
Advanced Audio
Visualization
Using ThMAD

Creating Amazing Graphics with
Open Source Software
—
Peter Späth

www.allitebooks.com

http://www.allitebooks.org

Advanced Audio
Visualization Using

ThMAD
Creating Amazing Graphics
with Open Source Software

Peter Späth

www.allitebooks.com

http://www.allitebooks.org

Advanced Audio Visualization Using ThMAD: Creating Amazing Graphics
with Open Source Software

ISBN-13 (pbk): 978-1-4842-3503-4		 ISBN-13 (electronic): 978-1-4842-3504-1
https://doi.org/10.1007/978-1-4842-3504-1

Library of Congress Control Number: 2018938391

Copyright © 2018 by Peter Späth

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
978-1-4842-3503-4. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Peter Späth
Leipzig, Germany

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3504-1
http://www.allitebooks.org

iii

Table of Contents

Chapter 1: �Program Operation���1

ThMAD Artiste Operation��1

Starting and Using Different Modes���1

Stopping ThMAD Artiste��4

Artiste Files���4

ThMAD Player Operation��5

Starting and Using Different Modes���5

Scheduling the Player���10

Stopping the Player��10

Player Files���11

Summary���11

Chapter 2: �Insight into Meshes and Particle Systems�������������������������13

ThMAD Meshes��13

Vertices���14

Vertex Normals���15

Vertex Colors��17

Vertex Texture Coordinates���17

About the Author��ix

About the Technical Reviewer��xi

Introduction��xiii

www.allitebooks.com

http://www.allitebooks.org

iv

Faces��18

Face Normals���18

Vertex Tangents��19

Vertex Buffer Objects��19

A Box Mesh in ThMAD��20

ThMAD Particle Systems��23

Particle States��24

Generating Particles���25

Modifying Particles���30

Summary���38

Chapter 3: �Timing��39

Engine States���39

Sequencing Rewinds���42

Time Modules���43

Summary���44

Chapter 4: �Shaders��45

Introduction to Shaders���45

Vertex Shaders in Depth��47

Simple Vertex Shaders���48

Vertex Shader Variables���49

Operators and Functions��52

Arithmetic Assignments���53

Textures in Vertex Shaders���59

Fragment Shaders in Depth���59

Simple Fragment Shaders��60

Fragment Shader Variables��61

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

Fragment Shader Operators and Functions���62

Varying Variables��62

Textures in Fragment Shaders��63

Advanced Lighting in Fragment Shaders��64

Using Shaders from Inside ThMAD���68

Randomness in Shaders��71

Summary���73

Chapter 5: �Stories I��75

Textures Revisited��75

Texture Distortion via Bitmaps��75

Using Shaders��78

Explosions��88

Exploding Star��88

Explosions and Sound��107

Fractal Algorithms��114

Fire���125

Changing the Overall Size��129

Changing the Intensity��129

Changing the Color Distribution���130

The Problem of Sound Scaling���131

A Space Odyssey��136

Two Planes���137

Outgoing Texture Controllers��140

Texture Switcher���142

Shape Creation Textures���147

All Combined��149

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

Making Sequences���151

Lighting Revisited��153

Ambient Light���154

Diffuse Light���154

Specular Light��154

Clear Color��154

Material Ambient Color���155

Material Diffuse Color���156

Material Specular Color��158

Emissive Light��159

Ocean Revisited���162

Summary���169

Chapter 6: �Stories II���171

Color Gradient Mapping���171

Color Gradient Algorithm��172

Shader Fractal��187

Timed Shader���190

Summary���194

Chapter 7: �ThMAD and the JACK Sound Server���������������������������������195

Using JACK for Sound Input���195

ThMAD and JACK Together��201

Summary���204

Chapter 8: �TMAD and ALSA��205

Disabling PulseAudio���205

Starting ThMAD with ALSA���206

Summary���210

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

vii

Chapter 9: �Controlling ThMAD from the Outside��������������������������������211

ThMAD and Its Server Socket��211

ThMAD Socket Clients��213

Messages���214

Raw Commands���216

Summary���218

Chapter 10: �Configuration���219

Accessing the Configuration��219

Configuration Entries���221

Summary���222

Index��223

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

Peter Späth holds three degrees in physics: a master’s from University of

Texas at Austin (1994), a diplom from Universität Würzbug (1996), and a

PhD from the Technische Universität Chemnitz (2000). He became an IT

consultant in 2002. In 2016, he decided to concentrate on writing books on

various topics, with the main focus on software development. Throughout

his career he has always preferred to work with open source tools and

favors operating system–independent platforms like Java. After using

various audio visualization programs, he designed his own visualization

suite, ThMAD, to overcome the deficiencies of important functionalities,

quality documentation, and bug fixes of existing visualization suites.

www.allitebooks.com

http://www.allitebooks.org

xi

About the Technical Reviewer

Massimo Nardone has more than 23 years

of experience in security, web/mobile

development, cloud computing, and IT

architecture. His true IT passions are security

and Android.

He currently works as the chief

information security officer (CISO) for

Cargotec Oyj and is a member of the ISACA

Finland Chapter board. Over his long career,

he has held many positions including project

manager, software engineer, research engineer, chief security architect,

information security manager, PCI/SCADA auditor, and senior lead

IT security/cloud/SCADA architect. In addition, he has been a visiting

lecturer and supervisor for exercises at the Networking Laboratory of the

Helsinki University of Technology (Aalto University).

Massimo has a master’s degree in computing science from the

University of Salerno, and he holds four international patents (related to

PKI, SIP, SAML, and proxies). Besides working on this book, Massimo has

reviewed more than 40 IT books for different publishing companies and is

the coauthor of Pro Android Games (Apress, 2015).

www.allitebooks.com

http://www.allitebooks.org

xiii

Introduction

This book is a sequel to Audio Visualization Using ThMAD and introduces

advanced examples and features not covered in that book. It is not

mandatory to have read that book if you already have considerable insight

into the ThMAD program; if you are a beginner, then you will want to

pick up a copy of Audio Visualization Using ThMAD because it contains

a complete reference of the user interface and describes all the modules

available in ThMAD.

For this book, the code is based on ThMAD version 1.1.0, and the

associated OpenGL version as of the time of writing is 3.0.

�Targeted Audience
This book is for artists with some IT background and for developers

with artistic inclinations. Also, it is for readers of the first book, Audio

Visualization Using ThMAD, who want to improve their proficiency in

using ThMAD.

�Installation
After you download ThMAD from https://sourceforge.net/projects/

thmad/ as a Debian package with the suffix .deb, you need to make sure

the dependencies are fulfilled. A future version might do this for you

https://sourceforge.net/projects/thmad/
https://sourceforge.net/projects/thmad/

xiv

automatically, but for now you have to do it manually. ThMAD depends

on the following packages; entries marked with an asterisk (*) are probably

already installed on your Ubuntu Linux system:

•	 libglfw3 (≥ 3.1)

•	 *libc6 (≥ 2.17)

•	 *libfreetype6 (≥ 2.2.1)

•	 *libgcc1 (≥ 1:4.1.1)

•	 *libgl1-mesa-glx (≥ 11.2.0) or libgl1

•	 *libglew1.13 (≥ 1.13.0)

•	 *libglu1-mesa (≥ 9.0.0) or libglu1

•	 *libjpeg8 (≥ 8c)

•	 *libpng12-0 (≥ 1.2.13-4)

•	 *libpulse0 (≥ 0.99.1)

•	 *libstdc++6 (≥ 5.2)

To install these packages, log in as root in a terminal and enter this as

one line:

apt-get install libc6 libfreetype6 libgcc1 libgl1-mesa-

glx libglew1.13 libglu1-mesa libjpeg8 libpng12-0 libpulse0

libstdc++6 libglfw3

If you downloaded ThMAD via a browser to the folder Downloads in

your home directory, you will install it, still as root, via the following:

dpkg -i /home/[YOUR_USERNAME]/Downloads/thmad_1.0.0_amd64.deb

Make sure this is entered as one line and replace [YOUR_USERNAME]

with your Linux username. If there is a newer version available, you can

give it a try, but this book is for version 1.0.0.

IntroductionIntroduction

xv

All the files will end up in /opt/thmad. After that, please log off as root

by pressing Ctrl+D. This is important so that subsequent actions do not

mess with your system.

For your convenience, launchers are available; you can find them on

your desktop after the following commands:

cp /opt/thmad/share/applications/thmad-artiste*.desktop ~/Desktop

cp /opt/thmad/share/applications/thmad-player*.desktop ~/Desktop

(Enter both in one line each.) While the installation main folder can

be renamed, the launchers depend on the installation residing in /opt/

thmad. You could, however, edit the launchers appropriately, if you think

a different installation folder is a better option for you. To see whether

everything works, use the launcher thmadartiste.desktop, or in the

terminal enter /opt/thmad/thmad_artiste.

As another preparation step before actually using ThMAD Artiste, you

might want to consider releasing the Alt key from the operating system.

The default Ubuntu window manager, Unity, uses the Alt key to start the

heads-up display (HUD), but ThMAD uses it for various GUI actions. To

disable Ubuntu using the Alt key for the HUD or to change the key binding,

go to the Keyboard section of Preferences, advance to the Shortcuts

tab, and then go to the Launchers menu. Select the entry “Key to show

the HUD” and press Backspace to disable it, or choose a new key or key

combination to change the binding.

�Upgrading ThMAD
If you have ThMAD version 1.0 running on your system, you can easily make

all your files available to the newer version 1.1. All you have to do is copy

your files from /home/[USER]/thmad/1.0.0 to /home/[USER]/thmad/1.1.0.

IntroductionIntroduction

xvi

�Conventions Used in This Book
Working with ThMAD is extensively coupled with using its modules, which

are organized in a treelike structure. I’ll usually refer to modules like maths

➤ converters ➤ 4float_to_float4. If the module position inside the

module tree is clear from the context, I’ll shorten this to 4float_to_float4.

State is the common notion for a rendering pipeline while constructing

it. Finished states are also called visuals. References to sample states,

including associated code provided with the installation and informational

hints in general, are highlighted as follows:

Note  This is a note. It might point you to a source file called
A-3.2.1_Visualization_basics_basic_samples_
basic_2d_sample in the TheArtOfAudioVisualization folder.
By folder in this context I mean a folder showing up in the module
lister or browser.

Tip  You’ll also find helpful tips like this.

Caution  Important notes and pitfalls are marked like this.

Small code snippets appear directly in the text in monospaced font.

Code and script snippets, as well as terminal input and output, usually

show up as blocks in monospaced font like here:

apt-get install libc6 \libfreetype6 libgcc1 \libpulse0

libstdc++6 libglfw3

IntroductionIntroduction

xvii

If a longer line does not fit onto the book page’s width, a trailing ┐ at

the end of each line of code signifies that the ┐ must be removed and the

subsequent line break discarded. For example, the following:

echo "cmd [...] rectangle ┐
abc [...]"

should be entered as follows:

echo "cmd [...] rectangle abc [...]"

In many places, an asterisk (*) is used as a wildcard to denote any

string. This frequently is used to refer to all the files inside a folder or to file

name patterns.

Upon the first startup, ThMAD Artiste creates a data folder for all your

states and visualizations at /home/[USER]/.local/share/thmad and creates a

symbolic link at /home/[USER]/thmad pointing to the states and visualizations.

If I’m referring to the data folder in this book, I will provide the link location.

�How to Read This Book
This book should be read sequentially. To start, Chapter 1 serves as a

concise operating manual for the different parts of the suite you are going to

use, and Chapter 2 delves into meshes and particle systems in more depth.

Chapter 3 handles the way advanced timing issues can be addressed in

ThMAD, allowing for a kind of video workstation view of ThMAD. Chapter

4 introduces how to use shaders for visualization purposes, as well as

the way ThMAD handles them. Chapters 5 and 6 contain a collection

of independent tutorials that you can work through in any order, with

Chapter 6 concentrating on shader constructs. Chapters 7 and 8 talk about

incorporating ThMAD in a JACK or ALSA sound server setup. ThMAD can

be controlled from the outside, allowing you to bypass the Artiste user

interface, which is described in Chapter 9. Chapter 10 explains advanced

configuration issues.

IntroductionIntroduction

1© Peter Späth 2018
P. Späth, Advanced Audio Visualization Using ThMAD,
https://doi.org/10.1007/978-1-4842-3504-1_1

CHAPTER 1

Program Operation
This chapter describes how the two main programs of the ThMAD software

suite, Artiste and Player, can be started and stopped. It also describes all

the possible options for controlling the programs.

�ThMAD Artiste Operation
ThMAD Artiste is the program for creating visualization sketches, called

states, and viewing them in preview mode.

�Starting and Using Different Modes
If you followed the installation instructions in the book’s introduction, you

will find two launchers on your desktop.

 Start Artiste in windowed mode

 Start Artiste in full-screen mode

Clicking the buttons takes you to /opt/thmad/thmad_artiste (for

windowed mode) and /opt/thmad/thmad_artiste -f (for full-screen

mode).

2

If you started ThMAD Artiste from inside a terminal, the full set of

program options is available. For details about all the options, see Table 1-1.

Here is how you set individual options:

/opt/thmad/thmad_artiste [option1 option2 ...]

Table 1-1.  Artiste Program Options

Option Description

<none> Starts Artiste in windowed mode. This option

shows the canvas for creating sketches, a small

preview window, and a module list.

-help Shows help and immediately quits the program.

-h Same as -help.

-sm Prints all detected monitors and immediately quits

the program. You can use the output to specify a

monitor number for the -m option.

-m mon Uses the monitor number for full-screen mode.

This has no effect if not used with the -f option.

-f Starts Artiste in full-screen mode. It is not possible

to switch to full-screen mode from inside the

program. You can exit this mode by pressing the

Esc key.

This option can be used in conjunction with the

-ff and -fn options.

-ff Starts Artiste in full-window mode. The graphics

output will use the complete window space. You

can later switch back to the non-full-window

standard mode by pressing Ctrl+F.

(continued)

Chapter 1 Program Operation

3

By default, full-window mode shows some status information in the

header area. It can be disabled or enabled by pressing Alt+T. Or you can

start Artiste with the -fn option to disable the status information from the

beginning.

Table 1-1.  (continued)

Option Description

-fn If in full-window mode, suppresses the info text in

the header area.

-s 1024x860 Sets the window size in windowed mode.

1024x860 is just an example; see the output of

the -sm option for possible values.

-p 200x100 Sets the window position; 200x100 is just an

example.

-novsync Experimental; disables using double buffering.

-gl_debug Experimental; activates special OpenGL

debugging feature.

-port 3267 Starts a TCP/IP port where commands to control

ThMAD from outside may be sent to. 3267 is just

an example.

-sound_type_alsa Directly uses the ALSA API instead of PulseAudio.

-sound_type_jack Use a JACK sound server endpoint to connect.

-snd_rtaudio_ device=5 If using ALSA or JACK, specifies the sound device

to use. Sound devices get listed upon startup, but

the audio_visualization_listener module

must be present.

Chapter 1 Program Operation

4

There is also a performance mode, which presents an overlay of the

state creation canvas and the graphics output. To enable it, start in full-

window mode or switch to full-window mode (Ctrl+F) and then press

Alt+F. You can leave performance mode by pressing Alt+F again. Also,

when in performance mode, you can toggle the visibility of the header info

lines by pressing Alt+T.

To leave the program in any mode, press the Esc key, or, if available,

click the Close button of the window or use the main context window.

�Stopping ThMAD Artiste
You can stop ThMAD Artiste via any of the following:

•	 Right-click an empty spot of the canvas and select Exit.

ThMAD detects if you have saved your changes; if this is

not the case, it will ask you whether you really want to exit.

•	 Press the Esc key. ThMAD will tell you if there are

unsaved changes.

You can also use a module called system → shutdown to shut down

from inside a rendering pipeline. You can place it on the canvas and

connect it to the screen module screen0. As soon as the module’s input

exceeds 1.0, the program will shut down.

�Artiste Files
ThMAD Artiste will look for its files in the following folder:

/home/[USER]/.local/share/thmad/[VERSION]

and in these subfolders:

•	 /states: From here the states are loaded, and this is

where they get saved.

Chapter 1 Program Operation

5

•	 /resources: Here Artiste will look for or save resources

such as data files and images.

•	 /visuals: This is used only when exporting finished

states as visuals.

•	 /prods: This is used only when exporting finished

states as prods.

•	 /faders: This is used only when saving faders.

•	 /macros: When macros get saved, they will go here.

During installation, a link to the folder /home/[USER]/.local/share/

thmad gets created at /home/[USER]/thmad for convenience.

The single configuration file used by Artiste for defining some settings

is located here:

/home/[USER]/thmad/[VERSION]/data/thmad.conf

Chapter 9 explains more about the configuration.

�ThMAD Player Operation
With ThMAD Player, you can play visuals, which are exported states from

Artiste. This happens when you invoke the Compile ➤ Music Visual

command from Artiste’s main context pop-up.

�Starting and Using Different Modes
In default operation mode, ThMAD Player will recursively register all

the visuals it finds inside the user’s data folder and play them one by

one. If you have used ThMAD’s predecessor VSXu, where ThMAD Player

by default looks in the installation folder, you should be aware of this

difference.

Chapter 1 Program Operation

www.allitebooks.com

http://www.allitebooks.org

6

Also, contrary to Artiste’s operation, Player knows how to handle

faders, which introduce a transition between visuals when it comes to

switching from one to another. Faders are also created inside Artiste and

from there exported via Compile ➤ Music Visual Fader. They then end up

inside the faders folder.

Player will, however, not see your exports automatically since the data

spaces for Player and Artiste are kept separate. To make exported states

available to ThMAD Player, you have to copy the visuals and possibly the

faders from the following locations:

/home/[USER]/thmad/ [VERSION]/data/visuals

/home/[USER]/thmad/ [VERSION]/data/faders

and put them in the following locations:

/home/[USER]/thmad/ [VERSION]/data/player_visuals

/home/[USER]/thmad/ [VERSION]/data/player_faders

Alternatively, you can copy them to some other place and tell Player

via a startup option where to find them (using the -path flag).

If not using a launcher but instead the terminal to start Player, you can

use all the available options, as shown in Table 1-2.

Here is how to set certain options:

/opt/thmad/thmad_player [option1 option2 ...]

Chapter 1 Program Operation

7

Table 1-2.  Player Program Options

Option Description

<none> Starts Player in windowed mode. It also recursively loads all

visuals from the following path:

/home/[USER]/thmad/

[VERSION]/data/ player_visuals

and uses all faders found in this folder:

/home/[USER]/thmad/ [VERSION]/data/ player_faders

Visuals and faders are played in random order, each running for

30 seconds. Note that /home/[USER]/thmad is a symbolic

link to the following location:

/home/[USER]/.local/ share/thmad

-help Shows help and immediately quits the program.

-h Same as -help.

-path PATH Does not load the visuals from the local user data path; see

the <none> options. Instead, it loads all the visuals from the

following path:

PATH/player_visuals

and uses all the faders found in this folder:

PATH/player_faders

-dr Disables the randomizer. Player will then not automatically

cycle through the available visuals. Still, the visual chosen will

be a random one.

(continued)

Chapter 1 Program Operation

8

Table 1-2.  (continued)

Option Description

-rb 20 Sets the number of seconds to wait before changing to the next

visual, if the randomizer is not disabled.

If this option is not given, the value defaults to 30 seconds.

-rr 10 Randomizes the randomizer, if not disabled. A random visual

duration will be chosen between the base number from the

-rb option and the -rb number plus the -rr value. In this

example, it’s between 20 and 30 seconds.

If this option is not given, the value defaults to 0 seconds.

-f Starts in full-screen mode.

-sm Lists available monitors and monitor modes.

-m 2 If in full-screen mode, uses monitor 2 in this example.

-fm Lists available video modes for full-screen mode. Depends on

the monitor chosen (see the -m option).

-p 300x200 If in windowed mode, sets the window position to (300;200) in

this example.

-s 640x480 If in windowed mode, specifies the window size. 640×480 is

only an example; choose any size you like.

If in full-screen mode, this may be used to set the resolution.

ThMAD then tries to find the best possible match. See the -fm

option for a list of available video modes. If this is not given and

the full-screen mode and possibly some monitor are requested,

the video mode will automatically be chosen based on your

current settings. Letting the system choose is the preferable way.

-no Specifies no splash screen and overlay. This means Player will

start immediately with the first visual, and it will not print a

visual’s name at its beginning.

(continued)

Chapter 1 Program Operation

9

Unlike ThMAD Artiste, in ThMAD Player the visual will immediately

cover the whole window or screen, and there is no context menu for the

player. You can, however, press F1 to get some basic on-screen help.

Note  If you request a certain resolution in full-screen mode, it may
cause the ThMAD program to terminate and show your desktop in
that new resolution. You may have to manually revert the resolution
setting or restart your desktop if you want to switch back to the
resolution you are accustomed to.

Table 1-2.  (continued)

Option Description

-lv Lists visuals seen by the Player. This depends on the -path

option if chosen.

-lf Lists faders seen by the player. This depends on the -path

option if chosen.

-port 3267 Starts a TCP/IP port where commands to control ThMAD from

outside may be sent to. 3267 is just an example. The details of

the protocol are not part of this book.

-sound_type_

alsa

Directly uses the ALSA API instead of PulseAudio.

-sound_type_

jack

Uses a JACK sound server endpoint to connect.

-snd_rtaudio_

device=5

If using ALSA or JACK, specifies the sound device to use.

Sound devices get listed upon startup, but the audio_

visualization_listener module must be present.

-schedule <S> Specifies a schedule; see the next section for more information.

Chapter 1 Program Operation

10

�Scheduling the Player
You can create a storyboard by using the -schedule switch, which was

introduced earlier in the chapter. The syntax is as follows:

-schedule ind1:s1,ind2:s2,ind3:s3,...

Here, indN is an index in the alphabetically sorted Player files, and sN is

the number of seconds as a floating-point value. The list is zero-based and

the same as seen by the outcome of the -lv switch.

For example, if inside the visuals directory you have three visuals

(called A_visual1, B_visual2, and C_visual3) and one storyboard that says

“play B_visual2 for 15.4 seconds, then A_visual1 for 10 seconds, then C_

visual3 for 102.4 seconds, and then again B_visual for 45.1 seconds,” you’d

write the following:

/opt/thmad/thmad_player -schedule 1:15.4,0:10.0,2:102.4,1:45.1

Here, A_visual1 has index 0, B_visual2 has index 1, and C_visual3 has

index 2 in the list. You can also write it as one line, in which case you’d

omit the backslash.

�Stopping the Player
You can stop ThMAD Player with either of these actions:

•	 Press the Esc key with the focus on the ThMAD Player

window. In full-screen mode, no focus is needed.

•	 If while constructing the state you placed the module

system → shutdown on the canvas and connected it to

screen0, as soon as the module’s input exceeds 1.0, the

program shuts down.

Chapter 1 Program Operation

11

�Player Files
ThMAD Artiste will look for its files in the following folder:

/home/[USER]/.local/share/thmad/[VERSION]

Alternatively, it will look in [PATH] if the option -path is specified, as

mentioned earlier. It will also look in these subfolders:

•	 /player_visuals: These are visuals Player will show.

•	 /player_faders: These are faders the Player will use for

transitions between visuals.

�Summary
In this chapter, you learned how to invoke ThMAD Artiste and Player and

what options you have when you use the starters from inside a terminal.

You saw that Artiste can run inside a window or cover the whole screen. It

can mix input and output on the same screen.

In the next chapter, you will learn about meshes and particle systems

in detail.

Chapter 1 Program Operation

13© Peter Späth 2018
P. Späth, Advanced Audio Visualization Using ThMAD,
https://doi.org/10.1007/978-1-4842-3504-1_2

CHAPTER 2

Insight into Meshes
and Particle Systems
Meshes and particle systems are the two ways ThMAD introduces 3D into

sketches. In this chapter, you will investigate both thoroughly.

�ThMAD Meshes
A mesh in ThMAD is an advanced concept tailored for the high-

performance rendering of 3D objects. It is a conceptual extension of

OpenGL vertices; while OpenGL’s drawing primitives consist of points,

lines, triangles, and quads in various alternatives, meshes add faces as a

concept for the precalculation of certain properties. This allows additional

functionalities for the renderers. Also, in the rendering steps, meshes by

default store and handle data on the graphics hardware using vertex buffer

objects. Of course, OpenGL alone is capable of using VBOs, but the meshes

in ThMAD take away some of the technical burden of defining and using

them.

In detail, a mesh inside the ThMAD application consists of the

following data: vertices, vertex normals, vertex colors, vertex texture

coordinates, faces, face normals, and vertex tangents. I describe all of these

in the following sections.

14

�Vertices
Vertices are arrays of three-dimensional position vectors consisting of the

points that build the mesh.

These are the same vertices as in OpenGL. Vertices are the corner

points defining the flat parts of a surface. This makes immediate sense if

the objects consist of flat surface parts, as shown in Figure 2-1.

Figure 2-1.  A mesh built of flat faces

With round shapes, you can think of them as being composed of many

small, flat, surface atoms, so from a computational perspective, round

shapes consist of vertices, as shown in Figure 2-2.

Figure 2-2.  A mesh built of round shapes

Chapter 2 Insight into Meshes and Particle Systems

15

�Vertex Normals
Vertex normals are arrays of three-dimensional normal vectors, one for

each vertex. Normals are needed for lighting. Take, for example, a surface

point hit by a light beam at some angle. With the camera position looking

at some other angle at that point, the graphics hardware needs to know the

orientation of the surface to determine how the light beam gets reflected,

as shown in Figure 2-3. Such a normal gets calculated by interpolating

between adjacent vertex points.

1

Figure 2-3.  Lighting calculation using normals

At first sight, it might seem reasonable to tell the graphics hardware

about such normals perpendicular to surface parts. Say, for example,

you have a triangle ABC built from three vertices; you could add the

normal vector
�
ns to the plane as an aide or to the graphics hardware to

calculate the proper lighting. There is a problem with this approach,

though. Consider another triangle ABD having the vertices A and B in

common with the first one, but at an angle to it. Now, assigning its own

normal vector
�
ns' to ABD, the lighting engine using just those two vectors

for the two triangles would calculate a constant lighting L1 for all ABC

and would calculate another constant lighting L2 for all ABD. At the

edges, however, you would have an abrupt transition. This is not a

problem if you have a body built of flat surface parts like a box, but with

Chapter 2 Insight into Meshes and Particle Systems

16

a round shape it would create some ugly artifacts at the edges of the

small surface parts approximating the round shape.

There is a clever remedy for this. Instead of adding normals to surface

parts, the normals get added to vertices. And for a particular surface part,

say again that triangle ABC, you don’t necessarily use three equal normals,

but instead use different normals (
�
nA ,

�
nB , and

�
nC) at each vertex. For

each point inside ABC, you let the graphics hardware interpolate the

normal given the three vertex normals, as shown in Figure 2-4. That way,

if you do the same for adjacent surface parts like the triangle ABD, you

will achieve a smooth transition of the lighting at the edges, and you

will simplify the data handling by just adding one normal to one vertex,

disregarding what kind of surfaces it is part of.

