </b>. A simple way to do this is with a state machine
like the one in Example 4.1. It has two states, inTag and inText. When in the
inText state, a left angle bracket switches to the inTag state, and when in the
inTag state, a right angle bracket switches back to the inText state. Every state
transition is used to report the region that was just completed using the provided
callback function.

Example 4.1 Simplest XML Scanner

typedef enum {
inText = 0,
inTag,
inSgmlTag} ScanState;

typedef int (*CallbackFun)(ScanState,const char*,size_t);
int scanHtml(const char *data,int len,CallbackFun note)
{

const char *end = data+len;
const char *start = data;
const char *cur = start;
ScanState state = inText;
int count=0;

while ( cur < end ) {
switch (state) {

case inText:
if ( *cur == '<' ) {

count += note( state, start, cur-start );
state = inTag;
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start = cur;
}
break;

case inTag:
if ( *cur == '>' ) {

count += note( state, start, cur-start );
state = inText;
start = cur;

}
break;

}
cur++;

}
return count;

}

Since characters are the most common entities in the problem-space, the
assumption is also that the code that actually has to examine every character is a good
proxy for the overall cost of an XML/HTML parser, even if the operations on the
characters are less costly than those on higher-level entities such as tags or elements.
This assumption would later prove wrong.

The code in Example 4.2 uses the callback function to count tags. It clocked in at
around 7 MB/s on the same hardware that managed just 200 KB/s with the previous
parser, an improvement of 35 times. On modern hardware, it performs at around
600 MB/s or about 1.6 ns per byte.

Example 4.2 Counting tags

int countTags(ScanState state, const char *ptr, size_t len )
{

return state == inTag ? 1:0;
}

int main( int argc, char * argv[] ) {
[NSAutoreleasePool new];
int i;
int numTags=0;
NSString *filename=[NSString stringWithUTF8String:argv[1]];
NSData *xml=[NSData dataWithContentsOfMappedFile:filename];
numTags += scanHtml( [xml bytes], [xml length], countTags );
printf("numTags: %d\n",numTags);
return 0;

}



82 Chapter 4 CPU Example: XML Parsing

Note that the code doesn’t actually do any processing of the data itself, it just
provides the noteParsed function with pointers to sections of the original data,
annotated as text or tag. The difference between this type of non-extractive
processing—which just annotates a piece of data—and more normal extractive
processing—which actually processes the data—is shown in Figure 4.1 using the
XML text <greeting>hello world!</greeting> as an example.

In extractive processing (shown in the top of Figure 4.1), we allocate a new string
object for every significant XML structure we encounter in the original data—in this
case an open tag, some content, and a close tag. We then proceed to copy the parsed
content from the original data into the new structures, and then proceed with further
specific processing.

In non-extractive processing, we don’t really do anything once we encounter an
element of interest, we just notify our client what the element is and where it can be
found in the original bytes.

This is already sufficient for many kinds of processing, for example, extracting just
the text content or counting tags, but it doesn’t yet deal with decoding the tags,
attributes, or other structured elements of the file. It can also reproduce the original
file verbatim and do partial processing on a few interesting bits.

One bit of inefficiency in the code in Example 4.1 is that it follows the
prototypical state-machine code very closely, going through the switch statement
for every character and then testing the current character for the condition. This
repeated checking of the state is redundant because once we are in a state, we know
that we will stay in that state until we encounter the character that causes the state to
switch. Turning the if conditionals for the exit condition into while loops for the
continuation condition fixes this and speeds up the scanner variant in Example 4.3 to
slightly over 1 GB/s.

"greeting" "hello world!" "greeting"

open content close

< g r e e t i n g > h e l l o  w o r l d ! < / g r e e t i n g >

open content close

temporary string objects

pointers into original

copy data into strings

tag/content objects

tag/content objects

original XML data

Figure 4.1 Extractive vs. non-extractive processing
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Example 4.3 Unrolled state machine

...
case inText:
while ( cur < end && *cur != '<' ) {

cur++;
}
count+=note( state, start, cur-start );
state=inTag;
start=cur;
break;

...

This ability to “correctly do nothing very quickly” is helpful not just as
performance baseline, but also as the actual basis for further processing. Of course, the
code as shown isn’t actually correct yet, because XML attributes are allowed to
contain the unquoted right angle bracket (yes, it’s weird, but that’s what the spec said),
so the real parser has to correctly interpret attributes in order to tell tags apart. Along
with some other details, such as identifying entities (e.g., &amp;), XML comments,
processing instructions, ignorable whitespace, CDATA sections, and the actual parts
and variants of tags, this adds enough complexity to bring the basic processing rate
down to between 330 and 460 MB/s, depending on the contents of the file.

Mapping Callbacks to Messages
Passing a callback to the scanner as a function pointer is already pretty close to
providing a message interface; however, it makes the interface very complex, as
shown in Example 4.4, which is the actual XML scanner interface used today.
Example 4.5 shows the Objective-C translation of that callback-based interface,
and Example 4.6 shows how the messages in the Objective-C protocol are mapped
onto the callbacks needed by the scanner. That way, when the scanner calls its
callbacks, it directly executes the methods in the delegates implementation of the
MPWXmlScannerDelegate protocol.

Example 4.4 Complete scanner interface

typedef BOOL (*ProcessFunc) (void*, void* ,const xmlchar*,int,int);
typedef BOOL (*AttrFunc) (void*,void*,const xmlchar*,int,

const xmlchar*,int);
static int scanXml(const xmlchar *data,

unsigned int charCount,
ProcessFunc openTagCallback,
ProcessFunc closeTagCallback,
ProcessFunc declarationCallback,
ProcessFunc processingInstructionCallback,
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ProcessFunc entityReferenceCallback,
ProcessFunc textCallback,
ProcessFunc spaceCallback,
ProcessFunc cdataCallback,
AttrFunc attributeValueCallBack,
void *clientData)

Example 4.5 The XML Scanner delegate Objective-C Protocol

@protocol MPWXmlScannerDelegate
@optional
-(BOOL)beginElement:(const char*)fq length:(int)len nameLen:(int)l;
-(BOOL)endElement:(const char*)fq length:(int)len;
-(BOOL)makeText:(const char*)start length:(int)len

firstEntityOffset:(int)eo;
-(BOOL)makeSpace:(const char*)start length:(int)len;
-(BOOL)makeCData:(const char*)start length:(int)len;
-(BOOL)makeSgml:(const char*)start length:(int)len nameLen:(int)l;
-(BOOL)makePI:(const xmlchar*)start length:(int)len nameLen:(int)l;
-(BOOL)attributeName:(const xmlchar*)n length:(int)l

value:(const char*)v length:(int)vl;
-(BOOL)makeEntityRef:(const xmlchar*)start length:(int)len;

@end

Example 4.6 Map delegate messages to scanner callback functions

#define IMPSEL(theSel)[delegate methodForSelector:@selector(theSel)]

-(void)_initDelegation
{

if ( nil != delegate ) {
text = IMPSEL(makeText:length:firstEntityOffset:);
space = IMPSEL(makeSpace:length:);
cdataTagCallback = IMPSEL(makeCData:length:);
sgml = IMPSEL(makeSgml:length:nameLen:);
pi = IMPSEL(makePI:length:nameLen:);
openTag = IMPSEL(beginElement:length:nameLen:namespaceLen:);
closeTag = IMPSEL(endElement:length:namespaceLen:);
attVal =

IMPSEL(attributeName:length:value:length:namespaceLen:highBit:);
entityRef = IMPSEL(makeEntityRef:length:);

}
}

-(BOOL)scan8bit:(NSData*)aData
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{
BOOL success = NO;
[self setData:aData];
success = (scanXml( [data bytes], [data length] / sizeof(xmlchar),

openTag, closeTag, sgml,pi, entityRef,
text,space,cdataTagCallback,attVal,
delegate ) == SCAN_OK);

[self setData:nil];
return success;

}

The mapping is made easier by the fact that both the ProcessFunc and the
AttributeFunc were chosen to conform to the Objective-C method calling
convention, which means that their first argument is the delegate object and the
second parameter is extraneous, being the slot reserved in Objective-C messages for
the selector that’s passed in the hidden _cmd argument.

The upshot of this chicanery is that on one hand the users of this scanner class can
implement plain old Objective-C classes and methods, but on the other, the
implementation will interface these methods to the high-performance C scanner at
zero extra cost during the parse.

The length parameters are currently all of int type, so they are “limited” to
32 bits, and due to the sign bit actually to 31 bits, or around 2 GB. While this does
impose a limit on the total size of the XML file, it might make sense to upgrade these
to size_t if XML files with very large individual elements are required.

Objects
The approach described above sped up the tag-soup parser of the CMS import
process sufficiently that it was now quite speedy, and more importantly, limited by
factors other than the parser, such as database performance or I/O bandwidth. A
number of years later, I became interested in mixing high-quality documents with
structured data such as invoices in lieu of having databases generate invoices, for
example. XML with namespaces looked like it might do the job, but I had to see
whether it would have the performance to use the documents instead of a centralized
database for queries and such.

By the time XML parsing became a practical need again, rather than just a
theoretical consideration, two standard APIs for XML parsing had become widely
accepted, and so there was hope of just reusing an existing solution rather than having
to roll my own. First was the W3C’s Document Object Model (DOM), which specified
a tree of Node objects representing the information content of an XML file, the XML
Infoset. Once a document has been parsed, the tree of DOM Nodes can be asked
about its properties such as the name of an element or attribute, or navigated by listing
attributes or child elements. The entire DOM tree must be resident in memory.

Having to have the entire document in memory at once presented a problem for
processing very large documents that the Simple API for XML (SAX) was designed to
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solve. Instead of a complete document that can be examined, a SAX parser sends the
client messages for individual events in the XML file (such as “open tag
encountered,” “character data encountered”) as they occur in the file, and then forges
ahead without retaining much further state.

Mac OS X started providing the SAX interface with the NSXMLParser class in
Mac OS X 10.3 and the DOM interface in 10.4 using NSXMLDocument. iOS only
has NSXMLParser and so does not provide an Objective-C level DOM interface,
probably due to memory considerations.1

For my particular application, streaming seemed the way to go since the
documents could potentially get large and I would typically be interested in some
small subset of the entire document.

The first attempts with NSXMLParser, which wraps libxml2, were disappointing,
and given the earlier experience with XML parsing, it seemed I should be able to do
better. Alas, my own trivial attempts at creating an NSXMLParser-compatible SAX
API by wrapping objects around the output of my C scanner were more than
disappointing, slower even than the built-in parsers. Further investigation revealed
that a third parser, the opengroupware project’s SOPE XML parser, which also wraps
libxml2 in Objective-C, achieved performance almost identical to NSXMLParser at
around 7 MB/s. Obviously there was something going on.

The something was object allocation, with a little bit of API mismatch thrown in
for good measure. You might recall from Chapter 3 that object allocation costs
around 200 ns on current hardware, whereas we saw earlier in this chapter that
character data can be processed at approximately 3 to 4 ns/character. The disparity is
large enough that it overcomes the “bulk dominates” rule of thumb for many inputs,
as demonstrated by following example:

<a href="http://www.apple.com">apple</a>

Even with a reasonably efficient SAX object encoding, this 39-character XML
fragment creates a minimum of 6 objects:

1. The string name of the opening tag a
2. A dictionary for the attributes
3. The string key href
4. The string value http://www.apple.com
5. The content apple
6. A string for the close tag a

With a rate of one object per 6.5 characters (39/6), 85% to 90% of the time is
spent just creating the objects representing the XML content, with only 10% to 15%

1. This is one area where the simulator and the device differ: the simulator actually has NSXMLDocument.

http://www.apple.com
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dedicated to scanning. As a quick back-of-the-envelope performance estimate, this
implies an upper performance bound of about 25 MB/s for an object-oriented XML
API, and that’s only for the unrealistic assumption that scanning and object creation
are the only activities. It also implies that the effort optimizing the scanner was a
complete waste of time unless we can speed up or finesse the object-allocation issue.

Furthermore, libxml2 provides a “final” interface for interacting with XML data,
rather than just a simple scanner, so it already does a significant amount of processing.
For example, its SAX interface delivers NUL terminated strings, meaning it has to
malloc() buffers and copy the strings from the actual XML content into those
buffers. This processing is necessary or at least desirable for a final consumer of the
API, but it doesn’t come for free, with libxml2 clocking in around 100 MB/s. For
someone only wrapping the results in yet another API, much of this processing has to
be duplicated; for example, the character data is copied from the buffer malloc()ed
by libxml2 into a buffer allocated by Foundation. This API mismatch problem occurs
frequently and is something to watch out for when wrapping C APIs or when
creating such APIs.

Objects, Cheaply
Before moving on, we obviously need to check whether our back-of-the-envelope
calculations about the relative cost of object creation in XML parsing are true. Using
the Invert Call Tree setting of the Time Profile instrument should point us to the
obvious bottlenecks of a program, and our reasoning leads us to believe that we
should have such a bottleneck in object allocation.

Figure 4.2 seems to indicate that this is the case, but it is a little too cluttered to
actually be sure what is going on. One of the many handy data-mining features in
Instruments is the ability to remove a function from the call tree and charge its cost to
the callers of said function. Using this charging feature to remove many of the helper
functions used in allocation yields the much clearer picture seen in Figure 4.3. The
malloc library functions free() and calloc() alone account for over 31% of the
total runtime, and the vast majority of the function in that top 31% is related to
storage allocation.

Fortunately, we have object caching to help us with this case, and it seems ideally
suited for SAX-style parsing: The objects are created temporarily and then
immediately discarded by the parser, and a lot of very similar objects are being created.

However, we can’t use ordinary NSString objects for this task because they aren’t
really amenable to being reinitialized, and also want to copy the character content
into their private buffer, which would defeat the purpose of avoiding object
allocations by requiring buffer allocations. The MPWSubData class shown in
Example 4.7 encapsulates the concept of range of bytes in buffer that can be a string in a
simple Objective-C class.



88 Chapter 4 CPU Example: XML Parsing

Figure 4.2 Performance of non-optimized XML SAX parser

Example 4.7 MPWSubData class definition

@interface MPWSubData : NSString <NSCoding>
{

NSData* referencedData;
const void *myBytes;
unsigned int myLength;

}

One subtlety of MPWSubData is that it works a lot like a NSData, but is actually a
NSString subclass, so it is NSString compatible. This only works with string
encodings that have a 1:1 mapping between bytes and characters, such as ASCII or
ISOLatin1. As almost all XML content these days is UTF-8-encoded, which does
not fit this requirement, this seems like a nonstarter at best. However, it turns out
that, by design, ASCII is a subset of UTF-8, so the parser detects when fragments are
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Figure 4.3 Performance of non-optimized XML SAX parser, pruned results

pure ASCII and uses MPWSubData for those fragments, resorting to creating a plain
NSString when the data cannot be represented as ASCII.

Fortunately, most content happens to be representable in the ASCII subset of
UTF-8, for example, almost all the actual XML machinery such as tags and attributes
and so forth. This XML-specific data is also the data that is temporary, so exactly the
data where not-creating permanent objects pays off, so the whole scheme turns out
to work rather well.

An MPWSubData object is initialized with the buffer that it is referencing (an
NSData and the location and length of its referenced section within the data (see
Example 4.8). It retains the referenced NSData so the underlying buffer doesn’t get
deallocated out from underneath it. Since it will typically be used multiple times with
the same buffer, it optimizes for the case that the buffer has already been set up
correctly in order to avoid the unnecessary reference counting operations, which
would otherwise significantly impact total performance.
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Example 4.8 Reinitializing an MPWSubData

-reInitWithData:(NSData*)data bytes:(const char*)bytes
length:(unsigned)len

{
if ( data != nil ) {

if ( referencedData != data ) {
[referencedData release];
referencedData=[data retain];

}
} else {

[NSException raise:@"subdata (re-)initialized with nil data"
format:@"subdata (re-)initialized with nil data"];

}
myBytes=bytes;
myLength=len;
return self;

}

Evaluation
With the object cache in place and delivering MPWSubData objects, most of the
object creation that would have taken place in the SAX parser is replaced with
reinitializing a couple of pointers and manipulating the circular buffer. On my
291-MB sample file, this takes the processing rate from 27 MB/s to 163 MB/s, an
improvement of 5 times. The profile shown in Figure 4.4 also shows that object
allocation is now much more subordinate and most of the time is spent actually
scanning the XML file, though even our optimized -getObject method still
manages to make a showing!

It is important to note that in a sense, object allocation has only been delayed, not
eliminated. If the client retains every object it receives via this interface, the caches
will have little effect and the parser will need to create new objects every time instead
of reusing previously allocated objects. However, delaying turns into eliminating in
almost all practical scenarios, as the vast majority of the “strings” created during
parsing of a textual file format do not end up as strings in the final output, even when
the final output is completely retained in memory. We showed this in the “Strings”
section of Chapter 3 when discussing strings: most of the original data is structural,
being replaced by object structure; some is numeric content, usually replaced by
primitive number; and only a tiny rest is actual textual content.

On OS X 10.8 through 10.11, Apple’s NSXMLParser manages 44 MB/s on the
same file, which is both faster than our unoptimized version and also significantly
faster than the NSXMLParser implementations in previous OS versions, even when
controlling for improvements in hardware. However, it seems that in achieving this
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Figure 4.4 Performance of an optimized XML SAX parser

performance improvement it has run afoul one of the pitfalls of caching: caching
(way) too much. The first indicator is the top output in Figure 4.5, showing 997 MB
of RPRVT memory use (dirty memory used by the process itself and not shared).
Running the heap tool in the output below shows that this initial assessment was
essentially correct, but too low: there are 320 MB of NSString objects, 270 MB of
NSDictionary, and 1.1 GB of “non-object” memory allocated on the heap, for a
grand total of over 1.6 GB, or an expansion factor of around 5 compared to the XML
file size (which is memory mapped and therefore does not show up in heap).

COUNT BYTES AVG CLASS_NAME TYPE BINARY
===== ===== === ========== ==== ======

5065886 327737200 64.7 __NSCFString ObjC CoreFoundation
1069417 271887024 254.2 __NSDictionaryM ObjC CoreFoundation

2921 1155338256 395528.3 non-object
8 5760 720.0 CFBasicHash CFType CoreFoundation
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Figure 4.5 top output for NSXMLParser parsing a 291-MB XML file

Using 5 times the memory of the input file is less than ideal even for a DOM
parser that is supposed to retain the complete file in memory, though it may be
unavoidable. However, having any memory increase that is proportional to the size of
the input file is really unacceptable for a streaming SAX parser, which should have a
constant memory footprint regardless of the size of the input file. Not only having
such a proportional increase in the first place, but having it be 5 times the size of the
input is comically bad.

Our parser is around 4 times faster than NSXMLParser, and also remains a true
streaming processor. Memory use as recorded by top in Figure 4.6 remains constant
at around 900 KB, which is close to the overhead of an Objective-C process. This
memory remains constant regardless of the size of the input file: the top output
shows 15 s of CPU use because we had to run the parser 10 times on the input in
order to have time to take the screenshot, meaning that by this time the parser had
processed around 2 GB of XML data, but memory is still at 900K. The heap output
that follows shows that essentially no objects are allocated, except for a few
MPWSubData and MPWXMLAttributes objects lingering in their respective caches.
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Figure 4.6 top output for MPWXMLParser parsing 291-MB XML file 10 times

COUNT BYTES AVG CLASS_NAME TYPE BINARY
===== ===== === ========== ==== ======
1035 147440 142.5 non-object
90 4320 48.0 MPWSubData ObjC MPWFoundation
71 3408 48.0 OS_xpc_uint64 ObjC libxpc.dylib
19 3952 208.0 MPWXMLAttributes ObjC ObjectiveXML

Tune-Ups
Although object caching is a big win, many smaller tweaks also help. For example,
the delegate remains constant during parsing, so messages sent to it can be
IMP-cached—as can any high-frequency internal message sends, for example, those
to the object-cache.

The stack of open tags used to check for well-formedness (close tags match open
tags) is internal to the parser and implemented using a C array of structures. The
object representing the open tag is cached in that stack and reused for the close tag
after it is verified that they match. Finally, note that actual character data is not
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modified or copied; the parser only ever produces references to the original bytes,
also remembering the encoding in case a client actually accesses the data. This yields a
“pay as you go” performance cost structure, where actual work is avoided unless and
until it is really needed.

Optimizing the Whole Widget: MAX
XML parsers are typically used to extract useful data from the XML file in question,
meaning that user code has to interact with the parse results. As we have seen, DOM
and SAX parsers present developers with an uncomfortable trade-off: DOM parsers
are reasonably convenient but inherently inefficient, even with the improvements
proposed here. They require the entire XML document to be parsed into an
in-memory tree representation that requires at least 6 times as much memory as the
already verbose textual XML representation, all before application-level processing
can even begin.

SAX parsers, on the other hand, can be made very efficient but require fairly
sophisticated code for most nontrivial tasks, code that is difficult to get right, and
code that is even more difficult to get fast. Example 4.9 gives a small taste of what
using a SAX parser actually looks like. Whereas we only handle one particular XML
element type, we simulate a more realistic scenario by checking for 10 more, though
the file type in question has over 50, which would actually all need to be handled in a
similar fashion.

Example 4.9 Simulating load and parsing abstracts with SAX

@interface MedParser:NSObject
{

NSMutableString *content;
NSMutableArray *abstracts;

}
@property (strong,nonatomic) NSMutableString *content;
@property (strong,nonatomic) NSMutableArray *abstracts;
@end
@implementation MedParser

- (void)parser:(NSXMLParser *)parser
didStartElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName
attributes:(NSDictionary *)attributeDict

{
if ( [elementName isEqual:@"AbstractText"] ) {
[self setContent:[NSMutableString string]];

} else {
[self setContent:nil];

}
}
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- (void)parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName

{
if ( [elementName isEqual:@"Abstract"] ) {
} else if ( [elementName isEqual:@"AbstractText"] ) {

[abstracts addObject:content];
[self setContent:nil]];

} else if ( [elementName isEqual:@"Acronym"] ) {
} else if ( [elementName isEqual:@"Affiliation"] ) {
} else if ( [elementName isEqual:@"Agency"] ) {
} else if ( [elementName isEqual:@"Article"] ) {
} else if ( [elementName isEqual:@"ArticleTitle"] ) {
} else if ( [elementName isEqual:@"Author"] ) {
} else if ( [elementName isEqual:@"AuthorList"] ) {
} else if ( [elementName isEqual:@"Chemical"] ) {
}

}

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string
{

[content appendString:string];
}

The XML file in question is a 130-MB database of medical journal articles. It
parses in 1.3 s with the basic SAX parser from the “Objects, Cheaply” section of this
chapter and in 5.3 s using NSXMLParser. Adding the client-side code from
Example 4.9 adds 1.7 s to both timings, bringing them to 3.0 and 7.0 s, respectively.
Of course, that same 1.7 s represents only a 32% increase in runtime for
NSXMLParser, whereas it’s a 130% increase for our SAX parser, meaning our
efficient XML parser is being swamped by client-side processing costs, even when
only doing a very limited amount of processing.

The reason, of course, is that the SAX API pretty much requires clients to perform
string-comparison and/or lookups in order to dispatch the proper action for a specific
XML tag/element, an operation that, as we explored earlier, is quite expensive with
NSString and CFString. Checking with instruments confirms this hypothesis, but
can those string comparisons really be eliminated?

The Messaging API for XML (MAX) does just that: it leverages the Objective-C
runtime and a few tuned objects to turn those string comparisons into message sends.
Every XML element encountered is turned into a message of the form
<ElementName>Element:attributes:parser: that is sent to the parse
delegate. The parameters are the sub-elements of this particular element, already
processed by the parser, the attributes, and the parser object itself in case the client
needs more information. The message is expected to return an object representing
that element, which is then presented as an argument to processing messages higher
up the element stack.
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Example 4.10 shows the MAX client code for the same parser implemented with
SAX in Example 4.9. The -AbstractTextElement:attributes:parser:
method handles the abstracts and returns nil because we are not building a tree, just
getting the abstracts. (Contrary to Cocoa conventions, the message name is
capitalized to exactly match the name of the corresponding XML element.) There is
no need for managing the accumulator string and no point in trying to simulate
additional load as adding empty processing messages adds no overhead. Note that the
type information is there purely for documentation purposes: As the message is
synthesized at runtime, the compiler never gets to connect the method
implementation with the source, and never gets to check the return type.

Example 4.10 Getting abstracts with MAX

@interface MedParser:NSObject
{

NSMutableArray *abstracts;
}
@property (strong,nonatomic) NSMutableArray *abstracts;
@end

@implementation MedParser

-AbstractTextElement:(MPWXMLAttributes *)elements
attributes:(MPWXMLAttributes *)attrs
parser:(MPWMAXParser *)parser

{
id text = [elements combinedText];
[abstracts addObject:text ? text : @""];
return nil;

}

@end

Due to the effort of building a (virtual) tree, MAX is slightly slower than our SAX
parser at 1.6 s for the 130-MB database file, but even there more than 3 times faster
than NSXMLParser. However, adding the actual client-side processing only adds a
minimal 0.1 s (or 6%) to the overall processing time, bringing the total to 1.7 s. That
1.7 s is 70% faster than doing the processing with our SAX parser and 311% faster
(4.1 times as fast) as doing the processing using NSXMLParser, while consuming a
small fraction of the memory.

MAX Implementation
It should be obvious from the previous discussion that it is not possible to implement
MAX on top of SAX, at least not efficiently, and in fact the SAX parser is
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implemented on top of MAX instead. MAX takes the character output from the
XML scanner callbacks in Example 4.4 and maps these character strings to delegate
message sends using a special MPWSmallStringTable dictionary that can look up
objects by char* cstr and int length, rather than requiring either a full object
or a NUL-terminated C-String. The objects it looks up are instances of
MPWFastInvocation, a replacement for NSInvocation that is roughly 50 times
faster than NSInvocation by only handling object parameters.

Attributes and (sub-)elements are stored in a special XML dictionary/array hybrid
that maintains order and allows multiple elements with the same name, as is required
for XML. Attributes or elements are efficiently appended to the end of the store and
can be retrieved either by index or key.

In the end, the entire stack is tuned so that the least amount of work is performed
while parsing, primarily just the scanning, a few lookups of C-Strings, some message
sends, and tree manipulations.

You may be wondering where the parallelism is. It is absent, mostly because XML
is an inherently sequential file format. For example, you might think that you can
parallelize parsing certain subtrees, but can’t generically know how deep a specific
subtree will be, meaning your partitioning is likely to be off, and furthermore you
can’t continue to the next element without having parsed the existing subtree. The
interface between parser and client is also a tempting target, but the interaction is too
high-bandwidth and fine-grained to look very promising.

The only approach of parallelizing XML parsing I have seen that has a chance of
working is doing a very quick and dirty scan of the entire document to get the overall
structure, and then partitioning the parsing of pieces onto different threads at
boundaries that make sense in terms of the document structure.

Summary
This chapter has presented an XML parser from the beginnings of low-level character
processing ideas all the way to creating an efficient object-oriented API using the
techniques we looked at in the previous chapter. The XML scanner in question
“inspired” the Spotlight XML importer in Leopard, which was the first Spotlight
XML importer to be I/O- rather than CPU-bound. The SAX parser was used by
Apple’s HTML Help Indexer starting in Snow Leopard as a several-times-faster
drop-in replacement for the previously used NSXMLParser.

So if you ever need fast XML processing, you’re now all set! Source code is
available at http://github.com/mpw/Objective-XML.

Kidding aside, the techniques presented don’t just work with XML, or even just
with parsing—they are broadly applicable. For example, the Postscript interpreter I
mentioned in Chapter 1 uses the same techniques to outperform Adobe’s own
C-based implementation on language-oriented tasks (graphics are handled by
CoreGraphics). What this means is that if you have a reasonable API, you can always

http://github.com/mpw/Objective-XML
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create an efficient implementation in Objective-C, mixing and matching high-level
and low-level implementation details as needed.

Finally, we also saw that truly great performance means going beyond just creating
efficient implementations of existing APIs. The design of the API can be crucial for
determining whether the API can be both (a) implemented, and almost more
importantly (b) used efficiently.



5
Memory: Principles

Memory use is one of the trickiest and least understood areas of performance
tuning, but it is arguably also one of the most important. At first glance, it doesn’t
even seem to be an area for performance at all: either the program fits into memory,
or it does not. In fact, that was pretty much exactly how it worked on computers
when CPUs were directly connected to memory, before they acquired multilevel
memory hierarchies from virtual memory to various CPU caches.

These days, memory is a much more fluid concept. On one hand, virtual memory
presents individual processes with isolated address spaces that are multiplexed onto
real memory. On the other hand, the CPU can operate at full speed only when
accessing a tiny amount of that memory that is built into the CPU itself, with data
constantly and mostly transparently flowing between disk, main memory, and the
various CPU caches.

The Memory Hierarchy
System architectures like current Mac hardware or the various iOS devices have
several different kinds of memory of different sizes and (vastly) different performance
characteristics. Figure 5.1 is a simplified block diagram of one such system, Intel’s
Core i7-2677M powering my MacBook Air. It shows the CPU with two cores and
main memory. Graphics memory will be examined more closely in Chapter 14.

Each core has two Level 1 caches, one for instructions and one for data, each with
32-KB capacity. In addition, each core has a unified Level 2 cache with 256-KB
capacity and a single Level 3 cache on the CPU with 4 MB of memory that is shared
by both cores. The latencies for the caches are given as 3 cycles for the L1, 8 cycles
for the L2, and 21 cycles for the L3 cache.

This information can be gleaned from Apple’s specification for the MacBook Air
and the Intel processor data sheets, but much of it is also available via the sysctl
command, with sample output shown in Example 5.1. The sysctl output not only
confirms the cache sizes (32,768 bytes for the L1, 262,144 bytes for the L2, and
4,194,304 bytes for the L3), it also tells us that the size of a cache line is 64 bytes. All
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Figure 5.1 Core i7 Memory architecture

the caches are organized not by bytes or words, but by lines, so this is the number of
bytes that will be transferred from cache to CPU, between caches or between the
caches and main memory.

Example 5.1 sysctl hardware information

sysctl -a
...
hw.physicalcpu_max: 2
hw.cachelinesize = 64
hw.l1icachesize = 32768
hw.l1dcachesize = 32768
hw.l2settings = 1
hw.l2cachesize = 262144
hw.l3settings = 1
hw.l3cachesize = 4194304
...
machdep.cpu.brand_string: Intel(R) Core(TM) i7-2677M CPU @ 1.80GHz
...

Why such a complex arrangement? The short answer is that as of this writing,
CPUs are approximately 100 times faster than main memory. The RAM of my trusty
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Apple ][+ had access times of around 450 ns, which were state of the art for that time.
With the processor running at 1 MHz and accessing at most 1 byte of memory per
cycle, memory was actually twice as fast as required for the CPU, allowing Woz to
use every other DRAM cycle to refresh the display without the CPU ever noticing.
By the time of the first Mac, with the CPU running at 7 MHz and DRAM access
times at 250 ns, the addition of video refresh was already having a slight impact on
the CPU’s access to memory, reducing the effective speed to 6 MHz, despite the
puny 512×342 monochrome display. The contemporary Amiga could actually almost
completely starve the CPU of memory access cycles due to its higher-resolution
color graphics and additional co-processors, prompting the designers to partition its
physical memory into chip memory that could be accessed by the video logic and fast
memory that was exclusive the CPU.

Whereas modern CPUs have gotten over 1,000 times faster since the Apple ][+,
memory access times have improved only around a factor of 10, to somewhere
between 25 and 45 ns. The complex arrangement of caches is designed to hide the
difference in latency. At the same time main memory interfaces have been redesigned
to provide more data with each access, dramatically increasing the bandwidth while
further hurting latencies, all to try and keep the CPU supplied with data for typical
programs. Fortunately, all of this complexity is pretty much transparent, mostly even
inaccessible to the programmer, who only sees normal memory access instructions.
So why bother looking at the cache hierarchy and memory interface?

The data in Figure 5.2 provides an answer to that question: Different memory
access patterns have different performance characteristics, varying by a factor of up to
100! The data was obtained by running Example 5.2. This program is designed to
create access patterns that are either sequential or random, and either stay within the
bounds of a specific cache or require main memory access.

Example 5.2 Test memory access

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MBSIZE 16
#define SIZE (MBSIZE * 1024 * 1024)

#define UNROLL 4
#define COUNT ( 1000 * 1000)

int main(int argc, char *argv[] )
{

if (argc > 2) {
long stride=atol(argv[2]);
char *ptr=malloc( SIZE + 20 * stride );
memset( ptr, 55, SIZE + 10 * stride );
char *cur=ptr;
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long curCount=atol(argv[1]) * COUNT/UNROLL;
long result=0;
long headroom=UNROLL * stride;
while ( curCount-- > 0 ) {
result+=*cur; cur+=stride;
result+=*cur; cur+=stride;
result+=*cur; cur+=stride;
result+=*cur; cur+=stride;
if ( ((cur-ptr)+headroom) > SIZE ) {
cur-=(SIZE-headroom);

}
}
printf("result: %ld\n",result);

} else {
printf("usage: %s <access-count-in-millions> <stride>\n",argv[0]);

}
}

The inset for Figure 5.2 clearly shows the speed differences between L1, L2, and
L3 cache memory. It also shows that this speed difference does not matter for
sequential accesses with strides significantly smaller than the cache line size of 64
bytes. Once the stride exceeds the cache line size, though, the access pattern no
longer matters. The penalty for random access is virtually nonexistent for accesses
within L1, rises to a factor 2 for L2, and to slightly over factor 4 for L3.

The main graph in Figure 5.2 adds the data for main memory access, using the
1-GB buffer size to force the accesses out of the caches. As you can see from the
rightmost bar, random access to main memory takes about 38 ns, roughly 100 times
the amount to access data in the L1 cache. In fact, the data for the cached accesses,
which is repeated in Figure 5.2, has to be scaled down to be almost unreadable in
order to accommodate the bar for random main memory access on the page.

However, sequential access (strides 1–2) suffers virtually no slowdown, even when
having to plow through a gigabyte of main memory, showing the tremendous
bandwidth available with DDR3-1333 memory, but also highlighting the ever
increasing gap between latency and bandwidth.

Whereas caches reduce memory access times by a factor of 100 for a small subset
of main memory, virtual memory expands addressable memory beyond what is
physically installed, but at a potentially huge performance cost. Just how large a
difference is shown by the somewhat ridiculous graph in Figure 5.3, which tries to
compare the random access time of main memory (36 ns) with the random access
time of the fastest available solid-state disks (SSDs) of around 10 μs. What was by far
the longest bar in Figure 5.2 now becomes a barely visible sliver, whereas the SSD
access time takes the entire length of the page. The fastest spinning disks, at more
than 100 times slower still, won’t fit and the times for the CPU caches don’t rise
visibly above the x-axis.
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Figure 5.2 Memory access

Showing the different parts of the memory hierarchy in a single graph requires
using either a log scale (Figure 5.4) or a different book format. The consequences of
these numbers should be clear: It really, really pays to stay on the “good” side of the
memory hierarchy, and conversely, the performance penalties for getting on the bad
side are severe. So if you have essentially random access patterns (as you do with
individually allocated objects), you should try very hard to keep your working set, the
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set of information your program is working with/on in a given time interval, within
the caches, preferably L1 or L2. If you have data sets that do not fit within the caches,
make sure to access them sequentially—that way you get to take advantage of
memory’s high bandwidth rather than being stuck with its high latency.

Mach Virtual Memory
Although the memory hierarchy contains hardware of vastly different types and
characteristics, the operating system makes it all appear uniform to the userland
developer. The Mach microkernel that OS X is based on does this by separating the
concepts of address space and memory, with the user interacting primarily with address
space and the operating system and hardware cooperating to back that address space
with different kinds of resources.

Irrespective of the physical memory organization discussed in the previous section,
the address space of processes on most modern operating systems is organized into
fixed-size pages, currently 4,096 bytes on iOS and OS X. You can determine the size
yourself using the program in Example 5.3. When your program tries to access
memory, it uses a virtual address. This address is translated by the CPU to a physical
address by shifting it right by 12 bits to get a page number. That page number is
translated to a physical page using page tables maintained by the operating system
(with a small cache inside the CPU, the translation lookaside buffer, one of the busiest
pieces of hardware on a CPU) and the low 12 bits are then used to access memory
within the page.
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Example 5.3 Determine VM page size

#include <stdio.h>
#include <mach/vm_page_size.h>

int main() {
printf("page-size: %ld mask: %lx shift: %d\n",vm_kernel_page_size,

vm_kernel_page_mask,vm_kernel_page_shift);
return 0;
}

The basic process outlined assumes that real, physical memory is used to back the
virtual address being translated. This is not necessarily the case, and in fact address
space provided to a process tends to start out not being backed by memory, but rather
either zero filled or backed by the contents of a disk file.

In either case, the operating system will provide real memory when and if the
memory is actually accessed, either zeroed or filled with the data from the disk file.

Whether mapped from disk or allocated from the OS, memory starts out in a clean
state, meaning it hasn’t been written to. Once your process writes to a memory
location, that page of virtual memory gets marked as dirty by the virtual memory
subsystem, meaning it differs from whatever backing store it has.

The reason this distinction is important is that dirty pages are significantly more
expensive than clean pages, at least once memory becomes tight, and since the OS is
tuned to utilize memory as much as possible, memory essentially always becomes
tight, even if you have plenty available.

The OS tries to keep a minimum number of free pages available for allocations, so
once free memory drops below a certain threshold, it will start looking for pages in
memory that it can evict. Clean pages are easy to evict because all that needs to be
done is to change their mapping to point back to the file on disk and the page added
to the pool of free memory maintained by the kernel. I/O is only incurred when and
if the page is needed again, and then only a read is required. Dirty pages on the other
hand must first have their contents written to disk, and they cannot be reused until
that I/O has finished.

iOS does not swap to disk, so dirty pages are even more expensive on iDevices.
No matter how rarely used, a dirty page can never be written to disk, so the iOS has
to even more aggressively swap clean pages (executable code, mapped files) or
terminate the process.

Heap and Stack
“Heap” and “stack” traditionally refer to two distinct regions of dynamically allocated
memory. Figure 5.5 shows this traditional arrangement: the static regions of a
program, actual program code, initialized global/static data, and uninitialized
global/static data are at the bottom of the address space. The rest of the address space
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Figure 5.5 Traditional Unix memory layout with heap and stack

is available for dynamic allocations, with the program stack starting at the top of free
space and growing down and the heap starting at the bottom of free space and
growing up, using the sbrk() function.1

This image of a process’s memory layout and the role of “the heap” and the “the
stack” is really no longer accurate: There is no single region of memory that is “the
heap” and there no longer is a single stack. Instead, “the heap” consists of all the
memory (address space) allocated from or available for allocation from the operating
system, and there are multiple stacks, one for each thread, each one actually allocated
from the heap. Address spaces are large and memory mapped files, executable
libraries, and “heap” regions are mapped at various locations within this address
space. A rough schematic of such a modern memory layout is shown in Figure 5.6.

As you can see, there can be multiple stacks, multiple regions (“zones”) from
which “heap” memory can be allocated (each zone can be tagged so memory tools
can know more about what different allocations are), and multiple places where
executables or data files are mapped into the address space. There are also regions of
address space (depicted in gray) that are simply unallocated, and unlike the schematic
illustration, these sections actually vastly exceed the allocated sections in a 64-bit
address space.

1. See man sbrk.
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Figure 5.6 Mach memory layout: multiple stacks, heap everywhere

Stack Allocation
However, despite the technical inaccuracy, the terminology has stuck and is close
enough to the somewhat more complicated truth. It is now used to distinguish two
different types of allocation: stack allocation occurs implicitly/automatically when a
function or method is invoked by decrementing the stack pointer. All variables local
to a function are allocated using this one pointer decrement, so this is extremely
quick, as is deallocation: the pointer is incremented again. The sizes are computed by
the compiler.

Figure 5.7 illustrates how stack allocation works in the schematic program given in
Example 5.4: a main() function that has a single int variable and calls two
functions, the first of which has a single NSRect local variable, and the second of
which has two more integers. The diagram illustrates another benefit of stack
allocation: locality of reference. Since allocation happens by incrementing a single
pointer, all the variables are located near each other in memory, which is beneficial
for the way caches are organized. All the local variables shown here fit onto a single
cache line, and that same cache line is reused for subsequent functions, so all this
interaction with stack variables happens within the L1 cache, with infrequent trips to
L2 or L3 and only rare interaction with main memory.
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Figure 5.7 Stack allocation

Example 5.4 Three functions to illustrate stack allocation

int function1() {
NSRect r;
...

}
int function2() {

int a,b;
...

}
int main() {

int a;
function1();
function2();

}

As usual, this is a simplification, because compilers and platform calling
conventions will actually conspire to keep most local variables and function
arguments and return values in registers, avoiding even the traffic to L1. However,
keeping the current function’s variables and arguments in registers means stashing the
caller’s variables on the stack, so it’s close enough.

The downside is that such stack-allocated local variables are, as the name implies,
local to that function; they cannot outlive the lifetime of their function.
Conceptually, the local variables disappear as soon as the function returns. In reality,
the values in memory will persist at that point, meaning that referencing local
variables of a just-returned function will sometimes work by accident (when a
pointer to such a local variable is returned), but the next function or method call will
surely clobber those values, as that function will be using the same space on the stack
to store its variables.
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In addition, there is a size limit. For example, on my machine the main thread has
a limit of 8 MB (see ulimit -a for the value on your machine), subsequent threads
created by pthreads (including NSThread) are limited to a 512-KB stack. These
are current values, not guarantees, with the upshot that large arrays or buffers should
not be allocated on the stack.

In fact, there is another reason for not allocating arrays on the stack: When you
return a scalar or a structure, the compiler copies the value to the calling function.
Not so for arrays. When an array is referenced in C, it doesn’t actually refer to the
contents of the array, but to the pointer that points to the first element of the array.
So if you return an array from a function, you are actually just returning a pointer
into the just deallocated stack frame! Swift solves this problem differently: All
collection contents are actually allocated on the heap, always, with a struct referencing
the heap-allocated contents.

Stack allocation is closely related to value semantics: The actual value or structure is
allocated and manipulated. When a value is passed to another function, returned from
a function, or stored inside another structure, the actual bits of that variable are
copied to the new location.

Heap Allocation with malloc()
Heap allocation, on the other hand, is manual: A function or method (in Swift:
constructor) must be called to allocate, and a different function is called to deallocate
(there are different ways to automate this, see the “Resource Management” section in
this chapter). Heap allocation is necessary if an allocation is to outlive the scope of the
function that created it. Heap allocation implies pointers and reference semantics, so you
can have more than one reference to it. Objective-C and Swift objects have reference
semantics and are heap allocated.2

User programs usually do not obtain memory (address space) directly from the
operating system because requiring a system call for every allocation would be too
slow and because the smallest allocation would be a 4-KB OS page. Instead, the malloc
package requests larger (multi-page) pools of memory from the OS and doles them
out to the user program in smaller pieces using the functions malloc, calloc, and
realloc. It is the user program’s job to return memory to those pools using free.

Up until version 10.5, OS X used “scalable malloc,” an implementation that
emphasized memory conservation over raw performance and also required significant
amounts of locking. With Snow Leopard, this was replaced by magazine malloc, an
implementation inspired by the Hoard allocator3 designed specifically for
multithreaded applications. In addition to dramatically reducing locking overhead and
contention, this implementation also returns contiguous chunks of memory to the
operating system, something scalable malloc never even attempted due to the

2. Stepstone Objective-C allowed stack-allocated objects, a feature dropped in the NeXT/Apple version.
3. http://www.hoard.org

http://www.hoard.org
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incorrect assumption that memory fragmentation would always prevent this from
happening. So starting with 10.6, heap usage of a process can actually decrease, where
previously it would only ever monotonically increase, no matter how much of that
heap was unused. Adding insult to injury, such unused memory was usually dirty, so
would incur swapping to disk.

Example 5.5 measures the time in nanoseconds it takes to malloc() and free()
a block of memory of a given size, with the sizes increasing by powers of 2, so
iteration 9 allocates 29 = 512 bytes.

Example 5.5 Time memory allocation

#import <Foundation/Foundation.h>

NSTimeInterval mallocTest( long size, long iterations )
{

NSTimeInterval start=[NSDate timeIntervalSinceReferenceDate];
for (long i=0;i<iterations;i++) {

void *ptr=malloc( size );
free(ptr);

}
NSTimeInterval stop=[NSDate timeIntervalSinceReferenceDate];
return (stop - start) / iterations * (1000000000.0);

}

int main()
{

printf("log2size , tme (ns) , rate (byes/ns)\n");
for (long log_size=1; log_size <20; log_size++ ) {

long size = 1<<log_size;
NSTimeInterval nsPerAlloc=mallocTest( size , 1000000 );
printf("%10ld , %g , %g \n",
log_size,nsPerAlloc,size/nsPerAlloc);

}
}

The results are plotted in Figure 5.8, again with the x-axis showing powers of 2. As
you can see, allocation times are constant at around 45 ns per allocation, up to a size
of 217 = 128 KB (with an unexplained, but for me, reproducible bump at 512 bytes).
At 128 KB there is a step function to approximately 280 ns because the allocator
switches from allocating a particular request from malloc-zones that are obtained in
large chunks to allocating each request individual from the operating system. The
constant kernel-call overhead dominates for a while until the requests get so large that
filling out all the page table entries starts to take noticeable time at around 16 MB.

The fact that allocation takes a constant amount of time for sizes from 1 byte to
128 KB means that allocating a given amount of memory as one large object is far
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Figure 5.8 Time to malloc by power-of-2 sizes (2n)

cheaper to allocate than many small objects. The only question is whether this
difference matters, and Figure 5.9 shows that the answer to that question is a
resounding “Yes.”

Figure 5.9 plots how many bytes you can allocate per nanosecond at different
allocation sizes. Unlike the times in Figure 5.8, which were a linear scale, the rates
here had to be plotted on a log scale, so at the minimum object size of 8 bytes (one
isa pointer and nothing else), we are at an allocation rate of slightly less than 0.1
byte per nanosecond. The straight lines are the rates at which we can use the allocated
memory on a Skylake processor, 1,400 bytes/ns for the L1 cache, and 18 bytes/ns for
main memory.
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Figure 5.9 Malloc rates by power-of-2 sizes (2n)
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So for small objects, the heap-allocation vs. use overhead for L1 cache is on the
order of a factor 10,000, while for main memory it is still around a factor 100. This is
one of the primary reasons why many small temporary objects and high performance
don’t mix easily, though we will show how it can be done in Chapter 7.

Small temporary objects are absolutely fine for the ≈97% of nonperformance
intensive code, and small permanent objects are also fine. This is good, because in
many cases, modeling requires objects with identity, and pure value objects just don’t
fit the required semantics. Reference semantics are also required if you want to
construct graphs or need to refer to the same object from multiple different locations
for other reasons.

But in general, Objective-C and Swift prefer their objects to be coarser grained
and more long-lived than pure(r) object-oriented languages, which tend to have
object allocators not based on malloc that can be significantly faster at supporting
fine-grained objects.

If you have large objects, heap allocation can also be significantly faster than stack
allocation because you can simply pass an 8-byte pointer rather than copying the
whole object.

At the other end of the scale, you will notice that the allocation overhead becomes
extremely small compared to actually using all that memory, and in fact at the high
end the operating system hasn’t even cleared the memory, it has just lazily provided
address space. The more significant cost will come as the program tries to actually use
the memory and the operating system provides and clears real memory for the address
space initially requested.

Resource Management
Resources used by a program, such as memory, need to have their life cycle managed
somehow: when and how is the resource allocated, when and how deallocated?

One very simple resource management regimen we looked at in the previous
section and used in most procedural programming languages, including Objective-C
is stack allocation: a variable declared within the scope of a function/method that has
auto scope and is automatically destroyed once the function/method exits, but
continues to exist while other functions are called.

For heap-allocated objects with dynamically determined lifetimes, both Stepstone
Objective-C and pre-Foundation NeXTStep had manual memory management, very
much like C’s malloc() and free(): An object was created with +new and destroyed
with -free. This works fine in simple cases where there is effectively a single “owner”
of an object reference, either because there is only a single reference or there is a
discernible “master” reference that determines the lifetime of the object, but it breaks
down when multiple independent entities have to coordinate the lifetime of an
object.
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Garbage Collection
Fortunately, the problem of determining the lifetime of a reference in nontrivial
environments has a long history, with many solutions dating back to at least the early
LISP implementations of the 1950s.

There are principally two techniques for garbage collection: tracing the heap to
find live objects or using reference counting to find dead objects. As shown in the
2004 OOPSLA paper A Unified Theory of Garbage Collection by Bacon, Cheng, and
Rajan, these approaches (tracing garbage collection and reference-counting garbage
collection) are duals of each other, and optimized versions of each type of collector
take on characteristics from the other type.

Early garbage collectors used reference counting, where each time a new reference
to an object is created, a count inside the object is increased, and each time a
reference disappeared the count is decreased again, all automatically by the runtime
system. Once the reference count reaches zero, the object can be released because
there are no more references to it.

Foundation Object Ownership
When OPENSTEP introduced the new Foundation classes still familiar today
(NSArray, NSString, NSDictionary, NSNumber, etc.), it also introduced a
garbage collection scheme based on reference counting to replace the fully manual
resource management scheme of earlier NeXTStep versions.

Although not integrated into the language the way reference-counting collectors
are, this mechanism is capable of coexisting with a low-level language like C. Since
the reference counting system does not have special access to object internals, it is
relatively slow as such systems go. This is compensated by the fact that it generally
does not track references in local variables, with the ownership rules only applying to
references held in instance variables. This drastically reduces the number of
reference-counting operations.

Foundation’s ownership-based reference-counting scheme is often referred to as
“manual reference counting” (MRC). This is incorrect; reference counting can be,
was, and is highly automated by the use of accessors, with those accessors also
typically automatically generated, for example, by property definitions. In fact,
property definitions in MRC, ARC, and even the tracing collector are essentially
indistinguishable.

Figure 5.10 illustrates how reference counts work. The root has a reference to
object a, which therefore has a reference count of 1. Object a has a reference to
object b, which also has a reference count of 1. If we add a back pointer from object
b to object a, object a’s reference count increases to 2, with all other reference
counts remaining the same.

If the reference from root to object a then goes away, object a’s reference count
drops back to 1. This example also illustrates a reference cycle: objects a and b are no
longer referenced from the rest of the program; they should therefore be freed.
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Figure 5.10 Creating a retain cycle

However, since they point to each other, their reference counts remain at 1, and
therefore reference counting doesn’t detect that they should be freed.

The fact that reference counting is implemented using normal message sends
allows optimizations such as the object cache described earlier, where we check for a
reference count of 1 to indicate whether to evict an object from the cache. It even
allows the programmer to elide reference-counting operations altogether in
performance-critical sections if it can be proved that the operations are balanced and
there is an external reference keeping the object alive for the duration. The fact that
reference counting is precise allows the management of expensive resources to be
piggybacked on the existing mechanism, although care must be taken to make sure
object lifetimes are not unnecessarily extended.

Tracing GC
As reference counting by itself doesn’t deal with cyclical references, those early
collectors mentioned above were frequently augmented with a tracing
mark-and-sweep collector, which only runs from time to time. In the mark phase, it
traces all the live object references from one or more well-known root objects, and in
the sweep phase it deallocates all the objects that were not found to be live in the
mark-phase, the garbage.

While mark and sweep can also be used by itself, scanning the full heap is quite
expensive and also difficult to do concurrently with the program, leading to the
phenomenon of garbage collection pauses, where the running program is halted while
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the garbage collection runs. Concurrent garbage collections generally make pauses
smaller without completely eliminating them, with additional costs and complexities.

Mark and sweep also interacts poorly with virtual memory, because in a
virtual-memory environment it scans address space rather than memory, potentially
swapping in large amounts of unused memory from the disk only to discover it is still
unused.

Generation-scavenging collectors ameliorate the negative effects of a full scan by
taking advantage of temporal cohesion, whereas copying collectors make allocation a
cheap “bump pointer” operation, which is why most modern collectors are both
copying and generational.

Tracing garbage collection is difficult to implement reliably and efficiently in a
language with raw pointers such as Objective-C, where pointers may be hidden, bit
patterns may cause false positives, and memory can’t be moved.

While workable in special cases, Apple’s home-grown tracing garbage collection
never achieved the performance and reliability levels to be viable on both OS X and
iOS. In the end, it never made it into iOS and was deprecated on OS X after two
releases.

Automatic Reference Counting
With the deprecation of the tracing GC in 10.7, Apple introduced Automatic Reference
Counting (ARC) as an Objective-C language feature. Probably the biggest advantage
over Apple’s tracing garbage collection is that ARC code can be mixed with other
reference-counting code on a per-source-file basis, unlike the tracing collector,
which had to be enabled for an entire process (including any plugins).

ARC doesn’t just automate the existing object ownership rules, which are mostly
about storing references in instance variables. Instead, the compiler inserts
reference-counting operations whenever pointers to Objective-C objects are assigned
and passed/returned from/to functions and methods, vastly increasing the number of
reference-counting operations, but also closing potential windows of vulnerability
and making reference counting more precise.

Despite improvements in the runtime functions supporting reference counting, the
overhead of these additional reference-counting operations would be prohibitive, so a
special LLVM optimization pass is used to remove as many of these operations as
possible. While this additional pass can get rid of the majority of these added
reference-counting operations, overall quite a few tend to remain, leading to typical
slowdowns in the range of 10% to 100% compared to MRC.

Cycles are still not dealt with automatically, though some mechanisms such as
weak zeroing references have been added to make cycle avoidance easier. A weak
reference does not count toward the retain count of the object referenced (references
that do count are called strong), and in addition a back-pointer to the referencing
pointer is maintained. When the strong reference count of the object goes to zero
and the object is deallocated, all zeroing weak references are tracked down and those
pointers set to zero. This avoids dangling references to deallocated objects.
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Process-Level Resource Reclamation
While all the techniques so far work while a program is running, it is important to
remember that all temporary resources used by a process will be cleaned up by the
operating system at process termination. This resource reclamation is not just
essentially perfect, it is also very fast.

Summary
In this chapter we have seen the tremendous performance range of the different
elements in the memory hierarchy, which are all presented as a uniform address space
to user programs. In order to optimize performance of memory access, it is necessary
to minimize total memory use and optimize memory access patterns so that they take
advantage of the (non-linear) capabilities of the hardware.

The following chapters will first show how to measure memory consumption and
identify access patterns, and then go on to techniques for tuning memory use.
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6
Memory: Measurement and

Tools

Memory has many different facets, with no one being primary. Even the seemingly
simple question “How much memory is my program using?” does not have a single
obviously correct answer. There is the amount of memory your program has obtained
from the system via malloc and the amount the process (including malloc) has
obtained from the operating system. Both of these are really address space, not
memory, so there is the question of how much of that address space is backed by real
memory. In addition, you have mapped files and lots of address space and memory
that is shared between processes, mostly by the system.

Furthermore, the operating system is trying its best to optimize memory usage
given the current set of running programs, so getting answers is sometimes more akin
to outwitting a skilled opponent rather than simply taking a measurement.

In addition, tools that analyze memory consumption generally have to chew
through a lot more data than CPU samples, so the impact on the running program is
much greater.

Xcode Gauges
Xcode’s “always on” lightweight profiling also includes an overview of memory
consumption. Figure 6.1 shows the basic visualizations: circular gauges showing both
instantaneous process-specific and overall system memory usage statistics, as well as a
timeline showing the process’s memory usage over time. While not going into great
detail, these do give you a basic overview of what’s going on, including a heads up if
something is going awry. I personally find the CPU gauge more useful.
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Figure 6.1 Xcode built-in memory profiling

Command-Line Tools
As with CPU performance, the command line offers a number of performance tools
that give quick and reasonably detailed information without much overhead or set-up
work. Simple shell scripts also allow you to combine multiple commands in order to
capture multiple facets at the same time.

top
We already presented top in the “top” section of Chapter 2 for CPU measurement
and the many of the same benefits are also true for its use in memory analysis. It gives
you a continuously updated view of the system as a whole as well as summary
information for specific processes.

The summary information that interests me the most is the PhysMem line. It
shows you how physical memory is actually being used at the system level, with parts
wired, active, inactive, and free. Wired memory is memory that is in use
by the kernel and cannot be swapped to disk; it resides permanently in real memory.
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Resources that are managed by the kernel, including processes, threads, file
descriptors, or even virtual memory pages themselves all take some amount of wired
kernel memory for the bookkeeping information maintained by the kernel, in
addition to any memory used by the resources themselves.

Free memory is just that, currently unused and immediately available. The kernel
usually tries to minimize the amount of free memory in the system, apart from a small
reserve, because free memory means that an expensive resource is not being utilized.

The active part is also easy; this is memory actually allocated to processes and in,
well, active use. It is with inactive memory that the kernel manages to minimize
free memory: These are old mappings of files and other caches and buffers that the
kernel keeps around in case they may be needed again, but can free up in case more
active memory is required by the processes in the system.

Another number to keep an eye on is the paging rate in the VM line, particularly
the pageouts. If the number inside the parentheses is nonzero, your system is
currently swapping to disk. If you have sustained pageout activity, you will typically
get a noticeable slowdown in your system and hear the disk activity, if you have a
spinning hard disk rather than a solid-state drive.

In the per-process lines, I find the RPRVT and VPRVT lines most useful. RPRVT,
the resident memory, is the actual amount of real memory in use by your process, and
in most real-world situations most closely answers the question “How much memory
is my program using?” previously discussed. That is, until your process starts
swapping, at which point RPRVT can obviously become arbitrarily smaller and thus is
no longer good for tracking your memory consumption.

