
ASP.NET Core
Recipes

A Problem-Solution Approach
—
Second Edition
—
John Ciliberti

www.allitebooks.com

http://www.allitebooks.org

ASP.NET Core Recipes
A Problem-Solution Approach

Second Edition

John Ciliberti

www.allitebooks.com

http://www.allitebooks.org

ASP.NET Core Recipes: A Problem-Solution Approach

John Ciliberti
Sparta, New Jersey, USA

ISBN-13 (pbk): 978-1-4842-0428-3 ISBN-13 (electronic): 978-1-4842-0427-6
DOI 10.1007/978-1-4842-0427-6

Library of Congress Control Number: 2017953377

Copyright © 2017 by John Ciliberti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Todd Green
Development Editor: Anne Marie Walker
Technical Reviewer: Damien Foggon
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484204283. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com/rights-permissions
www.apress.com/rights-permissions
www.apress.com/bulk-sales
www.apress.com/9781484204283
www.apress.com/source-code
http://www.allitebooks.org

Dedicated to my daughter Katrina who never takes my iPad so she can watch Netflix.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ��xxi

About the Technical Reviewer ��xxiii

Acknowledgments ���xxv

Introduction ���xxvii

 ■Chapter 1: ASP�NET Core MVC Fundamentals �� 1

 ■Chapter 2: Getting Started with ASP�NET Core MVC ��� 43

 ■Chapter 3: MVC Razor Syntax and HTML Helpers �� 67

 ■Chapter 4: Using Tag Helpers �� 101

 ■Chapter 5: Getting the Most from the New Features in ASP�NET Core MVC ������� 139

 ■Chapter 6: Solution Design Using ASP�NET Core MVC �� 171

 ■Chapter 7: Test-Driven Development with ASP�NET Core MVC ��������������������������� 221

 ■Chapter 8: Moving from Web Forms to ASP�NET Core MVC �������������������������������� 251

 ■Chapter 9: Data Validation Using ASP�NET Core MVC ��� 295

 ■Chapter 10: Securing Your ASP�NET Core MVC Application ������������������������������� 335

 ■ Chapter 11: Creating Modern User Experiences Using React�js and
ASP�NET Core ��� 361

 ■Appendix �� 411

Index ��� 425

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ��xxi

About the Technical Reviewer ��xxiii

Acknowledgments ���xxv

Introduction ���xxvii

 ■Chapter 1: ASP�NET Core MVC Fundamentals �� 1

1-1. Understanding the Microsoft Web Development Ecosystem 1

Problem .. 1

Solution... 2

How It Works ... 2

1-2. Understanding the MVC Pattern .. 11

Problem .. 11

Solution... 11

How It Works ... 12

1-3. Understanding the Differences Between MVC, MVVM, and MVP 14

Problem .. 14

Solution... 15

How It Works ... 15

1-4. Discovering the Features of ASP.NET Core MVC ... 17

Problem .. 17

Solution... 17

How It Works ... 17

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

1-5. Understanding the Architecture of ASP.NET Core MVC ... 22

Problem .. 22

Solution... 22

How It Works ... 23

1-6. Understanding Models in ASP.NET Core MVC .. 30

Problem .. 30

Solution... 30

How It Works ... 31

1-7. Understanding Controllers and Actions in ASP.NET Core MVC 33

Problem .. 33

Solution... 33

How It Works ... 34

1-8. Understanding Page Routing in ASP.NET Core MVC .. 37

Problem .. 37

Solution... 37

How It Works ... 37

1-9. Understanding View Engines in ASP.NET Core MVC .. 39

Problem .. 39

Solution... 40

How It Works ... 40

 ■Chapter 2: Getting Started with ASP�NET Core MVC ��� 43

2-1. Setting Up Your Development Environment .. 43

Problem .. 43

Solution... 43

How It Works ... 44

2-2. Determining Which Operating System to Use for Your Development Machine 47

Problem .. 47

Solution... 48

How It Works ... 48

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

2-3. Creating a New ASP.NET Core MVC Application Using Visual Studio 2017 50

Problem .. 50

Solution... 50

How It Works ... 51

2-4. Creating a New ASP.NET Core MVC Application Using dotnet.exe 51

Problem .. 51

Solution... 51

How It Works ... 51

2-5. Understanding the Structure of an ASP.NET Core MVC Project 53

Problem .. 53

Solution... 53

How It Works ... 53

2-6. Using Visual Studio’s Debugging Windows to Debug an ASP.NET Core
MVC Application .. 57

Problem .. 57

Solution... 57

How It Works ... 58

2-7. Setting a Conditional Breakpoint in an ASP.NET Core MVC Controller 60

Problem .. 60

Solution... 60

How It Works ... 60

2-8. Testing Your ASP.NET Core MVC Application Across Many Browsers
at the Same Time .. 62

Problem .. 62

Solution... 63

How It Works ... 63

2-9. Editing Your Views and Layouts from Inside Internet Explorer................................ 64

Problem .. 64

Solution... 64

How It Works ... 64

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

 ■Chapter 3: MVC Razor Syntax and HTML Helpers �� 67

3-1. Understanding Razor Syntax ... 67

Problem .. 67

Solution... 67

How It Works ... 68

3-2. Creating an Action Link ... 75

Problem .. 75

Solution... 75

How It Works ... 76

3-3. Creating an Action Link to Another Controller ... 79

Problem .. 79

Solution... 79

How It Works ... 80

3-4. Creating an Action Link to Another Area ... 80

Problem .. 80

Solution... 80

How It Works ... 81

3-5. Creating an Action Link with Custom HTML Attributes ... 81

Problem .. 81

Solution... 82

How It Works ... 82

3-6. Creating an Action Link That Uses HTTPS ... 82

Problem .. 82

Solution... 83

How It Works ... 83

3-7. Creating Your Own Action Link for Creating HTTPS Links 84

Problem .. 84

Solution... 84

How It Works ... 85

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xi

3-8. Creating an Action Link with an Anchor Target ... 86

Problem .. 86

Solution... 86

How It Works ... 86

3-9. Creating an Image Link ... 90

Problem .. 90

Solution... 90

How It Works ... 90

3-10. Creating an Image Link Using a Bootstrap Glyphicon ... 90

Problem .. 90

Solution... 90

How It Works ... 91

3-11. Using HTML Helpers to Create HTML Form Elements ... 91

Problem .. 91

Solution... 92

How It Works ... 92

3-12. Using Strongly Typed HTML Helpers ... 95

Problem .. 95

Solution... 95

How It Works ... 96

3-13. Using Templated HTML Helpers .. 97

Problem .. 97

Solution... 97

How It Works ... 98

3-14. Creating an Inline Function in a Razor View ... 99

Problem .. 99

Solution... 99

How It Works ... 100

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xii

 ■Chapter 4: Using Tag Helpers �� 101

4-1. Understanding Tag Helpers ... 101

Problem .. 101

Solution... 101

How It Works ... 103

4-2. Creating Hyperlinks with the Anchor Tag Helper ... 104

Problem .. 104

Solution... 104

How It Works ... 105

4-3. Building a Form Using the Form, Label, and Input Tag Helpers 107

Problem .. 107

Solution... 107

How It Works ... 107

4-4. Data Binding a Nullable bool to an Option Tag Helper .. 112

Problem .. 112

Solution... 112

How It Works ... 112

4-5. Creating a Drop-Down List with the Select Tag Helper ... 114

Problem .. 114

Solution... 114

How It Works ... 115

4-6. Validating Input with Tag Helpers .. 118

Problem .. 118

Solution... 118

How It Works ... 119

4-7. Improving Performance with the Cache Tag Helper .. 124

Problem .. 124

Solution... 124

How It Works ... 124

■ Contents

xiii

4-8. Using the Environment, Script, and Link Tag Helpers for Conditionally
Rendering Script and Link Tags .. 132

Problem .. 132

Solution... 132

How It Works ... 132

4-9. Creating a Custom Tag Helper... 134

Problem .. 134

Solution... 134

How It Works ... 134

 ■Chapter 5: Getting the Most from the New Features in ASP�NET Core MVC ������� 139

5-1. Understanding NuGet with ASP.NET Core MVC ... 139

Problem .. 139

Solution... 139

How It Works ... 140

5-2. Upgrading from ASP.NET MVC 5 to ASP.NET Core MVC ... 144

Problem .. 144

Solution... 145

How It Works ... 145

5-3. Upgrading from Web API to ASP.NET MVC 6 .. 148

Problem .. 148

Solution... 148

How It Works ... 149

5-4. Creating a Tag Cloud Using a View Component .. 158

Problem .. 158

Solution... 158

How It Works ... 158

5-5. Using the Inject Feature to Implement a Hit Counter .. 166

Problem .. 166

Solution... 166

How It Works ... 167

■ Contents

xiv

 ■Chapter 6: Solution Design Using ASP�NET Core MVC �� 171

6-1. Developing Reference Architectures for ASP.NET Core MVC Applications 171

Problem .. 171

Solution... 171

How It Works ... 172

6-2. Designing Your ASP.NET Core MVC Project for the Cloud 177

Problem .. 177

Solution... 177

6-3. Deploying an ASP.NET Core MVC Application in a Docker Container..................... 178

Problem .. 178

Solution... 179

How It Works ... 179

6-4. Creating a Data Access Layer Using Entity Framework Core Code First 184

Problem .. 184

Solution... 184

How It Works ... 185

6-5. Creating a Data Access Layer Using Entity Framework Core Code
First from an Existing Database .. 198

Problem .. 198

Solution... 198

How It Works ... 198

6-6. Using the Repository and Unit of Work Patterns in Your Data Access Layer 200

Problem .. 200

Solution... 200

How It Works ... 201

6-7. Using the Options Pattern to Simplify Configuration of Your
ASP.NET Core MVC Application.. 211

Problem .. 211

Solution... 211

How It Works ... 211

■ Contents

xv

6-8. Using Areas to Organize a Large ASP.MVC Project .. 217

Problem .. 217

Solution... 218

How It Works ... 218

 ■Chapter 7: Test-Driven Development with ASP�NET Core MVC ��������������������������� 221

7-1. Adding an xUnit Test Project to an ASP.NET Core Web Application Solution 221

Problem .. 221

Solution... 221

How It Works ... 222

7-2. Creating Unit Tests for a Controller ... 226

Problem .. 226

Solution... 226

How It Works ... 226

7-3. Understanding Test-Driven Development Strategies .. 233

Problem .. 233

Solution... 233

How It Works ... 234

7-4. Simulating Calls to External Dependencies Using Moq .. 240

Problem .. 240

Solution... 240

How It Works ... 241

7-5. Using the Inversion of Control and Constructor Injection Patterns with
ASP.NET Core MVC .. 247

Problem .. 247

Solution... 247

How It Works ... 247

 ■Chapter 8: Moving from Web Forms to ASP�NET Core MVC �������������������������������� 251

8-1. Deciding Between Staying with Web Forms, a Full Rewrite,
or Gradual Migration ... 251

Problem .. 251

Solution... 251

■ Contents

xvi

8-2. Converting a Web Forms Page to MVC .. 252

Problem .. 252

Solution... 252

How It Works ... 253

8-3. Creating a Custom Tag Helper That Mimics the ASP.NET Data List Control 258

Problem .. 258

Solution... 258

How It Works ... 259

8-4. Creating a Data Grid with Paging, Sorting, and Filtering Support 269

Problem .. 269

Solution... 269

How It Works ... 269

8-5. Creating a Data Grid That Allows Inline Editing ... 286

Problem .. 286

Solution... 286

How It Works ... 286

 ■Chapter 9: Data Validation Using ASP�NET Core MVC ��� 295

9-1. Validating Form Data Using Data Annotations .. 295

Problem .. 295

Solution... 295

How It Works ... 296

9-2. Creating a Custom Validation Attribute ... 303

Problem .. 303

Solution... 303

How It Works ... 303

9-3. Processing Custom Business Rules on an Entity by Implementing
IValidatableObject ... 312

Problem .. 312

Solution... 312

How It Works ... 312

■ Contents

xvii

9-4. Using Remote Validation ... 316

Problem .. 316

Solution... 316

How It Works ... 316

9-5. Creating Complex Validation Rules Using Fluent Validation 320

Problem .. 320

Solution... 320

How It Works ... 320

 ■Chapter 10: Securing Your ASP�NET Core MVC Application ������������������������������� 335

10-1. Creating an ASP.NET Core Web Site That Uses ASP.NET Identity Core for
Authentication and Authorization .. 335

Problem .. 335

Solution... 335

How It Works ... 336

10-2. Adding Custom Fields to the ApplicationUser Class .. 346

Problem .. 346

Solution... 346

How It Works ... 346

10-3. Allowing Users to Log In to Your ASP.NET Core Application Using Facebook 348

Problem .. 348

Solution... 349

How It Works ... 349

10-4. Enabling Two-Factor Authorization in Your ASP.NET Core Application 353

Problem .. 353

Solution... 353

How It Works ... 354

■ Contents

xviii

 ■ Chapter 11: Creating Modern User Experiences Using React�js and
ASP�NET Core ��� 361

11-1. Understanding node.js and Bower Integration in the ASP.NET Core
Project System .. 361

Problem .. 361

Solution... 361

How It Works ... 362

11-2. Customizing the JavaScript Build Workflow in an ASP.NET Core Project 364

Problem .. 364

Solution... 364

How It Works ... 365

11-3. Adding React to an ASP.NET Core Application ... 368

Problem .. 368

Solution... 368

How It Works ... 368

11-4. Understanding React, JSX, ES6, Babel, and Webpack .. 376

Problem .. 376

Solution... 376

How It Works ... 376

11-5. Adding Unit Testing and Static Code Analysis to a React Project 383

Problem .. 383

Solution... 383

How It Works ... 384

11-6. Creating an SPA Using ASP.NET Core and React ... 387

Problem .. 387

Solution... 387

How It Works ... 387

■ Contents

xix

 ■Appendix �� 411

A-1. Installing SQL Server 2016 Developer .. 411

Downloading Microsoft SQL Server 2016 Developer .. 411

Installing Microsoft SQL Server 2016 Developer .. 412

Installing SQL Server Management Tools ... 417

A-2. Downloading and Installing the Sample Database ... 418

Downloading the Database Backup File ... 418

Restoring the Database Backup Using SSMS ... 418

A-3. Adding ASP.NET Core Recipe’s NuGet Repository to Visual Studio 420

A-4. Installing Git .. 421

A-5. Cloning the ASP.NET Core Recipes Git Repository .. 422

Checking for Updates ... 423

Reporting Issues and Asking Questions ... 423

Index ��� 425

xxi

About the Author

John Ciliberti is a principal software engineer at Express Scripts. He
has 16 years of professional experience in software engineering and
architecture. After four years at Express Scripts, seven years with KPMG’s
Enterprise Architecture practice, and five years of solutions architecture
consulting, he has acquired strong business and communications skills
backed up by a broad range of technical knowledge. He specializes
in machine learning, enterprise architecture, and web application
development technologies.

xxiii

About the Technical Reviewer

Damien Foggon is technical director and lead developer for Thing-E Ltd., a company specializing in the
development of dynamic web solutions for the education sector. He was responsible for the development
of several ASP and ColdFusion web sites, and he’s now in the process of moving most of them to ASP.NET.
In addition to coauthoring Beginning ASP.NET 4.5 Databases (Apress, 2013), Damien is a regular technical
reviewer for numerous .NET books. After several false starts, he’s busy assembling his personal site.

xxv

Acknowledgments

I would like to thank my family, especially my wife Kathy for her endless patience; my kids, Katrina and
Maria; and everyone else in my life who helped me to complete this project.

xxvii

Introduction

ASP.NET Core is the biggest change in the Microsoft web development ecosystem since the introduction of
ASP.NET in 2002. ASP.NET Core is not an incremental upgrade to ASP.NET MVC. ASP.NET Core is a rewrite
of the entire ASP.NET platform from the ground up. ASP.NET Core is a modular, cross-platform, open source,
high-performance, Internet-scale framework designed for full-stack developers. ASP.NET Core can easily
be used in tandem with advanced front-end development workflows such as those needed to develop
single-page web applications using frameworks such as React and Angular 4.

The journey to ASP.NET Core has been a long one. I first started writing this book in June 2014 shortly
after the first community technology preview (CTP) of ASP.NET Core was released. Over the next few
years the contents of this book evolved along with the evolution of ASP.NET Core. Some chapters had
to be rewritten several times because of the constant steam of breaking changes that came with each
preproduction release. Writing this book so early in the development process of ASP.NET Core forced me
to peer deeper into the framework and in some cases become directly involved in finding and correcting
design issues and defects in ASP.NET Core.

ASP.NET Core was the first version of ASP.NET to be developed out in the open with full participation
from the community. This openness allowed the community not only to witness the development but also
to contribute and shape its direction. Since ASP.NET Core is open source, you can understand the inner
workings of the framework better than ever before.

In many recipes, after showing how to use a feature of ASP.NET Core, I include pointers and
explanations of the ASP.NET Core source code on GitHub. This allows you to learn how to solve the
development problem discussed in the recipe as well as truly understand how the solution works.

You can find the source code for this book on GitHub at https://github.com/johnciliberti/
AspNetCoreRecipes.

The GitHub repository will be continuously updated as ASP.NET Core evolves. The code for the
examples in this book will remain in the master branch of the repository. Updates to the source code in
response to changes in ASP.NET Core will be placed into new branches. If you have questions or find
issues with any of the examples in this book, please reach out to me on GitHub by posting an issue on the
repository. You can find information on how to set up Git and download the source code in the appendix of
this book.

https://github.com/johnciliberti/AspNetCoreRecipes
https://github.com/johnciliberti/AspNetCoreRecipes

1© John Ciliberti 2017
J. Ciliberti, ASP.NET Core Recipes, DOI 10.1007/978-1-4842-0427-6_1

CHAPTER 1

ASP.NET Core MVC Fundamentals

ASP.NET Core MVC is a cross-platform, open source development framework for building web applications
and services using the Model View Controller (MVC) pattern. It is a successor to several legacy Microsoft
web development frameworks and merges the functionality previously found in ASP.NET MVC, ASP.NET
Web Pages, and ASP.NET Web API in a single modular framework. ASP.NET Core MVC offers orders of
magnitude better performance than legacy ASP.NET and can be deployed almost anywhere including
Windows Server, Microsoft Azure, Linux, and macOS. It also has built-in tooling that simplifies packaging
ASP.NET Core MVC applications for use with container architectures such Docker and Pivotal Cloud
Foundry.

This chapter contains a series of recipes that will help you master the fundamentals of ASP.NET Core
MVC development. The recipes in this chapter are primarily intended for people who are new to ASP.NET
Core MVC. This includes people who are new to development in general, as well as those who are
experienced developers but are not familiar with ASP.NET Core MVC. It will also discuss the new features
and benefits of ASP.NET Core MVC, including POCO controllers and view components.

This chapter covers the basic theory and patterns used in ASP.NET Core MVC and goes over the
technical architecture of ASP.NET Core MVC.

These recipes are less practical than the recipes in the rest of the book, but they do teach foundational
knowledge that will help you understand more complex recipes presented in other chapters. The recipes in
Chapter 1 are also designed to help you gain insights that will aid in root-cause analysis and troubleshooting.

The code examples for this chapter are available from the Apress web site as well as on GitHub in the
following repository:

https://github.com/johnciliberti/AspNetCoreRecipes/tree/master/Chapter01

1-1. Understanding the Microsoft Web Development
Ecosystem
Problem
You are new to the Microsoft platform and need to know how to get started. You are confused by the
myriad of product offerings. You are interested in using ASP.NET Core MVC because of its use of proven
development patterns and support for automated testing but are unsure of how it relates to other Microsoft
web developer products including WebMatrix, LightSwitch, ASP.NET Web Forms, and Silverlight. You want
to understand all these tools and determine whether you should focus on ASP.NET Core MVC alone or
become familiar with the rest of the product stack as well.

http://dx.doi.org/10.1007/978-1-4842-0427-6_1
https://github.com/johnciliberti/AspNetCoreRecipes/tree/master/Chapter01

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

2

Solution
Microsoft offers several products and frameworks for developing web applications. Before getting started
with ASP.NET Core MVC, it is helpful to have a general understanding of the available development
platforms, productivity suites, and programming frameworks and how ASP.NET Core MVC fits into the
ecosystem.

In general, ASP.NET Core MVC is the best fit for developers looking to build scalable, modern,
standards-based web applications. ASP.NET Core MVC makes it easier to write robust testable code and
allows complete control of client-side HTML. In addition, ASP.NET Core MVC has a new project format and
new build process that make it easier to use in conjunction with modern front-end application frameworks
such as Angular and React.js.

ASP.NET Web Forms, on the other hand, is still a popular framework that trades some of the flexibility of
ASP.NET Core MVC for developer productivity by hiding the details of HTML and JavaScript behind a suite
of built-in user interface (UI) components that can be dragged and dropped into a design surface. ASP.NET
Web Forms was designed to be easy to learn for developers transitioning from Visual Basic and uses similar
development workflows such as double-clicking a button to create an event handler.

How It Works
The Microsoft web development ecosystem consists of not only frameworks such as ASP.NET Core MVC but
also server operating systems, highly scalable web servers, and powerful feature-rich development tools, all
of which I discuss next.

Microsoft Application Hosting Platforms
Microsoft has several platforms for hosting applications including Windows Server and Microsoft Azure.
Windows Server is typically used for traditional deployments in corporate datacenters. This option offers a
great amount of flexibility but is usually more expensive to scale and maintain. Microsoft Azure is a platform
as a service (PaaS) that allows you to host your application in the Microsoft Cloud. With Azure, you can
quickly deploy your application and scale up and down as needed. A drawback of the PaaS solution is that
you do not have direct control over the server operating system, which can limit your ability to deploy some
applications.

While Windows Server and Microsoft Azure are good choices for hosting your application, they are not
required for running ASP.NET Core MVC applications. ASP.NET Core MVC has been designed so that it can
be deployed on many platforms including Linux and Docker.

Windows Server and Internet Information Services (IIS) are required for legacy ASP.NET applications and
ASP.NET Core MVC applications that rely on the full Windows Server distributions of the .NET Framework.
Full versions of the .NET Framework for Windows Server and Desktop, such as .NET Framework 4.6, contain
not only web application components but also components used for Windows desktop applications. If you
are porting an existing ASP.NET application to ASP.NET Core MVC, you will likely still need to deploy your
application on Windows Server.

Microsoft Web Development Platforms and Frameworks
Since the late 1990s, Microsoft has created several web development platforms and frameworks. Some of
these, such as the first-generation Active Server Pages and ASP.NET, are shipped with Windows Server and
can be enabled from Server Manager and run on IIS, Microsoft’s web server. Others, such as Web Matrix,
can be installed using the Microsoft Web Platform Installer. These tools and platforms are discussed in
subsequent sections.

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

3

First-Generation Active Server Pages

Active Server Pages (ASP) was a Microsoft web development framework released in 1998 as part of the
Windows NT 4.0 Option Pack. It was extremely successful, and even though it has been superseded by
ASP.NET, it continues to power hundreds of thousands of web sites. It can still be installed in all versions of
Windows Server, including Windows Server 2016.

ASP was also implemented on UNIX and Linux systems by ChiliSoft (later acquired by Sun and now
part of Oracle).

The popularity of ASP was driven by the fact that it was simple and easy to learn. It allowed developers
to use either VBScript or JavaScript as the programming language.

A major criticism of ASP was that it mixed business logic with presentation and often led to applications
that became impossible to maintain. It was also difficult to debug. Many teams attempted to remedy ASP’s
shortcomings by putting the business logic into COM components written in C++ or VB. This practice was
later officially recommended by Microsoft in what was called Windows DNA.

Ultimately, the rise of Java technologies and the growing complexity of business requirements led to the
development of Microsoft .NET and ASP.NET, which replaced ASP.

Although ASP is still officially supported on the Windows Server platform, I do not recommend using it
for new projects.

ASP.NET Web Forms

ASP.NET Web Forms, which was first released in 2002, is now in its tenth major release, starting with ASP.NET
1.0 and moving through 4.6.2 in 2016. ASP.NET Web Forms is not supported in ASP.NET Core MVC. ASP.NET
Web Forms has been the primary web development technology used on the Microsoft platform for more than a
decade. Web Forms abstracts the Web and uses a programming model that is similar to programming Windows
Forms and Visual Basic. It follows a model where a developer designs a screen by dragging controls such as text
boxes and drop-down lists to the design surface and then double-clicking the control to create an event handler
on a code-behind page. For example, double-clicking a button would create an OnClick event handler where
you would put your code to be executed when the button was clicked.

Web Forms was designed to be easy to learn for Visual Basic programmers looking to transition from
client-server programming to web applications. It also saved developers time with features such as form
validation controls and web site security.

The main drawback of ASP.NET Web Forms is that its design assumed that most UI manipulations would
result in a full round-trip to the server. Microsoft remedied this with some success in 2008 with the release of
ASP.NET Ajax, but developers who attempt to create rich UIs might find themselves fighting the framework.

Web Forms might still be ideal for teams that need to rapidly put together a small application that does
not need a highly sophisticated UI.

ASP.NET MVC

ASP.NET MVC was first released in March 2009. It provided a Model View Controller–based approach to
developing web applications on the Microsoft ASP.NET platform. The Model View Controller pattern is well
suited for enterprise applications because it decouples application components and makes it easier to write
unit tests that can be executed independently.

Early versions of ASP.NET MVC shared common infrastructure with ASP.NET Web Forms. As ASP.NET
MVC evolved, it became increasingly decoupled from core ASP.NET and was eventually factored out into a
stand-alone library distributed independently of ASP.NET.

ASP.NET MVC requires that the developer invest time into understanding the MVC pattern
(see recipe 1-2). Compared to some of Microsoft’s other frameworks, ASP.NET MVC might not be as easy
for inexperienced developers to learn.

ASP.NET MVC has been replaced by ASP.NET Core MVC.

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

4

ASP.NET Web API

ASP.NET Web API was introduced in 2012. ASP.NET Web API simplified the creation of REST-based APIs
using the MVC pattern. Web API can be used in conjunction with ASP.NET MVC and front-end libraries such
as Angular to simplify the development of Ajax-driven, rich end-user experiences. ASP.NET Web API is no
longer distributed as a separate library. It is now part of ASP.NET Core MVC.

ASP.NET Web Pages

The functionality of ASP.NET Web Pages has now been merged into ASP.NET Core MVC. Before the merger,
ASP.NET Web Pages was a simple web development framework that provided a mechanism for creating
custom web applications with the WebMatrix integrated development environment (IDE). It shared some
underpinnings with ASP.NET MVC, including page routing and the Razor view engine.

ASP.NET SignalR

ASP.NET SignalR is a framework built on top of ASP.NET Core that makes it easier to create applications that
feature bidirectional communication between the web browser and the server. SignalR can automatically
detect the capabilities of the web browser and select the best communication pattern. For users accessing
your application using a modern web browser, SignalR can use the W3C-standard Web Sockets protocol.
For older browsers, it will fall back to another method such as long polling.

A common example use case for SignalR is creating a web browser–based chat application.

LightSwitch

LightSwitch is a rapid application development (RAD) tool that simplifies the creation of data entry–centric
applications. The initial release of LightSwitch used Silverlight to create the end-user experience. It exploited
Silverlight’s rich data-binding capabilities to create data-driven applications with minimal or no coding.
LightSwitch applications can be run either as browser Silverlight applications or as out-of-browser applications
that run on the desktop. The latest version supports project output in HTML5 as well as Silverlight.

LightSwitch is a good solution for simple applications. It has several major limitations, such as the
inability to support forms that need to update data from multiple database tables. These limitations prevent
it from being used for anything other than simple applications that act as front ends to a database.

Silverlight

Silverlight is a rich Internet application (RIA) tool that competes with the Adobe Flash plug-in. It is used
primarily for creating rich media streaming experiences by web sites such as Netflix.

Even though Microsoft has pledged to continue supporting Silverlight until 2021, Microsoft’s RIA
strategy has shifted to HTML5. Silverlight still has some advantages over HTML, such as the ability to run
on legacy enterprise desktops that have standardized on browsers such as Internet Explorer 8, which does
not support HTML5 and has poor JavaScript performance. It also is superior to HTML5 in that it can deliver
richer streaming experiences with an extensible media codec framework. Silverlight can run outside the
browser and be granted permission to access the local file system.

You should avoid using Silverlight for new applications. If possible, you should either opt for a
single-page web (SPA) application built using a combination of ASP.NET Core MVC and a front-end library
such as React.js or consider using a native Windows desktop technology such as Windows Presentation
Foundation (WPF).

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

5

SharePoint

SharePoint is one of Microsoft’s most successful products. It provides a portal that teams can use to share
files and has document and records management capabilities. It also offers the ability for end users to create
simple applications, including simple forms and workflows, using nothing but a web browser. Advanced
users can use SharePoint Designer to create more advanced forms and workflows.

The underpinnings of SharePoint are ASP.NET Web Forms, Windows Workflow Foundation, and other
Microsoft technologies. SharePoint is very extensible, and there are many places for developers to add
customized functionality.

Some corporations have adopted SharePoint as an application platform where many teams can deploy
their custom solutions onto a shared SharePoint infrastructure. In many cases, the value-added functionality
of SharePoint can dramatically reduce the amount of code that is required to create the solution.

There are several drawbacks to using SharePoint as a development platform. The largest is the overall
complexity of the product. Tracking down bugs and performance problems in a SharePoint application
can be extremely painful. In other cases, adding what would be trivial functionality in other Microsoft web
technologies would require weeks of pasting globally unique identifiers (GUIDs) into 900-line XML files and
having to reset IIS every time you make a minor change.

SharePoint can be a powerful tool, but be sure to have a firm understanding of SharePoint development
before selecting it as a development platform. Also, be certain that your application is using enough native
SharePoint functionality to offset the complexity of development in the SharePoint ecosystem.

Starting with Office 2013, which included SharePoint 2013 and Office 365, Microsoft has created a new
application mode, which simplifies the development experience by allowing you to use HTML, JavaScript,
and Cascading Style Sheets (CSS) to create your front end, and to use C#, PHP, and VB.NET to create
server-side code. The new framework supports RESTful APIs, which allow you to develop your service using
the platform of your choice and then use the Office JavaScript API to create a UI to consume your service.

ASP.NET Core MVC

ASP.NET Core MVC shares many of the same programming constructs as ASP.NET MVC classic but has been
rewritten from the ground up on top of Core CLR. It is more lightweight and significantly faster than ASP.NET
MVC classic. Benchmarks conducted by the ASP.NET team have shown that ASP.NET Core can process more
than 1.15 million requests per second with 12.6Gbps throughput. This is a 2,300 percent improvement over
ASP.NET 4.6.

Microsoft Web Development Tools
Microsoft has several tools available for creating web applications. Figure 1-1 shows the major Microsoft web
development tools and the targeted audience for each. The tools listed on the left side of Figure 1-1 were
designed for a broader audience, which includes relatively nontechnical business power users. The tools on
the right side were designed for professional developers and architects.

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

6

All Levels

SharePoint
Designer

LightSwitch

Web Matrix

Visual
Studio
Code

Visual
Studio

Community

Visual
Studio

Pro

Visual
Studio

Enterprise

Ra
pi

d
Ap

pl
ic

at
io

n
De

ve
le

lo
pm

en
t

En
te

rp
ris

e
Sc

al
e

De
ve

le
lo

pm
en

t

Professional Developers Tech Leads/ Architects

Figure 1-1. Microsoft web development tools matrix

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

7

Figure 1-1 also makes a distinction between RAD and enterprise-scale development. On the RAD side,
the tools are optimized to quickly develop a solution but are less optimized for creating highly scalable,
reliable, and maintainable applications. There are many situations in which a RAD tool is “good enough.”
For example, you have a customer who wants to build a web site for his small business; in addition to his
marketing capital, he would like a way to collect some customer information on his web site. In this case,
tools like WebMatrix are a good fit. On the other hand, if you are developing a trading floor application for
a major brokerage firm, you would want to use the more robust tool set offered by Visual Studio. The Visual
Studio products span the entire vertical axis of Figure 1-1 because they allow developers to target the entire
Microsoft stack.

Table 1-1 describes the various tools from Microsoft that can be used for web development and the
pricing of each product at the time of this writing.

Table 1-1. Microsoft Web Development Tools

Tool Description Price (December 2016)

SharePoint
Designer

SharePoint Designer is a free addition to Microsoft Office.
It allows power users to build and enhance web sites
hosted in Microsoft SharePoint. Users can create and
customize SharePoint lists, create InfoPath Forms, and
create workflows. They may also alter the look and feel of
the SharePoint sites.

With this tool, a SharePoint power user can create
somewhat sophisticated departmental-scale applications
without needing to write code. Advanced users who
understand some basic HTML programming can create
interesting user experiences.

There are several limitations that prevent SharePoint
Designer from being a true enterprise development tool.

• It does not really support the concept of
 environment propagation. It is possible to export a
SharePoint .stp file and then publish that file to
another environment, but it is not a completely
reliable method because the .stp file may have
external dependencies not available on the
target site.

• It does not support source control systems.

• It cannot unit test workflows.

• It is limited in flexibility and has no mechanism for
writing custom code.

Free with Microsoft Office

(continued)

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

8

Tool Description Price (December 2016)

Expression Blend Expression Blend was initially developed as a stand-alone
tool for creating XAML-based Silverlight, WPF, and
Windows Phone applications. It is now included with
Visual Studio and no longer offered separately.

Expression Blend 5 also allows you to create touch-friendly
HTML5 applications that run as full-screen native
applications on Windows 8. It does not allow you to create
HTML5 applications that target web browsers.

For web developers, Expression Blend is useful for
creating the UI of Silverlight applications, usually in
conjunction with Visual Studio.

Free with Visual Studio
2017

LightSwitch LightSwitch is a RAD-based tool that can be used to
create applications in Microsoft Silverlight and HTML5.
It exploits Silverlight’s rich data-binding capabilities
to create data-driven applications with minimal or no
coding. LightSwitch Silverlight applications can be run
either as in-browser applications or as out-of-browser
applications that run on the desktop.

HTML5 support for LightSwitch was added with Visual
Studio 2013 and, at the time of this writing, was not as
robust as the support for Silverlight.

LightSwitch is a good solution for simple applications.
It has several major limitations, such as the inability to
support forms that need to update data from multiple
database tables, which would prevent it from being used
for anything other than trivial applications.

Included with all versions
of Visual Studio 2017

WebMatrix WebMatrix is an IDE introduced in 2011 as a lightweight
alternative to Visual Studio. It is integrated with the Web
Platform Installer. It allows developers to select an open
source application from a gallery and use that as the
starting point for the application. The WebMatrix IDE is
available for free at http://bit.ly/1tRFgMv.

Microsoft has ended support for WebMatrix in November
2016. If you are still using it, you should consider moving
to Visual Studio Community or Visual Studio Code.

Free

Table 1-1. (continued)

(continued)

www.allitebooks.com

http://bit.ly/1tRFgMv
http://www.allitebooks.org

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

9

Tool Description Price (December 2016)

Visual Studio
Community

Prior to Visual Studio 2017, Microsoft offered several free
Express editions of Visual Studio. Each of the Express
editions offered a subset of functionality. For example, Visual
Studio Express for Web provided tools for web development.

In 2017 Microsoft discontinued the Express editions, and
Visual Studio Community is now the only free edition of
the Visual Studio IDE. Visual Studio Community offers a
feature set like Visual Studio Professional but is free for
students and independent developers.

Visual Studio Community’s licensing does not allow it to
be used in the enterprise.

Free

Visual Studio There are three commercial versions of Visual Studio
2017. They can be purchased as a cloud subscription
or a standard subscription. The cloud version gives
you IDE, Team Services Access, and Team Foundation
Server access. The standard version provides a perpetual
software license that never expires and includes training
and access to additional Microsoft products through
MSDN for one year.

• Test Professional: Manual testing tools,
Team Foundation Server support, collaboration
tools, lab management, and $50 of Windows Azure
cloud services per month.

• Professional: Platform development support
including tools for Windows, Windows Server, and
SQL Server. It also offers Microsoft Office, Dynamics,
and other Microsoft Server development support,
advanced testing and diagnostics tools, code clone,
basic architecture modeling tools, PowerPoint
storyboarding, release management, and $50
Windows Azure cloud services credits per month.

• Enterprise: Includes all the Professional features
plus additional architecture and modeling tools,
load testing, web performance testing, IntelliTrace
features, and $150 worth of Windows Azure cloud
service credits per month.

A full feature comparison can be found at http://bit.ly/
1oD2V1r.

Apart from Community, all versions of Visual Studio are
packaged with MSDN subscriptions. MSDN subscriptions
give you access to a large percentage of the Microsoft
product catalog, including servers such as SQL Server and
SharePoint, operating systems, and desktop software.

A comparison of different MSDN subscription levels can
be downloaded from http://bit.ly/1tRGwzh.

Professional Cloud:
$539 per year

Professional Standard:
$1,199 per year

Enterprise Cloud:
$2,999 per year

Enterprise Standard:
$5,999 per year

Test Professional Cloud:
$539 per year

Test Professional
Standard: $1,199 per year

Table 1-1. (continued)

http://bit.ly/1oD2V1r
http://bit.ly/1oD2V1r
http://bit.ly/1tRGwzh

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

10

After reviewing Table 1-1, you can see that Microsoft has a large variety of tools available at many
different price points. Most of the examples in this book work in all versions of Visual Studio 2017, including
Visual Studio Community.

Understanding the Variations of the Microsoft .NET Framework
First released in early 2002, the Microsoft .NET Framework has fragmented into many different
implementations. Variations of .NET include the following:

•	 Microsoft .NET Framework: This is the full version of .NET Framework for Windows
and Windows Server. This version is used for creating most desktop and web
applications that run on Windows.

•	 .NET Compact Framework: This is intended for use on Windows CE and early
versions of Windows Mobile. It implements a limited number of APIs.

•	 Silverlight: .NET for Silverlight is used for creating rich Internet applications and
sandboxed desktop applications. It contained a subset of common .NET APIs but
also implemented libraries unique to Silverlight.

•	 Windows Phone Silverlight: Like Silverlight, but contains a specialized set of APIs for
Windows Phone.

•	 Windows Phone: .NET for Windows Phone 8 contains another set of APIs targeting
Microsoft’s phone platform but was largely incompatible with Windows Phone
Silverlight.

•	 Universal Windows Platform: Introduced with Windows 10, the Universal Windows
Platform supports a wide variety of Windows devices including PC, Phone, Xbox
One, and HoloLens. It is compatible only with Windows 10.

•	 Mono: This is an open source implementation of .NET based on the ECMA-335
standard. Before .NET Core, Mono was the only implementation of .NET that ran on
Linux and macOS.

•	 Mono/Xamarin Platform: This is a fork of the Mono framework used to allow
developers to build iOS and Android applications using .NET. Xamarin was acquired
by Microsoft in 2016.

•	 .NET Core: This is a new cross-platform open source implementation of .NET
created by Microsoft. ASP.NET Core MVC is built on top of .NET Core. .NET Core 1.0,
released in 2015, implemented only a small subset of the APIs exposed in the full
framework but is rapidly being developed. .NET Core 2.0, expected to be released in
2017, will implement almost all major .NET APIs.

Each variation of the framework shares common design principles and language features but lacks
consistency in APIs. This makes it difficult to port an application across the various platforms that support
.NET. It usually requires the developer to implement some sort of cross-compilation strategy and often leads
to duplication of efforts.

To combat this fragmentation, Microsoft has begun implementation of two major initiatives, .NET Core
and the .NET Standard. .NET Core is a new open source, cross-platform implementation of .NET, which, as it
matures, will likely replace most versions of the .NET base class libraries. The .NET Standard is a set of APIs
that all versions of .NET should implement. This will allow developers to share code and use the same APIs
regardless of which platform they target.

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

11

If you want to learn more about the .NET Standard, David Fowl has an excellent post at http://bit.ly/
2gfZhbz that shows the features implemented in each version of the standard. He also shows what variants
of the .NET are compatible with each version of the standard. I also recommend reading the MSDN blog
post on the .NET Standard at https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-
standard/.

1-2. Understanding the MVC Pattern
Problem
You want to begin working with ASP.NET Core MVC, but you do not understand the MVC pattern and why it
is beneficial.

Solution
The MVC pattern is a popular design pattern used in many software systems. The pattern was first
documented in 1978 by Trygve Reenskaug in regard to a project at Xerox PARC in which the MVC pattern
was implemented for the Smalltalk-80 class library. MVC separates a software module into three distinct
layers, each with a specific role (see Figure 1-2):

•	 Model: Models represent data. A model can be a single object or a complex type with
many collections of objects within it. The model should not include implementation
details. A model may have many associated views.

•	 View: The view typically represents a UI component that is bound to a model.
The view can display the data and allow a user to modify the data. The view should
always reflect the state of the model.

•	 Controller: The controller provides a mechanism for the user to interact with a
system by defining how the UI reacts to user input. It is responsible for exchanging
and interpreting messages between the view and the model.

http://bit.ly/2gfZhbz
http://bit.ly/2gfZhbz
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

12

How It Works
In addition to defining the layers, the MVC pattern provides rules on how the layers are allowed to
communicate.

The allowed communication patterns include the following rules:

•	 Users may interact with a view.

•	 Views may interact with controllers.

•	 Controllers may interact with views.

•	 Controllers may communicate with other controllers.

•	 Controllers may communicate with the model.

View

Controller

Model

Figure 1-2. Model View Controller pattern

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

13

The restricted communication patterns include the following rules:

•	 Users may not interact directly with controllers.

•	 Users may not interact directly with a model.

•	 Views may not interact directly with other views.

•	 Views may not directly modify the model.

•	 Models may not modify other models.

Benefits of the MVC Design Pattern
If this is your first time reading about the MVC pattern, you might be saying to yourself, “Why bother with
this approach? It seems like a lot of extra work.”

The first benefit is that your view and model are decoupled. This means you can have many views
associated with a given model. For example, with one model, you may have a separate view for each create,
read, update, delete (CRUD) operation.

•	 A read-only view that displays the record but does not allow it to be changed

•	 A view for creating new records

•	 A view for modifying a record

Visual Studio has built-in features that simplify creating applications that follow the MVC pattern.
By using the scaffolding features in Visual Studio, you can generate views based on a model class or Entity
Data Model.

In addition to your standard CRUD views, you might want to create views that target specific devices.
Perhaps you may need another view that returns the data as an Excel spreadsheet or a mobile view designed
to run on a smartphone. In addition to views created for humans, you can also provide views that are
accessed by other applications or client-side scripts.

The second main advantage is the view/controller decoupling. This allows you to change the way an
application responds to user input without changing the view. It also allows the UI (the view) to be changed
without changing the way the application responds to user input. In web applications, the UI will likely
change more often than the business rules. By keeping the controller logic separate from the presentation,
you can reshuffle your page layouts as often as your customer requires, without inadvertently breaking your
business logic.

Another advantage of using the MVC pattern is that separating concerns allows different team members
to focus on the part of the application that best aligns with their respective skill sets. For example, very few
people both possess the skills for creating an attractive front-end interface using HTML and CSS and know
the intricacies of C# programming. It also allows team members to simultaneously work on their respective
parts of the page, as the code and the presentation are in different files. For the team that engages in test-
driven development, the MVC pattern lends itself well to creating automated unit tests.

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

14

Other Technologies That Use the MVC Pattern
ASP.NET Core MVC is not the only product that uses the MVC pattern, and it is not the first web development
framework to utilize it. There are thousands of frameworks and applications that implement the MVC pattern.
The following list describes several of the most popular frameworks that use the MVC pattern:

•	 Apple iOS Development: If you plan on creating a native application for the iPhone
or iPad using Apple Xcode, you need to implement the MVC pattern. Xcode employs
a drag-and-drop interface that allows you to define the various UI components and
then drag a connector to the controller to define its relationship to the view.

•	 Apache Struts: First released in May 2000, Apache Struts is an open source framework
that extends the Java Servlet API for creating Java Enterprise Edition web applications.
Struts is probably the most mature MVC-based application framework. It has been
used on thousands of enterprise-scale applications at Fortune 500 companies.

•	 Spring Framework: Spring is another Java framework that features an MVC
framework in addition to its inversion of control (IoC) container and aspect-oriented
programming features. The Spring Framework’s MVC Framework was created to
address architectural deficiencies in Apache Struts by providing better separation
between the MVC layers.

•	 Yii: The Yii framework is one of the most popular PHP frameworks. It is noted for
being fast, secure, and well-documented. The framework has a web-based code
generator that turns a database table into a model class. The code generator will also
generate PHP code to perform CRUD operations that follow the MVC pattern.
You can then modify the generated code to meet your needs.

•	 Ember.js: Ember.js is a JavaScript MVC framework and templating engine. It
has support for UI bindings, has support for composed views, provides a web
presentation layer, and plays nicely with other JavaScript libraries. Ember can be
used in conjunction with a server-side MVC framework to extend the MVC benefits
to the ever-increasing complexity of the modern web application presentation tier.

•	 Ruby on Rails: Ruby on Rails is a popular MVC web development framework used
by thousands of web sites. In Rails, the model is implemented as the ActiveRecord
that maintains the relationship between the model and the database. Ruby method
names are generated automatically based on the field names in the database.
The view is implemented by the ActionView library and the ActionController
subsystem that implements the controller. Much of the Microsoft MVC framework
was inspired by Ruby on Rails, including its dynamic data scaffolding technology.
In Rails, scaffolding generates major pieces of the application based on a model
definition that includes the model class, forms, CSS style sheets, and tests.

1-3. Understanding the Differences Between MVC,
MVVM, and MVP
Problem
In addition to the MVC pattern, you often hear a lot about Model View ViewModel (MVVM) and Model View
Presenter (MVP) patterns, but you are confused about the differences between them and where they should
be applied.

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

15

Solution
The three patterns—MVC, MVVM, and MVP—have many similarities but also are very different. All three
patterns have an underlying goal, which is to separate the view from the model. All three patterns contain
the concepts of the model and the view. The main difference between the patterns is the way changes are
propagated between the view and the model. The view model, the presenter, and the controller all share the
responsibility of communicating state changes between the view and the model, but they employ a different
mechanism to do it.

How It Works
I discuss each of the three patterns and how they work in the following sections.

The MVC Pattern
In the Model View Controller pattern, events fired in the view result in actions being called on the controller.
In ASP.NET Core MVC, this is implemented by HTTP requests routed to the appropriate controller by the
ASP.NET request routing subsystem. Each unique URL is mapped to a special method in the controller,
known as an action. Inside the action method, the view data is processed, and the model is updated. MVC
controllers also have the additional responsibility of determining which view should be displayed.

The MVP Pattern
In the Model View Presenter pattern, the controller has been replaced by the presenter. The presenter is
similar to the controller in that it is the only entity that should manipulate the model. Presenters differ from
the controllers in three ways.

•	 They do not play the role of the traffic cop as controllers do but instead are
instantiated by a view.

•	 The view and the presenter are completely decoupled and communicate by way of
an interface.

•	 The presenter handles all UI events on behalf of the view.

The MVP pattern is commonly used by enterprise ASP.NET Web Forms developers who need to create
automated unit tests for their code-behind pages but do not want to run the tests inside a web server
process. By modeling the properties and events defined in the Web Forms page into an interface, a mock
implementation of the page can be used when running unit tests. Figure 1-3 shows a conceptual diagram of
the MVP pattern implemented in an ASP.NET Web Forms application.

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

16

The MVVM Pattern
In the Model View View Model pattern, two-way data binding is used to communicate state changes in
the view to the view model. Many UI frameworks, such as Windows Presentation Foundation (WPF),
Silverlight, and Knockout.js, employ a concept called data binding that use declarative syntax to bind data
to a user interface. In application frameworks, such as WPF and Silverlight, this is done by setting the view
model as the data context on the view. Because the data binding is bidirectional, when the view model’s
data is changed, the updated value is automatically propagated to the view, and changes to the view are
automatically propagated to the view model.

The view model is a special model that typically contains properties for each user interface element.
This differs from the model that abstracts a pure data entity and does not contain properties related to user
interface components.

The view model typically uses the Observer pattern, in which an event is fired every time an exposed
property is modified, notifying subscribers that a change has occurred. This allows the user interface to be
updated automatically each time the view model changes.

The main advantage of this pattern is that it eliminates the need to explicitly write code such as
PersonNameTextbox.Text = myViewModel.Person.Name to update the UI with data from the view model. It
also removes the necessity of writing code such as myViewModel.Person.Name = PersonNameTextBox.Text
to update the model with changes made by the end user in the view.

View
Implementation

(PersonView.aspx.cs)

View
Interface

(IPersonView.cs)

Presenter
(PersonPresenter.cs)

Model
(Person.cs)

Figure 1-3. MVP pattern implemented in an ASP.NET Web Forms application

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

17

1-4. Discovering the Features of ASP.NET Core MVC
Problem
You are an ASP.NET MVC developer looking to adopt ASP.NET Core MVC. You want to understand what new
features and enhancements exist in the new framework over ASP.NET MVC. You also want to know whether
there are breaking changes in the new version.

Solution
The entire Microsoft development stack, which includes the Microsoft .NET Framework, ASP.NET, and
ASP.NET MVC, has undergone a substantial architectural transformation. ASP.NET and ASP.NET MVC have
been rewritten from the ground up. The changes can be broadly grouped into five major categories.

•	 Performance: ASP.NET Core and ASP.NET Core MVC are highly modularized. This
design allows you to explicitly customize what framework components are deployed
with your application. This makes your application start up faster and requires less
memory. It also has been optimized to use asynchronous programing that eliminates
most blocking I/O. Benchmarks show that ASP.NET Core MVC is many orders of
magnitude faster than ASP.NET 4.6. A deep dive into the new architecture can be
found in recipe 1-5.

•	 Deployment: ASP.NET Core is cross-platform. It can be deployed on Windows,
macOS, and all major Linux distributions including Red Hat Enterprise Linux,
Debian, openSUSE, Centos, and Ubuntu.

•	 Consolidation: There is one development platform for both cloud and on-premises
deployments. ASP.NET MVC, ASP.NET Web API, and ASP.NET Web Pages have been
consolidated into a single framework, and all redundant capabilities have been
removed.

•	 .NET compilation services: .NET Compiler Platform (code name Roslyn) compiles
your application automatically every time it is changed. The compilation occurs so
rapidly that you are able to save your changes and then refresh your browser and
almost instantly see the results of your change. This provides a no-compile developer
experience without losing the performance benefits of compiled code.

•	 New functionality: In addition to the architectural changes, several new capabilities
have been added, including simplified route mapping syntax, POCO controllers,
view components, Tag Helpers, and simplified claims-based authorization.

It should be noted that since ASP.NET Core is a new platform, direct upgrades of projects created in
ASP.NET MVC, which includes ASP.NET MVC 5, are not supported. However, since many of the code
constructs and patterns of ASP.NET MVC have been ported to ASP.NET Core MVC, most of your existing
code will be compatible.

How It Works
In this section I provide a brief description of each of the features of ASP.NET Core MVC that did not exist
in ASP.NET MVC 5. Detailed explanations and examples of how you can use these features can be found in
Chapter 5.

http://dx.doi.org/10.1007/978-1-4842-0427-6_5

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

18

Performance
Performance is possibly the most significant advantage of ASP.NET Core MVC. Microsoft has invested
heavily in optimizing not only ASP.NET Core but also the runtime engine that ASP.NET Core is built on
top of, the CoreCLR. ASP.NET Core has a new request pipeline and a high-speed lightweight HTTP engine
that can be used instead of IIS. The Techempower.com benchmarks rank ASP.NET Core the fastest of the
major frameworks for HTTP request routing. In Techempower.com’s round 13 test, ASP.NET Core was
able to handle more than 1.8 million requests per second from a single server. This was an 85,900 percent
improvement over a previous benchmark. To learn more about these benchmarks, you can visit the
following web sites:

•	 Techempower.com Blog: http://bit.ly/2gqjqMn

•	 ASP.NET Core Benchmark GitHub: http://bit.ly/2glHC4O

Deployment
ASP.NET Core MVC is built on the foundation of a new version of the Microsoft .NET Framework known
as the .NET Core runtime or CoreCLR. CoreCLR allows you to have a very fine level of control over what
components are deployed with your application. It also allows you to deploy your application on many
different hosts and even other operating systems such as Linux. These changes can make your application
100 percent self-contained with no dependencies outside of your application’s bin folder.

In the past, deploying an ASP.NET MVC application meant that you needed to deploy not only your
application code but also the full version of the .NET Framework that your application depended on, the
full ASP.NET stack, and the entire ASP.NET MVC framework. In addition, deploying an ASP.NET MVC
application usually required that you use IIS on Windows Server. This was problematic in cases where
you did not have full administrative control over your deployment environment or when deploying to a
multitenant infrastructure such as GoDaddy. In many cases, this limited your ability to adopt the latest and
greatest versions of ASP.NET and MVC until your IT department or hosting provider offered official support.
With ASP.NET Core MVC, this is no longer the case. You as the developer have now been empowered to use
whatever version of ASP.NET Core MVC that you require and can even deploy different versions of ASP.NET
Core MVC on the same server without worrying about compatibility issues with the other applications.

To enable the flexibility and performance improvements in ASP.NET Core, many changes needed to be
made to the underlying framework to break hard-linked dependencies between components and provide
layers of abstraction. The architectural changes also required CoreCLR to provide a new way to resolve
dependencies, a new configuration system that was not coupled with IIS or Windows, and a new way to start
an application that can load the needed dependencies and configuration.

Consolidation
Prior to ASP.NET Core MVC, ASP.NET MVC, Web API, and ASP.NET Web Pages were all different
frameworks. With ASP.NET Core MVC, the three frameworks have been combined, and overlapping
functionality and APIs have been eliminated.

Of these changes, perhaps the most impactful is the elimination of many of the WebAPI-specific classes
and interfaces. In ASP.NET MVC 5.x and earlier, Web API routes were configured separately, and Web API
controllers used a different base class. In ASP.NET Core MVC, this distinction has been eliminated.

Figure 1-4 and Figure 1-5 demonstrate this consolidation. In Figure 1-4 you can see that filters,
dependency injection, model binding, controllers, and HTML Helpers had all been implemented
independently in the three frameworks.

http://bit.ly/2gqjqMn
http://bit.ly/2glHC4O

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

19

Figure 1-5 shows the components in ASP.NET Core. In the new architecture, all the components are
shared in a single framework that contains the functionality of the three frameworks used in ASP.NET MVC.

ASP.NET

Web Pages MVC Web API

Razor View Engine

HTML Helpers HTML Helpers

API Controllers

Model Binding

Dependency Injection

Filters

MVC Controllers

Model Binding

Dependency Injection

Filters

Figure 1-4. ASP.NET classic with three frameworks

ASP.NET Core

ASP.NET Core MVC

Razor View Engine

HTML Helpers

Tag Helpers

Controllers

Model Binding

Dependency Injection

Filters

Figure 1-5. Components of ASP.NET Core

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

20

Namespace Changes

One of the most significant challenges that you will face when porting your applications to ASP.NET Core
is that most of the core classes have been moved to new namespaces. Most significantly, the System.Web
namespace has been removed, and the classes that previously were found under it have been moved to
new packages with corresponding namespaces. For example, MVC components are now in the System.
AspNetCore.Mvc namespace rather than System.Web.Mvc. Adding to this challenge is the fact that ASP.NET
Core had been refactored many times over three years between the initial community preview and release.
For this reason, many blogs and Stack Overflow pages have incorrect code samples.

Compilation Services
Microsoft has adopted a new .NET Compiler Platform code named Roslyn. Like the rest of the .NET stack,
Roslyn is open source. It enables new types of developer experiences. The most visible change to ASP.NET
developers is that you no longer need to compile your code. Compilation is done for you automatically in
the background each time a source file is modified. In addition, new APIs in the Compiler Platform can be
used by Visual Studio and third-party add-in developers to create features that would be very difficult or
impossible on the old compilers. An early example of what is possible includes smarter code refactoring that
can detect and resolve conflicts automatically. The .NET Compiler Platform is also used to build better code
analysis tools.

New Functionality
In addition to the architectural changes, several new capabilities have been added, including simplified
route mapping syntax, POCO controllers, view components, and Tag Helpers.

POCO Controllers

In ASP.NET Core MVC, controllers no longer are required to inherit from the Controller base class. You
can use any class as long as it is in the Controllers folder in your web application and the class name
follows the convention and ends with Controller. Listing 1-1 shows a simple POCO controller that returns a
JsonResult.

Listing 1-1. Plain Old C# Class Used as a Controller

using Microsoft.AspNet.Mvc;

namespace Chapter01.Controllers
{
 public class PocoController
 {
 public IActionResult Index()
 {
 return new JsonResult("{Poco:True}");
 }
 }
}

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

21

View Components

View components are like child actions, which were used in earlier versions of the ASP.NET MVC framework.
They can be useful for creating simple reusable components. They differ from partial views in that they are
implemented as code rather than as a view page. For an example that shows how to use a view component to
create a tag cloud, see recipe 5-4.

Tag Helpers

Tag Helpers are a new feature that are like HTML Helpers in function but are easier to use. They appear in
your Razor views as regular HTML tags but with one or more custom attributes added. For example, a
Tag Helper that adds a form validation summary message when an incomplete form data is submitted will
resemble the following code:

<div validation-summary="ModelOnly"></div>

You can find more information about Tag Helpers in Chapter 4.

New Configuration System

.NET Core applications that include ASP.NET Core MVC no longer require app.config and web.config files.

.NET Core uses a new more flexible and extensible configuration system. The new configuration system is
no longer limited to a single XML-based file format. It comes with several supported file formats out of the
box, including XML, JSON, and INI. In addition, it also allows your application to consume configuration
information from nonfile sources such as environmental variables and command-line arguments.

 ■ Note If you are planning to deploy your application to IIS, you will still need a web.config file for the
IIS-specific settings found in system.webServer.

.NET Core’s configuration system is extensible. It allows you to create your own configuration providers
and sources. The .NET community has already started using this capability for creating additional providers
such as YamlConfig, which can be found in NuGet. The YamlConfig package allows you to use the popular
YAML Ain’t Markup Language (YAML) format to configure your application.

.NET Core allows you to mix different types of configuration sources in a single application. For
example, you can have some configuration information in one or more JSON files but also get configuration
information from environmental variables and command-line parameters.

When creating a new ASP.NET Core project in Visual Studio, it will add a file named appsettings.json,
as shown in Listing 1-2.

Listing 1-2. appsettings.json Generated by Visual Studio

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Verbose",
 "System": "Information",
 "Microsoft": "Information"
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-0427-6_4

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

22

In Listing 1-2 you see the new configuration information using JSON notation. The configuration
controls the behavior of the Microsoft logging extensions.

Missing Features
ASP.NET Core is a complete rewrite of ASP.NET. The level of change is analogous to when Microsoft moved
from classic ASP to ASP.NET. You are seeing many new features and capabilities that were not possible in
past versions. At the same time, though, not all the functionality from past versions will be available in the
new release. Some of these features will become available in future releases based on community feedback,
but others will be permanently discontinued. Here are some examples of missing features:

•	 No support for the VB programming language. Support for VB is planned in a future
release.

•	 No support for HTTP modules directly in ASP.NET Core applications.

•	 Katana middleware will not be supported beyond version 3 released in August 2014.

•	 No support for the Web Forms view engine.

1-5. Understanding the Architecture of ASP.NET Core MVC
Problem
You are new to ASP.NET Core MVC and want to know more about how it is architected, how ASP.NET
Core MVC processes HTTP requests, and what extensibility points are available.

Solution
ASP.NET Core MVC is built on the foundation of .NET Core and ASP.NET Core. .NET Core provides rich
programing interfaces and compiler services. ASP.NET Core provides core HTTP processing capabilities, a
flexible hosting model, security infrastructure, and request routing capabilities.

ASP.NET Core MVC adds a patterns-based programming model for creating web applications and
RESTful web services. It offers several layers of abstraction that provide opportunities for extensibility and
simplify the use of test-driven development (TDD) strategies.

The ASP.NET Core MVC framework architecture can be logically divided into the following
components:

•	 Route handlers: These match incoming URLs with server code to execute. The
routing infrastructure is part of ASP.NET Core and not the ASP.NET Core MVC
framework. ASP.NET Core MVC provides a default route handler aptly named
MvcRouteHandler to provide the linkage between the routing infrastructure and an
ASP.NET MVC Controller class.

•	 Action invokers: These manage the execution of controller actions and filters.
Whereas the route handler determines what code needs to be executed, the action
invoker uses a controller factory to create an instance of the controller and then
executes the correct action method and associated filters.

•	 Action result: These describe the objects returned from the action invoker and help
ASP.NET Core MVC to call a rendering strategy and stream the results back to the
caller.

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

23

•	 View engines: These provide mechanisms for binding data to server-side templates
known as views that are typically rendered as HTML.

•	 Model binders: These provide a mechanism for tokenizing data in an HTTP request
and converting it into a Common Language Runtime (CLR) type. For example, you
may have a Controller action that expects a Person object and a View that shows
a form for entering the properties of that object. A model binder automatically
transforms the form data into a Person object. Without the model binder, you would
be responsible for creating an instance of a Person object and then pulling the
name-value pairs from the Request object and writing the data to the appropriate
properties of your object.

•	 Filters: These contain shared functionality such as authentication, authorization, and
exception-handling logic. The ASP.NET Core MVC framework offers several types of
filters that can be executed before and after the controller action.

•	 HTML Helpers and Tag Helpers: These can be used inside views to encapsulate view
logic. The ASP.NET Core MVC framework comes with many useful HTML and
Tag Helpers and allows you to create custom helpers.

The ASP.NET Core MVC framework offers default implementations for each of these components but
also allows any of them to be replaced or used in conjunction with alternative implementations.

How It Works
In this section, I explore the inner core of ASP.NET Core MVC and its supporting components, starting with
ASP.NET Core.

ASP.NET Core
The new version of the core infrastructure for ASP.NET is collectively known as ASP.NET Core. ASP.NET
Core is a completely modular system. It allows you to select only the components you require to run
your applications. This is a significant architectural change from ASP.NET 4.6. In ASP.NET 4.6 all the core
functionality was contained in the System.Web assembly, and hosting an ASP.NET application required
loading all of it, even if you needed only a few functions contained in it. For example, in ASP.NET 4.6 an
HttpContext object was instantiated with each request, and it required 30kB of memory. With ASP.NET
Core, HttpContext is now optional, and a single request can use as little as 2kB per request.

Another important architectural change in ASP.NET Core is the full decoupling of ASP.NET and the
Windows operating system and Microsoft’s web server IIS. Although it was possible to run older versions of
ASP.NET outside of IIS, you could not always rely on consistent behavior when moving between platforms.
With ASP.NET Core, this has been mitigated with a new set of HTTP abstractions and OWIN-compatible
middleware. OWIN was a predecessor to ASP.NET Core that defined standard interfaces between .NET web
servers and applications. You can find out more about OWIN at http://owin.org/.

Figure 1-6 shows the overall architecture of ASP.NET Core and ASP.NET Core MVC. This architecture
is divided into four primary layers, including native hosting, which hosts the native process for your
application; the runtime, which is responsible for loading and initializing the .NET Framework and hosts
the core .NET CLR including hooks for the Roslyn compilation services; the application host; and finally the
components of ASP.NET Core and ASP.NET Core MVC.

http://owin.org/

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

24

MVC Core

AS
P.

NE
T

Co
re

 M
VC

.N
ET

 C
or

e
Ru

nt
im

e
Ho

st
in

g Na
tiv

e
Co

de

AS
P.

NE
T

Co
re

Filters

View Components MVC Route Hanlers

Rendering Action Results

MVC Razor Host

MVC Razor Extensions

Model Binding

MVC Common

Reflection

I/O

Dependency
Injection

Data
Annotations

Configuration

Options

Routing

HTTP Abstractions

Security

ASP.NET File System

Roslyn Loader

Application Host

Mono Managed Entry Point &
Assembly Loader

Mono

Mono Native Host Core CRL Native Host

Platform-
Specific

Executables

Custom
Host

Native
(dotnet.exe)

Kestral/
libuv

ASP.NET
Core

Module

Core CRL

Managed Entry Point & Assembly
Loader

Attribute Routing

Figure 1-6. ASP.NET Core architecture

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

25

Hosting: Native Process

At the bottom of Figure 1-6 is the hosting layer. Hosting is a small layer of native code that is responsible for
finding and invoking the native host.

Several hosts are available, including the ASP.NET Core Module, Kestral, and dotnet.exe. The ASP.NET
Core Module allows ASP.NET Core applications to be hosted in IIS. dotnet.exe is a command-line tool
that can be used to build and run your ASP.NET applications for development and testing purposes. Kestrel
is a high-performance cross-platform HTTP server based on the libuv asynchronous I/O library. It offers
the best performance for hosting your ASP.NET Core application. Kestrel does not offer the same level of
functionality as IIS, however. For example, if your application needs to use Windows authentication, you will
need to use Kestrel in conjunction with IIS.

If you needed, you could create a custom host for hosting your ASP.NET application. This could be a
WPF application, a command-line tool, or a Windows service.

Runtime: CLR Native Host

The runtime layer configures and starts the CLR and creates the application domain for managed code to
run inside of. When the hosting application shuts down, the runtime layer is responsible for cleaning up
resources used by the CLR and then shutting it down.

In the runtime layer, Windows machines will have a core native code implementation of the CLR.
You also have the option to run the Mono implementation of the CLR. The Mono project offers native hosts
for macOS, Linux, and Windows.

Runtime: Managed Entry Point

The managed entry point is written in native code. The main purpose of this layer is to find and load the
required assemblies. Once the assemblies have been loaded, the managed entry point is called, and the
application begins executing.

Runtime: Application Host

The application hosting layer of the runtime is the first layer where a web developer will typically
get involved. The application host reads the project’s .csproj file and determines your application’s
dependencies. It can locate assemblies from many sources including NuGet and assemblies compiled in
memory by the Roslyn compiler services.

In an ASP.NET Core application, this layer will also create the ASP.NET Core pipeline and load the
specified middleware components.

Runtime: Roslyn Loader

The Roslyn loader is responsible for loading and compiling source files. With ASP.NET Core, the application
code does not need to be compiled before it is deployed. It can be deployed as source code and compiled on
demand.

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

26

.NET Core and ASP.NET Core

Figure 1-6 shows some of the components of the .NET Core framework and ASP.NET Core that are required
to run ASP.NET Core MVC. On the .NET Core side, you have the following:

•	 Reflection: This component provides the ability for your application to inspect the
assemblies loaded in your application and the types defined in them. Reflection is
used extensively in the ASP.NET Core MVC framework.

•	 Dependency Injection: This set of components, now part of the .NET Core, allows you
to reduce dependency coupling by providing a set of generic factory classes that can
instantiate an instance of a class via configuration. This is a powerful design pattern
that adds both flexibility and testability to ASP.NET Core MVC.

•	 Configuration: .NET Core has a new more flexible configuration library that allows
you to use many different sources for configuration. The possible configuration
sources include command-line arguments, environmental variables, and files. When
using a file as your configuration source, you can choose from a variety of built-in
formats including JSON, XML, and INI files. The configuration system allows you to
use many configuration sources in your application.

•	 Asynchronous I/O: This component provides classes for interacting with the file
system, creating and reading streams, and communicating over a network.

•	 Data Annotations: This library is part of the .NET Standard library. Data Annotations
allows you to decorate your model classes and its properties with descriptive
attributes. The metadata contained in these attributes can then be read by other
components by way of reflection to perform many useful tasks such as input
validation within ASP.NET Core MVC and database creation by Entity Framework
when using a “code first” design approach.

In the ASP.NET Core stack there are many components required by ASP.NET Core MVC. Some of the
most important are shown in Figure 1-6.

•	 Routing: This component contains logic for mapping HTTP requests to the desired
static resource or application component. It allows you to customize the URL
scheme for your web application or service.

•	 Security: This component consists of a collection of OWIN-based providers known
collectively as ASP.NET Identity. ASP.NET Identity supports several authentication
and authorization standards including SAML, OAuth, and Windows authentication,
as well as custom user databases with cookie authentication. This functionality
allows you to quickly integrate your application with external identity providers
such as Facebook, Microsoft, and Google or integrate your application with Active
Directory. ASP.NET Identity also includes support for advanced security features
such as two-factor authentication.

•	 HTTP abstractions: These are new components that are part of ASP.NET Core. They
create an abstraction layer that ensures consistent APIs and behaviors regardless of
where you host your ASP.NET Core application.

•	 ASP.NET Core file system: This provides static file handling for your web applications.
This is required because unlike past versions of ASP.NET, which delegated loading
and serving of static files such as images and CSS files to the web server, ASP.NET
Core needed a standard set of abstractions that would be consistent across different
web servers and operating systems.

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

27

Unlike ASP.NET MVC, which contained most of its functionality in a single NuGet package, ASP.NET
Core MVC has been broken up into many subcomponents, each with its own NuGet package. This allows
you to be very specific about what components you include in your application.

A good way to get an understanding of ASP.NET Core MVC’s modularity is to create a new project in Visual
Studio. After creating a new ASP.NET Core MVC project in Visual Studio, you can explore the components
that are included with the template by expanding dependencies and then NuGet folders from inside Solution
Explorer. Depending on the variation of the new project template you selected and what type of authentication
you selected for your project, you will see between 10 and 20 packages. Of these, the most significant from
a developer’s perspective are the Microsoft.AspNetCore.Mvc and Microsoft.AspNetCore.Mvc.Routing
packages. If you expand Microsoft.AspNetCore.Mvc, you will see that it is made of an additional ten packages.

Another worthwhile exercise is to explore the ASP.NET Core MVC source code on GitHub (https://
github.com/aspnet/Mvc). Inside the Microsoft.AspNetCore.Mvc.Core folder is most of the functionality
that you will interact with in your application code, including ActionResults, Areas, Controller, HTTP
attributes, and output formatters. In the Microsoft.AspNetCore.Mvc.Core/ModelBinding folder, you will
find the components that perform the magic of taking data posted from Ajax and HTML form submissions
from the web browser and then binding it to a CLR type on the server. The GitHub repository also includes
the Razor view engine located in the Microsoft.AspNetCore.Mvc.Razor subdirectory. It should be noted,
however, that ASP.NET Core MVC contains only the Razor view engine, which allows Razor to hook into
the ASP.NET Core MVC framework request execution pipeline. The core of Razor, which includes the
template parser, tokenizer, editor integration, and utilities, is in a separate branch of the ASP.NET tree that is
independent of ASP.NET Core MVC (https://github.com/aspnet/).

The ASP.NET MVC Request Processing Pipeline
As an ASP.NET Core MVC developer, it is important to understand how the ASP.NET Core MVC processes
requests. In the previous section I introduced many of the components of ASP.NET Core MVC. Now I
will discuss how these components work together to process a request. This insight will aid in root-cause
analysis as well as in helping you understand where you can inject custom code into the request pipeline.
Figure 1-7 shows a high-level look at the ASP.NET Core MVC processing pipeline.

https://github.com/aspnet/Mvc
https://github.com/aspnet/Mvc
https://github.com/aspnet/

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

28

Incoming Request

Routing Middleware

Route Handler

Invoke Action Selector

Action Invoker

Invoke Exception Filters

Invoke Authorization Filters

Invoke Action Filters

Invoke Action

Invoke Results Filter

Invoke Results

ExecuteResultAsync
Microsoft.AspNet.Mvc.ViewResult

Microsoft.AspNet.Mvc.MvcRouteHandler

Microsoft.AspNet.Mvc.ReflectedActionInvoker

Microsoft.AspNet.Builder.RouterMiddleware

/Home/Index

Get ViewEngine

Find View

Render View

Write Stream

Figure 1-7. ASP.NET Core MVC framework request processing pipeline

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

29

Before ASP.NET Core MVC can process any requests, it must be initialized and configured. For
ASP.NET Core, this starts with a host such as the ASP.NET Core Module or dotnet.exe starting and loading
the base framework, instantiating a Startup class, and calling its ConfigureServices and then its Configure
method. In an ASP.NET Core MVC application, the host will load the core ASP.NET services including HTTP
abstractions, routing middleware, and other middleware components.

Once the application has been initialized and the routes have been registered, the application is ready
to begin accepting new requests and passing them though the processing pipeline.

Request processing begins with the routing middleware component intercepting an incoming HTTP
request and inspecting it to see whether it matches one of the patterns registered in the routing table. The
default router middleware component in ASP.NET Core is a class called Microsoft.AspNetCore.Builder.
RouterMiddleware. RouterMiddleware’s constructor takes a route handler and a RequestDelegate instance
as parameters. When the runtime calls the RouterMiddleware’s Invoke method, it passes in an HttpContext
object as a parameter. It then creates a new RouteContext object using HttpContext. RouterMiddleware then
attempts to call the route handler’s RouteAsync method. The route handler is the first extensibility point in the
pipeline. Route handlers implement the IRouter interface, which exposes a single method called RouteAsync.

ASP.NET Core MVC comes with a route handler called Microsoft.AspNetCore.Mvc.MvcRouteHandler
and is configured to use it by default. When RouteAsync is called, it uses an ActionSelector to inspect the
incoming URL to see whether it matches a route pattern that has been added to the route collection. If a
matching route is found, the route handler will create an instance of the configured action invoker.

The action invoker is another point of extensibility where you can supply your own implementation if
needed. As with the route handler, ASP.NET Core MVC has a default implementation that is configured out
of the box. The action invoker is called Microsoft.AspNetCore.Mvc.ReflectedActionInvoker. As its name
implies, the action invoker uses .NET Core’s reflection capabilities to inspect the matched controller class to
determine whether it has a matching action method and then adds the appropriate filers to the execution
pipeline.

The ReflectedActionInvoker constructor takes ActionContext, ReflectedActionDescriptor,
IControllerFactory, IActionBindingContextProvider, and INestedProviderManager as parameters.
It then uses the IControllerFactory parameter to create an instance of the controller. Once the controller is
instantiated, ReflectedActionInvoker performs the following procedure:

 1. Creates a list of filters that need to be executed along with the action method:
This is a combination of global filters that have been registered as part of the
application initialization process as well as filters added to the controller and
action method declaratively using attributes.

 2. Invokes exception filters: Exception filters contain code that is executed when
exceptions occur. If any of the exception filters return a result, execution of the
action will be short-circuited, and no other filters will be invoked.

 3. Invokes authorization filters: Authorization filters check to see whether a user
is logged in. If any of the authorization filters returns a result, execution of the
action will be short-circuited. When an AuthorizationFilter has a result, it
indicates that authorization has failed.

 4. Invokes action filters: Action filters are the first item in the pipeline that has
access to arguments via model binding. Action filters are typically used to
encapsulate code that might otherwise be repeated in multiple action methods.
As with the other filters, if a result is set, it short-circuits execution.

 5. Invokes the action method: The action method is typically where you write
your code. Internally the ASP.NET Core MVC framework sees the action
method as a type of filter. The ASP.NET Core MVC framework uses the
ReflectedActionExecutor class to execute the action method and to obtain
the result.

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

30

 6. Verifies no unhandled exception has occurred: All the preceding steps have been
executed asynchronously and return Task objects. The tasks are examined to see
whether any had uncaught exceptions and, if so, execution is short-circuited.

 7. Invokes ResultFilters, which will execute any result filters associated with the
action: Result filters implement the IResultFilter interface, which defines two
methods—one that is executed before a result is generated and another for after.

 8. Invokes Result using ResultExecutedContext: At this point, the pipeline can begin
writing a response to an output stream directly or invoking a view engine. What
action is taken here is directly related to the type of ActionResult returned by
the action method.

In cases where the action method returns a ViewResult, then a view engine will be utilized to generate
the result. In most cases a view engine will load a template file such as a .cshtml file for the Razor view
engine and then begin the process of compiling the view, binding it with model data, and then writing a
response to the output stream. The details of this process vary depending on what view engine is used,
but the overall process from a Core MVC process flow perspective is the same regardless of what view engine
is used.

 1. The ResultExecutedContext is initialized with a service provider and a view
engine. A service provider implements the IServiceProvider interface. Its job
is to define a mechanism for receiving service objects. Service objects provide
services to other objects. In MVC applications this is typically an HTTPContext
object.

 2. The view engine gets view names from the parameter passed to the
ActionResult constructor or from the ActionDescriptor.Name property.

 3. The view engine then attempts to find a view using the ViewEngine.FindView
method.

 4. The view engine then sets the ContentType header. By default, this is set to
"text/html; charset=utf-8".

 5. The view engine creates a StreamWriter and a ViewContext.

 6. The view engine then calls View.RenderAsync, which generates all of the content
needed for the response and then writes it to the StreamWriter.

For more information on how view engines work, please refer to recipe 1-9.

1-6. Understanding Models in ASP.NET Core MVC
Problem
You know that models are the M in MVC but are not sure how they differ from regular C# classes. You would
like to get a better understanding of what models are.

Solution
ASP.NET Core MVC can use any .NET class as a model. If you want, you could even use a simple primitive
such as a System.Int32 as your model. More often, the model is a complex class that contains many types
and collections of types.

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

31

Although you could use any class, it is usually better to create classes that fulfil the model role. Although
the primary function of the model is to describe your domain, it can also provide functionality such as
calculations, perform complex validation logic, and manage the state of the entities it describes. You should
avoid creating classes that perform a dual role and mix together model and controller logic. Please refer to
recipe 1-2 and review the allowed communication patterns for general guidelines on how the model should
interact with your application.

When you create a new ASP.NET Core MVC project using Visual Studio and use ASP.NET Core Identity,
Visual Studio creates a Models folder and places several models in the folder for you. When you create your
models, you can follow this pattern or, if the complexity of the model warrants it, you can place your model
in a separate project.

There are several patterns that you can use when creating your models. Some of the most popular
methods include

•	 Creating simple classes

•	 Creating composite classes

•	 Using the Entity Framework

How It Works
In the following sections I demonstrate how to create a model in an MVC application using simple classes.
The classes will make use of data annotations that are used by both the view engine to help generate HTML
and the model binder to validate the model data on the server after a form has been submitted.

Creating Simple Classes
A pattern used by the Visual Studio team creates a set of simple classes with no complex types that consist
of nothing but public properties and data annotations. To see an example of this pattern, create a new
ASP.NET Core Web Application project using the Web Application template and change the authentication
type to individual user accounts. The project template includes a Models folder with a subfolder called
AccountViewModels. The AccountViewModels folder contains a class called RegisterViewModel.cs. The
RegisterViewModel has only enough properties to support the view that it is used with. Each property is
decorated with a set of data annotations. These attributes—when used with the HTML Helpers or
Tag Helpers—automatically generate the HTML needed to support form validation using jQuery validation.
Listing 1-3 shows RegisterViewModel.

Listing 1-3. RegisterModel from MVC Template

public class RegisterViewModel
{
 [Required]
 [EmailAddress]
 [Display(Name = "Email")]
 public string Email { get; set; }

 [Required]
 [StringLength(100,
 ErrorMessage = "The {0} must be at least {2} and at max {1} characters long.",
 MinimumLength = 6)]

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

32

 [DataType(DataType.Password)]
 [Display(Name = "Password")]
 public string Password { get; set; }

 [DataType(DataType.Password)]
 [Display(Name = "Confirm password")]
 [Compare("Password",
 ErrorMessage = "The password and confirmation password do not match.")]
 public string ConfirmPassword { get; set; }
}

RegisterViewModel is a simple class with three properties. It uses data annotations to apply certain
attributes to each property. The advantage of this approach is that information such as the field name,
whether or not the field is required, and validation error messages can be maintained in a single file and used
with many views. For example, if this model has a view designed for a PC, another one designed for a tablet,
and a web API for a native iPhone application, the information can be applied uniformly across all views.

Creating Composite Models
If a simple model like the one mentioned in the preceding section will not meet the needs of your views,
you can create a composite model. This method is useful in cases when you are displaying a view that needs
data from several objects. It could also be useful in situations where you are working with an existing library
defined in another assembly that does not map well to your view. In this case, the external library that
defines your view is not in your project’s model folder but in another project.

Rather than trying to use the external classes as your model or jamming random objects into the
ViewBag, you can add a class that references one or more classes in your external library. Listing 1-4 shows a
simple example of a model that describes items in a guitar case.

Listing 1-4. The GuitarCaseModels

// Defined in the projects model folder
public class GuitarCaseModel
{
 public List<GuitarPick> Picks { get; set; }
 public List<GuitarCable> Cables { get; set; }
 public Guitar MyGuitar { get; set; }
}

// Defined in another assembly
public class Guitar
{
 public string Brand { get; set; }
 public string BodyStyle { get; set; }
 public string Finish { get; set; }
}

public class GuitarCable
{
 public string Brand { get; set; }
 public int Length { get; set; }
}

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

33

public class GuitarPick
{
 public string Brand { get; set; }
 public string Thickness { get; set; }
}

One problem that might jump right out at you when viewing this example is that because the class does
not use data annotations, you are not able to benefit from the declarative syntax used in Listing 1-4.

Using the Entity Framework
Another way of defining a model is to use the Entity Framework or another object-relational mapper (ORM)
to define the model. With this option, your model is also connected to your data abstraction layer. The Entity
Framework provides several ways to design your model.

•	 Model first: This method uses a designer to define a model and then generates
a database based on the model. It should be noted that this mode is no longer
supported in Entity Framework Core.

•	 Database first: This method creates a model based on a database schema.

•	 Code first: This method allows you to use a plain old C# object (POCO) as a model
and then connect it to the Entity Framework using a class derived from DbContext.

These options are discussed in more detail in Chapter 6.

1-7. Understanding Controllers and Actions in ASP.NET
Core MVC
Problem
You need some help understanding the role of the controller in an ASP.NET Core MVC application.

Solution
Controllers are classes that either extend the System.AspNetCore.Mvc.Controller base class or are
POCO classes that follow the naming convention. By convention, all controllers are placed inside a folder
named Controllers inside the MVC web application project. The name of the controller must end with
the suffix Controller, as in HomeController. Inside the controller are one or more methods that return an
IActionResult object. These methods are known as actions.

The controller provides three roles in the MVC application.

•	 It selects what view should be displayed.

•	 It allows a clean separation between the view and the model by acting as an
intermediary between the two.

•	 It processes data before it is passed along.

http://dx.doi.org/10.1007/978-1-4842-0427-6_6

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

34

How It Works
The main jobs of the controller are to perform some work on behalf of the user, such as creating an instance
of a model and then passing the model data to an action result. The action result then takes that model data
and converts it to an output format. In some cases, your action was called by a web browser that is expecting
HTML content such as a form or a data grid. In other cases, this could be a client-side script that needs the
model data in JSON format. The format of the result is determined by the type of action result returned by
the action. ASP.NET Core MVC comes with more than 20 types of action results and allows you to create your
own types. I will go over the different types of action results in detail later in this section.

The most common scenario is that you want your controller to pass the model data to a view and then
have a view engine render the result, which can be sent back to the user in HTML format. In ASP.NET MVC
this is accomplished by returning a special type of ActionResult called a ViewResult.

When you return a ViewResult and do not pass it the name of the view in its constructor, as shown in
Listing 1-5, ASP.NET Core MVC will assume that you are looking for a view that matches the name of the
action. ASP.NET Core MVC uses reflection to determine the name of the action and then attempts to find a
view with the corresponding name in the Views folder for that controller. In the case of Listing 1-5, it will be
looking for a view named Index in the folder Views/Home.

 ■ Note Reflection is a programming technique that uses information about loaded assemblies and the types
defined within them. Code that uses this technique is looking at itself like a person looking in a mirror.

Listing 1-5. Returning a ViewResult Without Specifing a View Name

public class HomeController : Controller
{
 public IActionResult Index()
 {
 return View();
 }
}

If you pass in the view name as a string to the ViewResult constructor, as shown in Listing 1-6, it
will base its search on the contents of the string. In this case, it will search for a view named about. When
explicitly passing in the name of the view, the view name does not need to match the name of the action.

Listing 1-6. Returning a ViewResult with a View Name

// maps to About.chtml
// the view location logic will use refection to get
// the action name and then use it to find a matching view
// This version is more difficult to unit test
public IActionResult About()
{
 ViewBag.Message = "Your application description page.";

 return View();
}

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

35

// also will map to About.chtml since we pass view name as an argument
public IActionResult About2()
{
 ViewBag.Message = "Your application description page.";

 return View("About");
}

// This one maps to OtherView.chtml
// the string in the argument gives the name of the view
// if OtherView.chtml does not exist an error will occur at runtime
public IActionResult About3()
{
 ViewBag.Message = "Your application description page.";

 return View("OtherView");
}

If you create a new ASP.NET Core MVC project using the Web Application template and select
Individual User Accounts for authentication, Visual Studio will create a folder structure like the one shown in
Figure 1-8. Each ASP.NET Core MVC project has a Views folder. Inside the Views folder is a subfolder with a
name that matches the name of a controller. For example, as shown in Figure 1-8, the AccountController.cs
has a corresponding views folder named Account.

Figure 1-8. The account controller and corresponding view folder

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

36

Inside the account view folder are 12 views. Each of the views maps to an action inside the
AccountController class. For example, the Login action maps to the view defined in the file Login.cshtml.

Other Types of Action Results
Returning a ViewResult is probably the most common scenario, but there are other types of action results
that come with the framework. These include the following:

•	 ChallengeResult: This result is used when you have a condition in your code that
requires that the caller should be challenged for login credentials.

•	 StatusCodeResult: This action result produces a given response status code. Several
other action result classes are derived from StatusCodeResult.

•	 BadRequestResult: When executed, this result will produce a Bad Request
(HTTP 400) response.

•	 UnsupportedMediaTypeResult: This is a status code result that when executed
will return an HTTP 415 result indicating that the request was for an unsupported
media type.

•	 UnauthorizedResult: This is a status code result that when executed will return an
HTTP 401 result indicating that the caller was unable to access the resource because
the caller is not authorized.

•	 BadRequestObjectResult: When executed, this result will produce a Bad Request
(HTTP 400) response with an error that can be returned to the client.

•	 OkResult: This is a status code result that when executed will produce an empty OK
(HTTP 200) response.

•	 EmptyResult: This result returns an HTTP 204 response code.

•	 HttpNotFoundResult: This result returns an HTTP 404 response code.

•	 SignInResult: This action result invokes AuthenticationManager.SignInAsyc.

•	 SignOutResult: This action result invokes AuthenticationManager.SignOutAsyc.

•	 ForbidResult: This action result invokes AuthenticationManager.ForbidAsync.

•	 ContentResult: This result is used to return a string as the body of the response.

•	 FileResult: This is an abstract class for file-based action results.

•	 FileStreamResult: This FileResult writes a FileStream to the output stream.

•	 FileContentResult: This FileResult writes a binary file to the output stream as a
byte array.

•	 PhysicalFileResult: On execution, this result will write a file from disk to the
response using the Content-Type header you specify.

•	 JsonResult: This result returns model data formatted as JSON.

•	 NoContentResult: This result returns an HTTP 204 response.

•	 ObjectResult: This result returns a serialized object to the output stream. If the
model is a simple string, this result will return the string as a text file; otherwise, it
will convert it to a JSON object.

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

37

•	 OkObjectResult: This ObjectResult returns with HTTP status code 200.

•	 CreatedResult: This ObjectResult returns a created (HTTP 201) response.

•	 CreateAtRouteResult: This ObjectResult is similar to CreatedResult but also
includes a location header.

•	 RedirectResult: This result redirects to the URL specified.

•	 RedirectToActionResult: This result redirects to a specified action method.

•	 RedirectToRouteResult: This result redirects to a specified route.

1-8. Understanding Page Routing in ASP.NET Core MVC
Problem
You understand the basics of how MVC controllers work but are unsure about how the ASP.NET routing
engine is able to map a URL to the correct controller and execute the proper action.

Solution
The ASP.NET MVC routing system uses a series of rules listed in a routing table to determine which
controller and action are executed in response to a request. The routing engine intercepts each request
and determines whether the URL specified matches a pattern in the routing rules list. Each routing rule
contains placeholders that can match a controller, an action, an area, and any number of variables and route
constraints. When a URL is found to match a pattern, the routing engine attempts to match the text in the
{controller} placeholder with a controller class defined in the web application. If it cannot find a match,
the routing engine throws an error. The routing engine is also responsible for constructing URLs that can be
used to create callbacks to the correct controller and action that are used in forms and Ajax calls.

How It Works
Each ASP.NET Core MVC application contains a class named Startup in its root folder. The Startup class,
like the global.asax file used in ASP.NET classic applications, is the place where all application initialization
logic is performed. ASP.NET Core applications do not use the global.asax file.

The Startup class does not implement an interface nor does it inherit from a base class. It does,
however, follow a pattern common to all Startup classes. Each Startup class includes a public property
of the type IConfigurationRoot named Configuration. Startup also implements two methods,
ConfigureServices and Configure. Startup’s constructor is used to load the application’s configuration
data, which is used to initialize the Configuration property. The constructor typically accepts an instance
of a class implementing the IHostingEnvironment interface as an argument. The IHostingEnvironment
instance contains information about the host, such as the base path of the web application. This path
information is used by the configuration builder to help locate the configuration files.

The Startup class’s ConfigureServices method is used to register types with ASP.NET Core’s
dependency injection system. ASP.NET Core MVC comes with several extension methods to
IServiceCollection to simplify registration. Shown in Listing 1-7 are the AddDbContext method, which
registers an Entity Framework Core DbContext; AddIdentity, which registers ASP.NET Identity; and AddMvc,

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

38

which registers the modules of ASP.NET Core MVC. In addition to using extension methods, you can
register types manually. In Listing 1-7, two interfaces, IEmailSender and ISmsSender, are registered with
AuthMessageSender as the concrete class that implements them.

The Startup class’s Configure method is used to add modules to the request pipeline. This is done
by calling extension methods on the objects passed as arguments, as shown in Listing 1-7. UseMvc is an
extension method on the IApplicationBuilder argument. Invoking UseMVC adds ASP.NET Core MVC to the
request pipeline. A lambda expression passed as an argument to UseMVC is used to define the default routes
for the application.

Listing 1-7. Routes Defined by the Visual Studio MVC Web Application Template

public class Startup
{
 public void Configure(
 IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory
)
 {
 // add default logging components
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 // Configure the HTTP request pipeline.

 // Add the following to the request pipeline only in development environment.
 if (env.IsDevelopment())
 {
 app.UseBrowserLink();
 app.UseErrorPage();
 app.UseDatabaseErrorPage(DatabaseErrorPageOptions.ShowAll);
 }
 else
 {
 // Add Error handling middleware which catches all application specific errors and
 // sends the request to the following path or controller action.
 app.UseErrorHandler("/Home/Error");
 }

 // Add static files to the request pipeline.
 app.UseStaticFiles();

 // Add cookie-based authentication to the request pipeline.
 app.UseIdentity();

 // Add other middleware to the request pipeline here.

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

39

 // Add MVC to the request pipeline.
 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 });
 }
}

The code shown in bold in Listing 1-7 creates the default routing rule. It defines a routing template for
"{controller=Home}/{action=Index}/{id?}" and declares the id parameter as optional using the ?. In
addition, the route template sets default values for the controller and action parameters.

The settings defined in Listing 1-7 will result in the routes shown in Table 1-2.

Table 1-2. Routing Rule Results

URL HTTP Verb Matching Controller Matching Action

/ GET Home Index

/Home GET Home Index

/Home/Index GET Home Index

/Home/About GET Home About

It should be noted that because Web API and MVC are no longer two separate frameworks, there is no
real distinction between an API route and a regular route. For both API and regular routes, an HTTP verb can
play a role in deciding what action is called. There are two ways to match an HTTP verb with an action. The
first is the name of an action. For example, an action named Post or PostMyActionName will be associated
with the POST HTTP verb unless overridden by an attribute or other routing rule. This technique is more
common for API routes that do not have an action name in the route. The second technique is to decorate
the action definition with an attribute such as HttpPostAttribute.

Another important thing to note about routing rules is that they are processed in order. The first route
that matches the URL is the one that is used. Any routes found after the matched route are completely
ignored. When adding routes to the routing label, be sure to add specific routes prior to general ones. I cover
this topic in greater detail in Chapter 5.

1-9. Understanding View Engines in ASP.NET Core MVC
Problem
You have heard the term view engine used earlier in this chapter and perhaps in other media regarding
ASP.NET Core MVC, but you do not really understand what it is and how it fits into ASP.NET Core MVC.

http://dx.doi.org/10.1007/978-1-4842-0427-6_5

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

40

Solution
ASP.NET Core MVC has a modular design and allows for each of the modules to be replaced or enhanced
by a custom implementation. Of all the modules in ASP.NET Core MVC, the one that is the most interesting
for developers is the view engine. Many view engines have been created by the community. Some of them
emulate popular templating systems from other platforms, and others are unique to ASP.NET Core MVC.

How It Works
A view engine is the ASP.NET Core MVC subsystem that defines the expressive syntax for authoring views
and a rendering engine that converts the server-side template into HTML markup. ASP.NET Core MVC ships
with the Razor view engine. Razor views have a .cshtml file extension, which stands for C# HTML. The
initial version of ASP.NET Core MVC did not ship with the Web Forms view engine, but this may be shipped
as an out-of-band update and made available via NuGet.

Each view engine has three main functional components.

•	 View engine class: This component implements the IViewEngine interface and
provides a mechanism for locating view templates.

•	 View class: This component implements the IView interface and provides a method
for combining the template with data from the current context and the model to
output HTML markup.

•	 Template parsing engine: This component parses the template and compiles the view
into executable code.

On other platforms, a view engine is sometimes referred to as a template engine. This is a component
that takes a text file that usually contains a mix of HTML markup and scripts, parses the file, and then
executes the code in the file to render the results. On development platforms that do not use the MVC
pattern, the templating engine is the primary interface for developing the application. An example of a
templating engine is classic ASP.

By making the view engine modular, the ASP.NET Core MVC team has made it possible to completely
change the way views are constructed and rendered without impacting the rest of the infrastructure. For
example, if you install the NHaml view engine, you could create views in a similar fashion to creating Haml
views on Ruby on Rails.

The first component of the trio that makes up a view engine is a class that implements the IViewEngine
interface. This interface is defined in Listing 1-8. The source code for IViewEngine can be found on GitHub
at http://bit.ly/MvcIViewEngine.

Listing 1-8. The View Engine Interface

namespace Microsoft.AspNetCore.Mvc.ViewEngines
{
 /// <summary>
 /// Defines the contract for a view engine.
 /// </summary>
 public interface IViewEngine
 {
 /// <summary>
 /// Finds the view with the given <paramref name="viewName"/> using view locations and
 /// information from the
 /// <paramref name="context"/>.

http://bit.ly/MvcIViewEngine

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

41

 /// </summary>
 /// <param name="context">The <see cref="ActionContext"/>.</param>
 /// <param name="viewName">The name or full path to the view.</param>
 /// <param name="isMainPage">Determines if the page being found is the main page for an
 /// action.</param>
 /// <returns>The <see cref="ViewEngineResult"/> of locating the view.</returns>
 ViewEngineResult FindView(ActionContext context, string viewName, bool isMainPage);

 /// <summary>
 /// Gets the view with the given
 /// <paramref name="viewPath"/>, relative to <paramref name="executingFilePath"/>
 /// unless <paramref name="viewPath"/> is already absolute.
 /// </summary>
 /// <param name="executingFilePath">The absolute path to the
 /// currently-executing view, if any.</param>
 /// <param name="viewPath">The path to the view.</param>
 /// <param name="isMainPage">Determines if the page being found is the
 /// main page for an action.</param>
 /// <returns>The <see cref="ViewEngineResult"/> of locating the view.</returns>
 ViewEngineResult GetView(string executingFilePath, string viewPath, bool isMainPage);

 }
}

The IViewEngine interface is simple. It consists of two methods, one for finding a view and another for
getting the view.

The second component that the view class implements is the IView interface shown in Listing 1-9. This
interface has a single method called RenderAsync. A major difference between MVC 6 and earlier versions
of MVC is that all template rendering is done asynchronously. This increases the scalability of the ASP.NET
Core MVC framework by preventing I/O latency from blocking threads.

Listing 1-9. The IView Interface

namespace Microsoft.AspNetCore.Mvc.ViewEngines
{
 /// <summary>
 /// Specifies the contract for a view.
 /// </summary>
 public interface IView
 {
 /// <summary>
 /// Gets the path of the view as resolved by the <see cref="IViewEngine"/>.
 /// </summary>
 string Path { get; }

 /// <summary>
 /// Asynchronously renders the view using the specified <paramref name="context"/>.
 /// </summary>
 /// <param name="context">The <see cref="ViewContext"/>.</param>
 /// <returns>A <see cref="Task"/> that on completion renders the view.</returns>
 Task RenderAsync(ViewContext context);
 }
}

Chapter 1 ■ aSp.Net Core MVC FuNdaMeNtalS

42

The RenderAsync method shown in Listing 1-9 takes a single parameter expecting a ViewContext.
The ViewContext contains all the data that needs to be passed to the template parsing engine

component, including the controller context, the form context, the HTTP context, route data, view data, and
information about any parent actions.

The final component, the template parsing engine, does not implement any predefined interface. This
allows developers to do whatever they want. This component is typically by far the most complex of the three
components and could consist of hundreds of classes. If you ever endeavor to create your own view engine,
you will spend most your time with this component.

43© John Ciliberti 2017
J. Ciliberti, ASP.NET Core Recipes, DOI 10.1007/978-1-4842-0427-6_2

CHAPTER 2

Getting Started with ASP.NET
Core MVC

In this chapter, the recipes focus on getting your development machine ready for ASP.NET Core MVC
development and increasing your understanding of the tooling provided in Visual Studio for developing
web applications. The chapter also includes several recipes dedicated to preparing your application for
deployment on IIS.

All examples in this book that feature Visual Studio will be using the Visual Studio 2017 Community
edition on Windows.

2-1. Setting Up Your Development Environment
Problem
You are new to ASP.NET Core MVC development and want to know what you need to get started. You are
unsure if your current computer will make a good developer machine and what software you need to get
started. If you need to upgrade, how do you justify the cost of this hardware to your management?