Figure 2-4.  Smoothly interpolated normals

From an application perspective, the faces or surface parts are known,

including their normals, and the vertex normals can be calculated, for

example, by averaging the adjacent face normals.

Chapter 2 Insight into Meshes and Particle Systems

17

�Vertex Colors
Vertex colors are arrays of colors assigned to vertices, one color per vertex.

A rendering process might use these values to calculate the color of each

point of the surface defined by the vertices via interpolation, as shown

in Figure 2-5. (For this to work, the vertex_colors anchor of the mesh_

basic_render module must be set to yes). Not too rarely, however, these

values are misused for various other purposes.

Figure 2-5.  A mesh face with interpolated colors

Note that if you are using textures, you usually do not need vertex

colors, although it is not forbidden to mix textures and vertex colors using

some blending scheme.

�Vertex Texture Coordinates
Vertex texture coordinates are arrays of texture coordinates, one assigned

to each vertex. The original purpose of textures is to use a two-dimensional

image and span it over the surface parts of a 3D body. For this to work, you

need to know which vertex belongs to which point inside the texture, as

shown in Figure 2-6.

Chapter 2 Insight into Meshes and Particle Systems

18

Since a renderer might decide quite freely what to do with texture

coordinates, these values are subject to being misused for other purposes

as well.

Note that although the mapping to texture coordinates primarily is a

mapping of 3D coordinates to two-dimensional texture position vectors,

OpenGL allows for other dimensionalities.

This advanced texture mapping technique, however, plays no role in

ThMAD.

�Faces
Faces are precomputed atomic pieces of the surface defining the mesh.

ThMAD uses faces internally; they do not directly correspond to OpenGL

objects.

�Face Normals
Face normals are the normals to faces. They have the same meaning as the

vertex normals described earlier but are associated to the faces.

Figure 2-6.  Texture mapping

Chapter 2 Insight into Meshes and Particle Systems

19

This feature is not used often since OpenGL depends on the vertex

normals. However, a plug-in might calculate or use face normals as an

intermediate step to eventually provide for the vertex normals.

�Vertex Tangents
The module mesh → modifiers → helpers → mesh_compute_tangents

may be used to calculate the tangents for all faces and store them in the

mesh. In mathematics, a tangent is a straight line that has exactly one point

in common with the convex point set that it is the tangent for, without

crossing it.

This is not directly applicable for flat faces, but a somewhat similar

concept is used: a tangent in the current context is a quaternion describing

the rotation around the normal by any angle. It is not used by OpenGL, but

ThMAD uses it for some mesh-related modules for special effects.

�Vertex Buffer Objects
The standard mesh renderer renderers → mesh → mesh_basic_render

utilizes vertex buffer objects (VBOs) . This is a means to store and handle

vertex data directly on the graphics hardware, which gives an enormous

performance boost compared to handling vertex data in the CPU’s

memory space.

Upon the initialization of mesh_basic_render, the following happens:

	 1.	 The vertex normals are stored in an array on the

graphics hardware. This happens by calling the

OpenGL function glBufferSubDataARB().

	 2.	 The texture coordinates are stored in an array on

the graphics hardware, using the same OpenGL

function.

Chapter 2 Insight into Meshes and Particle Systems

20

	 3.	 If per-vertex colors are available, they are stored in

an array on the graphics hardware, using the same

OpenGL function.

	 4.	 The vertices themselves are stored in an array on

the graphics hardware, using the same OpenGL

function.

All the other data from the mesh lives in the CPU space and is not

directly shared with the graphics hardware. While the rendering takes

place, the graphics hardware just needs to be told where to find vertices,

normals, and colors, and it can thus work very efficiently without each

frame being sent all the data. The OpenGL function used for that is

glDrawElements().

�A Box Mesh in ThMAD
The most basic meshes in ThMAD define vertices, vertex normals, and

faces, where the faces are just integer pointers into the vertex array.

Looking at a basic sample, a cube of size 2×2 around the origin is given by

eight vertices and six faces, as follows:

•	 Front top left: (-1, 1, 1)

•	 Front top right: (1, 1, 1)

•	 Front bottom left: (-1, -1, 1)

•	 Front bottom right: (1, -1, 1)

•	 Back top left: (-1, 1, -1)

•	 Back top right: (1, 1, -1)

•	 Back bottom left: (-1, -1, -1)

•	 Back bottom right: (1, -1, 1)

Chapter 2 Insight into Meshes and Particle Systems

21

See Figure 2-7 (the vertices are numbers, and the faces are capital

letters). From a mathematical point of view, you are done defining the

cube. But, as mentioned earlier, you need the faces to have a proper mesh.

The faces are telling what vertices they consist of, as shown here:

•	 Front: 1 - 3 - 4 - 2

•	 Top: 1 - 2 - 6 - 5

•	 Right: 2 - 4 - 8 - 6

•	 Left: 1 - 5 - 7 - 3

•	 Bottom: 3 - 7 - 8 - 4

•	 Back: 5 - 6 - 8 – 7

The order for the vertices per face is important; the order follows the

right-hand rule. If you let your bent forefinger of your right hand follow the

vertices, your thumb must show away from the 3D object.

Figure 2-7.  A cube mesh

Chapter 2 Insight into Meshes and Particle Systems

22

You still need the normals per vertex, and there you encounter a

problem with the cube mesh shown in Figure 2-7. Vertex (1), for example,

is part of faces (A), (B), and (D), and each of them has its own normal

vector pointing perpendicularly away from it. For that reason, you need

each vertex three times, summing up to 24 vertices in total.

So, you clone each of the vertices twice, and eventually you end up

with the following mesh definition of the cube:

•	 Face A:

Vertices (-1, 1, 1) (-1, -1, 1) (1, -1, 1) (1, 1, 1)

Normal: (1, 0, 0)

•	 Face B:

Vertices (-1, 1, 1) (1, 1, 1) (1, 1, -1) (-1, 1, -1)

Normal: (0, 1, 0)

•	 Face C:

Vertices (1, 1, 1) (1, -1, 1) (1, -1, 1) (1, 1, -1)

Normal: (1, 0, 0)

•	 Face D:

Vertices (-1, 1, 1) (-1, 1, -1) (-1, -1, -1) (-1, -1, 1)

Normal: (-1, 0, 0)

•	 Face E:

Vertices (-1, -1, 1) (-1, -1, -1) (1, -1, 1) (1, -1, 1)

Normal: (0, -1, 0)

•	 Face F:

Vertices (-1, 1, -1) (1, 1, -1) (1, -1, 1) (-1, -1, -1)

Normal: (-1, 0, 0)

Chapter 2 Insight into Meshes and Particle Systems

23

Such a cube mesh with material properties and lighting might then

look like Figure 2-8.

Figure 2-8.  Elaborated 3D scene

�ThMAD Particle Systems
Particle systems are about hundreds, thousands, or maybe many more

small 3D objects entering a scene; obeying some generation, movement,

or interaction; and finally decaying rules. You use them to simulate fog,

waterfalls, candles, bursts, interesting artificial effects, and things like that.

They came to life because of greatly improved graphic hardware

capabilities during the past few decades, and with the modern state-of-

the-art or just medium-grade graphics and computation hardware, it is

possible to have hundreds of thousands of particles at work. There is no

genuine particle system concept you can find inside OpenGL; particles are

just small 3D objects.

Fortunately, ThMAD provides some modules for dealing with particle

systems. Internally tuning the way OpenGL gets used for drawing the

particles is crucial since there are so many 3D objects to be handled. More

specifically, the modules in ThMAD do the following:

Chapter 2 Insight into Meshes and Particle Systems

24

•	 Generate particles, either given a single point or given a

set of points.

•	 Modify particles and their trajectories. There is some

randomization of particle size, precisely controlling all

particle sizes, applying wind, letting them act like fluid

particles (this is broken currently), letting them follow

gravity, letting them bounce, and letting them rotate.

•	 Control a particle’s life span.

•	 Control the way particles get rendered.

The following is a detailed description of particle system–related

concepts.

�Particle States
A particle internally has a state consisting of the following:

•	 A 3D vector describing its current position in space.

•	 A 3D vector describing the point where a particle came

to life.

•	 A 3D vector describing the particle’s current speed.

•	 A starting color assigned to the particle when it came

to life.

•	 An ending color assigned to a particle for when

it is going to die. The color during its lifetime gets

interpolated between the starting color and the ending

color.

•	 A current size.

•	 A size assigned to a particle when it came to life.

Chapter 2 Insight into Meshes and Particle Systems

25

•	 The lifetime of a particle.

•	 A flag telling whether a particle is still moving or

grounded and not moving any longer.

•	 A flag telling whether particles are rotating

(experimental).

•	 If rotation is enabled, the current rotation angle.

•	 If rotation is enabled, an angle describing the rotation

for a frame (1/60 second).

As for the movement state of particles, they may be alive and moved

and drawn, or they may be dead and hidden and possibly waiting for

revival.

�Generating Particles
There are three modules for generating particles.

•	 particles → generators → basic_spray_emitter

•	 particles → generators → bitmap_to_

particlesystem

•	 particles → generators → particles_mesh_spray

The basic spray emitter uses a single point in space where particles get

emitted, like for a spray. You can specify a number of properties using the

anchors.

•	 The total number of particles to handle. This is the sum

of particles alive and dead.

•	 The number of particles per second. This is the

maximum number of particles to revive, i.e., to spray

out from the emitting point per second. Particles are

subject to getting sprayed out when the amount lies

Chapter 2 Insight into Meshes and Particle Systems

26

within this generation rate and the particle has been

dead before. If you set this to a number less than 0, all

particles that have died will be immediately revived

and re-emitted from the spray position.

•	 The emitter position where particles get sprayed out.

This position can be moved during the visualization,

but the particles obey their independent movement

laws once emitted.

•	 The emitting speed.

•	 The emitting speed type, either directional or

random_balanced. For directional, just use the speed

as given here:

speed' = speed

For random_balanced, for each coordinate, take a

uniformly distributed random number:

speed'_x = rnd[-speed_x/2 ; +speed_x/2]

speed'_y = rnd[-speed_y/2 ; +speed_y/2]

speed'_z = rnd[-speed_z/2 ; +speed_z/2]

•	 A particle base size. Note that making both the particle

size and the number of particles too high might use up

all the CPU power! Be cautious.

•	 A particle size random weight. The emitted particle’s

size will be the base size plus a randomly chosen

number from rnd[-random_weight/2; +random_

weight/2].

•	 A flag if rotation is to be enabled. If rotation is switched

on, you can get some flickering effect, most noticeable

if you also have a light switched on.

Chapter 2 Insight into Meshes and Particle Systems

27

•	 If rotation is enabled, the rotation speed (more

precisely, the rotation angle of each frame or 1/60

second).

•	 A particle lifetime base and a particle random weight.

The calculated lifetime will be as follows:

base + rnd[-random_weight/2; +random_weight/2]

•	 A color.

Figure 2-9 shows the spray beam speed modes. Unfortunately, the

module doesn’t allow for a directed random spray beam like with a spray

can. There are two workarounds, though, if you need that. The first is to

instead take the module particles_mesh_spray described later in this

chapter and use a simple object like a box with a size set to zero. That

module does allow for a speed offset. The other workaround uses the

basic_wind_deformer module described later in this chapter. It does

exactly that: it adds some extra motion.

Figure 2-9.  Basic spray emitter modes

The mesh spray emitter uses the vertices of a mesh for the positions

where particles principally start their life. You can again specify the

total number of particles and the revival rate. In addition, the following

properties can be defined:

•	 The way the vertices get picked from the mesh,

sequentially or randomly

•	 A center for spreading

Chapter 2 Insight into Meshes and Particle Systems

28

•	 A deviation for spreading

•	 A spreading added to the spray position:

actual_position = center

+ vertex_pos * spread

+ rnd[-deviation/2 ; +deviation/2]

•	 The speed s, a speed multiplier m, a speed randomizer

r, and a speed offset f. Note that there is a bug in

ThMAD version 1.0.0 for the speed multiplier formula;

it’s better to always set it to 1.0. As a workaround, you

can always multiply the speed itself using a controller

module.

•	 The speed type. If directional, the calculated speed is

as follows:

speed' = m * s

If random_balanced, use the following:

speed' = m * s * rnd[-r/2 ; +r/2] + f

If mesh_beam, use the following:

speed' = m * normalize[vertex_pos] + f

Using this module, you can achieve a couple of interesting effects. You

can simulate point sources by using a simple mesh and setting its size to

zero, linear sources like the rim of a big waterfall, round sources like disco

balls, and many more. See Figure 2-10.

Chapter 2 Insight into Meshes and Particle Systems

29

The bitmap emitter uses all the pixels of a bitmap for emitting

particles. As for the other generators, you can specify the total number of

particles and the revival rate. Other than that, the following properties can

be defined:

•	 Bitmap size: This is not the bitmap size in pixels, but

the size of the rectangle in the model space where the

bitmap gets draw into.

•	 Bitmap position: This is where in space the bitmap’s

center gets placed.

•	 Bitmap normal: This is the normal vector of the bitmap

drawing rectangle. It’s part of the orientation of the

bitmap.

•	 Bitmap upvector: This specifies the bitmap’s rotation

angle around the normal. Normally a vector is

perpendicular to the normal, but you can use other

vectors to add distortion effects.

•	 The time source: You can set whether to take the

absolute system time or the sequencing time.

•	 Other: The speed, speed type, sizing, and rotation are

the same as for the basic_spray_emitter module.

Figure 2-10.  Mesh spray emitter modes

Chapter 2 Insight into Meshes and Particle Systems

30

The bitmap generator allows for things such as blurring images, but

you don’t need to use an image bitmap; you can also use simple shapes

such as circles to define particle sources. Figure 2-11 shows examples.

Figure 2-11.  Different bitmap emitters

�Modifying Particles
Particles, once emitted by a particle generator, may be subject to the

modification of trajectories, size, and color.

ThMAD has the following modules for particle modification

operations:

•	 particles → modifiers → basic_gravity

•	 particles → modifiers → basic_wind_deformer

•	 particles → modifiers → floor

•	 particles → modifiers → size_mult

•	 particles → modifiers → size_noise

•	 particles → fractals → ifs_modifier

While the modifier modules basic_gravity and basic_wind_deformer

apply some physical force laws to the particles, the floor module

imposes a motion blocker, the size_mult and size_noise modules allow

Chapter 2 Insight into Meshes and Particle Systems

31

for changing the flying particles’ sizes, and the ifs_modifier module

performs a one-time position jump to the coordinates of an iterated

function system (IFS). You will learn more in the following sections.

�Physical Law Modifiers

The basic_wind_deformer module applies a wind force upon the particles

by adding a constant speed. This is not totally correct, because in reality

particles will not immediately have the same speed as the wind but will

only after some time. For small particles, though, this method gives us a

fair approximation. This module is simplistic here and adds just a constant

speed, doing this to whatever is given to them according to their other

motion states.

The other module, basic_gravity, is a little more involved. You can

define the center of gravity, the gravitational force for each dimension, a

friction for each dimension, and a mass calculation flag. Here are some

more details:

•	 The gravitational center: Since the gravitational force

can be tailored independently for each dimension, you

can achieve some pretty funny and unrealistic things

such as a gravitational plate or a gravitational string.

•	 The gravitational force as a vector, here called the

amount: For the normal physical gravitation, just set all

components to the same number. If you use different

numbers for the vector coordinates, each coordinate is

the gravitational force contribution for the x-, y-, and

z-dimensions. See Figure 2-12 for different options. The

topmost shows equal contributions, the middle one

zeros one, and the bottom one zeros two components.

Chapter 2 Insight into Meshes and Particle Systems

32

•	 A frictional component as a vector: If not all its parts

zero, this component applies a friction, slowing

down the particles while they are moving along their

trajectory. If you want to have realistic friction, set

all components of the vector to the same number.

Using different numbers will apply different frictional

components for the x-, y-, and z-dimensions.

•	 The time source: This is either the real time or the

sequencer time.

•	 A mass calculation method: In the real world, the

acceleration of each small particle is independent of

their mass. But if you want to introduce some extra

effect, you can make the acceleration of each particle

toward the center of gravitation depend on the particles

mass, which is just the size here. Or you can give them

all the same mass, which in effect does not differ from

multiplying the gravitational force by space number.

Chapter 2 Insight into Meshes and Particle Systems

33

Figure 2-12.  Different gravitation modes

Chapter 2 Insight into Meshes and Particle Systems

34

�Particles Hitting Walls

The particlesystems → modifiers → floor module introduces walls;

when particles hit the walls, they either stop their movements or bounce

off. Here are some details:

•	 An x-, y-, or z-wall or a combination thereof.

•	 The x-, y-, or z-position of each of the walls.

•	 A flag telling whether particles bounce at each wall.

•	 A percentage of a particle’s momentum loss when

hitting the walls. A loss of 100 percent means a particle

does not bounce, even when bouncing is switched

on. A loss of 0 percent means bounced particles will

have their full speed, but in the opposite direction. The

momentum loss has no meaning and is switched off

when bouncing is disabled.

•	 A flag telling whether refraction happens at the walls.

Refraction means that if a particle hits a wall, a random

amount of speed gets added to the coordinates that are

perpendicular to the wall’s normal vector. This kind

of imitates rough walls where the bounce-off angles

deviates from the impact angle.

•	 If refraction is enabled, the refraction amount (in other

words, the momentum extent of the perpendicular

components).

Chapter 2 Insight into Meshes and Particle Systems

35

Figure 2-13.  Floor bouncing modes (top to bottom: no bouncing,
normal bouncing, bouncing with refraction)

For a couple of bouncing modes, see Figure 2-13.

Chapter 2 Insight into Meshes and Particle Systems

36

�Size Modifiers

The following two modules allow for additionally augmenting or

multiplying a particle’s size by some number and augmenting or

multiplying the size by some random amount:

•	 particles → modifiers → size_mult

•	 particles → modifiers → size_noise

�Iterated Function System Fractal

An iterated function system basically takes a point, P, and a function

producing another point, f(P) → P’, and applies f recursively often.

P → f(P) → f(f(P)) → f(f(f(P))) → …

In this case, with P = P(x,y,z,1) in homogeneous coordinates and f

randomly switching between two matrices, you have the following:

a a a a

a a a a

a a a a

11 12 13 14

31 32 33 34

41 42 43 44

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

and the following:

b b b b

b b b b

b b b b

11 12 13 14

31 32 33 34

41 42 43 44

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

More precisely, you have this:

f: (x, y, z, q) → (aij) ∙ (x, y, z, q) = (x’, y’, z’, q’)

or you have this:

f: (x, y, z, q) → (bij) ∙ (x, y, z, q) = (x’, y’, z’, q’)

Chapter 2 Insight into Meshes and Particle Systems

www.allitebooks.com

http://www.allitebooks.org

37

The module particlesystems → fractals → ifs_modifier takes the

coordinates of incoming particles and applies one of two matrices on it.

Specifically, its parameters are as follows:

•	 A change probability: This applies one of the matrices

in each frame only occasionally. If you set this to 0.0,

the IFS modifier is effectively disabled; if you set it to

1.0, all the points will be governed by the IFS all the

time. You may want to set it to something like 0.1 to

preserve something of the original particle system

generator characteristics.

•	 The two matrices: The module will switch between the

two matrices randomly, giving each an effective weight

of 0.5—none of them gets preference over the other.

Note that not all matrices will generate meaningful

IFSs.

•	 An action-selectable “change random” that produces

two random matrices: Because of the nature of IFSs,

you might have to try often to get a nice IFS.

•	 An action-selectable save_params: This will save the

current matrices in a file in the following folder:

[DATA_FOLDER]/resources/ifs

•	 An action-selectable load_params: This will let you

choose one of the previously saved IFSs. Figure 2-14

shows an example.

Chapter 2 Insight into Meshes and Particle Systems

38

Figure 2-14.  Iterated function system

�Summary
In this chapter, you learned more in-depth details about ThMAD meshes

and ThMAD particle systems.

The next chapter covers advanced timing options in ThMAD.

Chapter 2 Insight into Meshes and Particle Systems

39© Peter Späth 2018
P. Späth, Advanced Audio Visualization Using ThMAD,
https://doi.org/10.1007/978-1-4842-3504-1_3

CHAPTER 3

Timing
ThMAD has two concepts of time. One is the operating system time,

which is like a wall clock that is totally external and cannot be adjusted.

The other is the normal or sequencing time, which is under the control of

sequencing modules and will explained in this chapter. You can control

this sequencing time using modules and can stop and start it. Once the

time is stopped, you can even set it manually to an arbitrary value.

�Engine States
So that you understand this a little bit better, I first will explain engine state.

When Artiste or Player starts, the engine first finds itself in state ENGINE_

LOADING . Then it loads all the modules it sees, and after that has been

accomplished successfully, it switches to state ENGINE_PLAYING. If later a

trigger to stop the engine gets fired, it switches to state ENGINE_STOPPED.

In addition, a module may request a rewind, which switches the

engine to state ENGINE_REWIND. This automatically yields a subsequent

ENGINE_STOPPED.

Once in state ENGINE_STOPPED, a module can start the engine again by

requesting a change to ENGINE_PLAYING. See Figure 3-1.

40

Note that these states have no influence on the rendering process itself,

so the engine in state ENGINE_STOPPED will still calculate the screen output.

In any of these states, the operating system time runs without any

influence upon it, and if your rendering pipeline is tailored to use only the

operating system time, you won’t see any direct influence of these engine

state changes. You’ll see an indirect influence, because drawing starts

only after all modules have loaded. If, however, you use the sequencing or

normal time, in ENGINE_STOPPED state the sequencing time stops running

and later starts running again only after an explicit switch to ENGINE_

PLAYING is performed. Also, if in stopped state, the actual sequencing

time can be adjusted manually via setting trig_set_time. See Figure 3-2.

A certain module can do that, which you’ll learn about in a minute. The

sequencing time used after a restart from a stop event (when not manually

changing the trig_set_time value) is exactly the time when it was

stopped. See Figure 3-3.

Figure 3-1.  Engine states

Chapter 3 Timing

41

Figure 3-2.  Manually changing the sequencing time

Figure 3-3.  Normal resuming

Chapter 3 Timing

42

�Sequencing Rewinds
A rewind request will immediately switch the sequencing time to zero or

the value of trig_set_time, whichever is bigger, and only then stops the

engine. Resuming then happens from this sequencing time. See Figure 3-4.

Figure 3-4.  Rewind

If you first issued a stop event and later a rewind event, the rewind

event will set the sequencing time to zero or the value of trig_set_time,

whichever is bigger. Resuming then starts at this value. See Figure 3-5.

Chapter 3 Timing

43

�Time Modules
The modules that handle all that timing are as follows:

•	 system → system_sequencer_control

•	 system → time

With the system_sequencer_control module, you can trigger start,

stop, and rewind events and set trig_set_time. With the time module,

you can access both timers if you need them, meaning the operating

system timer and the sequencing timer. Note that a couple of modules use

the sequencing time internally, namely, the oscillators and some others, so

even if you don’t use the time module, the sequencing timer might affect

your rendering pipeline nevertheless.

Sequencing
Time

Set
trig_set_time
to this value

TRIGGER

ENGINE_
LOADING

ENGINE_
PLAYING

ENGINE_
STOPPED

TRIGGER

ENGINE_
REWIND

TRIGGER

ENGINE_
PLAYING

Operating
System
Time

Figure 3-5.  Stop, then rewind

Chapter 3 Timing

44

�Summary
In this chapter, you learned about the two timing concepts used in

ThMAD, namely, the operating system time and the sequencing time. You

investigated what they mean and how you can control them.

You also learned more about ThMAD meshes and ThMAD particle

systems.

In the next chapter, you will learn about shaders, which allow for high-

performance visualizations running almost completely on the graphics

hardware.

Chapter 3 Timing

45© Peter Späth 2018
P. Späth, Advanced Audio Visualization Using ThMAD,
https://doi.org/10.1007/978-1-4842-3504-1_4

CHAPTER 4

Shaders
This chapter covers shaders, which are a high-performance way of altering

and generating 3D object data, including the position and coloring of

vertices and surface fragments.

The shading constructs used in ThMAD 1.0 are based on an OpenGL

version prior to 4.x. Quite a few of the functions and constructs used by

ThMAD have now been marked as deprecated, which means they are

subject to being removed in later versions. A future version of ThMAD will

include an upgrade of both the OpenGL version and the way shading gets

addressed. For now, you will have to go with this older version of shading.

�Introduction to Shaders
Shaders were originally used to control various coloring aspects, which is

where their name comes from. Later the concept was extended to control

more objects inside the rendering pipeline. Today, there are a couple of

different shader types that directly run on the graphics hardware to operate

on different object types.

•	 Vertex shaders receive vertex data and allow for

transformations such as from a 3D vertex to a 2D-object

with depth.

	 Vertex-3D → Vertex -2D + Depth

46

They describe the projection of the incoming 3D data

onto a 2D plane for further processing. This not only

allows for controlling positional vertex coordinates

but also allows for other attributes pinned to vertices,

namely, colors, normals, texture coordinates, and fog

depth coordinates. In addition, you can add custom

user-defined vertex attributes. Since nothing is

hindering you from defining that 3D to 2D mapping

in a non-Euclidian way, the number of interesting

visualization effects is potentially endless.

•	 Geometry shaders are a relatively new type of shader

that not all graphics cards and the more recent OpenGL

versions can handle. They act on geometric objects

built of several vertices at once and also allow for

generating new graphics objects. Geometry shaders

come right after the vertex shaders in the rendering

pipeline.

•	 Tesselation shaders are also relatively new, and

not all graphics cards and OpenGL versions can

handle them. Tesselation allows you to fine-tune the

process of subdividing surface elements into smaller

pieces for improved rendering quality and improved

performance.

•	 Fragment or pixel shaders allow you to directly control

the outgoing pixel colors. They come in at a later stage

of the rendering pipeline where the vertex information

is no longer available. Since, however, a shader may

access pixel colors at other coordinates, you can

achieve various effects using this type of shader.

Chapter 4 Shaders

47

Shaders use their own C-like language, which must be compiled and

then sent to the graphics card. Rendering engines in general and ThMAD

specifically provide for shader program editing capabilities and do the rest

for you.

ThMAD currently handles the vertex and fragment (pixel) shaders.

Addressing other shaders may be included in future versions of ThMAD.

�Vertex Shaders in Depth
Vertex shaders receive vertex positional coordinates and additional vertex

attributes one at a time. That is, for each vertex received, the associated

vertex shader program receives information only for a single vertex and

does not see any of the other vertices.

The shader program, however, also receives so-called uniform

variables, in short uniforms, which are common to all vertices and can be

changed dynamically from outside the shader. See Figure 4-1.

Figure 4-1.  Vertex shaders

Chapter 4 Shaders

48

�Simple Vertex Shaders
A simple vertex shader program looks like this:

#version 130

void main(void)

{

 vec4 pos = gl_Vertex;

 gl_Position =

 gl_ModelViewProjectionMatrix * pos;

}

Here is a shortcut for the program:

#version 130

void main(void)

{

 gl_Position = ftransform();

}

The first line specifies the OpenGL version in use. For ThMAD 1.0.0,

this should be set to 130, which corresponds to OpenGL version 3.0.