VPRVT shows the amount of address space privately allocated to your process and
is a good analog of memory use when swapping. It does not seem to take into
account freshly allocated (zero-filled) address space or unread memory mapped files,
however. VSIZE captures both of these, but also captures a lot of system-shared
address space, which means it is generally only useful as a relative metric.

Figure 6.2 shows the object-allocating version of the integer summing program
from Chapter 1 four seconds into its run. It is using 254 MB of real, private memory
within 268 MB of virtual address space. But we still have over 2 GB of physical
memory available, so there is no danger of swapping (and pageouts are still 0).
Figure 6.3 shows the same program 12 s into its run; real memory consumption is
now 734 MB, and it still tracks virtual memory, which has increased to 748 MB. We
still have free memory, and both pageout counters are still zero. So all in all, we have a
program that is rapidly consuming available memory, but within the bounds of the
system it is being run on.

heap
As suggested by the name, the heap command takes a snapshot of your application’s
heap, roughly the memory allocated by malloc and its variants. Unlike top, it
always shows address space and never real memory, in case these two numbers have
diverged. On the other hand, it will show you the memory actually allocated by your
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Figure 6.2 top memory parameters

Figure 6.3 top again
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program and will even break that information down by object classes. It is like an
X-ray machine for your process, and I find it extremely useful for analyzing program
behavior.

To run the heap command, you pass it the process name or process id of the
process you want to examine. It then delivers two types of information on stdout.
The first part is summary information for each malloc zone it finds. The following
shows the summary information for heap running against Xcode. For each zone, it
shows both how much the program currently has allocated and how much has been
allocated for this zone from the system. Low utilization numbers are usually a sign of
fragmentation.

marcel@localhost[dyld]heap Xcode
Process 30138: 9 zones
Zone DefaultMallocZone: Overall size: 48343KB; 23809KB (49\% of capacity)
Zone GFXMallocZone: Overall size: 36864KB; for 462KB (1\% of capacity)
Zone auto_zone: Overall size: 8487986KB; 100466KB (1\% of capacity)
Zone DefaultPurgeableMallocZone: Overall size: 4KB; 0KB (0\% of capacity)
[...]

For the detailed information shown below, heap tries to figure out the type of
object for each block of memory, and in addition to counting those blocks, also add
up the total sizes. Any block of memory it cannot associate with a specific object type
is lumped into non-object, which is therefore often the largest single category.

> heap Xcode -sumObjectFields
[...]
-----------------------------------------------------------------------
Zone DefaultMallocZone_0x10c4be000: 81833 nodes (24380320 bytes)

COUNT BYTES AVG CLASS_NAME TYPE
===== ===== === ========== ====
75368 22843232 303.1 non-object

399 17856 44.8 Security::TypedMetaAttr<Security::UInt32> C++

-----------------------------------------------------------------------
Zone auto_zone_0x10dc91000: 771818 nodes (102876608 bytes)

COUNT BYTES AVG CLASS_NAME TYPE
===== ===== === ========== ====

197047 13455008 68.3 __NSCFString ObjC
36720 26927200 733.3 __NSDictionaryM ObjC
36327 2324928 64.0 XCPropertyMacroExpansionValue ObjC
28727 6961184 242.3 __NSCFDictionary ObjC
25560 3004992 117.6 __NSArrayM ObjC
16772 1073408 64.0 _DVTFilePathAssoc ObjC
14683 958848 65.3 __NSAutoBlock__ ObjC
14211 676864 47.6 __NSArrayI ObjC
13438 430016 32.0 XCPropertySimpleMacroExpansionValue ObjC

[..]
228 7296 32.0 IDEOverridingBuildProperties ObjC
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226 14464 64.0 RIPData CFType
225 9047136 40209.5 NSConcreteMutableData ObjC
221 7072 32.0 CGPath CFType
212 13568 64.0 NSKeyValueContainerClass ObjC

[..]

I always use the -sumObjectFields option, which also takes into account
otherwise non-assigned (non-object) pointers emanating from objects already
identified—for example, the key and value stores for dictionaries—and adds them to
the total sizes for that object category. With this option, heap shows Xcode using
around 32 MB for dictionaries and 13 MB for strings (of a RPRVT total of 71 MB).
Without -sumObjectFields, 4.1 MB used for dictionaries with the same 13 MB
for strings, but 50 MB lumped into the generic non-object category:

marcel@localhost[dyld]heap Xcode
[...]
-----------------------------------------------------------------------
Zone auto_zone_0x10dc91000: 773943 nodes (103008096 bytes)

COUNT BYTES AVG CLASS_NAME TYPE
===== ===== === ========== ====

197211 12928032 65.6 __NSCFString ObjC
164067 55077344 335.7 non-object
36720 2350080 64.0 __NSDictionaryM ObjC
36327 2324928 64.0 XCPropertyMacroExpansionValue ObjC
28759 1840576 64.0 __NSCFDictionary ObjC
25710 1645440 64.0 __NSArrayM ObjC

[...]

For variable-size objects, the -showSizes option will show objects of the same
class but different sizes on separate lines, whereas usually those different sizes are
averaged together via the totals.

leaks and malloc_debug
Even more aptly named than heap, the leaks command will show any leaks in
your program. A leak is defined as a heap allocated (malloced) piece of memory
that has no pointers pointing to it. Although it can show false positives, it tends to be
very accurate. The following output shows the result of running leaks against the
program in Example 6.1. It claims 4 leaks for a total of 128 bytes, and then gives
details for each of these leaks. If the program was started with
MallocStackLogging enabled, leaks will also show backtraces for each
allocation.

Process: leaks-cycles [3320]
Path: /Users/marcel/Documents/test-programs/leaks-cycles
Identifier: leaks-cycles
Code Type: X86-64 (Native)

Date/Time: 2012-09-07 12:15:08.208 +0200

Process 3320: 1131 nodes malloced for 111 KB
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Process 3320: 4 leaks for 128 total leaked bytes.
Leak: 0x7fec520430 size=48 zone: DefaultMallocZone_0x102a00 __NSArrayM ObjC
Leak: 0x7fec520460 size=48 zone: DefaultMallocZone_0x102a00 __NSArrayM ObjC
Leak: 0x7fec52b4c0 size=16 zone: DefaultMallocZone_0x102a00

0x52410460 0x00007fec 0x00000000 0x00000000 `.AR............
Leak: 0x7fec5240fd50 size=16 zone: DefaultMallocZone_0x102a44000

0x52410430 0x00007fec 0x00000000 0x00000000 0.AR............

Example 6.1 Program with leaks

#import <Foundation/Foundation.h>

int fn()
{

NSMutableArray *array1=[NSMutableArray array];
NSMutableArray *array2=[NSMutableArray array];
[array1 addObject:array2];
[array1 addObject:@"constant string"];
[array2 addObject:array1];
[array2 addObject:[NSMutableString stringWithString:@"mutable"]];
return 0;

}

int main(int argc, char *argv[] ) {
@autoreleasepool {

fn();
}
sleep(20);
return 0;

}

Internal Measurement
For introspection, the undocumented mstats() function (declared in malloc.h)
returns a structure containing information about the memory managed by malloc.
Among others, it contains fields for bytes_free, bytes_used, and
bytes_total. Note that as usual, these numbers refer to virtual memory, not real
memory.

If you need to know what’s going on with real memory programmatically, you can
get essentially the same summary information top provides on the command line via
the Mach vm_statistics_data_t structure that the host_statistics()
Mach function will fill out for you when asked for the HOST_VM_INFO info flavor.

While these numbers will tell you how much free, active, and inactive memory
there is at a given time, the meaning of those numbers is, as explained earlier, very
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fluid. For example, if you detect 20 MB of free memory using host_statistics,
does that mean you have 20 MB to play with? No. On one hand, the OS may make
more memory available for you from the inactive list if you ask for it. On the other
hand, the 20 MB may be below its threshold free space reserve, and it may start
swapping on OS X or sending you memory warnings and/or killing your process at
this point on iOS.

Memory Instruments
As Instruments has slowly gobbled up all other GUI performance tools, it is no
surprise that it also has a number of individual instruments for dealing with memory.
While somewhat more heavyweight than the command-line tools, it does feature
additional capabilities such as tracking usage over time and richer data-analysis
options. It also has the ability to run multiple instruments simultaneously, which is
useful for capturing the multiple facets of memory. Finally, it is pretty much your
only option for iOS devices.

The three main instruments I will look at are the Allocations instrument, the VM
Tracker, and the Leaks instrument. In addition, the Counters instrument can give you
stats about the effectiveness of the CPU caches, such as cache hits and misses.

Leaks Instrument
The Leaks instrument is similar to the command-line tool. It finds memory leaks in
your application, but provides more detail. Figure 6.4 shows the leaks from
Example 6.1, with the call stack in the details pane. An overall call graph with the
amount of leaks shown at each node is also available.

Figure 6.4 Leaks instrument showing a list of leaks
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If run together with the Allocations instrument, Leaks can also show reference
count activity, rather than just the call stack that allocated the object.

For retain cycles such as the one in our example, the Leaks instrument can also
show a graphical representation of the cycle in the Roots and Cycles view
(Figure 6.5).

Allocations
It took me a while to get warm with the Allocations instrument, mostly because
without more specific configuration, its output is not as easily parsable as the heap
command-line tool and doesn’t give me the quick big picture overview of my
allocations. I still find the overview more confusing than heap (apart from the
summary graph in the track pane), but the options for focused analysis are very
comprehensive and allow you to drill down on a specific problem very effectively.

While writing this, I actually noticed what certainly looked like a leak in one of
my apps. The summary graph in Figure 6.6 was the trigger for further investigation:
It shows total memory consumption while opening and closing the same document
three times in a row. While memory goes up when opening the document, it does
not drop down at all after closing; instead, it rises monotonically. The Leaks
instrument does show a small leak, but nothing near the total of 116 MB.

In order to verify the initial observation, I did a Heapshot Analysis.1 In a Heapshot
Analysis, you try to get the system into a steady state and then repeat the action that

Figure 6.5 Leaks instrument visualizing a retain cycle

1. This has recently been renamed generational analysis, but it works the same way.



128 Chapter 6 Memory: Measurement and Tools

Figure 6.6 Noticing memory growth

you are interested in, making sure to return to the original state each time. For
example: open a document, close the document again, or insert a paragraph, delete
the paragraph again, and so on.

The Allocations instrument supports Heapshot Analysis by allowing you to mark a
specific state, and it will then compute the differences between subsequent marked
states. To view the data generated, switch the details pane into Heapshot mode. Once
you have several of these marked states, you can see whether there are significant
differences. In theory, there should be none; after all, you returned the program to
the exact state it was in.

In this case, the scenario is as follows.

1. Open a PDF document.
2. Close the opened PDF document.

Before I start the actual analysis, I run the scenario one or maybe two times in
order to get any one-time initializations out of the way. This is necessary because
many subsystems use lazy initialization, and therefore general subsystem overhead will
be lumped together with the first use of that subsystem. With the warmup out of the
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way, I click the Mark Heap2 button, run the scenario, and click the Mark Heap
button again, repeating the whole process three times in this instance. The Heapshot
view in the details pane, as seen in Figure 6.7 shows a consistent growth of 39.2 MB
for each time through the scenario (in the Heap Growth column). However, there
isn’t really much to go on yet as to where this memory is being allocated or why it
isn’t being freed, with the expanded Heapshot 2 just showing a <non-object>
block of 36.34 MB, and the same block showing up in the other heapshots (not
shown).

There is simply too much information to make sense of it all, so to get a better
idea of what’s happening, I limit the Inspection Range to just one time through the
scenario and switch to the Call Tree view in the details pane. The call tree shows me
how much memory is allocated in each subtree, both in absolute and relative terms.
In addition, all the usual call-tree pruning mechanisms are available, so this makes
hunting down the source of (large) allocations almost trivial. In Figure 6.8, I have
drilled down a bit to a call-tree node that accounts for 96.5% of the total leak.
However, the bad news is that this is an internal CoreGraphics function, and

Figure 6.7 Initial Heapshot

2. Mark Generation
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Figure 6.8 Call tree

considering the vehemence with which leaks are hunted by the Mac OS X
Performance Group, this seems like an extremely unlikely source of the leak.

In order to make sure that the fault is not in CoreGraphics (I could waste a lot of
time if it were), I look at memory consumption in Preview opening the same file,
and memory use drops after closing the file as expected. So as I suspected, it is my
code that is leaking. With the information gathered so far (leaked memory is
allocated inside CoreGraphics, while rendering, leaks there unlikely), I am beginning
to suspect that my code is leaking either the CGPDFDocument or the CGPDFPage.
While I could try to search through all the objects in either the Summary or the
Heapshot views, it would be difficult to make a side-by-side comparison of two runs
because of the number of different objects and the fact that they are shown in the
same view with disclosure triangles.

An easier approach is to let Instruments look for the PDF objects instead. So I
decide to re-run the scenario, this time setting the Allocation instrument’s Recorded
Types (see Figure 6.9) to only record objects that have PDF in their class or type
name, making sure to uncheck Record all types. (The configure button allows you to
set up new kinds of filters.) Notice how the allocations graph in the timeline of
Figure 6.9 reflects this selection, is already significantly more rectangular, and also
shows some decline.



Memory Instruments 131

Figure 6.9 Look only for PDF objects

The result of heapshotting with that filter in place is shown in Figure 6.10. The
drastically reduced number of objects make it easy to actually spot both
CGPDFDocument and CGPDFPage in both heapshots, so my hunch was correct that
I was leaking at least one of them. The answer to that question is also shown: an
instance of OCSPDFDocRep, my NSDocument subclass, also shows up in the trace.
And if I am leaking the document object, I am definitely also leaking the PDF
resources that go with it. Since I selected only the OCSPDFDocRep for graphing in
the Summary view, the timeline graph shows a simple staircase as one new
OCSPDFDocRep is allocated in each scenario and not released. Figure 6.10 already
has one of the offending object instances selected (Instruments keeps track of every
individual instance), and a click on the disclosure arrow will reveal the call history of
that object.

Sure enough, the call history of the OCSPDFDocRep at address 0x11205ba0
shown in the details pane of the screenshot in Figure 6.11 shows 7 retains and 1
malloc, but only 7 releases (the autorelease by itself doesn’t count because it
is only a placeholder for a future release). At this point, the process becomes one
of checking the details. The notifications all balance, so those are OK. The retain
and the autorelease in PostViewFramework also balance, with the delayed
release of the autorelease performed by AppKit a little later. That leaves the
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Figure 6.10 Heapshots of PDF objects show what we are leaking...

retain in EGOS (Embeddable Graphics Object System) looking suspicious. The call
stack in the extended details pane reveals what happened: The MPWDocumentPage
stores a back pointer to its document and retains that pointer. Since the
OCSPDFDocRep also maintains a list of its individual pages, I have created a retain
cycle. Double clicking on the particular entry in the stack trace takes me directly to
the source code, highlighting the offending line in the text.

Breaking this retain cycle by removing the back pointer, making it weak or
unretained, fixes the leak, as shown in Figure 6.12. The shape of the graph in the
track pane now clearly indicates that most of the memory is getting freed after we
close the window. The Heapshot view confirms this initial impression: instead of
41 MB, we are allocating only 500 KB. This is still too much, but much better than
before, and now at least some of those allocations appear to be completely inside
AppKit and CoreText, without any reference to client code.

There are additional features of the Allocations instrument that we haven’t
covered; for example, it is possible to show only allocations within a specific size
range, or look only at allocations from Objective-C code. However, there are also
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Figure 6.11 ...and where we’re leaking it

Figure 6.12 After fix
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some caveats. One big one for a heap fan like myself is that the Summary view lacks
something like the -sumObjectFields option, which means that there are lots of
associated allocations cluttering the Summary view.

Another big issue is that, at least on iOS, it doesn’t actually capture all allocations,
and for some graphics-intensive programs, it captures only a small fraction of all
allocations.

VM Tracker
Fortunately, the VM Tracker instrument does capture these allocations and
Instruments not only has the ability to run multiple instruments simultaneously, but
by default adds the VM Tracker instrument when you select the Allocations template
from the template chooser.

The tool tips in Figure 6.13 show this effect with an iOS application running in
the simulator. Only 4.1 MB are tracked by Allocations, but the overall memory used
is over 141 MB resident and still over 60 MB dirty, meaning that memory that has
been written to by the process (and that we want to minimize). To the best of my
knowledge, memory not included in Allocations includes at least the types
CoreAnimation, Image IO, and CoreGraphics image.

Counters/PM Events
The Counters instrument reads out the CPU’s performance monitoring registers at
regular intervals. These are over 300 different statistics that the CPU keeps, including
things like “Cycles the divider is busy” and “Branches executed.” I’ve included the
Counters instrument in this chapter on memory because it also includes very detailed
statistics about those parts of the memory hierarchy that are managed by the CPU
hardware, including the caches, load/store buffers, and memory interface. I don’t
know of any other way of getting information about memory and cache traffic.

Figure 6.14 shows the Counters instrument after a run with a few counters
selected. I inverted the call graph, so it is showing the function with the highest
MISALIGN_MEM_REF.STORES, which according to the Intel documentation
means: “Speculative cache-line split store-address uops dispatched to L1D.” Okay.

As you can probably tell, I’ve never had to use the Performance Counters in anger,
or at least I didn’t notice that I should have used them, having gotten the information
I needed to solve the problem by using other means. At this point, I would like to
run into a performance problem that is so deep that it requires a tool this powerful.

One important thing to note about the performance counters is that unlike most
instruments, they don’t do anything useful out of the box; rather, you need to
configure the counters you want in the Record Settings pane by clicking the +
button (circled near the bottom of Figure 6.14).
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Figure 6.13 VM Tracker instrument running with Allocations

Figure 6.14 Counters instrument and configuration
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Summary
Investigating memory use is trickier than CPU consumption, but fortunately we have
a number of command-line tools and instruments to help with the task. One thing to
always remember is the multifaceted nature of memory—the difference between
virtual and real memory as well as clean vs. dirty. Another is that examining memory
is expensive. For example, keeping track of every allocation in the Allocations tool at
the very least doubles the memory consumption for small allocations, keeping track
of stack information increases it further, and tracking reference counting ops increases
it dramatically. The Instruments document keeping track of the investigation in the
“Allocations” section of this chapter, for example, is 1.3 GB in size, and even top
spends about 80% of its CPU time in computing memory statistics (top -d
consumes 1.1% CPU on my system, top -u 6.5%).

For this reason, it is recommended that you perform memory analyses either with
small data sets or very beefy machines. For iOS, most memory investigations can and
should be performed in the simulator, for unlike CPU performance, memory
behavior should be very similar, except that the system has more memory and
therefore memory warnings have to be triggered manually.



7
Memory: Pitfalls and

Techniques

The most common techniques for memory optimization revolve around the use of
more compact data structures, and this chapter will definitely discuss that topic. In
addition, we will show some pitfalls, especially those common in Objective-C code.
(Did you guess that some of them involve use of Foundation objects?)

Of course, we also need to have a look at leak avoidance, and the special role that
reference counting plays here for both Objective-C and Swift reference types, as well
as the alternative of passing values around instead of references. We will look at
Objective-C caching techniques and APIs, as well as APIs for controlling the
mapping of address space to real memory.

We will continue our theme of the importance of architectural choices for
performance, underscoring the point with a small example highlighting the
difference those architectural choices can make. Last but not least, we will look at
concurrency issues and the special iOS memory environment.

Reference Counting
Even after the introduction of Automatic Reference Counting (ARC), one of the
first topics in every discussion about Objective-C seems to be the reference-counting
mechanism of Apple’s Foundation. I have to admit I always find the angst somewhat
overblown, as reference counting is both easy to work with and very predictable in its
performance characteristics. As the classic reference-counting implementation is
provided as library code, it is also amenable to normal factoring techniques for
reducing the amount of code involved.

Due to ARC’s performance limitations, I still use non-ARC reference counting in
performance-critical code. My strategy for dealing with reference counting consists
of the following patterns.
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1. Always use accessors, except in dealloc.
2. Auto-generate all accessors with non-autoreleasing get-accessors or non-atomic

properties using automatic accessor synthesis.
3. Always use convenience methods for object creation.

Using these patterns, my own non-ARC code was and is essentially free of
reference-counting operations, apart from the release messages sent mechanically
in dealloc. In numbers, I have 230 occurrences of [... retain] in 250 KLOC
(kilo lines of code, or thousands of lines of code), so slightly below one retain per
1,000 lines of code. The majority of those remaining retains are due either to legacy
or “special circumstances,” such as (probably premature) optimization. Because of the
non-automated dealloc methods, occurrences of the release message are about
10 times more frequent, but that is still only around 1% of total code.

By reducing the manual memory management code to 1% of total and effectively
automating adherence to the Cocoa memory ownership rules, this little code pattern
not only almost completely eliminates memory errors, but also eliminates having to
think about memory. Conversely, the vast majority of memory errors I have seen has
been in code that doesn’t follow this sort of pattern. When I see an object being sent a
retain in the middle of a method, I get suspicious, and the error is usually not far away.

The 1% figure is also sufficiently tiny that migrating code to ARC is trivial, as it
was for garbage collection. However, it also means that the benefits of such a
transition are minimal, 1% of code being a far cry from the roughly 50% effort
implied by Apple’s ARC transition guide.

One potential pitfall to beware of is the default atomic modifier for properties
we already mentioned previously, which makes property accesses thread safe.
Although the fact that everything is auto-generated in Example 7.1 making the code
appear clean, it actually has hidden costs, especially for read accesses. If you run it,
you will see that every read access incurs a penalty of one pointer’s worth of memory,
because the atomic accessor also implies an autoreleasing accessor, meaning your
object is added to the current autorelease pool.

Example 7.1 Measuring memory overhead of default synthesized read accessor

#import <Foundation/Foundation.h>
#include <malloc/malloc.h>

@interface AtomicTest:NSObject
@property(retain) id myObject;
@end
@implementation AtomicTest
@end

int main(int argc, char *argv[] )
{

int count=argc>1 ? atoi(argv[1]) : 1;
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[NSAutoreleasePool new];
AtomicTest* obj=[[AtomicTest new] autorelease];
obj.myObject=[NSString stringWithUTF8String:"Hello World"];
struct mstats stats=mstats();
long used_before=stats.bytes_used;
for (int i=0; i< count * 1000 * 1000; i++) {

[obj myObject];
}
stats=mstats();
long used=stats.bytes_used;
printf("n=%d memory used: %ld\n",count,used);
return 0;

}

While this may not seem a lot, read accesses are quite frequent, so this penalty can
actually add up in real-world situations, and lots of code expects them to be
essentially free. Adding the nonatomic keyword to the property declaration drops
the memory consumption to the expected amount of zero, and also makes the
affected code run up to 10 times faster.

Avoiding Leaks
With reference counting, there are essentially two ways you can get an object leak:
either your retains and releases don’t balance, or you have a cycle. When using the
rules discussed, your object ownership rules are taken care of automatically, except for
the release sent from dealloc. ARC additionally takes care of automatically
generating releases in dealloc. It is a bit unclear why this capability was bundled with
ARC, given that a generic dealloc routine is fairly trivial to write. Fortunately, leaks
in dealloc are so easy to fix using trivial code inspection (put .h and .m side by side,
compare ivar declarations to dealloc method) that I’ve never bothered to actually
use a generic/automated dealloc method I created in 2001, despite the fact that it
worked well and also removed the need for per-class dealloc methods. (Generic
dealloc uses introspection to find the object instance variables and releases them,
with an exception list to avoid releasing non-retained references.)

That leaves reference cycles, an issue with reference counting that is neither
addressed by the techniques above, nor by ARC (though it provides tools that can
help).

A reference cycle is a group of objects that are keeping each other alive despite the
fact that they are no longer reachable from outside the cycle. Fortunately, cycles can
usually be avoided by the programmer. The common case of a parent link in a
structure that is otherwise a tree (for example, the superview of the view hierarchy)
is handled by making the parent link nonretained, as in Figure 7.1. With the root of
the tree retained, the child links are sufficient to keep the objects alive as long as there
are references—the programmer just has to remember to set the parent pointer to
nil when removing a child from the tree.
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parent
child1
child1

parent
child1
child2

parent
child1
child1

nonretained (weak) reference

retained (strong) reference

Figure 7.1 Cycle resolved by not retaining parent

ARC helps a little in this case with zeroing weak references (@property (weak)
UIView *superview). These references are just like other nonretained references,
except that they automatically become nil when the target object gets deallocated,
saving the programmer from keeping track of these references and making sure there
are no dangling pointers.

Another potential cause for cycles is an object that is composed of different parts,
but the parts need services from the whole. If making the back references nonretained
is not an option, one way to break the cycle is to factor out the functionality into a
separate object and reference that instead, as shown in Figure 7.2.

child 1

parent
(services for 

child 1)

child 1

parent

child 2
(services for 

child 1)

Cycle Cycle broken

Figure 7.2 Cycle resolved by factoring out functionality
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Finally, heap-allocated blocks, especially those used in Grand Central Dispatch, are
also prime candidates for cycles, due to the object holding on to the block being
referenced non-weakly inside the block. Implicit scope capture makes this an easy
mistake to make.

The clang static analyzer can also detect potential leaks, and even though it can
show false positives, running it regularly should be part of basic code hygiene.

Foundation Objects vs. Primitives
We already saw in Chapter 3 that Foundation and CoreFoundation objects, while
convenient in some cases, can extract a significant CPU performance penalty, so it
shouldn’t be surprising that there is a significant memory cost as well.

An NSNumber representing a float has size of 32 bytes, whereas the float itself is
only 4 bytes, so an 8-fold expansion. Similar numbers apply to the other primitive
wrappers. An exception is NSNumber or CFNumber objects representing integers on
the 64-bit runtime, as we explored in the “Primitive Types” section of Chapter 3.
These are encoded in the object pointer itself and so don’t take up extra storage.

Speaking of pointers, all the object representations also use up a pointer worth of
memory in whatever structure or object is holding onto that reference, so that’s
another 4 bytes on a 32-bit system or 8 bytes on a 64-bit system. We didn’t factor this
into our comparison above, so with the pointer, the difference between a direct float
and an NSNumber is actually 4 bytes vs. 40 bytes, and the expansion becomes a factor
of 10. Figure 7.3 compares the memory layout of a Rectangle object using 4 real
values or 4 (simplified) NSNumber objects. With each box 8 bytes wide, the object
using primitives uses 24 bytes total, all of which fit in a single cache line of 64 bytes
and therefore can be read in a single memory transaction. Using NSNumber objects
instead not only increases the basic object size to 40 bytes, it also requires 4 additional
malloced blocks of memory, each of which will very likely be on a different
cache line.

In the “Arrays and Bulk Processing” section of Chapter 3, we saw that a
homogenous array of floating pointer numbers was anywhere from 5 to 1,000 times
faster than an NSArray of NSNumber objects. We can now see that it is also 5 to 10
times smaller, depending on the environment (32 or 64 bit) and representation (float
or double). While this difference in size wasn’t relevant for the benchmarks in the
“Arrays and Bulk Processing” section, because the array was relatively small in size
and there was no other activity, it would almost certainly have an additional impact
on performance in a real-world scenario. First, the likelihood of an expensive cache
miss increases 10 times just from size alone; second, allocating the NSNumber object
individually means that there is less chance to exploit fast sequential access patterns
because each NSNumber can be allocated from a different part of the heap.

As you can guess, the numbers get even worse with dictionaries. Let’s consider a
single mutable NSDictionary with a single entry, let’s say a NSKernAttribute
Name with a value of −0.2. In my measurements on a 64-bit system, the dictionary
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Figure 7.3 Memory layout of inlined primitives vs. object pointers

itself takes 112 bytes, with an additional 32 bytes for the NSNumber. I am not
counting the NSString key, because it is almost certainly shared, but that’s still
144 bytes. If we had an object with a kern float value, our total size would be
12 bytes of actual space, and 32 bytes due to malloc bucketing. Access patterns are
also worse; the hash function pretty much guarantees that accesses will be effectively
random, and thus incur maximum access-time penalties.

NSDictionary is often seen as a memory-saving device for sparse structures, but
it turns out that it is actually very difficult to break even on that large initial space
overhead. Figure 7.4 shows just how difficult: The only time NSDictionary breaks
even with a straight object representation is with an extremely low 5% or lower
utilization and 100 or more total slots. If the utilization rate is higher or the number
of slots lower, the object representation is more compact, despite all the seemingly
“wasted” slots, and at a utilization of even just 10%, the slope of the graph is also
steeper for the NSDictionary-based representation.

Smaller Structures
Once you’ve gotten rid of leaks, avoided gratuitous or bulk usage of Foundation
objects, and stored bulk data compactly without pointer indirections, finding more
compact in-memory representations of your data will help you conserve memory and
make your programs go faster. Not only will there be less data to move around, you
will also conserve precious cache memory, therefore lessening the chance of a stall
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Figure 7.4 Memory consumption of sparsely populated dictionaries vs. objects

waiting for main memory, or even worse—a page fault going to secondary storage.
Given the realities of today’s machines, the size/speed trade-off is really no longer a
trade-off; smaller sizes will almost always also translate into faster execution.

The first thing to do is not to waste space gratuitously, but sadly, wasting space is
both easy and extremely common. An example is the date representation in
Example 7.2, which was taken from a real-life calendaring application that ships on
millions of machines. Even having standard 32-bit integers for values with a range
from 0 to 24, 0 to 31, or 0 to 60 is already amazingly wasteful, but the authors either
automatically or at least unthinkingly made the situation much worse by following
the advice to replace unsigned ints with NSUInteger. As it stands, this will take
6 × 8 = 48 bytes of memory, and you can expect a lot of dates to exist in a
calendaring app.

Example 7.2 Gratuitous 64-bit integers in a date representation

typedef struct {
NSUInteger year,month,day;
NSUInteger hour,minute,second;

} date_time;
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This can trivially be replaced with the bit-field representation in Example 7.3
without any loss of required precision, except for being limited to dates a couple of
million years into the future. This representation is 48 bits or 6 bytes in size, which is
8 times smaller. Since the compiler will in all likelihood pad this out to at least 8
bytes, we could conceivably add another 16 bits to the year, making the year range
128 billion years, which should tide us over until the next software update. This
simple change shaved a couple of megabytes off the memory footprint of the app, and
multiplying that by a couple of million users makes for a whopping terabyte of
memory savings.

Example 7.3 More compact date representation

typedef struct {
unsigned long year:21,month:5, day:5, hour:5, minute:6, second:6;

} date_time;

Another pitfall to avoid is gratuitous subclassing. The same calendaring app’s main
model object was the event, but for some reason lost in history, this model object was
a subclass of NSView. Simply replacing the superclass with NSObject saved another
several megabytes.

With the 64-bit transition, many data types have been expanded from 32 to 64 bit;
for example, NSUInteger and NSInteger, but also CGFloat. For temporary
variables and message parameters, this is generally OK, but it probably makes sense to
verify how much range and precision are really needed for instance variables. As a
counterexample, CGColor is defined to have CGFloat components, which are now
64-bit C double floating point numbers. Considering the fact that human color
vision is able to distinguish at most around 10 million colors (107), representable in 24
bits, having 64 bits per color component (so a total of 192 bits for RGB, or 1038

combinations) seems a bit excessive.

But What About Y2K?
You may recall the year 2000 (Y2K) scare that was due to many programs using only
2 digits to represent date, so for example, the year 1982 was represented as the string
82, with the century prefix 19 implied. This would obviously stop working come
New Year’s Day 2000, which these programs would interpret as 1900, and potentially
charge interest for −99 years, compute speeds incorrectly, and so on.

While the original developers had assumed that their programs would have been
replaced long before this particular hack ever became relevant, the software in
question turned out to be much more long-lived than anticipated, resulting in a
worldwide, multi-billion-dollar cleanup effort, lots of crossed fingers, and much
overtime on New Year’s Day 2000 and fortunately very little damage. So, don’t the
recommendations here potentially have the same pitfalls?

I think the answer to that is “No.” First, the recommendation is to optimize field
sizes within objects, behind those fantastic encapsulation boundaries that we try to
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make fast without optimizing them away. For message interfaces (parameters and
return values), using the full width of the machine (32-/64-bit integers and
floats/doubles) is both recommended and essentially free, because a full register will
typically be taken no matter what. Second, even the slightly optimized
representations presented here still have enormous amounts of headroom. So if our
software lasts a couple of billion years longer than we expected or humans evolve to
be several quadrillion times more color sensitive, all we will need is a minor update of
a localized component, with all interfaces remaining the same.

Compression
Compression is an obvious space-saving measure, and many of the techniques for
saving memory, such as the bit-field discussed above, can be viewed as specialized
forms of compression.

These types of compression have the feature that they are directly usable in their
compressed state. General-purpose compression algorithms tend to not have this
characteristic, so the data needs to be decompressed before it can be used. This means
that both the uncompressed and the compressed representation are now in memory,
with at least the uncompressed version also being dirty. An uncompressed
representation can therefore paradoxically often be both faster and more memory
efficient than one that is compressed.

Purgeable Memory
One way of alleviating the memory pressure of dirty decompressed versions of data,
or any other data that can be recomputed from a more compact representation, is
purgeable memory. Marking memory as purgeable indicates to the operating system that
when there is memory pressure, it can discard this memory just like clean memory
despite the fact that it is known to be dirty, instead of having to swap it to disk.

Apple provides both a low-level interface using flags to the mmap() system call, as
well as the much higher-level and more convenient NSPurgeableData class, which
wraps a NSMutableData compatible interface around purgeable data and also
implements the NSDiscardableContent protocol.

The beginContentAccess and endContentAccess messages of the
protocol must be used to lock and unlock the actual contents, respectively; data can
only be accessed while locked and only purged while unlocked.

The discardContentIfPossible message will purge the data unless it is
currently locked, and this can also be done by the system if there is memory pressure.
Once the data has been purged, beginContentAccess returns “NO” and access
methods like bytes or mutableBytes will throw if used without a successful lock
using beginContentAccess. It is important to not keep pointers to the data
around, as accessing data via these pointers will cause the process to be killed if the
data has been purged.

One thing to note about purgeable memory is how it is accounted for by the tools.
For example, in top: when locked, it appears in the RSHRD column (rather than
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RPRVT), and when unlocked it actually doesn’t appear at all! The rationale is probably
that the system can reclaim that memory at any point, but that’s slightly misleading,
because purgeable memory still produces memory pressure, even when unlocked. In
my experience, and depending on the global situation, the system can and will prefer
paging out other memory rather than releasing a purgeable memory segment.

Memory and Concurrency
With the large discrepancy between CPU and memory speeds even for a single core,
it shouldn’t come as a surprise that managing memory bandwidth and latency is one
of the primary concerns in writing high-performance multicore software.

If you want to keep multiple cores busy, they need to be able to work out of their
private caches the majority of the time. Cache aware programs specifically take the
known size of the caches into account, for example, splitting work into blocks of 16K
or some other size. As the name suggests, they tend to be parametrized by the specific
cache size and characteristics, so they are either hardware dependent or at least need
to be parametrized at runtime.
Cache-oblivious algorithms use a recursive subdivision strategy and typically work

on trees or tree-like structures, with most of the detailed work done near the leaves.
The team behind the experimental and now defunct Fortress numerical computing
language (intended to be a safe successor to FORTRAN, hence the name) has many
good presentations1 on the Web on this topic.

Another case of cache pollution can occur when a thread streams through memory,
forcing other threads’ data out of the caches. Special instructions in multimedia
instruction sets such as SSE allow reading data from main memory without going
through the caches. Since streaming performance of main memory is much higher
than random access speeds, this can be sufficient for actual streaming algorithms.
Apple’s vDSP and vImage already take advantage of these instructions, so they can be
a good option.

Contention occurs when two threads are trying to access the same piece of data.
Since data in CPUs is organized in cache lines of typically 64 bytes, false sharing can
occur when two threads access data that is actually at different locations, but those
two locations lie on the same cache line. In this case, the CPU has to keep shuffling
the data between the two cores, dramatically lowering throughput. If you find you
have false sharing between threads, adding enough padding between the pieces of
data that are causing the sharing to put them on different cache lines can dramatically
improve performance.

If multiple threads work on the same data by handing it off between themselves, it
makes sense to use the thread affinity APIs to pin them to the same core.
Conversely, two concurrently running threads working on different data sets should

1. https://web.archive.org/web/http://research.sun.com/projects/plrg/Publications/

https://web.archive.org/web/http://research.sun.com/projects/plrg/Publications/
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be scheduled on different cores in order to avoid having them fight over who owns
the CPU-specific L1 cache.

Architectural Considerations
We already saw some effects of architectural style in the difference between SAX and
DOM parsers in Chapter 4. Whereas stream-oriented SAX parsers use effectively
constant memory,2 DOM parsers use memory proportional to the total file size.
However, the effects of architectural style can be even more pronounced than that, as
we will see.

Example 7.4 should print out the description of an NSArray with a single
member, another NSArray. This final description would be something along the
lines of “(( )),” and take on the order of a couple of bytes, but because the two
arrays are nested in each other, the program crashes. On my system, it actually runs
out of stack space before running out of total memory, but it would eventually run
out of memory as well.

Example 7.4 Crashing using two NSMutableArrays and description

import Foundation

var a=NSMutableArray()
var b=NSMutableArray()
a.addObject(b)
b.addObject(a)
print(a.description)

You might be wondering what this result has to do with software architecture. Isn’t
it just a bug in NSArray or description? Not really. Example 7.5 simply nests
arrays, without the mutual recursion. Now, instead of a crash, we get the n2 memory
consumption curve for temporary objects shown in Figure 7.5. The actual size of the
description grows linearly and is shown for comparison.

Example 7.5 Measuring memory consumption for description of nested NSArrays

import Foundation

let numArrays=Int(Process.arguments[1])!
let before=mstats();
var base:NSMutableArray=["Hello World"]
for i in 1...numArrays {

base=[base]

2. More precisely: linear with the height of the tree.
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}
let b=base.description
let after=mstats();
print("memory used: \( after.bytes_used - before.bytes_used)")

The graph only shows memory use up to a nesting level of 50, because after that
the n2 allocations curve becomes sufficiently large that the description size becomes
effectively pinned to the x-axis when shown at the same scale. With 750 nested
NSArrays, memory consumption grows to 500 MB and CPU time to 78 ms.
Doubling to 1,500 nested NSArrays, both memory and CPU use quadruple to
2 GB and 306 ms, respectively. I’ve actually managed to run out of address space at
times with a couple of thousand nested NSArray instances …on a 64-bit machine!
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Figure 7.5 Quadratic memory consumptions for description of nested NSArrays
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(If you really want to try this yourself, be prepared to wait a long time and at the
very least reboot your machine to clean up swap space afterward. You may also
actually run out of swap space and induce a kernel panic, so I don’t recommend this.
Save your work, back up your system beforehand, and don’t say you weren’t warned!)

The reason for this memory growth is not an implementation flaw in the
description method, it is a fundamental characteristic of the call-and-return
architectural style. In this style, you call a function or method and it returns a result.3

Since that is the entire interaction, the result that is returned has to be complete;
there is no real concept of a partial result.

When we need to compose these intermediate results into a final result, it means
we need to first completely build all of the partial results, then allocate enough
memory to hold the combined results, and then copy the partial results into the final
result. Repeat this at each nesting level and you get a total complexity of O(m× n),
where m is the nesting depth and n is the total size. In the (admittedly slightly
pathological) example given here that has the nesting depth equal the total size
(m = n), that gives us the n2 result that we measured.

Fortunately, there is a fairly simple solution using a streaming approach, similar to
what we saw with SAX for XML parsing, but simpler because we are generating
instead of parsing. Instead of constructing complete partial results, we accumulate
partial results into a shared buffer allocated once at the start, passing that buffer in to
our methods instead of returning the result from the methods. The describeOn:
method in Example 7.6 implements this accumulator-based streaming design for
NSArray. The remainder of the code integrates it with the current description
protocol and exposes a fastDescription method that encapsulates setting up the
accumulator.

Example 7.6 Streaming a description with describeOn:

#import <Foundation/Foundation.h>

@implementation NSArray(describeOn)

-(void)describeOn:(NSMutableString*)description
{

[description appendString:@"( "];
NSString *separator=@"";
for (id obj in self ) {

@autorelease {
[obj appendString:separator];
[obj describeOn:description];
separator=@", ";

}

3. In Objective-C, we’d typically prefer the terminology send a message.
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}
[description appendString:@")"];

}
@end

@implementation NSObject(describeOn)
-(void)describeOn:(NSMutableString*)description
{

[description appendString:[self description]];
}
-(NSString*)fastDescription {

NSMutableString *s=[NSMutableString string];
[self describeOn:s];
return s;

}
@end

Changing Example 7.5 to use fastDescription instead of description
yields the dramatically different results shown in Figure 7.6. Not only does the total
memory graph stay relatively flat and very close to the final size of the description,
but notice that the x-axis starts at a nesting depth of 5,000, which is 100 times the last
value given in Figure 7.5. Total memory consumed at the 5,000-object mark is
around 20 KB. Where the n2 algorithm required 2 GB for 1,500 items, we can get
the description for ten times the number of items using just 60K of memory, so the
accumulative algorithm is 35,000 times more memory efficient at this point.
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While this was obviously an extreme example, the general principle holds that
large data sets with partial results are difficult to handle with a call-return architectural
style, and even medium-sized data sets with nesting will suffer from the need to have
full partial results recomputed and the m× n space/time complexity inherent for
nested structures in the style. Objective-C suffers more from this style than other
languages would, due to the cost of object creation and the associated autorelease
handling needed when returning a newly created object from a method. Just adding
data to an already existing object is much cheaper.

So when designing a processing API, try to make it fundamentally streaming
capable, for example, by passing some sort of accumulator that can accept results
incrementally. Examples of this type of object abound—for example, the
CoreGraphics CGContextRef object for talking to the display or perhaps more
famously the Unix file descriptor fd or the stdio FILE object for I/O. In fact, Unix is
probably the poster boy for streaming, with its pipes-and-filters architectural style, and
most Unix filters will work on arbitrary-length data without any degradation.

As shown in Example 7.6, adding a call-return convenience method that
encapsulates the streaming mechanism is usually easy, whereas converting a call-return
API to streaming tends to be difficult to impossible without a rewrite.

Once we have an accumulator, an obvious extension is to make the accumulator
smarter than just a simple NSMutableString. We will look a little more closely at a
family of such classes in the next chapter, which will also take care of the infinite
recursion in Example 7.4.

Temporary Allocations and Object Caching
As we’ve seen here and in the “Object Creation and Caching” section of Chapter 3,
temporary objects can be a serious challenge for Objective-C programs. The buildup
of temporary objects is both expensive in itself and can lead to considerable heap
growth, even if we’ve taken care not to build n2 algorithms.

Heap growth can be controlled with nested autorelease pools or with the new
@autoreleasepool compiler directive. The describeOn: method in
Example 7.6 demonstrates this method by wrapping every iteration of the loop that
describes the contents of the array in a nested pool. This cleans up any temporary
objects that are no longer needed, especially those of the recursive send of
describeOn:.

Even if we manage to avoid excessive heap growth by cleaning up regularly,
temporary objects still present a performance problem because they are expensive to
create and destroy. This is due to the fact that NeXT/Apple Objective-C and Swift
require objects to be heap allocated; they do not allow the objects themselves to be
allocated on the stack like other temporary variables. From a performance point of
view, this limitation is unfortunate because stack allocation is essentially free: A single
addition to the stack pointer “allocates” all the stack variables for a given function.
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Of course, the fact that we’re talking about a true C superset means that just
because something is not allowed does not actually imply that you can’t do it, just that
you probably really should not. Example 7.7 shows how you can allocate
Objective-C objects on the stack, if you really want to.

1. Get the class and the instance size of the class.4

2. Allocate and zero memory on the stack for the object using alloca() and
bzero().

3. Set the class.
4. Use within the block scope and no further.

Example 7.7 Stack allocation of an Objective-C object

#import <MPWFoundation/MPWInteger.h>
#include <stdlib.h>
#include <objc/runtime.h>

int main(int argc, char *argv[]) {
Class mpwint=[MPWInteger class];
size_t instance_size=class_getInstanceSize( mpwint );
id a=alloca( instance_size );
bzero(a, instance_size );
object_setClass(a, mpwint);
[a setIntValue:43];
NSLog(@"a=%@",a);
return 0;

}

While I have seen this done in production code at a certain Cupertino-based
consumer electronics company, I have to admit to cringing, and I myself have never
needed it in a good quarter century of performance-obsessed Objective-C hacking.
With advances such as non-fragile instance variables, the already enormous chances
of not just shooting yourself in the foot but actually blowing your entire leg off have
increased even further, so I strongly recommend against this.

At the very least, you’d need to create a subclass that throws exceptions on any
attempt to retain the object in question, make sure that it doesn’t get stashed away
anywhere without a retain, obviously make sure you’re not returning it from your
method/function, and don’t even think of using this with ARC.

The object cache we introduced in the “Mutability and Caching” section of
Chapter 3 solves both the problem of heap growth and allocation/destruction cost for
short-lived objects in one fell swoop. Instead of allocating a fresh temporary object
every time and then hoping it will get destroyed in time, or allocating an object on

4. Foundation objects often lie about their size and so aren’t suitable for this.
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the stack and hoping it doesn’t escape and cause the world to blow up, we just reuse
already allocated objects at the expense of a couple of function calls.

NSCache and libcache
A somewhat different type of cache was introduced by Apple in Snow Leopard, with
the Cocoa NSCache class and the lower-level libcache library it is built on.
NSCache is a key-value store similar to NSMutableDictionary, except that
contents may be evicted from this dictionary if the system detects memory pressure.
NSCache allows you to aggressively use as much available memory as possible for
caching, while minimizing the chance of degrading system performance with that
memory use—for example, causing undue memory pressure or in the worst case
paging the caches to and from slow secondary storage.

Note that evicted here just means that the object is removed from the cache (sent a
release), not that the object is deallocated. This happens according to the normal
memory management rules, so the object will only be deallocated if the NSCache
was holding the last reference—in essence, if no one else was using it.

With a few minor caveats, you can use NSCache just like a NSMutable
Dictionary. Since objects can disappear, you need to retain the object you get
until you’re done with it, preferably by stashing it in an instance variable with a
proper accessor. Conversely, just because an object is removed from an NSCache
does not mean it will be released as it may be retained elsewhere.

Since the eviction occurs asynchronously and that includes the time after you
requested it but before you can store it yourself, the object is protected in transit using
the retain + autorelease combination known from atomic read accessors.
Unlike NSMutableDictionary, NSCache is thread safe and doesn’t copy its keys.

Although you can use NSCache as simply a drop-in replacement, it also allows you
to exercise more control if you so desire. If you have a cost-function for your objects,
you can specify a maximum cost of the objects in the cache (for example, bytes used).
If your cost function is “1,” you can limit the number of objects in the cache.

NSCache can also interact with its content objects via the NSDiscardable
Content protocol (as implemented by the NSPurgeableData we discussed
earlier), essentially a separate reference counting protocol that was probably necessary
to make NSCache work with the tracing collector that was also introduced with
version 10.6.

Memory-Mapped Files
Although memory mapping a file has to do with reading that file into a memory, a
memory-mapped file can also be regarded as a special case of purgeable memory
(ignoring the fact that memory-mapped files predate purgeable memory by a number
of years). Like purgeable memory, a mapped file’s memory can be reclaimed by the
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system at any time, but unlike purgeable memory this is completely transparent to the
user. Since we provide the system with a data source for the memory (the underlying
file), the system can automatically restore the contents of memory from that data
source whenever we access it. Since it can do this at any time, it doesn’t even need to
actually read any data from the file until and if we actually do access the memory.

Using flags for the NSData method dataWithContentsOfURL:options:
error: (either NSDataReadingMappedIfSafe or NSDataReadingMapped
Always), we can completely change what those methods do, although the end result
is semantically (largely) indistinguishable.

Without the mapping flag (see Example 7.8), these functions allocate memory and
then use system calls to read the data from disk, returning after the data has been read.
Since we have written into allocated memory, that memory is now marked as dirty.

Example 7.8 Reading a file

NSData *data;
data=[NSData dataWithContentsOfFile:@"documentation.pdf"

options:0
error:nil];

With the mapping flags, shown in Example 7.9, all that happens during the call is
that address space is created and that address space is marked as being backed by the
file in question. The difference is illustrated in Figure 7.7. No actual physical memory
is allocated or I/O performed during the call; the manipulation was purely of virtual
address space. Actual I/O is only performed if and when those mapped addresses are
referenced. If only parts of the file are accessed, only those parts are read (though the
system may elect to speculatively read more than was requested). What’s more, since
the process hasn’t written to those pages, they remain clean. They even remain clean
once the system does the I/O to fill them with data from the file because there is no
difference between the data in memory and the file backing that memory.

Example 7.9 Mapping a file

NSData *mapped;
mapped=[NSData dataWithContentsOfFile:@"documentation.pdf"

options:NSDataReadingMappedAlways
error:nil];

The difference between the clean and dirty pages becomes noticeable when we
have memory pressure and the system wants to free some memory. With parts of the
mapped file actually read into memory, the system can simply undo the mapping,
pointing that particular address space back at the original file. With the file read using
Unix I/O, the system cannot do this, so if it wants to reuse that memory it first has to
stash its contents in the swap file. For large files exceeding physical RAM, this can
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Figure 7.7 Reading a file vs. mapping a file

lead to the situation of having the data read from disk, swapped back out to swap and
read back in from swap, possibly multiple times. On iOS, of course, no swapping
takes place so dirty pages cannot be reclaimed by the OS. That leaves two options:
either the process has to reclaim the memory in response to a memory warning or
the OS has to kill the process.

So with memory mapping, potentially less memory is used in the first place. It can
be reclaimed quickly and efficiently when needed, and I/O and processing can in
many cases be interleaved, rather than having to do all I/O upfront before starting
processing. So file access should essentially always be using memory-mapped files.

There is one main caveat to using memory-mapped files: with the I/O being done
lazily, there may be I/O problems in code not expecting it. At its simplest, this may
simply be I/O latency for an operation where we’re expecting at most memory access
costs, but that can also happen when swapping, so we’re not really worse off. At its
worst, however, this latency could reach infinity if the physical volume is
removed—for example, if the network connection to a mounted volume is
interrupted or an external hard disk removed. If that happens, the failure will result in
a segmentation violation for the memory access. While this Unix signal can in theory
be handled, in practice it will crash the program. When specifying the NSData
ReadingMappedIfSafe flag, the system will therefore only map the file if the
volume it is on is considered safe from sudden disappearance acts (for example, the
boot volume).
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One way to mitigate this issue is to preread the mapped data: For example, a
so-called page walker running in its own thread simply touches every page of the
mapped file, causing it to be read into memory. A very simple page walker is shown
in Example 7.10. It assumes the page size is 4,096 bytes and reads exactly 1 byte from
each page in the NSData argument. More sophisticated versions can be paced to stay
only a little ahead of the main computational thread, for example, when sequentially
processing a large memory-mapped file.

Example 7.10 Page walker

int pageWalker( NSData *data )
{

int dummyResult=0;
const char *bytes=[data bytes];
for ( int i=0, max=[data length]; i<max; i+=4096 ) {

dummyResult+=bytes[i];
}
return dummyResult;

}

madvise
Although page walking does not affect the semantics of a program, it improves
performance by essentially causing the I/O for a piece of the mapped file to occur
before the processing that will actually need that data reaches it. Another way to
achieve this effect is with the madvise system call, which allows you to give hints
(“advice”) to the system about your future plans with specific pieces of address space.

One hint you can give is MADV_WILLNEED. This should have the effect of paging
any data that’s not in memory yet—similar to the page walker, but simpler. Once
you’re done with a piece of memory, you can also tell the system this, using
MADV_DONTNEED, which will make those pages eligible for eviction before others. If
you are simply accessing contents sequentially, MADV_SEQUENTIAL the system will
effectively do read-ahead and free-behind for you.

Going back to the discussion in the “Architectural Considerations” section of this
chapter, what memory mapping in general and MADV_SEQUENTIAL in particular
allow you to do is program in the easy call-return style while at the same time enjoying
the performance advantages of a streaming style, with the additional flexibility of being
able to break out of that style when necessary without jumping through hoops.

The MADV_FREE is like MADV_DONTNEED except that you are saying you don’t
actually care about the content of the memory in question, meaning that the system
can discard it. (Dirty memory with MADV_DONTNEED still needs to be paged out.)
The malloc update in Snow Leopard applies MADV_FREE to heap memory that’s
been freed, in order to avoid swapping memory to disk that no longer contains
useful data.
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When used wisely, the different madvise options can have a huge impact on your
memory footprint and performance. Two caveats to watch out for are, first, that all
advice given with madvise is advisory only; the kernel has no obligation to follow
the advice (and until Leopard, most options were in fact ignored). Second, advice
tends to be global, so it is possible to interfere with other processes’ use of memory
when dealing with shared mappings.

iOS Considerations
As we’ve noted a number of times, the lack of a swapfile on iOS makes a significant
difference: Instead of performance degrading gradually, you hit a brick wall. What
doesn’t change, however, is the fluid nature of the memory subsystem, and together
these make for a challenging environment.

On one hand, your process will get killed if you are too aggressive or quick about
requesting memory from the system, or too slow in giving up when requested. On
the other hand, the system still has enough uses for memory that checking memory
status and using only what is available will often not allow your app to function
properly either.

Memory warnings, for example, get delivered on the main thread. This means that
if your app is busy on the main thread (whether allocating or not) while a memory
warning is pending, your app is likely to get marked as unresponsive and get killed.
On the other hand, just moving your allocations onto a background thread is also not
the answer: I have seen apps getting killed because the background thread was happily
allocating large chunks of memory while the foreground thread was trying to process
a memory warning.

One solution I have found is for background threads with high allocation
requirements is to “ping” the main thread a “do-nothing” message. (using the
performSelector:onMainThread: class of messages with the waitUntil
Done flag set to YES). If a memory warning is being processed on the main thread,
this will block the background thread behind that processing and allow memory to be
freed before proceeding.

Speaking of memory warnings, when you receive a memory warning, pretty
much drop everything else you’re doing and start freeing memory.

The inability to swap dirty pages out to disk means that keeping your memory
clean, for example by mapping, is even more important on iOS than on OS X.
Although the system can’t swap, it can still force all those clean pages out of memory,
requiring the system to read them back in when next required, so the system can be
slowed down by memory pressure just like OS X.

Optimizing ARC
When we were working on the Wunderlist 3.0 release, we suddenly ran into a crash
in the NSOutlineView delegate method shown in Example 7.11.
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Example 7.11 Method that returns 0

- (BOOL)outlineView:(NSOutlineView *)outlineView isGroupItem:(id)item
{

return NO;
}

This was surprising to say the least, because there is nothing there that could
possibly crash. We were expecting the assembly code to be roughly something like
Example 7.12, only manipulating registers. In fact, I would have been happy with just
the xorl %eax,%eax, retq, but setting up the frame pointer doesn’t really add
much overhead and this was a debug build.

Example 7.12 Non-ARC-generated assembly for method that returns 0

-[WLTaskListsDataSource outlineView:isGroupItem:]:
01000e958a pushq %rbp
01000e958b movq %rsp, %rbp
01000e958e xorl %eax, %eax
01000e9590 popq %rbp
01000e9591 retq

However, what we actually got was the code in Example 7.13. All of the
arguments are retained indirectly via calls to objc_storeStrong(), and then
released again by also calling objc_storeStrong(), but this time clearing the
local variable. The crasher appeared to be caused by the NSOutlineView passing us
an invalid object, which was also surprising considering this was (a) ARC, where that
sort of thing isn’t supposed to happen, and (b) Apple’s code.

Example 7.13 ARC-generated assembly for method that returns 0

-[SomeOutlineViewDelegeate outlineView:isGroupItem:]:
01001bfdb0 pushq %rbp
01001bfdb1 movq %rsp, %rbp
01001bfdb4 subq $0x30, %rsp
01001bfdb8 leaq -0x18(%rbp), %rax
01001bfdbc movq %rdi, -0x8(%rbp)
01001bfdc0 movq %rsi, -0x10(%rbp)
01001bfdc4 movq $0x0, -0x18(%rbp)
01001bfdcc movq %rax, %rdi
01001bfdcf movq %rdx, %rsi
01001bfdd2 movq %rcx, -0x30(%rbp)
01001bfdd6 callq 0x10027dbaa ## _objc_storeStrong
01001bfddb leaq -0x20(%rbp), %rdi
01001bfddf movq $0x0, -0x20(%rbp)
01001bfde7 movq -0x30(%rbp), %rsi
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01001bfdeb callq 0x10027dbaa ## _objc_storeStrong
01001bfdf0 leaq -0x20(%rbp), %rdi
01001bfdf4 movabsq $0x0, %rsi
01001bfdfe movl $0x1, -0x24(%rbp)
01001bfe05 callq 0x10027dbaa ## _objc_storeStrong
01001bfe0a movabsq $0x0, %rsi
01001bfe14 leaq -0x18(%rbp), %rax
01001bfe18 movq %rax, %rdi
01001bfe1b callq 0x10027dbaa ## _objc_storeStrong
01001bfe20 movb $0x0, %r8b
01001bfe23 movsbl %r8b, %eax
01001bfe27 addq $0x30, %rsp
01001bfe2b popq %rbp
01001bfe2c retq

While we were eventually able to find and remove the crasher, measurements also
indicated that the ARC code was roughly 26 times slower than the non-ARC code.
That’s more than an order of magnitude difference between optimized and
non-optimized code.

