
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Agile Project
Management

2nd Edition

by Mark C. Layton and
Steven J Ostermiller

www.allitebooks.com

http://www.allitebooks.org

Agile Project Management For Dummies®, 2nd Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2017 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. SAFe and Scaled Agile Framework are registered trademarks of Scaled Agile, Inc. Certified Scrum Developer,
Certified Scrum Product Owner, Certified Scrum Professional, Certified Scrum Trainer, and Certified ScrumMaster are
registered trademarks of Scrum Alliance. PMI Agile Certified Practitioner and PMI-ACP are registered trademarks of
Project Management Institute, Inc. All other trademarks are the property of their respective owners. John Wiley & Sons,
Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017948508

ISBN 978-1-119-40569-6 (pbk); ISBN 978-1-119-40574-0 (ebk); ISBN 978-1-119-40573-3 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

Contents at a Glance
Introduction . 1

Part 1: Understanding Agile . 5
CHAPTER 1: Modernizing Project Management . 7
CHAPTER 2: Applying the Agile Manifesto and Principles . 17
CHAPTER 3:	 Why	Being	Agile	Works Better . 43

Part 2: Being Agile . 63
CHAPTER 4: Agile Approaches . 65
CHAPTER 5:	 Agile	Environments	in Action . 81
CHAPTER 6: Agile Behaviors in Action . 93

Part 3: Agile Planning and Execution . 115
CHAPTER 7:	 Defining	the	Product	Vision	and	Product	Roadmap 117
CHAPTER 8:	 Planning	Releases	and	Sprints . 139
CHAPTER 9:	 Working	throughout	the Day . 163
CHAPTER 10:	Showcasing	Work,	Inspecting,	and	Adapting . 181
CHAPTER 11:	Preparing	for	Release . 193

Part 4: Agile Management . 203
CHAPTER 12:	Managing	Scope	and	Procurement . 205
CHAPTER 13: Managing Time and Cost . 225
CHAPTER 14:	Managing	Team	Dynamics	and	Communication 245
CHAPTER 15:	Managing	Quality	and Risk . 269

Part 5: Ensuring Agile Success . 295
CHAPTER 16:	Building	a	Foundation . 297
CHAPTER 17:	Scaling	across	Agile Teams . 311
CHAPTER 18: Being a Change Agent . 343

Part 6: The Part of Tens . 367
CHAPTER 19:	Ten	Key	Benefits	of	Agile	Project	Management . 369
CHAPTER 20:	Ten	Key	Factors	for	Project	Success . 377
CHAPTER 21: Ten Metrics for Agile Organizations . 383
CHAPTER 22:	Ten	Valuable	Resources	for	Agile	Professionals 395

Index . 401

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents v

Table of Contents
INTRODUCTION . 1

About	This	Book .1
Foolish	Assumptions .1
Icons	Used	in	This	Book .2
Beyond the Book .2
Where to Go from Here .3

PART 1: UNDERSTANDING AGILE . 5

CHAPTER 1: Modernizing Project Management . 7
Project Management Needed a Makeover . 7

The origins of modern project management 8
The	problem	with	the	status	quo .10

Introducing	Agile	Project	Management .11
How	agile	projects	work .13
Why	agile	projects	work	better .14

CHAPTER 2: Applying the Agile Manifesto and Principles 17
Understanding	the	Agile	Manifesto .17
Outlining	the	Four	Values	of	the	Agile	Manifesto 20

Value	1:	Individuals	and	interactions	over	processes	
and tools .20
Value	2:	Working	software	over		comprehensive	
documentation .22
Value	3:	Customer	collaboration	over	contract	negotiation 24
Value	4:	Responding	to	change	over	following	a	plan 25

Defining	the	12	Agile	Principles .26
Agile	principles	of	customer	satisfaction .27
Agile	principles	of	quality .30
Agile	principles	of	teamwork .31
Agile principles of project management .33

Adding	the	Platinum	Principles .37
Resisting	formality .37
Thinking and acting as a team .38
Visualizing	rather	than	writing .38

Changes	as	a	Result	of	Agile	Values .41
The	Agile	Litmus	Test .41

www.allitebooks.com

http://www.allitebooks.org

vi Agile Project Management For Dummies

CHAPTER 3:	 Why	Being	Agile	Works Better . 43
Evaluating	Agile	Benefits .43
How	Agile	Approaches	Beat	Historical Approaches 48

Greater	flexibility	and	stability .49
Reduced	nonproductive	tasks .51
Higher	quality,	delivered	faster .53
Improved	team	performance .54
Tighter project control .56
Faster	and	less	costly	failure .57

Why People Like Being Agile .57
Executives .58
Product	development	and	customers .59
Management .60
Development teams .61

PART 2: BEING AGILE . 63

CHAPTER 4: Agile Approaches . 65
Diving	under	the	Umbrella	of	Agile Approaches 65
Reviewing	the	Big	Three:	Lean,	Scrum,	and	
Extreme	Programming .69

An	overview	of	lean .69
An	overview	of	scrum .73
An	overview	of	extreme	programming .76

Putting	It	All	Together .80

CHAPTER 5:	 Agile	Environments	in Action . 81
Creating the Physical Environment .82

Collocating the team .82
Setting	up	a	dedicated	area .83
Removing	distractions .84
Going	mobile .85

Low-Tech	Communicating .86
High-Tech	Communicating .88
Choosing Tools . .90

The	purpose	of	the	tool .90
Organizational	and	compatibility		constraints 90

CHAPTER 6: Agile Behaviors in Action . 93
Establishing	Agile	Roles .93

Product	owner .94
Development	team	member .97
Scrum	master .98
Stakeholders . .100
Agile mentor .102

www.allitebooks.com

http://www.allitebooks.org

Table of Contents vii

Establishing	New	Values .102
Commitment .103
Courage .103
Focus .104
Openness .105
Respect .106

Changing Team Philosophy .107
Dedicated team .107
Cross-functionality . .108
Self-organization .110
Self-management .111
Size-limited	teams .112
Ownership .113

PART 3: AGILE PLANNING AND EXECUTION 115

CHAPTER 7:	 Defining	the	Product	Vision	
and Product Roadmap . 117
Agile Planning .118

Progressive	elaboration .120
Inspect	and	adapt .120

Defining	the	Product	Vision .121
Step	1:	Developing	the	product	objective .122
Step	2:	Creating	a	draft	vision	statement .123
Step	3:	Validating	and	revising	the	vision	statement 125
Step	4:	Finalizing	the	vision	statement .126

Creating	a	Product	Roadmap .126
Step	1:	Identifying	stakeholders .127
Step	2:	Establishing	product	requirements 128
Step	3:	Arranging	product	features .130
Step	4:	Estimating	efforts	and	ordering	requirements 131
Step	5:	Determining	high-level	time	frames 135
Saving	your	work .135

Completing	the	Product	Backlog .135

CHAPTER 8: Planning Releases and Sprints . 139
Refining	Requirements	and	Estimates .139

What	is	a	user	story? .140
Steps	to	create	a	user	story .142
Breaking	down	requirements .146
Estimation poker .148
Affinity	estimating .150

www.allitebooks.com

http://www.allitebooks.org

viii Agile Project Management For Dummies

Release	Planning .152
Sprint	Planning . .155

The	sprint	backlog .156
The sprint planning meeting .157

CHAPTER 9:	 Working	throughout	the Day . 163
Planning	Your	Day:	The	Daily	Scrum .163
Tracking Progress .166

The	sprint	backlog .166
The	task	board .170

Agile	Roles	in	the	Sprint .172
Creating	Shippable	Functionality .174

Elaborating .174
Developing .175
Verifying .176
Identifying	roadblocks .178

The End of the Day .179

CHAPTER 10: Showcasing Work, Inspecting, and Adapting 181
The	Sprint	Review .181

Preparing to demonstrate .182
The	sprint	review	meeting .183
Collecting	feedback	in	the	sprint	review	meeting 186