Note T he mappings for various versions are as follows: 

#version 110: OpenGL 2.0 from 2004 

#version 120: OpenGL 2.1 from 2006 

#version 130: OpenGL 3.0 from 2008 

#version 140: OpenGL 3.1 from 2009 

#version 150: OpenGL 3.2 from 2009 

#version 330: OpenGL 3.3 from 2010 

Which version is applicable depends on your graphics card.

Chapter 4 Shaders

49

The gl_Vertex variable is named by convention and contains the

homogeneous positional model coordinates of the vertex in a four-

dimensional vector. The first three coordinates stand for x, y, and z, and

the fourth is usually set to 1.0.

The variable gl_ModelViewProjectionMatrix is another variable

that gets filled in automatically for you. It contains the matrix product of

the modelview matrix and the projection matrix and thus contains all the

transformations you did on objects and the calculation according to the

camera position and its type.

If you don’t want to do anything fancy in the vertex shader or first

need the transformed coordinates as an outcome from this matrix

multiplication, using the function ftransform() does this but in a more

concise manner.

The GLSL specification is an exhaustive reference of the GLSL

language used for shaders. You can find it here:

https://www.khronos.org/registry/OpenGL/specs/gl/

GLSLangSpec.1.30.pdf

For this book and because of what is supported in ThMAD, you won’t

be using too many of the features available for shaders; you’ll use just

enough to allow for interesting visualizations.

�Vertex Shader Variables
To get started with what you can actually do in ThMAD, in this section

I will discuss the basic incoming and outgoing variables and describe

control functions and other control constructs so that you can use the

shaders for visualizations. Table 4-1 describes the most important variable

types. You can look up all the other types in the specification.

Chapter 4 Shaders

https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.1.30.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.1.30.pdf

50

Table 4-1.  Shader Variable Types

Name Description

bool A Boolean describing a true or false condition. Example: bool

isBigger = a > b;

int A signed integer. Use uint instead if you need an unsigned integer.

Example: int a = 7;

float A floating-point number. Contrary to C, C++, and Java, there is

no distinction between single- and double-precision floats.

Example: float x1 = 7.3;

vecN A floating-point vector with N components, where N can be one of

2, 3, or 4. To make a vector, write vecN name = vecN(coord1,

coord2, ...); with as many arguments as necessary for the

length specified. Example:

vec4 myPos = vec4(0.0, 1.2, 0.0, 1.0);

matM A floating-point matrix. M can be one of the following:

• 2 or 2×2, which is a 2×2 matrix

• 3 or 3×3, which is a 3×3 matrix

• 4 or 4×4, which is a 4×4 matrix

• �2×3, 2×3, 2×4, 3×2,3×4, 4×2, or 4×3, which is an

M1×M2 matrix

For the initialization of matrices, you will use something like this:

matM = matM(a11,...,a1M, a21, ..., a2M, ...)

or this:

matM = matM(vecM1, vecM2, ...)

Example:

mat2 m = mat2(0.0, 1.0, 0.1, 0.7);

sampler2D A handle for 2D textures. You don’t define textures in the shader

code, but with their definition in the CPU program code (ThMAD), the

textures as handled by the shaders will have this type.

Chapter 4 Shaders

51

For the input and output variables, see Table 4-2.

Table 4-2.  Vertex Shader In and Out Variables

Class Name Description

In gl_Vertex The incoming vertex coordinates as a

homogeneous coordinate set of type vec4.

gl_Normal The normal vector of the vertex; homogeneous

coordinates of type vec4.

gl_Color The color assigned to the vertex; a vec4 typed

variable with coordinates (RED, GREEN, BLUE,

ALPHA).

gl_MultiTexCoordN Texture coordinates of each texture unit with

N set to one of 0, 1, …, 7. ThMAD doesn’t

handle several texture units, so always use the

first one, which is gl_MultiTexCoord0. The

coordinates are of type vec4, with likely only

the first two used.

gl_FogCoord A fog coordinate as a single float. ThMAD

currently doesn’t handle fog this way (you can

misuse other variables for that).

gl_ModelViewProj

ectionMatrix

A combination of three transformation matrices:

the model matrix, the view matrix, and the

projection matrix.

[Attribute] The specification allows for user-defined

attributes added to each vertex. This is currently

experimental in ThMAD, and you should not

use it.

(continued)

Chapter 4 Shaders

52

Table 4-2.  (continued)

Class Name Description

[Uniform] Uniforms are control-point variables common

to all vertices and adjustable from outside the

shaders. You must declare uniforms in the

header of the program, as in uniform float

myVariable;. ThMAD automatically provides

an anchor for each uniform you specify.

Uniforms other than those of type float are not

supported in ThMAD.

Out gl_Position The transformed vertex coordinate of type vec4.

gl_TexCoord[] This is an array where texture coordinates

get stored to pass them over to subsequent

rendering stages; see the “Textures in Vertex

Shaders” section.

Note  Many of these are marked as deprecated in the GLSL
specification version 1.3. Future versions of ThMAD will use more
modern constructs.

�Operators and Functions
Table 4-3 describes which operators are available in shaders. Table 4-4

describes which functions are available in shaders.

Chapter 4 Shaders

53

Table 4-3.  Operators in Shaders

Operator Description

++ -- Increment and decrement. Can be

placed before or after a variable. If

placed before, it will be decremented

or incremented before the variable gets

used, otherwise afterward.

+ - ~ ! If placed before a variable, represents a

positive or negative sign, a bitwise NOT,

or a logical NOT.

* / % Multiply, divide, remainder (modulus).

+ - Plus, minus.

<< >> Bit-wise shift.

< > <= >= Relation; yields a Boolean value.

== !== Equality, inequality; both yield a Boolean

value.

& ^ | Bit-wise AND, EXCLUSIVE OR, OR.

&& ^^ || Logical AND, EXCLUSIVE OR, OR.

cond. ? x : y Selection.

+= -= /= *= %= <<= >>= &= ^= |= In-place modifications.

�Arithmetic Assignments
Using operators with different operand types quite often does what you’d

expect. You can, for example, multiply a vector by a float, and what you will

get is another vector with all its components multiplied by that number.

Chapter 4 Shaders

54

Table 4-4.  Functions in Shaders

Function Description

Angle and Trigonometry

radians(x) Converts the radian argument to degrees.

degrees(x) Converts the degree argument to radians.

sin(a) The sine function.

cos(a) The cosine function.

tan(a) The tangent function.

asin(a) The (inverse) arcus sine.

acos(a) The (inverse) arcus cosine.

atan(a) The (inverse) arcus tangens.

atan(a,b) The arcus tangent, given x and y coordinates.

Will give the true angle, which the atan with just

one argument can’t. This is because x/-y is the same

as -x/y.

sinh(x) The hyperbolic sine.

cosh(x) The hyperbolic cosine.

tanh(x) The hyperbolic tangent.

asinh(x) The inverse hyperbolic sine.

acosh(x) The inverse hyperbolic cosine.

atanh(x) The inverse hyperbolic tangent.

Exponential Functions

pow(x,y) The power function.

exp(x) The exponential.

log(x) The natural logarithm.

(continued)

Chapter 4 Shaders

55

Table 4-4.  (continued)

Function Description

exp2(x) The 2^x function.

log2(x) The logarithm to basis 2.

sqrt(x) The square root.

inversesqrt(x) Equals 1 / square root.

Common Functions

abs(x) Removes the sign.

sign(x) Gives -1 for negative numbers, 0 for 0, otherwise +1.

floor(x) Rounds down to the next integer.

trunc(x) If x > 0, returns floor(x), otherwise ceil(x).

round(x) Returns the integer nearest to x. If the fraction of

x is 0.5, whether to round down or up is undefined.

roundEven(x) Same as round; for a fraction of 0.5, the nearest even

integer gets chosen.

ceil(x) Rounds up to the next integer.

fract(x) Gives the fraction; same as x – floor(x).

Beware that fract(-3.2) thus yields 0.8.

mod(x,y) Gives the modulus: x - y * floor(x/y).

modf(x,y) Returns the fractional part of x and writes the integer

part into y (as an out parameter). Both the result and

y will have the same sign as x.

min(x,y) max(x,y) The minimum or maximum.

clamp(x,min,max) Clamps x if it gets smaller than min or greater than max.

mix(x,y,a) Interpolates and yields x * (1-a) + y * a.

(continued)

Chapter 4 Shaders

56

Table 4-4.  (continued)

Function Description

step(x,e) Gives 0.0 if x < e, else 1.0.

smoothstep(e0,e1,x) Gives 0.0 if x < e0 or 1.0 if x > e1. Otherwise, the

Hermite interpolation.

isnan(x) isinf(x) Returns true if x is NaN (not a number) or infinite.

Geometric Functions

length(v) The Euclidian length of a vector.

distance(v1,v2) The Euclidian distance between two points.

dot(v1,v2) The dot product of two vectors.

cross(v1,v2) The cross product of two vec3.

normalize(v) Normalizes a vector, in other words, sets its length

to 1.0.

ftransform() Only for vertex shaders: the position of the vertex

after multiplication with the model, view, and

projection matrices.

faceforward(N,I,

Nref)

With dot(Nref, I) < 0, returns N, otherwise -N. I is the

incident vector, N the face normal.

reflect(I,N) With I the incident vector and N the face normal,

returns the reflection direction I – 2*dot(N,I) * N.

refract(I,N,e) For the normalized incident vector I and the

normalized surface normal N and the refraction ratio

e, calculates the refraction vector.

(continued)

Chapter 4 Shaders

57

Table 4-4.  (continued)

Function Description

Matrix Functions

matrixCompMult(m1,m2) Multiplies matrix elements element-wise.

outerProduct(v1,v2) The outer product of two vectors, res(i,j) = v1(i) * v2(j).

transpose(m) Transposes a matrix.

Vectors

lessThan(v1,v2)

lessThanEqual(v1,v2)

greaterThan(v1,v2)

greaterThanEqual(v1,v2)

equal(v1,v2)

notEqual(v1,v2)

Compoent-wise comparison.

any(bv) all(bv)

not(bv)

Boolean vector functions: “any” returns true if any

vector component is true, “all” returns true if all

vector components are true, “not” inverts true/false

for all vector components.

Noise Functions

noise1(x) Generates a random float from [-1.0;1.0].

The distribution is Gaussian. The output will be

repeatable. That is, for a given fixed x, the output will

be the same. You can pass in the operating system

time as a uniform to feed x.

WARNING: Not implemented in every graphics card;

you should not use it. See the “Randomness in

Shaders” section for how to include randomness.

(continued)

Chapter 4 Shaders

58

Table 4-4.  (continued)

Function Description

noise2(x) Outputs a vec2 (members independent).

WARNING: Not implemented in every graphics card;

you should not use it. See the “Randomness in

Shaders” section for how to include randomness.

noise3(x) Outputs a vec3 (members independent).

WARNING: Not implemented in every graphics card;

you should not use it. See the “Randomness in

Shaders” section for how to include randomness.

noise4(x) Outputs a vec4 (members independent).

WARNING: Not implemented in every graphics card;

you should not use it. See the “Randomness in

Shaders” section for how to include randomness.

Conversion

int(bool) Converts a bool to an int: false = 0, true = 1.

int(float) Converts a float to an int.

float(bool) Converts a bool to a float: false = 0.0, true = 1.0.

float(int) Converts an int to a float.

bool(float) Converts a float to a bool: 0.0 = false, else = true.

bool(int) Converts an int to a bool: 0 = false, else = true.

Unless otherwise noted, if you apply functions primarily targeted at

float values to vectors instead, the calculation will happen component-

wise. For example, sqrt(x) applied to a vector will result in a vector with

sqrt() applied to all the input vector’s components. To check for each

case in question, take a look at the specification.

Chapter 4 Shaders

59

�Textures in Vertex Shaders
Textures (images that fill out the space between vertices) and bitmaps that

are uploaded to the graphics hardware come into the vertex shaders as

variables holding vec4 types (in other words, four-dimensional vectors).

•	 gl_MultiTexCoord0

•	 gl_MultiTexCoord1

•	 ...

•	 gl_MultiTexCoord7

For two-dimensional textures that are used by ThMAD, only the first two

coordinates get used, and they specify the s and t coordinates of the texture (for

textures, you write s and t instead of x and y), with the number range of [0;1].

For them to be transported to the next rendering step, you use the

array glTexCoord[]. The elements of this array correspond to different

texture units, but ThMAD can handle only the first and also only provides

for gl_MultiTexCoord0. So to do the transport, write the following:

glTexCoord[0] = gl_MultiTexCoord0;

Since both are of type vec4, you can also introduce some coordinate

manipulation here before the assignment to glTexCoord[0].

�Fragment Shaders in Depth
Fragment shaders handle the coloring of pixels. Inside the graphics

hardware’s rendering pipeline, the translation from vertices to screen pixel

coordinates has been performed in this stage. Not only do the corners

or edges of figures arrive at the fragment shaders, but also all the pixels

making up the surface parts do.

Chapter 4 Shaders

60

The vertex points themself as identifiable items are lost here, so you

don’t know to which vertices the pixels belong. However the graphics

hardware calculated interpolation values for colors, normals, and

matching texture coordinates to be applied at each pixel.

�Simple Fragment Shaders
The simplest fragment shader is as follows:

#version 130

uniform sampler2D sampler;

void main() {

 vec4 tex =

 texture2D(sampler, gl_TexCoord[0].st);

 gl_FragColor =

 vec4(tex.r, tex.g, tex.b, tex.a);

}

The first line is the shading language version again, and the second

line connects to a shader definition from inside the rendering engine of

ThMAD. The name sampler is not given by convention; it is the name

given by ThMAD to the texture object.

The texture2D() function contains all the magic that is done in the

rendering pipeline up to that stage. As a first argument, it takes the texture

object, and as a second argument, it takes the s / t (or x / y) coordinates

from the texture. The gl_TexCoord[0] function that you have already seen

in the vertex shaders will at this stage have a different content; all of its

coordinates now have been transformed to pixel coordinates, so you don’t

have to deal with the vector transformations inside the fragment shader.

Everything has been done for you. The gl_FragColor function is named by

convention and signifies the color output of the fragment shader as

Chapter 4 Shaders

61

(RED, GREEN, BLUE, ALPHA). Here it just copies the output from the

texture calculation to the output of the shader.

By the way, ".st" is a trick available to the shading language. The

gl_TexCoord[0] function is a four-dimensional vector, but for the

texture2D() function you need a two-dimensional vector. The ".st" trick

just takes the first two elements and does the conversion you need here.

The second argument to texture2D() is also the place where you

can do special calculations. By altering the coordinates here, you can

do interesting things and also address pixels from the vicinity or from

anywhere.

�Fragment Shader Variables
Table 4-5 lists the most important variables for use inside fragment

shaders. For others and for more details, please see the specification.

Table 4-5.  Fragment Shader In and Out Variables

Class Name Description

In gl_

TexCoord[]

Interpolated texture coordinates as an array of vec4

vectors. If you have just one texture as in ThMAD, you use

the first element of this array: gl_TexCoord[0].

gl_

FragCoord

The window-relative coordinates (x, y, z, 1/w) of the

current fragment, a vec4 vector. The first two members,

gl_FragCoord.x and gl_FragCoord.y, are pixel

screen coordinates. The .z member is the fragment’s

depth mapped onto [0;1]. The fourth coordinate is the

perspective division 1/w.

(continued)

Chapter 4 Shaders

62

Note  Many of these are marked as deprecated in the GLSL
specification version 1.3. Future versions of ThMAD will use more
modern constructs.

�Fragment Shader Operators and Functions
Unless otherwise noted, you can use the same operators and functions as

for vertex shaders.

�Varying Variables
Varying variables are special constructs that you define in the vertex

shader but are then transformed and transported to the fragment shader.

The transformation here means an interpolation; say, for example, you

have triangle built of three vertices v1, v2, and v3, and the numbers v1 →

1.0, v2 → 3.0, v3 → 2.0 assigned to them inside the vertex shader.

Class Name Description

[Uniform] Uniforms are control-point variables common to all

invocations of the vertex shader and adjustable from

outside, in other words, from the ThMAD state. You

must declare uniforms in the header of the program like

uniform float myVariable;. ThMAD automatically

provides an anchor for each uniform you specify. Uniforms

other than those of type float are not supported in ThMAD.

Out gl_

FragColor

The pixel’s output color of type vec4: (RED, GREEN,

BLUE, ALPHA), all in the range [0;1].

Table 4-5.  (continued)

Chapter 4 Shaders

63

varying float v;

// .. rest of the vertex shader, setting v

Now with the same declaration inside the fragment shader, the value of

v will be interpolated.

varying float v;

// .. rest of the fragment shader

In other words, it will be 1.0 at vertex v1, 3.0 at v2, and 2.0 at v3. But in

between, a smooth transition will be calculated, as shown in Figure 4-2

(black is for v = 0, white is for v = 3).

Figure 4-2.  Interpolation of varying variables

�Textures in Fragment Shaders
The most prominent texture-related function you will use is the

texture2D() function (Table 4-6). For all other texture functions, please

see the specification.

Chapter 4 Shaders

64

�Advanced Lighting in Fragment Shaders
Both lights and material parameters are accessible from the shaders. The

variable array gl_LightSource[] provides for all the lights registered. Each

element is a struct, as shown here:

{

 vec4 ambient; // Color, Aclarri

 vec4 diffuse; // Color, Dcli

 vec4 specular; // Color, Scli

 vec4 position; // Vector, Ppli

 vec4 halfVector;

 vec3 spotDirection; // Vector, Sdli

 float spotExponent; // Srli

 float spotCutoff; // Crli

 // (range: [0.0,90.0], 180.0)

 float spotCosCutoff; // Derived: cos(Crli)

 // (range: [1.0,0.0],-1.0)

 float constantAttenuation; // K0

 float linearAttenuation; // K1

 float quadraticAttenuation; // K2

}

Table 4-6.  Texture-Related Functions in Fragment Shaders

Function Description

Textures

texture2D(sampler,v) Calculates the color value at a position v using the

texture sampler. The texture must have been declared

in the fragment shader code header as follows:

uniform sampler2D sampler; The mapping of

sampler to a texture will be done by ThMAD for you.

Chapter 4 Shaders

65

To get, for example, the diffuse color of the first light, you’d write the

following:

gl_LightSource[0].diffuse

Lighting is explained in detail in the OpenGL specification, available here:

https://www.khronos.org/registry/OpenGL/specs/gl/glspec30.pdf

Most important are, of course, the position and the color values for

ambient, diffuse, and specular lights. For specular lights, you are also

interested in the exponent and in the cutoff angle.

For the material, you provide gl_FrontMaterial and gl_BackMaterial,

and again you have structs with the following contents:

{

 vec4 emission; // Color, Ecm

 vec4 ambient; // Color, Acm

 vec4 diffuse; // Color, Dcm

 vec4 specular; // Color, Scm

 float shininess; // Float, Srm

}

To access, for example, the diffuse color of the material’s front side,

you’d write the following inside the shader:

gl_FrontMaterial.diffuse

How you use all these variables depends on what you want to achieve.

Of course, you can build up lots of unrealistic lighting scenes from

them, but there are a couple of realistic color models as well. One of the

best known realistic models is the Phong illumination model, and to

implement it, you’d use the following for the vertex shader:

Chapter 4 Shaders

66

#version 130

varying vec3 N;

varying vec3 v;

void main(void) {

 v = vec3(gl_ModelViewMatrix * gl_Vertex);

 N = normalize(gl_NormalMatrix * gl_Normal);

 gl_Position = gl_ModelViewProjectionMatrix *

 gl_Vertex;

}

You’d use the following for the fragment shader:

#version 130

varying vec3 N;

varying vec3 v;

void main (void) {

 vec3 L = normalize(gl_LightSource[0].position.xyz

 - v);

 vec3 E = normalize(-v); // we are in Eye

 // Coordinates, so EyePos

 // is (0,0,0)

 vec3 R = normalize(-reflect(L,N));

 //calculate Ambient Term:

 vec4 Iamb = gl_FrontLightProduct[0].ambient;

 //calculate Diffuse Term:

 vec4 Idiff = gl_FrontLightProduct[0].diffuse *

 max(dot(N,L), 0.0);

 Idiff = clamp(Idiff, 0.0, 1.0);

Chapter 4 Shaders

www.allitebooks.com

http://www.allitebooks.org

67

 // calculate Specular Term:

 vec4 Ispec = gl_FrontLightProduct[0].specular *

 pow(max(dot(R,E),0.0),

 0.3*gl_FrontMaterial.shininess);

 Ispec = clamp(Ispec, 0.0, 1.0);

 // write Total Color:

 gl_FragColor =

 gl_FrontLightModelProduct.sceneColor

 + Iamb + Idiff + Ispec;

}

This is without textures.

Note T hese shaders are available under B-3.6_Shader_
Lighting in the TheArtOfAudiovisualization folder.

These are the steps to follow for this example:

	 1.	 Take a simple vertex shader, but add as varying

variables the normal vector N and the position v in

the modelview space, that is, without the camera’s

(or eye’s) position taken into account.

	 2.	 Now inside the fragment shader, calculate L as

the normalized direction vector from the point in

question to the light source. Because you’re using

v, this happens in the modelview space, that is,

without the camera’s (or eye’s) position taken into

account.

	 3.	 Calculate E as the normalized direction to the

camera’s position, assumed to carry (0,0,0)

coordinates.

Chapter 4 Shaders

68

E

N
R L

Figure 4-3.  Vectors inside the Phong illumination model

	 4.	 Calculate R as the normalized reflection direction

for a perfect reflection of the light beam (which uses

the reflect() function described earlier).

	 5.	 The rest is the actual Phong formula, described by the

comments in the code. The gl_FrontLightProduct

variable is a convenience variable that is calculated

as the product of the front material colors and the

corresponding lighting colors.

Figure 4-3 shows the calculated vectors (vectors not normalized there).

�Using Shaders from Inside ThMAD
A basic state for utilizing shaders in ThMAD consists of four modules.

•	 The output module: outputs → screen0

•	 The shader render module: renderers → shaders →

glsl_loader

•	 A texture renderer, for example: renderers → basic →

textured_rectangle

•	 A texture generator (or loader), for example: texture →

particles → blob

Chapter 4 Shaders

69

If you want to avoid the texture being repeated, just put the texture →

modifiers → tex_parameters module between the texture generator and

the texture renderer and set its parameter accordingly.

To write the shader’s code, open the shader editors of the glsl_loader

module. The editors have only limited capabilities, but you can use any

editor of your choice and transport the contents back and forth over the

system’s clipboard.

As soon as you add any uniforms to your shaders, ThMAD will

automatically generate the corresponding subanchors inside the

“uniforms” anchor of the glsl_loader module, and you can connect those

subanchors to any control pipeline like you would for any other anchor.

Remember, those uniforms run directly on the graphics hardware, so you

can make some incredibly fast things here!

Figure 4-4.  Basic state for shaders

Figure 4-4 shows the state.

Chapter 4 Shaders

70

For the simplest shader state using material properties, lights, and a

camera, you’d add the following modules between the renderer and the

glsl_loader module and set their parameters accordingly, as shown in

Figure 4-5:

•	 renderers → opengl_modifiers → depth_buffer

•	 renderers → opengl_modifiers → backface_culling

•	 renderers → opengl_modifiers → material_param

•	 renderers → opengl_modifiers → light_directional

•	 renderers → opengl_modifiers → cameras → orbit_

camera

You are now equipped with the information necessary to use shaders

for interesting visualizations. Chapter 5 provides a couple of advanced

examples.

Figure 4-5.  State for shaders with lighting

Chapter 4 Shaders

71

�Randomness in Shaders
To get randomness in shaders, frequently using a noise texture is

suggested. Unfortunately, this is not an easy approach for ThMAD

since if you also need image textures, you have a problem: ThMAD

allows for only one texture in a shader. There are several approaches,

though, for algorithmic randomness. Note that in reality you have only

pseudorandomness. The generated numbers look random and in most

cases may behave like they are purely random, but in fact they cover some

hidden nonrandom patterns.

A lot of ideas are being realized when it comes to randomness in

shaders. However, for these purposes, I present only the basic functions

here for creating a float random number given a float, a vec2, or a vec3

type input:

float rand(float n){

 return fract(sin(n) * 43758.5453123);

}

float rand(vec2 n) {

 return fract(sin(dot(n, vec2(12.9898, 4.1414)))

 * 43758.5453);

}

float noise(float p){

 float fl = floor(p);

 float fc = fract(p);

 return mix(rand(fl), rand(fl + 1.0), fc);

}

float noise(vec2 n) {

 const vec2 d = vec2(0.0, 1.0);

 vec2 b = floor(n),

 f = smoothstep(vec2(0.0),vec2(1.0), fract(n));

Chapter 4 Shaders

72

 return mix(

 mix(rand(b), rand(b + d.yx), f.x),

 mix(rand(b + d.xy), rand(b + d.yy), f.x), f.y);

}

float mod289(float x){return x -

 floor(x * (1.0 / 289.0)) * 289.0;}

vec4 mod289(vec4 x){return x -

 floor(x * (1.0 / 289.0)) * 289.0;}

vec4 perm(vec4 x){return

 mod289(((x * 34.0) + 1.0) * x);}

float noise(vec3 p){

 vec3 a = floor(p);

 vec3 d = p - a;

 d = d * d * (3.0 - 2.0 * d);

 vec4 b = a.xxyy + vec4(0.0, 1.0, 0.0, 1.0);

 vec4 k1 = perm(b.xyxy);

 vec4 k2 = perm(k1.xyxy + b.zzww);

 vec4 c = k2 + a.zzzz;

 vec4 k3 = perm(c);

 vec4 k4 = perm(c + 1.0);

 vec4 o1 = fract(k3 * (1.0 / 41.0));

 vec4 o2 = fract(k4 * (1.0 / 41.0));

 vec4 o3 = o2 * d.z + o1 * (1.0 - d.z);

 vec2 o4 = o3.yw * d.x + o3.xz * (1.0 - d.x);

 return o4.y * d.y + o4.x * (1.0 - d.y);

}

Chapter 4 Shaders

73

The noise() function will then produce the random number. As input,

you can, for example, use the coordinates of vertices or the fragment

position vector available to the vertex and fragment shaders, respectively.

You can find more about random numbers and noise in shaders if you

search the Internet for shader random or shader noise using your favorite

search engine.

�Summary
After learning about vertex and fragment shaders and their functioning

inside the OpenGL graphics pipeline, you learned how to use shaders from

within ThMAD.

In the next chapters, you will be looking at advanced stories and seeing

how to unleash the full power of ThMAD for your own ideas.

Chapter 4 Shaders

75© Peter Späth 2018
P. Späth, Advanced Audio Visualization Using ThMAD,
https://doi.org/10.1007/978-1-4842-3504-1_5

CHAPTER 5

Stories I
This chapter presents advanced example states and is an extension to

the stories from the book Audio Visualization Using ThMAD, so once in a

while it will refer to the stories presented there. The stories in this chapter

are somewhat self-contained, though, so you do not need to have that

other book on hand, although it is recommended as a reference.