Why were we running non-optimized code? The default build settings that ship
with Xcode (shown in Figure 7.8) specify that optimizations be off for debug builds,
meaning virtually all development builds.

We didn’t notice this slowdown of 26 times because the method was in the 97%
non-performance-critical part of the code, and the experience really drove home the
message of the very strong split between performance-critical and non-critical code.

While in this case the optimizer saved us (just leaving the issue of potentially
unusably slow debug builds), this is not always the case. A little further inspection
showed that many even very simple methods produced a lot of non-obvious calls to
objc_storeStrong() even with optimizations on, overwhelming the useful work
done in the method. The two ways to deal with this are to either move the
performance-critical code to a file not compiled with ARC, or to add
__unsafe_unretained attributes where necessary until the extra retains go away.
Example 7.14 compiles to code without any extraneous retains, even with
optimizations turned off.

Figure 7.8 Default build configuration for new projects
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Example 7.14 Method that returns 0 without retaining its arguments

- (BOOL)outlineView:(__unsafe_unretained NSOutlineView *)outlineView
isGroupItem:(__unsafe_unretained id)item

{
return NO;

}

I personally prefer keeping performance-sensitive code completely out of ARC,
relying on ARC/non-ARC interoperability instead. For example, the object-cache
in the “Object Creation and Caching” section of Chapter 3 cannot be expressed with
ARC active; it has to be in a separate file. In addition, I am slightly uncomfortable
with declaring that “I know what I am doing” when in ARC mode, because I am
not sure I do. The interactions with the compiler have on many occasions been
surprising.

Summary
This chapter introduced a number of techniques both for keeping down the memory
footprint of your application and making sure you use that memory as effectively as
possible. As usual with Objective-C, you want to leverage coarse-grained objects
filled with primitive types whenever possible, and we have seen how that coarse-grain
structure interacts well with the cache-line-oriented nature of modern
CPU-memory interfaces.

Basic data-structure tuning is also important, though not really Objective-C or
Cocoa specific, unlike reference counting and cycle-breaking techniques or the
specific object caches. Some of these caching mechanisms even have private interfaces
to the virtual memory subsystem that allow them to adapt caching behavior to the
system environment, while other VM APIs allow programs to optimize their use of
non-cached resources.

Both iOS memory management techniques and the streaming architectural style
are important topics that we will cover in more depth using the examples in the next
chapter.



8
Memory Example: FilterStreams

We’ve touched on streaming approaches before, for example, when looking at the
effects of memory mapping or when comparing DOM-based XML parsers to those
based on SAX or MAX.

In the preceding chapter, we showed how to drastically lower memory
consumption by changing the description method that returns an NSString to
a streaming describeOn: method that updates an NSMutableString passed into
it as an argument.

However, having the argument be an NSMutableString seems to somewhat
contradict our advice of having semantically rich objects, and also doesn’t solve the
initial problem of an infinite recursion causing a crash. So it shouldn’t come as a
surprise that we can do better. In fact, we will briefly introduce an entire hierarchy of
FilterStreams, which combine aspects of the Unix pipes-and-filters architectural style
with object-oriented concepts such as polymorphism, incidentally also solving the
problem of infinite recursion in -description.

Unix Pipes and Filters
The Unix pipes and filters architecture is probably the best known streaming
architecture. It has at least two very desirable properties: the filter components are
interchangeable and data can be processed incrementally, reading partial inputs and
writing partial outputs until processing is complete, as long as the semantics of the
operation make it possible. It is also concurrent, with each filter processing data in its
own process, highly optimized, and unityped (everything is a stream of bytes). A
graphical representation of a two-stage pipeline is shown in Figure 8.1: the output
from Filter 1 is connected to the input of Filter 2. In addition, the whole pipeline
again has one input and one output, meaning the composed pipeline can act as a filter
in another pipeline.

However, the data operated on by Unix filters are characters, which have to be
parsed into meaningful units on input and regenerated from any internal



162 Chapter 8 Memory Example: FilterStreams

Filter 1
stdin stdout

Filter 2
stdin stdout

pipe

Figure 8.1 Two Unix filters connected by a pipe

representation on output for every step in the pipeline. In addition, communication is
via fairly heavyweight inter-process communication.

Example 10.1 in Chapter 10 is a simple Unix filter that capitalizes the first
character of every line it reads. It looks a little more complex than necessary because
it eschews the library routines for buffering and extracting lines of text, illustrating
the problem of having to parse meaningful structures out of the byte stream—a
fundamental problem of Unix style filters.

Example 8.1 takes advantage of buffering and the built-in libraries for dealing with
lines of text, making the code much simpler and around 250 times faster than
Example 10.1.

Example 8.1 Upcase filter using line-oriented I/O

#include <stdio.h>
#include <ctype.h>

#define MAXLENGTH 8192

int main(int argc, char *argv[] ) {
char buf[MAXLENGTH];
while (fgets(buf,MAXLENGTH,stdin)) {

buf[0]=toupper(buf[0]);
fputs(buf,stdout);

}
return 0;

}

Integrating data object types other than streams of bytes or lines of text requires
coming up with a byte-serialization format, libraries for parsing and serializing those
objects from and to byte streams. Passing object pointers seems easier, especially for
complex, hierarchical, or large data structures. Additionally, whereas filters can be
reused via composition, specializing an existing filter to do something slightly
different is not supported.



Object-Oriented Filters 163

Object-Oriented Filters
Stepping back from the particulars of the Unix implementation, we see that the
fundamental characteristic of the pipes and filters architectural style are the
uniformity of its interface and the forwarding of results to a target rather then
returning them the caller. We can achieve the same or very similar effects using
objects as filters and objects as the data that is exchanged between filters.
FilterStreams reduce the two elements (pipes and filters) to a single element, the
FilterStream object. Figure 8.2 shows the structure of a FilterStream, with a
writeObject: method and a target instance variable into which the results are
accumulated or which points to another FilterStream.

Example 8.2 shows the Objective-C code for the “null” FilterStream, which just
passes its input unchanged to its target filter, similar to the Unix cat command.
(The example elides boilerplate code such as the accessors, dealloc, and
initialization method.)

Example 8.2 Null Filterstream

@protocol Streaming
-(void)writeObject:anObject;
@end

@interface MPWFilterStream : NSObject<Streaming>
{

id <Streaming> target;
}
@end
@implementation MPWFilterStream

-(void)writeObject:anObject
{

[target writeObject:anObject];
}
@end

writeObject:
target
FilterStream FilterStream 1

target
writeObject:

FilterStream 2

target
writeObject:

Figure 8.2 FilterStreams
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The null filter isn’t very interesting of course, but it sets the stage for filters that
actually do something by overriding the writeObject: method with actual
processing.

DescriptionStream
Recasting description as a FilterStream results in a DescriptionStream,
which accepts arbitrary objects as arguments to its writeObject: method and
writes a description of those objects to its target. The simplest implementation of this
specification is to simply send the description message as shown in Example 8.3,
but this isn’t very useful because it doesn’t actually stream the result.

Example 8.3 Simple but inefficient DescriptionStream

@interface MPWDescriptionStream : MPWFilterStream
@end
@implementation MPWDescriptionStream

-(void)writeObject:anObject
{

[target writeObject:[anObject description]];
}
@end

In order to actually get the streaming behavior we want, we need to at least
distinguish between arrays and other objects, breaking up the arrays and writing them
incrementally as shown in Example 8.4. The writeObject: method checks
whether the argument is an NSArray, and if this is the case it describes the
individual elements surrounded by round parenthesis and separated by commas.
Describing the individual elements of the array is handled recursively by writing
them to the stream itself.

Example 8.4 DescriptionStream with case analysis

-(void)writeObject:anObject
{

if ( [anObject isKindOfClass:[NSArray class]] ) {
BOOL first=YES;
[target writeObject:@"( "];
for ( id content in anObject ) {
if ( !first) {

[target writeObject:@", "];
} else {

first=NO;
}
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[self writeObject:content];
}
[target writeObject:@") "];

} else {
[target writeObject:[anObject description]];

}
}

Having the filter self-contained as in Example 8.4 is in line with the Unix
tradition, but the case analysis is a code smell that begs for a more object-oriented
solution. Instead of checking the class in question, Example 8.5 uses double dispatch1

to bounce the problem back to the object in question while encoding the type of
stream using the message name describeOn:. In addition, the stream makes API
available for the client objects to actually write the description.

Example 8.5 DescriptionStream with double dispatch

@implementation DescriptionStream
-(void)writeObject:anObject
{

[anObject describeOn:self];
}
-(void)writeDescription:(NSString*)partialDescription
{

[target writeObject:partialDescription];
}
@end

@implementation NSArray(describe)

-(void)describeOn:(MPWDescriptionStream*)aStream
{

[aStream writeDescription:@"( "];
BOOL first=YES;
for (id obj in self ) {

if (first) {
first=NO;

} else {
[aStream writeDescription:@", "];

}
@autoreleasepool {

[aStream writeObject:obj];
}

}

1. http://en.wikipedia.org/wiki/Double_dispatch

http://en.wikipedia.org/wiki/Double_dispatch
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[aStream writeDescription:@")"];
}
@end

@implementation NSObject(describe)
-(void)describeOn:(MPWDescriptionStream*)aStream
{

[aStream writeDescription:[self description]];
}
@end

Using double dispatch removes the case analysis and makes the code ready for
future extension. For example, we don’t have to modify any existing code in order to
accommodate NSDictionary objects, we just need to implement describeOn:
on NSDictionary. On the other hand, we have moved much of the logic of the
filter out of the filter itself into the client objects, requiring categories, and tangled
that code with filter-specific logic such as writing the description parts.

One way to move the code back into the filter is to dispatch back to the filter
again, this time encoding the kind of object to process; for example, writeArray:
for NSArray. If we do this, we actually don’t need to encode the kind of stream in
the first dispatch because the stream that we finally bounce the message back to
knows what it is. Although the code shown in Example 8.6 also uses categories, these
categories are purely behind-the-scenes plumbing that not only can be given
clash-resistant names, but can in fact be generated from blocks using
imp_implementationWithBlock().

Example 8.6 DescriptionStream with triple dispatch

@implementation DescriptionStream
-(void)writeObject:anObject {

[anObject writeOnStream:self];
}
-(void)writeDescription:(NSString*)partialDescription {

[target writeObject:partialDescription];
}
-(void)writeNSObject:(NSObject*)anObject {
[self writeDescription:[anObject description];
}

-(void)writeNSArray:(NSArray*)array
{

[self writeDescription:@"( "];
BOOL first=YES;
for (id obj in array ) {

if (first) {
first=NO;
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} else {
[self writeDescription:@", "];

}
@autoreleasepool {

[self writeObject:obj];
}

}
[self writeDescription:@")"];

}

@end

@implementation NSArray(StreamWriting)

-(void)writeOnStream:(MPWFilterStream*)aStream {
[aStream writeNSArray:self];

}

@end

@implementation NSObject(StreamWriting)

-(void)writeOnStream:(MPWFilterStream*)aStream {
[aStream writeNSObject:self];

}

@end

Each object gets written to the stream using the writeObject: message that
represents the stream interface. The stream then asks the object to write itself using
the writeOnStream: message, with the object responding by sending a message
encoding its class to the stream (see Figure 8.3). While this may seem like a lot of

FilterStreamNSArray

writeObject:

writeOnStream:

writeNSArray:

Figure 8.3 FilterStream interacting with an NSArray written to it
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messages, remember that messages are comparatively cheap, compared to having to
allocate temporary memory and unpack/repack intermediate results.

The NSMutableString is now hidden behind the target of the
DescriptionStream, so we can actually replace it with an object that outputs
directly to stdout, stderr, or a file, instead of accumulating the entire description in
memory before outputting it. This makes memory consumption for the description
effectively constant, so O(1), down from O(n2) for the original description
method and O(n) for the improved describeOn:.

Eliminating the Infinite Recursion from description
With the stream object that interacts with the object graph to produce the
description, we now also have a place to keep enough state for catching infinite
recursions in our data structures—for example, the mutually recursive NSArray
objects from Example 7.4.

When we encounter an object that we are already in the process of describing, we
don’t want to describe it again. So in order to avoid this, we need to keep track of the
objects we are currently describing and bail if we encounter it again. The
MPWDescriptionStream of Example 8.7 has an NSMapTable to keep track of
the objects that are in the process of being described, as well as taking on the
NSMutableString that was the direct argument of describeOn: previously. The
writeObject method defined in Example 8.8 implements the strategy just
described: first put an object in the table, then describe it if it is not already in the
table, and finally remove it again. If the object is already in the table in step 2, we just
write a pseudo description.

Example 8.7 Description Stream definition

#import "MPWFilterStream.h"

@interface MPWDescriptionStream : MPWFilterStream
{

NSMapTable *alreadySeen;
}
@property (nonatomic,retain) NSMapTable *alreadySeen;
-(void)writeObject:anObject;
-(void)writeArray:(NSArray *)anArray;
-(void)describeObject:anObject;
@end

Example 8.8 Description Stream implementation

@implementation MPWDescriptionStream
#define OPAQUEPTR NSPointerFunctionsOpaquePersonality
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-(instancetype)init
{

id table=[NSMapTable mapTableWithKeyOptions:OPAQUEPTR
valueOptions:OPAQUEPTR];

self=[super init];
[self setAlreadySeen:table];
return self;

}

-(void)writeObject:anObject
{

if ( [alreadySeen objectForKey:anObject] ) {
[self appendDescriptionFormat:@"<already saw: %p>",anObject];

} else {
[alreadySeen setObject:anObject forKey:anObject];
[super writeObject:anObject];
[alreadySeen removeObjectForKey:anObject];

}
}
// ... rest as before
@end

The procedure described that removes the described object avoids the infinite
recursion and no more. More generally, if you want to not repeat objects in the
output, just leave the described objects in the table. At that point, you’ve effectively
built an object-graph serializer and also a detector for potential retain cycles!

Add in the glue code from Example 8.9, and running last chapter’s Example 7.4
no longer crashes, but outputs something along the lines of a1: ( ( <already
saw: 0x7fa0fb40a880> ) ). The example is obviously incomplete; for
example, it would at the very least require a writeDictionary method, and
preferably all objects would implement describeOn: instead of description so
they also acquire this protection.

Example 8.9 Description Stream glue code

@implementation NSObject(describeOn)

-(void)describeOn:(MPWDescriptionStream *)aStream
{

[aStream describeObject:self];
}

-(NSString*)fastDescription
{

MPWDescriptionStream *s=[MPWDescriptionStream stream];
[s writeObject:self];
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return [s target];
}
@end

@implementation NSArray(describeOn)

-(void)describeOn:(MPWDescriptionStream *)aStream
{

[aStream describeArray:self];
}

@end

Stream Hierarchy
The sum of these transformations now gives us polymorphic, subclassable, and
composable streams that can process data incrementally. Instead of writing directly to
a NSMutableString as did our solution to the description problem in the
previous chapter, we now write to the stream.

A subclass of MPWDescriptionStream can easily override writeArray: to
output a JSON-formatted string instead of the NeXT-style property list format that
description creates.

All in all, I have implemented well over two dozen types of FilterStream in my
MPWFoundation framework2 since I started using FilterStreams in 1998, a small
subset of which is shown in Figure 8.4. They have served me well, especially in byte
encoding or transformation roles such as compression and encoding, with
commonalities between encodings captured and output easily directed to a buffer, the
network, or a file.

The Byte Stream subtree generalizes what you can do with Unix filters, and in
fact includes a class that invokes Unix filters. The dataflow paradigm means that URL
Fetch Stream can handle the asynchrony inherent in network operations with
ease and without callback hell; we’ve been using it in Wunderlist to great effect. The
reason is that call-and-return requires a return value immediately, whereas dataflow
just requires a result to be passed on to the next filter without being too particular
about when that happens. In fact, it isn’t just not particular about the timing of the
results, but also about the number. A filter can write multiple results to its target or
zero, for example, when there is an error, making it possible to keep error handling
out of the “happy path” and centralize it instead.

The actual implementations are only a little bit more involved than shown here.
For example, the initial message that writeObject: sends is not fixed but specified

2. http://github.com/mpw/MPWFoundation

http://github.com/mpw/MPWFoundation
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Figure 8.4 FilterStream hierarchy

as a parameter of the FilterStream in question, in order to enable objects to respond
to specific kinds of stream, but with a hook so that common behavior can be shared.

Convenience methods adapt the streaming architectural style to call-and-return.
For example, the +process: message defined on the root FilterStream class
initializes the stream, writes the object to the stream, and returns the result.

Summary
In this chapter, we’ve looked at expanding the idea of using streaming approaches
from the previous chapter into an entire library of components that implement the
Pipes and Filters architectural style. With this library, streaming is baked into the
substrate, making it trivial to implement computations in a way that is not just
memory efficient but also easy to make asynchronous.
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9
Swift

Introduced to great fanfare at WWDC 2014, Swift is Apple’s new programming
language, billed as “Objective-C without the C.” This was an interesting marketing
slogan, considering the fact that we know Objective-C was created by adding most of
Smalltalk to C (Equation 9.1).

Objective-C = C + Smalltalk (9.1)

According to the rules of Algebra I learned in high school, subtracting C from
both sides of the equation (Equation 9.2) does not yield Swift, and in fact Swift seems
much more closely related to C# or C++ than Smalltalk or, for that matter,
Objective-C.

Objective-C − C = Smalltalk (9.2)

Minor marketing issues aside, Swift has been a hugely popular success, with many
articles, books, and conferences dedicated to the topic.

Swift Performance: Claims
From the very beginning, Apple has been heavily promoting Swift’s performance,
right down to the name: Swift. In the Platforms State of the Union, performance of
the new language was a key focus, for example, with the performance comparison
shown in Figure 9.1.

It is an impressive display, with Swift being 3.9 times faster than...exactly what?
Python. You might wonder what Python is doing in this comparison, considering
that it is an interpreted scripting language that is not intended for performance-
intensive work at all and has effectively no relevance to OS X and iOS development.

It turns out that when you compare only the Objective-C and Swift columns, 2.6
vs. 3.9 is just a factor 1.4 difference, and when you plot that and make the colors the
same as one another, as shown in Figure 9.2, that’s not a particularly impressive slide.
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Objective-C

Python

Swift

Complex Object Sort

2.8x

1.0x

3.9x

Figure 9.1 WWDC 2014 State of the Union slide comparing Swift to Python

Bringing Python into the mix simply makes the Swift number look much more
impressive; 3.9 sounds a lot better than 1.4. Even among developers, few are going to
exert the mental effort required to get the more relevant Objective-C vs. Swift
number, and certainly not when slides are flying by in a keynote address.

Another thing that might leave you scratching your head is just how bad those
numbers are. After all, Python is an interpreted scripting language, with most
comparisons I’ve seen rating it around 2 times slower than even Ruby.

Two years after the introduction, the Swift language section of Apple’s main site
(see Figure 9.3) still uses Python as a comparison, now with Swift 8.4 times faster
than Python.

The fact that Python is still used as a comparison doesn’t exactly instill confidence,
and neither does the “up to” wording. Though better than before, these numbers are
both still odd and still pretty bad. Being only around 8 times faster than Python with

Swift

Objective-C

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

1.0

1.4

Figure 9.2 Leaving out Python
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Figure 9.3 Performance claims on http://apple.com/swift

a compiled language would be disappointing, and Objective-C code that’s only
around 2.5 times faster than Python code is downright disturbing.

Although not particularly convincing upon closer examination, Apple’s Swift
performance marketing has been extremely effective. The idea that Swift is very, well,
swift is now an accepted fact in the Apple developer community.

Language Characteristics
Although Apple hasn’t given us any solid evidence of Swift’s performance, it has given
us reasons for amazing Swift performance.

· Swift’s design is much more static than Objective-C’s, meaning there is much
more information available at compile time for the compiler to use in
optimization.

· Specifically, dynamic dispatch is drastically reduced, with most “native” Swift
methods being dispatched statically.
Objective-C’s dynamic dispatch is an absolute barrier to compiler awareness,
which was always a thorn in the side of the compiler and runtime team.
Just-in-time ( JIT) compilers can resolve this at runtime, but there are many
reasons not to rely on JIT technology for performance.1

1. See Jitterdämmerung (http://blog.metaobject.com/2015/10/jitterdammerung.html).

http://apple.com/swift
http://blog.metaobject.com/2015/10/jitterdammerung.html
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· The greater use of value semantics (see the “Stack Allocation” section of
Chapter 5) using structs is supposed to free us from the cost of heap allocation
and reference counting, especially ARC (see the “Reference Counting” section
in Chapter 7), and it is true that dealing with references is particularly expensive
in Swift, much more so than in Objective-C.

· Primitives and objects are much more closely integrated, so whereas a
Foundation NSArray can only contain object references, a Swift Array can
contain primitives, structs, or object references. Primitive numbers are easily
boxed and unboxed, often automatically, when used in object contexts.

· Generics allow specialization to be applied, so for example the generic sort
method of an array can be specialized by an integer-comparison function to
yield an optimized integer-sorting function without indirection through
function pointers or message sends.

All of this is good stuff, and certainly it gives opportunities for a compiler to
optimize. Having a more unified syntax instead of two separate systems bolted
together and held together with duct tape is also certainly welcome.

However, all of these mechanisms only might lead to better performance; there is
no guarantee that they actually do, and they are available to Objective-C programmers
as well. For example, Objective-C makes heavy use of value semantics for all
primitive types such as integers and floating point numbers and structs such as
NSPoint, CGPoint, NSRect, NSRange, and so on.

Making their use slightly more convenient is not a bad thing per se, but it also
doesn’t actually do much for performance, especially since Apple recommends and
expects most modeling to be done using classes:

“In all other cases, define a class, and create instances of that class to be managed
and passed by reference. In practice, this means that most custom data constructs should be
classes, not structures.”

Apple Inc., 2014. The Swift Programming Language (Swift 3). iBooks.

This recommendation to use classes is sound, as we know that micro-optimizations
such as this won’t matter for 97% or more of the code. However, it is in direct
conflict with Apple’s performance recommendations for Swift, which are to vastly
prefer structs unless there is a compelling reason not to do so.

The problem is that both recommendations are correct, and the inherent conflict
flies in the face of the collected wisdom regarding performance tuning collected over
the last 40 years or so: Model the domain first, appropriately; apply targeted
optimizations afterward. With Swift, you are supposed to make this performance
choice at the modeling stage of your application.

Objective-C also had and still has this problem, but as the previous chapters
showed there were mechanisms that allow the developer to apply targeted
optimizations for much better performance, such as IMP-caching, object-caching, or
use of basic C data types like char* instead of String. These mechanisms
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frequently allow you to have and keep your modeling cake while simultaneously
munching down on some delicious performance chow, but they have been either
curtailed or eliminated outright in Swift.

Instead, the programmer is supposed to structure her programs in such a way as to
give as much information to the compiler as possible. That way it is easy for the
compiler to understand the whole program and then rely on the optimizer to actually
figure out how to most efficiently map the high-level abstractions to efficient/optimal
machine implementations.

I call this approach compiler-oriented development (COD) because it seems to be more
focused on making life easy for the compiler rather than the developer.

It is very different from the hybrid model represented by Objective-C that we
talked about a bit in the “The Power of Hybrids” section in Chapter 1: The compiler
mostly gets out of the way, and the language provides simple and understandable
abstractions. It is the developer’s job to spot hotspots and fix them using the many
tools provided.

Benchmarks
This is a short section.

While Apple has provided slides and headline comparison numbers, it hasn’t
provided the benchmarks those numbers are based on or even just detailed results.
Requests to provide the source code to those benchmarks were met with silence.

In short, Apple has provided no usable empirical data regarding Swift’s
performance.

Assessing Swift Performance
With Apple not being forthcoming on Swift’s actual performance characteristics, we
have to take a look ourselves, as tuning without at least some idea of what those
characteristics are in practice is meaningless. In the following, I will give an overview
and an analysis of the current state of Swift performance and look at the highly
compiler-centric model of optimization championed.

Basic Performance Characteristics
We already saw some basic Swift performance characteristics in Chapter 1, for
example, the integer summation code in Examples 1.5 and 1.6.

Performance when computing with primitives and basic control flow is not too
dissimilar to basic Objective-C, with an approximate 50% performance penalty, rising
to roughly 300% when objects were involved. To find out what the cause of this
penalty was, I compiled the primitive version in Example 1.5 (integer summation)
and then examined the generated machine code with otool -Vt. The result is
shown in Example 9.1.
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Example 9.1 Assembly code for Swift summation

0000000100000d5f cmpq $0x3b9aca00, -0x8(%rbp) ## imm = 0x3B9ACA00
0000000100000d67 jg 0x100000db0
0000000100000d69 movq -0x8(%rbp), %rax
0000000100000d6d addq __Tv10swiftbench1aSi(%rip), %rax

0000000100000d74 seto %cl
0000000100000d77 movq %rax, -0x18(%rbp)
0000000100000d7b movb %cl, -0x19(%rbp)
0000000100000d7e jo 0x100000eda

0000000100000d84 movq -0x18(%rbp), %rax
0000000100000d88 movq %rax, __Tv10swiftbench1aSi(%rip)
0000000100000d8f movq -0x8(%rbp), %rcx
0000000100000d93 incq %rcx

0000000100000d96 seto %dl
0000000100000d99 movq %rcx, -0x28(%rbp)
0000000100000d9d movb %dl, -0x29(%rbp)
0000000100000da0 jo 0x100000edc

0000000100000da6 movq -0x28(%rbp), %rax
0000000100000daa movq %rax, -0x8(%rbp)
0000000100000dae jmp 0x100000d5f

For reference, the assembly output of the respective Objective-C example is shown
in Example 9.2. I have to admit that I expected the code to be, apart from the
overflow checks, a lot more similar than it turned out to be.

Example 9.2 Assembly code for Objective-C summation

0000000100000f16 cmpl $0x3b9aca00, -0x8(%rbp) ## imm = 0x3B9ACA00
0000000100000f1d jg 0x100000f45
0000000100000f23 movslq -0x8(%rbp), %rax
0000000100000f27 addq _a(%rip), %rax
0000000100000f2e movq %rax, _a(%rip)
0000000100000f35 movl -0x8(%rbp), %eax
0000000100000f38 addl $0x1, %eax
0000000100000f3d movl %eax, -0x8(%rbp)
0000000100000f40 jmp 0x100000f16

The basic structure of the code actually is similar, with a cmp instruction at the top
of the loop and a jump (jg) to outside the loop if the counter now exceeds the
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Table 9.1 Swift and C summing with different optimization levels

Settings Swift Objective-C Ratio

No optimization 3.7 2.0 1.85
-O / -Os 0.903 0.009 100
-Ounchecked / -O3 0.016 0.009 1.77

maximum value 0x3b9aca00, hex for the decimal number 1000000000. At the
bottom of the loop, there is a jmp back to the loop entry.

In the middle, between the comparison/exit the jump back to the top of the loop,
is the actual meat: incrementing the loop counter, in the Objective-C case using an
addl instruction, in the Swift case an incq and the addition of the counter to the
summation. However, the Swift code appears to do a lot more additional
bookkeeping. It also checks for overflow using jo instructions and makes sure to set
the overflow flag.

Overflow checking can be eliminated using either the -Ounchecked compiler
flag (not recommended, because it changes Swift source code semantics) or judicious
use of the unchecked arithemetic operators such as &+, &-, and so on. Table 9.1
shows the results of the different options, compared to equivalent Objective-C code
and optimization levels.

I didn’t do a comprehensive survey of all of Swift’s primitive operations, but overall
they seem to generally be a little behind C but in the same ballpark, which isn’t too
surprising considering they are using the same LLVM back end.

Collections
We already looked a bit at array access times in the “Arrays and Bulk Processing”
section of Chapter 3. The setup was dealing with an array of floating-point numbers,
a typical application for bulk processing, with a custom floating point array class
MPWRealArray introduced in Chapter 3.

Example 9.3 shows how one might populate and sum an array of floating point
numbers in Swift.

Example 9.3 Sum floats with Swift arrays

extension Collection where Iterator.Element == Float {
func sum() -> Float {

return reduce(0, +)
}

}
var a:Float = 0
var someFloats = [Float]()
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someFloats += stride( from:1.0, through:1000000.0, by:1.0 )
for i in 0..<Int(CommandLine.arguments[1])! {

a += someFloats.sum()
}
print("a = \(a)")

The code first creates an extension to Collection that uses the reduce
higher-order function to sum the elements of the array. What’s neat is that even
though reduce takes a function argument, you can just pass it the + operator
because in Swift operators are just functions. There is obviously some magic where
the function gets resolved (otherwise there’d be an infinite recursion of functions),
but that is hidden.

You might be wondering about the definition of the sum() extension when
reduce(0,+) doesn’t seem much longer. One reason is that the reduce() is not
intention revealing—the name doesn’t describe the intended effect, but the
implementation used to achieve that effect. This makes the code much more difficult
to read and understand, as the reader has to infer the intended result from the
implementation provided. It also means clients are tied to this specific repeated
implementation, for example, not benefiting from the improved implementation of
sum() based on vDSP_sve() that we present later. Last but not least, the generic
reduce() function also induces significant compile-time cost, a cost that’s better to
have just once in the sum() definition.

Foundation does not have a reduce method or function built in, so we must add
our own to MPWRealArray, shown in Example 9.4. It then goes on to define the
sum method in terms of reduce:.

Example 9.4 Reduce using a block in Objective-C

-(float)reduce:(float(^)(float,float))reduceFun
{

float result=0,*my_reals=[self reals];
for ( long i=0,max=[self count];i<max;i++) {

result=reduceFun( result, my_reals[i]);
}
return result;

}
-(float)sum
{

return [self reduce:^(float a,float b){ return a+b }];
}

As before, the full MPWRealArray implementation is not shown. The driver
program for the Objective-C tests is shown in Example 9.5.
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Example 9.5 Objective-C driver program using MPWRealArray

#import <MPWFoundation/MPWRealArray.h>

int main(int argc, char *argv[])
{

MPWRealArray *array=[MPWRealArray start:1 end:10000 step:1.0];
float sum=0;
for (int i=0,max=atoi(argv[1]); i<=max; i++) {

sum+=[array sum];
}
NSLog(@"sum: %g",sum);

}

The reduce: method takes a block with two arguments that returns a single
value; the sum method uses a block that just adds the two arguments. The results are
shown in Table 9.2.

As usual, Swift without optimizations is catastrophically bad, 68 times slower than
Objective-C without optimizations and 322 times slower than Swift with
optimizations. With optimizations, Swift does well; the example code is roughly 2
times faster than the Objective-C code we used here.

The reason for this is fairly clear: The Objective-C code has to call the argument
block for every pair of elements, and that function call overhead is much larger than
the cost of the actual + operator.

With optimizations, Swift does generics specializations, combining the reduce
function with the + operator, creating a single function that just adds the elements
without any additional function calls.

However, the block-based code in Example 9.4 is not the code that is actually in
MPWRealArray, because it is perfectly obvious that it would be slow; I only added it
for this chapter in order to check what the performance would be.

The reason this code is slow is that in Objective-C, the + operator is not a
first-class object, meaning that among other things, you cannot pass it directly to a
function or method as a parameter.

Table 9.2 Array summation via reduce and blocks

Settings Swift Objective-C Relative %

No optimization 261.80 3.83 6837
-O 0.82 1.57 52
-Ounchecked / -O3 0.78 1.42 55
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The way to solve this problem in Objective-C is to use the preprocessor.
Example 9.6 defines REDUCE as a macro, or more precisely REDUCE_METHOD, which
creates a method based on reducing with a specific operator.

Example 9.6 Reduce as a C macro

#define REDUCE_METHOD( name, operator )\
-(float)name\
{\

float *my_reals=[self reals],result=my_reals[0];\
for ( long i=1,max=[self count];i<max;i++) {\

result=result operator my_reals[i];\
}\
return result;\

}\
REDUCE_METHOD( product, * )
REDUCE_METHOD( differences, - )
REDUCE_METHOD( sum, + )

Swift has no preprocessor, so the way to implement a generic operation like this is
to use higher-order functions as we did earlier. There are many advantages to that
approach, but you don’t have control over the code that is generated, or how it is
transformed by the optimizer. With the macro from Example 9.6, the code that will
be generated is very obvious (see Example 9.7).

Example 9.7 Reduce macro expanded for sum

-(float)sum
{

float *my_reals = [self reals], result = my_reals[0];
for (long i = 1, max = [self count]; i < max; i++) {

result = result + my_reals[i];
}
return result;

}

The results are shown in Table 9.3, with the Swift numbers just replicated because
there is no equivalent. I did try expanding the reduce() function manually, but that
made no difference to the result.

Without any optimizations, the macro-based code is actually a little bit smaller
than the block-based code, but still around 50 times faster than Swift without
optimizations. With basic optimizations, Swift and Objective-C are neck and neck,
and with aggressive optimizations, the macro-based code is now more than 6 times
faster than Swift at the same level of optimization, and 2,000 times faster than
unoptimized Swift.
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Table 9.3 Array summation via macro

Settings Swift Objective-C Relative %

No optimization 261.80 5.31 4893
-O 0.82 0.78 105
-Ounchecked / -O3 0.78 0.12 645

However, that’s still not really ideal. For optimized bulk operations on various
numeric types, including float numbers, Apple provides the Accelerate framework,
with the vDSP_sve() function for summing an array of floating pointer numbers.
Example 9.8 shows how to extend Array[Float] with a vectorized summation
method.

Example 9.8 Vectorized sums with Swift arrays

import Accelerate

extension Collection where Iterator.Element == Float {
func vecsum()->Float {

var sum:Float=0
vDSP_sve(self as! [Float], 1, &sum, UInt(self.count.toIntMax()))
return sum

}
}

This is the simplest way I found of achieving the desired effect. Strangely, it isn’t
possible to just extend Array[Float]; the extension has to be on Collection
with a type-constraint to Float, and then inside the method self has to be cast to
a [Float] type. If that cast fails, the program crashes.

The Objective-C code in Example 9.9, which is just part of the MPWRealArray
class, seems simpler. It passes the floatStart instance variable, which points to the
array of float values, and the count instance variable, which holds the current
number of elements.

Example 9.9 Vectorized sums with MPWRealArray

@import Accelerate;

-(float)vecsum
{

float theSum=0;
vDSP_sve ( floatStart, 1, &theSum, count );
return theSum;

}
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Table 9.4 Array summation via Accelerate framework

Settings Swift Objective-C Relative %

No optimization 0.261 0.113 231
-O / -Os 0.132 0.099 133
-Ounchecked / -O3 0.130 0.099 131

The results are shown in Table 9.4. This is an interesting table. All of the times are
essentially the same, except for unoptimized Swift, which manages to be 2 times
slower. The times are the same because we are calling an optimized routine with a lot
of data (a million floating point numbers), so what we do outside that routine has
very little impact.

In fact, what the code outside vDSP_sve does is of so little consequence that
calling it from the Objective-Smalltalk script in Example 9.10 only brings the time to
0.160 s.

Example 9.10 Vectorized sums from an Objective-Smalltalk script

#!/usr/local/bin/stsh
#-<float>sum:<int>iterations
array := MPWRealArray start:1.0 end:1000000 step:1.0.
sum:=0.
1 to:iterations do:[ sum := sum + array vecsum ].
sum.

Why an interpreted script in “the world’s slowest scripting language” is faster than
unoptimized Swift is an interesting question. First, the Swift code is filling the array
itself, element by element, whereas both the Objective-C code and the Smalltalk
code are calling an optimized Objective-C routine to fill the array.

However, the summation code is called 1,000 times, whereas filling the array is
done just once. However, the unoptimized Swift code is so incredibly slow that even
running it 0.1% of the time (1 iteration vs. 1,000) causes a more than 100%
performance regression.

While I have mentioned this before, I can’t stress the importance of these relations
enough. Performance differences of a factor of 1,000 are so far outside the normal
bounds that they are no longer just quantitative, they become qualitative.

For example, a car may travel at 100 km/h with two passengers. If you slow it
down by a factor of 1,000, it will travel 100 meters per hour. That’s no longer a car;
two people can easily carry a sofa 100 meters in an hour.

So why is Swift array processing so incredibly slow when not optimized?
Figure 9.4 is the Instruments profile that shows us the reasons.

In short, the Swift code adds tremendous amounts of abstractions and
indirection—so much that the profile simply doesn’t appear to reflect the code from
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Figure 9.4 Profile for Swift array summation compiled without optimizations

Example 9.3 whatsoever, just like the car that’s slowed down by a factor of 1,000 is
more like a sofa than an automobile.

The code we are trying to run is being totally overwhelmed with
compiler-inserted bookkeeping, both in terms of visible code and execution time.
Just one instance of swift_bridgeObjectRetain takes several times the entire
running time of our MPWRealArray-based code, and there are a number of these.
And why are we retaining and releasing objects in the inner loop of this thing in the
first place, when we are dealing purely with arrays of primitive types, and maybe a
closure?

With this level of base performance, the claim that “Swift is designed for speed” is
a bit hard to swallow: The abstractions that are used exact tremendous performance
penalties and require an optimizer that is 100% perfect all the time in order to get rid
of them. And I really mean 100%. As we saw with the vectorized code, when you
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have a slowdown of 2,000 times for unoptimized code, an optimizer that is “only”
99.9% effective instead of being 100% perfect means we still get a slowdown of
2 times!

With dictionaries, I tried a case that I thought would be a slam dunk for Swift: a
dictionary mapping from String to Int, both Swift value types (although the
String is backed by a hidden reference type for its contents) and the latter a
machine primitive, compared to an NSDictionary mapping from NSString
objects to NSNumber objects, both slow reference types.

The Swift code is presented in Example 9.11. It creates the dictionary from a fixed
set of keys with sequential values for those keys. It then fetches the value for a
particular key chosen from the original list of keys 10 million times and sums
those values.

Example 9.11 Testing dictionary access in Swift

func getBench( n:Int, dict:[String:Int], key:String ) -> Int
{

var sum = 0
for _ in 0..<n {

if let value = dict[key] {
sum += value

}
}
return sum

}

let which = Int(CommandLine.arguments[1])!
let keys = ["ABC", "DU", "ASDASD", "24323423423", "DUasdfasdf",

"HZSasdfasdfdasdfasdf", "ASDasdfasdfdasdfasdfd",
"ASDASasdfD", "asdff24323423423",
"1111111111111111111222222222222222222", "1"]

let s = keys[which]
var dict = [String:Int]()
var i:Int
for i in 0..<keys.count {

dict[keys[i]]=i
}
let sum = getBench( n:10_000_000, dict: dict, key:s )
print("sum: \(sum)")

The index of the key to use is passed on the command line. If none is provided,
the program crashes due to the use of force-unwrapping for the parameter. As usual,
the result is printed so the optimizer doesn’t have an excuse to eliminate all of the
code. Although it could in theory figure out that looping is not necessary, currently
the benchmark still works.
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The Objective-C version in Example 9.12 is a straight transliteration of the
Swift code.

Example 9.12 Testing dictionary access in Objective-C

#import <Foundation/Foundation.h>

long getBench( int iterations, NSDictionary *dict , NSString *key )
{

long sum = 0;
for (int i=0;i<iterations;i++) {

id value=dict[key];
if ( value ) {

sum += [value intValue];
}

}
return sum;

}

int main( int argc, char *argv[] )
{

int which=atoi(argv[1]);
NSArray * keys=@[ @"ABC" , @"DU", @"ASDASD",

@"24323423423" ,@"DUasdfasdf",
@"HZSasdfasdfdasdfasdf",
@"ASDasdfasdfdasdfasdfd" , @"ASDASasdfD",
@"asdff24323423423",
@"111111111111111112222222222222222",@"1" ];

NSString *s=keys[which];
NSMutableDictionary * dict=[NSMutableDictionary dictionary];
for (int i=0;i<keys.count;i++) {
dict[keys[i]]=@(i);

}
long sum = getBench( 10000000, dict,s );
printf("sum: %ld\n",sum);
return 0;

}

The results of running these two programs are presented in Table 9.5, and again,
the results are surprising. Far from being faster due to value types, primitives, and
specializable generics, the Swift code is consistently 80% to 250% slower than
NSDictionary. (While still not great, these numbers for Swift 3.0 are significantly
better than Swift 2.x, which was 4 to 6 times slower than Objective-C on the
same test.)
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Table 9.5 Swift and Objective-C dictionary access times

Settings Swift Objective-C Ratio

No optimization 1.46 0.43 3.5
-O 0.75 0.41 1.8
-Ounchecked 0.73 0.40 1.8

Of course, we saw in Chapter 3 that NSDictionary is not exactly a speed
demon, and a specialized Objective-C dictionary that maps strings to objects
(MPWSmallStringTable) can easily be 3 times faster.

Larger Examples
The examples in the previous section are obviously microbenchmarks that may or
may not be indicative of real-world performance in larger projects. With the language
being as young and still-in-flux as it is, the number of real-world projects with
performance numbers is limited. At work, we’ve only had one Swift project so far,
which we had to rewrite in Objective-C due to compatibility restrictions. For these
reasons, I have to rely more on outside sources for larger examples of Swift projects
that actually measured performance.

nginx HTTP Parser
One such project was a port of the C HTTP parser included in the popular nginx
HTTP server to Swift2 by Helge Hess, another former Apple employee. Despite the
fact that performance was not the main purpose of the port, I expressed curiosity as
to how the performance of the Swift port compared to the original due to the fact
that performance is nginx’s main selling point.

Helge had done as straightforward and close to a 1:1 transliteration of the code as
possible, though various features such as macros and goto statements could not be
mapped directly. Our expectation was that performance would be similar.

Instead, it was 10 times slower.
Some fairly heavy-handed optimization using @inline{_always} and

UnsafeMutablePointer instead of Array improved performance to “only” 3
times slower, with most of the gains due to inlining, and most of the problems (both
original and remaining) due to ARC.

This was using Swift 2.x; the 3.0 Swift betas were significantly slower.

2. https://github.com/helje5/http-c-vs-swift

https://github.com/helje5/http-c-vs-swift
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Freddy JSON Parser
Another real-world example is the Big Nerd Ranch’s Freddy JSON parser written in
pure Swift.3 Unlike most of the Swift JSON parsers out there, this one is not a
wrapper around NSJSONSerialization, and the reason given is performance:
switching on the AnyType returned to Swift by NSJSONSerialization
apparently incurs a performance overhead of 25 times, 6.29 s vs. just 0.25 s for the
basic parse on a 16-MB sample data set that they provide.

Freddy improves that total time to 2.08 s for the complete JSON to Swift structs
conversion, with 0.75 s of that being the basic parse. That’s a nice overall
improvement, but the basic parse got 3 times slower than NSJSONSerialization,
and the overall parse + conversion time for NSJSONSerialization and
Objective-C objects was just 0.58 s, so almost 4 times faster than the complete
conversion to Swift structs.

And once again, NSJSONSerialization, though one of the faster
Apple-provided serialization mechanisms (see the “Serialization Summary” section in
Chapter 12), is several times slower than methods such as MAX from Chapter 4 that
avoid the “generic intermediate representation” pitfall (see the discussion in the
“Pitfall: Generic (Intermediate) Representations” section of Chapter 3).

Image Processing
David Owens II has been documenting his attempts at getting image processing code
working with reasonable performance in Swift over the last couple of years.4 The
basic idea is to have a Pixel struct with red, green, blue, and alpha
components and do some pixel processing on an image 960×540 pixels in size.

For C, times ranged from 30 ms per operation for an unoptimized build to 2.3 ms
with the setting -Ofast. For Swift, the story was more complex. Keeping the
Pixel abstraction and organizing those Pixels in Array collections, times ranged
from 2,400 ms for unoptimized builds to 18 ms for optimized (-O). Getting better
performance required (1) dropping the Pixel structure in favor of just modeling the
pixels as unsigned integers, (2) dropping the Array abstraction in favor of
UnsafeMutablePointer using the withUnsafeMutablePointer construct,
(3) turning off all compiler checks with -Ounchecked, and finally (4) adding vector
instructions (SIMD).

With all of these in place, Swift managed a time of 3.04 ms, only a respectable 30%
slower than C. (For some reason, explicitly using SIMD instructions made this
particular C code slower, so maybe the code auto-vectorized well or there is some

3. https://github.com/bignerdranch/Freddy/wiki/JSONParser
4. https://github.com/owensd/swift-perf

https://github.com/bignerdranch/Freddy/wiki/JSONParser
https://github.com/owensd/swift-perf
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further improvement to be had on the C side.) Note that all of this had to be done
just so; for example, just using UnsafeMutablePointer without the
withUnsafeMutablePointer was 2 times slower. Keeping the struct Pixel
abstraction in the Swift code always had a penalty of at least 6 times for times around
18 ms.

The irony here is that Swift is supposed to allow us to write more domain-centric,
less machine-specific code and have the compiler cut through those abstractions, but
in reality the opposite was the case. With Swift, not only did the Array abstraction
have to be ditched for what are basically C pointers, even the Pixel abstraction with
which C managed quite well had to be abandoned in favor of modeling the pixels as
integers.

Of course, it is always possible to leave the heavy lifting to Objective-C code and
bridge to it from Swift.

Observations
Finally, the benchmark game5 shows Swift programs benchmarking consistently 5 to
30 times slower than equivalent C programs. Just to be certain that these results were
not outliers, I cross-checked by comparing Swift with Java. Here, Swift was typically
5 times slower than Java, with the range being 20% to 8 times slower.

Although any one of these results is easy to dismiss as an outlier, the pattern is
really too consistent for that: 3 to 10 times slower with “reasonable” code. Heroic
manual optimizations and a bit of luck are required to take that to somewhere
between 3 times slower and almost parity, depending on the type of code in question.
With Swift evolving as quickly as it does, all of these specific timings will probably be
obsolete by the time this book is in print, but again the overall pattern seems hard to
break.

Conversely, when I see claims of Swift beating C/Objective-C in performance,
the claims are typically not backed with data, instead justified either not at all or with
“well, it should, because, er, reasons.” In the rare cases that there is data, the data is at
best dubious and at worst outright false, with non-robust benchmarks being
optimized away, operations on primitive integers compared to operations on objects,
or non-optimized but easily optimizable C code compared to highly optimized Swift
code.

The one case I have seen that is somewhat legitimate is that of sorting integers, for
the same reasons that we saw for summation: the Swift Array.sort() methods are
generic on the type to be sorted, and can specialize for that type at compile time
rather than having to do it at runtime using either function pointers for qsort() or
message sends for NSArray sorting. However, the effect was small, maxing out at
around 20% faster for an array of integers, and could easily be overcome by replacing
these generic routines with a specific one for integers.

5. http://benchmarksgame.alioth.debian.org/u64q/swift.html

http://benchmarksgame.alioth.debian.org/u64q/swift.html
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Compile Times
Swift leans on the compiler quite heavily, much more so than Objective-C, and more
similar to C++, which also has compile times typically far longer than C or
Objective-C. My experience is that there is a base overhead of about 2 times relative
to C/Objective-C, with at least 4 times when optimizing. This is reflected in the
compile times of the integer summing benchmark we looked at earlier, which are
shown in Table 9.6.

As with many other aspects of performance, C and Objective-C compilers are not
the benchmark for fast compilation speeds. The legacy of file-inclusion-based
modularity with header files poses a huge challenge for any C-based language, even
though precompiled headers or modules help a lot. Languages such as Go that were
specifically designed to avoid that type of problem can be compiled much more
quickly, and development systems like Smalltalk compile individual methods
instantaneously.

As with other aspects of Swift performance, it is therefore somewhat surprising
that performance levels of the compilation process don’t even meet, let alone exceed,
the low bar set by C and Objective-C. As soon as you start going into more advanced
language features such as sophisticated optimizations, generics, or type inference,
performance is impacted further.

Type Inference
Type inference is a great feature for reducing clutter and developer overhead; it allows
us to write something like let a = [ "hello" ] and let the compiler figure out
that a is an array of strings. However, like most good things, there is a cost. First, it
can yield surprising results, especially because in Swift both sides can be indefinite
(left-hand side completely undefined, right-hand side polymorphic). In these cases,
figuring out the most appropriate type is hard, both intrinsically and computationally.

At my university, we were introduced to type inference with a functional language
called Miranda. As long as it could figure out the types, it was amazing. But when it
failed, the error messages were long and completely inscrutable.

Another issue is that the type that is inferred can be surprising. The inferencer is
looking for the most specific type that is compatible with the information presented,
otherwise it could call everything AnyType and be done with it.

Table 9.6 Swift and C compile times for integer summing benchmarks

Settings Swift Objective-C Ratio

No optimization 0.079 0.044 1.80
-O 0.203 0.050 4.06
-Ounchecked 0.223 0.050 4.46
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In the early betas, Swift’s type inferencer was very insistent about inferring that
most specific type, so var a = 255 would not infer the type Int, but the type
UInt8 for a, which was probably not what you expected—especially since it would
trap if you later incremented a. Nowadays, this seems to be among a whole range of
special-case exemptions to the “most specific applicable” rule in the compiler.

Performance is also a problem, as type inference is inherently expensive and many
innocuous-looking cases can run into exponential running times. For example, the
simple declaration in Example 9.13 was exponential for n in Swift 2.x, reaching a
time of half an hour for n = 20.

Example 9.13 Exponential collection literals

let a = [ "level1": [ [ 1 ], [ 2 ], ... , [ n ]]

This is not a bug per se, but it is indicative of the inherent complexity of
type-inference algorithms. For example, Scala’s creator Martin Odersky explains that
Scala’s notoriously slow compile times are largely due to type inference.

This is also not a new problem. I remember reading about early attempts to
improve the performance of the Self dynamic prototype-based language using
compile-time type inferencing. The running times were so bad, in the minutes for
small expressions, that the Self team had to turn to a different approach. Instead of
figuring out the types at compile time, they just logged the types at runtime, which
in fact they were already doing in their polymorphic inline caches. Using that type
information gathered at runtime they then optimized the code, a technique that led
in a straight line to the advanced JITs of today such as Java’s HotSpot.

Fortunately, it is often possible to special-case specific egregiously bad cases, and
this particular problem was “fixed” in Swift 3: compile times for that particular
construct are now “only” quadratic with n, so you need to have n = 200 to reach half
a minute of compile time.

A similar issue that has not been fixed as of this writing is shown in Example 9.14.
This will terminate with a compiler error about expressions that are too complex to
be solved after around 3 s.

Example 9.14 Expression too complex to be solved in reasonable time

let a = String(1) + String(2) + String(3) + String(4)

In fact, the problem seems to be more general and not dependent on the type
inference having to infer a type for the variable or on String involvement. In
Example 9.15, all the types seem to be spelled out, yet the result is the same compiler
error, after around 5 s.

Example 9.15 Expression still too complex to be solved in reasonable time

let a:[Int] = [1] + [2] + [3] + [4] + [5] + [6]
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Reducing the number of components to 5 lets the expression compile in 2.7 s.
Reducing it to 4 components reduces the compile time to 0.26 s.

Generics Specialization
In the “Observations” section of this chapter, we saw that one of the Swift features
that can actually improve performance beyond what is easily achievable in C is generic
specialization (taken from C++ template instantiation). Instead of dispatching to
specialized routines at runtime via messaging or function pointers, the parameterized
routines are specialized at compile time, with a completely new function generated
that contains no external calls or message sends. Example 9.16 illustrates the problem.

Example 9.16 Specializing array sort

let a = [54, 32, 1, 2, 4, 5]
let b:[Float] = [54, 32, 1, 2, 4, 5, 23]
let c:[Double] = [74, 32 ,1 ,2 ,4, 5, 23]
let d:[String] = ["Hello", "World"]
let e = [[ "hello": 1 ], [ "world": 2]]

print(a.sorted())
print(b.sorted())
print(c.sorted())
print(d.sorted())
print(e.sorted( by: { ( a,b ) -> Bool in return true }))

We first create arrays with five different kinds of content: integers, floats, doubles,
strings, and dictionaries. Then we sort each of those arrays. With optimizations
enabled, this causes the Swift compiler to generate a specific version of the generic
sort() function specialized to each of the specific array types. Although Apple isn’t
telling, I am assuming that something along these lines, though certainly more
sophisticated, was the “Complex Object Sort” benchmark touted at WWDC 2014.

The effect on compile times can be seen in Figure 9.5, with the x-axis showing
the number of specializations performed. (I commented out print(x.sorted())
lines to get the right number of specializations.)

Whereas both Objective-C (regardless of optimization) and unoptimized Swift
show constant compile times no matter how many different types of arrays are
defined and used, optimized Swift compile times are linear with the number of
different Array sort() methods that have to be generated, with the cost being
around 250 ms per specialization on my machine. For reference, the Objective-C
NSArray code is shown in Example 9.17.

Example 9.17 NSArray sort

@import Foundation;

int main()
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{
NSArray* a=@[ @(54) , @(32) ,@(1) ,@(2) ,@(4) , @(5) ];
NSArray* b=@[ @(54.0) , @(32),@(1) ,@(2) ,@(4) , @(5), @(23) ];
NSArray* c=@[ @(74.0) , @(32),@(1) ,@(2) ,@(4) , @(5), @(23) ];
NSArray *d=@[ @"Hello", @"World" ];
NSArray *e=@[ @{ @"hello": @(1) } , @{ @"world": @(2)} ];

NSLog(@"a: %@",[a sortedArrayUsingSelector:@selector(compare:)]);
NSLog(@"b: %@",[b sortedArrayUsingSelector:@selector(compare:)]);
NSLog(@"c: %@",[c sortedArrayUsingSelector:@selector(compare:)]);
NSLog(@"d: %@",[d sortedArrayUsingSelector:@selector(compare:)]);
NSLog(@"e: %@",[e sortedArrayUsingSelector:@selector(compare:)]);

}

Whole-Module Optimization
When you think about it, the generics specialization mechanism discussed in the
previous section is quite a feat. It reaches across compilation units to extract a
definition from a previously compiled file and then instantiate the definition in the
current compilation unit, apply arguments, and compile the result.

In the C/Objective-C/C++ world, this simply isn’t possible. The only way to
access definitions from another file is to physically include the source text of those
definitions into the currently compiling unit using an include. That included file can
contain either macro definitions, inline function definitions, or C++ templates.
Whole-module optimization takes this concept a step further by completely

eliminating the idea of separate compilation. Instead, all of the program files are
compiled together at once, with all definitions and uses visible to the compiler.
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Figure 9.5 Compile times for specialized generic sort routines in milliseconds
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Of course, this means that compile times, in particular recompile times after
making small changes to one or a few sources files, are now dependent on the total
size of the project rather than the size of an individual file. Considering that compile
times are not all that great to begin with, that could lead to real problems down the
road for larger projects.

On the other hand, considering the whole program at once can actually speed up
compile times when the whole module is being recompiled anyway. One reason for
this is specialization: if multiple files contain a specific specialization (for example,
sorting integer arrays), then a whole-module compilation only has to create the
specialized version once, instead of once for every file. The trade-offs are
non-obvious.

Controlling Compile Times
You can check for slow compile times using the compiler option -Xfrontend
-debug-time-function-bodies. This should output the time the compiler
needed for each function (or method) compiled. I tried out this feature by placing all
of Example 9.16 into a function and leaving only a call to that function at the top
level. The compiler claimed that this function, the only one in the file, took only
17.6 ms to compile, despite the entire compilation taking 1.8 s, with the rest (the
majority) of the time simply not accounted for.

The reason for this discrepancy seems to be that the per-function times are taken
before the Swift Intermediate Language (SIL) optimization passes are run. Possibly
these are run for the whole compilation unit without attribution to a specific
function. I saw the bulk of this time spent between the -emit-silgen and
-emit-sib phases.

In summary, I find Swift compile times to be generally unpredictable because the
compiler is not only capricious but the holes it can fall into almost arbitrarily deep,
with quadratics or exponentials lurking behind many innocuous-looking constructs.
In general, generic specialization will probably always be expensive, as will type
inference, particularly with literals. Optionals also appear to be expensive because the
type-checking path splits into two at each optional.

While some specific problems will almost certainly be addressed, the problem with
compile times is not an accident of a young language implementation, but a necessary
consequence of design decisions that were made.

Optimizer-Oriented Programming
One reason that Swift is currently slow is almost certainly that it is a young
implementation of a young language. Things have improved and are likely to improve
further. However, the rate of improvement appears to have already slowed, and we are
still very far away from reaching parity with Objective-C, never mind going beyond.

The other, and in my estimation the primary reason is that Swift’s model is what I
call optimizer-oriented programming, a style that has basic constructs that are very distant
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from any machine model and rely almost exclusively on the optimizer to figure out
the relationship between these abstractions and efficient machine implementations.
Importantly, the resulting code is not really usable without optimization (remember
car vs. sofa).

We already saw an example of this approach in the “Optimizing ARC” section of
Chapter 7 when discussing the performance of Objective-C ARC. The results of the
optimizer-centric approach to performance are at best mixed: yes, the optimizer can
remove most of the performance penalty most of the time, but the initial penalty is so
large and so unpredictable that even a small rest has a significant performance impact.

Despite the mixed results, Swift doubles down on this approach. ARC is no longer
optional and abstractions have been introduced that, as we saw, can have a
performance penalty of three orders of magnitude or more!

That’s just the tip of the iceberg, though. There are actually optimization passes
that run even with -Onone. For example, all local variables are allocated on the heap
by the Swift compiler, as explained by Chris Lattner and Joe Groff at LLVM Meetup
2015 (Figure 9.6).

An additional optimization pass promotes variables that aren’t captured by closures
in specific ways to the stack (and then later optimization passes can promote them to
registers).