The	Sprint	Retrospective .187
Planning for sprint retrospectives .189
The sprint retrospective meeting .189
Inspecting	and	adapting .191

CHAPTER 11: Preparing for Release . 193
Preparing	the	Product	for	Deployment:	The	Release	Sprint 193
Preparing	for	Operational	Support .197
Preparing	the	Organization	for	Product	Deployment 199
Preparing	the	Marketplace	for	Product	Deployment 200

PART 4: AGILE MANAGEMENT . 203

CHAPTER 12: Managing Scope and Procurement 205
What’s	Different	about	Agile	Scope	Management? 206
Managing	Agile	Scope .208

Understanding	scope	throughout	the	project 208
Introducing	scope	changes .211
Managing scope changes .211
Using	agile	artifacts	for	scope	management 213

What’s	Different	about	Agile	Procurement? .214

www.allitebooks.com

http://www.allitebooks.org

Table of Contents ix

Managing	Agile	Procurement .216
Determining need and selecting a vendor .216
Understanding	cost	approaches	and	contracts	for	services 218
Organizational	considerations	for	procurement 221
Working	with	a	vendor .223
Closing a contract .224

CHAPTER 13: Managing Time and Cost . 225
What’s	Different	about	Agile	Time Management? 225
Managing	Agile	Schedules .227

Introducing	velocity .228
Monitoring	and	adjusting	velocity .229
Managing scope changes from a time perspective 234
Managing	time	by	using	multiple	teams .235
Using	agile	artifacts	for	time	management 236

What’s	Different	about	Agile	Cost	Management? 237
Managing	Agile	Budgets .238

Creating	an	initial	budget .239
Creating	a	self-funding	project .240
Using	velocity	to	determine	long-range	costs 242
Using	agile	artifacts	for	cost	management 244

CHAPTER 14: Managing Team Dynamics
and Communication . 245
What’s	Different	about	Agile	Team Dynamics? 245
Managing Agile Team Dynamics .247

Becoming	self-managing	and	self-organizing 248
Supporting	the	team:	The	servant-leader .252
Working	with	a	dedicated	team .254
Working	with	a	cross-functional	team .255
Reinforcing	openness .257
Limiting development team size .258
Managing	projects	with	dislocated	teams .259

What’s	Different	about	Agile	Communication? 262
Managing	Agile	Communication .263

Understanding	agile	communication	methods 263
Status	and	progress	reporting .266

CHAPTER 15:	Managing	Quality	and Risk . 269
What’s	Different	about	Agile	Quality? .269
Managing	Agile	Quality .272

Quality	and	the	sprint .273
Proactive	quality .275
Quality	through	regular	inspecting	and	adapting 280
Automated	testing .281

x Agile Project Management For Dummies

What’s	Different	about	Agile	Risk	Management? 283
Managing	Agile	Risk .286

Reducing	risk	inherently .286
Identifying,	prioritizing,	and	responding	to	risks	early291

PART 5: ENSURING AGILE SUCCESS . 295

CHAPTER 16: Building a Foundation . 297
Organizational	and	Individual	Commitment .297

Organizational commitment .298
Individual	commitment .299
Getting commitment .299
Can	you	make	the	transition? .300
Timing the transition .302

Choosing	the	Right	Pilot	Team	Members .302
The agile champion .302
The agile transition team .303
The	product	owner .304
The development team .305
The	scrum	master .305
The project stakeholders .306
The agile mentor .307

Creating	an	Environment	That	Enables	Agility 307
Support	Agility	Initially	and	Over	Time .310

CHAPTER 17:	Scaling	across	Agile Teams . 311
Multi-Team	Agile	Projects .312
Making	Work	Digestible	through	Vertical	Slicing 314

Scrum	of	scrums .315
Aligning	through	Roles	with	Scrum	at	Scale .318

Scaling	the	scrum	master .319
Scaling	the	product	owner .320
Synchronizing	in	one	hour	a	day .322

Multi-Team	Coordination	with	LeSS .323
LeSS,	the	smaller	framework .323
LeSS	Huge	framework .324
Sprint	review	bazaar .325
Observers	at	the	daily	scrum .326
Component	communities	and	mentors .326
Multi-team	meetings .327
Travelers .327

Reducing	Dependencies	with	Nexus .327
Nexus	role —	Nexus	integration	team .328
Nexus	artifacts .330
Nexus	events .330

Table of Contents xi

Joint	Program	Planning	with	SAFe .332
Understanding	the	four	SAFe	levels .333
Joint program increment planning .336
Clarity for managers .337

Modular	Structures	with	Enterprise	Scrum .337
ES	scrum	elements	generalizations .337
ES	key	activities .338

CHAPTER 18: Being a Change Agent . 343
Becoming	Agile	Requires	Change .343
Why	Change	Doesn’t	Happen	on	Its	Own .344
Strategic	Approaches	to	Implementing	and	Managing	Change 345

Lewin .345
ADKAR’s	five	steps	to	change .346
Kotter’s eight steps for leading change .348

Platinum	Edge’s	Change	Roadmap .349
Step	1:	Conduct	an	implementation	strategy	with	
success	metrics .349
Step	2:	Build	awareness	and	excitement .352
Step	3:	Form	a	transformation	team	and	
identify a pilot project .353
Step	4:	Build	an	environment	for	success .355
Step	5:	Train	sufficiently	and	recruit	as needed 355
Step	6:	Kick	off	the	pilot	with	active	coaching 356
Step	7:	Execute	the	Roadmap	to	Value .357
Step	8:	Gather	feedback	and	improve .357
Step	9:	Mature	and	solidify	improvements 358
Step	10:	Progressively	expand	within	the	organization 359

Avoiding Pitfalls .360
Signs	Your	Changes	Are	Slipping .363

PART 6: THE PART OF TENS . 367

CHAPTER 19:	Ten	Key	Benefits	of	Agile	Project	Management . . . 369
Better	Product	Quality .369
Higher	Customer	Satisfaction .370
Reduced	Risk .371
Increased	Collaboration	and	Ownership .371
More	Relevant	Metrics .372
Improved	Performance	Visibility .373
Increased	Project	Control .374
Improved	Project	Predictability .374
Customized	Team	Structures .375
Higher Team Morale .376

xii Agile Project Management For Dummies

CHAPTER 20: Ten Key Factors for Project Success 377
Dedicated	Team	Members .377
Collocation .378
Automated	Testing .378
Enforced	Definition	of	Done .378
Clear	Product	Vision	and	Roadmap .379
Product	Owner	Empowerment .380
Developer	Versatility .380
Scrum	Master	Clout .380
Management	Support	for	Learning .381
Transition	Support .381

CHAPTER 21: Ten Metrics for Agile Organizations 383
Return	on	Investment .383

New	requests	in	ROI	budgets .386
Capital redeployment .386

Satisfaction	Surveys .387
Defects	in	Production .388
Sprint	Goal	Success	Rates .389
Time to Market .389
Lead and Cycle Times .390
Cost of Change .391
Team	Member	Turnover .391
Skill	Versatility .392
Manager-to-Creator	Ratio .392

CHAPTER 22:	Ten	Valuable	Resources	for	Agile	Professionals . . .395
Agile	Project	Management	For	Dummies	Online	Cheat	Sheet 395
Scrum	For	Dummies .396
The	Scrum	Alliance .396
The Agile Alliance .396
The	Project	Management	Institute	Agile Community 397
International	Consortium	for	Agile (ICAgile) .397
InfoQ .397
Lean	Enterprise	Institute .398
Extreme	Programming .398
Platinum	Edge .398

INDEX . 401

Introduction 1

Introduction

Welcome to Agile Project Management For Dummies. Agile project manage-
ment has grown to be as common as any management technique in
business today. Over the past decade and a half, we have trained and

coached companies big and small, all over the world, about how to successfully
run agile projects. Through this work, we found that there was a need to write a
digestible guide that the average person could understand and use.