�Textures Revisited
In Audio Visualization Using ThMAD, you saw how to deal with textures,

that is, images or in general bitmap data stored on the graphics hardware.

This chapter will extend the ideas presented there and show some more

techniques for how to use textures.

�Texture Distortion via Bitmaps

Note  This sample is available under B-5.1_Texture_bitmap_
distortion in the TheArtOfAudioVisualization folder.

Moving on from what you already learned about texture coordinate

distortion in Audio Visualization Using ThMAD, there is another module

for texture distortion using a bitmap.

•	 mesh → texture → mesh_tex_bitmap_distort

76

It works as follows: the usual texture coordinate space in the u-v plane

(0,0) → (1,1) first gets mapped to a scaled and translated version, as

shown here:

ui → ui' = u_scale ∙ ui + u_translate

vi → vi' = v_scale ∙ vi + v_translate

Here, i iterates over all texture coordinates. With these coordinates,

you apply a bitmap function, as shown here:

(ui', vi') → (ui'', vi'') = (ui', vi') + −1 + 2 ∙ bitmap(ui', vi')

   for both ui' and vi' inside [0;1] or else

   0

Here, bitmap(q, r) is the (RED, GREEN) tuple at position (q ∙

WIDTH, r ∙ HEIGHT) of the bitmap. For the purposes of this chapter,

both RED and GREEN have values from [0;1]. So, the RED and GREEN

pixel values of the bitmap describe the extra distortion, and you can use

a drawing program to actually paint the desired distortion. Because of

the −1 + 2 ∙ bitmap(ui', vi') in the previous formula, you have no

distortion for the RED and GREEN values, which are both 0.5. So, you can

reduce the texture coordinate for bitmap(…) to less than 0.5 and increase

it for bitmap(…) to greater than 0.5.

Next, you roll back the first transformation, as shown here:

ui'' → ui''' = [ui'' – u_translate] / u_scale

vi'' → vi''' = [vi'' – v_translate] / v_scale

Then you replace the original texture coordinates with those you

received last.

Chapter 5 Stories I

77

The module mesh_tex_bitmap_distort therefore has anchors for

the mesh for u_scale, v_scale, u_translate, v_translate, and the

input bitmap. In addition, you can use the intensity anchor to control

the intensity effect of the bitmap; 0 means none at all, and 1 means 100

percent intensity.

As an example, see Figure 5-1. The modules not shown in the figure

include the usual 3D pipeline (light, material, camera and so on).

Figure 5-1.  Bitmap texture distortion

Table 5-1.  Blob Parameters

bitmaps → generators → blob

settings/arms 5.0

settings/attenuation 0.8

Tables 5-1 and 5-2 list the anchor values.

Chapter 5 Stories I

78

Figure 5-2 shows the results. On the left is the original texture, and on

the right is the bitmap used for distortion.

Table 5-2.  Mesh Tex Bitmap Distort Parameters

mesh → texture → mesh_tex_bitmap_distort

intensity 0.1 Rate of distortion; here 10.0 percent

spatial/u_off 0 Offset before applying the bitmap

spatial/v_off 0

spatial/u_scale 0.64 Scale before applying the bitmap

spatial/v_scale 0.88

Figure 5-2.  Bitmap texture distortion output

�Using Shaders
Shaders are programs that run directly on the graphics hardware. They are

something like the holy grail of computer game development, but they also

have gained some considerable attention for high-performance computing

since shader programs can be executed highly parallelized.

Shaders can access vertex data, pixel data, and texture data and thus

allow for elaborate graphics operations. For now you will concentrate on

using shaders for texture mapping.

Chapter 5 Stories I

79

You will focus on two shader types: the vertex shader and the fragment

shader. There are more, but the others are special extensions for certain

types of graphics cards or cover corner cases you do not need right now.

See Chapter 4 for an introduction on shaders.

The vertex shader gets vertex coordinates, one vertex at a time. Its

sole purpose is to give back a calculated coordinate for the vertex it has

as input. Geometrical transformations such as rotation, scaling, skewing,

translation, or distortion of one or another kind can be done using vertex

shaders. A vertex shader can add additional information as well; quite

often a vertex shader is used to prepare for using a texture for subsequent

rendering steps. It can do this because it has access to textures that are

registered in the rendering process.

A basic vertex shader looks like this:

void main(void)

{

 gl_TexCoord[0] = gl_MultiTexCoord0;

 gl_Position = gl_ModelViewProjectionMatrix

 * gl_Vertex;

}

It first assigns the multitexture number zero to an internal array

gl_TexCoord[0]. Multitextures are beyond the scope of the current

purpose, but the zero accesses the texture you will be assigning to the

rendering process using ThMAD. Subsequent rendering subprocesses can

then refer to the texture by accessing gl_TexCoord[0]. The other line,

gl_Position = ..., calculates the output of the shader; the name

gl_Position is predefined and cannot be changed. The formula behind

the equal sign uses the standard way to project the input gl_Vertex, which

holds the incoming vertex coordinates. This vertex shader program does

nothing that the renderer would do if no shader program was provided. It,

however, gives a starting point because various other calculations can be

introduced before presenting the final value to gl_Position.

Chapter 5 Stories I

80

The fragment shader gets invoked on a per-pixel basis. It can be used to

receive and transform color values, and it can be used to add texture data

to the output in quite a free manner. It can even misuse incoming color or

texture data to do something completely different, which can lead to some

highly interesting and extremely high-performing effects. The standard for

texture mapping is, however, expressed by the following basic fragment

shader code:

uniform sampler2D

sampler; void main() {

 vec4 tex = texture2D(sampler, gl_TexCoord[0].st);

 gl_FragColor = vec4(tex.r, tex.g, tex.b, tex.a);

}

The uniform sampler2D sampler; code hides the internal

prepreparation for the texture mapping. Consider it like an introductory

step for interfering with the mapping. The vec4 tex = ... line actually

determines the texture color after some linear default mapping. Since the

second argument, gl_TexCoord[0].st, is a point in the texture space (0,0)

→ (1,1), you could prior to providing it to the texture2D() function save

it in a variable and transform it in any way you want. You will see later in

the chapter how to do that. The last line, gl_FragColor = ..., provides

the pixel color as an output. This is actually the main responsibility of the

fragment shader; you can actually do whatever you like, but there must

be a line with gl_FragColor = ... at the end. The fragment shader code

just presented does the same thing as if it didn’t exist. Just as for the vertex

shader, it is the starting point for your own attempts to interfere with the

rendering process.

Let’s discuss how you can use shaders in ThMAD. You start with a

basic state just using the default shaders and then gradually introduce new

features.

Chapter 5 Stories I

81

Note  The following samples are under B-5.1_Shaders_for_
textures* in the TheArtOfAudioVisualization folder.
The shader code is provided in the following folder: [ThMAD_
INST]/share/thmad/TheArtOfAudioVisualization-
snippets/B-5.1_Using_Shaders

First add the following modules to your canvas:

•	 texture → loaders → png_tex_load

•	 texture → modifiers → tex_parameters

•	 renderers → basic → textured_rectangle (twice)

•	 renderers → shaders → glsl_loader

Connect them as shown in Figure 5-3.

Figure 5-3.  Using shaders for texture mapping

Chapter 5 Stories I

82

For the parameters, see Tables 5-3 to 5-7.

Table 5-3.  Png Tex Load Parameters

texture → loaders → png_tex_load

file name Any Choose one from the resources folder.

Table 5-4.  Tex Parameters

texture → modifiers → tex_parameters

parameters/wrap_s clamp

parameters/wrap_t clamp

Table 5-5.  Textured Rectangle Parameters

renderers → basic → textured_rectangle The one directly connected to the
screen

spatial/position −0.75, 0.75, 0

spatial/size 0.2

Table 5-6.  Textured Rectangle Parameters

renderers → basic → textured_rectangle The one connected to
glsl_loader

spatial/position 0, 0, 0

spatial/size 1.0

Chapter 5 Stories I

83

You can put a texture as a PNG file in /home/ [USER]/thmad/*/data/

resources first. Set it to size 128×128 or 256×256 or 512×512. You might

have to restart ThMAD to see any new file.

The module gets created with the default code shown previously. In

the fragment shader code, replace the following:

gl_FragColor = vec4(tex.r, tex.g, tex.b, tex.a);

with this to see the shaders at work:

gl_FragColor = vec4(tex.r, 0.0, tex.b, tex.a);

To do that change, double-click the fragment_program anchor of

glsl_loader, and inside the editor that then appears change the text

accordingly. Clicking the Save button will upload the changes to the

graphics hardware. The output should look like Figure 5-4 (on the top left,

the original gets shown).

Table 5-7.  Glsl Loader Parameters

renderers → shaders → glsl_loader

vertex_program Explained in the following text

fragment_program Explained in the following text

Figure 5-4.  Using shaders for colorizing texture

Chapter 5 Stories I

84

This draws the texture with the green color channel muted. You can

also swap color values or apply other mathematical operations to them. As

another example, use the following in the fragment shader, which changes

the color curves, effectively brightening the colors:

gl_FragColor = vec4(pow(tex.r,0.5),

 pow(tex.g,0.5),

 pow(tex.b,0.5), tex.a);

The output will look like Figure 5-5.

Note that the shader code editor has only limited editing capabilities,

but you can use any text editor you like and then use the clipboard to

transport code back and forth. That is what the To Clipboard and From

Clipboard buttons are for.

Figure 5-5.  Using shaders for brightening textures

To see a nontrivial shader coordinate mapping at work, you will try to

construct a sample where one point “sucks up” the surrounding pixels, like

in a black hole. You again use the fragment shader for that since the vertex

shader knows only the four corners of the textured_rectangle module

and you need much more fine-grained control over the coordinates. The

new code is as follows (the line numbers are for display purposed only in

the book):

Chapter 5 Stories I

85

(1) uniform sampler2D sampler;

(2) void main() {

(3) vec2 suck_point = vec2(0.6, 0.3);

(4) vec2 tc = gl_TexCoord[0].st;

(5) vec2 v = tc - suck_point;

(6) float d = clamp(length(v), 0.001, 1000.0);

(7) vec2 distort = v * (0.2 / pow(d,1.0));

(8) float ang = 0.1 / pow(d,1.0);

(9) mat2 rot = mat2(cos(ang), -

 sin(ang), sin(ang), cos(ang)

);

(10) distort = rot * distort;

(11) vec4 tex = texture2D (sampler,

 tc + distort);

(12) gl_FragColor = vec4(tex.r, tex.g,

 tex.b, tex.a);

(13) }

Line 3 defines suck_point, line 4 gives you the calculated linear

texture coordinates, and line 5 gives you the distance vector. At line 6

you calculate the numerical distance, but make sure it does not drop

below 0.001. At line 7 you calculate a distance-related distortion, which

decreases with the distance to suck_point. At line 8 you calculate a

whirling angle that increases the nearer you get to suck_point, and line 9

deduces a rotation matrix from that. The same gets applied at line 10. You

know the rest: you fetch the texture color value at the distorted point and

assign it to the fragment shader output. The result will look like Figure 5-6.

Chapter 5 Stories I

86

Wouldn’t it be nice if you could control some parameters from the

outside? Possible candidates are the distortion rates and the position of

the suck_point value. It is possible, and this chapter will show you how.

The procedure is as follows: at the top of the fragment shader code you

can see the definition of a uniform variable. In this case, it is used for an

internal field, but you can use uniform variables also to dynamically access

the shader from the outside. You introduce uniforms for the suck_point

position at line 3 and also for the distortion rates: 0.2 at line 7 for the

distance distortion and 0.1 at line 8 for the swirl distortion. You thus get the

following (line numbers are for display purposes only):

(1) uniform sampler2D sampler;

(2) uniform vec3 suck_point;

(3) uniform float dist_distortion;

(4) uniform float swirl_distortion;

(5) void main() {

(6) vec2 tc = gl_TexCoord[0].st;

(7) vec2 v = tc –

 vec2(suck_point.x,

 suck_point.y);

(8) float d = clamp(length(v), 0.001, 1000.0);

Figure 5-6.  Using shaders for texture coordinate distortion

Chapter 5 Stories I

87

(9) �vec2 distort = v * (dist_distortion

 / pow(d,1.0));

(10) float ang = swirl_distortion/pow(d,1.0);

(11) mat2 rot = mat2(cos(ang), -

 sin(ang), sin(ang), cos(ang));

(12) distort = rot * distort;

(13) vec4 tex = texture2D (sampler, tc

 + distort);

(14) gl_FragColor = vec4(tex.r, tex.g,

 tex.b, tex.a);

(15) }

With the code changed accordingly and saved, ThMAD automatically

adds new anchors to the glsl_loader module, as shown in Figure 5-7.

Note that you have to make the suck_point value a three-dimensional

vector because ThMAD doesn’t know two-dimensional vectors. The third

coordinate gets ignored. Go ahead and play with these values, or connect

the anchors to sound input or oscillators. You can even achieve some

rather surrealistic effects; see, for example, Figure 5-8 (swirl_distortion

= 0.17, dist_distortion = −0.2, suck_point = (0.58; 0.50; 0.0)).

Figure 5-7.  New anchors due to custom shader parameters

Chapter 5 Stories I

88

�Explosions
Here you will take a look at how explosions can be achieved. We need an

object with many parts which can be blown apart, and a sphere is a very

good candidate here.

�Exploding Star

Note  This sample is available under B-5-2_Explosion in the
TheArtOfAudioVisualization folder.

ThMAD has a mesh_explode module for meshes. Explosions in real-

world scenarios will blow apart the surface elements and the solid interiors

of objects, which OpenGL cannot possibly do unless you create the interior

of objects, which is an extremely intricate task. Nevertheless, blowing apart

just the surface of objects is an interesting effect, and here you will see

how to do that. More precisely, you will simulate the explosion of a planet

in a science-fiction-like manner, with the explosion accompanied by a

concentric ray burst.

Figure 5-8.  Surrealistic shader mapping

Chapter 5 Stories I

89

For this explosion module, you first need a mesh with many parts. A

good candidate is any sphere since spheres need many constituents to

create a surface that seems to be round. For this planet explosion, you will

use two interwoven spheres with different levels of detail to have exploded

parts of two different sizes. To get started, right-click, select New, and

then select Empty Project to create an empty canvas. Add the following

modules:

•	 renderers → opengl_modifiers → cameras → orbit_camera

•	 renderers → opengl_modifiers → light_directional

•	 renderers → opengl_modifiers → auto_normalize

•	 renderers → opengl_modifiers → material_param

•	 renderers → opengl_modifiers → depth_buffer

•	 renderers → opengl_modifiers → gl_translate

•	 renderers → opengl_modifiers → gl_scale

Connect them with each other and to the screen0 module, as shown in

Figure 5-9.

Figure 5-9.  Explosion, basic 3D setup

Chapter 5 Stories I

90

Table 5-8.  Screen0 Parameters

screen0

clear_color 0.02; 0.08; 0.15; 1.0

Table 5-9.  Orbit Camera Parameters

renderers → opengl_modifiers → cameras → orbit_camera

rotation 1.58; −0.70; 0.46

distance 15.1

upvector 0.75; −0.34; 0.56

fov 90.0

perspective_correct yes

Table 5-10.  Light Directional Parameters

renderers → opengl_modifiers → light_directional

enabled YES

position 0.29; 0.29; 0.12

ambient_color 0; 0; 0; 1

diffuse_color 0.58; 0.51; 0.89; 1.0

specular_color 0.97; 0.87; 0.87; 1.0

The parameters are listed in Tables 5-8 to 5-14.

Chapter 5 Stories I

91

Table 5-11.  Material Param Parameters

renderers → opengl_modifiers → material_param

ambient_reflectance 0.2; 0.2; 0.2; 1.0

diffuse_reflectance 0.32; 0.69; 0.86; 0.97

specular_reflectance 0.92; 0.92; 0.64; 0.94

emission_intensity 0.07; 0.16; 0.40; 1.0

specular_exponent 5.0

Table 5-12.  Depth Buffer Parameters

renderers → opengl_modifiers → depth_buffer

depth_test ENABLED

depth_mask ENABLED

Table 5-13.  Gl Translate Parameters

renderers → opengl_modifiers → gl_translate

translation 0; 0; 0

Table 5-14.  Gl Scale Parameters

renderers → opengl_modifiers → gl_scale

scale 4.0; 4.0; 4.0 You can achieve surrealistic

effects if you change this.

Chapter 5 Stories I

92

Next you will add the shapes and the explosion module.

•	 renderers → mesh → mesh_basic_render (twice)

•	 mesh → modifiers → deformers → mesh_explode

(twice)

•	 mesh → solid → mesh_sphere_icosahedron (twice)

•	 maths → oscillators → oscillator

Connect them as shown in Figure 5-10.

Figure 5-10.  Explosion, exploding shapes, and explosion modules

Chapter 5 Stories I

93

Then enter parameters for them as shown in Tables 5-15 to 5-19.

Table 5-15.  Mesh Basic Render Parameters

renderers → mesh → mesh_basic_render Both

Leave all values at their defaults.

Table 5-16.  Mesh Explode Parameters

mesh → modifiers → deformers → mesh_explode Both

start Connected to the oscillator.

explosion_factor 1.8 You can change this to alter

the explosion intensity. You

can even choose different

values for both modules.

velocity_deceleration 0.01 Particles slow down after

the explosion. Change this

value to alter the slowdown

behavior.

Table 5-17.  Mesh Sphere Icosahedron Parameters

mesh → solid → mesh_sphere_icosahedron First planet

subdivision_level 6.0

max_normalization_level 28.0

Chapter 5 Stories I

94

Table 5-19.  Oscillator Parameters

Maths → oscillators → oscillator Connected to the “start” trigger
of both explosion modules

osc

osc_type square

freq 0.14

amp 3.0 The value does not matter, but

amp + ofs must be > 0.

ofs −0.1

phase 0.0367

options

drive_type time_internal_absolute You need a global synchronization

with other oscillators that you add

later.

Table 5-18.  Mesh Sphere Icosahedron Parameters

mesh → solid → mesh_sphere_icosahedron Second planet

subdivision_level 4.0

max_normalization_level 10.0

Chapter 5 Stories I

95

This is actually enough to see the explosion, as shown in Figure 5-11.

As an extra goody, you will add concentric burst beams that

synchronize with the planet explosion. To do so, add these modules:

•	 renderers → opengl_modifiers → material_param

•	 renderers → opengl_modifiers → gl_scale_one

•	 renderers → opengl_modifiers → gl_rotate

•	 renderers → basic → textured_rectangle

•	 texture → loaders → bitmap2texture

•	 bitmap → generators → concentric_circles

Connect them as shown in Figure 5-12.

Figure 5-11.  Explosion, basic explosion output

Chapter 5 Stories I

96

Set those modules’ parameters to the settings listed in Tables 5-20

to 5-24.

Figure 5-12.  Explosion, concentric beam base

Table 5-20.  Material Param Parameters

renderers → opengl_modifiers → material_param

ambient_reflectance 0.2; 0.2; 0.2; 1.0

diffuse_reflectance 1; 1; 1; 1 You will later connect this

to a visibility subpipeline

to synchronize the circle’s

visibility with the explosion.

specular_reflectance 0; 0; 0; 1

emission_intensity 1; 1; 1; 1 The beams are white.

specular_exponent 10.0

Table 5-21.  Gl Scale One Parameters

renderers → opengl_modifiers → gl_scale_one

scale 7.0 You will later connect this to an oscillator.

Chapter 5 Stories I

97

Table 5-22.  Gl Rotate Parameters

renderers → opengl_modifiers → gl_rotate
axis −0.058; 0.125; 0.935

angle −0.23

Table 5-23.  Textured Rectangle Parameters

renderers → basic → textured_rectangle

spatial

position 0.50; 0.52; 0.045

size 3.2

Table 5-24.  Concentric Circles Parameters

bitmap → generators → concentric_circles

frequency 1.0 Repetition frequency of the concentric circles.

attenuation 2.0 Circle or ring sharpness.

color 1; 1; 1; 1 White.

alpha yes Let the planets and planet parts shine through.

size 256x256

You now need two additions. First, you want the concentric circles to

inflate. Second, you want the concentric circles to disappear at a later stage

of the explosion. Inflating will start from zero, so if you start the inflation

at the correct instance of time, you will not see them until the explosion

starts. But you must let them disappear later because there is no way to let

them inflate “away.” If you do not let them disappear later, you would see

them hang around, which doesn’t seem realistic.

Chapter 5 Stories I

98

Let’s start with the first of the remaining tasks. Place the following on

the canvas and connect them as shown in Figure 5-13:

•	 maths → arithmetics → ternary → float → mult_add

•	 maths → oscillators → float_sequencer

•	 maths → oscillators → oscillator

•	 maths → dummies → float_dummy

•	 maths → arithmetics → binary → float → div

The float dummy is connected to the freq anchor of the oscillator, and

the oscillator is connected to the options / trigger anchor of the float_

sequencer. Mult_add is connected to the scale anchor of gl_scale_one

(not shown in Figure 5-13).

Figure 5-13.  Explosion, concentric rings control

Chapter 5 Stories I

99

Set the parameters as shown in Tables 5-25 to 5-29.

Table 5-25.  Mult Add Parameters

maths → arithmetics → ternary → float → mult_add

Controls the inflation extent of the rings

first_mult 15.0

then_add 0.0

Table 5-26.  Float Sequencer Parameters

maths → oscillators → float_sequencer

float_sequence See the following text

length 7.24 Later connected to the oscillator

options

behavior trigger

time_source operating_system

trigger Connected to the oscillator output

drive_type time_internal_relative

To define the float sequence for float_sequencer, open the control

by double-clicking the anchor. The sequence input will then look like

Figure 5-14.

Chapter 5 Stories I

100

Figure 5-14.  Explosion, concentric rings control, float sequencer I
default

Figure 5-15.  Explosion, concentric rings control, float sequencer I

Make it look like Figure 5-15.

Chapter 5 Stories I

101

Add anchors by holding Shift and clicking the line; then move them

by dragging. This sequence makes sure the ring inflation will start at the

correct time.

Table 5-27.  Oscillator Parameters

maths → oscillators → oscillator Controls the triggering of the
sequencer module

osc

osc_type square Square is the designated type for

triggers.

freq Controlled by the dummy below.

amp 0.5 Because of these two values, the

oscillator goes from 0.0 to 1.0 for

triggering/resetting the trigger in

the connected float sequencer.

ofs 0.5

phase -0.543 Let the trigger start at the correct

point in time.

options

time_source operating_system

drive_type time_internal_absolute You need a global synchronization

with other oscillators.

Table 5-28.  Float Dummy Parameters

maths → dummies → float_dummy Controls all oscillators

float_in 0.138

Chapter 5 Stories I

102

Also connect the output from the float_dummy module to the freq

anchor from the explosion subpipeline oscillator.

Table 5-29.  Div Parameters

maths → arithmetics → binary → float → div Controls all oscillators

param1 1.0

param2 Connected to the float_dummy

module; output will then be the

period of an oscillation cycle.

This finishes the ring’s inflation control. For the remaining rings’

visibility control, place these modules on the canvas and connect them as

shown in Figure 5-16:

•	 maths → converters → 4float_to_float4

•	 maths → oscillators → float_sequencer

(another one)

•	 maths → oscillators → pulse_oscillator

The 4float_to_float4 module is connected to the anchor diffuse_

reflectance of the material_param module from the concentric circle

subpipeline. The pulse_oscillator module connects to the trigger

anchor of the float sequencer. The modules float_dummy and div are from

the subpipeline you already constructed.

Chapter 5 Stories I

103

Set the parameters as shown in Tables 5-30 to 5-31.

Figure 5-16.  Explosion, concentric rings visibility control

Table 5-30.  4Float To Float4 Parameters

maths → converters → 4float_to_float4 Demultiplexes the color input

floata 1.0 You control only ALPHA; the rest is

white.floatb 1.0

floatc 1.0

floatd Connected to the sequencer output.

This will map to the ALPHA from the

material_param’s diffuse_reflectance

anchor.

Chapter 5 Stories I

104

This sequencer will have a sequence as shown in Figure 5-17.

Table 5-31.  Float Sequencer Parameters

maths → oscillators → float_sequencer Second one

float_sequence Covered in the following text

length Connect to the div module’s output

for the oscillator cycle duration

options

behavior trigger

time_source operating_system

trigger Connected to the pulse oscillator

output

drive_type time_internal_relative

Figure 5-17.  Explosion, concentric ring visibility control, sequencer

Chapter 5 Stories I

105

The anchors inside this control can be positioned manually by right-

clicking them, respectively.

time = 0 value = 0

time = 0.249 value = 0

time = 0.372 value = 1.0

time = 0.436 value = 1.0

time = 0.476 value = 0.0

time = 1.0 value = 0.0

With all that setup done, the output will look like Figure 5-18.

Chapter 5 Stories I

106

Figure 5-18.  Explosion output

Chapter 5 Stories I

107

By the way, did you notice the concentric circles bend a little bit? This

comes from the perspective view; in reality they are flat. You can change this

bending phenomenon by playing around with the camera’s parameters.

�Explosions and Sound
The explosion from the previous section looks nice, but for obvious reasons

it lacks the controllability by sound input. Sound is about the recurrence of

beats, and explosions are usually singular events. But you can help out by

multiplying the explosion and letting the exploding balls rotate.

In ThMAD there is nothing like a loop to multiply objects, but you can

gather subpipelines in macros and then easily multiply them by cloning.

Note  The sample of this subsection is available under B-5.2_
Explosion_And_sound in the TheArtOfAudioVisualization folder.

To start, remove one of the interwoven planets from the previous

section, and add a gl_translation module and a gl_rotation module.

See Figure 5-19.

Figure 5-19.  Multi-explosion, macro preparation

Chapter 5 Stories I

108

Decrease the size a little since you are going to have more objects in

the end. Change the anchor scale of the gl_scale module to read 2.0;

2.0; 2.0.

You want to gather the complete top row of modules shown in

Figure 5-19 into a macro. For that aim, you need to create an empty macro

by right-clicking the canvas and selecting Create Macro. Open the macro

for editing by right-clicking it and selecting Open/Close. Now select

all the modules from the top row by drawing a rectangle around them.

You can achieve that by pressing Ctrl, clicking in the top-left corner of a

surrounding box, and dragging, while holding the mouse button to the

bottom-right corner of the surrounding box. Release the mouse button.

To move the selected modules into the macro, press Shift+Ctrl, drag

one of the previously selected modules, and release them over the macro.

Your screen should now look like Figure 5-20.

Figure 5-20.  Multi-explosion, macro

Chapter 5 Stories I

109

You later want to translate and rotate each macro instance individually,

and you want to set the triggering frequency on a per- macro basis. To

allow for that, you need incoming anchors for the macro. This is easy: just

click each of the following anchors and drag it to an empty spot inside the

macro space:

•	 Anchor freq of the oscillator module

•	 Anchor translation of the gl_translate module

•	 Anchor axis of the gl_rotate module

•	 Anchor angle of the gl_rotate module

The macro will now have four input anchors, as shown in Figure 5-21.

Figure 5-21.  Multi-explosion, macro with input anchors

Chapter 5 Stories I

110

You can now collapse or close the macro since you do not need to see

its interior any longer. Right-click it and then select Open/Close again.