This is by all means a very clever approach to the problem of local variables with
nonlocal lifetimes. Instead of making stack allocation the base mechanism and then

Local variables after SILGen
SILGen emits all local ‘var’iables as heap boxes with alloc_box

func f() -> Int { 

  var x = 42 

  return x 

}

  %0 = alloc_box $Int  // var x 

  %4 = ... 

  store %4 to %0#1 : $*Int

Box-to-stack promotes heap boxes to stack allocations  
All closure captures are by reference 

- Not acceptable to leave them on the heap!

  %6 = load %0#1 : $*Int 

  strong_release %0#0 

  return %6 : $Int

Figure 9.6 Local variables on heap
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having to deal with potentially incorrect code (crashes) when lifetime requirements
for stack variables are not met (and/or having to introduce different mechanisms for
local variables with nonlocal lifetimes), we instead treat all variables as having the
more expensive nonlocal (heap) lifetimes and then try to figure out which can be
optimized by putting them on the stack because we can prove that their lifetimes are
more constrained.

This level of reliance on the optimizer to create code of reasonable (i.e., not
ludicrously awful) quality is something new I haven’t seen before, as it changes the
role of compiler optimizations from “nice to have” to “must have.”

However, this dramatic change in the importance of the optimizer has not led to a
similar change in the level of control over the optimizer or its results: all we can say is
that we would like optimizations and hope for the best. We have no way of forcing
certain optimizations to be performed and no way of checking whether they have
been performed.

A Sufficiently Smart Compiler
In essence, the Swift compiler team is claiming to be building the sufficiently smart
compiler (SSC), a compiler that can see perfectly through arbitrary layers of abstraction
in order to find optimal implementations for those abstractions. The Swift marketing
team, of course, is claiming that they have already succeeded.

The problem with the SSC is that it is a legend, a myth that has been floating
around in computer science circles for many decades, although the name was coined
around 2003 or 2004 on the C2 wiki. No such compilers exist, and people have been
trying (and claiming success!) for a long time.

Although optimizers can be pretty smart, they aren’t nearly as smart as the SSC
would like or need them to be, and progress in optimization technology is also on the
slow side. Whereas Moore’s Law has given us a doubling of hardware performance
every 18 months, Proebsting’s Law states that optimization technology gives us a
doubling of performance every 18 years. More recent research has shown that, if
anything, Proebsting erred on the side of optimism; actual progress has been
somewhat slower.

Swift actually manages to break Proebsting’s Law. The relative performance
difference of 1,000 times that is achieved by the optimizer relative to unoptimized
code is equivalent to roughly 180 years of progress according to Proebsting’s Law.

Alas, Swift has made this progress in the wrong direction, as shown in Figure 9.7.
Instead of pushing optimized performance forward, it has further pessimized
unoptimized performance.

This is not a coincidence or an isolated case; in fact, a 2015 study6 by Anton Ertl
of the Technical University Vienna showed that the current trend by compiler writers

6. A.M. Ertl. “What every compiler writer should know about programmers or ‘Optimization’ based on
undefined behaviour hurts performance,” Proceedings Kolloquium Programmiersprachen (2015), Technical Uni-
versity of Wien.
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Swift optimization: claims

Swift optimization: actual

 Objective-C 
optimization

Performance

Figure 9.7 Range of optimization

to exploit undefined behavior in the C standards for optimization actually hurts
performance rather than helping it. The modifications required to currently working
efficient code to make it conform to these compilers’ changed ideas of correctness
causes a larger regression in performance than the gains from the additional
optimizations that are enabled.

Swift’s design and implementation are a further step in this direction than current
C compilers, and so the results are similar, but more extreme. Yes, many of the
features help the optimizer produce greater relative optimizations, but they don’t
necessarily help programmers write faster programs. In many cases they actually hurt
much more than they help. If you look at the examples, you will see that the best way
to get Swift to perform is to manually remove levels of abstraction, sometimes more
of them than in an equivalent C program.

Furthermore, the study showed that most modern C compilers did not implement
a set of straightforward semantics-preserving source-level optimizations from a
33-year-old optimization example by Jon Bentley. To put it more bluntly, no
optimizing compiler will change a bubble sort to a merge sort or a quick sort. In fact,
it probably shouldn’t do that, but in order to be sufficiently smart it would have to be
able to operate at that level, if not do that specific transformation.

So compilers aren’t “sufficiently smart” by a wide margin; they leave a lot of
straightforward optimizations on the table. Punching through deep layers of
abstraction to reach an optimal machine representation can and does work, but so far
it has only ever been shown to work for very specific and limited cases.

What’s worse, the biggest problem with SSCs is not that they don’t work—the real
problems actually materialize when such a compiler does work as advertised, because
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performance becomes much, much less predictable and controllable than it is today:
you write your code and hope that the optimizer will figure it out.

When the optimizer can’t figure it out, you are stuck. This is especially bad when
the optimizer did figure it out yesterday and can no longer figure it out today, for
example, because you made a minor change in your code base that you don’t think of
as significant but the compiler does, or because the compiler or a library changed. As
there are no diagnostics, good luck trying to figure it out!

The Death of Optimizing Compilers
The type of performance model underlying the quest for the SSC was useful when
computers were generally slower and we just wanted them to be a bit faster (or a lot
faster—but that rarely worked out, see Proebsting’s Law).

Today, computers are generally fast, and therefore large parts of most programs are
not performance critical. In fact, what started out as the Pareto rule for
performance-critical code (20% of the code accounts for 80% of the performance and
vice versa) had already moved to a 97:3 rule in 1974 when Knuth made his famous
remarks about small efficiencies, and nowadays it is even more skewed.

The overwhelming majority of code in most programs, and especially in
interactive programs, is not just not hot, it is ice cold. Therefore, its performance is
largely irrelevant. (At least unless you have factors of a thousand and more involved:
even code that is used 1% of the time becomes a significant factor if it runs 1,000
times slower!)

I think the Cocoa community provides ample evidence that this is true. Just look at
our own surprise at the ARC code in the “Optimizing ARC” section of Chapter 7:
the code in non-optimized debug builds was over an order of magnitude slower than
release, yet we didn’t notice. I am pretty sure that the same goes for most Swift code
used in iOS or Mac development. Yes, it is being compiled in debug mode (no
optimization), and yes, it is an order of magnitude or more slower than release mode
(optimized), but no, nobody notices. This also explains Swift’s reputation for speed
that is strongly contradicted by just about every bit of empirical data I could find.

As a consequence, one might think that performance is becoming increasingly
irrelevant, but that turns out to be an incorrect conclusion. Performance is actually
getting more important, not less. As computers become faster, users are using them to
process more data, often dramatically more. With more data, the innermost loops of
our programs are becoming significantly more performance relevant, not less, even as
the rest of the program becomes less and less relevant.

At the same, demands on performance are increasing. Initially, computer jobs were
submitted to a data center and could take a day or two to be run. With interactive
terminals, response times in the seconds became the norm, and later those
expectations rose to “immediate,” meaning less than 100 ms. Nowadays, significant
parts of our computations have to be able to run at animation speeds, 60 frames per
second or 16.66 ms per frame, with stuttering not permitted. So, predictability and
worst-case performance are essential.
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In his 2015 talk “The death of optimizing compilers,”7 qmail author and security
researcher Daniel Bernstein argued that these developments meant that whereas
performance is still as important as ever, optimizing compilers are becoming
increasingly irrelevant because there is very little of use that they can contribute.

Optimizing compilers are being squeezed from both ends, as seen in Figure 9.8.
On one hand, ever larger parts of our programs don’t need to be optimized; on the
other hand, the performance-critical parts of our programs that are so important are
usually also so small that optimizing compilers aren’t sufficient, therefore this code
needs to be hand-optimized.

We saw this effect firsthand in the “Collections” section of this chapter: the best
solution was to use one of the hand-optimized vDSP routines, which even when
used from a scripting language was several times faster than Swift’s Heldenoptimizer
at its best.

Erlang creator Joe Armstrong goes one step further, saying that our inner loops are
moving into hardware, and there is also ample evidence of this trend: iPhones have
dedicated hardware decoders for JPEG images, x264 encoded movies and most
widely used audio formats, not to mention the GPU for graphics acceleration.

No optimizing compiler is going to help you integrate these hardware resources
and their trade-offs (we look at hardware/software trade-offs for image decoding in
the “Beautiful Weather App” section of Chapter 17), or optimize moving larger
amounts of data from the OS to those hardware resources, or rearrange code so your
animation doesn’t stutter.

Steering code, no
optimizations needed

Hot code: hand-tuned

Medium-level code
optimizing compilers 

useful

Steering code, no
optimizations needed

Hot code: hand-tuned

optimizer?

Figure 9.8 Optimization trends

7. Daniel Bernstein. “The death of optimizing compilers,” European Joint Conferences on Theory and
Practice of Software (2015), Queen Mary University of London.
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Even worse, optimizing compilers make performance less predictable, and Swift in
particular has appalling worst-case performance, which is much more important these
days than best-case or even average performance.

Practical Advice
In practical terms, the only reliable option you have for performance-intensive code
is to code it in C/Objective-C and call that from Swift. We’ve already seen how to
write fast code in Objective-C in the previous chapters, so I won’t rehash that
information. Information on interfacing Swift and Objective-C can be found in the
Swift book8 and Apple’s developer documentation.

IBM’s Kitura Swift Web framework uses this approach, with the HTTP parser itself
taken from node.js and written in C, and the higher-level routines in Swift, with very
good performance results. The mix is around 15% C code and 85% Swift code. In
the end, most of Cocoa also uses that approach, and in this chapter we saw it work
well with calling the vDSP function.

Although Kitura and vDSP use pure C, as that is what the underlying libraries
provide, the most straightforward way to interact with your performance-sensitive
code is to place it in an Objective-C class and use message sending to interact with it
from Swift.

This way, you can heed Apple’s Swift modeling advice and make the most of your
Swift code classes. On the other hand, you can ignore Apple’s contradictory Swift
performance advice to make everything structs and statically dispatch where possible,
because if you need performance Swift won’t get you there.

Alternatives
I have to admit that I was more than puzzled by Apple’s Swift announcement,
especially from a performance perspective. As you can read here, Objective-C has
essentially all the mechanisms in place for producing great high-performance code,
and for exploiting the hybrid nature of performance today.

I therefore would have expected a language that banks these capabilities and then
improves on them. Some easy changes that would make the mechanics of optimizing
Objective-C code simpler include the following.

1. Compiler assistance for IMP caching. Not automation, but a simple way of
indicating to the compiler that you would like IMP caching to take place, by
treating a receiver as constant. The compiler can then create the code to obtain
and cache the IMP, and if useful, hoist that code out of loops as a
strength-reduction optimization.

8. Currently in the chapter called “Using Swift with Cocoa and Objective-C,” The Swift Programming Lan-
guage (Swift 3) (Apple Inc. iBooks, 2014).
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Caching could be extended to an entire protocol for instance variables, so the
compiler allocates IMP pointers for the protocol and automatically updates
them when the object instance variable changes.
Extensions of this approach would be “always-static” dispatch and/or inlining,
with the important distinction being that these features need to be controlled by
the call site, not the definition, though the definition might have to indicate
whether static dispatch and inlining are allowed.

2. Reenable stack allocation for Objective-C objects. This was a feature of the
Stepstone compilers, and while integrating stack allocation with
reference-counting semantics is challenging, it seems quite doable.

3. Closely related to stack allocation is bulk allocation of objects for homogenous,
packed collections.

None of the mechanisms mentioned present anything that hasn’t been done
before, but having slightly better compiler support would help.

Another approach would have been to use existing languages that offer a
systems-programming approach to replace the C part of Objective-C, for example, D
or Rust. Maybe Objective-D or Objective-Rust? Adding the Objective part to other
languages was always part of the plan.

In fact, Apple acknowledges that there are deficiencies in Swift’s memory model in
terms of performance and predictability, and has specifically called out to Rust for
inspiration:

Memory ownership model: Adding an (opt-in) Cyclone/Rust inspired memory
ownership model to Swift is highly desired by systems programmers and folks who
want predictable and deterministic performance (for example, in real time audio
processing code).

“Looking back on Swift 3 and ahead to Swift 4,”
Swift Evolution Mailing List9

A more ambitious approach would be to take the “Objective-C without the C”
idea seriously: Instead of adding Smalltalk-style messaging to C, use Smalltalk as the
base language and add one of the optional type systems available for Smalltalk
(Strongtalk, Typed Smalltalk, SmallType, etc.).

Cocoa has enough support for tagged pointers and other optimizations of the
object system such as a super-fast objc_msgSend() implementation that pure
objects are perfectly viable for the steering part of our programs, the 99% or more
that aren’t particularly performance sensitive.

Example 9.18 shows how a scripting-like flavor is achieved by simply leaving out
type annotations.

9. C. Lattner. 2016. “Looking back on Swift 3 and ahead to Swift 4.” July 29. Accessed at https://lists.swift.
org/pipermail/swift-evolution/Week-of-Mon-20160725/025676.html.

https://lists.swift.org/pipermail/swift-evolution/Week-of-Mon-20160725/025676.html
https://lists.swift.org/pipermail/swift-evolution/Week-of-Mon-20160725/025676.html
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Example 9.18 Dynamically typed object addition in Objective-Smalltalk

| a |
a := 3 + 4.

In this case, the variable a is an object, the declaration being comparable to id a
in Objective-C and the + “operator” being a binary message send dispatched via
objc_msgSend(). As the number literals are used in an object context and
sufficiently small to fit, they are generated directly as tagged object pointers taking a
single cycle each (see Example 3.2).

Example 9.19 shows how optional typing can be added. It is equivalent to the
Objective-C code NSNumber *a.

Example 9.19 Statically typed object addition in Objective-Smalltalk

| <Number> a |
a := 3 + 4.

Just as in Objective-C, the actual code generated for the addition could be
identical to the case of id objects, the static declaration only being for
machine-checked documentation.

Alternately, the compiler could emit special case instructions for adding two
tagged numbers similar to the code in Example 3.2, with a fallback to messaging if
the objects in question are not tagged integers. This small change would make it
feasible to use number objects in virtually all use-cases, and with real objects you can
build a real numeric tower so that small integers overflow gracefully into a multiword
representation that never loses accuracy.

Example 9.20 dramatically changes the code that is generated, despite the minor
syntactic change. This time the type is a C primitive type, and therefore the code that
is generated is the same for the Objective-C primitives.

Example 9.20 Primitive addition in Objective-Smalltalk

| <int> b |
b := 3 + 4.

This would keep the familiar Objective-C keyword syntax used throughout the
entire Mac OS X software stack, without the troubles of integrating two language
syntaxes as in Objective-C and without the integration difficulties Swift has had and
continues to have with keywords. Somewhat surprisingly (or not, if you’ve read the
rest of this chapter), even a bytecode interpreter for the pure object parts would have
performance superior to unoptimized Swift.
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Bytecode is typically much more compact than machine code, meaning less
memory pressure, as long as you don’t try to JIT-compile. Performance-sensitive parts
can optionally be compiled to machine code, and with the right type-annotations
directly to C-like machine code.

A huge benefit of such an approach would be instantaneous compile times, as code
can be compiled a method at a time without interference and the Smalltalk-to-
bytecode compilation step is very simple and fast. (The fact that Swift is usable at all
in playgrounds is a testament to the power of modern machines; it is hard to conceive
of a language less well-suited to the task.)

The Objective-Smalltalk10 project I have mentioned occasionally has exactly these
optimizations in mind, but it is currently exclusively focused on expanding
expressiveness, not the optimization aspects.

Summary
Early editions of Aaron Hillegass’s seminal book Cocoa Programming for Mac OS X
included a chapter on the Cocoa-Java bridge. It consisted of a single sentence that
basically read, “Don’t use it.” As you can probably tell, that is the chapter I would
have wanted to write on Swift performance. Due to the success of Apple’s marketing
campaign regarding Swift’s performance, that sentence would not have elicited the
same knowing chuckle as Aaron’s chapter-sentence did, but I hope to have shown
why I think it is equally justified.

Swift is not only extremely slow to compile but also slow to execute and, worst of
all for modern performance, quite unpredictable and hard to control. Don’t use it for
performance-intensive code. In fact, it can be so incredibly slow that even using it for
code that appears to be noncritical can suddenly have a noticeable performance
impact.

Instead, code your performance-sensitive code in Objective-C using the
techniques discussed here, and use that code from Swift. It’s what Apple does, and it’s
what IBM does.

If you have no choice, there is not all that much advice I can give; you are mostly
in the hands of the compiler and particularly the optimizer. Apart from that, you will
probably have to do all the premature optimization recommended by Apple, such as
using structs instead of classes throughout (but careful about large structures!), aiming
for static dispatch where possible, and leaving any heavy lifting to Objective-C if
you can.

10. http://objective.st

http://objective.st
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I/O: Principles

When Apple introduced the PowerMac G4, it was billed it as the world’s first
desktop supercomputer. Ken Bachter once quipped that “a supercomputer is a device
for turning compute-bound problems into I/O-bound problems.” In a sense, all
computers are supercomputers now, with today’s iPhones vastly outpacing a
PowerMac G4, and with compute performance vastly outpacing I/O performance.
In addition, the difference between access times (latency) and transfer speeds
(bandwidth) that we saw with memory access is even more pronounced with I/O
devices. Whereas the difference between latency and throughput is around 1:100
with memory, it is 1:100,000 and more with I/O devices.

Hardware
The fundamental performance characteristics of different types of I/O hardware are
both significant and not something that can be abstracted away, unlike different access
mechanisms, which are hidden behind uniform APIs. Storage tends to be provided
either by rotating magnetic disk drives or solid-state flash disks, whereas connectivity
is provided by different types of networks, from high-speed switched Ethernet to
packet switched radio.

Disk Drives
Although solid-state disks (SSD) are becoming increasingly popular, rotating media still
has a large role in providing persistent storage for computer systems. A schematic of a
disk is shown in Figure 10.1: a round magnetic platter is divided into concentric
circles called tracks, which are in turn divided into sectors.

A disk head is positioned over a particular track in order to read or write the data
on that track. Transfer speed is a simple function of the rotational speed of the disk
and the density of the recorded information, so in order to speed up a disk’s transfer
speed, you either need to spin it faster or increase the recording density so that more
information gets written or read during a revolution.
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Main spindle Main spindle

Figure 10.1 Schematic disk with tracks and sectors, original (left) and with density doubled (right)

The first microcomputer hard disks spun at 3,600 revolutions per minute (rpm)
and had fixed-size sectors that provided a transfer speed of 5 MBit/s (625 KByte/s).
Today’s disk drives don’t spin much faster, with speeds from 4,200 to at most 7,200
rpm for laptop and desktop drives and up to 15,000 rpm for server-class drives where
power consumption, heat, and noise are less of an issue. Table 10.1 relates rotational
speed to the time it takes to read a track.

The other factor controlling transfer speed is density, and this has gone up
significantly as ever more clever ways of encoding the bits on the magnetic media have
been found: putting tracks closer together with servo motors homing in on the exact
track, recording bits vertically into the medium, getting more sensitive heads, heating
the platter right before a head, and so on. However, due to the fact that the disk is a
2D platter, but the read/write operations are of a linear track, density increases always
produce a linear increase in transfer speed but a quadratic increase in storage capacity.

Increases in transfer speeds of hard disks therefore always lag behind increases in
storage capacity, due to simple math. Considering the seeming inexorable fact that
the amount of data stored tends to increase with available storage capacity, this means
that disks, while getting nominally slightly faster, in fact are growing increasingly

Table 10.1 Rotational speed

Rotational Speed (rpm) Time to Read a Track (μs)

3,600 278
4,200 238
5,400 185
7,200 138

15,000 66.7
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slower relative to the work we are asking them to do, and also ever slower relative to
the computers they are hooked up to.

The Apple II’s ProDrive had a transfer speed of 5 MBit/s, which was actually faster
than the Apple’s 6502 processor could handle at a 1-MHz clock speed and several
clocks per instruction. It could transfer its 5-MByte capacity in around 10 s, not
counting seeks. Today’s hard drives transfer around 100 MByte/s, so around 10 ns per
byte. In those 10 ns, our laptop CPU can execute well over 30 instructions, if it isn’t
blocked on memory. The contents of a typical consumer drive with 1-terabyte
capacity would take 10,000 s, or almost 3 hours to transfer.

If that weren’t enough bad news, access times, while also getting slightly faster over
time, are getting faster at an even slower rate than transfer speeds. Access speeds are
determined by the ability to quickly move and then stop a mass (the seeking disk
head) and rotational delays. Both are largely questions of physics; those physics haven’t
changed and likely aren’t going to change, with engineering advances in moving and
stopping these masses coming much more slowly. In addition, moving masses quickly
is associated with noise, so demand for quieter disk drives has actually led to decreases
in seek performance.

The ever-increasing spread between transfer speed and seek performance has led to
the phrase “Disk is the new tape.”

Solid-State Disks
SSDs lift many of the physically induced limitations of rotating disks, due to the fact
that they have no moving parts. Especially the initial access times (“seek”) are much
improved, but as we saw in the last chapter, they still are slow compared to main
memory. There are also physical limitations, for example, increases in capacity such as
multilevel cells have as their trade-off not just decreased reliability, but also slower
read and write speeds.

Writing in general is problematic, as an entire section of flash has to be bulk-erased
(which takes some time) before any information can be written. Batching becomes
even more important than on hard drives because lots of small writes will not only be
slow, but they will also wear out the cells ahead of time.

So while SSDs represent an improvement, and are the easiest way to improve
things like application start-up performance or server-side databases (especially if
read-mostly), they are not a panacea. In fact, a 2012 study1 of smartphone
Web-browser performance found that it was not limited by processor speeds or even
slow cellular networks, but instead by the combination of SQLite and slow flash
memory speeds!

1. H. Kim, N. Agrawal, and C. Ungureanu. “Revisiting Storage for Smartphones,” 10th USENIX Con-
ference on File and Storage Technologies (2012). https://www.usenix.org/conference/fast12/revisiting-storage-
smartphones-0.

https://www.usenix.org/conference/fast12/revisiting-storage-smartphones-0
https://www.usenix.org/conference/fast12/revisiting-storage-smartphones-0
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Network
Physics also plays a large factor in network I/O, largely in the form of the speed of
light, which determines the minimum time for a round-trip. This speed is not
expected to change anytime soon, and we are already close enough to those limits
that we can’t expect much change. In addition, network protocols such as TCP
require several round-trips to negotiate a connection.

So while we are able to increase bandwidth, with Ethernet having gone from
10 MBit/s to 10 GBit/s, latencies are going to remain constant. Additionally, we now
have cellular networks to deal with, with much reduced bandwidth and also high
latencies, sometimes in the multisecond range.

Operating System
The operating system always plays an important role in allocating the resources that
programs wish to use. However, whereas in the case of CPU and memory, the OS is
involved in parceling out some resource and then lets the program go about its
business. With I/O, every access is mediated via the OS. So although fundamental
hardware capabilities are, well, fundamental, the OS plays a much larger role.

One of the functions of the OS is to provide a uniform interface for diverse
hardware. For example, it simply doesn’t matter to the application program whether a
“disk” is an actual rotating magnetic platter, several platters stacked on top of each
other, an RAID array of such devices, or solid-state flash memory—apart from the
performance characteristics, that is. In addition to providing a uniform interface, the
OS tries to improve I/O performance, primarily by caching, buffering, and batching
I/O requests. Finally, it extends the uniform interface to interprocess communication
such as networking using TCP/IP protocol.

Abstraction: Byte Streams
The abstraction that the Unix operating system Mac OS X is based on is that of a
stream of bytes. This abstraction is usually not exactly what the program needs, which
may deal with database records, lines of texts, or rows of pixels, to name few, nor is it
what the hardware provides, which will often be disk sectors or network packets.

The basic methods for accessing these streams of bytes are the read() and
write() system calls, which use integers called file descriptors to identify the
particular byte stream to access. File descriptors for disks or devices are obtained using
the open() system call, for interprocess communication using the pipe() system
call, and for network communications using some combination of the socket(),
accept(), bind(), and connect() calls.

The services and abstractions of the operating system come at a cost; for example,
the user-space/kernel transition. Example 10.1 is a case in point.
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Example 10.1 Upcase: A simple Unix filter using the kernel API for byte I/O

#include <stdio.h>
#include <ctype.h>

int main(int argc, char *argv[] ) {
int first=1;
int eof=0;
do {

char buffer;
if ( read(0,&buffer,1)==1) {

if ( first ) {
buffer=toupper(buffer);
first=0;

}
write(1,&buffer,1);
if ( buffer=='\n' ) {
first=1;

}
} else {

eof=1;
}

} while (!eof);
return 0;

}

This code performs the same function as the code in Example 8.1, but reads and
writes every byte individually using the read() and write() system calls. At 2 min
25 s for a 145-MB file, it is around 200 times slower than Example 8.1 (0.69 s), with
1 min 56 s or 80% of that time spent in the kernel, whereas Example 8.1 spent only
0.068 s (10% of its much lower running time) in the kernel, less than 1/1,000th of
Example 10.1’s kernel time.

The samples that follow confirm that the time is spent in the read() and
write() system calls. Although this cost of around 500 ns per read or write call
already makes the huge difference we just saw, this is just the overhead of calling into
the kernel. As we saw in the “Hardware” section in this chapter, actual I/O
transactions can take on the order of milliseconds, or many thousands time longer. At
such rates, processing a 145-MB file would take several days.

8958 start (in libdyld.dylib)
4827 main (in upcase-single-char)
+ 4827 read (in libsystem_kernel.dylib)
3919 main (in upcase-single-char)
+ 3919 write (in libsystem_kernel.dylib)
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185 main (in upcase-single-char)
10 main (in upcase-single-char)
+ 9 toupper (in upcase-single-char)

We already saw before what the solution to high transaction costs is: batching, or in
this case, buffering. Instead of incurring these transaction costs for every single byte,
we get a whole buffer’s worth of bytes from the kernel, which we then process
without bothering the kernel. Then we batch the processed bytes up in an output
buffer and write the whole batch to the kernel.

While this processing does make code more complicated than Example 10.1, the
Unix stdio library takes care of most of the complications for us, especially for
line-oriented processing, making Example 8.1 actually less code. However, client
code that does not deal with lines of text (fgets()) or fixed-length records
(fread()) will have to deal with all the problems of buffer sizes not matching logical
sizes, such as partial input and buffer stitching, on their own. I am so used to I/O
being presented using batching APIs that it actually took me a while to realize that a
call like read() is, in fact, a batching API. The actual unit of communication is the
byte, not the buffer. But in order for performance to be acceptable, we need to deal
with bytes in bulk, in buffers.

File I/O
Files in Unix are also just streams of bytes, with the addition of metadata such as a
name (more precisely, zero or more names), an owner, and access permissions as well
as access dates. Filesystems manage the mapping of a hierarchy of these abstract files
onto concrete sectors on a hardware device, and the kernel manages moving data
between the disk (via device drivers) and the unified buffer cache (UBC) and clients
such as user programs or other parts of the kernel. As with the basic API, buffering
plays a crucial role in making the abstraction perform acceptably.

Figure 10.2 shows a rough approximation of how a filesystem maps both a
hierarchical namespace to streams of data and both the directories of the hierarchical
namespace and the data itself to blocks on a storage medium.

Getting to the file /mach_kernel means reading the directory /, looking for the
mach_kernel entry in that directory, and then looking up the data blocks for that
file there.2 Accessing a file deeper in the hierarchy such as
/Users/marcel/Documents/Hi means starting again at the / directory, finding
the Users entry in that directory, finding the data block(s) for the Users directory,
reading those data blocks, finding the marcel entry, and so forth.

The OS must obviously cache as much of this information in memory as possible,
otherwise every access to a particular “file” abstraction would require multiple
discrete disk accesses, each involving an expensive seek, because the data accessed is

2. Although complicated enough as is, Figure 10.2 leaves out the extra Unix indirection of inodes that map
directory entries to files.
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/

dtruss #!/bin/sh
# dtruss -print

Users

bin

usr etc mach_kernel
cf fa ed fe 07
00 00 01 03 00
00 00 02 ...

paths
/usr/bin /bin

/usr/sbin /sbin
/usr/local/bin

marcel

MusicDesktop Documents

Hi Hello World!

0 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49 50 51 52 53 54 ...

Disk Blocks

Directory Structure Data

Figure 10.2 Mapping Mac OS X directory structure and file data to disk blocks

part of different files and not laid out together on disk. Fortunately, this is the case,
and in fact there is even a special namei cache that essentially duplicates the hierarchical
dictionary structure and maps directly from complete path names to data blocks.
These caches work very well in the general case, but as with all caches, they only
affect best- and average-case behavior, and it is always possible to get hit with the
worst case. They also involve additional processing on actual I/O, as data is copied
first into the buffers and then supplied to the client that made the request.

Traditionally, Unix operating systems reserved a special section of memory as a
buffer cache for buffering recent disk I/O, so a client read() request would cause data
to be read into those buffers and then copied into the client’s address space, and a
write() request would write to the buffer cache and be flushed to the disk later.
The separate page cache was used for the virtual memory used by processes, which had
a separate path to the disk to enable swapping, often to special regions of the disk.
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Although this separation between virtual memory and (wired) buffers for file I/O
initially seemed sensible, it had a number of drawbacks. First, the buffer cache’s size
was usually fixed, so as main memories got larger you frequently had large amounts of
unused RAM that could have been used for disk buffering. Second, with the
introduction of the mmap() system call for mapping files directly into a process’s
address space without read(), the distinction that was so clear before became
blurrier. And moving data from the buffer cache to virtual memory not just incurred
an extra copy, it could also lead to the same data residing in multiple caches, leading
to more wasted space and extra copy operations.

The solution arrived at by all Unix distributions was the UBC, shown in
Figure 10.3 along with the old pre-UBC state.

With the UBC, the distinction between virtual memory operations and file I/O is
erased. All buffered file I/O, both via mmap() and read() and write() goes via
the virtual memory subsystem: first, the kernel creates a mapping from the filesystem
object (usually a disk file) to a set of virtual memory pages. This set of pages is then
either mapped directly into the address space of the process in question in the case of
mmap(), with actual I/O operations initiated when those pages are accessed, or in
case of a read() the kernel immediately initiates I/O and copies the data into the
calling process’s address space once it arrives.

The advantages of the UBC are that it can and does use all available RAM for
buffering file I/O, and it eliminates duplicate copies in the case of memory-mapped
files. These benefits are usually transparent, but the unified nature of the cache can
and does cause problems at times. Since the UBC doesn’t really distinguish between
file I/O and application paging, heavy file activity can cause the system to start

mmap()

Page 
Buffer

Buffer 
Cache

Disk

read()
write()

vm_allocate()

mmap()

Unified
Buffer 
Cache

Disk

read()
write() malloc()

Figure 10.3 Non-unified (left) and unified (right) buffer cache
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swapping despite the fact that there is plenty of RAM to keep all programs in
memory—a problem that showed up with Spotlight, for example.

Fortunately, this tends to be more of a problem for system services and can also be
mitigated by using uncached/unbuffered I/O and/or explicitly controlling the
allocation strategies with the madvse() system call we saw in the “madvise”
section of Chapter 7.

In addition to caching previous reads in case the same data is read again in the
future, the disk subsystem also speculatively reads data that it believes will be
requested in the future, so-called read-ahead.

The UBC doesn’t just cache reads, it also buffers writes. When a program writes
data to a file using the write() system call, that data is not actually written to disk;
it is copied to the UBC. The sync() system call globally writes pending changes to
disk. It is executed every 30 s by the launchd daemon (earlier OS versions had a
separate update daemon for the same task). Delaying the writes decouples the
application from the slower I/O devices and allows the system to group I/O together
in larger batches, optimizing the I/O in the process, combining writes to a single
flash block, or sorting requests to minimize disk seeks.

Again, this buffering behavior is crucial to general system performance, an earlier
version of Unix that used synchronous writes had around 3% to 5% the write
throughput of systems with write buffering, and similar slowdowns can be observed
when manually forcing writes to be synchronous. The main cost of delayed writes is
that data may not be consistent on disk even though the application has written it and
can be lost if there is a power failure or system crash between the time that the
application wrote the data and the time of the failure. In addition, there is an
in-memory copy operation.

The Network Stack
The main network stack on OS X and iOS deals with TCP/IP, the Transmission
Control Protocol/Internet Protocol. Basic IP is packet oriented like most of the
network hardware, but the widely used TCP provides the “stream of bytes”
abstraction used throughout the rest of the Unix kernel. Most of the high-level
protocols in use over the Internet today such as HTTP and FTP are built on top of
TCP’s stream abstraction, with the packet-oriented, unreliable User Datagram
Protocol more widely used as the basis for broadcast and media applications.

A naïve implementation of a reliable, stream-oriented transport would be
performance limited by the latency of the network, because receipt of packets has to
be acknowledged. Fortunately, TCP is a very sophisticated protocol paired with
equally sophisticated implementations. Significant amounts of buffering, sliding
receipt windows, flow control, out-of-order retransmission, and so on, help TCP
achieve throughput close to the available bandwidth in many situations without much
help from the application programmer.

However, establishing TCP connections is limited by network latency, and actually
takes several round-trips, so care should be taken to minimize the number of
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connections, preferring instead to reuse an existing connection. FTP, for example,
uses a single control connection for an entire session but requires a new data
connection for every new transfer, making it ill-suited for transferring a large number
of smaller files. HTTP also suffers from being fundamentally connectionless, although
later versions of the specification have allowed reusing connections for multiple
transfers.

Summary
In this chapter, we’ve seen that I/O performance over time follows a very specific
pattern: capacity increases more than bandwidth, which increases more than latency,
even with occasional jumps like the move to SSDs.

In practice, this means that good performance can best be achieved by making
requests as large as possible; reading or writing a single byte is practically as expensive
as reading or writing many kilobytes. Unless absolutely necessary, I avoid writing
parts of files, instead taking a page from the Amoeba operating system3 and treating
files as immutable, only ever reading and writing entire files at a time, and ideally
avoiding small files. If I want to read parts of a large file, I use memory mapping in
order to still only deal with the whole file logically, leaving any partial access to the
OS. If I need to incrementally generate a large file, I only append to it and only allow
reading once the file has finished writing.

We will take a close look at these sorts of techniques and the problems with partial
file reads and updates, especially in the context of databases, in Chapter 12.

3. http://fsd-amoeba.sourceforge.net/amoeba.html
https://en.wikipedia.org/wiki/Amoeba_(operating_system)

http://fsd-amoeba.sourceforge.net/amoeba.html
https://www.en.wikipedia.org/wiki/Amoeba_(operating_system)
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I/O: Measurement and Tools

Measuring I/O is even harder than measuring memory consumption. Most of the
time, interesting events will be those where nothing is happening; the system is
simply waiting for some external event such as the hard disk head moving to the right
location. In addition, the whole operating system is designed purposely to make I/O
measurement nonrepeatable—er, I mean, to optimize I/O, with lots of global shared
state such as caches and disk layout. Even worse, while there are techniques for
controlling these variables, they usually also lead to nonrepresentative measurements
because the optimizations are absolutely necessary for normal operations.

To illustrate, we will use the short program from Example 11.1 that just reads a file
into NSData and then computes a checksum of the bytes in the file.

Example 11.1 datamapping test program: reads a file and computes an xor-checksum

#import <Foundation/Foundation.h>

int main(int argc, char *argv[] ) {
NSURL *url=[NSURL fileURLWithPath:@(argv[1])];
NSData *d=[NSData dataWithContentsOfURL:url options:0 error:nil];
char result=0;
const char *bytes=[d bytes];
const char *end=bytes+[d length];
for (const char *cur=bytes; cur < end; cur++ ) {
result ^= *cur;
}
printf("result: \%x\n",result);
}

Example 11.1 does a computation on the file contents and prints out those results
to make sure data is actually read and the printf ensures the compiler can’t just
optimize the computation away as dead code.
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Negative Space: top and time
Our friends time and top are useful in detecting that I/O is happening and blocking
our process, though mostly by using the concept of negative space: if we notice
time that is not accounted for otherwise, or CPU utilization significantly below
100%, there is a strong suspicion that I/O may be to blame. For example, running the
command time ./datamapping test_file yields the result shown:

> time ./datamapping testfile_3gb
real 0m10.669s
user 0m0.305s
sys 0m1.613s

Note the large discrepancy between real and user time, with user time only
being 0.3 s, but the actual real time being more than 10 s. The sys time only adds
1.6 s of kernel CPU time, for a total of just under 2 s of time using the CPU. The
other 8 s are missing, meaning only about 20% CPU utilization and 80% idle time.
This could have been other processes preempting this one, but because scheduling is
usually fair it would have to have been several processes or one running at significant
higher priority, for example, a real-time process. Another reason would have been
that the process decided to de-schedule itself by using the sleep() system call or
similar calls to wait for some specified amount of time.

The most likely explanation, especially in our case, is that the process was I/O
bound, meaning it was synchronously waiting for an external device to perform some
I/O—in this case, to deliver data.

Assuming you have enough memory for keeping the file in RAM, doing a second
timing run of the program will yield the very different results shown below: it is much
faster, and user and sys times add up almost exactly to the real time measured.

> time ./datamapping testfile_3gb
real 0m1.937s
user 0m0.305s
sys 0m1.613s

This is the result of the buffer cache we discussed in the last section. The entire file
has been cached in memory, and instead of doing I/O from disk, the OS just copies
the data from the buffer to the program, making repeatable I/O testing difficult.

The purge command empties the entire buffer cache and returns the system to
roughly the same state it was in after a cold boot (from power-off). After a purge,
the OS will be forced to read from disk again. The purge command’s effects are
global and also cause changes to be written to disk, so expect significant degradation
in system performance for a while. Also, wait for the system to settle and page in its
basic necessities before performing your measurements.

You can also see symptoms of an I/O bound process in the top screenshot
Figure 11.1, with top showing the datamapping process at 17.7% CPU
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Figure 11.1 top showing an I/O-bound task

utilization. The top output also confirms that the reason is not CPU contention,
because the CPU has over 80% idle time and there are no other processes that have
high CPU usage statistics. Finally, top also has an indicator that I/O is taking place
with the read and written fields in the statistics section.

Summary Information: iostat and netstat
Whereas with time and top, I/O activity was mostly detectable indirectly, the aptly
named iostat command gives a direct measure of I/O activity. iostat gives
summary information of I/O happening in the system, either as a snapshot or
continuously if given a time interval on the command line.

The following is output during a run of the datamapping command.

> iostat 1
disk0 cpu load average

KB/t tps MB/s us sy id 1m 5m 15m
6.00 2 0.01 2 3 95 0.61 0.50 0.51

421.13 430 176.94 2 9 89 0.61 0.50 0.51
417.56 1104 450.26 1 15 84 0.61 0.50 0.51
426.35 1071 445.95 2 15 83 0.72 0.52 0.52
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454.21 999 443.28 2 16 82 0.72 0.52 0.52
407.63 1038 413.29 2 14 84 0.72 0.52 0.52
422.73 1057 436.50 1 14 85 0.72 0.52 0.52
493.48 929 447.48 2 20 77 0.72 0.52 0.52
491.08 186 89.07 21 6 74 0.83 0.54 0.53
11.33 6 0.07 25 1 73 0.83 0.54 0.53
20.40 10 0.20 3 8 89 0.83 0.54 0.53

The first three columns display the I/O activity on disk0, in this case the built-in
SSD of my MacBook Pro and the only disk attached to the system. I personally find
the third column (MB/s) most relevant, most of the time. The first two just break this
total number down into average kilobytes per transaction (KB/t) and transactions per
second (tps), which can be useful if you are trying to determine if you are doing too
many small and possibly random I/Os.

For this run, we see the system initially essentially idle (two transactions, total of
12 KB transferred). Once the datamapping program starts, we quickly ramp to
400 MB/s, the sequential transfer speed of the built-in SSD and finally drop down
again once the program is done. The misalignment of the columns during the run
shows the age of the program: the formatting didn’t anticipate transfer speeds going
into the triple digits!

Although iostat paints with a very broad brush—it only provides summary
information combining all I/O going to particular devices—I often find it not just
useful to verify that what I think should be happening is in fact really happening, but
also sufficient to see what is happening with a particular process if I manage to keep
the rest of the system quiet enough.

The netstat command performs a very similar function as iostat when given
a time interval on the command line, printing out aggregate network activity in bytes
and packets for the specified interval, though it can also give much more detailed
information.

Instruments
Needless to say, Instruments has tools to help us with I/O performance measurement.
For example, we can use our trusty Time Profiler as shown in Figure 11.2.

One thing to notice is that CPU utilization shown in the graph is only at 100%
near the end; in the first part of the graph, it stays at much less than 100%. This is
another example of the negative space we discussed earlier: the fact that we have less
than 100% utilization indicates that the program is waiting for something—in this
case, reading data from disk using Unix I/O, which despite reading from an SSD at
around 400 MB/s does keep the CPU waiting for most of the time. After the I/O is
done and everything is read into memory, utilization shoots up to around 100%.

However, if we look closely, we also notice a couple of problems. First, the times
do not match: the graph shows 7 s of usage, but the tree view only accounts for 4.7 s.
Second, the tree view claims that just 44% of the time is spent reading the file, but we
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Figure 11.2 Time Profile of Unix I/O

both know and can see that it’s close to three-quarters of the time. The reason for this
discrepancy is that the Time Profiler instrument by default only accounts for CPU
time; it does not account for time waiting for I/O. In order to also account for time
waiting for I/O, we need to check the Record Waiting Times checkbox in the inspector.

With the Record Waiting Times checkbox selected, we get a result like the one
you can see in Figure 11.3.

However, recording all time is also confusing: our main function, which we know
is the only thing really doing work, is now shown as just taking slightly more than
25% of the time, with almost 50% taken by start_wqthread and its descendants,
which bottom out at _workq_kernreturn, and another 25% in
_dispatch_mgr_thread. What we are seeing are three helper threads that are
sitting idle, but Instruments can’t tell the difference between idleness waiting for
something we are interested in, such as the result of read(), and idleness due to
being parked, so all threads that are around for the time of the process will show up
with equal weight, and our total sample count will be threads× total− time.

Fortunately, we have data-mining tools that can help us, as illustrated in
Figure 11.4.

We need to focus on our main function, after which we get what we were
looking for. Although we no longer get running time in milliseconds in the tree view,
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Figure 11.3 Time Profile of Unix I/O sampler tool, all states

Figure 11.4 Sampler Instrument of Unix I/O, all states and focused
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we do still get samples and were sampling at a rate of 1 per ms. The 7,000 odd
samples we got correspond to the real time taken, and the read() is now shown as
taking 70% of the total.

Note that the profile no longer directed us to the most important part of the
program; we had to have that knowledge and use it to actually get at the information
we need.

Although there are other, much more I/O-specific instruments available, I haven’t
had much use for them. The basic command-line tools give me a better overview, the
Sample instrument gives me a better overview of how I/O fits into the rest of the
program, and fs_usage discussed in the next section gives me all the detail I would
want. Figure 11.5 shows the Reads/Writes instrument. Although it does keep track
of bytes read and written, it only graphs this information, allowing only a rough
qualitative evaluation. The call graph only shows the number of calls, which is less
useful.

Detailed Tracing: fs_usage
The fs_usage tool provides much more detailed information, recording effectively
all I/O activity. Beware, though, that it is potentially a firehose, especially when
output is not restricted. On my system just 6 s of fs_usage amounted to 1,255 lines
of output, despite the system being ostensibly idle!

Figure 11.5 Reads/Writes instrument
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Data can be limited to certain types of output via the -f flag and to a specific
process by adding the process name or process identifier on the command line. The
output below shows monitoring the datamapping process using fs_usage:

> sudo fs_usage -f filesys datamapping
15:20:29 open . 0.000025 datamapping
15:20:29 fstat64 0.000005 datamapping
15:20:29 fcntl 0.000007 datamapping
15:20:29 stat64 ook/test-programs 0.000015 datamapping
15:20:29 PAGE_IN_FILE 0.000005 datamapping
15:20:29 open rams/testfile_3gb 0.000019 datamapping
15:20:29 fstat64 0.000004 datamapping
15:20:34 read 5.184634 W datamapping
15:20:36 read 5.025971 W datamapping
15:20:36 close 0.000010 datamapping
15:20:36 write 0.000012 datamapping

Each line of the output indicates a single I/O event. The first column is a
timestamp, and the second column indicates the operation—for example, the system
call (lstat64, open, read, close). The center portion has additional information
if such information exists—for example, filenames. Following this is a number
indicating the time the operation took, in seconds. The number of digits after the
decimal is chosen so that the digits show microseconds (0.000025 seconds = 25
microseconds). If the process had to be scheduled out, the time is followed by the letter
W, otherwise there is a blank. Scheduling out means that the process was no longer
running. For example, actual I/O had to be performed because data was not in the
cache, and the process was put to sleep until the I/O completed. Finally, the last
column is the process name, which in this case is always datamapping.

With this in mind, we can interpret the trace in the output shown above. First, we
see the program opening the current directory (open(".")), getting some
information about it using fstat(), and later using stat() to get some more
information about the current directory, this time using the full path. Cocoa does a
lot of statting, so this is expected. After that, we get a page-fault serviced from a file
that is mapped into memory, most likely part of the executable or a shared library
(PAGE_IN_FILE). The open() call following the page-fault initiates access to the
test file in question, testfile_3gb. fstat64() is most likely used to determine
the size of the file, which is then read using two read() calls and closed. The two
read() calls are the only ones that needed actual I/O, as indicated by the W after the
time. They are also the only ones where the time field shows anything substantial,
which isn’t a coincidence: calls serviced from memory (without the W) tend to finish
in a few microseconds at most. The final write is our printf() that’s there so
compiler doesn’t eliminate the xor-loop due to the result not being used.

When I ran this same test with less free memory (not enough to hold the complete
file in memory at once), I saw a lot of additional entries between the read() calls
and the close() call of type PAGE_IN_ANON, meaning swapping in data that isn’t
backed by a user-defined file, but rather anonymous memory that is backed only by
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the swapfile. This meant that data was read from the data file, swapped to the swap
file, and then paged back into memory from the swap file, which is somewhat insane
but can happen when using Unix I/O. The page-out events corresponding to the
page-ins observed do not show up when looking at a particular process because
paging to disk is handled by the kernel task. It does show up in a global trace.

One caveat of specifying a process to monitor is that fs_usage expects the
process to already exist and will terminate with an error message if it doesn’t. There is
no equivalent of sample’s -wait flag that will wait for such a process to come into
existence. If that is a problem, an alternative is to keep the fs_usage itself
unconstrained (global) and filter the output using grep: sudo fs_usage -e |
grep datamapping. The output is shown here:

14:32:42 open . 0.000012 datamapping
14:32:42 fstat64 0.000003 datamapping
14:32:42 fcntl 0.000005 datamapping
14:32:42 close 0.000005 datamapping
14:32:42 stat64 ../test-programs 0.000009 datamapping
14:32:42 PAGE_IN_FILE 0.000004 datamapping
14:32:42 PAGE_IN_FILE 0.000012 datamapping
14:32:42 PAGE_IN_FILE 0.000003 datamapping
14:32:42 PAGE_IN_FILE 0.000003 datamapping
14:32:42 open ../testfile_3gb 0.000016 datamapping
14:32:42 fstat64 0.000003 datamapping
14:32:42 RdData[A] 0.000868 W datamapping
14:32:42 RdData[A] 0.000826 W datamapping
14:32:42 RdData[A] 0.000366 W datamapping
14:32:42 RdData[A] 0.000722 W datamapping
14:32:42 RdData[A] 0.000791 W datamapping
14:32:42 RdData[A] 0.000954 W datamapping
14:32:42 RdData[A] 0.000470 W datamapping
...

This approach to filtering generates significantly more output: we see many
lower-level RdData[A] events. A lot more: I got around 13K lines of output. It helps
to redirect to a file! My current understanding is that the lower-level events are part
of the kernel event stream and therefore do not show up when filtering directly by
process.

The fs_usage command is very versatile. For example, I was also able to
confirm that the job that used to be done by the update daemon (calling sync()
every 30 s) is now performed by launchd instead, as the following output shows. As
of version 10.8.3, the sync(2) man page still refers to update(8), despite that
man page having been removed.

> sudo fs_usage -f launchd | grep sync
12:08:44 sync 0.051223 W launchd
12:09:14 sync 0.057016 W launchd
12:09:44 sync 0.055366 W launchd
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12:10:14 sync 0.062487 W launchd
12:10:44 sync 0.049468 W launchd
12:11:14 sync 0.057325 W launchd

Apart from being a firehose, another drawback of fs_usage is that it is flat.
There is no call graph, so correlating activity and doing data mining can be arduous.
An instrument with the capabilities of fs_usage would be really useful.

Summary
This chapter introduced some of the major tools for measuring I/O performance.
Unlike CPU and memory tools, however, they tend to not be enough to pinpoint
exact locations of I/O performance problems, never mind root causes. Fortunately,
they don’t have to; all we need is evidence that I/O is causing problems and enough
information to form a usable working hypothesis.

With a working hypothesis, we can create an experiment (i.e., make a code
change) and then verify or reject the hypothesis by measuring the running time of
the modified program. Rinse and repeat. We will see that method in action in the
next chapter.



12
I/O: Pitfalls and Techniques

Despite the fact that I/O performance has increased more slowly than the
improvements in other parts of the system, it still is fast enough for low-rate or
reasonably small I/O...in computer terms. In human terms, that is still incredibly fast.
For example, the Project Gutenberg version of a reasonably large novel such as Moby
Dick is just 1.2 MB in size. On my SSD-equipped MacBook Pro, I can copy this file
280 times per second using a shell script. The fastest typist in the world, on the other
hand, types less than 20 characters per second, so in case we were working on our
Moby Dick-sized novel, we would be able to save the entire novel on every keystroke
and have plenty of time left for other tasks. For many I/O tasks today, brute force is a
reasonable implementation strategy.

Pushing Bytes with NSData
The NSData method dataWithContentsOfURL:options:error: is the most
basic Foundation method for reading bytes into memory. Figure 12.1 looks at the
performance effects of the different options that can be passed when reading a file
from disk. The mapped bars refer to the option NSDataReadingMappedAlways,
with mapped + used actually touching the memory that was mapped. The read bar
refers to passing no option (or option 0), which means that the file will be read using
the Unix read() system call, and read+uncached refers to the option NSData
ReadingUncached, which also implies Unix I/O but using uncached reads. Each
variant is timed in two environments: one with the data already residing in the
operating system’s buffer cache (cached), and one with actual I/O from disk ensured
by issuing a purge command beforehand.

As you can see, simply mapping the 300-MB file into memory is by far the fastest
operation, taking only 0.03 s in the cached case and 0.007 s in the uncached case
(apparently, creating virtual memory mappings to a disk file is quicker than creating
mappings to resident pages). Of course, that number is only partly useful because as
we saw earlier, real I/O only happens when the mapped pages are actually used by
the program (mapped+used). If we actually use the data, a comparison with the
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Figure 12.1 Mapping and reading a 300-MB file into memory via NSData

read() option is more mixed: mapping is 57% faster if the data is already in the
buffer cache ( 0.16s vs. 0.26s), but read() is 60% faster than mapping if the data has
to be read from disk. Uncached reads are no faster than cached reads.

Using Instruments quickly illuminates why memory mapping is faster than
read() in the cached case—the former just remaps the virtual pages, whereas the
latter actually copies data using the kernel version of bcopy(), and a bcopy() of
300 MB does take around 160 ms. The case of actual I/O is a little more mysterious.
One suspicion is that the page-fault handling and remapping work is greater for
mapped pages than actual data movement for copied ones. However, the fact that
remapping is significantly faster than copying in the cached case makes this unlikely,
and in fact, the difference between the uncached read() and mapped cases is greater
than the total time for remapping in the cached/mapped case.

The iosnoop tool provides what looks like the answer: in the read() case, data
is read in 512-KB chunks, when memory mapping the chunk size is only 128 KB. At
first blush, this seems understandable; the page-fault handler has no information
about future access patterns, whereas we told the NSData that we wanted to read the
entire file, so a larger read-ahead seems sensible for that case. However, neither using
our own Unix code with significantly smaller chunks nor giving the virtual memory
subsystem using madvise() with MADV_SEQUENTIAL or MADV_WILLNEED
changes the behavior significantly. So at this point, this seems to be a true kernel
(performance) bug or maybe just a misconfiguration, with the read-ahead for mapped
files set at 1/4th the size of that for read() system calls, with reduced performance
as a result.

A Memory-Mapping Anomaly
The preceding measurements and results were the result of a large number of
experiments at different sizes and with varying access patterns. At file sizes above



Pushing Bytes with NSData 227

2 GB, we saw a nonlinear increase in execution times for mapped files—for example,
scanning through a 3-GB file that was resident in memory took 4 s, 2.5 times more
than the 10-times increase we would expect over the 300-MB file case.

Despite many experiments, an explanation—or better yet, a fix—was not
forthcoming, until almost by accident I tried varying the stride with which I access
memory in order to cause actual I/O to happen on the mapped file. The usual stride
was 4,096, the size of a virtual memory page, making sure that every page mapped is
actually accessed and paged into memory. Paging in only every second page by
changing the stride to 8,192 caused a decrease in running time, which is to be
expected, but the decrease was rather high. Closer inspection revealed the data shown
in Figure 12.2: even changing the stride from 4,096 to 4,097 bytes caused a
performance improvement of around a factor of 2.5. This can’t be explained by
having less data to page in, because the number of pages read only drops by 0.02%.

The only explanation I have for this behavior is that the kernel logic that tries to
detect sequential access patterns in memory-mapped files has a bug that causes it to
chew up extra CPU time once the file size is larger than will fit in a 32-bit signed
integer. The bug doesn’t manifest itself if your access pattern is even very slightly
nonsequential. Another way to fix the problem is the madvise() system call with
the MADV_SEQUENTIAL flag for the memory in question. The result of applying this
flag is shown in Figure 12.3.

However, when you apply the MADV_SEQUENTIAL flag, you must absolutely
ensure that access will be 100% perfectly sequential, otherwise the performance
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Figure 12.3 Sequential mapped I/O performance by stride, madvise(SEQ)

penalties can yield up to a factor of 10 worse performance, especially when having to
do actual I/O. Figure 12.4 compares the times for actual I/O with different strides.

I was able to confirm this behavior on Mac OS X versions 10.6 to 10.9, but no
longer in 10.11, so I would still recommend memory-mapped I/O for most
applications. However, I do also recommend that you keep a lookout for this type of
behavior.

The two biggest factors in favor of mapping are the fact that it reduces memory
pressure significantly and that it allows for lazy loading of data pretty much
automatically, meaning the application isn’t unresponsive while data is being loaded.
This point is actually present in Figure 12.1, if maybe a little hidden. For the read()
times, the time shown in Figure 12.1 is essentially the duration of NSData’s
dataWithContentsOfURL:options:error: method and the calling thread is
blocked during that time. Using mapping, the time spent in
dataWithContentsOfURL:options:error: is that shown in the first bar; after
that the application can perform other tasks such as interacting with the user.

How Chunky?
While we were preparing for the release of Leopard, I was tasked, among other
things, with looking at program launch performance. For launch, we distinguish
between a warm launch where the data required is already mostly present in the buffer
cache and the less common cold launch requiring all code, resources, and data to be
read from disk, which usually only happens after system boot.

On a then high-end PowerMac G5 with a fast 35-MB/s hard disk and plenty of
RAM, Pages.app took less than 1 s (less than one dock bounce) on a warm start, but
over 6 s during a cold start. Profiling the I/O operations revealed that around 10 MB
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Figure 12.4 Nonsequential mapped I/O performance by stride, madvise(SEQ)

of data were being read, and the fact that a warm launch was so much quicker
strongly suggested that I/O was to blame.

At the same time, I was experimenting with the Squeak Smalltalk system, and
when I measured its cold launch performance for kicks, I was surprised by the result:
Despite the fact that it was reading an image file of well over 10 MB, it cold-launched
in less than a second!

The reason for the discrepancy, with Pages taking almost an order of magnitude
more time to read the same amount of data, was that the Squeak Smalltalk image is a
single file that is read into memory all at once, whereas the Pages resources required
at launch (nib files, images, string tables, libraries, etc.) were scattered across a large
number of small files.

Figure 12.5 shows this effect on modern hardware, the SSD-equipped MacBook
Pro with Retina Display that many of these tests were run on. All of the timings are
for reading 1 GB of data, but distributed in chunks of 100 MB down to 10 KB each,
with the number of individual files rising correspondingly from 10 to 100,000.

Despite the fast-seeking SSD, the difference is striking. Reading the same amount
of data takes about 10 times longer with the smallest file size and the largest number
of files. Figure 12.6 shows why we didn’t go to the next step, 1 million files of 1K
each. File-writing times increase even more dramatically, and writing 100K small files
is almost 50 times slower than the same amount of data distributed over 10 large files.
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Unixy I/O
Of course, we don’t have to use NSData to read bytes; we can also use the
lower-level Unix functions such as read() and mmap(). From a performance point
of view, this makes no difference, at least if they are used the same way: if I
malloc() a buffer the size of the file and then read() the file, it takes the same
amount of time as using NSData without any options, and if I mmap() the file it
takes the same amount of time as NSData with the mapping options.

What does make a difference, however, is using the streaming I/O style we showed
earlier, where instead of reading or mapping the whole file into memory at once, you
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continuously read parts of the file into a small fixed buffer. Example 12.1 shows this
technique using a buffer size of 64 KB.