Solution
With ASP.NET Core MVC, Microsoft has worked hard to broaden the types of machines that can be used to
develop an ASP.NET Core MVC application. Microsoft has made it possible to develop your application in
any text editor on any desktop platform including Linux and the Mac. In addition to the tooling in Visual
Studio, Microsoft has also developed an SDK that contains powerful command-line tools that allow you to
perform many of the actions that you would normally do in Visual Studio from a terminal or command shell.

While tools such as Sublime Text, GitHub Atom, and Microsoft’s Visual Studio Code can offer great
experiences, most developers would benefit from using the full-featured version of Visual Studio.

Visual Studio 2017 has an unparalleled feature set specifically targeted at ASP.NET Core MVC. It offers
debugging, refactoring, and collaboration tools that are not available in other editors. It also comes with
a rich ecosystem of third-party add-ons that extend its functionality and can improve both the speed and
quality of your applications.

In the next section, I cover the ideal specifications for your developer machine, some recommended
Visual Studio extensions, and software configuration.

Chapter 2 ■ GettinG Started with aSp.net Core MVC

44

How It Works
In this section, I discuss some of the more important aspects of what investments you should consider when
selecting your developer workstation. I discuss several factors such as PC hardware, displays, and software
configuration.

PC Configuration
The minimum hardware requirements to run Visual Studio are a dual-core 1.8GHz processor with 2GB RAM
and between 1GB and 40GB of disk space. While Visual Studio may run on minimal hardware, most
developers will need something a bit more robust if they plan on being productive. I highly recommend
that your PC has an i5 or better CPU and at least 8GB of RAM. To run Visual Studio 2017, you will need to be
running Windows 7 SP1 or newer or Windows Server 2012 R2.

For the first time ever, Visual Studio is also available for the Mac. At the time of this writing, preview
builds of Visual Studio for Mac did not offer the same feature set as Visual Studio on the PC. It should also
be noted that Visual Studio for the Mac is a completely new code base. In general, MacBook Pros are great
development machines, but for .NET development PCs still have an edge.

Touch Screens
Because they are ubiquitous on tablets, smartphones, and new PCs, a large percentage of your software’s
customer base is likely accessing your web application with a touch-enabled device.

If you spend a significant amount of your time developing user interface components, having a touch-
enabled device is a necessity. This does not necessarily mean that your main developer box needs a touch
screen. You could have a secondary device like an iPad or similar device to ensure your application is usable
in touch-only or touch-first use cases.

Displays
Having a large enough display to see all the windows and toolbars of your development environment,
to open web browsers, and to use other applications is essential to developer productivity. If your
development PC is a laptop, I recommend a 15-inch display or larger. In addition to the laptop display,
you should have a docking station that supports two or more external monitors.

Having the two or more large displays gives you a lot of real estate for all your windows. It allows you
to have everything you need right in front of you. Multiple displays are an immediate productivity booster.

Mouse and Keyboard
A quality mouse and keyboard are often overlooked components of the developer workstation. They should
be ergonomic and comfortable to use for long periods. Wireless peripherals should be avoided in favor of
wired devices that plug into your docking station or USB hub. Wireless keyboards require batteries that seem
to always die at the worst times. They are also subject to interference, which can result in typos and latency.

Getting Visual Studio Community Edition
The Visual Studio Community edition is free for students and individual developers. You can download the
installer from the following URL:

https://www.visualstudio.com/downloads/

https://www.visualstudio.com/downloads/

Chapter 2 ■ GettinG Started with aSp.net Core MVC

45

After you download the installer, you will be prompted to select which workloads you will use for Visual
Studio. For the examples in this book, only the .NET Core and Docker workload is required.

Visual Studio Extensions
Many third-party add-ons for Visual Studio can substantially improve your productivity and help reduce
errors. Table 2-1 contains a short list of extensions that should be in every MVC developer’s toolbox.

Table 2-1. Useful Visual Studio Extensions

Extension Name Publisher What It Does

Web Extension Pack 2017 Mads Kristensen This substantially improves HTML, CSS, LESS,
JavaScript, and TypeScript editing experiences
inside Visual Studio. In addition to enhancing
the built-in code editors, it comes with custom
editors for editing robots.txt, HTML5 app
cache files, an image optimizer, and more.
In addition, it has code analyzers that aid in
ensuring your client-side code conforms to best
practices.

Code maid Codemaid.net This open source refactoring extension for
Visual Studio offers code cleanup, formatting,
and reorganizing tools. The code comment
formatting feature is especially useful.

Trailing Whitespace Visualizer Mads Kristensen This helps you keep code files clean by helping
you identify and clean trailing whitespace.
Trailing whitespace will be flagged as a warning
by many JavaScript code analysis tools.

Visual Studio Spell Checker EWSoftware This smart spell-checker for Visual Studio finds
spelling errors in HTML, Razor, code comments,
and more.

Resharper JetBrains This substantially improves the refactoring
experience inside Visual Studio. It also provides
code quality analysis that shows you how your
code can improve as you type. This is also a
great tool that can be used to enforce a coding
standard for your team. Unfortunately, unlike
the other add-ins, Resharper is not free. Personal
licenses start at $149.

Chapter 2 ■ GettinG Started with aSp.net Core MVC

46

Other Software
In addition to Visual Studio, there are several other tools you will need for developing and testing your code.

Web Browser Add-Ins

To ensure your web application functions as expected across all the browsers your end users might be
using, you will need to have a version of each browser installed on your developer machine. Most browsers
come with a set of developer tools out of the box that are helpful for troubleshooting layout issues and
JavaScript errors. In addition, you might want to install one or more browser extensions that can enhance
this experience.

•	 Google Chrome: The Chrome web store has many developer tools that you might find
useful. The following are extensions that I recommend for ASP.NET MVC developers:

•	 Resolution Test: This simplifies testing how your application will look at different
screen resolutions. This is especially important if you are implementing a
responsive web design.

•	 Firebug Lite: In addition to JavaScript debugging support, this extension allows
you to inspect and edit CSS and HTML elements.

•	 Advanced REST Client Application: This extension allows you to create custom
HTTP requests and inspect the JSON responses. This is very helpful for testing
your Web APIs.

•	 Web Developer: This extension adds a toolbar with quick access to many
Chrome features, such as the ability to disable the cache.

•	 Firefox: Firefox has some of the best and most mature add-ins for web developers
that can be used in conjunction with its excellent built-in developer tools.

•	 Firebug Lite: This add-in offers similar features to the Google Chrome version.

•	 YSlow: This add-in allows you to analyze a page for client-side download
performance issues and offers a set of recommendations.

Telerik Fiddler

Telerik Fiddler is a free network proxy tool that allows you to intercept, monitor, and fiddle with all HTTP
traffic on your machine. The main advantage Fiddler has over the browser extensions is that it allows you to
view all of the traffic from all your web browsers at the same time. It can even be configured to proxy traffic
from Windows Store applications.

Some of the most useful features for ASP.NET Core MVC developers include the following:

•	 Composer: This feature allows you to construct HTTP requests that can be used to
test your Web APIs. You can also record, modify, and replay sequences of request/
responses.

•	 Rules: This feature allows you to simulate users with slow connections, disable the
browser cache, and simulate user agents.

•	 Decrypting HTTPS traffic: This feature is essential when debugging a service that is
using HTTPS.

Chapter 2 ■ GettinG Started with aSp.net Core MVC

47

SOAP UI

Soap UI, available as a free download from https://www.soapui.org/, is an open source REST and SOAP
testing tool that offers a complete API test automation framework.

Business Justification for Adequate Developer Hardware
As an ASP.NET Core MVC developer, you are writing software that runs on the server or in the cloud. The
software that you create might someday be used by thousands of people, and it could become an essential
asset to your company. The tools that you use to create and test this software will put a much greater
demand on your PC than a typical word processer or web browser. For certain development activities, you
might need to run several OSs at once inside virtual machines (VMs). Your development tools will have
many windows and toolbars, and you will often need to work with many open documents at once. To avoid
the introduction of bugs that appear in production but can’t be reproduced on your developer machine,
your development environment should match your deployment environment as closely as possible.

Proper hardware for a developer is not difficult to justify. According to PayScale (www.payscale.com),
the average salary for a .NET developer in the New York City area is around $98,000 per year. Assuming you
work five days a week and eight hours a day, this works out to approximately $47 per hour. If having proper
development hardware and software saves you two hours per day, your company would save $471 per week.
For a large project that is scheduled to take six months, the savings would be more than $10,000. Because
the delta between the laptops purchased for a standard laptop and a proper developer machine is less than
$500, it should be a no-brainer for your company to approve a hardware upgrade, especially for senior
developers and architects who are likely making considerably more than $47 per hour.

The following are a few other items that you can add to your nonstandard hardware acquisition
justification proposal:

•	 Your deployment targets are 64-bit servers with dual six-core, hyper-threaded
CPUs and 128GB of RAM. You plan to use advanced asynchronous and parallel
programming techniques, but they are impossible to debug properly on your current
machine.

•	 Your deployment target is a 64-bit OS. With the current 32-bit OS on your laptop, it is
impossible for you to know how garbage collection will affect your application when
it is consuming a large amount of memory.

•	 You would like to use Visual Studio’s performance profiling tools, but the results of
the profiling are inconclusive on your current environment.

2-2. Determining Which Operating System to Use for Your
Development Machine
Problem
Although Microsoft has worked hard to build layers of abstraction that shield developers from much of the
drudgery of developing an application that can be deployed on different platforms, it is still possible for subtle
differences between underlying implementations to cause a deployment to fail. In a perfect world, your
developer machine uses the same OS and configuration as your production server. Unfortunately, this is not
always possible. For example, if you are deploying your application to Windows Azure, there is no option for
installing Azure on your desktop aside from the emulators needed for development. Another problem you
could have is that you are supporting several applications that are running on several different versions of
Windows Server or Linux. You might also be developing desktop or even Windows Store–style applications.
What is a developer to do? You need to know which OS you should run on your development machine.

https://www.soapui.org/
http://www.payscale.com/

Chapter 2 ■ GettinG Started with aSp.net Core MVC

48

Solution
The solution to this broader problem is OS virtualization. There are several products that allow you to
run several OSs at the same time as VMs on top of Windows. However, you still need to choose a host OS.
As an ASP.NET Core MVC developer, Windows 10 Pro is probably the best choice for the host OS on your
development machine.

How It Works
Windows 8 was the first desktop OS with a built-in hypervisor. Microsoft Hyper-V, which has been available
on Windows Server, is now available on desktop Windows as well. The hypervisor allows you to run VMs on
your local desktop computer at near raw hardware speeds. In the past, you could have a similar capability
using VMware Workstation, Virtual PC, or Oracle VirtualBox. The difference with Hyper-V is that your VMs
run closer to the metal and incur lower I/O overhead than user-mode applications such as Virtual PC.

If you are unable to run Windows 8 or later, the next best option is VMware Workstation on either
Windows 7 or macOS. Even though VMware Workstation runs in user mode, meaning it is an application
running on top of Windows, it does offer strong support for hardware-assisted virtualization and can even
run 3D graphics.

In almost all cases, you should use a VM for your development environment. The following are the
reasons why:

•	 You can have a virtualized version of the development environment with an OS
that matches the configuration of your deployment target for all the systems you
maintain.

•	 As you are going through the phases of development, you sometimes need to
experiment with risky components and configurations that can potentially FUBAR
your machine. Hyper-V and VMware both have snapshot capabilities. With
snapshots, you can take a picture of your machine at a given time and then restore
to that point later. For example, before starting a SharePoint installation, you take
a snapshot. During the installation, you click the wrong button. SharePoint freaks
out and wreaks untold havoc on your machine. Rather than rebuilding your entire
machine from scratch, you can restore from the snapshot and everything is fine
again. Another great use for snapshots is testing installation programs. You can run
your installer, verify that it didn’t work, fix the problem, roll back to the snapshot, and
then try again.

•	 You can have a consistent developer machine image for all members of your team.
VMware and Hyper-V both support creating machine templates. This allows you
to create a base image with all the tools you need for a project. When a new team
member comes on board, you can spin up a new VM and get him or her productive
almost immediately.

•	 You can test across different versions of Internet Explorer. Because it is not possible
to have two versions of Internet Explorer installed on the same machine at the same
time, using VMs solves this issue. This technique can also be used with Microsoft
Office or other tools with the same limitation.

•	 VMs also have the unique ability to use virtual hardware such as network cards and
iSCSI. With iSCSI, for example, you can create Windows server clusters that require
shared storage. Without virtualization, you would need to purchase expensive
specialized hardware and software licensing for storage area network (SAN)
packages such as EMC PowerPath.

Chapter 2 ■ GettinG Started with aSp.net Core MVC

49

•	 Most companies are virtualizing their production servers. This makes it very likely
that your code eventually will be deployed to a VM. Developing and testing your
code in an environment that is almost identical to production reduces the number of
issues you may run into when you deploy your application.

Enterprise Deployment Environments
For complex enterprise-scale applications, you should never deploy your code directly from your
development desktop to production. Even if you are using a VM that is an exact match with your production
server, chances are you are not going to be able to replicate the entire environment, which might include
load balancers, firewalls, and more.

In most enterprises, a standard deployment process would consist of several environments that either
can be scaled down or are full replications of the production environment. This usually consists of the
following environments:

•	 Development: Servers shared by the entire development team during the
development process can be continuously updated with fresh code.

•	 QA: This is a separate environment used by the quality assurance (QA) team that will
only get QA releases.

•	 User acceptance testing: For applications critical to your organization, you might
need a separate environment where important business stakeholders can test your
application before releasing to production.

•	 Staging: For critical enterprise applications, a staging environment closely mimics
production. This is your final quality check that could answer some questions like
“What happens when I put my app behind a reverse proxy?” It can also be used for
operations to test server driver upgrades and OS patches before installing them in
production.

Continuous Integration and Deployment
Most mature software development organizations employ a continuous integration and deployment
(CI/CD) pipeline to help automate much of the drudgery associated with validating, testing, and deploying
software. This pipeline can consist of the following components:

•	 A software configuration management and version control system such as GitHub
Enterprise, Bitbucket, or Team Foundation Server/Visual Studio Team Services

•	 A code review workflow tool such as GitHub Enterprise, Atlassian Crucible, or Team
Foundation Server

•	 A CI/CD server such as Jenkins, Team Foundation Server, or Atlassian Bamboo

•	 Static code analysis tools such as SonarQube

•	 Release management tools such as XL Release

When these tools are used in concert, it can allow you to continuously deploy code to production while
ensuring a high level of quality and lower number of defects and security problems being introduced into
your production environment.

Chapter 2 ■ GettinG Started with aSp.net Core MVC

50

2-3. Creating a New ASP.NET Core MVC Application Using
Visual Studio 2017
Problem
You are new to ASP.NET Core MVC development using Visual Studio 2017 and want to understand the
options available for creating a new project using Visual Studio.

Solution
Visual Studio 2017 has a new project wizard that will guide you through several steps for creating a new
ASP.NET Core MVC project. The general process is as follows:

 1. Launch Visual Studio 2017.

 2. On the Start Page, select ASP.NET Core Web Application (.NET Core) under
“New projects.” Alternatively, from the Visual Studio File menu, you can select
New ➤ Project ➤ Search Installed Templates for ASP.NET Core Web Application.
Click ASP.NET Core Web Application (.NET Core) in the project list to select it.

 3. Choose a name for your project and a location on your computer where you
want the project’s files to be stored. Optionally, you can change the name of the
solution. By default, the project and solution will have the same name, but in
cases where you will have more than one project, it may be a good idea to use a
different name for the solution.

 4. The wizard will prompt you to select from a number of ASP.NET Core templates.
At the time of this writing, three templates are available, including Empty, Web
API, and Web Application. If you want to create a web application that contains a
user interface, Web Application is usually the best choice. This template is used
for the majority of the examples in this book.

 5. By default Visual Studio will not add any security to your project. If you want to
add security to your web site and require users to authenticate with a username
and password or third-party authentication provider such as Facebook, you can
click the Change Authentication button and select the option that best fits the
needs of your application.

 6. If you are planning on shipping your application as a Docker image, you
can select the Enable Container (Docker) Support box to add the required
components to your application. This requires having Docker for Windows
installed on your PC. This option will not work if you are using a virtual machine
for development.

 7. If you have an Azure subscription and want to host your application in Microsoft
Azure, select the Host in the Cloud check box. Note that this box will be disabled
if you do not have an Azure account.

 8. Click OK to finish creating your project.

Chapter 2 ■ GettinG Started with aSp.net Core MVC

51

How It Works
Visual Studio ships with several project templates. These templates have several components that first
instruct Visual Studio on what UI should be displayed to collect the required information and then on what
files should be copied into the new project. Project templates typically come with several item templates for
the types of files that can be created in each project.

If you would like to learn more about how the templates work, I recommend exporting one of the built-in
templates and exploring the content. To export a template, first create a project using one of the built-in
templates. You can then export the template using the Export Template Wizard. The Export Template Wizard
is an option available from Visual Studio’s Project menu. The Export Template Wizard allows you to specify
a name, description, and icons for the template. Once the export is completed, the directory containing the
template file will be opened.

The template files are ZIP files. If you explore the ZIP file, you will see a file structure like the project
but with a few additional files. The most important file added to the template is MyTemplate.vstemplate.
This is an XML file that contains the metadata for your template. The metadata includes the information
you entered in the description as well as a description of the files that should be included in the project
and whether the file has replacement parameters that will be filled in with data collected during the project
creation process. To see an example of a replacement parameter, open any of the .cs files inside the ZIP file
and examine the namespace $safeprojectname$. When the project is created, $safeprojectname$ will be
replaced with the name of the project.

2-4. Creating a New ASP.NET Core MVC Application
Using dotnet.exe
Problem
You want to create a new ASP.NET Core MVC project, but you prefer not to use Visual Studio. This may be
because you prefer to work on a Mac or prefer a more lightweight editor. You do not want to have to create
the project from scratch and hope there is a way to do this from the command line.

Solution
.NET Core ships with a set of command-line utilities known as the dotnet CLI. The CLI can be invoked via
dotnet.exe on Windows and the dotnet command on other platforms. To create a new project from the
command line, you can simply use the following command:

dotnet new

How It Works
Just like Visual Studio, the dotnet new command has several options and templates to choose from. The best way
to understand what options are available is to use the built-in help commands. To do this, follow these steps:

 1. Open a command or terminal window. On Windows you may also use
PowerShell if you prefer.

 2. Enter the command dotnet –help. A list of commands and options will be
displayed. Make note of the new command.

 3. Enter the command dotnet new –help. You should now see a list of options for
the new command.

Chapter 2 ■ GettinG Started with aSp.net Core MVC

52

Understanding the Options for dotnet new
dotnet new has three command options. All the commands have a long name and a short name. There
is no functional difference between the log and short versions of the commands. The command options
include the following:

•	 -h or –help: Displays help.

•	 -l or –lang <language>: Sets the programming language to use for the new project.
The only valid options at the time of this writing are C# and F#.

•	 -t or --type <TYPE>: Allows you to specify the template that can be used to create
the project. The following options are available for C# projects:

•	 Console: A .NET Core console application

•	 Web: An ASP.NET Core MVC application

•	 Lib: A .NET standard class library

•	 Mstest: A unit test project using the MSTest testing framework

•	 Xunittest: A unit test project using the xUnit unit testing framework

Creating a Project Using the Web Template
To create a new web project from the CLI, you will need to perform the following steps:

 1. Open a command or terminal window and navigate to the directory where you
want to create your project. Note that the CLI will not create a new directory for
your solution. You must first manually create the directory. The project will be
created in the local directory. dotnet new does not allow you to specify a path.

 2. Enter the command dotnet new -t web.

After running the command, you will see a directory structure that contains all the files needed to start
your ASP.NET MVC Core project. To run the project, you can simply enter these commands:

•	 dotnet restore: This command downloads the required packages from NuGet.

•	 set ASPNETCORE_ENVIRONMENT=Development: This sets the environment variables
used by ASP.NET Core MVC. If you do not set this, the application will still function,
but you may find that your CSS style sheets are not loading. I will review why this
happens in recipe 2-5.

•	 dotnet run: This starts your application and lets you know what port it is running
on. The default port is 5000.

You can view your app by opening a web browser and navigating to http://localhost:5000.

Chapter 2 ■ GettinG Started with aSp.net Core MVC

53

2-5. Understanding the Structure of an ASP.NET
Core MVC Project
Problem
You are an experienced ASP.NET MVC developer. You have just installed Visual Studio 2017 and have
created a new ASP.NET Core MVC project. The project seems very different than ASP.NET MVC 5 projects.
There are many new file types and class files that you are not familiar with. You want to learn more about the
new project structure and the purpose of the files included in the template.

Solution
The ASP.NET Core Web Application template creates a project with a very different structure than ASP.NET MVC
5 projects. The first difference is that at the top level of the directory tree is a folder named src that contains the
other projects in the solution. This is the result of a convention that was developed as ASP.NET Core was being
developed. In the convention, the root of the solution contained solution-level files, a folder named src that
contained source files, and a folder named test that contained unit and integration test projects.

Another big difference is the existence of the wwwroot folder, which contains all of your static HTML,
CSS, JavaScript files, and images. When you run your project, only files inside the wwwroot folder are directly
accessible. Static files not under wwwroot cannot be accessed.

Other major differences are the absence of the global.asax file, a very minimal web.config file, and the
existence of several JSON files and the Startup and Program class files.

How It Works
In this section, I will walk you through each of the files and directories of your ASP.NET Core Web
Application project and describe their purpose. The ASP.NET Core Web Application project shown was
created with the Web Application template and the Individual User Accounts Authentication type selected.
Listing 2-1 shows the directory tree of the project.

Listing 2-1. Directory Structure of an ASP.NET Core MVC Application with Individual User Accounts
Authentication

src
└───Recipe05
 ├───bin
 │ └───Debug
 │ └───netcoreapp1.0
 ├───Controllers
 ├───Data
 │ └───Migrations
 ├───Models
 │ ├───AccountViewModels
 │ └───ManageViewModels
 ├───obj
 │ └───Debug
 │ └───netcoreapp1.0
 ├───Properties
 ├───Services

Chapter 2 ■ GettinG Started with aSp.net Core MVC

54

 ├───Views
 │ ├───Account
 │ ├───Home
 │ ├───Manage
 │ └───Shared
 └───wwwroot
 ├───css
 ├───images
 ├───js
 └───lib
 ├───bootstrap
 │ └───dist
 │ ├───css
 │ ├───fonts
 │ └───js
 ├───jquery
 │ └───dist
 ├───jquery-validation
 │ └───dist
 └───jquery-validation-unobtrusive

bin
Visual Studio does not display this folder in Solution Explorer, but you can view it by clicking the Show All
Files button in Solution Explorer or by viewing the folder in File Explorer. The bin folder performs the same
function as it did with earlier versions of ASP.NET. It contains the compiled artifacts for your application.
Under bin you will find a subfolder for each build configuration. When you first create your project, only the
Debug folder is available since no release builds have been created yet. Under Debug you will find a folder
named netcoreapp1.0. This folder represents the target framework version for your application.

You should not modify the contents of the bin directory, and it should be excluded from source control.

Controllers
Just like it did in ASP.NET MVC 5, Controllers contains your controller classes. The template added
three controllers to your project: HomeController, which provides actions for the home page and
about and contact pages; ManageController, which provides actions for managing user accounts; and
AccountController, which provides actions for user registration and login. If you are not familiar with
controllers, see recipe 1-7.

Data
When you create an ASP.NET Core MVC project and select Individual User Accounts for registration, Visual
Studio will add a Data folder with an Entity Framework Core DbContext class named ApplicationDbContext.
Visual Studio will also create several database migrations. A DbContext class is used by Entity Framework
Core to create a connection between your plain C# classes and the database you want to communicate with.
Database migrations are how Entity Framework Core propagates changes in your model to the database.
I will go over this topic in detail in Chapter 6.

http://dx.doi.org/10.1007/978-1-4842-0427-6_6

Chapter 2 ■ GettinG Started with aSp.net Core MVC

55

Models
The Models folder is another folder that should be familiar to you if you have worked with ASP.NET MVC 5.
For ASP.NET Core MVC, this folder exists only when you choose to use the Individual User Accounts option
when you create your project. The models are the M in MVC. To learn more about models, please refer to
recipe 1-6.

The Models folder contains an ApplicationUser class that is referenced by the ApplicationDbContext
class in the Data folder. ApplicationUser extends the ASP.NET Identity IdentityUser class and is used by
ASP.NET Identity for storing data about the application’s users. You can customize your ApplicationUser
class by adding properties to it and then creating a new data migration.

The Models folder contains two subfolders: AccountViewModels and ManageViewModels. Both
subfolders contain view models, which are models created specifically for the views they are associated with.
One change you may notice from how this was done in the ASP.NET MVC 5 templates is that each class is
now in its own file. In ASP.NET MVC 5 all the classes were defined in a single file.

obj
The obj folder is not shown in Visual Studio and should not be stored in source control. It contains
intermediate files generated by MSBuild. MSBuild will use the files in the obj folder to generate the final
assemblies and before copying them to the bin folder. You should not attempt to manually modify the
contents of the obj folder.

Services
The Services folder contains the AuthMessageSender class. This is an abstraction that handles sending
e-mails and SMS messages for the authentication system when two-factor authentication is enabled.

Views
The Views folder contains the subfolders Account, Home, and Manage, which correspond to the controller
with the same name. For example, HomeController has a folder under Views named Home. Inside each of
the folders is one or more view files associated with each of the actions in the controller. The view files use
the Razor view engine and consist of a mix of C# code and HTML.

The Shared folder contains UI components that are shared across all the views. These include the
following:

•	 _Layout.cshtml: This is the primary layout file for the entire site.

•	 _LoginPartial.cshtml: This is the partial view used to show a welcome message
when the user is logged in. For anonymous users, it will display links for the login
and registration pages.

•	 _ValidationScriptPartial.cshtml: This file uses the Environment Tag Helper,
which is discussed in recipe 4-8 to conditionally load the jQuery validation scripts
based on the value of the ASPNETCORE_ENVIRONMENT environment variable.

•	 Error.cshtml: This is the default error page that is displayed when an error occurs
and the ASPNETCORE_ENVIRONMENT environmental variable is not set to Development.

Chapter 2 ■ GettinG Started with aSp.net Core MVC

56

_ViewImports.cshtml

The _ViewImports.cshtml file is a new feature of ASP.NET Core MVC. It allows you to add using statements
that will be shared across all of your views.

_ViewStart.cshtml

The _ViewStarts.cshtml file defines what view will be used as the default layout page for all views.

.bowerrc
The .bowerrc file is a configuration file used by the Bower package manager. Bower is a package manager for
JavaScript libraries that is very popular with front-end developers. The .bowerr file included with the project
contains a single line of code, as shown in Listing 2-2.

Listing 2-2. .bowerrc File Included with Project Template

{
 "directory": "wwwroot/lib"
}

The setting shown in Listing 2-2 tells Bower where to place the library files it downloads. For more
information on the available configuration options for Bower, please refer to the following web site:

https://bower.io/docs/config/

appsettings.json
appsettings.json is a configuration file that is loaded at startup. The file contains the default connection
string for the database that is used with ASP.NET Identity. It also contains the configuration for the logging
components. You can use this file to add your own custom configuration settings. You also have the option
of creating your own separate configuration files.

bower.json
The bower.json file defines metadata about the client-side application components used by your application
or application module. The file also lists the JavaScript libraries that will be used by your project. When Visual
Studio performs a package restore, it will look at this file and automatically download the required libraries and
copy them to the folder specified in the .bowerrc file. Listing 2-3 shows the default bower.json file.

Listing 2-3. bower.json

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "3.3.6",
 "jquery": "2.2.0",
 "jquery-validation": "1.14.0",
 "jquery-validation-unobtrusive": "3.2.6"
 }
}

https://bower.io/docs/config/

Chapter 2 ■ GettinG Started with aSp.net Core MVC

57

bundleconfig.json
The bundleconfig.json file is a configuration file that governs how the bundling and minification
component will combine and compress the client-side JavaScript and CSS files in your solution. The file
shown in Listing 2-3 has configuration nodes for the site.css file and the site.js file. It specifies the input
file location and the path of the output file that will result from the combining and the files listed in the
inputFiles array. The last section of the file sets options for the minification component and whether to
create a source map file. Source map files allow JavaScript debuggers to show you display information in a
human-readable format even though a compressed file is being downloaded by the web browser.

Program.cs
ASP.NET Core MVC can be run inside IIS, but it can also be hosted in a console application. Program.cs is
the console application that will configure and start the host.

Startup.cs
Startup.cs contains the logic used to configure your ASP.NET Core MVC application and add middleware
components into the ASP.NET Core pipeline. Startup.cs allows you to register types with the ASP.NET Core
dependency injection system, load your configuration sources, and register the default routes for ASP.NET
MVC. You can think of Startup.cs as a replacement for Global.asax used in ASP.NET MVC.

2-6. Using Visual Studio’s Debugging Windows to Debug an
ASP.NET Core MVC Application
Problem
You want to watch how the value of a variable changes during the execution of your application. You are
unsure of how to use debugging windows in Visual Studio, and you want to understand what each window
does and how they work together.

Solution
Visual Studio has six main debugging windows: the Locals window, the Watch window, the Call Stack
window, the Immediate window, the Breakpoint window, and the Output window.

The Locals window shows all the variables that are in currently in scope. It shows the name of the
variable, its current value, and the type of variable. For complex types, the value is displayed as a tree of
objects. You can expand the tree to inspect the values of the nested types contained within the object.

If you have a complex page with many variables, tracking a value in the Locals window can become
cumbersome. The Watch window helps solve this issue by allowing you to “add a watch” for a specific
variable.

The Call Stack window allows you to view the functions that are currently on the stack. It displays the
name of the function and the programming language in which it is written. The Call Stack window can be
configured to show additional information, such as the byte offset, line number, parameter names, and
module name. It also allows you to insert breakpoints on a specific call to a function.

The Immediate window allows you to execute code in the current context of a breakpoint. You can enter
any code that is valid during that moment in the program. The statement will be executed when you press
the Enter key.

Chapter 2 ■ GettinG Started with aSp.net Core MVC

58

The Breakpoint window shows all the breakpoints in the current open project and allows you to edit,
delete, disable, or create new breakpoints.

The Output window shows the output of debug log assertions, compilation messages, and output from
other Visual Studio components such as the JavaScript Language Service and Source Control.

How It Works
Visual Studio has a powerful debugger. It allows you to set breakpoints in all your server-side code, including
your models, views, and controllers. If you are debugging with Internet Explorer as your default browser, you
can set breakpoints in your JavaScript files. Visual Studio also allows you to debug your SQL Server–stored
procedures, native code, GPU code, DirectX graphics, Silverlight applications, and WCF services. It is
unlikely that you will need to debug GPU or DirectX graphics in an ASP.NET Core MVC project, but in
many cases, you might need to walk through a page execution that starts in a controller class, calls stored
procedures in a SQL Server database, copies the data from SQL Server into a model, displays the data in
a view, and then allows the user to interact with that data using client-side JavaScript. The Visual Studio
debugger allows you to step through this page execution from cradle to grave. It allows you set breakpoints
anywhere in the program flow and dig into the details of the application state.

The first step in debugging a project is setting breakpoints. A breakpoint is a place in your code where
you want the debugger to pause your application’s execution. The most common way to set a breakpoint is
to click the margin in the left side of the code editor window. You can also set the breakpoint using the F9 key
on your keyboard. You may also set breakpoints using the Call Stack window or by using the New Breakpoint
dialog box. These alternative methods are sometimes required when it not possible to set a breakpoint on
code that you are targeting because there is more than one statement in a single line.

Once your breakpoint is set, you can edit it by right-clicking the breakpoint. The breakpoint pop-up
menu, shown in Figure 2-1, allows you to delete the breakpoint, disable the breakpoint, and change the
position of the breakpoint. It also offers several options that can change when the breakpoint will cause the
debugger to pause your application’s execution.

Figure 2-1. The Edit Breakpoint pop-up menu

You can start debugging by clicking the Start Debug button in the main toolbar or by pressing the F5
key. After you start the debugger, it will open your application in the web browser. The debugger will attach
itself to the IIS worker process, the web browser (if using Internet Explorer), and, if configured, your SQL
Server database. It will pause execution when a breakpoint is hit.

Chapter 2 ■ GettinG Started with aSp.net Core MVC

59

In Figure 2-2, you can see the visual debugger in action. In this example, it has paused execution in the
HomeController inside an action method called GuitarCase. In the code editor, the debugger will highlight
the current line of code to be executed. The breakpoint icon will have a yellow arrow in its center, and the
line to be executed is highlighted in yellow. You can view the values of the variables in the current view
directly in the code editor by placing your mouse over a variable.

Figure 2-2. Visual Studio debugging windows

Figure 2-2 also shows the Locals window. In this example, you are viewing the details of the model
variable, which is a custom complex type that contains a collection of GuitarCable objects and a Guitar
object. Because model is a complex type, its value is shown as a tree view. The tree view has been expanded
to view the contents of the variable.

In the Immediate window, you can enter any code that is executable in the current context. In Figure 2-2,
model.Cables was entered in the Immediate window, and when the Enter key is pressed, you can see the
contents of the collection.

The Immediate window is not limited to printing variables. You may also call methods and change
values of objects. This can be handy when you want to see how changes in input will affect the operations
you are debugging.

Also shown in Figure 2-2 is the process window. This window is not shown by default but can be shown
by accessing it from the Debug ➤ Windows menu. Notice that it shows a yellow arrow next to dotnet.exe,
which is in break mode. Also shown is iexplore.exe (Internet Explorer), which is also in the Break state.
This demonstrates that both Internet Explorer and dotnet.exe are in scope of the debugging session.

Another feature worth mentioning is the ability to pin a mouseover pop-up in the code window. This
allows you to make the pop-up window that appears when you mouse over something always visible while
debugging. While debugging and stopped at a breakpoint (in break mode), mouse over a variable that you
want to pin. On the right side of the pop-up, click the pin icon. You can then click the double down arrow
icon to view or enter a comment about that variable. When you are done, it looks similar to Figure 2-3.

Chapter 2 ■ GettinG Started with aSp.net Core MVC

60

When the variable is out of scope, such as at the beginning of the next debugging session before the
variable has been initialized, the pinned pop-up will display the last value assigned to it during the last
debugging session. In the case of a complex type, you are able to expand each variable and then individually
pin each member. In Figure 2-3, in addition to the main pizza variable, pizza.Toppings, one of its members
is also pinned so that multiple levels are shown for each debug session.

2-7. Setting a Conditional Breakpoint in an ASP.NET Core
MVC Controller
Problem
You are debugging an issue inside a controller that occurs inside a loop. You think that the unexpected
behavior is occurring only when a certain variable is set to a value greater than the expected range. You set a
breakpoint inside the loop but need to step though more than 100 iterations of the loop before you loop over
an object that matches your suspected condition. This is an extremely time-consuming process, so you need
to find a better way.

Solution
The Visual Studio debugger has a great feature called conditional breakpoints. To use this feature, create a
new breakpoint by clicking in the margin on the left side of the code window. The breakpoint will appear
as a red dot. When you mouse over the red dot, a small floating toolbar will appear. Click the Settings icon
in the floating toolbar and select the Conditions check box from the inline Breakpoint Settings editor. After
the Conditions check box has been selected, a form will appear directly below the check box allowing you to
specify one or more conditions for the breakpoint.

How It Works
Visual Studio supports three types of conditional breakpoints: conditional expressions, hit counts, and
filters. In this section, I will demonstrate how you can use these three options for debugging a simple loop.

Conditional Expressions
Conditional expressions allow you to add one or more expressions that can be evaluated each time a line
of code is executed. When one or more of the conditions are met, the program can enter the Break state or
perform a specified action, such as logging a statement to the debug log. The Breakpoint Settings dialog
also allows you to log a message rather than break when the condition is met. To demonstrate this, you will
set a breakpoint inside a loop that evaluates the expression i > 5. Here you will specify that you want a log
message to be written only when this condition changes.

Figure 2-3. Pinning a break mode variable on a complex type

Chapter 2 ■ GettinG Started with aSp.net Core MVC

61

To do this, follow these steps:

 1. Click the left margin next to the line of code where you want to place the
breakpoint.

 2. Mouse over the breakpoint and click the Settings icon from the pop-up menu.
Alternatively, you can right-click the breakpoint and select Conditions from the
context menu.

 3. In the Breakpoint Settings editor, ensure that Conditional Expression is selected
in the first drop-down box and “When changed” is selected in the second drop-
down box.

 4. Enter i > 5 in the text box to the right of the second drop-down box.

 5. Select the Actions check box and enter i>5 condition has changed as the
message.

 6. Click Close to close the Breakpoint Settings editor and then press F5 to debug
your application.

With your application running in Debug mode, navigate to the action. If you check the debug log, you
should see the message written twice. It was written the first time when the loop began and the condition
was false. It was written again after the fifth iteration of the loop when the condition became true.

Counters
The hit count feature of the debugger keeps track of how many times a line of code is executed. This is useful
in scenarios where you expect a line of code to be executed a specific number of times. If the counter goes
above this threshold, you can have the breakpoint be hit. For example, let’s say you have a function that
should be called at the halfway point of your loop. This intention is to have this code called only once, but a
defect in the code is causing it to be called many times. For this scenario, you can have the hit counter break
when this code is called the second time.

To do this, follow these steps:

 1. Click the left margin next to the line of code where you would like to place the
breakpoint.

 2. Mouse over the breakpoint and click the Settings icon from the pop-up menu.
Alternatively, you can right-click the breakpoint and select Conditions from the
context menu.

 3. In the Breakpoint Settings editor, ensure that Hit Count is selected in the first
drop-down box and = is selected in the second. Note the other options that are
available in this drop-down box.

 4. Enter 2 in the text box to the right of the second drop-down box. The breakpoint
settings should resemble Figure 2-4.

 5. Click Close to close the Breakpoint Settings editor and then press F5 to debug
your application.

Chapter 2 ■ GettinG Started with aSp.net Core MVC

62

Filters
Filters are similar to conditional expressions but allow you to write expressions that involve data outside of
your code such as the process name, machine name, or thread. In this example, you will set a breakpoint
that will fire only when the application is running in the dotnet.exe process.

To do this, follow these steps:

 1. Click the left margin next to the line of code where you want to place the
breakpoint.

 2. Mouse over the breakpoint and click the Settings icon from the pop-up menu.
Alternatively, you can right-click the breakpoint and select Conditions from the
context menu.

 3. In the Breakpoint Settings editor, ensure that Filter is selected in the first
drop-down box and “is true” is selected in the second. Note the other options
that are available in this drop-down box.

 4. Enter ProcessName == dotnet.exe in the text box to the right of the second
drop-down box.

 5. Click Close to close the Breakpoint Settings editor and then press F5 to debug
your application.

This is a simplified example, but it should give you a general idea of how the feature works. It is
extremely useful when you have a global variable that can be updated in several places in your code and you
need to determine which one is causing an erroneous value to be written.

2-8. Testing Your ASP.NET Core MVC Application Across
Many Browsers at the Same Time
Problem
You are developing a web site that will be targeting the public and need to support Internet Explorer, Firefox,
Opera, and Chrome. You find that you spend a lot of time switching between the different browser windows
and clicking the Refresh button just to validate minor layout changes in your view. You wish there was a way
to have all the browser windows updated automatically every time you click the Save button in Visual Studio.

Figure 2-4. Setting a conditional breakpoint

Chapter 2 ■ GettinG Started with aSp.net Core MVC

63

Solution
Starting in Visual Studio 2013, Microsoft introduced a new feature called Browser Link. With Browser Link,
there is an active socket connection between your open web page and Visual Studio. Each time you save
your page, the changes are updated in real time in all the open browser windows.

How It Works
There are two steps required to enable Browser Link across multiple browsers. First, you need to set all
the desired browsers as your default browser. Second, you need to enable Browser Link if it is not already
enabled. Both settings can be accessed from Visual Studio’s main toolbar.

Enabling Multiple Default Browsers
To change the default browser, click the down arrow on the left side of the Start Debugging button, as shown
in Figure 2-5.

Figure 2-5. Selecting a browser

In the menu you will see a list of browsers. The current default will have a check mark to the left. To
change the default browser, select Browse With from the menu. This will open a dialog box listing all the
browsers shown in the machine. Hold down the Control key and select the browsers you would like to set
as your default; then click the Set as Default button. Now all the selected browsers should have the word
Default in parentheses following the browser name. You can click the Browse button to launch all the
selected browsers.

The Start button on the main toolbar should now say Multiple Browsers. One limitation is that if you
click the Start button on the main toolbar, you will be prompted to select a default browser to use for
JavaScript debugging purposes, and only the default browser will launch.

Chapter 2 ■ GettinG Started with aSp.net Core MVC

64

Trying It
Now that you have Browser Link enabled, you can save all your changed files and update all the browsers at
the same time by clicking the Browser Link refresh button. You can launch all your browsers at any time either
by using the Browse dialog box available from the Start submenu on the main toolbar or by right-clicking a file
in Solution Explorer and selecting View In Browser (Multiple Browsers) from the shortcut menu.

Now the only challenge is being able to view all the content in the browser windows at the same time. If
only you had a few more 24-inch monitors!

2-9. Editing Your Views and Layouts from Inside
Internet Explorer
Problem
Visual Studio does not offer a graphical HTML editor for ASP.NET Core MVC views. Each time you need to
modify static content or adjust a style, you need to locate the element you want to edit; determine what CSS
file, partial view, or HTML file the element is in; make the change; save the file; and then refresh the browser
to see whether the change had the desired effect. This can be a time-consuming process, especially when
working through a complex layout issue.

Solution
The Web Essentials Visual Studio extension offers an enhancement to the Visual Studio Browser Link feature
that injects a toolbar on the bottom of each of your web pages when your web site has debugging enabled
and Browser Link is enabled in Visual Studio. Using the toolbar, you can put your web page into edit mode
inside of whatever browser you are using; make changes to content, markup, or CSS styles; and then save the
changes to Visual Studio.

How It Works
To enable Browser Link in browser editing, you must first install the Web Essentials extension using the
Visual Studio Extension Manager. Once installed, you will be able to enable the editing functionality inside
the web browser.

Installing Web Essentials
To install Web Essentials, open the Visual Studio Extension Manager by selecting Tools ➤ Extensions &
Updates from the main menu. In the left pane, select Online and then confirm that Visual Studio Gallery is
selected. In the search box at the top-right corner of the Extension & Update Manager dialog box, type
Web Essentials. After a few moments, you should see Web Essentials 2015 in the center pane.

If Web Essentials is already installed, you will see a green check mark next to the item; otherwise, you
will see a Download button. Click Download to begin downloading the extension. In the Download & Install
dialog box, click Install. After a few moments, the install will complete, and you will be prompted to restart
Visual Studio.

After Visual Studio has restarted, verify that the Enable Saving F12 Changes option is enabled. This
option can be toggled on or off by clicking the menu item found on the Browser Link toolbar icon, which can
be found between the Start button and Solution Configuration drop-down on the Visual Studio toolbar.

Chapter 2 ■ GettinG Started with aSp.net Core MVC

65

Editing a Web Page in the Browser
Now that you have the extension installed and enabled, verify that the ASPNET_ENV environmental variable
is set to Development. You can do this by viewing the project’s properties and viewing the Environmental
Variables section of the Debug tab.

Next, launch your application by right-clicking the file that you would like to edit in Solution Explorer and
selecting View in Browser from the shortcut menu. After the page loads, you will see the Web Essentials Brower
Link toolbar being displayed semitransparently at the bottom of your web page, as shown in Figure 2-6.

Figure 2-6. The Web Essentials Browser Link toolbar in your web page

To begin editing your page, click the Design button on the Web Essentials toolbar. Once edit mode is
enabled, your mouse cursor will be displayed as a crosshair, and a green border will appear around HTML
elements as you hover over them. To select an element for editing, click it. You can now edit the content
in the selected element. Try changing some text content. When you are done, click the Save F12 Changes
button on the Web Essentials Browser Link toolbar. You should now see the changes applied to the file inside
Visual Studio.

Try this again, but this time try to select an element that you know is being rendered from a partial
view such as the web site header (if you are using the default Visual Studio template). When you go back
to Visual Studio, you will see that _Layout.cshtml has been opened and the content that you changed has
been modified.

67© John Ciliberti 2017
J. Ciliberti, ASP.NET Core Recipes, DOI 10.1007/978-1-4842-0427-6_3

CHAPTER 3

MVC Razor Syntax and HTML
Helpers

The recipes in this chapter focus on fundamental programming constructs that you will use often when
creating views using Razor. As an ASP.NET Core MVC developer, you will likely spend a significant
amount of time creating views. Mastering basic Razor syntax and HTML Helpers is essential to becoming
productive on the ASP.NET Core MVC platform. Recipe 3-1 is a Razor program that includes a bonus quick-
reference guide when you run the sample web application associated with the recipe.

This chapter also includes a set of recipes dedicated to using the ActionLink HTML Helper. The
ActionLink HTML Helper is a staple of everyday coding in ASP.NET Core MVC. Although the syntax for
creating standard links using the ActionLink HTML Helper is reasonably straightforward, many people new
to the platform struggle with it when they need to mix links with intricate markup. You will also learn how to
apply the lessons learned from the ActionLink recipes to other HTML Helper methods.

Later part in this chapter, you will explore some of the other common HTML Helpers and see how to
create your own.

You can access the sample code for this chapter on GitHub at https://github.com/johnciliberti/
AspNetCoreRecipes/tree/master/Chapter03.

3-1. Understanding Razor Syntax
Problem
You have decided that you want to use the Razor view engine for your new project but are intimidated by the
new syntax. You want to gain a solid grasp of the fundamentals before jumping into coding.

Solution
Razor was designed to be easy to learn. It builds on your knowledge of HTML and C# and includes simple
syntax for adding variables and code blocks to your page. The easiest way to demonstrate Razor’s syntax is to
walk you through the basic syntax elements using a series of short examples. More advanced examples are
presented throughout the book.

https://github.com/johnciliberti/AspNetCoreRecipes/tree/master/Chapter03
https://github.com/johnciliberti/AspNetCoreRecipes/tree/master/Chapter03

Chapter 3 ■ MVC razor Syntax and htML heLperS

68

How It Works
Razor allows developers to mix C# with HTML markup to create dynamic web pages that are rendered on
the server. In this section, will review Razor’s major syntax elements including variables, control statements,
loops, HTML Helpers, code blocks, code nuggets, explicit markup, and comments. If you download and run
the code samples for this recipe, they will generate a web site that can be used as a quick-reference guide.
The guide includes everything shown in this section.

Variables
To include a variable in a view, simply prefix the variable name with the @ symbol. For example, if you want
to print the date and time on the screen, you can use the following expression:

<!-- It is now 7/27/2014 9:19:28 PM -->
It is now @DateTime.Now

This syntax is not limited to variables. You can also use it to display the results of a method. For
example, suppose you have an application that allows the end user to enter a year and then your application
tells her whether it is a leap year. You could use syntax like the following to display your results:

<!-- 1973 was a leap year = false -->
1973 was a leap year = @DateTime.IsLeapYear(1973)

An important detail to note, especially when it comes to displaying dates, is that because Razor allows
you to output the result of a method, you can exploit this capability to use format strings. Here is what the
first example would look like if you used a format expression to print the date using the long date format
string pattern:

<!-- It is now Sunday, July 27, 2014 -->
It is now @DateTime.Now.ToString("D")

In addition to variables and methods, you can use the @ symbol to print the results of an expression by
enclosing the expression in parentheses. In this example, I am displaying the results of everyone’s favorite
math problem. Razor uses C# as its scripting language. Any valid C# expression is legal in Razor.

<!-- 2 + 2 = 4 -->
2 + 2 = @(2+2)

Displaying Model Data
One of the most common activities you will do when creating your Razor view is to display data about your
model. In most cases, you probably want to make your view strongly typed so you can take full advantage of
Visual Studio’s code statement completion. To do this, you first need to add a model directive to the top of
the page.

@model Recipe01.Models.Guitar

Chapter 3 ■ MVC razor Syntax and htML heLperS

69

Just like with variables, you use the @ symbol to prefix the directive followed by the Razor keyword
model. You then enter the class name of your model’s class. In this case, I am using the fully qualified name.
This is required unless you register the namespace in the _ViewImports.chtml file in the Views folder.
_ViewImports.chtml replaces the namespace section of the View folder’s web.config file. Another
important detail to point out is that the directive names are case-sensitive. As you will see in the next
example, @model and @Model have completely different meanings in Razor.

For the next few examples, I use the model defined in Listing 3-1.

Listing 3-1. Guitar Model

public class Guitar
{
 [Required]
 public string Brand { get; set; }

 [Required]
 public string Model { get; set; }
 public bool HasWhammyBar { get; set; }
 public string WhammyBarType { get; set; }
 public DateTime ManufactureDate { get; set; }
 public string Description { get; set; }
 public List<string> Strings { get; set; }
}

Model objects are created in controller actions and then passed to the view. The model data is accessible
from the Model variable. Note that unlike the @model directive, the variable name begins with an uppercase
letter. To display the Brand and Model properties of the Guitar object inside your view, you can use the
following markup:

<!-- My new guitar is a Gibson Les Paul-->
My new guitar is a @Model.Brand @Model.Model

Another important aspect to understand about Razor is that it uses the AntiXSS library to encode the
output of your expressions. AntiXSS encoding replaces HTML markup and executable script code with
harmless text by converting special characters into HTML escape sequences. For example, <h1>Hello</h1>
would be converted into <h1>hello</h1>. This is an important security feature that helps
prevent you from introducing cross-site scripting (XSS) vulnerabilities into your application. In an XSS
attack, a user or bot (automated attacker) will attempt to inject active content into your site. When other
users access the site and run the active content, the attacker can steal information such as the contents of the
user authentication cookie. By encoding the output, Razor ensures that only harmless HTML is displayed.

For example, suppose you had a form that allowed a user to enter a description about his guitar.
On another page, you display the content using the following code:

My new guitar is a @Model.Description

If a user entered some HTML in the comment form with the intent of enhancing the comment to include
a bold typeface, Razor would automatically encode this content. If you view the HTML source generated by
Razor, you would see that the angle brackets have been replaced with standard HTML escape characters.

<!-- comment = Very cool guitar -->
My new guitar is a Very cool guitar

Chapter 3 ■ MVC razor Syntax and htML heLperS

70

If you need to output the raw HTML and do not want Razor to encode the output, ASP.NET Core MVC
contains the Raw HTML Helper extension method. HTML Helpers can be accessed using the @Html variable,
which maps to the HtmlHelper instance of the view. The Raw HTML Helper takes an object as a parameter
and then outputs the value without encoding. Note that inside the parameters you do not use the @ symbol.

My new guitar is a @Html.Raw(Model.Description)

Control Statements
Because Razor uses C# as its scripting language, any of the control statements that are legal in C# can
be used in Razor. Listing 3-2 shows a simple if-else statement. Notice the lack of explicit code block
delimiters. Razor’s smart parser can automatically determine server-side script blocks from HTML. One item
to note in Listing 3-2 is the placement of the curly braces. Curly braces should be placed on separate lines by
themselves to avoid parser errors and to improve the readability of your code.

Listing 3-2. Using an if Control Block Inside of a Razor View

@if (Model.MyGuitar.HasWhammyBar)
{
 My Guitar has a @Model.MyGuitar.WhammyBarType Whammy Bar
}
else
{
 No Whammy bars on this guitar
}

In this statement, not only is the Razor engine able to detect the if statement, but it is also able to detect
the variable embedded in the SPAN tag.

Listing 3-3 shows a switch statement inside a Razor view. Notice how it seamlessly switches back and
forth between the control flow statements and HTML markup. As in the if-else statement, no explicit code
block delimiters are required.

Listing 3-3. Using a switch Statement in a Razor View

@switch (Model.Brand.ToLower())
{
 case "gibson":
 Slash loves his Gibson Les Paul
 break;
 case "fender":
 Stevie Ray Vaughan loved his Fender Stratocaster
 break;
 case "charvel":
 Warren DeMartini shreds on his Charvel San Dimas
 break;
 default:
 What kind?
 break;
}

Chapter 3 ■ MVC razor Syntax and htML heLperS

71

Loops
Razor supports all the looping constructs in C# including for, foreach, while, and do. Listing 3-4 shows a
foreach loop being used to display a list of Guitar objects. The model in this case is a List<Guitar> object.
In this example, the built-in styles from the Bootstrap CSS library that is included with the ASP.NET Core
MVC project templates are used to style a table. The styles add alternating row color to a table of items. The
loop is started inside the table body and creates a new table row for each loop iteration. Notice as with the
control flow statements that the curly braces are placed on lines by themselves.

Listing 3-4. Using a foreach Loop in Razor

@model List<Chapter3.Recipe01.Models.Guitar>
<table class="table table-striped">
 <thead>
 <tr>
 <th>Brand</th>
 <th>Model</th>
 <th>Has Whammy Bar</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model)
 {
 <tr>
 <td>@item.Model</td>
 <td>@item.Model</td>
 <td>@item.HasWhammyBar</td>
 </tr>
 }
 </tbody>
</table>

HTML Helpers
ASP.NET Core MVC comes with a number of HTML Helpers that work with the data annotations defined on
your model to significantly reduce the amount of code your solution requires.

Listing 3-5 shows the Razor markup for a form that allows you to enter information about your new
guitar. In this example, you can see several HTML Helpers in action. The first HTML Helper used is the
@using (Html.BeginForm()){ //form content } construct. Html.BeginForm creates the beginning and
end HTML form tags and uses route information to add the action properties. Next is the
@Html.ValidationSummary() helper. This adds a section where form validation errors will be displayed.
Finally, the form itself is shown. Here I am using templated HTML Helpers to display both the form label
and the form field. Templated helpers are covered in detail in recipe 3-13.

Chapter 3 ■ MVC razor Syntax and htML heLperS

72

Listing 3-5. A Simple Form That Uses HTML Helpers

@using (Html.BeginForm())
{
 @Html.ValidationSummary()

 <fieldset>
 <legend>New Guitar Form</legend>
 <ul class="list-unstyled">
 <li class="form-group">
 @Html.LabelFor(m => m.Brand)
 @Html.TextBoxFor(m => m.Brand)

 <li class="form-group">
 @Html.LabelFor(m => m.Model)
 @Html.TextBoxFor(m => m.Model)

 <li class="form-group">
 @Html.LabelFor(m => m.HasWhammyBar)
 @Html.CheckBoxFor(m => m.HasWhammyBar)

 <input type="submit" value="Save" class="btn btn-primary" />
 </fieldset>
}

The @Html.LabelFor, @Html.CheckBoxFor, and @Html.TextBoxFor helpers take a lambda expression as
a parameter. HTML Helpers use reflection to pull data from the data annotations that decorate the Guitar
model and combine them with the data contained in the object passed into the lambda expression to
generate the label and input HTML tags. For this to work, data annotation attributes must be added to the
model that specifies the validation rules.

Listing 3-6 shows the HTML generated by the Razor code shown earlier in Listing 3-5.

Listing 3-6. HTML Code Generated by the Razor Markup in Listing 3-5

<form action="/Home/Helper" method="post">
<div class="validation-summary-valid" data-valmsg-summary="true">
 <li style="display:none">

</div>
<fieldset>
 <legend>New Guitar Form</legend>
 <ul class="list-unstyled">
 <li class="form-group">
 <label for="Brand">Brand</label>
 <input data-val="true"
 data-val-required="The Brand field is required."
 id="Brand"
 name="Brand"
 type="text"
 value="Gibson" />

Chapter 3 ■ MVC razor Syntax and htML heLperS

73

 <li class="form-group">
 <label for="Model">Model</label>
 <input
 data-val="true"
 data-val-required="The Model field is required."
 id="Model" name="Model"
 type="text"
 value="Les Paul" />

 <li class="form-group">
 <label for="HasWhammyBar">HasWhammyBar</label>
 <input name="HasWhammyBar" id="HasWhammyBar" type="checkbox"
 value="true"
 data-val-required="The HasWhammyBar field is required."
 data-val="true">

 <input type="submit" value="Save" class="btn btn-primary" />
 </fieldset>
<input name="__RequestVerificationToken"
 type="hidden" value="CfDJ8BIUrxdWIuxCmsL211uSFHI2Lzoa64xjRBikGoHpU5

Amu1quiJbe4fx1OnzBehpTWVt45VJfEpzEOS991lzqP78JIquYMCtEfGtvKcVGInBUiP74wuOWx
FtIXFGuAxfPczXmLsPONrkObvqQnR2wqvA">

<input name="HasWhammyBar" type="hidden" value="false">
</form>

Code Blocks
Code blocks are sections of the view that contain only C# code and no markup. While inside a code block, all
rules of the project’s programming language must be followed. With C# projects, for example, a semicolon is
required at the end of each statement.

Code blocks begin with @{ and end with }. There is no predefined limit on the number of lines of code
in a code block. Keep in mind that the only code you should add to your views is view logic. You should not
perform calculations or manipulate the model while in the view. The following is an example of a code block
assigning a variable; then it shows how the variable can be used in the view:

@{
 var title = "Code Blocks";
}

<h1>@title</h1>

As smart as Razor is, it can get confused occasionally. For example, when you do attempt to use a
variable inside an HTML attribute, Razor is not able to determine where the HTML ends and the code
begins. Suppose that you had an image that used the ProductId of the model as the file name.

In this case, Razor will fail to recognize that @Model.ProductId is a variable name and will incorrectly
render the variable name instead of the value.

Chapter 3 ■ MVC razor Syntax and htML heLperS

74

This can be corrected by wrapping the variable with a set of parentheses. This convention is known as
an explicit code nugget.

Explicit Markup
Sometimes you might want to have plain text mixed in with your code. Without the presence of angle
brackets, Razor has a difficult time finding the end of your code block. To get around this problem, the Razor
team invented the @: operator and the <text> block. The @: operator is used for single-line explicit markup.
<text> is used for multiple lines of markup. Listing 3-7 shows an example of explicit markup.

Listing 3-7. Example of Explicit Markup

@if (12 == 12)
{
 @: I have @Model.Strings.Count in my guitar case
}
<text>
 Only the best guitar players play @Model.Brand
 and we know who we are.
</text>

The syntax allows code nuggets to be mixed with the explicit markup. It also allows you to mix in
variables and other dynamic features just as you would in cases where angle brackets are present. In
Listing 3-7, the @ symbol is used inside an explicit code nugget to allow a variable to be inserted.

It should be noted that the markup shown in Listing 3-8 will fail.

Listing 3-8. Example of Invalid Explicit Markup

@if(12==12)
{
 @: I have @Model.Picks.Count in my guitar case};

Because the @: symbol states that all content on this line is markup, the "};" is rendered as markup, and
the page will have a validation error because the if statement is missing a closing brace.

Comments
Every coding language needs a way to add comments. In Razor, you use the following syntax to create a
comment:

@* This is my comment. *@

All code and markup between the symbols is commented out. This is useful for when you want to add a
comment to your code but do not want it to appear in the markup sent to the client.

You can still use HTML, JavaScript, and CSS comments in your views, but keep in mind that HTML
comments are sent to the client and can be read if someone views the source of your page. Here’s an
example:

Chapter 3 ■ MVC razor Syntax and htML heLperS

75

<!-- this is an HTML comment. It will be sent to the client browser but is hidden on the page -->
<script>
 // this is a JavaScript comment
</script>

<style>
 /* This is a CSS Comment*/
</style>

You can also use C# comments inside code blocks. The C# comments do not get sent to the client.

@{
 // this is a comment inside of a code block

 /*
 * This is a multi-line comment inside a code block
 */
}

Escaping the @ Symbol
As you saw in the previous examples, the @ symbol is used in Razor to identify variables, directives, code
blocks, and even comments. So, what do you do if you need to display an @ symbol on your page? As shown
in Listing 3-9, you can use double @@ symbols to escape the character and have it written to the screen.

Listing 3-9. Markup That Displays a Razor Code Sample Inside a Razor View

<pre>It is now @@DateTime.Now</pre>
It is now @DateTime.Now

In Listing 3-9, the example code is displayed on the page, and then the output of the command is
demonstrated directly afterward. The escaped @ character is shown in bold text.

3-2. Creating an Action Link
Problem
You want to display a link in a view to another controller action on the same controller but do not want to
hard-code the URL. Instead, you want to leverage information in the route collection to generate the link
automatically.

Solution
Displaying links to other actions using route data is the job of the ActionLink HTML Helper. The basic
syntax for it is simple, as shown in Listing 3-10.

Listing 3-10. Example of an ActionLink

<h3>3-2. Create an Action Link</h3>
@Html.ActionLink("Link to about action in same controller", "About")

Chapter 3 ■ MVC razor Syntax and htML heLperS

76

In the preceding example, the @ symbol is used to indicate that the text that follows it is server-side
markup. Html is an instance of Microsoft.AspNetCore.Mvc.Rendering.HtmlHelper. I will discuss the details
of what this class does in the “How It Works” section. ActionLink is a method of HtmlHelper that uses the
route data to construct the link.

In the preceding example, the ActionLink method takes two arguments. The first is the text to be
displayed in the link, and the second is the name of the action. The controller name is omitted in this
example. When the controller name is omitted, ASP.NET Core MVC will use the current controller by default.
The output of this helper is as follows:

Link to about action in same controller

How It Works
One advantage of ASP.NET Core being open source is that it allows you as a developer to peek under the
hood and see how things work. In this section, I will walk you through the implementation of the ActionLink
HTML Helper. This will give you a detailed understanding of the inner working of ASP.NET Core MVC. It also
teaches you how you can explore the source code for ASP.NET Core MVC on GitHub.

In the solution, I used @Html.ActionLink to automatically generate the HTML for a hyperlink
using information from the application’s route dictionary. To understand how this works, you will start
by examining the HtmlHelper class. The full source code of the HtmlHelper class is available at
http://bit.ly/htmlhelper_cs.

Listing 3-11 shows the ActionLink method of HtmlHelper.

Listing 3-11. ActionLink Method Source Code

public IHtmlContent ActionLink(
 string linkText,
 string actionName,
 string controllerName,
 string protocol,
 string hostname,
 string fragment,
 object routeValues,
 object htmlAttributes)
{
 if (linkText == null)
 {
 throw new ArgumentNullException(nameof(linkText));
 }

 var tagBuilder = _htmlGenerator.GenerateActionLink(
 ViewContext,
 linkText,
 actionName,
 controllerName,
 protocol,
 hostname,
 fragment,
 routeValues,
 htmlAttributes);

http://bit.ly/htmlhelper_cs

Chapter 3 ■ MVC razor Syntax and htML heLperS

77

 if (tagBuilder == null)
 {
 return HtmlString.Empty;
 }

 return tagBuilder;
}

The first thing you should notice in Listing 3-11 is the ActionLink method signature. In addition to
the two arguments shown in Listing 3-10, there are additional arguments for the controller name, protocol,
host name, fragment, route values, and HTML attributes. The overload used in Listing 3-10 is actually
defined in another class called Microsoft.AspNetCore.Mvc.Rendering.HtmlHelperLinkExtensions as an
extension method of HtmlHelper. You can find the source for HtmlHelperLinkExtensions at http://bit.ly/
HtmlHelperLinkExtentions.

 ■ Note extension methods are C# programming constructs that allow you to add methods to an existing type
without creating a subclass or modifying the original. For more information, please refer to recipe 3-7, which
demonstrates this technique.

Microsoft.AspNet.Mvc.Rendering.HtmlHelperLinkExtensions provides six extension methods that
overload the ActionLink method defined in Microsoft.AspNetCore.Mvc.ViewFeatures.HtmlHelper.
Each of the overloads simply calls the base class’s ActionLink method with a null value for the missing
arguments.

You can learn more about how to use the overloads of ActionLink in recipes 3-3 through 3-10.
Even though the commonly used overloads for ActionLink are defined in an external class, all the

business logic is defined in the base class implementation. With that in mind, let’s walk through the code in
Listing 3-11 to explore how it works.

_htmlGenerator.GenerateActionLink
After validating that the linkText argument is not null, the code in Listing 3-11 calls the
GenerateActionLink method on an instance of IHtmlGenerator. The purpose of this method is to generate
the URL. To see how this is done, you need to refer to the default implementation of IHtmlGenerator. The
default implementation used by ASP.NET Core MVC is defined in a class named Microsoft.AspNetCore.
Mvc.DefaultHtmlGenerator. You can find the code for DefaultHtmlGenerator at http://bit.ly/
DefaultHtmlGenerator.

Listing 3-12 shows DefaultHtmlGenerator’s GenerateActionLink method.

Listing 3-12. GenerateActionLink Source Code

public virtual TagBuilder GenerateActionLink(
 ViewContext viewContext,
 string linkText,
 string actionName,
 string controllerName,
 string protocol,
 string hostname,
 string fragment,

http://bit.ly/HtmlHelperLinkExtentions
http://bit.ly/HtmlHelperLinkExtentions
http://bit.ly/DefaultHtmlGenerator
http://bit.ly/DefaultHtmlGenerator

Chapter 3 ■ MVC razor Syntax and htML heLperS

78

 object routeValues,
 object htmlAttributes)
{
 if (viewContext == null)
 {
 throw new ArgumentNullException(nameof(viewContext));
 }

 if (linkText == null)
 {
 throw new ArgumentNullException(nameof(linkText));
 }

 var urlHelper = _urlHelperFactory.GetUrlHelper(viewContext);
 var url =
 urlHelper.Action(actionName, controllerName, routeValues,
 protocol, hostname, fragment);
 return GenerateLink(linkText, url, htmlAttributes);
}

As shown in Listing 3-12, GenerateActionLink does not actually do the work of generating the HTML,
but rather it uses a factory method to get an instance of the UrlHelper, which in turn calls the Action
method that generates the HTML. Although this may seem overly complex, this design helps to ensure
maximuim performance by ensuring that only one instance of the UrlHelper factory is created for each
ViewContext.

 ■ Note the design of aSp.net Core MVC avoids direct dependencies as much as possible. rather than
hard-code an implementation of the IHtmlGenerator interface, aSp.net Core MVC loads an implementation
that is dependency injected during the application initialization process. When the view engine creates an
instance of HtmlHelper, it passes the IHtmlGenerator instance via the constructor.

UrlHelper Action
The actual logic for generating the HTML can be found in the UrlHelper class. An instance of this class was
retrieved using the UrlHelperFactory, as shown in Listing 3-12. You can find the source code for UrlHelper
at http://bit.ly/UrlHelper. UrlHelper is somewhat complex, with more than 350 lines of code. For that
reason, the code is not repeated in this book.

The Action method’s first job is to get the path to the controller action. It does this by looking at the route
data from the ViewContext and IRouter instances that have been passed to DefaultHtmlGenerator via the
constructor. It then takes into consideration the four optional arguments that include protocol, host, path,
and fragment. The fragment parameter represents an HTML anchor name, as in .
This fragment markup is how an HTML author can create links to another section of the same document.

If the fragment argument is not null, the URL fragment will be prefixed with # concatenated with the
value of fragment. It then checks to see whether protocol and host have values. If no value is found in
either argument, then a relative URL is constructed. When Action builds relative URLs, it always ensures
they begin with a forward slash. If a portal or host is given, then an absolute URL will be constructed. This
behavior is demonstrated in the following examples.

http://bit.ly/UrlHelper

Chapter 3 ■ MVC razor Syntax and htML heLperS

79

Given the following ActionLink

@Html.ActionLink("Link with a fragment", "Profile", "Home", "", "", "Email", null, null)

the action constructs the relative URL /Home/Profile#Email.

@Html.ActionLink("Link with a fragment", "Profile", "Home", "https", "", "Email", null, null)

Because the protocol was specified, the absolute URL was constructed: https://localhost:50181/
Home/Profile#Email.

@Html.ActionLink("Link with a fragment", "Profile", "Home", "", "myhostName", "Email", null, null)

When the host name is included but the protocol is omitted, an absolute URL is constructed with the
host name provided and HTTP as the protocol: http://myhostname/Home/Profile#Email.

In the case of the example in Listing 3-11, protocol and host are both null. This results in the output
being /Home/About.

3-3. Creating an Action Link to Another Controller
Problem
You want to display a link in a view to another controller action on a different controller but do not want to
hard-code the URL. Instead, you want to leverage information in the route collection to generate the link
automatically.

Solution
Displaying links to other actions using route data is the job of the ActionLink HTML Helper.

In Listing 3-13, ActionLink is invoked with three arguments: the link text, the name of the action,
and the name of the controller. In this case, you want to create a link to the Somewhere action on the Away
controller.

Listing 3-13. Create an Action Link to Another Controller

<div class="col-md-12">
 <h3>3-3. Create an Action Link to another controller</h3>

 @Html.ActionLink("Action Link to another controller", "Somewhere", "Away")
</div>

The HTML output from this helper is as follows:

Action Link to another controller

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ MVC razor Syntax and htML heLperS

80

How It Works
In recipe 3-2, a detailed description was provided for how the HtmlHelper class and ActionLink methods
work. The only difference between what is happening behind the scenes in Listing 3-13 is how passing in the
controller name affects the URL generation process.

You can find the logic used for link generation in the UrlHelper class. You can find the source code for
this class at http://bit.ly/UrlHelper.

In the example shown in recipe 3-2, because the name of the controller was not supplied, ActionLink
needs to discover the name of the current controller by inspecting the route value dictionary. When passing
in the name of the controller like in Listing 3-13, this step is not required.

3-4. Creating an Action Link to Another Area
Problem
You are taking advantage of the areas feature of ASP.NET Core MVC to subdivide your solution. You are
creating a navigation bar in a partial view. On the navigation bar you want to use the ActionLink HTML
Helper to create a link to an action in a controller inside an area. Looking at the possible overloads for
ActionLink, you do not see an argument for specifying the area. You are confused on how to create the link.

Solution
Two steps are required for link generation to an area to work. First, you need to make sure you have added a
route definition that includes area as a route parameter either in an attribute route or in the UseMvc method
in the Startup class of your application. Second, you need to include the area route parameter in your call
to ActionLink. Listing 3-14 shows how to create a route that includes an area. Note that this syntax is new to
ASP.NET Core. In ASP.NET MVC 5 and earlier, each area had an AreaRegistration class that registered area
routes using the AreaRegistrationContext in its RegisterArea method. Area registration does not exist in
ASP.NET MVC Core.

Listing 3-14. Adding a Route That Includes an Area Route Parameter

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "areaRoute",
 template: "{area:exists}/{controller=Home}/{action=Index}");
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

Once the route has been added, you can create your action link by including the area property in the
route values argument, as shown in Listing 3-15. If this syntax seems strange, try to think of it as a terse
syntax for creating a name-value collection.

http://bit.ly/UrlHelper

Chapter 3 ■ MVC razor Syntax and htML heLperS

81

Listing 3-15. Creating an Action Link That Includes an Area

<div class="col-md-12">
 <h3>3-4. Create an Action Link to another controller</h3>

 @Html.ActionLink("Link to Area",
 "InHappyLand",
 "ControllerInArea",
 new { Area = "FarFarAway" })
</div>

The HTML generated from the ActionLink shown in 3-15 is as follows:

Link to Area

How It Works
The ActionLink method call shown in Listing 3-15 takes four parameters, which include the link text, the
action name, the controller name, and then an object that represents a collection of route values.

As explained in the “How It Works” section in recipe 3-2, the ActionLink depends on the Action
method of the UrlHelper class to resolve the URL using a combination of the data you are passing into the
ActionLink method, information from the HttpContext including information regarding what controller
action method had instantiated the view, and the application’s route collection. It should be noted that
the HttpContext object discussed here is a new type introduced in ASP.NET Core. It has no relation to
System.Web.HttpContext or HttpContext.Current from ASP.NET MVC 5.

The route data that you pass into the ActionLink can be interpreted as either route parameters or
query string parameters. The routing engine determines which is which by using information from the
matching route template. In the areaRoute route created in Listing 3-14, the route template is defined
as {area:exists}/{controller=Home}/{action=Index}. Each of the names surrounded by the curly
braces is a route parameter. The construct {area:exists} tells the routing engine to consider the area
name when resolving the route but only if it exists. You can use the :exists clause with any route
parameter.

During the link generation process, the UrlHelper searches the route collection for a matching template.
It will then fill the placeholders created by the template’s route parameters with matching data from the route
value dictionary. In the case of Listing 3-15, it will replace {action} with InHappyLand, {controller} with
ControllerInArea, and {area} with FarFarAway. Any other value found in the route value dictionary would
be treated as a query string parameter. In fact, if you removed the areaRoute route, the URL rendered by the
code in Listing 3-15 would be /ControllerInArea/InHappyLand/?Area=FarFarAway.

3-5. Creating an Action Link with Custom HTML Attributes
Problem
You are creating an ActionLink to your home page but do not want to use the default link styles. You need to
have the link appear as a button. If you were hand-coding the link, you would accomplish this by adding a
class attribute to the anchor tag. You are unsure how to do this with the ActionLink HTML Helper.

Chapter 3 ■ MVC razor Syntax and htML heLperS

82

Solution
The ActionLink helper has an overload with a fifth parameter that accepts an anonymous type that is
converted to a dictionary of HTML attributes. Listing 3-16 shows two examples. The first example adds a
single attribute, which in this case is a class. Because you want the link to look like a button, you add the btn
and btn-primary CSS classes. These are styles defined in the bootstrap style sheet that is preinstalled in your
solution when you create a web site using the standard ASP.NET Core MVC project template.

In the second example is a second HTML attribute. The title attribute is a standard HTML attribute
that creates a small tooltip that can appear when you hover the mouse over the link.

Listing 3-16. Creating Action Links with Custom HTML Attributes

<div class="col-md-12">
 <h3>3-5. Create an Action Link with custom HTML Attributes</h3>
 @Html.ActionLink("This link looks like a button",
 "Contact",
 "Home",
 null,
 new { @class = "btn btn-primary"})

 @Html.ActionLink("This one also has a tool tip",
 "Contact",
 "Home",
 null,
 new { @class = "btn btn-primary",
 title="Click to contact me" })
 </div>

How It Works
The ActionLink method call shown in Listing 3-16 takes five parameters: the link text, the action name, the
controller name, an object that represents a collection of route values that is set to null, and finally an object
that represents a collection of HTML attributes that should be added to the HTML anchor tab that will be
generated.

It should be noted that the route values argument is required to get the correct method signature. If
you do not need to add any route parameters, you need to set this to null as is the case in Listing 3-16. Since
class is a C# keyword, the @ symbol must be used for the HTML class attribute to be added.

The link generation process is identical to the process described in recipe 3-2. The only difference is the
additional attributes merged during the GenerateLink phase of the method. As described in recipe 3-2, the
HTML Helper is using TagBuilder to generate the HTML. In the last phase of this process, it merges the list
of attributes that you pass in as an argument to ActionLink using TagBuilder.MergeAttributes.

3-6. Creating an Action Link That Uses HTTPS
Problem
As a best practice, you always use SSL when a user enters secure information such as login credentials.
You want to use SSL for all the action links to your web site’s login page but are unsure of the correct syntax.

Chapter 3 ■ MVC razor Syntax and htML heLperS

83

Solution
The ActionLink method from the HtmlHelper class allows you to specify arguments for specifying the
protocol and host name. Listing 3-17 shows how you create a link to a secure contact page.

Listing 3-17. ActionLink Syntax for Specifying a Protocol

<h3>3-6. Create an Action Link with HTTPS</h3>
@Html.ActionLink("Secure Page",
 "Contact",
 "Home",
 "https",
 "mywebsite",
 null,
 null,
 null)

With the standard route templates, the ActionLink in Listing 3-17 would output the following HTML:

Secure Page

There is an important thing to note about Listing 3-17. All the arguments are required, and null values
are supplied for the routeValues and htmlAttributes arguments because they are not needed in this
example. An empty string or null is passed for the fragment argument in this case, as this is also not required.
If you do not do pass all the augments, the wrong version of the ActionLink helper would be called.

How It Works
The inner workings of the HtmlHelper.ActionLink helper are described in detail in the “How It Works”
section in recipe 3-2.

If you find that you need to create many links with HTTPS rather than HTTP, you have a few options.

•	 Configure your web site to require SSL. If you are deploying to IIS, this setting can
be found by setting the Require SSL option. If you have enabled a secure binding
on your web site, you can do this by opening IIS Manager, expanding Sites, and
then clicking your web site. You can then double-click SSL Settings to open the SSL
Settings page. On the SSL Settings page, select the Require SSL check box. Once you
apply your changes, your web site will reject all non-HTTPS traffic.

•	 Use the RequireHttpsAttribute on the controller actions that you want to ensure
are always accessed on a secure communications channel. This will redirect end
users to the HTTPS version of the URL when they attempt to access the page using
HTTP. Listing 3-18 shows an example of this.

•	 Create your own HTML Helper. An example of how to do this is shown in recipe 3-7.

Listing 3-18. Using RequireHttpsAttribute on a Controller Action

[RequireHttps]
public IActionResult SecurePage()
{
 return View();
}

Chapter 3 ■ MVC razor Syntax and htML heLperS

84

3-7. Creating Your Own Action Link for Creating HTTPS Links
Problem
The built-in HtmlHelp.ActionLink allows you to specify a protocol and host name for creating links to
actions that require HTTPS. Unfortunately, you find that it has a few problems. The syntax is inconvenient
because you are required to supply many arguments that you might not need. You want to create your own
version of the ActionLink method that created links with the HTTPS protocol by default.

Solution
Listing 3-19 shows a static class that defines two extension methods called SslActionLink. The first accepts
linkText and actionName parameters. The second also includes a parameter for controllerName.

Listing 3-19. Creating Custom Action Links for SSL

using Microsoft.AspNetCore.Html;
using Microsoft.AspNetCore.Mvc.Rendering;
using System;

namespace Recipe02to10.Infrastructure
{

 public static class MyHelperLinkExtensions
 {
 public static IHtmlContent SslActionLink(
 this IHtmlHelper helper,
 string linkText,
 string actionName)
 {
 return helper.SslActionLink(linkText, actionName, null);
 }

 public static IHtmlContent SslActionLink(
 this IHtmlHelper helper,
 string linkText,
 string actionName,
 string controllerName)
 {
 if (helper == null)
 throw new ArgumentNullException("helper");

 if(string.IsNullOrEmpty(linkText))
 throw new ArgumentNullException("linkText");

return helper.ActionLink(
 linkText,
 actionName,
 controllerName,
 protocol: "https",
 hostname: null,

Chapter 3 ■ MVC razor Syntax and htML heLperS

85

 fragment: null,
 routeValues: null,
 htmlAttributes: null);
 }

 }
}

For both methods, the protocol is set to HTTPS. After creating the class, you can then use the new
extension methods in your views, as shown in Listing 3-20.

Listing 3-20. Using the SslActionLink HTML Extensions

@using Recipe02to10.Infrastructure

 <h3>3-6. Create an Action Link with SSL using custom helper</h3>
 @Html.SslActionLink("Secure Page using custom helper", "Contact", "Home")

How It Works
Extension methods are a feature of the .NET Framework that was first introduced with .NET 3.5 in 2008.
They allow you to extend the functionality of an existing type without creating a derived type or modifying
the original. The magic of this welding is done by the C# compiler. The compiler does not actually add your
method to the existing type, but it can create the illusion that it does.

At compilation, the C# compiler can detect methods with the this keyword preceding the first
parameter. It then can automatically decorate the method with System.Runtime.CompilerServices.
ExtensionAttribute. The C# language and Visual Studio can then take advantage of this attribute using
APIs exposed by the compilation service to create the illusion that they have been added to the class.

For the example in Listing 3-19, I had created a new subdirectory under my web project root called
Infrastructure. This is not a requirement, but it is a popular convention when you are creating HTML
Helpers and other functions that are specific to a web application. Another approach would be to define
your extensions in another project and then add that project as a reference to your web application. This
second option would allow you to reuse your helper extensions across many web applications.

SslActionLink
The second line of code in Listing 3-19 is the inclusion of the Microsoft.AspNetCore.Mvc.Rendering
namespace. This is the namespace that contains all the HTML Helpers included with ASP.NET Core MVC.

Next the class is defined as public static class MyHelperLinkExtensions. Classes that contain
extension methods must be declared as static. The actual name of the class does not matter because it is not
used when you call your method, but it can be helpful to name your extension classes consistently so that it
is obvious what their purpose is.

Looking at the method definition, it is like the class is static. The return type is IHtmlContent, which
represents an HTML-encoded string that should not be encoded again. This is a common return type used
for most HTML Helpers.

public static IHtmlContent SslActionLink(
 this IHtmlHelper helper,
 string linkText,
 string actionName)
 {

Chapter 3 ■ MVC razor Syntax and htML heLperS

86

The first parameter is this IHtmlHelper helper. The this keyword is what tells the compiler that the
method is an extension method and that it should be attached to all classes that implement the IHtmlHelper
interface. The IHtmlHelper interface is new to ASP.NET Core MVC, and you must use it rather than the
implementation HtmlHelper as you might have done in older versions of MVC. If you use the HtmlHelper
rather than IHtmlHelper, you will be able to build your project but will get a runtime error when trying to
use your helper in a view. This is because the view engine is also referencing the interface rather than an
implementation of IHtmlHelper.

In the body of the method, the code simply calls HtmlHelper’s ActionLink, filling in default values for
hostname, fragment, routeValues, and htmlAttributes.

3-8. Creating an Action Link with an Anchor Target
Problem
You have a page on your web site that allows users to edit their profiles. You are using Bootstrap’s tabs
component to break up the profile form into smaller subpages. You want to be able to have external links
that open a specific tab. As part of this solution, you want to use hash symbols in your external links for each
section of the profile form. For example, you want to have a link such as /Members/EditProfile/#Email to
link to the e-mail preferences tab. You want to use an ActionLink but are not sure about the syntax.

Solution
The solution for creating the action links requires providing a value to the HtmlHelper.ActionLink
fragment parameter, as shown in Listing 3-21.

Listing 3-21. Creating a Link That Includes a Fragment

<h3>3-8. Create an Action Link with a fragment</h3>
 @Html.ActionLink("Edit email settings", "Profile", "Home", "", "", "Email", null, null)

The action link in Listing 3-21 will generate the following HTML:

 Edit email settings

How It Works
The HtmlHelper.ActionLink uses the UrlHelper class to generate the URLs used in the HTML markup that
it generates. When UrlHelper generates the link, it checks to see whether a fragment argument has been
supplied a non-null value. If it has, then it will append a hash and the string supplied in the argument to the
end of the URL.

Since the beginning of HTML, a hyperlink that contained a hash symbol would allow a user to
navigate to an HTML fragment on the page specified in the href attribute. Inside the page, the fragments
are identified using the name attribute of the anchor tag. For example, if you had a long HTML page, you
could add tags such as to mark a section and then link to that fragment using
Section 1. The primary purpose of the fragment parameter of HtmlHelper.
ActionLink is for that use case but is by no means the only way it can be used.

Another use for the hash symbol in front-end development is as a CSS selector that matches HTML
elements with a matching id attribute. For example, if you wanted to apply a style to a paragraph tag with an
ID of foo <p id="foo"/>, you can create a style such as this:

#foo{background-color:black;}

Chapter 3 ■ MVC razor Syntax and htML heLperS

87

The popular JavaScript library jQuery that follows the CSS selector syntax for finding matching
Document Object Model (DOM) elements also makes use of the hash symbol. This is exploited by many UI
components, including Bootstrap’s tabs, to enable single-page web applications that can use the browser’s
Back button.

Listing 3-22 demonstrates how to use Bootstrap’s tabs in your view, and then Listing 3-23 shows how to
enable external links to certain tabs with a few lines of JavaScript.

Listing 3-22. Using Bootstrap to Create Tabs

@{
 Layout = "/Views/Shared/_Layout.cshtml";
 ViewBag.Title = "Edit your profile";
}
<div class="tabbable tabs-left" id="tabMenu">
 <ul class="nav nav-tabs">
 <li class="active">
 <a href="#BasicInfo"
 data-toggle="tab"
 data-tab-history="true"
 data-tab-history-update-url="true"
 data-tab-history-changer="push">Personal Info

 <a href="#Avatar"
 data-toggle="tab"
 data-tab-history="true"
 data-tab-history-update-url="true"
 data-tab-history-changer="push">Your Avatar

 <a href="#Bio" data-toggle="tab"
 data-tab-history="true"
 data-tab-history-update-url="true"
 data-tab-history-changer="push">Your Bio & Influences

 <a href="#Talents" data-toggle="tab"
 data-tab-history="true"
 data-tab-history-update-url="true"
 data-tab-history-changer="push">Your Talents

 <a href="#Contact"
 data-toggle="tab"
 data-tab-history="true"
 data-tab-history-update-url="true"
 data-tab-history-changer="push">Contact Info

 <a href="#Privacy"
 data-toggle="tab"
 data-tab-history="true"

Chapter 3 ■ MVC razor Syntax and htML heLperS

88

 data-tab-history-update-url="true"
 data-tab-history-changer="push">Privacy Settings

 <a href="#Email"
 data-toggle="tab"
 data-tab-history="true"
 data-tab-history-update-url="true"
 data-tab-history-changer="push">Email Settings

 <div class="tab-content">
 <div class="tab-pane active" id="BasicInfo">
 <h3>Basic Info</h3>
 </div>
 <div class="tab-pane" id="Avatar">
 <h3>Avatar</h3>
 </div>
 <div class="tab-pane" id="Bio">
 <h3>Your bio</h3>
 </div>
 <div class="tab-pane" id="Talents">
 <h3>Your amazing talents</h3>
 </div>
 <div class="tab-pane" id="Contact">
 <h3>Contact Info</h3>
 </div>
 <div class="tab-pane" id="Privacy">
 <h3>Privacy Settings</h3>
 </div>
 <div class="tab-pane" id="Email">
 <h3>Email Settings</h3>
 </div>
 </div>
</div>

@section scripts{
<script src="/scripts/home/editprofile.js"></script>
<script src="~/lib/bootstrap-tab-history/vendor/assets/javascripts/bootstrap-tab-
history.js"></script>
}

As shown in Listing 3-22, Bootstrap uses unobtrusive JavaScript so that there is a clean separation of
markup and presentation logic. All the presentation logic for the tabs is in the Bootstrap.js file, leaving only
clean, natural HTML. It also allows you to navigate between tabs by simply clicking hyperlinks such as
Your Avatar. The only indicator that something is special
about the link is the data-toggle attribute that is used by Bootstrap’s script to identify what anchor
elements to apply the tab behavior to. To enable Back button support, a JavaScript library named
bootstrap-tab-history.js was downloaded from the Bower repository. Additional attributes with the
prefix data-tab-history are added to each link. The tab content is contained inside a div tag marked
with class="tab-content". Nested inside this div tag are a set of other div elements that each contain the

Chapter 3 ■ MVC razor Syntax and htML heLperS

89

content of a tab. Each of the inner div tags is marked with class="tab-pane" and has a unique id attribute
that corresponds to each of the hyperlinks’ fragments defined in the first section. The default tab is marked
with an additional CSS class that marks it as the default active tab.

The Bootstrap script works by using a jQuery selector to assign an onclick event to all the anchor
elements that include the data-toggle="tab" attribute. It does not consider any hash tags present in the
URL. For this to work, you need to add a custom script that runs after the DOM loads that checks the current
location to see whether it ends with a fragment, as shown in Listing 3-23. It should be noted that the code
shown in Listing 3-23 runs only once when the page loads.

Listing 3-23. JavaScript to Enable URL to Navigate to Tab

$(function () {

 navToTab();

 /**
 * check to see if URL contains a hash and if so try and navigate to the correct tab
 */
 function navToTab()
 {
 var tab = $(location).attr('href');
 var re = new RegExp('#+[a-z]+', 'i');
 var m = re.exec(tab);
 if (m) {
 $("#tabMenu a[href='" + m + "']").tab('show');
 }
 }

 /**
 * if someone changes fragment in address bar
 */
 $(window).bind('hashchange', function () {
 navToTab();
 });
});

The script shown in Listing 3-23 uses jQuery to execute a function once the DOM is ready. It then gets
the URL of the current location and puts it into a variable called tab. Next it defines a regular expression that
will attempt to extract the fragment part of the URL and write it to the variable m. If m is a truthy value, then
the script will evoke the Bootstrap tab function to navigate to the proper tab. The code also registers an event
handler for the hashchange event that fires when changes are made to the URL fragment.

 ■ Note In JavaScript, all values can be evaluated as either true or false when used in a control flow
expression such as if(m) shown in Listing 3-22. Values that evaluate as true are known as truthy, and values
that evaluate as false are called falsy. Falsy values include false, 0, empty strings, null, undefined, and NaN.
all other values are considered truthy.

Chapter 3 ■ MVC razor Syntax and htML heLperS

90

3-9. Creating an Image Link
Problem
You want to create an ActionLink but rather than having plain text, you want to have custom HTML
including an image. You have tried to inject HTML into the linkText property only to find that it has been
HTML-encoded.

Solution
HtmlHelper.ActionLink is a useful helper, but it is not the only way to generate a link using the routing
engine. For scenarios where you need more control over the HTML markup, ActionLink might not be
the best fit. The alternative is to hand-code the HTML markup but use the UrlHelper.Action method to
generate the URL, as shown in Listing 3-24. In fact, this is what HtmlHelper does internally. Please refer to
the “How It Works” section in recipe 3-2.

Listing 3-24. Creating an Image Link Using @Url.Action

<h3>3-9. Create an Action Link that includes an image</h3>

How It Works
The UrlHelper class contains several methods that are useful for creating action links when you need full
control over the HTML. UrlHelper follows a similar pattern as HtmlHelper with the core implementation
logic existing inside the class but all the overloads provided via extension methods defined in another
class. In the case of UrlHelper, the extensions are defined in the class Microsoft.AspNetCore.Mvc.
UrlHelperExtensions. The extension class provides seven versions of the Action method that are like the
overloads for ActionLink except for the ability to supply HTML attributes.

3-10. Creating an Image Link Using a Bootstrap Glyphicon
Problem
You want to create a toolbar that uses the icon set provided by Bootstrap and want each toolbar link to be
generated by the ASP.NET routing engine.

Solution
The solution is to use the UrlHelper.Action method to generate the URL using the routing engine. Inside
each, include SPAN tags with the appropriate glyphicon CSS classes. The group of links is wrapped in two
outer DIV tags with the btn-toolbar class and btn-group class, creating a tight grouping of buttons that
resemble a toolbar. You then add the class="btn btn-default" classes to each hyperlink to enable a
button-like look to each link, as shown in Listing 3-25.

Chapter 3 ■ MVC razor Syntax and htML heLperS

91

Listing 3-25. Creating a Toolbar with Icons Using Bootstrap

<div class="btn-toolbar" role="toolbar">
 <div class="btn-group">

 </div>

How It Works
The Bootstrap UI library is the default UI library that comes with the Visual Studio ASP.NET Core MVC
templates. Although you do not need to use this library, it does have many useful features that make it easy
to create a web application with a modern professional design. The Bootstrap library consists of three main
components: a CSS style sheet, a JavaScript library, and an icon set called Glyphicons, which is based on a
web font.

Using a web font for an icon set has many advantages over traditional sprite-based approaches. In a
sprite-based approach, you would need to have a single large image that contained all your icons and then
use CSS background positioning to display the desired icon. With the web font, you simply display the
character that corresponds to the icon. Some other advantages of a web font approach are as follows:

•	 It is a small download, which makes your page load faster.

•	 You can change the icon color using standard CSS styles.

•	 You can change the icon size using standard CSS styles.

If you were using a sprite, you would need a separate image for each color and size. This can be a
tedious exercise if you are the person creating the icons. The downside of using a web font is that you are
limited to using a single color for your icons. Now that Skeuomorphism is no longer in vogue, the monotone
look of the Bootstrap Glyphicon matches the look of many modern OSs including iOS, Windows 8, and
Android.

To use a Glyphicon, you include an empty SPAN tag and then add a class attribute that includes the
Glyphicon class along with the name of the Glyphicon icon class. A full list of icons is available on the
GetBootstrap web site at http://getbootstrap.com/components/.

3-11. Using HTML Helpers to Create HTML Form Elements
Problem
You are new to ASP.NET Core MVC and are looking for a general overview on how to use the HTML Helpers
for creating forms.

http://getbootstrap.com/components/

Chapter 3 ■ MVC razor Syntax and htML heLperS

92

Solution
ASP.NET Core MVC comes with a set of HTML Helpers that help you to create forms. They are especially
helpful for creating forms that are bound to server-side models. There are two main categories of HTML
Helpers that can be used to create forms. The first set can generate the HTML elements required to create
form elements but are not bound to model data. The second set consists of helpers that are strongly typed
and can be bound to model data. The strongly typed variants in addition to the normal HTML needed to
render the form also contain additional attributes that can be used with some of the JavaScript libraries
that come with the Visual Studio ASP.NET templates. Listing 3-26 shows a simple example of a form created
using the HTML Helpers. Strongly typed HTML Helpers are discussed in detail in recipe 3-12.

Listing 3-26. Login Form Created Using HTML Helpers

@using (Html.BeginForm())
{

 <div class="form-group">
 @Html.Label("exampleInputEmail", "Email address")
 @Html.TextBox("exampleInputEmail","",
 new { placeholder = "Enter email", @class="form-control", type = "email" })
 </div>
 <div class="form-group">
 @Html.Label("exampleInputPassword", "Password")
 @Html.Password("exampleInputPassword","",
 new { placeholder = "Password", @class="form-control" })
 </div>
 <div class="checkbox">
 <label>
 @Html.CheckBox("RememberMe", false)
 Remember Me
 </label>
 </div>
<button type="submit" class="btn btn-default">Submit</button>

}

How It Works
The Razor snippet shown in Listing 3-26 creates a simple login screen that allows the end user to enter an
e-mail address and a password and optionally select a check box to remember them the next time. Figure 3-1
shows how the form appears in Internet Explorer 11.

Chapter 3 ■ MVC razor Syntax and htML heLperS

93

In the following sections, I will walk you through each part of the Razor snippet and explain how it works.

BeginForm and the @using Statement
The BeginForm HTML Helper behaves somewhat differently than most of the other HTML Helpers. It is
invoked as an argument to call a using statement. In Razor, as in C#, the using keyword has two meanings.
First, and most common, it is used to include namespaces into a class (or Razor view). The second use is as
a wrapper that allows you to declare and instantiate a class that implements the IDisposable interface and
ensures that the Dispose method is called even if an exception occurs.

If you look at the method signature of BeginForm, you will see that it returns an MvcForm object that
implements the IDisposible interface. The following describes a general sequence of what happens inside
BeginForm:

 1. The extension method to HtmlHelper will call HtmlHelper.BeginForm, passing
in arguments supplied by the developer along with several default values. The
extension methods are defined in the Microsoft.AspNetCore.Mvc.Rendering.
HtmlHelperFormExtensions class.

 2. HtmlHelper.BeginForm generates the opening form tag and adds the essential
attributes such as action, method, enctype, and any others assigned by the
developer. The action attribute specifies what URL will process the form. The
method attribute describes the HTTP method that will be used when the form is
submitted and could be either GET or POST.

 3. HtmlHelper.BeginForm uses ViewContext.Writer to write the opening form tag
to the output stream.

 4. An instance of MvcForm is created and returned by HtmlHelper.BeginForm.

 5. The Razor view then executes the code inside the curly braces of the using statement.

 6. MvcForm’s Dispose method is called when the using statement is closed. Inside
MvcForm.Dispose, the Form end tag is generated and written to the output stream.

Figure 3-1. How form shown in Listing 3-26 appears in Internet Explorer 11

Chapter 3 ■ MVC razor Syntax and htML heLperS

94

Listing 3-27 shows the HTML output of the BeginForm statement in Listing 3-26.

Listing 3-27. HTML Generated by BeginForm Helper in Listing 3-26

<form action="/Home/SomeForm" method="post">
... other statements here
</form>

Because the actionName parameter was not supplied when BeginForm was called, it will default to the
URL of the current page. It also will use the post method by default. The default is the equivalent of using
Html.BeginForm("StandardHtmlHelpers","Home" FormMethod.Post).

HtmlHelper.Label
The HtmlHelper.Label method will generate an HTML label tag. For the first label created, I needed
to supply the for attribute to bind the label with the related input field. This is specified using the first
argument.

@Html.Label("exampleInputEmail ", "Email Address")

The call to the label generated the following HTML:

<label for="exampleInputEmail">Email address</label>

HtmlHelper.TextBox
The HtmlHelper.TextBox method generates an HTML input tag. In Listing 3-26 a custom type attribute is
added that sets the input as an e-mail address field. The e-mail type is a new form field type that supplies
built-in e-mail address format validation.

 @Html.TextBox("exampleInputEmail","",
 new { placeholder = "Enter email", @class="form-control", type = "email" })

In the first argument, a string to be used as both the id and name attributes is supplied. In the second
argument, an empty string is supplied for the value. For the final argument, an anonymous class with
three members is declared. Each member of the anonymous class adds an HTML attribute. The first adds
a placeholder attribute. This attribute is a new HTML 5 feature that allows you to supply a value that will
be displayed in an empty form field. When a user clicks inside the field, the value disappears. The class
attribute, like the for attribute in the previous example, needs to be escaped with an @ symbol because
class is a C# keyword.

The following HTML is generated when the @Html.TextBox method is executed:

<input class="form-control" id="exampleInputEmail" name="exampleInputEmail"
placeholder="Enter email" type="email" value="" />

The Password and CheckBox HTML Helpers work in a similar manner as TextBox. The main difference
is that the type attribute of rendered tag is set to password for Html.Password and checkbox for
Html.CheckBox.

Chapter 3 ■ MVC razor Syntax and htML heLperS

95

3-12. Using Strongly Typed HTML Helpers
Problem
You want to create a form that is bound to a model but want to limit the amount of HTML markup that needs
to be hand-coded.