Your state should now look like Figure 5-22.

Figure 5-22.  Multi-explosion, state with macro

Clone the macro maybe five times: press Ctrl+Alt and then drag the

macro to an empty spot of the canvas. Connect the cloned macros to the

input anchor of depth_buffer. Now add this connected module pair

beside each macro:

•	 maths → arithmetics → binary → float → mod

•	 maths → arithmetics → binary → float → mult

Connect them and the output of mod with the alias_angle anchor of

each adjacent macro. Set the param2 anchor of each mod module to 6.2830.

Add these modules:

•	 maths → arithmetics → binary → float → add

•	 maths → arithmetics → binary → float → mult

•	 system → time

•	 maths → accumulators → float_accumulator

•	 maths → arithmetics → ternary → float → mult_add

•	 sound → input_visualization_listener

Connect them as shown in Figure 5-23.

Chapter 5 Stories I

111

Figure 5-23.  Multi-explosion, angle control

Add these modules:

•	 maths → converters → 4float_to_float4

•	 maths → arithmetics → binary → float → mult,

three times

•	 maths → limiters → float_clamp

•	 maths → arithmetics → ternary → float → mult_add

Connect them as shown in Figure 5-24.

Figure 5-24.  Multi-explosion, color control

Chapter 5 Stories I

112

Connect 4float_to_float4 to the specular_reflectance anchor

of material_param, and connect mult_add to the vu / vu_l anchor of

input_visualization_listener.

The possibilities of assigning values to the unconnected input anchors

are endless; see Table 5-32 for a working example.

Table 5-32.  Multi-explosion Parameters

Module Name Anchor Name Value

Macro 1 alias_freq 0.31

alias_translation 10.0; 0.0; 0.0

alias_axis 0.0; 0.0; 1.0

Macro 2 alias_freq 0.40

alias_translation −5.0; −3.0; 3.0

alias_axis 0.01; 0.0; 1.0

Macro 3 alias_freq 0.27

alias_translation 5.0; −6.0; 5.0

alias_axis 0.02; 0.95; 0.30

Macro 4 alias_freq 0.4

alias_translation 6.0; 0.0; 0.0

alias_axis −0.1; 0.66; 0.74

Macro 5 alias_freq 0.21

alias_translation 0.0; 6.0; 0.0

alias_axis 0.05; 0.91; −0.41

mult near macro 1 param2 1.0

mult near macro 2 param2 0.5

mult near macro 3 param2 −0.5

(continued)

Chapter 5 Stories I

113

Module Name Anchor Name Value

mult near macro 4 param2 −1.0

mult near macro 5 param2 −1.5

mult near time param2 0.147

mult_add near float_accumulator first_mult 0.048

then_add 0.0

4float_to_float4 floatd 1.0

mult connected to floata of

4float_to_float4

param2 0.92

mult connected to floatb of

4float_to_float4

param2 0.92

mult connected to floatc of

4float_to_float4

param2 0.64

float_clamp low 0.0

high 1.0

mult_add near float_clamp first_mult 0.3

then_add 0.6

Table 5-32.  (continued)

In the end, you will have endlessly exploding and re-appearing balls

reacting to sound input.

Chapter 5 Stories I

114

�Fractal Algorithms

Note  These samples are available under B-5_3_Fractals_* in
the TheArtOfAudioVisualization folder.

Fractals are objects that live between the dimensions. They can be 1.3,

2.8, or even 0.1 dimensional. And they usually obey self-similarity, which

means that patterns repeat endlessly if you zoom in or out.

In Audio Visualization Using ThMAD, you created a fractal via self-

similarity; this time you will go the other way and use algorithms to create

fractals. Fractals are sets of points; especially if you want to add some

dynamics, the best candidates for fractal algorithms are particle systems.

The following module takes an existing particle system and changes

the particle coordinates according to an iterated function system (IFS)

algorithm:

•	 particlesystems → fractals → ifs_modifier

The IFS algorithm takes a point p(x,y,z) and applies a function f to create

a new point, p → f(p) = p’. It does so all over, yielding p” = f(p’), p’” = f(p”),

p(4)= f(p’”), and so on, forever.

p = p(x,y,z) → f(p) = p’

p’ → f(p) = p”

p”→ f(p”) = p”’

...

Sound easy? Well, it is. The art is to define a good function f that

behaves interestingly. The possibilities for functions bearing boring

results or unstable functions that create runaways are endless.

Fortunately, the ifs_modifier is accompanied by a set of working

parameter sets you can use.

Chapter 5 Stories I

115

As of now, there is one restriction to the nature of the iteration function

f inside ThMAD’s ifs_modifier module: f takes its calculation rule from

the function set of affine transformations. This means given a point

p = p(x,y,z), f will do the following:

f chooses randomly with a 50% / 50% probability one of

x' = a11 ∙ x + a12 ∙ y + a13 ∙ z + at1

x' = a21 ∙ x + a22 ∙ y + a23 ∙ z + at2

x' = a31 ∙ x + a32 ∙ y + a33 ∙ z + at3

or

x' = b11 ∙ x + b12 ∙ y + b13 ∙ z + bt1

x' = b21 ∙ x + b22 ∙ y + b23 ∙ z + bt2

x' = b31 ∙ x + b32 ∙ y + b33 ∙ z + bt3

As an example, start with an empty canvas, which you can create by

right-clicking and selecting New and then Empty Project. Place these

modules and connect them as shown in Figure 5-25:

•	 renderers → opengl_modifiers → blend_mode

(twice)

•	 renderers → opengl_modifiers → cameras →

orbit_camera

•	 renderers → opengl_modifiers → light_

directional

•	 renderers → opengl_modifiers → depth_buffer

•	 renderers → opengl_modifiers → backface_

culling

•	 renderers → opengl_modifiers → material_param

•	 renderers → opengl_modifiers → gl_rotate_quat

Chapter 5 Stories I

116

For the parameters of these modules, see Tables 5-33 to 5-37.

Figure 5-25.  IFS fractal, state basis

Table 5-33.  Orbit Camera Parameters

renderers → opengl_modifiers → cameras → orbit_camera

rotation 0; 0; 1

distance 23.0 You choose a larger distance and a small

fov to avoid perspective artifacts.

fov 30.0

perspective_correct yes The beams are white.

Chapter 5 Stories I

117

Table 5-35.  Depth Buffer Parameters

renderers → opengl_modifiers → depth_buffer

depth_test DISABLED

depth_mask DISABLED

Table 5-36.  Backface Culling Parameters

renderers → opengl_modifiers → backface_culling

status DISABLED

Table 5-37.  Material Param Parameters

renderers → opengl_modifiers → material_param

ambient_reflectance 0.2; 0.2; 0.2; 1.0

diffuse_reflectance 0.11; 0.20; 0.26; 1.0

specular_reflectance 0.95; 0.87; 0.87; 1.0

emission_intensity 0; 0; 0; 1

specular_exponent 13.0

Table 5-34.  Light Directional Parameters

renderers → opengl_modifiers → light_directional

enabled YES

position 0; 0; 1

ambient_color 0; 0; 0; 1

diffuse_color 1; 0; 0; 1

specular_color 0.89; 0.81; 0.05; 1.0

Chapter 5 Stories I

118

This is more or less the standard 3D rendering subpipeline. A

characteristic of iterated functions systems is the point erratically jumping

around and only its positions in the course of time building up the fractal.

To avoid having the visualization appear too nervous, you can add an

intense blurring effect. To do so, place the following modules on the

canvas and connect them with each other and the already existing state

modules as shown in Figure 5-26:

•	 renderers → basic → basic_textured_rectangle

•	 texture → effects → highblur

•	 texture → buffers → render_surface_single

Figure 5-26.  IFS fractal, blurring modules

Note the input order for the blend_mode module. The input from

textured_rectangle must go below the input from the camera. To check

this, double-click the input anchor. If necessary, you then could change

the order by dragging one of the subanchors.

Chapter 5 Stories I

119

For the module parameter values, see Tables 5-38 to 5-40.

Table 5-38.  Textured Rectangle Parameters

renderers → basic → textured_rectangle

color / global_alpha 0.97075 This is crucial for the blurring

effect; the value must usually

be slightly smaller than 1.0.

diffuse_reflectance 0.11; 0.20; 0.26; 1.0

specular_reflectance 0.95; 0.87; 0.87; 1.0

emission_intensity 0; 0; 0; 1

specular_exponent 13.0

Table 5-39.  Highblur Parameters

texture_effects → highblur

translation 0.01; 0.005; 0 This is like a weak wind.

blowup_center 0.5; 0.5; 0 These are texture coordinates; hence, the

0.5, not the 0.0 of the object center.

blowup_rate 1000.0 The size of the radial blur effect.

attenuation 100.0 Controls the intensity of the blur effect.

texture_size VIEWPORT_SIZE This is important; the original image and

blurred image must match in size and position.

Table 5-40.  Render Surface Single Parameters

texture → buffers → render_surface_single

texture_size VIEWPORT_SIZE This is important; the original image

and blurred image must match in

size and position.

Chapter 5 Stories I

120

Next you can add the modules for the IFS object:

•	 renderers → particlesystems → simple

•	 texture → particles → blob

•	 particlesystems → generators → basic_spray_

emitter

Connect them as shown in Figure 5-27.

Figure 5-27.  IFS fractal, generator

The parameters for the generator modules are shown in

Tables 5-41 to 5-43.

Chapter 5 Stories I

121

Table 5-41.  Blob Parameters

texture → particle → blob

settings / alpha yes

settings / color 1; 1; 1; 1 Basic point color.

size 8x8 The particles are small here, so you do not

need big textures.

Table 5-42.  IFS Modifier Parameters

particlesystems → fractals → ifs_modifier

change_probability 1.0 If smaller than 1.0, not all particles will take part in

the IFS-algorithm point coordinates will update with

each frame. Since you are using blurring, you will

always update.

change_random off If you select go instead, a random change of all

IFS parameters gets triggered once. If the state

gets saved, the value will always read off.

save_params off If you select go instead, the current IFS get saved

inside the resources/ifs folder. If the state gets

saved, the value will always read off.

load_params Double-click this anchor to load an IFS parameter

set from the resources folder. This is like a

one-time trigger; the file name does not get

persisted.

ifs / * You can use this to freely set individual IFS

parameters.

Chapter 5 Stories I

122

Table 5-43.  Basic Spray Emitter Parameters

particlesystems → generators → basic_spray_emitter

num_particles 100000 The more the better. But be warned

that with very high numbers, you can

overload your computer.

spatial

emitter_position 0; 0; 0 This is the root for the IFS algorithm.

Changing these figures has no

noticeable effect since the algorithm

readily dictates the particles’

positions.

speed / * 0.0 for all Do not disturb the IFS algorithm with

a particle speed.

size / particle_size_base 0.05 Increasing this might lead to

overburdening your system; keep it

small.

appearance

color Any Has no influence.

time / particle_lifetime_

base

2.0 Has no big influence, but give the IFS

some time to develop.

time / particle_lifetime_

random_weight

1.0 Lifetime randomization amount. It’s

important to avoid pumping effects

(try setting this zero and restart to

see what happens).

Chapter 5 Stories I

123

ThMAD IFSs live in three dimensions. To unleash the third dimension,

you add a constant rotation around two axes. For that aim, add these

modules:

•	 maths → arithmetics → binary → quaternion →

quat_mul

•	 maths → arithmetics → functions → axis_

angle_to_quaternion (twice)

•	 maths → oscillators → oscillator

Connect them as shown in Figure 5-28.

Figure 5-28.  IFS fractal, rotation

For the parameters, see Tables 5-44 to 5-47.

Table 5-44.  Axis Angle to Quaternion Parameters

maths → arithmetics → functions →
axis_angle_to_quaternion

First one

axis 0; 1; 0 Just an example; choose at will

angle Connected to an oscillator

Chapter 5 Stories I

124

Table 5-45.  Axis Angle to Quaternion Parameters

maths → arithmetics → functions →
axis_angle_to_quaternion

Second one

axis 0; 0; 1 Just an example; choose at will

angle Connected to an oscillator

Table 5-46.  Oscillator Parameters

maths → oscillators → oscillator First one

osc / osc_type saw Usual type when you connect to angles.

osc / freq 0.05 Frequency.

osc / amp 3.1415 This is π; you usually choose this if using

saw as the type and connecting to angles.

Table 5-47.  Oscillator Parameters

maths → oscillators → oscillator Second one

osc / osc_type saw Usual type when you connect to angles.

osc / freq 0.022 Frequency.

osc / amp 3.1415 This is π; you usually choose this if using saw

as type and connecting to angles.

Chapter 5 Stories I

125

The output will look something like Figure 5-29.

Figure 5-29.  IFS fractal, output

Note that the white saturation at the center region cannot easily be

avoided since coordinate frequencies for IFSs usually obey logarithmic

distribution laws and blending happens naturally in a linear distribution

domain.

If you want to add sound responsiveness, the best place where you can

hook into the visualization_input_listener module is the texture color

of module blob.

Note  Take a look at the B-5.3_Fractals_IFS_Sound sample
in the TheArtOfAudioVisualization folder for how this can be
done.

�Fire
To simulate candles, torches, flames, or fire in general, a kind of plasma is

the conceptual tool of your choice. Physics has its own notion of plasma,

which is rather hard to fully understand. The basis is a mutual interaction

Chapter 5 Stories I

126

of negative and positive charged particles at different distance scales. For

computer graphics, especially game development, different algorithms

have been used to get a computationally inexpensive approximation of

plasmas.

In ThMAD, a module named bitmaps → generators → subplasma

uses an algorithm to mix an interpolation procedure between adjacent

points and random numbers to generate plasma bitmaps. Later, you map

this plasma onto a particle system, which mimics the gas movement in a

flame.

The samples from this section are not described in a step-by-step

manner. Instead, I will present an outline and ask you to go through the

states provided in the installation directory.

Note  The states can be found in B-5.4_Fire_* in the
TheArtOfAudioVisualization folder.

Start with the plasma as defined by state B-5_4_Fire_01PlasmaBitmap.

It uses the bitmaps → generators → subplasma module to generate a

plasma bitmap, as shown in Figure 5-30.

Figure 5-30.  Plasma bitmap

Chapter 5 Stories I

127

You blend this plasma with a blob using the OVERLAY blend function.

This is a blend mode that modulates the plasma, making the plasma

brighter where the blob is bright and darker where the blob is dark. It

uses the blob pixel brightness to decide whether to light or darken; this

is why this blend mode is not symmetric. Order matters! The result is

shown in Figure 5-31, and the name of the corresponding state is

B-5.4_Fire_02PlasmaAndBlob.

Figure 5-31.  Plasma and blob with OVERLAY blend function

This basically centers the plasma at some point. This makes particles,

covered next, align more smoothly.

The actual shape is random; you can play around with the rand_seed

anchor of the subplasma module to try different shapes.

Next you allow for a rotation of the plasma blob. You will later use it as

a texturing input for a particle system, so you first send the bitmap to the

Chapter 5 Stories I

128

texture space of the graphics hardware and then do a rotation. Actually,

texture rotation is always around the point with texture coordinates (0,0),

but you want a rotation around the texture’s center, which by definition is

(0.5; 0.5). Remember, texture coordinates live in the square [0;0] → [1;1].

Thus, you translate (−0.5; −0.5), then rotate at some angle around (0;0),

and finally shift back to (0.5; 0.5).

Fortunately, the current version of texture → modifiers → rotate

does this all for you, so you do not need to add translation modules as

was necessary in the predecessor of ThMAD. The corresponding state

can be found in B-5.4_Fire_03TexRotate. What you do next is generate

100 random vertices via mesh → vertices → random_vertices, and use

this and the texture from earlier as an input for particlesystems →

generators → particles_mesh_spray. You add a translational movement

to the particles via module particlesystems → modifiers → basic_

wind_deformer and inside the particle system renderer renderers →

particlesystems → basic, you provide an elaborated color sequence.

Figure 5-32 shows the output.

Figure 5-32.  Candle-like fire

You can play with the values to change the appearance and intensity.

Since there are so many parameters, a few hints follow so you do not get

lost.

Chapter 5 Stories I

129

�Changing the Overall Size
To change the overall size, go to the random_vertices module and change

the contents of the scaling anchor. The x-coordinate there is interesting

since it defines the horizontal base of the fire. A small value here will

give you the impression of a candle, while a larger value will go in the

direction of a bonfire. See Figure 5-33 (the left side is a small value for the

x-coordinate of anchor scaling in module random_vertices, and the right

has a bigger value).

Figure 5-33.  Changing the overall size of the fire base

�Changing the Intensity
The intensity can best be changed by altering the anchor num_particles of

module particles_mesh_spray. See Figure 5-34 (left: 500 particles; right:

150 particles).

Figure 5-34.  Changing the intensity of the fire

Chapter 5 Stories I

130

You can also change the particles’ size at anchor spatial / size of

module particles_mesh_spray.

�Changing the Color Distribution
The color distribution inside the flame can be changed as

well. It is a little trickier, though; you need to change the

sequences inside the options anchor of module renderers →

particlesystems → simple. The current set reads *_lifespan_

sequence (R, G, B, ALPHA); see Figure 5-35.

Figure 5-35.  Color distribution in flames, RGBA values

You can see it starting at blue and then shifting to an orange and

decaying to gray. The ALPHA value is somewhat erratic to improve the

natural impression of the fire. The reason why it currently yields a bright

white in the center of the flame and above lies in the blending mode set in

module blend_mode; it is set to SRC_ALPHA / DEST_ALPHA, which will sum up

to white if many objects overlap.

Chapter 5 Stories I

131

You can, for example, change the white to a more yellowish color if you

change the blue sequence to something like shown in Figure 5-36.

Figure 5-36.  Changing the blue channel

The result will then look like Figure 5-37.

Figure 5-37.  Changing the colors of the fire

�The Problem of Sound Scaling
Sound comes in at varying levels. Maybe you change the PulseAudio

sound server’s level from time to time by altering the sound volume in the

desktop’s sound control. This can happen because you are also changing

the amplification level of your stereo player and you want to compensate

for that change. I do this quite often. The problem is that ThMAD cannot

possibly know at what level the sound arrives at your ears just from

Chapter 5 Stories I

132

looking at PulseAudio’s sound data that it receives. Or, which is another

source for varying sound levels, different kinds of music enter your sound

visualization.

In both cases, sound visualizations may break because when you build

them, sound levels of one kind arrive at your visualization pipeline and

then later different sound levels arrive.

A way to fix this is to collect sound levels in a moving average fashion

and scale sound input by that. You’ll now see an example of how this can

be done.

Note  This and subsequent states of this section can
be found at B-5.5_Sound_Level_Scaling* in the
TheArtOfAudioVisualization folder.

Take a look at Figure 5-38, which shows the white curve of an incoming

sound. This is the vu_l anchor of input_visualization_listener while

some music is playing.

Figure 5-38.  Sound and smoothed sound

Chapter 5 Stories I

133

The green line is the smoothed version, and it is obvious if you divide

each white elongation by the corresponding smoothed green value that

you would oscillate around 1.0, no matter if the overall volume is small as

on the left side or high as on the other side. Doing this calculation, you will

see an outcome like Figure 5-39.

Figure 5-39.  Sound, smoothed sound and division

Figure 5-40 shows the corresponding subpipeline. You can see that the

yellow curve, coming from the dividing sound and smoothed sound, will

still show the peaks while staying at the same overall level.

Figure 5-40.  Sound and smoothed sound, subpipeline

Chapter 5 Stories I

134

There are two problems with that approach, though. The first is that

you never want to divide by zero. That is why the float_limiter module

was added; it is set to never let the value drop below 0.1. The other

problem is that when the music starts to play, you will have a big peak,

no matter how loud the music is; see Figure 5-41. The reason is that the

smoothed value will build up slowly compared to the unsmoothed value,

so the division will yield big numbers.

Figure 5-41.  Sound divided by smoothed sound, music onset

If you want to avoid this, you can introduce the maths →

arithmetics → unary → float → atan module, which will nonlinearly

scale in a way that the output never will exceed 1.57 = π/2. See the blue

line in Figure 5-42.

Chapter 5 Stories I

135

This atan function scaling smoothes big changes, which may be

acceptable or even desirable or may be unwanted, depending on

circumstances.

Another way to solve the scaling problem is to not look at the sound

figures directly but instead at their derivatives in time. That is, you will

look at the changes in time instead of at the absolute numbers. The

corresponding sample state is named B-5.5_Sound_Level_Scaling_

Derivative, and a sample output is shown in Figure 5-43. The derivative is

the green line.

Figure 5-42.  Sound divided by smoothed sound, then atan scaler,
music onset

Chapter 5 Stories I

136

Note that in this case the float_smoother, mult, and abs modules had

to be added besides the derivative module for a meaningful output.

�A Space Odyssey
In the end sequence of the movie 2001: A Space Odyssey, the viewer is

led through a now famous psychedelic effect of two seemingly infinite

planes with various shapes moving toward him. While the original effect’s

creation used up quite some budget and was technically challenging at the

time the movie was made, you can try to use ThMAD to create something

similar. It is not the intent here to copy the effect in detail, but instead you

will stick to the main idea of two planes and shapes moving at high speed

toward the viewer. You might even do better than the original.

Figure 5-43.  Sound and sound derivative

Chapter 5 Stories I

137

Note  The sample of this section is available under B-5.6_A_
Space_Odyssey in the TheArtOfAudioVisualization folder.
The shader code can be found at [ThMAD_INST]/share/thmad/
TheArtOfAudioVisualization-snippets/ B-5.6_A_Space_
Odyssey.

�Two Planes
You start with positioning two planes of size 2×2 parallel to the x-y plane,

centered at (0,0,+/− x) at a short distance of 2x. This is obviously not the

same as using infinitely large planes, but if you choose a really small

distance between the planes and position the camera very close to the

edges, the illusion will be as if you had infinitely large planes.

These are the modules used for this example:

•	 renderers → basic → textured_rectangle (twice)

•	 renderers → opengl_modifiers → gl_translate

(twice)

•	 renderers → opengl_modifiers → blend_mode

•	 renderers → opengl_modifiers → cameras →

target_camera

•	 maths → converters → 3float_to_float3

•	 maths → dummies → float_dummy (renamed to

camera_dist)

See Figure 5-44. Note that you are using float_dummy just for clarity

and are renaming it to camera_dist since it gets connected to the

y-position of the camera describing its distance to the edges of the plane.

Chapter 5 Stories I

138

The parameters are shown in Tables 5-48 to 5-54.

Figure 5-44.  A space odyssey: two planes

Table 5-48.  Textured Rectangle Parameters

renderers → basic → textured_rectangle Both of them

All parameters should be left at their default values.

Chapter 5 Stories I

139

Table 5-49.  Gl Translate Parameters

renderers → opengl_modifiers →
gl_translate

Upper plane

translation 0; 0; 0.02 Adding small values with the slider controls

is not easy. It’s best to enter the value

directly at the knob in the second knob row.

Then drag the slider to the lower end.

Table 5-50.  Gl Translate Parameters

renderers → opengl_modifiers → gl_translate Lower plane

translation 0; 0; −0.02

Table 5-51.  Blend Mode Parameters

renderers → opengl_modifiers → blend_mode

All parameters should be left at their default values. The planes do not intersect.

Table 5-52.  Target Camera Parameters

renderers → opengl_modifiers → cameras → target_camera

camera/position Connected to 3float_to_float3.

camera/destination 0; 0; 0 What you are looking at.

camera/upvector 0; 1.0; 0 Upright; the horizon is horizontal.

camera/fov 45.0 View angle. Make sure the horizon is

wide enough.

camera/perspective_correct no You can try yes as well.

Chapter 5 Stories I

140

Table 5-53.  3Float To Float3 Parameters

maths → converters → 3float_to_float3 Decomposing the camera position

floata 0.0

floatb You will be looking at the y=1 edges.

floatc 0.0

Table 5-54.  Float Dummy Parameters

maths → dummies → float_dummy Renamed to camera_dist

float_in 1.00025 Specifies the y-position; see

3float_to_float3 and target_camera

As shown by the textured_rectangle modules you used, textures will

hold the shapes that are going to be projected onto the planes.

�Outgoing Texture Controllers
To have as much control as possible and also allow for dynamics, you

provide for a texture control subpipeline. It consists of the following:

•	 texture → dummies → texture_dummy

•	 texture → modifiers → translate

•	 texture → modifiers → rotate

•	 maths → oscillators → oscillator (twice)

See Figure 5-45.

Chapter 5 Stories I

141

Note that you use oscillator_1 to control the amplitude of

oscillator. The texture_dummy module is used just as an interface to the

subsequent pipeline described previously. There you need two texture

input channels and therefore here use the texture_dummy as a multiplexer.

The parameters are listed in Tables 5-55 to 5-58.

Figure 5-45.  A space odyssey, outgoing texture controls

Table 5-55.  Translate Parameters

texture → modifiers → translate

Leave at the default values. You can play around with these later.

Table 5-56.  Rotate Parameters

texture → modifiers → rotate

rotation_angle Connected to the first oscillator

Chapter 5 Stories I

142

Table 5-57.  Oscillator Parameters

maths → oscillators → oscillator Connected to the rotate module

osc/osc_type triangle

osc/freq 0.01 Controls the rotation angle of the outgoing

texture orientation very slowly

osc/amp Connected to the other oscillator

osc/ofs 0.0 Makes the straight view into the scene the

default view

Table 5-58.  Oscillator Parameters

maths → oscillators → oscillator Connected to the other oscillator

osc/osc_type triangle

osc/freq 0.005 Slowly augments the amplitude of the other

oscillator

osc/amp 0.25 Oscillates between 0 and 0.5

osc/ofs 0.25

Connect the outgoing texture controller’s subpipeline to the two

planes’ subpipeline from section “Two Planes” above by connecting the

texture_dummy module with both textured_rectangle modules from

earlier.

�Texture Switcher
The main and most complicated module of the state is selectors →

texture_selector to give some responsiveness to sound.

Chapter 5 Stories I

143

It comes together with these controllers:

•	 maths → oscillators → oscillator, THREE TIMES

•	 maths → arithmetics → binary → float → mult

•	 maths → arithmetics → binary → float → div

•	 maths → interpolation → float_smoother

•	 sound → input_visualization_listener

As the name of texture_selector says, it selects from several input

textures. But it does a lot more; it allows for a smooth blending between

adjacent textures in the incoming list, optionally wraps on index overflow

or underflow, and even gives you the opportunity to define the shape of

the blending function if blending is chosen as a mode.

They are connected as shown in Figure 5-46.

Figure 5-46.  A space odyssey, texture switcher

Chapter 5 Stories I

144

The parameters and connections are shown in Table 5-59.

Table 5-59.  Texture Selector Parameters

selectors → texture_selector

index The index of the texture

to take. Connected to the

osc_Mode oscillator.

inputs 8 You will later connect

eight textures.

texture_x Here the textures will get

connected later.

options/Wrap wrap Wrapping mode on index

underrun or overrun.

options/blend_type Linear Smooth blending.

options/blend_options/

blend_size

1024x1024

shaders/vertex_program See the following text

shaders/fragment_program See the following text

shaders/shad_param 1 Connected to Osc_flow.

shaders/shad_param 2 Connected to Osc_X_mul.

shaders/shad_param 3..8 Unused.