In this book, we will clear up some of the myths about what agile project manage-
ment is and what it is not. The information in this book will give you the confidence
to know you can be successful using agile techniques.

About This Book
Agile Project Management For Dummies, 2nd Edition is more than just an introduc-
tion to agile practices and methodologies; you also discover the steps to execute
agile techniques on a project. The material here goes beyond theory and is meant
to be a field manual, accessible to the everyday person, giving you the tools and
information you need to be successful with agile processes in the trenches of proj-
ect management.

Foolish Assumptions
Because you’re reading this book, you might have a passing familiarity with proj-
ect management. Perhaps you are a project manager, a member of a project team,
or a stakeholder on a project. Or perhaps you don’t have experience with formal
project management approaches but are looking for a solution now. You may even
have heard the term agile and want to know more. Or you might already be part of
a project team that’s trying to be more agile.

Regardless of your experience or level of familiarity, this book provides insights
you may find interesting. If nothing else, we hope it brings clarity to any confu-
sion or myths regarding agile project management you may have encountered.

2 Agile Project Management For Dummies

Icons Used in This Book
Throughout this book, you’ll find the following icons.

Tips are points to help you along your agile project management journey. Tips can
save you time and help you quickly understand a particular topic, so when you see
them, take a look!

The Remember icon is a reminder of something you may have seen in past
 chapters. It also may be a reminder of a commonsense principle that is easily
 forgotten. These icons can help jog your memory when an important term or con-
cept appears.

The Warning icon indicates that you want to watch out for a certain action or
behavior. Be sure to read these to steer clear of big problems!

The Technical Stuff icon indicates information that is interesting but not essential
to the text. If you see a Technical Stuff icon, you don’t need to read it to under-
stand agile project management, but the information there might just pique your
interest.

On the Web means that you can find more information on the book’s website at
www.dummies.com/go/agileprojectmanagementfd2e.

Beyond the Book
Although this book broadly covers the agile project management spectrum, we
can cover only so much in a set number of pages! If you find yourself at the end of
this book thinking, “This was an amazing book! Where can I learn more about
how to advance my projects under an agile approach?” check out Chapter 22 or
head over to www.dummies.com for more resources.

We’ve provided a cheat sheet for tips on assessing your current projects in relation
to agile principles and free tools for managing projects using agile techniques.
To get to the cheat sheet, go to www.dummies.com, and then type Agile Project
 Management For Dummies Cheat Sheet in the Search box. This is also where you’ll
find any significant updates or changes that occur between editions of this book.

http://www.dummies.com/go/agileprojectmanagementfd2e
http://www.dummies.com
http://www.dummies.com

Introduction 3

Where to Go from Here
We wrote this book so that you could read it in just about any order. Depending on
your role, you may want to pay extra attention to the appropriate sections of the
book. For example:

 » If you’re just starting to learn about project management and agile
approaches, start with Chapter 1 and read the book straight through
to the end.

 » If you are a member of a project team and want to know the basics of how
to work on an agile project, check out the information in Part 3 (Chapters 7
through 11).

 » If you are a project manager and are wondering how agile approaches affect
your job, review Part 4 (Chapters 12 through 15).

 » If you know the basics of agile project management and are looking at
bringing agile practices to your company or scaling agile practices across
your organization, Part 5 (Chapters 16 through 18) provides you with helpful
information.

1Understanding
Agile

IN THIS PART . . .

Understand why project management needs to
modernize due to the flaws and weaknesses in historical
approaches to project management.

Find out why agile methods are growing as an
alternative to traditional project management, and
become acquainted with the foundation of agile project
management: the Agile Manifesto and the 12 Agile
Principles.

Discover the advantages that your products, projects,
teams, customers, and organization can gain from
adopting agile project management processes and
techniques.

CHAPTER 1 Modernizing Project Management 7

Chapter 1

IN THIS CHAPTER

 » Understanding why project
management needs to change

 » Finding out about agile project
management

Modernizing Project
Management

Agile project management is a style of project management that focuses on
early delivery of business value, continuous improvement of the project’s
product and processes, scope flexibility, team input, and delivering well-

tested products that reflect customer needs.

In this chapter, you find out why agile processes emerged as an approach to
 software development project management in the mid-1990s and why agile
methodologies have caught the attention of project managers, customers who
invest in the development of new software, and executives whose companies fund
software development departments. This chapter also explains the advantages of
agile methodologies over long-standing approaches to project management.

Project Management Needed a Makeover
A project is a planned program of work that requires a definitive amount of time,
effort, and planning to complete. Projects have goals and objectives and often
must be completed in some fixed period of time and within a certain budget.

8 PART 1 Understanding Agile

Because you are reading this book, it’s likely that you are either a project manager
or someone who initiates projects, works on projects, or is affected by projects in
some way.

Agile approaches are a response to the need to modernize project management. To
understand how agile approaches are revolutionizing projects, it helps to know a
little about the history and purpose of project management and the issues that
projects face today.

The origins of modern project
management
Projects have been around since ancient times. From the Great Wall of China to the
Mayan pyramids at Tikal, from the invention of the printing press to the invention
of the Internet, people have accomplished endeavors big and small in projects.

As a formal discipline, project management as we know it has only been around
since the middle of the twentieth century. Around the time of World War II,
researchers around the world were making major advances in building and pro-
gramming computers, mostly for the United States military. To complete those
projects, they started creating formal project management processes. The first
processes were based on step-by-step manufacturing models the United States
military used during World War II.

People in the computing field adopted these step-based manufacturing processes
because early computer-related projects relied heavily on hardware, with com-
puters that filled up entire rooms. Software, by contrast, was a smaller part of
computer projects. In the 1940s and 1950s, computers might have thousands of
physical vacuum tubes but fewer than 30 lines of programming code. The 1940s
manufacturing process used on these initial computers is the foundation of the
project management methodology known as waterfall.

In 1970, a computer scientist named Winston Royce wrote “Managing the Devel-
opment of Large Software Systems,” an article for the IEEE that described the
phases in the waterfall methodology. The term waterfall was coined later, but
the phases, even if they are sometimes titled differently, are essentially the same
as originally defined by Royce:

CHAPTER 1 Modernizing Project Management 9

1. Requirements

 2. Design

 3. Development

 4. Integration

 5. Testing

 6. Deployment

On waterfall projects, you move to the next phase only when the prior one is
complete — hence, the name waterfall.

Pure waterfall project management — completing each step in full before moving
to the next step — is actually a misinterpretation of Royce’s suggestions. Royce
identified that this approach was inherently risky and recommended developing
and testing within iterations to create products — suggestions that were over-
looked by many organizations that adopted the waterfall methodology.

SOFTWARE PROJECT SUCCESS AND FAILURE
Unfortunately, the stagnation in traditional project management approaches is catching
up with the software industry. In 2015, a software statistical company called the
Standish Group did a study on the success and failure rates of 10,000 projects in the
US. The results of the study showed that

• 29 percent of traditional projects failed outright. The projects were cancelled before
they finished and did not result in any product releases. These projects delivered
no value whatsoever.

• 60 percent of traditional projects were challenged. The projects were completed, but
they had gaps between expected and actual cost, time, quality, or a combination
of these elements. The average difference between the expected and actual proj-
ect results — looking at time, cost, and features not delivered — was well over
100 percent.

• 11 percent of projects succeeded. The projects were completed and delivered the
expected product in the originally expected time and budget.

Of the hundreds of billions of dollars spent on application development projects in the
US alone, billions of dollars were wasted on projects that never deployed a single piece
of functionality.