Solution
Strongly typed HTML Helpers allow you to generate HTML using model data. The model data is used in
several ways. First, and probably most important, it provides the proper name and id attributes to your HTML
form elements that will allow it to work with the MVC model binder. The model binder is a component that
knows how to map your HTML form data to the CLR type you are using as a model. Second, the strongly
typed HTML Helpers are also able to take advantage of data attributes applied to your model and can use
them to add additional attributes to the generated HTML that can be used for form validation. Listing 3-28
shows a fragment of a Razor view that uses strongly typed HTML Helpers.

Listing 3-28. Razor View Using Strongly Typed HTML Helpers

@model Recipe12.Model.LoginViewModel

@using (Html.BeginForm())
{

 <div class="form-group">
 @Html.LabelFor(m=> m.EmailAddress)
 @Html.TextBoxFor(m=> m.EmailAddress,
 new { placeholder = "Enter email", @class = "form-control", type = "email" })
 </div>
 <div class="form-group">
 @Html.LabelFor(m => m.Password)
 @Html.PasswordFor(m=> m.Password,
 new { placeholder = "Password", @class = "form-control" })
 </div>
 <div class="checkbox">
 <label>
 @Html.CheckBoxFor(m=> m.RememberMe)
 Remember Me
 </label>
 </div>
 <button type="submit" class="btn btn-default">Submit</button>

}

Chapter 3 ■ MVC razor Syntax and htML heLperS

96

How It Works
The strongly typed HTML Helpers take a lambda expression as the first argument. Typically you will use
the form m => m.Property, where m represents the instance of the model class passed to the view. In the
example shown in Listing 3-28, the LabelFor helper is used to create the markup for the HTML Label tags
used in the form. In this example, the most simplistic version of the method is used. It uses data from the
model to fill in all the attributes that needed to be coded manually in the example shown in recipe 3-11
(Listing 3-26).

@Html.LabelFor(m=> m.EmailAddress)

Listing 3-29 shows the model used in this example. It defines properties that align with each of the fields
in the login form. It also includes data annotations that mark the EmailAddress and Password properties.

Listing 3-29. Model Used with the Form in Listing 3-28

public class LoginViewModel
{
 [Required]
 [Display(Name ="Email Address")]
 public string EmailAddress { get; set; }

 [Required]
 public string Password { get; set; }

 public bool RememberMe { get; set; }
}

The true utility of the HTML Helpers can be seen when you look at the HTML rendered by the
TextBoxFor method call.

@Html.TextBoxFor(m=> m.EmailAddress,
 new { placeholder = "Enter email", @class = "form-control", type = "email" })

The generated HTML, shown in Listing 3-30, demonstrates how the HTML Helper can utilize a
combination of the HTML attributes passed in the method’s arguments and the information from the model
class to generate much of the HTML that would otherwise be tedious to hand-code.

Listing 3-30. HTML Output of TextBoxFor Using Metadata from the EmailAddress Property

<input class="form-control"
 data-val="true"
 data-val-required="The Email Address field is required."
 id="EmailAddress"
 name="EmailAddress"
 placeholder="Enter email"
 type="email"
 value="" />

Chapter 3 ■ MVC razor Syntax and htML heLperS

97

If you look at the HTML code in Listing 3-30, you can see the placeholder and type attributes injected
from the anonymous class passed into the HTML Helper shown in Listing 3-29. The id and name values are
derived from the property names of the LoginViewModel class. Two additional attributes have been added
that can be used by the jQuery Validation and Microsoft Unobtrusive JavaScript libraries to enable client-side
validation for the form. Because the attribute RequiredAttribute was applied to EmailAddress, the HTML
Helper added the data-val attribute and the corresponding data-val-required attribute. It also used the
value specified in DisplayAttribute when it generated the error message in the data-val-required attribute.

3-13. Using Templated HTML Helpers
Problem
You have used Visual Studio’s scaffolding feature to generate a few views and noticed that rather than using
TextBoxFor or CheckBoxFor helpers, Visual Studio is using a generic EditorFor HTML Helper. You are
wondering how you can use the EditorFor helper in your handcrafted views. You also want to get a better
idea of how they work and what templates are included with the MVC framework.

Solution
The EditorFor and DisplayFor HTML Helpers are special types of HTML Helpers that, rather than having
the rendering logic written inside a class library, use a template file associated with a CLR type. This design is
especially helpful when designing a composite helper such as a data grid where you are potentially working
with many different types that you will not be able to solve for at design time.

You can also create your own templates for your own types or override the default templates. Listing 3-31
demonstrates how this technique can be used with the LoginViewModel shown in Listing 3-29.

Listing 3-31. Using Templated HTML Helpers

@using (Html.BeginForm())
{

 <div class="form-group">
 @Html.LabelFor(m => m.EmailAddress)
 @Html.EditorFor(m => m.EmailAddress, "EmailAddress",
 new { htmlAttributes =
 new { placeholder = "Enter email", @class = "form-control" } })
 </div>
 <div class="form-group">
 @Html.LabelFor(m => m.Password)
 @Html.EditorFor(m => m.Password, "Password",
 new { htmlAttributes =
 new { placeholder = "Enter password", @class = "form-control" } })
 </div>
 <div class="checkbox">
 <label>
 @Html.LabelFor(m => m.RememberMe)
 Remember Me
 </label>
 </div>
 <button type="submit" class="btn btn-default">Submit</button>

}

Chapter 3 ■ MVC razor Syntax and htML heLperS

98

How It Works
In the example shown in Listing 3-31, all the fields are generated using the EditorFor HTML Helper.
The second argument used in each specifies the name of the template to use. The third argument is for
additional view data. Starting with MVC 5.1, you are also able to pass in HTML attributes by passing in a
nested anonymous type named htmlAttributes.

new { htmlAttributes =
 new { placeholder = "Enter password", @class = "form-control" }

For the RememberMe field, no template needs to be specified because there is a default template assigned
to Booleans. For the other two fields, you need to explicitly provide the template name; otherwise, MVC
would use the String template.

The MVC framework includes 17 built-in templates defined in the class Microsoft.AspNetCore.Mvc.
ViewFeatures.Internal.DefaultEditorTemplates. The built-in templates include the following:

•	 Boolean: This template generates either a check box or a drop-down list, depending
on whether the view data is a nullable value type. In the case of a nullable value
type, a drop-down list is used because the possibility of a null value could allow for
three possible states: true, false, or null. To represent the null value, the following
option is generated: <option selected="selected" value="">Not Set</option>.

•	 Collection: This template renders an appropriate template for each item in the
collection based on its type.

•	 Decimal: This template renders a text box using an HTML input tag.

•	 HiddenInput: This template renders a hidden field using the HTML input tag with
the type attribute set to hidden.

•	 Multiline: This template creates a text area.

•	 Object: This template uses the model metadata to determine how to best render.
In most cases, it will render a field that consists of both a label and an input field
wrapped in a containing div element.

•	 Password: This template renders a password input box.

•	 String: This template renders a text box.

•	 PhoneNumberInput: This template renders a text box using the HTML input tag with
the type attribute set to "tel".

•	 UrlInput: This template renders a text box using the HTML input tag with the type
attribute set to "url".

•	 EmailAddressInput: This template renders a text box using the HTML input tag with
the type attribute set to "email".

•	 DateTimeInput: This template renders a text box using the HTML input tag with the
type attribute set to "datetime".

•	 DateTimeLocalInput: This template renders a text box using the HTML input tag
with the type attribute set to "datetime-local".

•	 DateInput: This template renders a text box using the HTML input tag with the
type attribute set to "date". It also applies RFC 3339 Date Formatting to the value if
needed.

Chapter 3 ■ MVC razor Syntax and htML heLperS

99

•	 TimeInput: This template renders a text box using the HTML input tag with the
type attribute set to "time". It also applies RFC 3339 Date Formatting to the value if
needed.

•	 NumberInput: This template renders a text box using the HTML input tag with the
type attribute set to "number".

•	 FileInput: This template renders a file upload button using the HTML input tag
with the type attribute set to "file".

•	 FileCollectionInput: This template renders a file upload button that allows
multiple files to be selected using the HTML input tag with the type attribute set to
"file" along with the multiple attribute, which allows for more than one file to be
selected.

3-14. Creating an Inline Function in a Razor View
Problem
You are creating a new view and have found that you need to repeat some markup repeatedly. Because this
markup is applicable only to your current view, you do not want to create a custom HTML Helper or partial
view. You need a way to define an HTML Helper inline.

Solution
Razor allows you to define inline helpers, which are essentially C# functions defined inside the view.
Listing 3-32 shows an example.

Listing 3-32. Creating Inline HTML Helpers for Showing Alert Boxes

@using Microsoft.AspNetCore.Html
<h1>Recipe 3-14 Creating an inline function in a Razor view</h1>
@functions
{
 IHtmlContent warning(string message)
 {
 return Html.Raw(string.Format(@"<p class=""alert alert-warning"">{0}</p>", message));
 }
}

@Html.Label("", "Enter your disposition below")
@warning("Anything you type can and will be used against you in a court of law")
@Html.TextArea("Disposition", new { @class = "form-control" })

@Html.Label("", "Enter your plea below")
@warning("If you plead guilty you will be taken to a high security prison!")
@Html.TextArea("Plea", new { @class = "form-control" })

Chapter 3 ■ MVC razor Syntax and htML heLperS

100

How It Works
The code in Listing 3-32 defines a new inline helper called warning. It takes a string as a parameter and uses
the Bootstrap CSS styles to create an alert box with the string specified.

Functions need to be defined inside the @functions directive. Note that the function returns the type
IHtmlContent and not a string. If a string was returned, then the HTML would be encoded. Past versions of
ASP.NET MVC supported the creation of inline functions using the @helper directive. Unfortunately, this
functionality does not exist in ASP.NET Core MVC. If you are migrating an application from an ASP MVC 5
application, you would need to refactor your view to use custom HTML Helpers.

101© John Ciliberti 2017
J. Ciliberti, ASP.NET Core Recipes, DOI 10.1007/978-1-4842-0427-6_4

CHAPTER 4

Using Tag Helpers

Tag Helpers are probably the most significant new feature in ASP.NET Core MVC. In this chapter, I will first
provide some background on this new feature and discuss how Tag Helpers compare to HTML Helpers. I will
then explain how to use each of the built-in Tag Helpers and then show you how to create custom tab helpers.

You can download the examples in this chapter from GitHub and view them in your web browser at the
following URL:

https://github.com/johnciliberti/AspNetCoreRecipes/tree/master/Chapter04/Recipes01to09

The solutions also make use of a shared database library created for the book. You can download the
library via NuGet at the book’s MyGet feed. You can find detailed instructions on the setup for the database
in the appendix of the book.

4-1. Understanding Tag Helpers
Problem
You have heard about Tag Helpers but are confused on how they compare to HTML Helpers and when and if
you should use them. You also want to understand how they work at a deeper level and how they perform in
relation to HTML Helpers.

Solution
HTML Helpers and Tag Helpers offer similar features with significant functional overlap. Tag Helpers are
a new feature of the Razor view engine. You can think of them as an alternative to HTML Helpers rather
than a replacement. In many cases, which programming model you choose can be based on your personal
preference.

Tag Helpers take an HTML-centric approach as opposed to the C#-centric approach of HTML
Helpers. Tag Helpers can be implemented as custom HTML tags or as HTML attributes applied to a standard
HTML tag.

If you are porting an existing project to ASP.NET Core MVC and have a substantial investment in views
built using HTML Helpers, you do not need to migrate them all to Tag Helpers. HTML Helpers are still
supported, and there is no indication from Microsoft that they will go away. HTML Helpers will likely be
preferred by many developers.

If you are starting a new project or adding new views to an existing project, you should consider using
Tag Helpers. Tag Helpers offer an easy-to-understand syntax and give you precision control over the HTML.
They do not require the use of lambda expressions to access your model data, and you do not need to define
anonymous objects to customize the properties on the generated HTML as you do with HTML Helpers.

https://github.com/johnciliberti/AspNetCoreRecipes/tree/master/Chapter04/Recipes01to09

Chapter 4 ■ Using tag helpers

102

Listing 4-1 shows an example of an HTML Helper and then the equivalent Tag Helper for creating an
action link to the Index action in the Home controller.

Listing 4-1. Comparing HTML Helpers to Tag Helpers for Creating Action Links

<!-- Html Helper creates a link to the Index action on the home controller -->
@Html.ActionLink("Go to home page", "Index", "Home", null, new { @class = "h4" })

<!-- Tag Helper creates a link to the Index action on the home controller -->
<a asp-controller="Home" asp-action="Index" class="h4">Go to home page

In both cases, a CSS class named H4 is applied to the link. In the case of the HTML Helper, except for
the @ symbol (which tells the Razor parser that you are beginning a code block), the call is pure C# with
no HTML mixed in. In cases where you do not need to add styles to a link, the HTML Helper can be very
concise. Unfortunately, in cases where you do need to customize the HTML output, the syntax of the HTML
Helper begins to become less intuitive and even confusing. In this example, you need to pass a null value for
the third argument of ActionLink before constructing an anonymous class containing the name-value pairs
for the desired HTML attributes. To make this even less attractive, since the HTML attribute class clashes
with the C# keyword with the same name, you need to prepend the class attribute with an @ symbol.

The Tag Helper version of the action link is pure HTML with no C#. The action link consists of an HTML
anchor tag with two custom HTML attributes, asp-action and asp-controller. The attributes tell the Razor
parser to process the tag as a Tag Helper, and attribute values are passed to the Tag Helper as arguments.
Additional HTML attributes such as class are added as usual. The Tag Helper is arguably somewhat more
intuitive to write and easier to understand.

In Listing 4-2, a simple form is constructed based on a model class called Contact, which contains a
single property called Name. In both the Tag Helper and HTML Helper examples, the form is constructed for
posting to the Index action of the Home controller. Both versions also add an AntiForgeryToken token for an
added level of security. The form consists of a single input element and a label bound to the Name property of
the model.

Listing 4-2. Comparing HTML Helpers to Tag Helpers for Creating Forms

@model Chapter04.Models.Recipe01.Contact
<!-- Simple Form Created using HTML Helpers -->
@using (Html.BeginForm("Index", "Home"))
{
 @Html.AntiForgeryToken()
 @Html.LabelFor(model => model.Name)
 @Html.TextBoxFor(model => model.Name,
 new { placeholder = "Enter your Name", @class = "form-control" })
}

<!-- Simple Form Created using Tag Helpers -->
<form asp-action="Index" asp-controller="Home" asp-anti-forgery="true">
 <label asp-for="Name"></label>
 <input asp-for="Name" class="form-control" placeholder="Enter your name" />
</form>

As with the action link, the HTML Helper version is pure C# except for the @ symbols. It uses lambda
expressions to pass the model properties to the LabelFor and TextBoxFor helpers. Additional HTML
attributes for the text box are set using an anonymous class passed as a second argument.

Chapter 4 ■ Using tag helpers

103

In the Tag Helper version, a standard HTML form tag is used with three custom attributes. The first two
tell the Tag Helper where the form should be posted. A third adds the AntiForgeryToken token. The label
and input tags also use plain HTML label and input elements. The asp-for attribute is used to pass the
model property. No lambda expression is required.

How It Works
In this section, you will take a deep dive into how Tag Helpers work. The code for Tag Helpers, as with the
rest of ASP.NET Core MVC, is available at http://GitHub.com/aspnet. The code for Tag Helpers is split
across two main areas of the code base. First is the core runtime, which is responsible for discovering Tag
Helpers in Razor markup and then adding the logic dictated by the Tag Helpers in the C# classes generated
by the parsing process. You can find this code in the following section of the Razor repo:

https://github.com/aspnet/Razor/tree/dev/src/Microsoft.AspNetCore.Razor.Runtime/TagHelpers

The second body of code consists of the Tag Helpers developed by the ASP.NET Core MVC team. This
functionality is bundled with the main Microsoft.AspNetCore.Mvc package and included in all the project
templates. At the time of this writing, 18 Tag Helpers are included in this library. You can find the code for
the MVC Tag Helpers in the following section of the ASP.NET MVC repo:

https://github.com/aspnet/Mvc/tree/dev/src/Microsoft.AspNetCore.Mvc.TagHelpers

The Life Cycle of a Tag Helper
The first time you access a Razor view, it is compiled into C# code. It does this by first locating all of the
Razor view files that need to be included, parsing the content of your views, and evaluating the expressions.
It determines what parts of the view are static content and what needs to be evaluated at runtime. It then
generates a C# class that can execute this as efficiently as possible.

During the parsing process, Razor uses a specialized interface called ITagHelperDescriptorResolver
to identify any parts of the view’s static markup that contain Tag Helpers. It does this using an IEnumerable
interface of TagHelperDescriptor. You can find the source code for iTagHelperDescriptorResolver
on GitHub under https://github.com/aspnet/Razor/tree/dev/src/Microsoft.AspNetCore.Razor/
Compilation/TagHelpers. This includes the descriptors for all Tag Helpers imported into the namespace
of the executing view by the developer. Tag Helpers are added to a view using the @addTagHelper directive,
as shown in Listing 4-3. This can be done in individual views or for all views by placing the directive in the
_ViewImports.cshtml file. _ViewImports.cshtml is a new feature of ASP.NET Core MVC that allows you to
specify directives that apply to all views in a given area.

Listing 4-3. Adding All Tag Helpers in the Microsoft.AspNet.Mvc.TagHelpers Namespace

@addTagHelper "*, Microsoft.AspNet.Mvc.TagHelpers"

In Listing 4-3, all 18 of the MVC Tag Helpers will now be considered by the parser as it walks the syntax
tree of the view. The code in Listing 4-3 is included in the _ViewImports.cshtml file that is part of all ASP.
NET Core Web Application templates. The _ViewImports.cshtml file is a new feature of ASP.NET Core that
allows you to add namespaces globally to all views in your project. It should be noted that adding many Tag
Helpers to a page will adversely impact parsing time. This performance overhead is limited to the parsing
stage. It does not impact page performance once a page has been parsed.

http://github.com/aspnet
https://github.com/aspnet/Razor/tree/dev/src/Microsoft.AspNetCore.Razor.Runtime/TagHelpers
https://github.com/aspnet/Mvc/tree/dev/src/Microsoft.AspNetCore.Mvc.TagHelpers
https://github.com/aspnet/Razor/tree/dev/src/Microsoft.AspNetCore.Razor/Compilation/TagHelpers
https://github.com/aspnet/Razor/tree/dev/src/Microsoft.AspNetCore.Razor/Compilation/TagHelpers

Chapter 4 ■ Using tag helpers

104

In addition to using the Tag Helpers provided by Microsoft, it is easy to create your own custom
Tag Helpers. Tag Helpers are defined by classes that extend the TagHelper base class. They use a set of
attributes that include HtmlAttributeNameAttribute and TargetElementAttribute to determine what
HTML elements and attributes need to be processed on the server by the Razor view engine. The attribute
HtmlAttributeNameAttribute can be used to create a Tag Helper that can be applied to any HTML
element if the HTML attribute name defined by HtmlAttributeNameAttribute is present. The attribute
TargetElementAttribute will associate your Tag Helper with the specified HTML tags. In addition, you
can specify a combination of HTML tags and attributes so that your Tag Helpers are processed only when
specified HTML attributes are present in the HTML elements you want to target. Listing 4-4 shows a segment
of the source code of the FormTagHelper class. It uses the attribute TargetElementAttribute to create a Tag
Helper descriptor for HTML form elements with any of the HTML attribute names defined in the class.

Listing 4-4. FormTagHelper

 [TargetElement("form", Attributes = ActionAttributeName)]
 [TargetElement("form", Attributes = AntiForgeryAttributeName)]
 [TargetElement("form", Attributes = ControllerAttributeName)]
 [TargetElement("form", Attributes = RouteAttributeName)]
 [TargetElement("form", Attributes = RouteValuesDictionaryName)]
 [TargetElement("form", Attributes = RouteValuesPrefix + "*")]
 public class FormTagHelper : TagHelper
 {
 private const string ActionAttributeName = "asp-action";
 private const string AntiForgeryAttributeName = "asp-anti-forgery";
 private const string ControllerAttributeName = "asp-controller";
 private const string RouteAttributeName = "asp-route";
 private const string RouteValuesDictionaryName = "asp-all-route-data";
 private const string RouteValuesPrefix = "asp-route-";
 private const string HtmlActionAttributeName = "action";
// to see full source please visit
// https://github.com/aspnet/Mvc/blob/dev/src/Microsoft.AspNetCore.Mvc.TagHelpers/
FormTagHelper.cs

4-2. Creating Hyperlinks with the Anchor Tag Helper
Problem
You are new to ASP.NET Core MVC and want to understand the features of the Anchor Tag Helper.

Solution
The Anchor Tag Helper allows you to add server-generated content to standard HTML anchor tags. It offers
similar functionality to the ActionLink HTML Helper. The Anchor Tag Helper has seven bounded attributes,
which are described in Table 4-1.

Chapter 4 ■ Using tag helpers

105

Table 4-1. Anchor Tag Helper Attributes

Attribute Name Markup Description

ActionAttributeName asp-action This allows you to specify the action name you
want to create a link to. When targeting an action
in the same controller, this is the only attribute
required for generating the link.

ControllerAttributeName asp-controller This allows you to specify a controller name. This
is required only when creating a link to an action
in another controller.

FragmentAttributeName asp-fragment This is used to create a link to a specific section
of a page generated because of an action. The
content included in the attribute is appended to
the URL following a hash delimiter. For example,
if the attribute FragmentAttributeName contained
about, the URL of the A tag would be rendered as
/someurl#about.

HostAttributeName asp-host By default, action links are generated as relative
URLs. If you need to override this to specify a
specific host name, you can do so by adding
asp-host="hostname" to the anchor tag.

ProtocolAttributeName asp-protocol This allows you to specify a protocol such as
HTTPS in your action link. It should be noted that
when this attribute is included, an absolute URL
will be generated.

RouteAttributeName asp-route This allows you to specify a specific route name.

RouteValuesDictionaryName asp-all-route-data This allows you to provide additional route
parameters.

RouteValuesPrefix asp-route- This works in conjunction with
RouteValuesDictionaryName to provide values for
additional route parameters.

How It Works
In this section, the various options of the Anchor Tag Helper will be demonstrated in a series of examples.

Creating a Link to an Action in the Same Controller
When creating a link to an action in the same controller, you can use the asp-action attribute. No other
attributes are required. When the asp-controller attribute is omitted, the current controller is used by
default. Listing 4-5 shows two links to actions in the same controller with a comment showing the HTML
output following each. Notice that for the link to the Index action, the URL / is rendered rather than the
full path. This is because in the route template defined in Startup, ("{area:exists}/{controller=Home}/
{action=Index}") has defined default values for both the Home controller and Index action.

Chapter 4 ■ Using tag helpers

106

Listing 4-5. Creating a Link to an Action in the Same Controller

<a asp-action="Index">Link to other action in same controller
@*Link to default route same controller*@

<a asp-action="Recipe03">Link to other action in same controller
@*Link to other action in same controller*@

Creating a Link to an Action in Another Controller
When creating a link to an action in another controller, you need to specify both the action and controller
names by using the asp-action and asp-controller attributes. Listing 4-6 shows how to create a link to an
action named Somewhere in a controller named Away.

Listing 4-6. Creating a Link to an Action in Another Controller

<a asp-action="Somewhere" asp-controller="Away">Action Link to another controller

Creating a Link to an Action That Includes a Route Parameter
To support route parameters, the Anchor Tag Helper has defined a wildcard-bound attribute defined as
asp-route-*. This allows the hyphen in the attribute name to be followed by any name. This functionality
is implemented as a collection, which allows you to pass as many route parameters as you need. Listing 4-7
shows two action links. The first passes a route parameter called Id to the Somewhere action. The second link
shown in Listing 4-7 shows a link that could be used as a pager in a grid. It specifies two route parameters for
page and sort.

Listing 4-7. Passing Route Paramaters

<a asp-action="Somewhere"
 asp-controller="Away" asp-route-id="12">Link to item 12

<a asp-action="Somedatagrid" asp-controller="Data"
 asp-route-page="2" asp-route-sort="foo">Page 2

Creating a Link to an Action in an Area
As with the ActionLink HTML Helpers discussed in recipe 3-4, the Anchor Tag Helper treats area as a route
parameter. If you have defined a route template for your area like the one shown in Listing 4-8, a link to an
area can be created as shown in Listing 4-9.

Listing 4-8. Adding a Route Template That Includes an Area to Startup.cs

routes.MapRoute(
 name: "areaRoute",
 template: "{area:exists}/{controller=Home}/{action=Index}");

Listing 4-9. Creating a Link to an Area with the Anchor Tag Helper

<a asp-action="InHappyLand"
 asp-controller="ControllerInArea"
 asp-route-area="FarFarAway">Action Link to another area

Chapter 4 ■ Using tag helpers

107

Creating an Action Link with SSL
If only certain parts of your web site, such as the login page, require SSL, you can use the asp-protocol
attribute to specify that a link should use HTTPS, as shown in Listing 4-10. Note that using asp-protocol will
cause the link to be rendered as an absolute URL. If no host is given using the asp-host attribute, the host
URL will be determined from the host name in the browser’s address bar.

Listing 4-10. Creating an Action Link That Uses HTTPS

<a asp-action="Home" asp-controller="Home" asp-protocol="https">This link uses SSL

Creating an Action Link with an Anchor Target
As discussed in recipe 3-8, there may be times where you want to be able to link directly to a specific section
of a page. This can be a certain section of a long document or a deep link in a single-page web application.
Listing 4-11 shows an example of how this is done with the Anchor Tag Helper.

Listing 4-11. An Action Link with a Fragment

<a asp-action="Profile" asp-controller="Home" asp-fragment="Email">Link with a fragment

4-3. Building a Form Using the Form, Label, and Input Tag
Helpers
Problem
You are starting a new project with ASP.NET Core MVC and want to use Tag Helpers for your new form. You
want to understand what is available in the Form Tag Helper and how to use it.

Solution
The ASP.NET Core MVC Tag Helpers library has several Tag Helpers that can be used in conjunction to
create an HTML form. The ones that you will probably end up using the most are the Form, Label, and Input
Tag Helpers. The Form Tag Helper creates the opening form tag. It also sets the HTML attributes for the Form
tag’s Action and Method attributes. The Action attribute dictates the URL the form should be submitted to.
The Method attribute sets the HTTP verb that should be used.

The Label and Input helpers can create HTML labels and form fields in a similar manner as the
LabelFor and TextBoxFor HTML Helpers—just like the HTML Helper counterparts that can use data from
your model when using a strongly typed view.

How It Works
To demonstrate how to use Tag Helpers, I will walk you through creating a simple contact form that will collect
a person’s name, e-mail address, favorite color, and whether they want to be contacted for special offers.

Chapter 4 ■ Using tag helpers

108

The Model
The form will use a model class called Contact. To create this class, inside an ASP.NET Core MVC Web
Application project, create a Models folder if one does not exist. Right-click the Models folder, select Add
New Item, and then select Class from the list. Name the new class file Contact.cs.

Modify the contents of the file to match Listing 4-12.

Listing 4-12. Contact.cs

using System.ComponentModel.DataAnnotations;

namespace Chapter04.Models.Recipe03
{
 public class Contact
 {
 public string Name { get; set; }

 public string Email { get; set; }

 public string Phone { get; set; }

 public bool AllowContactAboutOffers { get; set; }

 [Display(Name="Favorite Color?")]
 public string FavoriteColor { get; set; }
 }
}

The Contact class shown in Listing 4-12 is simple. It exposes several string properties and a bool
property for tracking whether the user wants to be contacted about offers. The model includes a data
annotation that sets a display name. As with HTML Helpers, Tag Helpers can use this information when
rendering the form.

The Controller
When you create a new ASP.NET Core MVC Web Application project in Visual Studio, it will automatically
add a folder for your controllers and add a controller called HomeController. This controller contains
actions for the root of the site, which includes the home page, a contacts page, and an “about us” page.
An error action is also included. For this example, you will add a new action called Recipe03.

To do this, open the HomeController.cs file and create a new action. The action should include an
instance of the Contact class shown in Listing 4-12. The Contact instance is created and passed as an
argument to the view. Modify the AllowContactAboutOffers property of Contact so that it is set to true,
as shown in Listing 4-13.

Listing 4-13. Adding Model Instance to Contact Action

public IActionResult Recipe03()
{
 var model = new Contact { AllowContactAboutOffers = true };
 return View(model);
}

Chapter 4 ■ Using tag helpers

109

Next, add a new version of the Recipe03 action that takes a Contact class as an argument and decorate
it with the HttpPost attribute. You should also add a ValidateAntiForgeryToken attribute to the Contact
action method. The ValidateAntiForgeryToken attribute adds a security mechanism that prevents a type of
attack called cross-site request forgery. This is an attack where another site takes advantage of the fact that a
user is logged on to your web site and then tricks that user into submitting information that can expose data
about that user or modify information on your web site.

Inside the body of the action, add an if statement that verifies that the ModelState.IsValid property
is true. If ModelState.IsValid is true, return a view named "Recipe03Thanks"; otherwise, return to the
Contact view. In both cases, ensure you are also passing the Contact model class. When you’re done,
HomeController.cs should match Listing 4-14.

 ■ Note the procedure described in this section is the same as you would do if you were using htMl
helpers. Using tag helpers does not change how your controller logic is written.

Listing 4-14. HomeController.cs

using Microsoft.AspNetCore.Mvc;
using Chapter04.Models.Recipe03;

namespace Chapter04.Controllers
{
 public class HomeController : Controller
 {
 // other actions here

 public IActionResult Recipe03()
 {
 var model = new Contact { AllowContactAboutOffers = true };
 return View(model);
 }

 [HttpPost]
 [ValidateAntiForgeryToken]
 public IActionResult Recipe03(Contact model)
 {
 if (ModelState.IsValid)
 {
 return View("Recipe03Thanks", model);
 }
 return View(model);
 }
 }
}

Chapter 4 ■ Using tag helpers

110

The Views
Now that you have a set of the controllers for processing the contact data, you can create the views. There are
two separate views used in this example. The first is a contact form, and the second is a “thank you” page. In
the Views folder, you will find a subfolder called Home that corresponds to HomeController. Add a new file
named Recipe03.cshtml. Modify this file to match Listing 4-15.

Listing 4-15. Contact.cshtml

@model Chapter04.Models.Recipe03
<h2>Chapter 04 Recipe 03</h2>
<h3>
 Contact Form
</h3>

<hr />
<form asp-action=" Recipe03” asp-anti-forgery="true" method="post">
 <div class="form-group">
 <label asp-for="Name"></label>
 <input asp-for="Name" class="form-control" placeholder="Enter your name" />
 </div>
 <div class="form-group">
 <label asp-for="Email"></label>
 <input asp-for="Email" class="form-control" placeholder="Enter your Email" />
 </div>
 <div class="form-group">
 <label asp-for="Phone"></label>
 <input asp-for="Phone" class="form-control" placeholder="Enter your Phone Number" />
 </div>
 <div class="form-group">
 <label asp-for="FavoriteColor"></label>
 <input asp-for="FavoriteColor" class="form-control"
 placeholder="Select your favorite color" type="color" />
 </div>
 <div class="checkbox">
 <label asp-for="AllowContactAboutOffers">
 <input asp-for="AllowContactAboutOffers" /> Contact me about offers
 </label>
 </div>
 <input type="submit" value="Save Contact Info" class="btn btn-primary" />
</form>

The first thing you do in Listing 4-15 is add an @model directive that makes the view strongly typed to
the Contact class. You then add a FORM tag. Inside the FORM tag you use two Tag Helper bound attributes.
The first bound attribute, asp-action, will route the form submission to go to the Recipe03 action of
HomeController. You do not need to add an asp-controller attribute in this case since you are posting to
the same controller.

The second bound attribute is the asp-anti-forgery attribute. Including it will add a hidden form field
to the view that contains the antiforgery token that was prepared for in the controller.

In addition to the bound attributes, you also add a regular HTML method attribute. This will cause the
form to be submitted using an HTTP POST rather than the GET.

Chapter 4 ■ Using tag helpers

111

Since the site is using the Bootstrap UI library, when constructing the form, each pair of HTML LABEL
and INPUT tags are wrapped in a DIV tag with the Bootstrap form-group CSS class applied. Each of the LABEL
tags is enhanced with the Tag Helper bound attribute asp-for. This is used to pass in the name of the Model
property you want to bind to each of the LABEL tags. Note that when you are typing the name of the property,
Visual Studio IntelliSense is smart enough no know that this is a Tag Helper bound attribute and provides
you with a list of possible property values that are bound to your model.

One exception to be aware of with LABEL tags is when you nest an input tag inside of one. When the Tag
Helper detects this, it does not attempt to modify the inner HTML of the LABEL tag. For this reason, you need
to manually add the text for the LABEL rather than relying on content from the data annotations. There is an
open issue to address this problem in GitHub.

The INPUT tag also has an asp-for attribute like the LABEL tag. You can also add normal HTML
attributes such as class and placeholder. These HTML attributes are rendered as you may expect and are
not modified on the server.

For the favorite color property, the INPUT field is set to the type color. This will cause Google Chrome,
Firefox, and Microsoft Edge to display a color picker for the input. In older browsers, this will display as a text box.

The last form element is a standard submit button. Clicking the button will cause the data to be posted
to the server.

Listing 4-16 shows the Thanks view. Since this view was not part of the ASP.NET Core MVC Project
template, it needs to be added manually by right-clicking the Views\Home folder and then selecting Add
New ➤ MVC View Page. Name the file Recipe03Thanks.cshtml and click the Add button.

Listing 4-16. Recipe03Thank.cshtml

@model Chapter04.Models.Recipe03.Contact
<h2>Thanks @Model.Name , for submitting your contact details.</h2>

@section Scripts{
 <script>
 (function () {
 var color = "@Model.FavoriteColor";
 $("body").css("background-color", color);
 })();
 </script>
}

In Recipe03Thanks.cshtml, add the @model directive to make it strongly typed to the Contact class and
then add a thank-you message that incorporates the Name property from the model.

On the bottom of the page add a JavaScript block that uses jQuery to change the background
color of the page to the color selected by the user. This code takes advantage of two features added to
the _Layout.cshtml page included with the template. The Layout page includes jQuery and defines a
section called scripts. This allows you to place your scripts directly after the scripts included by the layout
page. Note that in Listing 4-16 the script tag omits the TYPE attribute, which is optional in HTML 5. If you
are targeting Internet users or use older web browsers at your company, you should add type="text/
javascript" to the script tag.

Chapter 4 ■ Using tag helpers

112

4-4. Data Binding a Nullable bool to an Option Tag Helper
Problem
You have a model that includes a property with a nullable bool type. You want to use Tag Helpers for new
views that you are creating but are not sure how to data bind this type of property. With HTML Helpers, you
were able to use the EditorFor helper to generate a drop-down list. With Tag Helpers, you have tried using
the Input Tag Helper but have found that it renders a text box rather than a drop-down list.

Solution
Tag Helpers currently do not have a generic EditorFor or DisplayFor type of functionality that determines
the template based on the data type of the model property. You can, however, re-create the same
functionality in your view by adding some basic HTML code.

In the case of a nullable bool, you have three possible states: true, false, or null. The generated HTML
in your view must account for all three of these values for the ASP.NET Core MVC model binder to work
properly. One way to accomplish this to use an HTML SELECT element with three OPTION child elements.

How It Works
In this section, you will create a model called Tristate and a simple form that displays a drop-down list that
will be bound to it.

If you want to follow along with this example, create a new ASP.NET Core MVC project in Visual Studio
using the ASP.NET Core MVC Web Application (.NET Core) template and ensure that the authentication
type is set to None.

The Model
If it does not exist, add a Models folder to the project by right-clicking the project and selecting
Add ➤ Folder from the pop-up menu. Add a new class to the folder by right-clicking it and selecting
Add ➤ New Item and then selecting the Class template from the Add New Item screen. Name the new class
Tristate. The completed class should resemble Listing 4-17. The class consists of a single property called
NullableBoolValue.

Listing 4-17. The Tristate Class

namespace Chapter04.Models.Recipe04
{
 public class Tristate
 {
 public bool? NullableBoolValue { get; set; }
 }
}

Chapter 4 ■ Using tag helpers

113

The Controller
Open the Home controller and add two new version actions. Both actions should be named Recipe04, but the
second Recipe04 action should have an HttpPost attribute that accepts a Tristate object as an argument
named model. The Recipe04 action should consist of a single statement that returns a view with a model
passed as an argument. You are not modifying the model but only passing it back to the view so you can
verify that model binding occurred.

The Index action for HTTP GET should also be modified so that a new Tristate instance is passed to
the view. The completed Home controller should match Listing 4-18.

Listing 4-18. Home Controller

using Microsoft.AspNetCore.Mvc;
using Chapter04.Models.Recipe04;

namespace Chapter04.Controllers
{
 public class HomeController : Controller
 {
 public IActionResult Recipe04()
 {
 Tristate model = new Tristate { NullableBoolValue = null };
 return View(model);
 }

 [HttpPost]
 public IActionResult Recipe04(Tristate model)
 {
 return View(model);
 }

 // other actions here
 }
}

The View
Create a new view under the Views/Home directory and name it Recipe04.cshtml. After deleting the
boilerplate content, add an @model directive to the view that makes the view strongly typed to the Tristate
class. You will then need to use the Form Tag Helper to create a FORM tag. Use the asp-for bound property to
set the form action to the Index action. The HTML method attribute of the FORM tag should be set to post.

Inside the form, create a SELECT element and use the asp-for bound attribute to associate the HTML
element with the NullableBoolValue property of the model. You will then need to add three OPTION
elements inside the SELECT element. Each of the SELECT elements should have a value attribute. The first
will represent the null state and should be set to an empty string. The value of the remaining two should be
set to true and false. Note that it must be set to true and false, not 1 and 0; otherwise, the model binding
will not work.

To verify that the model binding did occur and the version of the model has retained its value, you can
add an if statement that displays a message stating that the property contains no value if null or the value if
it contains one. The completed code should look like Listing 4-19.

Chapter 4 ■ Using tag helpers

114

Listing 4-19. Index View with Form Demonstrating Data Binding to Tristate

@model Chapter04.Models.Recipe04.Tristate

<h2>Chapter 04 - Recipe 04</h2>
@if (!@Model.NullableBoolValue.HasValue)
{
 <div class="alert alert-warning">
 NullableBoolValue = No Value
 </div>
}
else
{
 <div class="alert alert-info">
 NullableBoolValue = @Model.NullableBoolValue.Value
 </div>
}
<form asp-action="Recipe04 method="post">
 <div class="form-group">
 <label asp-for="NullableBoolValue"></label>
 <select asp-for="NullableBoolValue" class="form-control">
 <option value="">None Selected</option>
 <option value="true">True</option>
 <option value="false">False</option>
 </select>
 </div>
 <input type="submit" name="save" value="Save" class="btn btn-default" />
</form>

4-5. Creating a Drop-Down List with the Select Tag Helper
Problem
You want to display a form that would allow users to select from a list of items. The items list is data-driven
and can change depending on the customer accessing your web site, so it needs to be built dynamically
rather than with static HTML. You want to implement the form using Tag Helpers but are not sure how.

Solution
The ASP.NET Core MVC Tag Helpers library comes with a Select Tag Helper. This Tag Helper implements
two bounded properties. The first, asp-for, allows you to bind the HTML SELECT element to a property
of your model. The second, asp-items, accepts an IEnumerable of SelectListItem objects. The
SelectListItem class is defined in the Microsoft.AspNetCore.Mvc.Rendering namespace. It allows you to
define the text, value, and group of each item, and it allows you to specify whether each item is selected or
enabled.

The Select Tag Helper does not currently support the ability to use arbitrary collection types as a list
in the current release. It would be up to you to implement an adapter to move data from your custom entity
into the SelectListItem class. Another limitation is that the Select Tag Helper’s asp-for element can only
model bind with simple types such as integers or strings.

Chapter 4 ■ Using tag helpers

115

How It Works
To demonstrate how to use a drop-down list with the Select Tag Helper, you will create a simple form that
allows a user to select from a list of guitar brands and then displays which brand was selected.

The Model
The model for this example is made up of two classes. The first class, GuitarBrand, consists of
two properties, one for the ID of the brand and the other for the brand name. The second class,
GuitarBrandViewModel, will be used in the strongly typed view. Listing 4-20 shows the completed models.

Listing 4-20. The Models

// GuitarBrand.cs
namespace Recipe05.Web.Models
{

 public class GuitarBrand
 {
 public int GuitarBrandId { get; set; }
 public string Name { get; set; }
 }
}

// GuitarBrandViewModel.cs
using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc.Rendering;

namespace Chapter04.Models.Recipe05 {
 public class GuitarBrandViewModel
 {
 public List<SelectListItem> Brands { get; set; }
 public int SelectedBrandId { get; set; }
 public GuitarBrand SelectedBrand { get; set; }
 }
}

The Controller
The controller is made up of two actions. The first action, shown in Listing 4-21, is bound to the GET HTTP
verb. It sets up an instance of the GuitarBrandViewModel class and populates its Brands property with a list
of SelectListItem objects. For the sake of simplicity, I have used a static list here, but you can easily create
this list by creating an adapter that will build the list using values loaded from a database.

Listing 4-21. The Controller

using Chapter04.Models.Recipe05;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;
using System.Linq;

Chapter 4 ■ Using tag helpers

116

namespace Chapter04.Controllers
{
 public class HomeController : Controller
 {
 private List<SelectListItem> _items = new List<SelectListItem>
 {
 new SelectListItem { Value="", Text="Please Select a Brand"},
 new SelectListItem { Value="1", Text="Gibson" },
 new SelectListItem { Value="2", Text="Charvel" },
 new SelectListItem { Value="3", Text="Ibenez" },
 new SelectListItem { Value="4", Text="Jackson" }
 };

 public IActionResult Recipe05()
 {
 var model = new GuitarBrandViewModel { Brands = _items };
 return View(model);
 }

 // more actions here
 }
}

The second action, shown in Listing 4-22, is invoked for the POST verb and takes GuitarBrandViewModel
as an argument. Note that the Brands property is not copied back to the server since it does not have an
Input tag representation in the HTML code. You must repopulate this value to display it again on the page.

Listing 4-22. Index Post Action

[HttpPost]
public IActionResult Recipe05(GuitarBrandViewModel model)
{
 model.Brands = _items;
 if (model.SelectedBrandId != 0)
 {
 model.SelectedBrand = (from b in model.Brands
 where b.Value == model.SelectedBrandId.ToString()
 select new GuitarBrand {
 GuitarBrandId = int.Parse(b.Value),
 Name = b.Text }).FirstOrDefault();

 }

 return View(model);
}

Since the model posted back to the server contains only the value of the selected item, not the entire
item, you must use that value to query your repository if you want to display more information about the
item selected. In this example I am using LINQ to Objects to select an item from the _items list defined on
the page. Listing 4-23 shows the completed controller.

Chapter 4 ■ Using tag helpers

117

Listing 4-23. The Controller

using Chapter04.Models.Recipe05;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;
using System.Linq;

namespace Chapter04.Controllers
{
 public class HomeController : Controller
 {
 private List<SelectListItem> _items = new List<SelectListItem>
 {
 new SelectListItem { Value="", Text="Please Select a Brand"},
 new SelectListItem { Value="1", Text="Gibson" },
 new SelectListItem { Value="2", Text="Charvel" },
 new SelectListItem { Value="3", Text="Ibenez" },
 new SelectListItem { Value="4", Text="Jackson" }
 };

 public IActionResult Recipe05()
 {
 var model = new GuitarBrandViewModel { Brands=_items};
 return View(model);
 }

 [HttpPost]
 public IActionResult Recipe05(GuitarBrandViewModel model)
 {
 model.Brands = _items;
 if (model.SelectedBrandId != 0)
 {
 model.SelectedBrand = (from b in model.Brands
 where b.Value == model.SelectedBrandId.ToString()
 select new GuitarBrand {
 GuitarBrandId = int.Parse(b.Value),
 Name = b.Text }).FirstOrDefault();

 }

 return View(model);
 }
 }
}

Chapter 4 ■ Using tag helpers

118

The View
In addition to the form, the view consists of an if statement that checks whether the SelectedBrand
property of the model has been set and, if so, displays the name of the selected item. The form is built using
the Form Tag Helper and consists of Label and Select Tag Helpers for displaying the drop-down list and a
regular HTML submit button.

Listing 4-24 shows the completed view.

Listing 4-24. The View

@model Chapter04.Models.Recipe05.GuitarBrandViewModel
<h2>Chapter 04 - Recipe 05</h2>
@if (Model.SelectedBrand == null)
{
 <div class="alert alert-warning">
 No Brand has been selected
 </div>
}
else
{
 <div class="alert alert-success">
 @Model.SelectedBrand.Name <text>has been selected</text>
 </div>
}

<form asp-action="Recipe05" method="post">
 <div class="form-group">
 <label asp-for="SelectedBrandId"></label>
 <select asp-for="SelectedBrandId" asp-items="Model.Brands" class="form-control"></select>
 </div>
 <input type="submit" value="Save" class="btn btn-default" />
</form>

4-6. Validating Input with Tag Helpers
Problem
To provide the best user experience for your customers, you want your web site to have clean and easy-to-
understand form validation messages. You want to be able have the validation logic executed in the browser
so that the user will get immediate feedback, with additional validation on the server in case the user has
disabled JavaScript in the browser. You are planning on using Tag Helpers to build your form.

Solution
Just like HTML Helpers, Tag Helpers can work in conjunction with .NET’s model validation functionality
and the jQuery Validation and jQuery Validation Unobtrusive jQuery plug-ins. The jQuery plug-ins take
advantage of HTML attributes added dynamically to the HTML INPUT elements by the Tag Helpers to
process the validation rules in the browser.

On the server, ASP.NET Core MVC exposes features of the built-in model validation functionality
provided by the .NET Framework. The .NET Framework allows metadata, which includes validation

Chapter 4 ■ Using tag helpers

119

rules to be applied to a class. Validation rules can be applied declaratively using data annotations or
programmatically using something like the Fluent Validation library, which is available in the NuGet gallery.

To enable these features, you first need to add the metadata to your model class and then add the
required JavaScript libraries and validation Tag Helpers to your view.

How It Works
To learn how to use the validation features of the ASP.NET Core MVC Tag Helpers library, you will create a
simple contact form that asks for name, e-mail address, and phone number. You will start by defining a class
called Contact and then add metadata to the class using data annotations. Next, you will create a controller
with actions to display the form and process the form submission. You then create a view that uses Tag
Helpers to create the form.

The Model
The model, shown in Listing 4-25, is made up of a single class called Contact that contains three properties:
Name, Email, and Phone. A using statement adds the System.ComponentModel.DataAnnotations namespace
to the class. System.ComponentModel.DataAnnotations contains a number of data annotation attributes
that can be used by ASP.NET Core MVC’s model binder to generate the appropriate validation rules. ASP.
NET Core MVC applies this on the client side by using the data annotation attributes when generating the
HTML form. ASP.NET Core also uses this data when it converts the data being submitted to the server into a
CLR object during model binding.

The Name and Email properties have been decorated with the Required attribute. This will add a rule
that will mark the property as invalid if it is Null or contains an empty string. The Email property has been
decorated with an EmailAddress attribute. This attribute uses a regular expression to validate that the value
of the Email property contains a value that matches the rules for a valid e-mail address. The Phone attribute
on the Phone property uses the same technique to ensure that the value is a valid U.S. phone number.

Listing 4-25. The Model

using System.ComponentModel.DataAnnotations;

namespace Chapter04.Models.Recipe06
{
 public class Contact
 {
 [Required]
 public string Name { get; set; }

 [Required]
 [EmailAddress]
 public string Email { get; set; }

 [Phone]
 public string Phone { get; set; }

 }
}

Chapter 4 ■ Using tag helpers

120

The Controller
The controller, shown in Listing 4-26, contains two actions. The first action simply returns the view and
displays the form. The second, which is activated on an HTTP POST, checks the value of the ModelState.
IsValid property. If ModelState.IsValid is true, the user will be return a view that displays a thank-you
message. When the ModelState is invalid, the user is shown the Index view again so they can see the
validation error messages, correct the errors, and resubmit the form.

Listing 4-26. The Controller

namespace Chapter04.Controllers
{
 public class HomeController : Controller
 {
 public IActionResult Recipe06()
 {
 return View();
 }

 [HttpPost]
 public IActionResult Recipe06(Contact model)
 {
 if (ModelState.IsValid)
 {
 return View("Recipe06Thanks");
 }
 return View();
 }
 }
}

The View
In the view, shown in Listing 4-27, you make use of several Tag Helpers to make validation work.

Listing 4-27. The View

@model Chapter04.Models.Recipe06.Contact

<h2>Chapter 04 – Recipe 06</h2>

<form method="post">
<!-- NOTE: For this to work some custom styles need to be added. See wwwroot/css/site.css
for more info-->
 <div asp-validation-summary="All"
 class="validation-summary alert alert-danger alert-dismissable">
 <button type="button" class="close" data-dismiss="alert" aria-label="Close">

 ×

 </button>

Chapter 4 ■ Using tag helpers

121

 <h3>We found some errors with your submission</h3>
 </div>
 <hr />
 <div class="form-group">
 <label asp-for="Name" ></label>
 <input asp-for="Name" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Email"></label>
 <input asp-for="Email" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Phone"></label>
 <input asp-for="Phone" class="form-control" />

 </div>
 <input type="submit" value="Save" class="btn btn-primary" />
</form>

@section scripts{
 <script src="/lib/jquery-validation/dist/jquery.validate.js"></script>
 <script src="/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.js"></script>
}

The first step is to add a scripts section to the page. This is a section defined in _Layout.cshtml
that will allow you to place your scripts at the end of the page. In it you reference jquery.validate.js and
jquery.validate.unobtrusive.js. These libraries work together to perform client-side validation using the
data attributes generated on the server side using the data annotations you added to your model. It should
be noted that if these libraries are omitted, validation will still occur on the server.

Next, at the top of the form, you define a DIV tag with an asp-validation-summary attribute. The
inclusion of this attribute transforms your ordinary DIV tag into a validation summary Tag Helper. You
assign the asp-validation-summary attribute the value of All, which tells the summary to display all
errors including property errors that are not directly related to the model. Other possible options allowed
here include ModelOnly, which excludes the property errors, and None, which will not show a validation
summary. You will be creating some styles (as you can see in the code comment), and I’ll cover them in the
next section.

Each of the properties of the model has several HTML elements associated with it. There is a DIV with a
form-group class that wraps all the related elements for styling purposes. Inside the wrapping DIV is a Label
Tag Helper, an Input Tag Helper, and a SPAN tag. The SPAN tag contains an asp-validation-for attribute.
The asp-validation-for turns the SPAN into a validation Tag Helper and will display an error message if a
validation error occurs. Figure 4-1 shows how the page will appear with the validation errors. It should be
noted that if JavaScript is not available, the page must be submitted to the server before the errors will be
displayed.

Chapter 4 ■ Using tag helpers

122

Enhancing the User Experience with CSS
One drawback of using the built-in Tag Helpers or HTML Helpers is that you do not have full control over the
rendered HTML. For example, there is currently no mechanism with the validation Tag Helper that would
allow you to specify a custom class to be applied to your form element when a validation error occurs.

A workaround for this limitation is to take advantage of some of the CSS classes added to the form fields
as part of the normal functionality of the Input Tag Helper. Listing 4-28 shows the HTML rendered on the
server by the Razor markup shown in Listing 4-27 when a validation error occurs. Note the addition of the
input-validation-error CSS class to the INPUT elements with validation errors.

Taking advantage of some of the styling that comes out of the box with Bootstrap, the following CSS
classes are added: alert alert-danger alert-dismissable. This is a custom class that you add to the
site.css style sheet with a single property that sets display to none. This will hide the validation summary
until it needs to be displayed.

Also in site.css is a CSS class named validation-summary-errors. This also contains a single style
that sets the display property to block. This class will be injected into the class attribute automatically
by unobtrusive validation if a validation error occurs and will override the validation-summary attribute
causing the summary to be displayed. Listing 4-29 shows the CSS styles.

Listing 4-28. HTML Output by the View

<div class="form-group">
 <label for="Name">Name</label>
 <input name="Name" class="form-control input-validation-error"
 id="Name"
 type="text"
 value="" data-val-required="The Name field is required."
 data-val="true">

Figure 4-1. Validation errors with a validation summary

Chapter 4 ■ Using tag helpers

123

 <span class="text-danger field-validation-error"
 data-valmsg-replace="true"
 data-valmsg-for="Name">The Name field is required.
</div>

Since you now know that a CSS class will be added to the INPUT elements, you can use CSS to style
them. In this case I am borrowing the style definition from the Bootstrap CSS library has-error CSS class
and using it for the input-validation-error class, as shown in Listing 4-29. This allows the form to have
styling consistent with the Bootstrap library that I am using for the rest of the site. Also shown in Listing 4-29
are the styles used to show and hide the validation summary.

Listing 4-29. Custom CSS for the input-validation-error Classes

/* This class hides the validation summary when no errors are detected */
.validation-summary {
 display: none;
}

/* This class will be injected into the class attribute or your validation summary */
.validation-summary-errors
{
 display:block;
}

/* Puts red outline around input */
.input-validation-error {
 border-color: #b94a48;
 -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
 box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
}

Figure 4-2 shows the result of the updated CSS. Note that input elements with validation errors now
have a red border color.

Chapter 4 ■ Using tag helpers

124

4-7. Improving Performance with the Cache Tag Helper
Problem
You have a form with a drop-down list that requires a lookup to your database. The values used in the drop-
down do not change often. You are looking for a way to optimize performance by holding a copy of the list of
items for the drop-down list in memory rather than querying the database each time.

Solution
The ASP.NET Core MVC Tag Helpers library comes with a Cache Tag Helper. The Cache Tag Helper allows
you to cache sections of your view so the output for that section is retained in memory. The processing
needed to create the content, which may include running queries against your data store, processing the
data, and rendering content, will occur only when the cache is refreshed.

One technique that works well with the Cache Tag Helper is to use it in combination with a view
component. View components are like partial views but have their own controllers and models. This allows
you to separate the logic for rendering the list content from the rest of your controller logic. This pattern is
especially helpful for drop-down lists.

How It Works
To demonstrate how to improve performance with the Cache Tag Helper, you will create a view component
that generates HTML OPTION elements that can be the child elements for a Select Tag Helper. You will then
create a view that uses the Cache Tag Helper to cache the content generated by the view component.

Figure 4-2. Validation error shown with updated styles

Chapter 4 ■ Using tag helpers

125

Configuring the Project to Connect to a Database
This exercise uses a SQL Server database and a data access class library for interacting with it. You can
download the database with the book’s source code from the Apress web site. Please refer to the appendix
for instructions on how to install SQL Server to set up the database. The class library project called Shared.
DataAccess contains the entity models and repository classes for accessing the database. To simplify using
the library, it has been made available as a NuGet package from the book’s NuGet repository on MyGet.
Once you have added a reference to the Shared.DataAccess NuGet package, you will then need to add the
connection string to your configuration file. You can then register the DbContext class defined in the Shared.
DataAccess project in your Startup.cs file.

Adding the Shared.DataAccess NuGet Package

If you have not configured Visual Studio to use the book’s MyGet feed, please refer to the instructions to do
so in the appendix. Once this is set up, you will then be able to add the book’s shared libraries to your project
using either the NuGet Package Manager or the Package Manager Console.

To add the package using the NuGet Package Manager Console, right-click the project name in Solution
Explorer and select Manage NuGet Packages from the pop-up menu. In the NuGet window, click Browse and
select AspNetCoreMVCRecipes as the package source. From the package list, select Shared.DataAccess and
then click the Install button. When you’re done, the Package Manager window should resemble Figure 4-3.

Figure 4-3. Adding Shared.DataAccess to your project using NuGet Package Manager

Adding the ConnString.json File

For the web application to use the data access component, you need to first add a configuration file that
contains the database connection string. To do this, right-click the project name in Solution Explorer and
select Add New; then select the ASP.NET Configuration File template from the Add New Item window. Name
the file ConnStrings.json. Listing 4-30 shows ConnStrings.json.

Chapter 4 ■ Using tag helpers

126

Listing 4-30. ConnStrings.json

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=localhost;Database= AspNetCoreRecipesSharedDb;Trusted_
Connection=True;MultipleActiveResultSets=true"

}

In Listing 4-30, a configuration value is stored under ConnectionStrings:DefaultConnection. The
connection string connects to a default instance of SQL Server 2014 running on the local machine.

Registering Shared.DataAccess with ASP.NET Core’s Dependency Injection
System

Shared.DataAccess exposes an Entity Framework 7 DbContext object named MobContext. To use this
component in your applications, MobContext needs to be registered with ASP.NET Core’s dependency
injection system. Once registered, ASP.NET Core MVC will inject an instance of MobContext into your
controller class’s constructor. Listing 4-31 shows how to add the new configuration file, ConnStrings.json,
to the configuration builder and then use this configuration information when registering the MobContext
object. The code in bold shows the modifications made from the default Startup.cs file included in the ASP.
NET Core MVC template.

Listing 4-31. Configuration to Allow Access to MobContext in Startup.cs

// other using statements ...
using Microsoft.EntityFrameworkCore;
using AspNetCoreMvcRecipes.Shared.DataAccess;
namespace Recipe07.Web
{
 public class Startup
 {
 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder(appEnv.ApplicationBasePath)
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddJsonFile("ConnStrings.json", optional: false, reloadOnChange: true)
 .AddEnvironmentVariables();

 Configuration = builder.Build();
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<MoBContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

Chapter 4 ■ Using tag helpers

127

 // Add MVC services to the services container.
 services.AddMvc();

 }

 // Configure method goes here ...

 }
}

Listing 4-31 shows the Startup class constructor and the ConfigureServices method. In the
constructor, the Configuration property is initialized with four configuration sources. The first three
configuration sources are JSON files. The first JSON file contains basic site settings. The second is for
optional environment-specific settings. The third is the new configuration you created that contains the
database connection strings. The last configuration source is environment variables.

In the ConfigureServices method, you use the AddDbContext method to register MobContext with the
dependency injection system. Using a lambda expression, you inject the configuration for MobContext telling
it to use the SQL Server provider with the connection string you supplied in the ConnStrings.json file.

Loading configuration into an object’s constructor as a set of options is known as the Options pattern.
This pattern is described in the official ASP.NET documentation and can be found at the following URL:

http://docs.asp.net/en/latest/fundamentals/configuration.html#options-config-objects

Creating the View Component
Before you can create a view component, you need to first create a new folder structure that follows the ASP.
NET Core MVC convention for view components. To do this, right-click the project name and select New ➤
Folder from the context menu. Name the new folder ViewComponents. Right-click the ViewComponents folder
and select Add ➤ Class. Name the class LookupListViewComponent and click the Add button.

 ■ Note the name of the view component class, LookupListViewComponent, uses a convention that lets
the asp.net Core MVC runtime know how to locate the code when it is invoked in a view. When following this
convention, you can access the component using the first part, LookupList, of the class name only.

Modify the contents of the LookupListViewComponent class to match Listing 4-32. The LookupList
ViewComponent class inherits from the ViewComponent class and implements a single method named Invoke.
You can think of the ViewComponent class as a specialized controller and the Invoke method as an action.
Note that since you are using the ASP.NET Core MVC dependency injection system, the instance of the
database context class is passed into the ViewComponent via its constructor. This is the same technique you
would use to inject a dependency into a controller.

Inside the body of the Invoke method, you will make a LINQ query against the data access code and
write the results as a list of SelectListItem objects.

Listing 4-32. LookupListViewComponent

using System.Linq;
using AspNetCoreMvcRecipes.Shared.DataAccess;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Mvc;

http://docs.asp.net/en/latest/fundamentals/configuration.html#options-config-objects

Chapter 4 ■ Using tag helpers

128

namespace Chapter04.ViewComponents
{
 public class LookupListViewComponent : ViewComponent
 {
 private readonly MoBContext _dbContext;

 public LookupListViewComponent(MoBContext dbContext)
 {
 _dbContext = dbContext;
 }

 public IViewComponentResult Invoke()
 {
 var query = from a in db.GenreLookUps
 select new SelectListItem {
 Text = a.GenreName,
 Value = a.GenreLookUpId.ToString() };

 return View(query.ToList());

 }

 }

}

Creating the View for the View Component

Views for view components use a standard Razor.cshtml file just like normal views. The main difference is
that they must be stored in a specific directory structure, as shown in Figure 4-4.

Chapter 4 ■ Using tag helpers

129

As shown in Figure 4-4, you will need to create a directory called Components under the Views\Home
directory. Under Components you can create a directory named LookupList. The name of the directory must
match the name of the ViewComponent less the ViewComponent suffix. The name of the file must be Default.
cshtml. If your view component needs to be shared by more than one controller, it is recommended that it
be placed under Views\Shared\Components rather than under a specific controller folder such as Home.

The ViewComponent View

As shown in Listing 4-33, the view for the view component will use a list of SelectListItems objects as the
model. It will then loop through the list and add an OPTION element for each item.

Listing 4-33. The ViewComponent View for SelectListItems

@model List<SelectListItem>
@foreach(var item in Model)
{
 <option value="@item.Value">@item.Text</option>
}

Figure 4-4. Directory structure for view components

Chapter 4 ■ Using tag helpers

130

The Model
The model for this exercise, shown in Listing 4-34, will consist of a class named FormWithCacheViewModel
and a single property named MyListIsCached. When you create the view, you will bind a Select Tag Helper
to this property to demonstrate that model binding will still occur even though the OPTION attributes are not
generated as part of the Tag Helper.

Listing 4-34. The FormWithCacheModel

namespace Chapter04.Models.Recipe07
{
 public class FormWithCacheModel
 {
 public string MyListIsCached { get; set; }
 }
}

The Controller
The controller shown in Listing 4-35 consists of two actions, one for GET and the other for POST. In the
GET action, you will manually set the MyListIsCached property of the model to "Nothing". In the POST, you
will simply pass the model back to the view so you can confirm that the model binding has functioned as
expected and that the selected value has been retained.

Listing 4-35. The Controller

using Chapter04.Models.Recipe07;
using Microsoft.AspNetCore.Mvc;

namespace Chapter04.Controllers
{
 public class HomeController : Controller
 {
 public IActionResult Recipe07()
 {
 var model = new FormWithCacheViewModel { MyListIsCached = "Nothing" };
 return View(model);
 }

 [HttpPost]
 public IActionResult Recipe07(FormWithCacheViewModel model)
 {
 return View(model);
 }
 }
}

Chapter 4 ■ Using tag helpers

131

The View
In the view shown in Listing 4-36, you start by setting the @model directive to the FormWithCacheViewModel
model. You then display the current value of the model’s MyListIsCached property.

The Cache Tag Helper is nested inside the SELECT element. The Cache Tag Helper is a bit different from
the other Tag Helpers you have seen so far in that Cache is an HTML element rather than just an attribute
added to an element. This design allows the functionality of the Cache Tag Helper to be applied to all
children of the CACHE element and not just the element itself. Inside the CACHE element, the LookupList view
component is invoked asynchronously. Note that the SELECT element is model bound to the MyListIsCached
property of the model using the asp-for bound attribute. The asp-for attribute adds the HTML name
attribute along with any other attributes needed for validation but does not interfere with the cached set of
OPTION elements generated by the ViewComponent.

Listing 4-36. View That Uses the Cache Tag Helper

@model Chapter04.Models.Recipe07.FormWithCacheViewModel

<h2>Chapter 04 - Recipe 07</h2>

Selected Value : @Model.MyListIsCached

<form method="post">
 <div class="form-group">
 <label asp-for="MyListIsCached">
 </label>
 <select asp-for="MyListIsCached" class="form-control">
 <cache>
 <!--This section is cached-->
 @await Component.InvokeAsync("LookupList")
 </cache>
 </select>
 </div>
 <input type="submit" value="Save" class="btn btn-primary" />
</form>

View components are asynchronous, which typically means they do not block any threads on the web
server while they are waiting on I/O operations such as making a network call to a database. Instead, they
relinquish the thread and give it back to the pool until the I/O operation has completed. This design increases
the number of requests a web application can handle. Because view components are asynchronous, they do not
return the type you expect. They instead will return a Task<T>. The Task object is a function that will be executed
asynchronously at some point. Because of this, simply calling Component.InvokeAsync("LookupList") will
return only a Task object but not actually execute the Invoke method implemented in Listing 4-32. To execute
the code, you need to use @await Component.InvokeAsync("LookupList").

You can test that the code is executing as expected by running a tool such as SQL Server Profiler. This
is a free tool that is included as part of SQL Server 2014 Express. If you start the profiler and then run the
application, you should see that the query for getting the list items is run only once. You can also use Visual
Studio’s debugger to set a breakpoint inside your view component’s Invoke method. Subsequent calls to the
page should not invoke the view component to run the database the query.

In this example, the Cache Tag Helper is used with the default settings since no additional attributes were
set. This will cache the lookup list until the web server needs to free memory or the process is recycled or
restarted. The Cache Tag Helper has several options that allow you to specify the duration the data is held in
cache and if the cached value should vary based on route, query string, logged-in user, cookie, or HTTP header.

Chapter 4 ■ Using tag helpers

132

4-8. Using the Environment, Script, and Link Tag Helpers for
Conditionally Rendering Script and Link Tags
Problem
You want to optimize your web site’s front-end performance by utilizing a content delivery network (CDN)
for some of the popular JavaScript libraries that you are using, such as jQuery and Bootstrap.

From experience, you have found that even though CDNs are relatively reliable, all of them experience
occasional downtime. When using a CDN, you want to have some sort of fallback mechanism that will load a
local copy of the script when the CDN version is not available.

Another issue you have run into with using a CDN is that it can sometimes make debugging more
complicated. For this reason, you want to use only local copies of the libraries when in your development
environment. You want to be able to have this behavior enabled or disabled automatically based on the
environment.

Solution
The ASP.NET Core MVC Tag Helpers library comes with two Tag Helpers that can aid in changing the
method used to access scripts on a page. The first is the Environment Tag Helper, which allows you to
specify blocks of code that should be evaluated only when executing in an environment with a matching
environment name. You can use this feature to change the links to your CSS and script files based on the
environment your code is running in.

Other useful Tag Helpers are the Script and Link helpers. They both allow you to specify two URLs
for a resource such as a script file and will use the second address if a request to the primary address fails.
Both the Link and Script Tag Helpers expose two bounded properties, which allow you to specify the URL
for the local copy of the script, and fallback test, which allows you to specify a variable name that should
be truthy if the script was successfully loaded from the CDN. The Script Tag Helper uses the bounded
properties asp-fallback-src and asp-fallback-test. The Link Tag Helper uses a similar set of bounded
properties, asp-fallback-test-class, asp-fallback-test-property, and asp-fallback-test-value,
allowing you to test that a CSS class is present and has the expected value for a specified property.

How It Works
You will first look at how the Environment Tag Helper can be used to change the CSS files included on a page
based on the environment name. You will then modify the example to include a fallback test. In another
example, you will use the fallback helper with a JavaScript file.

Using the Environment Tag Helper
Listing 4-37 shows the HEAD section of an ASP.NET MVC layout page that is using the Environment Tag
Helper. When in an environment named Development, a local copy of the Bootstrap CSS library will be
used. For Staging and Production, the CDN will be used.

Chapter 4 ■ Using tag helpers

133

Listing 4-37. Using the Environment Tag Helper to Change the Address for a Style Sheet Based on
Environment Name

<environment names="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
</environment>
<environment names="Staging,Production">
 <link rel="stylesheet"
 href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.6/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position"
 asp-fallback-test-value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
</environment>

Another useful feature of the Link Tag Helper, shown in Listing 4-37, is the asp-append-version
attribute. When enabled, a version query string is appended to the stylesheet name. The file version will
change each time the file is modified. This feature is useful for solving problems caused by end users having
an old version of a CSS file in their cache.

Using the Fallback Feature for JavaScript Files
For the JavaScript file you only need to test for the existence of a variable that should exist if the script was
successfully loaded. In Listing 4-38 you will try to load the Bootstrap JavaScript file, and you will test for the
existence of variables named window.jQuery, window.jQuery.fn, and window.jQuery.fn.modal, which
should exist if Bootstrap has been loaded.

Listing 4-38. Fallback and Test for a JavaScript File

<script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.6/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal">

The fallback test for a CSS file is like a JavaScript file but a bit more complicated. In Listing 4-39, you
can test to determine whether the Bootstrap CSS file was loaded successfully by the CDN. If it loaded
successfully, you should have a CSS class named sr-only that sets the position property to absolute. asp-
fallback-test-class is used to check for the existence of the CSS class. asp-fallback-test-class and
asp-fallback-test-value verify that the property is being set as expected.

Listing 4-39. Using a CSS Fallback to Load a Local Copy of a Stylesheet When the CDN Cannot Be Accessed

<link rel="stylesheet" href="//ajax.aspnetcdn.com/ajax/bootstrap/3.3.6/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only"
 asp-fallback-test-property="position"
 asp-fallback-test-value="absolute"
>

To test how the code will work when the environment name changes on your development machine,
you can edit the ASPNETCORE_ENVIRONMENT environmental variable. You can access this in Visual Studio
by opening the project’s property page by selecting [web project name] Properties from the Visual Studio
Project menu. On the Debug tab of the property page, you can set the value using the “Environment
variables” settings, as shown in Figure 4-5.

Chapter 4 ■ Using tag helpers

134

4-9. Creating a Custom Tag Helper
Problem
You are building a new web application and want to use the Bootstrap Glyphicons for all your edit, delete,
and new links. You want to encapsulate the code that creates these links using a Tag Helper.

Solution
To create a custom Tag Helper, you need to create a class that extends the TagHelper base class, specify the
tag or attribute that you want to associate with your helper, and then override the Process or ProcessAsync
method to add your custom content. You should use ProcessAsync if your Tag Helper can potentially
perform an expensive blocking operation, such as accessing the network or interacting with the file system.

How It Works
To demonstrate how to create a custom Tag Helper, you will create a Tag Helper that appends a Bootstrap
Glyphicon to an anchor tag. You will create a new solution with two projects. One project will be an ASP.NET
Core MVC application, and the other will be a class library project that will contain the custom Tag Helper.

Figure 4-5. Changing the ASPNET_ENV value in Visual Studio

Chapter 4 ■ Using tag helpers

135

Project Setup
Start Visual Studio and create a new ASP.NET Core MVC project, or if you have already created a project for
the Chapter 4 examples, you can continue to use it. If creating a new project, choose the Web Site template
and ensure the authentication type is set to None.

Right-click the solution in Solution Explorer and choose Add ➤ New Project. Select the Class Library
(.NET Standard) template and name the project Recipe09.TagHelpers.

After the project has been created, right-click the project name and select Properties. In the Application
section of the Properties window, change the target framework to .NET Standard 1.6. This is required
because you will be referencing components of ASP.NET Core MVC that are not compatible with earlier
versions of the .NET Standard.

Adding Required Dependencies to the TagHelpers Project
Right-click Recipe09.TagHelpers in Solution Explorer and select Manage NuGet Packages. In the NuGet
package manager, select Browse and then enter Microsoft.AspNetCore.Mvc.Razor in the search box. Select
Microsoft.AspNetCore.Mvc.Razor in the package list and then click the Install button.

Creating the Tag Helper
Delete the file Class1.cs from your project since it is not needed. Create a new class file and name it
GlyphiconLinkTagHelper.cs. Add a using statement at the top of the file for the following namespaces if
they are not present:

•	 Microsoft.AspNetCore.Razor.TagHelpers

•	 System.Threading.Tasks

Next, modify the class signature so that it is extending the TagHelper class. You will then need to
decorate the class with the HtmlTargetElement attribute. This attribute is used to tell the Razor engine
which tags and attributes you want to target for processing. For your Tag Helper, you will be targeting the
anchor tag and will be creating a custom attribute called asp-GlyphIcon. Rather than hard-coding the
string used for the Attribute argument, a constant defined in the class is used. Using constants has some
minor performance benefits, but even though the benefit is small, it can make a difference for high-volume
applications.

To read the value from the asp-GlyphIcon attribute, you will need to set up a property decorated with
the HtmlAttributeName attribute. This will automatically take the value from the Razor markup and write it
to the property.

Finally, the ProcessAsync method is overwritten. In the body of this method, you use the content
provided by the developer in the asp-GlyphIcon attribute and use it to determine which Glyphicon to
render. You also check to see whether any content was added into the body of the anchor tag and ensure that
it is preserved. You are using the asynchronous version of the Process method since you need to access the
existing content. This is done using the TagHelperContext.GetChildContentAsync method. This method
does not have a synchronous equivalent. When you are done, your class should resemble Listing 4-40.

Listing 4-40. GlyphiconLinkTagHelper

using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Razor.TagHelpers;
using System;
using System.Threading.Tasks;

http://dx.doi.org/10.1007/978-1-4842-0427-6_4

Chapter 4 ■ Using tag helpers

136

namespace Recipe09.TagHelpers
{
 [HtmlTargetElement("a", Attributes = GlyphIconName)]
 public class GlyphiconLinkTagHelper : TagHelper
 {
 private const string GlyphIconName = "asp-GlyphIcon";
 private const string EditIcon = "edit";
 private const string DeleteIcon = "trash";

 protected IHtmlGenerator Generator { get; }

 public GlyphiconLinkTagHelper(IHtmlGenerator generator)
 {
 Generator = generator;
 }

 [HtmlAttributeName(GlyphIconName)]
 public string IconName { get; set; }

 private string getIconName()
 {
 if(string.IsNullOrEmpty(IconName))
 {
 return string.Empty;
 }
 switch (IconName.ToLowerInvariant())
 {
 case EditIcon:
 return EditIcon;
 case DeleteIcon:
 return DeleteIcon;
 default:
 return string.Empty;
 }

 }
 public override async Task ProcessAsync(TagHelperContext context,
 TagHelperOutput output)
 {
 if (context == null)
 {
 throw new ArgumentNullException(nameof(context));
 }

 if (output == null)
 {
 throw new ArgumentNullException(nameof(output));
 }

Chapter 4 ■ Using tag helpers

137

 var iconHTML =
 string.Format(" ",
 getIconName());
 var content = await output.GetChildContentAsync();
 if (content.IsEmptyOrWhiteSpace)
 {
 output.Content.SetHtmlContent(iconHTML);
 }
 else
 {
 output.Content.SetHtmlContent(content.AppendHtml(iconHTML).GetContent());
 }
 }
 }
}

Adding the Custom Tag Helper to Your ASP.NET Core MVC Project
Before you can use the custom Tag Helper in your views, you will first need to add a reference to the class
library project in your web application. To do this, right-click the Web Application project in Solution
Explorer and then choose Add ➤ Reference. In the Reference Manager window under the Solution section,
select the box next to Recipe09.TagHelpers and then click OK.

Next, to make the custom Tag Helper available for all the views, open the _ViewImports.cshtml file in
the Views folder and modify it to look like Listing 4-41.

Listing 4-41. _ViewImports.cshtml

@using Recipes01to09
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper *, Recipe09.TagHelpers

You can now use the custom Tag Helper in your views. Listing 4-42 shows a few variations on how the
Tag Helper can be used. Note that you can use it in conjunction with other Tag Helpers including the built-in
ones from the ASP.NET MVC Tag Helpers library.

Listing 4-42. Using the Custom Tag Helper

<h2>Chapter 04 - Recipe 09</h2>
This is a regular anchor tag

<a asp-action="About">This is standard asp-action tag helper with no Glyph Icon

<a asp-glyphIcon="Edit">This glyoh icon on standard anchor tag

<a asp-action="About" asp-glyphIcon="Edit">This is standard asp-action tag helper with Edit
Glyph Icon

<a asp-action="About" asp-glyphicon="Trash">This is standard asp-action tag helper with
Delete Glyph Icon

139© John Ciliberti 2017
J. Ciliberti, ASP.NET Core Recipes, DOI 10.1007/978-1-4842-0427-6_5

CHAPTER 5

Getting the Most from the New
Features in ASP.NET Core MVC

ASP.NET Core MVC is the biggest change in the Microsoft web development technology stack since perhaps
the introduction of ASP.NET. The foundation components of ASP.NET Core MVC have been rebuilt from the
ground up to be modular and cross-platform. Fortunately for ASP.NET MVC developers, most of the patterns
familiar to ASP.NET MVC developers are largely unchanged. There are, however, significant changes to the
ASP.NET MVC project structure. There are also many breaking changes, a new configuration system, and
several new features specific to ASP.NET Core MVC.

In this chapter, you will take a deep dive into some of the new features introduced in ASP.NET Core
MVC. You will start by reviewing the changes to NuGet and how NuGet fits into the ASP.NET Core MVC
compilation process. You will then review the process of porting ASP.NET MVC and Web API projects to
ASP.NET Core MVC. The remainder of the chapter will focus on using new features such as view
components, and inject.

5-1. Understanding NuGet with ASP.NET Core MVC
Problem
You have used NuGet Package Manager for managing both .NET and JavaScript libraries with your ASP.NET
MVC projects. After creating a new ASP.NET Core MVC project, you have noticed that when you run
NuGet Package Manager, you no longer see any JavaScript libraries listed. You may have also noticed that
packages.config is no longer included in the project. You want to understand how NuGet has changed and
how this impacts the way you use it for building ASP.NET Core MVC applications.

Solution
In ASP.NET Core MVC, NuGet has been fully integrated into the ASP.NET Core project system. Information
regarding NuGet packages is no longer stored in the packages.config file but is instead stored directly in the
ASP.NET Core project file (.csproj).

Another major change is that NuGet is no longer used for managing client-side components such as
JavaScript libraries. Visual Studio uses a dedicated JavaScript package manager called Bower for managing
JavaScript and CSS libraries. In ASP.NET Core, you use NuGet for server-side components and Bower for
client-side components.

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

140

NuGet is also embedded into the ASP.NET Core MVC command-line interface. The command-line
interface has two commands dedicated to NuGet: restore, which retrieves the packages referenced in the
.csproj file, and pack, which can convert your .NET Standard library into a NuGet package.

How It Works
NuGet Package Manager is an application that helps .NET developers locate, download, and use software
libraries in their projects. NuGet has two major components, a repository that stores and provides access
to packages and a client that allows developers to interact with the repository. For a software library to be
included in a NuGet repository, it must be bundled into a NuGet package. A NuGet package consists of the
compiled assemblies, resource files, and a manifest file that contains information such as the component
name, version number, author, and a description. The manifest also lists all the dependencies of a
component and the versions of .NET that the package is compatible with. NuGet clients use the information
in the manifest to automatically locate and download the correct version of the components and include
them in your project.

When an update for a NuGet package is available, the NuGet client can notify you and allow you to
easily update the component to the latest version.

NuGet Package Sources
NuGet package sources, also known as feeds, are collections of NuGet packages that are usually accessed
over HTTP using a RESTFul API. In addition to HTTP, NuGet also supports using local folders and network
shares as package sources. This flexibility makes it possible for a small team to set up a private feed on a
local network without needing to install any server software. More commonly, however, developers will
use a server-based solution such as NuGet.Server. Server-based package sources offer greater functionality,
allowing you to do things such as browse, search, and push packages to the feed using a NuGet client. NuGet
servers also support user authentication and authorization, which prevent unauthorized persons from
modifying packages.

When you install Visual Studio, it will be configured by default to use Nuget.org. This is the official
NuGet package source and contains all production and sanctioned prerelease versions of ASP.NET Core’s
components. In addition to components created by Microsoft, Nuget.org also contains thousands of
packages created by the .NET developer community.

Nuget.org is not the only public NuGet package source. Thousands of public feeds are hosted using
services such as MyGet.org. MyGet.org offers free hosting for public repositions. The .NET Foundation
currently publishes 40 separate feeds on MyGet. These feeds contain unsanctioned prerelease versions of
.NET Foundation components such as nightly builds. In addition to public package sources, MyGet allows
you to create private repositories if you purchase a paid subscription.

NuGet feeds can also be hosted on your local network. Hosting your private NuGet feed on your local
network can make acquiring packages substantially faster and can also be more secure. Your private NuGet
feed can be as simple as a file share, or if your needs warrant it, you can invest in a commercial solution
such as jFrog Artifactory. Artifactory supports other package managers in addition to NuGet including NPM,
Bower, Maven, and RPM. It can also be used to host your Docker images.

Creating and publishing a NuGet package to a NuGet feed can be automated using a continuous
integration (CI) server such as Visual Studio Team System or Jenkins. Using this technique, you can
automatically generate packages from your latest source code and then publish the package to your NuGet
feed. When you integrate your source control system with your CI server, your NuGet packages can be
published automatically simply by checking in your code.

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

141

Adding a Custom NuGet Feed to Visual Studio
You can configure NuGet Package Manager to work with multiple package sources. You can even configure
individual projects to use specific feeds. This can be useful when you are collaborating with several teams
and need access to specific versions of a package that are not available in the main feed.

Using a NuGet Config File

If you want to customize a NuGet configuration for an individual project without impacting your machine-
wide settings, you can add a nuget.config file to your project. The settings listed in this file will override any
conflicting global configuration settings for your project. To add the configuration file using Visual Studio,
follow these steps:

 1. Right-click the project name in Solution Explorer and select Add ➤ New Item.

 2. Select the Text File template, change the file name to nuget.config, and then
click the Add button.

 3. Modify nuget.config to match Listing 5-1.

Listing 5-1. Changing NuGet Behavior for a Project with nuget.config

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <packageRestore>
 <add key="enabled" value="true"></add>
 <add key="automatic" value="true"></add>
 </packageRestore>
 <packageSources>
 <add key="NuGet official package source"
 value=" https://api.nuget.org/v3/index.json ></add>
 <add key="ASP.NET Core MVC Recipes package source"
 value="https://www.myget.org/F/aspnetcoremvcrecipes/api/v3/index.json"></add>
 </packageSources>
</configuration>

The configuration file shown in Listing 5-1 contains two sections: packageRestore and
packageSources. The packageRestore settings enable package restore and set it to occur automatically.
This setting will ensure that if missing packages are detected, they can be downloaded automatically
when the project is built. If you did not configure this behavior, the build would fail with errors related to
missing packages.

The second section of settings, packageSources, consists of the package sources. The key-value pairs
under packageSources add two sources: the NuGet official package source and the ASP.NET Core MVC
Recipes package source.

To learn more about all the configuration options for NuGet, please refer to the following document:

https://docs.nuget.org/ndocs/consume-packages/configuring-nuget-behavior

https://docs.nuget.org/ndocs/consume-packages/configuring-nuget-behavior

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

142

Changing the Global NuGet Settings from Visual Studio

If you want to change the configuration of NuGet for your entire PC, you can either directly edit the global
NuGet configuration file located at %APPDATA%\NuGet\NuGet.Config or use Visual Studio’s settings dialog.
To add a new package source using Visual Studio settings, follow these steps:

 1. Select Options from the Visual Studio Tools menu.

 2. Expand NuGet Package Manager and then select Package Sources.

 3. Click the plus icon to add a new source and then change the name to
ASP.NET Core MVC Recipes and the location to https://www.myget.org/F/
aspnetcoremvcrecipes/api/v3/index.json.

 4. Click OK to save your settings.

You can see the changes made to the file by opening %APPDATA%\NuGet\NuGet.Config in your favorite
file editor.

Adding a NuGet Package to Your Project
You can add NuGet packages to your project in three ways: using the NuGet CLI via the Package Manager
Console, using the Visual Studio NuGet Package Manager window, and manually adding package references
to the .csproj file. In this section, you will first examine the .csproj file. You will use the first two methods
to add packages to your project and then examine the changes made to your .csproj file.

Examining the .csproj File

To see what the .csproj file looks like before you make any changes to the project, open the .csproj
file in Visual Studio by right-clicking the project name in Solution Explorer and then selecting Edit
<yourProjectName>.csproj. The project file will look like the one shown in Listing 5-2.

Listing 5-2. Default .csproj File

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <PropertyGroup>
 <PackageTargetFallback>$(PackageTargetFallback);portable-net45+win8+wp8+wpa81;

</PackageTargetFallback>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.ApplicationInsights.AspNetCore" Version="2.0.0" />
 <PackageReference Include="Microsoft.AspNetCore" Version="1.1.0" />
 <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="1.1.1" />
 <PackageReference Include="Microsoft.AspNetCore.StaticFiles" Version="1.1.0" />
 <PackageReference Include="Microsoft.Extensions.Logging.Debug" Version="1.1.0" />
 </ItemGroup>
 <ItemGroup>

https://www.myget.org/F/aspnetcoremvcrecipes/api/v3/index.json
https://www.myget.org/F/aspnetcoremvcrecipes/api/v3/index.json

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

143

 <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools"
Version="1.0.0-msbuild3-final" />

 </ItemGroup>

</Project>

When you examine the file, you will see that there is an ItemGroup node that contains several
PackageReference nodes. Each PackageReference node has two properties: Include, which is the name of
the package you want to include in the project, and Version, which is the version of the package.

In Solution Explorer, if you expand Dependencies and then NuGet, the packages listed will match the
contents of the .csproj file.

Adding a Package Using the Package Manager Console

If you know the name and version of a package you want to install, it can be convenient to add packages
using the Package Manager Console. To do this, open the Package Manager Console window if it’s not
already open. You can open this window from the Visual Studio menu using View ➤ Other Windows ➤
Package Manager Console. You can also access this using Tools ➤ NuGet Package Manager ➤ Package
Manager Console.

In the Package Manager Console, type the following command:

Install-Package FluentValidation.AspNetCore -Pre

The command has three parts. First, Install-Package tells the package manager to find and then
install a package. The second is the name of the package. In this case, you are looking to install the
FluentValidation.AspNetCore package. The last argument is the -Pre flag, which tells the package
manager to get the latest prerelease version of the package if one is available. You need to be careful about
using prerelease versions of software in production since they will often contain bugs. Unfortunately, since
.NET Core is so new, many essential packages are still in a prerelease state.

After tapping the Enter key, you will see the Package Manager Console display several messages about
downloading and installing the package. When installation completes, you will see the following line added
to your .csproj file. Note that the version number will likely be different. In addition to the package you
selected, NuGet will download all the dependencies. Only the top-level package is stored in the .csproj file,
however.

<PackageReference Include="FluentValidation.AspNetCore" Version="6.4.0-rc4" />

Adding a Package Using the NuGet Package Manager UI in Visual Studio

To add a package using the NuGet Package Manager user interface, right-click Dependencies in Solution
Explorer and select Manage NuGet Packages. Click the Browse tab and select ASP.NET Core MVC Recipes
from the Package Sources drop-down, as shown in Figure 5-1. Select the Include Prerelease check box next
to the search box. Click the Install button to install the package. In the Review Changes dialog, click OK. In
the License Acceptance dialog, click I Accept.

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

144

After adding the package, the following line is added to the end of the .csproj file:

<PackageReference Include="Shared.DataAccess" Version="1.0.3-Alpha" />

5-2. Upgrading from ASP.NET MVC 5 to ASP.NET Core MVC
Problem
You have an existing ASP.NET MVC 5 project that you want to convert to ASP.NET Core MVC. You do not see
any options for automatically migrating your application. You are wondering how you can upgrade.

Figure 5-1. Adding a package using the NuGet Package Manager user interface

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

145

Solution
ASP.NET Core MVC is a complete reimplementation of ASP.NET MVC. For this reason, there is no automatic
upgrade option. Fortunately, most programming structures found in ASP.NET MVC have been ported to
ASP.NET Core MVC. These similarities make it possible to manually port your controllers and views from
ASP.NET MVC to ASP.NET Core MVC. The following steps describe the basic sequence of a migration. I will
review each of these steps in detail in the “How It Works” section:

 1. Create a new ASP.NET Core MVC project using the ASP.NET Core Web
Application template.

 2. On the “Select a template” page, select Web Application. Optionally you can use
the Change Authentication button to add the authentication strategy that best
matches the application you are porting.

 3. Add the controllers, views, and other assets from your ASP.NET 5 application to
the new solution.

 4. Try to build the application and see what breaks. You will likely see hundreds
of errors and warnings. Fortunately, it is not as bad as it looks, and many of the
errors can be resolved by changing namespaces.

 5. If you used NuGet to manage JavaScript libraries in your ASP.NET 5 project,
replace them with the equivalent Bower packages.

 6. If you used the ASP.NET Web Optimization library for bundling and minification
of your script and CSS files, migrate your settings to bundleconfig.json.

How It Works
To demonstrate the conversion procedure outlined in the recipe, you will create a new ASP.NET 5 project
using Visual Studio and then manually migrate it to ASP.NET Core MVC.

Creating the ASP.NET MVC 5 Project to Be Migrated
Open Visual Studio and select File ➤ New ➤ Project. In the New Project Window, select Web under Visual
C# and then select ASP.NET Web Application (.NET Framework). Name the solution and project Recipe02
and change the location to Chapter05\Recipe02\ASPNetMvc5\. In the Select a Template window, select
MVC. Ensure the “Host in the cloud” check box is unchecked and then click OK. After the project is created,
run the application to verify that it works.

Creating the New ASP.NET Core MVC Project
Open Visual Studio and create a new ASP.NET Core Web Application project. Name the project and the
solution Recipe02 and change the location to Chapter05\Recipe02\ASPNetCoreMVC\. In the New ASP.NET
Project window, select the Web Application template. Click OK to create the project.

Once the project is created, delete all controllers and views. You will be replacing them with content
from the project you are porting. Do not delete the other content created by the template.

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

146

Import Project Files from the ASP.NET MVC Project
To import project files, from Solution Explorer, right-click the Controllers folder and select Add ➤ Existing
Item from the pop-up menu. Select the file Controllers\HomeController.cs from the MVC 5 project. Click
OK to import the file. Repeat the same process for the Views\Home folder and import all three Razor view files
from the MVC 5 project.

•	 Index.cshtml

•	 About.cshtml

•	 Contact.cshtml

 ■ Tip You can import several files at once in the add existing item window by holding down the Ctrl key and
then clicking each item you want to import.

Once you have completed this process, try to build the solution. The build will fail, and you should see
about six errors in the Error List window.

Correcting the Errors
Even with a small project such as the one generated by the New Project template, you will have some errors
to correct after the import. The good news is that correcting most of them is easy. You will start by opening
HomeController.cs. Remove the using statements for System.Web.Mvc and System.Web and add a using
statement for Microsoft.AspNetCore.Mvc, as shown in Listing 5-3. After making these changes, build the
project again; the error count should drop to zero. Run the project to ensure it functions correctly.

Listing 5-3. Changes Made to the Home Controller

using Microsoft.AspNetCore.Mvc;

namespace Recipe02.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 return View();
 }

 public ActionResult About()
 {
 ViewBag.Message = "Your application description page.";

 return View();
 }

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

147

 public ActionResult Contact()
 {
 ViewBag.Message = "Your contact page.";

 return View();
 }
 }
}

Since this was a basic project, the simple act of moving your controllers and views to the new template
solved almost all the migration concerns.

There are many files that you did not port from the original, including the layout files and much of the
front-end code. If you attempt to move these files, you will have many breaking changes. In most cases, you
will be better off rebuilding the layout files from the new base.

JavaScript and CSS Libraries
Since the Visual Studio templates for ASP.NET MVC and ASP.NET Core MVC that ship with Visual Studio
2017 contain identical content, the JavaScript libraries required are present in both projects, although
the library versions are different. If you were porting a real project, this would not likely be the case. To
demonstrate how ASP.NET MVC and ASP.NET MVC Core differ in handling JavaScript libraries, you will first
add a library to the ASP.NET MVC project and then add the same library to the ASP.NET Core project.

Adding Moment.js to the ASP.NET MVC Project

Moment.js is a date library for JavaScript. I will use Moment.js to demonstrate how to port your JavaScript
dependencies from an ASP.NET MVC project to an ASP.NET Core MVC project. In ASP.NET MVC, JavaScript
libraries are typically managed using NuGet. To add Moment.js to your ASP.NET MVC project, right-click the
project name in Solution Explorer and select Manage NuGet Packages from the context menu. In the NuGet
window, click Browse and then type Moment.js in the search box. Select Moment.js from the package list
and then click the Install button. Make note of the version number. After the package has been installed, the
following changes have been made to your project:

•	 The package.config file has been modified with a new package entry for moment.js.

•	 The files moment.js and moment-with-locals.js and the associated minified
versions of the two files have been added to the Scripts folder.

Adding Moment.js to the ASP.NET Core MVC Project

ASP.NET Core MVC no longer uses NuGet for managing JavaScript libraries. Bower is the recommended
solution for managing JavaScript packages. Using Bower is not mandatory, but since it comes configured
out of the box with the ASP.NET Core MVC project templates, it is the best option for most developers.
Another benefit of using Bower is that it is the most popular JavaScript package manager used by front-end
developers. Because of Bower’s popularity, it has thousands of JavaScript and CSS libraries, many of which
you will not find in NuGet.

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

148

To add Moment.js to your ASP.NET Core MVC project using Bower, in Solution Explorer, expand
Dependencies, right-click the Bower folder, and select Manage Bower Packages from the pop-up menu. Click
Browse and then type momentjs in the search box. Select momentjs from the package list. Ensure that the
version selected in the drop-down list matches the version used in your ASP.NET MVC project and then click the
Install button. After the package has been installed, the following changes will have been made to the project:

•	 bower.json has been updated with a new dependency listed for Moment.js.

•	 A folder for Moment.js has been added under wwwroot/lib.

In ASP.NET Core projects, all static files including images, CSS, and JavaScript files need to be placed
under the wwwroot folder. If a file is not under wwwroot, it will not be accessible by end users.

The Bower configuration file .bowerrc specifies that packages downloaded from the Bower package
store are copied to the wwwroot/lib folder.

While the default Bower configuration added to your project by Visual Studio makes it easy to get
started, it has some unfortunate side effects. If you examine the moment directory created under wwwroot/lib,
you will see that not only has moment.js and moment-with-locals.js been downloaded, but many other
files have been too. This behavior is caused by the way Bower acquires packages. The Bower client first
acquires the package metadata from the Bower package store. This metadata includes the URL to a Git
repository that contains the component’s source code. For the Moment.js library, the URL is https://
github.com/moment/moment. The Bower client then uses a Git source control client and performs a git
clone operation for the initial download and Git pulls to download updates. In the case of this example,
git clone downloads the entire Git repository for the Moment.js library. This Git repository contains the
entire source of Moment.js along with the change logs and readme files. You most likely do not need these
files and should not deploy them to your production server. See recipe 11-2 for a detailed example of how
you can correct this issue.

5-3. Upgrading from Web API to ASP.NET MVC 6
Problem
Your company developed a service using ASP.NET Web API 2. You have just found out that ASP.NET Web API
is no longer a separate framework, and its functionality has now been merged with ASP.NET Core MVC. You
want to port your existing application to ASP.NET Core MVC.

Solution
There is no automatic upgrade path for migrating from ASP.NET MVC Web API to ASP.NET Core MVC.
ASP.NET Core MVC is a new framework and has a different project structure than ASP.NET MVC Web API.
The Web API functionality has been merged with ASP.NET Core MVC, and the Web API NuGet packages,
classes, and namespaces have been removed. Because of this, the Web API controller base class and
configuration classes do not exist in ASP.NET Core MVC.

Since you cannot upgrade automatically, the best way to port your project is to create a new Visual
Studio solution using the ASP.NET Core MVC Web API template. You can then import your code from your
legacy project.

After you import your code, you will find that there are many breaking changes. Microsoft offers two
paths to correcting the issues and getting your service operational.

First is the ASP.NET Web API shim. The shim is a set of classes that overlay the new ASP.NET Core MVC
APIs and mimic the APIs, classes, and namespaces available with ASP.NET Web API 2. If you are porting
a large project, using the shim is the fastest way to migrate your project. You can then gradually port the
Web API controllers whenever major changes are required and use the new APIs for any new functionality.

https://github.com/moment/moment
https://github.com/moment/moment

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

149

Unfortunately, this option is available only for solutions targeting the .NET Framework and not for .NET Core.
If you create an ASP.NET Core MVC application that targets the .NET Framework rather than .NET Core, you
can only deploy your application on Windows.

The second method is to modify all your Web API controllers to use the ASP.NET Core MVC APIs. If you
have a small project or do not want to deploy your application on Windows, this is the preferred method.

How It Works
To learn how to convert an ASP.NET Web API 2 application, you will start with a simple sample application
created using the Visual Studio 2017 ASP.NET Web API template.

You will then create a new Visual Studio solution using ASP.NET Core MVC (.NET Framework) and
import the files from the legacy solution. Next, you will add code to the Startup.cs class that will activate
the shim and make a few other changes.

To learn how to convert to the new ASP.NET Core MVC API, you will create a third project using the
ASP.NET Core MVC (.NET Core) template and then modify the controller definitions to use the new APIs.

Creating an ASP.NET Web API 2 Project
Use the following procedure to create a new ASP.NET Web API application.

Open Visual Studio and from the main menu select File ➤ New ➤ Project. In the New Project window,
enter Web API in the search box and then select ASP.NET Web Application (.NET Framework). Name the
project and solution Recipe03. In the location field, select Chapter05\Recipe03\WebAPI2. Ensure that
“Create directory for solution” is selected and then click OK. In the New ASP.NET Web Application window,
select the Web API template. Ensure that No Authentication is selected as the authentication type and the
“Host in the cloud” check box is not selected. Click OK to create the project.

Creating a New ASP.NET Core MVC (.NET Framework) Project
Open Visual Studio and create a new ASP.NET Core Web Application (.NET Framework) project. Name
the project and solution Recipe03. In the location field, select Chapter05\Recipe03\ASPNetCoreMVCFull.
Ensure that “Create directory for solution” is selected and then click OK. In the New ASP.NET Core Web
Application window, select the Web API template. Ensure that No Authentication is selected. Click OK to
create the project.

The project structure is somewhat like the structure created by the ASP.NET Core MVC Web Application
template, but no views are created, and a smaller number of dependencies are added. A wwwroot directory is
added but is empty.

Delete ValuesController.cs from the Controllers folder. You will be replacing it with the version
created in the ASP.NET MVC Web API project.

Enabling the Web API Shim

Microsoft realized that teams that have made substantial investments in Web API would struggle to migrate
to ASP.NET Core because of the substantial number of changes required. To mitigate this issue, Microsoft
has created a component that allows you to continue using the old Web API namespaces and classes but still
target ASP.NET Core.