Chapter 5 Stories I

145

The vertex_program anchor is as follows:

varying vec2 texcoord;

void main() {

 texcoord = gl_MultiTexCoord0.st;

 gl_Position = gl_ModelViewProjectionMatrix *

 gl_Vertex;

}

This is the default no-op vertex shader program; it just provides the

texture coordinates to subsequent shaders and determines the standard

vertex coordinates. The fragment_program anchor provides code for the

fragment shader. The module determines the two neighboring textures

given the index value and serves them to the fragment shader. Its code is

as follows (the line numbers are for display purposes only):

(1) uniform sampler2D A_tex;

(2) uniform sampler2D B_tex;

(3) uniform float mode_index;

(4) uniform float A_mix; // weight of texture A

(5) uniform float B_mix; // weight of texture B

(6) uniform float shad_param1; // module params...

(7) uniform float shad_param2;

(8) uniform float shad_param3;

(9) uniform float shad_param4;

(10) uniform float shad_param5;

(11) uniform float shad_param6;

(12) uniform float shad_param7;

(13) uniform float shad_param8;

(14) varying vec2 texcoord; // from the vertex shader

(15) vec4 Acolorvec;

(16) vec4 Bcolorvec;

Chapter 5 Stories I

146

(17)

(18) void main(void) {

(19) vec2 v = texcoord;

(20) float f1 = v.y;

(21)

(22) // acceleration factor along y

(23) v.y = v.y * v.y * v.y * 3.0;

(24)

(25) // y-flow

(26) v.y = v.y - shad_param1;

(27)

(28) // shrink along x

(29) v.x = (v.x − 0.5) * shad_param2 + 0.5;

(30)

(31) Acolorvec = texture2D(A_tex, v);

(32) Acolorvec = vec4((Acolorvec[0] *

 A_mix), (Acolorvec[1] * A_mix),

 (Acolorvec[2] * A_mix),1.0);

(33) Bcolorvec = texture2D(B_tex, v);

(34) Bcolorvec = vec4((Bcolorvec[0] *

 B_mix), (Bcolorvec[1] * B_mix),

 (Bcolorvec[2] * B_mix),1.0);

(35) gl_FragColor = vec4(Acolorvec[0] +

 Bcolorvec[0],Acolorvec[1] +

 Bcolorvec[1],Acolorvec[2] +

 Bcolorvec[2],1.0);

(36) }

Chapter 5 Stories I

147

Lines 1 to 13 import values from the calling program, and line 14

imports the linearly mapped texture coordinates from the vertex shader.

Lines 15 and 16 are just variable declarations. Starting line 22, you apply

an acceleration to the y coordinates, which yields a somewhat physically

unrealistic but nevertheless impressing acceleration of shapes flying

toward the observer. Line 26 does not look that impressive, but in fact

it creates the main effect of flowing along the y-axis. The flow speed is

controlled by import parameter shad_param2. Line 28 fetches the module

import parameter shad_par1 and from that scales along the x-axis.

Everything starting at line 31 performs the blending by combining color

values from the two textures provided by the module for the current

blending and finally sets the pixel color.

Because of this shader code and linear being chosen as a blending

mode, the desired smooth blending will happen. The idea is as follows: if the

index is, for example, 3.4, this means the texture number 3 will be assigned

the weight 0.4 = 40%, the texture number 4 will be assigned the weight 1 − 0.4

= 0.6 = 60%, and the blend will be 0.4 * texture3 + 0.6 * texture4.

As soon as you are finished with this subpipeline, connect the output

from the texture_selector module to the input of the rotate module of

the outgoing texture control subpipeline in section “Outgoing Texture

Controllers” above.

�Shape Creation Textures
For the input of the texture_selector module, you will use eight

subpipelines. Since they are pretty straightforward and do nothing special

apart from presenting image data in a texture, this will be only a concise

summary of their characteristics.

Note  For details, please take a look at B-5.6_A_Space_Odyssey
in the TheArtOfAudioVisualization folder.

Chapter 5 Stories I

148

Of course, feel free to create your own shapes. The only requirement is

that any module creates a texture of size 1024×1024. The texture generators

used for my version of the state are as follows:

•	 A simple white blob created using bitmap →

generators → blob. Make sure its alpha anchor is

set to no. It is converted to a texture via texture →

loaders → bitmap2texture.

•	 A red star using the same modules as above but with

different parameters

•	 A cloudy scene using bitmap → generators →

perlin_noise and then again texture → loaders →

bitmap2texture.

•	 A texture → loaders → png_tex_load module for

directly presenting a PNG image file to the texture

image data. You could load any PNG file, but usually

it is better to have it sized 128×128, 256×256, 512×512,

or 1024×1024. I loaded a precomputed image with a

randomly distributed set of triangles.

•	 A set of concentric circles from texture → particles

→ concentric_circles.

•	 A blue rectangle from renderers → basic →

colored_rectangle. The renderers data is loaded to a

texture buffer via the module texture → buffers →

render_surface_color_buffer. Note that because of

the way ThMAD works internally, the colored rectangle

gets painted only once and then updated to the texture

buffer. If you want to play around with the rectangle,

change its size, color, angle, or whatever, in order not

to fill up the texture buffer with garbage. Another black

rectangle filling the complete space should be preceded.

Chapter 5 Stories I

149

•	 The same as the concentric circles but several

randomly distributed yellow rectangles with ALPHA < 1

and a green background.

•	 A mesh → particles → mesh_rays with adjacent

renderers → mesh → mesh_basic_render creating

some ray-like blue structure.

Connect all these textures to the items of the texture_x subanchor of

the texture_selector module in section “Texture Switcher” above.

�All Combined
Because of the oscillator-controlled rotation inside the texture, you can

do better than the original that has only one view. The scene feels like you

are flying between two planes with hypersonic speed. All the dynamics

happen inside the graphics hardware; the textures get uploaded only once

when the state starts its work. This allows for the impressive speed, but

please be warned that it nevertheless goes to the edge of what a modern

onboard graphics controller can handle. If the video is too unstable

for you, maybe try to remove some of the textures or lower the speed;

remember, it is the shad_param1 anchor value of module

texture_selector.

Chapter 5 Stories I

150

Figure 5-47 shows a bird’s-view of the complete state and a snapshot of

the output in Figure 5-48.

Figure 5-48.  A space odyssey, snapshot

Figure 5-47.  A space odyssey, complete state

Chapter 5 Stories I

151

Of course, you should see it in action or at least watch the video on

YouTube; search for PMSSpaceOdyssey2017.

�Making Sequences
ThMAD currently has no elaborate sequencing functionalities as you’d

expect from a video or game engine. You learned that the player switches

between visuals, but this happens on a random basis and only scarcely

counts as sequencing.

Fortunately, ThMAD has a few modules that, if used the right way, might

serve some basic sequencing needs. More precisely, it is possible to use the

subpipeline blocker modules, which can be controlled by input anchors.

Here you will see an example that switches from a system with a

particle system with bigger textures, running on random point sources, to

a system with a particle system running with smaller particles originating

from a single source point. See Figure 5-49.

Figure 5-49.  Sequence control, base image, and add-on sequences

Chapter 5 Stories I

152

Particle systems were introduced in Chapter 2, so this section just

refers to the states given in the installation and points out some important

issues.

Note E xamples from this section are available under B-5.7_
Sequencing* in the TheArtOfAudioVisualization folder.

The states B-5.7_Sequencing_A, B-5.7_Sequencing_B, and B-5.7_

Sequencing_C contain static images from a photo and the first and second

particle systems, respectively. The state B-5.7_Sequencing contains the

sequencing. There, a saw oscillator produces the output. Two instances

of the module maths → arithmetics → unary → float → ifinside

take the oscillator’s output and produce a 1.0 if it is inside [0;0.5] or [0.5;1],

respectively. That means the first ifinside produces a 1.1 if the oscillator

is between 0 and 0.5, and the second ifinside produces a 1.0 if the

oscillator is between 0.5 and 1.0. The rest of the time each of the modules

produces 0.0. If you interpret 1.0 as on and 0.0 as off, the branches get

mutually switched on and off. The actual control is performed by two

modules of type system → blocker that enable a subpipeline if the

input is greater than 0.5 and otherwise disable it. Figure 5-50 shows the

controlling part of the state.

Chapter 5 Stories I

153

Figure 5-50.  Sequence control

Of course, you can make extended sequences if you add more

ifinside modules and divide [0;1] into smaller chunks.

�Lighting Revisited
In Audio Visualization Using ThMAD, I focused on the theoretical aspects

of lighting, but I reckon it is worthwhile to revisit that topic from a practical

point of view.

Note  The examples from this section are available under B-5.8_*
in the TheArtOfAudioVisualization folder.

The different light sources are described in the following sections.

Chapter 5 Stories I

154

�Ambient Light
Ambient light is the dull light you see in an almost totally dark room. It

seems to come from nowhere, and it seems to be everywhere. Despite its

nondirectional nature, an ambient light can be defined to come from a

directional light placed on the scene. The light’s position in space just gets

disregarded for the ambient light. The ambient part of a light source is set

in this module:

•	 renderers → opengl_modifiers → light_

directional at anchor ambient_color

�Diffuse Light
The diffuse light is the light reflected at all possible directions when hitting

a surface. It gets set at the same place as the ambient light, in this module:

•	 renderers → opengl_modifiers → light_

directional at anchor diffuse_color

�Specular Light
Specular light gets reflected more or less sharply at a defined angle when

light beams hit a surface. It gets defined here:

•	 module renderers → opengl_modifiers → light_
directional at anchor specular_color

�Clear Color
Another source of color or light is the screen’s clear color. It will be applied

to the whole scene in each frame before anything else gets rendered. It will

thus show up as a background color and may shimmer through objects

only if they are in part transparent. The screen’s clear color gets set in the

screen0 module at anchor clear_color.

Chapter 5 Stories I

155

�Material Ambient Color
The ambient light defined by a light source has its counterpart in an

ambient reflection color of a surface material. There it can be configured

directly using this module:

•	 renderers → opengl_modifiers → material_param

at anchor ambient_reflectance

The ambient part of the outcome color will be the product of each of

the RGB components from the ambient color coming from the light and the

ambient color defined as a material parameter. An ALPHA value plays a role

there as well, but it cannot be defined as an ambient material parameter;

instead, the ALPHA value for the diffuse reflection material parameter will

be used for the ambient color calculation as well. See Figure 5-51, which

shows a cube with ambient light; it has a material parameter ambient light

RGB composition of YELLOW = RED + GREEN = (1, 1, 0) and a directional

light ambient color of GREEN = (0, 1, 0). You get a resulting ambient color

after the part-wise multiplication (1, 1, 0) ∙ (0, 1, 0) = (0, 1, 0), which is a

plain GREEN.

Caution A s for the influence of the material parameters’ ambient
RGB values, each color component will be multiplied with the ALPHA
value of the diffuse light component configured for the material.

Note that for realistic scenes an ambient influence of 10 percent

maximum will do in most cases. Since this cannot be adjusted by using the

ambient material parameter ALPHA, you will have to control this with either

low RGB values inside the material parameter module’s settings or with

low RGB values inside the light’s ambient color settings.

Chapter 5 Stories I

156

Figure 5-51.  Ambient light

�Material Diffuse Color
Another material parameter is the diffuse reflectance parameter, defined

in this module:

•	 renderers → opengl_modifiers → material_param

at anchor diffuse_reflectance

The diffuse light outcome of some material point is calculated by

multiplying each color component of the incoming diffuse light with the

matching material parameter’s diffuse reflectance color component. While

for the ambient lighting the position of lights and surfaces in space does

not play a role, for diffuse light the 3D nature of objects prevails. Figure 5-52

shows a cube with diffuse light. It has a material parameter diffuse light RGB

composition of YELLOW = RED + GREEN = (1, 1, 0) and a directional light

diffuse color of GREEN = (0, 1, 0). You get a resulting diffuse color after the

part-wise multiplication (1, 1, 0) ∙ (0, 1, 0) = (0, 1, 0), which is a plain GREEN.

Chapter 5 Stories I

157

Note that for this to work correctly, any surface element needs to

have a normal vector defined. ThMAD does its best to provide the normal

vectors needed, but if they are missing, unexpected phenomena occur

with light shining on the surface element. On the other hand, normal

vectors can be messed with, and interesting effects may be accomplished

that way. See, for example, Figure 5-53.

Figure 5-52.  Diffuse light

Figure 5-53.  A ball with diffuse lighting and random normal
distortion

Chapter 5 Stories I

158

�Material Specular Color
While diffuse light reflects in all directions when hitting a surface point,

specular light gets reflected, like with a mirror, at precisely the same angle

on the other side. The calculation is the same as for ambient or diffuse

light. Each material parameter’s RGB component at the following location

gets multiplied with the corresponding RGB component of the light

module:

•	 renderers → opengl_modifiers → material_param

at anchor specular_reflectance

In Figure 5-54, because the specular light is white (1,1,1) for both

material parameters and light module, the specular part gets added as

white to the green component from the diffuse light calculation.

Especially for specular reflectance, you additionally have the

concept of shininess, which describes the amount of fuzziness regarding

the viewer’s position and the reflected light beam. It is defined by the

specular_exponent anchor of module material_param and can range

from 0 to 128. For 0 you have the minimum shininess with the least

angular match dependency, and for 128 you have the maximum shininess

with a maximum angular match dependency, as shown in Figure 5-55.

The left ball has a specular exponent of 5, and the right ball has a specular

exponent of 50.

Caution A s for the influence of the material parameters’ specular
RGB values, each color component will be multiplied with the ALPHA
value of the diffuse light component configured for the material.

Chapter 5 Stories I

159

Figure 5-54.  Specular light

Figure 5-55.  Specular light exponent, or shininess

�Emissive Light
Materials can produce light without the help of a dedicated light switched

on. Still, in ThMAD you need to introduce the lighting module for emissive

light to work. And it must be enabled, but all the other parameters may be

set to zero. The emissive light itself is defined in this module:

•	 renderers → opengl_modifiers → material_param

at anchor emission_intensity

Chapter 5 Stories I

160

The emissive light is similar to the ambient light contribution but does

not get combined with a corresponding light source parameter. It stands

for itself and adds to all the other light produced by the material and light

source. Also, it does not produce any reflections on other objects. For

emissive light, see Figure 5-56. A light source is added and enabled, but

it does not contribute to the output. The emissive light comes from the

material parameters alone.

Caution A s for the influence of the material parameters’ emissive
RGB values, each color component will be multiplied with the ALPHA
value of the diffuse light component configured for the material.

Something that has not yet been mentioned is the lighting model. In

some cases, the standard model can be used, which means you do not

have to do anything with respect to the lighting model. As an example for

altering this mode, consider two balls of radius 0.5 placed at (−0.6;0;0) and

(+0.6;0;0), with a specular light at (0;0;1) and a camera at (0;0;2). With the

usual 3D setup, you will end up with something like shown in Figure 5-57.

Figure 5-56.  Emissive light

Chapter 5 Stories I

161

Figure 5-57.  Specular lighting, standard color model

While from a perspective point of view this is correct, you might under

certain circumstances want to have the specular spots in the projected

middle, maybe like simulating glowing pupils looking straight at you. This

can be achieved by using the so-called Local Viewer light model, and the

module that allows you to use it is the following:

•	 renderers → opengl_modifiers → light_model

Now if you introduce this module into the state right before the light_

directional module and set its anchor local_viewer to EYE_COORDS, the

light spots end up like you want, as shown in Figure 5-58.

Figure 5-58.  Specular lighting, Local Viewer model

Chapter 5 Stories I

162

�Ocean Revisited

Note  This example is available under B-5.9_Ocean_And_Sky in
the TheArtOfAudioVisualization folder.

With the ocean example from Audio Visualization Using ThMAD and

what you learned about Perlin noise there, you can improve that ocean

view by adding some clouds to the sky. You start with the ocean module

system from that book but change a couple of parameters so that they now

match Tables 5-60 to 5-67.

Table 5-60.  Screen0 Parameters

screen0

clear_color 0.83; 0.92; 1.0; 1.0 It is actually easier to let the clouds be

represented by the background color and

later add Perlin noise to represent “negative”

clouds. This is why the screen clear color is

set to almost white now.

Table 5-61.  Orbit Camera Parameters

renderers → opengl_modifiers → cameras → orbit_camera

rotation 0.0; −1.0; 0.03 Changed a little, so together

with a new translation

modules, you get more sky
distance 20.0

fov 50.7

Chapter 5 Stories I

163

Table 5-62.  Light Directional Parameters

renderers → opengl_modifiers → light_directional Unchanged from the
original ocean state

position −0.19; 0.71; 1.0

ambient_color 0.16; 0.22; 0.23; 0.42 Turquoise ambient color

diffuse_color 0.94; 0.92; 1.0; 1.0 Ocean blue diffuse color

specular_color 0.95; 0.94; 0.81; 1.0 A little yellowish bright

specular

Table 5-63.  Material Param Parameters

renderers → opengl_modifiers → material_param Unchanged from the
original ocean state

ambient_reflectance 0.21; 0.19; 0.06; 0.98 Dark yellow ambient

Reflectance

diffuse_reflectance 0.03; 0.13; 0.83; 1.0 Blue diffuse reflectance

specular_reflectance 0.92; 0.91; 0.68; 1.0 Light yellow specular

reflectance

specular_exponent 20.0

Table 5-64.  Backface Culling Parameters

renderers → opengl_modifiers → backface_culling Unchanged from the
original ocean state

status DISABLED Needs to be disabled

because of an internal bug

Chapter 5 Stories I

164

Table 5-65.  Depth Buffer Parameters

renderers → opengl_modifiers → depth_buffer Unchanged from the
original ocean state

depth_test ENABLED

depth_mask ENABLED

Table 5-66.  Mesh Basic Render Parameters

renderers → mesh → mesh_basic_render Unchanged from the
original ocean state

vertex_colors no Let the material_param

module define the color

use_display_list no

use_vertex_colors no

particles_size_center no

particles_size_from_color no

ignore_uvs_in_vbo_updates no

Table 5-67.  Ocean Parameters

mesh → generators ocean Unchanged from the original ocean state

time_speed 3.2 Time multiplier for the wave movement

wind_speed_x 5.0

wind_speed_y 12.0

lambda 1.12 Wave speed

normals_only no

Chapter 5 Stories I

165

Note  You can find under A-5.1.3_Ocean in the
TheArtOfAudioVisualization folder.

What you now do is insert these modules between the mesh_basic_

render and the depth_buffer:

•	 renderers → opengl_modifiers → translate

•	 renderers → opengl_modifiers → blend_mode

See Figure 5-59.

Figure 5-59.  Enhanced ocean view, tanslation and blending added

The translation module is for lowering the horizon a little since the sky

gets more interesting now. The blending module is for later combining the

ocean and sky. The parameters are listed in Tables 5-68 to 5-69.

Table 5-68.  Gl Translate Parameters

renderers → opengl_modifiers → gl_translate

translation −2.8; 5.0; −2.5 Lower the horizon

Chapter 5 Stories I

166

Table 5-70.  Gl Scale Parameters

renderers → opengl_modifiers → gl_scale

scale 2.6; 1.9; 0.9 Make big enough to cover the whole sky

Table 5-69.  Blend Mode Parameters

renderers → opengl_modifiers → blend_mode

Leave at the default values

Now you create the sky subpipeline. Place the following on the canvas,

and connect them all as shown in Figure 5-60:

•	 bitmaps → generators → perlin_noise

•	 texture → loaders → bitmap2texture

•	 renderers → basic → textured_rectangle

•	 renderers → opengl_modifiers → gl_rotate

•	 renderers → opengl_modifiers → gl_scale

Figure 5-60.  Enhanced ocean view, sky subpipeline

The intention here is to project Perlin noise onto a sheet covering the

sky in an upright position at the end of the ocean.

The parameters are as shown in Tables 5-70 to 5-73.

Chapter 5 Stories I

167

Table 5-73.  Perlin Noise Parameters

bitmaps → generators → perlin_noise Generates the clouds

perlin_options

rand_seed 4.0 Changes to alter cloud shapes

perlin_strength 1.8 Changes to alter cloud intensity

size 256x256

octave 6 Detail level

frequency 4 Noise scale

color 1.0; 1.0; 1.0; 1.0 Negative cloud color

alpha yes Makes transparent to let open sky

shine through

Table 5-72.  Textured Rectangle Parameters

renderers → basic → textured_rectangle The projection surface for the
Perlin noise

position 0.0; −4.7; 0.0 Rotate to stand upright

size 10.5

angle 0.0

Table 5-71.  Gl Rotate Parameters

renderers → opengl_modifiers → gl_rotate

axis 13.3; 0.06; 0.03 Rotate to stand upright

angle 0.76

Chapter 5 Stories I

168

As a last step, connect the output from gl_scale to the input from

blend_mode, such that blend_mode now has two inputs. Order matters; to

make sure it is correct, double-click the input anchor and let the sky be the

second one, as shown in Figure 5-61 (the sky subpipeline connects from

below, which is not shown here).

The output will look like Figure 5-62. As usual, you can switch to

full-window mode by pressing Ctrl+F (also hiding the info header there by

pressing Alt+T).

Figure 5-61.  Enhanced ocean view, blend_mode order

Figure 5-62.  Enhanced ocean view

Chapter 5 Stories I

169

�Summary
In this chapter, you investigated a couple of states using advanced

concepts and extending stories from Audio Visualization Using ThMAD.

You looked at textures, created a state with exploding objects, saw a fractal

algorithm, learned about fire and sound scaling issues, built a state with

sequences, looked more intensely at lighting issues, and improved the

ocean view from Audio Visualization Using ThMAD.

In the next chapter, you look at advanced states using shader

constructs.

Chapter 5 Stories I

171© Peter Späth 2018
P. Späth, Advanced Audio Visualization Using ThMAD,
https://doi.org/10.1007/978-1-4842-3504-1_6

CHAPTER 6

Stories II
The stories in this chapter are examples of using only a few modules;

instead, a lot of functionality is in the shader code. See Chapter 4 for an

introduction to shaders.

�Color Gradient Mapping
You can take an interesting picture uploaded as a texture to the graphics

hardware, convert its colors to grayscale values, and map those to a color

gradient that gets calculated in the shader. This mapping gets controlled

from the outside using sound and uniform variables.

Since the vertex shader doesn’t know anything about pixel-wise colors,

you will provide just the no-op vertex shader, move the effect onto the

fragment shader, and otherwise map the texture onto a rectangle.

In a multitexture environment, you’d probably prefer providing the

complete color gradient inside another texture, but ThMAD 1.1 doesn’t yet

know how to handle multiple textures, so you will move the color gradient

calculation to the shader, hoping it will not take away too much computing

power.

172

�Color Gradient Algorithm
You first pick an interesting color gradient as a set of RGB values. Instead

of just guessing a color gradient or taking one of the preexisting color

gradients on the Web, you can take a more artistic approach. You can pick

the most prominent colors from an image, convert them into the HSV color

space, use a Monte Carlo algorithm to sort the colors, and write shader

code based on that.

So, you start with a picture; Figure 6-1 shows the one I chose.

Figure 6-1.  Color gradient extraction

This image gets loaded by a Groovy script, the color information gets

extracted, and the Monte Carlo sorting algorithm is applied.

Chapter 6 Stories II

173

Note T his script is available under /opt/thmad/share/thmad/
TheArtOfAudioVisualization-snippets/B-6.1_Color_
Gradient_Mapping/gradient.groovy.

import javax.imageio.* import java.awt.image.*

import java.util.concurrent.atomic.AtomicInteger import java.

awt.*

IMAGE = "/home/peter/Desktop/001.png" // use your own

SUBDIVIDE = 50

STARTPOINTS = 100

TEMPSTART = 10.0

TEMPSTEP = 0.999995

MAX_NO_ACCEPT_COUNT = 1000

BufferedImage img = ImageIO.read(new File(IMAGE)) WIDTH = img.

width

HEIGHT = img.height

// --

// From HSV values from [0;1]^3, subdivide into

// buckets of size 1/SUBDIVIDE * 1/SUBDIVIDE *

// 1/SUBDIVIDE. With now each HSV component from

// [0,1,2,3,...,SUBDIVIDE-1] we can build a single

// integer specifying the HSV coordinates

def hsvToCoord(def f3) {

 (int)(0.999 * f3[0] * SUBDIVIDE) *

 SUBDIVIDE*SUBDIVIDE +

 (int)(0.999 * f3[1] * SUBDIVIDE) * SUBDIVIDE

 + (int)(0.999 * f3[2] * SUBDIVIDE) }

Chapter 6 Stories II

174

// --

// Coord back to HSV

def coordToHsv(def coord) {

 def cc = coord

 def h = (int)(cc / SUBDIVIDE / SUBDIVIDE) *

 1.0/SUBDIVIDE

 cc -= h * SUBDIVIDE * SUBDIVIDE * SUBDIVIDE

 def s = (int)(cc / SUBDIVIDE) * 1.0 / SUBDIVIDE

 cc -= s * SUBDIVIDE * SUBDIVIDE

 def v = (int)(cc) * 1.0 / SUBDIVIDE

 [h, s, v]

}

// --

// A distance in HSV space (Hue is rolling)

def hsvDist(def hsv1, def hsv2) {

 def h1 = Math.min(hsv1[0], hsv2[0])

 def h2 = Math.max(hsv1[0], hsv2[0])

 def hDist = Math.min(h2 - h1, 1.0 - h2 + h1)

 def sDist = Math.abs(hsv1[1] -

 hsv2[1]) def vDist = Math.abs(hsv1[2]

 - hsv2[2]) Math.sqrt(hDist*hDist +

 sDist*sDist +

 vDist*vDist)

}

// --

// Collect histogram. This is a mapping HSV-Coord →
// number

Map histo = [:]

Chapter 6 Stories II

175

for(int i = 0; i < WIDTH; i++) {

 for(int j = 0; j < HEIGHT; j++){

 int pix = img.getRGB(i, j)

 int a = (pix & 0xFF000000) >> 24

 int r = (pix & 0xFF0000) >> 16

 int g = (pix & 0xFF00) >> 8

 int b = pix & 0xFF

 float[] hsv = new float[3]

 Color.RGBtoHSB(r,g,b,hsv)

 int c = hsvToCoord(hsv)

 if(!histo[c]) histo[c] = new AtomicInteger(0)

 histo[c].incrementAndGet()

 } }

// --

// Collect 100 most important HSV buckets. The

// inject() creates a list of [Number;HSV-Coord]

// pairs, the sort() sorts according to the

// frequency, the take() takes only the head part of

// the list, and the collect() maps to HSV-triples

def hsvPoints = histo.entrySet().inject([],

{ bas, inj ->

 int num = inj.value

 int hsv = inj.key

 bas.add([num, hsv])

 bas

 }).sort { -it[0] }.take(STARTPOINTS).

collect{ coordToHsv(it[1]) }

Chapter 6 Stories II

176

// --

// Find HSV points the most apart def maxDist = -1.0

def p1 = 0

def p2 = 0

for(int i = 0; i < hsvPoints.size(); i++) {

 for(int j = i+1; j < hsvPoints.size(); j++) {

 def d = hsvDist(hsvPoints[i],

 hsvPoints[j]) if(d > maxDist) {

 p1 = i

 p2 = j

 maxDist = d

 }

 }

}

// ---

// Build work array for Monte Carlo algorithm. First

// and last fixed

def arr = [p1]

for(int i = 0; i < hsvPoints.size(); i++)

 if(i != p2 && i != p1)

arr.add(i) arr.add(p2)

arr = arr.collect { hsvPoints[it] }

// ---

// Calculate energy = total way in HSV space

def calcEner(def arr1)

 { def e = 0.0

 for(int i = 0; i < arr1.size() - 1; i++)

 e += hsvDist(arr1[i], arr1[i+1])

 e

}

Chapter 6 Stories II

177

// --

// A test step, just swap random indices

def step(def arr) {

 int i1 = 1 + Math.random() * (arr.size() -

 2) int i2 = 1 + Math.random() * (arr.size()

 - 2) def tmp = arr[i1]

 arr[i1] = arr[i2]

 arr[i2] = tmp [i1, i2]

}

// --

// Revert step

def unstep(def arr, def swapped)

 { def tmp = arr[swapped[0]]

 arr[swapped[0]] = arr[swapped[1]]

 arr[swapped[1]] = tmp

}

// ---

// Monte Carlo algorithm, simulated annealing

double temp = TEMPSTART

int noAcceptCount = 0

int cnt = 0

def energy = Double.MAX_VALUE

while(noAcceptCount < MAX_NO_ACCEPT_COUNT) {

 cnt++

 def swapped = step(arr)

 def newEner = calcEner(arr)

Chapter 6 Stories II

178

 def accept = false

 if(newEner < energy) {

 accept = true

 } else if(newEner != energy) {

 def tst =

 Math.exp(-(newEner-energy) /

 temp) if(Math.random() < tst)

 accept = true

 }

 if(accept) {

 energy = newEner

 noAcceptCount = 0

 if((cnt%1000) == 0)

 println("${cnt} ${temp} ${energy}")

 } else {

 unstep(arr, swapped)

 noAcceptCount++

 }

 temp *= TEMPSTEP

}

// ---

// DONE

println(arr.collect{it.join(",")}.join(","))

In this script, the first parts loads the image from a PNG file. Then

you collect all the pixels from the image, convert them to the HSV color

space, and count the occurrences in grid buckets of equal sizes inside

the HSV space. You thus get a histogram of occurrences mapped to HSV

bucket coordinates. You take only the 100 most important buckets, thus

favoring the most prominent colors from the image. Now you need some

kind of sorting, and for this you apply a Monte Carlo simulated annealing

algorithm. Without going into too much detail here, the algorithm consists

Chapter 6 Stories II

179

of a minimization of the distance to walk inside the HSV space to get from

the first point to the last point, allowing for swapping random pairs to find

that minimum. This net distance is called energy inside the script. Once

in a while, however, a temporarily higher energy is allowed, and this gets

controlled by the temperature parameter. The higher the temperature,

the higher the probability of accepting temporarily higher energies. The

temperature decreases steadily while the algorithm is at work. In the end,

you will have a minimized energy and an HSV color palette with adjacent

colors being similar. The output is a list of HSV values that will be used later

in the shader code. The corresponding palette might look like Figure 6-2.