10 PART 1 Understanding Agile

The waterfall methodology was the most common project management approach
in software development until it was surpassed by improved approaches based on
agile techniques around 2008.

The problem with the status quo
Computer technology has, of course, changed a great deal since the last century.
Many people have a computer on their wrist with more power, memory, and capa-
bilities than the largest, most expensive machine that existed when people first
started using waterfall methodologies.

At the same time, the people using computers have changed as well. Instead of
creating behemoth machines with minimal programs for a few researchers and
the military, people create hardware and software for the general public. In many
countries, almost everyone uses a computer, directly or indirectly, every day.
Software runs our cars, our appliances, our homes; it provides our daily informa-
tion and daily entertainment. Even young children use computers — a 2-year-old
is almost more adept with the iPhone than her parents. The demand for newer,
better software products is constant.

Somehow, during all this growth of technology, processes were not left behind.
Software developers are still using project management methodologies from the
1950s, and all these approaches were derived from manufacturing processes
meant for the hardware-heavy computers of the mid-twentieth century.

Today, traditional projects that do succeed often suffer from one problem: scope
bloat, the introduction of unnecessary product features in a project.

Think about the software products you use every day. For example, the word-
processing program we’re typing on right now has many features and tools. Even
though we write with this program every day, we use only some of the features all
the time. We use other elements less frequently. And we have never used quite a
few tools — and come to think of it, we don’t know anyone else who has used
them, either. The features that few people use are the result of scope bloat.

Scope bloat appears in all kinds of software, from complex enterprise applications
to websites that everyone uses. Figure 1-1 shows data from a Standish Group study
that illustrates just how common scope bloat is. In the figure, you can see that
64 percent of requested features are rarely or never used.

The numbers in Figure 1-1 illustrate an enormous waste of time and money. That
waste is a direct result of traditional project management processes that are
unable to accommodate change. Project managers and stakeholders know that
change is not welcome mid-project, so their best chance of getting a potentially
desirable feature is at the start of a project. Therefore, they ask for

CHAPTER 1 Modernizing Project Management 11

 » Everything they need

 » Everything they think they may need

 » Everything they want

 » Everything they think they may want

The result is the bloat in features that results in the statistics in Figure 1-1.

The problems associated with using outdated management and development
approaches are not trivial. These problems waste billions of dollars a year. The
billions of dollars lost in project failure in 2015 (see the sidebar, “Software project
success and failure”) could equate to millions of jobs around the world.

Over the past two decades, people working on projects have recognized the grow-
ing problems with traditional project management and have been working to
 create a better model: agile project management.

Introducing Agile Project Management
The seeds for agile techniques have been around for a long time. In fact, agile
values, principles, and practices are simply a codification of common sense.
Figure 1-2 shows a quick history of agile project management, dating to the 1930s
with Walter Sherwart’s Plan-Do-Study-Act (PDSA) approach to project quality.

FIGURE 1-1:
Actual use of

requested
software
features.

Copyright 2011 Standish Group

12 PART 1 Understanding Agile

FIGURE 1-2:
Agile project management timeline.

CHAPTER 1 Modernizing Project Management 13

In 1986, Hirotaka Takeuchi and Ikujiro Nonaka published an article called “New
New Product Development Game” in the Harvard Business Review. Takeuchi and
Nonaka’s article described a rapid, flexible development strategy to meet fast-
paced product demands. This article first paired the term scrum with product devel-
opment. (Scrum originally referred to a player formation in rugby.) Scrum eventually
became one of the most popular agile project management frameworks.

In 2001, a group of software and project experts got together to talk about what
their successful projects had in common. This group created the Agile Manifesto, a
statement of values for successful software development:

Manifesto for Agile Software Development*

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

* Agile Manifesto Copyright © 2001: Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn,
Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas.

This declaration may be freely copied in any form, but only in its entirety through this notice.

These experts also created the Principles behind the Agile Manifesto, 12 practices that
help support the values in the Agile Manifesto. We list the Agile Principles and
describe the Agile Manifesto in more detail in Chapter 2.

Agile, in product development terms, is a descriptor for project management
approaches that focus on people, communications, the product, and flexibility. If
you’re looking for the agile methodology, you won’t find it. However, all agile
methodologies (for example, crystal), frameworks (for example, scrum), tech-
niques (for example, user story requirements), and tools (for example, relative
estimating) have one thing in common: adherence to the Agile Manifesto and the
12 Agile Principles.

How agile projects work
Agile approaches are based on an empirical control method — a process of making
decisions based on the realities observed in the project. In the context of software
development methodologies, an empirical approach can be effective in both new

14 PART 1 Understanding Agile

product development and enhancement and upgrade projects. By using frequent
and firsthand inspection of the work to date, you can make immediate adjust-
ments, if necessary. Empirical control requires

 » Unfettered transparency: Everyone involved in an agile project knows what
is going on and how the project is progressing.

 » Frequent inspection: The people who are invested in the product and
process the most regularly evaluate the product and process.

 » Immediate adaptation: Adjustments are made quickly to minimize problems;
if an inspection shows that something should change, it is changed immediately.

To accommodate frequent inspection and immediate adaptation, agile projects
work in iterations (smaller segments of the overall project). An agile project
involves the same type of work as in a traditional waterfall project: You create
requirements and designs, develop the product, document it, and if necessary,
integrate the product with other products. You test the product, fix any problems,
and deploy it for use. However, instead of completing these steps for all product
features at once, as in a waterfall project, you break the project into iterations,
also called sprints.

Figure 1-3 shows the difference between a linear waterfall project and an agile
project.

Mixing traditional project management methods with agile approaches is like
saying, “I have a Porsche 911 Turbo. However, I’m using a wagon wheel on the
front left side. How can I make my car as fast as the other Porsches?” The answer,
of course, is you can’t. If you fully commit to an agile approach, you will have a
better chance of project success.

Why agile projects work better
Throughout this book, you see how agile projects work better than traditional
projects. Agile project management approaches can produce more successful
projects. The Standish Group study, mentioned in the sidebar “Software project
success and failure,” found that while 29 percent of traditional projects failed
outright, that number dropped to only 9 percent on agile projects. The decrease in
failure for agile projects is a result of agile project teams making immediate adap-
tations based on frequent inspections of progress and customer satisfaction.

CHAPTER 1 Modernizing Project Management 15

FIGURE 1-3:
Waterfall versus agile project.

16 PART 1 Understanding Agile

Here are some key areas where agile approaches are superior to traditional project
management methods:

 » Project success rates: In Chapter 15, you find out how the risk of cata-
strophic project failure falls to almost nothing on agile projects. Agile
approaches of prioritizing by business value and risk ensure early success or
failure. Agile approaches to testing throughout the project help ensure that
you find problems early, not after spending a large amount of time
and money.

 » Scope creep: In Chapters 7, 8, and 12, you see how agile approaches accom-
modate changes throughout a project, minimizing scope creep. On agile
projects, you can add new requirements at the beginning of each sprint
without disrupting development flow. By fully developing prioritized features
first, you prevent scope creep from threatening critical functionality.

 » Inspecting and adaptation: In Chapters 10 and 14, you find details of how
regular inspections and adaptation work on agile projects. Agile project
teams — armed with frequent feedback from complete development cycles
and working, shippable functionality — can improve their processes and their
products with each sprint.

Throughout many chapters in this book, you discover how you gain control of the
outcome of agile projects. Testing early and often, adjusting priorities as needed,
using better communication techniques, and regularly demonstrating and releas-
ing product functionality allow you to fine-tune your control over a wide variety
of factors on agile projects.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 Applying the Agile Manifesto and Principles 17

Chapter 2

IN THIS CHAPTER

 » Defining the Agile Manifesto and the
12 Agile Principles

 » Describing the Platinum Principles

 » Understanding what has changed in
project management

 » Taking the agile litmus test

Applying the Agile
Manifesto and Principles

This chapter describes the basics of what it means to be agile: the Agile
Manifesto, with its four values, and the 12 agile principles behind the Agile
Manifesto. We also expand on these basics with three additional Platinum

Principles, which Platinum Edge (owned by Mark) crafted after years of experi-
ence supporting organizations’ agile transitions.