To enable the shim, you first need to add the component Microsoft.AspNetCore.Mvc.WebApiCompatShim
to your project using NuGet Package Manager. To do this, right-click Dependencies in Solution Explorer and
select Manage NuGet Packages. On the NuGet: Recipe03 tab, click Browse and enter WebApiCompat. Select
Microsoft.AspNetCore.Mvc.WebApiCompatShim and click the Install button.

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

150

After you have added the Web API compatibility shim to your project, you can enable it by making a few
changes to your Startup.cs class. In the ConfigureServices method, add a call to AddWebApiConventions,
as shown in Listing 5-4. Calling AddWebApiConventions will enable you to use the Web API route naming
conventions in your ASP.NET Core MVC controllers. If you did not do this, the MVC Core router would not
know how to map action names to HTTP verbs, and you would need to add the Http[verb] attributes to
each action method. With the Web API conventions added, an action named Get would be automatically be
mapped to the GET HTTP verb.

Next you will need to add the default API route. As with normal ASP.NET MVC routes, the routes can be
defined inside the Startup.cs Configure method. In ASP.NET Core MVC, Web APIs no longer have their own
distinct route collection. Listing 5-4 shows the completed code. The required changes are shown in bold.

Listing 5-4. Startup.cs with Web API Conventions and API Route

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;

namespace Recipe03.Service
{
 public class Startup
 {
 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddEnvironmentVariables();
 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc().AddWebApiConventions();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env,
ILoggerFactory loggerFactory)

 {
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 // Add MVC to the request pipeline.
 app.UseMvc(routes => {
 routes.MapWebApiRoute("DefaultApi", "api/{controller}/{id?}");
 });
 }
 }
}

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

151

Importing the Controller and Adding the Required using Statements

The next step is to import the controller classes from the Web API 2 project. To do this, right-click the
Controllers folder in Solution Explorer and select Add ➤ Existing Item from the pop-up menu. In the Add
Existing Item dialog, navigate to the controller folder and select ValuesController.cs. After importing,
you will see four errors related to FromBodyAttribute. To correct this, add a using statement for Microsoft.
AspNetCore.Mvc. You should also clean up the code by removing any unneeded using statements. Visual
Studio will show these as grayed out. You can quickly remove them by placing the mouse cursor over one of
the grayed-out using statements and clicking the light bulb icon. You can also select Remove Unnecessary
Usings from the pop-up menu. Listing 5-5 shows the completed controller.

Listing 5-5. Imported Controller Code After Modifications

using System.Collections.Generic;
using System.Web.Http;
using Microsoft.AspNetCore.Mvc;

namespace Recipe03.Controllers
{
 public class ValuesController : ApiController
 {
 // GET api/values
 public IEnumerable<string> Get()
 {
 return new string[] { "value1", "value2" };
 }

 // GET api/values/5
 public string Get(int id)
 {
 return "value";
 }

 // POST api/values
 public void Post([FromBody]string value)
 {
 }

 // PUT api/values/5
 public void Put(int id, [FromBody]string value)
 {
 }

 // DELETE api/values/5
 public void Delete(int id)
 {
 }
 }
}

Note the inclusion of the System.Web.Http using statement in the controller. Using this namespace
does not invoke the legacy System.Web assembly. System.Web.Http is defined in the shim to enable
compatibility. No reference to System.Web has been added to the project.

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

152

Using Request.CreateResponse with the Web API Compatibility Shim

In addition to the classes and namespaces used in the previous examples, the Web API compatibility shim
also includes definitions for HttpResponseMessage and the Request.CreateResponse helper method. If you
are importing API controllers created by using legacy versions of Visual Studio's scaffolding for Web API, the
controllers will make extensive use of these classes and extension methods. Without the functionality offered
by the Web API compatibility shim, porting these controllers would be labor intensive.

To learn how HttpResponseMessage and the Request.CreateResponse helper method can be used
in ASP.NET Core MVC with the Web API compatibility shim, you will create a model and a controller that
uses it. To create the model, create a new folder by right-clicking the Recipe03 project in Solution Explorer
and selecting Add ➤ New Folder. Name the new folder Models. Add a new class to the Models folder named
CellPhone.cs. Modify the class to match Listing 5-6.

Listing 5-6. CellPhoneModels.cs

namespace Recipe03.Models
{
 public class CellPhone
 {
 public string ModelName { get; set; }
 public string Manufacturer { get; set; }
 public string OperatingSystem { get; set; }
 public double Price { get; set; }

 }
}

Add another class to the Models folder named CellPhoneManager and modify its content to match
Listing 5-7.

Listing 5-7. CellPhoneManager.cs

using System.Collections.Generic;

namespace Recipe03.Models
{
 public static class CellPhoneManager
 {
 public static List<CellPhone> GetPhones()
 {
 var list = new List<CellPhone>
 {
 new CellPhone
 {
 Manufacturer = "Samsung",
 ModelName = "Galaxy S4",
 OperatingSystem = "Android",
 Price = 24.98
 },

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

153

 new CellPhone
 {
 Manufacturer = "Samsung",
 ModelName = "Galaxy S5",
 OperatingSystem = "Android",
 Price = 99.99
 },

 new CellPhone
 {
 Manufacturer = "Samsung",
 ModelName = "Galaxy S6",
 OperatingSystem = "Android",
 Price = 199.98
 },

 new CellPhone
 {
 Manufacturer = "Samsung",
 ModelName = "Galaxy S6 Edge",
 OperatingSystem = "Android",
 Price = 299.98
 }
 };

 return list;
 }
 }
}

Next, add a new controller class to the project by right-clicking the Controllers folder and selecting
Add ➤ Class from the pop-up menu. Name the class CellPhoneController and modify its content to match
Listing 5-8.

Listing 5-8. CellPhoneController.cs

using System.Net;
using System.Net.Http;
using System.Web.Http;
using Recipe03.Models;

namespace Recipe03.Controllers
{
 public class CellPhoneController : ApiController
 {
 public HttpResponseMessage GetPhones()
 {
 return Request.CreateResponse(HttpStatusCode.OK, CellPhoneManager.GetPhones());
 }
 }
}

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

154

Note that System.Net, System.Net.Http, and System.Web.Http are all imported from the Web API
compatibility shim and not System and System.Web and the Web API NuGet packages as they would have
been in an ASP.NET MVC project.

With the Web API compatibility shim in place, most Web API code imported from Web API 2 projects
should work without alterations. If you plan on continuing to deploy your application on Windows Server,
this is a good approach to quickly migrate your Web API application to ASP.NET Core MVC.

Converting Your Web API Controller to the ASP.NET Core MVC Without the
Compatibility Shim
While the ASP.NET Web API compatibility shim is helpful for porting your existing project to ASP.NET
Core MVC, it is limited to projects targeting .NET Framework 4.x, which can be deployed only on
Windows. The ASP.NET Web API compatibility shim solution will not work if you want to deploy your
application on Linux or Mac.

You should avoid using the shim for building new functionality. While using the shim does not cause
any unexpected side effects or cause significant performance degradation, it is meant to be temporary. In
this section, I show how the examples shown in Listings 5-5 and 5-8 can be ported without using the Web
API compatibility shim. Since you will not be using the Web API compatibility shim, you can set up the
project to target .NET Core rather than the .NET Framework.

Creating the ASP.NET Core Web Application (.NET Core)

To create the project, open Visual Studio and create a new ASP.NET Core Web Application (.NET Core)
project. Name the project and solution Recipe03. In the location field, select Chapter05\Recipe03\
ASPNetCoreMVCCore. Ensure that “Create directory for solution” is selected and then click OK. In the New
ASP.NET Core Web Application window, select the Web API template. Ensure that No Authentication is
selected and Enable Container (Docker) Support is not selected. Click OK to create the project.

Delete ValueController from the Controllers folder and then import ValuesController from the
Web API 2 project. After importing the controller, you will see six errors.

To correct the errors, you will need to change the class that your controller inherits from. In ASP.NET
Web API 2, the controller is derived from ApiController. In ASP.NET Core MVC, API controllers derive from
Controller just like regular controllers. To do this, you will need to add a using statement that includes
Microsoft.AspNetCore.Mvc. The using statement for System.Web.Http should be removed since it is no
longer required.

Even though you no longer see any errors, the application will not run as expected. If you run the
application, the web browser will show a “page not found” message. This is because without the Web API
compatibility shim, the Web API routing conventions are not present. In addition, no route has been defined
in the startup.cs file to match api/[controller]. To correct these issues, you can add an attribute-based
route to the controller file and HttpGet, HttpPost, HttpPut, and HttpDelete attributes to the actions. When
that’s completed, your code should match Listing 5-9. The code in bold are the modifications from the
original class.

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

155

Listing 5-9. Values Controller Ported to ASP.NET Core MVC Without Using the Shim

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;

namespace Recipe03.Controllers
{
 [Route("api/[controller]")]
 public class ValuesController : Controller
 {
 // GET api/values
 [HttpGet]
 public IEnumerable<string> Get()
 {
 return new string[] { "value1", "value2" };
 }

 // GET api/values/5
 [HttpGet("{id}")]
 public string Get(int id)
 {
 return "value";
 }

 // POST api/values
 [HttpPost]
 public void Post([FromBody]string value)
 {
 }

 // PUT api/values/5
 [HttpPut("{id}")]
 public void Put(int id, [FromBody]string value)
 {
 }

 // DELETE api/values/5
 [HttpDelete("{id}")]
 public void Delete(int id)
 {
 }
 }
}

After making the changes, your application should work as expected. If you run the application, you
should see a file named values.json returned.

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

156

Porting CellPhone Controller to ASP.NET MVC Core

The CellPhoneController program shown in Listing 5-8 will have a different set of challenges to port
without the shim. To demonstrate the problems you will face and how to correct them, copy the files you
created earlier to the new ASP.NET Core MVC (.NET Core) project.

You will need to create the Models folder as you did in the previous exercise and import the CellPhone.
cs and CellPhoneManager.cs files shown in Listings 5-3 and 5-4 from the WebAPI2 project. Next, import the
CellPhoneController.cs file from the WebAPI2 project to the Controllers folder.

After importing CellPhoneController.cs, you will see three errors. The first error states that the
namespace Web does not exist in the namespace System. To correct this, remove the using statement for
System.Web.Http. The second error message states that “The type or namespace name 'ApiController' could
not be found.” To correct this, add a using statement for Microsoft.AspNetCore.Mvc and then make the
class extend Controller rather than ApiController.

The last error message states that HttpRequest does not contain a definition for CreateResponse. To
correct this, you will have the action return the type IActionResult rather than an HttpResponseMessage.
You will then modify the body of the method so it simply returns an OKActionResult using the Ok method
of the Controller class with the results of the CellPhoneManager.GetPhones() method passed as an
argument. Note that it is also possible to have your action use a return type of ICollection<CellPhone>
without using the Ok method, but that approach gives you less flexibility in supporting error conditions such
as Bad Requests.

While the HTTPResponseMessage class does exist in ASP.NET Core, the helper methods in an intrinsic
Request object such as CreateResponse do not exist. This makes using HTTPResponseMessage more
complex. In addition, as described in recipe 1-7, ASP.NET Core ships with several classes that implement
IActionResult. The Controller class has built-in methods that simplify using these IActionResult
classes. These helper methods, which include BadRequest, Created, File, NotFound, Ok, and others, return
corresponding IActionResult types. For example, the BadResults method returns a BadRequestResult
object. These new methods replace HTTPResponseMessage and should be used in place of it when creating
new APIs.

Another difference shown in Listing 5-10 is that an attribute route is used rather than a template defined
inside of the StartUp.cs file. Using this technique, you can customize the URLs for your API for each action.
This approach makes it easy to create deep URL patterns that are sometimes necessary when defining APIs.
The HttpGet attribute performs two functions. First, it binds the GetPhones action to the HTTP GET verb.
Second, by accepting a route template as an argument, it allows you to customize the URL for the GetPhones
action. The route template api/[controller] uses the route variable [controller] to map the CellPhone
action to the URL /api/CellPhone.

Listing 5-10 shows the completed example. Code that should be removed is shown commented out,
and new code is shown in bold.

Listing 5-10. Refactoring an API Controller to Work Without the Compatibility Shim

//using System.Net;
//using System.Net.Http;
//using System.Web.Http;
using Recipe03.Models;
using Microsoft.AspNet.Mvc;
using System.Collections.Generic;

namespace Recipe03.LegacyWebApi.Controllers
{
 public class CellPhoneController : Controller //ApiController
 {
 [HttpGet("api/[controller]")]

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

157

 public IActionResult GetPhones()
 {
 //return Request.CreateResponse(HttpStatusCode.OK, GetPhoneManager.GetPhones());
 return Ok(CellPhoneManager.GetPhones());
 }
 }
}

You should now be able to debug the project. One major difference between the Web API template in
older versions of MVC and ASP.NET Core is that no HTML content is included with the template. By default,
when running the project, it will try to execute the route api/values. The values controller is a controller
that is added automatically by the ASP.NET Web API template. If you delete this controller, you will see a 404
(Not Found) error when debugging your project. If you want to have the controller you are currently working
on launch on debug, you can change the settings by right-clicking the project name, which in this case is
Recipe03, and then selecting Properties from the pop-up menu. In the properties window, click the Debug
tab and then modify the URL, as shown in Figure 5-2.

After launching the project in the debugger, Internet Explorer will prompt you to download the JSON
content produced by the server as a file.

Figure 5-2. Changing the URL launched when debugging

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

158

5-4. Creating a Tag Cloud Using a View Component
Problem
Your marketing department has asked you to add a tag cloud to your home page that shows a listing of all the
musical genres for your web site. A tag cloud is a list of links that uses font size and color to show which links
are most important. For example, on your web site, heavy metal is the most popular musical genre and will
show as the largest link. Polka, on the other hand, is less popular and should be displayed as the smallest link.

Your marketing department has also hinted that it may want similar functionality on other pages. You
are looking for a good way to encapsulate this functionality so it can be reused on several pages on your site.

Solution
ASP.NET Core MVC supports several methods for creating reusable user interface components including
custom Tag Helpers, custom HTML Helpers, partial views, and view components. Partial views and
view components are less complex to create than Tag Helpers and HTML Helpers. They also provide the
advantage of being able to use the Razor engine to aid you in creating your interface. View components,
which are new in ASP.NET Core MVC, are like partial views but are more powerful because they have their
own controllers. This allows you to have full separation of concerns and makes view components much
easier to unit test.

How It Works
You will need several components for your tag cloud. First, you will need to create a set of CSS classes to
represent the different sizes and colors of the tags in the cloud. Next, you will add a model class that you can
use with your view. It will consist of a list of objects that contain the text, URL, and CSS class to be applied
for each. Finally, you will create the view component. The view component consists of a Controller class
that will execute the logic for ranking the items and adding it to the collection and of a view that will iterate
through the collection and generate the HTML.

Creating the Project
Open Visual Studio and select File ➤ New Project. Select the ASP.NET Core Web Application (.NET Core)
template. Name the project and solution Recipe04. Click OK to create the project. In the New ASP.NET Core
Web Application Project window, select Web Application. Ensure Authentication is set to No authentication
and Docker Support is not selected. Click OK create the project.

Creating the CSS Classes
You will need a set of classes to represent the visual look and feel of the tag cloud. In addition to the font
size and color for the links, you will also need to specify the size of the area, how to handle overflow, and the
background color. Open the file wwwroot\css\site.css and add the CSS classes shown in Listing 5-11.

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

159

Listing 5-11. CSS Styles for the Tag Cloud

.tagcloud {
 z-index: 100 !important;
 background-color: #e7f5f7;
 padding: 25px;
 height: 500px;
 width: 100%;
 -webkit-border-radius: 30px;
 -moz-border-radius: 30px;
 border-radius: 30px;
 overflow: hidden;
}

 .tagcloud a {
 text-decoration: none;
 padding: 5px;
 }

.linkLevel-1 {
 font-size: 10pt;
 color: #cacaca;
}

.linkLevel-2 {
 font-size: 11pt;
 color: #a8a8a8;
}

.linkLevel-3 {
 font-size: 13pt;
 color: gray;
}

.linkLevel-4 {
 font-size: 15pt;
 color: black;
}

.linkLevel-5 {
 font-size: 18pt;
 color: black;
}

.linkLevel-6 {
 font-size: 20pt;
 color: black;
}

.linkLevel-7 {
 font-size: 22pt;
 color: black;
}

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

160

.linkLevel-8 {
 font-size: 24pt;
 color: black;
}

.linkLevel-9 {
 font-size: 26pt;
 color: black;
}
.linkLevel-10 {
 font-size: 30pt;
 font-weight: bold;
 color: #ff0000;
 text-shadow: 8px 4px 11px #800000;
}

This code defines a style for the CSS container that sets the background color to a light blue-green and
rounds the corners using the border radius. It then defines a style that will be applied to all links defined
inside the tag cloud container. Next, ten styles in the format of linkLevel-[number] are defined. The higher
the number, the larger the font and the more vivid the color. For level 10, the font color is set to red, and a
text shadow has been added for an additional effect.

Creating the Tag Cloud Model
View components consist of a view component class that acts in a similar manner as a controller and one
or more Razor views. The Razor views used in the view component are regular Razor view pages and can be
strongly typed just like any other Razor view. To simplify the view logic and to add some additional flexibility
as you evolve the design, you will create a set of model classes that will decouple the data passed to the view
from the underlying data model. The model will consist of two classes. The first is TagCloud, which will
define the overall structure and encapsulate some of the calculations required to generate the tag cloud. The
other class, TagCloudItem, will represent the individual items in the tag cloud with properties for the display
text, URL, and weight.

To create the TagCloud class, right-click Recipe04 in Solution Explorer and select Add ➤ New Folder.
Name the new folder Models. Right-click the Models folder and select Add ➤ New Item. Select the Class
template. Name the class TagCloud.cs and click the Add button. Modify the class to match Listing 5-12.

Listing 5-12. TagCloud.cs

using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;

namespace Recipe04.Models
{

 public class TagCloud
 {
 public int MaxSize { get; set; }
 public int MinSize { get; set; }
 public string BaseLinkClassName { get; set; }
 public string ContainerClassName { get; set; }

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

161

 private List<TagCloudItem> _Items { get; set; }
 private int minRank = 1;
 private int maxRank = 1;

 public ReadOnlyCollection<TagCloudItem> Items {
 get {
 if (_Items != null)
 {
 var readOnlyCollection = new ReadOnlyCollection<TagCloudItem>(_Items);
 return readOnlyCollection;
 }
 return null;
 }
 }

 public void AddItem(TagCloudItem item)
 {
 _Items.Add(item);
 minRank = _Items.Min(x => x.Weight);
 maxRank = _Items.Max(x => x.Weight);
 }

 public TagCloud()
 {
 MaxSize = 10;
 MinSize = 1;
 BaseLinkClassName = "linkLevel-";
 ContainerClassName = "tagcloud";
 _Items = new List<TagCloudItem>();
 }

 public string GetLinkItemClassName(TagCloudItem item)
 {
 int itemCount = Items.Count;
 if (maxRank == MaxSize && minRank== MinSize)
 {
 return string.Concat(BaseLinkClassName, item.Weight);
 }

 int normalizedRank = 1 + (item.Weight - minRank) *
 (MaxSize - 1) / (maxRank - minRank);

 return string.Concat(BaseLinkClassName, normalizedRank);
 }
 }

}

In addition to defining properties that can be used by the view component to generate the lists, the class
contains a method called GetLinkItemClassName. This method takes TagCloudItem as an argument and
then determines what CSS class to use based on the weight of the item.

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

162

While it is possible to build a tag cloud that uses the raw data from the weight of each item to determine
the font size, this design is very limiting. You may end up with many items too small to read and others
so large that they would consume the entire screen. For example, imagine a blog site with 5,000 posts on
ASP.NET Core MVC and 3 posts on Java. It would not be practical to use a 5,000-point font, which would
be too large, and a 3-point font for Java would be too small. To get around this issue, you use a standard
linear function to normalize the value to fit inside a predefined range. The TagCloud class has a MinSize
property and a MaxSize property to allow a programmer to customize the range. The default values set in the
constructor will limit the values to between 1 and 10.

Add a second class to the Models folder named TagCloudItem.cs and modify its contents to match
Listing 5-13.

Listing 5-13. TagCloudItem.cs

namespace Recipe04.Models
{
 public class TagCloudItem
 {
 public string Url { get; set; }
 public int Weight { get; set; }
 public string DisplayText { get; set; }
 }

}

Creating the Tag Cloud View Component
View components require a view component class that acts like the controller and one or more views.
View component classes can be placed anywhere in the project, but to keep your project organized, you
will first create a new folder called ViewComponents and then add your class to the folder. To create the
folder, right-click Recipe04.Web in Solution Explorer and select Add ➤ New Folder. Name the folder
ViewComponents. Right-click the ViewComponents folder and then select Add ➤ Class. Name the class
TagCloudViewComponent.

Like ASP.NET Core MVC controller classes, the name of the class is important. View component
class names need to either end with ViewComponent or use the ViewComponentAttribute for them to be
recognized by ASP.NET Core MVC as view components. In most cases, using the naming convention will be
the best choice since it will make it easier to identify view component classes in your project.

All view component classes must derive from the ViewComponent class. In addition, they must
implement a method called Invoke. The Invoke method can take zero or more arguments. The arguments
can be used to pass data to the component from a view. In the example shown in Listing 5-14, Invoke does
not take any arguments and instead uses a hard-coded query to get the list of items for the tag cloud. If
needed, the view component could be enhanced to take an argument that can be used to specify what query
it should execute.

The code in the Invoke method uses LINQ to join data from two objects in the Entity Model exposed
by the DBContext object. The Entity Model defines a foreign key that allows the GenreId property of the
songs entity to link to a corresponding record in the genres entity. Since GenreId is an optional property, it
is defined as a Nullable Int. Since you want the query to return only those songs that have a GenreId value
assigned, the WHERE clause uses songs.GenreId.HasValue. The LINQ query returns an anonymously typed
IQueriable that includes the values for GenreName and GenreId. A second LINQ query is then applied to the
result that groups the result by GenreName. Table 5-1 shows the top 15 results of this query.

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

163

Since TagCloudViewComponent uses the database that is part of the downloadable code samples for the
book, you will need to add the Shared.DataAccess NuGet package to the project. Instructions on how to
install the database and custom NuGet feed are available in the appendix.

Listing 5-14. TagCloudViewComponent

using AspNetCoreMvcRecipes.Shared.DataAccess;
using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;
using Recipe04.Models;

namespace Recipe04.ViewComponents
{
 public class TagCloudViewComponent : ViewComponent
 {
 private readonly MoBContext _context;

 public TagCloudViewComponent(MoBContext dbcontext)
 {
 _context = dbcontext;
 }

Table 5-1. Top 15 Results of the Query Shown in Listing 5-14

Name Count

Rock 841

Heavy Metal 874

Jazz 10

Blues 40

Dance & DJ 29

Experimental 20

Country 9

Hard Core 1

Pop 15

Alternative 29

Hip Hop 34

Punk 3

Christian & Gospel 2

Children’s Music 11

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

164

 public IViewComponentResult Invoke()
 {
 var items = (from songs in _context.Songs
 join genres in _context.GenreLookUps on songs.GenreId equals
 genres.GenreLookUpId
 where songs.GenreId.HasValue
 select new { genres.GenreName, songs.GenreId }).ToList();

 var grouped = items.GroupBy(s => s.GenreName).Select(
 gen => new { Name = gen.Key, Count = gen.Count() });

 var model = new TagCloud();

 foreach (var item in grouped)
 {
 var cti = new TagCloudItem {
 DisplayText = item.Name,
 Url = string.Concat("/Genres/", item.Name),
 Weight = item.Count };

 model.AddItem(cti);
 }
 return View(model);
 }
 }
}

Adding the Component Views

The next step is to create a view that will be used to generate the HTML that makes up the tag cloud. View
component views must be placed in a folder named Components. If your view component needs to be used
with many controllers, it should be placed in the Views\Shared\Components folder; otherwise, it can be
placed as a subfolder under the Views folder for the target controller. For this example, since the tag cloud
will be used only on the home page, you will create the Components folder under Views\Home.

Inside the Components folder, a child folder needs to be created for each view component. The name of
the folder needs to match the name of the component. This is a similar relationship to what you see between
controllers and views. To create a folder for the TagCloud view component, right-click the Views\Home\
Components folder and select Add ➤ New Folder and then name the folder TagCloud.

Next add a Razor view to the TagCloud directory and name it Default.cshtml. The view must be named
Default. When you are done, Solution Explorer should resemble Figure 5-3.

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

165

Figure 5-3. View component folder structure

In Default.cshtml, you will set the model directive to the TagCloud type you created earlier. You will
then add a DIV tag to serve as the container for the tags. Inside the DIV you will use a for loop to write the
links. When completed, Default.cshtml should match Listing 5-15.

Listing 5-15. Views/Home/Components/TagCloud/Default.cshtml

@model Recipe04.Models.TagCloud
<div class="tagcloud">
 @foreach (var item in Model.Items)
 {

 @item.DisplayText

 }
</div>

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

166

Using the View Component in a View
To use your view component, you use the @Component.InvokeAsync function. The Invoke function takes the
name of the view component as the first argument. Listing 5-16 shows the file \Views\Home\Index.cshtml
modified to use the view component.

Listing 5-16. Using the View Component as a View

@{
 ViewBag.Title = "Home Page";
}
<h1>Tag Cloud Test</h1>
<div class="row">
 <div class="col-lg-5">
 @await Component.InvokeAsync("TagCloud");
 </div>
</div>

An interesting fact to note is that only the view was changed. No changes were required on the
HomeController class. Figure 5-4 shows the results of this example.

Figure 5-4. Results of tag cloud view component

5-5. Using the Inject Feature to Implement a Hit Counter
Problem
You need to implement a basic hit counter. You need to add this functionality to several pages on your site.
Since the hit counter does not need an elaborate user interface, you do not want to create a view component.

Solution
The ASP.NET Core MVC inject feature is probably the simplest way to implement reusable functionality
in your ASP.NET Core MVC application. The inject feature allows you to inject data into a view using any
standard public C# class provided it is registered with the ASP.NET Core dependency injection system.

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

167

How It Works
In this recipe, you will try the inject feature using a novel hit counter implementation. The feature will be
implemented using a simple class and will store the hit count in a text file.

Creating the Project
Open Visual Studio and select File ➤ New ➤ Project. Select the ASP.NET Core Web Application (.NET Core)
template. Name the project and solution Recipe05. Click OK. In the New ASP.NET Core Web Application
Project window, select Web Application and ensure Authentication is set to No authentication and Add
Docker Support is not selected. Click OK to create the project.

Creating the Hit Counter Service Class
The hit counter service will implement an interface called IHitCounterService that exposes a single
method called UpdateCount. Before creating the class file, first add a new directory under the web site root
named Services. You can do this by right-clicking Recipe05 in Solution Explorer and then selecting
Add ➤ New Folder.

After the folder has been created, right-click it in Solution Explorer and select Add ➤ New Item. Select
the Interface template and name the interface IHitCounterService. Make the interface public and define a
method called UpdateCount that takes no arguments and returns an int. When done, your interface should
match Listing 5-17.

Listing 5-17. IHitCounterService

namespace Recipe05.Services
{
 public interface IHitCounterService
 {
 int UpdateCount();
 }
}

Next add a class that implements the IHitCounterService interface and name it HitCounterService.
Since you are going to use a file to store the hit count, you will need to be able to locate the file. To do this,
you will need to get the absolute base path for the application and then combine that with a relative path
to the text file. Since the root path information is not available in the context of the class, you will allow this
information to be passed in the class’s constructor.

Once you have the path to the file, you can use the File.ReadAllText method to get the contents of the
file; you can then convert the value to an integer, increment it, and then overwrite the file with the updated
information. Listing 5-18 shows the completed class.

Listing 5-18. HitCounterService Class

using System.IO;

namespace Recipe05.Web.Services
{
 public class HitCounterService : IHitCounterService
 {
 private string _rootPath;

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

168

 public HitCounterService(string rootPath)
 {
 _rootPath = rootPath;
 }

 public int UpdateCount()
 {
 var hitCountFilePath = "\\Services\\hitcount.txt";
 var fullPath = string.Concat(_rootPath, hitCountFilePath);
 var count = int.Parse(File.ReadAllText(fullPath));
 count++;
 File.WriteAllText(fullPath, count.ToString());

 return count;
 }
 }
}

While it would be trivial to modify your class to create the text file if it did not exist, to keep things
simple, you will add the text file manually. To do so, right-click the Services folder and select Add ➤ New
Item. Select the Text template and name the file hitcount.txt. In the text file, enter 0. This will be the initial
value of the hit counter. Note that since the file is not being saved under the wwwroot folder, it will not be
directly accessible via a web browser. In earlier versions of ASP.NET, you would have needed to either save
the file under the App_Data folder or configure the web server to not return the MIME type for the file.

Registering the Interface with the Dependency Injection System
For the ASP.NET Core runtime to locate the HitCounterService class, you must register it in the Startup
class. You will also exploit this requirement by passing some of the runtime environment information that
is available in Startup into the HitCounterService class’s constructor. Specifically, you need the root path,
which is available in the IApplicationEnvironment instance passed into the Startup class’s constructor by
ASP.NET Core’s dependency injection system. To access this data outside of the constructor, you will need to
create a private member variable to hold the value of the application environment’s ApplicationBasePath
property.

Next, in the ConfigureServices method, create a ServiceDescriptor object that associates the
IHitCounterService interface with a new instance of the HitCounterService class, with the local member
variable containing the application base path as an argument. You can then add ServiceDescriptor to the
application’s IServiceCollection. Listing 5-19 shows the modified StartUp class with the changes shown
in bold.

Listing 5-19. Startup.cs

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Recipe05.Services;

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

169

namespace Recipe05.Web
{
 public class Startup
 {
 private string _rootPath;

 public Startup(IHostingEnvironment env)
 {
 _rootPath = env.ContentRootPath;

 var builder = new ConfigurationBuilder()
 .SetBasePath(_rootPath)
 .AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddEnvironmentVariables();
 Configuration = builder.Build();
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();

 var descriptor = new ServiceDescriptor(typeof(IHitCounterService),
 new HitCounterService(_rootPath));
 services.Add(descriptor);
 }
 // Configure is called after ConfigureServices is called.
 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerfactory)
 {
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsEnvironment("Development"))
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseErrorHandler("/Home/Error");
 }

Chapter 5 ■ GettinG the Most froM the new features in asp.net Core MVC

170

 app.UseStaticFiles();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

Using the Class in a View
For the final part of this exercise, you will use the class inside a view. To do this, open the Index view for the
Home controller and modify it so it matches Listing 5-20.

Listing 5-20. Index View of the Home Controller Using the HitCounterService Class

@inject Recipe05.Web.Services.IHitCounterService HitCounter
@{
 ViewBag.Title = "Home Page";
}

<h1>Welcome</h1>
You are the @HitCounter.UpdateCount() person to view this page.

The first change is the use of the @inject directive. Note that you are specifying the Interface name
and not the implementation. Using the interface makes it easier to write unit tests for the view. Unit testing
is covered in detail in Chapter 7. Once you set this up, you can call any public methods that may have been
defined in the IHitCounterService interface.

When you run the application the first time, you should see a message stating “You are the 1 person to
view this page.” After refreshing the page, the message will change to reflect the number of times the page
was loaded.

http://dx.doi.org/10.1007/978-1-4842-0427-6_7

171© John Ciliberti 2017
J. Ciliberti, ASP.NET Core Recipes, DOI 10.1007/978-1-4842-0427-6_6

CHAPTER 6

Solution Design Using ASP.NET
Core MVC

Before you can begin developing an application, you need to make several important decisions that will
impact your application’s performance, its ability to scale, and how easy it will be to maintain and operate.
These decisions include how you structure your code; how you store and access data; how you secure your
application; and what configuration, high availability, and deployment models are used.

In the first part of this chapter, several recipes are dedicated to tackling the larger design questions and
exploring the common reference architectures that can be applied to an ASP.NET Core MVC application.
The latter part looks at designing specific parts of your solution, including designing your data access layer,
adding support for multiple languages, and more.

The source code for the examples is available on GitHub. You can find instructions for installing the
sample database used in several of the recipes in the appendix.

6-1. Developing Reference Architectures for ASP.NET Core
MVC Applications
Problem
Your organization has decided to begin using ASP.NET Core MVC for developing web applications. You want
to develop several reference architectures to guide developers who are starting new projects.

Solution
As a developer, one of the greatest challenges you face when starting a new project is getting high-quality
requirements. Requirements are often vague and incomplete and will certainly change over time. When
designing your application, you will need to make many decisions based on assumptions and estimates
that may turn out to be incorrect. Because of this uncertainty, all application designs require some level
of flexibility. On the other hand, over-engineering an application so that it can adapt to every scenario
is wasteful and often counterproductive. The design methodology that I favor is to decompose the
requirements into what I call design aspects. I then use this information to find the correct balance between
simplicity and flexibility.

Once you have a general idea of how complex an application’s requirements are and the size and usage
patterns of the application’s users, you can use a reference architecture to accelerate your design process
and ensure that it is applying proven practices. Reference architectures are generalized blueprints that

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

172

describe how application code is structured into subcomponents, what hardware or cloud infrastructure is
needed, how components are deployed on the infrastructure, and what security controls including network
design and authentication and authorization schemes are applied.

Application architecture is a complex topic. Reference architectures are by no means a replacement for
a skilled architect. The reference architectures shown here are intended to be starting points that highlight
the breadth of solutions that can be accomplished using ASP.NET Core.

How It Works
In this section, I first discuss the factors that impact design. Then I introduce several reference architectures
and how to apply them in an ASP.NET Core MVC application.

Application Design Factors
Scope, audience, usage patterns, scalability, reliability, and security requirements are the major factors that
dictate how you design your application and what reference architecture is the best fit for your requirements.
Once you select a reference architecture to start with, you can customize it to meet the unique requirements
of your application.

Scope and Schedule

Scope dictates the size and complexity of your project. Scope, when combined with schedule, determines
your project’s budget and how many developers need to work on it. Large projects may have multiple teams
working together, which require different strategies for how you structure your code. For example, you
may want to divide your project into several loosely coupled components that can each be worked on and
maintained by different development teams, each with its own release cycle.

Audience and Usage Patterns

The people who are using the application are its audience. The size of the audience and how often they will
use your application will shape both the infrastructure architecture and how your application components are
deployed across the infrastructure. Another aspect of the audience that impacts design is whether people will be
accessing the application over the Internet or through a corporate intranet. This aspect will influence how your
application is deployed on a network and what type of authentication and authorization model is employed by
the application. For example, an Internet-facing application may want to use ASP.NET Identity and configure
one or more external login providers such as Facebook. An intranet-facing application, on the other hand, would
more than likely want to integrate with Active Directory or a corporate single sign-on solution.

Usage patterns describe how end users interact with your application. In cases where end users spend
most of their workday interacting with your system, a more robust and responsive user interface may be
required. Design patterns such as rich Internet applications (RIAs) or single-page web applications may be a
better design for these scenarios.

Scalability

Scalability is how your application can be reconfigured to accommodate increases in usage. The scalability
of your application is directly related to its audience and usage patterns but also needs to account for how
the audience will change over time. Scalability can be limited by several factors, such as an inability for
application components to be distributed across multiple nodes, poor performance, network latency, and
limitations of the application’s data persistence tier.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

173

Reliability

Reliability describes the resiliency of your application. Can your application recover from a failure? Will
the application still be available when a node is disabled? Can your application be partially available if one
or more components are disabled? Can your application be upgraded on a regular basis without requiring
significant downtime?

Reliability requirements are usually dictated by how critical an application is to its user base. For
example, if an airline reservation system goes down for several hours, it can cause major travel disruptions
and can cost the airline millions of dollars per hour. Other applications, such as a corporate travel portal,
could inconvenience some business travelers but would be able to tolerate modest downtimes without
significant adverse effects to the business.

Security

Security impacts all aspects of your design including how you acquire and vet third-party software
components, where your application is deployed, and how the network infrastructure is defined. Security
also dictates how you store and transfer data. For example, if your application stores credit card information,
data will need to be encrypted when it is being transmitted over a network and when it is at rest. You will also
need to ensure you have access controls in place to ensure that only authorized users can access that data,
and you will need logging in place to monitor who accessed the data.

Reference Architectures
ASP.NET Core supports many deployment scenarios. ASP.NET Core applications range from small self-
hosted services running on a desktop PC to massive global-scale web applications that serve billions of
users. In this section, I discuss two high-level architectural blueprints that demonstrate different approaches
for deploying an application.

Small Internet-Facing Applications

The small Internet-facing application reference architecture, shown in Figure 6-1, is a low-cost design that
can support up to 20,000 user sessions per day. If the expected usage is much lower than 20,000 sessions
a day, this architecture can support hosting multiple web applications on a single server. If the user base
expands, this architecture supports adding additional web servers and database hardware. When scaled
out, this architecture can support up to 1 million user sessions per day. Of course, the actual number of
user sessions that can be supported will vary based on usage patterns and the nature of the modules you are
deploying to the servers. It is possible that a single poorly designed database query or a CPU-intensive
.NET Core module could dramatically limit your scalability.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

174

Figure 6-1 shows the physical view of the web application reference architecture.
The architecture consists of three logical tiers: the front-end, an application tier, and the database. The

separate tiers are hosted on separate nodes. If your application has a small user base, it is possible to host the
database and application server on the same node, but this is not recommended for security reasons.

Even though only one web server will be deployed initially, the web server is placed behind a hardware
load balancer so it can scale horizontally if required. A second benefit of using a load balancer is that most
load balancers also have security features that can block certain types of attacks.

Both the web and database tiers will be virtualized, meaning they will be running inside virtual
machines rather than dedicated physical hardware. For the initial deployment, the web server will be
assigned a single CPU and 2GB of RAM. This might seem low, but based on the requirements, it should be
more than what is needed for this application. If it is found that the application needs additional RAM, the
virtual machine infrastructure allows RAM and CPU to be easily upgraded.

PC or Mac

Smartphone

Tablet

The Internet

DMZ
Internet Firewall

Load Balancer

ASP.NET Core

SAN or NAS

ASP.NET Core

Internal Firewall

Database Server

Internal Network

The second
node is
optional

Figure 6-1. Small Internet-facing application reference architecture

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

175

Large Internet-Facing Application

Large Internet-facing applications support tens of millions of user sessions a day and thousands of
transactions per second. They can scale up and down on demand, which allows them to handle peak loads
while controlling costs.

Large Internet-facing applications are usually accessed globally and will have high usage 24 hours
per day. This constant usage pattern makes it impractical to take the application offline for maintenance.
To solve this problem, large Internet-facing applications can implement an architectural style known as
microservices. Each microservice implements a specific role and is loosely coupled with other application
components. This allows each component to be deployed and maintained independently and when
properly designed will prevent the need to take the entire application offline for maintenance purposes. This
design also allows each microservice to be scaled independently. They can each have their own persistent
storage layer, which allows for the best technology to be selected for each service and prevents the database
from becoming a bottleneck like it can with the small Internet-facing application reference architecture.

The emergence of application container technologies such as Docker and container orchestration tools
such as Kubernetes allow microservices to be scaled up and down as needed, and these tools greatly simplify
upgrades. Containers provide an abstraction layer that decouple an application from an individual machine.
The reference architecture is using the Kubernetes orchestration engine on top of the Azure container
service. Kubernetes allows you to organize your application components into services that are made up of
pods. Pods contain a set of related containerized applications that can be deployed and scaled together.

To deal with the potentially massive number of transactions, the large Internet-facing application
reference architecture employs several strategies to accelerate performance while reducing load on the
microservices.

•	 It caches static content such as images, CSS, and script files on a content delivery
network (CDN).

•	 It uses a distributed cache to reduce redundant SQL Server calls. The reference
architecture uses the Azure Redis cache, which offers a high-performance key-value
store.

•	 It employs a queuing mechanism to help you stay responsive during large spikes in
transactions. The application uses Azure Service Bus queues.

•	 It uses a Binary Large Object (BLOB) storage service to handle the storage of any
large objects such as documents, images, audio, and video that might be uploaded
to the service. The reference architecture uses Azure BLOB storage. This design frees
the developer from needing to worry about running out of disk space.

•	 It keeps your server software as simple as possible and pushes complex UI rendering
logic to the client whenever possible. The microservices use the Web API features
of ASP.NET Core MVC to provide a RESTful service interface. All the UI logic is
delivered from the static content store. The architecture does not dictate a specific
front-end UI framework but can be made to work with any popular framework such
as ReactJS/Flux or Angular 2. All front-end assets including JavaScript, CSS, images,
fonts, and HTML files will be deployed in a dedicated static content pod and will not
be intermingled with the service pods.

•	 Microservices that require a database use SQL Server instances deployed in an
elastic pool. Each microservice has its own database, which allows the individual
databases to be scaled independently. Using an elastic pool makes it easier to
manage the set of databases by allowing the databases to share a pool of resources.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

176

Figure 6-2 shows a reference architecture for a large-scale web application hosted in the Microsoft
Azure public cloud.

PC or Mac
Smartphone

Tablet

The Internet

Internet Firewall

Azure Load
Balancer

Azure
Blop Storage

Azure
Redis Cache

Microservice 1

Pod 1

ASP.NET Core ASP.NET Core ASP.NET Core ASP.NET Core ASP.NET Core ASP.NET Core

Kubemetes
Master

Azure Service Bus
Queue

Windows
Azure Zone 2 Azure SQL Database Elastic Pool

Internal Firewall

Database Database Database Database Database

Pod 2 Pod 1 Pod 2 Pod 1 Pod 2

Microservice 2 Microservice 3

Static Content Service

Static Content Pod

Kubernetes Cluster
in Azure Container Service

CDN

Windows
Azure Zone 1

Figure 6-2. Large Internet-facing application reference architecture

Other Deployment Scenarios

The small Internet-facing application reference architecture and large Internet-facing application reference
architecture show very different designs and complexity. Both designs assume that the applications will
be consumed over the Internet. Once you select a reference architecture that best meets your scalability
requirements, you can adjust the design to meet the unique needs of the application. For example, Figure 6-3
shows a small line-of-business application. It was derived from the small Internet-facing application, but since
it is accessed only by employees inside the firewall, it has been simplified and no longer has firewalls separating
the users from the application servers. The application adds Active Directory, which is used for authentication
for both the application and database tiers.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

177

6-2. Designing Your ASP.NET Core MVC Project for the Cloud
Problem
While reviewing possible deployment scenarios with a client, you were asked if you thought the application
should be deployed to the cloud. You have never built an application to run in the cloud and need guidance
on how using a public cloud service changes how you design an application.

Solution
When you are designing an application to run in your company’s datacenter, there might be a few things that
you take for granted. Most corporate IT departments purchase servers with multiple layers of redundancy.
They have multiple fans, power supplies, hard disks, network adapters, and other features that prevent the
failure of a single component from taking down an entire server. Although this does not prevent all hardware
failures, it does make them relatively rare. This might not be the case in the cloud. While cloud vendors have
high overall reliability, they use a variety of techniques to lower operational costs that can result in a higher
rate of failure for individual nodes. When this occurs, your application may experience an intermittent
outage while it is automatically moved to a new node. You need to expect that individual node failures could
occur and build resiliency into your application so your application can recover automatically.

Another difference between the public cloud and traditional applications is that cloud applications are
generally more distributed. For example, rather than writing files to attached storage on a server, you will be
more likely to be using a BLOB storage service. It should be noted that most of the advice given here can also
be applied to a microservices architecture in general and is not unique to any specific cloud vender.

PC or Mac

Load Balancer

Active Directory ASP.NET Core ASP.NET Core

SAN or NAS

Database Server

Corporate
Network

The second
node is
optional

Figure 6-3. Small line-of-business application

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

178

Here are some general tips for making your ASP.Net Core MVC application more robust:

•	 Design your services to be stateless. Assume that the next request by the same
user could be handled by another server. Do not rely on local server memory
for maintaining state. This is also true for applications deployed in a corporate
datacenter that have more than one node behind a load balancer. Even if your cloud
vendor supports the use of “sticky cookies” to keep individual users pinned to a
specific server, these solutions do not always work as expected and will ultimately
limit your scalability and increase operational complexity. See recipe 9-6 for more
information.

•	 Have a contingency plan that allows your application to function with reduced
functionality if a service the application is dependent on becomes unreachable.

•	 Code defensively and test your edge cases. For example, how will your application
respond if the content delivery network hosting your JavaScript libraries goes down
or is performing poorly? Can you fall back to a local copy of the library? For more
information on this technique, see the discussion on using the Fallback Tag Helper
in recipe 4-8.

•	 Employ retry logic so your application does not fail when a service it depends on
experiences an intermittent outage. For example, recipe 6-4 shows how to enable
retry logic when configuring a connection to SQL Server.

Another aspect you might be taking for granted is the proximity of the servers in your architecture.
For example, in most corporate deployments, your database server will usually be in the same datacenter
as your application server, and you will have very low latency when running a query. This might not be the
case in the cloud. You should assume a higher level of network latency when running your database queries
and calling services on other nodes. You might find that the code that runs fine in your local development
environment is significantly slower in production. Here are some general tips for reducing the impact of
network latency:

•	 Be cognizant about when your code is calling remote services. When designing
your APIs, use naming conventions that make it clear when network
communications are required.

•	 Avoid designs that require many trips to the database or web service to process a
single request. If you are making hundreds of separate network calls to your database
to handle a single service call, consider a redesign.

•	 Consider using the Unit of Work pattern so you can package a set of commands and
then send them over the wire as a batch. This technique is shown in recipe 6-9.

6-3. Deploying an ASP.NET Core MVC Application in a
Docker Container
Problem
You may have heard that using container technologies such as Docker can greatly simplify application
deployment. You want to get a better understanding of what Docker is and how it can be used to deploy your
ASP.NET Core application.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

179

Solution
Containerization platforms are a technology that allows you deploy an application and all its dependencies
in a single file. This file contains a complete file system, runtime, operating system–specific libraries and
tools, and anything else that would normally be installed on a server.

Containers provide the isolation benefits of a virtual machine but have much lower overhead.
Containers use fewer system resources than virtual machines because they do not carry the weight of
a hardware virtualization layer and an operating system. Because containers do not need to wait for an
operating system to boot up, they start up in seconds.

Containers also offer benefits over installing an application on bare hardware. Since containers are self-
contained, many containers can run on the same server without interfering with each other. Another benefit
of the container concept is that containers are composed in layers. Each change to the base layer is stored as
a new layer with the base layer never actually being changed. This allows many images to share a common
base. When you download an image that uses the same base image as one you have downloaded previously,
Docker will only need to download the delta. Because of this, even complex applications can be downloaded
to a server and be online in less than a minute. For example, the Microsoft/aspnetcore 1.1 image that is
used as the base image for ASP.NET Core applications is made up of 11 layers. The layers include the Debian
operating system, a subset of Linux utilities such as unzip and curl, ASP.NET Core Runtime for Linux, and
libuv (which is the multiplatform asynchronous I/O library used by Kestrel).

Docker is the most popular container platform. Docker has millions of users and the support of many
major companies including Google and Microsoft. Many software vendors and open source projects have
created official containers and made them available for downloading on the public container repository
Docker Hub.

Containerizing an ASP.NET Core MVC Application
Microsoft has simplified the process of getting your application into a Docker container. Microsoft has
created a Docker image that contains all the dependencies for ASP.NET Core MVC and has made it publicly
available on Docker Hub. A new feature in Visual Studio has made it easy to compose a new Docker image
that uses Microsoft’s official ASP.NET Core MVC container as a base layer and then adds your application to
it. Visual Studio even allows you to debug your application running inside the Docker container.

How It Works
Before you can use Visual Studio’s Docker support features, you must first install Docker for Windows. It
is also recommended that you install the Hyper-V feature of Windows. Docker will use Hyper-V to run the
Docker host. If Hyper-V is not available, Docker for Windows will install Oracle Virtual Box and create a
virtualized Docker host using Virtual Box.

For instructions on installing Hyper-V please, see the following page:

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-
hyper-v

The Docker installer can be downloaded from https://www.docker.com/products/overview. Once the
installer has been downloaded, double-click it to begin the installation process. Once the process has been
completed, ensure that the Launch Docker check box has been selected and click the Finish button. After
several minutes, you will see a Welcome window informing you that Docker is up and running.

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v
https://www.docker.com/products/overview

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

180

After installing Docker, you can verify your installation by opening a PowerShell window and trying out
some of the Docker commands.

•	 docker --help: This command will list all the available commands in the Docker CLI.

•	 docker --version: This command will show what version of Docker you are
running.

•	 docker info: This command will give you detailed information regarding your
Docker installation including how many containers are running, how many images
are installed, and the kernel and operating system of the Docker host. It should be
noted that the Docker host is running a custom version of Linux called Alpine Linux.

If you are using Hyper-V, you can open the Hyper-V console by entering Hyper-V in the Windows search
box and then clicking Hyper-V Manager desktop application in the results list. In the Hyper-V Manager
window, you will see a virtual machine named MobyLinuxVM, as shown in Figure 6-4. This is the Docker
host that was created by the Docker for Windows installation program.

Figure 6-4. The Docker host VM in Hyper-V Manager

Creating a Shared Drive
The Visual Studio build process requires that a volume be shared in order for it to build and run the Docker
images. This should be the same volume where you will be creating the Visual Studio solution for your
ASP.NET Core MVC project. To create the shared drive, right-click the Docker icon in the Windows system
tray and select Settings from the pop-up menu. In the Docker settings window, click Shared Drives and then
select the drive where you will be creating your solution, as shown in Figure 6-5.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

181

Creating an ASP.NET Core MVC Project with Docker Support
To create a new ASP.NET Core MVC Web Application project with Docker support, open Visual Studio 2017
and then select New ➤ Project from the File menu. In the New Project window, search for ASP.NET Core
and then select ASP.NET Core Web Application (.NET Core). Name the solution and project Recipe03. In
the New ASP.NET Core Web Application window, select ASP.NET Core 1.1 from the drop-down list and then
select Web Application from the list of available ASP.NET Core 1.1 templates.

Ensure that the Enable Docker Support check box is selected and then click OK.
After the project has been created, you will see two folders under the solution in Solution Explorer. The

first folder is docker-compose, and the second is the ASP.NET Core application. docker-compose contains
two files, docker-compose.ci.build.yml and docker-compose.yml. These files are used by the Compose
feature of Docker that allows you to define and run an application that is composed of one or more Docker
containers. The docker-compose.yml files describe the services, networks, and volumes used by the
application. Listing 6-1 shows the docker-compose.yml file created by Visual Studio.

Listing 6-1. docker-compose.yml Created by Visual Studio

version: '2'

services:
 recipe03:
 image: recipe03
 build:
 context: ./Recipe03
 dockerfile: Dockerfile

Figure 6-5. Sharing a drive with Dockyer

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

182

The first line of the docker-compose.yml file describes the version of the Compose file format. You are
using version 2 of the format. The most current version supported and recommended by Docker is version 3.
For now, I am keeping version 2 since this is what the Visual Studio team has validated with Visual Studio.

The services section describes a list of services that make up the application. The current application
contains only one service named recipe03. The recipe03 service uses an image named recipe03. If additional
projects were added to the solution, each of them would be added as a service in docker-compose.yml. The
build section in the docker-compose file describes configuration options that are applied at build time. The
Context property contains the path to the directory that contains the Docker file. In this case, it is pointing to
the directory containing the ASP.NET Core MVC project. The context can also point to a Git repository. The
dockerfile property contains the name of the Docker file found in the directory specified by the Context
property.

The second file under docker-compose, docker-compose.ci.build.yml (shown in Listing 6-2), is
another Docker Compose file that is used to create a container that will build and publish the project.
docker-compose.ci.build.yml defines a service named ci-build. The ci-build service uses an image
named microsoft/aspnetcore-build version 1.0-1.1 as the base image. During the build operation,
it will automatically pull this image down from Docker Hub if it does not exist on your PC. The next two
properties specify the volume and directory path where the build will be created. The last line of the file is
the command that will be run to restore the NuGet packages used in the project and then to publish the
project to the specified path.

Listing 6-2. docker-compose.ci.build.yml

version: '2'

services:
 ci-build:
 image: microsoft/aspnetcore-build:1.0-1.1
 volumes:
 - .:/src
 working_dir: /src
 command: /bin/bash -c "dotnet restore ./Recipe03.sln && dotnet publish ./Recipe03.sln -c
Release -o ./obj/Docker/publish"

If you want to learn more about the Docker Compose file format, you can access the documentation
online here:

https://docs.docker.com/compose/compose-file/compose-file-v2/#/service-configuration-reference

Inside the ASP.NET Core MVC project folder, Visual Studio has added two files, Dockerfile and
.dockerignore. Note that the .dockerignore file is nested under Dockerfile in Solution Explorer. The
.dockerignore file shown in Listing 6-3 tells the Docker CLI not to include the files specified in the listed
glob patterns when it sends the context to the Docker daemon. This prevents large or sensitive files from
being added to an image. Glob patterns are Unix-style pathname pattern expansions. Glob patterns allow
you to use wildcards to include or exclude groups of files. For example, * matches any string, ? matches any
single character, and […] can be used to match a set of enclosed characters. The ! character, as you may
suspect, tells Docker to ignore all but the pattern listed. The result of the file shown in Listing 6-3 is that
Docker will ignore all files except for the obj/Docker/empty folder and the obj/Docker/publish folder and
all its contents.

https://docs.docker.com/compose/compose-file/compose-file-v2/#/service-configuration-reference

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

183

Listing 6-3. .dockerignore

*
!obj/Docker/publish/*
!obj/Docker/empty/

Listing 6-4 shows the Docker file.

Listing 6-4. Dockerfile

FROM microsoft/aspnetcore:1.1
ARG source
WORKDIR /app
EXPOSE 80
COPY ${source:-obj/Docker/publish} .
ENTRYPOINT ["dotnet", "Recipe03.dll"]

The first line of Dockerfile uses the FROM command to set the base image to Microsoft/
aspnetcore:1.1. If this image does not exist on your PC, Docker will automatically download it from
Docker Hub. The aspnetcore image contains .NET Core and native images for all ASP.NET Core libraries.
Including native images of the core libraries results in significantly faster cold start times since it will not be
necessary to JIT compile the .NET libraries before the application loads.

If you want to learn more about what is in the aspnetcore image, you can view its page on Docker Hub here:

https://hub.docker.com/r/microsoft/aspnetcore/

In the next line, the ARG command is used to define a variable named source whose value can be
passed in at build time. The WORKDIR command sets the working directory that will be used by the COPY
and ENTRYPOINT commands. The specified directory will be created automatically if it does not exist. The
EXPOSE command tells Docker that the container will listen on port 80 at runtime. It should be noted that
EXPOSE does not expose port 80 to the host. To expose the port to the host, you need to use the -p flag when
executing the Docker run command.

The COPY command copies the objects specified in the source variable to the file system on the
container. The last command in the file ENTRYPOINT allows the container to run as an executable. It tells
Docker to execute the dotnet executable with the parameter Recipe03.dll. This causes the ASP.NET Core
MVC application to launch when the container is launched with the docker run command.

Running and Debugging the Application in the Container
After adding Docker support to the project, you should see Docker as the only item in the toolbar, as shown
in Figure 6-6.

Figure 6-6. Docker as an option in the run toolbar

https://hub.docker.com/r/microsoft/aspnetcore/

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

184

Clicking the Run button or pressing the F5 key on your keyboard will launch the application inside
the Docker container. You will be able to debug the application just like you can if the application was run
in IIS or the command line. While the application is running, you can inspect it using some of the Docker
command-line tools.

6-4. Creating a Data Access Layer Using Entity Framework
Core Code First
Problem
You have just started a new project but have not created your database. You like to work with plain old
C# objects (POCO), but you do not want to hand-code all your data access code. You would like to take
advantage of the Code First features of Entity Framework Core to generate the database code.

Solution
Like ASP.NET Core, Entity Framework Core is new and was written from the ground up over the past few
years. It shares many of the same patterns with Entity Framework 6.x but is a new code base with new
tooling. As with Entity Framework 6, Entity Framework Core supports the concept of migrations. Migrations
track changes in an object model and can be used to automatically generate the SQL code required to create
or modify a database.

Unlike Entity Framework 6.x, the current version of Visual Studio does not offer any graphical tools for
creating migrations and applying them to the database. This functionality is available only in the dotnet
command-line interface.

There are seven basic steps required to set up Entity Framework Core in your project and run migration
on a database:

 1. Create the object model using plain old C# classes. These classes can be
optionally decorated with data annotations to designate which fields are required
as well as the length of the strings.

 2. Add the Entity Framework Core NuGet packages to the project.

 3. Create a class that extends Entity Framework Core DbContext and includes DbSet
collections for all the top-level classes in the object model you created in step 1.
Optionally, you can add validation rules and customize how object relationships
will be generated in the database in the DbContext OnModelCreating method. This
technique can be used as an alternative to using data annotations in your model.

 4. Create a configuration file that contains the connection string to the database server.

 5. Modify the Startup.cs class’s ConfigureServices method in the web
application so the DbContext class is added and configured. This is required for
the web application to use the database.

 6. Add a Startup.cs class to the class library project and then modify the
ConfigureServices method so DbContext is added and configured. This is
required for step 7 to work.

 7. Use the dotnet ef migration command to create migrations.

 8. Use the dotnet ef database command to commit migrations to the database or
generate the SQL scripts.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

185

How It Works
For this example, you start by creating an empty solution and then add two projects to it. The first project
is an ASP.NET Core class library that will contain your data access library, and the second will contain
your ASP.NET Core MVC web application. Although you can create your classes directly inside your
ASP.NET Core MVC project, in most cases it is best to define this in a separate class library. Using a separate
class library allows you to reuse the model in other projects and aids in team development scenarios. For
example, you may have a team member who focuses on the data model, while other developers concentrate
on the service layer and user interface.

Creating the Solution
Open Visual Studio to start creating the solution. On the Get Started page, under New Project you should
see ASP.NET Core Web Application (.NET Core) under Recent Project Templates. Click ASP.NET Core Web
Application (.NET Core) to open the New Project window. Name the project Recipe04.Web and the solution
Recipe04. Ensure that “Create directory for solution” is selected. You can then click OK.

In the New ASP.NET Core Web Application window, ensure that ASP.NET Core 1.1 is selected from the
drop-down list, Web Application is selected under ASP.NET Core 1.1 Templates, and Authentication type
is set to No Authentication. Ensure that Enable Docker Support is not selected and then click OK. After the
solution has been created, right-click the Solution node in Solution Explorer and then select Add ➤ New
Project. Select the Class Library (.NET Core) template from the template list and name the project
Recipe04.DataAccess.

After the project has been created, in Solution Explorer, right-click Class1.cs and select Delete.
Click OK when prompted.

Adding Entity Framework Core NuGet Packages
To use Entity Framework Core in the Recipe04.DataAccess library, you need to add references to several
NuGet packages. There are several ways you can add NuGet packages to a project. You can use the NuGet
Package Manager GUI, you can install them using the Package Manager Console, or you can manually add
package references by editing the project’s .csproj file. Editing the .csproj file is the fastest way when you
need to add several packages at the same time. To edit the .csproj file, right-click the Recipe04.DataAccess
project in Solution Explorer and select Edit Recipe04.DataAccess.csproj. The completed project file should
match Listing 6-5.

Listing 6-5. Recipe04.DataAccess.csproj

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore" Version="1.1.1" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer" Version="1.0.2" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="1.0.2" />
 </ItemGroup>

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

186

 <ItemGroup>
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
Version="1.0.0 " />
 </ItemGroup>
</Project>

Note that by adding Microsoft.EntityFrameworkCore.SqlServer you are also adding its dependencies
to your project. You can explore this by expanding the References node in Visual Studio’s Solution Explorer.
You will see under Dependencies ➤ NuGet ➤ Microsoft.EntityFrameworkCore.SqlServer that Microsoft.
EntityFrameworkCore.Relational has also been added.

The reference to Microsoft.EntityFrameworkCore.Tools.DotNet is required in order for you to use the
Entity Framework Core command-line tools with the dotnet CLI. Microsoft.EntityFrameworkCore.Tools.
DotNet is a DotNetCliToolReference item. It adds the dotnet ef command in the CLI. Note at the time of
this writing, a bug in NuGet Package Manager prevents you from adding DotNetCliToolReference items
using the GUI. The only way to add Microsoft.EntityFrameworkCore.Tools.DotNet is to manually modify
the .csproj file, as you have done in this example.

Next, you will add the NuGet packages to the web project. Since you need to add only a single package,
it is fastest to do it via the Package Manager Console. To show the Package Manager Console, select View ➤
Other Windows ➤ Package Manager Console from Visual Studio’s main menu. In the Package Manager
Console window, change the Default project in the Package Manager Console to Recipe04.Web and then run
the following command:

Install-Package Microsoft.EntityFrameworkCore.SqlServer

Even though you will be maintaining a separation of concerns in your code by not doing any
explicit manipulation of database objects, the web project still needs a reference to Microsoft.Entity
FrameworkCore.SqlServer in order for you to configure the connection string for your DbContext in the web
application’s startup file.

Creating the Model Classes
For this example, the model will consist of two classes: Artist and ArtistSkill. The first class will represent
a recording artist, and the second class will represent skills possessed by that artist. The classes themselves
will be plain C# classes. There will be no Entity Framework–specific code required.

 1. Add a new folder under the Recipe04.DataAccess project and name it Entities.

 2. Right-click this folder and select Add ➤ Class.

 3. In the Add New Item window, name your file Artist.cs and then click Add.

 4. Repeat this process for the second class, naming the file ArtistSkill.cs.

Modify the files to match Listing 6-6 and Listing 6-7.

Listing 6-6. Artist.cs

using System;
using System.Collections.Generic;

namespace Recipe04.DataAccess.Entities
{
 public class Artist

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

187

 {
 public int ArtistId { get; set; }
 public string UserName { get; set; }
 public string Country { get; set; }
 public string Provence { get; set; }
 public string City { get; set; }
 public string WebSite { get; set; }
 public DateTime CreateDate { get; set; }

 public virtual IList<ArtistSkill> ArtistSkills { get; set; }
 }
}

The Artist class is a plain old CLR object (POCO). It contains seven properties. Even though there is
nothing in this code specific to the Entity Framework, two of the properties have been specifically designed
to follow conventions that can be leveraged by Entity Framework Code First. The first is the ArtistId field.
By convention, Entity Framework will create the database table for a class: it looks to see if it has a property
named either Id or Id prefixed with the name of the class, as in ArtistId. In the examples in this book, I use
the latter style.

The second property of interest is the ArtistSkills collection. This property holds a collection of
ArtistSkill objects and is marked as virtual. This signature is a convention that Entity Framework Code
First will use to create a navigation property that represents a relationship between the two entities.

Listing 6-7. ArtistSkill.cs

namespace Recipe04.DataAccess.Entities
{
 public class ArtistSkill
 {
 public int ArtistSkillId { get; set; }
 public string TalentName { get; set; }
 public int SkillLevel { get; set; }
 public string Details { get; set; }
 public string Styles { get; set; }

 public virtual Artist Artist { get; set; }
 }
}

Like the code in Listing 6-6, Listing 6-7 uses the ID convention to create a property that will represent a
primary key. It also has a property named Artist marked as virtual. This is the other side of the navigation
property defined in Listing 6-5. Both navigation properties are required for you to write LINQ queries that
extract data from both tables. The Artist property of ArtistSkill allows reverse navigation to the parent
Artist object.

Creating the DbContext
The Artist and ArtistSkill classes are normal C# classes. These classes by themselves do not have any
knowledge of any database and have no way of persisting their values. To enable this functionality, you need
to create a class that extends the DbContext class and then have that class reference your entity classes.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

188

To add a DbContext to the project, follow these steps:

 1. Create a new folder at the root of your project and name it Context.

 2. Right-click the folder and select Add ➤ New Class. Name the class
ArtistContext.cs.

Modify the class to match Listing 6-8.

Listing 6-8. The ArtistContext Class

using Microsoft.EntityFrameworkCore;
using Recipe04.DataAccess.Entities;

namespace Recipe04.DataAccess.Context
{
 public class ArtistContext : DbContext
 {
 public ArtistContext(DbContextOptions<ArtistContext> options) : base(options)
 {
 }

 public DbSet<Artist> Artists { get; set; }
 public DbSet<ArtistSkill> ArtistSkill { get; set; }
 }
}

The ArtistContext class shown in Listing 6-8 extends Microsoft.EntityFrameworkCore.DbContext.
By doing this, you have transformed this simple class into a proxy to your back-end data store and made it
implement both the Repository and Unit of Work patterns.

Inside the body of ArtistContext are two public properties that expose a DbSet collection of Artist
and ArtistSkill. A DbSet class represents a collection of entities of a given type within the context. It allows
data to be queried, updated, and deleted from the back-end database.

From the perspective of the developer, you have just made a persistent-ignorant pair of C# classes into
an almost fully functional data access layer.

Your DbContext class is the proxy that your code uses to communicate with its persistence store.
The back-end store that DbContext uses is determined by one of two things: a connection string that
you explicitly provide in your code or configuration or, if nothing is provided, a dynamically generated
connection string based on its class name and namespace.

Later in this recipe, you will pass configuration information to the ArtistContext class when you load
it in StartUp.cs. The DbContext base class implements the Options pattern, which allows the database
provider type and connection string to be injected into the DbContext class. For dependency injection to
work, a public constructor that accepts a DbContextOptions<ArtistContext> object as an argument must
be added to ArtistContext.

Using the Fluent API to Specify Database Mapping Details
Entity Framework offers a feature known as migrations to help you keep your code and database in sync. The
migrations feature creates an initial snapshot of your entity model and then compares changes in the model to
the snapshot and generates a set of scripts to implement the delta between the code and the stored snapshot.

The migration feature uses a combination of Code First conventions, data annotations, and the Fluent
API to determine how the POCOs should be mapped to database tables.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

189

Code First conventions are standard naming conventions that allow the migration feature to infer things
such as primary keys and relationships based on property names and data types.

Data annotations are a set of attributes that allow you to annotate classes and properties with attributes
that can specify whether properties are required, the max length, and whether a property is a key.

The Fluent API is a code-based method for specifying similar information data annotations, but it
is somewhat more flexible and allows you to keep your entity classes clean and free of database-specific
concerns. While it is possible to use both data annotations and Fluent API together, it is usually best to
use one or the other. Mixing the two techniques can lead to duplicate or contradictory settings that can be
difficult to debug. For this example, you will be using the Fluent API.

In Listing 6-9 you override the OnModelCreating method and use the Fluent API to specify the
maximum length of all the properties with string data types. This is important because otherwise all
properties with the string data type would be mapped to varchar(max) fields in the database, which can
have detrimental performance impacts. For the Artist.UserName and ArtistSkill.TalentName properties,
the Fluid API’s IsRequired property is set to true. In Entity Framework Core, all nullable typed properties are
optional by default. Since strings can be assigned null values, you need to explicitly set the property to true
if you want to make the database field required when the database table is generated.

Listing 6-9. OnModelCreating Method Added to ArtistContext

protected override void OnModelCreating(ModelBuilder builder)
{
 // Artist
 builder.Entity<Artist>().Property(x => x.City).HasMaxLength(50);
 builder.Entity<Artist>().Property(x => x.Country).HasMaxLength(50);
 builder.Entity<Artist>().Property(x => x.Provence).HasMaxLength(50);
 builder.Entity<Artist>().Property(x => x.UserName).IsRequired(true).

HasMaxLength(50);
 builder.Entity<Artist>().Property(x => x.WebSite).HasMaxLength(255);

 // ArtistSkill
 builder.Entity<ArtistSkill>().Property(x => x.Details).HasMaxLength(255);
 builder.Entity<ArtistSkill>().Property(x => x.TalentName).IsRequired(true).

HasMaxLength(50);
 builder.Entity<ArtistSkill>().Property(x => x.Styles).HasMaxLength(255);
}

Setting the Connection String Using a Configuration File
It is a best practice to avoid hard-coding database connection strings into your source code since database
connection strings will vary depending on where the application is deployed. Ideally, you would store
this information in a file that can be easily modified without the need to recompile code. In older versions
of ASP.NET, you would have stored the connection string in the web.config file. ASP.NET Core uses a
new configuration system that allows you to use many configuration files and different file formats. In
this example, you will create a new ASP.NET configuration file in the JSON format. To do this, select the
Recipe04.Web project in Solution Explorer and then press Ctrl+Shift+A to open the Add New Item window.
Enter json into the search box and then select the ASP.NET Configuration File template. Name the new file
dbconfig.json; then click the Add button in the Recipe04.Web project and modify it to match Listing 6-10.
When done, repeat this step on the Recipe04.DataAccess project.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

190

Listing 6-10. dbconfig.json

{
 "ConnectionStrings": {
 "DefaultConnection":
 "Server=.;Database=Chapter06Recipe04;Trusted_Connection=True;MultipleActiveResult
Sets=true"
 }
}

The configuration shown in Listing 6-10 is a JSON-formatted data structure. The configuration file has
no set schema, which leaves developers with total freedom of how they want to structure the configuration
file. In this case, I have created a two-level hierarchy. This format could potentially allow you to store
configuration information for several DbContext classes, each with their own set of properties.

The connection string has several properties that should be noted. First is the Server property that
points to a default instance of SQL Server running on the local machine. This assumes you have a SQL Server
Express or Developer edition running locally and configured as a default instance. Note that if you set up
SQL Express with the default settings, it would have created a named instance accessed using .\SQLEXPRESS.

The connection string uses the shorthand format that allows you to use a period rather than type out the
local machine name. The appendix of this book provides instructions on how to install SQL Server Express.
While it is possible to use LocalDB, which comes with Visual Studio, I have found inconsistent behavior
depending on how you launch your application.

Next is the Database property, which allows you to specify the name of the database, Chapter06Recipe04.
The Trusted_Connction property is next. When Trusted_Connction is set to true, ASP.NET will use the

login credentials of the current system process to connect to the database. When the application is running
in IIS Express, it will log on to SQL Server using your credentials. Because of this, you need to make sure that
your account has administrative access to the database.

The last property of the connection string, MultipleActiveResultSets, activates a feature of SQL
Server known as MARS, which allows the execution of multiple SQL Server batches on a single connection.

Adding a Reference to the Data Access Project to the Web Project
Before you can access any of the types defined in the data access layer from your web application, you must
first add a reference. To do this, right-click Dependencies in Solution Explorer under the Recipe04.Web
project and select Add Reference from the pop-up menu. In the Reference Manager window, select Solution
under the Projects node in the left panel and then check the box next to Recipe04.DataAccess. Click the OK
button. If you expand the Dependencies node in Solution Explorer, you should now see a Projects node that
contains a link to the Recipe04.DataAccess project.

Adding a Startup Class to the Recipe04.DataAccess Project
For the dotnet CLI to create the migrations, it needs a Startup class to be added so that database provider
and connection string information can be loaded into ArtistContext. The ArtistContext class’s
constructor shown in Listing 6-8 takes a DbContextOptions object as an argument. By registering the
DbContext object in the Startup class, you are instructing the dependency injection system to inject the
DBContextOptions object into the ArtistContext class each time one is created. Listing 6-11 shows the
Startup class.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

191

Listing 6-11. Startup Class in Recipe04.DataAccess

using Microsoft.AspNetCore.Hosting;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Recipe04.DataAccess.Context;

namespace Recipe04.DataAccess
{
 public class Startup
 {
 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("dbconfig.json", optional: false);
 Configuration = builder.Build();
 }
 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 var connString = Configuration.GetConnectionString("DefaultConnection");
 services.AddDbContext<ArtistContext>(
 options => options.UseSqlServer(connString)
);
 }
 }
}

Database Migrations
In older versions of Entity Framework, the database migrations feature was implemented as a set
of PowerShell cmdlets that were typically run using the NuGet console. In Entity Framework Core,
this functionality has been moved to the framework commands, which are invoked using the dotnet
command-line interface. Commands are a new concept for ASP.NET Core that moves many features that
were previously available only in Visual Studio to a set of command-line utilities that can be run in any
environment supported by .NET Core.

Creating Your First Migration

To create a database migration, open the Visual Studio command prompt. This is a special version of
the command prompt that contains all the environment variables needed for working with .NET. Once
the command window is open, you will need to navigate to the directory. You can do this using the cd
command. Here’s an example:

 cd "\MvcRecipes\Chapter06\Recipe04\src\Recipe04.DataAccess"

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

192

After navigating to the directory, enter the following command to create the initial migration
named Initial:

dotnet ef migrations add Initial

This command launches the .NET Runtime Engine, which will run your Startup class loading the
configuration information. It then executes the ef migrations add command.

After running the command, you should see a new directory added to the Recipe04.DataAccess project
called Migrations with three files. The first file, ArtistContextModelSnapshot, is a class that describes a
snapshot of the current state of your model. This will be updated each time you add a new migration. It is
used by the Entity Framework migration command to determine what changed in your model since the last
migration. The second two files shown in Listing 6-12 are named using the date and time the migration was
generated in the format { YYYYMMDDHHMMSS }_initial.cs and { YYYYMMDDHHMMSS }_initial.Designer.cs.
For example, if the file was created on March 18, 2017, the files would be named 20170318063117_Initial.cs
and 20170318063117_Initial.Designer.cs.

Initial and Initial.Designer are partial classes that contain the scaffolding for the migration.
Initial has two methods, Up and Down. The Up method contains code that will implement the required
changes on the database. The Down method will revert the changes. The Initial.Designer file contains
a single method called BuildTargetModel. The BuildTargetModel method is generated based on a
combination of Fluent API calls from the DBContext OnModelCreating method, data annotations on the
model, and Code First conventions. It is generally a good idea to review this code before committing changes
to the database. If you made a mistake in the class design or Fluent API calls, you should be able to find it by
reviewing the code.

Listing 6-12. Migration File Generated by Entity Framework Migration Command

/// 20170318063117_Initial.cs
using System;
using System.Collections.Generic;
using Microsoft.EntityFrameworkCore.Migrations;
using Microsoft.EntityFrameworkCore.Metadata;

namespace Recipe04.DataAccess.Migrations
{
 public partial class initial : Migration
 {
 protected override void Up(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.CreateTable(
 name: "Artists",
 columns: table => new
 {
 ArtistId = table.Column<int>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",

SqlServerValueGenerationStrategy.IdentityColumn),
 City = table.Column<string>(maxLength: 50, nullable: true),
 Country = table.Column<string>(maxLength: 50, nullable: true),
 CreateDate = table.Column<DateTime>(nullable: false),
 Provence = table.Column<string>(maxLength: 50, nullable: true),
 UserName = table.Column<string>(maxLength: 50, nullable: false),
 WebSite = table.Column<string>(maxLength: 255, nullable: true)
 },

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

193

 constraints: table =>
 {
 table.PrimaryKey("PK_Artists", x => x.ArtistId);
 });

 migrationBuilder.CreateTable(
 name: "ArtistSkill",
 columns: table => new
 {
 ArtistSkillId = table.Column<int>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",

SqlServerValueGenerationStrategy.IdentityColumn),
 ArtistId = table.Column<int>(nullable: true),
 Details = table.Column<string>(maxLength: 255, nullable: true),
 SkillLevel = table.Column<int>(nullable: false),
 Styles = table.Column<string>(maxLength: 255, nullable: true),
 TalentName = table.Column<string>(maxLength: 50, nullable: false)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_ArtistSkill", x => x.ArtistSkillId);
 table.ForeignKey(
 name: "FK_ArtistSkill_Artists_ArtistId",
 column: x => x.ArtistId,
 principalTable: "Artists",
 principalColumn: "ArtistId",
 onDelete: ReferentialAction.Restrict);
 });

 migrationBuilder.CreateIndex(
 name: "IX_ArtistSkill_ArtistId",
 table: "ArtistSkill",
 column: "ArtistId");
 }

 protected override void Down(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.DropTable(
 name: "ArtistSkill");

 migrationBuilder.DropTable(
 name: "Artists");
 }
 }
}

/// 20170318063117_Initial.Designer.cs
using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using Microsoft.EntityFrameworkCore.Metadata;
using Microsoft.EntityFrameworkCore.Migrations;
using Recipe04.DataAccess.Context;

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

194

namespace Recipe04.DataAccess.Migrations
{
 [DbContext(typeof(ArtistContext))]
 [Migration("20170319063117_Initial")]
 partial class Initial
 {
 protected override void BuildTargetModel(ModelBuilder modelBuilder)
 {
 modelBuilder
 .HasAnnotation("ProductVersion", "1.0.2")
 .HasAnnotation("SqlServer:ValueGenerationStrategy",

SqlServerValueGenerationStrategy.IdentityColumn);
 modelBuilder.Entity("Recipe04.DataAccess.Entities.Artist", b =>
 {
 b.Property<int>("ArtistId")
 .ValueGeneratedOnAdd();

 b.Property<string>("City")
 .HasMaxLength(50);

 b.Property<string>("Country")
 .HasMaxLength(50);

 b.Property<DateTime>("CreateDate");

 b.Property<string>("Provence")
 .HasMaxLength(50);

 b.Property<string>("UserName")
 .IsRequired()
 .HasMaxLength(50);

 b.Property<string>("WebSite")
 .HasMaxLength(255);

 b.HasKey("ArtistId");

 b.ToTable("Artists");
 });

 modelBuilder.Entity("Recipe04.DataAccess.Entities.ArtistSkill", b =>
 {
 b.Property<int>("ArtistSkillId")
 .ValueGeneratedOnAdd();

 b.Property<int?>("ArtistId");

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

195

 b.Property<string>("Details")
 .HasMaxLength(255);

 b.Property<int>("SkillLevel");

 b.Property<string>("Styles")
 .HasMaxLength(255);

 b.Property<string>("TalentName")
 .IsRequired()
 .HasMaxLength(50);

 b.HasKey("ArtistSkillId");

 b.HasIndex("ArtistId");

 b.ToTable("ArtistSkill");
 });
 modelBuilder.Entity("Recipe04.DataAccess.Entities.ArtistSkill", b =>
 {
 b.HasOne("Recipe04.DataAccess.Entities.Artist", "Artist")
 .WithMany("ArtistSkills")
 .HasForeignKey("ArtistId");
 });
 }
 }
}

 ■ Tip always review your migration code. even though the entity Framework team did a good job with the
code generator, it is not perfect. there are times when you might need to tweak the code so it creates the
database objects you need.

At this point, even though the scaffolding has been generated, it has not been executed. If you notice
that you are missing something and need to make changes to your model, you can make the changes, run the
following command to remove the migration, and then run the add command again to regenerate the code.

 dotnet ef migrations remove

Running the Migration
To run the migration, you can use the following:

dotnet ef database update

The migration will now use the connection string specified in your ArtistContext constructor. If the
connection is successful, it will verify that the database exists. In this case, because you have not created
the database, the migration will create the database for you automatically using the server’s default settings
for new databases. Once the database is created, dotnet ef will use the code in the migration’s Up method to
generate the DDL code required to create the database objects.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

196

Backing Out a Migration
If you want to revert to a previous migration, you can call the following:

dotnet ef database update Initial

Here, Initial is the name of the migration you want to revert to. If you want to back out all migrations
and start over, you can pass in 0 for the name.

dotnet ef database update 0

Promoting the Changes to Production
In most organizations, developers do not have direct access to production. There is usually some sort of
change control process in place by which the developers create a change ticket and then attach a script that
includes the needed changes.

To accommodate this need, the Code First migration commands include a script command. When
the following script command is used, a SQL script will be created, and no actions will be taken against the
database:

dotnet ef migrations script -o initial.sql

This command generates a script for all your migrations, including the script to create the
__MigrationHistory table and insert the data for each migration. The –o command option allows you to
specify the name of the output file.

If you do not want to include all the migrations, you can specify the start and end migrations as the first
two arguments to the script command. A full list of arguments and options for the script command can be
displayed using the following:

dotnet ef migrations script --help

Modifying the Startup So the Web Application Can Use Your DbContext
Before you can use ArtistContext in your controllers, you will need to add the ArtistContext configuration
information to the Startup class. Modify the Startup class in the Recipe04.Web project to match
Listing 6-13. The changes to the class are shown in bold.

Listing 6-13. Adding an OnConfiguring Method to ArtistContext

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Microsoft.EntityFrameworkCore;
using Recipe04.DataAccess.Context;

namespace Recipe04.Web
{
 public class Startup

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

197

 {
 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddJsonFile("dbconfig.json", optional: false, reloadOnChange: true)
 .AddEnvironmentVariables();
 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<ArtistContext>(
 options => options.UseSqlServer(Configuration.GetConnectionString

("DefaultConnection"))
);
 services.AddMvc();
 }
 public void Configure(IApplicationBuilder app, IHostingEnvironment env,

ILoggerFactory loggerFactory)
 {
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseStaticFiles();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

198

In the Startup class’s constructor, you initialize the Configuration property by adding the JSON
file you had created earlier and then calling the build method to create a single configuration object that
contains the values from all the configuration files.

In the ConfigureServices method, you use the extension method AddDbContext, which is included in
the Microsoft.EntityFrameworkCore namespace. The AddDbContext method adds the ArtistContext class
to the ASP.NET Core dependency injection system and allows it to be injected into the controller classes. The
dependency injection system is also used by the command-line tools when generating the migrations and
updating the database. AddDbContext accepts an options parameter called UseSqlServer that allows you
to configure the context to use SQL Server. The connection string that was defined in the dbconfig.json file
shown in Listing 6-10 is passed as an argument to UseSqlServer.

6-5. Creating a Data Access Layer Using Entity Framework
Core Code First from an Existing Database
Problem
You want to create a data access layer based on an existing SQL Server database using Entity Framework
Core. You want to generate POCO classes based on your database tables and then use migrations for all
future enhancements to your application.

Solution
Entity Framework Core has a scaffolding feature that will generate C# classes based on the structure of an
existing database. The tool will also generate a DbContext class. To use this feature, you can create a new
ASP.NET Core project and add the required NuGet dependencies.

You can the run the scaffolding commands from the command prompt, which will add the generated
classes to your project.

How It Works
As with the examples in recipe 6-4 and later in recipe 6-6, you create the data access layer in a separate
class library.

Creating the Solution
Open Visual Studio. On the Start Page, click New Project. In the left pane that lists the template categories,
expand Visual C# and then the .NET Core Web node, and then click ASP.NET Core Web Application
(.NET Core). Name the project Recipe05.Web and the solution Recipe05.

In the New ASP.NET Core Web Application window, ensure that ASP.NET Core 1.1 is selected in
the drop-down list and then select Web Application under ASP.NET Core 1.1 Templates. Ensure that the
authentication type is set to No Authentication and that Enable Docker Support is not selected. You can
then click OK to create the solution. After the solution has been created, right-click the Solution node in
Solution Explorer and then select Add ➤ New Project. Select the Class Library (.NET Core) template from
the template list and name the project Recipe05.DataAccess.

After the project has been created, in Solution Explorer, right-click Class1.cs and select Delete.
Click OK when prompted.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

199

Creating the Sample Database
This example requires that you have a SQL Server database installed on your PC. If you have not set this up,
please follow the instructions in the book’s appendix.

To create the sample database used for this recipe, you can use the script provided in the book’s code
samples available on GitHub. If you cloned the repository, you will find the file under AspNetCoreRecipes\
Chapter06\ Recipe05_Database.sql. You can also download the script from GitHub here:

https://github.com/johnciliberti/AspNetCoreRecipes/blob/develop/Chapter06/Recipe05_Database.sql

Once you have the script file, first verify that the paths to the .mdf and .ldf files in the SQL script make
sense for your system and adjust as required. You can then create the database by running the following at
the command prompt:

sqlcmd -i Recipe05_Database.sql

Note that the command will run under your user context. If you have a sysadmin role on the database, it
will be created without any further action. If you do not have sysadmin or SQL Server has not been set up to
allow Windows authentication, you will be prompted for a username and password.

Reverse Engineering Your Database
The first step in reverse engineering a database is to add the Entity Framework Core command-line tools
to your project. To do this, right-click the Recipe05.DataAccess project in Solution Explorer and click Edit
Recipe05.DataAccess.csproj. Modify the solution to match Listing 6-14.

Listing 6-14. Modifying Recipe05.DataAccess.csproj to Add Entity Framework Command-Line Tools

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore" Version="1.1.1" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="1.0.2" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer" Version="1.0.2" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer.Design"

Version="1.0.2" />
 </ItemGroup>
 <ItemGroup>
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"

Version="1.0.0" />
 </ItemGroup>
 <ItemGroup>
 <Folder Include="Entities\" />
 </ItemGroup>

</Project>

https://github.com/johnciliberti/AspNetCoreRecipes/blob/develop/Chapter06/Recipe05_Database.sql

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

200

Now that you have the required dependencies, open the Visual Studio command prompt and use the
cd command to navigate to the directory of the data access project that contains the project file. You will
now use the Entity Framework dotnet ef dbcontext scaffold command to create a Code First entity data
model from the database you created earlier. The dotnet ef dbcontext scaffold command requires two
arguments: a connection string and the name of the provider. It also accepts several optional arguments that
allow you to customize how the code is generated. Listing 6-15 shows an example of the command syntax
and the output generated by running the command.

Listing 6-15. Reverse Engineer Command and Output

dotnet ef dbcontext scaffold "Server=.;Database=Chapter06Recipe05;Trusted_Connection=True;
MultipleActiveResultSets=true" Microsoft.EntityFrameworkCore.SqlServer -o "Entities"

Inside Solution Explorer you will now see that a new folder named Entities has been added and
a C# class has been created for each of the tables in the database and that a DbContext class named
Chapter06Recipe05Context has been created. Inside the DbContext class, OnModelCreating has been
overridden, and Fluent API commands have been added to enforce the constraints and relationships
defined in the database.

Now that your code has been generated, you may want to refactor the code and modify it as shown
in recipe 6-4 (Listings 6-10 and 6-11) so it will work with the ASP.NET configuration system. This should
include adding a constructor to the Chaper06Recipe05Context class that will allow a DbContextOptions
object to be injected and removing the hard-coded connection string from the OnConfiguring method.

6-6. Using the Repository and Unit of Work Patterns in Your
Data Access Layer
Problem
You are building a data access layer using Entity Framework Core Code First but have several concerns.
First, because Entity Framework Core is new, it will likely go through a significant change over the next few
years. These changes could result in breaking changes in your application. You want to isolate the breaking
changes as much as you can. Second, not everyone on your team is an expert in creating LINQ queries
against Entity Framework. You want to encapsulate some of the more complex queries into simple methods.
At the same time, you want to preserve the flexibility offered by Entity Framework and avoid duplicate
redundant code as much as possible.

Solution
In many real-world application scenarios, object relation mapping software such as Entity Framework
might not be enough to constitute the entire data access layer of your application. Applying a light layer
of abstraction can help protect the other components of your application from breaking changes in Entity
Framework. If done properly, this layer could even allow you to replace Entity Framework with another
technology without breaking downstream components. In addition to decoupling the web application from
Entity Framework, you also have an opportunity to hide some of the complexity of your data access code and
consolidate other data access concerns that might be otherwise spread around your application.

A common design pattern for building a data access layer is to use a combination of the Unit of Work
and Repository patterns.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

201

The Unit of Work pattern maintains a list of domain objects and coordinates, persisting them to a
storage medium. This often includes tracking changes, managing concurrency, and optimizing database
access. When using Entity Framework, the DbContext class performs most of this heavy lifting.

In the Repository pattern, a layer of abstraction brokers the relationship between domain entities
and the mechanism in which they are stored. A consumer of the repository can have zero knowledge of
the storage mechanism. Entity Framework also provides this capability by allowing you to work with plain
C# classes that in and of themselves are ignorant of how they are persisted. Entity Framework can even
allow you to swap out one database technology such as Microsoft SQL Server with another database such as
Oracle.

Just as Entity Framework abstracts the mechanisms of your relational database of choice, the data
access layer shown in this recipe will abstract away Entity Framework. When other components of your
application consume your data access layer, they do so using only standard C# mechanisms and should have
no knowledge that you are using Entity Framework under the covers.

How It Works
The example data access library shown in this section is reused in many other examples in this book.
You can easily access the full source code for this module in your web browser on GitHub here:

https://github.com/johnciliberti/AspNetCoreRecipes/tree/develop/Shared/DataAccess.

Figure 6-7 shows a layer diagram describing the components that make up the data access layer. The
design of the library purposely segregates all the concerns into separate namespaces and ensures that each
class has a specific job.

Data Access Layer

Model

Entities Facades

Metadata Validation DBContext

Repositories

Unit of Work

Utilities

Data
Annotations

Fluent
Validation Entity Framework

Figure 6-7. High-level design of data access layer that uses the Unit of Work and Repository patterns

https://github.com/johnciliberti/AspNetCoreRecipes/tree/develop/Shared/DataAccess

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

202

Exposed via the data access layer are several entity classes, metadata classes, façades, and validation
classes. The entity classes are simple, clean C# classes that describe objects in the business domain.

The metadata classes contain companion classes to the entities. Inside each metadata class, data
annotations are applied to the properties that correspond to the properties in each companion entity and
provide information such as localized display names, descriptions, and help text. This information can be
used by the ASP.NET Core MVC model to aid in rendering forms. It is also possible to consume this data
outside ASP.NET Core MVC if needed.

The validation classes contain validation rules for each of the entities. The rules are built using the
Fluent Validation library. This is a third-party library that allows you to create validation rules in a similar
syntactical style as the Fluent API used by Entity Framework to specify how the entities map to the relational
database.

Façade classes are used in cases where you might need to return a custom view of the data that does not
correspond to an entity. But be careful when creating façade classes in this layer because you must ensure
that they are general-use and are not specific to any view in a consuming application.

The Unit of Work container provides a wrapper to the DbContext but does not expose it directly to
the consumer. Rather than creating an instance of the DbContext as shown in recipe 6-4, components that
consume your data access library instead create an instance of the Unit of Work container. Exposed through
the Unit of Work pattern is a set of repository classes. You have one repository class for each of the entities
you want to expose.

The IUnitOfWork Interface
To allow components that consume your data access layer to be tested independently, it is essential to
define an interface. Using an interface also allows you to take advantage of the ASP.NET Core dependency
injection system. In theory, using an interface even allows a consumer to swap out your Entity Framework
implementation with their own. As shown in Listing 6-16, the IUnitOfWork interface exposes several
repositories and a Save method.

Listing 6-16. IUnitOfWork

using System;

namespace AspNetCoreMvcRecipes.Shared.DataAccess
{
 public interface IUnitOfWork : IDisposable
 {
 ArtistRepository ArtistRepository { get; }

 CollaborationSpaceRepository CollaborationSpaceRepository { get; }

 Repository<Band> BandRepository { get; }

 Repository<GenreLookUp> GenreLookUpRepository { get; }

 Repository<ArtistSkill> ArtistSkillRepository { get; }

 void Save();
 }
}

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

203

The Generic Repository
To reduce the duplication of code, you will create a generic class to be used as the repository. Generic classes
allow you to apply a common set of functionality to many types without losing the benefit of compilation-
time type checking or duplicating code for each class.

The generic repository class exposes a set of methods that allow create, read, update, and delete
(CRUD) operations to be performed for any of the entities in your model. For entities that have commonly
used or complex queries, a custom repository class that is derived from the generic repository can be used.

Like IUnitOfWork, you must first define an interface and then have the generic repository implement
this interface. Listing 6-17 shows the IRepository interface. Listing 6-18 shows the generic repository
implementation.

Listing 6-17. IRepository Interface

using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;

namespace AspNetCoreMvcRecipes.Shared.DataAccess
{
 public interface IRepository<TEntity> where TEntity : class
 {
 void Delete(TEntity entityToDelete);
 TEntity GetEntityByKey(object key);
 void Insert(TEntity entity);
 IEnumerable<TEntity> Query(Expression<Func<TEntity, bool>> filter = null,
 Func<IQueryable<TEntity>,
 IOrderedQueryable<TEntity>> orderBy = null,
 int page = 1,
 int pageSize = 0,
 params Expression<Func<TEntity, object>>[] includedProperties);

 void Update(TEntity entityToUpdate);
 }
}

Listing 6-18. Generic Repository

using Microsoft.EntityFrameworkCore;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;

namespace AspNetCoreMvcRecipes.Shared.DataAccess
{
 public class Repository<TEntity> IRepository<TEntity> where TEntity : class
 {
 // variables hold the database context and entity set
 // for the entity type that the instance of the repo
 internal MoBContext _context;
 internal DbSet<TEntity> _dbSet;

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

204

 public Repository(MoBContext context)
 {
 _context = context;
 _dbSet = context.Set<TEntity>();
 }

 /// <summary>
 /// Allows you to query an entity
 /// </summary>
 /// <param name="filter">Lambda expression for filtering rows</param>
 /// <param name="orderBy">Lambda expression for sorting</param>
 /// <param name=" includedProperties">Add an argument for each
 /// property that should be eager loaded</param>
 /// <param name="page">When pageSize is greater than 0 then will return
 /// a particular data page</param>
 /// <param name="pageSize">Number of items per page.
 /// 0 will return all data without pages</param>
 /// <returns>An IEnumerable of the type or null if no data is found</returns>
 public virtual IEnumerable<TEntity> Query(
 Expression<Func<TEntity, bool>> filter = null,
 Func<IQueryable<TEntity>, IOrderedQueryable<TEntity>> orderBy = null,
 int page = 1,
 int pageSize = 0,
 params Expression<Func<TEntity, object>>[] includedProperties)
 {
 IQueryable<TEntity> query = _dbSet;

 if (filter != null)
 {
 query = query.Where(filter);
 }
 foreach (var includeProperty in includedProperties)
 {
 query.Include(includeProperty);
 }

 if (pageSize > 0)
 {
 query = query.Take(pageSize).Skip((page-1) * pageSize);
 }

 if (orderBy != null)
 {
 return orderBy(query).ToList();
 }
 else
 {
 return query.ToList();
 }
 }

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

205

 /// <summary>
 /// Gets the first entity an object as key
 /// </summary>
 /// <param name="key">The key of the object you are looking for</param>
 /// <returns>An instance of the entity or null</returns>
 public virtual TEntity GetEntityByKey(object key)
 {
 return _dbSet.Find(key);
 }

 /// <summary>
 /// Insert a new entity
 /// </summary>
 /// <param name="entity">Entity you would like to add</param>
 public virtual void Insert(TEntity entity)
 {
 _dbSet.Add(entity);
 }

 /// <summary>
 /// Update entity
 /// </summary>
 /// <param name="entityToUpdate">Entity that you would like to update</param>
 public virtual void Update(TEntity entityToUpdate)
 {
 _dbSet.Attach(entityToUpdate);
 _context.Entry(entityToUpdate).State = EntityState.Modified;
 }

 /// <summary>
 /// Delete the entity
 /// </summary>
 /// <param name="entityToDelete">Entity that you wish to delete</param>
 public virtual void Delete(TEntity entityToDelete)
 {
 _context.Remove(entityToDelete);
 }
 }
}

The Insert, Update, Delete, and GetEntityByKey methods are straightforward. They provide a thin
layer over the equivalent mechanisms in the Entity Framework. They have been marked as virtual so that
derived classes may override the implementation and provide repository-specific logic.

The Query method is the most complex. It takes several lambda expressions as parameters and supports
filtering, paging, and sorting of data.

Creating Repository Classes That Derive from the Generic Repository
In some cases, you might need to add some additional functionality specific to an individual entity to a
repository class. For instance, let’s say you discovered that your application has many queries for the top 20
new artists. Rather than having the code for that query repeated in several places, you can create an Artist

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

206

repository class that exposes a “canned” get new artist query in addition to the standard functions offered by
the generic repository. To maintain testability in the design, first an interface will be created and then a class
will implement that interface. Listing 6-19 and Listing 6-20 show an example of this technique.

Listing 6-19. ArtistRepositoryClass

using System.Collections.Generic;

namespace AspNetCoreMvcRecipes.Shared.DataAccess
{
 public interface IArtistRepository
 {
 IList<Artist> GetNewArtists(int page = 1);
 }
}

Listing 6-20. ArtistRepositoryClass

using System.Collections.Generic;
using System.Linq;

namespace AspNetCoreMvcRecipes.Shared.DataAccess
{
 public class ArtistRepository : Repository<Artist> , IArtistRepository
 {
 public ArtistRepository(MoBContext context) : base(context)
 {
 }

 /// <summary>
 /// Gets a list of artists
 /// </summary>
 /// <param name="page">Allows you to move between pages</param>
 /// <returns>List of artists</returns>
 public IList<Artist> GetNewArtists(int page=1)
 {
 var pageSize = 20;
 return Query(null, (qry) => qry.OrderByDescending(a => a.CreateDate), page,

pageSize).ToList();
 }
 }
}

The UnitOfWork Implementation
Earlier in this section you created an interface called IUnitOfWork. Listing 6-21 shows the implementation
of this interface. Note that because IUnitWork inherits from IDisposable, both interfaces need to be
implemented in this class. In addition, you create a constructor that allows a connection string to be
injected. You will later use this constructor to allow a connection string to be specified in a consuming
application’s Startup class. Another feature of the UnitOfWork class is that the repositories are exposed as
properties but are lazy loaded. By using the Lazy Loading pattern, the repositories are created only when
needed, which reduces the overhead of using the UnitOfWork class. The UnitOfWork class also exposes two

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

207

constructors. The first allows a connection string to be passed in. The second constructor takes a MoBContext
as a parameter, which allows it to be injected by dependency injection system such as the one included with
ASP.NET Core.