Note T he possibilities for improving the algorithm are endless,
but so is the time you will need to find the best code. You might try
changing the step() function to allow for more elaborate steps
compared to just swapping two random colors. Also, you can apply
smoothing algorithms at the end.

To see how to run Groovy code, go to the Groovy home page at www.
groovy-lang.org/.

Figure 6-2.  Calculated color gradient

Chapter 6 Stories II

http://www.groovy-lang.org/
http://www.groovy-lang.org/

180

You will now continue with the state you need to create. Place the

following modules on the canvas and connect them as shown in Figure 6-3:

•	 renderers → shader → glsl_loader

•	 renderers → basic → textured_rectangle

•	 texture → loaders → png_tex_load

Figure 6-3.  Shader’s basic state

Note  You can find the sources at B-6.1_Color_Gradient
in the TheArtOfAudioVisualization folder. You can
find the shader code at /opt/thmad/share/thmad/
TheArtOfAudioVisualization-snippets/B-6.1_Color_
Gradient_Mapping.

Let module png_tex_load read a PNG, such as the architecture.png

file included in the ThMAD distribution. Inside glsl_loader, write the

following no-op vertex shader code:

Chapter 6 Stories II

181

void main(void) {

 gl_TexCoord[0] = gl_MultiTexCoord0;

 gl_Position = gl_ModelViewProjectionMatrix *

 gl_Vertex;

}

The fragment shader is more involved, as shown here:

#version 130

uniform sampler2D sampler;

uniform float blend; uniform float offset;

vec3 hsv2rgb(vec3 c){

 vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);

 vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);

 return c.z * mix(K.xxx,

 clamp(p - K.xxx, 0.0, 1.0),

 c.y);

}

void main() {

 const float[] grad = float[](0.58,0.98,0.9,0.58,0.98,0.88,

0.6,0.98,0.8,0.6,0.98,0.76,0.6,0.98,0.74,0.6,0.98,0.72,0.6,

0.98,0.78,0.58,0.98,0.8,0.58,0.98,0.82,0.58,0.98,0.84,0.58,

0.98, 0.86,0.58,0.94,0.88,0.58,0.94,0.9,0.58,0.92,0.9, 0.58,

0.9,0.9,0.58,0.88,0.9,0.58,0.88,0.92,0.58,0.86, 0.92,0.58,0.84,

0.92,0.58,0.82,0.92,0.58,0.82,0.94, 0.58,0.8,0.94,0.58,0.78,

0.94,0.58,0.8,0.92,0.58, 0.78,0.92,0.1,0.56,0.74,0.08,0.58,

0.74,0.08,0.56, 0.74,0.08,0.56,0.72,0.08,0.52,0.72,0.08,0.5,

0.72, 0.08,0.5,0.74,0.1,0.5,0.74,0.08,0.54,0.72,0.1,0.54, 0.74,

Chapter 6 Stories II

182

0.08,0.54,0.74,0.08,0.54,0.76,0.08,0.52,0.76, 0.08,0.52,0.74,

0.1,0.52,0.76,0.1,0.48,0.74,0.1,0.48, 0.76,0.1,0.46,0.76,0.08,

0.46,0.76,0.1,0.46,0.78, 0.08,0.44,0.76,0.56,0.48,0.96,0.58,

0.48,0.96,0.56, 0.48,0.94,0.56,0.46,0.94,0.56,0.42,0.96,0.58,

0.42, 0.98,0.58,0.42,0.96,0.56,0.42,0.98,0.56,0.4,0.98, 0.58,

0.38,0.98,0.56,0.36,0.98,0.56,0.32,0.98,0.56, 0.34,0.98,0.56,

0.34,0.96,0.56,0.38,0.98,0.56,0.4, 0.96,0.56,0.44,0.94,0.56,

0.44,0.96,0.56,0.46,0.96,0.56,0.5,0.94,0.56,0.5,0.96,0.56,0.52,

0.96,0.58,0.52,0.96,0.56,0.52,0.94,0.56,0.54,0.94,0.58,0.6,

0.96,0.58,0.62,0.96,0.58,0.64,0.96,0.58,0.66,0.96, 0.58,0.68,

0.96,0.58,0.68,0.94,0.58,0.72,0.94,0.58,

0.74,0.94,0.58,0.76,0.94,0.58,0.7,0.94,0.58,0.66, 0.94,0.08,

0.6,0.68,0.08,0.58,0.68,0.08,0.58,0.7, 0.08,0.6,0.72,0.08,

0.58,0.72,0.08,0.56,0.7,0.08, 0.54,0.7,0.1,0.5,0.76,0.08,0.5,

0.76,0.08,0.48,0.76,0.08,0.48,0.74,0.08,0.46,0.74,0.08,0.44,

0.74,0.08,0.42,0.74,0.08,0.42,0.76,0.08,0.4,0.76,0.08,0.38,

0.76,0.08,0.36,0.76

);

 vec4 tex = texture2D(sampler, gl_TexCoord[0].st);

 float gray = (tex.r + tex.g + tex.b)/3.0;

 gray = mod(gray+offset,1.0);

 int i = int(gray * 98.999);

 float ifract = gray * 98.999 - i;

 vec3 hsv1 = vec3(grad[i*3], grad[i*3+1],

 grad[i*3+2]);

 vec3 hsv2 = vec3(grad[i*3+3], grad[i*3+4],

 grad[i*3+5]);

 vec3 rgb = hsv2rgb(mix(hsv1,hsv2,ifract));

 gl_FragColor = mix(tex, vec4(rgb, tex.a), blend);

}

Chapter 6 Stories II

183

It acts as follows:

	 1.	 The first line tells which GLSL version is going to be

used.

	 2.	 You declare the sampler2D uniform, which is

mapped to the texture object.

	 3.	 Another uniform, blend, is used to mix the original

texture and the texture with the color gradient

applied.

	 4.	 The uniform offset is used to rotate the color

gradient, presuming its end gets connected to its

beginning in a circle.

	 5.	 The function hsv2rgb() is needed to convert from

the HSV color space to the RGB color space.

	 6.	 Inside main(), grad is the array you got from the

color gradient creation algorithm. It contains 100

HSV coordinates; thus, you have 300 elements.

Caution  Some graphics cards might complain about constant arrays
not being allowed. In that case, try removing the const modifier.

	 7.	 Next you calculate the grayscale value of the texture

pixel.

For this calculation, the offset uniform is taken

into account. gl_TexCoord[0].st fetches the vec2

coordinate vector from the associated texture (if you

wrote .s, it would just be the first coordinate; with

.t, it would be the second). Likewise, the .r, .g, and

.b address the first, second, and third components

of the tex vec4.

Chapter 6 Stories II

184

	 8.	 Then you write into i the index inside the gradient

array, and into ifract the fraction to the next index.

	 9.	 The next lines calculate the adjacent HSV values.

	 10.	 The mix() function mixes the two HSV values you

have so far using ifract and converts it into the

RGB color space. You can see that mix() works for

vectors just as for floats.

	 11.	 Finally, you mix (with mix()) the original texture

and the texture with the gradient applied according

to the blend uniform. If blend = 0.0, take only the

original, and if blend = 1.0, take only the gradient

color.

	 12.	 Write the result.

All that is left is to connect the two uniforms blend and offset to some

controller modules, for example, input_visualization_listener. The

output will look like, for example, Figure 6-4.

Chapter 6 Stories II

185

Figure 6-4.  Color gradient in action

Chapter 6 Stories II

186

Of course, you could also feed a picture with the color gradient built by

itself. Such an example could look like Figure 6-5.

Figure 6-5.  Picture using its own color gradient

Chapter 6 Stories II

187

�Shader Fractal
Fractals come in different forms and are the result of different algorithms.

One algorithm you can use inside fragment shaders is a repeated mapping

according to a couple of rules. For example, to determine the texture-

based pixel value at some point P(x,y), you can write the following:

P’(x,y) = c0(x,y) + c1(f(x,y)) + c2(f(f(x,y)))

+ c3(f(f(f(x,y)))) + …

Here, the ci() parts are color blend functions, and f() is any suitable

spatial transformation such as shifting, scaling, rotating, or a combination

thereof. The function f() could also be a mixture of f1(), f2(), …, where each

fi() gets applied with a certain probability wi.

The vertex shader for such a visualization is the standard no-op shader,

as shown here:

#version 130

void main(void)

{

 gl_TexCoord[0] = gl_MultiTexCoord0;

 gl_Position = gl_ModelViewProjectionMatrix

 *

gl_Vertex;

}

The fragment shader you are using reads as follows:

#version 130

uniform sampler2D sampler;

uniform float seed;

uniform float a;

uniform float b;

uniform float c;

Chapter 6 Stories II

188

float rand(float n){

 return fract(sin(n) * 43758.5453123);

}

void main() {

 mat3 f1 = mat3(a+1.609692,0.538246,0.070692,

 -0.531769,0.972514,0.515732,

 -1.645904,-0.627756,-1.527336);

 mat3 f2 = mat3(1.067971,b+0.122102,1.814637,

 -0.352147,0.404348,-1.815675,

 0.565247,c+0.024566,0.412591);

 vec3 v = vec3(gl_TexCoord[0].st +

 vec2(-0.1,-0.3), 0.0);

 vec3 col = vec3(0.0,0.0,0.0);

 float cc = 1.0;

 float r = seed;

 for(int i=0;i<20;i++) {

 v = r <= 0.5 ? f1 * v : f2 * v;

 vec4 tex = texture2D(sampler, v.xy);

 col += tex.rgb * cc;

 cc *= 0.9;

 r = rand(r);

 }

 col /= 3.0;

 gl_FragColor = vec4(col, 1.0);

}

Chapter 6 Stories II

189

It has two mappings, f1 and f2. The four uniforms seed, a, b, and c are

for controlling from outside the shader. Specifically, the shader does the

following:

	 1.	 It defines the two affine transform matrices f1 and

f2, adding some dynamics by letting the uniforms

a, b, and c change some of the parameters. The

numbers used for the two matrices is the result of

trial and error.

	 2.	 It defines a random generator. The algorithm here

uses the fractional part of a heavily upscaled sine

function. This is not a real random but comes pretty

close.

	 3.	 It translates the basic texture coordinates vector by

some constant vector and saves it in v.

	 4.	 It initializes a color accumulation buffer in c. The

loop repeatedly applies one of f1 and f2 to v,

determines the texture color at v, and adds it to c

with decreasing intensity each loop iteration.

	 5.	 The division by 3.0 is to avoid over-saturation of the

resulting fragment color.

	 6.	 It outputs the color accumulator c as the pixel color.

The state is the same as earlier in the chapter, with one additional

module, texture → modifiers → tex_parameters, right between png_

tex_load and textured_rectangle, with its wrap anchors set to clamp.

The output might look like Figure 6-6. The PNG used here for the

texture is the feather.png file provided with the distribution.

Chapter 6 Stories II

190

Note  You can find the source at B-6.2_Shader_Fractal in the
TheArtOfAudioVisualization folder.

�Timed Shader
Up to now you haven’t used an explicit time inside the shaders. This is easy

to accomplish. The system → time module provides for exactly what you

need, and you can connect its normal / time output anchor to a uniform

input anchor of the shader module.

Also, there is no real reason a shader must use the texture provided.

You can also calculate pixel colors without using any texture pixel. The

visualization you will be constructing here shows both, using explicit time

and disregarding texture pixels.

Figure 6-6.  Shader fractal

Chapter 6 Stories II

191

The vertex shader code is again the no-op shader, as shown here:

#version 130

void main(void)

{

 gl_TexCoord[0] = gl_MultiTexCoord0;

 gl_Position = gl_ModelViewProjectionMatrix

 *

gl_Vertex;

}

For the fragment shader, write the following:

#version 130

uniform float

time;

uniform float colorful;

uniform float intensity;

uniform float phase;

uniform sampler2D

sampler;

float calcCol(int i, vec2 p, float l, float a) {

 float ang = 20*l*l*l;

 vec2 p2 = mat2(cos(ang),sin(ang),

 -sin(ang),cos(ang)) * p;

 vec2 v = (p2+0.5) - p2 / l *

 (sin(a)+1.0) * abs(sin(l*9.0-a*1.0));

 return intensity /

 length(abs(mod(v,1.0) - vec2(0.5,0.0)));

}

Chapter 6 Stories II

192

void main(){

 vec3 color;

 float z = time + phase;

 vec2 p = gl_TexCoord[0].st - 0.5;

 float l = length(p);

 for(int i=0;i<3;i++) {

 z += colorful; // shift RGB values

 color[i] = calcCol(i, p, l, z);

 }

 gl_FragColor = vec4(color/l,time);

}

Here is the explanation of the fragment shader:

	 1.	 There are three control parameters: time connected

to the system time in seconds, colorful controlling

the coloring (0 means no colors, 0.07 means normal,

and 0.14 means high color), and phase serving as an

offset to the time parameter. The uniform sampler

gets connected to a texture; although you are not

using its pixels, you still add it as an easy way to

determine normalized window coordinates.

	 2.	 The calcCol() function calculates an R, G, or B

color value depending on its parameters: the color

index i (0 for red, 1 for green, 2 for blue), the pixel

position vector p (out of [-1,-1]-[1,1] with (0.5,0.5) in

the middle), its length, and a time-related variable

a. With the angle ang, you introduce a swirl, which

goes to the rotation-mat2 matrix; the rest consists

of a couple of periodic functions defining the shape.

Chapter 6 Stories II

193

	 3.	 Inside main() you write to z the time plus offset,

to p the position vector referring to the center,

to l its length, and inside the loop you evaluate

the calcCol() function with a slightly shifted a

parameter for each color component. The color/l

expression intensifies the color near the center.

You can use the same state as in section “Color Gradient Algorithm”

above, with some control modules added for the shader uniforms. As a

texture, use any PNG you like (or use the blob) since you don’t need its

pixel information.

Note  You can find the source at B-6.3_Timed_Shader in the
TheArtOfAudioVisualization folder.

Figure 6-7 shows the output.

Figure 6-7.  Timed shader

Chapter 6 Stories II

194

�Summary
In this chapter we invastigated a couple of more visualizations using

shader constructs. We have seen how to apply a color gradient from inside

a shader, and we introduced a shader fractal and a dynamic shader.

In the next chapter we will learn how to use ThMAD together withe the

JACK audio sound server.

Chapter 6 Stories II

195© Peter Späth 2018
P. Späth, Advanced Audio Visualization Using ThMAD,
https://doi.org/10.1007/978-1-4842-3504-1_7

CHAPTER 7

ThMAD and the JACK
Sound Server
ThMAD normally addresses the PulseAudio sound server. Using the JACK

option switches, ThMAD can work with the JACK sound server as well,

giving more options in a professional environment. This chapter describes

how to use ThMAD with Jack.

Note that Ubuntu is not extraordinarily well suited to working with

JACK because Ubuntu serves as a general-purpose desktop operating

system and not as a dedicated audio- or video-authoring workstation.

With an audio workstation, you would, for example, use a special real-

time scheduling kernel with optimized low-latency audio handling. It is,

however, possible to use JACK in Ubuntu, and I will show you how.

�Using JACK for Sound Input
JACK is a sound server with extended routing capabilities and flexibility

compared to ALSA or PulseAudio. However, using JACK while PulseAudio

is running might lead to instabilities, so you might want to disable

PulseAudio before you start using JACK.

Usually, disabling a server process is a matter of finding it and then

stopping it, but for PulseAudio the story is a little bit more complicated.

For improved stability, the developers of PulseAudio and the maintainers

196

of Ubuntu added an autospawn functionality, meaning the server process

is being observed, and once it disappears from the process list, it gets

restarted automatically once a client process tries to use PulseAudio.

Fortunately, there is a better way of addressing this issue without

the need to disable PulseAudio. A program named pasuspender can

temporarily suspend the PulseAudio server from accessing devices so

other processes will be able to access them without PulseAudio interfering.

You will be using that suspender in this chapter.

One more step you need to do the first time you set up JACK for

ThMAD is to add your Ubuntu Linux user account to the audio group.

First, check whether you are already a member of that group by entering

groups in a terminal, and if the list that then appears contains audio, you

are already done. If not, change to root via sudo su and then enter usermod

-a -G audio [USER], where [USER] is the name of your account (if the

group doesn’t exist, enter groupadd audio first). Log out and in again for

the changes to take effect.

Next, you need to install a couple of tools you will be using. Switch to

the root user and enter the commands shown in Table 7-1. Entering the

install commands if you already have the package in question does not

hurt, so you can try this without first checking. The format is as follows:

apt-get install [PACKAGE]

Table 7-1.  Tools

Tool Description

alsa-utils Some utilities for the underlying sound architecture

jackd The JACK sound server

jack-tools Some tools for JACK

qjackctl GUI for the JACK server

Chapter 7 ThMAD and the JACK Sound Server

197

Now start the JACK server control GUI by entering a terminal, as

shown here:

pasuspender qjackctl

This will start the administration tool while PulseAudio gets

temporarily suspended. The main GUI will appear, as shown in Figure 7-1.

Caution O nce installed, the Qjackctl program can also be started
using the Ubuntu starter/launcher. However, this will not start it with
PulseAudio suspended, so you must use the terminal and enter the
command shown earlier.

You might be able to start the JACK server by just clicking the Start

button, but you usually have to first use the Setup button and change a

few settings there, as shown in Figure 7-2. You should not select Realtime

unless you know what you do. Also, a sample rate of 48000 should do,

but in case you run into trouble, you could also try 44100. Clicking the

Advanced tab will show the dialog in Figure 7-3. Select No Memory Lock.

The fields Output Device and Input Device are crucial because they point

to the sound card to use. You could try one of the entries from the drop-

down list, but to get a better idea of what to enter here, enter aplay -l in a

terminal to get a list of sound devices on your system.

Figure 7-1.  Qjackctl main GUI

Chapter 7 ThMAD and the JACK Sound Server

198

Figure 7-2.  Setting up Qjackctl, Parameters tab

Chapter 7 ThMAD and the JACK Sound Server

199

This shows a list of devices like you will see:

**** List of PLAYBACK Hardware Devices ****

card 0: HDMI [HDA Intel HDMI], device 3: HDMI 0 [HDMI 0]

 Subdevices: 1/1

 Subdevice #0: subdevice #0

card 0: HDMI [HDA Intel HDMI], device 7: HDMI 1 [HDMI 1]

 Subdevices: 1/1

 Subdevice #0: subdevice #0

card 0: HDMI [HDA Intel HDMI], device 8: HDMI 2 [HDMI 2]

 Subdevices: 1/1

 Subdevice #0: subdevice #0

card 1: PCH [HDA Intel PCH], device 0: ALC269VB Analog

[ALC269VB Analog]

Figure 7-3.  Setting up Qjackctl, Advanced tab

Chapter 7 ThMAD and the JACK Sound Server

200

 Subdevices: 1/1

 Subdevice #0: subdevice #0

Once you find your sound card, say a card called X and a subdevice called

Y, you can enter hw:X,Y or plughw:X,Y for the fields in the Qjackctl GUI.

Now click the Start button, and if no error message appears, you

can probe the server. To do so, in a terminal enter jack_metro -b 60 to

start a metronome. You won’t hear anything yet, however, because the

connections first must be set.

To connect JACK clients, click the Connect button in the main GUI to

see the Connections dialog; then drag and drop connections as shown in

Figure 7-4.

You should now hear the metronome beeping. In the next section, you

will connect ThMAD to the running server.

Figure 7-4.  Connections in Qjackctl

Chapter 7 ThMAD and the JACK Sound Server

201

�ThMAD and JACK Together
To work with JACK, ThMAD needs a stereo input device right from the

beginning. So, you cannot, for example, use the jack_metro command

from the previous section because that one produces only mono.

You can provide a “thru” device that can serve as a stereo input device

to ThMAD and later connect any sound input to that “thru” device since it

just hands sound data unchanged through. To start a “thru” device, open a

terminal and enter the following:

jack_thru

The Qjackctl GUI will show a new readable and a new writable client in

the Connections dialog after you click the Connect button; see Figure 7-5.

Remove the connection from system as a readable client to jack_thru as

a writable client because you want to later use a different input to jack_thru.

You can now tell ThMAD to connect to JACK by using the following

startup command:

/opt/thmad/thmad_artiste -sound_type_jack

Figure 7-5.  Qjackctl with the jack_thru client

Chapter 7 ThMAD and the JACK Sound Server

202

Look at the output ThMAD produces in the terminal. If JACK is

running and the jack_thru client is registered, the output should contain

something like this:

rtaudio_record.h

audioprobe() Audio Type =

Jack Client Available APIs:

 Jack Client

 Linux ALSA

 Linux PulseAudio Current API: Jack Client [...]

Found 2 device(s) ... [...]

DEVICE NUMBER = 1

Device Name = jack_thru Probe Status = Successful Output

Channels = 2

Input Channels = 2 Duplex Channels = 2

This is NOT the default output device. This is NOT the default

input device. Natively supported data formats:

 32-bit float

Supported sample rates = 48000 [...]

Once you have identified the sound producer device you need (here

device number 1 for jack_thru), note the DEVICE NUMBER value and the

sample rate and restart ThMAD with these options:

-sound_type_jack -snd_rtaudio_device=1 \

-snd_sample_rate=48000

If the device happens to be the default device, you can omit the snd_

rtaudio_device switch, and if the sample rate you want to use is 44,100,

you can also omit the snd_sample_rate switch. In the example, you can

see 44,100 is not allowed, but 48,000 is, so the sample rate of 48,000 has to

be specified there.

Chapter 7 ThMAD and the JACK Sound Server

203

ThMAD is now running and connecting to the jack_thru device, and

you can connect any JACK sound producer to jack_thru, which then just

forwards the audio data to ThMAD. The Connections dialog from Qjackctl

will show something like Figure 7-6.

If you want to test it with the simple metronome client, start that

again via jack_metro -b 60 and then draw the connection from metro

to jack_thru in the Connections dialog, as shown in Figure 7-7. Load a

visualization into ThMAD, and you should then see ThMAD react to the

metronome beeps.

Figure 7-6.  ThMAD as a JACK client

Chapter 7 ThMAD and the JACK Sound Server

204

�Summary
In this chapter, you learned how to use ThMAD inside a JACK audio server

system. You saw how to set up appropriate parameters and how to use a

couple of tools to get ThMAD talking with JACK.

In the next chapter, you will learn how to let ThMAD directly use the

ALSA API.

Figure 7-7.  ThMAD and the JACK metronome

Chapter 7 ThMAD and the JACK Sound Server

205© Peter Späth 2018
P. Späth, Advanced Audio Visualization Using ThMAD,
https://doi.org/10.1007/978-1-4842-3504-1_8

CHAPTER 8

TMAD and ALSA
If you don’t want to use PulseAudio as a sound server and instead want

to connect to the underlying Linux sound architecture ALSA directly,

you need to take a couple of things into account. First, using ALSA while

PulseAudio is running might cause problems. But even more important,

you need to find out the correct parameters for using ALSA, which is not

always easy.

�Disabling PulseAudio
To make sure PulseAudio is not running, in a terminal (press Ctrl+Alt+T to

get one) enter the following:

pulseaudio --kill

This stops PulseAudio. Then enter the following to check whether

PulseAudio is still running:

ps auxw | grep pulseaudio | grep -v grep

If this command does not produce a line like the following, it means

you are good and PulseAudio is no longer running:

user 8335 0.0 0.0 639808 11964 ? S<l 11:54

0:00 pulseaudio ...

206

If instead PulseAudio still shows up, you probably have the

autospawning function of PulseAudio enabled. To disable it, in the file

/etc/pulse/client.conf, look for a line like autospawn = yes and make

sure it has a semicolon at the beginning. Underneath it, add the line

autospawn = no without the semicolon. Note that you need to be logged in

as root to make changes in this file (enter sudo su first).