This foundation provides product development teams with the information needed
to evaluate whether the project team is following agile principles, as well as
whether their actions and behaviors are consistent with agile values. When you
understand these values and principles, you’ll be able to ask, “Is this agile?” and
be confident in your answer.

Understanding the Agile Manifesto
In the mid-1990s, the Internet was changing the world right before our eyes. The
people working in the booming dot-com industry were under constant pressure
to be the first to market with fast-changing technologies. Development teams
worked day and night, struggling to deliver new software releases before

18 PART 1 Understanding Agile

competitors made their companies obsolete. The information technology (IT)
industry was completely reinvented in a few short years.

Given the pace of change at that time, cracks inevitably appeared in conventional
project management practices. Using traditional methodologies such as waterfall,
which is discussed in Chapter 1, didn’t allow developers to be responsive enough
to the market’s dynamic nature and to emerging new approaches to business.
Development teams started exploring alternatives to these outdated approaches to
project management. In doing so, they noticed some common themes that pro-
duced better results.

In February 2001, 17 of these new methodology pioneers met in Snowbird, Utah,
to share their experiences, ideas, and practices; to discuss how best to express
them; and to suggest ways to improve the world of software development. They
couldn’t have imagined the effect their meeting would have on the future of proj-
ect management. The simplicity and clarity of the manifesto they produced and
the subsequent principles they developed transformed the world of information
technology and continue to revolutionize project management in every industry,
not just software development.

Over the next several months, these leaders constructed the following:

 » The Agile Manifesto: An intentionally streamlined expression of core
development values

 » The Agile Principles: A set of 12 guiding concepts that support agile project
teams in implementing agile techniques and staying on track

 » The Agile Alliance: A community development organization focused on
supporting individuals and organizations that are applying agile principles and
practices

The group’s work was destined to make the software industry more productive,
more humane, and more sustainable.

The Agile Manifesto is a powerful statement, carefully crafted using fewer than
75 words:

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

CHAPTER 2 Applying the Agile Manifesto and Principles 19

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

* Agile Manifesto Copyright © 2001: Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn,
Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas

This declaration may be freely copied in any form, but only in its entirety through this notice.

No one can deny that the Agile Manifesto is both a concise and an authoritative
statement. Whereas traditional approaches emphasize a rigid plan, avoid change,
document everything, and encourage hierarchal-based control, the manifesto
focuses on

 » People

 » Communications

 » The product

 » Flexibility

The Agile Manifesto represents a big shift in focus in how projects are conceived,
conducted, and managed. If we read only the items on the left, we understand the
new paradigm that the manifesto signers envisioned. They found that by focusing
more attention on individuals and interactions, teams would more effectively
produce working software through valuable customer collaboration and by
responding well to change. In contrast, the traditional primary focus on processes
and tools often produces comprehensive or excess documentation to comply with
contract negotiations and to follow an unchanging plan.

Research and experience illustrate why agile values are so important:

 » Individuals and interactions over processes and tools: Why? Because
research shows a 50 times increase in performance when we get individuals
and interactions right. One of the ways we get this right is by collocating a
development team with an empowered product owner.

 » Working software over comprehensive documentation: Why? Because
failure to test for and correct defects during the sprint can take up to 24 times
more effort and cost in the next sprint. And after the functionality is deployed
to the market, if a production support team that wasn’t involved in product
development performs the testing and fixing, the cost is up to 100 times more.

20 PART 1 Understanding Agile

 » Customer collaboration over contract negotiation: Why? Because a
dedicated and accessible product owner can generate a fourfold increase in
productivity by providing in-the-moment clarification to the development
team, aligning customer priorities with the work being performed.

 » Responding to change over following a plan: Why? Because 64 percent of
features developed under a waterfall model are rarely or never used (as
discussed in Chapter 1). Starting with a plan is vital, but that is when we know
the least. Agile teams don’t plan less than waterfall teams — they plan as
much or more. However, agile teams take a just-in-time approach, planning
just enough when needed. Adaptation of the plan to the realities along the
way is how agile teams deliver products that delight customers.

The creators of the Agile Manifesto originally focused on software development
because they worked in the IT industry. However, agile project management
 techniques have spread beyond software development and even outside computer-
related products. Today, people use agile approaches to create products in a variety
of industries, including biotech, manufacturing, aerospace, engineering, market-
ing, nonprofit work, and even building construction. If you want early empirical
feedback on the product or service you’re providing, you can benefit from agile
methods.

The Agile Manifesto and 12 Agile Principles directly refer to software; we leave
these references intact when quoting the manifesto and principles throughout the
book. If you create non-software products, try substituting your product as you
read on.

Outlining the Four Values
of the Agile Manifesto

The Agile Manifesto was generated from experience, not from theory. As you
review the values described in the following sections, consider what they would
mean if you put them into practice. How do these values support meeting time-
to-market goals, dealing with change, and valuing human innovation?

Value 1: Individuals and interactions
over processes and tools
When you allow each person to contribute his or her unique value to a project,
the result can be powerful. When these human interactions focus on solving

CHAPTER 2 Applying the Agile Manifesto and Principles 21

problems, a unified purpose can emerge. Moreover, the agreements come about
through processes and tools that are much simpler than conventional ones.

A simple conversation in which you talk through a project issue can solve many
problems in a relatively short time. Trying to emulate the power of a direct
 conversation with email, spreadsheets, and documents results in significant
 overhead costs and delays. Instead of adding clarity, these types of managed, con-
trolled communications are often ambiguous and time-consuming and distract
the development team from the work of creating a product.

Consider what it means if you value individuals and interactions highly. Table 2-1
shows some differences between valuing individuals and valuing interactions and
valuing processes and tools.

TABLE 2-1	 Individuals and Interactions versus Processes and Tools
Individuals and Interactions Have
High Value Processes and Tools Have High Value

Pros Communication is clear and effective.

Communication is quick and efficient.

Teamwork becomes strong as people
work together.

Development teams can self-organize.

Development teams have more chances
to innovate.

Development teams can customize
processes as necessary.

Development team members can take
personal ownership of the project.

Development team members can have
deeper job satisfaction.

Processes are clear and can be easy to follow.

Written records of communication exist.

Cons Development team members must have
the capacity to be involved, responsible,
and innovative.

People may need to let go of ego to
work well as members of a team.

People may over-rely on processes instead of finding the
best ways to create good products.

One process doesn’t fit all teams — different people have
different work styles.

One process doesn’t fit all projects.

Communication can be ambiguous and time-consuming.

22 PART 1 Understanding Agile

You can find a blank template of Table 2-1 on the book’s companion website at
www.dummies.com/go/agileprojectmanagementfd2e — jot down the pros and
cons of each approach that apply to you and your projects.

If processes and tools are seen as the way to manage product development and
everything associated with it, people and the way they approach the work must
conform to the processes and tools. Conformity makes it hard to accommodate
new ideas, new requirements, and new thinking. Agile approaches, however, value
people over process. This emphasis on individuals and teams puts the focus on
their energy, innovation, and ability to solve problems. You use processes and tools
in agile project management, but they’re intentionally streamlined and directly
support product creation. The more robust a process or tool, the more you spend
on its care and feeding and the more you defer to it. With people front and center,
however, the result is a leap in productivity. An agile environment is human-
centric and participatory and can be readily adapted to new ideas and innovations.

Value 2: Working software over
 comprehensive documentation
A development team’s focus should be on producing working functionality. On
agile projects, the only way to measure whether you are truly finished with a
product requirement is to produce the working functionality associated with that
requirement. For software products, working software means the software meets
what we call the definition of done: at the very least, developed, tested, integrated,
and documented. After all, the working product is the reason for the project.