Listing 6-21. Implementing the IUnitOfWork Interface

using System;

namespace AspNetCoreMvcRecipies.Shared.DataAccess
{
 public class UnitOfWork : IUnitOfWork
 {
 private MoBContext _context;
 private IArtistRepository _ArtistRepository;
 private IRepository<Band> _BandRepository;
 private ICollaborationSpaceRepository _CollaborationSpaceRepository;
 private IRepository<GenreLookUp> _GenreLookUpRepository;
 private IRepository<ArtistSkill> _ArtistSkillRepository;

 public UnitOfWork(string connectionString)
 {
 _context = new MoBContext(connectionString);
 }

 /// <summary>
 /// Allows class to be created using DBContext injected by application
 /// </summary>
 /// <param name="context"></param>
 public UnitOfWork(MoBContext context)
 {
 _context = context;
 }
 public IRepository<ArtistSkill> ArtistSkillRepository
 {
 get
 {
 if (_ArtistSkillRepository == null)
 {
 _ArtistSkillRepository = new Repository<ArtistSkill>(_context);
 }
 return _ArtistSkillRepository;
 }
 }

 public IRepository<GenreLookUp> GenreLookUpRepository
 {
 get
 {
 if (_GenreLookUpRepository == null)
 {
 _GenreLookUpRepository = new Repository<GenreLookUp>(_context);
 }

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

208

 return _GenreLookUpRepository;
 }
 }

 public IArtistRepository ArtistRepository
 {
 get
 {
 if (_ArtistRepository == null)
 {
 _ArtistRepository = new ArtistRepository(_context);
 }
 return _ArtistRepository;
 }
 }

 public ICollaborationSpaceRepository CollaborationSpaceRepository
 {
 get
 {
 if (_CollaborationSpaceRepository == null)
 {
 _CollaborationSpaceRepository = new CollaborationSpaceRepository(_context);
 }
 return _CollaborationSpaceRepository;
 }
 }
 public IRepository<Band> BandRepository
 {
 get
 {
 if (_BandRepository == null)
 {
 _BandRepository = new Repository<Band>(_context);
 }
 return _BandRepository;
 }
 }

 public void Save()
 {
 _context.SaveChanges();
 }

 private bool disposed = false;

 protected virtual void Dispose(bool disposing)
 {
 if (!this.disposed)
 {
 if (disposing)

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

209

 {
 _context.Dispose();
 }
 }
 this.disposed = true;
 }

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }
 }
}

Passing a Connection String to MoBContext and Using It to Initialize the
Database Connection
MoBContext supports two initialization scenarios. In the first and probably most common scenario,
MoBContext will be created by the ASP.NET dependency injection system. In this scenario, a
DbContextOptions instance that includes the connection string will be passed to the DbContext base class.

In the second scenario, MoBContext is created manually. In this case, MoBContext requires a connection
string for it to connect to a SQL Server database to be passed into its constructor. UnitOfWork can then inject
the connection string into the MoBContext class via its constructor. Shown in Listing 6-22, the database
provider is initialized using the connection string passed from the constructor and stored in a private
member variable. In the OnConfiguring method, the provider is initialized with the connection sting by
calling the UseSqlServer method.

Listing 6-22. Adding a Constructor That Takes a String to DbContext

public sealed class MoBContext : DbContext
{
 private string _connectionString = null;
 public MoBContext(string connectionString)
 {
 _connectionString = connectionString;
 }

 public MoBContext(DbContextOptions<MoBContext> options)
 : base(options) { }

 protected override void OnConfiguring(DbContextOptionsBuilder options)
 {
 If (_connectionString==null)
 {
 base.OnConfiguring(options);
 }

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

210

 else
 {
 options.UseSqlServer(_connectionString);
 }
 }
}

Consuming the UnitOfWork Class in an ASP.NET MVC Core Application
To follow a test-first programming style, it is best practice to use the Dependency Injection pattern. In this
pattern, the controllers will not be coupled to any implementation of the data access layer, which allows a
mock implementation of the data access layer to be substituted when the controller is executed in a unit test.

ASP.NET Core ships with a simple dependency injection container. You can use it to register what
concrete class should be used for a given interface. Listing 6-23 shows the UnitOfWork class being registered
for the IUnitOfWork interface inside a StartUp class in an ASP.NET Core application. There are two methods
that can be used to register the UnitOfWork class. The first is to manually create a service descriptor for the
IUnitOfWork interface and then create a new instance passing the connection string into the constructor.
The second method is to register the MoBContext with the ASP.NET dependency injection system using the
AddDbContext method and then use the AddScoped method to register IUnitOfWork. The second method is
described in detail in recipe 7-5.

Listing 6-23. Registering the IUnitOfWork Interface

using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using AspNetCoreMvcRecipes.Shared.DataAccess;
namespace Recipe06.Web
{
 public class Startup
 {
 public Startup(IHostingEnvironment env , IApplicationEnvironment appEnv)
 {
 // Set up configuration sources.
 var builder = new ConfigurationBuilder(appEnv.ApplicationBasePath)
 .AddJsonFile("config.json");

 Configuration = builder.Build();
 }

 public IConfiguration Configuration { get; set; }

 // This method gets called by the runtime.
 public void ConfigureServices(IServiceCollection services)
 {
 // Add MVC services to the services container.
 services.AddMvc();
 var d = new ServiceDescriptor(typeof(IUnitOfWork),

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

211

 new UnitOfWork(Configuration.GetConnectionString("DefaultConnection")));
 services.Add(d);
 }

 /// other methods not shown here

 }
 }
}

6-7. Using the Options Pattern to Simplify Configuration of
Your ASP.NET Core MVC Application
Problem
Your application is complex, and you have many configuration options. You find it difficult to remember all
the names of the configuration options and often run into errors caused by configuration property names
being mistyped. This is especially problematic when the value you are looking for is deep in a configuration
hierarchy. You are looking for a better way to structure your application configuration so you can use Visual
Studio’s IntelliSense feature to ensure you are entering the correct value. In addition, you want to have
default values when the properties are missing from the configuration.

Solution
A pattern commonly used to simplify configuration is the Options pattern. With the Options pattern an
object containing all the required configuration for a component is passed to the object via its constructor
when it is created. Inside the constructor, the options object is inspected, and missing values are substituted
with defaults. Many ASP.NET Core components use this pattern. For example, in recipe 6-4 the Options
pattern is used with the DbContext object.

How It Works
In this example, you will use the Options pattern to configure an e-mail service that will be used by an
ASP.NET Core MVC application. The example will start with the web application template and with Individual
User Accounts authentication enabled. This template will create shells for services for sending e-mail and SMS
messages. You will implement the mail service using a NuGet package called MailKit. The configuration for the
e-mail service will be passed to the e-mail service using constructor injection when the application starts.

Creating the Project
Open Visual Studio and from the Start Page select ASP.NET Core Web Application (.NET Core) under
“New project.” Name the application and solution Recipe07 and then click OK.

In the New ASP.NET Core Web Application window, ensure that ASP.NET Core 1.1 is selected from the
drop-down list and then click Web Application under ASP.NET Core 1.1 Templates to select it. Next, click the
Change Authentication button. In the Change Authentication window, select Individual User Accounts and
then click OK.

Ensure that Enable Docker Support is not selected and then click the OK button.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

212

Installing MailKit from Nuget
MailKit is an advanced open source e-mail library for .NET Core. MailKit supports all the standards for
sending e-mail securely including SASL authentication, OpenPGP, and DKIM signature support and can
cancel e-mails that have been sent but not yet delivered.

To install MailKit, open the Package Manager Console if it is not open and then type the
following command:

Install-Package MailKit

MailKit and several dependencies will be added to your project.

Creating the EmailSenderOptions Class
The EmailSenderOptions class is the class that will provide all the configurable properties and default values
that you may want to pass to the e-mail service. The class will use inner classes to allow for a hierarchy of
configuration options. To create the class, right-click the Services folder in Solution Explorer and select
Add ➤ Class. Name the class EmailSenderOptions and then click OK. Modify the class to match Listing 6-24.

Listing 6-24. EmailSenderOptions

namespace Recipe07.Services
{
 public class EmailSenderOptions
 {
 public EmailSenderOptions()
 {
 EmailServerPort = 25;
 FromMailBoxName = "Gavel Shreds";
 FromMailBoxAddress = "noreply@gavelshreds.com";
 }

 public class AuthenticationSettings
 {
 public string EmailPassword { get; set; }
 public string EmailUserName { get; set; }
 }

 public EmailSenderOptions.AuthenticationSettings Authentication { get; set; }

 public string LocalDomain { get; set; }
 public string EmailServer { get; set; }
 public int EmailServerPort { get; set; }
 public string FromMailBoxName { get; set; }
 public string FromMailBoxAddress { get; set; }
 }
}

The EmailSenderOptions class provides default values for the EmailServerPort, FromMailBoxName, and
FromMailBoxAddress properties in its constructor. These default values can be overwritten via configuration.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

213

Modifying MessageService to Use EmailSenderOptions
The ASP.NET Core web application created a folder called Services that contains two interfaces,
IEmailSender and ISmsSender. These interfaces work with the authentication system to send registration
e-mails and SMS messages when the two-factor authentication feature is enabled. Both interfaces are
implemented by the class MessageService. The ASP.NET Core template did not provide only an empty
implementation of this class.

Listing 6-25 shows a fully implemented version of the MessageService class using the MailKit component.

Listing 6-25. MessageService.cs

using System.Threading.Tasks;
using MailKit.Net.Smtp;
using MimeKit;
using MailKit.Security;
using Microsoft.Extensions.Options;

namespace Recipe07.Services
{
 public class AuthMessageSender : IEmailSender, ISmsSender
 {
 private EmailSenderOptions _Options;

 public AuthMessageSender(IOptions<EmailSenderOptions> options)
 {
 _Options = options.Value;
 }

 public async Task SendEmailAsync(string email, string subject, string message)
 {
 var emailMessage = new MimeMessage();
 emailMessage.From.Add(new MailboxAddress(_Options.FromMailBoxName, _Options.

FromMailBoxAddress));
 emailMessage.To.Add(new MailboxAddress("", email));
 emailMessage.Subject = subject;
 emailMessage.Body = new TextPart("plain") { Text = message };

 using (var client = new SmtpClient())
 {
 client.LocalDomain = _Options.LocalDomain;
 await client.ConnectAsync(_Options.EmailServer, _Options.EmailServerPort,

SecureSocketOptions.StartTls).ConfigureAwait(false);
 await client.AuthenticateAsync(_Options.Authentication.EmailUserName,

_Options.Authentication.EmailPassword);
 await client.SendAsync(emailMessage).ConfigureAwait(false);
 await client.DisconnectAsync(true).ConfigureAwait(false);
 }
 }

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

214

 public Task SendSmsAsync(string number, string message)
 {
 // Plug in your SMS service here to send a text message.
 return Task.FromResult(0);
 }
 }
}

The configuration is passed into the class using a constructor. All the values used by MailKit are
supplied from the EmailSenderOptions class. No configurable values are hard-coded.

Setting Up the Configuration
Most of the configuration used by the MessageService class will be placed in a configuration file named
emailSettings.json, as shown in Listing 6-26.

Listing 6-26. emailSettings.json

{
 "LocalDomain": "gavelshreds.com",
 "EmailServer": "email-smtp.us-east-1.amazonaws.com",
 "EmailServerPort": 25,
 "FromMailBoxName": "Gavel Shreds",
 "FromMailBoxAddress": "noreply@gavelshreds.com"
}

emailSettings.json contains the following settings:

•	 LocalDomain: The Internet domain name that e-mails will be originating from.

•	 EmailServer: The server that will be relaying the SMTP e-mail messages. In this case,
the server being used is the SMS service offered by Amazon Web Services.

•	 EmailServerPort: The port used for sending SMTP messages. This is set to port 25,
which is the standard SMTP port.

•	 FromMailBoxName: The name that will appear in the From field.

•	 FromMailBoxAddress: The e-mail address that will be used as the From address in
the e-mail sent from the site.

The e-mail server’s username and password are not stored in emailSettings.json. The username
and password will be kept in the user secret store on the development machine and inside environment
variables on the production server.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

215

 ■ Caution You should avoid placing secrets such as login credentials and SSh keys in configuration files.
these files may be checked into the source control system, which would expose the secrets to anyone who has
access to the source control system. this problem is endemic in public source control systems such as github
and Bitbucket but can also be a problem in corporate source control systems. Many high-profile data breaches
have been tied to passwords in public source control repositories such as github. For example, a study found
that many companies had leaked their Slack access tokens because they were embedded in code posted to
github. For more information, see the following article from Cio.com:

www.cio.com/article/3062566/security/developers-leak-slack-access-tokens-on-github-putting-

sensitive-business-data-at-risk.html

Adding Settings to User Secrets

The user secrets feature consists of three primary components: a command-line utility that allows you to
store and view secrets added to your secret store, a component of the ASP.NET Core configuration system
that allows the configuration system to load values from the user secret store, and a feature of Visual Studio
that allows you to edit the user secrets for a project in JSON format. You can access this by right-clicking the
Project node in Solution Explorer and then selecting Manage User Secrets.

User secrets are stored in a local user profile and are not encrypted, which is why user secrets are
recommended for nonproduction use only.

To add the e-mail username and password to the user secret store, open a command prompt, navigate
to the Recipe07 project directory, and enter the commands shown in Listing 6-27. Note that the ASP.NET
Core Web Application template includes the NuGet packages required for using this feature. If the NuGet
package was not included in the project, you will see the error message “No executable found matching
command ‘dotnet-user-secrets’” when you run the command.

Listing 6-27. Adding Items to the User Secret Score

dotnet user-secrets set Authentication:EmailUserName AAABBBBSOMENAME
dotnet user-secrets set Authentication:EmailPassword thisisapasswordforAwS_Not

Note the use of a colon to separate the category Authentication from the setting named EmailUserName
in Listing 6-27. This is the same format that you can use with the ASP.NET Core configuration system when
retrieving the value.

Loading the Configuration in Startup.cs
Before your application can access the values from your custom configuration, you must change
Startup.cs so it adds the emailSettings.json configuration file and registers the EmailSenderOptions
class with the configuration system. To do this, modify the Startup.cs file as shown in Listing 6-28.

Listing 6-28. Registering Options Class with the ASP.NET Configuration System

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;

http://www.cio.com/article/3062566/security/developers-leak-slack-access-tokens-on-github-putting-sensitive-business-data-at-risk.html
http://www.cio.com/article/3062566/security/developers-leak-slack-access-tokens-on-github-putting-sensitive-business-data-at-risk.html

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

216

using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Recipe07.Data;
using Recipe07.Models;
using Recipe07.Services;

namespace Recipe07
{
 public class Startup
 {
 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddJsonFile("emailSettings.json", optional: false); // add custom config

 if (env.IsDevelopment())
 {
 // For more details on using the user secret store see

http://go.microsoft.com/fwlink/?LinkID=532709
 builder.AddUserSecrets<Startup>(); // use user secrets in development
 }

 builder.AddEnvironmentVariables(); // use environment variables in production
 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<ApplicationDbContext>(options =>

options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();

 services.Configure<EmailSenderOptions>(Configuration); // Registers the
EmailSenderOptions class

 services.AddTransient<IEmailSender, AuthMessageSender>();
 services.AddTransient<ISmsSender, AuthMessageSender>();
 }

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

217

 public void Configure(IApplicationBuilder app, IHostingEnvironment env,
ILoggerFactory loggerFactory)

 {
 // This section was omitted for brevity
 }
 }
}

The first change made to Startup.cs was to use the AddJsonFile method to add emailSettings.json
to the configuration. The other required configuration sources, user secrets and environment variables,
are part of the default template. With the default template, user secrets are added only if the hosting
environment is Development. Inside the ConfigureServices method, you used services.Configure<Email
SenderOptions>(Configuration) to register the option EmailSenderOptions with the configuration
system. The ASP.NET Core Configuration system will use reflection to inspect the properties exposed by the
EmailSenderOptions class and will automatically create an instance of the class and populate it with the
matching configuration values when EmailSenderOptions is injected, as shown in Listing 6-25.

Using Environment Variables in Production
Since user secrets are not recommended in production and would not be available to a production
process such as an app pool identity used by Internet Information Services, the e-mail server username
and password will be placed in environment variables. This can be done on the production system using
standard user interfaces such as the Advanced System Settings screen on Windows Server or via the
command line using the setx command. The name of the environment variable will be the same as the user
secret name, as shown in Listing 6-27.

Here are a few things to note about environment variables:

•	 Environment variables are not encrypted. Anyone who has access to the server will
be able to see them.

•	 When an ASP.NET Core application is hosted in Internet Information Services, it will
not see changes in environment variables until IIS is reset. Starting and stopping the
web site is not enough; you need to do a full IIS reset, which will restart Windows
Activation Services. If you are running your app in a shared server, all sites running
on that server will be disrupted.

6-8. Using Areas to Organize a Large ASP.MVC Project
Problem
You are designing a somewhat sophisticated ASP.NET Core MVC application that consists of several
subsystems. You want to have a Home controller for each of the main subsystems. Because it is not possible
to have two controllers with the same name, you have been creating controllers with names such as
ArtistHomeController, AdminHomeController, MusicHomeController, and more. You have created new
routing rules to maintain your URL structure, but you are finding this process cumbersome as your project
grows. You are looking for a better way to organize your project.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

218

Solution
ASP.NET Core MVC has a concept known as areas, which allow you to define separate MVC folder structures
for each subsystem. You can easily create a new area in Visual Studio by right-clicking your application’s
Project node and selecting Add ➤ Area.

How It Works
Areas help you organize your site by separating subdivisions of your site into functionally independent
sections. In this example, you will see a musicians’ collaboration community web site that has divided
its functionality into areas for collaboration, music, and administration. Each area will have its own Home
controller as well as controllers specific to each area. The normal controllers and views defined outside areas
still exist and are used for the root of the web site.

Creating the Project
Open Visual Studio. On the Start Page, click the New ASP.NET Core Web Application (.NET Core) Project
link. If you have not used this template before, you can use the search box in the upper-right section of the
window to find it. Name the project and solution Recipe08 and select a location.

On the New ASP.NET Core Web Application (.NET Core) Project screen, under ASP.NET Core 1.1
Templates, select the Web Application template. Ensure Authentication is set to No Authentication and
Enable Docker Support is not selected.

Click OK to create the project.

Creating a New Area
To create a new area, right-click the Project node of your ASP.NET Core MVC project in Solution Explorer
and select Add ➤ Folder. Name the folder Areas. Right-click the Area folder and select Add ➤ Folder. Name
the new folder Administration. Under the Administration folder, create the folders for Controllers,
Models, and Views. Repeat this process and create additional areas for collaboration and music. If required,
a models folder can also be added at the root level of the application.

When you are done, your project should look like Figure 6-8.

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

219

Inside each of your Areas folders, you have a similar structure—as in the root of the web site—with
folders for Controllers, Models, and Views. Just like in the root of your site, the Views folder can have a
subfolder named Shared. Unlike the root, the Areas\<your area name>\Views\Shared folder is empty. The
Views folder is also missing _Layout.cshtml and does not contain a _ViewStart.cshtml file.

In earlier versions of ASP.NET MVC, each area contained an area registration class. This was required to
register routes specific to your area. In ASP.NET Core this is no longer required. You can now add area routes
in the same manner as other routes, as shown in Listing 6-29.

Listing 6-29. Adding an Area Route in Startup.cs

// Add MVC to the request pipeline
app.UseMvc(routes =>
{

 routes.MapRoute(
 name: "areaRoute",
 template: "{area:exists}/{controller=Home}/{action=Index}");

 routes.MapRoute(
 name: "default",
 template: "{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" });

 });

Figure 6-8. Solution Explorer showing a site structure organized using areas

Chapter 6 ■ Solution DeSign uSing aSp.net Core MVC

220

In the first route, a route constraint will restrict matches to only URLs that contain an area. It is also
using the inline route default syntax. This is equivalent in functionality to the defaults defined in the default
and API routes.

Adding Controllers to an Area
You can add a controller to an area in the same way you would add a controller to a main site. Inside
Solution Explorer, right-click the Controllers folder inside your area, select Add, and then select Controller.
In the Add Scaffold window, select the appropriate scaffolding type and then click Add.

Once the controller has been created, you will need to decorate the class with an Area attribute, as
shown in Listing 6-30. The Area attribute replaces the route configured in the Area Registration classes
used in ASP.NET MVC. It adds the area name specified to the route and will search for the views inside the
folder area’s folder structure. An interesting thing to note is that the folder structure is not mandatory, so the
controller can be placed anywhere in the project.

Listing 6-30. A Controller Inside an Area

using Microsoft.AspNetCore.Mvc;

namespace Recipe08.Areas.Administration.Controllers
{
 [Area("Administration")]
 public class Home : Controller
 {
 public IActionResult Index()
 {
 return View();
 }
 }
}

221© John Ciliberti 2017
J. Ciliberti, ASP.NET Core Recipes, DOI 10.1007/978-1-4842-0427-6_7

CHAPTER 7

Test-Driven Development with
ASP.NET Core MVC

The cost of bugs that make their way into production code is difficult to measure. This is especially true if a
bug (or a combination of them) results in lost customers and decreased sales. While it may not be possible
to prevent all defects from reaching production, you can significantly improve the quality of your application
by implementing a comprehensive quality control strategy. This strategy should consist of unit tests, static
code analysis, peer code reviews, integration tests, and performance tests, topped off with manual testing
and a customer feedback program.

Unit tests are the area of quality control that is owned by the development team. As a developer, it is
your responsibility to ensure that your code is testable and that a suite of automated tests covers most of
your application. In this chapter, you will learn about the testing features of ASP.NET Core and how to create
tests for the different parts of your application.

7-1. Adding an xUnit Test Project to an ASP.NET Core Web
Application Solution
Problem
You want to create a test project for your ASP.NET Core MVC application. In past versions of ASP.NET Core,
Visual Studio would automatically create a test project when you selected the Create Unit Tests check box
when creating a project. This check box does not exist for ASP.NET Core projects in Visual Studio 2017. You
want to understand how to create unit test projects for ASP.NET Core using Visual Studio. You want to see
how it can be done from the command line using the dotnet CLI.

Solution
Although .NET Core has been released to production for more than a year, the tooling is still somewhat
immature. Many of the features you are used to with ASP.NET MVC have not yet made their way into Visual
Studio 2017 for .NET Core. It is expected that these features will come soon. Each update of the .NET Core
tooling expands the capabilities. In the meantime, you can use the dotnet command-line interface (CLI) to
make up for the missing features in Visual Studio.

Chapter 7 ■ test-Driven Development with asp.net Core mvC

222

How It Works
In this section, you will create the solution and web application using Visual Studio. You will then add an
xUnit project using Visual Studio and finally create the test project using the dotnet CLI.

Creating the Solution and Web Application Project
All the exercises in this chapter will be in one solution. To create this solution, open Visual Studio 2017
and then select New ➤ Project. Select the ASP.NET Core Web Application (.NET Core) template. Name the
project Chapter07.Web and name the solution Chapter07. Ensure “Create directory for solution” is selected
and then click OK. In the New ASP.NET Core Web Application (.NET Core) window, ensure ASP.NET Core
1.1 is selected and then select the Web Application template. Ensure that No Authentication is selected and
Enable Docker Support is not selected. Click OK to create the project.

Creating the Test Project from Visual Studio
To create a new xUnit test project to the solution using Visual Studio, right-click the solution Recipe01 in
Solution Explorer and select Add ➤ New Project. In the Add New Project window, click .NET Core in the left
navigation pane to filter the list of templates. Select the xUnit Test Project (.NET Core) template. Name the
project Recipe01.TestVS.

Creating the Test Project from the Command Line
The .NET Core SDK that is installed with Visual Studio 2017 comes with a command-line tool called dotnet.
The dotnet CLI allows you to do many of the things that you normally would do in Visual Studio, such as
creating new projects, restoring NuGet packages, building your application, executing tests, and running the
application. To learn about the capabilities of the dotnet command-line tool, you will use it to create a new
xUnit test project and then add that xUnit test project to the solution you created using Visual Studio.

The dotnet new command is used to create new projects from the command line. The dotnet new
command allows you to choose from several templates including the xUnit unit test project and MSTest-
based unit test project templates. The xUnit test project creates a project using the xUnit test framework.
xUnit is a free open source testing framework that has been designed with test-driven development (TDD)
in mind. xUnit was used by the ASP.NET Core team for testing ASP.NET Core. You can find more information
about xUnit at https://xunit.github.io/.

The Unit Test Project template uses Microsoft’s MSTest framework. MSTest is a closed-source
proprietary framework that comes with Visual Studio. Both unit test frameworks offer rich functionality,
but the xUnit framework is better suited for test-first development because it offers significantly better test
runner performance, is more extensible, and is community focused. MSTest, on the other hand, would be a
better fit for someone who is porting a project from ASP.NET MVC and wants to migrate existing unit tests
created using MSTest. All the test examples in this book will use xUnit.

To create the unit test project, open a command window and navigate to the directory that contains the
solution file. Once in the directory, enter the following command:

dotnet new xunit -n Chapter07.Test

A new directory will be created named Chapter07.Test. The directory will contain two files,
Chapter07.Test.csproj and UnitTest1.cs. Listing 7-1 shows the contents of Chapter07.Test.csproj.

https://xunit.github.io/

Chapter 7 ■ test-Driven Development with asp.net Core mvC

223

Listing 7-1. Chapter07.Test.csproj

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.0.0" />
 <PackageReference Include="xunit" Version="2.2.0 " />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0 " />
 </ItemGroup>

</Project>

The new project file targets .NET Core 1.1 and contains three references. The first is the
Microsoft.NET.Test.Sdk component. This is the Visual Studio test platform, which includes a test
runner and engine. This component is used by both Visual Studio and the dotnet CLI to run tests and
collect test results. In Visual Studio, it is also used to power Test Explorer and vstest.console. You can find
the source code for it in the GitHub repository here:

https://github.com/Microsoft/vstest

The second package is the xUnit Test Framework for .NET Core. The source code for this project is
also located on GitHub. The source is located at https://github.com/xunit/xunit, and you can find the
documentation at https://xunit.github.io/docs/getting-started-dotnet-core.html.

Running the Test Project for the First Time
To run the test project, in navigate to the test project the command window by using the following:

cd Recipe07.Test

Next, run the following command:

dotnet restore

This will pull all the required packages from the NuGet repository.
To run the test, use the following command:

dotnet test

https://github.com/Microsoft/vstest
https://github.com/xunit/xunit
https://xunit.github.io/docs/getting-started-dotnet-core.html

Chapter 7 ■ test-Driven Development with asp.net Core mvC

224

The results of the test will resemble Listing 7-2. It shows a single test was run and passed.

Listing 7-2. Test Results

Build started, please wait...
Build completed.

Test run for C:\ AspNetCoreRecipes\Chapter07\Chapter07.Test\bin\Debug\netcoreapp1.1\
Chapter07.Test.dll(.NETCoreApp,Version=v1.1)
Microsoft (R) Test Execution Command Line Tool Version 15.0.0.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...
[xUnit.net 00:00:00.6346515] Discovering: Chapter07.Test
[xUnit.net 00:00:00.7318149] Discovered: Chapter07.Test
[xUnit.net 00:00:00.7725945] Starting: Chapter07.Test
[xUnit.net 00:00:00.9003922] Finished: Chapter07.Test

Total tests: 1. Passed: 1. Failed: 0. Skipped: 0.
Test Run Successful.
Test execution time: 2.5384 Seconds

Exploring the Test Project
The test project created by the dotnet CLI added a test class called UnitTest1. UnitTest1 contains a single
method called Test1, as shown in Listing 7-3. Test1 is a public method with a void return type decorated
with the xUnit Fact attribute. The Fact attribute tells the test runner that Test1 is a test.

xUnit supports two test types.

•	 Facts: Traditional unit tests that should always assert true. Facts do not support
parameters.

•	 Theories: Parameterized unit tests. Theories assert true for certain data but false for
others. Parameters can be passed to a theory using the InlineData attribute.

Listing 7-3. UnitTest1 Class Generated by the dotnet CLI

using System;
using Xunit;

namespace Recipe07.Test
{
 public class UnitTest1
 {
 [Fact]
 public void Test1()
 {

 }
 }
}

Chapter 7 ■ test-Driven Development with asp.net Core mvC

225

Adding the Test Project to the Solution
Now that the test project has been created, you will add it to the Visual Studio solution created earlier. There
are two ways to do this. You can right-click the solution in Visual Studio and select Add ➤ Existing Project.
You then browse to the location of the project file.

The second method is to use the dotnet CLI. To do this, use the following command in the command
window to navigate backward to the solution directory:

cd ..

Next, run the following:

dotnet sln add Chapter07.Test\Chapter07.Test.csproj

To confirm that the solution was added, run the following:

dotnet sln list

Listing 7-4 shows the command output.

Listing 7-4. Output of the dotnet sln list Command

Project reference(s)

Chapter07.Web\Chapter07.Web.csproj
Chapter07.Test\Chapter07.Test.csproj

Visual Studio will display a message stating the following: “The solution ‘Chapter07’ has been modified
outside the environment.” Click the Reload button. The Recipe07.Test project should now appear in Solution
Explorer.

You should now also be able to see the tests in your solution in Test Explorer. To open Test Explorer,
select Test ➤ Windows ➤ Test Explorer. If you click the Run All link in Test Explorer, the text will run, and after
several seconds, you will see a green check mark icon next to the Chapter07.Test.UnitTest1.Test1 test.

Adding Chapter07.Web as a Reference to Chapter07.Test
Before you can use the xUnit unit test project to begin testing HomeController, you must add a reference to
Chapter07.Web to Chapter07.Test. To do this, right-click the Chapter07.Test project in Solution Explorer and
select Add ➤ Reference. In the Reference Manager window, select Projects and then select the Chapter07.
Web box. Click OK to add the reference.

Now that you have all the references and framework dependencies squared away, you can start writing
your tests.

Chapter 7 ■ test-Driven Development with asp.net Core mvC

226

7-2. Creating Unit Tests for a Controller
Problem
You are new to unit testing and are not sure how to go about getting started. You want to get a basic idea
of how you can create unit tests for a simple ASP.NET Core MVC controller such as the HomeController
controller that comes with the web application template.

Solution
ASP.NET Core MVC was designed to make writing automated unit tests easy. Controllers are not coupled
with the web server or other ASP.NET Core Framework components such as routing and can be instantiated
and run independently.

You write unit tests with the help of a test framework. The test framework helps you to create classes
and methods that can be automatically discovered by a test runner. The test runner can then execute your
tests and then display the test results.

This solution builds on recipe 7-1 where a solution, an ASP.NET Core Application project, and an xUnit
unit test project were created. To demonstrate the basic mechanics of creating unit tests for ASP.NET Core
controllers, you will create a class in the Recipe07.Test project for each controller in Chapter07.Web. Each
test class will have several test methods for each action in your controller class. Ideally, you will have at least
one test for each branch of code in your action so that every line of code is covered by a test.

To keep this example as simple as possible, you will write tests to cover the actions in HomeController.
You should test to ensure the following:

•	 That the controller is returning the correct view

•	 That the contents of the data passed to the view are as expected

How It Works
To create the web application and test project, please see recipe 7-1.

Modifying HomeController for Testability
When writing unit tests, you need to ensure that you are testing only the desired code and not components
that the code under test depends on or the infrastructure it runs on top of. The first step in writing a good
unit test is to analyze the code and determine whether it is possible to test the code without invoking
dependencies and infrastructure. To demonstrate how to do this, you will analyze the HomeController class
and make a few changes to it to maximize testability.

The HomeController class was added to the Chapter07.Web project by the Web Application template.
It contains four actions: Index, About, Contact, and Error. The functionality of the Index and Error actions
are limited to returning an ActionResult instance by calling the View() method. The About and Contact
actions modify the contents of ViewData and then return an ActionResult instance by calling View().

Chapter 7 ■ test-Driven Development with asp.net Core mvC

227

These actions are not ideal for testing. The Home controller has the following problems that will need to
be corrected before you can begin writing tests:

•	 The actions are currently relying on the ASP.NET Core infrastructure to dynamically
determine the name of the view page by using reflection to inspect the name of the
action. During the unit test, the controller will be executed in the test runner and will
not be able to use the ASP.NET Core infrastructure. Because of this, the view page
name will never be resolved, and the tests will not be able to determine the view
page name.

•	 Hard-coded strings are used. To test that the values written to ViewData have been
set correctly, you will need to hard-code the values in both HomeController and the
test class. This will make your tests fragile and more difficult to manage.

To correct the problem caused by the hard-coded strings, you can store the string values as constants
inside a static class. To create the static class, first create a new folder under the Chapter07.Web project
named Strings. Inside the folder, create a static class named HomeStrings. Modify HomeStrings to match
Listing 7-5.

Listing 7-5. HomeStrings.cs

namespace Chapter07.Web.Strings
{
 public static class HomeStrings
 {
 public const string ViewDataMessageKey = "Message";
 public const string AboutMessage = "Your application description page.";
 public const string ContactMessage = "Your contact page.";

 public const string IndexView = "Index";
 public const string AboutView = "About";
 public const string ErrorView = "Error";
 public const string ContactView = "Contact";
 }
}

Next, modify HomeController so that the hard-coded strings are replaced by the constants, as shown in
Listing 7-6.

To correct the second issue, modify each of the actions so you pass the name of the view page to the
View method. For example, the call to View() in the Index action will be replaced with View("Index").
Listing 7-6 shows the updated HomeController class.

Listing 7-6. HomeController Modified for Testability

using Microsoft.AspNetCore.Mvc;
using Chapter07.Web.Strings;

namespace Chapter07.Web.Controllers
{
 public class HomeController : Controller
 {
 public IActionResult Index()

Chapter 7 ■ test-Driven Development with asp.net Core mvC

228

 {
 return View(HomeStrings.IndexView);
 }

 public IActionResult About()
 {
 ViewData[HomeStrings.ViewDataMessage] = HomeStrings.AboutMessage;

 return View(HomeStrings.AboutView);
 }

 public IActionResult Contact()
 {
 ViewData[HomeStrings.ViewDataMessage] = HomeStrings.ContactMessage;

 return View(HomeStrings.ContactView);
 }

 public IActionResult Error()
 {
 return View(HomeStrings.ErrorView);
 }
 }
}

Creating Tests for HomeController
To keep your test project organized, you will create a folder structure in the test project that matches the web
project. The names of the test classes will also match the class names under test but will have the suffix Test.
To update the test project to match this format, follow these steps:

 1. Add a new folder named Controllers to the test project. To create the
Controllers folder in the test project, right-click its project node in Solution
Explorer and select Add ➤ New Folder. Name the folder Controllers.

 2. Move UnitTest1 into the Controller folder by clicking and dragging it into the
folder in Solution Explorer.

 3. Right-click the UnitTest1.cs file in Solution Explorer and then select Rename.
Change the name to HomeControllerTests. When prompted, confirm that you
want to rename the class as well.

 4. Update the namespace so it includes Controllers to match the folder structure.

 5. Add using statements for Microsoft.AspNetCore.Mvc, Chapter07.Web.Strings,
and Chapter07.Web.Controllers.

For the first test, you will verify that HomeController.Index will return a view named Index. To do
this, you will need to create an instance of HomeController, call the Index method, and then assert that the
ViewName value is equal to Index.

To write the test, rename UnitTest1 to IndexAction_ReturnsIndexView. Note that the name of the test
method is very verbose. The name should make it clear what is being tested and the expected results.

The code in the test will be structured following the Arrange, Act, and Assert pattern. This pattern
promotes readability and helps keep test code simple and uniform.

Chapter 7 ■ test-Driven Development with asp.net Core mvC

229

•	 Arrange: Sets up the objects that you will use in your test and the variables that
contain the expected result

•	 Act: Performs the action being tested

•	 Assert: Verifies the results

In the Arrange section, the code under test is initialized, and the expected results are stored in a variable
named expected. In the Act portion, the method under test is executed, and the results are written to a
variable named actual. In the Assert portion, the expected condition is verified against the actual result.
This is done using one of the methods of the xUnit Assert object. In this case, since you are testing for
equality, the Assert.Equal method is used.

To apply this pattern to HomeController for the Arrange stage of the test, create an instance of
HomeController. Next, create a variable named expected that will hold the expected value of the ViewName
property. For the Act portion of the test, you will execute the controller’s Index method and write the
ViewResult class of the action to a local variable named result. Note that calling Index returns an
IActionResult and not a ViewResult. Because of this, it is necessary to cast the result using the
following:

 var result = controller.Index() as ViewResult;

By using the as keyword to perform the cast, the result value would be null if the type returned by
Index was not a ViewResult. Since it is possible for result to be null, you need to use a null conditional
operator to first verify result is not null before inspecting the ViewName property.

Finally, in the Assert section, you will compare the view name in the action result to the expected value.
You will use the Assert.Equal method to verify a match.

Listing 7-7 shows the completed IndexAction_ReturnsIndexView test.

Listing 7-7. Completed IndexAction_ReturnsIndexView Test

[Fact]
public void IndexAction_ReturnsIndexView()
{
 // Arrange
 var controller = new HomeController();
 var expected = HomeStrings.IndexView;

 // Act
 var result = controller.Index() as ViewResult;
 var actual = result.ViewName;

 // Assert
 Assert.Equal(expected, actual);
}

In the next test, you will verify that ViewData has been set with the expected values. This test will
follow the same format as the one shown in Listing 7-5, but rather than testing the ViewName property of
ViewResult, you will check the Message value of ViewResult’s ViewBag property. Create a new test named
AboutAction_ReturnsExpectedMessageInViewBag. The completed test should match Listing 7-8.

Chapter 7 ■ test-Driven Development with asp.net Core mvC

230

Listing 7-8. Completed AboutAction_ReturnsExpectedMessageInViewBag Test

[Fact]
public void AboutAction_ReturnsExpectedMessageInViewBag()
{
 // Arrange
 var controller = new HomeController();
 var expected = HomeStrings.AboutMessage;

 // Act
 var result = controller.About() as ViewResult;
 var actual = result?.ViewData[HomeStrings.ViewDataMessageKey];

 // Assert
 Assert.Equal(expected, actual);
}

 ■ Note note the use of the null conditional operator in the act portion of listing 7-8. null conditional
operators are a feature introduced with C# 6 that simplifies checking for null conditions. Before C# 6, you would
have needed to write a conditional statement to verify that the value of result was not null before accessing
the ViewData property to avoid possible null pointer exceptions. with C# 6 and later, you can use the syntax
result?.ViewData.

Following the pattern established with the tests shown in Listing 7-7 and Listing 7-8, you can complete
the rest of the tests for HomeController. The tests should include AboutAction_ReturnsAboutView,
ContactAction_ReturnsContactView, ContactAction_ReturnsExpectedMessageInViewBag, and
ErrorAction_ReturnsErrorView. The completed test class should match Listing 7-9.

Listing 7-9. Completed HomeControllerTests Class

using Xunit;
using Microsoft.AspNetCore.Mvc;
using Chapter07.Web.Strings;
using Chapter07.Web.Controllers;

namespace Recipe07.Test.Controllers
{
 public class HomeControllerTests
 {
 [Fact]
 public void IndexAction_ReturnsIndexView()
 {
 // Arrange
 var controller = new HomeController();
 var expected = HomeStrings.IndexView;

 // Act
 var result = controller.Index() as ViewResult;
 var actual = result?.ViewName;

Chapter 7 ■ test-Driven Development with asp.net Core mvC

231

 // Assert
 Assert.Equal(expected, actual);
 }

 [Fact]
 public void AboutAction_ReturnsExpectedMessageInViewBag()
 {
 // Arrange
 var controller = new HomeController();
 var expected = HomeStrings.AboutMessage;

 // Act
 var result = controller.About() as ViewResult;
 var actual = result?.ViewData[HomeStrings.ViewDataMessage];

 // Assert
 Assert.Equal(expected, actual);
 }

 [Fact]
 public void AboutAction_ReturnsAboutView()
 {
 // Arrange
 var controller = new HomeController();
 var expected = HomeStrings.AboutView;

 // Act
 var result = controller.About() as ViewResult;
 var actual = result?.ViewName;

 // Assert
 Assert.Equal(expected, actual);
 }
 [Fact]
 public void ContactAction_ReturnsContactView()
 {
 // Arrange
 var controller = new HomeController();
 var expected = HomeStrings.ContactView;

 // Act
 var result = controller.Contact() as ViewResult;
 var actual = result?.ViewName;

 // Assert
 Assert.Equal(expected, actual);
 }

Chapter 7 ■ test-Driven Development with asp.net Core mvC

232

 [Fact]
 public void ContactAction_ReturnsExpectedMessageInViewBag()
 {
 // Arrange
 var controller = new HomeController();
 var expected = HomeStrings.ContactMessage;

 // Act
 var result = controller.Contact() as ViewResult;
 var actual = result?.ViewData[HomeStrings.ViewDataMessageKey];

 // Assert
 Assert.Equal(expected, actual);
 }

 [Fact]
 public void ErrorAction_ReturnsErrorView()
 {
 // Arrange
 var controller = new HomeController();
 var expected = HomeStrings.ErrorView;

 // Act
 var result = controller.Error() as ViewResult;
 var actual = result?.ViewName;
 // Assert
 Assert.Equal(expected, actual);
 }
 }
}

Running the Tests for HomeController
Visual Studio has several features that allow you to view available tests for a given project, execute the tests,
and then examine the results. To see how these features work, you will build the solution and then execute
the tests, as follows:

 1. If Test Explorer is not visible, open it by selecting Test ➤ Windows ➤ Test
Explorer. Since the project has not been built yet, no tests are shown.

 2. From the Visual Studio Build menu, select Build Solution. After the build
completes, Test Explorer will show the six tests categorized under Not Run Tests.
Each of the tests will have a blue icon that denotes that it has not yet run.

 3. To run the tests, click the Run All link on the top left of the Test Explorer pane.
It should be noted that running all the tests will also build the project.

Chapter 7 ■ test-Driven Development with asp.net Core mvC

233

All tests should pass. You should see green check mark icons next to each test name, as shown in
Figure 7-1.

7-3. Understanding Test-Driven Development Strategies
Problem
You have heard a lot about test-first and test-driven development but are not sure if this approach will work
for you. You want to understand what these strategies are about and how they can be applied to ASP.NET
Core MVC development.

Solution
In most development methodologies, developers write a lot of code, and then if they have time, they maybe
write a few unit tests. Testing is part of the development process, but it is usually focused on integration
testing and occurs toward the end of the development life cycle.

Test-driven development (TDD), on the other hand, is a completely different way of thinking about code.
Rather than tests being an afterthought, they are front and center in the design process. In TDD, you always
create tests for your code. If you find it difficult to test your code in isolation, you refactor it. The design of
your project changes to make it easier to test. Tests drive your application design and development cycles.
You do not check your code into source control until all your unit tests pass.

In the test-first development (TFD) methodology, this concept is taken a step further. Tests are written
before you write your production code. While this practice may occur in TDD, it is not always the case. In
TFD, the first code you create in your solution consists of your unit tests. You will first write just enough stub
code to allow the program to compile. You then run your tests, which will fail. Next, you implement your

Figure 7-1. Test Explorer showing all tests passing

Chapter 7 ■ test-Driven Development with asp.net Core mvC

234

production code. Once all your tests pass, you can refactor to improve the readability and maintainability of
both your production code and your tests.

How It Works
In this section, you will add an administrative feature for a web application using the test-first methodology.
The solution in this recipe builds upon the projects created in recipe 7-1. For step-by-step instructions on
how to create the projects used in this solution, please refer to recipe 7-1.

The Requirements
All software applications start with the requirements. It is important to have a firm understanding of what
is expected in the completed project. For the sake of this example, you need to create an administrative
application that allows you to review and edit information about recording artists who have registered in
your music collaboration system.

This new application should meet the following requirements:

•	 The application needs to be secure. If an unauthorized user were to access this
system interface, it could potentially be very damaging.

•	 As an administrator, you need to review a list of new artist accounts to ensure that all
the new accounts comply with your web sites’ terms of service.

•	 As an administrator, you need delete accounts that violate the terms of service so
offensive material and unsolicited advertisements are removed from the site.

•	 As an administrator, you need to be able to confirm that you really want to delete a
selected account so you do not delete valid accounts by accident.

•	 As an administrator, you should be shown a confirmation screen that confirms the
deletion was successful so you can act in cases where the deletion fails.

Creating the Design
Based on the requirements, your first priority is security. Security researchers have found that the most
effective designs follow a layered approach with many levels of controls. This application will use Windows
authentication and will be locked down via access control lists (ACLs) as part of the deployment. In
production, the site will also use SSL to protect data in transit and to verify to users that they are connected
to a valid server.

Using Windows authentication and ACLs frees the developer from most of the responsibility of writing
code to handle authentication or authorization.

The next set of requirements roughly describes the screens that will list the new artists, view the details
of each, and then allow the administrator to delete the artist record and confirm that the deletion was
successful. To meet this set of requirements, you create a controller named ArtistAdminController. This
controller will have five actions.

•	 List: Displays the list of new artists.

•	 Review: Displays detailed information on the artist and contains buttons that allow
the administrator to either delete the artist or return to the list.

•	 DeleteConfirm: Displays the delete confirmation message and allows the
administrator to either confirm or cancel the deletion.

Chapter 7 ■ test-Driven Development with asp.net Core mvC

235

•	 DeleteCompleted: Displays a view that shows a delete confirmation message.

•	 DeleteFailed: Displays a view showing a failure message, including the error details
that can be used by the administrator to help solve the problem.

Adding the Test Class
Since you are using the test-first methodology, you first need to create your unit tests. If you have never done
this style of development, it may seem bizarre to create a test when you have yet to create the code to be
tested.

Since you have not yet written code, you need to refer to your design to decide which tests to write.
Per the design, you will have a controller named ArtistAdminController. Because you will create the
controllers inside the Controllers folder in your web project, you will echo that structure in your test
project, as discussed in recipe 7-2. This will help keep your test classes organized and easy to maintain.

To add a new test to your project, follow these steps:

 1. Right-click the Controllers folder and select Add ➤ New Class. Name the class
ArtistAdminControllerTests. Click OK to create the class.

 2. Make the class public. Test runners will only be able to discover public classes.

 3. Add using statements for the following

a. Xunit

b. Microsoft.AspNetCore.Mvc

 4. Create an empty region for each of the items listed in the design.

 5. Inside each region create a unit test skeleton for every scenario you can think of.
For example, for the List action, create test skeletons for the success paths, such
as the following:

a. The correct view is returned.

b. The model passed to the view is not null.

c. The model passed to the view is of the correct type.

d. The model passed to the view shows the correct number of rows.

You may also want to create skeletons for some of the failure paths, such as the following:

a. The controller cannot connect to the back end.

b. The list is null.

c. The user is not authorized.

Listing 7-10 shows the skeletons for the List action.

Listing 7-10. New Test Class with Test Skeletons for List Action

using Xunit;
using Microsoft.AspNetCore.Mvc;

namespace Recipe07.Test.Controllers
{
 public class ArtistAdminControllerTests

Chapter 7 ■ test-Driven Development with asp.net Core mvC

236

 {
 #region List

 [Fact]
 public void ListAction_ReturnsListView()
 {
 // Arrange

 // Act

 // Assert
 Assert.True(false);
 }

 [Fact]
 public void ListAction_ReturnsNewArtistList_ToListView()
 {
 // Arrange

 // Act

 // Assert
 Assert.True(false);
 }
 [Fact]
 public void ListAction_ReturnsEmptyNewArtistList_ToListView()
 {
 // Arrange

 // Act

 // Assert
 Assert.True(false);
 }

 [Fact]
 public void ListAction_PassesArtistListViewModel_ToListView_HasCorrectRowCount()
 {
 // Arrange

 // Act

 // Assert
 Assert.True(false);
 }

 [Fact]
 ListAction_RedirectToErrorAction_WhenItCannotConnectToBackend()
 {
 // Arrange

Chapter 7 ■ test-Driven Development with asp.net Core mvC

237

 // Act

 // Assert
 Assert.True(false);
 }

 [Fact]
 public void ListAction_UnAuthorizedUserCannotAccess()
 {
 // Arrange

 // Act

 // Assert
 Assert.True(false);
 }

 #endregion
 #region Review
 #endregion

 #region DeleteConfirm
 #endregion

 #region DeleteCompleted
 #endregion

 #region DeleteFailed
 #endregion
 }
}

Notice each of the skeleton methods contains the code Assert.True(false). This ensures that all the
incomplete tests will fail. It is important that you do this to avoid missing incomplete tests.

At this point, click the Run All button in Test Explorer. Your project will build, and the tests will be
executed. All the tests will fail. If you click a failed test result, the details of why the test failed are displayed,
as shown in Figure 7-2.

Chapter 7 ■ test-Driven Development with asp.net Core mvC

238

Creating the Controller
Now that the test has been created, the next step is to create the controller that will be tested. To create the
controller, right-click the Controllers folder in the Chapter07.Web project and select New ➤ Class. Name
the class ArtistAdminController.

To turn this class into a controller, add a using statement for Microsoft.ASpNetCore.Mvc to the start of
the file, change the class signature to be public, and make it inherit from the Controller base class.

The next step is to stub out the controller actions per the design. The stubbed-out controller should
match Listing 7-11.

Listing 7-11. Stubbed-Out ArtistAdminController

using Microsoft.AspNetCore.Mvc;

namespace Chapter07.Web.Controllers
{
 public class ArtistAdminController : Controller
 {
 public IActionResult List()
 {

Figure 7-2. Failed tests shown in Test Explorer

Chapter 7 ■ test-Driven Development with asp.net Core mvC

239

 return View("List");
 }

 public IActionResult Review()
 {
 return View("Review");
 }

 public IActionResult DeleteConfirm()
 {
 return View("DeleteConfirm");
 }

 public IActionResult DeleteCompleted()
 {
 return View("DeleteCompleted");
 }

 public IActionResult DeleteFailed()
 {
 return View("DeleteFailed");
 }
 }
}

Implementing the First Test
Now that ArtistAdminController has been created, you can begin implementing the tests.

The first test you will implement is ListAction_ReturnsListView. This test will verify that the List
action in ArtistAdminController returns a ViewResult with the ViewName property of List.

When completed, ListAction_ReturnsListView should match Listing 7-12.

Listing 7-12. Completed ListAction_ReturnsListView

[Fact]
public void ListAction_ReturnsListView()
{
 // Arrange
 var controller = new ArtistAdminController();
 var expected = "List";

 // Act
 var result = controller.List() as ViewResult;
 var actual = result?.ViewName;

 // Assert
 Assert.Equal(expected, actual);
}

After completing this step, click the Run All button in Test Explorer. You should see one test pass and
five fail.

Chapter 7 ■ test-Driven Development with asp.net Core mvC

240

One thing you should be aware of is even though your test proves that the controller will return the
correct view, it does not mean that the application will work. In this case, since you did not create the view
page, the application will throw an error if the action is executed. Beware of writing unit tests that attempt
to load the view or check for its existence on the file system. In both cases, you will be breaking the isolation
rule of unit testing by invoking external dependencies. For testing view pages, you should consider using an
integration testing tool such as Selenium.

In recipes 7-4 through 7-5, you will continue to build upon the example started in this recipe and will
complete the implementation of ArtistAdminController and the associated tests.

7-4. Simulating Calls to External Dependencies Using Moq
Problem
You are developing an ASP.NET Core application using the test-driven development methodology. You need
to implement a controller that will use a data access component to get data from a database. You need a way
to test this controller without invoking the data access component so your test can maintain isolation so
that only the controller’s logic is tested. If the data access component was invoked by the unit tests, it would
create several challenges, including the following:

•	 The test cannot control the state of the database. Data may be modified by the test
or other outside actor. Changed or inconsistent data may cause the test to fail or in
some cases appear to pass when it should not.

•	 Issues with the data access component may cause the tests to fail. It would be
difficult to know the difference between tests failing because of your code and tests
failing because of defects or back-end issues with the data access layer.

•	 Since the data access component calls a back-end database, it is much slower than
typical unit tests that are self-contained. As the application grows and the test suit
expands to thousands of tests, the additional latency will make the time it takes to
run the tests unacceptable.

Solution
Isolating your code from its dependencies is perhaps the single greatest challenge you face when writing
unit tests. Doing this requires a combination of several techniques that work best when used together. These
techniques include separating the interface from the implementation, mocking, and inversion of control and
dependency injection.

Separating the Interface from Implementation
Before implementing a class containing application logic, separating the interface from the implementation
requires that you first define the public methods and properties required in an interface. Your class will then
implement this interface. Separating the interface from the implementation allows you to create alternate
implementations that can be used for testing.

Chapter 7 ■ test-Driven Development with asp.net Core mvC

241

Mocking
While it is possible to hand-code a mock implementation of an interface for use in unit testing, in most cases
it would be labor intensive and impractical. To get around this problem, you can use mocking frameworks to
generate an instance of a class, which then allows you to implement a method or methods that can be used
by the code you are testing.

Inversion of Control and Dependency Injection
Using interfaces provides a raw language–level ability to provide loose coupling between components.
However, that independence is lost when you hardwire an implementation to a component by using the new
keyword to create an instance of an implementation. To get around this issue, you need to use an inversion
of control (IoC) container to inject an implementation of an interface. I will discuss this technique in detail
in recipe 7-5.

How It Works
To learn how to use a mocking framework in a unit test, you will complete the implementation of the tests for
the List action of ArtistAdminController started in recipe 7-3. The first step in this process will be to add
a reference to the Shared Data Access library that is distributed with the book’s source code. Next, you will
modify ArtistAdminController so the dependencies it requires can be injected via the constructor. In the
last step, you will add the Moq mocking framework to the test project and use it to simulate calls to the data
access layer.

Adding a Reference to the Data Access Library
To follow along with this step, you will need to follow the instructions in the appendix for setting up the SQL
Server database. You will also need to configure Visual Studio so that the book’s NuGet feed has been added
to the NuGet configuration. You can find detailed instructions for doing this in the appendix. To install the
shared library in the Chapter07.Web project, run the following command in the Package Manager window:

Install-Package Shared.DataAccess

Since you need to use the interfaces defined in the Shared.DataAccess package in the test project, you
will also need to install Shared.DataAccess in Chapter07.Test. To do this, in the Package Manager Console,
change the Default project to Recipe07.Test and then run the command again.

Modifying ArtistAdminController
In the ArtistAdminController class, add a using statement for AspNetCoreMvcRecipes.Shared.DataAccess.
Next, in the body of the class, create a private member variable of the type IUnitOfWork named
_DataAccessLayer. Add a constructor to the controller that accepts an argument of the type IUnitOfWork
and assigns it to the member variable. Listing 7-13 shows the updated controller.

Chapter 7 ■ test-Driven Development with asp.net Core mvC

242

Listing 7-13. ArtistAdminController Modified to Allow IUnitOfWork to Be Injected

public class ArtistAdminController : Controller
{
 private IUnitOfWork _DataAccessLayer;

 public ArtistAdminController(IUnitOfWork dataAccessLayer)
 {
 _DataAccessLayer = dataAccessLayer;
 }

 public IActionResult List()
 {
 return View("List");
 }

 // other actions here...
}

Adding Moq to the Test Project
Moq is the most popular mocking framework for .NET. Moq’s popularity is driven by its ease of use and its
support for LINQ queries against Moq objects. Moq supports mocking abstract classes and interfaces.

Before Moq can be used in the Chapter07.Test project, it needs to be added to the project from NuGet.
To do this, in the Package Manager Console, make sure the Default project is set to Recipe07.Test and then
use the following command to add Moq to the project:

Install-Package Moq

Updating ListAction_ReturnsListView to Use Moq
Now that Moq has been added to the project, you can use it to create a Moq object from the IUnitOfWork
interface and then pass the Moq object as a constructor to ArtistAdminController. Listing 7-14 shows the
ListAction_ReturnsListView test modified with the Moq object passed to the constructor.

Listing 7-14. Creating an Moq of IUnitOfWork

[Fact]
public void ListAction_ReturnsListView()
{
 // Arrange
 var controller = new ArtistAdminController(Mock.Of<IUnitOfWork>());
 var expected = "List";

 // Act
 var result = controller.List() as ViewResult;
 var actual = result?.ViewName;

 // Assert
 Assert.Equal(expected, actual);
 }

Chapter 7 ■ test-Driven Development with asp.net Core mvC

243

At this point, you can run the tests again. ListAction_ReturnsListView should pass, but the other tests
should still fail.

Verifying the Model Is the Correct Type
For the next test, you need to verify that the ViewResult class returned from the List action contains a
model of the type ArtistAdminViewModel. The ArtistViewModel class will contain the list of artists that you
want to display, the number of total items found, and a message that will indicate whether any items are
found. Using the view model allows you to write automatic unit tests that verify the state of the view without
testing the view directly. Testing the view itself requires an integration test that verifies the HTML was
properly rendered.

To verify the model is the correct type, you will need to implement a unit test that contains two asserts.
The first assert will ensure that the model is not null. This is done using xUnit’s Assert.NotNull method. The
second assert uses Assert.IsType to check the type of model class. The null check prevents an error from
occurring when running the test in cases that the model is never set in the controller. When errors occur, the
test still fails, but it will be more time-consuming to troubleshoot. Listing 7-15 shows the completed test.

An additional feature of the xUnit framework being introduced here is the use of the DisplayName
property of the Fact attribute. This allows you to specify a friendlier name to appear in the test runner.

Listing 7-15. Testing That the Correct Model Type Has Been Returned

[Fact(DisplayName = "List Action ActionResult Model is of type ArtistListViewModel")]
public void ListAction_PassesArtistListViewModel_ToListView_IsNotNull()
{
 // Arrange
 var controller = new ArtistAdminController(Mock.Of<IUnitOfWork>());

 // Act
 var result = controller.List() as ViewResult;

 // Assert
 Assert.NotNull(result.Model);
 Assert.IsType(typeof(ArtistListViewModel), result.Model);
}

Note that since the class ArtistListViewModel has not been created yet, you will not be able to build
and run the test.

Using Moq to Simulate Data Returned from the Data Access Layer
In the next test, Moq will be used to simulate the data access component returning data. To do this, the Mock
object will be created using the Mock<T> constructor rather than Mock.Of as it was in the past tests. Next, the
Mock.SetUp function will be used to provide an implementation to methods needed for the test. In this test
method, implementations will be provided for the IUnitOfWork.ArtistRepository.GetNewArtist method.
The mock will simulate a single item being returned. It should be noted that Moq cannot use default method
parameters and requires that a value be passed for each, even if a default value is present.

Inside the setup method, a lambda is used to tell the setup method which method you want to set up.
The Returns method is used to then provide the mock implementation of that method. In this case, a new
list is created, and a single object is added to the list. An instance of the controller is then created with the

Chapter 7 ■ test-Driven Development with asp.net Core mvC

244

mock object. The rest of the test attempts to get the value from the model and verifies that the RecordsFound
property contains the correct value of 1. Listing 7-16 shows the code for this test.

Listing 7-16. Simulating Call to Data Access Layer

[Fact(DisplayName ="List Action Artist List View has correct row count")]
public void ListAction_PassesArtistListViewModel_ToListView_HasCorrectRowCount()
{
 // Arrange
 var unitOfWorkMock = new Mock<IUnitOfWork>();
 unitOfWorkMock.Setup(m => m.ArtistRepository.GetNewArtists(1))
 .Returns(new List<Artist> {
 new Artist{ CreateDate= new DateTime(2017,2,26),
 UserName="TestUser1",
 EmailAddress = "TestUser1@myonlineband.com",
 ArtistId = 1,
 WebSite = "http://foxnews.com"
 }
 });

 var controller = new ArtistAdminController(unitOfWorkMock.Object);
 var expected = 1;

 // Act
 var result = controller.List() as ViewResult;
 var viewModel = result?.Model as ArtistListViewModel;
 var actual = viewModel?.RecordsFound;

 // Assert
 Assert.NotNull(viewModel?.Artists);
 Assert.Equal(expected, actual);
}

It should be noted that the test project will not compile now since the ArtistListViewModel class
does not exist. You can create this class now by creating a folder under the Chapter07.Web project called
ViewModels and then creating a new class called ArtistListViewModel. The class should match Listing 7-17.
Note I am making a distinction here that the class is a view model rather than a model since it contains
several properties specific to the view that are not persisted to the database. While this technique is not
required by ASP.NET Core, it can help developers distinguish view-related models to entity models.

Listing 7-17. ArtistListViewModel

using AspNetCoreMvcRecipes.Shared.DataAccess;
using System.Collections.Generic;

namespace Chapter07.Web.ViewModels
{
 public class ArtistListViewModel
 {
 public IList<Artist> Artists { get; set; }
 public int RecordsFound { get; set; }
 public Artist SelectedArtist { get; set; }

Chapter 7 ■ test-Driven Development with asp.net Core mvC

245

 public bool DeletedSuccessfully { get; set; }
 public string Message { get; set; }
 }
}

You should now be able to compile the project and run the tests. The ListAction_PassesArtist
ListViewModel_ToListView_HasCorrectRowCount test will fail since the code under test did not complete
this business logic.

Testing for a Condition When No Data Is Found
A common scenario when creating a page that displays data from a database is no data being returned from
a query. For the Artist Admin page, the requirements dictate that a message appears stating that no data was
found. The view model shown in Listing 7-17 provides a Message property where you expect your controller
will write the message.

As you did in recipe 7-2, hard-coded strings will be factored out into a static class to avoid error-prone
copying and pasting of strings between files. To set this up, add a new class to the Strings folder in the
Chapter07.Web project and name it ArtistAdminStrings. Listing 7-18 shows the ArtistAdminStrings class.

Listing 7-18. ArtistAdminStrings

namespace Chapter07.Web.Strings
{
 public static class ArtistAdminStrings
 {
 public const string NoDataFound = "No data was found matching your request.";
 }
}

To test the no data scenario, the Mock object will be set up in a similar fashion as with the test shown in
Listing 7-16. The difference is, in this case, the artist list is empty, and the assert is verifying that the Message
property is set to a string defined in a constant defined in ArtistAdminStrings.NoDataFound. Listing 7-19
shows the completed test.

Listing 7-19. Testing the No Data Found Scenario

[Fact(DisplayName = "List Action Artist List View Model Shows No Data message when empty")]
public void ListAction_ReturnsEmptyNewArtistList_ToListView()
{
 // Arrange
 var unitOfWorkMock = new Mock<IUnitOfWork>();
 unitOfWorkMock.Setup(m => m.ArtistRepository.GetNewArtists(1))
 .Returns(new List<Artist> { });

 var controller = new ArtistAdminController(unitOfWorkMock.Object);
 var expected = ArtistAdminStrings.NoDataFound;

 // Act
 var result = controller.List() as ViewResult;
 Assert.NotNull(result.Model);

Chapter 7 ■ test-Driven Development with asp.net Core mvC

246

 var viewModel = result?.Model as ArtistListViewModel;
 var actual = viewModel?.Message;

 // Assert
 Assert.Empty(viewModel?.Artists);
 Assert.Equal(expected, actual);
 }

Using Moq to Test for a Back-End Database Failure
It is important to understand how your application will respond when it cannot communicate with one or
more subcomponents. Subcomponents such as web services, databases, and even file systems can fail, and
your application needs to plan for these failures and should have tests to cover these scenarios.

The data access component used in the book uses Entity Framework Core to communicate to a SQL
Server database. Entity Framework does not wrap database connectivity errors but instead allows the
underlying database driver error to bubble up from the SQL Client driver. This creates a problem from
a unit testing perspective since no interface for SqlException is available and no public constructor for
SqlException exists. Because of this, you cannot use Moq to create a mock of SqlException. You can,
however, mock DbException. Because DbException is an abstract class, Moq can mock it even though it does
not provide an interface and has no public constructor. DbException is the base type for many database
exceptions including SqlException, OdbcException, and OracleException. A catch clause for DbException
also will catch exceptions from derived types. Using DbException also has the advantage of decoupling the
test suite from a specific implementation of the data access class.

For this test, you will verify that when calling IUnitOfWork.ArtistRepository.GetNewArtists results
in a DbException object, the Error view page will be displayed. The first step is to use Moq to create a mock
of a DbException object. Next, inside the setup for IUnitOfWork.ArtistRepository.GetNewArtists,
the Throws method is used rather than Returns as with the past tests. The exception mock is used as the
exception type passed to the Throws method. Listing 7-20 shows the completed test.

Listing 7-20. Testing for Back-End Failure Scenarios

[Fact(DisplayName = "List Action Redirect To Error Action When Back-end down")]
public void ListAction_RedirectToErrorAction_WhenItCannotConnectToBackend()
{
 var exception = new Mock<System.Data.Common.DbException>();
 // Arrange
 var unitOfWorkMock = new Mock<IUnitOfWork>();
 unitOfWorkMock.Setup(m => m.ArtistRepository.GetNewArtists(1))
 .Throws(exception.Object);
 var controller = new ArtistAdminController(unitOfWorkMock.Object);
 var expected = "Error";

 // Act
 var result = controller.List() as ViewResult;
 var actual = result?.ViewName;

 // Assert
 Assert.Equal(expected, actual);
}

Chapter 7 ■ test-Driven Development with asp.net Core mvC

247

You should now be able to build the project and run the tests. All the tests will still fail since the
functionality has not yet been implemented. In recipe 7-5, the ASP.NET Core IoC container will be used to
inject the data access component to the controller, which will allow you to complete the functionality.

7-5. Using the Inversion of Control and Constructor Injection
Patterns with ASP.NET Core MVC
Problem
You are implementing a controller that uses a database access component but do not want to execute
database commands during your unit tests. You need a way to automatically inject the correct component at
runtime as well as manage the lifetime of the components and ensure they are disposed of when no longer
needed.

Solution
Support for test-first development and dependency injection is central to the design of ASP.NET Core.
ASP.NET Core comes with a built-in IoC container that contains essential functionality. ASP.NET Core also
supports the use of third-party IoC containers, such as Autofac, that contain more robust features. Whether
you use the built-in IoC container or a third-party container, configuration is done in the Startup.cs class.

The IoC container configuration in Startup.cs is used to load not only your custom components but also
components of ASP.NET Core including the Static File module, logging middleware, and MVC. Startup.cs
has two methods used for loading and configuring components: ConfigureServices and Configure. The
ConfigureServices method allows you to add components to the ISevicesCollection of the application
but does not wire them up to the request pipeline. Adding components to the IServicesCollection makes
them available to be used via dependency injection. It is in ConfigureServices that interfaces are paired to
implementations. ConfigureServices is also used when applying advanced configuration using the Options
pattern as described in recipe 6-7.

The Configure method in Startup.cs adds components to the request pipeline. If you added a custom
middleware component to the IoC container during ConfigureServices, you would need to add it to the
request pipeline in Configure.

How It Works
Tightly coupled components make your application difficult to maintain and nearly impossible to test. If you
are creating instances of a class in your code using the new operator, you are hard-linking your code to the
class and creating coupling. Using the new operator is not always bad. In some cases, it can’t be avoided such
as when you are creating instances of strings and arrays. On the other hand, if it is possible to avoid hard
linking a dependency, you should consider it.

Dependency injection is an important technique to help you write loosely coupled and testable code.
With dependency injection, instances of a class are provided at runtime. Objects can be injected either
by being passed as a parameter to the consuming class’s constructor, known as the Constructor Injection
pattern, or by setting the values of properties, known as the Setter Injection pattern. The Setter Injection
pattern was popularized with the Java Spring framework, but many had found it to be error-prone because
of its reliance on default values when a property was not set. With the Constructor Injection pattern, all
dependencies are injected when the consuming class is created, and no default values are used. Constructor
Injection is the recommended pattern and the only one supported by the ASP.NET Core IoC container.

Chapter 7 ■ test-Driven Development with asp.net Core mvC

248

Using Constructor Injection
There are three steps for using the Constructor Injection pattern.

 1. Set up your class so it has a member variable for each of the dependencies you
want to inject.

 2. Add a constructor that accepts parameters for each dependency and then assigns
them to the member variables. An example of this was shown in recipe 7-4
(see Listing 7-6).

 3. The final step is to configure the IoC container so that it knows what
implementation classes should be used for each interface and what the lifetime
of each class should be. Once this has been set up, then the IOC container
in combination with ASP.NET Core can automatically create instances of the
classes, inject them at runtime, and then dispose of them when they are no
longer required.

Once your class has been set up to accept the required dependencies, the next problem is configuring
your application so it can locate the correct implementations for your interfaces and then inject them into
your consuming classes as needed. This is where the IoC container becomes useful. The IoC container
allows you to register interfaces with a matching implementation. It can then respond to a request for an
interface type with an associated instance. The IoC container also manages the life cycle of the instance and
will dispose of it when required.

Registering Types with the ASP.NET Core IoC Container
As mentioned previously, the Startup class’s ConfigureService method is used to register types with the
ASP.NET Core IoC container. The IServiceCollection class contains many methods that simplify the task
of registering a type with the IoC container and specifying how the instance should be managed.

The ArtistAdminController class that was first introduced in recipe 7-3 depends on a data access
component that is an instance of a class that implements IUnitOfWork. The UnitOfWork class, which was
discussed in detail in Chapter 6 (see recipe 6-6), depends on an Entity Framework Core DBContext class
called MoBContext. UnitOfWork uses constructor injection to get an instance of the MoBContext object just
as ArtistAdminController requires that an IUnitOfWork instance be injected. This type of dependency
chaining is common. Listing 7-21 shows how both classes are registered in the Startup.cs class.

Listing 7-21. Registering Multiple Dependencies in the ASP.NET Core IoC

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();

 // Register the DBContext that is required by UnitOfWork
 services.AddDbContext<MoBContext>(
 options => options.UseSqlServer(Configuration.GetConnectionString("Default

Connection")));

 // Register UnitOfWork as Scoped so it will have one instance per request
 services.AddScoped<IUnitOfWork, UnitOfWork>();

}

http://dx.doi.org/10.1007/978-1-4842-0427-6_6

Chapter 7 ■ test-Driven Development with asp.net Core mvC

249

The UnitOfWork class and the MoBContext class are both registered with a scoped lifetime, which means
they are created once for each request. The scoped lifetime is the default setting when calling AddDbContext
and is the recommended scope for database-connected services. The ASP.NET Core IoC container allows
three types of service lifetime scopes.

•	 Singleton: One instance is created per application. It is created the first time it is
needed. You need to be careful with this approach since the state of the instance can
be changed by multiple requests.

•	 Scoped: One instance is created for each request.

•	 Transient: This is created each time it is requested. This works best for lightweight
stateless components.

Implementing the ArtistAdminController List Action
Now that the tests have been written (recipes 7-3 and 7-4) and the dependencies have been configured, the
next step is to implement the code for the List action. Shown in Listing 7-22, the action starts off by creating
an instance of the view model class ArtistListViewModel. Next a try/catch block is created to catch
possible database faults. A DbException is caught by the block rather than a SqlException. This allows the
code flow to be tested in the unit test and does not couple the controller to a specific database driver. Inside
the try block, the model.Artists property is populated with a call to IUnitOfWork. The null conditional
operator is used to help verify that none of the objects is null before calling the next in the chain. Not only is
this a good general best practice, but it is required because of the way your tests have been written. For the
first two tests that used only a simple Mock object, the ArtistRepository property of the IUnitWork instance
will be null since it was not explicitly created when the mock was set up.

Next, the RecordsFound property is populated. Finally, the Message property is set, which meets the
needs of the last test, which expected the NoDataFound message to be used when the collection was empty.

Listing 7-22. Completed List Action

public IActionResult List()
{
 var model = new ArtistListViewModel();
 try
 {
 model.Artists = _DataAccessLayer?.ArtistRepository?.GetNewArtists(1);
 var nInt = model?.Artists?.Count;
 model.RecordsFound = nInt ?? 0;
 if(model.RecordsFound>0)
 {
 model.Message = string.Format("{0} Records found", model.RecordsFound);
 }
 else
 {
 model.Message = ArtistAdminStrings.NoDataFound;
 }

 }

Chapter 7 ■ test-Driven Development with asp.net Core mvC

250

 catch(DbException dbE)
 {
 model.Message = dbE.Message;
 return View("Error", model);
 }
 return View("List", model);
}

You should now be able to run your unit tests, and they should all pass.
The last step is to create the view pages. To do this, first create a new folder under Views in the

Chapter07.Web project named ArtistAdmin. Next add a new view page named List.cshtml. Modify
List.cshtml to match Listing 7-23.

Listing 7-23. List.cshtml

@model Chapter07.Web.ViewModels.ArtistListViewModel

<h2>Artists</h2>
@Model.Message
<table class="table table-striped">
 @foreach (var item in Model.Artists)
 {
 <tr>
 <td>
 @item.UserName
 </td>
 <td>
 @item.Country
 </td>
 <td>
 @item.CreateDate.ToString("d")
 </td>
 </tr>
 }
</table>

You should now be able to run your application and navigate to the page.

251© John Ciliberti 2017
J. Ciliberti, ASP.NET Core Recipes, DOI 10.1007/978-1-4842-0427-6_8

CHAPTER 8

Moving from Web Forms to ASP.
NET Core MVC

Many people who have been working with Microsoft web technologies have built up years of experience
using ASP.NET Web Forms. The recipes in this chapter attempt to bridge the gap between ASP.NET Web
Forms and ASP.NET Core MVC by discussing common programing tasks performed using Web Forms and
then showing the equivalent technique using ASP.NET Core MVC and the Razor view engine.

8-1. Deciding Between Staying with Web Forms,
a Full Rewrite, or Gradual Migration
Problem
You’re a veteran ASP.NET Web Forms developer, and you are assigned to a new project that is wrapping
up requirements gathering and are about to begin your design. You need help deciding whether to stick
with ASP.NET Web Forms or dive into ASP.NET Core MVC. If ASP.NET Core MVC is not yet a standard
development framework in your organization, you may need to justify this design decision to management
or an enterprise architecture team.

Solution
ASP.NET Web Forms is Microsoft’s most popular web application framework and has been used to create
hundreds of thousands of applications since its introduction in January 2002. While it has been continually
updated and improved, its overall architecture is outdated. While its design made it easy for Visual Basic 6
developers to adapt to the Web, its layers of abstraction create challenges when attempting to create fresh
user experiences that require more precise control of HTML.

For most situations, ASP.NET Core MVC will be your best choice for new projects. ASP.NET Core MVC
offers many benefits over ASP.NET Web Forms, including the following:

•	 ASP.NET Core’s lightweight modular architecture and streamlined hosting models
make ASP.NET Core faster and more scalable then ASP.NET Web Forms.

•	 ASP.NET Core MVC has built-in features for creating RESTful web services. While
ASP.NET Web Forms has basic functionality for creating SOAP-based web services, in
most cases you would need to use WCF to build out a service layer if you stayed with
Web Forms.

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

252

•	 ASP.NET Core allows more control of the HTML and does not attempt to abstract
HTML away as Web Forms does. This makes ASP.NET Core much easier to integrate
with modern front-end frameworks such as ReactJS and Angular.

•	 ASP.NET Core has built-in support for dependency injection, which greatly simplifies
following test-driven development practices. ASP.NET Web Forms, on the other
hand, is difficult to test because it is tightly coupled with many system components.

Deciding Between a Gradual Migration and a Full Rewrite
The choice between a gradual migration and a full rewrite depends on the size and complexity of the
application and the overall business value your customer will receive from the rewrite. For example, if the
business case for your existing application has changed and most of the application will need to be updated
anyway regardless of technology choice, a total rewrite in ASP.NET Core MVC may be well worth the extra
investment. On the other hand, if you rewrite the entire application but the result as perceived by your
customer does not provide additional business value, your customer may be unhappy. In this case, you may
be better off sticking with ASP.NET Web Forms or performing a gradual migration.

Gradual Migration from ASP.NET Web Forms to ASP.NET Core

ASP.NET Core MVC does not support Web Forms. Because of this, you cannot have both Web Forms and
ASP.NET Core running side by side in the same web application. This makes a gradual migration challenging
and requires that components built using ASP.NET Core be placed in a separate web application.

There are several strategies for integrating multiple web applications so that they appear as a single
application to the end user. In cases where the entire application is deployed to a single web server, virtual
directories in IIS can be used. Virtual directories allow you to host many applications under a single web
site, with each web site appearing as a separate subdirectory. If you choose this path, however, you may
find it difficult to maintain consistency in your presentation layer and will have to address problems such as
maintaining state when a user navigates between pages in the separate web application.

An alternative to the method of using virtual directories is to consider migrating business logic and
data access code to .NET Standard–compatible libraries and then exposing the functionality to the legacy
Web Forms application via a RESTful API created using ASP.NET Core. The Web Forms UI pages can then be
gradually replaced by static pages that consume the API using a modern front-end framework such as ReactJS.
This method would still require creating a new web application to host the ASP.NET Core APIs but would not
be mixing UI components from the two web applications. The drawback of this approach is that you will not
be able to take advantage of the productivity offered by the Razor view engine and will face a steep learning
curve with ReactJS. For more information on how to use ReactJS with ASP.NET Core, see Chapter 11.

8-2. Converting a Web Forms Page to MVC
Problem
You have decided to migrate your Web Forms application to ASP.NET Core MVC. Since the programming
model in ASP.NET Core MVC is so different from Web Forms, you are not sure where to start.

Solution
Each Web Forms page has two parts: an ASPX page or web form that contains a mix of HTML markup
server-side controls and a code-behind page that is a .NET class that contains server-side event handlers and
other helper code. In a well-factored Web Forms application, things such as data access code will typically

http://dx.doi.org/10.1007/978-1-4842-0427-6_11

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

253

be factored out into a class library in a separate assembly. In less complex applications, the data access code
may be directly in the code-behind page.

To convert a Web Forms page to MVC, you can perform the following actions:

 1. Identify an existing MVC controller or create a new one to host the page’s
control logic.

 2. Add a new action to the controller with an IActionResult return type.

 3. If the Web Forms page was in a subfolder that had access restricted by role,
decorate the action with an AuthorizeAttribute attribute and pass in the
required security parameters as necessary.

 4. In the models folder, create a new model class that abstracts the types of data you
are working with in your Web Forms page. I will go over what this means in detail
in the “How It Works” section of this recipe.

 5. Create a new view that corresponds with the action in the Controller’s View
folder. This can be done inside Visual Studio by right-clicking the action name in
the controller class and then selecting Add View from the context menu. You will
then be prompted to confirm the view name and select a scaffolding template for
the view.

 6. Add logic to your Action method to take the data from the model and pass it to
your view.

How It Works
To illustrate the procedure described in the solution, you will take a web form called MyWorkspaces.aspx
and convert it to ASP.NET Core MVC. MyWorkspaces.aspx was designed to be used only by authenticated
users who were members of the Artists security group and was placed in a subdirectory called Members
with a web.config file that contained an Authorization section, as shown in Listing 8-1.

Listing 8-1. Web Forms Access Control in web.config

<?xml version="1.0"?>
<configuration>
 <system.web>
 <authorization>
 <allow roles="Artist"/>
 <deny users="*"/>
 </authorization>
 </system.web>
</configuration>

MyWorkspaces.aspx displays a list of collaboration spaces that a user has either created or contributed
to. The data is displayed on the page using a DataList control. The DataList control uses data binding
expressions to display the data. It also encapsulates the looping logic and provides sections where the
developer can supply templates for the header, footer, and items that will be displayed. In addition to the
Repeater, a PlaceHolder control is used to display content that should be displayed only when no data is
found. Listing 8-2 shows MyWorkspaces.aspx.

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

254

Listing 8-2. Markup and Data Binding Code for MyWorkspaces.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="MyWorkspaces.aspx.cs"
Inherits="Recipe02.WebForms.Members.MyWorkspaces" MasterPageFile="~/Site.Master" %>
<asp:Content ID="Content4"
 ContentPlaceHolderID="MainContent"
 runat="server">
 <h1>My Song Workspaces</h1>
 <div class="tab-content" id="flowtabsPanes">
 <div class="tab-pane active" id="MyWorkspaces">
 <asp:PlaceHolder
 Text="You have not created any song workspaces."
 runat="server"
 Visible="false"
 ID="noWorkspaces" />
 <asp:Repeater ID="ProjectsRepeater" runat="server">
 <HeaderTemplate>
 <table class="table table-striped">
 <thead>
 <tr>
 <th>
 <asp:Label ID="ProjectNameHdrLabel"
 runat="server"
 Text="Project Name">
 </asp:Label>
 </th>
 <th>
 <asp:Label ID="ProjectDetailsHdrLabel"
 runat="server"
 Text="Status">
 </asp:Label>
 </th>
 <th>
 <asp:Label ID="ProjectStatusHdrLabel"
 runat="server"
 Text="Created">
 </asp:Label>
 </th>
 <th>
 <asp:Label ID="ProjectDateModHdrLabel"
 runat="server"
 Text="Modified">
 </asp:Label>
 </th>
 </tr>
 </thead>
 </HeaderTemplate>

 <ItemTemplate>
 <tr>
 <td>
 <asp:Label ID="ProjectNameLabel"

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

255

 runat="server">

 <%# Eval("Title") %></asp:Label>
 </td>
 <td>
 <asp:Label ID="ProjectDetailsLabel"
 runat="server"><%# Eval("Status") %>
 </asp:Label>
 </td>
 <td>
 <asp:Label ID="ProjectStatusLabel"
 runat="server">
 <%# Eval("CreateDate")%>
 </asp:Label>
 </td>
 <td>
 <asp:Label ID="ProjectDateModLabel"
 runat="server"><%# Eval("ModifiedDate")%>
 </asp:Label>
 </td>
 </tr>
 </ItemTemplate>

 <FooterTemplate>
 </table>
 </FooterTemplate>
 </asp:Repeater>
 </div>
 </div>
</asp:Content>

The web form markup page does not contain any logic. All the code is for calling the data access layer
and for determining what parts of the content should be visible in the code-behind page. In this example,
the code-behind page handles a single server-side event that fires when the page loads. Inside the event
handler, shown in Listing 8-3, the code first verifies that this is the initial page load and not a subsequent
request caused by a user interacting with another page control such as a button. This is done by checking
the IsPostBack property. Next the code in the event handler creates an instance of the repository and gets a
list of collaboration spaces. If data is found, it is bound to the Repeater control; otherwise, the noWorkspaces
placeholder is displayed.

Listing 8-3. Code-Behind Page for MyWorkspaces.aspx

using System;
using AspNetCoreRecipes.Shared.DataAccess.Repository;

namespace Recipe02.WebForms.Members0
{
 public partial class MyWorkspaces : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (IsPostBack) return;

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

256

 // in order to simplify this example we are hard coding a user name
 var id = 1784;
 using (var unitOfWork = new UnitOfWork())
 {
 var list = unitOfWork.CollaborationSpaceRepository.GetCollaborationSpaces

ForArtist(id);

 if (list.Count > 0)
 {
 ProjectsRepeater.DataSource = list;
 ProjectsRepeater.DataBind();
 }
 else
 {
 noWorkspaces.Visible = true;
 }
 }
 }
 }
}

Moving to ASP.NET Core MVC
For this example, you will add a new controller named MembersController to an existing ASP.NET Core
MVC project.

To add the new controller, inside Visual Studio, right-click the Controllers folder and select
Add ➤ New Item. In the Add New Item dialog, select MVC Controller Class. Change the name of the new
class file to MembersController.cs and then click the Add button.

To meet the security requirement implemented by the Web Forms project of restricting access to
authorized users who are members of the security group Artist, you will add an AuthorizeAttribute
attribute to the class. You are adding the attribute at the class level in this case since all the actions in this
controller are meant only for members of the Artist role. The AuthorizeAttribute attribute provides
similar functionality as the authorization settings configured in the web.config file of the Web Forms
project.

Next, you will add an action method that will contain the control logic for the My Collaboration Spaces
page. Add a new public method to the MembersController class with a return type of IActionResult named
MyCollaborationSpaces.

In the Web Forms page, calls to the UnitOfWork data access layer class were wrapped inside a using
block to ensure that all resources were disposed of. In ASP.NET Core, the life cycle of the UnitOfWork object
is managed by the ASP.NET Core IoC container. For details on using the IoC container and registering
the UnitOfWork class in Startup.cs, please refer to Chapter 6 (see recipe 6-6). Also, since you are using
dependency injection, you always access the data access layer using the interface IUnitOfWork rather than
using a specific implementation of it.

To allow the IoC container to inject an instance of the IUnitOfWork instance into the controller, first you
will add a private member variable named _unitOfWork to the page to hold it. You then create a constructor
that takes an IUnitOfWork object as an argument and assigns it to _unitOfWork.

Finally, you can add the logic to your action method that will use the IUnitOfWork class to pull the data
from your repository and then pass the result as the model to the view. Listing 8-4 shows the completed
MembersController class.

http://dx.doi.org/10.1007/978-1-4842-0427-6_6

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

257

Listing 8-4. The MembersController Class

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Authorization;
using AspNetCoreMvcRecipes.Shared.DataAccess;

namespace Recipe03.Core.Web.Controllers
{
 [Authorize(Roles = "Artist")]
 public class MembersController : Controller
 {
 private IUnitOfWork _unitOfWork;
 public MembersController(IUnitOfWork unitOfWork)
 {
 _unitOfWork = unitOfWork;
 }

 public IActionResult MyCollaborationSpaces()
 {
 // in order to simplify this example we are hard coding a user name
 var id = 1784;
 var model = _unitOfWork.CollaborationSpaceRepository.GetCollaborationSpacesFor

Artist(id);

 return View("MyCollaborationSpaces", model);
 }
 }
}

The last step is to create the view. Create a new subfolder under the Views folder called Members and
then add a new view page named MyCollaborationSpaces.cshtml.

Inside MyCollaborationSpaces.cshtml, the first thing you need to do is add a model directive that tells
the view what CLR type you want to use for the model.

Next, you will add some presentation logic that will show a message if no data is found. In the
Web Forms example, this was done in the code-behind page by toggling the Visible property of the
noWorkSpaces ASP Placeholder control. In the Razor page, this is accomplished using an If block that
checks that Model is not null and contains at least one item.

In the case in which you have data, the view will display the data in an HTML table. In the Web Forms
version, the looping logic for creating this table was encapsulated inside the Repeater control. In the Razor
view, this is accomplished with a foreach block. Listing 8-5 shows the completed example.

Listing 8-5. MyCollaborationSpaces.cshtml

@model IList<AspNetCoreMvcRecipes.Shared.DataAccess.CollaborationSpace>
@{
 ViewBag.Title = "My Collaboration Spaces";
}
<h2>@ViewBag.Title.</h2>
@if (Model == null || Model.Count < 1)
{
 <div>
 Sorry no data found!
 </div>
}

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

258

else
{
 <table class="table table-striped">
 <tr>
 <th>
 Project Name
 </th>
 <th>
 Status
 </th>
 <th>
 Created
 </th>
 <th>
 Modified
 </th>
 </tr>
 @foreach (var item in Model)
 {
 <tr>
 <td>@item.Title</td>
 <td>@item.Status</td>
 <td>@item.CreateDate</td>
 <td>@item.ModifiedDate</td>
 </tr>
 }
 </table>
}

8-3. Creating a Custom Tag Helper That Mimics the ASP.NET
Data List Control
Problem
You are building a new application using ASP.NET Core MVC. You have requirements to display a list of
items in a four-column format. As a veteran ASP.NET Web Forms developer, you would normally accomplish
this using a DataList control. You want to know how to do the same thing using ASP.NET Core MVC with
the Razor view engine. You want to reuse existing code where possible and are required to support legacy
browsers including Internet Explorer 7.

Solution
This problem has a few possible solutions. One is to build an HTML table like you did in recipe 8-2, which
was shown in Listing 8-5. This is simple and will probably work in most cases but does not provide much in
the way of reuse and can potentially become tedious if you need to create many similar pages.

Another approach is to use a foreach loop in your view to output your template as a series of list
items in an HTML unordered list (). An added benefit of this approach is rather than hard-coding four
columns, you can then use CSS media queries to dynamically adjust the number of columns displayed
based on the resolution of the user’s display. The only problem with this approach is that it does not support

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

259

all legacy browsers. It is possible to add this capability for older browsers using a type of JavaScript library
known as a polyfill. A popular library for providing media query support to Internet Explorer 6-8 is Respond.
js. The Respond.js library can be easily added to your project using Bower.

The third approach, shown in this example, is to create a Tag Helper that lets you specify the number
of columns that you need to create and then lets you specify the template for each column defined in a
partial view.

How It Works
From a straight productivity standpoint, it is hard to argue with the simplicity of being able to drag a
DataList control to a web form, specify the direction and number of columns required, and then bind the
list to a data source. For this reason, ASP.NET Web Forms continues to be popular, especially in corporate
environments where the deadline is typically the first documented requirement.

It is possible to create a similar level of efficiency with ASP.NET Core MVC once you learn the correct
techniques and build up a library of custom Tag Helpers that aid you in your design. In addition to having
a highly productive developer experience, you can reap the advantages of clean HTML and increased
testability.

Creating a Tag Helper to Mimic the Web Forms DataList Control
As stated in the “Solution” section, you will create a custom Tag Helper that will allow you to be more
productive when implementing views with a multiple-column requirement. The Tag Helper will take the
number of columns to generate, the model expression to use as a data source, and the name of a view
component as parameters. You can then use the Tag Helper, as shown in Listing 8-6.

Listing 8-6. Desired Syntax for the ColumnList Tag Helper

<column-list asp-number-of-columns="2"
 asp-for="@Model"
 asp-view-component="ArtistCard"></columnlist>

Using a view component adds complexity but has two key advantages. First, it allows your view to be
kept very simple with most of the view markup moved into the view component. Another advantage of using
a view component is that additional transformation logic can be applied to the data before displaying it.

Creating the ColumnList Tag Helper

Create a new folder named TagHelpers under the Recipe03.Web project. Add a class to the folder named
ColumnListTagHelper. Add a using statement for Microsoft.AspNetCore.Razor.TagHelpers and then
make the class extend TagHelper. Inside the body of the class, override the ProcessAsync method, as shown
in Listing 8-7.

Listing 8-7. Tag Helper Starting Point

using Microsoft.AspNetCore.Razor.TagHelpers;
using System.Threading.Tasks;

namespace Recipe03.Web.TagHelpers
{

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

260

 public class ColumnListTagHelper : TagHelper
 {

 public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
 {

 }

 }
}

Adding Properties to the Tag Helper

ColumnListTagHelper is now a Tag Helper that can be included in a view. However, since no functionality
has been implemented, the markup added to the view will not be modified at all by the Tag Helper. The Tag
Helper syntax shown in Listing 8-6 had a tag named column-list with three attributes: asp-number-of-
columns, asp-for, and asp-view-component. To add the attributes to the Tag Helper, add three new public
properties to the class that are named NumberOfColumns, For, and ViewComponent. Decorate each of the
properties with an HtmlAttributeName attribute. This is required to use asp-prefix. By convention, Razor
will automatically convert Pascal-cased property names into lowercase HTML property names. For example,
ViewComponent would be converted to a view component. Using the asp- prefix is not required but can make
it easier to distinguish normal HTML properties from Tag Helper properties. The updated Tag Helper will
match Listing 8-8.

Listing 8-8. Adding Properties to the Tag Helper

using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Razor.TagHelpers;
using System.Threading.Tasks;

namespace Recipe04.Web.TagHelpers
{

 public class ColumnListTagHelper : TagHelper
 {
 public const string NumberOfColumnsAttributeName = "asp-number-of-columns";
 private const string ForAttributeName = "asp-for";
 private const string ViewComponentAttributeName = "asp-view-component";

 [HtmlAttributeName(NumberOfColumnsAttributeName)]
 public int NumberOfColumns { get; set; }

 [HtmlAttributeName(ForAttributeName)]
 public ModelExpression For { get; set; }

 [HtmlAttributeName(ViewComponentAttributeName)]
 public string ViewComponentName { get; set; }

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

261

 public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
 {

 }

 }
}

Validating the Properties of the Tag Helper

In the next step, you can add some validation logic to throw exceptions if the arguments supplied do not
match your expectations. Throwing exceptions will aid developers who are consuming the Tag Helper to
spot issues. If exceptions are not explicitly thrown, Razor will suppress unexpected errors and not render
any content, making programming errors difficult to solve. The revised version of the ProcessAsync method
shown in Listing 8-9 validates that TagHelperContext and TagHelperOutput have been properly set by the
runtime or test class. Next, you validate that the NumberOfColumns property has been set between 1 and 12.
Finally, you inspect the model expression. If it is null, the processing is halted, and the output is suppressed.
A null model expression may be a legitimate value. In this case, you do not want to return an error but
return nothing at all. In the final check, you verify that the model expression is an ICollection.

Listing 8-9. Validation Logic in the Tag Helper

public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
{
 if (context == null)
 {
 throw new ArgumentNullException(nameof(context));
 }

 if (output == null)
 {
 throw new ArgumentNullException(nameof(output));
 }

 if (NumberOfColumns < 1 || NumberOfColumns > 12)
 {
 throw new ArgumentOutOfRangeException("NumberOfColumns",
 "The number of columns must be at least 1 and at most 12.");
 }

 if (For == null)
 {
 output.SuppressOutput();
 return;
 }
 var collection = For.Model as ICollection;
 if (collection == null)
 {
 throw new ArgumentOutOfRangeException("For", "The Model Expression need to

be a collection.");
 }
}

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

262

Setting Up the Tag Helper to Execute View Components

Before you can go any further, some additional work needs to be done to allow the Tag Helper to execute a
view component. When Razor executes a view component, it uses an instance of an IViewComponentHelper.
This instance is passed to Razor using dependency injection. For the Tag Helper to execute the view
component, it will also need to have an instance of IViewComponentHelper passed to it. In addition, you
will also need to get a copy of the view context and use it to contextualize the IViewComponentHelper
instance. The first step in this process is to add a private read-only member variable to hold the
IViewComponentHelper instance. Next, create a constructor that accepts an IViewComponentHelper
parameter and writes it to the instance variable. This setup will allow the ASP.NET Core dependency
injection system to automatically inject the IViewComponentHelper.

The second step is to create a public property called ViewContext. This property needs to be decorated
with the ViewContext attribute to allow ASP.NET Core to inject the ViewContext property into the Tag
Helper. This is necessary since the ViewContext property is created later in the request life cycle after the
Tag Helper has been initialized. The ViewContext property should also have an HtmlAttributeNotBound
attribute. This will prevent the property from appearing as an option to developers from Visual Studio
IntelliSense. Listing 8-10 shows the new constructor and ViewContext property.

Listing 8-10. Setting Up the Tag Helper to Call a View Component

private readonly IViewComponentHelper _viewComponentHelper;
public ColumnListTagHelper(IViewComponentHelper viewComponentHelper)
{
 _viewComponentHelper = viewComponentHelper;
}

/// <summary>
/// The context of the current view
/// </summary>
[HtmlAttributeNotBound] // do not show in VS as something for users to add
[ViewContext]
public ViewContext ViewContext { get; set; } // set View Context property once constructed

Adding the Rending Logic

Now that the Tag Helper has been set up to get all the data it needs from the view, you can add the logic for
implementing the dynamic column layouts. Unlike the ASP.NET Web Forms DataList control, which uses
HTML tables for layout, the ColumnList Tag Helper will use the Bootstrap grid system. Bootstrap is the UX
library that is added with the ASP.NET Core template. Bootstrap uses a 12-column grid system that uses
CSS to create a column structure that can adapt based on the size of the screen. Columns in Bootstrap are
defined using CSS classes in the format col-[screen-size]-[column-span]. For example, if you want a
column that spans three columns for extra-small screens, you can add a class named col-xs-3 to the HTML
element. You can find a full description of the Bootstrap grid here:

http://getbootstrap.com/css/#grid-options

To use the grid system to dynamically create columns, you will create a helper function that
calculates the required column span based on the value of the NumberOfColumns property. Listing 8-11
shows the method.

http://getbootstrap.com/css/#grid-options

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

263

Listing 8-11. Creating Columns Using the Bootstrap Grid System

private string GetColumnDivTag()
{
 var colSpan = (int)Math.Round((double)(12 / NumberOfColumns));
 return string.Format(@"<div class=""col-xs-{0} col-sm-{0} col-md-{0} col-lg-{0}"">",

colSpan);
}

Finally, the logic to loop through the items in the collection passed via the model expression is added
to the ProcessAsync method. This starts by setting the outer HTML tag rendered by the Tag Helper to a DIV
using output.TagName = "div". You can then add the Bootstrap container-fluid class to the DIV using
output.Attributes.SetAttribute("class", "container-fluid"). Next, you need to initialize several
variables used to monitor the progress of the loop. In the body of the loop, a new row is created when the
loop is started and each time you reach the maximum number of items in a column. Inside each row,
columns are added for each item. The view component is executed for each of the items in the collection,
and the output of the view component is appended to the output. At the end of the loop, if there is not
enough data to fill all the columns in the last row, empty columns are created. Listing 8-12 shows the full
ProcessAsync method.

Listing 8-12. Completed ProcessAsync Method

public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
{
 if (context == null)
 {
 throw new ArgumentNullException(nameof(context));
 }

 if (output == null)
 {
 throw new ArgumentNullException(nameof(output));
 }

 if (NumberOfColumns < 1 || NumberOfColumns > 12)
 {
 throw new ArgumentOutOfRangeException("NumberOfColumns", "The number of

columns must be at least 1 and at most 12.");
 }
 if (For == null)
 {
 output.SuppressOutput();
 return;
 }
 var collection = For.Model as ICollection;
 if (collection == null)
 {
 throw new ArgumentOutOfRangeException("For", "The Model Expression need to

be a collection.");
 }

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

264

 //add the view context of the current view to the view component, enable to invoke
 ((IViewContextAware)_viewComponentHelper).Contextualize(ViewContext);

 output.TagName = "div";
 output.Attributes.SetAttribute("class", "container-fluid");

 var columnsInRow = 1;
 var rowsDone = 0;
 var numberOfItemsDone = 0;
 var numberOfExtraColumnsInLastRow = 0;

 //calculate the needed table structure
 int numberOfRows = collection.Count / NumberOfColumns;

 foreach (var item in collection)
 {
 if (columnsInRow == 1)
 {
 output.Content.AppendHtml(@"<div class=""row"">");
 }

 output.Content.AppendHtml(GetColumnDivTag());

 var viewContent = await _viewComponentHelper.InvokeAsync(ViewComponentName, item);
 output.Content.AppendHtml(viewContent);
 output.Content.AppendHtml("</div>");

 bool isLastItem = (collection.Count == numberOfItemsDone + 1);

 if ((columnsInRow == NumberOfColumns) || isLastItem)
 {
 if (isLastItem)
 {
 numberOfExtraColumnsInLastRow = NumberOfColumns - columnsInRow;

 output.Content.AppendHtml((RenderExtraColumns(numberOfExtraColumns
InLastRow)));

 }
 output.Content.AppendHtml("</div>");
 columnsInRow = 1;
 rowsDone++;
 }
 else
 {
 columnsInRow++;
 }

 numberOfItemsDone++;
 }
}

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

265

private string RenderExtraColumns(int numberOfExtraColumnsInLastRow)
{
 if (numberOfExtraColumnsInLastRow > 0)
 {
 var builder = new StringBuilder();
 for (int i = 0; i < numberOfExtraColumnsInLastRow; i++)
 {
 builder.Append(GetColumnDivTag());
 builder.Append("</div>");
 }
 return builder.ToString();
 }
 return string.Empty;
}

Using the ColumnsList Tag Helper
In the last part of this exercise, you will add the Tag Helper to the Home controller and corresponding view
that will display a list of new artists who have recently joined your music collaboration community web site.
The view will use the ColumnsList helper to display a template for each artist.