Example 12.1 Unix file reading with fixed buffer size

#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>

int main( int argc, char *argv[] ) {
char *filename=argv[1];
size_t size=64 *1024;
char *buffer=malloc(size);
int fd=open( filename, O_RDONLY );
while ( size ) {

size=read(fd,buffer,size);
}
close(fd);

}

For the 300-MB sample file we used earlier, this approach proves to be the
quickest of all, taking only 65 ms to read the entire file when file-cache resident and
880 ms when it needs to be read from disk. For the cached case, this is actually faster
than memory mapping, which in turn was faster than instructing NSData to use
read(), seemingly contradicting my earlier claim that using Unix system calls didn’t
make a difference compared to NSData.

The small but crucial difference that explains and removes the apparent
contradiction is the time it takes to allocate memory. Allocating and populating a
300-MB buffer, whether using NSData or malloc(), actually trumps the cost of
bcopy()ing the memory into those buffers. One thing that does not make much of
a difference, on the other hand, is the actual buffer size used in the read() system
call, unless you go down so small that the system call overhead starts to byte: the OS
recognizes a sequential read() access pattern and start reading large clusters (512K
per chunk on my system) into memory in single I/O operations, regardless of the
actual size requested in the read() call. The part not requested by the process simply
goes into the buffer cache. I also couldn’t detect a significant difference when using
the buffered stdio library calls, so use whichever is more practical in your application.

So why not use streaming Unix I/O all the time? For one, it is of no use if you
actually need to keep whole file contents in memory. In that case, your data will be in
memory twice—once in the buffer cache and once in dirty application memory that
will be swapped out if memory gets tight—rather than simply unmapped in case of
mapped memory. Alternately, you can implement your own buffering scheme,
moving subsets of the full data into and out of memory programmatically. However,
this means having separate code paths for data that fits into memory and data that
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does not, as well as having to manage the data movement without much if any
feedback from the OS regarding total memory pressure and eviction preferences.
Finally, you won’t be able to take advantage of buffered memory as quickly; data that
remains mapped is simply a normal memory access away, whereas you need to at least
issue a read() system call and copy data into your address space when managing
your own buffers.

A better use-case is when you are parsing external data into a different internal
format, but even that is not without problems. Unless you have fixed-size data
elements and take those into account when reading, there will be elements of interest
straddling buffer boundaries, as shown in Figure 12.7.

Handling this case usually requires buffer stitching. First, remember the start of
incomplete elements as you are parsing, then recognize that an element was an
incomplete element while parsing buffer 1. You then need to copy the remainder of
buffer 1 containing the incomplete element into a new buffer and finally append the
newly read contents (buffer 2) to that rump and restart the parse. Repeat at each buffer
boundary. Not just is this logic complicated, it requires additional copies, which also
impact performance. If the data is truly use-once, the additional logic can be worth
it, however, and it may even be worth disabling caching. Of course, you may not
have a choice in the matter, for example, if you’re parsing data produced
incrementally by another program or from the network.

Network I/O
A couple of years ago, I was contacted by a newspaper that was having problems with
the performance of their iOS reader. They had read about my XML parser, and since
their reader was based on RSS and HTML, they thought I might be able to help
them. A first look at the app confirmed that it was unusably slow. After launch or
after a refresh it would just hang there for several minutes and then finally display
some information.

..text<tag attribute="v alue">more textcontent...

I/O buffer 1 I/O buffer 2

<tag attribute="value"> more textcontent...

processing buffer

Figure 12.7 Buffer stitching when element of interest straddles buffers
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Of course, XML had nothing to do with it, but I was able to help them in the
end. Their app was designed for offline reading, so during an update it was loading
their entire feed, starting with the master list of categories, RSS feeds for each
category, and finally thumbnail images, article text, and images for each article. The
algorithm used was a depth-first traversal of the feeds, and looked as follows:

1. Fetch and parse the overall feed directory using NSXMLParser’s
-initWithContentsOfURL:.

2. For each feed encountered:
a. Fetch and parse the RSS for that particular feed using NSXMLParser’s

-initWithContentsOfURL:.

b. As you are parsing, for each news story in the RSS feed:
- Fetch the thumbnail associated to show next to each feed entry

synchronously, this time using NSData’s
-initWithContentsOfURL:.

- Fetch the story’s HTML content synchronously the same way.
- Fetch all the images for the story’s HTML content synchronously the

same way.

If you squint, you can recognize this as a variant of the problem of applying the
call-return architectural style inappropriately, though this time the symptom is not
explosive memory consumption. By treating network access using
-initWithContentsOfURL: like any other synchronous message send, therefore
waiting for a result before proceeding, we were limiting performance to the latency of
the network, rather than its potential sequential throughput, at least for the small- and
medium-sized files we were requesting.

When using synchronous request/response, throughput is bounded by the
response time, so for example with a network round-trip time of 45 ms and a request
size of 1,400 bytes, we can achieve a maximum transfer speed of 1,400/45 bytes/ms,
or around 31 KB/s, irrespective of the bandwidth of the network. The reason TCP
can achieve much higher transfer speeds with roughly those network characteristics is
that although it presents a synchronous API to its clients, it actually works somewhat
asynchronously, allowing multiple requests to be in flight at the same time.

Overlapping Transfers
Allowing multiple requests to be in flight at the same time is exactly the same strategy
we needed to employ, except in this case at the HTTP-request level. Fortunately, the
NSURL loading system makes it possible to load HTTP requests asynchronously using
the NSURLSession and NSURLSessionTask classes. Figure 12.8 shows the effects
of having multiple requests in flight on download performance, and they are quite
dramatic: up to about four simultaneous requests, throughput increases almost
linearly, with the initial time of 41.6 s dropping four-fold to 11.4 s. After four
simultaneous requests, the curve starts to flatten and after about six requests there is



234 Chapter 12 I/O: Pitfalls and Techniques

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8

41.5 43 41.3 44.5 44.6 44.3
51.3

57.6

41.6

21.6
13.9 11.4 9.1 7.6 7.6 7.4

tim
e 

(s
)

concurrent requests

throughput
cumulative latency

Figure 12.8 Time to complete 100 HTTP requests over WAN with varying concurrency levels

no further improvement in throughput on that particular connection with the request
size used in the test.

In fact, we see that after six simultaneous requests, the cumulative latency starts to
slowly increase, whereas it held steady before. The cumulative latency is the sum of
the times of all the individual requests, so that means that individual requests are
starting to take longer, even if the total time is still decreasing slightly. This is a sign
that the network between the client and server has filled to capacity and is now
congested, with the individual requests now competing for bandwidth.

Figure 12.9 demonstrates how piling more simultaneous transfers on a saturated
channel does nothing to increase throughput; in the best case it only serves to
lengthen the individual request times. An application tends to be more responsive
when 10% of its requests have completed than when all of its requests are at 10%
complete.

In addition, bombarding a server with many simultaneous transfers ties up
per-request resources on the server, potentially causing resource starvation, dropped
requests, or even resource exhaustion and crashes on the server. On a slow network,
you can also run into connection timeouts.

Throttling Requests
So you actually don’t want unconstrained asynchronous network operations because
you really do not want to overwhelm the channel.

TCP itself provides automated congestion control for single channels by
monitoring dropped packets, but HTTP doesn’t have such a facility; you have to
manage congestion caused by multiple simultaneous HTTP requests yourself. The
HTTP/1.1 specification does require limiting the number of simultaneous persistent
connections to two per client, but that does not directly correlate with the number of
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Figure 12.9 Time to complete 10,000 HTTP requests locally with varying concurrency levels

simultaneous requests and is only a requirement imposed on clients, not something
enforceable by the protocol.

The main way to accomplish this is to limit the number of simultaneous requests.
You don’t have to get that number perfectly right; TCP’s congestion control will
ensure that the data is delivered, and the performance effects only become significant
when the channel capacity is exceeded significantly. HTTP/2 manages its transfers
via a single persistent and multiplexed connection, possibly benefitting much more
from the underlying TCP protocol.

Although this aspect is not documented, both my testing and the complaints from
the server team(s) indicate that now deprecated NSURLConnection class does not
limit the number of connections. In fact, just creating a NSURLConnection
instance will start the transfer. In order to work around this limitation, I had to create
a small bit of infrastructure that would queue incoming download requests and only
start a few of them at a time.

The NSURLSession URL-loading system introduced in iOS 7 and Mac OS X
10.9 fortunately makes much of this infrastructure unnecessary. For example,
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NSURLSessionTask instances controlling a particular download start off
suspended; you have to explicitly -resume them to start the download.
Furthermore, the NSURLSessionConfiguration class that configures a NSURL
Session and all its NSURLSessionTasks comes with the HTTPMaximum
ConnectionsPerHost property that at least allows limiting the number of
connections going to a specific host, at the very least avoiding overloading a particular
host with simultaneous connections.

The default value for HTTPMaximumConnectionsPerHost varies to be
appropriate for the current environment. For example, it is 6 on my MacBook Pro
and 4 on my iPhone, but on the iPhone it does not seem to vary with the active
network type. These values are good generic defaults for average requests that closely
match the data seen in Figure 12.8, but you may have to tweak them yourself—for
example, limiting large downloads to a smaller number—as these can saturate the
network all by themselves. The HTTPShouldUsePipelining flag is turned off by
default; if your server supports pipelining, then turning on this flag can significantly
increase throughput.

Data Handling
In addition to not utilizing network bandwidth, another problem with the
initWithContentsOfURL: approach is data handling and memory consumption.
Each individual file is loaded into memory completely before processing begins,
which can be a problem if the amount of data is large.

There are two basic ways of dealing with this problem. The first is to process data
immediately and incrementally as it arrives. This approach works well if the amount
of incoming data per file is large, can be processed incrementally, and will be reduced
substantially in processing. It does mean that the processing logic has to be able to
process data in small chunks, probably dealing with buffer stitching (see above) and
partial results, and also be able to report those partial results to the UI.

For this particular feed-handling application we chose the second approach, which
is to download the files to disk instead of to memory and then map those disk files
into memory. This gives us the advantages of memory mapping and the simplicity of
dealing with complete files. It was feasible because the individual feed files were
relatively small; we just had a lot of them.

By downloading to disk, we also more or less automatically had our own URL
cache. Unlike the system-wide URL cache, we could control the lifetime of objects
in our cache and therefore also use it for offline reading and quick start-up, starting
the application from the cache and updating the data incrementally from the server if
available.

The final problem with the news application was that not only was all this network
activity synchronous, and therefore slow, it was also being done on the main thread,
and therefore it blocked the application until complete. Although the
NSURLConnection (and NSURLSession) system runs asynchronously on an
NSRunLoop, and could therefore in theory have been managed from the main thread
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without blocking on-network operations, there was still enough other work being
done (checking caches, writing data to disk, loading the downloaded data from disk
and processing it, initiating transfers, etc.) that it was beneficial to have a separate
thread with its own NSRunLoop manage all of the I/O, reporting to the main thread
only when data had been processed and the UI was ready to be updated.

The final feed update algorithm looked as follows:

1. Fetch the overall feed directory either from the caches or from the Web.
2. For each feed in the directory:

a. Fetch the RSS feed, either cached or from the Web.

b. Parse thumbnail, article content, and image URLs from the feed.

c. Submit all of the thumbnail URLs for fetching.

d. Submit all of the article content (HTML) URLs for fetching.

e. Submit all of the article image URLs for fetching.

Notice that the first two levels of fetching are actually synchronous. This not only
keeps the code compact and easy to follow, more importantly it also minimizes the
time until the first news feed can be displayed. So until the first feed is available, we
minimize latency; only after the first feed is downloaded (and can be displayed to the
user) do we start submitting multiple simultaneous requests and optimize for overall
bandwidth rather than individual latency. We also submit the requests in the order
that they will most likely be needed.

With these changes in place, the application went from being unusably slow to
being highly responsive, with instant start-up and feeds and stories popping up almost
immediately after an empty start or a refresh.

In experiments running over the loopback interface, the Cocoa network stack
used here was capable of managing 1,000 requests per second for small requests and
an over 300 MB/s transfer speed for large requests, both vastly exceeding typical
client needs or (wide-area) network capabilities. So although higher-performance
models for network I/O exist, the basic Cocoa networking stack is more than
sufficient for client networking needs.

Asynchronous I/O
As a matter of fact, I want to briefly digress on a bit of over-engineering in the name
of alleged performance improvements, particularly the use of asynchronous I/O
primitives and techniques built on top of them.

Most of the Unix system calls have asynchronous variants that do not block their
calling thread until the I/O is done, but rather use different mechanisms for signaling
completion. In theory, this is a good idea because having a larger number of potential
I/O operations to schedule together gives the OS greater opportunities to optimize
the actual I/O.

In practice, the asynchronous POSIX functions are actually not that useful: For
example, “synchronous” file writes are already asynchronous by default, going to
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memory first and only being flushed later by the OS, “synchronous” file reads use
lots of read-ahead to have a similar effect. In fact, the creator of the reference
BitTorrent implementation libtorrent documented in a blog post1 how his
experiments with asynchronous APIs led him to adopt a strategy similar to the one in
the previous section with a single I/O service thread, though this time for disk I/O.

This is a variant of the basic evented network architecture that has also been
adopted by high-performance Web servers in response the C10K problem2 presented
in 1999 by Dan Kegel. It posited that hardware at that time had become capable of
handling 10,000 simultaneous Web clients, but limitations of the software stack were
preventing high-concurrency Web servers from functioning.

Of the options presented, using one thread per connection and normal-blocking
(synchronous) I/O is presented as problematic because some OSes “have trouble
handling more than a few hundred threads.” It should be obvious that this does not
present a problem when you are dealing with typically six or maybe up to a dozen
network connections rather than tens of thousands. For a typical networking client
communicating with servers over the public Internet, synchronous I/O is more than
adequate from a performance point of view; there is no need to use asynchronous
APIs for performance reasons.

This advice also applies Apple’s Grand Central Dispatch (dispatch_io) and
higher-level libraries built on top (NSStream comes to mind). If you find that these
APIs make your code easier than a simple read() or write() loop, by all means go
ahead. Just don’t expect to reap any measurable performance gains, unless you were
performing that I/O on the main thread. This doesn’t mean that, for example, GCD
isn’t a good implementation of those concepts, it’s just that the effects that GCD-like
architectures address don’t appear until you reach concurrency levels that are several
orders of magnitude higher than a typical client, and are absolutely dwarfed by other
effects as we will see in the next section.

HTTP Serving
Like many Mac developers with a NeXT background, I miss the old Objective-C
WebObjects framework. Being able to share code between a front end and back end
is an enticing feature, so much so that developers have started using JavaScript on the
server, for example, in the form of node.js. Objective-C is a good combination of
high performance for scalable Web services and good expressiveness for rapid
development. In principle, it should be able to save start-ups from initially
implementing their services using Ruby on Rails and then having to move them to
Java or Go when the services start failing under load.

Unfortunately, I never had an excuse to look at this problem in earnest until I had
to embed a small HTTP server into a Cocoa desktop program, to vend Atom feeds

1. http://blog.libtorrent.org/2012/10/asynchronous-disk-io/
2. http://www.kegel.com/c10k.html

http://blog.libtorrent.org/2012/10/asynchronous-disk-io/
http://www.kegel.com/c10k.html
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and calendar information in a peer-to-peer setting. I initially tried Cocoa HTTP, but
I found it surprisingly difficult to modify to serve dynamic content, so I quickly
switched to GNU libmicrohttpd. Looking at this in a server context shows how
networking code looks when actually pushed hard, which we saw doesn’t really
happen in most client code.

Even after I wrapped libmicrohttpd somewhat inexpertly with an Objective-C
class that maps different HTTP verbs to messages, I found performance to be
remarkably good. Figure 12.10 shows request handling performance for small requests
compared both to Cocoa embeddable libraries such as the GCD-based
CocoaHTTPServer and the OCFWebServer that serves as the basis of a Cocoa-based
Web-hosting service, but also the Sinatra Ruby micro-framework, the champion of
high-performance non-blocking JavaScript serving node.js. The static servers Apache
and nginx are included for reference only; they were serving files while the other
servers were all serving from memory.

All the results were gathered using the wrk stress-testing tool via the loopback
interface using a command such as wrk -r 10000 -c 100 http://
localhost:8081/. The loopback interface was used in order to test the server
code rather than the network hardware, with the obvious drawback that the load
generator and the server are running on the same host. This actually caused problems
when it turned out that both apache bench (ab) and httperf were not fast enough to keep
up with the faster servers under test, but wrk solved that particular issue.

What’s striking about Figure 12.10 is that even after wrapping, libmicrohttpd
manages about 4 to 6 times the throughput of other Cocoa-based embedded
Web-servers, despite using old-fashioned techniques such as select()-based
polling with a thread pool or even spawning a thread per connection and using
blocking I/O, rather than modern techniques such as GCD-based I/O.

The reason for this is that, just as I wrote above when discussing asynchronous
I/O, differences in thread-scheduling or work-crew management, though they do
matter, clearly matter far less than other factors. Looking at an Instruments inverted
call tree for both CocoaHTTPServer (Figure 12.11) and libmicrohttpd (Figure 12.12)
shows this en-détail.
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Figure 12.11 Trace for Cocoa HTTPServer. Functions doing useful network I/O work are circled in
green (the two bottom circles). Overhead is circled in yellow (the top-most circle).

In both traces, the functions doing useful network I/O work are circled in green
(the two bottom circles). These are the top functions in the libmicrohttpd trace
(Figure 12.12), but occur much further down in the CocoaHTTPServer
(Figure 12.11), which is dominated by overhead, circled in yellow (the top-most
circle). For example, messaging overhead is several times higher relative to useful
work, as is memory allocation. The special GCD features that are supposed to
guarantee efficiency also contribute, with the kevent() function that is supposed to
be a more scalable replacement for select() actually taking around 16 times longer
relative to the network I/O being performed.

Of course, Sinatra performance is almost comically bad, clocking in at 10% of the
embedded Cocoa servers and less than 2% of libmicrohttpd. node.js, being based on
libev, is actually quite efficient for the simple static data serving task but utilizes only
one core on this two-core system. The libmicrohttpd architecture allows it to take
advantage of multiple cores and also handle a thread blocking, for example, because
of a virtual memory fault requiring some memory to be swapped in from disk.

For completeness, Figure 12.13 shows the throughput of these same Web servers,
again using the loopback interface. As throughput is dominated by the kernel’s
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Figure 12.12 Trace for libmicrohttpd. Functions doing useful network I/O work are circled in
green (the two top circles). Overhead is circled in yellow (the bottom-most circle).
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networking code and system call interface, the variance between different servers is
much less. All of these servers would be able to saturate a 1 Gbit/s network interface,
and all except OCFWebServer3 would also saturate a 10-Gbit/s link.4

A small data point to note is that in throughput, libmicrohttpd connection-
per-thread model with blocking I/O is actually slightly faster than the model that
multiplexes a few threads using non-blocking I/O and select(), presumably
because the overhead of using select() to figure out which connections are ready
is removed.

Although I don’t expect Objective-C to take over the Web-serving world by
storm in the immediate future, it is good to know that, given good libraries, it is up
to the job. Pushing performance in a server setting also reveals that the basic
optimization guidelines we discussed in earlier chapters have a dramatically higher
impact on performance than complex technologies for performing asynchronous and
non-blocking I/O.

I also tested a number of Swift HTTP server frameworks. The one that gave the
most convincing showing was Dynamo,5 clocking in at a respectable 8,000 to 9,000
requests per second. That is faster than Sinatra, CocoaHTTPServer, or
OCFWebServer, but slower than the big guns node, apache, and nginx, and 3 to 4
times slower than wrapped libmicrohttp. Swifter6 was around 10 times slower than
Dynamo and tended to crash. I couldn’t get Taylor, Perfect, Kitura, or vapor to
compile, as they were all relying on intermediate Swift 3.0 development builds rather
than the official betas.

Serialization
Although NSData and raw Unix I/O are good for moving bytes between memory
and devices, Objective-C applications will typically want to load and save documents
or other structured data that is represented in memory as Objective-C objects. In
principle, there are two options for accomplishing this: You can simply dump and load
the internal memory representation, or you can serialize the internal representation
into an extern format. You can either serialize the data yourself, or you can use one
of the mechanisms built into Cocoa: property list serialization or object archiving.7

In order to compare these approaches, we will look at saving and loading objects
of the very simple SampleObject class shown in Example 12.2.

3. OCFWebServer by default used NSString as response data, dropping throughput to 426 MB/s. The test
was performed with an NSData object instead.
4. Sinatra required very large request sizes not to be limited by the low request throughput. For example, a
1-MB request would have limited Sinatra to 500-MB/s throughput.
5. https://github.com/johnno1962/Dynamo
6. https://github.com/httpswift/swifter
7. The Apple documentation incorrectly uses the term serialization only for types of serialization that do
not preserve object identities and relationships. We will use the more widely accepted definition in which
archiving is a special case to serialization, not an alternative to it.

https://github.com/johnno1962/Dynamo
https://github.com/httpswift/swifter
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Example 12.2 Sample object for archiving comparisons

@interface SampleObject : NSObject
{

int retainCount;
int a;
float b;
NSString *name;
NSArray *children;

}

Because this is a book on performance, we will be looking at roughly 1 million
objects taking around 60 MB of memory when resident. The SampleObject
instances are arranged in the tree shown schematically in Figure 12.14.

The tree has a depth of three, with the top-level object pointing to 1,000
second-level objects, which in turn point to 1,000 leaf objects each. Each object has
instance variables of the primitive float and int types; interior nodes also have an
NSArray containing their children whereas leaf nodes have an NSString.

a=1
b=3.14

a=2
b=2.71

a=3
b=1.41

a=1001
b=0.91

a=1002
b=3.14

a=1003
b=3.14

a=2001
b=3.14

"Hello"

"Hello"

"Hello"

...

...

a=...
b=3.14

a=...
b=3.14

...

...

"Hello"

"Hello"

Figure 12.14 Tree of SampleObject instances used for testing
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Memory Dumps
The conceptually simplest and potentially fastest technique for saving state is to do a
memory dump. Just take the base address of the data you save and either write() it
out or wrap it in an NSData for writing with one of the writeTo... methods,
making sure to use the non-copying initializer (initWithBytesNoCopy:...).

This technique used to be quite popular. The early Microsoft Office formats such
as .doc and .xls were effectively dumps of the (fairly complicated) internal data
structures. This was great for performance, but is somewhat less than stellar for
interoperability, as you would need to either have or reverse-engineer Microsoft
Office’s internal data structures in order to read and write the file format. This
becomes tricky as internal data representation changes, for example, due to different
structure padding, endianness, and the move from 16 to 32 to 64 bits.

The Squeak system I mentioned earlier solves most of these issues. It uses an image
file as primary storage, which is simply a memory dump of the internal object store.
Memory is kept contiguous by the copying garbage collector, the address of a saved
image is stored, and on load it tries to use the same address or it adjusts all pointers in
the image if it cannot allocate memory at the same address. Endianness is also
reversed if necessary.

The results are quite good. The default Squeak image has around 1.2 million
objects, it only takes 200 ms to save those to a 23-MB image file, and adding our
1 million SampleObject instances increases the space to 46 MB and the time to
only 500 ms.

However, the one problem they haven’t solved is interoperability. Only other
Squeak systems can interpret image files, and an image has to save as a whole, so I can
only save my SampleObject instances by saving the entire image containing those
objects.

A Simple XML Format
One of the things we can do is create our own format, and following in the steps of
the new Office (MS and Open) and iWork file formats, let’s make it XML. A trivial
example of the format can be seen in Example 12.3: the object gets translated to an S
element, with the a and b instance variables translated to attributes and the c
attribute translated to element content.

Example 12.3 Sample raw XML

<S a="100" b="100.12">
<S a="0" b="0">

<S a="0" b="0">hello world</S>
<S a="0" b="1">hello world</S>
<S a="0" b="2">hello world</S>
<S a="0" b="3">hello world</S>

...
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We will use the fast XML parser from Chapter 4 to read the file and a simple
XML writer based on the FilterStreams concept from Chapter 8 to write, shown in
Example 12.4.

Example 12.4 Raw XML encoding

-(void)generateXMLOn:(MPWXmlGeneratorStream*)stream
{

[stream writeElementName:"S"
attributeBlock:^(MPWXmlGeneratorStream *s) {
[s writeCStrAttribute:"a" intValue:a];
[s writeCStrAttribute:"b" doubleValue:b];
[s writeCStrAttribute:"name" value:name];

} contentBlock:^(MPWXmlGeneratorStream *s) {
for ( SampleObject *o in children ) {
[o generateXMLOn:s];

}
}];

}

The serialization code uses the MPWXmlGeneratorStream’s block-based
method writeElementName:attributeBlock:contentBlock: to actually
generate the XML representation. The methods writeCStrAttribute:
intValue: and writeCStrAttribute:doubleValue: make it possible to
write the primitive attributes without requiring object conversion of either the key or
the value, and the block for the content of the element manages the recursive
structure, again without requiring translation to an intermediate object form. The
whole method is very similar to using printf() calls to generate the XML, but
with the generator stream ensuring correct XML syntax.

The parsing code shown in Example 12.5 uses a block to handle the S element.
The a and b attributes are obtained from the attributes using objectFor
UniqueKey:, and the children are presumed to already be decoded.

Example 12.5 Raw XML parsing

+(instancetype)parseFromXML:(NSData*)xmlData
{

MPWMAXParser *parser= [MPWMAXParser parser];
[parser setHandler:self forElements:[NSArray arrayWithObject:@"S"]

inNamespace:nil prefix:@"" map:nil];
[parser handleElement:@"S"

withBlock:^(id elements,id attrs, id parser) {
id children;
if ( [elements count] == 1 ) {
children=[elements lastObject];

} else {
children=[elements allObjects];
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}
return [[self alloc]

initWithA:[[attrs objectForUniqueKey:@"a"] intValue]
b:[[attrs objectForUniqueKey:@"b"] floatValue]
c:children];

}];
}
return [parser parsedData:xmlData];

}

Both saving and loading the 1 million SampleObject instance object graph takes
slightly less than a second on my MacBook Pro, 0.4 s for generating and 0.7 s for
parsing the XML representation. This takes 50 MB on disk, which is around twice
the size of the Squeak memory dump and takes not quite twice as long, but with a
file format that is human readable and accessible to other programs and tools.

The performance of our XML serialization routines translates to a little over
100 MB/s for writing and a little less for reading, so near the sequential write
performance of modern hard disks and around one fourth of a reasonably fast SSD.
Can we do better?

Since we need to convert number to ASCII and XML is a somewhat verbose
format, a compact binary representation might be advantageous.

Property Lists
Both OS X and iOS have deep system-level support for property lists, which have
both an XML and a binary storage format. Property lists have been around for a long
time—they come from NeXTStep—and are pervasive, being used not just in
everything from the user defaults database to Xcode project files and bundle Info.plist
files, but also in third-party file formats such as Omni Graffle and Aquaminds
NoteShare. It stands to reason that there has been plenty of time and motivation for
Apple to optimize them.

Property lists consist of trees containing instances of the classes NSArray,
NSDictionary, NSString, NSData, NSDate, and NSNumber, with the latter
split into real numbers, integers, and Boolean values.

Converting between a serialized and an object representation of a property list is a
one-step process using the aptly named NSPropertyListSerialization class’s
class methods: [NSPropertyListSerialization dataWithProperty
List:plist format:NSPropertyListXMLFormat_v1_0 options:0
error:nil] gets you a serialized representation of a property list in XML format,
changing the format: parameter allows you to create an optimized binary
representation instead. Mac OS X 10.7 Lion and iOS 5 added support for JavaScript
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Object Notation (JSON 8), which shares almost exactly the same object model and
even very closely matches the original NeXTStep property list syntax.

However, our object graph does not contain objects of the requisite classes, it
contains SampleObject instances. So, we first need to convert our tree into that
format. Example 12.6 shows how this conversion might look, turning an instance of
the SampleObject class into an NSDictionary, the float and int parameters
into NSNumber instances. We also define asPlist to return itself for NSString,
because NSString is already a property list, and NSArray converts its contents to
dictionaries.

Running this code yields surprising results. The highly optimized binary property
list format is not faster than our simple ASCII-based XML scheme, but at 6.6 s to
serialize and 2.79 s to deserialize, it is significantly slower for a file that at 61 MB is
around 20% larger than our XML representation. To be precise, saving is more than
ten times slower and reading is three times slower.

How come? The problem does not seem to be a bug in Foundation or in the
binary property list format, as CoreFoundation’s CFPropertyListCreateData()
function takes exactly the same amount of time and changing the format to XML
almost doubles the serialization and deserialization times over the binary format.

Thinking back to the “Architectural Considerations” section of Chapter 7 suggests
that requiring the entire intermediate representation to be present in memory might
be a problem, and checking with Instruments shows that, indeed, memory overhead
for creating the binary plist is over 300 MB, more than 7 times the size of the on-disk
representation and still 5 times the size of our object graph in memory. (The XML
generator has negligible memory overhead.) The reason this is so big is, of course,
that the intermediate representation we have to provide is made up of
NSDictionary, NSNumber, and friends, which we already saw are highly
inefficient ways to store data.

Example 12.7 shows the verbosity of the XML property list representation: Instead
of our specific S tag, we have generic tags such as key, string, and integer.
Indeed, the entire XML tag vocabulary is used for meta-modeling, with our actual
model relegated to content inside the various tags along with the actual data. In
memory, the instance variable a is represented by 4 bytes of memory containing a
binary representation of the value, with metadata about the value such as its name and
type stored separately and shared by all instances of the class. In the raw XML
representation, the same integer was represented as the string a="100", in the plist
representation, the representation expands to <key>a</key><integer>100
</integer>. Despite this massive expansion, the plist representation actually
contains less information; the dict element is generic without any indication that
this particular dict is linked to the SampleObject class.

8. http://www.json.org/

http://www.json.org/
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Example 12.6 Convert SampleObject to and from property list

-processCArrayFromPlist:someC {
if ( [someC isKindOfClass:[NSArray class]] ) {

NSMutableArray *r=[NSMutableArray arrayWithCapacity:[someC count]];
for ( NSDictionary *d in someC ){
[r addObject:[[[[self class] alloc] initWithPlist:d] autorelease]];

}
someC=r;

}
return someC;

}

-(instancetype)initWithPlist:(NSDictionary*)aPlist
{

return [self initWithA:[[aPlist objectForKey:@"a"] intValue]
b:[[aPlist objectForKey:@"b"] floatValue]
c:[self processCArrayFromPlist:[aPlist objectForKey:@"c"]]];

}

-(NSDictionary*)asPlist
{

NSMutableDictionary *dict=[NSMutableDictionary dictionary];
[dict setObject:@(a) forKey:@"a"];
[dict setObject:@(b) forKey:@"b"];
[dict setObject:[c asPlist] forKey:@"c"];
return dict;

}
@implementation NSString(asPlist)

-(NSDictionary*)asPlist { return self; }

@end

@implementation NSArray(asPlist)

-(NSDictionary*)asPlist {
NSMutableArray *plist=[NSMutableArray array];
for (id a in self ) {

[plist addObject:[a asPlist]];
}
return plist;

}
@end
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Example 12.7 Sample XML property list (incomplete)

<plist version="1.0">
<dict>

<key>a</key>
<integer>100</integer>
<key>b</key>
<real>100.12000274658203</real>
<key>c</key>
<array>

...
<dict>

<key>a</key>
<integer>0</integer>
<key>b</key>
<real>0.0</real>
<key>c</key>
<string>hello world</string>

</dict>
...

So it seems we should be able to do better with a serialization method whose API
does not require us to provide a complete intermediate representation, and especially
not one composed largely of NSDictionary instances. In fact, Apple’s Property List
Programming Guide advises us that if “you need a way to store large, complex graphs of
objects, . . . , use archiving.”

Archiving
Whereas property lists are restricted to trees of the special property list classes,
archiving can serialize arbitrary object graphs and data within those graphs. The
NSCoding protocol is also incremental in the way we saw in Chapter 7; you get to
archive one object and one attribute at a time. Although any class can implement the
NSCoding protocol, Apple has only two: the older NSArchiver using binary typed
streams inherited from NeXTStep and the NSKeyedArchiver that is
recommended by Apple for Cocoa since its introduction in Mac OS X 10.2 and is
the only Apple-provided archiver available on iOS.

Example 12.8 shows the methods for archiving and unarchiving our sample
objects. It uses simple macros that expand to the code shown in comments but avoid
having to duplicate the variable names and keys. As you can see, the code is
somewhat simpler than above, and the methods produce their results incrementally.
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Example 12.8 Archiving and unarchiving an object

-(void)encodeWithCoder:(NSCoder*)aCoder
{

encodeVar( aCoder, a ); // [aCoder writeInt:a forKey:@"a"];
encodeVar( aCoder, b );
encodeVar( aCoder, c );

}

- (id)initWithCoder:(NSCoder *)aCoder {
if (self = [super init]) {
decodeVar( aCoder, a ); // a=[aCoder decodeIntForKey:@"a"];
decodeVar( aCoder, b );
decodeVar( aCoder, c );

}
return self;

}

An actual archive is created either in memory using the archivedDataWith
RootObject: method returning an NSData or directly on disk/to a file using
archiveRootObject:toFile:, each taking the root of our SampleObject
tree as its primary argument. However, runtimes were disappointing: 9.1 s to save and
2.6 s to load, so even slower to serialize than property lists (by a factor of 2), and no
faster reading. Memory use is dramatically worse: 819-MB overhead for an archive
that takes 77 MB on disk.

Why does keyed archiving perform so badly? One potential theory is the fact that
archiving does something that serialization does not: It maintains object relationships,
and therefore has to do a little more work in maintaining those relationships.
However, Apple’s “old-style” archiver also does this work and is much faster: 2.12 s
to archive and 0.81 s to unarchive. Also, as we will see in the next chapter, the binary
property list format actually also has facilities for uniquing. So maintaining
relationships is not the problem.

Apple’s primary recommendation for improving keyed archiving performance is to
leave out keys that only contain default data, but even leaving out all the data from
our object graph except for the structural parts (so no integers, doubles, or string)
improves serialization and deserialization speeds only marginally to 6.0 s and 2.06 s,
respectively.

A little investigation shows that the reason for keyed archiving’s poor performance
is that it does not actually stream results, despite the nice streaming API. Instead, it
builds a property list behind the scenes, and as Example 12.9 shows, this property list
contains several additional levels of indirection and is even larger than the direct
property list we created in the previous section.
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Example 12.9 Keyed archive property list (incomplete, converted to XML)

<dict>
<key>$archiver</key>
<string>NSKeyedArchiver</string>
<key>$objects</key>
<array>

<string>$null</string>
<dict>

<key>$0</key>
<integer>100</integer>
<key>$1</key>
<real>100.12000274658203</real>
<key>$2</key>
<dict>

<key>CF$UID</key>
<integer>2</integer>

</dict>
<key>$class</key>
<dict>

<key>CF$UID</key>
<integer>7</integer>

</dict>
</dict>
<dict>

<key>$class</key>
<dict>

<key>CF$UID</key>
<integer>1007</integer>

</dict>
<key>NS.objects</key>
<array>

<dict>
<key>CF$UID</key>
<integer>3</integer>

</dict>
<dict>

<key>CF$UID</key>
<integer>1008</integer>

</dict>
<dict>

<key>CF$UID</key>
...
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It is not entirely clear why Apple chose such an inefficient format, where every
object is represented not just by one but by multiple dictionaries, and these
dictionaries are actually manifested in one gigantic object tree before that tree is
finally serialized.

Serialization Summary
Figure 12.15 summarizes how the different serialization mechanisms performed: of
the Apple-provided mechanisms, the old-style archiver did the best, closely followed
by all the property list–based mechanisms, with the new JSON (de-)serializer leading
the pack, trailed by the keyed archiver. However, all except the old-style archiver
were beaten handily by our little XML serializer, and none of them came close to
matching the hardware.

Figure 12.16 shows the sizes of the serialized representations, along with the peak
memory usage during serialization. The difference in memory consumption between
the different serialization methods is even more pronounced than just the timings,
whereas the on-disk size differs by around a factor of 2 at most.

When dealing with large data sets, especially large numbers of objects, Apple
currently does not have an adequate serialization mechanism, and the mechanism that
Apple recommends most for large data sets is actually the one that is least suitable both
in terms of time and memory used. The discrepancy is less bad for deserialization
than it is for serialization, with the argument being that files are read a lot more than
they are written. With auto-save and versions, this may no longer be the case.

It should be noted that Apple themselves do not use any of these standard
mechanisms for their Apple Productivity Apps Pages, Numbers, and Keynote
(formerly known as iWork). Previous versions used an XML format via libxml2,
but since iWork ’13 the format was switched to Google protocol buffers via a private
framework.
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Figure 12.16 Disk and memory space required for serializing 1M objects

CoreData
For high performance with large data sets, Apple recommends CoreData, as a “highly
optimized” solution that has the “best memory scalability of any competing
solution.” According to the documentation, “you could spend a long time carefully
crafting your own solution optimized for a particular problem domain, and not gain
any performance advantage over what Core Data offers for free.”

In light of these hopeful remarks, let’s apply CoreData to our sample task: create
and save our tree of roughly 1 million SampleObject instances and find ways to
optimally fetch them for in-memory processing. In order to do this, we need to make
SampleObject a subclass of NSManagedObject, which can then automatically
synthesize the special setters and getters required for CoreData attributes (see
Example 12.10). As a slight simplification, we leave out the root object, so starting
with what used to be the second level of 1,000 objects, each with 1,000 child objects.

Example 12.10 SampleObjects as a CoreData class

@interface SampleObject : NSManagedObject

@property (nonatomic,assign) NSInteger a;
@property (nonatomic,assign) float b;
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@property (nonatomic,assign) NSString *c;
@property (nonatomic,strong) NSSet *children;
@property (nonatomic,assign) SampleObject *parent;

@end

@implementation SampleObject

@dynamic a,b,c,children,parent;

@end

In addition, we need to create a NSManagedObjectModel, either in
approximately 60 lines of code or using the Xcode data modeler. Once we have that,
we obtain an NSManagedObjectContext and another 30 lines of code, and we
are then ready to create some objects and save them to an SQLite store. Fortunately,
iOS 10 and OS X 10.12 simplify this using the NSPersistentContainer class.

Create and Update in Batches
The results of creating our 1 million objects and saving them the way we did before
are somewhat disappointing: The whole process takes 34.4 s, roughly 3 times what
our previous slowest mechanism, NSKeyedArchiver, required. At slightly over
1 GB, it also manages to increase memory overhead slightly over
NSKeyedArchiver, despite the actual on-disk store being pretty small at only
44 MB. What’s also surprising is that just creating the objects in memory already takes
12 s, with the remainder in the save. For reference, creating our SampleObject
graph made of plain objects rather than NSManagedObject subclasses only took
350 milliseconds, so 1/30th of the time, and as we recall from Chapter 1, allocating
objects is one of the slower operations we deal with.

Using an XML store instead of SQLite takes a minute and a half and more than
4.5 GB of memory to produce a 399-MB on-disk result, with the binary store almost
the same, so atomic stores aren’t the solution. Even the in-memory store takes 20 s, so
I/O is not really the problem. Figure 12.17 shows the timings, with Figure 12.18
showing memory consumption and on-disk sizes.

Apple’s CoreData documentation strongly suggests splitting such operations and
operating in batches, which is great if your data model supports it. Our model
supports it sufficiently to run some tests with different batch sizes, from 10 elements
(meaning 100,000 batches) all the way to 1 batch of a million objects. We are
assuming completely independent batches that allow us to reset the
NSManagedObjectContext, which completely purges the objects from memory.

The results are in Figure 12.19, plotting both performance and memory by batch
size. For performance, there is a sweet spot right in the middle, with a batch size of
1,000 objects. Smaller batch sizes start incurring the higher I/O overhead of small
writes, real time as shown by significant time command increases, whereas larger
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batch sizes incur higher CPU loads. Apparently there are data structures or algorithms
that have a slightly worse than linear scaling. Memory, on the other hand, is strictly
linear, taking 1 KB of memory per saved or modified object, with a lower bound of
14.7 MB. If you cannot reset the NSManagedObjectContext between batches,
memory consumption will be around 600 MB for the 1 million objects.

Please note that we have now adapted our program structure, and possibly our data
model, to work around the limitations of CoreData. In fact, it is more specific than
that, because the batching strategy described only improves performance with the
SQLite store; it makes things catastrophically worse with atomic stores. The reason is
that atomic stores have to re-read all previous data in order to process each batch, the
size of which increases linearly, turning the problem from an O(n) complexity with a
high constant factor making it slow to O(n2) complexity with the same high constant
factor.
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Using the batch size of 1,000 that proved optimal for the SQLite store, the first
iteration saved its batch of 1,000 objects in 0.1 s. By the 50th iteration, the time for
saving a batch had already increased to 1 s and that linear trend continued, adding
another second to the per-batch save time every 50 batches. I interrupted the process
after 10 minutes at batch 250 (of 1,000), with per-batch save times having already
increased to 5 s. Extrapolating the O(n2) curve shows that using the batch technique
would have taken around 2 hours 48 minutes with the XML store.

Modifying an object graph has essentially identical performance characteristics
both in time and space, meaning that CoreData is unsuited for any tasks requiring
bulk creation or modification of large data sets.

Fetch and Fault Techniques
My first experiments with fetching results left me highly impressed, fetching the
top-level 1,000 objects for later traversal took less than a half second, and even
fetching all the 1 million objects took less than a full second. Of course, I had fallen
into the classic benchmarking trap of not using the results of my computation that we
had already seen in the CPU chapters: Just like the compiler eliminates computations
of unused results, CoreData does not necessarily pull in the data for the fetched
objects, especially objects accessed via relationships like the parent-child relationship
in our object graph. So in order to test the actual performance, I added the sumB
method shown in Example 12.11, which, as the name implies, sums the value of the
b attributes of all the objects in the tree.9

9. I will come to the reason for adding the b attribute 10 times in the “Object Interaction” section later in
this chapter.
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Example 12.11 Computing with the SampleObject object graph

-(double)sumB
{

double result=0;
for (int i=0;i<10;i++ ) {

result+=[self b];
}
for ( SampleObject *s in [self children] ) {

result+=[s sumB];
}
return result;

}

The first time I traverse the object graph, CoreData faults in all the values it needs,
and takes almost 42 s doing it. The second traversal is essentially instantaneous at
0.3 s. The results for this and other fetch variants are shown in Figure 12.20.

The problem is that each time a relationship is accessed, a fault fires independently,
triggering another separate round-trip to the database. Naïve faulting like this was
also one of the major problems in using CoreData’s predecessor, Enterprise Object
Framework. For example, a system I was tasked to replace at the BBC was fetching a
tree of sport competitions (for example, FIFA World Cup → Quarter Final) by
iterating over each level of the tree independently in Objective-C code. This caused
several hundred round-trips to the database, essentially one for each object in the tree.
Explicitly fetching the tree levels reduced those round-trips to three and the time
from over 40 s to less than 1 s.

Of course, “round-trip to the database” means something very different in
enterprise applications than it does with CoreData: In an enterprise setting, you have
to serialize your query, then send it off over the wire to your database server machine.
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Although the database server is a powerful machine with lots of RAM, a high-power
CPU, and high-speed disks, the round-trip latencies will destroy your performance,
closely followed by the amount of data you are sending over the network. In such an
environment, putting business logic on the database server and very carefully selecting
the data you send or receive is crucial for minimizing network latency and
throughput.

In CoreData, however, the “database server” and the client are usually the same
computer (until recently it was the only configuration supported). Furthermore, my
experience with object graphs encoded in relational databases is that acceptable
performance is usually only achieved when the database resides in RAM (either in
the OS’s buffer cache or in the database’s buffers).

Even with the database files in the buffer cache, the relationships are the major
performance drain in this test, but I had a hard time convincing CoreData that I really
wanted to fetch the targets of those relationships. My first attempt was
NSManagedObjectContext’s aptly named setRelationshipKeyPaths
ForPrefetching: method, asking it to fetch the children relationship. That did
not make a discernible difference in total time (though it did shift some of the total to
the initial fetch), and neither did setReturnsObjectsAsFaults:NO. I finally
figured out that I had to specify the attributes at the end of the relationship as well, or
those would not get read in, so children, children.a, and children.b. With
these keys to prefetch, we finally got the results labeled prefetch relationships.

However, despite the fact that I was now ostensibly prefetching all the data needed
to compute the result, I was still getting significant delays during the first graph
traversal, suggesting that there was more faulting going on. Another suggestion for
resolving relationship faults is manually fetching the relationships using a separate
NSFetchRequest with a predicate of the form @"parent IN %@",
fetchedArray, where fetchedArray is the result of the initial fetch. This
manual prefetch improved things a little by allowing the initial fetch to complete in
3.2 s instead of 11.3 s, but did not change the first time traversal time of 19.5 s.

I finally realized that what CoreData was trying to fetch were the nonexistent
children of the leaf objects. Alas, my attempt at being smart and prefetching those
using a prefetch key of @"children.children" wasn’t smiled on by the
CoreData gods, resulting in the following error message:

CoreData: error: (1) I/O error for database at db.db.
SQLite error code:1, 'too many SQL variables'

Core Data: error: -executeRequest: encountered exception = I/O error
for database at db.db.

SQLite error code:1, 'too many SQL variables' with userInfo = {
NSFilePath = "db.db";
NSSQLiteErrorDomain = 1;

}

Instead, the only way I found to deal with the situation was to adjust the
computation and the object model to include an explicit flag for leaf objects that is
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not computed by counting the children. With this modified computation shown in
Example 12.12, I finally managed to get all required data in the fetch, taking 10.8 s,
but no more fetching in the first-time traversal, which now took only slightly over 1 s
for the best overall CoreData managed object time of 12.15 s (label prefetch cut
recursion). Of course, there now is additional overhead in keeping this flag
synchronized with the children relationship.

Example 12.12 Cutting off the SampleObject object graph traversal

-(double)sumB
{

double result=0;
for (int i=0;i<10;i++ ) {

result+=[self b];
}
if ( ![self isLeaf] ) {

for ( SampleObject *s in [self children] ) {
result+=[s sumB];

}
}
return result;

}

All of these times were measured with a database that had indexes on the keys that
are being queried; the same queries without those indexes were generally a few
percent slower throughout.

One intriguing optimization suggestion is the setting NSDictionaryResult
Type resultType in the NSFetchSpecification. Instead of returning
NSManagedObject instances, this will return only NSDictionary instances with
the attributes specified in the fetch specification. The results are shown in
Figure 12.20 with the fetch raw dict label, and they are quite astounding: 0.8 s for the
fetch! We learned earlier that NSDictionary is not usually associated with high
performance, so what’s going on here?

There are actually a number of things going on here. First, it turns out that the
CoreData performance is not limited by SQLite; the dictionary fetches show that
getting data from SQLite to Cocoa can be extremely quick. CoreData turning those
fetched results into objects, and particularly managing the relationships, is where the
performance goes. Second, raw dictionary fetches are limited; they do not handle any
relationships. So, for example, our object tree is not available, only a flat array of
dictionaries. Third, we cannot modify and save raw dictionaries. Finally, the relative
performance of dictionaries compared to “normal” objects is still as we expect, as
shown in the inset 2nd fetch.

The last set of results in Figure 12.20, XML (not coredata) shows the times for
“fetching” our object graph via the XML deserialization mechanism we looked at in
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the previous section, with the initial fetch representing the time to deserialize the
object graph, and both first and second access being normal object graph traversals
using plain Objective-C message sends to retrieve attributes. Accessing instance
variables via message sends is still roughly ten times faster than using dictionary access,
which is why the total for XML is slightly faster than the raw dictionary fetch, despite
the raw dictionary having the faster initial fetch.

Object Interaction
The 2nd access times highlight another aspect of CoreData performance that is
sometimes neglected: the overhead of retrieving data from an NSManagedObject
subclass or a dictionary once it has been fetched. The overhead for the former
appears to be around 6x compared to a plain object, the latter 10x. We already saw
the overhead for writing attributes, which is several orders of magnitude higher.
Although CoreData uses special dictionaries and highly optimized dictionary-like
access methods for NSManagedObject instances, the cost of interacting with
attributes is still several times greater than that of interacting with regular objects.

Subsetting
Where CoreData shines is in dealing with subsets of a large data set, because when
connected to an incremental store like SQLite, it is capable of querying subsets,
modifying those subsets, and storing them without having to deal with the rest of the
data that wasn’t touched. While cost per element is high (one or more orders of
magnitude higher than the simple brute-force techniques we looked at earlier), we
can still achieve good or at least reasonable performance for overall performance
(number ∗ cost) if we can push the number of elements down.

Reading and writing a single object or one small subset that can be retrieved via
index will be quick with CoreData, whereas with the serialization mechanisms we
looked at earlier we have to load the entire object graph even if we only need one
object, and save the entire object graph even if we only modified a single object.

This ability to deal with subsets is offset by the fact that subsetting is also a hard
requirement: You absolutely must subset your data, and be absolutely certain that you
always can find sufficiently small subsets, or performance will blow up in your face. As
we saw, CoreData simply can’t adequately deal with those large data sets, so you need
to make sure your working set is always sufficiently small.

For example, adjusting the query to only fetch 1,000 objects instead of the whole
million reduces the fetch time to 10 ms, which is sufficient for many applications but
does require not fetching relationships and having an index on the key that we’re
fetching. Without the index, SQLite has to do a table scan and times increase to
around 1.5 s for this data set, which will at the very least be a noticeable delay.
Modifying those 1,000 objects in memory takes 31 ms and saving them 144 ms,
which is at the edge of interactive performance. For reference, our 1,000 objects are
1/1,000th the 46 MB total file size, so 46 KB, giving us a data rate of 4.4 MB/s for
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reading and 250 KB/s for writing, which is around 1% or 0.25% of the capabilities of
the underlying SSD hardware, respectively.

To really get interactive performance levels for a read/modify/write cycle requires
dropping down to around 100 objects on the Mac: 3 ms to read, 4 ms to modify, and
around 40 ms to save the results. Again, this requires having an index on the attribute
and not fetching relationships. If we start fetching a significant percentage of the
relationships, either by faulting or by prefetching, performance once again drops
remarkably.

Analysis
Apple has plenty of other recommendations for optimizing CoreData: tweak the data
model to use external storage for large binary data blobs (this is always a good idea;
see also the “Segregated Stores” section in this chapter), de-normalize your data
model to avoid cross-relationship fetches, experiment with batch sizes in data import
tasks, put numeric predicates first in fetch specifications, because those evaluate more
quickly, and so on.

However, all of these recommendations are indicative more of overcoming a
weakness than showing off a strength. If CoreData has such great performance, why
do I have to spend so much effort tuning, getting my fetch specifications to be just
the right size, not too large, not too small? These recommendations would make a lot
more sense if we actually had the client/server model that CoreData is patterned
after, because minimizing traffic across the network is almost always a good idea.
When the “server” is not just on the same machine, but actually a library sitting in
the same process just a function call away, preserving communications bandwidth to
that server doesn’t have the same weight.

SQLite
If CoreData doesn’t work for you and you also don’t want to hold the entire object
graph in memory as required by the serialization techniques presented thus far,
another option is talking directly to some sort of database. SQLite is popular for this
application on OS X and iOS because it comes as a library that is embedded in your
application rather than a separate database server application. It also ships with both
OSes and is widely used by Apple themselves, not least in CoreData.

The SQLite C API is somewhat verbose, so I used the lightweight fmdb wrapper.10

Unlike CoreData, fmdb does not handle relationships automatically, so we have to
add both an object id and a parent id to our data model, which we then need to
populate and resolve as we interact with the database.

Performance was overall much better than with CoreData, for example, 6.7 s to
insert the 1M objects instead of 26 to 36 s, with only around 16 MB of constant

10. GRDB is a similar wrapper for Swift (https://github.com/groue/GRDB.swift).

https://github.com/groue/GRDB.swift
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memory overhead on top of the size of the object tree itself. An option that helped
was enabling prepared statements; runtime without them was 3 to 4 s higher. With
fmdb, this is just a flag; the library then manages the prepared statements, looking
them up by the string that’s sent as a query.

Somewhat more important, the loop that inserted the 1M objects was wrapped in
a transaction using [db beginTransaction] and [db endTransaction].
Without an explicit transaction, SQLite wraps every statement in its own individual
transaction. For inserting our 1M objects, that increased the total write time to a
staggering 11 minutes 43 seconds, roughly 100 times slower than with an explicit
transaction! So use explicit transactions for any bulk updates, unless that bulk update
can be expressed in a single statement.

Fetching our 1M objects back from the database was also pleasant, taking around
3.6 s for creating the objects from the FMResultSet. As noted above, relationships
had to be resolved manually with a NSMapTable mapping database ids to objects.
This added another 700 ms, taking the total to 4.3 s for a fully constituted object
graph. As the API uses keyed access [rs intForColumn:@"a"], [rs
doubleForColumn:@"b"], whereas the low-level SQLite API uses column
indexes, I wondered whether this was a problem. A quick check with Instruments
revealed that things were as expected and the conversion from string keys to column
indexes was taking almost 50% of the time. Adding a little patch practically removed
that overhead, reducing fetch times to 2.1 s, including relationship resolution.

So for basic serialization and deserialization of object graphs, direct SQLite access
is competitive with most of the serialization mechanisms presented earlier in this
chapter. In addition, SQL allows bulk modification of the data on disk without
having to first fetch objects, modify them in memory, and finally write them back
out again. For example, all SampleObject rows in the database can be have their b
attribute set to the value 42 using the following SQL statement: UPDATE
SampleObject set b=42. This statement executes in about 1.5 s on my
machine, generally quicker than a read/modify/write cycle with serialized objects.
Of course, you need to make sure that any objects in memory are either also updated
or invalidated; there is no automatic change tracking helping you out.

Like CoreData and unlike basic serialization mechanisms, SQLite direct access can
also efficiently fetch and update subsets of your object graph. Restricting to bulk
UPDATE we did above to 1,000 objects with a WHERE clause reduces the update
time to 90 ms, and fetches of 1,000 objects can be accomplished in 13 ms (all times
with index; not having the index adds around 260-ms table-scan time with the
database file in the buffer cache).

This was with write-ahead logging (WAL), enabled in SQLite using the command
PRAGMA journal_mode=wal. WAL dramatically improves update performance by
sequentializing disk access and is enabled by default for CoreData since iOS 7 and
Mac OS X 10.9. Instead of updating data in place in the database file, seeking to the
right position for each change, updates are appended sequentially to a log. Reads first
look in the log for data and only after that in the main database file.
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Relational and Other Databases
These somewhat tepid results for SQLite and CoreData run contrary to the common
perception of relational databases as the pinnacle of I/O optimization and
performance, but this perception was never well founded historically, theoretically, or
practically.

In my personal experience, relational databases have typically been around an
order of magnitude slower than even fairly simplistic nonrelational storage and query
strategies. For example, when I was conducting my investigation into Mail.app
performance, I was stunned to find out that querying the metadata of a mailbox with
approximately 20K messages took SQLite well over a second, whereas doing a simple
brute-force linear search of an mbox format version of that mailbox (essentially a
concatenation of all the messages in a single file) using the grep command-line
utility took a few tens of milliseconds. So the most naïve possible brute-force
algorithm was orders of magnitude faster than a sophisticated SQL database!

Jamie Zawinski tells a similar story about the Netscape mailbox summary files:
Netscape versions 2.0 and 3.0 used a custom binary format that had 2% space
overhead and was able to open a mailbox with 15K messages in under a second on a
Pentium/266 class machine (so, roughly the same amount of data and same
performance as Mail.app on a 2.5-GHz PowerMac G5). A rewrite dropped in a
“proper” database, increasing space overhead by more than an order of magnitude to
30% and dropping performance by an order of magnitude.11

One reason, of course, is that relational databases are general-purpose tools that
were never designed with performance as their primary goal. Instead, they were
meant to allow multiple clients access to normalized enterprise data sets and to
permit ad-hoc queries. It took many years of engineering work in the 1970s to 1980s
for relational database management systems to at least catch up in performance with
their competitors. Many of the implementation strategies for coping with the
hardware environment of the times, such as on-disk B-Trees, multi-threading to hide
disk latency, and explicit buffer management don’t match today’s hardware well, and
removing them improves database performance by an order of magnitude or more.12

In fact, Turing Award winner and general database guru Michael Stonebraker
(Ingres, Postgres) has published a series of papers, first declaring the end of the “one
size fits all” use of relational databases for specialized applications,13 and later the “end
of an era,” casting doubt even on the use of traditional databases in their core
application of online transaction processing (OLTP).14

11. http://www.jwz.org/doc/mailsum.html
12. S. Harizopoulos, D.J. Abadi, S. Madden, and M. Stonebraker. “OLTP through the looking glass, and
what we found there,” Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.
(2008) ACM, pp. 981–92.
13. M. Stonebraker. “Technical perspective—one size fits all: An idea whose time has come and gone,” ACM
Communications (2008).
14. M. Stonebraker, S. Madden, D.J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland. “The end of an
architectural era (it’s time for a complete rewrite),” VLDB Proceedings (2007), pp. 1150–60.

http://www.jwz.org/doc/mailsum.html
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Event Posting
One interesting alternative to (relational) databases is an architectural pattern known
as Event Poster,15 where instead of modifying a persistent store, you store deltas that
are applied to an in-memory representation of your data. Coming back to our
example of saving Moby Dick on every keystroke, imagine just writing the list of
keystrokes instead of (a) storing the entire file or (b) trying to modify the file in-place
as it is edited.

It should be obvious that this approach can work very efficiently for saving data:
Instead of writing O(n) items on every save as we would when writing the entire file,
we write just O(1). Updating an on-disk data structure such as a B-Tree would take
O(log n) for each update, though that likely understates the relative cost because the
operations would tend to be expensive seeks and possibly moves, whereas events can
usually be efficiently appended to a file sequentially. For n operations, that makes the
complexity O(n2) for the full save, O(n log n) for update-in-place, and O(n) for event
posting.