Have you ever been in a status meeting where you reported that you were, say,
75 percent done with your project? What would happen if your customer told you,
“We ran out of money. Can we have our 75 percent now?” On a traditional project,
you would not have any working software to give the customer — “75 percent
done” traditionally means you are 75 percent in progress and 0 percent done. On
an agile project, however, by using the definition of done, you would have working,
potentially shippable functionality for 75 percent of your project requirements —
the highest-priority 75 percent of requirements.

Although agile approaches have roots in software development, you can use them
for other types of products. This second agile value can easily read, “Working
functionality over comprehensive documentation.”

Tasks that distract from producing valuable functionality must be evaluated to
see whether they support or undermine the job of creating a working product.
Table 2-2 shows a few examples of traditional project documents and their use-
fulness. Think about the documents produced on a recent project you were
involved in.

http://www.dummies.com/go/agileprojectmanagementfd2e

CHAPTER 2 Applying the Agile Manifesto and Principles 23

With agile project management, the term barely sufficient is a positive description,
meaning that a task, document, meeting, or almost anything on a project includes
only what it needs to achieve the goal. Being barely sufficient is practical and
 efficient — it’s sufficient, just enough. The opposite of barely sufficient is gold-
plating, adding unnecessary frivolity — and effort — to a feature, task, document,
meeting, or anything else.

TABLE 2-2	 Identifying Useful Documentation

Document

Does the Document
Support Product
Development?

Is the Document Barely Sufficient or
Gold-Plated?

Project schedule
created with
expensive project
management
software, complete
with Gantt Chart.

No.

Start-to-finish schedules
with detailed tasks and
dates tend to provide more
than what is necessary for
product development. Also,
many of these details
change before you develop
future features.

Gold-plated.

Although project managers might spend a lot of time
creating and updating project schedules, project team
members tend to want to know only key deliverable
dates. Management often wants to know only
whether the project is on time, ahead of schedule,
or behind.

Requirements
documentation.

Yes.

All projects have
requirements — details
about product features and
needs. Development teams
need to know those needs
to create a product.

Possibly gold-plated; should be barely sufficient.

Requirements documents can easily grow to include
unnecessary details. Agile approaches provide simple
ways to describe product requirements.

Product technical
specifications.

Yes.

Documenting how you
created a product can
make future
changes easier.

Possibly gold-plated; should be barely sufficient.

Agile documentation includes just what it needs —
development teams often don’t have time for extra
flourishes and are keen to minimize documentation.

Weekly
status report.

No.

Weekly status reports are
for management purposes
but do not assist
product creation.

Gold-plated.

Knowing project status is helpful, but traditional
status reports contain outdated information and are
much more burdensome than necessary.

Detailed project
communication plan.

No.

Although a contact list can
be helpful, the details in
many communication plans
are useless to product
development teams.

Gold-plated.

Communication plans often end up being documents
about documentation — an egregious example
of busywork.

24 PART 1 Understanding Agile

All projects require some documentation. On agile projects, documents are useful
only if they support product development and are barely sufficient to serve the
design, delivery, and deployment of a working product in the most direct,
 unceremonious way. Agile approaches dramatically simplify the administrative
paperwork relating to time, cost control, scope control, or reporting.

You can find a blank template of Table 2-2 at www.dummies.com/go/agile
projectmanagementfd2e. Use that form to assess how well your documentation
directly contributed to the product and whether it was barely sufficient.

We often stop producing a document and see who complains. After we know the
requestor of the document, we strive to better understand why the document is
necessary. The five whys work great in this situation — ask “why” after each suc-
cessive answer to get to the root reason for the document. After you know the core
reason for the document, see how you can satisfy that need with an agile artifact
or streamlined process.

Agile project teams produce fewer, more streamlined documents that take less
time to maintain and provide better visibility into potential issues. In the coming
chapters, you find out how to create and use simple tools (such as a product back-
log, a sprint backlog, and a task board) that allow project teams to understand
requirements and assess status daily. With agile approaches, project teams spend
more time on development and less time on documentation, resulting in a more
efficient delivery of a working product.

Value 3: Customer collaboration
over contract negotiation
The customer is not the enemy. Really.

Historical project management approaches usually involve customers at three
key points:

 » Start of a project: When the customer and the project manager — or
another project team representative — negotiate contract details.

 » Any time the scope changes during the project: When the customer and
the project manager negotiate changes to the contract.

 » End of a project: When the project team delivers a completed product to the
customer. If the product doesn’t meet the customer’s expectations, the
project manager and the customer negotiate additional changes to the
contract.

http://www.dummies.com/go/agileprojectmanagementfd2e
http://www.dummies.com/go/agileprojectmanagementfd2e

CHAPTER 2 Applying the Agile Manifesto and Principles 25

This historical focus on negotiation discourages potentially valuable customer
input and can even create an adversarial relationship between customers and
project teams.

You will never know less about a product than at the project’s start. Locking
 product details into a contract at the beginning of your project means you have to
make decisions based on incomplete knowledge. If you have flexibility for change
as you learn more about a product, you’ll ultimately create better products.

The agile pioneers understood that collaboration, rather than confrontation,
 produced better, leaner, more useful products. As a result of this understanding,
agile methods make the customer part of the project on an ongoing basis.

Using an agile approach in practice, you’ll experience a partnership between the
customer and the development team in which discovery, questioning, learning,
and adjusting during the course of the project are routine, acceptable, and
systematic.

Value 4: Responding to change
over following a plan
Change is a valuable tool for creating great products. Project teams that can
respond quickly to customers, product users, and the market are able to develop
relevant, helpful products that people want to use.

Unfortunately, traditional project management approaches attempt to wrestle the
change monster and pin it to the ground so it goes out for the count. Rigorous
change management procedures and budget structures that can’t accommodate
new product requirements make changes difficult. Traditional project teams often
find themselves blindly following a plan, missing opportunities to create more
valuable products.

Figure 2-1 shows the relationship between time, opportunity for change, and the
cost of change on a traditional project. As time — and knowledge about your
product — increases, the ability to make changes decreases and costs more.

By contrast, agile projects accommodate change systematically. The flexibility
of agile approaches increases project stability because change in an agile project
is predictable and manageable. In later chapters, you discover how the agile
approaches to planning, working, and prioritization allow project teams to
respond quickly to change.

26 PART 1 Understanding Agile

As new events unfold, the project team incorporates those realities into the ongo-
ing work. Any new item becomes an opportunity to provide additional value
instead of an obstacle to avoid, giving development teams a greater opportunity
for success.

Defining the 12 Agile Principles
In the months following the publication of the Agile Manifesto, the original sig-
natories continued to communicate. To support teams making agile transitions,
they augmented the four values of the manifesto with 12 principles behind the
Agile Manifesto.

These principles, along with the Platinum Principles (explained later in the “Add-
ing the Platinum Principles” section) can be used as a litmus test to see whether
the specific practices of your project team are true to the intent of the agile
movement.

Following is the text of the original 12 principles, published in 2001 by the Agile
Alliance:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

FIGURE 2-1:
Traditional

project
 opportunity
for change.

CHAPTER 2 Applying the Agile Manifesto and Principles 27

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity — the art of maximizing the amount of work not done — is essential.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

These agile principles provide practical guidance for development teams.

Another way of organizing the 12 principles is to consider them in the following
four distinct groups:

 » Customer satisfaction

 » Quality

 » Teamwork

 » Project management

The following sections discuss the principles according to these groups.

Agile principles of customer satisfaction
Agile approaches focus on customer satisfaction, which makes sense. After all, the
customer is the reason for developing the product in the first place.