Creating the ArtistCard View Component

The ColumnList Tag Helper requires that you use a view component to render the template displayed in
each block in the grid. This design provides additional flexibility allowing you to intercept and transform the
data before passing it to the view.

In the Web Forms way of doing things, you need to rely on event handlers such as ItemDataBound to
perform data transformation logic. The ItemDataBound event handlers allow you to access the model data
indirectly by pulling it out of child controls exposed via DataListItemEventArgs, but this was somewhat
cumbersome and often resulted in brittle and hard-to-read code.

In the view component model employed here, you have full control over the data and can transform it
into a view model if needed.

The other advantage of this design is that you have full control over the HTML on the page. You can also
take advantage of the full feature set of the Razor view engine.

To create the view component, first create a new folder in the root of the web application named
ViewComponents. Add a new class to that folder named ArtistCardViewComponent. Modify the class to
match Listing 8-13.

Listing 8-13. ArtistCardViewComponent

using AspNetCoreMvcRecipes.Shared.DataAccess;
using Microsoft.AspNetCore.Mvc;
using System.Threading.Tasks;

namespace Recipe04.Web.ViewComponents
{
 public class ArtistCardViewComponent : ViewComponent
 {
 public async Task<IViewComponentResult> InvokeAsync(Artist artist)
 {

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

266

 return View(artist);
 }
 }
}

Next, you need to add a view that will display the information for each artist. To do this, first create a
new folder under Views\Shared named Components. In the Components folder, create a new folder called
ArtistCard. In the ArtistCard folder, create a new view page named Default.cshtml. Modify the view to
match Listing 8-14.

Listing 8-14. ArtistCard View Page

@model AspNetCoreMvcRecipes.Shared.DataAccess.Artist
<div class="panel panel-default">
 <div class="panel-heading">
 <h4>@Model.UserName</h4>
 </div>
 <div class="panel-body">
 <div class="col-lg-4 col-md-4">
 <img src="@Model.AvatarUrlSample"
 class="img-circle img-responsive"
 alt="Click Image to view full profile" />

 </div>
 <div class="col-lg-8 col-md-8">
 <p>Country: @Model.Country</p>
 <p>Joined: @Model.CreateDate.ToString("MM/dd/yyyy")</p>
 <p>Views: @Model.ProfileViews</p>
 </div>
 </div>
</div>

The ArtistCard view page shown in Listing 8-14 also takes advantage of the Bootstrap library. The CSS
classes panel, panel-default, panel-heading, and panel-body create a clean layout for the artist card.
The name of the artist is displayed in the header. The body of the panel is split, with the image on the left
taking up one-third of the area and stats about the artists displayed in the other two-thirds of the card.
The Bootstrap panel feature is described in detail here:

http://getbootstrap.com/components/#panels

Making the Custom Tag Helpers Visible to the Views

To use your custom Tag Helper in views for the project, the Tag Helpers need to be registered in the
_ViewImports.cshtml file using the @addTagHelper directive, as shown in Listing 8-15. This will make all
Tag Helpers defined in the assembly available to all views in the web application.

Listing 8-15. _ViewImports.cshtml

@using Recipe04.Web
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper *, Recipe04.Web

http://getbootstrap.com/components/#panels

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

267

Adding the Controller Logic

The controller logic in this example is simple. In this case, it has been refactored for testability with all the
LINQ queries to the data context being factored into a repository class in the data access layer. The controller
class has a private member variable that holds the repository, which is passed into the constructor by ASP.NET
Core’s dependency injection system. For more information on the Repository and Unit of Work patterns
used in this example, please refer to recipe 6-7. Listing 8-16 shows the code for the controller.

Listing 8-16. HomeController

using Microsoft.AspNetCore.Mvc;
using AspNetCoreMvcRecipes.Shared.DataAccess;

namespace Recipe03.Web.Controllers
{
 public class HomeController : Controller
 {
 IUnitOfWork _UnitOfWork;
 public HomeController(IUnitOfWork unitOfWork)
 {
 _UnitOfWork = unitOfWork;
 }

 public IActionResult Index()
 {
 var model = _UnitOfWork.ArtistRepository.GetNewArtists();
 return View("Index", model);
 }

 public IActionResult Error()
 {
 return View();
 }
 }
}

Using the ColumnList Tag Helper in a View

You can now use the ColumnList Tag Helper in your views. To do this, modify the Home/Index.cshtml file to
match Listing 8-17. In this case, you are creating a three-row grid. You can experiment with the Tag Helper
by changing the value of the asp-number-of-columns attribute.

Listing 8-17. Index.cshtml Using the ColumnList Tag Helper

@model IList<AspNetCoreMvcRecipes.Shared.DataAccess.Artist>
@{
 ViewData["Title"] = "Home Page";
}

<h1>Chapter 08 - Recipe 03</h1>
<p>Below is an example of the Column List tag helper working in conjunction with the
ArtistCard View Component</p>
<hr />

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

268

<column-list asp-number-of-columns="3"
 asp-for="@Model"
 asp-view-component="ArtistCard"></column-list>

Figure 8-1 shows the results of the view.

Figure 8-1. The output of the ColumnList Tag Helper

Even though it took some effort to create the custom helper, the fact that you will be able to reuse this in
many places in your project, and possibly in future projects, makes it worth it.

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

269

8-4. Creating a Data Grid with Paging, Sorting, and Filtering
Support
Problem
It can be said that the ASP.NET Web Forms DataView control is the bread and butter of most .NET-centric
development shops using Web Forms. Many applications have pages that require paging, sorting, and
filtering support. In Web Forms, this was as simple as dragging a DataView control from your toolbox to your
design canvas and then adding some declarative data binding statements.

You finally convinced your boss to allow you to do your next project using ASP.NET Core MVC with
Razor only to discover that there is no DataView control to drag. You need to figure out how to do this and get
a prototype working before your next status meeting.

Solution
Data grids are a well-defined pattern. There are hundreds of commercial and open source products that can
get the job done. In fact, in modern web browsers, the performance of these solutions can be as smooth and
interactive as that of native client applications. Some nice examples are at the following web sites:

•	 Kendo UI (http://bit.ly/1CWPWHL)

•	 jQx Grid (http://bit.ly/1cDJCzM)

If you do not want to invest in a commercial product or if you find that the products offer much more
than you need, you can implement some rudimentary, grid-like functionality in ASP.NET Core MVC using a
combination of view logic, Tag Helpers, and action filters.

In the view, you will create an HTML table for displaying your data. You will create Tag Helpers to
provide navigation between pages of data in the grid and an action filter to encapsulate controller logic that
will be shared across multiple grid pages.

How It Works
I will start by discussing the features and drawbacks of the Web Forms GridView control. Next, I will show
you how to create similar behavior using the ASP.NET Core MVC framework while avoiding some of the
problems that can exist with the Web Forms GridView control.

Features of the Web Forms GridView Control
The Web Forms GridView is packed with functionality including sorting results, paging results, selecting
rows, editing rows in place, and more. The default functionality allows the data in the grid to be sorted by
clicking the column header and offers page numbers on the bottom of the grid to allow you to move between
pages of result sets.

The GridView control offered a default layout that created HTML table columns for each of the columns
in your record set. If the default template did not meet your needs, you could customize it by passing in a
custom template.

The state of the GridView, including the data it displays, the current page number, and whether a row is
selected, is tracked using ViewState. ViewState is an encoded representation of the GridView object that is
passed back and forth between the server and the web browser on every request by way of a hidden form field.

http://bit.ly/1CWPWHL
http://bit.ly/1cDJCzM

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

270

The GridView is a great productivity feature for Web Forms developers, but it has some drawbacks
including the following:

•	 The ViewState mechanism is required for most functionality. For a large data set, the
ViewState mechanism can often be large, which can degrade performance because
of all the additional data that needs to be passed between the browser and the server.

•	 As with most Web Forms controls, displaying changes in the UI required a round-trip
to the server where server-side events are processed and the HTML is rendered and
sent back to the browser.

•	 GridView controls are not search engine friendly. Moving between pages of data
is done via server-side event processing with state maintained by the ViewState
mechanism. It does not offer a unique URL for each page that is easy for a search
engine to index.

•	 Advanced customization is possible but can get very complex.

Features of the ASP.NET Core MVC Grid View
One of the major benefits of ASP.NET Core MVC over Web Forms is clean HTML without the need to use
mechanisms such as ViewState to maintain state. You also have full control of the URLs and can design a
URL scheme that is friendly to search engines and intuitive to end users. It is also relatively straightforward
to design a grid that does not require full-page refreshes when navigating pages of data. This is demonstrated
in recipe 11-4, which shows how to create an Ajax-based data grid.

For this example, you will focus on a more traditional navigation structure designed to be optimal for
end users and search engines. It will contain the following features:

•	 Each page in the result set should have a specific URL.

•	 You will also include route parameters for sort order and for filters.

•	 In addition to the grid, you will offer a set of search facets on the side of the page that
will allow the user to filter the results by clicking links.

•	 Clicking the column header will change the sort of the result set.

•	 A pager on the bottom of the grid will allow navigation between pages of data.

Performance Considerations for Working with Large Data Sets
A common mistake made by web developers is retrieving a large result set from the database, then filtering
and sorting the data at the application layer, and finally sending only a small portion of that result set to the
browser. This process is less than optimal for a few reasons. First, this adds a significant unnecessary load
on your network. It also adds extra stress on both your database server and application servers that will
need to retrieve and process all this data. It is always much better to perform all the sorting and filtering at
the database when possible. Databases such as SQL Server have been optimized to perform these types of
operations.

Starting with SQL Server 2012, Microsoft simplified the process of writing queries to allow you to select
a specific window of data with the introduction of the Offset and Fetch keywords. Listing 8-18 shows a SQL
Server query that would return the second page of data from a sorted result.

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

271

Listing 8-18. Fetching a Page of Data from a Sorted Result in SQL Server

select title, [description] from CollaborationSpace
order by CreateDate
offset 10 rows fetch next 10 rows only

On older versions of SQL Server, a similar but slightly more complex query could be constructed using
the SQL Server ROW_NUMBER() function. Listing 8-19 shows an example of this technique.

Listing 8-19. Fetching a Page of Data Using the ROW_NUMBER Function in SQL Server

WITH CollaborationSpaceList AS
(
SELECT ROW_NUMBER() OVER(Order by CreateDate) as rownumber, title, [description] from
CollaborationSpace
)
SELECT * FROM CollaborationSpaceList
WHERE rownumber between 11 and 20

If you are using Entity Framework Core, its query generator will generate the query for you
automatically when you use the Skip and Take expressions. Even though Entity Framework hides these
details from you, understanding the queries Entity Framework generates can help you troubleshoot issues in
your application.

Another important performance consideration is to make sure you are returning only the columns that
you require for your page. This is especially important if the tables you are querying have many columns
or if they contain data types such as varchar(max) or varbinary(max). For example, if you are querying a
table that contains a list of documents to display the title and a link to a details page but are pulling down the
entire row including the document itself, this would be extremely wasteful.

Entity Framework Core can help you here as well by allowing you to specify only a subset of columns
in your query and then writing the results to an anonymous class that contains only a subset of the fields
required. There are a few drawbacks to using anonymous types, however.

•	 You cannot use an anonymous type in a strongly typed Razor view because the Razor
views do not have visibility in the definition of the anonymous type at runtime and
will throw a parsing error if you attempt to reference the properties of that type in
your view.

•	 If the anonymous type was defined in a different assembly, such as your data
access assembly, it would not be visible to your web application. This is because
anonymous classes are defined as Internal.

A workaround for both problems is to define an explicit type and to use it as the return type of the LINQ
expression. In the Shared Data Access library used by many examples in this book, there is a subfolder called
facade that contains a number of classes to be used in situations where only a small subset of records is
required.

The Data Access Code
For this recipe, the query logic needed to support the grid has been factored out into the data access layer.
The design of the data access layer allows the ASP.NET Core MVC developer to access entities via a set of
repository classes exposed by a class called UnitOfWork. This allows for access for more than one repository
while using a single instance of the DbContext object. In addition to a set of generic repository functions,
the data access layer also contains several static query methods that encapsulate some of the commonly

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

272

used and complex queries. Listing 8-20 shows the GetActiveCollaborationSpaces method from the
CollaborationSpaceRepository class in the data access layer.

Listing 8-20. The GetActiveCollaborationSpaces Method of the CollaborationSpaceRepository Class

public List<CollaborationSpaceSearchResult> GetActiveCollaborationSpaces(CollaborationSpace
SearchParams filter, out int resultsFound)
{
 if (filter == null)
 throw new ArgumentNullException("filter");

 var collabSpacesQuery = from a in _context.CollaborationSpaces
 join o in _context.CollaborationSpaceGenres
 on a.CollaborationSpaceId equals o.CollaborationSpaceId
 join p in _context.ArtistCollaborationSpaces
 on a.CollaborationSpaceId equals p.CollaborationSpaceId
 join artist in _context.Artists
 on p.ArtistId equals artist.ArtistId
 where a.Status != ProjectStatus.Canceled &&
 a.Status != ProjectStatus.OnHold &&
 a.Status != ProjectStatus.Published &&
 a.AllowPublicView == true &&
 p.IsCreator == true
 select new CollaborationSpaceSearchResult()
 {
 CollaborationSpaceId = a.CollaborationSpaceId,
 CreateDate = a.CreateDate,
 Description = a.Description,
 LastPostDate = a.LastPostDate,
 ModifiedDate = a.ModifiedDate,
 NumberComments = a.NumberComments,
 NumberViews = a.NumberViews,
 RestrictContributorsToBand =.RestrictContributorsToBand,
 Status = a.Status,
 Title = a.Title,
 GenreLookUpId = o.GenreLookUpId,
 UserName = artist.UserName,
 WebSite = artist.WebSite,
 AvatarURL = artist.AvatarUrl
 };

 if (filter.GenreFilter != null)
 {
 // using a custom utility to build OR clause
 // allows filtering based on more than one item
 collabSpacesQuery = collabSpacesQuery.Where(
 LinqUtilities.BuildOrExpression<CollaborationSpaceSearchResult,
 int>(p => p.GenreLookUpId, filter.GenreFilter));
 }

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

273

 // First round trip to the database that runs a query to
 // get the count
 resultsFound = collabSpacesQuery==null ? 0 : collabSpacesQuery.Count();
 int skip = getSkip(filter.CurrentPageNumber, filter.ItemsPerPage);

 // using a custom extension method to simplify sorting
 collabSpacesQuery =
 collabSpacesQuery.OrderByText(filter.SortExpression).Skip(skip).Take(filter.

ItemsPerPage);

 // second round trip to the database retrieves (count) 10 records
 return collabSpacesQuery == null ? null : collabSpacesQuery.ToList();

}

private int getSkip(int page, int count)
{
 if (page < 2)
 {
 return 0;
 }
 else
 {
 return page * count;
 }
}

There are few details to note about the LINQ queries in Listing 8-20.

•	 The query is taking advantage of Entity Framework’s support for enums.
This simplifies the life of the programmer and increases readability.

•	 Rather than using an anonymous type, an explicit type named
CollaborationSpaceSearchResult was created in a separate class file.

•	 A custom extension method named OrderByText is used that allows you to pass a
string (rather than an expression) as the order by clause. This dramatically reduces
the amount of code that needs to be maintained for this class. It also increases your
flexibility, making it easy to add additional sort options at the view level without
needing to make additional changes in either the controller or the repository. The
downside is that it increases the likelihood of a typo in a property name, resulting in
a runtime error.

•	 Most important, you have added the Skip and Take modifiers to the query. This
allows LINQ to create database queries that will only return the number of rows
needed to render a page.

•	 Since the query is not pulling back the entire record set, an additional query is
required to get the count by calling collabSpacesQuery.Count().

•	 Another helper function, LinqUtilities.BuildOrExpression, is used to implement
the filtering by genres. In this example, you will allow the user to filter by a variable
list of genres. The utility function simplifies your LINQ query by allowing an
IEnumerable object to be passed in.

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

274

You can find the code for custom LINQ extensions in the Util folder of the Shared.DataAccess
access project.

 ■ Tip it may not always be obvious which LinQ statements trigger calls to the database. if you are not sure
what LinQ to entities is doing, it is a good practice to use a tool such as sQL Monitor, which is included as part
of the sQL server tools. sQL Monitor allows you to see what queries are being run against your database. if you
notice that more queries are being run than you expect, you may need to adjust your code.

Creating the Model
Now you will create a new class in the web application to act as the model. The model consists of several
classes. The first, CollaborationSpaceSearchResult, is defined in the data access layer and represents
each row of data in your grid. It is used in Listing 8-14 in place of an anonymous type. The second class,
CollaborationSpaceSearchResultModel, contains a list of CollaborationSpaceSearchResult objects
and a list of GenreLookUp objects. The GenreLookUp type is an Entity class defined in the data access layer
assembly.

The remaining items in the model represent the state of the page, including the number of search
results found, the current page number, the filter expression, and the sort expression used. Listing 8-21
shows both classes.

Listing 8-21. Models Used with the Data Grid

using AspNetCoreMvcRecipes.Shared.DataAccess;
using AspNetCoreMvcRecipes.Shared.DataAccess.Facade;
using System.Collections.Generic;

namespace Recipe05.Models
{
 public class CollaborationSpaceSearchResultModel
 {
 public IList<CollaborationSpaceSearchResult>
 CollaborationSpaceSearchResults
 { get; set; }
 public IList<GenreLookUp> GenreLookUpList { get; set; }
 public int NumberOfResults { get; set; }
 public string ResultsDescription { get; set; }
 public int ItemsPerPage { get; set; }
 public int CurrentPage { get; set; }
 public string SortExpression { get; set; }
 public int GenreLookUpId { get; set; }
 public int TotalPages
 {
 get
 {
 if (ItemsPerPage != 0)
 {
 return NumberOfResults / ItemsPerPage;
 }

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

275

 return 0;
 }
 }
 }
}

Creating the Controller
With most of the heavy lifting moved out to the repository class, the controller logic is somewhat simplistic.
One thing to notice is that all the primitive types passed as parameters to the controller are set as nullable
(int?). This is required so that the MVC data binder can assign null values to properties that are bound to
empty fields. If you do not make your primitive types nullable, a runtime error will occur if the parameters
are missing.

The first few lines of code in the method body check whether the nullable types have values and, if not,
assign a default value. You then create an instance of your CollaborationSpaceSearchResultModel model
class. After creating the instance of the model, you then make the calls to the repository. The results of the
queries are then used to populate the model. Listing 8-22 shows the controller action.

Listing 8-22. Controller Logic for Data Grid

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using AspNetCoreMvcRecipes.Shared.DataAccess;
using Recipe05.Models;
using AspNetCoreMvcRecipes.Shared.DataAccess.Facade;

namespace Recipe05.Controllers
{
 public class HomeController : Controller
 {
 private IUnitOfWork _UnitOfWork;
 public HomeController(IUnitOfWork unitOfWork)
 {
 _UnitOfWork = unitOfWork;
 }

 public IActionResult Index(int? Page,
 string SortExpression,
 bool? Acsending,
 List<int> Genres)
 {
 // set default values for all optional parameters
 var safePage = Page ?? 1;
 var safeSortExpression =
 string.IsNullOrEmpty(SortExpression) ? "CreateDate" : SortExpression;
 bool useDefaultSort = Acsending.HasValue ? Acsending.Value : true;

 var resultsFound = 0;
 var model = new CollaborationSpaceSearchResultModel();
 var search =
 new CollaborationSpaceSearchParams

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

276

 {
 SortExpression = safeSortExpression,
 CurrentPageNumber = safePage,
 ItemsPerPage = 10,
 GenreFilter = Genres
 };

 model.CollaborationSpaceSearchResults =
 _UnitOfWork.CollaborationSpaceRepository.GetActiveCollaborationSpaces(search,
 out resultsFound);
 model.NumberOfResults = resultsFound;
 model.GenreLookUpList =
 (IList<GenreLookUp>)_UnitOfWork.GenreLookUpRepository.Query();
 model.CurrentPage = safePage;
 model.ItemsPerPage = 10;
 model.SortExpression = safeSortExpression;

 // if a filter has been selected add to the model
 // so we can show what filter is selected in the view
 if (Genres != null && Genres.Count > 0)
 {
 model.GenreLookUpId = Genres[0];
 }

 model.ResultsDescription =
 string.Format("Displaying records {0} - {1} of {2} sorted by {3}",
 (safePage * 10),
 (safePage * 10) + 10,
 resultsFound,
 safeSortExpression);
 return View("Index", model);
 }

 public IActionResult Error()
 {
 return View();
 }
 }
}

Creating the View
The view is divided into two sections. On the left side of the screen is a list of musical genres. Clicking the
genre name will filter the items in the grid. The rest of the page consists of the grid itself.

The view is strongly typed with the type Recipe05.Models.CollaborationSpaceSearchResultModel,
which was shown in Listing 8-21.

The layout of the view is built around the Bootstrap CSS grid system. Bootstrap is a CSS and JavaScript
library created by Twitter. It is included by default in the Visual Studio web application template. Its
responsive grid system allows you to divide a page into 12 columns. For your view, you will split the page
in two with a two-column-wide section used to display the search facets and a ten-column-wide section to
display the data grid.

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

277

To do this, you first define a parent DIV element and assign it the class row. You then add a child DIV
element that uses the Bootstrap col-lg-2 and col-md-2 classes. You can apply multiple CSS classes to an
element by using the HTML class attribute, with each class name separated by a space. Doing this adds
both sets of styles to the target element. By using the col-lg-2 and col-md-2 classes, you are telling the
Bootstrap grid system that for large- and medium-sized screens display this section as a separate column
but for smaller displays stack it vertically. For more information on the Bootstrap grid system, please see
http://getbootstrap.com/css/#grid.

Inside the DIV element, you then create an unordered list and use a foreach loop to display a
list of links. Inside the loop, you check the GenreLookUpId of each item to see whether it matches the
GenreLookUpId value of the model. If it matches, you display a selected check box icon; otherwise, you
display an unselected one. Here again you are taking advantage of functionality in the Bootstrap framework.
In this case, you are using the glyph icons. Glyph icons are a set of icons implemented as a font. When you
apply the Bootstrap glyphicon classes to a SPAN element, the icon selected will be displayed. For example,
 displays a check mark icon. Figure 8-2 shows the
results of using the glyph icons after the Heavy Metal genre has been selected.

Figure 8-2. Displaying the check box icon using Bootstrap glyph icons

Inside the second column you will place the data grid. As you may expect, the grid is defined as an
HTML table. You will style the table using the Bootstrap table and table-striped CSS classes. The table
class defines the padding and spacing of the HTML table’s rows and columns. The table-striped class will
apply alternate coloring for each table row, making it easier to see the boundaries for each record displayed
in the table.

Inside the table, the first thing defined is the headers. Each header uses the action link Tag Helper to
create a link to the Index action but with different sort parameters. It also ensures that the current filter is
preserved. Additionally, the Page route parameter is hard-coded to the value 1 to ensure that the first data
page will be displayed after a sort occurs.

<a asp-action="Index"
 asp-route-Genres="@Model.GenreLookUpId"
 asp-route-Page="1"
 asp-route-SortExpression="Title">Collaboration Space

http://getbootstrap.com/css/#grid

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

278

After the table header, a foreach statement iterates through the record set, rendering each item in a
table row. Listing 8-23 shows the view.

Listing 8-23. View Containing Data Grid That Supports Filtering and Sorting

@model Recipe05.Models.CollaborationSpaceSearchResultModel
@{
 ViewData["Title"] = "ASP.NET Core MVC Recipes Data Grid";
}
<h1>Data Grid Example</h1>
<p>
 This example shows how you could replace the GridView control when used as a read only

list that supports filtering and
 paging and sorting.
</p>

<h3>@Model.ResultsDescription</h3>
<div class="row">
 <div class="col-lg-2 col-md-2">
 <h4>Refine By Genres</h4>
 <ul class="list list-unstyled">
 @foreach (var item in Model.GenreLookUpList)
 {

 <a href="@Url.Action("Index",
 new { Genres = item.GenreLookUpId , Page = 1,
 SortExpression = Model.SortExpression })">
 @if (Model.GenreLookUpId == item.GenreLookUpId)
 {

 }
 else
 {

 }
 @item.GenreName

 }

 </div>
 <div class="col-lg-10 col-md-10">
 <table class="table table-striped">
 <tr>
 <th>
 <a asp-action="Index"
 asp-route-Genres="@Model.GenreLookUpId"
 asp-route-Page="1"
 asp-route-SortExpression="Title">Collaboration Space
 </th>

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

279

 <th>
 <a asp-action="Index"
 asp-route-Genres="@Model.GenreLookUpId"
 asp-route-Page="1"
 asp-route-SortExpression="UserName">Artist
 </th>
 <th>
 <a asp-action="Index"
 asp-route-Genres="@Model.GenreLookUpId"
 asp-route-Page="1"
 asp-route-SortExpression="CreateDate">Created
 </th>
 <th>
 <a asp-action="Index"
 asp-route-Genres="@Model.GenreLookUpId"
 asp-route-Page="1"
 asp-route-SortExpression="ModifiedDate">Modified
 </th>
 <th>
 <a asp-action="Index"
 asp-route-Genres="@Model.GenreLookUpId"
 asp-route-Page="1"
 asp-route-SortExpression="NumberViews">Stats
 </th>
 </tr>
 @foreach (var item in Model.CollaborationSpaceSearchResults)
 {
 <tr>
 <td>@item.Title</td>
 <td>@item.UserName</td>
 <td>@item.CreateDate.ToString("MM/dd/yyyy")</td>
 <td>@item.ModifiedDate.ToString("MM/dd/yyyy")</td>
 <td>
 <ul class="ItemList">

 Hits: @item.NumberViews

 Posts: @item.NumberComments

 Status: @item.Status

 </td>
 </tr>
 }
 </table>

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

280

 <nav>
 <grid-pager asp-total-number-of-results="@Model.NumberOfResults"
 asp-items-per-page="@Model.ItemsPerPage"
 asp-current-page="@Model.CurrentPage"></grid-pager>
 </nav>
 </div>
</div>

Creating the Numeric Pager
To facilitate paging on the data grid, you need to have a way for the user to navigate between the pages.
The GridPager Tag Helper creates a pager that will display a maximum of 20 links at once. In addition, it
displays links to the first and last pages of the page list. The tricky part is displaying the appropriate links,
depending on what page in the list the user is viewing. For example, if you are on page 1, you would need to
see the links for pages 1 through 20. If you are on page 15, you may want to see links for pages 6 through 26.

You may want to hide the pager if only a single page of results is displayed. If fewer than 20 pages of
results are shown, you may want to hide the first and last page links.

The problem of hiding the pager is easy to solve. You can compare the total number of results to the
number of items on a page. If the items per page is less than or equal to the number of pages, then you will
return an empty string.

The next interesting bit of logic is determining the first and last pages that need to be displayed. This
code has been factored out into the helper methods getStartPage and getEndPage, as shown in Listing 8-24.
Once you have these values, you can use a loop to create the list of links, which outputs as an unordered list.
The links themselves are created by using another helper method called buildActionLink. buildActionLink
takes advantage of the HTML generator that is built into ASP.NET Core. To get an instance of the HTML
generator, a constructor is added to GridPagerTagHelper that allows the ASP.NET Core dependency injection
system to inject an instance of IHtmlGenerator. Listing 8-24 shows GridPagerTagHelper.

Listing 8-24. GridPagerTagHelper

using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Razor.TagHelpers;
using Microsoft.AspNetCore.WebUtilities;
using Microsoft.Extensions.Primitives;
using System.Threading.Tasks;

namespace Recipe05.TagHelpers
{
 public class GridPagerTagHelper : TagHelper
 {
 public GridPagerTagHelper(IHtmlGenerator generator)
 {
 Generator = generator;
 }
 protected IHtmlGenerator Generator { get; }

 [HtmlAttributeName("asp-total-number-of-results")]
 public int TotalNumberOfResults { get; set; }

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

281

 [HtmlAttributeName("asp-items-per-page")]
 public int ItemsPerPage { get; set; } = 20;

 [HtmlAttributeName("asp-current-page")]
 public int CurrentPage { get; set; } = 1;

 [HtmlAttributeName("asp-pager-css-class")]
 public string PagerCssClass { get; set; } = "pagination";

 [HtmlAttributeName("asp-active-css-class")]
 public string ActiveCssClass { get; set; } = "active";

 [HtmlAttributeNotBound]
 [ViewContext]
 public ViewContext ViewContext { get; set; }

 public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
 {
 if(TotalNumberOfResults <= ItemsPerPage)
 {
 // pager is not required so return nothing
 output.SuppressOutput();
 return;
 }
 if (ItemsPerPage == 0) throw new InvalidOperationException("ItemsPerPage must be

greater than 0");

 int numberOfPages = TotalNumberOfResults / ItemsPerPage;
 var maxNumberOfPagesShown = 20;

 bool showFirstAndLast = numberOfPages > maxNumberOfPagesShown;
 int startPage = getStartPage(numberOfPages, CurrentPage);
 int endPage = getEndPage(numberOfPages, CurrentPage, startPage);

 output.TagName = "div";

 output.Content.AppendHtml(string.Format("<ul class={0}>", PagerCssClass));
 if (showFirstAndLast && startPage > 1)
 {
 output.Content.AppendHtml("");
 output.Content.AppendHtml(buildActionLink("...", 1));
 output.Content.AppendHtml("");
 }
 for (int i = startPage; i <= endPage; i++)
 {
 string PageLinkText = i.ToString();

 if (i != CurrentPage)
 {
 output.Content.AppendHtml("");
 output.Content.AppendHtml(buildActionLink(PageLinkText, i));
 }

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

282

 else
 {
 output.Content.AppendHtml(string.Format(@"<li class=""{0}"">",
 ActiveCssClass));
 output.Content.AppendHtml(string.Format(@"{0}", i));
 }
 output.Content.AppendHtml(" ");

 }
 if (showFirstAndLast && (endPage != numberOfPages))
 {
 output.Content.AppendHtml("");
 output.Content.AppendHtml(buildActionLink("...", numberOfPages));
 output.Content.AppendHtml("");
 }
 output.Content.AppendHtml("");
 }
 }
}

Listing 8-25 shows the getStartPage and getEndPage methods. In the getStartPage method, you first
check the current page. If it is greater than ten, you will place the current page near the middle of the list by
making the start page nine less than the current page. If you are nearing the end of the list, you need to make
sure that the start page stays 20 pages behind the end page. This prevents you from creating links to pages
that do not exist. Lastly, if you are on one of the first ten pages, you will always start your counter on page 1.

The calculation for the end page is less complicated. You might be tempted to think that you can just
add 20 to the start page, and then you are done. Unfortunately, this will not work because if you have only
16 pages of results and you started on page 1, you would end up creating four extra links to pages that do not
exist. The getEndPage method solves this problem by checking to see whether your calculated last page is
greater than the total number of pages. If so, it will subtract the overage.

A final check in the getEndPage method determines whether you are on one of the last ten pages. In this
case, you need to always show all the remaining pages.

Listing 8-25. Getting the First and Last Pages

private int getStartPage(int numberOfPages, int currentPage)
{
 int minToDisplay = 1;
 if (currentPage > 10)
 {
 minToDisplay = currentPage - 9;
 }
 if (currentPage > (numberOfPages - 10) && (numberOfPages > 20))
 {
 minToDisplay = numberOfPages - 20;
 }
 return minToDisplay;
}

private int getEndPage(int numberOfPages, int currentPage, int startPage)
{
 int maxToDisplay = startPage + 19;

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

283

 if (maxToDisplay > numberOfPages)
 {
 maxToDisplay = maxToDisplay - (maxToDisplay - numberOfPages);
 }
 if ((currentPage > numberOfPages - 10) && (startPage != 1))
 {
 maxToDisplay = numberOfPages;
 }
 return maxToDisplay;
}

The last bit of logic needed for the grid is the method used to create the action links. Since you are
inside a Tag Helper extension method, you do not know what controller action you need to link to. Luckily,
you can derive this information by inspecting the RouteData collection of the ViewContext property.
Calling ViewContext.RouteData.Values["action"] gives you the name of the current action. Similarly,
ViewContext.RouteData.Values["controller"] will give you the current controller. You can then use that
value to construct the action link.

Also, since you are using the query string to preserve the state of your grid, you will need to copy
existing query string values to each link you build. To do this, you first check to see whether there are
values in the query string by using the HasValue method. This method returns true if values are found.
You then use the existing query string values to build the query string for the links. Listing 8-26 shows the
buildActionLink method.

Listing 8-26. The buildActionLink HTML Helper

private TagBuilder buildActionLink(string linkText, int page)
{
 if(ViewContext.HttpContext.Request.QueryString.HasValue)
 {
 var queryString = QueryHelpers.ParseQuery(ViewContext.HttpContext.Request.Query
 String.Value);
 StringValues sort, categoryId;
 queryString.TryGetValue("SortExpression", out sort);
 queryString.TryGetValue("Genres", out categoryId);
 return Generator.GenerateActionLink(
 ViewContext,
 linkText: linkText,
 actionName: ViewContext.RouteData.Values["action"].ToString(),
 controllerName: ViewContext.RouteData.Values["controller"].ToString(),
 protocol: null,
 hostname: null,
 fragment: null,
 routeValues: new
 {
 SortExpression = sort,
 Genres = categoryId,
 Page = page
 },
 htmlAttributes: null);
 }

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

284

 return Generator.GenerateActionLink(
 ViewContext,
 linkText: linkText,
 actionName: ViewContext.RouteData.Values["action"].ToString(),
 controllerName: ViewContext.RouteData.Values["controller"].ToString(),
 protocol: null,
 hostname: null,
 fragment: null,
 routeValues: new
 {
 Page = page
 },
 htmlAttributes: null);
}

Now that you have built a Tag Helper that creates a pager for the data grid, you can add it to the view.
For this to work, you will first need to register the Tag Helper in the ViewImports.cshtml file using the
@addTagHelper directive.

@addTagHelper *, Recipe05

Next you will need to add a call to GridPagerTagHelper, as shown in Listing 8-27, to display the pager
below the data grid.

Listing 8-27. Adding the Numeric Pager Below the Data Grid

<nav>
 <grid-pager asp-total-number-of-results="@Model.NumberOfResults"
 asp-items-per-page="@Model.ItemsPerPage"
 asp-current-page="@Model.CurrentPage"></grid-pager>
</nav>

You may have noted from Listing 8-24 that the Tag Helper had default values for several properties
including PagerCssClass, which allows you to specify CSS classes for the pager. The default values for these
arguments are the class names that are part of the Bootstrap CSS framework. Leaving the default values will
leverage the Bootstrap styles and will render the counter, as shown in Figure 8-3.

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

285

Making Friendly URLs for Paging and Sorting
As mentioned earlier in this section, one of the goals of your data grid would be to have clean URLs that
both humans and search engines can easily understand. In the current implementation, since you have not
changed any of the routing configuration, the route parameters Page, Genres, and SortExpression that you
defined on the Index controller action in Listing 8-16 will be exposed as query string arguments, such as the
following:

http://localhost:3243/?Genres=40&Page=1&SortExpression=CreateDate

To create the clean URL, you can use ASP.NET Core MVC’s attribute routing system to specify a new
URL pattern. To do this, modify the Index action in the Home controller, as shown in Listing 8-28.

Listing 8-28. Adding Attribute Routes to Home Controller

[Route("/{Page?}/{SortExpression?}/{Genres?}")]
public IActionResult Index(int? Page,
 string SortExpression,
 bool? Acsending,
 string Genres
)

Note the question marks in the route template after each of the route arguments in Listing 8-28. They
tell the routing engine that these are optional arguments. If you omitted the question marks, the default
route would no longer match your index routes, and the URLs ~/, ~/Home, and ~/Home/Index would result in
a “page not found” error.

Figure 8-3. Numeric pager styled using Bootstrap

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

286

8-5. Creating a Data Grid That Allows Inline Editing
Problem
Coming from a Web Forms background, you normally use a GridView control for implementing grids that
allow inline editing of rows. You want to understand how to do this using ASP.NET Core MVC.

Solution
Since the ASP.NET Core MVC framework does not use server controls such as the GridView control,
you will need to create this functionality. Luckily, with the help of a few HTML Helpers, it is a relatively
straightforward implementation that requires the following steps:

 1. Create a model that represents the data that you want to view and edit in your
grid view. Alternatively, you can use a class or entity defined in an external
library.

 2. Create an HTML Helper that will encapsulate the substitution of read-only rows
with editable rows when a row is selected for editing.

 3. Create the view that will display the editable grid.

As another option, you can combine the techniques shown in this recipe with recipe 8-5 to create a full
data grid solution that supports editing, filtering, sorting, and paging. Note that it is also possible to do this
using a custom Tag Helper, but the implementation is somewhat more complex.

How It Works
In addition to allowing you to have a read-only data grid with paging and sorting capabilities, the ASP.NET
Web Forms GridView control also allowed you to select a row for editing, make changes to the data in the
row, and then save the changes. To replicate this functionality in ASP.NET Core MVC, you will need to create
a model that not only represents the data needed to display but also allows you to specify which row is
selected. You also need to track the changes in the model so that you can make changes to the rows that have
changed.

You should also create some reusable components that can be used on several pages. This will
simplify your views by removing the need for some conditional logic while increasing your productivity and
increasing maintainability for the application.

For this example, you will create several HTML Helper extensions that will check to see whether a row is
selected and, if selected, replace the display with the appropriate editor for the field’s data type.

The HTML Helpers
The logic for the in-place editing helpers is simple. You will create an HTML Helper to match the
out-of-the-box xxxFor Tag Helper. For example, for the EditorFor method, you will create a
DataGridEditorFor method. Each of the helpers will take two parameters: a bool value that indicates
whether the item is selected and an expression that represents the field you want to display or edit.

If you want to follow along with this example, open the code example from the code samples
downloaded from the book’s web site. If you prefer, you can also access this code sample from GitHub at the
following URL:

https://github.com/johnciliberti/AspNetCoreRecipes/tree/master/Chapter08/Recipe06

https://github.com/johnciliberti/AspNetCoreRecipes/tree/master/Chapter08/Recipe06

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

287

After opening the project, create a folder named HtmlHelpers. Right-click the new folder and select Add
a Class. Name the class EditInPlaceHelpers. Since this class will contain extension methods, it must be
declared as public static class. Each method must also be declared as public and static and will return
an IHtmlContent. For you to follow the pattern used by the built-in HTML Helper extensions, your method
signatures need to follow this format:

xxxxFor<TModel, TProperty>(this IHtmlHelper<TModel> helper,
 Expression<Func<TModel, TProperty>> expression) where TModel : class

This ugly signature is the magic that allows HTML Helpers to be strongly typed. TModel represents the
type you are passing to the helper, and TProperty is the property of the class that you are evaluating. The
inclusion of this IHtmlHelper<TModel> helper in each helper tells the compiler which class to add the
extension to. The expression parameter is what allows a lambda expression to be passed in rather than a
static property. This adds the additional flexibility.

In the body of the helper method, first check the value of the isSelected parameter. If it is set to true,
call EditorFor, one of the built-in HTML Helpers. This helper will render the appropriate HTML input type
for the property passed in the expression property. If isSelected is false, then the built-in DisplayFor
helper is used to render the property as text.

Listing 8-29 shows the completed class.

Listing 8-29. The EditInPlace Helpers

using Microsoft.AspNetCore.Html;
using Microsoft.AspNetCore.Mvc.Rendering;
using System;
using System.Linq.Expressions;

namespace Recipe05.HtmlHelpers
{
 public static class EditInPlaceHelpers
 {
 // returns the default editor for the property when isSelected
 // is true
 public static IHtmlContent DataGridEditorFor<TModel, TProperty>
 (this IHtmlHelper<TModel> helper,
 bool isSelected,
 Expression<Func<TModel, TProperty>> expression)
 where TModel : class
 {
 if (isSelected)
 {
 return helper.EditorFor(expression);
 }
 else
 {
 return helper.DisplayFor(expression);
 }
 }

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

288

 // returns a text box for the property when isSelected
 // is true
 public static IHtmlContent DataGridTextBoxFor<TModel, TProperty>
 (this IHtmlHelper<TModel> helper,
 bool isSelected,
 Expression<Func<TModel, TProperty>> expression)
 where TModel : class
 {
 if (isSelected)
 {
 return helper.TextBoxFor(expression);
 }
 else
 {
 return helper.DisplayFor(expression);
 }
 }

 // returns the default editor for the property when isSelected
 // is true
 public static IHtmlContent DataGridTextAreaFor<TModel, TProperty>
 (this IHtmlHelper<TModel> helper,
 bool isSelected,
 Expression<Func<TModel, TProperty>> expression)
 where TModel : class
 {
 if (isSelected)
 {
 return helper.TextAreaFor(expression);
 }
 else
 {
 return helper.DisplayFor(expression);
 }
 }
 }
}

The Model
The model for the solution contains a list of ArtistSkill objects that are defined by the entity data model
from a library used by the project. It also keeps track of which item is selected and includes a helper method
that allows a test to see whether the current item is selected. This was necessary to simplify the view logic. To
create the model, right-click the Models folder in the Recipe06 project and select Add a Class. Name the class
InlineEditingArtistSkillListModel. Listing 8-30 shows the completed model.

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

289

Listing 8-30. Inline Editing Model

using AspNetCoreMvcRecipes.Shared.DataAccess;
using System.Collections.Generic;

namespace Recipe05.Models
{
 public class InlineEditingArtistSkillListModel
 {
 public int SelectedRow { get; set; }
 public IEnumerable<ArtistSkill> ArtistSkillList { get; set; }
 public bool IsSelected(ArtistSkill item)
 {
 if (item == null)
 return false;
 return item.ArtistTalentId == SelectedRow;
 }
 }
}

The Controller
The controller requires two actions to support the display and processing of the edited results. The first
action supports HTTP GET and contains an optional parameter named Selected, which needs to be
optional since no item will be selected when the page is first loaded.

The example uses a repository that is in the Models folder. The repository exposes two methods relevant
to this recipe. The first, GetArtistSkill, returns a list of ArtistSkill objects for a given artist specified
by the Id parameter. It also contains a method to update a skill, which takes an ArtistSkill object as a
parameter. To keep the example a little less complex, the GET action is using a hard-coded Id parameter.

The HTTP POST version of the action, shown in Listing 8-31, takes a FormCollection as a parameter.
Unfortunately, this method is not able to take advantage of the model binding since there will not be an exact
match between the property names in the model and the names of the form fields being returned from the
view. Because of this, you need to perform additional work in mapping the input fields to the property names.

Listing 8-31. GridViewReplacementWithInplaceEditing Controller Actions

using System;
using Microsoft.AspNetCore.Mvc;
using AspNetCoreMvcRecipes.Shared.DataAccess;
using Recipe06.Models;
using Microsoft.AspNetCore.Http;

namespace Recipe06.Controllers
{
 public class HomeController : Controller
 {
 // make sure you add the service descriptor to StartUp.cs
 // ConfigureServices for this to work
 private IUnitOfWork _UnitOfWork;
 public HomeController(IUnitOfWork unitOfWork)

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

290

 {
 _UnitOfWork = unitOfWork;
 }

 public IActionResult Index()
 {
 return View();
 }

 public IActionResult GridViewReplacementWithInplaceEditing(int? Selected)
 {
 // hard code artistId for this example
 var skills = _UnitOfWork.ArtistSkillRepository.Query(a => a.ArtistId == 2);
 var model = new InlineEditingArtistSkillListModel()
 {
 ArtistSkillList = skills
 };
 if (Selected.HasValue)
 {
 model.SelectedRow = Selected.Value;
 }
 return View("GridViewReplacementWithInplaceEditing", model);
 }

 [HttpPost]
 public IActionResult GridViewReplacementWithInplaceEditing(FormCollection collection)
 {
 ArtistSkill skill = new ArtistSkill();
 skill.ArtistId = Int32.Parse(collection["item.ArtistId"]);
 skill.ArtistTalentId = Int32.Parse(collection["item.ArtistTalentID"]);
 skill.TalentName = collection["item.TalentName"];
 skill.SkillLevel = Int32.Parse(collection["item.SkillLevel"]);
 skill.Details = collection["item.Details"];
 skill.Styles = collection["item.Styles"];
 _UnitOfWork.ArtistSkillRepository.Update(skill);
 return RedirectToAction("GridViewReplacementWithInplaceEditing");
 }

 public IActionResult Error()
 {
 return View();
 }
 }
}

The View
The view is strongly bound to the Recipe06.Models.InlineEditingArtistSkillListModel type. It includes
the standard @using(Html.BeginForm()) and @Html.ValidationSummary(), which wrap the grid table in an
HTML form and provide an area for validation errors to be displayed.

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

291

Inside the grid, a foreach statement loops through each record in the model’s ArtistSkillList
property. The HTML Helper extensions are used to create your fields.

For the first column in your grid, you use a conditional statement to decide whether you should show a
link for saving the form or a link to update the view’s selected property. For the Edit link, you use a standard
ActionLink specifying the talent that you want to edit, but for the Save link, you create an anchor tag that will
submit the form when clicked. For the Save link use case, you also include several hidden fields so that you
have the rest of the data required to update the field.

At the end of the view is a call to @Scripts.Render("~/bundles/jqueryval"), which provides the
validation logic for the form. Listing 8-32 shows the view.

Listing 8-32. GridViewReplacementWithInplaceEditing View

@model Recipe06.Models.InlineEditingArtistSkillListModel
@{
 ViewBag.Title = "Grid View Replacement With In place Editing";
}

<h1>@ViewBag.Title</h1>
Click the edit link to edit the row.
@using (Html.BeginForm())
{
 @Html.ValidationSummary()
 <table class="table table-striped">
 <tr>
 <th>

 </th>
 <th>
 Talent
 </th>
 <th>
 Level
 </th>
 <th>
 Details
 </th>
 <th>
 Musical Styles
 </th>
 </tr>

 @foreach (var item in Model.ArtistSkillList)
 {
 <tr>
 <td>
 @if (Model.IsSelected(item))
 {
 Save
 @Html.HiddenFor(modelItem => item.ArtistId)
 @Html.HiddenFor(modelItem => item.ArtistTalentId)
 }

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

292

 else
 {
 @Html.ActionLink("Edit", "GridViewReplacementWithInplaceEditing",

new { Selected = item.ArtistTalentId })
 }
 </td>
 <td>
 @Html.DataGridTextBoxFor(Model.IsSelected(item), modelItem => item.TalentName)
 </td>
 <td>
 @Html.DataGridEditorFor(Model.IsSelected(item), modelItem => item.SkillLevel)
 </td>
 <td>
 @Html.DataGridTextAreaFor(Model.IsSelected(item), modelItem => item.Details)
 </td>
 <td>
 @Html.DataGridEditorFor(Model.IsSelected(item), modelItem => item.Styles)
 </td>
 </tr>
 }

 </table>
}

@section Scripts {
 <script src="~/lib/jquery-validation/jquery.validate.js"></script>
}

The last bit of detail is the style sheet information needed to style the form and tables. While the table is
using the built-in styles from the Bootstrap framework, some customization was required for the text area to
be displayed properly. To add the custom style, modify the style sheet wwwroot/css/site.css. Listing 8-33
shows the CSS selectors added specifically for this example. The style targets only textarea and text input
types inside table columns for tables assigned to the CSS class grid. It makes the form field stretch to fill the
entire horizontal space of the table row and outlines the fields with a thin blue border.

Listing 8-33. Adding CSS to Customize Look or Text Area

.table td textarea {
 width:98%;
 border: 2px solid lightblue;
 height: 3em;
}
.table td input[type="text"], .grid td input[type="number"] {
 border: 2px solid lightblue;
 width: 98%;
 height: 2em;
}

Chapter 8 ■ Moving froM Web forMs to asp.net Core MvC

293

Figure 8-4. Data grid with in-place editing

Figure 8-4 shows the result of this work. Here you see a total of five rows, with the fourth row selected.
Notice how the Level column is rendered as the new HTML5 number type. Clicking the up and down arrows
will change the value of the number.

295© John Ciliberti 2017
J. Ciliberti, ASP.NET Core Recipes, DOI 10.1007/978-1-4842-0427-6_9

CHAPTER 9

Data Validation Using
ASP.NET Core MVC

Almost all applications require some sort of validation. For web applications, validation may appear
in several tiers, including within an HTML form, in controllers on the server, and even at the data tier
implemented as constraints. One of the challenges you will face in designing your application is deciding
on where validation should occur and how to reduce the duplication of efforts when you need to perform
validation on multiple tiers. This chapter focuses on the different options for performing data validation with
ASP.NET Core MVC. I will begin by covering the built-in validation features of Razor and the ASP.NET Core
MVC model binder. I will then show how you can extend these features to meet the individual needs of your
application.

9-1. Validating Form Data Using Data Annotations
Problem
You are building a new application that allows people to sell T-shirts in your online store. The application
will have a form to capture information about the T-shirts including the start and end dates of the sale, a
T-shirt name, a description, and the price. You want to make sure that the information sellers provide is
complete and in the expected format. You also want to make sure that the information is still validated when
client-side scripting has been disabled. You want to avoid writing duplicate code across tiers when possible.

Solution
ASP.NET Core has built-in features that allow simple validation rules to be applied to a model declaratively
using attributes defined in the System.ComonentModel.DataAnnotations namespace. When the model class
is used in a strongly typed view, HTML Helpers and Tag Helpers, which were discussed in Chapters 3 and 4,
will generate HTML code that will work in conjunction with the jQuery Validation and jQuery Unobtrusive
Validation libraries to provide client-side validation. ASP.NET Core MVC’s model binding feature can also
be used to validate the model on the server. This allows you to verify that the model state is valid in the
controller. It is a best practice to always validate input on the server to protect against cases where JavaScript
is disabled or a form is being submitted by an automated process such as a bot.

http://dx.doi.org/10.1007/978-1-4842-0427-6_3
http://dx.doi.org/10.1007/978-1-4842-0427-6_4

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

296

How It Works
In this section, you will learn at how to use data annotations and Razor Tag Helpers to create a form that has
validation enforced on both the client and the server. The exercise will also expose some of the limitations of
the data annotations approach. This solution will use the code generation tools in Visual Studio to generate
much of your code.

Create the Visual Studio Project
Create a new ASP.NET Core Web Application project (.NET Core 1.1) using the Web Application template
with no authentication and no Docker support. Name the project and solution Recipe01. After the project
has been created, right-click the Controllers folder in Solution Explorer and select Add ➤ Controller. You
will be promoted to add the MVC dependencies. Click the Add button to enable the scaffolding features to
your project. You can delete the ScaffoldingReadMe.txt file that was added to your project since all the
suggestions in that document were already added to your project when you created it. Another thing to note
is that a new controller has not been added to the project.

 ■ Note at the time of this writing, the Visual studio tooling for asp.net MVC Core is still a work in progress.
Much of the scaffolding functionality does not work as expected. You can think of the features that do work as a
preview of what is to come in future releases.

Creating the View Model
Create a new folder named ViewModels under the project root. Add a new class to the ViewModels folder
named TShirtViewModel. Add properties to the class as described in Table 9-1. Use data annotations to
implement the validation rules. You can also use the display attribute to customize the form.

Table 9-1. Validation Requirements

Property Name Data Type Validation Rules

TShirtId int Autogenerated; do not display on the form.

SalesStartDate DateTime Needs to be a valid date in the format yyyy-MM-dd and should
be before the SaleEndDate value. This field is required.

SaleEndDate DateTime Needs to be a valid date in the format yyyy-MM-dd and should
be after the SaleEndDate value. This field is required.

Title String Required; must be at least 6 but no more than 30 characters
long. Can contain only uppercase and lowercase letters.

Description String Must be at least 6 but no more than 255 characters long.

Price decimal Must be numeric with a value between 5 and 100.

SellerEmailAddress String Must be an e-mail address with a length of no more than 50
characters.

ConfirmSellerEmailAddress String Must be an e-mail address with a length of no more than 50
and must match the value of SellerEmailAddress.

AgreeToTermsAndConditions bool The check box must be selected.

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

297

Listing 9-1 shows the completed view model. Note that not all of the requirements listed in Table 9-1
have been met.

Listing 9-1. TShirtViewModel Implemented Using Data Attributes

using System;
using System.ComponentModel.DataAnnotations;

namespace Recipe01.ViewModels
{
 public class TShirtViewModel
 {
 const string EmailAddressRegEx = @"^\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*$";
 const string LettersOnlyRegEx = @"^[A-Z]+[a-zA-Z''-'\s]*$";

 [ScaffoldColumn(false)]
 public int TShirtId { get; set; }

 [Display(Name ="Start selling this item on:", Order = 3)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Required]
 [DataType(DataType.Date)]
 public DateTime SaleStartDate { get; set; } = DateTime.Now;

 [Display(Name = "Stop selling this item on:", Order = 4)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Required]
 [DataType(DataType.Date)]
 public DateTime SaleEndDate { get; set; } = DateTime.Now.AddDays(7);

 [Required]
 [Display(Name ="T-Shirt Name", Order = 1)]
 [StringLength(30, MinimumLength = 6,
 ErrorMessage ="T-Shirt Name must have at least 6

characters but no more then 30.")]
 [RegularExpression(LettersOnlyRegEx , ErrorMessage = "The T-Shirt name can only

contain letters")]
 public string Title { get; set; }

 [Required]
 [Display(Name = "T-Shirt Description", Order = 2)]
 [DataType(DataType.MultilineText)]
 [StringLength(255, MinimumLength = 6,
 ErrorMessage = "Description must have at least 6 characters

but no more then 255.")]
 public string Description { get; set; }

 [Required]
 [Range(5,100)]
 [DataType(DataType.Currency)]
 public decimal Price { get; set; } = 5;

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

298

 [StringLength(50)]
 [DataType(DataType.EmailAddress)]
 [RegularExpression(EmailAddressRegEx, ErrorMessage ="Invalid email address.")]
 public string SellerEmailAddress { get; set; }

 [StringLength(50)]
 [DataType(DataType.EmailAddress)]
 [Compare("SellerEmailAddress")]
 public string ConfirmEmailAddress { get; set; }

 [Required]
 [Display(Name ="Accept to the terms and conditions.")]
 public bool AgreeToTermsAndConditions { get; set; } ;
 }
}

The following validation attributes have been used in Listing 9-1:

•	 Required: Makes the specified property required.

•	 Display: Allows you to change the default display name that will be generated by
the Tag Helpers and HTML Helpers. This also allows you to specify the order that a
property will be displayed on a form when the form is generated using scaffolding.

•	 DisplayFormat: Allows a format string to be specified. In Listing 9-1, the
DisplayFormat attribute is used with the SaleStartDate and SaleEndDate
properties to ensure that the dates are displayed in the yyyy-MM-dd format.

•	 Range: When used with numeric properties, allows you to specify the minimum and
maximum values.

•	 StringLength: Allows you to specify the minimum and maximum lengths for a string
property.

•	 DataType: Specifies the data type of property. If the data type has an associated
template, Tag Helpers and HTML Helpers will use that template when generating the
HTML for the property. For example, the SalesEndDate property uses the DataType.
Date data type, which the Input Tag Helper uses to generate an INPUT element with
the type attribute set to date.

•	 Compare: Ensures that the property being validated contains the same value as the
property specified in the argument. In Listing 9-1, Compare is used to ensure that the
ConfirmEmailAddress property matches the SellerEmailAddress property.

•	 RegularExpression: Validates that the property matches the specified regular
expression.

Note that two of the requirements cannot be met using the built-in data annotations. First, you are not
able to compare the two date fields to verify that SaleStartDate is before SaleEndDate. Recipe 9-3 shows
how this issue can be corrected by having the model implement the IValidadableObject interface. The
second requirement you are not able to meet is the ability to verify that AgreeToTermsAndConditions has
been set to true. Recipe 9-2 demonstrates how the requirements can be met using a custom validation
attribute.

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

299

Scaffolding the Controller
Visual Studio has a set of built-in code generation tools that can automatically create controllers and views
based on the properties of a class. Although most of the code generation functionality is designed to work
with Entity Framework, you can also build forms based on Plain Old C# Objects (POCOs). To create a
controller using the code generation features, right-click the Controllers folder and select Add ➤ Controller.
Select the MVC Controller with the read/write actions template and then click Add. In the Add Controller
window, name the controller TShirtController and then click Add.

After a few seconds, the autogenerated controller will appear in the code editor window. It contains
actions for Index, Details, Create, Edit, and Delete. For Create, Edit, and Delete, actions are generated
for both HTTP GET and HTTP POST. The HTTP GET version of each action is used to display the form, and
the HTTP POST action is used to process the form data.

The HTTP POST actions are decorated with ValidateAntiforgeryToken attributes. The
ValidateAntiforgeryToken attribute is designed to prevent cross-site request forgery (CSRF) attacks. In a CSRF
attack, the attacker tricks the user into submitting a malicious request often by having an authenticated user click
a link from an e-mail or social media post. The ValidateAntiforgeryToken attribute works by ensuring that
the CSRF token included in the request is the expected value. The CSRF token is added to the request by using a
hidden form field that contains a large random value generated using a cryptographically secure random number
generator that is unique to each user session. To learn more about CSRF, see the following URL:

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

While the generated code is a helpful starting point, it is not complete. For some reason, most
likely for backward compatibility, the generated code uses ActionResult as the return type rather than
IActionResult. Since this could compromise the ability of containers and test harnesses to inject different
IActionResult implementations, you will change all the return types to IActionResult.

For now, you will only be implementing the Create action; you will also add a new action named
CreateSuccess. Using this technique allows the success page to have a unique URL and protects against
repeat submissions by users clicking the Refresh button.

The next change you need to make is that rather than having the HTTP POST methods accept
IFormCollection as a model, you will use TShirtViewModel. When the form is submitted, the ASP.NET Core
model binder will automatically pair the form data with the properties of the TShirtViewModel class. The
model binder will also check the values of the properties against the validation rules applied to the model.
If validation errors are found, they will be added to ModelErrorCollection, and the controller’s ModelState.
IsValid property will be set to false.

The model binder minimizes the code developers are required to write to implement server-side
validation. In the HTTP POST version of the Create action, the only validation-specific code that you need to
write is to check the value of the ModelState.IsValid property. Listing 9-2 shows the completed code.

Listing 9-2. TShirtController Create Actions

using Microsoft.AspNetCore.Mvc;
using Recipe01.ViewModels;

namespace Recipe01.Controllers
{
 public class TShirtController : Controller
 {

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

300

 // GET: TShirt/Create
 public ActionResult Create()
 {
 return View();
 }

 // POST: TShirt/Create
 [HttpPost]
 [ValidateAntiForgeryToken]
 public ActionResult Create(TShirtViewModel viewModel)
 {
 if(ModelState.IsValid)
 {
 return RedirectToAction("CreateSuccess", viewModel);
 }

 return View("Create", viewModel);
 }

 public IActionResult CreateSuccess(TShirtViewModel viewModel)
 {
 return View("CreateSuccess", viewModel);
 }
 }
}

Scaffolding the View
Next, you create the views. For the Create view, you can take advantage of the Visual Studio code generation
features to generate most of the code for you. To do this, follow these steps:

 1. Create a new folder under Views named TShirt.

 2. Right-click the TShirt folder and then select Add ➤ View.

 3. In the Add View window, change the view name to Create and select the Create
template. For the Model class, select TShirtViewModel.

 4. Click Add to create the form.

After the code generator completes, you will see your new view in the code editor. Notice it used Tag
Helpers to generate the form fields and has applied the layout conventions and CSS classes as required by
the Bootstrap library. While the code generator created a good starting point and saved you a great deal of
typing, it did not do everything you want. For example, the Description field was rendered as a standard input
box rather than a text area. This is because no HTML template has been defined by the ASP.NET team that
specifies that a TextArea tag be generated for the DataType.MultilineText data type. In fact, the scaffolding
used the asp-for Tag Helper for all the properties. In some cases, asp-for will add the appropriate markup,
but in other cases, such as the date fields, the generated HTML will contain an input element type attribute
of date. Since each browser has implemented the date control differently, this setting will cause the date
properties to be rendered differently in each browser leading to an inconsistent user experience. In most
cases, you would want to replace the asp-for Tag Helpers with a specialized Tag Helper or front-end date
picker widget. For simplicity here, you will keep the default.

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

301

After you correct the Description field, your form should match Listing 9-3.

Listing 9-3. TShirt Create View

@model Recipe01.ViewModels.TShirtViewModel

@{
 ViewData["Title"] = "Add New T-Shirt";
}

<h2>Add New T-Shirt</h2>

<form asp-action="Create">
 <div class="form-horizontal">
 <hr />
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="SaleStartDate" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="SaleStartDate" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="SaleEndDate" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="SaleEndDate" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="Title" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Title" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="Description" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <textarea asp-for="Description" class="form-control" rows="5"></textarea>

 </div>
 </div>
 <div class="form-group">
 <label asp-for="Price" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Price" class="form-control" />

 </div>
 </div>

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

302

 <div class="form-group">
 <label asp-for="SellerEmailAddress" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="SellerEmailAddress" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="ConfirmEmailAddress" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="ConfirmEmailAddress" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <div class="checkbox">
 <input asp-for="AgreeToTermsAndConditions" />
 <label asp-for="AgreeToTermsAndConditions"></label>
 </div>
 </div>
 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </div>
 </div>
</form>

<div>
 <a asp-action="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Note that the scaffolding has added a Scripts section to the page and used RenderPartialAsync to
include the script references required for the validation scripts.

When you run the application and navigate to http://localhost:63079/TShirt/Create, you will see
that all the validation rules are functioning as expected. The Date fields will use the browser’s built-in data
selector, and an error will be displayed if you attempt to add an invalid date. If you try to disable JavaScript,
you will see that the rules are processed on the server.

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

303

9-2. Creating a Custom Validation Attribute
Problem
You are creating a web application for the legal department of a software company that displays software
license agreement forms. The form also has a check box that confirms that the user has accepted the
licensing agreement. You want to use data annotations on the model to implement these rules but have
found the required functionality is not available. You want the validation checks to occur during model
validation along with the other validation rules.

Solution
When the built-in data annotation validators do not meet your requirements, you can create custom validation
attributes by creating a class that is derived from the abstract class ValidationAttribute. You can then
override the IsValid method to implement the required validation logic.

Validation attributes are validated only on the server. If you want to also have client-side validation
working in conjunction with your custom ValidationAttribute, the custom validation attribute class
must also implement the IClientModelValidator interface and implement the AddValidation method.
This solution also requires that you create a JavaScript function that extends the functionality of the jQuery
Unobtrusive Validation library.

How It Works
In this section, you will build a custom validation attribute and apply it to the model. Start by creating a new
ASP.NET Core Web Application (.NET Core 1.1) project using the Web Application template with both the
solution and the project named Recipe02. Ensure that no authentication is used and that Docker support is
not enabled.

Creating the Model
The model used in this recipe will represent a software licensing agreement. The model class will have four
properties: SoftwareProductName, LicenseAgreementText, LicenseeName, and AgreementAccepted. To
create the model, first create a new folder under the root of the Recipe02 project named Models. Add a class
named SoftwareLicenseAgreement to the folder. Use some of the built-in data annotation attributes to
customize the display of the model and to ensure that LicenseAgreementText, SoftwareProductName, and
LicenseeName are required and have sensible string length limitations. The completed model should match
Listing 9-4.

Listing 9-4. The SoftwareLicenseAgreement Model

using System.ComponentModel.DataAnnotations;

namespace Recipe02.Models
{
 public class SoftwareLicenseAgreementModel
 {
 [Required]
 public string AgreementText { get; set; } = @"Lorem ipsum dolor sit amet,

consectetur adipiscing elit...";

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

304

 [Required]
 [StringLength(50)]
 public string SoftwareProductName { get; set; }

 [Required]
 [StringLength(50)]
 [Display(Name = "Licensee Name")]
 public string LicenseeName { get; set; }

 [Display(Name = "Agreement Accepted")]
 public bool AgreementAccepted { get; set; }
 }
}

Creating the Custom Validation Attribute
To create the custom validation attribute, first add a folder to the project named Attributes under the root
of the Recipe02 project. Next, add a new class to the folder named ConfirmValueAttribute. By convention
all attribute classes should be named with the suffix attribute. When using the attribute to decorate a
property on a model, that suffix can be omitted.

Inside the ConfirmValueAttribute class, add a using statement for System.ComponentModel.
DataAnnotations and then change the class signature so that it derives from ValidationAttribute.

To maximize the usefulness of this validator, rather than simply checking that the value of the property
you are validating is true, you will allow the developer to specify the value he or she is expecting. This will
allow the validation attribute to be used in many scenarios and not be limited to the check box use case.
To do this, add a constructor to the class that takes an argument called expectedValue of the type object. Inside
the constructor, the expectedValue argument will be written to a backing field named _expectedValue.

Overriding IsValid

In the next step, you will override the IsValid method. The IsValid method takes two arguments, value
and validationContext. The value argument contains the value of the property that is being validated. The
validationContext property contains the current instance of the model class that is being validated and
exposes it through the ValidationContext.ObjectInstance property. In addition, validationContext also
contains metadata about the model class including the type, display name of the property being validated,
and member name of the property being validated.

Inside the IsValid method, you first validate that the value argument is not null. When value is null,
an ArgumentNullException is thrown. Next, you compare value to _expectedValue using the Object.Equals
method. You must use Object.Equals rather than the == operator in this case because when the == operator
is used with an expression of the type Object, the == operator will resolve to Object.ReferenceEquals. The
Object.ReferenceEquals object will always return false when used with a value type such as a bool even if
the values are the same since the value types will be boxed into separate object instances.

If value and _expectedValue match, then you return ValidationResult.Success; otherwise, you
return a new ValidationResult instance with the ErrorMessage property passed as a constructor argument.
Listing 9-5 shows the completed code.

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

305

Listing 9-5. Creating a Custom Validation Attribute

using System;
using System.ComponentModel.DataAnnotations;

namespace Recipe02.Validation
{
 [AttributeUsage(AttributeTargets.Property)]
 public class ConfirmValueAttribute : ValidationAttribute
 {
 private object _expectedValue;
 public ConfirmValueAttribute(object expectedValue)
 {
 _expectedValue = expectedValue;
 }

 public override bool IsValid(object value)
 {
 if (value == null)
 {
 throw new ArgumentNullException("value");
 }

 return Equals(value, _expectedValue);
 }

 }
}

Now that you have created the attribute, you can apply it to the model, as shown in Listing 9-6.

Listing 9-6. SoftwareLicenseAgreement Model Updated with ConfirmSelectionAttribute

using Recipe02.Validation;
using System.ComponentModel.DataAnnotations;

namespace Recipe02.Models
{
 public class SoftwareLicenseAgreement
 {
 // other properties

 [ConfirmValue(true, ErrorMessage = "Please accept the licensing agreement.")]
 [Display(Name = "Agreement Accepted")]
 public bool AgreementAccepted { get; set; }
 }
}

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

306

Updating the Home Controller
To test the custom validator, modify the Home controller so that the Index action will use the
SoftwareLicenseAgreement class as a model. You will also need to add an HttpPost version of the action
that accepts SoftwareLicenseAgreement as an argument. In the body of the HttpPost version of the
Index action, add a check for ModelState.IsValid. When the model is valid, redirect to an action named
Download; otherwise, return the Index view. Listing 9-7 shows the updated Home controller. Note that in a
real-life application you would need to implement logic that would prevent users from bypassing the license
agreement page and going directly to the download page.

Listing 9-7. Home Controller Modified to Use the SoftwareLicenseAgreement Class

using Microsoft.AspNetCore.Mvc;
using Recipe02.Models;

namespace Recipe02.Controllers
{
 public class HomeController : Controller
 {
 public IActionResult Index()
 {
 var model = new SoftwareLicenseAgreement() { SoftwareProductName = "Some really

Great Software"};
 return View("Index", model);
 }

 [HttpPost]
 public IActionResult Index(SoftwareLicenseAgreement model)
 {
 if(ModelState.IsValid)
 {
 return RedirectToAction("Download");
 }
 return View("Index", model);
 }

 public IActionResult Download()
 {
 return View("Download");
 }

 public IActionResult Error()
 {
 return View();
 }
 }
}

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

307

Updating the Index View
In the Index view, Delete the boilerplate code that comes with the template and replace it with a form that
will display the text of the software agreement and allow the licensee to enter their name and select the
Agreement Accepted check box. Remember to add _ValidationScriptsPartial to the bottom of the page
so that client-side validation will work. _ValidationScriptsPartial adds the JavaScript required for the
client-side validation. Listing 9-8 shows the completed Index view.

Note that in Listing 9-8 I am showing both a validation summary using the validation-summary Tag
Helper in addition to the validation-for Tag Helper. Both Tag Helpers show the same error messages. In
most cases, you want to use only one of the Tag Helpers. The validation-for helper is useful since it shows
the error message next to the HTML element that contains the error, making it easy for the user to see the
mistake. On the other hand, validation-summary can show errors not associated with a specific field such
as when a business rule is broken because of input entered in several fields.

Listing 9-8. Index View with Software License Acceptance Form

@model Recipe02.Models.SoftwareLicenseAgreement
@{
 ViewData["Title"] = "Home Page";
}

<h1>Chapter 09 - Recipe 02</h1>
<hr />
<h2>License Agreement for @Model.SoftwareProductName</h2>
<p>
 @Model.AgreementText
</p>
<form asp-action="Index">
 <div asp-validation-summary="All"></div>
 <div class="form-group">
 <label asp-for="LicenseeName"></label>
 <input asp-for="LicenseeName" class="form-control" />

 </div>
 <div class="checkbox">
 <label>
 <input asp-for="AgreementAccepted" /> Tick the box to accept the agreement

 </label>
 </div>
 <button type="submit" class="btn btn-default">Submit</button>
</form>

@section scripts{
 @Html.Partial("_ValidationScriptsPartial")
}

Next, add a view that corresponds to the Download action. The Download view does not need to have any
specific content.

You should now be able to run the application and verify the functionality of the custom validator.
Notice that validation will occur only when the form is submitted to the server.

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

308

Adding Client-Side Validation
Adding client-side validation requires two steps. First, you must modify the ConfirmValueAttribute class
so that it implements the IClientModelValidator interface. Second, you must add JavaScript to the page to
extend the functionality of the JQuery Unobtrusive Validation library.

The IClientModelValidator interface defines a single method named AddValidation that takes a
single argument of the type ClientModelValidationContext. AddValidation allows you to modify the
HTML generated by the Tag Helper or HTML Helper. The ClientModelValidationContext instance that is
passed to the method allows you to access the attributes of the generated HTML tag. It also allows you to
access the ModelMetadata property, which contains metadata such as the Description and DisplayName
properties.

Three attributes will need to be added to the HTML for the client-side script to work with the JQuery
Unobtrusive Validation library. First you need to add the data-val attribute. This will tell the JQuery
Unobtrusive Validation library to consider the field when running validation. Next you need to add custom
attributes that correspond to the ConfirmValue class. First add an attribute named data-val-confirmvalue
and pass it the value of the ErrorMessage property. The JQuery Unobtrusive Validation library will use
the data-val-confirmvalue value to display the correct error message if the validator method named
confirmvalue returns false. Note that the attribute contains the class name but in all lowercase with
the Attribute suffix removed. Finally, you need to add an attribute to hold the expected value so that it
can be compared to the current value or the HTML form field. Listing 9-9 shows the completed
AddValidation method.

Listing 9-9. Changes to the ConfirmValueAttribute Class

public void AddValidation(ClientModelValidationContext context)
{
 if (context == null)
 {
 throw new ArgumentNullException("context");
 }

 context.Attributes.Add("data-val", "true");
 context.Attributes.Add("data-val-confirmvalue", ErrorMessage);
 context.Attributes.Add("data-val-confirmvalue-expectedvalue", _expectedValue.

ToString());
}

At this point, you can run the application again and inspect the HTML to ensure that the attributes have
been added as expected. You can do this in Microsoft Edge (and most other browsers) by right-clicking the
AgreementAccepted check box and selecting Inspect Element. Listing 9-10 shows the generated HTML code.

Listing 9-10. Generated HTML

<input name="AgreementAccepted"
 id="AgreementAccepted"
 type="checkbox"
 value="true"
 data-val="true"
 data-val- confirmvalue-expectedvalue="True"
 data-val-confirmvalue="Please accept the licensing agreement.">

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

309

Adding the JavaScript

The client-side JavaScript that you will create will take advantage of two libraries, JQuery Validation and
jQuery Validation Unobtrusive. The jQuery Validation library is a well-documented and full-featured jQuery
plug-in. You can find documentation and videos for it at https://jqueryvalidation.org/. The jQuery
Unobtrusive Validation library is a jQuery plug-in created by Microsoft whose sole purpose is to pull data
from HTML 5 data attributes and use them to create rules in jQuery validation.

To begin, create a new JavaScript file under wwwroot/js named custom-validators.js. Inside the
file create a self-executing function. Self-executing functions run as soon as they are loaded into the web
browser. Self-executing functions in JavaScript use the following form:

$(function ($) {
 // code goes here
}(jQuery));

 ■ Note Make sure you create a self-executing function and are not using the JQuery document ready
function. jQuery validation registers its rules before the DoM is loaded. if you try to register your adapter after
the DoM is loaded, your rules will not be processed.

Inside the self-executing function, you will need to perform two steps. First you will register a
validation method with JQuery validation using the addMethod function. Next you need to add an adapter to
unobtrusive validation.

Registering the Validation Method with jQuery Validation
The addMethod function of the global validator object lets you define the function that will contain your
validation logic. The addMethod function takes two parameters: the function name and the function to be
executed. The function name must be a legal JavaScript identifier and should match the data-val-xxx
attribute name that was created in Listing 9-9. The function passed as the second argument must have a
signature that takes three parameters and returns a Boolean value. The function should return true if the
validation condition was met and otherwise false. The three parameters are as follows:

•	 value: The current value of the HTML element that is being validated. Note that in
the case of an unselected check box, value will be undefined.

•	 element: The HTML element that is being validated.

•	 params: Parameters to be passed to the method.

For this case, the method name will be confirmvalue to match the data-val-confirmvalue attribute
that was added in Listing 9-9.

$.validator.addMethod('confirmvalue',
function (value, element, params) {
 // function body goes here
}
);

https://jqueryvalidation.org/

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

310

You expect that your params object will have a property named expectedvalue. The expectedvalue
parameter should contain the value from the HTML attribute data-val-confirmvalue-expectedvalue.
It is a best practice to always validate your input so that missing data does not cause an unexpected
runtime error.

var expectedValue = params.expectedvalue;
if (!expectedValue) return false;

Even though you are using a check box in this example, the custom validator was designed to account
for multiple scenarios and may not always be a check box. To account for different scenarios, an if
statement checks to see whether the element type is a check box. If so, the checked property of the element
will be evaluated, and the value of expectedValue will be converted to a Boolean value. For all other element
types, the value property will be evaluated, and the expectedValue argument will not be altered.

var actual;
if (element.type === "checkbox") {
 actual = element.checked;
 expectedValue = expectedValue === "True" ? true : false;
} else {
 actual = element.value;
}

if (expectedValue === actual) {
 return true;
}
return false;

Registering the Adapter with jQuery Unobtrusive Validation
Now that you have a validation method registered with the jQuery Validation library, you can use the JQuery
Unobtrusive Validation library to wire up the form field with the validation method and pass the method the
required parameters.

jQuery Validation by itself does not use the data-val attributes. It instead relies on the programmer to
write code to wire up all the form fields to validation rules and then write a submit handler to call the jQuery
Validation library’s validate function in a submit handler. Submit handlers are JavaScript event handers
that occur when a form is submitted. A submit handler can cancel the form submission if the validation fails.

jQuery Unobtrusive Validation uses a function called an adapter to harvest all the data from the
data-val-xxx attributes and use them to write up the validation methods. You can add an adapter by calling
the validator.unobtrusive.adapters.add function. The validator.unobtrusive.adapters.add function
takes three parameters.

•	 adapterName: The name of the adapter to be added. This matches the name used in
the data-val-xxx attribute (where xxx is the adapter name). In this case, the adapter
name is confirmvalue since the attribute used was data-val-confirmvalue.

•	 params: An array of parameter names that are harvested from the HTML attributes.
In the case of your adapter, you have a single parameter named expectedvalue.
By passing the name expectedvalue in the params array, you are telling
jQuery Unobtrusive Validation to look for HTML attributes named data-val-
confirmvalue-expectedvalue on elements with data-val-confirmvalue attributes.

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

311

•	 fn: The function to call, which adapts the values from the HTML attributes
into jQuery validate rules and/or messages. In your adapter, you will map the
expectedvalue parameter to the matching parameter in the confirmvalue validator
function that was added using the validator.addMethod function.

Listing 9-11 shows the custom-validators.js file.

Listing 9-11. Custom-validators.js

$(function ($) {
 "use strict";
 $.validator.addMethod('confirmvalue',
 function (value, element, params) {
 var expectedValue = params.expectedvalue;
 if (!expectedValue) return false;
 var actual;
 if (element.type === "checkbox") {
 actual = element.checked;
 expectedValue = expectedValue === "True" ? true : false;
 } else {
 actual = element.value;
 }

 if (expectedValue === actual) {
 return true;
 }
 return false;
 });

 $.validator.unobtrusive.adapters.add('confirmvalue',
 ['expectedvalue'],
 function (options) {
 // Add validation rule for HTML elements that contain data-confirmvalue attribute
 options.rules['confirmvalue'] = {
 // pass the data from data-confirmvalue-expectedvalue to
 // the params argument of the confirmvalue method
 expectedvalue: options.params['expectedvalue']
 };
 // get the error message from data-confirmvalue-expectedvalue
 // so that unobtrusive validation can use it when validation rule fails
 options.messages['confirmvalue'] = options.message;
 });}(jQuery));

There are a few general JavaScript best practices that have also been implemented in Listing 9-11. First,
the self-executing function does not have any dependencies on any global variables. It instead imports them
as parameters. In this case, jQuery is passed in as an argument named $. Another best practice is the use of
use strict. This puts the document in strict mode, which protects you from many of JavaScript’s pitfalls
such as accidentally creating a global variable by mistyping a variable name. You can find a good description
of all the features of strict mode at https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Strict_mode.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

312

Adding the Script to the View Page

The last step of the custom validator process is to add a script reference to the view, as shown in Listing 9-12.

Listing 9-12. Adding the Custom-validators.js Script Referance to the Index View

@section scripts{
 @Html.Partial("_ValidationScriptsPartial")
 <script src="~/js/custom-validators.js"></script>
}

You should now be able to test the application and see the custom validator working on both the client
and the server.

9-3. Processing Custom Business Rules on an Entity by
Implementing IValidatableObject
Problem
You are creating a form for your application that requires the customer to enter a pair of dates to define a
date range. You need to prevent the customer from choosing an end date that is before the start date.
If customers can do this, then they must have a flux capacitor and could create a paradox that can destroy
the universe. You must prevent this evil at all costs.

Solution
When you need to create a validation rule that needs to consider more than one value on a model, you
can have the model class implement the IValidatableObject interface. The IValidatableObject
interface defines a single method called Validate. The Validate method returns an IEnumerable of
ValidationResults and takes a single argument of the type ValidationContext. Since the method is part
of the model class, it has access to all the members of the class. This makes it ideal for cases where you need
complex validation rules involving multiple properties.

How It Works
To demonstrate how to use the IValidateObject interface on a model, you will create an application that
allows customers to create hotel reservations.

Creating the Project
Create a new ASP.NET Core Web Application (.NET Core 1.1) project using the Web Application template.
Name the project and the solution Recipe03. Ensure that No authentication is selected and Docker support
is not enabled.

Creating the Model
Add a folder called Models under the root of the Recipe03 project. Add a class to the folder named
HotelReservation. The class should have two DateTime properties, named StartDate and EndDate.
It should also have properties for Name and Room Number. Standard data annotations, such as Required,
DataType, and Display, can be added to the properties.

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

313

Next, change the signature of the class so it implements IValidatableObject. You can have Visual
Studio automatically stub out the IValidatableObject.Validate message by hovering your mouse over the
IValidatableObject in the code editor, clicking the yellow light bulb that appears next to it, and selecting
“Implement interface” from the pop-up menu. You can then add code to the Validate method that uses
the DateTime.CompareTo method to compare EndDate to StartDate. CompareTo will return -1 if EndDate is
earlier than StartDate.

The yield keyword is used to return each of the elements of the ValidationResults enumeration one
at a time. When completed, the code should match Listing 9-13.

Listing 9-13. The HotelReservation Model

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace Recipe03.Models
{
 public class HotelReservation : IValidatableObject
 {
 [Required]
 [DataType(DataType.Date)]
 [Display(Name = "Start Date")]
 public DateTime StartDate { get; set; }

 [Required]
 [DataType(DataType.Date)]
 [Display(Name="End Date")]
 public DateTime EndDate { get; set; }

 [Required]
 [StringLength(50)]
 public string Name { get; set; }

 [Required]
 [Display(Name = "Room Number")]
 [Range(1,250)]
 public int RoomNumber { get; set; }

 public IEnumerable<ValidationResult> Validate(ValidationContext validationContext)
 {
 if(EndDate.CompareTo(StartDate) <= 0)
 {
 yield return new ValidationResult("The end date must be after the start

date.");
 }
 }
 }
}

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

314

Updating the Home Controller
To test that the validation works as expected, you will modify the Index action of the Home controller so that it
has an HttpPost version that takes a HotelReservation object as an argument. The Index action will check
the ModelState.IsValid property and then redirect the customer to the ReservationSuccess action if
validation passes. Listing 9-14 shows the updated Home controller.

Listing 9-14. Home Controller Modified to Support a Hotel Reservation Form

using Microsoft.AspNetCore.Mvc;
using Recipe03.Models;

namespace Recipe03.Controllers
{
 public class HomeController : Controller
 {
 public IActionResult Index()
 {
 return View();
 }
 [HttpPost]
 public IActionResult Index(HotelReservation model)
 {
 if (ModelState.IsValid)
 {
 return RedirectToAction("ReservationSuccess");
 }
 return View("Index", model);
 }

 public IActionResult ReservationSucess()
 {
 return View("ReservationSucess");
 }

 public IActionResult Error()
 {
 return View();
 }
 }
}

Updating the Index View
To finish up, delete the boilerplate code from the Index view and replace it with a form that uses Tag Helpers
to render the form field and validation properties. Be sure to include a validation summary Tag Helper.
The Validation Summary Tag Helper is required in this case since the error is with the form rather than a
single form field. Listing 9-15 shows the updated view.

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

315

Listing 9-15. The Hotel Reservation Form

@model Recipe03.Models.HotelReservation
@{
 ViewData["Title"] = "Home Page";
}

<h1>Chapter 9 - Recipe 03</h1>
<form asp-action="Index">
<div class="form-horizontal">
 <h4>HotelReservation</h4>
 <hr />
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="StartDate" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="StartDate" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="EndDate" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="EndDate" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="Name" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Name" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="RoomNumber" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="RoomNumber" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </div>
</div>
</form>

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

316

<div>
 <a asp-action="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

You should now be able to test the form and confirm that the validation rules work as expected.
Note that, in this recipe, the custom validation is on the server side only.

9-4. Using Remote Validation
Problem
You are creating an application that allows musicians to register their band names. The application needs to
ensure that the band name is not being used by someone else before it permits the name to be chosen.
You want to have a good user experience and not force the user to submit the form to the server before
seeing whether the name is available.

Solution
ASP.NET Core has a new feature called RemoteAttribute. It allows you to specify an action and controller
name of a Web API that returns a JSON object containing a validation result. Remote validation is performed
only on the client.

How It Works
To demonstrate RemoteAttribute, you will create a web application that contains a Web API controller with
an action called ValidateBandName. A model class named BandViewModel will contain a specific property,
BandName, that will be decorated with RemoteAttribute. You will then modify the Home controller and Index
view to contain a form that allows users to check whether a band name is available.

Creating the Project
Create a new ASP.NET Core Web Application (.NET Core 1.1) project using the Web Application template.
Name the project and solution Recipe04. Ensure that No Authentication is selected and Docker support is
not enabled.

Creating the Model
The model used in this recipe contains a single property named BandName. To create the model, first create
a new folder under the root of the Recipe04 project named Models. Add a class named BandViewModel to
the folder. Use some of the built-in data annotation attributes to customize the display of the model and
to ensure that BandName is required, has sensible string length limitations, and can contain only numbers,
letters, spaces, and underscores.

The BandName property should also be decorated with the Remote attribute. The Remote attribute requires
two properties, the action and the controller. The action and controller properties should point to a Web API
controller in your web application that returns JSON. The completed model should match Listing 9-16.

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

317

Listing 9-16. The BandViewModel Class

using Microsoft.AspNetCore.Mvc;
using System.ComponentModel.DataAnnotations;

namespace Recipe04.Models
{
 public class BandViewModel
 {
 [Required]
 [StringLength(30, MinimumLength =3)]
 [Display(Name ="Band Name")]
 [RegularExpression("^[A-Za-z0-9 _]*[A-Za-z0-9][A-Za-z0-9 _]*$")]
 [Remote(action: "VerifyBandName", controller: "Band")]
 public string BandName { get; set; }
 }
}

Creating the Web API
Add a new controller under the Controller folder named BandController. Note that in ASP.NET Core Web
API, controllers are derived from Controller, not APIController as they were with ASP.NET Web API.
To make it clear that this controller is an API controller, you will apply two attributes to the controller class.
First, [Produces("application/json")] will have all actions in the controller generate JSON. You also add
an attribute route using [Route("api/Band")]. It is generally a good practice to have all your APIs under
/api if your web application is hosting both server-generated HTML and RESTful web services. While it is
possible to have actions that return views and JSON in the same controller, it is not a good practice because it
is mixing concerns under a single class.

The controller will have a single action called VerifyBandName that accepts a string argument called
bandName. The action should accept both GET and POST HTTP verbs and needs to return JSON.

The JSON response needs to be in the format {data: true} when validation passes and
{data: "Error Message"} when validation fails.

The action will first check whether the bandName arguments contain a value. If not, it will return a Bad
Request response. If the bandName value is valid, then the action will make a database call to see whether the
band name exists in the database. Listing 9-17 shows the completed controller.

Listing 9-17. The BandController API

using System.Linq;
using Microsoft.AspNetCore.Mvc;
using AspNetCoreMvcRecipes.Shared.DataAccess;

namespace Recipe04.Controllers
{
 [Produces("application/json")]
 [Route("api/Band")]
 public class BandController : Controller
 {
 MoBContext _context;
 public BandController(MoBContext context)
 {
 _context = context;
 }

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

318

 [AcceptVerbs("Get", "Post")]
 public IActionResult VerifyBandName(string bandName)
 {
 if(string.IsNullOrWhiteSpace(bandName))
 {
 return BadRequest();
 }

 var bandsMatching = _context.Bands.Count(b => b.BandName.ToLower() == bandName.
ToLower().Trim());

 if (bandsMatching > 0)
 {
 return Json(data: $"The Band Name {bandName} is already in use.");
 }
 else
 {
 return Json(data: true);
 }
 }
 }
}

Modifying the Home Controller
In the Home controller, you will add an HttpPost version of the Index action that accepts a BandViewModel
class as an argument. It will verify ModelState.IsValid and show the BandNameReserved page. Listing 9-18
shows the completed controller.

Listing 9-18. The HomeController Modified to Support the Band Name Registration Form

using Microsoft.AspNetCore.Mvc;
using Recipe04.Models;

namespace Recipe04.Controllers
{
 public class HomeController : Controller
 {
 public IActionResult Index()
 {
 return View();
 }

 [HttpPost]
 public IActionResult Index(BandViewModel model)
 {
 if(ModelState.IsValid)
 {
 return RedirectToAction("BandNameReserved");
 }
 return View("Index" , model);
 }

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

319

 public IActionResult BandNameReserved()
 {
 return View();
 }

 public IActionResult Error()
 {
 return View();
 }
 }
}

Creating the View
The view is just a simple form that replaces the default Index view created from the Web Application template.
No special code needs to be added other than the _ValidationScriptsPartial partial view that contains links
to the jQuery Validation and jQuery Validation Unobtrusive libraries. Listing 9-19 shows the code.

Listing 9-19. The Band Registration Form

@model Recipe04.Models.BandViewModel
@{
 ViewData["Title"] = "Home Page";
}

<h1>Chapter 09 - Recipe 4</h1>
<form asp-action="Index">
 <div asp-validation-summary="All"></div>
 <div class="form-group-lg">
 <label asp-for="BandName"></label>
 <input asp-for="BandName" class="form-control">

 </div>

 <button type="submit" class="btn btn-primary">Register Band Name</button>
</form>

@section scripts{
 @Html.Partial("_ValidationScriptsPartial")
}

When you run the application, you will see that the validation runs on the client without posting back to
the server.

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

320

9-5. Creating Complex Validation Rules Using
Fluent Validation
Problem
You are building a web site that allows users to build their own electric guitars. They pick the woods, body,
pickups, strings, tremolo, and other parts, and then a robot will put the guitar together and ship it to them.
Before the guitar is built, you need to ensure that the parts they selected are compatible. You want to be able
to give the users feedback as they are filling out the form when they select a part that is not compatible.

Solution
In the first four recipes, data annotations were used in combination with custom validators, remote
validators, and models that implement the IValidatableObject interface to solve several common
validation issues. While it is possible to create a solution for the business requirements described in the
problem using the techniques you learned in the earlier recipes, it would not be easy. You would likely need
to create many custom validators and would need to write complex business logic in the Validate method.

As an alternate to the data annotation approach, this recipe will demonstrate how to use the Fluent
Validation package. Fluent Validation is a popular open source library for solving complex validation
requirements written by Jeremy Skinner. You can find the source code and documentation for the library at
https://github.com/JeremySkinner/fluentvalidation.

The Fluent Validation library uses a fluent interface and lambda expressions to allow you to write very
readable and expressive validation rules. If you are interested in reading more of the theory behind fluent
interface design, I recommend reading the article by Martin Fowler at https://www.martinfowler.com/
bliki/FluentInterface.html.

How It Works
To create this example, you will create a new ASP.NET Core web application. You will then add models
to define a guitar and parts you will add to it. Next you will install the Fluent Validation for ASP.NET Core
NuGet package and use it to create validation rules. Finally, you will add a view model, the controller, and
the views that make up the new guitar form.

Creating the Project
Create a new ASP.NET Core Web Application (.NET Core 1.1) project using the Web Application template.
Name the project and solution Recipe05. Ensure that No Authentication is selected and Docker support is
not enabled.

Creating the Models
The models used for this example will be made up of four classes:

•	 Guitar.cs: Represents the guitar that will be built

•	 GuitarBody: Represents the main body of the guitar that houses all of the electronics
including the pickups, input jacks, and volume controls

https://github.com/JeremySkinner/fluentvalidation
https://www.martinfowler.com/bliki/FluentInterface.html
https://www.martinfowler.com/bliki/FluentInterface.html

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

321

•	 GuitarPickUp: Represents the magnets that must be installed on a guitar to allow it
to convert the vibrations of the guitar strings into electronic signals

•	 GuitarString: Represents the metal strings that will be installed on the guitar

To create the model, add a folder called Models under the root of the Recipe05 project. Add classes to
the folder named Guitar, GuitarBody, GuitarPickup, and GuitarString. Listings 9-20 through 9-23 show
the completed classes.

Listing 9-20. Guitar.cs

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace Recipe05.Models
{
 public class Guitar
 {
 [Display(Description ="Name your custom guitar.")]
 public string Name { get; set; }

 public GuitarBody Body { get; set; }

 [Display(Name = "Bridge Pickup.")]
 public GuitarPickup BridgePickup { get; set; }

 [Display(Name = "Middle Pickup.")]
 public GuitarPickup MiddlePickup { get; set; }

 [Display(Name = "Neck Pickup.")]
 public GuitarPickup NeckPickup { get; set; }

 public IList<GuitarString> Strings { get; set; }
 }
}

Note that, in Listing 9-20, even though you will be using the Fluent Validation library for your validation
rules, data annotations can still be applied to the model for display information.

Listing 9-21. GuitarBody.cs

using System;

namespace Recipe05.Models
{
 public class GuitarBody
 {
 public string Name { get; set; }
 public string ToneWood { get; set; }
 public int NumberOfStringsSupported { get; set; }
 public bool AllowBridgePickup { get; set; }
 public bool AllowMiddlePickup { get; set; }
 public bool AllowNeckPickup { get; set; }

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

322

 public BodyType BodyType { get; set; }
 public BodyStyle Style { get; set; }
 public String Color { get; set; }
 }
}

// BodyType.cs
namespace Recipe05.Models
{
 public enum BodyType { HollowBody, Chambered, SolidBody}
}

// BodyStyle.cs
namespace Recipe05.Models
{
 public enum BodyStyle { LesPaul, SG, Strat,Telecaster, FlyingV, Jazzmaster,

Explorer, Gem }
}

The GuitarBody class shown in Listing 9-21 makes use of two enums. Using enums helps to keep your
code readable. This will be especially important when you start defining the validation rules using the Fluent
interface.

Listing 9-22. GuitarPickup.cs

namespace Recipe05.Models
{
 public class GuitarPickup
 {
 public string Name { get; set; }
 public PickUpType PickUpType { get; set; }
 public PickUpPosition RecommendedPosition { get; set; }
 public int NumberOfStringsSupported { get; set; }
 public int NumberOfConductorsRequired { get; set; }
 }
}

// PickUpTypes.cs
namespace Recipe05.Models
{
 public enum PickUpType { Humbucker, SingleCoil, Piezo}
}

// PickUpPosition.cs
namespace Recipe05.Models
{
 public enum PickUpPosition { Piezo, Bridge, Middle, Neck}
}

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

323

Listing 9-23. GuitarString.cs

namespace Recipe05.Models
{
 public class GuitarString
 {
 public string Name
 {
 get
 {
 return string.Format("{0} : {1}", NoteAtStandardTuning, Gage);
 }
 }

 public string NoteAtStandardTuning { get; set; }
 public int Gage { get; set; }
 public string Material { get; set; }
 }
}

The GuitarString class shown in Listing 9-23 uses a computed property to derive the name. The Name
property will be used for display purposes.

Installing the Fluent Validation NuGet Package
There are two steps required to integrate the Fluent Validation NuGet package with ASP.NET Core. First you
must install the NuGet package using the Package Manager, and then you must configure Fluent Validation
in Startup.cs.

To install Fluent Validation, open the Package Manager Console window in Visual Studio and enter the
following command:

Install-Package FluentValidation.AspNetCore

After the installation has completed, modify the ConfigureServices method of Startup.cs so that it
matches Listing 9-24. RegisterValidatorsFromAssemblyContaining<Startup>()) will use reflection to find
all the classes in the current assembly that are derived from AbstractValidator<T> and then register all the
validation rules defined inside them.

Listing 9-24. Startup.cs Modified to Configure Fluent Validation

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc().AddFluentValidation(fv => fv.RegisterValidatorsFromAssemblyContaining

<Startup>());
}

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

324

Creating the Validation Rules
To create validation rules for a class using Fluent Validation, create a separate class that extends the
FluentValidation.AbstractValidator<T> class, where T is the class where you want to apply the
validation rules.

Each rule in the validation class’s constructor uses calls to the RuleFor method. The RuleFor method
takes a lambda expression as an argument that allows you to specify the property the rule is to be applied to.
RuleFor returns an IRuleBuilderInitial object instance. The IRuleBuilderInitial interface exposes a set
of built-in rules that can be applied to the model. The following is a list of built-in validators:

•	 NotNull: Invalidates the model when the property is null.

•	 NotEmpty: Equivalent to the Required data annotation; invalidates the model when
the property is null, empty, or whitespace.

•	 NotEqual: Invalidates the model when the property does not match the
comparison value.

•	 Equal: Inverse of the NotEqual rule. Invalidates the model when the property
matches the comparison value.

•	 Length: Like the StringLength data annotation, invalidates the model when the
property length is not in the specified range.

•	 LessThen: Invalidates the model when the property value is less than the
comparison value.

•	 LessThanOrEqual: Invalidates the model when the property value is less than or
equal to the comparison value.

•	 GreaterThen: Invalidates the model when the property value is greater than the
comparison value.

•	 GreaterThanOrEqual: Invalidates the model when the property value is greater than
or equal to the comparison value.

•	 Must: Allows you to create custom validators inline using lambda expressions.
Invalidates the model when the property does not meet the criteria specified in the
expression.

•	 Matches: Equivalent to the RegularExpression data annotation. Invalidates the
model when the property value does not match the specified regular expression.

•	 Email: Invalidates the model when the property value is not a valid e-mail address.

Each of the built-in validation methods returns an instance of the IRuleBuilder interface.
The IRuleBuilder interface exposes a secondary set of rules that either can add additional rules to the
property specified in RuleFor or can add restrictions to when the first rule can be applied. For example, if
you wanted to create a rule for the Guitar class that ensured that if that guitar body requires a neck pickup,
the neck pickup cannot be empty, then you would write the following:

RuleFor(guitar => guitar.NeckPickup).NotEmpty().When(guitar => guitar.Body.AllowNeckPickup);

Listing 9-25 shows a set of rules defined for the Guitar class in a validation class named
GuitarValidator. To create this class, add a folder to the root of Recipe05 named Validation and then add
a class named GuitarValidator.