In the pure form of the pattern, the event log is the only storage, the in-memory
state is reconstructed on load by replaying the entire event log. This can be a
surprisingly simple and effective strategy, as I discovered when implementing the
replacement16 for the problematic BBC feeds processing application mentioned
before. Once we had written the feed ingest logic, we noticed that all we needed for
persistence was to remove the code that deleted those incoming feed files (which we
already wanted to do for auditing purposes). Having a well-optimized ingest
processor meant we could simplify the rest of the system: Performance begets
simplicity begets performance, a virtuous cycle that I have witnessed numerous times.

Hybrid Forms
Issues with the pure Event Poster pattern are that it requires all data to fit in main
memory and that the event log can get very large, potentially growing without
bounds, irrespective of the size of the currently active data (think of rewriting every
sentence in Moby Dick ten times: the log will be ten times larger with the size of the
book hardly changed). For this reason, the Event Poster pattern is usually not applied
in its pure form, but instead combined with other forms of storage.

One such hybrid is a checkpoint of the current store: write the state of the system
at specific checkpoints, for example, using a fast memory dump. On reads, first
attempt to read the checkpoint file, reverting to replaying the log if the checkpoint
file does not read correctly. This was the strategy we used with the feeds processing
system, in addition to occasionally pruning the log to eliminate entries that were no
longer relevant, for example, because they were overwritten by later entries (this
needs to be done carefully if you want to keep the log for audit purposes).

15. http://martinfowler.com/bliki/EventPoster.html
16. M. Weiher and C. Dowie. “In-process rest at the BBC,” REST: Advanced research topics and practical
applications (2014). Eds. C. Pautasso, E. Wilde, and R. Alarcon.

http://martinfowler.com/bliki/EventPoster.html


Segregated Stores 265

Another hybrid form is utilized by the LevelDB key-value store, an open-source
rewrite of Google’s BigTable data store. Its basic store comprises Sorted String Tables,
which are read-only lists of strings with an index. Writability is provided using a Log
Structured Merge Tree: all changes are appended to a log, which is kept in memory and
on disk. Reads are satisfied first from the recent changes stored in memory and then
from the sorted read-only tables on disk, for example, by having those tables mapped
into memory. This means that writes are always fast and reads are always fast, with the
cost of having to occasionally rewrite the sorted tables from the log, operations that
can then be performed using large batches, and sequential reads and writes.

LevelDB still provides a classic Create Read Update Delete (CRUD) interface to
the data, but oftentimes the applications themselves exhibit the characteristics of an
Event Poster, RSS feeds, chat or social networking applications, and even e-mail.
Such systems can really take advantage of the (time-based) structure of their data:
e-mail messages received the last day are usually more frequently accessed than those
received last week, which are in turn more frequently accessed than those of the last
month, and so on. On the other hand, many people, myself included, never actually
delete mail. A relational database like SQLite treats all elements in a table equally, so
over time performance deteriorates for all messages, even though the actual working
set remains the same.

If I were to write a storage back end for e-mail, I would structure it in a way
similar to LevelDB: keep the most recent messages in memory and in a local store
that is quick to access and quick to modify in memory. Every once in a while, I
would write older messages to read-only chunks (maybe per-month) with extensive
summary, indexing, threading, and other metadata information so that most
operations would only ever have to look at the summaries. This way accessing the
working set would remain the same speed regardless of the size of the mailbox, with
older storage only accessed for searches and then performed in large batches at
optimal sequential access speeds. However, I would not actually use LevelDB, because
its limitation to only strings and no indexes would be too restrictive.

Segregated Stores
The mail store I just described is really an example of a segregated store. The idea of a
segregated store is to keep pieces of data with different sizes, access requirements, and
life cycles separate from each other—for example, old messages from new messages.

One example of this idea standing in for other media-rich applications is Apple’s
Keynote presentation program. In its pre ’13 file format, all object layout information
was contained in a single XML file called index.apxl, either in a directory
wrapper or in a zip file. Media data such as images or movies are kept separate from
this index file, so even presentations with up to 100 pages and a total size of over
1 Gigabyte had an index.apxl file size of less than 2 MB.

In addition, the contents of the index.apxl file change effectively with every
edit, whereas the media files are immutable once they are imported; they only change
if a new version of the media file is imported.
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Directory wrappers are ideal for this sort of situation because they allow you to
store the large, infrequently changing data separately from the frequently changing
smaller data. When saving, make sure you keep a reference to the original data on
disk, possibly via its NSFileWrapper. Cocoa will only write out the bits that have
changed, even performing hard links to unchanged bits on disk if you use the
atomic version of the file wrapper saving methods.

The zip file versions of the file iWork file formats diminish the advantages of this
setup a little because the different components end up in the same zip file. However,
just copying bits from one file to a new file is still often much quicker than serializing
the data anew, as we saw earlier.

In the current version of the iWork file formats, Apple added another dimension
to keeping data separate: each page is a separate entry in the zip file. For saving to
disk this probably makes very little difference; instead, it is probably a feature for
keeping changes isolated in order to make iCould syncing work.

Summary
In this chapter, we looked first at basic disk and network I/O, and then at
higher-level strategies for serialization, including the built-in serializers, databases,
and CoreData and alternative strategies such as XML and the Event Poster pattern.

Alas, we have also seen a lot of pitfalls, many of which involve problems we have
encountered before such as overuse of dictionaries and verbose intermediate
representations. In short, Cocoa and Objective-C don’t have a really good data
persistence option, only a bunch of marginally useful ones.



13
I/O: Examples

Having looked at the performance characteristics of some of the I/O and
serialization APIs in the previous chapter, we’ll now look at some practical examples
of making I/O faster. Significantly faster.

We start out with a simple word list for a game and work our way up through
Apple’s binary property list format, which we speed up significantly for many
practical purposes. Finally, we throw in some fast comma-separated value (CSV)
parsing and design a compact file format for public transport data that beats CoreData
by orders of magnitude.

iPhone Game Dictionary
This particular quest was kicked off by a message from Miles on Apple’s cocoa-dev
mailing list.1 Miles wanted to load about 2 MB of text as a dictionary of words for an
iPhone game, with the words separated by newlines.

The interface of the class is given in Example 13.1 and illustrates the basic features
of the StringTable: initializing with a file and determining whether a specific string is
contained within the table.

Example 13.1 Naïve string table class

#import <Foundation/Foundation.h>

@interface StringTable : NSObject

-(instancetype)initWithContentsOfFile:(NSString*)filename;
-(BOOL)containsString:(NSString*)str;

@end

1. http://www.mail-archive.com/cocoa-dev@lists.apple.com/msg33602.html

http://www.mail-archive.com/cocoa-dev@lists.apple.com/msg33602.html
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His first attempt saw him taking 0.5 s to read the file, and another 13 s to split the
file into lines using [fileContents componentsSeparatedByString:
@"\n"] on an iPhone 3G or 3GS class device. Needless to say, he thought this was a
bit too long, and I would tend to agree with him.

It is actually worth following the thread as the usual suspects are rolled out: binary
property lists, specialized trie data structures, and even SQLite. Binary property lists
actually helped a little bit, taking the time from 13.5 s to anywhere from 5 to 8 s,
which was still way too slow.

Example 13.2 shows the naïve implementation of that interface that took 13 s
using Foundation objects and methods (the declaration and implementation of the
words property is not shown).

Example 13.2 Initializing and searching in the naïve string table

-(instancetype)initWithContentsOfFile:(NSString*)filename
{

self=[super init];
NSString *wordList=[NSString stringWithContentsOfFile:filename];
[self setWords:[wordList componentsSeparatedByString:@"\n"]];
return self;

}
-(BOOL)containsString:(NSString*)searchStr
{

return [[self words] indexOfObject:searchString] != NSNotFound;
}

In addition to the substantial time, this approach also takes quite a bit of heap
memory because first the NSString is allocated, filled with contents from disk, and
then each individual word string is allocated. All this memory is of the “dirty” kind,
meaning it cannot be reclaimed on iOS without killing the process.

The approach I suggested2 was to map the file into memory using -[NSData
dataWithContentsOfMappedFile:], then not convert the words to individual
objects but instead tokenize by keeping offsets to the words in a separate integer array,
staying with the strategy of annotating data whenever possible rather than
converting it.

We can keep the external interface from Example 13.1 changing only the
implementation to use this more optimized representation. Tokenization, shown in
Example 13.3, is straightforward: go through the bytes, and when we find a newline,
add the current offset to the offsets table. The offsets table is an instance of
MPWIntArray, which works like an NSArray, just for int values instead of
objects. The implementation uses direct instance variable access.

2. http://www.mail-archive.com/cocoa-dev@lists.apple.com/msg33602.html

http://www.mail-archive.com/cocoa-dev@lists.apple.com/msg33602.html
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Example 13.3 Initializing the faster StringTable

@implementation StringTable {
NSData *words;
MPWIntArray *offsets;

}

-(void)tokenizeWords
{

const char *bytes =[words bytes];
const char *cur =bytes;
const char *end=bytes + [words length];
[offsets addInteger:0];
while ( cur < end ) {

if ( *cur++ == '\n' ) {
[offsets addInteger:(int)(cur-bytes)];

}
}
[offsets addInteger:end-bytes];

}
-(instancetype)initWithContentsOfFile:(NSString*)filename
{

if ( (self=[super init] ) ) {
offsets=[[MPWIntArray alloc] init];
words=[[NSData alloc] initWithContentsOfMappedFile:filename];
[self tokenizeWords];

}
return self;

}

The search method shown in Example 13.4 is also straightforward: For each offset,
compare the bytes at that offset to the bytes of the search string. Most of the code in
Example 13.4 is just boilerplate getting the various parameters into a form usable by
the central search algorithm, which in itself is made slightly more complicated by the
fact that the string-table we are searching does not have NULL terminated strings; the
bounds are only defined by the next offset.

Example 13.4 Searching within the StringTable

-(BOOL)containsString:(NSString*)needleStr
{

const char *bytes =[words bytes];
const char *searchStr=[str UTF8String];
long maxLen=[str length];
int *offsetsp=[offsets integers];
int max=[self count];
for (int i=0;i<max;i++) {
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int len=offsetsp[i+1] - offsetsp[i]-1;
if (len==maxLen && !strncasecmp(bytes+offsetsp[i],searchStr,len)) {
return YES;

}
}
return NO;

}

When I added this implementation to the test program kindly provided by one of
the participants in the thread, the time to load the file (load + tokenize in this
implementation) dropped to 0.084 s, down 160 times from the 13.5 s of the original
implementation, and still more than 80 times faster than the solutions based on binary
property lists. It should be noted that this simple method doesn’t handle all the
complexities of Unicode, but that wasn’t a requirement.

Hardware and software have changed significantly since that time, and Apple has
worked hard to improve the implementation of -componentsSeparatedBy
Strings:. However, as Figure 13.1 shows, the basic differences still hold up for an
iPhone 4S and iOS 7: Splitting the strings using -componentsSeparatedBy
String: is still slowest, the property list–based methods around 2 times faster and
our StringTable is still around 30 times faster than NSString-splitting and 20 times
faster than property lists. I expect relative performance to remain roughly the same
even as hardware gets faster.

Lest you think that the message is: “just use C,” I’ve also included the stdio strings
entry. This implementation uses the fgets() function to read the words into
individually allocated C-String buffers. Although it is somewhat faster than property
lists or NSString-splitting, that method is 10 times slower than using a single buffer
with offsets, and of course it also suffers from the disadvantage of heap-allocated,
non-mapped, and therefore dirty memory.
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Figure 13.1 Different methods for loading a 2-MB word list on an iPhone 4S
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As we saw in the previous chapter, Foundation overhead vastly overwhelmed
actual I/O overhead. Expanding the abstraction barrier from the single word (an
NSArray of NSString objects) to the whole word-list mitigates and largely
eliminates this overhead, while also providing a better interface.

Fun with Property Lists
Just in case you thought I was kidding when I wrote that that the message is not “just
use C,” we’re now going to look at making things faster by recasting from C to
Objective-C.

Although the StringTable from the previous sections solves the problem the
original poster was having, it is a bit of a one-trick pony, only handling the case of a
flat list of strings. I was reminded of the need for a more general solution by a student
in one of my performance courses. He had several iPhone apps that were basically
viewers for static, pre-loaded information. At any one time, only at most a dozen
items would be visible, but loading the entire data set took just a little too long on
start-up and the data model was a little more complex than a list of strings.

For the static data to be loaded, the student had chosen a property list, which was
quite sufficient for encoding his data structure. In theory, the property list should also
be fast enough for completely interactive performance. The previous chapter saw
decoding speeds of around 300K objects per second on OS X, so even assuming a
performance penalty of 10 times for iPhone hardware, we would still be able to do
the 30 objects visible at any one time in 1 ms, 16 times faster than required for 60 Hz
animation performance (and that’s still a very conservative measure as we wouldn’t
need to swap out all objects on every frame).

The obvious problem is that despite only needing a maximum of around
30 objects at a time, we have to read the entire property list before we can display
even a single item. If you have a large data set, this can quickly become prohibitive.
Although CoreData might be an option in this case, this was rejected by both the
original poster and my student as too complex for the applications at hand, an
assessment I would agree with.

The obvious solution to the obvious problem is a lazy-loading property list, so
only the elements that get accessed are decoded. A good place would be the decoding
of arrays: instead of decoding the array immediately, return an object that decodes its
elements on-demand. With an actual object-oriented implementation of a property
list reader we could probably just override the implementation of -decodeArray or
some equivalent method, but Apple’s Foundation implements property list reading in
terms of CoreFoundation’s C API for property lists, so there are no extension points.
You get whatever CFPropertyListCreateWithData() gives you, and you will
like it.

A Binary Property List Reader
So before we can make modifications to property list reading semantics, we first have
to create our own reader, in Objective-C, with the ability to override functionality in
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subclasses. There is no official specification of the binary property list format, but
Apple’s implementation is published as open source3 and not only contains code, but
also a lengthy comment describing the format in sufficient detail to allow an alternate
implementation.

Figure 13.2 is a rough schematic of the structure of a binary property list file
extracted from the comment in CFBinaryPlist.c.

There are two main sections: the object table containing variable-length encodings
of the actual objects and the offset table with indexes into the object table. All
references to objects go through the offset table. Surrounding the two central sections
are a header and a trailer, with information such as the root object index, the location
of the offset table, and the sizes of various offsets.

A few of the most relevant object encodings are also shown in Figure 13.2. The
object type is encoded into the top nibble of the first byte, with the second nibble
either encoding a subtype or a length of 0 to 15. A length of 15 is a flag indicating
that the actual length will be encoded as an integer word following the initial byte.

header:  magic, length, 
CRC 0x1 length 1 integer value

0x2 length 1 float/double value

0x5 length 1 length 2 ASCII chars

0x6 length 1 length 2 UTF-16 chars

0xA length 1 length 2

0xD length 1

Integer

Real

String

String

Array 

offset table
integers pointing into 

object table

object table

trailer:
root object

offset table start
sizes

key offsets value offsetslength 2

object offsets

Dictionary 

...

...

Figure 13.2 Schematic representation of binary property list format

3. For example, see https://github.com/opensource-apple/CF/blob/master/CFBinaryPList.c.

https://github.com/opensource-apple/CF/blob/master/CFBinaryPList.c
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The algorithm for parsing a binary property list is basic recursive descent.

1. Start with the root index.
2. Read object at an index n.
3. If the object has already been parsed, return it.
4. If the object has not been parsed, parse it:

a. Get offset of encoded object via offset table.

b. Decode object at offset.

c. For any embedded object with index m, read object at this index.

d. Return the parsed object.

The parseObjectAtIndex: method that encodes the core of this algorithm is
shown in Example 13.5. It reads the top nibble of the first byte and then switches on
the object type encoded in that nibble, dispatching the decoding of the different
object types to individual methods. Code typically does not parse objects directly but
indirects through the objectAtIndex: method (also in Example 13.5), which
implements a cache for objects already read.

Example 13.5 Parse an object from a binary property list

-parseObjectAtIndex:(long)anIndex
{

long offset=offsets[anIndex];
int topNibble=(bytes[offset] & 0xf0) >> 4;
id result=nil;
switch ( topNibble) {

case 0x1:
result = [self readIntegerNumberAtIndex:anIndex];
break;

case 0x2:
result = [self readRealNumberAtIndex:anIndex];
break;

case 0x5:
result = [self readASCIIStringAtIndex:anIndex];
break;

case 0x6:
result = [self readUTF16StringAtIndex:anIndex];
break;

case 0xa:
result = [self readArrayAtIndex:anIndex];
break;

case 0xd:
result = [self readDictAtIndex:anIndex];
break;

default:
[NSException raise:@"unsupported"
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format:@"unsupported data in bplist: %x",topNibble];
break;

}
return result;

}

-objectAtIndex:(NSUInteger)anIndex
{

id result=objects[anIndex];
if ( !result ){

result=[self parseObjectAtIndex:anIndex];
objects[anIndex]=[result retain];

}
return result;

}

The code for parsing a simple integer is shown in Example 13.6. The basic parsing
code in the readIntegerOfSizeAt function just shifts the number of bytes
indicated from the file, which is defined to be in big-endian byte order, into a long
integer, no matter what the byte order of the target architecture. It is implemented as
an inline function instead of within the readIntegerNumberAtIndex: method
because the bplist format actually has a number of different places where integers are
read (for example, the offset table), all with slight variations on the basic theme.

Example 13.6 Parse an integer from a binary property list

static inline long readIntegerOfSizeAt( const unsigned char *bytes,
long offset, int numBytes

)
{

long result=0;
for (int i=0;i<numBytes;i++) {

result=(result<<8) | bytes[offset+i];
}
return result;

}
-(NSNumber*)readIntegerNumberAtIndex:(long)anIndex
{

long offset=offsets[anIndex];
int bottomNibble=bytes[offset] & 0x0f;
return @(readIntegerOfSizeAt(bytes, offset+1, 1<<bottomNibble));

}

Integer parsing is also frequent enough (the offset table) that turning that code
from a method into an inline function had a measurable impact. Fortunately, that
conversion is purely mechanical. One oddity in the format is that the length of the
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integer (in bytes) is encoded as the log2 of the length, despite the fact that we have
4 bits to encode the length. This encoding means that we can only encode integers
with a length of 1, 2, 4, 8, … bytes, no values in between, but can encode integers up
to 32 bytes in length, equivalent to 142 decimal digits.

Other primitive types such as floats, doubles, or Booleans are encoded similarly.
Parsing of a complex object with embedded objects is shown in Example 13.7,

which deals with parsing arrays. The lengthForNibbleAtOffset() inline
function handles the encoded length, which may be encoded in the bottom nibble or
an extension integer.

Example 13.7 Parse an array from a binary property list

static inline int lengthForNibbleAtOffset( int length,
const unsigned char *bytes, long *offsetPtr )

{
long offset = *offsetPtr;
if ( length == 0xf ) {
int nextHeader = bytes[offset++];
int byteLen = 1<<(nextHeader&0xf);
length = readIntegerOfSizeAt( bytes, offset, byteLen ) ;
offset += byteLen;
*offsetPtr = offset;

}
return length;

}
-(long)parseArrayAtIndex:(long)anIndex

usingBlock:(ArrayElementBlock)block
{

long offset=offsets[anIndex];
int topNibble=(bytes[offset] & 0xf0) >> 4;
int length=bytes[offset] & 0x0f;
offset++;
if ( topNibble == 0xa ){

[self pushCurrentObjectNo];
length = lengthForNibbleAtOffset( length, bytes, &offset );
for (long i=0;i<length;i++) {

long nextIndex = [self readIntegerOfSize:offsetRefSize
atOffset:offset];

currentObjectNo=nextIndex;
block( self, nextIndex, i);
offset+=offsetRefSize;

}
[self popObjectNo];

} else {
[NSException raise:@"unsupported"

format:@"bplist expected array (0xa), got %x",
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topNibble];
}
return length;

}
-(NSArray*)readArrayAtIndex:(long)anIndex
{

NSMutableArray *array=[NSMutableArray array];
[self parseArrayAtIndex:anIndex

usingBlock:^(MPWBinaryPlist *plist,
long offset, long anIndex) {

[array addObject:[plist objectAtIndex:offset]];
}];
return array;

}

The parseArrayAtIndex:usingBlock: is the workhorse for array parsing,
with the for-loop reading encoded integer object indexes and calling the argument
block for every index read. The indexes are offsets into the offset table, which then
yields actual object offsets.

Finally, the -readArrayAtIndex: method constructs a result NSArray and
fills it by calling the parseArrayAtIndex:usingBlock: method with a block
that parses the object at the index that is passed to the block and adds the parsed
object to the array (it actually uses objectAtIndex: instead of parseObject
AtIndex: so it doesn’t have to parse objects twice).

Parsing dictionaries is similar, except that we have two parallel lists of indexes and
add key-value pairs to a NSMutableDictionary instead of just objects to a
NSMutableArray. Most of the rest of the parser follows the same patterns and is
otherwise fairly straightforward.

Lazy Reading
With a truly object-oriented binary property list parser, adding lazy loading becomes
a fairly simple matter. We create a subclass that overrides the readArrayAtIndex:
method to create a MPWLazyBListArray instead of an NSArray, as shown in
Example 13.8. Instead of creating individual objects, we store the object indexes
(using an MPWIntArray) which we then use to create the MPWLazyBListArray.

Example 13.8 Creating the lazy array

-(NSArray*)readArrayAtIndex:(long)anIndex
{

MPWIntArray *offsets=[MPWIntArray array];
[self parseArrayAtIndex:anIndex

usingBlock:^(MPWBinaryPlist *plist,
long arrayIndex,
long anIndex) {
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[arrayOffsets addInteger:arrayIndex];
}];
return [[MPWLazyBListArray arrayWithPlist:self offsets:offsets];

}

The definition and implementation of the MPWLazyBListArray class is shown
in Example 13.9. It is an NSArray subclass that keeps a reference to the binary plist
in question and knows about the offsets of its encoded objects in that plist.

Example 13.9 Lazy NSArray definition

@interface MPWLazyBListArray : NSArray
{

NSUInteger count;
MPWBinaryPlist *plist;
MPWIntArray *offsets;
id *objs;

}
@end

Example 13.10 shows the lazy implementation of objectAtIndex:. When an
object is requested with objectAtIndex:, it first tries to retrieve it from its
objects, and parses it if it’s not already there.

Example 13.10 Lazy NSArray implementation

-initWithPlist:newPlist offsets:(MPWIntArray*)newOffsets
{

self=[super init];
if (self ) {

count=[newOffsets count];
objs=calloc( count , sizeof *objs);
offsets=[newOffsets retain];
plist=[newPlist retain];

}
return self;

}
-objectAtIndex:(NSUInteger)anIndex
{

id obj=nil;
if ( anIndex < count) {

obj=objs[anIndex];
if ( obj == nil) {

obj = [plist objectAtIndex:[offsets integerAtIndex:anIndex]];
objs[anIndex]=[obj retain];
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}
} else {

[NSException raise:@"outofbounds"
format:@"index %tu out of bounds",anIndex];

}
return obj;

}

Although it may seem that Swift’s built-in lazy collections may obviate the need
for custom code, that turns out not to be the case: Swift’s standard library does not
implement actual lazy behavior, which caches the result once it is computed. Instead,
it recomputes on every access unless the entire collection is converted to a non-lazy
collection at once, which is exactly what we are trying to avoid.

The effect of applying the example to our word-list example is significant: time to
initialize the word from a property list drops from 756 ms to 26 ms, an improvement
of 29 times that makes this variant faster to initialize than even the word list we used
before. Figure 13.3 shows all the times.

We do have to be slightly more careful with the lazy variant though, because if we
do a linear search, for example, all that laziness disappears as the entire list is retrieved
and the 700+ ms spent at a time when we aren’t expecting it. In order to avoid this,
we need to switch our search from a simple linear search with indexOfObject: to
a binary search using indexOfObject:inSortedRange:options:
usingComparator: with the option NSBinarySearchingFirstEqual.

The binary search will only load log n of the items during every search, so for the
26K word list mentioned, it would be around 15 items decoded per search.
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Figure 13.3 Including lazy property lists in iPhone game dictionary loading comparison
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Avoiding Intermediate Representations
Now that we have our own property list reader, another problem from Chapter 12
comes to mind: property list reading was slow and memory intensive partly because
we had to create a temporary but complete in-memory representation of our object
graph as dictionaries and arrays and Foundation number objects.

With our own reader, could we avoid this intermediate representation and
initialize our object graph directly from the binary property list? The answer, of
course, is “Yes, we can!”

The code for unarchiving a SampleObject from our own property list is shown
in Example 13.11.

Example 13.11 Unarchiving from a plist without intermediate representation

-(instancetype)initWithBinaryPlist:(MPWBinaryPlist*)aPlist
{

if (self=[super init]) {
[aPlist parseDictUsingContentBlock:^(MPWBinaryPlist *plist) {
a=[plist readIntegerForKey:@"a"];
b=[plist readRealForKey:@"b"];
name=[plist readObjectForKey:@"name"];
NSMutableArray *array=[NSMutableArray array];
[plist parseArrayAtKey:@"children"

usingBlock:^(MPWBinaryPlist *plist) {
id obj= addObject:[[[self class] alloc] initWithBinaryPlist:plist];
[array addObject:[obj autorelease]];

}];
children=[array retain];

}];
}
return self;

}

It is very similar to keyed archiving code, except that the code to decode
compound objects like dictionaries and arrays is wrapped inside blocks. The reason
for this difference is that, unlike a keyed archive, a plain property list does not store
any information about object classes. In archiving, the class information is stored in
the archive and used by the unarchiver to instantiate objects of the right class and send
them the initWithCoder: message. We instead have to pass the knowledge for
decoding a specific dictionary or array into the method that decodes that dictionary
or array, and blocks make this easy.

Can we do the same for serializing a binary property list as we did for
deserializing? Sure, the streaming architectural style introduced in Chapter 8 is just
the ticket. Implementing a binary plist serializer as a kind of FilterStream makes it
possible to produce (most of) the binary property list incrementally.

I won’t show the implementation here because it is too long and quite
straightforward, mostly dealing with two concerns: creating encoded objects and
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recording the offsets of those objects. For compound objects, it also has to record the
indexes of their child objects.

Example 13.12 shows how such a binary property list writer is used to encode
SampleObject instances. Blocks can be used a little less because objects are
recursively encoded using the writeOnPropertyList: message, with an array
simply sending writeOnPropertyList: to all its elements.

Example 13.12 Archiving directly to a plist

-(void)writeOnPropertyList:aWriter
{

[aWriter writeDictionaryLikeObject:self
withContentBlock:^(id writer,id anObject){

[writer writeInt:a forKey:@"a"];
[writer writeFloat:b forKey:@"b"];
[writer writeObject:name forKey:@"name"];
[writer writeObject:children forKey:@"children"];

}];
}

Figure 13.4 shows the impact that not creating a temporary representation has on
performance: an improvement of 5 times in both serialization and deserialization
times. In other words, 80% of the original binary property list times were due to
generating the generic intermediate representation!

The last set of bars shows the performance impact of using the custom property list
serializer and deserializer with the intermediate representation: The performance
impact is minimal, the custom versions barely a few percent faster than the ones built
into (Core)Foundation. This clearly shows that the major impact was the architectural
one.

As you might have guessed, the impact on memory consumption of avoiding the
temporary representation is even more pronounced: Figure 13.5 shows a factor of 50
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to 70 less peak memory usage compared to generating the intermediate
representation and then serializing it. The reason it does show 4 MB of peak memory
usage is that although we can serialize the objects on the fly, we do have to keep track
of the offsets in memory, only flushing them out to disk at the very end.

When I started this exploration into binary property list encoding, I had no idea
where it would go, and frankly I wasn’t expecting much. After all, the format has
been in use for well over a decade and is an Apple workhorse, so has been optimized
heavily during that time. I have to admit that I am very happy with the way it turned
out. Not only does this example show the principles and techniques I discussed
earlier at work, it has tangible practical results that can be applied immediately. With
lazy loading, property lists can now be used for very large data sets, potentially greatly
simplifying a certain class of applications that need lots of data. Using direct
reading/writing removes 80% of the time and over 99% of the memory overhead.

The large magnitude of these results were obtained not by looking in Instruments
and removing hotspots, but by looking at architectural issues such as the
non-overridable API and the call/return semantics requiring a fully formed argument.

That said, more could be done: write performance could be improved further by
optimizing the handling of object offsets or even allowing them to be eliminated
entirely by adding inline objects for primitive types. The same API could be
extended to also cover XML and JSON property lists.

In addition, you might have noticed that the API is now very close to keyed
archiving. Add to that the fact that binary property lists can actually handle at least
acyclic object graphs, and you see that the only thing missing from a keyed archive is
a way to encode object classes for dictionaries, for example, in a section after the
object table, the format has room for it. Alternately, it seems likely that the
performance overhead of keyed archiving would be significantly reduced if the
additional nested dictionaries were not materialized in memory.
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Comma-Separated Values
Another option that my student and I considered for encoding start-up data was CSV,
but we never got around to it because we already got good results with the lazy
property list. It was only a good while later that I was confronted with CSV files in
earnest, in the form of a 25-MB database dump of 16,000 records provided by a
client for formatting into a printed telephone directory.4 With high-quality PDF
generation built into Mac OS X, such database publishing jobs can now be
performed using Cocoa programs instead of having to go through large and slow
third-party apps such as Adobe InDesign or Quark XPress.

A normal compile-link-debug cycle, however, is not interactive enough to handle
graphical fine-tuning, so I wanted to access these data from a live-programming
environment I had written. In a live-programming environment, the display is
updated after every keystroke, so the program has to evaluate in substantially less than
100 ms to keep the experience interactive. However, the NSScanner-based code I
was using5 was taking 4.8 s to parse the file. Waiting 4.8 s between keystrokes makes
the experience decidedly non-live, so that wasn’t an option.

Looking back at the game dictionary example from the beginning of the chapter,
we saw that splitting a file into lines was very quick if we did it using basic C-String
processing, and once we have the line-indexes we can access the individual lines in
any order, rather than having to process them all sequentially. With that and the
fundamental performance equation items ∗ cost we have the solution: only read the
items required to display the part of the directory that’s visible, a page or maybe two,
rather than all 16,000 entries.

This particular data set was simple enough that componentsSeparatedBy
String: was sufficient to parse the individual rows and turn them into dictionaries
(see Example 13.13). The total time only dropped to 1.55 s for all 16,000
entries—still way too slow, but with the time per entry at 98 μs and only around
200 entries per page, that was only 20 ms for data reading—more than fast enough,
both overall and because reading time was dwarfed by rendering time.

Example 13.13 Simplistic CSV reader

-(NSString*)lineAtIndex:(int)anIndex
{

int *offsets=[[self lineOffsets] integers];
int offset=offsets[anIndex];
int nextOffset=offsets[anIndex+1];
int len = nextOffset-offset-[self eolLength];
return [self subdataWithStart:bytes+offset length:len ];

}

4. The records are large: 133 fields and an average of 1.3 KB per record.
5. http://www.cocoawithlove.com/2009/11/writing-parser-using-nsscanner-csv.html

http://www.cocoawithlove.com/2009/11/writing-parser-using-nsscanner-csv.html
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-(NSDictionary*)dictionaryAtIndex:(int)anIndex
{

return [NSDictionary
dictionaryWithObjects:[[self lineAtIndex:anIndex]

componentsSeparatedByString:fieldDelimiter]
forKeys:[self headerKeys]];

}

The fact that we got slightly faster processing was largely irrelevant; the important
part was providing random access so we could parse only the items we needed.

Public Transport Schedule Data
A somewhat larger problem reading CSVs presented itself in the form of the public
transport schedule data, in order to answer the question, “What are my nearby travel
options using public transport?” The data required for this includes the location of
nearby stops and the departure times for different lines from these stops. Berlin’s main
public transportation company, Berliner Verkehrsbetriebe (BVG), provides this data in
Google’s General Transit Feed Specification (GTFS) format.6 A GTFS feed consists
of a zip containing CSV files; the ones for the BVG feed are shown in Table 13.1.
They represent such concepts as the stops that are serviced, the lines that exist, and all
the individual times that stops are serviced by particular lines.

For the problem at hand, the data of interest is provided in the stops.txt and
stop_times.txt files, extracts of which are shown in Example 13.14. As you can
imagine (and verify in Table 13.1), by far the largest data set is the one describing all
the individual stop times; it weighs in at 118 MB and over 3 million entries.

Example 13.14 Stop and stop time data

stop_id,stop_code,stop_name,stop_desc,stop_lat,stop_lon,...
9003101,,U Hansaplatz (Berlin),,52.5181110,13.3421650,...
9003102,,S Bellevue (Berlin),,52.5197640,13.3469160,...
9003103,,S Tiergarten (Berlin),,52.5144000,13.3364690,...
9003104,,U Turmstr. (Berlin),,52.5258370,13.3424010,...
...
trip_id,arrival_time,departure_time,stop_id,stop_sequence,...
1,18:16:00,18:16:00,9096310,...
1,18:18:00,18:18:00,9096364,...
1,18:19:00,18:19:00,9096311,...
1,18:21:00,18:21:00,9096365,...

6. https://developers.google.com/transit/gtfs/reference

https://developers.google.com/transit/gtfs/reference
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Table 13.1 Main GTFS files for Berlin

File Contents Size Rows

routes.txt Bus, tram, and subway routes 37 KB 1.3K
stops.txt List of stop locations 775 KB 13K

stop_times.txt Times of all routes at the stops they serve 118 MB 3M
transfers.txt Stops that allow transfer between routes 330 KB 13K

trips.txt Each route may have several different kinds of trips 7.5 MB 152K

Issue 4 of the online developer magazine objc.io7 provided a solution to this for iOS
using CoreData on the device and an importer module to prepopulate an SQLite
database offline from the GTFS CSV files. The sample iOS program displays the time
for pure location search and location + time search (in ms): 3.63, 3.26, 3.25, 3.27
(location), 388, 417, 653, 679 (location + time ). Around 3 to 4 ms per location-only
search is fine for interactive performance, but about 1/2 s for the location + time
search isn’t really; we would like immediate feedback (100 ms or less) if possible.

In addition, the offline importer takes more than 22 minutes on a MacBook Pro to
convert the GTFS stops.txt and stop_times.txt files into an SQLite
database. The database is more than 120 MB in size, which makes for a somewhat
unwieldy app or data download, depending on whether the data is included with the
app. Let’s see if we can do better.

Stops
The stops file only contains 13,000 entries, so we can fairly easily read the CSV into
memory at start-up into a StopList, which contains an array of BusStops. Each
BusStop instance has a latitude and longitude read from the file, as well as a name
and an id. Reading the CSV is fast enough that we can just keep the file as is without
converting to some other format, especially with some of the enhancements to CSV
reading that we will introduce a little later.

We use a CoreLocation to get the precise distance comparison via
CLLocation’s distanceFromLocation:, but although that method is very
accurate, it is fairly slow at 13.3 ms per search and is also memory intensive, as it
requires instantiating a CLLocation for every stop for every search. We could use
sophisticated 2D data structures such as k-d trees to optimize the lookup, but a simple
sorted index on latitude (or longitude, it doesn’t really matter) that can prune the
results with a binary search reduces the result set sufficiently for search times to drop
to around 45 μs on the device, after which optimizing further is probably pointless.

The index is a simple array of structs containing a floating point number and an
integer pointing into the BusStop array: typedef struct { float

7. http://www.objc.io/issue-4

http://www.objc.io/issue-4
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latitude; int anIndex; } LatIndex;. After initializing from the BusStop
instance, we sort it using the block-based qsort_b() function. We do have to use a
custom binary search because the one in the standard library requires exact match,
whereas with latitudes and longitudes we are happy to find the closest entry.

Stop Time Lookup
The stop times are a bit more challenging simply because there are a lot more of
them, around three million. We also won’t be able to read the 118-MB data file at
start-up, even with a fairly fast CSV parser. We also can’t search the CSV file on the
fly because the entries are not sorted by stop time, but rather by trip-id. Finally,
adding the times to the search increased search time roughly 100 times in the
CoreData implementation, and it would be nice if that wasn’t the case here.

Fortunately, the data for the stop times are very simple: an hour, a minute, and an
id. Since hours have a nominal range of 0 to 23 (0 to 31 in the data, as they allow
times to wrap-around) and minutes a range of 0 to 59, we can represent them with
integers of 5 and 6 bits, respectively. We will map the stop id to an index into our
array of around 13K stops, so 20 bits are plenty. In total, we now have 31 bits to
represent each stop time, or 4 bytes for the structure shown in Example 13.15. For
3 million stops, that will be an array of about 12 MB, so approximately one tenth of
either the CSV or SQLite representations.

Example 13.15 Efficient binary encoding of a stop time

typedef struct {
unsigned int stopIndex:20;
unsigned int hour:5,minute:6;

} StopTime;

The fact that our lookup parameter “time” is encoded as two rather small integers
also makes lookup extremely simple. Segment the array of stop times into buckets for
each hour and minute in the day and use a 2D array indexed by hour and minute to
point to those buckets. This bucket index is shown in Example 13.16, along with a
structure combining the stop times themselves and the bucket index.

Example 13.16 Index structure

typedef struct {
int bytime[32][60]; // hour, minute

} Buckets;

typedef struct {
Buckets bucketOffsets;
StopTime times[];

} AllTimes;
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With this structure mapped into memory, lookup by time becomes quite efficient,
only taking around 53.4 μs per lookup, roughly a factor of 8,000 faster than the same
operation using CoreData. I mentioned in Chapter 12 that mapped binary
representation is the way to go for best performance; this is an example of that
concept. You might expect that replacing a database query with two in-memory
structures exacts a memory penalty for our performance improvements, but instead I
observed a slight drop in memory consumption, around 4 MB vs. 5 MB for the
CoreData solution. In addition, due to the fact that the structure is mapped, the
memory used remains clean and thus contributes only marginally to memory
pressure, with the system always capable of evicting parts of it without having to send
memory warnings.

I experimented with a few different algorithms for combining the two search
results (location and time). What ended up being fastest was a simple doubly nested
loop, first filtering by location and then searching for the stops that were found in the
buckets for the relevant time interval.

Stop Time Import
So how do we get the stop times from GTFS file into the efficient binary format that
we can use? Once we have an array of StopTime structures, we need to sort it and
create the bucket indexing that makes access so fast. Since we are sorting by small
integers, we can use an efficient bucket sort, one of the few (non-general) sorts that
run in O(n) rather than the theoretical lower bound of O(n log n) for general sorts
based on comparison and item exchange. Example 13.17 shows the code; the
algorithm is as follows.

1. Size the individual buckets, incrementing the bucket count for every instance of
a particular count.

2. Offsets must take the sizes of all the previous buckets into account, so
accumulate the sizes.

3. Create a temporary copy of the StopTimes.
4. Do the actual bucket sort:

a. Place the stop time into its bucket based on hour and minute.

b. Increment the bucket offset of the current bucket.
5. Finally, sort the stop offsets within each bucket using a conventional merge sort.

Example 13.17 Efficiently sorting stops first by time and then by stop id

-(void)sort
{

StopTime *sorted=calloc( count+20, sizeof(StopTime));
Buckets bucketSizes,bucketOffsets;
bzero( &bucketSizes, sizeof bucketSizes );
bzero( &bucketOffsets, sizeof bucketOffsets );
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//--- size the buckets
for (int i=0;i<count;i++) {

StopTime current=times->times[i];
if ( current.hour < 31 || current.minute < 60 ) {

bucketSizes.bytime[current.hour][current.minute]++;
}

}
//--- accumulate counts into offsets
int currentOffset=0;
for (int h=0;h<30;h++) {

for (int m=0;m<60;m++) {
bucketOffsets.bytime[h][m]=currentOffset;
currentOffset+=bucketSizes.bytime[h][m];

}
}
memcpy( &times->bucketOffsets, &bucketOffsets,

sizeof times->bucketOffsets );
//--- bucket-sort by time
for (int i=0;i<count;i++) {

StopTime t=times->times[i];
sorted[bucketOffsets.bytime[t.hour][t.minute]]=current;
bucketOffsets.bytime[t.hour][t.minute]++;

}
//--- regular sort of stop within a bucket by stop-index
for (int h=0;h<29;h++) {

for (int m=0;m<60;m++) {
int offset=bucketOffsets.bytime[h][m];
int numElements=bucketOffsets.bytime[h][m+1]-offset;
mergesort_b(sorted+offset, numElements, sizeof(StopTime),

^int(const void *va , const void *vb ) {
StopTime *a=va;
StopTime *b=vb;
return a->stopIndex - b->stopIndex;

});
}

}
memcpy(times->times, sorted, count * sizeof(StopTime) );

}

How long does this take? All of 280 ms, including the fwrite() that writes the
AllTimes structure to disk, with the sorted StopTimes and the Buckets that act
as the index. The CoreData solution took more than 22 minutes, of which
19 minutes are spent in -[NSManagedObjectContext save], so the binary file
format is not just 8,000 times faster reading, it is also 4,000 times faster writing.
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Faster CSV Parsing
Of the remaining 3 minutes of the CoreData solution not spent in -[NSManaged
ObjectContext save], 2 minutes 15 seconds are taken by CoreData setter
implementations, with the remaining 45 s spread between initializing NSDate (18 s)
instances, splitting fields using componentsSeparatedByString: (also 18 s), and
miscellaneous object housekeeping (9 s). Our simplistic CSV parser in Example 13.13
also takes around 15 s, so the times for CSV parsing are actually pretty comparable,
after subtracting the CoreData overhead and the NSDate creation that we don’t need
because we use hours and minutes as indexes.

However, whereas 15 or 18 s don’t really register when dealing with 21 minutes of
CoreData overhead, they do stick out when compared to 280 ms, taking over 98% of
the total processing time and reducing the overall speed advantage of our solution
from 4,000 to only 88 times. We clearly need a faster CSV parser!

Unlike some of the optimization tasks in this chapter, which required outside-
the-box thinking, this is a straightforward optimization task: identify what is slow,
optimize or remove it, repeat.

Object Allocation
We know that object allocation is expensive, so creating a new NSString for every
field value with componentsSeparatedByString: is definitely going to be at
the top of the list. Replacing componentsSeparatedByString: with the code
in Example 13.18 that uses C-String processing to parse the fields and uses
MPWSubData objects that are re-used via an MPWObjectCache yields a speedup of
3 to 4 times, by far the largest impact of any single measure here. (The code also
removes the temporary NSArray instance, instead reading the parsed fields into an
id array allocated on the stack, for another 47% speedup.)

The code in Example 13.18 also handles some (but not all) of the quoting required
by the Internet Engineering Task Force (IETF) Request for Comments 4180,8 the
IETF standard for CSVs.

Example 13.18 Getting data for fields of interest in a row

-(long)dataAtIndex:(int)anIndex
into:(id*)elements

mapper:(int*)mapper
max:(int)maxElements

{
MPWSubData *lineData=(MPWSubData*)[self lineAtIndex:anIndex+1];
const char *start=[lineData bytes];
const char *cur=start;
int delimLength=[[self fieldDelimiter] length];

8. Shafranovich, Y. 2005. Common Format and MIME Type for Comma-Separated Values (CSV) Files.
Request for Comments 4180, Network Working Group. http://tools.ietf.org/html/rfc4180.

http://tools.ietf.org/html/rfc4180
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const char *end =start+[lineData length];
int elemNo=0;
int mappedElemNo=0;
while ( cur < end && mappedElemNo < maxElements ) {
BOOL quoted=NO;
const char *next=cur;
if ( *next == '"') {
quoted=YES;
next++;
while ( *next != '"' && next < end ) {
next++;

}
}
next=strchr(next, fieldDelimiterBytes[0]);
if ( !next) {
next=end;

}
if ( next && (elemNo == mapper[mappedElemNo] )) {
int len=next-cur;
if ( quoted ) {
cur++;
len--;

}
elements[mappedElemNo++]=[self subdataWithStart:cur length:len];

}
cur=next+delimLength;
elemNo++;

}
return mappedElemNo;

}

Push vs. Pull
Allocating a new NSDictionary object for every row only to discard it
immediately is also wasteful, so we change the API to pass a block into the parser to
parse each row rather than returning an NSDictionary for each row from it:
-(void)do:(void(^)(NSDictionary* theDict, int anIndex))
block. The block in turn gets the parsed dictionary for the row passed to it, as well
as the row number. With this API change, we can reuse the dictionary and just fill it
with new values. This helps a little, but not very much, because clearing entries out
of an NSDictionary is quite expensive, even when using the shared key
dictionaries introduced in iOS 6 and Mac OS X 10.8.

However, the MPWSmallStringTable subclass of NSDictionary that’s also
used by the XML parser of Chapter 4 does efficiently support static key sets with
varying values. For example, you can create the hashes once and access the values by
index afterward, so we don’t have to rehash the same keys over and over again. It also
features fast C-String based lookup that’s not based on hashing. Both measures
together yield around another 30%.
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Keys of Interest
Another feature that yields 30% is the ability for the client to specify keys of interest.
The insight here is that many clients only look at a subset of the keys, yet the parser
expends the parsing effort on all keys, whether they will be used or not.

A general solution to this would be lazy evaluation, triggering parsing only when
the value is requested. The overhead for managing the lazy evaluation can easily
outweigh the savings, especially for the relatively simple operations we’re using here.
In addition, complexity also increases significantly in languages such as Swift or
Objective-C that do not have comprehensive built-in support for lazy evaluation.

So instead of lazy evaluation, we let the client specify the keys that they are
interested in, and the parser will then only parse field values for those keys. The code
in Example 13.18 already incorporates support for keys of interest using the mapper
parameter, which maps field indexes in the file into field indexes in the result set.
After the boundaries of the field are determined, a new MPWSubData is only created
if there is an entry in the mapper array.

Parallelization
The optimizations so far get us to the client code in Example 13.19: it first sets up the
keys of interest (only departure_time and stop_id), parses the departure_
time into an hour and a minute (assuming 2 digits for each), and turns the stop_id
into a stop index using a lookup table we set up earlier while parsing the stops.txt
file.

Example 13.19 CSV to packed binary structure

[timeTable setKeysOfInterest:@[ @"departure_time", @"stop_id"]];
[timeTable do:^( MPWSmallStringTable *d, int i ){

StopTime time;
NSString *arrival=[d objectForCString:"departure_time"];
if ( [arrival length]==8 ) {
const char *buffer=[(NSData*)arrival bytes];
time.hour=twoDigitsAt(buffer);
time.minute=twoDigitsAt(buffer+3);
NSNumber *stopID=@([[d objectForCString:"stop_id"] intValue]);
time.stopIndex=[[stopToNumber objectForKey:stopID] intValue];
localTimes[i]=time;

}
}];

Including sorting and writing of the StopTime array, this code runs in 2.1 s,
more than 7 times faster than when we started optimizing CSV parser. It was now
roughly 600 times faster than the CoreData code and pretty much done in terms of
low-hanging optimization targets—and I probably should have called it a day. The
official justification is that fast CSV reading is generally useful, particularly because
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CSV files tend to be used when there is lots of data. However, I admit that at that
point I just wanted to get to 1,000x.

So I started experimenting with multithreading this code. In theory this should be
possible, because the initial indexing step we’ve retained from the string table at the
start of the chapter means that we are not limited to sequentially processing lines as
they come in. We can partition the table in the middle and let two threads work on
each part, minimizing the thread-creation overhead. That’s one reason the block
argument of the do: method gets the row-index passed to it: The block can
potentially be called with nonsequential rows.

However, I immediately ran into problems with the object cache. Whereas the rest
of the object is immutable at that point, and therefore thread-safe, the object cache
gets mutated many times for each row. Putting locks or @synchronized sections
around the cache did not work at all: not only was the multithreaded code many
times slower than the single-threaded variant, the locks by themselves did not solve
the problem.

Foregoing the object cache altogether did solve the problem, but once again the
multithreaded code was many times slower than the single-threaded code with the
object cache. I then tried having an object-cache per thread, somehow indexing into
a collection of object caches via the thread id. This may have been feasible, but the
complexity just kept increasing and with the additional overheads I was at best close
to breaking even, at least on my machine with two real cores.

Only after giving up did I finally realize that the solution was actually very simple:
one object per thread, so create new objects for the new threads! More specifically,
create copies of the entire CSV reader object, using the cloneForThreading
method shown in Example 13.20.

Example 13.20 Cloning a CSV reader for multithreaded reading

-(instancetype)cloneForThreading
{

MPWDelimitedTable *clone=[[[self class] alloc] initWithData:data
delimiter:fieldDelimiter];

[clone setLineOffsets:[self lineOffsets]];
[clone setHeaderKeys:[self headerKeys]];
[clone setKeysOfInterest:[self keysOfInterest]];
return [clone autorelease];

}

The mistake that I had made was one that I have seen a lot: mistaking the cost of
an object with the cost of the object graph that it fronts. The cost of allocating a new
instance of the CSV reader is the same as allocating a new NSString or a new
NSNumber, it’s just the actual NSData and offset array, and so on, that are expensive.
So if we do a shallow copy of the CSV reader, instantiating the clone with references
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to our instance variables except the object cache, then we get a fresh object cache per
thread at very little cost.

With the cloned copies, we can now spawn separate threads to work on the results,
using a parallelDo: method similar to the parallelCollect: shown in
Example 13.21.

Example 13.21 Parallel CSV reading

-(NSArray*)parallelCollect:(id(^)(id theDict))block
{

int numParts=4;

int partLen=[self count]/numParts + 1;
NSMutableArray *partialResults=[NSMutableArray array];
for (int i=0;i<[self count];i+=partLen) {

int thisPartLen=MIN( partLen, [self count]-i);
MPWDelimitedTable *threadClone=[self cloneForThreading];
NSRange thisRange = NSMakeRange(i, thisPartLen);
NSArray *partialResult=[[threadClone future] inRange:thisRange

collect:block ];
[partialResults addObject:partialResult];

}
NSMutableArray *results=[NSMutableArray array];
for (NSArray *temp in partialResults) {

[results addObjectsFromArray:temp]; // blocks on the future
}
return results; // final array has no more futures

}

The collect: and corresponding parallelCollect: methods are similar to
do: and parallelDo: except that for each row they return a result that is collected
in an NSArray. I am using the parallelCollect: example because
parallelDo: has some additional wrinkles that distract from the essential features
of the code.

First, we decide how many parts we want to process in parallel. In this case, that
number is hardcoded to 4; in real code, it should depend on the size of each chunk
(large enough to make the overhead of parallelization worthwhile) and possibly the
number of available cores. For each part, we create a clone using the
cloneForThreading method shown in Example 13.20. Finally, we use the
future Higher Order Message (discussed in Chapter 3) to spawn the thread. As
discussed there, future returns a proxy for the result that will block waiting for the
result of the asynchronous message as soon as the result is used, but placing it in an
array does not trigger that process.

After all the threads have been spawned, we combine the results into a single array
in order. At that point, the calling thread will block if necessary to wait for the result
to be computed.
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For the client, the only thing they have to do is replace the message name
collect: with parcollect:, or in our case do: with pardo:. The interface is
otherwise exactly the same. The result for our stop times parsing is another 61%
speedup, bringing the time down from just under 2.1 s to slightly less than 1.3 s.
More importantly, the speedup compared to the 22 minutes taken by the CoreData
based importer is now ever so slightly greater than factor 1,000.

This faster CSV parser also works well with the 25-MB database from the
“Comma-Separated Values” section in this chapter: processing time per row goes
down from 98 μs to 20 μs for the entire row, or down to 2 μs when using the keys of
interest feature to only select 1 of the 133 fields. This means that the entire file can be
parsed in anywhere from 34 to 340 ms, depending on how many fields we are
interested in. So in this case we managed to address the items ∗ cost equation from both
ends, with either variant sufficient to get us to interactive performance, and the
combination even better.

Summary
This chapter began with the fairly trivial example of making a word list faster, but we
then picked up some speed and extended that example to a lazy and flexible property
list parser, finishing with an ultra-fast parser for comma-separated files and
memory-mapped binary data representation for public transportation data.

Very similar to what we saw in earlier chapters, we found that primitive data can
be much more efficiently represented by C data types rather than Foundation objects.
On the other hand, messaging provides flexibility that is not easily achievable with C
structures and function calls. This flexibility makes it possible for the object-oriented
property list parser to cooperate with its client to directly create target objects,
avoiding costly temporary representations and making the architecture more stream
oriented. The improvements are around 4x in memory and CPU time for both
parsing and generation.

Having an object-oriented parser also made it possible to create a subclass of the
parser that creates arrays lazily. Lazy loading does not actually increase speed, but it
makes it possible to use property lists with almost arbitrarily large data sets without
having to load the entire property list at once.

Finally, the public transportation example made good on our claim from
Chapter 12 that binary representations that can be mapped into memory are the tool
of choice if you want to go fast. How fast? Over a thousand times faster than an
equivalent CoreData-based program for both querying and generating the data, with
a roughly 10 times smaller on-disk footprint.

Although these examples are obviously not applicable everywhere, and some may
be overkill, they should certainly be a good starting point for getting your I/O into
shape.
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14
Graphics and UI: Principles

Now that we’ve looked at the performance of several lower-level subsystems, the
CPU, memory, and the I/O subsystem, it’s time to put the parts together to build
high-performance user interfaces. That means both drawing those user interfaces
quickly, and also putting everything together so the application reacts quickly to user
requests.

Responsiveness
When we speak of a high-performance user interface, we usually mean one that is
responsive, meaning it responds quickly to a user action. How quickly? Well, in
general as quickly as possible, but there are actually specific perceptual thresholds that
delineate qualitative differences in user perception. These limits are shown in
Table 14.1.

The times that are probably most relevant are the 100 ms for feedback to user
requests and 60 Hz/16(2/3) ms for smooth animation. Both are important for
creating the illusion of directly manipulating objects on the screen, rather than giving
commands to a computer that then does something on the screen a little later. The
25-Hz (often also quoted as 30-Hz) figure is the one used, for example, for analog
film reproduction, but it relies on integration effects such as motion blur that are

Table 14.1 Response time limits

Response Time Limit Effect

10 s Keep user’s attention
1 s User stays in flow

100 ms User is manipulating object directly
40 ms (25 Hz) Multiple frames fuse into motion

16(2/3) ms (60 Hz) Motion becomes smooth
1 ms Fast-moving hand is tracked∗

∗ See http://www.youtube.com/watch?v=vOvQCPLkPt4.

http://www.youtube.com/watch?v=vOvQCPLkPt4
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automatically provided by the analog medium for smoothness. For animations on
digital screens, 60 Hz should be the goal.

The 60-Hz figure is also a fairly tough goal: 16.67 ms is not a lot of time when we
compare it to some of the other times we saw earlier. Basic CPU-bound operations
on a bound number of objects are OK, but even one disk seek of 7 ms probably means
you have already blown your budget when taking into account that you probably
have other things to do and your graphics subsystem is also going to take a little time.

So is 60 Hz the limit? Actually, given current hardware and software constraints,
the answer to that question is yes, the last entry of Table 14.1 notwithstanding.
However, even though animation is smooth at that point, there is actually still room
for improvement. For example, if you are drawing or writing and your pen or stylus is
moving at 5 cm/s (roughly 2 in/s), it will move almost a millimeter in the 16.7 ms it
takes the screen to refresh at 60 Hz. That is a very noticeable distance for the “ink” to
be behind the pen and will result in a “laggy” feel. The same goes for dragging an
object on the screen. If you move your pointing device (finger, mouse, . . .) quickly,
the system can’t really keep up with precision.

Fortunately, something like the mouse cursor is small enough that you can’t
actually locate it precisely enough while it is moving this quickly, so the lag isn’t really
all that noticeable, but drag a larger object and you will notice that it doesn’t track
precisely. Exploiting the limits of human perception, or simply fooling the observer,
is a common technique for keeping up the appearance of responsiveness even when
an actual answer or other result cannot actually be supplied in time.

Software and APIs
On Mac OS X and iOS, user interaction is largely mediated by high-level
frameworks, UIKit for iOS and AppKit for Mac OS X. These kits read user input
from different input devices, translate them into events delivered to client code, and
organize drawing the user interface. A high-level overview of the graphics APIs is
shown in Figure 14.1.

The high-level toolkits provide a fairly large number of ready-made widgets such
as buttons, checkboxes, tables, and text editors. With a few exceptions, the widgets
are both sufficiently self-contained and sufficiently fast for responding within the
thresholds discussed earlier, so performance is generally not a problem.

These widgets are built with a user-extensible view hierarchy based on the class
NSView on OS X and UIView on iOS. A view generally describes a rectangular area
on the screen that it renders, usually using the drawRect: method and for which it
gets to handle use input events. These high-level toolkits do their drawing primarily
via the general-purpose graphics API CoreGraphics, aka Quartz.

Another major graphics API is OpenGL, which is primarily intended for 3D
graphics applications such as games, but which is also used by other APIs due to its
privileged access to accelerated graphics hardware. Additionally, there are APIs for
image or video processing such as CoreImage and CoreVideo, and media playback
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UIKit / AppKit

CoreAnimation, CoreText

Quartz OpenGL

CoreImage
CoreVideo

AVFoundation

Graphics Hardware

Figure 14.1 Graphic API block diagram

using AVFoundation or QuickTime X. Newer additions include SpriteKit for 2D
games and SceneKit as a high-level retained 3D graphics API.

This distinction between retained- and immediate-mode graphics is one that is a
defining characteristic of graphics APIs since the very beginning, when display lists
were retained by the graphics subsystem and used to directly drive the vector cathode
ray tubes (CRTs). In an immediate-mode API, the client sends drawing commands,
and these are executed and leave some effect, be it on a display or a piece of paper. In
a retained-mode API, the API creates objects of some sort or another that are then
maintained by the API and can, for example, be moved later.