28 PART 1 Understanding Agile

While all 12 principles support the goal of satisfying customers, principles 1, 2, 3,
and 4 stand out for us:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

You may define the customer on a project in a number of ways:

 » In project management terms, the customer is the person or group paying for
the project.

 » In some organizations, the customer may be a client, external to the
organization.

 » In other organizations, the customer may be a project stakeholder or stake-
holders in the organization.

 » The person who ends up using the product is also a customer. For clarity and
to be consistent with the original 12 agile principles, in this book, we call that
person the user.

How do you enact these principles? Simply do the following:

 » Agile project teams include a product owner, a person who is responsible for
ensuring translation of what the customer wants into product requirements.

 » The product owner prioritizes product features in order of business value or
risk and communicates priorities to the development team. The development
team delivers the most valuable features on the list in short cycles of develop-
ment, known as iterations or sprints.

 » The product owner has deep and ongoing involvement throughout each day
to clarify priorities and requirements, make decisions, provide feedback, and
quickly answer the many questions that pop up during a project.

 » Frequent delivery of working functionality allows the product owner and the
customer to have a full sense of how the product is developing.

CHAPTER 2 Applying the Agile Manifesto and Principles 29

 » As the development team continues to deliver complete, working, potentially
shippable functionality every four to eight weeks or less, the value of the total
product grows incrementally, as do its functional capabilities.

 » The customer accumulates value for his or her investment regularly by
receiving new, ready-to-use functionality throughout the project, rather than
waiting until the end of what might be a long project for the first, and maybe
only, delivery of releasable product features.

In Table 2-3, we list some customer satisfaction issues that commonly arise on
projects. Use Table 2-3 and gather some examples of customer dissatisfaction that
you’ve encountered. Do you think agile project management would make a differ-
ence? Why or why not?

You can find a blank template of the form at www.dummies.com/go/agile
projectmanagementfd2e.

Agile strategies for customer satisfaction include the following:

 » Producing, in each iteration, the highest-priority features first

 » Ideally, locating the product owner and the other members of the project
team in the same place to eliminate communication barriers

 » Breaking requirements into groups of features that can be delivered in four to
eight weeks or less

TABLE 2-3	 Customer Dissatisfaction and How Agile Might Help
Examples of Customer
Dissatisfaction with Projects How Agile Approaches Can Increase Customer Satisfaction

The product requirements were
misunderstood by the
development team.

Product owners work closely with the customer to define and refine
product requirements and provide clarity to the development team.

Agile project teams demonstrate and deliver working functionality at
regular intervals. If a product doesn’t work the way the customer
thinks it should work, the customer is able to provide feedback at the
end of the sprint, not before it’s too late at the end of the project.

The product wasn’t delivered when
the customer needed it.

Working in sprints allows agile project teams to deliver high-priority
functionality early and often.

The customer can’t request
changes without additional
cost and time.

Agile processes are built for change. Development teams can
accommodate new requirements, requirement updates, and shifting
priorities with each sprint, offsetting the cost of these changes by
removing the lowest-priority requirements — functionality that likely
will never or rarely get used.

http://www.dummies.com/go/agileprojectmanagementfd2e
http://www.dummies.com/go/agileprojectmanagementfd2e

30 PART 1 Understanding Agile

 » Keeping written requirements sparse, forcing more robust and effective
face-to-face communication

 » Getting the product owner’s approval as functionality is completed

 » Revisiting the feature list regularly to ensure that the most valuable require-
ments continue to have the highest priority

Agile principles of quality
An agile project team commits to producing quality in every product it creates —
from development through documentation to integration and test results — every
day. Each project team member contributes his or her best work all the time.
Although all 12 principles support the goal of quality delivery, principles 1, 3, 4,
6–9, and 12 stand out for us:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

These principles, in practice on a day-to-day basis, can be described as follows:

 » The development team members must have full ownership and be empow-
ered to solve problems. They carry the responsibility for determining how to
create the product, assigning tasks, and organizing product development.
People not doing the work don’t tell them how to do it.

 » With software development projects, an agile approach requires architectures
that make coding and the product modular, flexible, and extensible. The
design should address today’s problems and make inevitable changes as
simple as possible.

CHAPTER 2 Applying the Agile Manifesto and Principles 31

 » A set of designs on paper can never tell you that something will work. When
the product quality is such that it can be demonstrated and ultimately shipped
in short intervals, everyone knows that the product works — at the end of
every sprint.

 » As the development team completes features, the team shows the product
owner the product functionality to get validation that it meets the acceptance
criteria. The product owner’s reviews should happen throughout the iteration,
ideally the same day that development of the requirement was completed.

 » At the end of every iteration (lasting one to four weeks or less), working code
is demonstrated to the customer. Progress is clear and easy to measure.

 » Testing is an integral, ongoing part of development and happens throughout
the day, not at the end of the iteration.

 » On software projects, checking that new code is tested and integrates with
previous versions occurs in small increments and may even occur several
times a day (or thousands of times a day in some organizations, such as
Google, Amazon, and Facebook). This process, called continuous integration
(CI), helps ensure that the entire solution continues to work when new code is
added to the existing code base.

 » On software projects, examples of technical excellence include establishing
coding standards, using service-oriented architecture, implementing auto-
mated testing, and building for future change.

Agile approaches provide the following strategies for quality management:

 » Defining what done means at the beginning of the project and then using that
definition as a benchmark for quality

 » Testing aggressively and daily through automated means

 » Building only the functionality that is needed when it’s needed

 » Reviewing the software code and streamlining (refactoring)

 » Showcasing to stakeholders and customers only the functionality that has
been accepted by the product owner

 » Having multiple feedback points throughout the day, iteration, and project

Agile principles of teamwork
Teamwork is critical to agile projects. Creating good products requires cooperation
among all the members of the project team, including customers and stakeholders.
Agile approaches support team-building and teamwork, and they emphasize trust

32 PART 1 Understanding Agile

in self-managing development teams. A skilled, motivated, unified, and empow-
ered project team is a successful team.

Although all 12 principles support the goal of teamwork, principles 4–6, 8, 11, and
12 stand out for us as supporting team empowerment, efficiency, and excellence:

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

Agile approaches focus on sustainable development; as knowledge workers, our
brains are the value we bring to a project. If only for selfish reasons, organizations
should want fresh, well-rested brains working for them. Maintaining a regular
work pace, rather than having periods of intense overwork, helps keep team
members’ minds sharp and quality high.

Here are some practices you can adopt to make this vision of teamwork a reality:

 » Ensure that your development team members have the proper skills and
motivation.

 » Provide training sufficient to the task.

 » Support the self-organizing development team’s decisions about what to do
and how to do it; don’t have managers tell the team what to do.

 » Hold project team members responsible as a single team, not individuals.

 » Use face-to-face communication to quickly and efficiently convey information.

Suppose that you usually communicate by email to Sharon. You take time to
craft your message and then send it. The message sits in Sharon’s inbox, and
she eventually reads it. If Sharon has any questions, she writes an email in
response and sends it. That message sits in your inbox until you eventually
read it. And so forth. This type of table tennis communication is too inefficient
to use in the middle of a rapid iteration.

CHAPTER 2 Applying the Agile Manifesto and Principles 33

 » Have spontaneous conversations throughout the day to build knowledge,
understanding, and efficiency.

 » Collocate teammates in close proximity to increase clear and efficient
communication. If collocation isn’t possible, use video chat rather than email.

 » Make sure that lessons learned is an ongoing feedback loop. Retrospectives
should be held at the end of each iteration, when reflection and adaptation
can improve development team productivity going forward, creating ever
higher levels of efficiency. A lessons learned meeting at the end of a project is
of minimal value.

The first retrospective is often the most valuable because, at that point, the
project team has the opportunity to make changes to benefit the rest of the
project moving forward.

The following strategies promote effective teamwork:

 » Place the development team in the same location — this is called collocation.