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

325

Listing 9-25. GuitarValidator

using FluentValidation;
using Recipe05.Models;

namespace Recipe05.Validation
{
 public class GuitarValidator : AbstractValidator<Guitar>
 {
 public GuitarValidator()
 {
 // guitar name cannot be null, empty, or whitespace and
 // must be at least 3 but no more than 40 characters long
 RuleFor(guitar => guitar.Name).NotEmpty().Length(3,40);

 // guitar must have a body
 RuleFor(guitar => guitar.Body).NotEmpty();

 // guitar must have a pickup installed in each slot available in the selected body
 RuleFor(guitar => guitar.NeckPickup).NotEmpty().When(guitar => guitar.Body.

AllowNeckPickup);
 RuleFor(guitar => guitar.BridgePickup).NotEmpty().When(guitar => guitar.Body.

AllowBridePickup);
 RuleFor(guitar => guitar.MiddlePickup).NotEmpty().When(guitar => guitar.Body.

AllowMiddlePickup);

 // can't select more strings then guitar body supports
 RuleFor(guitar => guitar.Strings)
 .NotNull()
 .Must((guitar, strings) => strings?.Count == guitar?.Body?.

NumberOfStringsSupported)
 .WithMessage(@"The number of strings selected {0}
 does not match the number supported by the

guitar body {1}",
 guitar => guitar?.Strings?.Count,
 guitar => guitar?.Body?.NumberOfStringsSupported);

 // can't add a middle pickup if the guitar body does not support it
 RuleFor(guitar => guitar.MiddlePickup)
 .Null()
 .When(guitar => guitar.Body.AllowMiddlePickup = false);
 }
 }
}

Creating the View Model
The guitar builder form will contain a set of drop-down lists that list the available parts for each of the
required guitar components. The drop-down lists will be created using the Select Tag Helper. The Select
Tag Helper takes two attributes, asp-for and asp-items. The asp-for attribute wires the generated HTML
form field with a model property. The asp-items attribute contains the data used to generate the Options
tags that make up the drop-down list. The items passed to the asp-items attribute must be of the type
IEnumerable<SelectListItem>.

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

326

Creating a Generic SelectListItem Adapter

Since SelectListItems objects are a concern of the view and do not naturally appear in the model, a view
model is required to allow the select elements to be generated and to provide a translation between the
properties of the model and items selected in the form.

To simplify the code in the view model and to reduce the need to duplicate code, you will build
a utility class called SelectListAdapter. The SelectListAdapter class will contain a method called
ConvertToSelectListItemCollection. ConvertToSelectListItemCollection will allow you to
convert a collection from the model into the IEnumerable<SelectListItem> required by the view.
ConvertToSelectListItemCollection also allows you to specify the properties from the model’s collection
to be used for the text and value properties of each SelectListItem.

To create the SelectListAdapter class, first create a folder under the root of the Recipe05 project called
Util. Next add a new class file called SelectListItemAdapter.

Since the SelectListItemAdapter class will be stateless and does not use any instance
properties, it will be defined as static. Inside SelectListItemAdapter, create a generic method named
ConvertToSelectListItemCollection. Generic methods allow the method to be strongly typed while
supporting many types. The ConvertToSelectListItemCollection takes four arguments.

•	 source: This is the source list from the model that will be converted to an IEnumerab
le<SelectListItem>.

•	 text: This is a lambda expression that takes an instance of the collection type used in
the source and returns a string. This will allow developers to select a property to use
for the Text property of the SelectListItem list items.

•	 value: This is a lambda expression that takes an instance of the collection type used
in source and returns a string. This will allow developers to select a property to use
for the Value property of the SelectListItem list items.

•	 createEmpty: If true, which is the default value, an empty SelectListItem will be
added to the list that contains the text Please Select.

A second version of the ConvertToSelectListItemCollection is also added that allows a single
property to be used for both the Text and Value properties of SelectListItem.

DEMYSTIFYING FUNC

the Func<T, string> construct may look complicated if you have never used it but is quite simple.
the Func keyword defines a delegate that takes one or more parameters. For the example shown in
listing 9-26, the delegate takes a single argument of the type T. the second argument in this example
is the return type of the delegate. Func<T,string> is shorthand for defining a delegate with the
following signature:

delegate string MethodName(T);.

When developers call ConvertToSelectListItemCollection, they will be able to implement the
delegate inline using a lambda expression.

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

327

Listing 9-26. SelectListItemAdapter

using System;
using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc.Rendering;

namespace Recipe05.Util
{
 public static class SelectListItemAdapter
 {
 public static IEnumerable<SelectListItem> ConvertToSelectListItemCollection<T>
 (IEnumerable<T> source, Func<T, string> text, Func<T, string> value, bool

createEmpty = true) where T : class
 {
 var selectListItems = new List<SelectListItem>();
 if (createEmpty)
 {
 selectListItems.Add(new SelectListItem { Text = "Please Select",

Value = "" , Selected= true });
 }

 foreach (var item in source)
 {
 selectListItems.Add(new SelectListItem { Text = text(item),

Value = value(item)});
 }

 return selectListItems;
 }

 public static IEnumerable<SelectListItem> ConvertToSelectListItemCollection<T>
 (IEnumerable<T> source, Func<T, string> textAndValue, bool createEmpty = true)

where T : class
 {
 return ConvertToSelectListItemCollection(source, textAndValue, textAndValue,

createEmpty);
 }
 }
}

Simulating an Inventory Module

In a real system, you may have an inventory module that would call out to a back-end database to pull the
list of available parts. For this exercise, you will simulate the database call with the Inventory class. The
Inventory class will consist of a set of properties containing lists of the various parts that make up the
guitar. To create the Inventory class, create a new folder called Data and within it create a new class called
Inventory. Listing 9-27 shows the Inventory class.

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

328

Listing 9-27. Simulated Inventory Module

using Recipe05.Models;
using System.Collections.Generic;

namespace Recipe05.Data
{
 public class Inventory
 {
 public IList<GuitarBody> GuitarBodies = new List<GuitarBody>
 {
 new GuitarBody {
 Name = "Red Les Paul",
 AllowBridePickup = true,
 AllowMiddlePickup = false,
 AllowNeckPickup = true,
 BodyType = BodyType.SolidBody,
 ToneWood = "mahogany",
 Color = "Red",
 NumberOfStringsSupported =6,
 Style = BodyStyle.LesPaul
 }
 // additional guitar body choices go here
 };

 public IList<GuitarPickup> GuitarPickups = new List<GuitarPickup>
 {
 new GuitarPickup{
 Name = "Imperium 7™ Neck",
 NumberOfStringsSupported = 7,
 PickUpType =PickUpType.Humbucker,
 RecommendedPosition = PickUpPosition.Bridge,
 NumberOfConductorsRequired = 4
 }
 // additional guitar pickup choices go here
 };

 public IList<GuitarString> GuitarStrings = new List<GuitarString>
 {
 new GuitarString { Gage=9, Material = "Steel", NoteAtStandardTuning = "E"},
 new GuitarString {Gage=10, Material = "Nickel", NoteAtStandardTuning = "E"}
 // additional guitar string choices go here
 };
 }
}

Creating the GuitarBuilderViewModel Class

To simplify the view logic used inside the Razor views, you will create a view model named
GuitarBuilderViewModel. To help you differentiate models that are purely entities from models
that are bound to views, you will create a new folder called ViewModels and name each view model
class in the folder with the ViewModel suffix. The GuitarBuilderViewModel class will contain an

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

329

IEnumerable<SelectListItem> for each of the drop-down lists required on the form. It will also have a
string value to represent the selected value from each of the drop-down lists. In addition, since you want to
use the display metadata from the Guitar class to create the labels and descriptions used on the form, the
view model class will also have a Guitar property.

In addition to the properties, the GuitarBuilderViewModel class contains a helper method
that uses SelectListItemAdapter to create IEnumerable<SelectListItem>. Listing 9-28 shows
GuitarBuilderViewModel.

Listing 9-28. The GuitarBuilderViewModel Class

using Microsoft.AspNetCore.Mvc.Rendering;
using Recipe05.Data;
using Recipe05.Models;
using Recipe05.Util;
using System.Collections.Generic;

namespace Recipe05.ViewModels
{
 public class GuitarBuilderViewModel
 {
 public GuitarBuilderViewModel()
 {
 // in a real app we would get the data via constructor injection
 PopulateFromInventory();
 }

 public Guitar Guitar { get; set; } = new Guitar();

 public IEnumerable<SelectListItem> BridgePickupList { get; set; }
 public string SelectedBridgePickup { get; set; }

 public IEnumerable<SelectListItem> MiddlePickupList { get; set; }
 public string SelectedMiddlePickup { get; set; }

 public IEnumerable<SelectListItem> NeckPickupList { get; set; }
 public string SelectedNeckPickup { get; set; }

 public IEnumerable<SelectListItem> BodyList { get; set; }
 public string SelectedBody { get; set; }

 public IEnumerable<SelectListItem> StringsList { get; set; }
 public IEnumerable<string> SelectedStrings { get; set; }

 private void PopulateFromInventory()
 {
 Inventory = new Inventory();
 BodyList = SelectListItemAdapter.ConvertToSelectListItemCollection
 (Inventory.GuitarBodies, s => s.Name);
 BridePickupList = SelectListItemAdapter.ConvertToSelectListItemCollection
 (Inventory.GuitarPickups, s => s.Name);
 MiddlePickupList = SelectListItemAdapter.ConvertToSelectListItemCollection
 (Inventory.GuitarPickups, s => s.Name);

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

330

 NeckPickupList = SelectListItemAdapter.ConvertToSelectListItemCollection
 (Inventory.GuitarPickups, s => s.Name);
 StringsList = SelectListItemAdapter.ConvertToSelectListItemCollection
 (Inventory.GuitarStrings, s => s.Name);
 }
 // used by the GuitarBuilderToGuitarAdapter class shown in next section
 internal Inventory Inventory { get; private set; }
 }
}

Creating the GuitarBuilderToGuitarAdapter Class

The GuitarBuilderViewModel class does not contain enough information to be used to perform the rules
processing required to meet the business requirements. The only purpose of the view model is to collect
the data submitted by the user back to the controller. The complex rules that were defined in Listing 9-25
were defined on the Guitar class. Even though a Guitar class was included in the view model, not enough
information was passed to it to invoke the rules. For the rules to be processed, data from the view model
needs to be used to create a fully populated Guitar object.

The GuitarBuilderToGuitarAdapter class performs the function of creating the Guitar object from
the form data collected in the view model. It does this by querying the Inventory property of the view model
and finding the matching item using the key saved in the view model for each select list. Listing 9-29 shows
the GuitarBuilderToGuitarAdapter class.

Listing 9-29. The GuitarBuilderToGuitarAdapter Class

using Recipe05.Data;
using Recipe05.Models;
using System.Linq;

namespace Recipe05.ViewModels
{
 public class GuitarBuilderToGuitarAdapter
 {
 public Guitar BuildGuitar(GuitarBuilderViewModel viewModel)
 {
 if (viewModel == null) return null;

 var guitar = new Guitar()
 {
 Name = viewModel.Guitar.Name,
 BridgePickup = SelectPickUp(viewModel.Inventory, viewModel.SelectedBridgePickup),
 MiddlePickup = SelectPickUp(viewModel.Inventory, viewModel.SelectedMiddlePickup),
 NeckPickup = SelectPickUp(viewModel.Inventory, viewModel.SelectedNeckPickup),
 Body = viewModel.Inventory?.GuitarBodies?.FirstOrDefault(a => a.Name ==

viewModel.SelectedBody),
 Strings = (from gs in viewModel.Inventory.GuitarStrings
 where viewModel.SelectedStrings!=null && viewModel.SelectedStrings.

Contains(gs.Name)
 select gs).ToList()
 };
 return guitar;
 }

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

331

 private GuitarPickup SelectPickUp(Inventory inventory, string pickupName)
 {
 if (string.IsNullOrEmpty(pickupName)) return null;

 return inventory?.GuitarPickups?.FirstOrDefault(a => a.Name == pickupName);
 }
 }
}

Creating the Controller
For this recipe, the Home controller that is created by Visual Studio will be modified to support the guitar
builder form. First, modify the Index action so that it is passed a GuitarBuilderViewModel class to the view.
Next, create an HttpPost version of the Index action that accepts GuitarBuilderViewModel as a parameter.
Change the signature of the action to be asynchronous.

Inside the action, create an instance of GuitarBuilderToGuitarAdapter and then use the BuildGuitar
method to create an instance of Guitar from the GuitarBuilderViewModel class passed into the action.

In the next line, call TryUpdateModelAsync with the Guitar object created by the adapter.
TryUpdateModelAsync will cause the validation rules attached to the Guitar class from GuitarValidator to
be run against the current state of the object. TryUpdateModelAsync will update the ModelState value of the
controller with results of the validation and add any validation errors to the controller’s model error list. This
will allow validation errors to appear on the view when the Validation-Summary and Validation-For Tag
Helpers are used. Listing 9-30 shows the updated Home controller.

Listing 9-30. Home Controller Modified to Support Guitar Builder Form

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Recipe05.ViewModels;
using Recipe05.Models;

namespace Recipe05.Controllers
{
 public class HomeController : Controller
 {
 public IActionResult Index()
 {
 var model = new GuitarBuilderViewModel { Guitar = new Guitar { Name = "My New

Guitar" } };
 return View("Index", model);
 }

 [HttpPost]
 public async Task<IActionResult> Index(GuitarBuilderViewModel model)
 {
 var adapter = new GuitarBuilderToGuitarAdapter();
 model.Guitar = adapter.BuildGuitar(model);
 await TryUpdateModelAsync(model.Guitar);

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

332

 if (ModelState.IsValid)
 {
 return RedirectToAction("OrderRecieved");
 }
 return View("Index", model);
 }
 public IActionResult OrderRecieved()
 {
 return View("OrderRecieved");
 }
 public IActionResult Error()
 {
 return View();
 }
 }
}

Creating the Views and Testing the Application
The final step is to modify the Index view of the Home controller to host the guitar builder form. First, remove
all the boilerplate code that was added by Visual Studio when the project was created. Next, use the @model
directive to make the view strongly typed to Recipe05.ViewModels.GuitarBuilderViewModel.

Then create a FORM element with an asp-action attribute set to index. The asp-action attribute will
render the FORM attributes necessary to post the form back to the Index action. Finally, add all the required
form elements needed for the guitar builder form, as shown in Listing 9-31. Don’t forget to include the
_ValidationScriptsPartial view at the bottom of the page.

Listing 9-31. The Guitar Builder Form

@model Recipe05.ViewModels.GuitarBuilderViewModel
@{
 ViewData["Title"] = "Home Page";
}

<h1>Chapter 9 - Recipe 05</h1>
Use this form to build the guitar of your dreams and our robots will build it for you.

<form asp-action="index">
 <div asp-validation-summary="All" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Guitar.Name"></label>
 <input class="form-control" asp-for="Guitar.Name" placeholder="Name for your custom guitar">

 </div>
 <div class="form-group">
 <label asp-for="Guitar.Body"></label>
 <select class="form-control"
 asp-for="SelectedBody"
 asp-items="Model.BodyList">
 </select>

 </div>

Chapter 9 ■ Data ValiDation Using asp.net Core MVC

333

 <div class="form-group">
 <label asp-for="Guitar.BridgePickup"></label>
 <select class="form-control"
 asp-for="SelectedBridgePickup"
 asp-items="Model.BridgePickupList"></select>

 </div>
 <div class="form-group">
 <label asp-for="Guitar.MiddlePickup"></label>
 <select class="form-control"
 asp-for="SelectedMiddlePickup"
 asp-items="Model.MiddlePickupList"></select>
 </div>
 <div class="form-group">
 <label asp-for="Guitar.NeckPickup"></label>
 <select class="form-control"
 asp-for="SelectedNeckPickup"
 asp-items="Model.NeckPickupList"></select>
 </div>
 <div class="form-group">
 <label asp-for="Guitar.Strings"></label>
 <select class="form-control"
 asp-for="SelectedStrings"
 asp-items="Model.StringsList"></select>
 </div>

 <button type="submit" class="btn btn-default">Submit</button>
</form>

@section scripts{
 @Html.Partial("_ValidationScriptsPartial")
}

Run the application and try submitting the form using different combinations of the input. You will see
that for most of the validation errors, the validation summary will be updated, but no validation error will
appear on the form field. The exceptions to this rule are validation errors, such as when the guitar name field
is left blank.

335© John Ciliberti 2017
J. Ciliberti, ASP.NET Core Recipes, DOI 10.1007/978-1-4842-0427-6_10

CHAPTER 10

Securing Your ASP.NET Core
MVC Application

One of the most fundamental needs of every application is security. This chapter discusses some of the
built-in features of ASP.NET Core that can help you verify the identity of your application’s users and ensure
that their data is protected.

10-1. Creating an ASP.NET Core Web Site That Uses ASP.NET
Identity Core for Authentication and Authorization
Problem
You are building a consumer-facing ASP.NET Core application that will be deployed to the Web. You
have requirements for user registration that will capture the username and password as well as some
demographic information about each customer. In addition, you want users to be able to register using their
Facebook accounts. All this information needs to be stored in a custom database.

Solution
ASP.NET Core comes with a set of templates that allow developers to easily add authentication to a new
application. When creating a new project, developers can select the authentication mechanism that best
meets the application’s requirements. These options include the following:

•	 No authentication: No authentication code is added to the project. This is suitable for
web sites that do not require knowledge of a user’s identity.

•	 Individual user accounts: This option will add Entity Framework and ASP.NET
Identity to the web site. It also adds controllers and views for login, registration,
and account management. Having individual user accounts allows developers to
customize the database so that custom fields can easily be added to the user model.
In addition to built-in authentication, having individual user accounts also supports
third-party identity providers including Facebook, Google, Twitter, and Microsoft.

•	 Work or school accounts: This means configuring the application to use Active
Directory authentication with either a Windows Azure Active Directory account or
an on-premise Active Directory installation.

•	 Windows authentication: This means configuring the application to use the Windows
authentication IIS module.

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

336

For this recipe, using individual user accounts best meets the needs stated in the problem. After
creating an ASP.NET Core Web Application project and selecting the Individual User Accounts option, you
can then customize the ApplicationUser model class added to the project to support ASP.NET Identity and
then use the Entity Framework Code First tools to create the database.

To meet the requirements for allowing a user to log in using third-party providers, you can add
additional authentication providers in the Configure method of the Startup.cs class.

How It Works
In this section, you will learn at how to create an ASP.NET Core application that uses ASP.NET Identity for
authentication.

Creating the Visual Studio Project
Create a new ASP.NET Core Web Application project (.NET Core 1.1) using the Web Application template.
Click the Change Authentication button and then select Individual User Accounts. Make sure Docker
support is not selected. Name the project and solution Recipe01. The screen should match Figure 10-1.

Figure 10-1. Creating a new project using the option Individual User Accounts

Exploring the Project
Selecting Individual User Accounts added many items to the project, including NuGet packages, controllers,
views, data migrations, Entity Framework DBContext class, models, and app settings. You will briefly look at
each of these items so that you can better understand all the moving parts of ASP.NET Identity.

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

337

NuGet Packages

Table 10-1 briefly describes the ASP.Net Identity–specific NuGet packages that have been added to the
project to support ASP.NET Identity and why they are needed.

Table 10-1. Added ASP.NET Identity–Specific NuGet Packages

Package Name Purpose

Microsoft.AspNetCore.
Authentication.Cookies

This enables the application to use cookie-based authentication. In
cookie-based authentication, a user supplies login credentials using
a web-based form. The server then authenticates the credentials
and passes an authentication cookie back to the user. The
authentication cookie is used with each request and is validated by
the authentication provider to ensure it is valid before the execution
of the request can continue. If the cookie is missing or not valid, the
user will be redirected to the login page.

Microsoft.AspNetCore.Identity.
EntityFrameworkCore

This is the identity provider that uses Entity Framework. It contains
common functionality such as the IdentityUser base class that is
used to allow ASP.NET Identity to be used with Entity Framework
Core.

Controllers and Views

Selecting the Individual User Accounts option adds two controllers to the project, AccountController
and ManageController. The controller AccountController contains actions for registering and logging in
and out of the web site. It also contains actions that are used for working with third-party authentication
providers. The controller ManageController provides functionality that allows the user to add and remove
third-party authentication logins. It also contains actions required to support two-factor authentication.
With two-factor authentication, a user can add an extra level of security that will send an automatically
generated passcode to the user’s cell phone via a Short Message Service (SMS) message.

 ■ Note the sample application generated by the template does not provide an implementation for SMS
messaging but only a stubbed-out class. if you want to implement two-factor authentication, you will need to
implement SMS messaging functionality in the application.

In addition to the controllers, selecting the Individual User Account option also adds all views required
to implement basic login, registration, third-party authentication provider registration, and account
management features such as password recovery.

Data

The Data folder contains the ApplicationDbContext class and the Migrations folder.
The ApplicationDbContext class is derived from IdentityDbContext<ApplicationUser>. You can
find the source code for IdentityDbContext on GitHub at the following URL:

https://github.com/aspnet/Identity/blob/dev/src/Microsoft.AspNet.Identity.AspNetCoreCompat/
IdentityDbContext.cs

https://github.com/aspnet/Identity/blob/dev/src/Microsoft.AspNet.Identity.AspNetCoreCompat/IdentityDbContext.cs
https://github.com/aspnet/Identity/blob/dev/src/Microsoft.AspNet.Identity.AspNetCoreCompat/IdentityDbContext.cs

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

338

In addition to defining several constructors, the IdentityDbContext<TUser> class on GitHub defines
an OnModelCreating method that adds additional rules that are used by the Entity Framework Core tooling
to create the database. It also contains a ValidateEntity method that provides validation rules that help
prevent concurrent updates of user accounts and roles. Finally, the IdentityDbContext class defines
IDbSet<TRolesClaims>, which is the parent object the ASP.NET Identity class hierarchy. TRolesClaims is a
type derived by IdentityRoleClaim<TKey>, which by default is IdentityRoleClaim <string>. By including
IDbSet<TRolesClaims>, Entity Framework will automatically also include these child classes:

•	 IdentityUserClaim<TKey>

•	 IdentityUserRole<TKey>

•	 IdentityUserLogin<TKey>

•	 IdentityRole<TKey, TUserRole>

•	 IdentityUser<TKey, TUserLogin, TUserRole, TUserClaim>

You will learn more about what these classes are and how to use them in recipes 10-2 and 10-3.
The Migrations folder contains data migrations that can be used by the Entity Framework tools to

generate the database required to support the ASP.NET Identity schema.

Models

Selecting the Individual User Accounts option adds a Models folder to the project. Under the Models folder
you will find two subfolders: AccountViewModels and ManageViewModels. These folders contain classes that
support the corresponding views.

At the root of the Models folder is a class named ApplicationUser. The ApplicationUser class
represents a registered end user of your application. The ApplicationUser class is derived from
IdentityUser, which is imported from Microsoft.AspNetCore.Identity.EntityFrameworkCore. The body
of ApplicationUser is empty but can be modified so that you can add additional properties to describe
your users. You are also free to refactor ApplicationUser and rename it to something that better suits your
business domain. Be sure to use the refactoring features of Visual Studio if you rename ApplicationUser so
that all the references to it are updated.

You can find the code for the IdentityUser class on GitHub at the following URL:

https://github.com/aspnet/Identity/blob/dev/src/Microsoft.Extensions.Identity.Stores/
IdentityUser.cs

 ■ Note the link to the dev branch of the IdentityUser class is shown because at the time of this writing
aSp.net identity is undergoing a major refactoring. in a future release, IdentityUser will be under the
Microsoft.Extentions.Identity.Stores package.

Listing 10-1 shows the initial version of ApplicationUser that is added to the project.

Listing 10-1. ApplicationUser.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

https://github.com/aspnet/Identity/blob/dev/src/Microsoft.Extensions.Identity.Stores/IdentityUser.cs
https://github.com/aspnet/Identity/blob/dev/src/Microsoft.Extensions.Identity.Stores/IdentityUser.cs

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

339

namespace Recipe01.Models
{
 // Add profile data for application users by adding properties to the ApplicationUser class
 public class ApplicationUser : IdentityUser
 {
 }
}

IdentityUser Support for Different Data Types
The ApplicationUser class that comes with the ASP.NET Core Web Application template uses a string
for the primary key. This string is initialized to a new GUID in the constructor of the parent base class
IdentityUser<string>. The IdentityUser class that is used as the base class for ApplicationUser is
derived from the class IdentityUser<string>. The class IdentityUser<string> is derived from the generic
class IdentityUser<TKey>. The TKey generic type parameter represents the CLR type of the primary key.
The goal of this design is to allow application developers the flexibility to choose the type used in the
primary key.

If you want to use a different type for the primary key in your application, you can modify the
ApplicationUser class to derive from IdentityUser<TKey> rather than IdentityUser. For example, if you
want to use Int64 as the type for your primary key rather than a string, you modify the ApplicationUser
class so it is derived from IdentityUser<Int64>.

Properties of IdentityUser<TKey>
Your ApplicationUser class inherits many properties from IdentityUser<string>. The properties of
the ApplicationUser class and those inherited from IdentityUser will be added to a database table
named ApplicationUser when you use Entity Framework to generate the database. All the properties of
IdentityUser are virtual, which allows you to override them and use your own implementation of the
getters and setters. In the following list, I identify each of the properties and describe their use:

•	 Id: The Id property represents the primary key of the database table.
The IdentityUser class uses a string as the primary key.

•	 UserName: This is the unique name for each user.

•	 NormalizedUserName: This stores the UserName value as all uppercase to prevent
users from registering use names that differ only by the letter casing.

•	 Email: This is the unique e-mail address for the user.

•	 NormalizedEmail: LikeNormalizedUserName, NormalizedEmail prevents users from
registering the same e-mail with different letter casing.

•	 EmailConfirmed: This returns true if the e-mail address has been confirmed and
otherwise returns false. This field is useful if your application contains logic to
prevent users from registering with fake e-mail addresses or e-mail addresses that
do not belong to them. This is usually done by requiring users to click a link from an
e-mail sent to them as part of an e-mail verification workflow.

•	 PasswordHash: This is the hashed and salted password. Passwords should never
be stored in the database as clear text. If the database were ever compromised, the
clear-text passwords could be stolen and used for nefarious purposes. It is a standard
practice to use a one-way encryption function called a hashing algorithm to generate

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

340

a fixed-length fingerprint or hash of the password. This technique is usually enhanced
by adding some random text called a salt to the password before the hash algorithm
is applied. Using a salt is recommended to protect against common hash-cracking
techniques such as lookup tables, reverse lookup tables, and rainbow tables.

•	 SecurityStamp: This is a random value that must change when a user’s credentials
change or login is removed.

•	 ConcurrencyStamp: This is a random value that must change whenever a user is
saved to the database. It is used to prevent multiple updates to the same user at the
same time to avoid scenarios where two or more admins are updating the same user
and end up overwriting each other’s changes.

•	 PhoneNumber: This is the user’s phone number. Phone numbers can be used with
two-factor authentication where SMS messages are sent to the phone number with a
random code that can be used in addition to the password.

•	 PhoneNumberConfirmed : This gets or sets a flag indicating whether a user has
confirmed their telephone number.

•	 TwoFactorEnabled: This is true if two-factor authentication is enabled and otherwise
is false. Two-factor authentication uses a randomly generated code usually sent to
the user via SMS message in addition to the password for the user to log in.

•	 LockoutEnd: This is a DateTimeOffest value that is used when an account has been
locked out because of too many failed login attempts. If the value of this field occurs
in the past, then the account lockout has expired.

•	 LockoutEnabled: If this is true and the LockoutEnd occurs in the future, then the user
is locked out.

•	 AccessFailedCount: This displays the number of failed login attempts since the last
successful login.

Services

The Services folder contains the interfaces IEmailSender and ISmsSender as well as the stubbed-out
implementation of the interfaces in the class MessageServices. The class MessageServices is only a stub
and does not contain any functionality. For information on how to provide a working implementation for
IEmailSender, please refer to recipe 6-7.

appsettings.json

appsettings.json is the main configuration file for the application. As shown in Listing 10-2, in the
appsetting.json file are settings for the database connection string and logging. The connection string uses
LocalDB. LocalDB is a lightweight version of Microsoft SQL Server that is useful for application prototyping
and light development. LocalDB runs under your user context, which means that the process will have the
same system-level access as your account. Since LocalDB and IIS Express are both running under your
account, in most cases LocalDB can be used without any configuration, which makes it ideal for prototyping.
IIS Express and LocalDB are installed with Visual Studio.

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

341

Listing 10-2. appsettings.json

{
 "ConnectionStrings": {
 " DefaultConnection": "Server=(localdb)\\mssqllocaldb;Database=aspnet-Recipe01-3eecf46d-

8318-4423-ae06-1b3760c22afb;Trusted_Connection=True;MultipleActiveResultSets=true"
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 }
}

If you do not want to use LocalDB, it is easy to change the connection string to point to another SQL
Server instance. The connection string has the following parts:

•	 Server: This is the server name or IP address of the server and instance name. If you
are pointing to the default instance of SQL Server, then you can omit the instance
name. The server name can use a shorthand notation when pointing to certain types
of databases.

•	 (localdb): This communicates to a LocalDB instance running on the local
machine.

•	 .: This single period is used to point to SQL Server on the local machine. If you
are pointing at the default instance, only the period is required. For a named
instance, you can use .\instanceName.

•	 Database: This is the name of the database. By default, Visual Studio will use the
name or the project with a GUID appended to the end. This is to guarantee that
the database name is unique and that Visual Studio will not overwrite an existing
database by mistake. If you want, you can change the name of the database.

•	 Trusted_Connection: When set to true, yes, or sspi, the application will attempt
to connect to SQL Server using the Windows account credentials of the currently
running process. Since the IIS Express account will be running under your account,
this setting will use your Windows account to access the database.

•	 MultipleActiveResultSets: This allows the execution of many SQL batches on a
single connection.

Creating the Database Schema
If you run the application and attempt to use the ASP.NET Identity framework features such as registering a
new user account, you will see an error similar to the one shown in Figure 10-2.

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

342

This error is a change in behavior from earlier versions of ASP.NET such as ASP.NET MVC 3 where the
database migration was run automatically on the first use. Microsoft decided to remove this feature since
many developers found this functionality confusing since this “magic” did not occur when the application
was deployed to a production system. Fortunately, the error provides you with several options for creating
the database. First there is an Apply Migrations button. If you click the button, the text in the button will
briefly change to Applying Migrations, and then after about five seconds, the button will say Migrations
Applied, and a message next to the button will prompt you to refresh the page.

The other two options listed in the error message show options for creating the database using the
Package Manager Console in Visual Studio and from the command line using dotnet ef.

How the Apply Migrations Button Works

The magic that is provided by the Apply Migrations button may seem a bit strange. If you right-click the
Apply Migrations button in Microsoft Edge and select Inspect Element, you will see that the button has an
onClick event that calls a JavaScript function called ApplyMigrations. If you expand the script block, you
will see that ApplyMigrations makes an Ajax call to a service in your web application located on the route /
ApplyDataBaseMigrations. Listing 10-3 shows the relevant sections of the source of the database error page.

Listing 10-3. Script Block from the Source of the Database Error Page

<script>
 function ApplyMigrations() {
 applyMigrations.disabled = true;
 applyMigrationsError.innerHTML = "";
 applyMigrations.innerHTML = "Applying Migrations...";

 var req = new XMLHttpRequest();

 req.onload = function (e) {
 if (req.status === 204) {
 applyMigrations.innerHTML = "Migrations Applied";
 applyMigrationsSuccess.innerHTML = "Try refreshing the page";

Figure 10-2. Database error page

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

343

 } else {
 ErrorApplyingMigrations();
 }
 };

 req.onerror = function (e) {
 ErrorApplyingMigrations();
 };

 var formBody = "context=Recipe01.Data.ApplicationDbContext,%20Recipe01,
%20Version%3D1.0.0.0,%20Culture%3Dneutral,%20PublicKeyToken%3Dnull";

 req.open("POST", "\/ApplyDatabaseMigrations", true);
 req.setRequestHeader("Content-type", "application/x-www-form-urlencoded");
 req.setRequestHeader("Content-length", formBody.length);
 req.setRequestHeader("Connection", "close");
 req.send(formBody);
 }

 function ErrorApplyingMigrations() {
 applyMigrations.innerHTML = "Apply Migrations";
 applyMigrationsError.innerHTML = "An error occurred applying migrations, try

applying them from the command line";
 applyMigrations.disabled = false;
 }
</script>

What may seem odd about the code shown in Listing 10-3 is that your application does not have an
action named ApplyDatabaseMigrations in any of the controllers created by the template.

This functionality is provided by the DatabaseErrorPageMiddleware middleware that was added to your
application in the Startup.cs class using the UseDatabaseErrorPage method, as shown in Listing 10-4. The
DatabaseErrorPageMiddleware middleware is declared in a class named DatabaseErrorPageExtensions.
It works by capturing database-related exceptions that may be resolved using Entity Framework migrations.
Notice that this functionality is applied only when in development. In a production deployment, users would
only see the error page at /Home/Error.

Listing 10-4. Configure Method in Startup.cs

public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

344

 app.UseStaticFiles();

 app.UseIdentity();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
}

Exploring the Application
After the database migrations have been applied, you should now be able to perform activities including the
following:

•	 Registering

•	 Logging in

•	 Changing the password

•	 Managing an external login (The page will be empty, however, since no logins
have been configured. To learn how to add external logins to your application,
see recipe 10-3).

•	 Logging out

Figure 10-3 shows the “Manage your account” page. In addition to the links provided for changing
the password and managing external logins, the “Manage your account” page contains a placeholder for
two-factor authentication support. Two-factor authentication requires additional configuration as well as
integration with a third-party SMS provider, as described in recipe 10-4.

Figure 10-3. “Manage your account” page

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

345

Exploring the Database
If you want to explore the database created using the Entity Framework migration, you have a few options
such as opening the database in Microsoft SQL Server Management Studio or other database or third-party
software such as Toad for SQL Server. In Visual Studio, you can use the SQL Server Object Explorer window
to view the database. To do this, from the Visual Studio View menu, select SQL Server Object Explorer.
The SQL Server Object Explorer will be displayed docked on the left side of Visual Studio. If your LocalDB
instance is not shown, click the Add SQL Server button on the toolbar at the top of the SQL Server Object
Explorer window. In the Connect window, expand the Local node and then select MSSQLLocalDB, as shown
in Figure 10-4. Click the Connect button.

Figure 10-4. Connecting to a SQL Server database in Visual Studio

In Visual Studio Object Explorer, you can now expand (localdb)\MSSQLLocalDB, Databases,
aspnet-Recipe01-(GUID), and then Tables. You should see eight tables. The first table, _EFMigrationsHistory,
is created by Entity Framework to track changes applied by the migrations. The rest of the tables map to the
classes under IdentityDbContext<TUser>.

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

346

10-2. Adding Custom Fields to the ApplicationUser Class
Problem
You are building an application that will send alerts to your users when their favorite bands are playing
in their area. You have created a new ASP.NET Core project as described in recipe 10-1, but you need to
add some custom properties to the ApplicationUser object to track some additional demographics and
preferences for receiving alerts. You want to understand how to change both the ApplicationUser class and
the underlying database.

Solution
ASP.NET Identity creates its database using Entity Framework Code First database migrations. Because of
this, customizing the database can be done by using the following steps:

 1. Add properties to the ApplicationUser class as required.

 2. Run the command to add a migration by using either NuGet’s Package Manager
Console or dotnet command-line tools.

 3. Run the Update Database command or equivalent command to apply the
migration to the database.

 ■ Note Be careful about adding non-nullable fields to ApplicationUser that do not have default values.
the non-nullable fields can lead to unexpected behavior especially with user accounts that may have been
created before the change was implemented.

How It Works
To learn how to add both simple and complex custom properties to ApplicationUser, you will first create a
new class called ConcertAlertPreference. The user will have a ConcertAlertPreference for each of his or
her favorite bands. You will then add a property to the ApplicationUser class to hold the alerts. You will also
add some simple properties to the ApplicationUser class for tracking additional demographic information
required by the alert service. For the sake of simplicity, you will be adding these classes into the Models
folder inside the web application. In a real application, you would want to create a separate class library
project to act as a data access layer as you did in recipe 6-6.

 1. In Solution Explorer, right-click the Models folder and select Add ➤ Class.

 2. Name the class ApplicationUserPreferences and then click Add.

 3. Modify the class to match Listing 10-5.

Listing 10-5. ApplicationUserPreference Class

namespace Recipe01.Models
{
 public class ConcertAlertPreference
 {
 public int ConcertAlertPreferenceId { get; set; }
 public string BandName { get; set; }

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

347

 public bool NotificationIsActive { get; set; }
 public bool NotifyViaEmail { get; set; }
 public bool NotifyViaSMS { get; set; }
 public bool ShowsOnWeekdays { get; set; }
 public bool ShowsOnWeekEnds {get; set;}
 }
}

 4. In the ApplicationUser class, create properties for City, State, ZipCode,
MilesFromCityCenter, and ConcertAlertPreferances, as shown in Listing 10-6,
and then build the application.

Listing 10-6. ApplicationUser.cs with Additional Properties

using System.Collections.Generic;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

namespace Recipe01.Models
{
 public class ApplicationUser : IdentityUser
 {
 public string City { get; set; }
 public string State { get; set; }
 public string ZipCode { get; set; }
 public int MilesFromCityCenter { get; set; }
 public IList<ConcertAlertPreference> ConcertAlertPreferences { get; set;}
 }
}

Now that the ApplicationUser class has been modified, you need to create a migration. The
migration will compare the current state of the application by examining the snapshot of the previous
state and then generate new migration classes. To create the migration, open the Package Manager
Console using View ➤ Other Windows ➤ Package Manager Console. In the Package Manager Console,
enter the following command:

Add-Migration "NewPropsForApplicationUser"

After running the command, you should see several new files added to the Data/Migrations folder
alongside the existing migration classes that were created with the template. To apply the migrations to the
database, run the following command:

Update-Database

If you explore the database as described in recipe 10-1, you will see that a new table named
ConcertAlertPreference has been added to the database. Expand the Columns folder of the new table and
then click a column name to select it. Information about the column will be displayed in the Properties
window. You should also notice that the column ConcertAlertPreferenceId of the ConcertAlertPreference
table is set as the primary key and is an Identity column with an Identity Seed value of 1. With this setting,
the database will automatically generate a new numeric key and assign it to the ConcertAlertPreferenceId
column when new records are added. This setting was applied automatically by Entity Framework since the
ConcertAlertPreferenceId value follows the Code First convention of [ClassName]Id.

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

348

Another thing you should notice about the ConcertAlertPreference table is that a foreign key column
called ApplicationUserId has been added to the ApplicationUser table. Entity Framework did this
automatically because you added the ConcertAlertPreferences property to ApplicationUser. Because the
list was added to ApplicationUser, it becomes the primary part of the relationship. Entity Framework then
automatically adds a foreign key to the new table that links back to the primary key in ApplicationUser.

If you expand the Columns folder in SQL Server Object Explorer for the AspNetUsers table, you should
see new columns for each of the properties you added to the ApplicationUser class.

Figure 10-5 shows a database diagram of the database generated for your project by Entity Framework.

Figure 10-5. Database diagram for application database with custom table and columns

10-3. Allowing Users to Log In to Your ASP.NET Core
Application Using Facebook
Problem
You have created a new ASP.NET Core application with individual user account authentication as described
in recipe 10-1. You have a business requirement for allowing users to log in to the application using their
Facebook accounts and want to know how to implement this.

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

349

Solution
ASP.NET Identity has built-in support for external authentication providers that includes Facebook, Twitter,
Google, and Microsoft. To enable Facebook authentication, there are two major steps. First, you must create
a new Facebook application using the Facebook developer tools on the Facebook web site. Second, you need
to configure your ASP.NET Core MVC application to use the Facebook authentication middleware.

It is also highly recommended that you configure your application to use user secrets so that your
Facebook application keys are not stored in your source control system.

How It Works
As described in the solution, the first step will be to create a Facebook application. Once you have set up the
Facebook application, you will be able to use the keys to configure your ASP.NET Core MVC application to
use the Facebook authentication middleware.

Creating a Facebook Application
For this first step, you will need to create a developer account on Facebook. If you have an existing Facebook
account, you can extend that account to access the developer tools. You can find more information on how
to become a Facebook developer at the following web site:

https://developers.facebook.com/docs/apps/register

Once your account has been set up, you can create a new application by first navigating to https://
developers.facebook.com/. Once you are on the web site, you will see a drop-down menu in the upper-
right corner of the web site, as shown in Figure 10-6.

Figure 10-6. Creating a Facebook application, step 1

After clicking the Add a New App link, a modal window will ask you for the display name and contact
e-mail, as shown in Figure 10-7. Click the Create App ID button to create the application ID.

https://developers.facebook.com/docs/apps/register
https://developers.facebook.com/
https://developers.facebook.com/

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

350

After clicking the Create App ID button, you may be prompted to respond to a CAPTCHA image.
A CAPTCHA image is an image of slightly obscured letters that most humans can read but fools most OCR
applications. CAPTCHAs are designed to prevent automated form submissions.

The next screen in the Facebook application setup is the Product Setup page. Find the Facebook Login
product. It should be the first item in the list. Click the Get Started button.

On the Choose a Platform page, select Web. You will then be prompted for the URL of the web site.
If you know the URL, you can enter it now; otherwise, you can enter the URL of the developer server. On my
machine, the URL is http://localhost:50183/.

The next part of the setup wizard describes the steps for connecting to Facebook using JavaScript. You
can skip this section since you will be using the built-in features of ASP.NET Identity and not a JavaScript-
based login.

Next you need to access the app ID and app secret for your application. You can access this information
from the Basic settings page of your app. The link for the Basic settings can be found in the left navigation
bar, as shown in Figure 10-8. For the Facebook application to work with the IIS Express developer server, you
need to add localhost to the App Domains list. You will need to replace the URL with the actual domain of
your web site before you deploy to production.

Figure 10-7. Creating a Facebook application, step 2

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

351

Make note of the app ID and app secret, but be careful not to expose your app secret since it is the
password for your application.

Adding the App ID and App Secret to the User Secrets Store
Since you do not want to risk accidentally uploading your app secret to your source control repository, it
is highly recommended that you store the data in the app secrets store. To so this, right-click the project in
Solution Explorer and select Manage User Secrets. An empty JSON file will open in the editor. You can then
use standard JSON syntax to add the app ID and app secret that you received from Facebook to the app
secrets store, as shown in Listing 10-7.

Listing 10-7. Adding App ID and App Secret to the User Secrets Store

{
 "FacebookAppID": "1250256381757540",
 "FacebookAppSecret": "05f7a1c86d1b87915ce64af80be6eeb8"
}

Figure 10-8. Getting the Facebook app ID and app secret

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

352

Adding the Microsoft.AspNetCore.Authentication.Facebook NuGet Package
The functionality for supporting Facebook is not included in the project template and must be added using
NuGet. To do this, open the Package Manager Console and enter the following command:

Install-Package Microsoft.AspNetCore.Authentication.Facebook

Adding the Facebook Authentication Middleware to Startup.cs
The next step is to add the Facebook authentication middleware to Startup.cs. In the Configure method
of the Startup.cs file, call the UseFacebookAuthentication method of IApplicationBuilder, as shown in
Listing 10-8. UseFacebookAuthentication takes a FacebookOptions argument that can accept the app ID
and app secret.

Listing 10-8. Adding Facebook Middleware to Startup

public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory
loggerFactory)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseStaticFiles();

 app.UseIdentity();

 app.UseFacebookAuthentication(new FacebookOptions()
 {
 AppId = Configuration["FacebookAppID"],
 AppSecret = Configuration["FacebookAppSecret"]
 });

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
}

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

353

After making this change, you should be able to run the application. After logging in to the application,
you should be able to navigate to the page for managing external logins at the path /Manage/ManageLogins.

You should now see a Facebook button on the external logins page. If you click the Facebook button,
a Facebook page will appear asking you to confirm that you want to allow the application to access your
Facebook information. After you click OK, you will be forwarded back to your application, and the “Manage
your external logins” page will display a message stating that the external login was added successfully.

Another thing that has changed is that you now have a Facebook button on the “Log in” page, as shown
in Figure 10-9. Clicking this button will allow you to log in to the web site using your Facebook credentials.

Figure 10-9. The Facebook button now appears on the login screen

10-4. Enabling Two-Factor Authorization in Your ASP.NET
Core Application
Problem
The security requirements for your application dictate that you need to include two-factor authentication in
your application. You have set up an ASP.NET Core application with individual user accounts, as specified in
recipe 10-1. You want to use the built-in features of ASP.NET Identity to enable two-factor authentication.

Solution
The two-factor authentication features of ASP.NET Identity use SMS messaging to send a temporary code to
your phone. The SMS code is used in conjunction with your password to provide an extra layer of security.
With two-factor authentication, even if your password is compromised, an attacker would not be able to
access your account unless they also have gained access to your phone.

Setting up two-factor authentication with SMS requires that you create an account with an SMS gateway
service. For this recipe, you will use Twilio. Twilio offers a very flexible API for using SMS, Multimedia
Messaging Service (MMS), and voice messages. Twilio is not free, but it offers a trial account that will allow
you to get an SMS number and send sample messages.

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

354

Twilio has a NuGet package that makes it easy to interact with its services from your ASP.NET Core
MVC application. Once your Twilio account has been set up, you can implement the ISmsSender interface
in the MessageServices class to use the Twilio NuGet package. The ISmsSender interface is one of the
files added to your solution by the ASP.NET Web Application template when the Individual User Accounts
authentication option is selected.

Once you have set up the Twilio accounts and installed the Twilio NuGet package, you can then remove
the code comments from Views/Manage/Index.cshtml to enable the management of phone numbers to be
used with two-factor authentication.

How It Works
In this recipe, you will first set up a Twilio account. Next, you will add the Twilio NuGet package to the
project and implement the ISmsSender interface. You will then uncomment the HTML markup in the
management view and verify that the solution works as expected.

Setting Up a Twilio Account
To set up a new account on Twilio, open a web browser and go to https://www.twilio.com. On the home
page, click the Get a Free API Key button. You will then be prompted to set up a new account. Ensure you
have your cell phone handy when performing this step since Twilio uses two-factor authentication during
the registration process.

After you complete the registration process, navigate to the Programmable SMS Dashboard and then
click the Get Started button from the Twilio Programmable SMS Dashboard, as shown in Figure 10-10.

https://www.twilio.com/

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

355

On the Build with Programmable SMS page, click the “Get a number” button. A modal dialog will pop
up displaying a phone number. You have the option of either using the number displayed or searching for
a different number. When you are happy with the phone number, click the Choose this Number button.
A Congratulations window will appear with your new phone number displayed. Make note of the number.
You will need to use it later when setting up the configuration of the application. Click Done to close the
Congratulations window.

After you close the Congratulations window, a form will be displayed that allows you to send test
messages. On the right side of this form a sample request is shown. This request, shown in Figure 10-11,
contains your user ID and auth token as a multipart string delimited with a colon in the format
USERID:AUTHTOKEN. You will need to check the Show your Auth Token check box to see the auth token.
Make a note of these values since you will need them to configure your application.

Figure 10-10. The Twilio Programmable SMS Dashboard

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

356

Adding the Twilio Configuration to the User Secrets Store
Your Twilio phone number, user ID, and auth token are unique to you and should not be shared on your
source control system. To ensure these values are not shared on your source control system but can still
be used for configuring your application in your development environment, add them to your user secrets
store. To do this, right-click the project in Solution Explorer and select Manage User Secrets. The user secrets
JSON file will appear in the editor window. Modify the user secrets JSON file to match Listing 10-9, but
substitute the values with the ones you received from the Twilio web site.

Listing 10-9. Adding Twilio Configuration Data to User Secrets Store

{
 "FacebookAppID": "1250256381757541",
 "FacebookAppSecret": "05f7u1c86d1b87915se64af80be6eeb9",
 "TwilioPhoneNumber": "+12017442724",
 "TwilioUser": "AC54bb2ce91ae587593c2c0d89c52f36f6",
 "TwilioAuthToken": "ce01c054678b0bdbdb39732d8d00000"
}

Installing the Twilio NuGet Package
To simplify working with Twilio, you will install the Twilio NuGet package. The Twilio NuGet package
provides a light wrapper around the Twilio API and can be configured to use the ASP.NET Core
configuration system.

Figure 10-11. Twilio sample request page

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

357

To install the Twilio NuGet package, open the Package Manager Console and enter the following
command:

Install-Package Twilio

Creating a Configuration Class
As demonstrated in recipe 6-7, you will use the Options pattern for passing configuration data to the
ISmsSender implementation. With the Options pattern, you will create a class for reading the configuration
data and pass an instance of the class to the dependency injection system during the configuration method
of the Startup class. To do this, create a new class under the Services folder named TwilioOptions. Add
properties to the class that match the names used in the user secrets file, as shown in Listing 10-10.

Listing 10-10. TwilioOptions Class

namespace Recipe01.Services
{
 public class TwilioOptions
 {
 public string TwilioPhoneNumber { get; set; }
 public string TwilioUser { get; set; }
 public string TwilioAuthToken { get; set; }
 }
}

Implementing the ISmsSender API Using Twilio
Implementing the ISmsSender interface using Twilio is surprisingly simple. The ASP.NET Core Web
Application template created a stub implementation of ISmsSender in the class MessageServices under the
Services folder. You will complete this implementation.

First, you will need to add a constructor to the MessageServices class so the dependency injection
system can supply the configuration data. You will also need to create a backing field for the configuration
data so that it can be accessed from the SendSmsAsync method. Since you are using the Options pattern,
you need to add a using statement for Microsoft.Extensions.Options so that you can use the IOptions
interface. The class constructor will accept an argument of the type IOptions<TwilioOptions>. The Value
property of the IOptions instance will be written to the backing field named Options.

To use the Twilio API, you need to add three namespaces to the class file: Twilio, Twilio.Rest.Api.
V2010.Account, and Twilio.Types.

In the SendSmsAsync method, you first will need to initialize the Twilio client by calling the
TwilioClient.Init method. You can then call the MessageResource.Create method to send the SMS
message. Listing 10-11 shows the completed AuthMessageSender class.

Listing 10-11. The Completed AuthMessageSender Class

using Microsoft.Extensions.Options;
using System.Threading.Tasks;
using Twilio;
using Twilio.Rest.Api.V2010.Account;
using Twilio.Types;

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

358

namespace Recipe01.Services
{
 public class AuthMessageSender : IEmailSender, ISmsSender
 {
 public TwilioOptions Options { get; } // set by the dependency injection system

during startup
 public AuthMessageSender(IOptions<TwilioOptions> options)
 {
 Options = options.Value;
 }

 public Task SendEmailAsync(string email, string subject, string message)
 {
 // To see how to implement this method view recipe 6-7
 return Task.FromResult(0);
 }

 public Task SendSmsAsync(string number, string message)
 {
 TwilioClient.Init(Options.TwilioUser, Options.TwilioAuthToken);

 MessageResource.Create(
 to: new PhoneNumber(number),
 from: new PhoneNumber(Options.TwilioPhoneNumber),
 body: message);
 return Task.FromResult(0);
 }
 }
}

Wiring Up the Configuration in Startup
For the configuration data to be passed to the AuthMessageSender class, you will need to wire it up in the
Startup.cs class’s ConfigureServices method. To do this, in Startup, add a call to services.Configure, as
shown in Listing 10-12.

Listing 10-12. Wiring Up the Twilio Configuration Data in Startup

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

359

 // Add application services.
 services.AddTransient<IEmailSender, AuthMessageSender>();
 services.AddTransient<ISmsSender, AuthMessageSender>();
 services.Configure<TwilioOptions>(Configuration);
}

Uncommenting the Code in Views/Manage/Index.cshtml
When the project was created, the ASP.NET Core Web Application template added a set of views for
managing the credentials and phone numbers used for two-factor authentication. Some of this code is
commented out by default since it would cause runtime errors if you attempted to use this functionality
without the application being configured. Now that you have added the code required for using two-factor
authentication, you can now uncomment the required blocks of code and remove the other unneeded
boilerplate. When completed, Views\Manage\Index.cshtml should match Listing 10-13.

Listing 10-13. Removing the Commented-Out Code from Index.cshtml

<dt>Phone Number:</dt>
 <dd>
 @(Model.PhoneNumber ?? "None")
 @if (Model.PhoneNumber != null)
 {

 <a asp-controller="Manage" asp-action="AddPhoneNumber"

class="btn-bracketed">Change
 <form asp-controller="Manage" asp-action="RemovePhoneNumber" method="post">
 [<button type="submit" class="btn-link">Remove</button>]
 </form>
 }
 else
 {
 <a asp-controller="Manage" asp-action="AddPhoneNumber"

class="btn-bracketed">Add
 }
 </dd>

 <dt>Two-Factor Authentication:</dt>
 <dd>
 @if (Model.TwoFactor)
 {
 <form asp-controller="Manage" asp-action="DisableTwoFactorAuthenticati

on" method="post" class="form-horizontal">
 Enabled <button type="submit" class="btn-link btn-bracketed">Disable</button>
 </form>
 }
 else
 {
 <form asp-controller="Manage" asp-action="EnableTwoFactorAuthentication"

method="post" class="form-horizontal">
 <button type="submit" class="btn-link btn-bracketed">Enable</button>

Disabled

Chapter 10 ■ SeCuring Your aSp.net Core MVC appliCation

360

 </form>
 }
 </dd>
 </dl>

You should now be able to run the application. On the “Manage your account” page, you should now
see the option to add a phone number and to enable two-factor authentication, as shown in Figure 10-12.

Figure 10-13. Two-factor authentication in action

Figure 10-12. “Manage your account” page after enabling two-factor authentication

To test the functionality, click the Add link for the phone number. On the Add Phone Number page, add
the phone number you used when you set up your Twilio account. Since the Twilio account is in trial mode,
it will only allow you to send SMS messages to verified phone numbers. Click the Send Verification Code
button. After a short delay, you should see a SMS message on your phone with the security code. Once you
enter the code and click Confirm, you will see the phone number appear on the “Manage your account” page.

Next, try enabling two-factor authentication by clicking the Enable link on the “Manage your account”
page. After two-factor authentication has been enabled, log out. When you attempt to log in again, you will
be prompted to send a verification code. You can enter the verification code on the Verify page, as shown in
Figure 10-13. If you select the “Remember this browser” check box, you will not be prompted again when
using the same web browser on the same computer.

361© John Ciliberti 2017
J. Ciliberti, ASP.NET Core Recipes, DOI 10.1007/978-1-4842-0427-6_11

CHAPTER 11

Creating Modern User Experiences
Using React.js and ASP.NET Core

A revolution in web development has taken place over the past decade. While server-side rendering
platforms such as ASP.NET Core, Ruby on Rails, and Spring MVC are still relevant and powerful, faster
JavaScript engines, the emergence of ECMAScript 2015, and the evolution of front-end frameworks such
as ReactJS and Angular 4 are allowing developers to create more immersive front-end experiences using
JavaScript. In this new model, the role of the server has been increasingly limited to delivering RESTful
services with most of the user interface being rendered on the client using powerful front-end frameworks.
In this chapter, you will learn how ASP.NET Core embraces this new workflow. You will also learn how the
new ASP.NET Core project format can be used in conjunction with complex JavaScript libraries to build
next-generation user interfaces that interact with ASP.NET Core RESTful web APIs.

11-1. Understanding node.js and Bower Integration in the
ASP.NET Core Project System
Problem
You have just created a new ASP.NET Core 1.1 web application using the Web Application template. You
want to get a better understanding of the new project structure and how it works out of the box and how you
can customize it to better meet your needs.

Solution
Many of today’s JavaScript-based front-end frameworks have complex build workflows. The build workflows
involve automated code analysis, unit testing, transcompiling, minification, optimization, and more. The
build workflow is typically executed using command-line tools written in JavaScript running on the Node.js
runtime.

ASP.NET Core web application projects have a new project system that includes a Node.js-based
build workflow. The ASP.NET Core web application’s new project structure was designed for “full-stack
developers” who create both JavaScript-heavy front ends and the server-side components. The new project
system creates a clean separation between client-side code and server-side code. This design allows
“full-stack developers” to do all their development in Visual Studio under a single unified project system.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

362

In the ASP.NET Core web application project system, all client-side code is stored under the folder
wwwroot. The ASP.NET Core web application build workflow downloads files from the Internet using the
Bower package manager and optimizes files for improved performance using the BuildBundlerMinifier
NuGet package. Visual Studio allows you to control the build workflow by modifying the contents of the
following files:

•	 bower.json: This is the package manifest file for the Bower package manager.
It allows you to specify which JavaScript libraries you want to include in your project.

•	 .bowerrc: This is the project-scoped configuration file for the Bower package
manager. It allows you to change where Bower packages are copied after being
downloaded from the Internet. It also allows you to specify a Bower server to use if
your company has set up its own server.

•	 bundleconfig.json: This is the configuration file for Microsoft’s bundling and
minification tool. Bundling/minification makes your application faster by combining
several JavaScript files into a single file and then compressing the file by removing
whitespace and shortening variable names.

You can also extend or replace the JavaScript workflow added to your project by the ASP.NET Core
Web Application project template by adding custom Node.js scripts or by using a JavaScript task runner
such as Gulp.

How It Works
In this section, you will look at each of the components of the built-in JavaScript workflow used by the
ASP.NET Core Web Application template. You will then look at how you can extend and replace the
components to create a custom build workflow.

Node.js
Node.js is a JavaScript runtime environment based on Chrome’s V8 JavaScript engine. You can think of
Node.js as being the Common Language Runtime (CLR) for JavaScript. With Node.js you do not need a
web browser to execute JavaScript. You instead can invoke scripts via the powerful Node.js command-line
interface (CLI).

Visual Studio ships with a bare-bones installation of Node.js that offers enough functionality to perform
the functions required for the build process. If you plan on performing significantly more with Node.js than
is offered in the out-of-box experience with Visual Studio, it is highly recommended that you install the full
Node.js. You can download Node.js from https://nodejs.org. Once installed, Node.js and Node Package
Manager (NPM) will be added to your system’s PATH environment variable and will be available in all console
windows. The version of Node.js that comes with Visual Studio is not affected by the global installation.
This will prevent new versions of Node.js from breaking the built-in functionality of Visual Studio while also
allowing you to benefit from the full features of Node.js outside of Visual Studio when needed.

NPM
The Node Package Manager, much like NuGet, is a package manager for Node.js packages. It can connect to
the public NPM repository, which contains more than 465,000 packages including Bower and Gulp. NPM is
included with Node.js but is often updated out of band with Node.js. NPM is also used to execute scripts and
has been increasingly used as a build engine like MSBuild.

https://nodejs.org/

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

363

Bower
Bower is a package manager for the Web much like NuGet is a package manager for .NET components and
libraries and NPM is a package manager for Node.js packages. Bower is currently the preferred solution by
Microsoft for managing web packages. You should not use NuGet to manage web packages for ASP.NET Core
projects.

Bower consists of a public repository located at https://bower.io/ but also allows you to have private
repositories. Bower components are generally made up of HTML, CSS, JavaScript, fonts, and images. Bower
differentiates itself from NPM in that it is designed to manage packages that are deployed as part of a web
application that runs in the browser. NPM, on the other hand, is designed to manage packages designed to
run on top of Node.js.

Visual Studio comes with a Bower package manager that allows you to browse, install, and manage the
Bower packages from within Visual Studio. You can access the Bower package manager by right-clicking the
project in Solution Explorer and selecting Manage Bower Packages from the pop-up menu. You can also edit
the bower.json file directly in the code editor. Visual Studio offers statement completion for bower.json and
will show you a list of available packages as you type. When you save the bower.json file, Visual Studio will
automatically run a Bower package restore, which will download and install the packages you have selected.
The default location for Bower packages in the Visual Studio project system is wwwroot/lib. While this
configuration makes it easy to get started, it is not ideal because Bower will copy the entire source code of
each of the Bower packages in addition to the files you need for your application. This path can be changed
by modifying the .bowerrc file. The .bowerrc file can be found in Solution Explorer nested under the
bower.json file. Recipe 11-2 shows how to change how Bower works with Visual Studio so that only the files
you need are copied to the wwwroot/lib folder.

Bower Depreciated

Bower has recently stopped active development and has moved to maintenance mode. The Bower team
has recommended that you do not use Bower for new projects but instead use Yarn and Webpack. Yarn is
an alternative package manager to NPM created by Facebook. Webpack is a module bundler like the one
provided by Microsoft but is much more powerful and complex. Recipe 11-3 shows how to install Yarn.
Webpack will be demonstrated in recipe 11-4.

Since Bower has been deprecated, I expect that Bower will be replaced in future versions of the Visual
Studio tooling. No specific plans for replacing Bower have been announced from the Visual Studio team,
however.

BuildBundlerMinifier NuGet Package
The BuildBundlerMinifier NuGet package is a simple package bundler that is integrated with the ASP.NET
Core project build system. It was designed to be easy to use and purposely avoids dependencies on other
libraries and task runners such as Gulp. You can configure BuildBundlerMinifier using the bundleconfig.json
file. The bundleconfig.json file included with the ASP.NET Core web application project, shown in Listing
11-1 contains two rules. The first rule takes a single input file, wwwroot/css/site.css; minifies it; and saves
the minified version to an output file called wwwroot/css/site.min.css. The second rule takes the input
file wwwroot/js/site.js, minifies it, and saves the minified output file to wwwroot/js/site.min.js.
For the JavaScript file in the second rule, several options are specified for the minification process. First
minify is enabled. This is the default value. The second option is renameLocals. The renameLocals setting
tells BuildBundlerMinifier to rename all the local variables to a new shorter name to save additional space.
The renameLocals setting is also enabled by default. The final setting, sourceMap, tells BuildBundlerMinifier
not to create a source map. Source maps allow JavaScript debuggers to map lines of code in a minified file to
a line of code in the original files. The generation of the source map file makes the build process take slightly
longer but is very useful for debugging.

https://bower.io/

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

364

Listing 11-1. Bundleconfig.json

// Configure bundling and minification for the project.
[
 {
 "outputFileName": "wwwroot/css/site.min.css",
 // An array of relative input file paths. Globbing patterns supported
 "inputFiles": [
 "wwwroot/css/site.css"
]
 },
 {
 "outputFileName": "wwwroot/js/site.min.js",
 "inputFiles": [
 "wwwroot/js/site.js"
],
 // Optionally specify minification options
 "minify": {
 "enabled": true,
 "renameLocals": true
 },
 // Optionally generate .map file
 "sourceMap": false
 }
]

11-2. Customizing the JavaScript Build Workflow in an
ASP.NET Core Project
Problem
You are implementing a new ASP.NET web application and have made use of several Bower components.
In your build and deployment process, you are copying the entire contents of the wwwroot folder to your
web servers. You have noticed that the deployment process is very slow and that thousands of files are being
copied over on each deployment. After doing some investigation, you notice that for each Bower package
you have added, the entire Git repository for the package is getting copied into the wwwroot/lib folder. This
includes many files that you do not need to run your application. You want to find a way to change how
Bower behaves so that only the files you need are copied to wwwroot/lib.

Solution
The way that ASP.NET Core web application projects are configured out of the box is that all Bower
components are copied to the wwwroot\lib folder. While this makes it easy to get up and running, it also
causes many unneeded files to be added to the folder.

To correct this behavior, you can modify the Bower configuration file so that the files are written to
another folder outside of wwwroot. You can then create an additional build step that copies only the needed
files to the wwwroot/lib folder.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

365

How It Works
To demonstrate how to change the JavaScript build process, create a new ASP.NET Core 1.1 web application
project using the Web Application template. Ensure that Authentication is set to No Authentication and that
Docker support is not enabled. Name the project and solution Chapter 11.

After the project has been created, open the bower.json file and review the contents. The most
important section of the file is the dependencies section. The dependencies section lists the Bower
components that are installed in your application and allows you to specify the version of each Bower
component. Bower.json also allows you to specify metadata for your application. You should see that the
application name is asp.net. If you published your application to a Bower repository, the name listed in
bower.json is what users would see while browsing the repository.

Try changing the name property in bower.json. You can also add additional metadata properties to the
file, such as authors, description, and home page. For a full list of possible settings for bower.json, you can
refer to the bower.json specification on GitHub here:

https://github.com/bower/spec/blob/master/json.md

Listing 11-2 shows a customized bower.json file.

Listing 11-2. Bower.json Modified with Custom Metadata

{
 "name": "ASP.NET Core Recipes Chapter 11",
 "authors": ["John Ciliberti"],
 "description": "This is a chapter that shows how ASP.NET Core can work together with
advanced front-end frameworks",

 "homepage": "http://ciliberti.info/",
 "private": true,
 "dependencies": {
 "bootstrap": "3.3.7",
 "jquery": "2.2.0",
 "jquery-validation": "1.14.0",
 "jquery-validation-unobtrusive": "3.2.6"
 }
}

Changing the Bower Configuration
To change the location where Bower packages are downloaded to, you must modify the .bowerrc file.
The .bowerrc file is the configuration file that controls how Bower works. To learn about all the available
settings for .bowerrc, you can refer to the official documentation here:

https://bower.io/docs/config/

To edit the .bowerrc file, locate bower.json under the Chapter 11 project in Solution Explorer and then
click the chevron to the left of the bower.json file name to expand the group, as shown in Figure 11-1.

http://dx.doi.org/10.1007/978-1-4842-0427-6_11
https://github.com/bower/spec/blob/master/json.md
https://bower.io/docs/config/
http://dx.doi.org/10.1007/978-1-4842-0427-6_11

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

366

Double-click .bowerrc to open it. Change the directory property from wwwroot/lib to bower_components.
This change will make Bower download the components to the bower_components folder in the root of the
web site project rather than under wwwroot. Later, you’ll add a Gulp task to copy only the required files to
wwwroot.

Listing 11-3 shows the modified .bowerrc file.

Listing 11-3. .bowerrc

{
 "directory": "bower_components"
}

Adding Gulp to the Project and Automatically Running Tasks
When the Project Is Built
Gulp is a toolkit written in JavaScript that runs on top of Node.js. Gulp is often used as a build tool for NPM
projects since it makes it easy to automate tasks in your development workflow. Gulp can be installed using
NPM.

The easiest way to install an NPM package with Visual Studio is to add a package.json file to the project
and then edit the file to list the dependencies. NPM uses package.json to track dependencies, scripts,
and metadata for a project. If you add a package.json file to a project in Visual Studio, Visual Studio will
automatically watch changes to the file and download and install the listed packages.

To add a package.json file to the project, right-click Chapter 11 in Solution Explorer and then select
Add ➤ New Item. Search for the NPM Configuration File template, ensure the file is named package.json,
and then click the Add button. Modify package.json to match Listing 11-4. The code in Listing 11-4 defines
some basic information about the project. You then add two NPM packages as development dependencies.
The first is the Gulp task runner, and the second is a Gulp plug-in called Gulp Copy that you will use to
define a copy task.

Listing 11-4. Package.json

{
 "version": "0.1.0",
 "name": "chapter11",
 "description": "Demonstration of how to modify Bower configuration",
 "private": true,
 "devDependencies": {
 "gulp": "3.9.1",
 "gulp-copy": "1.0.0"
 }
}

Figure 11-1. Locating .bowerrc in Solution Explorer

http://dx.doi.org/10.1007/978-1-4842-0427-6_11

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

367

Now that Gulp has been added to the project, you can use it to define a few tasks. Gulp requires you to
define the tasks you would like it to run in a JavaScript file called gulpfile.js. To add a new gulpfile.js
file to your project, right-click the project in Solution Explorer and select Add ➤ New Item. In the Add New
Item window, search for the Gulp Configuration File template. Ensure the file is named gulpfile.js and
then click Add.

The Gulp file is typically made up of a set of require statements that load the components that will be
used by the task runner. It then allows you to define one or more tasks. Listing 11-5 shows a simple Gulp file
that defines a task called copyToWwwRoot. The copyToWwwRoot task uses the Gulp Copy plug-in to copy only
the required files to the wwwroot folder.

Listing 11-5. Gulpfile.js

var gulp = require('gulp');
var gulpCopy = require('gulp-copy');
var path_dest = 'wwwroot/lib';
var bower_components = 'bower_components';
gulp.task('copyToWwwRoot', function (){
 return gulp.src([
 bower_components + '/bootstrap/dist/**/*',
 bower_components + '/jquery/dist/*',
 bower_components + '/jquery-validation/dist/*',
 bower_components + '/jquery-validation-unobtrusive/*.js',
 bower_components + '/Respond/dest/*.js'
])
 .pipe(gulpCopy(path_dest, {prefix:1}));
});

The last step is to wire up the task with MSBuild. This will cause the task to execute each time the
project is built. To set this up, open Task Runner Explorer by pressing Ctrl+Alt+Backspace. Task Runner
Explorer automatically discovers that the project has a Gulp file and lists tasks found in it. You can bind a
task to the After Build event in Visual Studio by right-clicking the task and then selecting Bindings ➤ After
Build. You can test this by building the project using the Shift+F6 keyboard combination. The output of the
script will be displayed in Task Explorer, as shown in Figure 11-2.

Figure 11-2. Gulp tasks run when the project builds

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

368

11-3. Adding React to an ASP.NET Core Application
Problem
Your team wants to build a state-of-the-art single-page application with a service tier created in ASP.NET
Core. You see that it is possible to install React.js using Bower but are not sure if that is the correct approach.
You are also concerned that Bower had been deprecated. A notice on the Bower website states the following:
“…psst! While Bower is maintained, we recommend yarn and webpack for new front-end projects!”

Since you plan on putting a lot of effort into building this project, you want to make sure you are
building on a solid platform and will not have to perform a major refactoring of the code to remove Bower in
the near future.

Solution
React is a UX library that makes it easy to build user interfaces made up of reusable components. If you
plan on using React as a stand-alone library with most of your views rendered on the server, using Bower to
manage it as a dependency is probably still a satisfactory solution.

If you plan on building a highly sophisticated single-page application, in most cases you will be using
React in combination with several other components including React Router, Redux, and many other
supporting libraries. You will also need to have a workflow for transcompiling and bundling your script
modules. This is typically done using tools such as Babel and Webpack. Bower is not well-suited for this type
of workflow.

A better solution would be to use Yarn for package management rather than Bower. It is also
recommended that the front-end project be managed in a separate folder outside of your ASP.NET Core
solution. A build step can be added to the React solution that can copy the bundled package to the wwwroot
folder of the ASP.NET core application.

How It Works
In this recipe, you will extend the solution created in recipe 11-2 so that it contains a web API that can be
consumed by the React front end. You will then use the create-react-app NPM package to generate a new
React application. The last step will be to modify the Webpack configuration of the React application so that
the output of the Webpack compilation is copied to the wwwroot folder of the ASP.NET Core web application.
In recipe 11-4 you will take a deeper dive into each of the components that make up the React application.
In the remaining recipes in this chapter, you will use the foundation created in this recipe to build React
components that will consume services created using ASP.NET Core.

Why React
React is an open source JavaScript library for creating user interfaces that was originally created by
Facebook. It has grown in popularity and has a strong community around it. React can be used as a
stand-alone library but is more often combined with other components to form a complete front-end stack.
The following are the key benefits of React:

•	 Components: React’s component-based model makes it easy to decompose a user
interface into reusable widgets. React components have life-cycle methods similar
to ASP.NET web controls that give developers a high level of control over how the
component behaves.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

369

•	 Virtual DOM: React is fast. Much of its speed is a result of its virtual Document
Object Model (DOM). The virtual DOM is updated automatically as the state of the
component changes. React keeps track of the differences between the state of the
virtual DOM and the browser’s DOM and efficiently updates the browser’s DOM in
batches.

•	 Testable: Another advantage of the virtual DOM is that it makes React components
easy to test. Facebook has a testing framework for React called Jest that allows you to
write unit tests that only invoke the virtual DOM and do not require a web browser to
be launched. This makes the test environment easy to set up and allows the tests to
run very quickly.

Installing the Required Software
Visual Studio comes with rudimentary versions of Node.js, NPM, and Git. These stripped-down versions
are not sufficient for advanced front-end development. You will need to install the full version of Node.
js and NPM to get the full functionality of the Node.js command-line interface and to ensure that the
NPM packages work as expected. Since many of the Node.js tools are using Git behind the scenes, I also
recommend installing the latest Git-SCM package. Installing the full Git-SCM package also installs MinGW
and several Windows Shell extensions that can be useful for development. Minimalist GNU for Windows
(MinGW) comes with many powerful Linux utilities including an SSH client, grep, vim, and more.

Another useful application for React development is Yarn. Yarn is a package manager created by
Facebook as an alternative to NPM. Yarn is not required, but it is recommended since it is faster and more
secure and reliable than NPM.

Table 11-1 contains the software packages you need to download and install.

Table 11-1. Software Packages Required for Front-End Workflow

Package URL Purpose

Node.js (LTS) https://nodejs.org/en/ JavaScript runtime environment and command-line tools.
The Long-Term Support version is recommended since
it is more reliable. I used version 6.10.3 when testing this
recipe.

Git https://git-scm.com/ Version control system bundled with Unix command-line
tools. Version 2.13.0 was used when testing this recipe.

Yarn https://yarnpkg.com/en/ Alternative to NPM created by Facebook. It is faster, more
secure, and more reliable than NPM. Version 0.24.6 was
used when testing this recipe.

Creating the React Single-Page Application Using create-react-app
React is a user interface library and not a full single-page application framework like Google’s Angular.
Creating single-page applications with React is possible only when React is used in combination with other
tools. The flexibility of being able to assemble a stack from the best-of-breed solutions is one of the things
developers love about React; however, this flexibility has led to massive fragmentation and the creation of
hundreds of starter kits for React. This multitude of choices is intimidating for developers new to React.
As a response to this problem, Facebook has created an officially supported starter kit for creating single-page
applications with React called create-react-app.

https://nodejs.org/en/
https://git-scm.com/
https://yarnpkg.com/en/

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

370

create-react-app is a JavaScript application that runs on Node.js. It can be downloaded and installed
using either NPM or Yarn. Although Yarn is generally better than NPM, I have found that on Windows, NPM
does a better job for installing global packages such as create-react-app. Global packages are NPM packages
that are installed alongside the Node installation and usually have their executables added to the PATH
environmental variable.

To install create-react-app using NPM, enter the following command:

npm install -g create-react-app

If you are using a Mac or Linux PC, you can install create-react-app using Yarn rather than NPM by
entering the following command:

yarn global add create-react-app

Once create-react-app is installed, open a new command window. It is necessary to open a new
command window to access the changes in the PATH environmental variable performed by Yarn or NPM.
In the new command window, navigate to the Chapter 11 folder. This should be one level up in the
directory tree from the Chapter 11 Visual Studio solution. Enter the following command to create the React
application:

create-react-app chapter11-react

create-react-app will take several minutes to run. It will use Yarn to download and install many NPM
packages. The total number of packages required for the single-page application created by create-react-app
was 860 at the time of this writing. Luckily, most of the packages are downstream dependencies that you do
not need to worry about. When the installer process completes, you will see the following message in your
command window:

Success! Created chapter11-react at C:\ AspNetCoreRecipes\Chapter11\chapter11-react
Inside that directory, you can run several commands:

 yarn start
 Starts the development server.

 yarn build
 Bundles the app into static files for production.

 yarn test
 Starts the test runner.

 yarn eject
 Removes this tool and copies build dependencies, configuration files
 and scripts into the app directory. If you do this, you can’t go back!

We suggest that you begin by typing:

 cd chapter11-react
 yarn start

Happy hacking!

http://dx.doi.org/10.1007/978-1-4842-0427-6_11
http://dx.doi.org/10.1007/978-1-4842-0427-6_11

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

371

Opening the React Project in Visual Studio
If you want to use Visual Studio to view and edit the files created by create-react-app, you can do so by using
the Visual Studio Open Folder feature. Visual Studio 2017 allows you to open a folder without creating a
solution or project file. Using this option will allow you to view the directory tree in Solution Explorer and
edit the files. Many of the code-editing features such as statement completion, static code analysis, and code
formatting will work as expected. Other features such as Visual Studio’s build tools and the integrated test
runner will not work unless a project file is created.

To open the folder, from the Visual Studio File menu, select Open ➤ Folder. You can then select the
chapter11-react folder. You will see the folder tree displayed in Solution Explorer.

While Visual Studio 2017 is good as a basic React editor, there are other editors that offer more
advanced features for front-end developers. I personally prefer to use JetBrains WebStorm for working on
React projects. WebStorm costs $59 for the first year for individual developers but offers free subscriptions
for developers working on open source projects, students, and educators. Visual Studio Code and
GitHub’s Atom editor can also be set up to support React development when coupled with the proper set
of extensions. Visual Studio Code and Atom are free. If you want to try Visual Studio Code, I recommend
installing the following extensions:

•	 JSX: This adds support for JSX development in Visual Studio Code.

•	 ESLint: This uses the ESLint installation and configuration from a local file to show
code style problems and potential errors in the code editor.

•	 EditorConfig for Visual Studio Code : This adds the ability for Visual Studio Code
to enforce standards defined in .editorConfig files. The .editorConfig file is a
tool-agnostic standard for defining important editor defaults such as tabs versus
spaces. This is essential when people on your team are using different editors but are
sharing a common ESLint configuration.

•	 Code Spellchecker: This add-in is not React specific but makes it easy to detect and
correct spelling errors in your code.

Starting the React Development Server
Because create-react-app installed a development server that runs on top of Node.js, you can start the
development server and interact with the React application by running the following commands:

cd chapter11-react
yarn start

After several seconds, your default web browser will open automatically and display a page similar to
the one shown in Figure 11-3.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

372

Integrating the React Application with Your ASP.NET Core MVC Project
The React application you just created is a single-page application (SPA). An SPA can replace all or part of
the user interface for your ASP.NET Core application. The React application has its own component model
and routing engine. React component pages will be generated on the client rather the server like they are
with ASP.NET Core MVC.

Client-side versus server-side rendering does not need to be an all-or-nothing decision. Most major web
sites such as Facebook are not just one giant single-page application. In most cases, large web applications
consist of several single-page applications in combination with traditional server-rendered pages. You will
take this approach with your application. The home page will remain a server-rendered ASP.NET Core
MVC view. You will also use server rendering to create the header and footer of the web site. The React SPA
application will be embedded in a Razor view accessible from the path /profile.

To create this integration, you will first need to add the Profile action in the Home controller of the
ASP.NET Core application, as shown in Listing 11-6.

Listing 11-6. Adding the Profile Action to the Home Controller

public IActionResult Profile()
{
 return View();
}

Figure 11-3. React application created by create-react-app

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

373

Next, you will add a new view in the Home folder called Profile. The Profile view will host the React
application. For now, you will leave the view empty. The contents of this page will be generated using the
React build process.

Building the React App

To integrate the React application into the ASP.NET Core application, you will need to use the build script
that has been added to the React application by create-react-app. The build script will generate the static
assets. You can then copy the static assets into the folder wwwroot/lib/chapter11-react of your ASP.NET
Core project. For the React application to work properly when deployed in that path, you need to modify
the configuration of the React application. To update the configuration, open the package.json file in the
chapter11-react folder and add a homepage property, as shown in Listing 11-7.

Listing 11-7. Updated homepage Property of package.json

{
 "name": "chapter11-react",
 "version": "0.1.0",
 "private": true,
 "homepage": "/lib/chapter11-react",
 "dependencies": {
 "react": "^15.5.4",
 "react-dom": "^15.5.4"
 },
 "devDependencies": {
 "react-scripts": "1.0.7"
 },
 "scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test --env=jsdom",
 "eject": "react-scripts eject"
 }
}

Next, you will run the build script. To do this, stop the React development server if it is still running by
using the Ctrl+C key combination inside the console window.

If asked the following, enter Y:

Terminate batch job (Y/N)?

The server will stop. Next, enter the following command to build the React app:

yarn build

After several seconds, you will see the following in the command window:

yarn build v0.24.6
$ react-scripts build
Creating an optimized production build...
Compiled successfully.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

374

File sizes after gzip:

 47.09 KB build\static\js\main.23e5d2a8.js
 289 B build\static\css\main.9a0fe4f1.css

The project was built assuming it is hosted at lib/chapter11-react/
You can control this with the homepage field in your package.json

The build folder is ready to be deployed.

Done in 11.62s.

Copying the Contents of the React Build Folder to the ASP.NET Core Project

The React application is now ready to be copied into the ASP.NET Core application. In the next recipe, you
will show how this copy step can be automated, but for now you will do it manually. To do this, create a new
folder under the wwwroot/lib folder of the ASP.NET Core project and name it chapter11-react. Next, copy
the entire contents of the build folder in the React project into the new folder.

The final steps in this process are to extract the generated HTML created by the React build process and
use it to update the Profile view so that it loads the required JavaScript and CSS. You can find the generated
HTML in the index.html file that has been added to the root of the React application’s build folder. Copy
the contents of this file into Profile.cshtml. Visual Studio will automatically format the HTML when it is
pasted. Listing 11-8 shows the pasted contents. Note that the names of the JavaScript and CSS files will vary
with each build. This is a feature that prevents cached versions of the files from causing issues.

Listing 11-8. HTML Generated by React Build Process

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,initial-scale=1,shrink-to-fit=no">
 <meta name="theme-color" content="#000000">
 <link rel="manifest" href="/lib/chapter11-react/manifest.json">
 <link rel="shortcut icon" href="/lib/chapter11-react/favicon.ico">
 <title>React App</title>
 <link href="/lib/chapter11-react/static/css/main.9a0fe4f1.css" rel="stylesheet">
</head>
<body>
 <noscript>You need to enable JavaScript to run this app.</noscript><div id="root"></div>
 <script type="text/javascript" src="/lib/chapter11-react/static/js/main.148a30c4.js">

</script>
</body>
</html>

There are several problems with the code you pasted. First, since the Profile view is using a layout
page, it does not need the HTML, HEAD, and BODY elements. These elements can be deleted. Next, you need to
make sure that the LINK and META elements are rendered inside the header of the page. To do this, you will
need to create a new optional section in the ASP.NET Core _Layout.cshtml page, as shown in Listing 11-9.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

375

Listing 11-9. Adding the Head Section in _Layout.cshtml

@inject Microsoft.ApplicationInsights.AspNetCore.JavaScriptSnippet JavaScriptSnippet
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Chapter11</title>

 <environment names="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment names="Staging,Production">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/

bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position"

asp-fallback-test-value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>
 @Html.Raw(JavaScriptSnippet.FullScript)
 @RenderSection("Head", required: false)
</head>
<!-- The rest of the layout page is not shown -->

You will also need to make sure that the JavaScript file is loaded at the bottom of the page. The default
layout page already has a Script section that you can utilize. Now you can modify the Profile view so that it
uses the sections defined in _Layout.cshtml. The completed file should match Listing 11-10.

Listing 11-10. Profile.cshtml

@section Head{
 <meta name="theme-color" content="#000000">
 <link rel="manifest" href="~/lib/chapter11-react/manifest.json">
 <link href="~/lib/chapter11-react/static/css/main.9a0fe4f1.css" rel="stylesheet">
}
<noscript>
 You need to enable JavaScript to run this app.
</noscript>
<div id="root"></div>
@section Scripts{
 <script type="text/javascript" src="~/lib/chapter11-react/static/js/main.148a30c4.js">

</script>
}

You may have noticed that the links to the CSS and JavaScript files generated by the React compiler use
a random sequence of characters between the file name and extension. This is an optimization added by the
build script to help prevent problems caused by proxy servers caching outdated static content. Because of this,
you will need to make sure that the Profile view is updated each time you build and copy the static assets
from the React project. You will continue to build the functionality of the Profile React SPA in recipe 11-5.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

376

If you are new to React, ECMAScript 6 (ES6), and JSX, I highly recommend that you read recipe 11-4 before
moving on. Recipe 11-4 provides a brief overview of all the technology used in the React SPA application and
the NodeJS build tool chain.

11-4. Understanding React, JSX, ES6, Babel, and Webpack
Problem
In recipe 11-3, a tool named create-react-app was used to generate a single-page application based on React.
The app contains hundreds of files and libraries. You need help understanding the React application before
you can become productive in developing using this stack.

Solution
React and its ecosystem are complex. This section provides a brief introduction to the major components
of the React toolkit so that you will be able to better understand the contents of the rest of the recipes in this
chapter.

How It Works
Diving into React development requires gaining an understanding of many technologies that you may not
be familiar with as an ASP.NET Core developer. While you do not need to be an expert at every component
in the React toolchain, it is helpful to understand the major components. In this section, I will cover the
following:

•	 ECMAScript 6 (ES6): This is a major upgrade to the ECMAScript (aka JavaScript)
language; it introduces many new features that make developing complex
applications in JavaScript more practical.

•	 React: This is a user interface library created by Facebook. It provides a component-
based model for creating user interface components.

•	 JSX: JSX is an ECMAScript 6 extension that simplifies the creation of components
created with React by allowing you to easily mix ES6 code with HTML. You can think
of JSX as the Razor view engine of the React world.

•	 Babel: Babel is a transpiler that is used to convert ES6 and JSX to ECMAScript 5.
Babel allows you to use the latest ECMAScript innovations without compromising on
browser compatibility.

•	 Webpack: Webpack is an advanced component bundler. It is responsible for
generating the CSS and JavaScript files that you copied to the ASP.NET Core
application in recipe 11-3.

ES6
ES6 is a major upgrade to the ECMAScript language standard that was ratified in 2015. ES6 brings a new
module system, new classes, better variable scoping, and new arrow functions. In this section, you will see
the ES6 features that are the most critical to understand for React development.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

377

Module System

Modules are a foundational concept in computer science in which parts of a program are organized into
independent units that can be linked together to work as a program. ES5 did not have a built-in module
system, which made it difficult to develop complex JavaScript programs and led to an overreliance on
global variables, which often resulted in difficult-to-solve bugs. As a result, the ES5 developer community
began creating libraries that provided module-like functionality and eventually developed standard syntax
for creating modules that could work across library implementations. Unfortunately, two competing
incompatible standards, CommonJS and AMD, emerged from this evolution.

In ES6, a new built-in module system has been added that melds the best features of CommonJS and
AMD. These features include the following:

•	 A compact, easy-to-understand declarative syntax for importing and exporting
modules

•	 Support for configurable asynchronous module loading

•	 Support for cyclic module dependencies where module A imports module B and
module B imports module A

Several new JavaScript keywords have been added to the language to support modules.

export and export default
Functions and variables created in a module are hidden from other modules unless they are exported. The
export keyword can be applied to objects, primitives, and functions to allow them to be imported into other
modules. There are two types of exports, named export and default export. Each module can have exactly
one default export. Default exports differ from named exports in that developers can use a simplified syntax
when importing them. Listing 11-11 shows examples of how the export keyword can be used.

Listing 11-11. Examples of the export and export default Keywords

// created named export for authorFirstName
// using new ES6 short hand equivalent to { authorFirstName : authorFirstName }
const authorFirstName = 'John';
export { authorFirstName };

// declare and export variable name on one line
export const authorLastName = 'Ciliberti';

// export multiple objects
const arrayOfNumbers = [1, 2, 3, 4];
const someObject = {
 prop1: 'value 1',
 prop2: 'value 2'
};
export {
 arrayOfNumbers,
 someObject
};

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

378

// named export for a function
export function printWarning(message) {
 console.warn(message);
}

// default export function that returns string 'New ES6 return statement shorthand'
export default ('New ES6 return statement shorthand');

import
The import keyword is used to make objects exported from other modules available in the current module.
The functionality of import can be compared to how the using statement is used to import namespaces
into a C# file. Listing 11-12 demonstrates some examples of how to use the import statement. In the first
example, the React object, which is a default export, is imported from the React module. The React module
was added to the application from NPM and is listed as an application dependency in the project.json file.
It is referred to by name rather than by relative path. In the second import statement, two named imports,
authorFirstName and authorLastName, are imported from a module located in the same directory. Notice
that you use ./ to refer to a file in the current directory. You should also notice that the file extension is
omitted from the path. In the third example shown in Listing 11-12, the default import and two named
exports are imported. In the final example, the default export and all named imports are added. The notation
* as mod2 is used to import all the named exports and make them accessible via the alias mod2. For example,
the named exports food and animal from Module2 can now be accessed using mod2.food and mod2.animal.

Listing 11-12. Examples of the ES6 Import Statement

// import the default export from an external module
// defined as a dependency in package.json
import React from 'react';

// import the several named exports from
// module defined in same directory
import { authorFirstName, authorLastName } from './Listing11-9';

// import the default export as well as several named exports
// from module defined in directory Subfolder
import customName, { car, bike } from './Subfolder/Module1';

// import the default export as well as all named exports
// from module defined in directory Subfolder
import customName2, * as mod2 from './Subfolder/Module2';

Classes

JavaScript has long supported object-oriented programing using a prototype-based inheritance model. ES6
does not change how inheritance behaves in JavaScript, but it does add some syntactical sugar that makes
object-oriented JavaScript code much easier to read and understand. Several new keywords have been
added to ES6 to support the new class syntax.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

379

•	 class: This is used to define a new prototype. It should be noted that even though
the syntax looks like the C# class definition, JavaScript remains prototype based.

•	 extends: This is used in class declarations to create a class that is a child of another
class. It can be used to extend both custom and built-in classes as long as the type
you are extending is an object or null.

•	 constructor: This is a method that can be defined inside a class that contains
initialization logic that is executed when the object is created.

•	 super: This can be used inside a constructor function to call the constructor of the
parent object.

•	 static: This is used to create methods that can be called directly on that class but
not from instances of a class.

Listing 11-13 shows the new ES6 class syntax in action. First a class called Car is defined. Car has
a constructor that accepts three arguments, year, make, and model, that it assigned to its context using
this. Car also contains a method called printCarInfo that prints the car’s year, make, and model. The
printCarInfo method is using a new ES6 feature called string interpolation. With string interpolation, you
can define a string using backticks instead of single or double quotes. You can then embed variables and
expressions into the string by encapsulating the expression using ${expression}.

Next a class named Sedan is created that extends Car. The Sedan class has a four-argument constructor
with an additional argument for color. The constructor calls super, which passes the year, make, and model
to the parent constructor. Sedan also adds a static method called getYellowSedan for creating yellow sedans.

Listing 11-13. ES6 Classes

class Car {
 constructor(year, make, model) {
 this.year = year;
 this.make = make;
 this.model = model;
 }
 printCarInfo() {
 console.log(`The car is a ${this.year} ${this.make} ${this.model}`);
 }
}

class Sedan extends Car {
 constructor(year, make, model, color) {
 super(year, make, model);
 this.color = color;
 }
 static getYellowSedan(year, make, model) {
 return new Sedan(year, make, model, 'Yellow');
 }
}

const myCar = new Sedan(2016, 'BMW', '328i', 'Grey');
myCar.printCarInfo();

const yourCar = Sedan.getYellowSedan(1987, 'Dodge', 'Dart');
yourCar.printCarInfo();

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

380

Variable Scoping with let and const

Variable scoping in ES5 is the cause of many bugs and errors. In ES5 you had two ways to declare a variable.
The first and generally most recommended way was to use the var keyword when defining a variable. var
creates a variable at the scope of the current execution context. Variables created using var inside a function
are scoped to the function. Variables created outside a function are global. What is often misunderstood is
that when you use var to create a variable inside a code block, the variable is still scoped at the function level.

The second way to create a variable in ES5 was not to use any initializer at all. When you create a
variable without using var, the variable is always global regardless of where it is defined. This feature is very
dangerous and can lead to mistyped variables being interpreted as new global variables. Thankfully, you
could disable the ability to use undeclared variables by adding use strict at the top of your JavaScript file.

In ES6, it is possible to still use undeclared variables and variables defined using var, but it is
discouraged for new code. Most possible static validation (linters) will show a warning when var is used.
In the React build pipeline, use strict is automatically added when the ES6 code is cross-compiled to ES5
and the use of undeclared variables will result in build errors.

ES6 introduces two new variable declaration keywords, let and const. let and const both declare
local variables scoped at the block level just like variable declarations in C#. const is used to create constants
whose values cannot be reassigned.

Listing 11-14 shows several examples of how variables can be declared in ES6.

Listing 11-14. Behavior of let, const, var, and undeclared Variables

// following line of code will cause build to fail
global1 = 'this is a global variable';

var global2 = 'this is also a global variable';

function vars(){
 // this line will also cause a build error
 global3 = 'this is also a global variable';

 var varsScope1 = 'scoped at vars';
 if(1===1){
 var varsScope2 = 'Scoped in vars function (not the if block)';
 let scopedInIfBlock = 'This is scoped in the if block.';
 const constInIfBlock ='I am scoped to if block and cannot change';
 scopedInIfBlock = 'my value can change';
 }
}

Arrow Functions

ES6 introduces a new shorthand syntax for creating functions known as arrow function expressions. Arrow
function expressions follow the syntax patterns used in C# lambda expressions.

In Listing 11-15, an arrow function with no arguments and only one statement is created and stored in a
constant called noCurlyBracesRequired. When only one statement exists in the function, the function body
does not require curly braces. The noCurlyBracesRequired function can then be called just like any other
function.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

381

Listing 11-15. Arrow Function with No Arguments and Only One Statement

const noCurlyBracesRequired = () => console.log('This is an arrow function with no
arguments');
noCurlyBracesRequired();
// This is an arrow function with no arguments

In Listing 11-16 an arrow function that takes a single argument is created and assigned to a const called
noParenthesisRequired. When you have only one argument, parentheses are not required for the argument
list.

Listing 11-16. Arrow Function with One Argument and Only One Statement

const noParenthesisRequired = a => console.log(`The value of the a argument is ${a}`);
noParenthesisRequired('foo');
// The value of the a argument is foo

In Listing 11-17 an arrow function that takes three arguments is created and assigned to a const called
requiresParenthesisAndCurlyBraces. When you have more the one argument, parentheses are required
for the argument list. Curly braces are required when an arrow function contains multiple statements. In
requiresParenthesisAndCurlyBraces, the first two arguments are expected to be strings, and the last is
expected to be a function. In the call to requiresParenthesisAndCurlyBraces, an arrow function is used to
define a function that is passed as the third argument.

Listing 11-17. An Arrow Function with Multiple Statements and Three Arguments

const requiresParenthesisAndCurlyBraces = (a, b, c) => {
 console.log(`The value of the a argument is ${a}`);
 console.log(`The value of the b argument is ${b}`);
 c();
};

requiresParenthesisAndCurlyBraces('foo', 'bar', () => console.log('bat'));
// The value of the a argument is foo
// The value of the b argument is bar
// bat

React and JSX
React is a user interface library created by Facebook. React allows you to decompose your user interface into
small, reusable components. React components are JavaScript functions that contain a render method that
outputs HTML markup. React components can be nested into hierarchies in a comparable way as you would
do with HTML elements. To simplify development, React supports the use of a JavaScript extension called
JSX. JSX allows you to freely mix HTML and JavaScript, much like you can mix HTML and C# code in a Razor
view. React components can be stateful and keep track of their own properties, or they can be stateless,
with state information being managed in a parent component and changes to state being communicated
via properties. When using JSX, properties of a React component can be passed using what look like HTML
attributes, much like properties are communicated with Razor Tag Helpers.

Listing 11-18 shows the App.js component that is generated by the create-react-app NPM package.
App.js is an ES6 module.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

382

Listing 11-18. App.js

import React, { Component } from 'react';
import logo from './logo.svg';
import './App.css';

class App extends Component {
 render() {
 return (
 <div className="App">
 <div className="App-header">

 <h2>Welcome to React</h2>
 </div>
 <p className="App-intro">
 To get started, edit <code>src/App.js</code> and save to reload.
 </p>
 </div>
);
 }
}

export default App;

In line 1 of the module, React, the default export from the React package, is imported along with a
named export called Component. Component is the base class for stateful React components.

import React, { Component } from 'react';

The second import statement does not import an ES6 module but rather an .svg image. This
functionality is provided not by the ES6 module system but rather a loader plug-in for the Webpack module
bundler. When Webpack processes the module, it will see the nonstandard import file and attempt to match it
with a loader. If no matching loader is found, then the Webpack build will fail. If a loader is found, the loader
plug-in will process logo.svg so that it is bundled into the script file generated by the Webpack build process.

import logo from './logo.svg';

In an equivalent way to logo.svg, a CSS loader plug-in from Webpack will package the CSS file App.css
and make it available to the module.

import './App.css';

After the import statements is the App class declaration. The App class extends the Component class
imported from the React package. The Component class contains rich functionality that includes a way to
track component state and component life-cycle events. If you are familiar with the page life cycle from
ASP.NET Web Forms, then the concept of component life-cycle events will feel very natural to you. In fact, a
key feature of React is its one-way data flow that mimics the data flow of a server-side page rendering done
by ASP.NET Web Forms. You will learn more about these features starting in recipe 11-5.

Inside the App class is the render method. The render method uses JSX syntax to render a header and
“get started” message. For the most part, the content looks very much like standard HTML except for the src
attribute of the img element.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

383

The img element is using the logo object created from the second import statement and assigning it to
the src attribute. JSX will treat the content inside the curly braces as a JavaScript expression. In this case, the
curly braces contain the logo, but any valid JavaScript expression could be used.

Webpack
As you may have guessed from the previous section, Webpack does much more than just simply combining
and compressing script files. Webpack does complex build orchestration that begins with creating a graph
of the application’s dependencies and then intelligently including all of the required modules. Webpack
treats every file in your JavaScript project as a module. It uses loaders to transform non-JavaScript files into
a format that can be added to the dependency graph and then bundled into a script file. Webpack also
supports the concept of plug-ins. Webpack plug-ins can be used to add custom functionality.

Webpack supports a concept called hot module replacement, which can add and remove modules while
an application is running without reloading the entire application. This allows your app to retain state while
updates to packages are efficiently replaced at the client.