Save the file and restart your computer. Now running the check with

the ps ... command shown earlier should produce no output. Note that

with autospawning off, you must manually control PulseAudio. If you need

it, enter pulseaudio --start to start it and pulseaudio --kill to stop it.

�Starting ThMAD with ALSA
Explaining how to set up ALSA is beyond the scope of this book. The rest of

this chapter assumes you have set up ALSA correctly to allow for capturing

input.

For further configuring ThMAD, install the alsa-utils package, which

contains some helpful tools. The following needs to be entered as root:

apt-get install alsa-utils

Now exit root by pressing Ctrl+D and then enter aplay -l. The output

will look like this:

...

card 2: PCH [HDA Intel PCH], device 0: ALC269VB Analog

[ALC269VB Analog]

 Subdevices: 1/1

 Subdevice #0: subdevice #0

...

Chapter 8 TMAD and ALSA

207

Try to identify a suitable input device in the output. The line you

see here, for example, points to my built-in microphone. Deduce a

hardware ID from that; from the sample, take 2 from card 2 and 0 from

Subdevice #0, and enter hw:2,0. Try to see whether this device receives

input. In a terminal, enter the following and produce input (speak into the

microphone or play music if this is another capturing device):

arecord -D hw:2,0 -vv -f dat /dev/null

If the output reacts to sound input, this is the device you need to be

looking at.

If you see the arecord program working, as shown in Figure 8-1, but it

doesn’t react to input, the percentage stays at 0 percent.

Even with input, maybe the sound capture is not enabled. Use

alsamixer in a terminal to possibly unmute and start a capturing device.

alsamixer -c2

Here, 2 is the device number. With alsamixer running, use F4 to switch

to capturing devices, use the arrow keys to select the capture setting, use

m to possibly unmute, and use the spacebar to start the capturing. See

Figure 8-2.

Figure 8-1.  arecord sound input

Chapter 8 TMAD and ALSA

208

Try the following again, and now you should see it react to sound:

arecord -D hw:2,0 -vv -f dat /dev/null

If it shows 99 percent all the time, you must change the gain. Still in

alsamixer with the Capture control selected, use the up arrow or down

arrow to change the capture gain. The correct output of the arecord

program looks like Figure 8-3.

Now you need to tell ThMAD to use that ALSA device. Make sure

the arecord program from earlier has been stopped (ALSA doesn’t like

concurrent device usage), and also make sure the last state you saved

Figure 8-2.  The alsamixer tool

Figure 8-3.  arecord sound input working

Chapter 8 TMAD and ALSA

209

contains the input_visualization_listener module. Now start ThMAD

Artiste in a terminal, but with the following at the end:

-sound_type_alsa

After it starts, quit the program. The terminal now contains diagnostic

output. More precisely, it will list all the ALSA devices it sees. In the listing,

identify your device. For example, for me it contains the following:

[...]

DEVICE NUMBER = 5

Device Name = hw:HDA Intel PCH,0 Probe Status =

Successful Output Channels = 2

Input Channels = 2 Duplex Channels = 2

This is NOT the default output device. This is NOT the default

input device. Natively supported data formats:

 16-bit int

 32-bit int

Supported sample rates = 44100 48000 96000

192000 [...]

By comparing the device name hw:HDA Intel PCH,0 with the output

from aplay -l shown earlier, card 2: PCH [HDA Intel PCH], ..., you

can see that the fifth device (DEVICE NUMBER = 5) is the one that ThMAD

needs to be told to use. To do this, start ThMAD in a terminal and add the

following at the end:

-sound_type_alsa -snd_rtaudio_device=5

If you omit the second switch with the device ID, the default device

gets used instead.

Chapter 8 TMAD and ALSA

210

If the device in the listing that ThMAD produces does not contain a

sample rate of 44,100, you need to tell ThMAD to use a different sample

rate. You can do this by adding another option while starting the program.

For example, enter the following options:

-sound_type_alsa -snd_rtaudio_device=5

-snd_sample_rate=48000

This tells ThMAD to use ALSA, device number 5, and a sample rate of

48,000 instead.

�Summary
In this chapter, you learned how to let ThMAD use ALSA directly instead of

PulseAudio.

In the next chapter, you will learn how to control ThMAD from the

outside using scripts or other programs.

Chapter 8 TMAD and ALSA

211© Peter Späth 2018
P. Späth, Advanced Audio Visualization Using ThMAD,
https://doi.org/10.1007/978-1-4842-3504-1_9

CHAPTER 9

Controlling ThMAD
from the Outside
Whenever you perform any action inside ThMAD Artiste, an internal

messaging framework sends appropriate messages to a rendering engine

working inside ThMAD. While by design the engine will not run without

Artiste or Player showing the graphics, the state creation itself can be

outsourced to an external script or program.

In this chapter, you will learn how ThMAD can be configured to receive

messages from the outside, and you will see how a client can be used to

create such messages.

�ThMAD and Its Server Socket
You know that both ThMAD Artiste and ThMAD Player can be controlled

from the outside by certain modules such as the sound listener, and of

course you can use the Artiste GUI to manually set the value of any input

anchor to control the sketch. Wouldn’t it be nice if you had a general-

purpose interface for setting anchors from the outside? You could have

another software or script running that then feeds that interface. By doing

this, you would get an enormous boost in the possibilities for interesting

visualizations. The price you have to pay for this is that you need to learn

another programming language or find a way to let some other software

talk to ThMAD in the language it understands.

212

The good news is ThMAD provides such an interface in the form of a

server socket. Think of a server socket as some low-level communication

endpoint with a standardized way to connect to it. Web browsers, for

example, internally connect to server sockets running on some remote

server machines. The analogy goes further: to connect to a web server, the

browser needs its Internet address and a port, and everyone knows how to

specify this via a URL like this: http://some.funky.server.com:80.

Here, :80 denotes the port, and since 80 is the default, it can be quite

often omitted in the address specification. A client trying to talk to ThMAD

will also need to know the address of ThMAD’s server socket. That is done

using the following format while starting Artiste or Player from a terminal:

-port NUMBER

Here’s an example:

/opt/thmad/thmad_artiste -port 30533

There are three basic things you have to know before you start ThMAD

with a server socket running. First, any port below 1024 is reserved for

the operating system and should not be used for applications. Why then

are web servers running on port 80? The full story is that HTTP was given

such importance from the very beginning that it can run under any of

the reserved ports from 1 to 1023. It is not forbidden that an application

runs on a port under 967, for example; it is just not allowed for nonroot

processes, and since you run ThMAD as a nonroot process, it must use one

of the ports starting at 1024. Second, the maximum port number that can

be used is 216-1 = 65535. Third, and maybe trickiest, no other applications

can concurrently use the same port. Usually high numbers are a good bet,

like 30174. If the port is unavailable because it’s being used by some other

application, ThMAD will tell you via some startup error message like this:

Exception was caught: Could not bind to port.

Chapter 9 Controlling ThMAD from the Outside

http://some.funky.server.com/

213

Then you can try another one. Note that under such circumstances

ThMAD will still start up despite the port clash, but the socket specified

under -port will not start, and you hence cannot talk to ThMAD from the

outside.

You can also make a more educated guess and first create a listing of

used ports by entering the following:

netstat -lntu

The numbers after the colon (:) are the port numbers.

�ThMAD Socket Clients
For the client application, which is the application that connects to

ThMAD from the outside, you can use any sufficiently elaborated platform

like Java or a scripting language like Groovy or Python. Talking to server

sockets is such a basic and standardized process that you will be able to

find lots more clients to use for this purpose. As an example, as Groovy is

one of my favorites, a sample code snippet for talking to ThMAD from any

server connected via the Internet in Groovy looks like this:

SERVER_ADDR = 'localhost'

SERVER_PORT = 31567

def s = new Socket(SERVER_ADDR, SERVER_PORT)

def res = ''

s.withStreams { input, output ->

 output << "<COMMAND>"

 def reader = input.newReader()

 def buffer = reader.readLine()

 res = buffer.trim()

}

s.close()

Chapter 9 Controlling ThMAD from the Outside

214

Here, SERVER_ADDR is the Internet address of the machine where

ThMAD is running, SERVER_PORT is the port, and <COMMAND> is the

command to be executed. The output of the command is stored in the

variable res.

You can also use a terminal. After you open one (e.g., by pressing

Ctrl+Alt+T), you can fire a command like this:

echo "<SOME COMMAND>" | nc localhost 32111

Here, localhost 32111 specifies that ThMAD is running on the same

machine and listening at port 32111. Replace localhost with any Internet

address and use a port number different from 32111 if this is not the case.

�Messages
Table 9-1 describes the language idioms you can use to talk to ThMAD

with a running server socket.

Chapter 9 Controlling ThMAD from the Outside

215

Table 9-1.  Messages

Message Description

show state_name Returns the complete file system path of the

currently active state or visual.

show state Returns the complete state as a list of commands,

like in a state file.

show meta_information Returns the meta information associated with a

state. The meta information is what you added in the

optional fields when saving a state in ThMAD Artiste.

get param <MOD> <PAR> Returns the current value of the input anchor PAR of

module MOD. The module name is the same as you

see in ThMAD Artiste right underneath the module

symbol, or it’s the third column of a component_

create line inside a state file.

Currently available for INT, FLOAT, FLOAT3,

FLOAT4, and QUATERNION type anchors. For

FLOAT3, FLOAT4, and QUATERNION, the output will

be comma-separated.

set param <MOD> <PAR>

<VAL>

Sets the input anchor PAR of module MOD to the

value given. The module name is the same as you

see in ThMAD Artiste right underneath the module

symbol, or it’s the third column of a component_

create line inside a state file.

Currently available for INT, FLOAT, FLOAT3, FLOAT4,

and QUATERNION type anchors. For FLOAT3,

FLOAT4, and QUATERNION, the input VAL will have to

be a comma-separated list.

cmd ... Sends a command string to the internal message

queue.

Chapter 9 Controlling ThMAD from the Outside

216

For example, to set the gamma_correction input anchor of screen0 to

1.3, you’d write the following:

echo "set_param screen0 gamma_correction 1.3" | nc localhost 32111

The engine will immediately set the parameter as specified.

�Raw Commands
In addition to controlling ThMAD by setting parameters, it is possible

to simulate all the other ThMAD Artiste GUI activities using the server

socket. Any command that starts with "cmd" (with the trailing space) will

be stripped of the "cmd" part, and the rest will be going unchanged into

the same internal command processing queue Artiste is using for its work.

Even better, since state files contain nothing but lists of such commands,

you can look at any sample state and use the commands found there to

feed the server socket. Just add "cmd" at the beginning of each command.

For example, creating a module via a socket can be as easy as executing

this in a terminal:

echo "cmd component_create renderers;basic;colored_rectangle

 colored_rectangle7 -0.150612 0.014989" |

nc localhost 32111

Thus, you can construct complete states using nothing but Artiste’s

server socket! This is not possible with Player, though, since it always

handles complete states.

The internal command structure can be deduced by looking at state

files with a text editor. The only exception is the following, which is used to

delete modules and will naturally not show up in the state files:

component_delete <alias>

Table 9-2 provides a detailed description of the command parameter

type representations.

Chapter 9 Controlling ThMAD from the Outside

217

Table 9-2.  Raw Command Parameter Types

Type Representation

float The usual float representation, for example: 123.56 or

-1743.0.

float3, float4 A comma-separated list of floats, for example: 0.1,2.0,-5.4.

Do not add spaces anywhere!

quaternion A comma-separated list of four floats, for example: i,j,k,w.

Do not add spaces anywhere!

enumeration An int specifying the position inside the enumeration: 0 is the

first, 1 the second, and so on.

resource A Base64-encoded string starting from, and including, the

resources folder.

shader code A Base64-encoded string containing the shader code.

sequence A pipe-separated list of sequence points. Each point looks like

x-len;type;y-val, where x-len is the x-distance to the

next point, type is the interpolation type (0.0 = no, 1.0 = linear,

2.0 = cosine, 4.0 = Bezier), and y-val is the Base64-encoded

y-value.

Possible values are a single float for no, linear, or cosine

interpolation; a semicolon-delimited list of five floats for Bezier-

interpolation; and the following:

− y-value of the point

− x-distance of the first control point

− y-distance of the first control point

− x-distance of the second control point (to the next point!)

− y-distance of the second control point (to the next point!)

The last point has always x-len=1.0 set.

Chapter 9 Controlling ThMAD from the Outside

218

�Summary
In this chapter a way to control and even build visualizations from outside

ThMAD using a server socket got described.

In the next chapter we will describe advanced configuration issues

which will help you to configure ThMAD according to your needs.

Chapter 9 Controlling ThMAD from the Outside

219© Peter Späth 2018
P. Späth, Advanced Audio Visualization Using ThMAD,
https://doi.org/10.1007/978-1-4842-3504-1_10

CHAPTER 10

Configuration
ThMAD Artiste has a couple of configuration entries. This chapter will

describe how to access and change them.

�Accessing the Configuration
You can access the configuration directly from ThMAD Artiste using the

main pop-up menu (Figure 10-1).

Figure 10-1.  Configuration menu

220

If you like, you can also change it by editing the configuration file

under this path:

/home/[YOUR_NAME]/thmad/ [VERSION]/data/thmad.conf

or this path:

/home/[YOUR_NAME]/.local/share/thmad/ [VERSION]/data/thmad.conf

The first is a symbolic link to the second, so they point to the same file.

If you search for that file and can’t find it, there is a simple explanation.

Upon startup, ThMAD first looks for that file, and if it can’t find it, it will

look for a file called thmad.conf inside its installation, shown here:

/opt/thmad/share/thmad/thmad.conf

It will work with this file unless you changed the configuration from

inside ThMAD Artiste. If you changed it, the file from the installation

automatically gets copied to the location in the data folder /home/[YOUR_

NAME]/thmad/[VERSION]/data and then changed there. So, if you want to

change the configuration manually and you cannot find the file in the data

folder, you can make that copy by yourself.

cp /opt/thmad/share/thmad/thmad.conf

/home/[YOUR_NAME]/thmad/[VERSION]/data

Then change the configuration using a text editor.

Chapter 10 Configuration

221

�Configuration Entries
Table 10-1 describes all the configuration entries.

Table 10-1.  Configuration File Entries

Key in the File Pop-up Menu Item Description

assistant_size None. But you can toggle

through a set of different

sizes using the Tab key.

The size of the ThMAD Artiste

Assistant.

autoload_last_

saved_state

autoload last saved state

→ no / yes

If 1, upon Artiste startup,

automatically loads the last saved

state. If 0, loads the _default

state.

global_framerat

e_limit

gui_framerate limit →

none / * fps

Sets an upper limit to the frame

rate. If -1, no limit applies.

Otherwise, the redrawing

frequency for both the GUI and the

output will be limited to the given

number.

global_

interpolation_

speed

gui_smoothness → * Sets how movement and sizing

operations on the GUI will be

interpolated. The following values

can be used:

− �1000.0: No interpolation

(or None in the pop-up menu)

− 2.0: Quick

− 1.0: Normal

− 0.5: Slow

(continued)

Chapter 10 Configuration

222

�Summary
In this chapter we investigated a few configuration tweaking methods

beyond just using the GUI.

Table 10-1.  (continued)

Key in the File Pop-up Menu Item Description

global_key_

speed

gui keyboard movement

speed → *

Controls the panning and zooming

speed if the keyboard gets used

(S, D, F, W, E, R or cursor/PgUp/

PgDown keys):

− 3: Normal

− 2: Slow

− 1: Very slow

global_show_

inspector

show inspector → * Sets whether to show the

inspector (error: “Reference source

not found”); 1 shows it, and 0 does

not.

last_saved_

state

None Sets the Base64-encoded path to

the last saved state. Applies only

if configuration item autoload_

last_saved_state is set to 1.

skin None Sets which skin (a GUI’s

appearance, mainly colors) to

use. Currently ThMAD uses only

one default skin named thmad_

plain, so you should not change

this value.

undo_

buffer_size

undo buffer size → * Sets how many undo operations

are possible.

Chapter 10 Configuration

223© Peter Späth 2018
P. Späth, Advanced Audio Visualization Using ThMAD,
https://doi.org/10.1007/978-1-4842-3504-1

Index

A
ALSA

PulseAudio, 205–206
ThMAD, 206–207, 209

Ambient light, 154–156
Artiste operation, ThMAD

Artiste files, 4–5
fullwindow mode, 2–3
options, 2–3
performance mode, 4
stopping method, 4

B
Bitmap texture distortion

blob parameters, 77
coordinates, 76
description, 75
3D pipeline, 77
module mesh_tex_bitmap_

distort, 77
mesh tex bitmap distort

parameters, 78
output, 78
RED and GREEN values, 76

C
calcCol() function, 192
Candle-like fire, 128
Clear color, 154
Color gradient

action, 185
algorithm, 172–178
calculated, 179
extraction, 172
mapping, 171
pictures using, 186

Cube mesh, 21–23

D
Diffuse light, 154, 156–157

E
Emissive light, 159–161
Engine states

ENGINE_LOADING, 39
ENGINE_PLAYING, 39, 40
ENGINE_STOPPED, 39, 40
ENGINE_REWIND, 39

https://doi.org/10.1007/978-1-4842-3504-1

224

normal resuming, 41
trig_set_time, 40

Explosions
basic 3D setup, 89
basic explosion output, 95
concentric beam base, 96
concentric circles, 97
concentric rings control, 98
concentric rings visibility

control, 102–104
depth buffer parameters, 91
div parameters, 102
float dummy, 98, 101
float_sequencer, 99–100, 104
4float_to_float4 module,

102–103
gl rotate parameters, 97
gl scale one parameters, 91, 96
gl translate parameters, 91
light directional parameters, 90
material param

parameters, 91, 96
mesh basic render

parameters, 93
mesh_explode module, 88
mesh explode parameters, 93
mesh sphere icosahedron

parameters, 93
modules, 89
mult_add parameters, 99
orbit camera parameters, 90
oscillators, 94, 101
output, 105–106

screen0 module, 89–90
shapes, 92
sound, macro preparation

anchors, 109
angle control, 111
color control, 111
depth_buffer, 110
gl_scale module, 108
gl_translation and gl_

rotation module, 107
modules, 108, 110
multi-explosion

parameters, 112
state, 110

spheres, 89
textured rectangle

parameters, 97

F
Fire

candle-like, 128
color distribution, 130–131
intensity, 129
overall size, 129
plasma, 125–126
plasma and blob, OVERLAY

blend function, 127
plasma bitmap, 126
rotation of plasma blob, 127
translation modules, 128

Fractals, 187–190
Fragment shaders, 46

gl_FragColor function, 60

Engine states (cont.)

Index

225

gl_TexCoord[0] function, 60
lighting

gl_LightSource[], 64
material, 65

pixels coloring, 59
texture2D() function, 60, 63
variables, 61–62
varying variables,

interpolation, 62

G, H
Geometry shaders, 46
GLSL language, 49
Groovy script, 172

I
Iterated function system (IFS)

fractal
affine transformations, 115
axis angle to quaternion

parameters, 123–124
backface culling

parameters, 117
basic spray emitter

parameters, 122
blob parameters, 121
blurring modules, 118
depth buffer parameters, 117
description, 114
dimensions, 123
generator, 120

highblur parameters, 119
ifs_modifier, 114–115
light directional parameters, 117
material param parameters, 117
modifier parameters, 121
modules, 115, 120
orbit camera parameters, 116
oscillators, 124
output, 125
render surface single

parameters, 119
rotation, 123
state basis, 116
textured rectangle

parameters, 119

J, K, L
JACK sound server

ALSA/PulseAudio, 195
audio group, 196
Connections dialog, 200, 203
GUI, 197
jack_metro command, 201
list of devices, 199
output device and input

device, 197
Qjackctl, 200
setting up Qjackctl, 198, 199
sound card, 200
“thru” device, 201–202
tools, 196
Ubuntu, 195

Index

226

M, N
Material diffuse color, 156
Mesh_basic_render,

initialization, 19–20
Monte Carlo algorithm, 172
Monte Carlo simulated annealing

algorithm, 178

O
Ocean

backface culling
parameters, 163

blend mode parameters,
166, 168

depth buffer parameters, 164
enhanced view, tanslation and

blending, 165
gl rotate parameters, 167
gl scale parameters, 166
gl translate parameters, 165
light directional

parameters, 163
material param parameters, 163
mesh basic render

parameters, 164
orbit camera parameters, 162
output, enhanced view, 168
parameters, 164
perlin noise parameters, 167
screen0 parameters, 162
sky subpipeline, 166
textured rectangle

parameters, 167

P, Q, R
Particles generators

basic spray emitter, 25–27
bitmap emitter, properties, 29
mesh spray emitter,

properties, 27–28
modules, 25
spray beam speed modes, 27

Particles modification
floor module, 34
iterated function system, 36–37
modules, 30
physical law modifiers, 31–32
size modifiers, 36

Phong illumination model, 65
Pixel shaders, 46
Player operation, ThMAD

faders, 6–7, 9, 11
installation, 5–6
transition between

visuals, 6, 11
options, 7–9
Player files, 11
scheduling the player, 10
starting, modes, 5–6
stopping method, 10

S
A Space Odyssey

complete state, 150
outgoing texture controllers

dynamics, 140
oscillators, 142

Index

227

rotate parameters, 141
texture_dummy module, 141
translate parameters, 141

psychedelic effect, 136
shape creation textures,

147–149
snapshot, 150
texture switcher

controllers, 143
fragment_program, 145
shader code, 147
texture_selector, 143–144
vertex_program anchor, 145
vertex shader, 147

two planes (X-Y)
blend mode parameters, 139
float_dummy, 140
3float to float3

parameters, 140
gl translate parameters, 139
modules, 137
target camera parameters, 139
textured rectangle

parameters, 138
Sequence control, 151–153
Sequencing rewinds

rewind request, 42
sequencing time, 42

Shaders
basic state, 180
blend uniform, 183
brightening textures, 84
colorizing texture, 83
custom parameters, anchors, 87

default, 80
definition, 45, 78
fractals, 187–190
fragment, 80, 83, 181–182,

187–188, 192
glsl_loader module, 87
glsl loader parameters, 83
GLSL version, 183
hsv2rgb()function, 183
input_visualization_listener, 184
mappings, 189
mix() function, 184
modules, 81
offset uniform, 183
png_tex_load module, 180
png tex load parameters, 82
random numbers, noise()

function, 71, 73
sampler2D uniform, 183
suck_point, 85–86
surrealistic effects, 87–88
swirl distortion, 86
tex parameters, 82
texture coordinate distortion, 86
textured_rectangle module, 84
textured rectangle

parameters, 82
texture mapping, 81
ThMAD

glsl_loader module, 69
modules, 68

timed, 190–191, 193
types, 45, 79
vertex, 79

Index

228

Shaders functions, 54
angle and trigonometry, 54
common functions, 55
conversion, 58
exponential functions, 54
geometric functions, 56
matrix functions, 57
noise functions, 57–58
vectors, 57

Shaders operators, 53
Sound

amplification level, 131
float_limiter module, 134
smoothed sound and atan

scaler, music onset, 132,
133, 135

smoothed sound and
division, 133

smoothed sound,
music onset, 134

and sound derivatives, 135–136
visualizations, 132

Specular light, 154, 158–159, 161

T, U
Tesselation shaders, 46
ThMAD

configuration
configuration file, 220
entries, 221–222
menu, 219

thmad.conf, 220
fragment (pixel) shaders, 47
messages, 214–216
raw commands, 216–217
server socket, 211–214
vertex shaders, 47

ThMAD meshes, 13
box mesh, right-hand

rule, 20, 21
face normals, 18
faces, 18
vertex buffer objects (VBOs), 19
vertex colors, 17
vertex normal, 15
vertex tangents, 19
vertex texture coordinates, 17

texture mapping, 18
vertices, 14

ThMAD particle systems
modules, 23–24
particles generators, 25
particles modification, 30
particle states, 24–25

ThMAD time
normal/sequencing time, 39
operating system time, 39

Timed shader, 190–193
Time modules

operating system timer, 43
sequencing timer, 43
system_sequencer_control

module, 43

Index

229

V, W, X, Y, Z
Vertex shaders, 45

bitmaps, 59
ftransform() function, 49
in and out variables, 51–52

modelview matrix, 49
projection matrix, 49
shader program, 47–48
textures, 59
variable types, 50

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Program Operation
	ThMAD Artiste Operation
	Starting and Using Different Modes
	Stopping ThMAD Artiste
	Artiste Files

	ThMAD Player Operation
	Starting and Using Different Modes
	Scheduling the Player
	Stopping the Player
	Player Files

	Summary

	Chapter 2: Insight into Meshes and Particle Systems
	ThMAD Meshes
	Vertices
	Vertex Normals
	Vertex Colors
	Vertex Texture Coordinates
	Faces
	Face Normals
	Vertex Tangents
	Vertex Buffer Objects
	A Box Mesh in ThMAD

	ThMAD Particle Systems
	Particle States
	Generating Particles
	Modifying Particles
	Physical Law Modifiers
	Particles Hitting Walls
	Size Modifiers
	Iterated Function System Fractal

	Summary

	Chapter 3: Timing
	Engine States
	Sequencing Rewinds
	Time Modules
	Summary

	Chapter 4: Shaders
	Introduction to Shaders
	Vertex Shaders in Depth
	Simple Vertex Shaders
	Vertex Shader Variables
	Operators and Functions
	Arithmetic Assignments
	Textures in Vertex Shaders

	Fragment Shaders in Depth
	Simple Fragment Shaders
	Fragment Shader Variables

	Fragment Shader Operators and Functions
	Varying Variables
	Textures in Fragment Shaders
	Advanced Lighting in Fragment Shaders

	Using Shaders from Inside ThMAD
	Randomness in Shaders
	Summary

	Chapter 5: Stories I
	Textures Revisited
	Texture Distortion via Bitmaps
	Using Shaders

	Explosions
	Exploding Star
	Explosions and Sound

	Fractal Algorithms
	Fire
	Changing the Overall Size
	Changing the Intensity

	Changing the Color Distribution
	The Problem of Sound Scaling
	A Space Odyssey
	Two Planes
	Outgoing Texture Controllers
	Texture Switcher
	Shape Creation Textures
	All Combined

	Making Sequences
	Lighting Revisited
	Ambient Light
	Diffuse Light
	Specular Light
	Clear Color
	Material Ambient Color
	Material Diffuse Color
	Material Specular Color
	Emissive Light

	Ocean Revisited
	Summary

	Chapter 6: Stories II
	Color Gradient Mapping
	Color Gradient Algorithm
	Shader Fractal
	Timed Shader
	Summary

	Chapter 7: ThMAD and the JACK Sound Server
	Using JACK for Sound Input
	ThMAD and JACK Together
	Summary

	Chapter 8: TMAD and ALSA
	Disabling PulseAudio
	Starting ThMAD with ALSA
	Summary

	Chapter 9: Controlling ThMAD from the Outside
	ThMAD and Its Server Socket
	ThMAD Socket Clients
	Messages
	Raw Commands
	Summary

	Chapter 10: Configuration
	Accessing the Configuration
	Configuration Entries
	Summary

	Index