Figure 14.2 illustrates the difference with an example of three geometric shapes. In
the retained-mode API on top, the client first creates the three shapes and then these
are maintained by the API in a data structure or database of some sort. To change the
position of the rectangle, the client must remember the rectangle in question and tell
the API to move that object. The API is then responsible for refreshing the scene.
With the immediate-mode API at the bottom, the scene is simply drawn twice, once
with the rectangle having the old coordinates and once with the new.

The primary graphics APIs Quartz and OpenGL are both immediate-mode APIs;
you issue drawing commands and these are executed. OpenGL distinguishes between
its own immediate and retained modes, but these are both immediate mode in the
general sense. SceneKit and SpriteKit on the other hand are retained-mode APIs; you
create nodes that are added to some sort of scene and then managed by the API.

Retained-mode graphics APIs at first appear simpler, especially if the graphical
object hierarchy matches what the application needs. In many cases, a simple
graphical editor can be implemented as a thin wrapper on top of the API. However,
most realistic applications have their own, domain-specific data model, with graphical
primitives generated algorithmically from domain-model descriptions. In this case,
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Figure 14.2 Retained (top) vs. immediate (bottom) mode

you either need complex algorithms to create diffs to the retained model, or you start
throwing the retained model away on each update cycle, having thus created an
expensive immediate-mode API.

UIKit/AppKit are hybrids: the views themselves are retained, but they draw
themselves via the immediate-mode -drawRect: method. This allows you to
define views once and the system takes care of maintaining a consistent overall display
of your image as views are moved, scaled, or modified, with your code being asked to
redraw parts of its view as necessary—but you retain the flexibility of modeling in
domain-specific terms. The three geometric shapes of Figure 14.2 could be
individual views (retained) or drawn by a single drawRect: method (immediate).

Core Animation also straddles the line, but in a different manner that will be
discussed later.
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Quartz and the PostScript Imaging Model
Like so much of our current computing environment, Quartz traces back to the
Xerox Palo Alto Research Center (PARC) as the Bravo system, which later became
the PostScript page description language for printers and typesetters and via NeXT’s
DisplayPostScript client server-based windowing and drawing system and Adobe’s
PDF, PostScript without the programmability, turned into Mac OS X’s Quartz.

One of the unique features of the PostScript page description language on which
PDF and Quartz are based is that it has a precisely defined imaging model. The target
is defined as a raster image, with the source being three distinct primitive types:

1. Raster images
2. Paths, either filled or stroked
3. Text

These three primitives can be transformed by arbitrary affine transformations,
clipped by arbitrary paths and filled with a color, and in later versions of the model a
gradient or other type of non-constant shading. The original formulation of the
imaging model defines the Painter’s Algorithm for rasterization, meaning that the last
primitive to write a particular pixel defines the shade, replacing whatever is there.
Quartz and current versions of PDF use a newer formulation that includes alpha-
blending, meaning that previous values can contribute to new values. Anti-aliasing
depends on this sort of blending operation, because partial coverage of a pixel by a
primitive is simulated by blending the color of the rendered primitive with the
background color already present at that pixel.

What’s important is that the final value of every pixel is defined precisely by the
model and not up to vagaries of the implementation, and Apple has been very
consistent in applying this quality perspective.

In the imaging model, all the primitives above turn into one: the filled path. Text
characters are mapped to glyphs via encodings and then turned into paths via font
programs. Stroked paths (“outlines”) are converted (“stroked”) into two outlines with
the area in-between filled; join and end-cap elements are also added as geometry to
this path to be filled. Curves are converted to straight line segments (“flattened”) at
high enough resolution and then rasterized.

Even raster images are defined as grids of rectangles that can be scaled and rotated
just like any other rectangles. For example, drawing a 256-pixel-wide and
1-pixel-high raster image with values ranging from 0 to 255 is defined to have exactly
the same result as drawing 256 rectangles with gray values from 0 to 1, and the raster
image method was in fact the recommended emulation of gradients before gradients
became an intrinsic: Set the shape you want drawn as a clip path and then draw an
image that represents the gradient, scaled to fill the shape.

Figure 14.3 illustrates these different representations using the example of the
lowercase “a,” rendered in the Times Roman font.
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Figure 14.3 Letter “a” with control points, flattened, and on a raster

Notice that at each step of the conversion the amount of data increases, sometimes
significantly. The letter itself can be expressed in a single byte, the ASCII
character 97. The glyph is also either a number specific to the font or a name. The
outline, however, consists of 3 straight and 34 curved path segments, for a total of
210 floating point coordinates, and flattening the curves into straight line segments
can easily cause the number of coordinates to double or more, depending on the
resolution (484 coordinates in my test). Finally, rasterization of this glyph at 24-point
size and retina resolution results in around 2 KB of raster data in monochrome and
8 KB of full-color raster data with alpha. If you are using super-sampling for
anti-aliasing purposes, the amount of raster data increases even further.

While actual implementations don’t have to implement the mappings this way, and
as a matter of fact usually do not, both text and raster images would be too slow
otherwise. The defined imaging model means that the results have to be
indistinguishable from the accurate but expensive formulation.

OpenGL
The second fundamental graphics API in Mac OS X is the 3D OpenGL API
(OpenGL ES on iOS). OpenGL is a language-independent and cross-platform 3D
graphics API originally developed by Silicon Graphics but later turned into an open
standard. It surpassed the existing open-standard PHIGS largely because, like
Postscript and Quartz, it was an immediate-mode graphics library that was considered
much easier to program than the retained-mode PHIGS.

The graphics model and the primitives supported are very different from Quartz.
OpenGL has vertex arrays that can be accessed by polygon meshes, polylines, or
point clouds. Images are not supported directly, but rather as textures applied to
surfaces. Text isn’t supported at all, so libraries have to be used to convert text to
polygons or bitmaps.
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Although drawing is immediate mode, OpenGL supports uploading resources such
as textures or vertex arrays to the graphics hardware that can be referenced later
multiple times. In OpenGL terminology, this is called retained mode, to distinguish
from a separate mode where all data is specified incrementally.

One issue with OpenGL is that it provides a procedural/call-return API, which is
not a good match for the actual interface to modern graphics hardware, which is
more batch oriented. The mismatch means that code that looks “natural” for the API
is very inefficient, whereas efficient code is extremely unnatural and hard to get right.

Metal
The Metal API is Apple’s answer to the mismatch between the OpenGL API and
actual hardware interfaces. Like the similar Vulcan API from the Khronos group, Metal
is a lower-level API that does not try to hide the underlying hardware interface.

Instead of a call to the API corresponding to some specific state change or drawing
command, the application manages command buffers that it then sends to the GPU.

Graphics Hardware and Acceleration
Although some terms in computer graphics such as “Display List” recall the days
when we still had actual vector displays (where an electron beam was moved to
specific points on a CRT in order to draw precise lines), virtually all displays today are
raster displays. A raster display defines a rectangular grid of picture elements (pixels),
just like a raster image does on the input side.

With modern solid-state displays such as LCDs, OLEDs or plasma screens, the
actual pixel grid is also predefined by the hardware: There are actual individual
picture elements in the hardware for each pixel represented in the frame buffer.

One result of this is that there is a fairly stable environment in terms of the actual
number of pixels that we have to provide, at least once we take the jump to retina
displays into account. An iPhone screen is going to have between 700K and
2M pixels, an iPad in the vicinity of 3M pixels, and an iPad Pro or a laptop up to
5M pixels. So no matter how complex your application is, that is the maximum
number of pixels you have to modify to completely change the entire screen on every
refresh. In Big-O notation, the complexity is O(k).

Despite the number of pixels being a constant, and therefore negligible in terms of
algorithmic complexity, this constant is actually quite large and therefore anything but
negligible in practice. In many cases, producing graphics is the most computationally
intensive task in modern non-server computers.

Over time, this has led to different configurations of hardware support for graphics
operations, some of the most common of which are shown in Figure 14.4. The
simplest configuration (1) is that there is no extra hardware support; it is just the CPU
drawing into main memory, and main memory is also used as the frame buffer to
refresh the screen.
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Figure 14.4 Graphics hardware configurations

This CPU-drawing model has the advantage that it is the most simple and most
general. It was used with great success in machines ranging from the Xerox Alto to
the Apple II and the original Macintosh and NeXT machines. It is also the model
used by Quartz, that is, in general, Quartz draws using the CPU into main memory.

Graphics co-processors (graphics processing units, GPUs) can assist with various
parts of the graphics pipeline, from geometry calculations to pushing pixels in
memory. The separate GPU attached to the same main memory as the CPU (2) was
popular in home computers in the 1980s and 1990s, but seems to have fallen into
disuse.

Today, most graphics hardware falls into the categories of discrete GPU with its
own high-speed video RAM, usually on a separate graphics card (3), or integrated
graphics with the GPU combined with the CPU on the same chip and accessing the
same RAM over a common bus interface (4).

Note that this development is somewhat circular, with specialized hardware
assisting general-purpose hardware, but the specialized hardware then becoming more
general, with modern GPU cards being used for general-purpose computation with
OpenCL and, for example, Intel’s “Larrabee” graphics card architecture consisting of
a large number of reasonably general-purpose x86 core. Finally, the integrated
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Figure 14.5 Triangle bench result

graphics architecture looks a lot like the original CPU-only configuration, and could
be considered a variant of the former.

Despite the fact that these variants look very similar architecturally, they still
perform very differently. For example, I tested drawing 2D triangles yielding the not
particularly well-designed picture in Figure 14.5 on a 13-inch MacBook Pro with
Retina Display and (integrated) Intel HD Graphics 4000.

First I tried this with OpenGL, and therefore utilizing the graphics hardware; see
Example 14.1.

Example 14.1 Triangle drawing benchmark with OpenGL

-(void)drawRect:(NSRect)dirtyRect
{

int iterations=10000;
glClearColor(1.0, 0.5, 0.5, 0.5);
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glPushMatrix();
glScalef(0.4, 0.4, 1.0);
for (int i=0;i<iterations;i++) {

float a = -0.5 + (float)i / (float)iterations;
glColor4f(1.0f, 0.85f, 0.35f + a,0.4);

glBegin(GL_POLYGON);
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{
a*=2;
glVertex3f( 0.0 + a, 0.6, 0.0);
glVertex3f( -0.2 + a, -0.3, 0.0);
glVertex3f( 0.2 + a , -0.3 ,0.0);
glVertex3f( 0.0 + a, 0.6, 0.0);

}
glEnd();

}
glPopMatrix();
glFinish();

}

This OpenGL example was more than 10 times faster than doing effectively the
same drawing via the Quartz code shown in Example 14.2. I saw a comparable result
on a 2007 Mac Pro with a discrete graphics card.

Example 14.2 Triangle drawing benchmark with Quartz

-(void)drawRect:(NSRect)dirtyRect
{

int iterations=10000;
CGContextRef context=[[NSGraphicsContext currentContext]
graphicsPort];
CGContextSetRGBFillColor(context, 1.0,0.5,0.5,1.0 );
CGContextAddRect( context, dirtyRect);
CGContextFillPath( context );
CGContextScaleCTM( context, [self frame].size.width,
[self frame].size.height );
CGContextTranslateCTM( context, 0.25 , 0.5);
CGContextScaleCTM( context,0.2, 0.2);

for (int i=0;i<iterations;i++) {
float a = (float)i / (float)iterations;
CGContextSetRGBFillColor(context, 1.0f, 0.85f, 0.35f + a,0.4);
a*=2;
CGContextMoveToPoint( context, 0.0 + a, 0.6);
CGContextAddLineToPoint( context, -0.2 + a, -0.3);
CGContextAddLineToPoint( context, 0.2 + a , -0.3);
CGContextClosePath(context);
CGContextFillPath( context );

}
}

In both cases, the CPU has 100% utilization when using Quartz, whereas with
OpenGL a few commands are passed to a command buffer for the GPU and then the



From Quartz Extreme to Core Animation 305

CPU is effectively idle, waiting for those commands to finish. Both cases also feature
low-powered CPUs by modern standards.

In addition to benefitting special-purpose hardware, GPUs can also take advantage
of the massive parallelism available in graphics workloads and the huge numbers of
transistors available on current technology chip dies to exploit that parallelism. CPUs
have similar transistor budgets, but simply do not have nearly the same parallelism
available in their workloads.

So whereas CPU designers have to resort to ever more elaborate schemes in order
to squeeze ever smaller performance gains out of their largely serial instruction
streams, additional hardware resources thrown at GPU workloads tend to translate
almost linearly to increases in performance. This is the main reason that GPU
performance is not just much higher than CPU performance (for applicable
workloads), but the performance improvement curve is also much steeper, meaning
that the gap widens with every year.

From Quartz Extreme to Core Animation
Exploiting the performance potential of modern GPUs for system-wide graphics
rendering rather than just for OpenGL-based games has been a driving force in the
evolution of Mac OS X and iOS graphics APIs, starting with pure Quartz
CPU-based rendering and slowly adding accelerated components such as Quartz
Extreme, Quartz GL, and most recently Core Animation.

The most obvious way of leveraging GPUs for Quartz drawing is to map the
Quartz primitives to GPU commands. The problem with this approach is that the
graphics hardware implements OpenGL-compatible primitives, and those OpenGL
primitives do not match the Quartz primitives. OpenGL does not have filled paths; it
has triangle or quadrilateral polygon meshes, no curves. Instead of stroked paths,
there are polylines. While mapping these primitives is possible, for example,
tessellation for converting filled paths to polygons, that translation is expensive. In
addition, OpenGL has a loosely defined rendering model, meaning that hardware has
significant leeway in interpreting commands in a way that is efficient. This looseness
is in conflict with Quartz’s strictly defined imaging model and Apple’s requirements
in terms of graphics fidelity.

However, there is one primitive that translates readily: raster images. And there is a
(hidden) subsystem that deals entirely in raster images: the Window Manager, which
multiplexes the single physical screen between windows owned by a different process
so that every process can draw into its own windows without having to worry about
what other processes are doing.

Via the Window Manager, every graphics API on Mac OS X, whether immediate
or retained, in fact becomes a retained API with the window bitmaps the retained
state, with all the advantages of a retained-mode API: Windows can be moved around
and the consequences of content becoming visible can be handled entirely within the
Window Manager. Unlike many earlier windowing systems, and unlike the view
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hierarchy in AppKit or UIKit, there is no need to involve client code to repaint any
revealed sections, and therefore window manipulation is always smooth, even if a
process is nonresponsive.

Quartz Extreme, introduced with Mac OS X 10.2, took advantage of this
architecture to add at least some level of hardware-accelerated graphics to the system.
Every window in the system was turned into an OpenGL rectangle and the window’s
contents (provided by Quartz or another graphics API) into an OpenGL texture that
is mapped onto that rectangle. Each window’s contents are drawn with whatever API
is deemed appropriate, and the bitmap window contents are then composed together
using OpenGL and the graphics hardware.

This change not only takes advantage of the hardware support in the graphics card
for better performance, for many operations it also removes the load from the CPU
almost completely: in order to move a window, the Window Server just has to
change the coordinates of the rectangle, and in order to bring a window to front or
back it just adjusts the rectangle’s z-value.

Core Animation brings this basic architecture from the WindowServer to the
client programs. Instead of drawing into a shared backing store, each CALayer
maintains its own raster image, and these images are then composed together by a
separate process (the render server on iOS) with hardware support. In essence, each
CALayer acts like a window under Quartz Extreme, and changes to the layer’s
location, transparency or rotation, and so on, can again be handled by adjusting the
geometry of the OpenGL primitive it is mapped to, off-loading the actual bitmap
compositing to the graphics hardware.

Figure 14.6 shows the development from the first, non-hardware-accelerated
window server via Quartz Extreme to Core Animation. As you can see, the increase
in hardware acceleration corresponds with an increase in raster backing buffers in this
graphics architecture. In the extreme case of graphical assets, there is no software
rendering at all apart from decoding those assets; the entire rest of the pipeline is
hardware accelerated. The cost is memory, the resolution-
dependent nature of those assets, and the decoding time of image assets, which can
also be significant.

Just like the separate WindowServer process makes window manipulation smooth,
this architecture makes animations run smoothly regardless of the client. Once all the
layers have been set up, the animations run independently of the calling program, in a
separate process and with hardware support.

This is a highly non-obvious approach to performance optimization because its
basis is the most expensive primitive, the raster image. Raster images take significant
amounts of memory and prodigious amounts of memory bandwidth as those images
are composited into the final result. All other things being equal, the Core Animation
architecture would make things significantly slower, but all other things are not equal
because these operations can easily benefit from the graphics hardware.

In addition, we get gains in simplicity and corresponding predictability, making it
possible to hand off the operations to a separate process, which just sends small
instruction streams to the graphics hardware.
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Drastically reducing the work the CPU has to do to composite the different layers
then creates the headroom to animate these compositions. The fact that the
animations are orchestrated by a separate process and executed on the highly capable
GPU hardware means the system can guarantee much greater degrees of smoothness
and performance than if the client programs were involved.

The performance guarantees in turn allow animations to become a central part of
the user experience. Apart from making the user experience much more “solid” and
realistic, the animations are also extremely useful in order to improve perceived
responsiveness.

If the system starts an animation immediately it will feel responsive to the user,
even if it doesn’t actually have the final answer yet. The time taken by the animation
can potentially be used to come up with that final answer, as long as we can come up
with a good enough proxy for the animation target.
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Summary
In this section, we briefly examined the psychophysical basis for application
responsiveness, looked at the principle characteristics and trade-offs in graphics
programming, and then traced the co-evolution of graphics hardware and APIs in
Mac OS X and later iOS.

This co-evolution has left us with a host of different approaches and trade-offs for
graphics programming, which we will explore in more detail in the following
chapters.
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Graphics and UI: Measurement

and Tools

Just as with other areas of performance, optimizing graphics is usually pointless
without knowing what is slow, and most importantly, knowing whether what you
just did helped or hurt performance.

Measuring graphics performance and responsiveness is in many ways more difficult
than other forms of performance measurement. Typically, the action is happening
deep inside opaque system libraries, separate processes you don’t necessarily have
access to and even separate pieces of hardware that may or may not be introspectable.

What’s more, when it comes to graphics performance, you really start to care
about the timing of individual events, down to the level of tens of milliseconds. In
previous chapters, we cheated a bit by measuring a large number of individual events
and then dividing to get the “timing” for the individual event. This is not entirely
correct; what we got was the average timing.

As we saw in Chapter 14, averages are only marginally useful in graphics timing:
Having all frames of a second of animation delivered in less than 16.6 ms is not at all
the same as having 50 frames delivered in 1 ms and the remaining 10 frames take
90 ms each. Even though the second version is slightly faster on average, it will look
unacceptably jerky, whereas the slightly slower first variant is perfectly smooth.

Fortunately, there are mitigating factors: The system and the tools have a much
better idea of what you are trying to do, and therefore can give you much better
insight into whether you are accomplishing this goal effectively. As an example, if you
are overdrawing a pixel with the same value, this effective no-op can be flagged.

This chapter will look at some of those specialized instruments and the specific
aspects of the graphics pipeline they are designed to report on, as well as show how to
use these tools with the more general tools and techniques we have seen earlier.
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CPU Profiling with Instruments
In the previous chapter, we briefly examined the performance difference between
CPU-based drawing using Quartz and hardware-based drawing using OpenGL.
Figure 15.1 shows the Instruments time profile of the Quartz example.

The top 11 entries of the profile contain the user code, but as you can see, the
total time spent there is only 3.3%. The last user-code entry is a block defined inside
the -[GLBenchView drawOn:inRect:] method and called from
-[MPWAbstractContext ingsave:]. The entire 96.7% remainder of the total
running time is within the Quartz function CGContextDrawPath(). While it may
be interesting that around 50% of that is spent in CGSColorMaskSover
ARGB8888() or rather, its apparently SSE-enabled worker function CGSColor
MaskSoverARGB8888_sse(), that doesn’t really help you much.

The fact that you are spending a lot of time drawing paths may be useful
information, but it doesn’t really tell you why that is the case. Are your paths too
complex, are you doing redundant drawing, or is what you are trying to do simply
too complex for the system to handle? The latter shouldn’t really be the case, because
even Quartz can at least theoretically fill every pixel on screen at animation frame
rates.

When using hardware acceleration, the problem is even worse, because now the
CPU is actually mostly idle and waiting for the GPU. Figure 15.2 shows the
benchmark program profiled for the same amount of time, but this time using the
OpenGL code path that uses the CPU to draw.

Figure 15.1 GLBench CPU profile, Quartz
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Figure 15.2 GLBench CPU profile, OpenGL

Whereas the Quartz example used 2,176 ms of CPU total, this time the CPU
usage is 6 ms, and the actual place where drawing is done is using only 16% of that
CPU time.

When you are using hardware assist, CPU profiles will not tell you where the
bottleneck of your application is.

Quartz Debug
For Mac OS X, a specialized tool for debugging graphics performance problems is
the aptly named tool Quartz Debug. Figure 15.3 shows its main options window and
the framerate meter. Quartz Debug enables global debugging parameters in Mac OS
X’s graphics stack, so it won’t affect just your program, but all running programs,
including Quartz Debug itself, so it is best to quit or at least hide all other
applications except the one under test.

The option I personally find most useful is Flash identical screen updates, pretty much
in the middle of the options window. With this option enabled, Quartz flashes a red
rectangle around areas of the screen that were updated with identical content,
meaning that the drawing was completely redundant and should be eliminated. There
really isn’t any good reason to draw identical content.

Next up is the Flash screen updates setting, which is similar to the previous option
except that it flashes a yellow rectangle on all updates, not just redundant ones. This
option allows you to identify drawing that, while different, may not have to be
refreshed quite as often as it is. Enabling this option can produce a lot of clutter.
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Figure 15.3 Quartz Debug options and framerate meter

The Autoflush drawing option disables the coalescing that usually happens, so every
drawing operation gets flushed to the screen (and potentially flashed using the
previous two options) individually. This produces even more clutter, but the more
fine-grained rectangles may give you a better idea of what exactly was
changed/drawn.

Finally, it should be noted that with Quartz Debug running, your application
won’t perform as usual; all the extra drawing of rectangles imposes a significant
overhead, and usually there is an additional small delay so you can actually see the
rectangles that are being flashed. Try dragging a window with one of the flash
options enabled! Not only do you get lots and lots of flashing, the drag will be very
sluggish. Disabling the delay gets the performance closer to normal, but at the cost of
the flashes becoming even more difficult to identify.

Core Animation Instrument
iOS has somewhat more sophisticated measurement tools available, probably because
the graphics architecture is even more complicated, the hardware still overall
significantly less powerful, and the requirements more stringent. In short, you really
need those tools!
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Probably the primary tool is the Core Animation instrument that’s part of
Instruments, rather than a stand-alone tool like Quartz Debug. This integration with
Instruments can be extremely helpful because you can combine multiple instruments
to correlate problems with possible root causes.

Figure 15.4 shows a problem we saw with animation performance while
developing Wunderlist 3.

The trace is for an iPhone 5S; the dip in animation performance was far more
noticeable on a 4S. By focusing on the area with the dip in animation performance
and then switching to the CPU instrument, we were able to figure out what was
happening—one of our routines was performing a computation that was repeatedly
calling valueForKeyPath: to compute some counts. As you may recall from
Chapter 3, using keyed accessing is orders of magnitude slower than direct access or a
message send.

Figure 15.4 Core Animation and CPU instruments working together
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The simple solution was to make the routine that did the counting faster by
switching away from valueForKeyPath: to using a loop and normal message
sends. Had that not been possible, other options for dealing with this would have
been to delay that computation until later, perform it on a background thread rather
than the main thread, or compute it incrementally.

When the CPU Is Not the Problem
In the previous example, we were fortunate that the problem actually did turn out to
be the CPU, identifiable with the profiling tools we are familiar with from Chapter 2.
But what if that’s not the case? The Core Animation instrument for iOS has a set of
options similar to the Quartz Debug tool we just had a look at, except that the
options are more extensive and tailored to the special iPhone/iPad environments.

As explained in Chapter 14, iOS standardizes on the most bulky and arguably least
efficient representation for graphics: the full bitmap image. This is offset by being able
to leverage the GPU universally, but it means that seemingly small inefficiencies in
data access get magnified hugely due to the sheer bulk of the data being moved. The
Core Animation global options shown in Figure 15.5 focus on these small
inefficiencies with potentially large effects, showing the results visually on the screen
similar to the Quartz Debug coloring options.

Specifically, the following options are supported.

· Color Blended Layers—Alpha blending the source with the target means that
we need to read from the target as well as the source. Not blending eliminates
one read. This flag colors blended layers red and non-blended layers green.

· Color Hits Green and Misses Red—This refers to a cache used by the
system to support the shouldRasterize flag. Usually Core Animation

Figure 15.5 Core Animation instrument global options
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copies/blends the entire layer tree on an update. The shouldRasterize flag on a
layer tells Core Animation to instead cache the rasterized representation of the
sublayers of the layer that the flag is set on.
It does not keep the rasterized bitmap of all the layers with this flag set, however,
but instead has a global cache where a limited number of bitmaps are kept for a
limited amount of time.

· Color Copied Images—This flag shows whether a specific image was able to
be used directly by the GPU or had to be copied/converted by the CPU first (it
colorizes the latter case).

· Color Misaligned Image—This is another flag for fine-tuning memory
access patterns. When images are aligned on word boundaries, all memory
access is done at least a full word at a time. When images are not aligned,
multiple source words need to be read in order to produce each word of output,
and the GPU has to shift and mask the source bits.
Depending on how smart the GPU is, the extra memory accesses either occur
for every target word or just at the edges of the image. Either way, it is better to
avoid misaligned images, and this setting will show you the images that were
misaligned.

· Flash Updated Regions—This flag works the same as the similarly named
Quartz Debug feature: When an area on the screen is changed, the area flashes
in a distinctive color. I haven’t yet found a feature on iOS analogous to the
Quartz Debug “flash identical regions” feature that is so useful for finding
redundant drawing.

· Color OpenGL Fast Path Blue—This shows regions of the screen that avoid
the main compositor and instead are directly rendered using OpenGL.

· Color Offscreen Rendered Yellow—This flag shows regions that were first
rendered offscreen and only then copied to the screen. The extra copy is
obviously a potential performance problem.

Note that like Quartz Debug, these options globally affect rendering on the
affected device, they don’t just affect the application run with Instruments.

To illustrate some of these options, let’s look at the thumbnail view of a
PostScript/PDF viewer for the iPad. Figure 15.6 shows the thumbnail view as it looks
normally, without any colorization enabled. Scrolling performance was a bit laggy, so
I used some of the options here to find out what was wrong.

Figure 15.7 shows the thumbnail view with the Color Blended Layers option
selected. Every single thumbnail is colored red in Instruments (shown as dark gray in
the printed book), meaning that blending was used. As we don’t really want the
background to show through, blending shouldn’t be needed.

The first idea was that the UIImageView was not set to be opaque and that there
was a shadow, which usually requires blending. However, setting the view to opaque
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Figure 15.6 The view without any coloring
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Figure 15.7 Color Blended Layers option showing blended thumbnails
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and removing the shadow did not make a difference; all the thumbnails were still
colored red due to using blending.

In the end, it turned out the problem was the thumbnail images themselves
contained an alpha channel. This alpha channel was not needed because all the pixels
had full/opaque coverage, but this is not something the GPU or the APIs can figure
out, so it had to run the blending operation, only to then always completely
overwrite the target pixel.

The thumbnails were created from the PDF files using a Core Graphics bitmap
context, so the fix was to specify kCGImageAlphaNoneSkipLast as argument to
CGBitmapContextCreate(), instead of kCGImageAlphaPremultiplied
Last. Specifying kCGImageAlphaNone, the seemingly obvious choice for not
wanting an alpha layer, did not work; the function returns an error at runtime.

Figure 15.8 shows the result of the fix: everything is now green in Instruments
(shown as light gray in the printed book), indicating no blending, and with shadows
drawn. Alas, the performance gain was fairly minimal, but sometimes that’s all you
can get, and considering the also fairly minimal effort, it was still a worthwhile
optimization.

Finally, I also looked at the misaligned image (see Figure 15.9), which does show a
few misaligned thumbnail images. As the images should be centered and the width of
the image can’t be controlled, there is no easy way to align the currently misaligned
images, so potentially this will need to stay unoptimized.

If it turns out that the misaligned accesses are a significant performance problem,
the thumbnail-generating procedure could be modified to round the widths of the
image up to the nearest “alignment-safe” value and then draw the actual document
thumbnail centered within the larger thumbnail. However, this would require making
the edges of the image transparent in order to maintain visual fidelity, which incurs
blending costs (see above). Another option would be to compromise on visual fidelity
and draw the thumbnail with a small white border or draw it scaled to slightly
different dimensions.

What Am I Measuring?
We were trying to decide whether to use static image assets or draw using code. One
consideration, though not the only one by far, was the relative performance of the
different techniques. The sample task was drawing the gradient shown in
Figure 15.10.

The code in Example 15.1 draws this gradient using either CoreGraphics or by
loading a prerendered gradient image from either a PNG or a JPEG file, and measures
the time each of these approaches take.
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Figure 15.8 Color Blended Layers option with thumbnails no longer blended
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Figure 15.9 Core Animation instrument, color misaligned
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Figure 15.10 The gradient to draw

Example 15.1 Trying to time image loading vs. image creation

-(void)timeImageDrawingAndLoading
{
CGFloat drawnTime, PNGTime, JPGTime;

CFTimeInterval startTime, endTime;

startTime = CACurrentMediaTime();
self.drawnImageView.image = [self drawnImage];
endTime = CACurrentMediaTime();
drawnTime += 1000*(endTime - startTime);

startTime = CACurrentMediaTime();
self.PNGImageView.image = [UIImage imageNamed:@"Image.png"];
endTime = CACurrentMediaTime();
PNGTime += 1000*(endTime - startTime);
SEL flusher = NSSelectorFromString(@"_flushSharedImageCache");
[[UIImage class] performSelector:flusher];

startTime = CACurrentMediaTime();
self.JPGImageView.image = [UIImage imageNamed:@"Image.jpg"];
endTime = CACurrentMediaTime();
JPGTime += 1000*(endTime - startTime);

[[UIImage class] performSelector:flusher];

NSLog(@"Drawing %f, PNG %f, JPG %f", drawnTime, PNGTime, JPGTime);
}
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The times measured were: Drawing 11.1 ms, PNG 3.89 ms, JPG 0.51 ms, so it’s a
clear case for prerendering everything and storing as JPG, right? We can also
superficially explain the figures: as we saw in Chapter 14, Core Animation is bitmap
based, so drawing is an extra step, whereas images are loaded and stored more or less
directly as the layer’s backing storage.

Not so fast!
It turns out that those timings come from measuring on the simulator (the

numbers are suspiciously low). Also, what’s up with JPG being 8 times faster than
PNG? It’s all a bit weird.

First, I fired up my trusty Instruments to get a rough idea of what was going on,
and there was no image decoding going on in method -timeImageDrawing
AndLoading. Instead, I saw a bit of PNG decoding going on later, during actual
drawing of these views. I did not see any JPEG decoding; it was too quick. This
confirms what we know about image loading and decoding on iOS: It is extremely
lazy, only loading/decoding images when it is absolutely necessary, such as when
drawing.

Some books claim that decoding is also forced by assigning the image property of
an UIImageView or the image property of a CALayer, but I have not actually
seen this in practice.

Running the code on an actual device (an iPhone 5s) yielded the following
numbers: Drawing 3.26 ms, PNG 67.2 ms, JPG 49.1 ms. This time, the roles are
reversed, with drawing being more than 20 times faster than PNG decoding and
15 times faster than JPG decoding. However, the result is also puzzling—since iOS
isn’t actually decoding the images here (which another Instrument run confirms),
what is it doing?

If you look closely using Instruments, it turns out that the times for JPG and PNG
“decoding” in this case are one-time initialization costs of the respective decoders. So
“loading” a second copy of the image is many times faster: Drawing 3.50 ms, PNG
2.54 ms, JPG 1.91 ms. But of course those still aren’t the times for actually decoding
the image; the image times are just reading some metadata for the image from disk
and preparing it for future decoding.

In order to force decoding separately from drawing the image in a view (where it
is difficult to disentangle), we need to “draw” the image in a bitmap context, and
using this we get the following times: Drawing 3.41 ms, PNG 7.19 ms, JPG 8.39 ms.
That is the closest we got to the true time, though it is still not quite correct because
we had to combine decoding and drawing. Apple claims that this is essentially the
same thing as a pure decode, but we can’t be 100% certain of it.

Another anomaly was that although we could now clearly identify the PNG
decode times in a CPU sample, there was no trace of the JPEG decoding. Running
the CPU Profile Instrument with the “Record Waiting Threads” option shows that
the JPEG decoding is sitting in mach_msg_trap(), that is, waiting for another
process that also doesn’t show any CPU activity. The answer, of course, is that iPhones
have a hardware JPEG decoder, use of which doesn’t show up as CPU activity.
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This hardware decoder is very fast for large images, but for small images the
overhead is sufficiently high that even the fairly slow zlib/flate decompressor used for
PNG is faster overall, and specialized software JPEG libraries like TurboJPEG can be
several times faster.

Summary
I hope this chapter demonstrated just how intricate measuring graphics performance
can be. Apart from the complexities due to the number of subsystems involved,
latencies of individual operations actually matter. We can’t just average lots of
operations and get a meaningful result.

However, there is also some hope—for example, the Mark 1 eyeball is a very good
detection mechanism, particularly when coupled with a good electronic stopwatch
(one with large mechanical buttons, not an iPhone). We actually used manual
measurements as a crucial part of performance evaluation at Apple and successfully
diagnosed problems down to one tenth of a second.

In the next chapter, we will take a look at what to do when we find a problem.



This page intentionally left blank 



16
Graphics and UI: Pitfalls and

Techniques

Fast graphics programming is, in effect, an entire industry unto itself with many
books worth of techniques and much more lore passed around online, so we can’t
possibly cover it exhaustively nor even do it justice. For example, we will be taking at
best a cursory glance at OpenGL. What we can do is look at techniques that work for
non-game end-user applications using the regular graphics stack.

Pitfalls
For responsiveness, one of the biggest pitfalls is to perform long or unpredictable
operations on the main thread. This includes all I/O, because as we saw in the
previous sections, even the smallest I/O operation can potentially take a long time.
On the other hand, just putting operations in the background without actually
making the I/O responsive is even worse, and this is something I’ve also seen quite a
bit of: there is no spinning cursor and all the UI seems operational, but nothing
happens. In this case, being on the main thread is preferable as it at least triggers the
system-busy cursor, giving the user an indication of what is going on.

For graphics, one of the biggest and most visible blunders is also one of the most
pervasive techniques for delivering graphics: having all your assets prerendered and
delivered as bitmaps. The likely most extreme example of this technique was the way
magazine apps were created using certain Adobe publishing tools for delivery on the
iPad, with every page of the magazine prerendered as a full-page bitmap, once for
portrait and once for landscape. With I/O being the slowest part of the modern
computer experience, both over the (cellular) wireless and from disk, even if solid
state, this was not exactly a stellar user experience. And when Retina displays came
out, everything looked even more fuzzy instead of getting better.

With the advent of high-resolution retina displays, anything that is artwork, so
digitally generated, should probably be available as vector artwork, if it isn’t drawn
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directly as code. Bitmaps are just much larger and don’t scale, so they have to be
supplied at every resolution, but the idea of “pixel perfect” artwork just won’t die.

No more.
The iPhone 6 Plus has a 1,920×1,080 panel, but rendering actually takes place at 3

times the resolution, so 2,208×1,242 pixels. These two resolutions don’t match, and
so the pixels are downsampled by a factor of 1.15× to the display resolution. Whether
that is accomplished by downsampling pixel art (which happens automagically with
Quartz and the proper device transform set) or as a separate step that downsamples
the entire rendered framebuffer doesn’t matter (much). Either way, there are no more
“pixel perfect” prerendered designs. And what’s more, it doesn’t matter—at 400-dpi
screen resolution, nobody cares about, or can even identify, individual pixels and users
love the screen of the 6 Plus.

If you absolutely have to use bitmapped artwork, there are different optimization
techniques that can reduce file sizes and loading times dramatically, even over the
“optimized” PNG files that Xcode produces. We will look at these in more detail in
Chapter 17.

In terms of basic drawing, the biggest problems tend to be things like overdrawing
(drawing the same pixels multiple times) and redrawing parts of the screen that
haven’t changed. Fortunately, the tools discussed in Chapter 15 will help you
diagnose and resolve those issues, so use the tools!

Techniques
Getting good graphics performance generally means starting with the screen and the
pixels that need to be displayed and working backward, rather than beginning with
the changes to your model and pushing those out to the screen.

On one hand, this means respecting the dirty rectangle(s) provided to you by AppKit
and UIKit when you do draw, and on the other hand it means setting up those
rectangles when notifying the UI layer of changes. The “Too Much Communication
Slows Down Installation” section of this chapter contains a larger example showing
the obstacles we had to overcome in one particular project in order to exploit these
effects, and how drawing performance improved from unacceptably slow to almost
immeasurably fast as a result.

Large complex paths used to be a huge problem in Quartz, due to the fact that
self-intersections need to be computed for antialiasing to work properly and the
geometric algorithm used was quadratic in the number of segments (checking each
segment for intersections against every other). The underlying algorithms have
improved a lot, so this isn’t a huge problem anymore, but path length is still
something to consider, with the sweet spot being medium-length paths.

Instead of repeatedly drawing shapes, use the Quartz pattern facilities. The same
goes for gradients: Use what is built in. The CGLayer facility doesn’t really help
much in terms of drawing performance any longer; the great CGImage rewrite basic
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image drawing is as fast as can be, whereas image drawing has been problematic ever
since the NeXTStep days. However, CGLayer is still an advantage when generating
PDFs, as it will preserve vector information for repeated elements. So CGLayer is a
good thing if you plan to have print or PDF output and have repeated elements.

Considering the potential performance advantages of OpenGL seen in Chapter 15
and the obvious performance of modern games rendering incredibly complex scenes
at high frame rates, accelerating drawing using OpenGL appears to be an absolute
no-brainer. Conceptually this is true, but actually implementing such acceleration has
turned out to be anything but (a no-brainer). Apple made several attempts at
incorporating OpenGL acceleration into Quartz at the OS level, and to my
knowledge all of these were all cancelled. The additional transaction costs tended to
eat up any gains in those parts of the graphics drawing that could be accelerated. A
particular problem is the very immediate, call/return nature of the Quartz APIs,
which maps reasonably well onto the OpenGL API but not so well onto the actual
hardware interface (see the OpenGL/Metal discussion in the “Metal” section in
Chapter 14).

Another is that the graphics primitives are different: Quartz uses filled and stroked
bezier paths, which have to be expensively tesselated to turn them into the shaded
triangles used by the graphics hardware and exposed by the APIs. If shapes are reused,
that translation cost would be easier to amortize over many uses, but the APIs don’t
really provide for that.

Too Much Communication Slows Down
Installation
One investigation that had an unexpected result was looking into the mysterious
slowdown of an installer in a new Mac OS X version. The installer was installing
several thousand small files and previously had performed as expected. With the new
version, the installer had slowed down several-fold, almost an order of magnitude.
I/O rates were much slower than the disk subsystem could support and CPU usage
was negligible, so there did not seem to be an actual bottleneck to explain the drop in
performance.

The Display Throttle
After much head-scratching and tool usage, the culprit was found to be the status
updates the installer was providing. It was displaying the name of every single file it
installed, and in order to make sure the user had a chance to see every single one of
those filenames, it was flushing its drawing to screen after every name. This eagerness
to keep the user abreast of its progress fell afoul of a throttling mechanism inside the
Mac OS X graphics subsystem that limits graphic updates to roughly the screen
refresh rate, nowadays set somewhat arbitrarily at 60 Hz. Trying to flush the screen
more often will simply block your program, as illustrated by Example 16.1.
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Example 16.1 Running at 60 Hz

import Cocoa

class AppController: NSObject, NSApplicationDelegate {
var mainWindow: NSWindow?

func applicationDidFinishLaunching(n: NSNotification) {
let window = NSWindow(contentRect: NSMakeRect(0, 0, 320, 200),

styleMask: NSTitledWindowMask,
backing: NSBackingStoreType.Buffered,
defer: false)

window.orderFrontRegardless()
self.mainWindow = window

NSApp.activateIgnoringOtherApps(true)
dispatch_async(dispatch_get_main_queue()) {

for i in 1...60 {
self.drawSomething(i)

}
NSApp.terminate(true)

}
}
func drawSomething( i:Int ) {

let window=self.mainWindow!
window.contentView?.lockFocus()
NSColor.redColor().set()
NSBezierPath.fillRect( NSMakeRect( 10,10,200,120 ))
let labels=String(i)
let label:NSString=labels
NSColor.blackColor().set()
label.drawAtPoint( CGPoint(x:20,y:20), withAttributes:nil)
window.contentView?.unlockFocus()
window.flushWindow()

}
}

NSApplication.sharedApplication()

let controller = AppController()
NSApp.delegate = controller

NSApp.run()

Running this program with 600 iterations of the display loop on my 8-core Mac
Pro takes almost exactly 10.0 s, same as on my MacBook Pro, with the CPU at over
90% idle on both systems.
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Note that Quartz is smart enough to figure whether there has been any drawing at
all, so just calling flushWindow() in a tight loop will return almost immediately
because it doesn’t actually attempt to do a flush in that case. You need to actually
draw something, though it doesn’t actually have to be different.

Working with the Display Throttle
While there are ways of working around the display throttle, games using OpenGL
can get much higher refresh rates, and it is probably better to actually take its
fundamental lesson to heart: Status updates can happen much more frequently than
the user cares to know about them. For example, I measured an NSURLSession
DataTask via its delegate methods, and it was giving me status updates 273 times a
second when downloading via a 6-MBit/s home DSL line.

Not only am I quite confident that users don’t care about knowing about their
exact download status 273 times a second—I certainly don’t—you actually won’t be
able to read a byte count that gets refreshed that often. For the byte count text, once
a second is probably plenty, whereas progress bars might be slightly smoother if
updated at a higher rate, for example, around 10 times per second.

I have so far used three techniques to avoid excessive UI refresh rates, two of
which actually work. The first technique tends to be very good for essentially
continuous progress monitoring, for example, of download or disk progress. It uses a
timer running at around 10 Hz that queries the progress and updates the display.
Apart from smoothing and limiting progress display, this technique also avoids
model → view communication, which is desirable from an architectural point of
view. The drawback of the timer technique is that the timers have to be started and
stopped independently of the underlying operation.

The second technique, update-request batching, avoids introducing explicit timers,
but does not manage to avoid model → view communication. One way of
implementing update-request batching is to store the update request and then send a
message to deliver the updates at a later point in time, for example, 0.1 s later, a
technique we demonstrate in Example 16.4 in the next section.

The third technique I thought would work was being clever with
performSelector:afterDelay: and canceling previous requests, and in fact I
have seen this technique used many times. Alas, it doesn’t actually work, at least if
there is high enough load for the intervals to be shorter than the delay. In that case, we
just keep cancelling the sending of the update message until the updates stop coming.

Installers and Progress Reporting Today
Considering how egregious this particular problem is, you may think it is rare,
obvious, and simply no longer happens. You’d be wrong—in January 2016, it was
reported that the node package manager npm could be slowed down by 50% to 200%
when the progress bar was turned on, and Microsoft’s auto-updater still uses around
150% CPU (as measured by top on a two-core machine), displaying its progress bars
during updates.
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In OS X 10.9 and iOS 7, Apple introduced explicit support for reporting progress
of long running tasks with the NSProgress class and NSProgressReporting
protocol. The basic idea is to have objects report on progress of individual activities
and then combine those individual reports to obtain the overall progress. Having
implemented a very similar system back in the late 1990s, I can say that this is very
well done.

Alas, Apple completely dropped the ball, or maybe just punted, when it came to
actually reporting progress. The recommended technique for actually reporting
progress to the UI is to observe the percentCompleted property of the top-level
NSProgress object. That doesn’t solve any of the problems we’ve seen, and it adds
the problem that the KVO notification is going to be delivered on the same
background thread that changes the progress status.

In fact, Apple admonishes us: “Don’t update completedUnitCount in a tight
loop,” so they are aware of the problem, and they realize they haven’t actually solved it.

Overwhelming an iPhone
A couple of years ago, I was asked to help out with a newspaper app that was
managing a number of items in RSS-like feeds, displayed using the ubiquitous
UITableView. Every item had UI for indicating the different states it could be in:
not yet downloaded at all, some metadata complete, thumbnail received, with or
without audio, and so on. In addition, it would indicate incremental progress while
downloading audio data because those files could take a significant time to download.

This all worked fine as long as we were working with a single feed of up to
10 items, but once we went into production with 10 or more feeds of 30 or more
items each the app started experiencing significant problems. We tried some obvious
optimizations, for example, moving long-running operations such as thumbnail
generation onto a background thread and refraining from doing unnecessary work
such as synchronizing the entire defaults database for every state change of every item,
but to no avail.

The symptom was that the UI would freeze, sometime for a significant amount of
time, before the app became usable again. This happened especially on first launch of
the app, as it had to do an initial fetch/update of all the items in all the feeds.
Subsequent launches tended not to have as much of a problem because data was
already cached, but there was a bad initial user experience to contend with.

Profiling showed that the time was being spent in UIKit drawing code (text
drawing, table layout). The Cell reuse mechanism advocated by Apple was being used
and working as expected, with no particular overhead from Cell creation. Not much
to do there, right?

Wrong! The problem turned out to be the code in Example 16.2.
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Example 16.2 Model to view notification code

-(void)notifyChanged
{

[[NSNotificationCenter defaultCenter]
postNotificationName: @"UserStatusChanged"
object:nil];

}

Although this code may seem OK and matches a lot of the published example
code for NSNotificationCenter, it actually suffers from two problems. First is the
lack of update-throttling discussed in the previous section, the second is that it is too
unspecific: it just says that something has changed, not what has changed. Without
this important piece of context information, the UI element receiving the
notification (in this case, a table view) has no other choice but to update all of its UI.
Not only is this quadratic in the number of (visible) elements, it also updates the
display for items that aren’t even visible and may not be in the current list at all!

The simple way of overcoming this problem is of course to include the current
object in the notification, which fortunately NSNotification is set up to handle.
Example 16.3 shows this improvement.

Example 16.3 Model to view notification code with context

-(void)notifyChanged
{

[[NSNotificationCenter defaultCenter]
postNotificationName: @"UserStatusChanged"
object:self];

}

The receiving code was then able to retrieve the object in question from the
notification, figure out whether it was relevant at all (contained in the current table),
and then update only that particular row. The code in Example 16.4 combines this
context-dependent refresh with the batched refreshing from the previous section. It
assumes that the table view is managing a list of “items.” A client calls
-refreshItemsFromBackground:, for example, via a NSNotification, which
then determine the index for the item and subsequently uses just that index.

Example 16.4 Code for batched refreshing of table view items

@property (retain) NSMutableSet *indexesToRefresh;

-(void)refreshAccumulatedItems
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{
NSSet *items=nil;
@synchronized(self) {

itemIndexes=[self indexesToRefresh];
[self setIndexesToRefresh:nil];

}
[tableview reloadRowsAtIndexPaths:[itemIndexes allObjects]

withRowAnimation:UITableViewRowAnimationNone];
}

-(void)triggerRefresh
{

[self performSelector:@selector(refreshAccumulatedItems)
withObject:nil afterDelay:0.2];

}

-(void)refreshItemFromBackground:item
{

NSIndexPath* index=[self indexPathForItem:item];
if ( index ) {

@synchronized(self) {
if ( !indexesToRefresh ) {
[self setIndexesToRefresh:[NSMutableSet setWithObject:index]];
[self performSelectorOnMainThread:@selector(triggerRefresh)

withObject:nil waitUntilDone:NO];
} else {
[indexesToRefresh addObject:index];

}
}

}
}

The batching is essentially performed by the code that follows; if we don’t have a
batched set of results, we create one and schedule the refresh. If, on the other hand,
we already have a batch going, then we just add the result to that batch. Picking up is
simple—we pick up the batch, clear it, and refresh the table view. Note that you will
want to clear the batch if anything happens to invalidate those indexes in the
meantime.

It’s Just an Illusion
One of the most important techniques I have learned for dealing with UI
performance issues is faking it. If actually doing the thing you’re supposed to be doing
is too slow, you can often present a facsimile to the user while you catch up and do
the remainder of the work. Or you can animate.

Consistently using animation to hide latencies was one of the really brilliant moves
that made the original iPhone appear to be so fast and immediate/solid, despite the
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relatively puny hardware, and allowed it to maintain this lead even as competitors
rolled out higher-performance hardware and arguably better accelerated graphics.

For example, opening a PDF file and rendering the first page (or double page)
takes some time. However, animating the thumbnail of the file from its thumbnail
size to full screen means that the user is occupied while the system is busily preparing
the PDF. Since the animation can be handled by the GPU, it also mean that CPU
resources aren’t taken away from the underlying task.

Image Scaling and Cropping
In the 1990s, I created various pieces of NeXT software for driving different output
devices, from a high-quality alternate driver for the NeXT Color Printer to high-end
Color Laser Copiers costing tens of thousands of dollars. One of these programs was
eXTRASLIDE (see Figure 16.1), which drove the Polaroid CI-5000S Digital Palette
Film Recorder.

From an engineering point of view, the main part of those programs were the
actual low-level drivers, which frequently employed the SCSI ports to ship

Figure 16.1 eXTRASLIDE application
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high-resolution bitmaps rendered by Display PostScript to the devices using custom
and usually poorly documented protocols.

All of this tended to be performance critical. The Polaroid recorder, for example,
had 4,000-line resolution, which made for 48-MB images, and there were some
real-time requirements for delivering those images. With 1-GB memories on phones,
that doesn’t seem a lot, but our highest-end box was a Canon object.station 41 with
around 32 MB of DRAM and a 100-MHz 486 processor. Although the clock rate
difference suggests a factor 10 to 20 between that CPU and modern ones,
benchmarks show more of a factor 100. In short, this is a much, much slower
machine than even a middling phone today. We considered it “blazingly fast.”

For eXTRASLIDE, we had an additional problem; it needed a little front-end
application to position, scale, and crop the source material (shown in Figure 16.1).
Not a big deal, except that the hardware we had took a significant amount of time to
redraw the source material, meaning live redraw was not possible. Instead, the
standard practice was to draw a rectangular outline to aid positioning and then redraw
the full image once the outline had been positioned.

This was one time that NSImage was actually extremely helpful. It automatically
creates and caches a screen-resolution preview of whatever source material you have
and then renders that. This often causes problems because people forget that they are
dealing with a wrapper, rather than the image the name suggests
(NSBitmapImageRep is the class for an actual bitmap image), but in this case it is
exactly what is needed. The preview image used in eXTRASLIDE was always small
enough for interactive performance, regardless of the size of the original, especially
because, as you can see from the screenshot, we chose to make the actual preview
fairly small.

One last problem was that NSImage will only consider the screen cache valid if
the resolution matches the screen exactly, otherwise it will recreate the cache from
the original representation. Alas, that is exactly what happens during scaling; at each
step the resolution no longer matches and a full redraw is triggered. This is the
“correct” behavior, as resampling an already resampled thumbnail will lead to drastic
quality problems, but of course it also meant that live scaling was not possible.

The trick, shown schematically in Figure 16.2, is to create a new NSImage
instance using only the cached representation from the original NSImage. In this
case, the NSImage has no choice but to scale the low-resolution bitmap, and
therefore live scaling is possible. The low quality of scaling the thumbnail is no

original thumbnail resample
 scaling done

 live rescale

screen

Figure 16.2 Live image scaling in eXTRASLIDE
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problem because while the image is moving, the human eye can’t discern much detail
anyway. Once the live scale is done (button released), we switch back to the original
NSImage, which will then recache a new screen bitmap.

The lesson I learned is that when it comes to interactive programs, you are allowed
to cheat, as long as you don’t get caught. In this example, we can scale the
low-resolution bitmap as long as we’re scaling. While not quite as good as scaling the
source, the difference is not very noticeable as long the image is in motion, and of
course it is much more realistic than moving a rectangle around, so customers
absolutely loved this feature.

Thumbnail Drawing
While working on the award-winning Livescribe Desktop software, the subject of
image, particularly thumbnail drawing, came up again, and again cheating without
getting caught turned out to be the right answer. The Livescribe Smartpen uses an
infrared camera to precisely capture its position as you write on paper with an
aperiodic dot pattern. The desktop application displayed and organized those
captured pages of writing and/or drawing.

For each notebook, the overview mode was supposed to show thumbnails of the
captured vector strokes superimposed on the background of the paper used, which for
obvious reasons was not captured by the pen. Two issues were that those backgrounds
were high-resolution PNG images that were quite slow to render, and the file format
that contained the pen strokes had significant initialization overhead for reading.

How Definitely Not to Draw Thumbnails
The first approach for drawing the thumbnail, shown in Figure 16.3, ran with the
word “thumbnail.” A thumbnail is typically a small image generated from a larger
graphic or document. Our Windows client took that very literally and created
thumbnail images for every page that it saved to disk.

Our Mac team thought they would do the same thing, just better, because OS X
supports high-quality PDFs and Apple had just introduced the CGImageSource
CreateThumbnailAtIndex() function specifically for loading thumbnails from
disk. What could possibly go wrong?

Well, everything went wrong with the approach taken: Because PDF is a
resolution-independent format, every PDF “thumbnail” contained the full-resolution

disk CGImageCGImageSourceCreateThumbnailAtIndex()
pen strokes

pdf save

background

draw

Figure 16.3 How not to draw thumbnails
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PNG, drawing it to the PDF required the PNG to be decompressed and then
recompressed for the PDF generation. Those PDFs “thumbnails” were also very slow
to render, as they contained much more detail than one would ever need. The
inherent slowness of the process was countered by spawning a new thread for every
PDF to generate.

Trying this out just once required a hard reboot of the machine as 200 threads
hogged the CPU and the memory consumption caused continuous heavy swapping.

How to Not Really Draw Thumbnails
While writing PDFs to disk and then rendering those was obviously a classic Bad
Idea™, we were still wedded to the idea that a thumbnail is a specific image, though
we were now willing to entertain the idea that a bitmap image might be sufficient at
low resolution. Apple’s ImageKit (also new) and specifically the IKImageBrowser
View seemed to provide the answer: a fast (OpenGL accelerated!), ready-made view
for images. Perfect, right?

The API is simple enough, all we had to do was provide a data source that would
return individual images of just about any format imaginable.

Alas, the result was still far from ideal, as the screenshots in Figure 16.4 illustrate:
While everything was super fast once all the thumbnails were generated, initial load
was quite slow and visually quite jarring as the individual thumbnails rendered one by
one. What’s even worse is that during the delay that was caused by the overhead of
opening the file, we couldn’t draw anything.

Figure 16.4 Atomic thumbnail drawing
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This got us no love from Amazon customer reviews:

If you have hundreds of pages of notes, it is odd that the software
needs to reload the thumbnails every single time you load up the software.
If you wait a long enough time, as long as the software is open, the
thumbnails will be in memory. But this takes too long! If you close the
program, and re-open the desktop software, guess what? You have to start
over in waiting for the thumbnails to reappear. I don’t know if this is also
true in the windows version, but it happens in the Mac.

The problem was fundamentally still the same as before: we didn’t actually have the
thumbnail images the IKImageBrowserView wanted to display for us. Instead we
had a single large, shared, and slow-to-render background image and vector data
obtained from a separate source, and we had to combine the two to give the
IKImageBrowserView what it wanted, which was fundamentally a slow process.

How to Draw Non-Thumbnails
Fortunately, that very structure that was causing us problems also turned out to
contain the seeds of the solution. Instead of delivering each page thumbnail as an
atomic unit and actual image, we could use plain old Quartz/AppKit drawing to
draw all the pieces to the screen individually in the -drawRect: method of our
ThumbView class.

Just like with eXTRASLIDE image scaling, NSImage was helpful for caching an
optimized, screen-resolution-sized version of the background PNG. We only needed
to do this once per notebook and could then draw that single background NSImage
for every thumbnail. This made the drawing of the background effectively
instantaneous.

However, we still had the problem that getting the stroke data out of the file
format was taking a bit of time. Here again, the solution was to cheat: instead of
waiting until all stroke data was available, we drew all the thumbnails immediately
after having rendered the background so there was something to draw and to look at,
even if it wasn’t the final image.

The result is illustrated in Figure 16.5. First all the backgrounds are drawn while at
the same time the stroke data is retrieved. In the next step, all the stroke data appears
essentially simultaneously.

The on-screen effect was dramatic: Thumbnails seemed to appear immediately and
always be live, touchable objects. The reason is that the thumbnails appear
immediately and then change slightly, rather than appearing one by one fully formed.
This was the solution that shipped and provided users with “immediate”
responsiveness, at which point it feels like you are manipulating the on-screen items
directly rather than giving commands to which the computer responds.

This technique is similar to the launch images (or launch files) that Apple requires
iOS apps to have in order appear fast and responsive “because it appears instantly and
is quickly replaced by the first screen of your app.”
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Figure 16.5 Decomposed thumbnail drawing

The crucial insight for achieving this was to stop viewing the thumbnail as an
indivisible unit, and instead use the structure of our thumbnails (background +
strokes) to our advantage: first, factor out the slow drawing of the background so that
is only done once instead of once for each page, then realize we could display those
backgrounds while waiting for the strokes to decode. The differences in the flows are
illustrated in Figure 16.6.