You can find more information on Webpack at https://webpack.js.org/configuration/.

Babel
A problem that has plagued front-end web developers since the dawn of the Web is cross-browser and
backward compatibility. New language innovations are impossible to adopt because it takes years for the
major browser vendors to implement the standards ratified by the W3C and ECMA and even longer for
businesses and consumers to adopt standard-compliant browsers.

Babel helps to solve this problem by allowing you to use the latest innovations in JavaScript by
transcompiling your ES6 into the equivalent backward-compatible code. In cases where no equivalent
functionality exists in older versions of JavaScript, Babel provides a set of polyfill libraries that implement the
new language features.

You can find more information about Babel at https://babeljs.io/.

11-5. Adding Unit Testing and Static Code Analysis to a
React Project
Problem
You are following test-driven development (TDD) using xUnit for your ASP.NET Core server-side code. You
want to add the same level of test automation for your front-end code. You want to be able to add automated
unit testing and static analysis to your build process. You also want to find problems early and have your IDE
alert you as you are editing your code.

Solution
The application created by create-react-app comes with ESLint static code analysis and the Jest unit test
framework installed and set up to run automatically but with only a basic configuration. It is up to you add
specific rules for ESLint and to create a full suite of unit tests. In this recipe, you will enhance the static
code analysis by installing the Airbnb ESLint configuration, which will enforce rules created by the Airbnb
development team. Airbnb was an early adopter of React and has created the ESLint rules to enforce best
practices based on its experiences.

https://webpack.js.org/configuration/
https://babeljs.io/

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

384

While the Jest unit testing framework is powerful, you can get additional benefits from adding the
Enzyme test library. Enzyme was also created by the Airbnb team. Enzyme includes many features that
substantially simplify writing unit tests with React. The most significant feature is shallow rendering, which
allows you to test a React component without rendering all other components in the component hierarchy.

How It Works
In this section, you will first install the Airbnb ESLint configuration and then customize it to meet your
needs. Next, you will install several add-ons to Jest and the Enzyme library.

ESLint Configuration
A linter is a tool that identifies code that does not follow best practices or has poor stylistic construction.
The term lint was first used at Bell Labs in the 1970s to describe a tool that eventually was released as part
of the Unix operating system. The Unix lint utility released in 1978 flagged suspicious and nonportable
constructs that often were associated with software defects.

JavaScript contains many features that made it easy to learn for novice developers. These ease-of-use
features unfortunately can make complex JavaScript applications error-prone and difficult to maintain.
For example, with JavaScript, semicolons are optional, but when they are not used, you may sometimes have
unintended results.

Linters are used to enforce rules that some developers feel should be enforced by the compiler. They are
also used to enforce coding style standards across code bases. ESLint is a JavaScript linter for ECMAScript
2015. It is installed with create-react-app and will be run automatically when the application is built and
then log any errors found to the console. ESLint results can also be seen in code editors such as Visual
Studio and WebStorm. In some cases, the editor can correct the linting errors automatically. The application
produced by create-react-app does not include any linting rules with the default configuration and leaves it
to developers to add whatever rules they want. If you are using Visual Studio, a default ESLint configuration
is included, but these setting are applied only within Visual Studio and will not be enforced on build servers
such as TFS or Jenkins.

A popular ruleset is the one created by Airbnb. The Airbnb ruleset includes rules for ES6, React, and
JSX. Installing the rules requires two steps. First you must install the eslint-config-airbnb package. You can
add an .eslintrc file under the project root and set it so that it extends Airbnb. To install the Airbnb rules,
enter the following at the command line:

npm install -g install-peerdeps
install-peerdeps --dev eslint-config-airbnb

Once installation has completed, add a file named .eslintrc to your project and then modify it to look
like Listing 11-19.

since Windows explorer does not allow you to create files that begin with a dot, you will need to use a
command-line utility such as the Unix touch command that is available with git bash to create the file. to do
this, open the git bash shell, navigate to the directory of your project, and use the following command:

touch .eslintrc

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

385

Listing 11-19. Adding the Airbnb ESLint Rules to Your Project

{
 "extends": "airbnb"
}

After adding the ESLint configuration, you will notice that Visual Studio is showing many errors.
The errors are caused by the fact that code generated by create-react-app does not comply with some of the
rules created by Airbnb. For example, Airbnb’s rules specify that all React components use .jsx extensions
rather .js. Custom rules can be added to the .eslintrc file to override certain rules if you disagree with them.

Adding Linting Rules for Jest Unit Tests

Since you will be using Jest as your unit test framework, you can add additional rules to your ESLint
configuration that will help you ensure that your tests are created using best practices. To install the Jest
ESLint plug-in, enter the following at the command prompt:

yarn add --dev eslint-plugin-jest

After the plug-in has been installed, you can add the plug-in and Jest rules to the .eslintrc file. It is
also a good idea to add the Jest global variables to .eslintrc; otherwise, ESLint will mistakenly raise errors
in all of your tests because it will not know that some of the Jest functions such as it and expect are valid
global variables.

Listing 11-20 shows the .eslintrc file with the Jest plug-in configuration. Listing 11-20 also shows how
certain rules such as the use of the .js extension can be overridden.

Listing 11-20. The Completed .eslintrc File

{
 "extends": "airbnb",
 "plugins": [
 "jest"
],
 "rules": {
 "comma-dangle": 0,
 "react/jsx-filename-extension": [
 1,
 {
 "extensions": [
 ".js",
 ".jsx"
]
 }
],
 "no-console": 0,
 "jest/no-disabled-tests": "warn",
 "jest/no-focused-tests": "error",
 "jest/no-identical-title": "error",
 "jest/valid-expect": "error"
 },

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

386

 "env": {
 "jest/globals": true
 }
}

Types of Tests for Front-End Applications
When creating a test suite for the front end of your application, you will need to test several aspects of the
application. Some tests, such as unit tests, are very much like what you do on the server with xUnit. Other
tests will need to verify that the visual tree of the application is being rendered properly and that user
interactions such as mouse overs and clicks have the desired effect. In this section, I will briefly describe the
types of tests you will create. In recipe 11-6, you will build the tests as you create an SPA in React using the
TDD methodology.

Unit Tests

As you develop the React application, you will need to test nonvisual modules such as validation
components, service proxies, and utilities. For nonvisual modules, you can create unit tests like you did in
Chapter 7 with ASP.NET Core controllers. The main difference here is that rather than using xUnit as you did
in Chapter 7, you will use Jest. Jest is a unit testing framework created by Facebook. Jest is used by Facebook
to test all of Facebook’s JavaScript applications. Since Facebook uses React as its main UI library, Jest offers
many features specific to testing React. Jest is included with the application created using create-react-app.

Snapshot Tests

Many React components will be stateless and will consist only of user interface components. Snapshot tests
help you to verify that your UI does not change unexpectedly. The first time you run your snapshot tests, a
snapshot of what the UI should look like will be recorded. If a modification to the application results in a
change in the UI, the next test run will fail. Each time you make a change that should change the UI, a new
snapshot can be recorded by running the following command:

jest --updateSnapshot

To enable Snapshot testing, you will need to add the react-test-renderer package to your project. To do
this, enter the following command at the command prompt:

yarn add --dev react-test-renderer

DOM Tests

With DOM testing, you can write tests that manipulate the rendered component and then use Jest assertions
to verify the correct behavior. There are two popular libraries for implementing this DOM tests, React
Enzyme and React’s TestUtils. For this chapter, you will use Enzyme. To install Enzyme, enter the following
command in the command prompt:

yarn add --dev enzyme

http://dx.doi.org/10.1007/978-1-4842-0427-6_7
http://dx.doi.org/10.1007/978-1-4842-0427-6_7

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

387

11-6. Creating an SPA Using ASP.NET Core and React
Problem
You want to create an artist profile page for your web site. The page will show several pieces of information,
including the artist name, biological information, and a list of collaboration projects the artist is engaged in.
The page will combine the features and functionality of ASP.NET Core and React.

Solution
Recipe 11-3 demonstrated how a React SPA application can be created at the command prompt and then
integrated into an ASP.NET Core application by copying the bundled JavaScript and CSS files into the
wwwroot folder of the ASP.NET Core project. In this solution, you will expand on that solution by creating
several React components and then integrating them into the profile app. The process of creating the React
SPA will require the following steps:

 1. Create an HTML mock-up of the desired result.

 2. Break the HTML mock-up into logical components and use these snippets as the
basis of the React components.

 3. Decide how data will be flow from the parent React component to the children
using React props.

 4. Create unit tests to verify both the front-end components and the ASP.NET Core
services that you will create.

 5. Create a controller in the ASP.NET Core application to supply the data to the
React components.

 6. Integrate the ASP.NET Core web services with the React front end.

How It Works
This recipe will follow the test-driven development methodology described in Chapter 7. If you are
unfamiliar with this approach, I recommend you read recipe 7-3.

Creating the HTML Mock-Up of Your React SPA
Before diving into creating the React components, it is helpful to first create a mock-up of the intended output
in standard HTML. To start this process, create a new folder called mockups under the chapter11-react
folder created in recipe 11-3. Inside the mockup folder create a new file called profile-mock.html. Start
the file by copying the contents of public/index.html and then replace the dynamic values such as the
href properties of the LINK elements in the head of the document with hard-coded values. You should also
remove any comments from the content since they are not needed. You can also remove the link to the
manifest.json file.

When this step is completed, profile-mock.html should match Listing 11-21.

http://dx.doi.org/10.1007/978-1-4842-0427-6_7

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

388

Listing 11-21. Profile.-mock.html Step 1

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
 <meta name="theme-color" content="#000000">
 <link rel="shortcut icon" href=" ../../public/favicon.ico ">
 <title>React App</title>
 </head>
 <body>
 <noscript>
 You need to enable JavaScript to run this app.
 </noscript>
 <div id="root"></div>
 </body>
</html>

At this point, the HTML page will not show any content. The next step will be to add some styling to the
mock-up. Since the ASP.NET Core template uses the Bootstrap CSS library, you will need to add this to the
mock-up page. This can be done by adding a LINK element to the HEAD section of profile-mock.html. You
can obtain the HTML needed for adding the Bootstrap styling from https://www.bootstrapcdn.com/. The
bootstrap CDN web site will generate the HTML, which includes the href to the Bootstrap CSS file and an
integrity token, which when used with a supported browser can ensure that the file being pulled from the
remote server matches the integrity token. Using an integrity token can help prevent your web site users
from downloading malicious files if the CDN web site is compromised.

To support custom styles that may be required by the user profile mock-up, create a CSS file in the
mockups directory called profile-mock.css. Add a LINK element to the HEADER of profile-mock.html so that
any styles included in profile-mock.css can be applied to the page. Be sure that profile-mock.css appears
after Bootstrap so that it will be possible for the custom styles to override styles from Bootstrap if required.
When completed, the new LINK elements should appear in the header of profile-mock.html, as shown
Listing 11-22.

Listing 11-22. Header of profile-mock.html After CSS Links Added

<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"
 rel="stylesheet"
 integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
 crossorigin="anonymous">
 <link rel="stylesheet" href="profile-mock.css"/>

Next, you can add some content. The profile page will have a banner image that will cover the top
20 percent of the screen. This image will be something the users can customize to make their profile page
more unique. You will also add a user profile picture. The profile picture will overlap slightly with the banner
image. Directly to the right of the profile image and below the banner image will be page header with the
artist first and last names. The artist biography will follow the header.

To start, you will add the CSS styles to profile-mock.css to support the design. Since you are using
Bootstrap, only a small amount of custom CSS is required to cover your unique needs. The rest of the styling
will be from the Bootstrap CSS.

To implement the banner, you will add a style rule that sets the width of the banner image to 100 percent.
You will also add a margin to the bottom of the banner image so that the text will not be placed directly
below it. Next, you will add a style for the artist profile image. To create the overlap effect, you will provide a

https://www.bootstrapcdn.com/

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

389

negative top margin of 100px. Finally, you will add a media query to the style sheet so that you can adjust the
margin of the profile image and the size of the header text for smaller screen sizes. CSS media queries allow
you to specify styles that take place under only certain conditions, such as when a screen width is smaller
than a certain size. Listing 11-23 shows the completed profile-mocks.css file.

Listing 11-23. Custom Styles to Support the Profile Profile-mock.css

.artist-profile img.artist-profile-banner {
 width: 100%;
 margin-bottom: 10px;
}

.artist-profile-image {
 margin: -100px 10px 0px 50px;
 z-index: 20;
 width: 20%;
}

@media (max-width:768px) {
 .artist-profile-text>h1 {
 font-weight: 600;
 font-size: 16px;
 }
 .artist-profile-image {
 margin: -45px 10px 0px 25px;
 z-index: 20;
 width: 25%;
 }
}

In the next step, you will add the HTML to profile-mock.html for displaying the banner image, profile
image, artist name, and biographical information. The content will be added inside the root DIV element.
The first element that you will add is a DIV styled with Bootstrap’s container-fluid. This will allow the
container to fill the entire page. Next a DIV with the style artist-profile is added. By applying this style,
you can ensure that your style rules created in Listing 11-23 are scoped to the IMG elements inside the
DIV scope rather than the entire document, which can provide a performance benefit. Inside the artist-
profile DIV, you add the banner and profile images with the appropriate styles applied. Listing 11-24
shows the updated HTML.

Listing 11-24. HTML Added to profile-mock.html to Support Banner and Profile Image

<div id="root">
<div class="container-fluid">
 <div class="row">
 <div class="col-lg-12">
 <div class="artist-profile">
 <img align="left"
 class="artist-profile-banner" src="SampleBackground1.jpg"
 alt="Artist profile large background image" />
 <img align="left"
 class="artist-profile-image img-circle img-thumbnail"
 src="profileSample.jpg"
 alt="Artist Profile image" />

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

390

 <div class="artist-profile-text">
 <h1>ArtistFirst ArtistLast</h1>
 <p>Artist Bio. Blaa blaa blaa ...</p>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

I have added a few sample images to the mockups folder to be used in the layout. In the actual application,
these images and the other content will be added dynamically using data from your ASP.NET Core application.

The final edit for the mock-up will be to add some HTML for displaying the list of collaboration projects
that the artist is involved in. To add the list, you will add a standard HTML table after the artist-profile
DIV. The Bootstrap table and table-striped styles will be applied to the table so that alternate rows are given
slightly darker colors to make them easier to read. Two sample rows will be added to the table so that you
can verify the functionality of the striped rows. Listing 11-25 shows the sample table.

Listing 11-25. Table Added to Mock-Up

<table class="table table-striped">
 <thead>
 <tr>
 <th>
 Project Name
 </th>
 <th>
 Status
 </th>
 <th>
 Created
 </th>
 <th>
 Modified
 </th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Project 1</td>
 <td>Recruiting / Idea Exchange</td>
 <td>12/28/2016</td>
 <td>1/2/2017</td>
 </tr>
 <tr>
 <td>Project 2</td>
 <td>Mixing</td>
 <td>12/28/2016</td>
 <td>1/2/2017</td>
 </tr>
 </tbody>
 </table>

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

391

Now, if you view open profile-mock.html in a web browser, you should see something similar to
Figure 11-4.

Figure 11-4. Completed artist profile mock-up page

Creating React Components from the Mock-Up and Associated Unit Tests
Now that you have a working design, you can begin to decompose the mock-up HTML into React components.
Since you will be following TDD, as you start creating the components, you will also create the tests for them.
The test files will be placed in the same directory as the production code. Each test file will have a name that
matches the production file but will have a .test.js file extension. Having tests in the same folder will make it
easier to determine which files have tests associated with them. The Webpack configuration is set up so that it
knows not to include files that end in .test.js. This is the default setting created by create-react-app.

The first step in the decomposition process is to determine the level of decomposition required to make
the code easier to understand and test. I have decided to break this page up into a container component
and five stateless components. The container component will contain all the logic and state management
functionality. The stateless components, listed here, will only contain markup and will have all data and
behaviors passed to them via properties:

•	 Banner

•	 Picture

•	 Name and Bio

•	 Collaboration List

•	 Collaboration List Row

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

392

As you create each of the components, you will also create a suite of tests that can be run automatically
as you change the application. For each component, you will create several types of tests.

Stubbing Out the Components and Associated Tests

To create the components, first create a new folder under src named components. Under the components
folder, create a new folder named artist-profile. Under the artist-profile, create the following files:

•	 ArtistProfileContainer.js

•	 ArtistProfileContainer.test.js

•	 ArtistProfileBanner.js

•	 ArtistProfileBanner.test.js

•	 ArtistProfilePicture.js

•	 ArtistProfilePicture.test.js

•	 ArtistNameAndBio.js

•	 ArtistNameAndBio.test.js

•	 ArtistCollaborationList.js

•	 ArtistCollaborationList.test.js

•	 ArtistCollaborationListRow.js

•	 ArtistCollaborationListRow.test.js

After the files have been created, you can add the minimum amount of code to each of the React
components to allow the application to build. You can then do the same for the test files. The stubbed-out
tests should fail so that you do not accidentally mistake a test stub for a completed test that passes.

The first component that you will create will be ArtistProfileContainer. This component will be the
top-level React component for artist profiles. You can think of a React container component as you do a
web form created in ASP.NET. React components are ES6 classes that inherit from React.Component. React
container classes can maintain state and usually implement one or more React life-cycle methods. If you
have used ASP.NET Web Forms, the React page life cycle will sound very familiar.

To stub out the ArtistProfileContainer component, first add an import statement that imports
React and Component from the React package. You can then implement a class that extends from React.
Component. The class name should be ArtistProfileContainer to match the name of the file. Notice that
the component begins with an uppercase letter as per the standard React component naming convention.
Inside ArtistProfileContainer, create a method called render and have it return a JSX expression that
creates a DIV element with the contents ArtistProfileContainer stub. You will then make the class
available for import in other modules by exporting it as the default. When completed, your class should
match Listing 11-26.

Listing 11-26. ArtistProfileContainer Stub

import React, { Component } from 'react';

class ArtistProfileContainer extends Component {
 render() {
 return (

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

393

 <div>
 ArtistProfileContainer Stub
 </div>
);
 }
}

export default ArtistProfileContainer;

Next create stubs for the other components. The rest of the React components will be stateless
functional components. Stateless functional components do not inherit from React.Component. They are
simple modules that use an arrow function to return a JSX expression. Stateless functional components do
not maintain state nor do they implement any life-cycle components. Everything they need to render will be
passed to them using props. Props are arguments that are passed into JSX expressions as HTML attributes
and consumed by components using arguments passed to the render method. I will go over this concept in
detail later in this recipe.

For now, create stubs for each of the React components to match the pattern shown in Listing 11-27.

Listing 11-27. ArtistProfileBanner.js Stubbed as Statement Functional Component

import React from 'react';

const ArtistProfileBanner = () => (
 <div>ArtistProfileBanner Stub</div>
);

export default ArtistProfileBanner;

Once you have created a stub of each component, you can stub out each of the tests. The test stub will
contain a single test that fails. For each test, you will call the describe function. The describe function
takes two arguments; the first argument is a string that represents the name of the test suite, and the second
argument is an arrow function that contains the test suite. Inside the arrow function, a call is made to the it
function. The it function follows a similar pattern to describe. The first argument is the name of the test;
the second argument is an arrow function that contains the test itself. Listing 11-28 shows the code for the
test stub. You name the first test ArtistCollaborationList Renders without crashing. In the test body,
you add the code, which will result in a failed test since you have not yet created the component.

expect(false).toBe(true);

The functions describe, it, and expect are global functions imported from Jest. You do not need to
import Jest in the test module because it is done automatically when the tests are run. It should be noted
that ESLint will normally raise an undeclared variable error if you use global variables in a module. The env
setting that was added to .eslintrc in Listing 11-20 prevents ESLint from raising errors.

Listing 11-28. Stub for Tests That Will Fail

describe('ArtistCollaborationList', () => {
 it('ArtistCollaborationList Renders without crashing', () => {
 expect(false).toBe(true);
 });
});

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

394

After stubbing out the rest of the tests, you can run the following command from the command prompt
to execute the tests.

yarn test

After a few seconds, you will see output like the following. The output includes the results for the test for
App.js that is added by create-react-app in addition to the results for your new test.

FAIL src\components\artist-profile\ArtistCollaborationListRow.test.js
 - ArtistCollaborationListRow › ArtistCollaborationListRow Renders without crashing

 expect(received).toBe(expected)

 Expected value to be (using ===):
 true
 Received:
 false

 at Object.it (src/components/artist-profile/ArtistCollaborationListRow.test.js:3:19)
 at Promise.resolve.then.el (node_modules/p-map/index.js:42:16)

 PASS src\App.test.js

Test Suites: 6 failed, 1 passed, 7 total
Tests: 6 failed, 1 passed, 7 total
Snapshots: 0 total
Time: 0.604s, estimated 1s
Ran all test suites related to changed files.

Implementing the “ArtistProfileContainer Renders without crashing” Test

Since you are following TDD, you will first write a set of tests for ArtistProfileContainer. The first test will
verify that ArtistProfileContainer will render without crashing. To create this test, you will first add two
import statements to the test so that React and ReactDom are added to the module. You also need to add
an import statement for the ArtistProfileContainer component. Next, you will replace the body of the
ArtistProfileContainer Renders without crashing test with two statements. The first statement will
create a DOM element that you can use as a container. The second will call ReactDOM.render and attempt to
render the ArtistProfileContainer inside the DIV element. When completed, ArtistProfileContainer.
test.js should match Listing 11-29. This test should succeed.

Listing 11-29. ArtistProfileContainer.test.js

import React from 'react';
import ReactDOM from 'react-dom';
import ArtistProfileContainer from './ArtistProfileContainer';

describe('ArtistProfileContainer', () => {
 it('ArtistProfileContainer Renders without crashing', () => {
 const div = document.createElement('div');
 ReactDOM.render(<ArtistProfileContainer />, div);
 });
});

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

395

Verifying That ArtistProfileContainer Contains the Expected Children

The next test will verify that ArtistProfileContainer renders each of the expected child components.
As you add tests to your test suite that require rendering React components and then inspecting their state,
the performance of the test suite may begin to degrade. To minimize the performance problems and to avoid
having your unit tests fail because of an error in a nested component, you should test only the top-level
component and not the children. However, you will need to use the shallow function from the Enzyme
library. Add a new test called ArtistProfileContainer to render Banner, Picture, CollaborationList,
and NameAndBio. In the test body, you will first use shallow to create a shallow representation of
ArtistProfileContainer. You will then verify that the component renders at least one of each of the child
controls. This test can be achieved using a function of the shallow component called contains. Listing 11-30
shows the completed test.

Listing 11-30. Verifying That the Container Has All the Child Components

import React from 'react';
import ReactDOM from 'react-dom';
import { shallow } from 'enzyme';
import ArtistProfileContainer from './ArtistProfileContainer';
import ArtistProfileBanner from './ArtistProfileBanner';
import ArtistProfilePicture from './ArtistProfilePicture';
import ArtistNameAndBio from './ArtistNameAndBio';
import ArtistCollaborationList from './ArtistCollaborationList';

describe('ArtistProfileContainer', () => {
 it('ArtistProfileContainer Renders without crashing', () => {
 const div = document.createElement('div');
 ReactDOM.render(<ArtistProfileContainer />, div);
 });

 it('ArtistProfileContainer should render Banner, Picture, CollaborationList and
NameAndBio', () => {

 const wrapper = shallow(<ArtistProfileContainer />);
 expect(wrapper.contains([
 <ArtistProfilePicture />
])).toBe(true);

 expect(wrapper.contains([
 <ArtistProfileBanner />
])).toBe(true);

 expect(wrapper.contains([
 <ArtistNameAndBio />
])).toBe(true);

 expect(wrapper.contains([
 <ArtistCollaborationList />
])).toBe(true);
 });
});

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

396

If you check in the console window, you will notice that this new test fails. To make the test pass, you
will modify the render method of ArtistProfileContainer so that it includes the child controls. To do this,
follow these steps:

 1. Add import statements for each of the child components, ArtistProfileBanner,
ArtistProfilePicture, ArtistNameAndBio, and ArtistCollaborationList.

 2. Use the HTML from the mock-up completed in Listing 11-21 to create the shell
of the component. Remove the code that will be implemented in the child
components. You will also not need the outer HTML structure, such as the HEAD
and BODY elements that were created in the mock-up.

After you paste in the code from the HTML mock-up, you will see errors for each of the class attributes
in the HTML elements. The errors are caused by the fact that JSX looks like HTML but is being converted
into JavaScript under the covers. Since class is a JavaScript keyword, you cannot use it as an attribute in
JSX. To correct the error, you must replace the class attribute with a className attribute. The updated
ArtistProfileContainer should match Listing 11-31.

Listing 11-31. ArtistProfileContainer

import React, { Component } from 'react';

import ArtistProfileBanner from './ArtistProfileBanner';
import ArtistProfilePicture from './ArtistProfilePicture';
import ArtistNameAndBio from './ArtistNameAndBio';
import ArtistCollaborationList from './ArtistCollaborationList';

class ArtistProfileContainer extends Component {
 render() {
 return (
 <div className="container-fluid">
 <div className="row">
 <div className="col-lg-12">
 <div className="artist-profile">
 <ArtistProfileBanner />
 <ArtistProfilePicture />
 <ArtistNameAndBio />
 </div>
 </div>
 </div>
 <div className="row">
 <div className="col-lg-12">
 <h2>Collaboration Projects</h2>
 <ArtistCollaborationList />
 </div>
 </div>
 </div>
);
 }
}

export default ArtistProfileContainer;

At this point, you should be able to run you tests again, and they should pass.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

397

Stubbing Out Tests for the Rest of the Components

The same process can now be followed for the child components.

 1. Modify the test classes so that they contain similar logic as shown in Listing 11-28
to verify that the components can render without crashing.

 2. Copy the HTML from the mock-up and paste it into the appropriate component.
You will also need to change the class attribute to className as you did in the
parent component.

 3. Another change that will be required for the ArtistProfilePicture and
ArtistProfileBanner components is that you will need to remove the
align="left" attribute. The align attribute causes an error since it is not valid
HTML 5. You will need to instead implement the alignment in the CSS by adding
float: left; to the .artist-profile img.artist-profile-banner and
.artist-profile-image styles.

Listing 11-32 shows the ArtistProfilePicture component.

Listing 11-32. ArtistProfilePicture.js

import React from 'react';

const ArtistProfilePicture = () => (
 <img
 className="artist-profile-image img-circle img-thumbnail"
 src="profileSample.jpg"
 alt="Artist Avatar"
 />
);

export default ArtistProfilePicture;

After you have added code to all the components and updated the unit tests, all tests should now pass.
To verify that all the tests pass, return to the command window, which should still be running the test script
but is waiting for input. Enter a to rerun all tests:

All the tests will run, and you should see output like the following:

PASS src\components\artist-profile\ArtistProfileContainer.test.js
 PASS src\App.test.js
 PASS src\components\artist-profile\ArtistProfilePicture.test.js
 PASS src\components\artist-profile\ArtistCollaborationListRow.test.js
 PASS src\components\artist-profile\ArtistCollaborationList.test.js
 PASS src\components\artist-profile\ArtistProfileBanner.test.js
 PASS src\components\artist-profile\ArtistNameAndBio.test.js

Test Suites: 7 passed, 7 total
Tests: 8 passed, 8 total
Snapshots: 0 total
Time: 1.117s, estimated 2s
Ran all test suites.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

398

Adding the CSS

In ASP.NET Core, Razor views, and regular HTML, adding a style sheet to a page is done by adding a LINK
element to the page with an HREF attribute that points to the style sheet. When creating React components,
you cannot add styles in the same way since React components are JavaScript files. Webpack provides
a solution to this problem by allowing you to use ES6 import statements to include CSS files into your
components. To add CSS to your ArtistProfileContainer component, first create a new CSS file called
artistprofile.css in the component/artist-profile folder. Copy the contents of the .css files that you
created for the mock-up in Listing 11-22 into the new file.

In the ArtistProfileContainer.js, add an import statement.

import './artistprofile.css';

By adding the import statement, Webpack will automatically package the CSS file, add it to the CSS
bundle, and then add the required JavaScript for loading the needed CSS for the component.

Adding the Sample Images

In the final application, you will be using a web service to fetch the URLs for the images used in the artist
profile from a web service. However, since you have not yet completed the services integration, it is helpful
to have some test images to use when you are running the application with the React development server.
To do this, in the public folder of the React application, create a subfolder called images. You can then copy
both images that you used in the mock-up into the images folder. While in development, you will be able
to access the images from the path ./images/profileSample.jpg. The images will not be added to the
Webpack bundle.

Replacing the Hard-Coded Values with Props and State

React uses props to pass data between components. Props are JavaScript objects passed to a component
through its constructor. In the JSX code, properties can be passed to child components using what look
like HTML attributes. To help developers who are consuming your components, React provides type
checking for a prop using props validation. Props validation allows you to specify the expected data type
of each property and whether it is required. It should be noted, however, that props validation is a help
for developers only. It does not provide functionality for the users of your application. To enable props
validation, you first need to add the prop-types library to your project. The prop-types library can be added
to the project from the command line using the following:

yarn add prop-types

After adding prop-types, you can then add them to the ArtistProfileContainer component using the
following:

import PropTypes from 'prop-types';

Next you can add the propTypes and defaultProps objects to the ArtistProfileContainer class.
In the propTypes object, you will define the names and data types of the properties that you would like
the component to support. The prop-types library helps you prevent errors in your program by verifying
that the props you pass to a React component are of the expected type. Valid prop types include JavaScript
primitives, such as a string, bool, or array; React components; or an instance or a JavaScript class. You can

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

399

also verify that a JavaScript object adheres to a specific shape. You can find out more about the prop-types
library at the following URL:

https://www.npmjs.com/package/prop-types

defaultProps allows you to specify default values for optional props. For ArtistProfileContainer, you
will add default values so that the sample images can be loaded.

Listing 11-33 shows propTypes and defaultProps applied to the ArtistProfileContainer module.

Listing 11-33. propTypes and defaultProps

ArtistProfileContainer.propTypes = {
 profileImage: PropTypes.string,
 bannerImage: PropTypes.string,
 artistName: PropTypes.shape({
 firstName: PropTypes.string,
 lastName: PropTypes.string
 }),
 artistBio: PropTypes.string
};

ArtistProfileContainer.defaultProps = {
 profileImage: '/images/profileSample.jpg',
 bannerImage: '/images/SampleBackground1.jpg',
 artistName: { firstName: 'firstName', lastName: 'lastName' },
 artistBio: ''
};

Next, you will add a constructor to the ArtistProfileContainer class. The constructor will set the
default state for the component. React components have an object called state that is tracked by the
React framework. When changes are made to state, the React component will be rendered again, allowing
changes to state that impact the UI to be displayed. The state object is only writable directly in the
constructor. After that, changes to state must be handled using the setState method. Listing 11-34 shows
the ArtistProfileContainer constructor.

Listing 11-34. ArtistProfileContainer Constructor

constructor(props) {
 super(props);
 this.state = {
 profileImage: props.profileImage,
 bannerImage: props.bannerImage,
 artistName: props.artistName,
 artistBio: props.artistBio
 };
 }

The render method can now be updated so that the values in state are passed as props to the
child components. JSX allows you to do this by applying custom HTML attributes to each of the React
components. The HTML attributes can contain hard-coded values or JavaScript expressions wrapped in
curly braces. Listing 11-35 shows the updated render method.

https://www.npmjs.com/package/prop-types

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

400

Listing 11-35. Updated ArtistProfileContainer Render Method

render() {
 return (
 <div className="container-fluid">
 <div className="row">
 <div className="col-lg-12">
 <div className="artist-profile">
 <ArtistProfileBanner bannerImage={this.state.bannerImage} />
 <ArtistProfilePicture profileImage={this.state.profileImage} />
 <ArtistNameAndBio
 artistName={this.state.artistName}
 artistBio={this.state.artistBio}
 />
 </div>
 </div>
 </div>
 <div className="row">
 <div className="col-lg-12">
 <h2>Collaboration Projects</h2>
 <ArtistCollaborationList />
 </div>
 </div>
 </div>
);
 }

The unit tests will now fail since you are passing down props that they are not expecting.

Updating the Child Components to Receive Props

Each of the child components can also be set up to receive props. In the ArtistProfilePicture component,
you are using the ES6 deconstructor to break the props object into specific properties. This technique
aids in readability and saves you some typing in the render method. Like the container component, you
will also add props validation to ArtistProfilePicture. ArtistProfilePicture will require that the
profileImage property is required and will not provide a default value. Listing 11-36 shows the completed
ArtistProfilePicture component.

Listing 11-36. ArtistProfilePicture Component Updated to Receive Props

import React from 'react';
import PropTypes from 'prop-types';

const ArtistProfilePicture = ({ profileImage }) => (
 <img
 className="artist-profile-image img-circle img-thumbnail"
 src={profileImage}
 alt="Artist Profile Image"
 />
);

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

401

ArtistProfilePicture.propTypes = {
 profileImage: PropTypes.string.isRequired
};

export default ArtistProfilePicture;

After making this change, you may notice some errors being displayed in the console that state the
props validation is failing when running the unit tests for the child components. This is because you do
not have default values for the props in the child components and the unit tests are not passing props
when the components are being rendered. To fix the console messages, update the unit tests, as shown for
ArtistProfilePicture.test.js in Listing 11-37. Similar changes will also be required in the other unit tests.

Listing 11-37. Updated Unit Tests to Avoid Props Validation Errors

describe('ArtistProfilePicture', () => {
 it('ArtistProfilePicture Renders without crashing', () => {
 const div = document.createElement('div');
 ReactDOM.render(<ArtistProfilePicture profileImage={'/images/profileSample.jpg'} />, div);
 });
});

Once the ArtistProfilePicture component has been updated, you can repeat the process with the
other components.

Viewing the Component in the Browser

Now that the structure of the React component has been created, you should be able to view it in the
browser and verify that it matches the mock-up. First, you need to update App.js so that it is showing
ArtistProfileContainer rather than the create-react-app boilerplate. To update App.js, follow these steps:

 1. Open App.js and remove all the import statements except for React.

 2. Add an import statement for ArtistProfileContainer.

 3. Remove the content from the return statement of the render method.

 4. Add <ArtistProfileContainer /> to the render method.

When done, App.js should match Listing 11-38.

Listing 11-38. App.js Updated to Include ArtistProfileContainer

import React, { Component } from 'react';
import ArtistProfileContainer from './components/artist-profile/ArtistProfileContainer';

class App extends Component {
 render() {
 return (
 <ArtistProfileContainer />
);
 }
}

export default App;

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

402

After making the changes, verify that all your tests still pass.
The last component that is required in order for the React application to match the mock-up is to add

the Bootstrap CSS. You do not want to add Bootstrap to any of the React components since you do not
want it to be bundled by Webpack. The workaround is to add the LINK element to the index.html file in the
public directory.

You can then use Ctrl+C to stop the test script in the command prompt and use yarn start to build
the application and launch it in the web browser. The results should match the mock-up, as shown earlier in
Figure 11-4.

Creating a Snapshot Test

Now that your components look as you expect, you need to create a UI test that will verify that changes
you make going forward do not create visual regressions. Jest snapshot tests allow you to do this without
requiring that you launch a web browser. To create a snapshot test, follow these steps:

 1. In the ArtistProfileContainer.test.js file, import renderer from
react-test-renderer.

 2. Inside the ArtistProfileContainer describe statement, add a new test using
the it function named ArtistProfileContainer Matches Snapshot.

 3. Inside the new test, use the renderer.create function to render a copy of the
component.

 4. Use the toJSON function to create a JSON representation of the component.

 5. Use the Jest expect.toMatchSnapShot function to test the current snapshot
against the snapshot created the first time the function was run. The first time
this test is run, the snapshot will be created, and the test will pass.

Listing 11-39 shows the snapshot test.

Listing 11-39. Snapshot Test for ArtistProfileContainer

it('ArtistProfileContainer Matches Snapshot', () => {
 const component = renderer.create(<ArtistProfileContainer />);
 const tree = component.toJSON();
 expect(tree).toMatchSnapshot();
 });

You can now rerun the test suite and all tests will pass. You should also notice that a new directory
named __snapshots__ has been added to the components/artist-profile directory. A file named
ArtistProfileContainer.test.js.snap has been added. If you examine the file, you will see that the
snapshot contains the entire rendered HTML of the component complete with data.

Creating the Artist Profile Service in the ASP.NET Core Application
So far, you have been using hard-coded values in your React components to simulate data. In this section,
you will create a simple web service using ASP.NET Core that the React application can call.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

403

Creating the Model

The first step for creating the web service is to create a set of model classes to define the data model.

 1. In Visual Studio, open the Chapter 11 project.

 2. Create a new folder named Models.

 3. In the Models folder, create a new class named CollaborationProject and
implement it so that it matches Listing 11-40.

 4. In the Models folder, create another new class named Profile and implement it
so that it matches Listing 11-41.

Listing 11-40. CollaborationProject Model

using System;

namespace Chapter11.Models
{
 public class CollaborationProject
 {
 public string ProjectName { get; set; }
 public string Status { get; set; }
 public DateTime Created { get; set; }
 public DateTime Modified { get; set; }
 }
}

Listing 11-41. Profile Model

using System.Collections.Generic;

namespace Chapter11.Models
{
 public class Profile
 {
 public string ProfileImageUrl { get; set; }
 public string BannerImageUrl { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Bio { get; set; }

 public IList<CollaborationProject> Projects { get; set; }

 }
}

http://dx.doi.org/10.1007/978-1-4842-0427-6_11

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

404

Creating the API Controller

You will create a new service that will return the data needed to populate the artist profiles. The service will
use standard REST conventions to map a combination to URLs and HTTP verbs to create, read, update, and
delete operations. The URL for the service will be the following:

/api/profile/{id}

To create the service, follow these steps:

 1. Create a new API controller by right-clicking the Controllers folder and
selecting Add ➤ Controller.

 2. If prompted, add the minimum dependencies.

 3. In the Add Scaffold window, select API Controller with read/write actions.

 4. Click Add to create the controller.

 5. In the Add Controller window, name the controller ApiProfileController and
then click Add.

 6. In the new file created by the template, change the Route attribute to
[Route("api/profile")].

For this recipe, you will only be implementing the Get action. To simplify this example, you will be
hard-coding some values to return from the service. Listing 11-42 shows the Get action.

Listing 11-42. The Get Action in ApiProfileController

[HttpGet("{id}", Name = "Get")]
public Profile Get(int id)
{
 return new Profile
 {
 BannerImageUrl = "/images/SampleBackground1.jpg",
 ProfileImageUrl = "/images/profileSample.jpg",
 FirstName = "firstName",
 LastName = "lastName",
 Bio = "This is the Bio",
 Projects = new List<CollaborationProject> {
 new CollaborationProject {
 ProjectName = "Project 1",
 Status = "Recruiting / Idea Exchange",
 Created = DateTime.Parse("12/28/2016"),
 Modified = DateTime.Parse("1/2/2017")
 },
 new CollaborationProject {
 ProjectName = "Project 2",
 Status = "Mixing",

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

405

 Created = DateTime.Parse("12/28/2016"),
 Modified = DateTime.Parse("1/2/2017")
 }
 }

 };
}

You should now be able to run the ASP.NET Core application and verify that you can access the service
and it is returning the correct values.

Using the React Development Server’s Proxy Setting to Avoid Cross-Domain
Issues
The first problem you will face while developing a React SPA application is that React uses its own
development HTTP server that runs on a different port than the IIS Express web server you are using with
Visual Studio. Because it is running on a different port, security features in the web browser will prevent
the Ajax calls to the ASP.NET Core web service from succeeding. There are several strategies that can be
employed to get around the cross-domain issues such as JSONP, but you do not want to use them in this case
since you are only going to have cross-domain issues while in development.

Thankfully, the React application created using create-react-app has a built-in feature that allows you
to make proxy calls to the ASP.NET Core web service through the React development HTTP server. When
the proxy is enabled and a request to the React development HTTP server does not match a path in the
React application, the React development HTTP server will automatically forward the request to the server
configured as the proxy. The result of this feature is that calls to the ASP.NET Core application appear as
relative URLs to the browser and you do not have cross-domain errors.

To enable the proxy in the React application, follow these steps:

 1. Make note of the port being used by the ASP.NET Core application. You can find
it under the project properties. To access the properties, right-click the project
name in Solution Explorer and then select Properties. In the Properties window,
click the Debug tab. The port number can be found under the Web Server
Settings on the Debug tab. For my project, the port is 53017, but this will likely be
different for the project you created.

 2. In the React project, open the package.json file, add a new item called proxy,
and set it to the URL of the ASP.NET Core web server. Listing 11-43 shows the
updated package.json file.

Listing 11-43. package.json updated with proxy Setting

{
 "name": "chapter11-react",
 "version": "0.1.0",
 "private": true,
 "homepage": "/lib/chapter11-react",
 "dependencies": {
 "react": "^15.5.4",
 "react-dom": "^15.5.4",
 "prop-types": "^15.5.10"
 },

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

406

 "devDependencies": {
 "enzyme": "^2.8.2",
 "eslint": "3.19.0",
 "eslint-config-airbnb": "^15.0.1",
 "eslint-plugin-import": "2.2.0",
 "eslint-plugin-jest": "^20.0.3",
 "eslint-plugin-jsx-a11y": "5.0.1",
 "eslint-plugin-react": "7.0.1",
 "react-scripts": "1.0.7",
 "react-test-renderer": "^15.5.4"
 },
 "scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test --env=jsdom",
 "eject": "react-scripts eject"
 },
 "proxy": "http://localhost:53017"
}

Creating the ArtistProfileAPI Class
To maintain a separation of concerns and to simplify unit testing, you will create a new module to make Ajax
calls to the ASP.NET Core web API. The class will use the new Fetch API to make the Ajax calls. To create the
ArtistProfileAPI class, follow these steps:

 1. Create a new folder under the src directory of the React project and name it api.

 2. Add a new JavaScript file called ArtistProfileApi.js.

 3. Inside ArtistProfileApi.js define a class named ArtistProfileApi and
define a static method called getArtistProfile that takes an argument called
artistId.

 4. The getArtistProfile should call fetch with the relative URL to the service as
the URL.

Listing 11-44 shows the ArtistProfileApi class. The Fetch API is a bit different from the older APIs
such as XMLHttpRequest or the Ajax methods used by libraries such as jQuery. The main difference is that
it is based on ES6 promises. Promises are a similar concept to tasks in C#. Promises allow you to define an
asynchronous function. Similar to the await keyword in C#, JavaScript has a .then function that will be
called when an asynchronous operation is completed. The .then function takes a function as an argument.
In Listing 11-44, you are using an arrow function to define the function anonymously. Just like using the
await keyword in C#, using arrow functions in conjunction with the .then function simplifies asynchronous
functions by making them look synchronous.

The second thing that may seem odd about the Fetch API is that the response argument that is passed
to the .then function does not contain the data from the service call. It instead returns a response object that
contains data about the response, such as if the request was redirected and the response code was returned
by the server. If you want to access the contents of the response, you must call one of the transformation
methods of the response object. In this case you are calling the json function, which will try to convert the
response to JSON.

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

407

It should be noted that json() is an asynchronous method. It does not return the json object but rather
another promise. The getArtistProfile method returns this promise to the caller. This will allow the caller
to provide a callback function as an arrow function.

Listing 11-44. ArtistProfileApi Class

class ArtistProfileApi {
 static getArtistProfile(artistId) {
 return fetch(`/api/profile/${artistId}`,
 {
 method: 'GET',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json'
 }
 }
)
 .then(response => response.json());
 }
}

export default ArtistProfileApi;

Calling the ArtistProfileApi When the ArtistProfileContainer Is First Loaded
In a similar fashion to ASP.NET Web Forms, React has a component life cycle. In ASP.NET Web Forms
you have an OnLoad event that fires when the page first loads. This event is typically used for loading
data from the back-end database and binding the data to controls. In React you have an event called
componentWillMount that is called the first time a component is loaded by the application. You will use the
componentWillMount event to trigger the web service call.

Since you defined getArtistProfile as a static method, you do not need to create an object instance.
You can simply call ArtistProfileApi.getArtistProfile(1). Calling getArtistProfile will return a
promise. You need to use the .then function to pass in a callback function that will process the data. Inside
the callback function, you call this.setState. You can update all the objects in this state that were initially
set in the component’s constructor. After the state has been updated, React will add the changes to a queue
and will apply changes to the UI by intelligently rerendering the component.

Listing 11-45 shows the completed ArtistProfileContainer class. It should be noted that you do not
need to add any Ajax calls to the child components. The data is passed down to the children using props.

Listing 11-45. The Completed ArtistProfileContainer

import React, { Component } from 'react';
import PropTypes from 'prop-types';
import ArtistProfileBanner from './ArtistProfileBanner';
import ArtistProfilePicture from './ArtistProfilePicture';
import ArtistNameAndBio from './ArtistNameAndBio';
import ArtistCollaborationList from './ArtistCollaborationList';
import ArtistProfileApi from '../../api/ArtistProfileApi';
import './artistprofile.css';

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

408

class ArtistProfileContainer extends Component {
 constructor(props) {
 super(props);
 this.state = {
 profileImage: props.profileImage,
 bannerImage: props.bannerImage,
 artistName: props.artistName,
 artistBio: props.artistBio
 };
 }

 componentWillMount() {
 ArtistProfileApi.getArtistProfile(1)
 .then((data) => {
 this.setState({
 profileImage: data.profileImageUrl,
 bannerImage: data.bannerImageUrl,
 artistName: { firstName: data.firstName, lastName: data.lastName },
 artistBio: data.bio
 });
 })
 .catch((error) => {
 console.error(`There has been a problem with your fetch operation:

${error.message}`);
 });
 }

 render() {
 return (
 <div className="container-fluid">
 <div className="row">
 <div className="col-lg-12">
 <div className="artist-profile">
 <ArtistProfileBanner bannerImage={this.state.bannerImage} />
 <ArtistProfilePicture profileImage={this.state.profileImage} />
 <ArtistNameAndBio
 artistName={this.state.artistName}
 artistBio={this.state.artistBio}
 />
 </div>
 </div>
 </div>
 <div className="row">
 <div className="col-lg-12">
 <h2>Collaboration Projects</h2>
 <ArtistCollaborationList />
 </div>
 </div>
 </div>
);
 }
}

Chapter 11 ■ Creating Modern User experienCes Using reaCt.js and asp.net Core

409

ArtistProfileContainer.propTypes = {
 profileImage: PropTypes.string,
 bannerImage: PropTypes.string,
 artistName: PropTypes.shape({
 firstName: PropTypes.string,
 lastName: PropTypes.string
 }),
 artistBio: PropTypes.string
};
ArtistProfileContainer.defaultProps = {
 profileImage: '/images/profileSample.jpg',
 bannerImage: '/images/SampleBackground1.jpg',
 artistName: { firstName: 'firstName', lastName: 'lastName' },
 artistBio: 'Artist Bio. Blaa blaa blaa ...'
};

export default ArtistProfileContainer;

Next Steps
You should now be able to start the React application and see that the profile page is getting data from the
ASP.NET application. This is a good start, but the application is not complete. At this point, the unit tests
you created earlier are broken and need to be updated. You will need to use Jest’s mocking capabilities to
override the getArtistProfile method with a mock implementation in the unit test. You will also need to
update the snapshot so it properly reflects the new data that you will be providing in the mock service.

Once all the tests are working and you have added all the needed functionality to the application, you
can follow the procedure shown in recipe 11-3 to copy the compiled components into the ASP.NET Core
application.

The React ecosystem is complex. This chapter was only a brief introduction into what can be done with
React. If you want to learn more about React, I highly recommend the book Pro React (Apress, 2015).

411© John Ciliberti 2017
J. Ciliberti, ASP.NET Core Recipes, DOI 10.1007/978-1-4842-0427-6

Appendix

A-1. Installing SQL Server 2016 Developer
Visual Studio comes with a basic version of SQL Server called SQL Server Express LocalDB. LocalDB is a
great database to use for prototyping and basic development since it requires no configuration and does not
require administrative rights on the computer to run. Unfortunately, LocalDB also has some limitations such
as the following:

•	 LocalDB runs under your user account. This limitation may make it difficult to test
application deployment scenarios where the application and SQL Server are running
under different service accounts.

•	 LocalDB shuts down when not in use. LocalDB is a user process and not a Windows
service. If you use LocalDB with the full version of Internet Information Services, it
will not start automatically when you start the web application like it does when you
launch IIS Express from Visual Studio.

•	 The instance collation for LocalDB is set to SQL_Latin1_General_CP1_CI_AS and
cannot be changed.

•	 LocalDB cannot be a merge replication subscriber.

•	 LocalDB does not support some advanced SQL Server features such as FILESTREAM.

•	 LocalDB has limits on the number of CPU cores, memory, and size of the database.

An alternative to SQL Server Express LocalDB is SQL Server Developer. SQL Server Developer contains
all the features of the SQL Server Enterprise edition but cannot be used in production. SQL Server Developer
is run as a service and always available for your application. It also allows you to change the collation
settings and can be a merge replication subscriber.

Another tool that you will likely find helpful on your developer workstation is SQL Server Management
Studio. SQL Server Management Studio has several features that are not available in Visual Studio, including
the ability to manage database backups, manage SQL Server Security, create database diagrams, and view
the SQL Server logs.

Downloading Microsoft SQL Server 2016 Developer
Microsoft SQL Server 2016 Developer is free and can be downloaded from the following URL:

http://go.microsoft.com/fwlink/?LinkID=799009

http://go.microsoft.com/fwlink/?LinkID=799009

 ■ Appendix

412

Installing Microsoft SQL Server 2016 Developer
After the download has completed, double-click the installer to launch it. Depending on your Windows
settings, you may be prompted by Windows User Account Control. If prompted, click the Accept button.

In the SQL Server 2016 with SP1 Developer Edition install window shown in Figure A-1, click the
Custom button.

On the “Specify SQL Server media download target location” screen, use the default media location or
select another location if the default location does not have available space. Click the Install button to begin
downloading and installing SQL Server 2016. Depending on the speed of your Internet connection, this step
may take a long time.

Figure A-1. SQL Server 2016 Developer edition install

 ■ Appendix

413

After the download phase has completed, the SQL Server Installation Center will open, as shown in
Figure A-2.

In the left panel of the SQL Server Installation Center, click Installation and then click “New SQL Server
stand-alone installation or add features to an existing installation.” After clicking, the SQL Server installer
will run several checks to verify that your computer has the correct configuration to install SQL Server. In
most cases, the check will not find any issues. If an issue is found, you can click the link under “status” and
read the instructions on how to correct the problem. Figure A-3 shows the results on my PC. I had a warning
regarding Windows Firewall. Clicking the Warning link under “status” showed that Windows Firewall was
enabled but that I would need to make configuration changes to the firewall before SQL Server would be
able to accept incoming connections. My SQL Server instance will not need to accept external connections
because it is only for local development use, so I can ignore this warning.

Figure A-2. SQL Server Installation Center

 ■ Appendix

414

Click the Next button to move on to the next step in the installation process. On the Installation Type
screen, ensure that “Perform a new installation of SQL Server 2016” is selected and then click Next.

Figure A-3. A common warning

 ■ Appendix

415

On the Product Key screen, ensure that “Specify a free edition” is selected and that Developer is selected
in the drop-down list, as shown in Figure A-4.

Click Next to proceed to the License Terms screen. On the License Terms screen, select the “I accept the
license terms” check box and then click Next.

Figure A-4. Ensure that Developer is selected for the product key

 ■ Appendix

416

On the Feature Selection screen, under Instance Features, select Database Engine Services, as shown in
Figure A-5. You may optionally select other features, but they are not required for the examples in this book.

On the Instance Configuration screen, select “Default instance” and accept the default settings. Click
Next to continue.

On the Server Configuration page, you can accept the default settings and click Next.
On the Database Engine Configuration page, ensure Windows Authentication Mode is selected and

then click the Add Current User button to add your account as an administrator on the SQL Server instance.
Click Next to move on. Another set of configuration rules will run and should pass. You will then be shown
the Ready to Install screen.

Click Install to proceed with the installation. It may take as long as an hour for the installation to
complete.

Figure A-5. Selecting features to install

 ■ Appendix

417

Installing SQL Server Management Tools
After the SQL Server installation is completed, return to the SQL Server Installation Center. On the
Installation section, click the Install SQL Server Management Tools link. This will open a browser window
that will show a page with a link to download SQL Server Management Studio (SSMS). Click the link for
downloading SSMS. Click Save in the browser when prompted. The installer will take a few minutes to
download. After the download is complete, run the installer.

On the welcome screen, click the Install button. Depending on your computer’s settings, you may be
prompted by User Account Control.

A restart may be required to complete the installation. After the reboot is completed, click in the
Windows 10 search bar and type SQL Server Management Studio. Click SQL Server Management Studio 17
in the search results. The first time you run SSMS, it may take a few minutes to start up, but eventually you
will see a window like the one shown in Figure A-6. Type a single period, ., in the “Server name” text box
to connect to the local SQL Server instance. A single period is shorthand for localhost. You can also enter
localhost, the loopback address 127.0.0.1, or ::1 if you prefer to use the IPv6 notation.

Figure A-6. SQL Server Management Studio after install

 ■ Appendix

418

A-2. Downloading and Installing the Sample Database
Many examples in this book use a sample database. This database is based on de-identified data from a real
production database. To install the database, you need to download the backup file of the database from the
book’s GitHub repository and then restore the backup to your local SQL Server.

Downloading the Database Backup File
You can download the backup file from the following URL: https://github.com/johnciliberti/
AspNetCoreRecipes/blob/master/Shared/Database/mvcSharedDB.bak.

On the GitHub web page, click the Download link. Click Save when prompted by the web browser.
Alternatively, you can use Git to clone the entire repository. This method is shown in the “Cloning the

ASP.NET Core Recipes Git Repository” section A-5.

Restoring the Database Backup Using SSMS
You can restore the backup file using the following steps:

 1. Open Microsoft SQL Server Management Studio and connect to your local
Microsoft SQL Server Developer instance. This technique was shown in the
“Installing SQL Server 2016 Developer” section A-1.

 2. In Object Explorer, right-click Databases and then select Restore Database, as
shown in Figure A-7.

Figure A-7. Selecting Restore Database in Object Explorer

https://github.com/johnciliberti/AspNetCoreRecipes/blob/master/Shared/Database/mvcSharedDB.bak
https://github.com/johnciliberti/AspNetCoreRecipes/blob/master/Shared/Database/mvcSharedDB.bak

 ■ Appendix

419

 3. In the Restore Database window, select Device as the source.

 4. Click the ellipsis button on the right side of the Device text box to open the
“Select backup devices” window.

 5. Ensure that the “Backup media type” is File and then click the Add button in the
“Select backup devices” window.

 6. Navigate to the file you downloaded from GitHub and then click OK. Figure A-8
shows the process of selecting the backup files.

Figure A-8. Steps 3 to 6 of restoring the database using SSMS

 7. Click OK to close the “Select backup devices” window.

 8. In the Restore Database window, confirm the settings and optionally change the
name of the destination database. You should also verify that the paths specified
on the Files tab correspond to valid paths on your system. By default they will
match paths used on the system that the backup was originally taken from.

 9. Click OK to verify that the backup completed successfully.

 ■ Appendix

420

 10. After the restore is complete, you should be able to expand the database in
Object Explorer and explore the data. Figure A-9 shows the database in Object
Explorer and a query showing the contents of the Bands table.

A-3. Adding ASP.NET Core Recipe’s NuGet Repository to
Visual Studio
A custom NuGet repository has been set up to host the NuGet packages at MyGet.org. To add this repository
to Visual Studio, you can perform the following steps:

 1. Open Visual Studio 2017.

 2. From the Tools menu, select Options.

 3. Locate the settings for the NuGet Package Manager in the left pane of the Options
window and then select Package Sources.

 4. Click the Add button for “Available package sources” (the green plus sign).

Figure A-9. Viewing the database in SQL Server Management Studio

 ■ Appendix

421

 5. Name the package source ASPNETCore Recipes and change the source to
https://www.myget.org/F/aspnetcoremvcrecipes/api/v3/index.json, as
shown in Figure A-10.

 6. Click OK to save your changes.

 7. ASPNETCoreRecipes will now be available as a package source when you use the
NuGet Package Manager.

A-4. Installing Git
Visual Studio has built-in support for Git and can be configured to use GitHub. These features are great
and make working with Git easy. Even with this great support, it can be advantageous to install the git-scm
package from https://git-scm.com/. This package will install command-line utilities that can be used
outside of Visual Studio and will install optional Unix utilities, a Unix-like command shell, and a shell
extension that adds Git commands to Windows File Explorer.

To install the Git tools, follow these steps:

 1. Go to https://git-scm.com/.

 2. Click the Downloads for Windows button and then save the installer file.

 3. After the download has completed, launch the installer. This step requires
administrative access to your PC. Depending on your configuration, you may be
prompted by Windows User Account Control to verify that you want to install the
software. If prompted, select yes.

Figure A-10. Adding the custom NuGet repo to Visual Studio

https://www.myget.org/F/aspnetcoremvcrecipes/api/v3/index.json
https://git-scm.com/
https://git-scm.com/

 ■ Appendix

422

 4. In the Git setup, click Next after reviewing the GNU general public license.

 5. On the Select Components page, keep the defaults and then click Next.

 6. On the “Adjusting your PATH and environment” page, click “Use Git and optional
Unix tools from the Windows command prompt.” This will allow you to use
Unix commands from any Windows command prompt. Note that this option
will overwrite some DOS commands such as find. If you have custom scripts or
use utilities that depend on the behavior of the Windows versions of these DOS
commands, you can keep the default value. Click Next.

 7. On the “Choosing HTTPS transport” page, select “Use the native Windows
Secure Channel Library.” This option will help you avoid SSL errors when using
Git from the command shell from inside your company’s intranet.

 8. For the “Configuring the line ending conversions” setting, select the option that
works best for your organization. The default setting of “Checkout Windows-
style, commit Unix-style” is usually preferred in Windows-heavy development
shops. Click Next.

 9. Use the default settings for configuring the terminal emulator to use with Git
Bash. Click Next.

 10. For “Configuring extra options,” keep the defaults, which are “Enable file system
caching” and Enable Git Credential Manager. Click Install.

 11. Click the Finish button once the install has completed.

Now that Git and the Unix command-line tools are installed, you should see a new folder added into
your apps that includes Git GUI, Git Bash, and Git CMD. Git GUI is a basic graphical interface for working
with Git, Git Bash is a Unix-style shell based on the MING64 toolkit. Git CMD is a command prompt shortcut
that contains some additional environment variables such as EXEPATH that lists the path to the Git home
directory.

In addition, you will have new options in the Windows File Explorer window such as being able to select
Git Bash Here when right-clicking a folder.

A-5. Cloning the ASP.NET Core Recipes Git Repository
The fastest way to download the latest samples for this book is to clone the Git repository. The easiest way
to do this is using the command window to perform a clone operation. A Git clone will give you a complete
copy of the ASP.NET Core Recipes Git repository. To clone the repository, follow these steps:

 1. Open a command window.

 2. Navigate to the directory where you want to clone the repo. You can do this using
the cd command. Here’s an example:

cd "My Documents"

 3. Enter the following command:

git clone https://github.com/johnciliberti/AspNetCoreRecipes.git

 ■ Appendix

423

After cloning, a new directory will be created called AspNetCoreRecipes. If you explore the directory,
you will find a directory for each chapter and, for most chapters, a separate directory for each recipe in the
chapter.

Checking for Updates
I will continue to update the samples as new versions of ASP.NET Core are released and defects in the
sample code are corrected. You can use the Git command-line tools to check whether you are running the
latest copy. To do this, follow these steps:

 1. Open a command window and navigate to the AspNetCoreRecipes folder where
you cloned the repo.

 2. Enter the following commands:

git remote update
git status

The first command will update your remote references. The second will compare
your local copy of the repository to the version on the remote server. If a new
version is available, you will see a message such as the following:

On branch master
Your branch is behind 'origin/master' by 1 commit, and can be fast-forwarded.
 (use "git pull" to update your local branch)
nothing to commit, working tree clean

 3. If you have changed the code in the directory, you will need to stash your
changes before you can bring down the latest changes to avoid merge conflicts.
You can do this by using the git stash command.

 4. To download the latest changes, you can use the following command:

git pull

Reporting Issues and Asking Questions
If you find a bug in the sample code or have a question or suggestion, you can contact me using GitHub
by creating a new issue. Creating an issue requires that you create an account on GitHub. If you have an
account, you can navigate to the following URL:

https://github.com/johnciliberti/AspNetCoreRecipes/issues

To create a new issue, click the New Issue button. Please give the issue a descriptive title and try to
explain the issue in as much detail as possible. You can optionally tag the issue with a label. Valid labels
include bug, enhancement, and question.

I try to answer questions as soon as I can and will usually respond within a few days.

https://github.com/johnciliberti/AspNetCoreRecipes/issues

425© John Ciliberti 2017
J. Ciliberti, ASP.NET Core Recipes, DOI 10.1007/978-1-4842-0427-6

��������� A
Action invokers, 22
Action link

anchor target, 86–89
areas feature, 80–81
controller, 79–80
custom HTML attributes, 81–82
custom HTTPS creation, 84–86
HTTPS, 82–83

ActionLink HTML Helper, 75–79
Active Server Pages (ASP), 3
Adapter, 310–311
ApplicationUser class, add custom fields to

with additional properties, 347
ApplicationUserPreferences, 346–347
ConcertAlertPreference, 346
database migrations, 347
Entity Framework, 348

Areas, 218
controllers, 220
creation, 218
site structure, 219

Arrow function expressions, 380
ArtistAdminController list action, 249–250
ArtistProfileContainer

render method, 400
ASP.NET

Microsoft Web development
ecosystem tools, 7

Razor syntax
code blocks, 73
comment, 74
explicit markup, 74
foreach loop, 71
fundamentals, 67–68
HTML Helpers, 71–73
if-else statement, 70
model data, 68–70
switch statement, 70
@ symbol, 75
variables, 68

ASP.NET Core MVC
architecture, 23–27

components, 22–23, 26
Core file system, 26
HTTP abstractions, 26
native process, 25
request processing

pipeline, 27–29
routing, 26
runtime, 25
security, 26

capabilities, 22
categories, 17
compilation services, 20
components, 19
conditional breakpoint, setting

conditional expressions, 60–61
counters, 61
filters, 62

consolidation, 18, 20
controllers and actions, 33–37
deployment, 18
development

environment, 43–44, 46–47
dotnet.exe, 51–52
editing, views and layouts, 64–65
functionality

configuration system, 21
POCO controllers, 20
view components, 21

models
C# classes, 30
complex types, 30
composite models, 32
entity framework, 33
methods, 31
simple classes, creation, 31

page routing engine, 37–39
performance, 18
ReflectedActionInvoker, 29
RegisterViewModel, 32
structure

Index

■ INDEX

426

appsettings.json, 56
bin, 54
bower.json, 56
.bowerrc, 56
bundleconfig.json, 57
controllers, 54
data, 54
models, 55
obj, 55
Program.cs, 57
services, 55
Startup.cs, 57
views, 55

testing, 62, 64
upgrade, 145–148
view engines, 39–41
ViewResult, 30
Visual Studio 2017, 50
Visual Studio’s debugging, 57–60

ASP.NET Core Recipes Git repository, 422–423
ASP.NET MVC 6

ASP.NET Core Web Application, 154–155
ASP.NET Web API 2, 149
ASP.NET Web API shim, 148
controllers, 151
debugging, 157
default API route, 150
HttpResponseMessage, 152–156
porting CellPhoneController, 156
Request.CreateResponse, 152–154
using statement, 151
Web API controllers, 149
Web API shim, 149

��������� B
Babel tool, 368, 376, 383
Back-end failure, 246
Bootstrap Glyphicon, 90–91
Bower, 363
BuildBundlerMinifier NuGet package, 363
Built-in validation methods, 324

��������� C
Cascading Style Sheets (CSS), 5
Client-side validation

AddValidation method, 308
generated HTML, 308
JavaScript, 309
jQuery validation

unobtrusive validation, 310–311
validation method, 309–310

script reference to view, 312

Cloud, 177
Complex validation rules

built-in validators, 324–325
classes, 320–323
controller, 331
GuitarBuilderToGuitarAdapter class, 330–331
GuitarBuilderViewModel class, 328, 330
inventory class, 327–328
NuGet package, 323
project, 320
SelectListItem adapter, 326–327
testing application, 332–333

Conditional breakpoint, 60–62
Conditional expressions, 60
Constructor Injection, 248
Continuous integration and deployment (CI/CD)

pipeline, 49
Counters, 61
create-react-app, 370, 372
Create, read, update, delete (CRUD) operation, 13
Cross-site request forgery (CSRF), 299
Cross-site scripting (XSS), 69
Custom business rules

HOME controller, 314
Index view, 314, 316
model, 312–313
project, 312

Custom validation attribute
client-side validation, 310

AddValidation method, 308
generated HTML, 308
JavaScript, 309
jQuery validation, 309–311
script reference to view, 312

Home controller, 306–307
index view, 307
IsValid method, 304, 305
model, 303

��������� D
Data access layer

generic repository, 203–206
IUnitOfWork Interface, 202, 210–211
metadata classes, 202
MobContext, 209–210
UnitOfWork implementation, 206–209
validation and Façade classes, 202

Data annotations validation
requirements, 296–297
scaffolding

controller, 299–300
CSRF, 299
HTTP POST, 299
views, 300–302

ASP.NET Core MVC (cont.)

■ INDEX

427

view model, 296–298
Visual Studio, 296

Database backup
downloading, 418
SQL Server Management Studio, 420
SSMS, 418–419

Debugging windows, 57
Developer machine hardware

displays, 44
PayScale, 47
proposals, 47

Development environment
displays, 44
mouse and keyboard, 44
PayScale, 47
PC configuration, 44
proposals, 47
SOAP UI, 47
Telerik Fiddler, 46
touch screens, 44
Visual Studio Community Edition, 44
Visual Studio extensions, 45
web browser add-ins, 46

Development machine
continuous integration and

deployment, 49
enterprise deployment environments, 49
VM, 48

Docker container
benefits, 179
ci-build service, 182
COPY command, 183
docker-compose, 181–182
FROM command, 183
Hyper-V Manager, 180
installation, 180
run menu, 183
shared drive, 180–181

DOM testing, 386
dotnet new, 52

��������� E
ECMAScript 6 (ES6)

App.js, 381
arrow function expressions, 380
classes, 378–379
module system, 377, 382
variable scoping, 380

Enterprise deployment environments, 49
Entity Framework Core

add reference, 190
class creation, 186–187
configuration file, 189–190
database migrations

creation, 191–195
revert, 196
run, 195

DbContext, 187–188, 196–198
existing database

reverse engineering, 199–200
sysadmin, 199

Fluent API, 189
migrations, 184
NuGet packages, 185–186
script command, 196

��������� F
Facebook app

add middleware to startup, 352–353
create developer account, 349
create new app ID, 350
log in, 353
NuGet package, 352
secret, 350
user secrets store, 351–352

Fallback feature, 133–134
Fluent validation

built-in validators, 324–325
classes, 320–323
controller, 331
GuitarBuilderToGuitarAdapter

class, 330–331
GuitarBuilderViewModel class, 328, 330
inventory class, 327–328
NuGet package, 323
project, 320
SelectListItem adapter, 326–327
testing application, 332–333

FormTagHelper class, 104

��������� G
Git, Installing, 421–422
Globally unique identifiers (GUIDs), 5
GridView control

ASP.NET Core MVC, 270
controller, 275–276
data access code, 271, 273
data sets, 270–271
features, 269–270
inline editing

controller, 289–290
HTML Helpers, 286, 288
view, 290, 292

model, creation, 274–275
numeric pager, 280–285
paging and sorting, 285
view, creation, 276–277, 279

■ INDEX

428

Guitar
built-in validators, 324–325
classes, 320–323
controller, 331
GuitarBuilderToGuitarAdapter class, 330–331
inventory class, 327–328
NuGet package, 323
project, 320
SelectListItem adapter, 326–327
testing application, 332–333
view model, 328, 330

Gulp toolkit, 366

��������� H
Hashing algorithm, 339
Hit counter

dependency injection, 168–169
IHitCounterService, 167
Index view, 170

HomeController
completed test class, 230–232
creating tests, 228–229
execution, 232–233
testability, 226–227
ViewData, 229

HTML
form, 91–94
helpers, 70–73, 85, 95–97, 101

��������� I
IHtmlGenerator, 77
Image link, 90–91
Inline function, 99–100
Internet Information Services (IIS), 2
IoC container, 248–249
IUnitOfWork Interface, 202
IValidatableObject

Home controller, 314
Index view, 314, 316
model, 312–313
project, 312

IViewEngine interface, 41
IView Interface, 41

��������� J, K
JavaScript build process

bower configuration, 365
Gulp, 366–367
Package.json, 366

jQuery validation
methods, 309, 310
unobtrusive, 310–311

JSX, 376, 381–382

��������� L
LightSwitch, 4
Linter tool, 384
LocalDB database, 340, 411

��������� M
Microsoft Azure, 2
Microsoft .NET Framework, 10
Microsoft SQL Server 2016 Developer

download link, 411
features selection, 416
installation center, 413
product key, 415
SQL Server Management Studio, 417
warning, 414

Microsoft Web development ecosystem
matrix tools, 6
myriad, 1
platforms and frameworks

ASP, 3
Core MVC, 5
LightSwitch, 4
MVC, 3
SharePoint, 5
SignalR, 4
Silverlight, 4
Web API, 4
Web Forms, 3
Web Pages, 4

tools list, 7
Model binders, 23
Model View Controller (MVC) pattern

action, 15
communication patterns, 12–13
design-benefits, 13
distinct layers, 11
technologies, 14

Model View Presenter (MVP) pattern
ASP.NET Web Forms application, 15–16
controllers, 15

Model View ViewModel (MVVM) pattern, 16
Moq

back-end database failure, 246–247
data access component, 243–244
ListAction_ReturnsListView, 242
test project, 242

��������� N
Node.js, 362
Node Package Manager (NPM), 362
NuGet packages, 337

CI, 140
configuration, 141

■ INDEX

429

.csproj file, 142–143
feeds, 140
Package Manager Console, 143
Package Manager user interface, 143–144
packages.config, 139
repository, 420–421
restore and pack, 140
Twilio, 356–357
Visual Studio settings, 142

��������� O
Object-relational mapper (ORM), 33
Options pattern

configuration, 214
EmailSenderOptions, 212–213
environment variables, 217
MailKit, 212
project creation, 211
Startup.cs, configuration, 215, 217
user secrets feature, 215

��������� P, Q
Page routing, 37–39
Platform as a service (PaaS), 2

��������� R
Rapid application development (RAD), 4
Razor syntax

code blocks, 73
comments, 74
explicit markup, 74
foreach loop, 71
fundamentals, 67–68
HTML Helpers, 71–73
if-else statement, 70
model data, 68–70
switch statement, 70
@ symbol, 75
variables, 68

React.js
Babel and Webpack, 368
benefits, 368–369
development server, 371–372
ESLint configuration, 384–385
integration, ASP.NET Core MVC

project, 372–375
open source JavaScript library, 368
Razor Tag Helpers, 381
single-page applications creation,

create-react-app, 369–370
software packages requirement, 369
stand-alone library, 368
test suite, front end application

DOM testing, 386
snapshot tests, 386
unit tests, 386

toolchain, 376
user interface library, 381
in Visual Studio, 371

React SPA
ArtistProfileAPI class, 406–407
artist profile service

API controller, 404
CollaborationProject model, 403
model classes, 403

calling ArtistProfileAPI, 407–408
components creation

adding sample images, 398
artist-profile, 392
ArtistProfileBanner.js stubbed, 393
ArtistProfileContainer, 392, 394
child components to receive props, 400–401
component viewing in browser, 401–402
CSS adding, 398
hard-coded values, props and state,

398–400
propTypes and defaultProps, 399
snapshot test, 402
stubbing and associated tests, 392–394
stubbing out tests, 397
verifying, ArtistProfileContainer, 395–396

HTML mock-up, 387–390
server’s proxy setting, 405–406

Reference architectures
application design factors, 172–173
large Internet-facing application, 175–176
line-of-business application, 176–177
small Internet-facing application, 173–174

Remote validation
model, 316
modify Home controller, 318
project, 316
view, 319
Web API, 317

Repository pattern, 201
Rich Internet application (RIA), 4
Roslyn loader, 25
Route handlers, 22

��������� S
Salt text, 340
Short Message Service (SMS) message, 337
Simulating calls to external dependencies

ArtistAdminController, 241
ArtistViewModel, 243
data access library, 241
interface separation, 240
IoC, 241

■ INDEX

430

mocking, 241
Moq

back-end database failure, 246–247
data access component, 243–244
ListAction_ReturnsListView, 242
test project, 242

no data found, testing, 245
Software license agreement forms

client-side validation, 310
AddValidation method, 308
generated HTML, 308
JavaScript, 309
script reference to view, 312

custom validation attribute, create, 304–305
Home controller, 306–307
index view, 307
IsValid method, 304
model, 303

SslActionLink, 85

��������� T
Tag cloud

CSS classes, 158, 160
GetLinkItemClassName, 161
project creation, 158
Razor views, 160
view component class, 162–166

Tag Helpers
anchor

action link creation, 107
attribute, 105
link to controller, 105–106
route parameter, 106
SSL, 107

cache
ConnStrings.json, 126
controller, 130
database connection, 125
FormWithCacheViewModel, 130
NuGet package, 125
Shared.DataAccess, 126–127
view, 127–129, 131

class creation, 108
controller, 108–109
custom creation, 135–137
custom Tag Helpers, 104
drop-down list, 114–116, 118
environment, 132
fallback feature, 133
HTML Helper, 102
input validation

class creation, 119
controller, 120
CSS, 122–123

error, 122, 124
view, 120–121

ITagHelperDescriptorResolver, 103
Label and Input helpers, 107
nullable bool type, 112–114
script and link, 132
view, 110–111

Telerik Fiddler, 46
Templated HTML Helpers, 97–99
Template engine, 40
Test-driven development (TDD), 22, 383

controllers, 238–239
design, 234
ListAction_ReturnsListView, 239–240
requirements, 234
test class, 235–238
TFD, 233

Test-first development (TFD), 233
T-shirts sale in online store

data attributes, 297–298
scaffolding

controller, 299–300
views, 300–302

validation requirements, 296–297
Visual Studio, 296

Twilio
configuration data in startup, 358–359
Congratulations window, 355
create account, 354
ISmsSender, 357–358
NuGet package, 354, 356–357
offers, 353
options pattern, 357
Programmable SMS, 355
request page, 356
User Secrets store, 356

Two-factor authentication
in action, 360
commented out code, 359–360
manage your account, 360
Twilio, 353, 355–359

��������� U
Unit of Work pattern, 201
UrlHelper action, 78

��������� V
View engines, 23, 30

functional components, 40
interface, 40
IViewEngine interface, 40
modular design, 40
RenderAsync method, 42
ViewContext, 42

Simulating calls to external dependencies (cont.)

■ INDEX

431

View model
data attributes, 297–298
validation requirements, 296–297

Visual Studio 2017, 50–51
Visual Studio debugging windows, 59

��������� W
Web essentials browser link toolbar, 65
Web Forms

ASP.NET Core, 251–252
DataList control

ColumnsList Tag Helper, 265–268
foreach loop, 258
Tag Helper, 259–265

GridView (see GridView control)
MVC, 252

access control, 253
code-behind page, 255
markup and data binding, 254
MembersController, 256–257
MyCollaborationSpaces, 257–258

WebMatrix integrated development
environment (IDE), 4

Webpack, 376, 383
Web site for authentication and authorization

ApplicationUser, 338
Apply Migrations button, 342

appsettings.json, 340
controllers and views, 337
database error page, 342–343
Data folder, 337
explore database, 345
IdentityUser, 339–340
individual user accounts, 335
manage your account page, 344
Migrations folder, 338
Models folder, 338
NuGet packages, 337
primary key, 339
services folder, 340
SQL Server, 341
Startup.cs, 343
Visual Studio project, 336
Windows authentication, 335
work accounts, 335

Windows Presentation Foundation
(WPF), 16

��������� X
xUnit test project, 221–225

��������� Y, Z
YAML Ain’t Markup Language (YAML), 21

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: ASP.NET Core MVC Fundamentals
	1-1. Understanding the Microsoft Web Development Ecosystem
	Problem
	Solution
	How It Works
	Microsoft Application Hosting Platforms
	Microsoft Web Development Platforms and Frameworks
	First-Generation Active Server Pages
	ASP.NET Web Forms
	ASP.NET MVC
	ASP.NET Web API
	ASP.NET Web Pages
	ASP.NET SignalR
	LightSwitch
	Silverlight
	SharePoint
	ASP.NET Core MVC

	Microsoft Web Development Tools
	Understanding the Variations of the Microsoft .NET Framework

	1-2. Understanding the MVC Pattern
	Problem
	Solution
	How It Works
	Benefits of the MVC Design Pattern
	Other Technologies That Use the MVC Pattern

	1-3. Understanding the Differences Between MVC, MVVM, and MVP
	Problem
	Solution
	How It Works
	The MVC Pattern
	The MVP Pattern
	The MVVM Pattern

	1-4. Discovering the Features of ASP.NET Core MVC
	Problem
	Solution
	How It Works
	Performance
	Deployment
	Consolidation
	Namespace Changes

	Compilation Services
	New Functionality
	POCO Controllers
	View Components
	Tag Helpers
	New Configuration System

	Missing Features

	1-5. Understanding the Architecture of ASP.NET Core MVC
	Problem
	Solution
	How It Works
	ASP.NET Core
	Hosting: Native Process
	Runtime: CLR Native Host
	Runtime: Managed Entry Point
	Runtime: Application Host
	Runtime: Roslyn Loader
	.NET Core and ASP.NET Core

	The ASP.NET MVC Request Processing Pipeline

	1-6. Understanding Models in ASP.NET Core MVC
	Problem
	Solution
	How It Works
	Creating Simple Classes
	Creating Composite Models
	Using the Entity Framework

	1-7. Understanding Controllers and Actions in ASP.NET Core MVC
	Problem
	Solution
	How It Works
	Other Types of Action Results

	1-8. Understanding Page Routing in ASP.NET Core MVC
	Problem
	Solution
	How It Works

	1-9. Understanding View Engines in ASP.NET Core MVC
	Problem
	Solution
	How It Works

	Chapter 2: Getting Started with ASP.NET Core MVC
	2-1. Setting Up Your Development Environment
	Problem
	Solution
	How It Works
	PC Configuration
	Touch Screens
	Displays
	Mouse and Keyboard
	Getting Visual Studio Community Edition
	Visual Studio Extensions
	Other Software
	Web Browser Add-Ins
	Telerik Fiddler
	SOAP UI

	Business Justification for Adequate Developer Hardware

	2-2. Determining Which Operating System to Use for Your Development Machine
	Problem
	Solution
	How It Works
	Enterprise Deployment Environments
	Continuous Integration and Deployment

	2-3. Creating a New ASP.NET Core MVC Application Using Visual Studio 2017
	Problem
	Solution
	How It Works

	2-4. Creating a New ASP.NET Core MVC Application Using dotnet.exe
	Problem
	Solution
	How It Works
	Understanding the Options for dotnet new
	Creating a Project Using the Web Template

	2-5. Understanding the Structure of an ASP.NET Core MVC Project
	Problem
	Solution
	How It Works
	bin
	Controllers
	Data
	Models
	obj
	Services
	Views
	_ViewImports.cshtml
	_ViewStart.cshtml

	.bowerrc
	appsettings.json
	bower.json
	bundleconfig.json
	Program.cs
	Startup.cs

	2-6. Using Visual Studio’s Debugging Windows to Debug an ASP.NET Core MVC Application
	Problem
	Solution
	How It Works

	2-7. Setting a Conditional Breakpoint in an ASP.NET Core MVC Controller
	Problem
	Solution
	How It Works
	Conditional Expressions
	Counters
	Filters

	2-8. Testing Your ASP.NET Core MVC Application Across Many Browsers at the Same Time
	Problem
	Solution
	How It Works
	Enabling Multiple Default Browsers
	Trying It

	2-9. Editing Your Views and Layouts from Inside Internet Explorer
	Problem
	Solution
	How It Works
	Installing Web Essentials
	Editing a Web Page in the Browser

	Chapter 3: MVC Razor Syntax and HTML Helpers
	3-1. Understanding Razor Syntax
	Problem
	Solution
	How It Works
	Variables
	Displaying Model Data
	Control Statements
	Loops
	HTML Helpers
	Code Blocks
	Explicit Markup
	Comments
	Escaping the @ Symbol

	3-2. Creating an Action Link
	Problem
	Solution
	How It Works
	_htmlGenerator.GenerateActionLink
	UrlHelper Action

	3-3. Creating an Action Link to Another Controller
	Problem
	Solution
	How It Works

	3-4. Creating an Action Link to Another Area
	Problem
	Solution
	How It Works

	3-5. Creating an Action Link with Custom HTML Attributes
	Problem
	Solution
	How It Works

	3-6. Creating an Action Link That Uses HTTPS
	Problem
	Solution
	How It Works

	3-7. Creating Your Own Action Link for Creating HTTPS Links
	Problem
	Solution
	How It Works
	SslActionLink

	3-8. Creating an Action Link with an Anchor Target
	Problem
	Solution
	How It Works

	3-9. Creating an Image Link
	Problem
	Solution
	How It Works

	3-10. Creating an Image Link Using a Bootstrap Glyphicon
	Problem
	Solution
	How It Works

	3-11. Using HTML Helpers to Create HTML Form Elements
	Problem
	Solution
	How It Works
	BeginForm and the @using Statement
	HtmlHelper.Label
	HtmlHelper.TextBox

	3-12. Using Strongly Typed HTML Helpers
	Problem
	Solution
	How It Works

	3-13. Using Templated HTML Helpers
	Problem
	Solution
	How It Works

	3-14. Creating an Inline Function in a Razor View
	Problem
	Solution
	How It Works

	Chapter 4: Using Tag Helpers
	4-1. Understanding Tag Helpers
	Problem
	Solution
	How It Works
	The Life Cycle of a Tag Helper

	4-2. Creating Hyperlinks with the Anchor Tag Helper
	Problem
	Solution
	How It Works
	Creating a Link to an Action in the Same Controller
	Creating a Link to an Action in Another Controller
	Creating a Link to an Action That Includes a Route Parameter
	Creating a Link to an Action in an Area
	Creating an Action Link with SSL
	Creating an Action Link with an Anchor Target

	4-3. Building a Form Using the Form, Label, and Input Tag Helpers
	Problem
	Solution
	How It Works
	The Model
	The Controller
	The Views

	4-4. Data Binding a Nullable bool to an Option Tag Helper
	Problem
	Solution
	How It Works
	The Model
	The Controller
	The View

	4-5. Creating a Drop-Down List with the Select Tag Helper
	Problem
	Solution
	How It Works
	The Model
	The Controller
	The View

	4-6. Validating Input with Tag Helpers
	Problem
	Solution
	How It Works
	The Model
	The Controller
	The View
	Enhancing the User Experience with CSS

	4-7. Improving Performance with the Cache Tag Helper
	Problem
	Solution
	How It Works
	Configuring the Project to Connect to a Database
	Adding the Shared.DataAccess NuGet Package
	Adding the ConnString.json File
	Registering Shared.DataAccess with ASP.NET Core’s Dependency Injection System

	Creating the View Component
	Creating the View for the View Component
	The ViewComponent View

	The Model
	The Controller
	The View

	4-8. Using the Environment, Script, and Link Tag Helpers for Conditionally Rendering Script and Link Tags
	Problem
	Solution
	How It Works
	Using the Environment Tag Helper
	Using the Fallback Feature for JavaScript Files

	4-9. Creating a Custom Tag Helper
	Problem
	Solution
	How It Works
	Project Setup
	Adding Required Dependencies to the TagHelpers Project
	Creating the Tag Helper
	Adding the Custom Tag Helper to Your ASP.NET Core MVC Project

	Chapter 5: Getting the Most from the New Features in ASP.NET Core MVC
	5-1. Understanding NuGet with ASP.NET Core MVC
	Problem
	Solution
	How It Works
	NuGet Package Sources
	Adding a Custom NuGet Feed to Visual Studio
	Using a NuGet Config File
	Changing the Global NuGet Settings from Visual Studio

	Adding a NuGet Package to Your Project
	Examining the .csproj File
	Adding a Package Using the Package Manager Console
	Adding a Package Using the NuGet Package Manager UI in Visual Studio

	5-2. Upgrading from ASP.NET MVC 5 to ASP.NET Core MVC
	Problem
	Solution
	How It Works
	Creating the ASP.NET MVC 5 Project to Be Migrated
	Creating the New ASP.NET Core MVC Project
	Import Project Files from the ASP.NET MVC Project
	Correcting the Errors
	JavaScript and CSS Libraries
	Adding Moment.js to the ASP.NET MVC Project
	Adding Moment.js to the ASP.NET Core MVC Project

	5-3. Upgrading from Web API to ASP.NET MVC 6
	Problem
	Solution
	How It Works
	Creating an ASP.NET Web API 2 Project
	Creating a New ASP.NET Core MVC (.NET Framework) Project
	Enabling the Web API Shim
	Importing the Controller and Adding the Required using Statements
	Using Request.CreateResponse with the Web API Compatibility Shim

	Converting Your Web API Controller to the ASP.NET Core MVC Without the Compatibility Shim
	Creating the ASP.NET Core Web Application (.NET Core)
	Porting CellPhone Controller to ASP.NET MVC Core

	5-4. Creating a Tag Cloud Using a View Component
	Problem
	Solution
	How It Works
	Creating the Project
	Creating the CSS Classes
	Creating the Tag Cloud Model
	Creating the Tag Cloud View Component
	Adding the Component Views

	Using the View Component in a View

	5-5. Using the Inject Feature to Implement a Hit Counter
	Problem
	Solution
	How It Works
	Creating the Project
	Creating the Hit Counter Service Class
	Registering the Interface with the Dependency Injection System
	Using the Class in a View

	Chapter 6: Solution Design Using ASP.NET Core MVC
	6-1. Developing Reference Architectures for ASP.NET Core MVC Applications
	Problem
	Solution
	How It Works
	Application Design Factors
	Scope and Schedule
	Audience and Usage Patterns
	Scalability
	Reliability
	Security

	Reference Architectures
	Small Internet-Facing Applications
	Large Internet-Facing Application
	Other Deployment Scenarios

	6-2. Designing Your ASP.NET Core MVC Project for the Cloud
	Problem
	Solution

	6-3. Deploying an ASP.NET Core MVC Application in a Docker Container
	Problem
	Solution
	Containerizing an ASP.NET Core MVC Application

	How It Works
	Creating a Shared Drive
	Creating an ASP.NET Core MVC Project with Docker Support
	Running and Debugging the Application in the Container

	6-4. Creating a Data Access Layer Using Entity Framework Core Code First
	Problem
	Solution
	How It Works
	Creating the Solution
	Adding Entity Framework Core NuGet Packages
	Creating the Model Classes
	Creating the DbContext
	Using the Fluent API to Specify Database Mapping Details
	Setting the Connection String Using a Configuration File
	Adding a Reference to the Data Access Project to the Web Project
	Adding a Startup Class to the Recipe04.DataAccess Project
	Database Migrations
	Creating Your First Migration

	Running the Migration
	Backing Out a Migration
	Promoting the Changes to Production
	Modifying the Startup So the Web Application Can Use Your DbContext

	6-5. Creating a Data Access Layer Using Entity Framework Core Code First from an Existing Database
	Problem
	Solution
	How It Works
	Creating the Solution
	Creating the Sample Database
	Reverse Engineering Your Database

	6-6. Using the Repository and Unit of Work Patterns in Your Data Access Layer
	Problem
	Solution
	How It Works
	The IUnitOfWork Interface
	The Generic Repository
	Creating Repository Classes That Derive from the Generic Repository
	The UnitOfWork Implementation
	Passing a Connection String to MoBContext and Using It to Initialize the Database Connection
	Consuming the UnitOfWork Class in an ASP.NET MVC Core Application

	6-7. Using the Options Pattern to Simplify Configuration of Your ASP.NET Core MVC Application
	Problem
	Solution
	How It Works
	Creating the Project
	Installing MailKit from Nuget
	Creating the EmailSenderOptions Class
	Modifying MessageService to Use EmailSenderOptions
	Setting Up the Configuration
	Adding Settings to User Secrets

	Loading the Configuration in Startup.cs
	Using Environment Variables in Production

	6-8. Using Areas to Organize a Large ASP.MVC Project
	Problem
	Solution
	How It Works
	Creating the Project
	Creating a New Area
	Adding Controllers to an Area

	Chapter 7: Test-Driven Development with ASP.NET Core MVC
	7-1. Adding an xUnit Test Project to an ASP.NET Core Web Application Solution
	Problem
	Solution
	How It Works
	Creating the Solution and Web Application Project
	Creating the Test Project from Visual Studio
	Creating the Test Project from the Command Line
	Running the Test Project for the First Time
	Exploring the Test Project
	Adding the Test Project to the Solution
	Adding Chapter07.Web as a Reference to Chapter07.Test

	7-2. Creating Unit Tests for a Controller
	Problem
	Solution
	How It Works
	Modifying HomeController for Testability
	Creating Tests for HomeController
	Running the Tests for HomeController

	7-3. Understanding Test-Driven Development Strategies
	Problem
	Solution
	How It Works
	The Requirements
	Creating the Design
	Adding the Test Class
	Creating the Controller
	Implementing the First Test

	7-4. Simulating Calls to External Dependencies Using Moq
	Problem
	Solution
	Separating the Interface from Implementation
	Mocking
	Inversion of Control and Dependency Injection

	How It Works
	Adding a Reference to the Data Access Library
	Modifying ArtistAdminController
	Adding Moq to the Test Project
	Updating ListAction_ReturnsListView to Use Moq
	Verifying the Model Is the Correct Type
	Using Moq to Simulate Data Returned from the Data Access Layer
	Testing for a Condition When No Data Is Found
	Using Moq to Test for a Back-End Database Failure

	7-5. Using the Inversion of Control and Constructor Injection Patterns with ASP.NET Core MVC
	Problem
	Solution
	How It Works
	Using Constructor Injection
	Registering Types with the ASP.NET Core IoC Container
	Implementing the ArtistAdminController List Action

	Chapter 8: Moving from Web Forms to ASP.NET Core MVC
	8-1. Deciding Between Staying with Web Forms, a Full Rewrite, or Gradual Migration
	Problem
	Solution
	Deciding Between a Gradual Migration and a Full Rewrite
	Gradual Migration from ASP.NET Web Forms to ASP.NET Core

	8-2. Converting a Web Forms Page to MVC
	Problem
	Solution
	How It Works
	Moving to ASP.NET Core MVC

	8-3. Creating a Custom Tag Helper That Mimics the ASP.NET Data List Control
	Problem
	Solution
	How It Works
	Creating a Tag Helper to Mimic the Web Forms DataList Control
	Creating the ColumnList Tag Helper
	Adding Properties to the Tag Helper
	Validating the Properties of the Tag Helper
	Setting Up the Tag Helper to Execute View Components
	Adding the Rending Logic

	Using the ColumnsList Tag Helper
	Creating the ArtistCard View Component
	Making the Custom Tag Helpers Visible to the Views
	Adding the Controller Logic
	Using the ColumnList Tag Helper in a View

	8-4. Creating a Data Grid with Paging, Sorting, and Filtering Support
	Problem
	Solution
	How It Works
	Features of the Web Forms GridView Control
	Features of the ASP.NET Core MVC Grid View
	Performance Considerations for Working with Large Data Sets
	The Data Access Code
	Creating the Model
	Creating the Controller
	Creating the View
	Creating the Numeric Pager
	Making Friendly URLs for Paging and Sorting

	8-5. Creating a Data Grid That Allows Inline Editing
	Problem
	Solution
	How It Works
	The HTML Helpers
	The Model
	The Controller
	The View

	Chapter 9: Data Validation Using ASP.NET Core MVC
	9-1. Validating Form Data Using Data Annotations
	Problem
	Solution
	How It Works
	Create the Visual Studio Project
	Creating the View Model
	Scaffolding the Controller
	Scaffolding the View

	9-2. Creating a Custom Validation Attribute
	Problem
	Solution
	How It Works
	Creating the Model
	Creating the Custom Validation Attribute
	Overriding IsValid

	Updating the Home Controller
	Updating the Index View
	Adding Client-Side Validation
	Adding the JavaScript
	Registering the Validation Method with jQuery Validation
	Registering the Adapter with jQuery Unobtrusive Validation

	Adding the Script to the View Page

	9-3. Processing Custom Business Rules on an Entity by Implementing IValidatableObject
	Problem
	Solution
	How It Works
	Creating the Project
	Creating the Model
	Updating the Home Controller
	Updating the Index View

	9-4. Using Remote Validation
	Problem
	Solution
	How It Works
	Creating the Project
	Creating the Model
	Creating the Web API
	Modifying the Home Controller
	Creating the View

	9-5. Creating Complex Validation Rules Using Fluent Validation
	Problem
	Solution
	How It Works
	Creating the Project
	Creating the Models
	Installing the Fluent Validation NuGet Package
	Creating the Validation Rules
	Creating the View Model
	Creating a Generic SelectListItem Adapter
	Simulating an Inventory Module
	Creating the GuitarBuilderViewModel Class
	Creating the GuitarBuilderToGuitarAdapter Class

	Creating the Controller
	Creating the Views and Testing the Application

	Chapter 10: Securing Your ASP.NET Core MVC Application
	10-1. Creating an ASP.NET Core Web Site That Uses ASP.NET Identity Core for Authentication and Authorization
	Problem
	Solution
	How It Works
	Creating the Visual Studio Project
	Exploring the Project
	NuGet Packages
	Controllers and Views
	Data
	Models
	IdentityUser Support for Different Data Types
	Properties of IdentityUser<TKey>

	Services
	appsettings.json

	Creating the Database Schema
	How the Apply Migrations Button Works

	Exploring the Application
	Exploring the Database

	10-2. Adding Custom Fields to the ApplicationUser Class
	Problem
	Solution
	How It Works

	10-3. Allowing Users to Log In to Your ASP.NET Core Application Using Facebook
	Problem
	Solution
	How It Works
	Creating a Facebook Application
	Adding the App ID and App Secret to the User Secrets Store
	Adding the Microsoft.AspNetCore.Authentication.Facebook NuGet Package
	Adding the Facebook Authentication Middleware to Startup.cs

	10-4. Enabling Two-Factor Authorization in Your ASP.NET Core Application
	Problem
	Solution
	How It Works
	Setting Up a Twilio Account
	Adding the Twilio Configuration to the User Secrets Store
	Installing the Twilio NuGet Package
	Creating a Configuration Class
	Implementing the ISmsSender API Using Twilio
	Wiring Up the Configuration in Startup
	Uncommenting the Code in Views/Manage/Index.cshtml

	Chapter 11: Creating Modern User Experiences Using React.js and ASP.NET Core
	11-1. Understanding node.js and Bower Integration in the ASP.NET Core Project System
	Problem
	Solution
	How It Works
	Node.js
	NPM
	Bower
	Bower Depreciated

	BuildBundlerMinifier NuGet Package

	11-2. Customizing the JavaScript Build Workflow in an ASP.NET Core Project
	Problem
	Solution
	How It Works
	Changing the Bower Configuration
	Adding Gulp to the Project and Automatically Running Tasks When the Project Is Built

	11-3. Adding React to an ASP.NET Core Application
	Problem
	Solution
	How It Works
	Why React
	Installing the Required Software
	Creating the React Single-Page Application Using create-react-app
	Opening the React Project in Visual Studio
	Starting the React Development Server
	Integrating the React Application with Your ASP.NET Core MVC Project
	Building the React App
	Copying the Contents of the React Build Folder to the ASP.NET Core Project

	11-4. Understanding React, JSX, ES6, Babel, and Webpack
	Problem
	Solution
	How It Works
	ES6
	Module System
	export and export default
	import

	Classes
	Variable Scoping with let and const
	Arrow Functions

	React and JSX
	Webpack
	Babel

	11-5. Adding Unit Testing and Static Code Analysis to a React Project
	Problem
	Solution
	How It Works
	ESLint Configuration
	Adding Linting Rules for Jest Unit Tests

	Types of Tests for Front-End Applications
	Unit Tests
	Snapshot Tests
	DOM Tests

	11-6. Creating an SPA Using ASP.NET Core and React
	Problem
	Solution
	How It Works
	Creating the HTML Mock-Up of Your React SPA
	Creating React Components from the Mock-Up and Associated Unit Tests
	Stubbing Out the Components and Associated Tests
	Implementing the “ArtistProfileContainer Renders without crashing” Test
	Verifying That ArtistProfileContainer Contains the Expected Children
	Stubbing Out Tests for the Rest of the Components
	Adding the CSS
	Adding the Sample Images
	Replacing the Hard-Coded Values with Props and State
	Updating the Child Components to Receive Props
	Viewing the Component in the Browser
	Creating a Snapshot Test

	Creating the Artist Profile Service in the ASP.NET Core Application
	Creating the Model
	Creating the API Controller

	Using the React Development Server’s Proxy Setting to Avoid Cross-Domain Issues
	Creating the ArtistProfileAPI Class
	Calling the ArtistProfileApi When the ArtistProfileContainer Is First Loaded
	Next Steps

	Appendix
	A-1. Installing SQL Server 2016 Developer
	Downloading Microsoft SQL Server 2016 Developer
	Installing Microsoft SQL Server 2016 Developer
	Installing SQL Server Management Tools

	A-2. Downloading and Installing the Sample Database
	Downloading the Database Backup File
	Restoring the Database Backup Using SSMS

	A-3. Adding ASP.NET Core Recipe’s NuGet Repository to Visual Studio
	A-4. Installing Git
	A-5. Cloning the ASP.NET Core Recipes Git Repository
	Checking for Updates
	Reporting Issues and Asking Questions

	Index