What we didn’t actually need were faster graphics routines or OpenGL. In fact,
the method that did use OpenGL internally (IKImageBrowserView) was
significantly slower for our purposes than the ostensibly much slower method we
used, which just used plain old Quartz and AppKit drawing. As is often the case, the
structural advantages far outweighed the API costs.

Line Drawing on iPhone
Another aspect of the Livescribe software discussed in the “It’s Just an Illusion”
section in this chapter is a feature called Paper Replay: The pen can record audio along
with pen strokes, and when such an audio session is played, the strokes are animated
in sync with the sound. More specifically, so-called future ink that hadn’t been written
yet at the time currently playing in the recording was colored gray and turned green
as the play-head passed. The effect was that you could see the written text (or
graphic) appear essentially as it had been written in the first place.

On the Mac client, this wasn’t ever a problem. We had straightforward Quartz
code to draw strokes and called that in our PageView’s drawRect: method. For
paper-replay we just added a time-from and a time-to parameter (all the
individual strokes were time-stamped) and drew the strokes twice: once after setting
the stroke color to gray and with time-to set to the current time in the recording,
and once again after setting the stroke color to green and now with time-from set
to the current time in the recording.
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Figure 16.6 Atomic vs. decomposed thumbnail drawing flow

When we ported this code over to iPhone, we made sure to use CoreAnimation,
which was the recommended high-speed API and we were, after all, animating. More
specifically, we used a CATiledLayer because we had to support zoom, and
CATiledLayer even supports internal multithreading, so things should be faster
still. Except they weren’t: on complex graphics, Instruments showed us barely hitting
3 to 4 frames per second with the CPU pegged at 100%. Since we were pushing the
redraws from the animation, redraw commands would also pile up, making the app
completely unresponsive. The Paper Replay feature was effectively unusable,
especially for more complex pages.

What had we done wrong? It’s not that we hadn’t cared about performance; in
fact, our primary technology choices were driven primarily by performance
concerns. We had even investigated speeding up line-drawing performance variations
due to stroke length and had derived a near optimal segmentation of our strokes, but
that only made a 10% to 20% difference; the impact on our problem was negligible.
We started looking at OpenGL, but the problem nagged at me because it didn’t seem
like the problem should be this hard.

Of course, the problem really wasn’t that hard, we had just been blinded by the
shiny technology instead of actually thinking about the problem. Figure 16.7 shows
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Figure 16.7 Two frames of Paper Replay animation with the changed rectangle

two frames of a paper-replay session with some notes for an instrument flying
course—specifically, different ways of entering a hold. The region that actually needs
to be redrawn to get from the first snapshot to the second snapshot is indicated by the
rectangle.

A pen is a physical object moved by a hand; it can only move so far in a given
amount of time. In 1/60th of a second, the time for one frame of smooth animation,
it can’t move very far at all. So only a very small region of the screen can possibly
change between frames, and only that small region needs to actually be redrawn.

Our focus on CoreAnimation had prevented us from seeing this because
CoreAnimation only allows the entire backing bitmap of a layer to be replaced at
once. Both AppKit and UIKit’s view mechanism, on the other hand, allow drawing
arbitrary small rectangular subregions (or unions of rectangular subregions) using the
drawRect: methods and invalidating rectangular sections of a view using
setNeedsDisplayInRect:. On iOS these rectangles are drawn into the layer
bitmap.

Once we realized that UIKit, not CoreAnimation, was the answer, adapting the
code was an easy task. We added a PageView, moved the drawing code there, added
some utilities for obtaining changed rectangles from sets of time codes, and then only
invalidated the rectangular regions for a specific frame. The effect was dramatic:
Where before we had barely reached 3 to 4 frames per second by pegging the CPU,
we were now effortlessly pegged at 60 frames per second, with CPU usage only
rarely exceeding the 2% to 3% range, largely independent of the overall complexity of
the page. Even better, the UI animation was now achieved by pulling from the UI,
rather than being pushed from the audio, so there was no chance of getting
permanently overwhelmed or out of sync.
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Summary
In this chapter, we looked at graphics performance and overall responsiveness.
Although low-level drawing performance is more easily measurable and a frequent
topic for developer discussions, I find that architectural patterns and domain-specific
optimizations usually have a far larger impact. In fact, architectural restrictions of
ostensibly faster low-level techniques that prevent high-level optimizations often have
a far larger impact than the benefits of the low-level optimizations. One particularly
significant point is model-to-view communication, which has become much more
relevant in our network-connected devices because the model can change rapidly
without user input. We will look at a more comprehensive solution to this problem in
the next chapter.
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17
Graphics and UI: Examples

This chapter will look at two concrete examples of tuning larger applications in their
totality: a highly image-centric weather app and the Wunderlist 3 task manager.

Beautiful Weather App
A couple of years ago, I was approached by a young Berlin start-up that had hitherto
worked primarily on puzzle apps and had been very successful with that. Their goal
was to build the most beautiful weather app on the planet, and now that they were
almost done making it beautiful (see Figure 17.1) they hit some snags actually getting
it shippable.

The app was so image heavy that it would routinely crash with out of memory
errors. In addition, there were performance problems. I’ve already discussed some of
the lessons learned in earlier chapters, but one of the most remarkable is still the
rather nasty interaction between memory warnings and threading: If you run your
memory consumer on the main thread, your process will be blocked from receiving
and acting on memory warnings and will likely get killed, even if you could in
principle do something about them. On the other hand, if your memory consumer
runs on a background thread, it is likely that it will continue to consume memory
even as the main thread is trying to do something about the memory warning, also
leading to the process getting killed.

The solution was to have the background thread occasionally “check in” with the
main thread by sending a message to the main thread and waiting for the result,
especially before large allocations. The result would be to give the main thread a
chance to react to any memory warnings and to stall the background thread if such
processing was taking place.

An Update
The main task described in this chapter, however, is the work done for an update of
the application. By this time, iOS device screen sizes and resolutions had multiplied,
and a mix of old and new devices meant that there was a vast gulf in capabilities
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Figure 17.1 Beautiful Weather app

between the most and least powerful devices. Of course the design team wanted even
more animations, more realistic graphics, and an added parallax effect.

At the time I got involved, starting the app could take several minutes, and a single
high-resolution version of the image assets alone took 491 MB all by itself, and those
assets weren’t complete. Adding optimized assets for each device and the missing
graphics would have easily propelled the app to more than 1 GB, but the goal was
staying under the 100-MB limit Apple imposes for over-the-air purchases and
updates.

So the task at hand was to reduce the size of the assets by more than a factor of
five, add support for all current iOS devices without multiplying those assets, and at
the same time dramatically reduce loading times. I have to admit it seemed impossible
at the time.

Fun with PNG
The original version of the app used PNG images, despite the somewhat
photo-realistic nature of the images. I was somewhat skeptical of that choice at the
time, but it was really too late to do anything about it so close to the release, and the
team certainly seemed to know what they were doing with regard to images.

Furthermore, although the images looked quasi-photo-realistic, they were in fact
synthetic, and PNG is generally considered more suitable for synthetic images than
JPEG. The PNGs were highly optimized, using lossy compression to 8-bit/256-color
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palette images and even reducing the color palette further than 8 bit, sacrificing color
resolution for spatial resolution.

Sacrificing color resolution is a good idea in principle because human vision has
much higher resolution for brightness changes than for color changes, but the effort
was probably skewed by the method used: The images were examined in an
interactive tool at several times the original size, and parameters adjusted until a
minimum size was achieved that still “looked OK.” The problem with this approach
is that, due to the fact that images are displayed magnified, spatial defects are
emphasized over color defects. The solution would be to also “magnify” color
resolution, but I am not aware of a way of doing this.

The way the prototype app attempted to avoid having multiple versions of the
assets for each device was also problematic—it saved a version optimized for the
particular device in question (in essence, it downsampled to the appropriate
resolution). In order to not impact the existing rendering code, this subsampling and
saving was done before the normal loading code (see Figure 17.2), resulting in a
horrific first launch experience: The app would just sit for several minutes with a
loading screen and spinner, unable to interact, and the device would get hot.

In addition, iOS’s PNG writing code does not feature the optimization
mechanisms of external tools, so the images saved were 32-bit RGBA, significantly
larger than the originals despite being lower resolution.

Brainstorming
To me, it seemed obvious that the use of PNG format “as-is” would have to be at
least reconsidered. My first ideas revolved around a pyramidal encoding scheme either
similar to or directly using wavelet encodings such as JPEG 2000. The beauty of a
pyramid encoding scheme is that the image is compressed by extracting lower and
lower resolution versions of an image and storing only the differences between those
versions. This means that the act of decompression automatically extracts
lower-resolution versions, and therefore multiple resolutions can be provided with
just one image file.

Alas, JPEG 2000 support on both iOS and Mac OS X is quite slow, so JPEG 2000
itself was not an option. There is also quite a bit of evidence that this lack of
performance is not for lack of trying, but rather inherent to the format and the
technique. So this approach seemed quite daunting, even though our needs would
have allowed for a simpler implementation with fewer levels in the pyramid, and
possibly using other compression mechanisms for encoding those base images.

We also looked at alternative to the flate compression method used in PNG. Flate
compression is a very good general-purpose lossless compressor, but our requirements
aren’t general purpose, they are very specific. For example, we only compress images,
and we care much less about compression speed than decompression speed (flate is
intentionally pretty symmetric). One alternative we looked at was LZ4, which boasts
decompression speeds at least 10 times faster than flate with only slightly worse
compression ratios.
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Figure 17.2 Original loading flow and subsampling/saving pre-pended

In addition, there were even more exotic options such as the precompressed
PVRTC texture format directly supported by the Apple’s mobile graphics chipset.
This data format needs no decoding by the CPU; it can be fed directly to the GPU,
for best possible performance. On the other hand, both compression and quality are
at best mediocre. I also experimented with using actual MPEG movies, which also
have a hardware decoder, but there can only be one of these at a time on iOS and it is
difficult to compose with other objects in the scene.
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Data Points to JPEG
In the end, there were a lot of options on the table, and it wasn’t clear at all what the
right choice might be. We needed data, so I started running experiments, starting
with the common JPEG and PNG image formats.

Not surprisingly, the JPEG format files came out ahead in size, with the 491 MB
of assets compressing down to 87 MB at very conservative 0.7 quality setting with no
visible loss in quality. A bit more surprising was that despite Apple’s recommendation
of Xcode-“optimized” PNGs as the default format, JPEG compressed files decoded
much more quickly, at least on the Mac on which I was running the tests.

The more we looked at JPEG decoding, the more the good news flooded
in—using the TurboJPEG library improved speeds by another 20% to 200%. What’s
more, the CGImageSourceCreateThumbnailAtIndex() that turned out to be
completely useless for our needs in the “How Definitely Not to Draw Thumbnails”
section of Chapter 16 actually did the fast extract of lower-resolution images we were
hoping to get out of JPEG 2000!

A Measuring Hiccup
Of course, I had made the cardinal mistake of not actually running these tests on the
device, and when we actually did run the tests on devices there was a huge downer:
The performance was much worse, especially relative to PNG, which now turned
out to be faster after all! The relative performance difference didn’t make sense to me
because the CPUs are sufficiently alike that even if one is slower, relative performance
differences between the two codecs shouldn’t be as large as we were measuring. The
plot thickened when I compiled a version the Independent JPEG Group’s libjpeg
software, the official reference implementation for JPEG, and got better results than
the Apple libraries.

The answer lies in the fact that Apple actually has JPEG decoder hardware on the
iPhone system on a chip (SOC). This decoder hardware can actually be slower than
software, but always uses much less power, so Apple prefers it even when it is slower.
There is also some constant overhead involved in talking to the hardware, which sits
behind a Mach IPC interface.

Fortunately, it turned out that these overheads are fixed and I was measuring fairly
small images. Figures 17.3 through 17.5 show a more representative set of
measurements with images of different sizes and at different subsampling settings.

For larger images, the fixed overheads are amortized over more data being
decoded, and Apple JPEG easily beats the alternatives, with TurboJPEG coming in a
good second and PNG just unacceptably slow. Furthermore, PNG actually gets
substantially slower when subsampling, whereas the JPEG decoders are really able to
get generous speedups by doing only partial decoding.

In the end, while the relative performance degradation of small images is
significant, the absolute slowdown is not that much because the images are small. Just
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one medium-sized JPEG “pays” for the cost of almost a hundred small images, and if
there is a really large image there just is no contest. Additionally, the hardware
slowdown was model specific, with the device I had been testing being one of the
slowest.

So things were actually much better than our first device tests had suggested, and if
all else failed we could fall back on the libjpeg code or get TurboJPEG to work.
So it looked like we didn’t need the frankly slightly scary rocket-science ideas we had
thought up after all; JPEG was going to give us all we need.

JPNG and JPJP
There was one final hurdle: many of our assets were composited together to form the
final scenes, and so used a lot of transparency, but JPEG doesn’t support transparency.
Again, we were fortunate that someone else had been here before and solved that
particular problem: Nick Lockwood came up with the JPNG file format, which
combines a JPEG and a PNG into a single file, with the JPEG providing the color
information and the PNG the alpha mask.

At first, using a PNG for the alpha channel seems a little oxymoronic. Yes, PNG
supports alpha, but we are not encoding an image with alpha, we are encoding just a
simple grayscale image that acts like an alpha channel for a different image. On the
other hand, alpha channels are usually much more blocky than images, and so even
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flate compression should work quite well. Despite this, there really isn’t a good reason
for having the alpha channel being a PNG, and for us it was a serious limitation
because it would mean that one fourth of the data would have to be downsampled
from highest resolution after all.

Instead, we decided to update the JPNG format so that it would also use a
(grayscale) JPEG image for the alpha channel. In addition, we modified the library’s
APIs to allow specification of an image resolution/size, as well as the implementation
to use CGImageSourceCreateThumbnailAtIndex() in order for the
extraction of lower-resolution images to work.1

A Beautiful Launch
In the end, we pulled off the impossible task we set ourselves at the start. The app
stayed within the 100-MB limit, it supported all the new devices, and the designers
were happy with all the new graphics and animations they could add. And the users?
They love it, with the app garnering 4.5+ star ratings on both the U.S. and the
German App Stores, and frequent reports of the app being the right pick-me-up in
the morning.

One final benefit of our JPEG subsetting mechanism is that on very old and slow
devices, we can very quickly load a significantly reduced-resolution image (one
fourth or even one eighth resolution) so the user sees something resembling the final
scene while the high-resolution artwork is loading.

There is still more we could do. We never integrated software JPEG decoding, so
all decoding has to funnel through the hardware decoder. This is obvious from the
CPU profiles, which show CPU utilization substantially below 100%. Even if the
hardware is generally faster, adding two software decoders seems like it could at least
double decoding throughput, especially if we manage to sort the images so that larger
images are preferentially decoded by hardware and smaller images preferentially
decoded by software. We could also add a few images in PVRTC format that work
well with that compression, and maybe decode a few of the animation sequences
from MPEG movies. The idea is to utilize as many of the available hardware resources
as possible, as long as they don’t start stepping on each other.

But that is for later.

Wunderlist 3
In late 2013, I was asked to help out the 6Wunderkinder team with the launch of
Wunderlist 3, particularly the architecture of what we collectively, and still
unironically, call the Objective-C clients: Mac and iOS. I was so impressed with the
team and the product that I joined.

1. The code is at https://github.com/mpw/JPNG/.

https://github.com/mpw/JPNG/
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A year and a half later, Microsoft was so impressed with the team and the product
we had built in the meantime that they bought the company, meaning your loyal
Apple scribe is now in the employ of the evil empire of Redmond. And loving it!

Wunderlist 2
Version 2 of Wunderlist was in many ways a wonderful product, and users generally
loved it, but performance and stability were not its strong suits. After I downloaded
and launched it for the first time, it crashed almost immediately and consistently for a
couple of times before finally stabilizing.

The Mac and iOS clients used CoreData for their data model as well as for
connecting UI components. As we saw in Chapter 12, CoreData is OK for small
amounts of data and simple use-cases with lax performance requirements. High
performance with medium to large data sets is at best challenging, and the team
found they had to create ever more elaborate and fragile workarounds to keep
CoreData from blocking the main thread with I/O.

Overall Architecture
The overall architecture of the Wunderlist 3 Objective-C clients is shown in
Figure 17.6. There is really not that much special about this architecture. It has an
in-memory model, which is initialized from a persistent (disk) store at start-up. The
memory model is kept in sync with the UI (bi-directionally) and with the back end
(also bi-directionally). We also keep the disk store in sync with the memory model,
but there is no need to go in the other direction because the disk store is private to
the application.

However, it is exactly this simplicity that makes excellent performance possible:
The boundaries between the different subsystems are clearly delineated and the
division of responsibility is obvious. For example, neither the model objects nor the

UI

memory model

persistence

back end

Figure 17.6 Overall Wunderlist architecture
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in-memory store know anything whatsoever about storage or network I/O, therefore
it is not possible to have surprising interactions. At most, they know how to turn
themselves into dictionaries, which outside code can then serialize to some eternal
data format.

Another way of expressing the same architecture, this time in code, is
Example 17.1. The |= and =|= operators (like the solid arrows in Figure 17.6)
denote dataflow constraints, which act very much like spreadsheet formulae and can be
regarded as permanent assignments, so just like a normal assignment except that the
system maintains the relationship.

Example 17.1 Wunderlist client architecture expressed as dataflow constraints

memory-model := persistence.
persistence |= memory-model.
ui =|= memory-model.
backend =|= memory-model.

URIs and In-Process REST
The underlying architectural model for the memory-model and the persistence store
is In-Process REST, an adaptation of the REST architectural style for use within an
application. All the entities are referred to via identifier objects that take on the role
of URIs; in Wunderlist these are instances of the WLObjectReference class that
encode an entity type, a container id, and object id. A container id is the id of an
enclosing object, for example, the list id of the list that a task belongs to. Not all
objects have an explicit container; for example, lists or the logged-in user are located
directly under root. Example 17.2 shows a couple of example
WLObjectReferences represented as string URIs.

Example 17.2 Internal URIs

task://container/2/id/3
list://id/2/
task://container/2/
task://id/3

URIs are structured. For example, the first URI in Example 17.2 refers to the task
with the object id 3 within the list with id 2. The second URI is the list object with
id 2. The third URI is the array of all tasks in the list with id 2. The last URI refers
to just the task with id 3, without giving a list id. In our current implementation, that
requires searching for that task in all lists.

Storage is organized as a series of objects that act like little Web servers, except that
they don’t use the HTTP protocol to communicate, but rather the ordinary
Objective-C message protocol shown in Example 17.3. As you can see, the message
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roughly correspond to the GET, PUT, and DELETE verbs, with the only wrinkle
being that we generally talk about arrays of objects, rather than single objects at a
time.

Example 17.3 Storage protocol

@protocol WLStorage <NSObject>

- (NSArray*)objectsForReference:(WLObjectReference*)ref;
- (void)removeObjectsForReference:(WLObjectReference*)ref;
- (void)setObjects:(NSArray*)new forReference:(WLObjectReference*)ref;

@end

This same protocol is used by the in-memory store, the disk store, and the objects
representing the REST back end, so stores are largely interchangeable. For testing, we
can substitute a second in-memory store for the disk store or the back end or both,
speeding up testing significantly. The fact that the protocol is so simple also means
that it is composable. For example, we have filters that add computed entities to the
store hierarchy that can be accessed in the same way, or multiple persistent stores that
optimize storage for specific entities.

We can compute with WLObjectReferences independently from their
referenced objects. For example, we can determine the disk path and the back-end
URL. As we saw in Example 17.2, we can also determine the group an object is in
just by chopping off the last pieces of the URI.

An Eventually Consistent Asynchronous Data Store
Considering the previous experience with CoreData, keeping the data store simple
and fast was one of the biggest priorities in the initial design. I think we succeeded:
our CTO likes to shock people at conferences by telling them we store our data as
individual JSON files on disk. This has worked remarkably well—as you may recall
from Chapter 12, the JSON format is one of the fastest to encode and decode using
Foundation methods, and it also happens to be our wire format for talking to the
back end, so keeping those formats the same has proved to be fantastic for debugging.

This simple mechanism has proved to be surprisingly fast. Our other clients use
databases or sophisticated serialization formats, yet the Objective-C clients are
consistently fastest, especially when dealing with our stress-test accounts that have
more lists and tasks than a sane—no, than even an insane user would ever have. This
is despite the fact that there are many things obviously wrong with this format. For
example, we write way too many small files. However, whenever I thought I had
found a problem that warranted finally changing to something more sophisticated
(otherwise known as less brain-dead), the problem turned out to be caused by a
simple bug that was solvable with an easy fix.
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The simplicity of the data store is helped by the fact that our back end consists of a
loose federation of microservices that at best offer eventual consistency between
different entities. This means that our consistency requirements are no more than the
canonical store, so keeping the individual files consistent by passing YES to the
NSData method writeToFile:atomically: is quite sufficient.

All writes to disk are asynchronous from the main thread; however, they are
executed synchronously in a loop from a single background thread responsible for the
disk. The main thread just sends the URIs of objects it wishes to save to the
background writer thread via a queue. When the background writer thread gets to
the a particular URI in the queue, it fetches the current up-to-date entry from the
memory store and serializes that to disk.

Since the disk writer always saves the most current version, multiple write requests
can be coalesced by simply discarding duplicate write request URIs from the queue.
This helps minimize the load on the disk subsystem.

RESTOperation Queues
In the previous section, I mentioned that write requests to the file writer are sent via
a queue. This queue is a WLRESTOperationQueue, instances of which we use
throughout the system to connect asynchronously acting entities. They are, so to
speak, the secret sauce for keeping Wunderlist responsive while at the same time
interacting with the network and managing persistence.

As the name suggests, a WLRESTOperationQueue consists of a Queue of REST
operations, each of which consists of an WLObjectReference coupled with a
REST verb (GET, PUT, DELETE) that tells the target what it should with the
reference. What that operation means depends on the specific target. For the disk
store, receiving a PUT means that the objects specified by the URI should be saved
to disk; for the Web interface it means to send an HTTP PUT to the back end.

Each queue can be added to from any thread and maintains its own worker thread
to service the entries. It can optionally deliver results to a specified target thread that’s
different from the service thread; for example, the main thread. Compared to GCD,
having a single worker thread per queue drastically reduces the number of threads
with their corresponding resource consumption.

WLRESTOperationQueue objects support coalescing by automatically rejecting
duplicate entries. Getting this right crucially depends on the entries in the queue
only being references. It took us quite some time to figure this out, with the
WLRESTOperationQueue in its present form only appearing after about a year of
development.

All the variants we tried with actual object pointers led to undesirable results (here
with the example application of writing to disk).

· Writing mutable objects to the queue and mutating them after they’ve been
written has the object potentially being modified as it is being saved. That’s a
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bad idea, and the solutions would involve incredible amounts of locking while
probably still allowing conflicting mutations.

· Placing copies in the queue would potentially mean the same object being
written one time for every modification made. This would lead to massive
performance degradation during high-load situations, just the time when you
need performance to remain good.

· Purging the most recent addition (the way we do with the URIs) would mean
that only the first update gets written; later updates get lost until the object is
modified again.

· Purging the oldest addition can easily lead to situations where an object that
keeps getting modified is never written to disk.

With our URI queues, high-load situations simply mean that more changes are
accumulated together, with the disk subsystem maintaining its highest possible
throughput. So far, we’ve had very few situations where disk writing wasn’t able to
keep up, and they were all due to minor bugs that were easily fixed.

A Smooth and Responsive UI
For the UI (Figure 17.7), we used effectively a classic MVC approach, which is
expressed as the ui =|= model line of the Wunderlist architecture. In classic MVC,

Figure 17.7 Principal Wunderlist UI elements
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the UI pulls data from the model when it is ready and the data is needed, compared to
Apple’s take on MVC that features controllers pushing data to the UI from the model.

Leaving the UI in charge to update itself when it is ready has always been a
fundamental tenet of MVC that is largely ignored by current ViewController
programming practice, but it becomes even more crucial when coordinating
animations with asynchronous operations adding more data while those animations
are running. Trying to coordinate this in a push model becomes almost impossible
and has led to complex solutions such as FRP and React, but good old MVC always
had the answer: just notify the UI (without pushing data) and let it decide when to
update itself.

In our case, UI elements are parametrized with the URIs of the objects they are
supposed to represent. They can then obtain the most up-to-date version of those
objects from the memory store by sending the objectsForReference: message
with that URI.

That same URI is also used in update notifications. We use the basic Cocoa
NSNotificationCenter approach and parametrize it with the URI in question.
The UI element can then compare the URI to the one it is responsible for to figure
out whether it needs to update itself.

As we saw earlier, URIs can be related to one another, so for example if a task
with the URI task://container/2/id/3 is modified, a list view showing the
list task://container/2 can also update itself.

We use the WLRESTOperationQueue objects to decouple the UI thread from
model changes that can happen on any thread. When the model changes a particular
object, it posts the URI of the object to a queue that is set up to deliver “model did
change” NSNotifications to the default NSNotificationCenter on the UI
thread.

The coalescing behavior of those queues neatly resolve the problem of keeping
update latencies as low as possible for single changes while at the same time not
overloading the UI with massive numbers of back-to-back changes when those
occur, but also not missing any updates.

For the UI, we actually had to add one more feature: auto-coalescing. In normal
operations, we want every single element to be updated individually and immediately.
As load increases, however, this makes less and less sense. When you are getting
hundreds of new list tasks sent to your device, having each one animate into place is
not just useless, it becomes downright annoying and confusing.

The way auto-coalescing works is by monitoring the depth of the queue. As the
queue gets fuller, the coalescing level is increased, removing more and more elements
from the back of the URIs entered into the queue. With coalescing set to its default,
a URI like task://container/2/id/3 is entered into the queue as is, and
coalescing will only affect changes to that specific task.

If auto-coalescing bumps the coalescing level to 1, one element is removed from
the back of the URI, leaving only the container: task://container/2. This has
two effects: on one hand, the entire list will now be refreshed in the UI, instead of
just the specific task. On the other hand, coalescing will now also merge all updates
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to individual items in that list, so instead of having multiple updates to items in the
list, we get one update to the entire list.

Finally, if updates still outpace the ability of the UI to keep up, coalescing level 2
chops everything off the end of the URI, leaving just a general “UI needs to updated”
and merging all UI update requests into one at the rate the UI can refresh itself.

With this mechanism in place, we’ve never again had to worry about the UI not
being able to keep up with changes or becoming unresponsive during heavy updates.
Except when we introduced bugs.

Wunderlist in Short
The architectural elements presented here are obviously not the full Wunderlist 3
performance story. We also had our tremendous back-end team giving us fast HTTP
and WebSocket interfaces, and the team did low-level and detailed performance
investigations and tweaks as necessary. The architectural elements, however, ensured
that these investigations tended to be rare and straightforward, the tweaks small and
simple, rather than fighting performance all the time.

I also don’t want to imply that this is the only way to achieve performance, or that
it is impossible to achieve good performance using any of the technologies that we
avoided. I do think that applying these techniques and the underlying principles
makes it not just possible, but straightforward to achieve amazing performance given
the tools at our disposal, and awesome performance is a crucial ingredient for apps to
get to 5 million monthly active users, as well as rave reviews and regular 4.5- to 5-star
ratings in the app stores.

Summary
In this chapter, we looked at two examples of “putting it all together” to make great,
high-performance apps. The Beautiful Weather app was the more extreme case,
pushing the boundaries on a very specific performance aspect (loading and displaying
large image sets) and achieving something that seemed utterly impossible, in the end
with room to spare. It required careful analysis of hardware and software capabilities,
tweaks to the requirements, a bit of thinking outside the box...and defining a new
custom image file format that’s a version of another custom image format.

Wunderlist is a more typical example of a modern mobile application with a mix
of data storage, real-time network access, and fluid UI updates. It puts together
lessons learned from earlier chapters—for example, working mostly in-memory and
eschewing database engines, whether relational or not, for simpler and faster storage
mechanisms. It generalizes the update mechanism from Chapter 16 for throttling UI
updates into an architectural element now used to coordinate and simplify all the
parts of the app: network layer, data storage, memory model, and UI.

Both examples showed what is possible with today’s pocket supercomputers, and
neither, in the end, required pushing the hardware to its limits in order to achieve
extraordinary performance.
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Hardware

disk drives, 205–207
I/O, 205
SSDs (solid-state disks), 207
sysctl listing of hardware information,
100

Hardware acceleration

CPU profiling and, 310
graphics hardware and, 301–305

Heap allocation

controlling growth with autorelease
pools, 151

dynamic memory, 110–113
garbage collection and, 114
leaks and, 141
tagged pointers avoiding, 5

heap command, 121–124

Heapshot Analysis, 127–129
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Hess, Helge, 188

Hoard allocator, in heap allocation, 110

host_statistics(), for internal
measurement of memory, 125–126

HTML scanner, example of simple XML parser,
80–83

HTTP

I/O performance and network stack,
213–214

overlapping transfers of network requests,
233–234

request handling by HTTP server,
238–242

REST operation queues, 354–355
throttling network requests, 234–236
URIs and In-Process REST, 352–353

Hybrid languages

power of, 10–11
Swift as, 6

I
I/O examples

avoiding intermediate representation of
property list, 279–281

binary property list reader, 271–276
CSV (comma-separated values), 282–283
faster CSV parsing, 288–293
iPhone game dictionary, 267–271
lazy reading, 276–278
overview of, 267
public transport schedule, 283–287
summary, 293

I/O generally

concurrency for I/O latencies, 75
madvise system improving
performance, 156–157

memory mapping and, 155–156
pitfalls of graphics and UI, 325

I/O measurement and tools

analyzing negative space, 216–217

detailed tracing using fs_usage,
221–224

Instruments tool, 218–221
overview of, 215
summary, 224
viewing summary information, 217–218

I/O pitfalls and techniques

archiving/unarchiving objects, 249–252
asynchronous I/O, 237–238
CoreData class, 253–254
creating/updating objects in batches,
254–256

data analysis, 261
Event Poster pattern, 264–265
fault and fetch techniques, 256–260
handling network data, 236–237
HTTP servers, 238–242
launch performance, 228–230
memory dumps, 244
memory mapping anomaly, 226–228
network I/O and, 232–233
object interaction, 260
overlapping transfers of network requests,
233–234

overview of, 225
property lists, 246–249
reading bytes into memory with
NSData, 225–226

reading bytes into memory with Unix
functions, 230–232

relational and other databases, 263
segregated stores, 265–266
serialization, 242–243, 252
SQLite, 261–262
subsets of data, 260–261
summary, 266
throttling network requests, 234–236
XML format and, 244–246

I/O principles

abstraction of byte streams, 208–210
disk drives, 205–207
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file system I/O, 210–213
hardware, 205
network, 208
network stack, 213–214
operating system, 208
overview of, 205
SSDs (solid-state disks), 207
summary, 214

ILP (instruction-level parallelism), 11

Images

brainstorming format options, 345–346
scaling and cropping, 333–335
Swift processing example, 189–190

Immediate-mode graphics, 297–298

IMP (implementation method pointer) caching

compiler assistance for, 201–202
overview of, 66–68
tuning up XML parser, 93

In-Process REST, URIs and, 352–353

Installers

progress reports and, 329–330
slowdown from too much
communication, 327

Instruction-level parallelism (ILP), 11

Instruments, Core Animation, 312–314

Instruments, CPU measurement

basic analysis using, 27–29
data mining using Focus feature, 32–34
data mining using pruning feature, 34–35
overview of, 22–23
profiling options, 25–27
selection options, 24
setting up and gathering data, 23–24
viewing source code and assembly code,
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Instruments, I/O measurement

comparing memory mapping with
read()_, 226

measuring performance, 218–221

Instruments, memory measurement

Allocations instrument, 127–133
Leaks instrument, 126–127
overview of, 126
VM Tracker instrument, 133–135
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generics specialization, 193
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representation of data using primitive
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Integrated graphics, 302

Intel Core i7-2677M CPU, 99–100

Internal measurement

dtrace tool, 38
memory measurement, 125–126
overview of, 35–36
testing, 37

Invert Call Tree setting, analyzing bottlenecks
in object allocation, 87

iOS

allocation tracking/capture, 133
archiving/unarchiving objects, 249
based on NeXTStep, 58
caching caveats and, 56
death of optimizing compilers and, 199
device memory, 99
garbage collection, 116
graphics files supported, 345–346
image loading and decoding, 322
measurement tools, 312, 314–315
memory management considerations,
157

network stack, 213
NSPersistantContainer class, 254
as Objective-C client, 350–351
OpenGL and, 300, 305
parsers, 86
profiling options, 25
progress reports on long-running tasks,
330
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property lists, 246
response to lack of free memory, 126,
155

shared key dictionaries, 289
SQLite use with, 261
UIKit, 51, 295–296, 340
updates, 343–344
URL-loading system, 235
virtual memory, 105–106
WAL (write ahead logging), 262

iosnoop tool, comparing memory mapping
with read()_, 226
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217–218

IP, network stack, 213
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cost of operations, 13–14
game dictionary, 267–271
hiding speed issues, 332–333
line drawings on, 338–340
overwhelmed (UI freeze), 330–332
pitfalls of graphics and UI, 326

J
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JavaScript Object Notation. See JSON
(JavaScript Object Notation)
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brainstorming image format options,
345–346

data points in Weather app, 347
JPJP formats, 349–350
launching Weather app, 350
loading prerendered gradient, 318,
322–323

measuring performance issue in Weather
app, 347–349

PNG compared with, 344–345
JPJP format, 349–350

JPNG format, 349–350

JSON (JavaScript Object Notation)

consistent asynchronous data store,
353–354

Freddy JSON parser example, 189
OS X and iOS support, 246–247
parsing, 59
serialization, 252
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Key-value stores

representing structured data, 41–42
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Keys of interest, in faster CSV parsing, 290

Kitura Swift Web framework, 201

Knuth, D.E., 75–76

KVC (key-value coding), 51

KVO (key-value observing), 51

L
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concurrency for, 75
cumulative, 234
hiding issues, 332–333
I/O latency, 155
managing memory, 146
network, 208
throughput and, 205

Launch, Weather app, 350

Launch performance, comparing warm and
cold launch speeds, 228–230

lazy collection, Swift, 278

Lazy evaluation, using caching, 55–56

LCDs, graphics hardware, 301

Leaks, avoiding object leaks in reference
counting, 139–141

leaks command, 124–125

Leaks instrument, 126–127
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LevelDB, hybrid forms of Event Poster pattern,
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libcache library, in memory management,
153

Line drawings, on iPhone, 338–340

LISP, number and magnitudes hierarchy, 43–44

Lockwood, Nick, 349

M
Mac OS X

AppKit, 296, 340
archiving/unarchiving objects, 249
based on NeXTStep, 58
cost of operations, 13–14
death of optimizing compilers and, 199
device memory, 99
garbage collection, 116
graphics files supported, 345–346
memory management considerations,
157

network stack, 213
NSPersistantContainer class, 254
as Objective-C client, 350–351
OpenGL and, 300, 305
parsers, 86
progress reports on long-running tasks,
330

property lists, 246
response to lack of free memory, 126,
155

shared key dictionaries, 289
SQLite use with, 261
URL-loading system, 235
virtual memory, 105
WAL (write-ahead logging), 262

Mach memory, layout of, 108

Macros

accessor macros, 49–50
lazy accessors, 55–56

madvise system

dealing with anomaly in memory
mapping, 226—227

in memory management, 156–157
Mail stores, 265–266

Main memory, comparing speed with CPU
memory, 100–101

malloc function

in heap allocation, 110, 112–113
program leaks and, 124–125
viewing allocated memory with heap
command, 121–122

viewing information about memory
managed by, 125

malloc_debug command, 124–125

MallocStackLogging, enabling, 124

Manual reference counting (MRC), 114

Mapping

comparing memory mapping with
read()_, 226

file into memory, 268
memory-mapping anomaly, 226–228
memory mapping files, 153–156

MAX (Messaging API for XML)

implementing, 96–97
optimizing XML parsing, 95–96

MC 68000 Assembler/7.1 MHz, 9

MC 68000 CPU, trends in CPU performance,
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CPU. See CPU measurement and tools
graphics and UI. See Graphics and UI
measurement and tools

I/O. See I/O measurement and tools
memory. See Memory measurement and
tools

Memory

caching caveats, 56
I/O principles, 208

Memory dumps, 244

Memory measurement and tools

Allocations instrument, 127–133
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command-line tools, 120
Counters instrument, 134–135
heap command, 121–124
instruments, 126
internal measurement, 125–126
leaks and malloc_debug
commands, 124–125

Leaks instrument, 126–127
overview of, 119
summary, 136
top command, 120–122
VM Tracker instrument, 133–135
Xcode gauges, 119–120

Memory pitfalls and techniques

architectural impacts on memory use,
147–151

avoiding leaks, 139–141
comparing Foundation objects with
primitives, 141–142

compression, 145
concurrency, 146–147
conserving memory by economic use of
smaller structures, 142–144

example. See FilterStreams
iOS-specific considerations, 157
madvise system, 156–157
memory mapping files, 153–156
NSCache and libcache library, 153
optimizing ARC, 157–160
overview of, 137
purgeable memory, 145–146
reference counting, 137–139
summary, 160
temporary allocations and object caching,
151–153
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accessing memory information using
sysctl, 99–100

automatic reference counting, 116
benefits of virtual memory, 105–106
CPU speed compared with main
memory, 100–101

dynamically allocated memory, 106–108

garbage collection, 114
heap allocation, 110–113
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framework, 114–115

overview of, 99
process-level resource reclamation, 117
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resource management, 113
stack allocation, 108–110
summary, 117
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tracing garbage collection, 115–116

Memory warnings, 157
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IMP caching, 66–68
mapping callbacks to, 83–85
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mapping sent messages to file contents,
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mapping sent messages to shell
commands, 69–70
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Messaging API for XML (MAX)

implementing, 96–97
optimizing XML parsing, 95–96
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Methods, Objective-C

CoreFoundation pitfall, 71–72
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overview of, 71
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Moore’s Law, 1, 197

MPWIntArray, 268

MPWSubData, 87–90

MRC (manual reference counting), 114

mstats() function, 125

Multicore (multithreading)

overview of, 72–73
threads, 73–74
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Mutability, of objects, 53–55

MVC (model, view, controller), 355–357

N
Negative space, measuring I/O performance,
216–218
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Network I/O

asynchronous I/O, 237–238
data handling, 236–237
HTTP servers, 238–242
overlapping transfers of network requests,
233–234

overview of, 232–233
throttling network requests, 234–236

Network stack, I/O principles, 213–214

Networks, I/O principles, 208

NeXTStep system

generic representation, 58
image drawing and, 327
property lists, 246–247, 249
resource management, 113–114

nginx HTTP parser, Swift example, 188

nmap(), reading bytes into memory, 230–232
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collect and parallel collect
methods, 292

comparing with Swift Array, 176
constructing and filling, 276
distinguishing from other object types,
164–166

FilterStream interacting with, 167
Foundation object model, 58, 114
Foundation overhead overwhelming I/O
overhead, 271

generics specialization, 193–194
lazy reading, 277–278
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tree structure, 243
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NSCoding protocol, 249–252

NSData

archiving/unarchiving objects, 250
data store and, 354
handling serialized data, 47
memory costs, 291
memory dumps, 244
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memory mapping example, 154–156
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reading bytes into memory, 225–226,
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reading file into, 215
referenced by MPWSubData, 88–90
Unix alternative for reading bytes into
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NSDate

CSV parsing and, 288
property lists, 246

NSDictionary
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caching pitfalls, 57
comparing Swift with Objective-C,
186–188

CSV parsing and, 289
description stream with double dispatch,
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evaluating parser performance, 91
fetch specification, 259
Foundation object model, 58, 114
lookup performance, 46
memory costs, 141–142
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overview of, 61–64
property lists, 246–249
representing structured data, 42
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NSKeyedArchiver, 249, 254

NSManagedObject, 253–255, 258–260

NSNotificationCenter, 331, 356

NSNumber

allocation, 21–22
arithmetic operations, 43–45
bulk processing, 59–61
comparing Swift with Objective-C, 186
CSV parsing and, 291
data mining, 32
Foundation object model, 58–59, 114
memory costs, 141–142
object caching order, 57
property lists, 246–249
representing structured data, 42
summing integers, 5–6

NSOperations, 74

NSPersistantContainer, 254

NSProgress, 330

NSSet

caching pitfalls, 57
converting NSArray to, 15

NSString

comparing Swift with Objective-C,
186–187

cost of string comparison or lookups, 95
CPU costs, 57
CSV parsing and, 288–289, 291
evaluating object caching, 91
Foundation object model, 58–59, 114
Foundation overhead overwhelming I/O
overhead, 271

memory costs, 64–65, 142, 161
object allocation, 87–89, 268–270, 288
overview of, 45–47
property lists, 246–249

public access and, 52
tree structure, 243
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handling overlapping transfers of network
requests, 233–234

throttling network requests, 235–236
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pitfall of unneeded subclassing, 144
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fetching and parsing feed directory, 233
parsing speed, 90–92, 95–96
XML parsing in iOS, 86
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limitations of Objective-C, 10
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representation of data, 41–42

Objective-C

accessors, 48–52
arithmetic features, 9
automatic reference counting. See ARC
(Automatic Reference Counting)

benchmarks for Objective-C and Swift
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caching and, 53
call-return architecture, 151
clients, 350–351, 353
CMS (Content Management system), 79
combining productivity and
expressiveness, 2

comparing compile time with Swift,
191–193

comparing dictionary access with Swift,
186–188

comparing parsing techniques, 86, 92
comparing summation assembly code
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comparing threads to objects, 73–74
comparing to other languages, 7–10
comparing with Swift, 6, 61, 174–176,
181–183

CPU performance and, 1
creating property list reader, 271–276
dictionaries, 61–64
fetch techniques, 257–260
forwarding, 69–70
garbage collection, 116
generic representation pitfalls, 58–59
heap allocation, 110
IMP caching, 66–68
lacking support for lazy evaluation, 290
load/saving documents or structured data
as objects, 242

mapping callbacks to messages, 83–85
mature optimization in, 75–77
MAX (Messaging API for XML)
leveraging runtime, 95

message protocol, 352–353
messaging, 64–66
methods, 71–72
null Filterstream, 163
object allocation, 113
object overhead, 43
objects for data structuring, 48
optimizing code, 201–204
power of hybrid languages, 10–11
public access and, 52
recasting from C to, 271
reduce method, 180
relationship to Swift, 173
representing structured data, 41–42
stack allocation, 113, 152
strings, 45–48
summing integers, 2–5, 20
temporary allocations and object caching,
151–153

web services and, 238–242
whole-module optimization and, 194

Objective-Smalltalk project, 204
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accessors, 48–52
archiving/unarchiving, 249–252
avoiding leaks in reference counting,
139–141

comparing Foundation objects with
primitives, 141–142

comparing summing integers in various
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comparing Swift with Objective-C, 176
costs of creation/allocation, 87–90
creating/updating in batches, 254–256
creation and caching, 52–53
evaluating caching, 90–93
filters, 163–164
interaction of CoreData objects, 260
mutability and caching, 53–55
ownership, 114–115
public access, 52
in representation of data, 48
representing numbers, 5
stack allocation, 152
temporary allocations and object caching,
151–153

OLEDs, graphics hardware, 301

OpenGL

accelerating drawing, 327
Core Animation instrument options, 315
GPU cards, 302
graphics API, 296–297
overview of, 300–301
triangle drawing benchmark, 303–304
Window Server working with, 307

OPENSTEP system

compared to CoreFoundation, 72
dealing with generic representation
pitfalls, 58

Foundation classes, 114
object ownership and, 114

Operating systems (OSs)

abstraction of byte streams, 208–210
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I/O principles, 208
iOS. See iOS
OS X. See Mac OS X
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of ARC, 157–160
balancing costs with outcomes, 12
comparing Objective-C with Swift,
181–183

CPU measurement and tools and, 38–39
death of optimizing compilers, 199–201
of I/O, 215, 256–260
mature optimization in Objective-C,
75–77

MAX (Messaging API for XML) and,
95–96

optimizer-oriented programming,
195–197

performance of optimized XML parser,
91

SSC (sufficiently smart compiler),
197–199

suggestions for optimizing Objective-C
code, 201–204

uniformity and, 71
whole-module optimization, 194–195

Optimizers

comparing Objective-C to other
languages, 7–8

optimizer-oriented programming,
195–197

summing integers in Objective-C, 3–4
OSs (operating systems)

abstraction of byte streams, 208–210
I/O principles, 208
iOS. See iOS
OS X. See Mac OS X

Owens II, David, 189

P
Page cache, Unix, 211–212

Page walker, 156

Pages, organization of address space as,
105–106

Parallelization

faster CSV parsing, 290–293
ILP (instruction-level parallelism), 11
multicore and, 72–73

Parsers

architectural impacts on memory use,
147

binary property list, 273–275
construction toolkits, 79
faster CSV parsing, 288–293
Freddy JSON parser, 189
nginx HTTP parser, 188
performance of non-optimized XML
parser, 88–89

pro/cons of DOM parsers, 94
pro/cons of SAX parsers, 94–95
simple XML parser, 80–83
speed of NSXMLParser class, 90–92
tuning up XML parser, 93–94
XML parsing in iOS, 86

PDF

based on PostScript, 299
thumbnails from, 318

Performance Counters. See Counters
instrument

Performance, Swift

basic characteristics, 177–179
claims, 173–175
reasons supporting, 175–177

PhysMem option, top command, 120

Pipelining, trends in CPU performance, 11

Pipes and filters architecture, Unix, 151,
161–163

Pitfalls and techniques

CPU. See CPU pitfalls and techniques
graphics and UI. See Graphics and UI
pitfalls and techniques

I/O. See I/O pitfalls and techniques
memory. See Memory pitfalls and
techniques

Plasma screens, 301



376 Index

plist. See Property lists

PNG format

brainstorming image format options,
345–346

JPNG and, 349–350
loading prerendered gradient, 318,
322–323

measuring performance issue in Weather
app, 347–349

in Weather app, 344–345
Pointers, memory costs, 141

Polymorphism

combining pipes and filters style with,
161

FilterStreams and, 170
object representation and, 43

POSIX

asynchronous I/O functions, 237–238
threads and, 73–74

PostScript

Quartz and PDF based on, 299–300
summing integers in, 9

Preprocessor, comparing Objective-C with
Swift, 182

Primitive types

comparing Foundation objects with,
141–142

comparing Swift with Objective-C, 176
mapping Quartz primitives to GPU
commands, 305

optimizing Objective-C code, 203
Quartz, 299–300
representation of data, 42–45
summing integers in Objective-C, 2–4
summing integers in various languages, 9

Process-level resource reclamation, 117

Proebsting’s Law, 197

Profiles

CPU profiling, 310–311
Instruments for, 25–27

Progress reports, installers, 329–330

Properties, generating accessors and, 49–50

Property lists

avoiding intermediate representation,
279–281

binary reader, 271–276

I/O examples, 271

lazy reading, 276–278

OS X and iOS support, 246–249

Pruning feature, data mining using
Instruments, 34–35

Public access, to objects, 52

Public transport schedule, 283–287

purge command, emptying buffer cache, 216

Purgeable memory

comparing memory mapping with,
153–154

memory conservation techniques,
145–146

Python, comparing with Swift, 173–174

Q

Quadratic algorithms, computational
complexity of, 15–16

Quartz

accelerating drawing, 327

comparing OpenGL with, 300–301

debugging, 311–312

graphics API, 296–297

imaging model, 299–300

large, complex paths as issue in, 326

mapping primitives to GPU commands,
305

triangle drawing benchmark, 304

Window Server working with, 307

Quartz Debug

Autoflush drawing option, 312

overview of, 311

when CPU is not the problem, 314–318

Quartz Extreme, 305–307
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R
RAID arrays, in I/O performance, 208

RAM

comparing access time with cache, SSD,
and hard disks, 104–105

comparing warm and cold launch speeds,
228–230

GPUs (graphics processing units) and,
302

memory mapping and, 154–155
Raster images, 299–300, 305–306

read()

comparing memory mapping with, 226
reading bytes into memory with Unix
functions, 230–232

Reader

creating binary property list reader,
271–276

for CSV, 282–283
realloc function, in heap allocation, 110

Record Options, Instruments tool, 26

Record Waiting Times, Time Profiler, 219

Recursion, eliminating infinite, 168–170

reduce method, summing arrays and,
180–182

Reference counting

automatic. See ARC (Automatic
Reference Counting)

avoiding leaks, 139–141
comparing Swift with Objective-C, 176
manual, 114–115
optimizing, 157–160
strategy, 137–139
tracing garbage collection, 115–116

Reference cycle, 114

Reference semantics, heap allocation and,
110

Refresh rates, avoiding excessive, 329

Relational databases

Event Poster as alternative to, 264–265
memory demands of object graphs in,
258

SQLite, 263

Representation of data

generic representation pitfall, 58–59
objects, 48
overview of, 41–42
primitive types, 42–45
string types, 45–48

Resident memory, top command, 121

Resolution, image format options, 345–346

Resource management

automatic reference counting, 116
garbage collection, 114, 115–116
object ownership, 114–115
overview of, 113
process-level resource reclamation, 117

Responsiveness

graphics and UI principles, 295–296
pitfalls of graphics and UI, 325
Wunderlist 3 app, 355–357

REST

In-Process, 352–353
operation queues, 354–355

Retained-mode graphics, 297–298

Rotational speed, hard disks, 206–207

RPRVT option, top command, 121

RSS feeds, handling network data, 236–237

Ruby

arithmetic features, 9
comparing with Swift, 6
encapsulation, 64
as interpreted language, 7–8

S
sample command, analyzing CPU
performance, 20–22

Sampler Instrument, viewing I/O performance,
220–221

SAX (Simple API for XML)

architectural impacts on memory use,
147

performance of non-optimized XML
parser, 88–89
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SAX (Simple API for XML) (continued )

performance of optimized XML parser,
91

pro/cons of SAX parsers, 94–95
XML parsing for very large documents,
85–87

Scalar types

benefits of homogeneous collection,
59–60

representation of data using primitive
types, 42

Scaling images, 333–335

Sectors, in rotating disks, 205–206

Segregated stores, 265–266

Serialization

archiving/unarchiving objects, 249–252
memory dumps, 244
overview of, 242–243
property lists, 246–249
SQLite, 262
summary, 252–253
XML format and, 244–246

Shell commands, mapping sent messages to,
69–70

Simple API for XML. See SAX (Simple API for
XML)

Smalltalk

arithmetic features, 9
comparing with Objective-C, 8, 10, 173
comparing with Swift, 6, 202–204
compile times, 191
encapsulation, 64
as interpreted language, 7–8
number and magnitudes hierarchy, 43–44
performance issues in early Mac and Lisa
computers, 1–2

Squeak Smalltalk, 229
summing integers, 8–9
vectorized summation, 184

Software, graphics and UI principles, 296–298

Solid-state disks. See SSDs (solid-state disks)

Source code, viewing with Instruments, 29–30

SQLite, 261–262

Squeak

bytecode interpreter, 8
memory dumps, 244–246
Squeak Smalltalk, 229

SSC (sufficiently smart compiler), 197–199

SSDs (solid-state disks)

comparing access times with cache,
RAM, and hard disks, 104–105

comparing warm and cold launch speeds,
229

getting summary of I/O activity, 218
I/O principles, 207
measuring I/O performance, 218
speed of, 102

Stack allocation

compared with heap allocation, 151–152
comparing Swift with Objective-C, 176
dynamic memory, 108–110
resource management, 113

Static types, optimizing Objective-C code, 203

Stonebraker, Michael, 263

Stream of bytes, Unix

abstraction of, 208–210, 213–214
file I/O, 210–213

Streams

FilterStreams. See FilterStreams
impact on memory use, 156
pipes-and-filters architectural style, 161

String table

faster version, 269
initializing, 268
naive string table class, 267
searching, 269–270

String types. See also NSString

combining with key-value stores, 61–64
generics specialization, 193
public access and, 52
representation of data, 45–48
uses of, 45
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Strongtalk, 8–9, 202

struct

public access and, 52
representation of structured data, 41–42

Subclasses

avoiding unneeded, 144
FilterStreams, 170

Subsets, CoreData, 260–261

Sufficiently smart compiler (SSC), 197–199

Summary information, of I/O activity, 217–218

Summing arrays, with Swift

floating point numbers, 179–180
macro applied to sum, 183
reduce method applied to sum,
180–182

vectorized summation, 183–184
with/without optimization, 184–185

Supercomputers, 205

Swap files, 157

Swift

arithmetic features, 9
array type, 61
basic performance characteristics,
177–179

benchmarks, 177, 190
caching and, 53
comparing with other languages, 190
compile times, 191, 195
death of optimizing compilers, 199–201
dictionaries, 63–64
Freddy JSON parser example, 189
generic representation pitfalls, 58–59
generics specialization, 193–194
image processing example, 189–190
lazy collection, 278
macro applied to sum, 183
nginx HTTP parser example, 188
object allocators, 113
optimizer-oriented programming,
195–197

optimizing Objective-C code and,
201–204

overview of, 173
performance claims, 173–175
practical advice for use of, 201
reasons behind language characteristics,
175–177

reduce method applied to sum,
180–182

SSC (sufficiently smart compiler),
197–199

summary, 204
summing array of floating point numbers,
179–180

summing array with/without
optimization, 184–185

summing integers, 6–9
type inference, 191–193
vectorized summation, 183–184
whole-module optimization, 194–195

sysctl, accessing memory information,
99–100

System architecture, 99–100

System callls, 208

T
Tag-soup parsing

CMS import and, 85
in HTML parser, 79–80

Tagged objects, 9

Tagged pointers

avoiding heap allocation, 5
summing integers, 44

Tags, HTML, 81

TCP

congestion control, 234–235
I/O performance and network stack, 213

TCP/IP, 213–214

Thrashing, caching caveats, 56

Threads

atomic property modifier in thread
safety, 138–139

concurrency, 146–147
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iOS memory management
considerations, 157

multicore (multithreading), 73–74
Throttling

display throttle, 327–329
network requests, 234–236

Throughput

latency and, 205
Web server handling of large files, 241

Thumbnails

how not to draw, 335–337
how to draw, 337–338
overview of, 335

time command

analyzing negative space in I/O
measurement, 216–217

viewing running processes, 19
Time limit, Instruments Record Options, 27

Time Profiler

analyzing bottlenecks in object
allocation, 87

Instruments tool, 24–25
measuring I/O performance, 218–221
Record Waiting Times, 219

top command

analyzing negative space in I/O
measurement, 216–217

CPU measurement, 18–19
memory measurement, 120–122
purgeable memory and, 145–146

Traces/tracing, using fs_usage, 221–224

Tracks, in rotating disks, 205–206

Translation lookaside buffer, 105

Type inference, Swift, 191–193

U
UBC (unified buffer cache), Unix, 212–213

UDP, 213

UI (user interface)

examples. See Graphics and UI examples

measurement and tools. See Graphics and
UI measurement and tools

pitfalls and techniques. See Graphics and
UI pitfalls and techniques

principles. See Graphics and UI principles
UIKit

dirty rectangles, 326
hybrid of retained and immediate-mode
graphics, 298

for iOS, 295–296
reusing mutable objects, 53–54
when to use, 340

UIView, 140, 296

Unified buffer cache (UBC), Unix, 212–213

A Unified Theory of Garbage Collection (Bacon,
Cheng, and Rajan), 114

Uniformity, optimization and, 71

Unit tests, for internal measurement of
performance, 37

Unix

asynchronous I/O types, 237–238
Byte_Stream subtree, 170
cache/caching, 211–213
mapping sent messages to shell
commands, 69–70

pipes and filters architecture, 151,
161–163

reading bytes into memory, 230–232
stream of bytes, 208–210, 213–214
time profile of I/O, 219

Updates, Weather app, 343–344

URIs

In-Process REST and, 352–353
smoothness and responsiveness features,
355–357

V
Value semantics, 110

vDSP

cache pollution and, 146
death of optimizing compilers and,
200–201

image-processing, 75
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improving implementation of sum(),
180, 183–184

Objective-C methods and, 71
for summing, 59–60

vImage, 146

Virtual memory, 105–106
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capturing graphics memory allocations,
133, 135

memory measurement, 133–135
VPRVT option, top command, 121

W
WAL (write-ahead logging), 262

Weather app

brainstorming image format options,
345–346

JPNG and JPJP formats, 349–350
launching, 350
measuring performance issues, 347–349
overview of, 343
updates, 343–344
using JPEG data points, 347
using PNG images, 344–345

Web servers, request handling, 238–242

Whole-module optimization, 194–195

Widgets, graphics, 296

Window limit, Instruments Record Options, 27

Window Manager, working with graphics APIs,
305–307

Wired memory, 120

Work queues, 74–75

Working set, speed of, 102

Write-ahead logging (WAL), 262

Wunderlist 2, 351

Wunderlist 3

architecture of, 351–352
consistent asynchronous data store,
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overview of, 350–351
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smoothness and responsiveness of UI,
355–357

summary, 357
URIs and In-Process REST, 352–353
Wunderlist 2 and, 351

X
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profiling options, 22, 25–26, 119–120
starting Instruments from, 23
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creating simple XML format, 244–246
encoding, 245
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XML parsing

APIs for, 85–87
costs of object allocation, 87–90
evaluating object caching, 90–93
HTML scanner, 80–83
implementing MAX, 96–97
mapping callbacks to messages, 83–85
optimizing, 94–96
overview of, 79–80
raw XML parsing, 245–246
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