 » Put together a physical environment that’s conducive for collaboration: a team
room with whiteboards, colored pens, and other tactile tools for developing
and conveying ideas to ensure shared understanding.

 » Create an environment where project team members are encouraged to
speak their minds.

 » Meet face-to-face whenever possible. Don’t send an email if a conversation
can handle the issue.

 » Get clarifications throughout the day as they’re needed.

 » Encourage the development team to solve problems rather than having
managers solve problems for the development team.

Agile principles of project management
Agility in project management encompasses three key areas:

 » Making sure the development team can be productive and can sustainably
increase productivity over long periods of time

 » Ensuring that information about the project’s progress is available to stake-
holders without interrupting the flow of development activities by asking the
development team for updates

 » Handling requests for new features as they occur and integrating them into
the product development cycle

34 PART 1 Understanding Agile

An agile approach focuses on planning and executing the work to produce the best
product that can be released. The approach is supported by communicating openly,
avoiding distractions and wasteful activities, and ensuring that the progress of the
project is clear to everyone.

All 12 principles support project management, but principles 2, 8, and 10 stand out
for us:

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

10. Simplicity — the art of maximizing the amount of work not done — is essential.

Following are some advantages of adopting agile project management:

 » Agile project teams achieve faster time-to-market, and consequentially cost
savings. They start development earlier than in traditional approaches
because agile approaches minimize the exhaustive upfront planning and
documentation that is conventionally part of the early stages of a water-
fall project.

 » Agile development teams are self-organizing and self-managing. The manage-
rial effort normally put into telling developers how to do their work can be
applied to removing impediments and organizational distractions that slow
down the development team.

 » Agile development teams determine how much work they can accomplish in
an iteration and commit to achieving those goals. Ownership is fundamentally
different because the development team is establishing the commitment, not
complying with an externally developed commitment.

 » An agile approach asks, “What is the minimum we can do to achieve the goal?”
instead of focusing on including all the features and extra refinements that
could possibly be needed. An agile approach usually means streamlining:
barely sufficient documentation, removal of unnecessary meetings, avoidance
of inefficient communication (such as email), and less coding (just enough to
make it work).

Creating complicated documents that aren’t useful for product development
is a waste of effort. It’s okay to document a decision, but you don’t need
multiple pages on the history and nuances of how the decision was made.
Keep the documentation barely sufficient, and you will have more time to
focus on supporting the development team.

CHAPTER 2 Applying the Agile Manifesto and Principles 35

 » By encapsulating development into short sprints that last one to four weeks
or less, you can adhere to the goals of the current iteration while accommo-
dating change in subsequent iterations. The length of each sprint remains the
same throughout the project to provide a predictable rhythm of development
for the team long-term.

 » Planning, elaborating on requirements, developing, testing, and demonstrat-
ing functionality occur within an iteration, lowering the risk of heading in the
wrong direction for extended periods of time or developing something that
the customer doesn’t want.

 » Agile practices encourage a steady pace of development that is productive
and healthy. For example, in the popular agile development set of practices
called extreme programming (XP), the maximum workweek is 40 hours, and
the preferred workweek is 35 hours. Agile projects are sustainable and more
productive, especially long term.

Traditional approaches routinely feature a death march, in which the project
team puts in extremely long hours for days and even weeks at the end of a
project to meet a previously unidentified and unrealistic deadline. As the
death march goes on, productivity tends to drop dramatically. More defects
are introduced, and because defects need to be corrected in a way that
doesn’t break a different piece of functionality, correcting defects is the most
expensive work that can be performed. Defects are often the result of
overloading a system — specifically demanding an unsustainable pace of
work. Check out our presentation on the negative effects of “Racing in
Reverse” (https://platinumedge.com/overtime).

 » Priorities, experience on the existing project, and, eventually, the speed at
which development will likely occur within each sprint are clear, making for
good decisions about how much can or should be accomplished in a given
amount of time.

If you’ve worked on a project before, you might have a basic understanding of
project management activities. In Table 2-4, we list a few traditional project
management tasks, along with how you would meet those needs with agile
approaches. Use Table 2-4 to capture your thoughts about your experiences and
how agile approaches looks different from traditional project management.

A blank template of Table 2-4 is available at www.dummies.com/go/agile
projectmanagementfd2e.

https://platinumedge.com/overtime
http://www.dummies.com/go/agileprojectmanagementfd2e
http://www.dummies.com/go/agileprojectmanagementfd2e

36 PART 1 Understanding Agile

Project management is facilitated by the following agile approaches:

 » Supporting the development team

 » Producing barely sufficient documents

 » Streamlining status reporting so that information is pushed out by the
development team in seconds rather than pulled out by a project manager
over a longer period of time

 » Minimizing nondevelopment tasks

 » Setting expectations that change is normal and beneficial, not something to
be feared or evaded

 » Adopting a just-in-time requirements refinement to minimize change
disruption and wasted effort

 » Collaborating with the development team to create realistic schedules,
targets, and goals

 » Protecting the development team from organizational disruptions that could
undermine project goals by introducing work not relevant to the project
objectives

 » Understanding that an appropriate balance between work and life is a
component of efficient development

TABLE 2-4	 Contrasting Historical Project Management with Agile
Project Management

Traditional Project Management Tasks Agile Approach to the Project Management Task

Create a fully detailed project requirement
document at the beginning of the project.
Try to control requirement changes
throughout the project.

Create a product backlog — a simple list of requirements by
priority. Quickly update the product backlog as requirements
and priorities change throughout the project.

Conduct weekly status meetings with all
project stakeholders and developers. Send
out detailed meeting notes and status
reports after each meeting.

The development team meets quickly, for no longer than
15 minutes, at the start of each day to coordinate and
synchronize that day’s work and any roadblocks. They can
update the centrally visible burndown chart in under a minute
at the end of each day.

Create a detailed project schedule with all
tasks at the beginning of the project. Try to
keep the project tasks on schedule. Update
the schedule on a regular basis.

Work within sprints and identify only specific tasks for the
active sprint.

Assign tasks to the development team. Support the development team by helping remove
impediments and distractions. On agile projects, development
teams define and pull (as opposed to push) their own tasks.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 Applying the Agile Manifesto and Principles 37

Adding the Platinum Principles
Through in-the-trenches experience working with teams transitioning to agile
project management — and field testing in large, medium, and small organiza-
tions worldwide — we developed three additional principles of agile software
development that we call the Platinum Principles. They are

 » Resist formality.

 » Think and act as a team.

 » Visualize rather than write.

You can explore each principle in more detail in the following sections.

Resisting formality
Even the most agile project teams can drift toward excessive formalization. For
example, it isn’t uncommon for us to find project team members waiting until a
scheduled meeting to discuss simple issues that could be solved in seconds. These
meetings often have an agenda and meeting minutes and require a certain level of
mobilization and demobilization just to attend. In an agile approach, this level of
formalization isn’t required.

You should always question formalization and unnecessary, showy displays. For
example, is there an easier way to get what you need? How does the current activ-
ity support the development of a quality product as quickly as possible? Answering
these questions helps you focus on productive work and avoid unnecessary tasks.

In an agile system, discussions and the physical work environment are open and
free-flowing; documentation is kept to the lowest level of quantity and complex-
ity such that it contributes value to the project, not hampers it; flashy displays,
such as well-decorated presentations, are avoided. Professional, frank communi-
cations are best for the project team, and the entire environment has to make that
openness available and comfortable.

Strategies for success with resisting formality include the following:

 » Reducing organizational hierarchy wherever possible by eliminating titles in
the project team

 » Avoiding aesthetic investments such as elaborate PowerPoint presentations
or extensive meeting minute forms, especially when demonstrating shippable
functionality at the end of a sprint

38 PART 1 Understanding Agile

 » Identifying and educating stakeholders who may request complicated displays
of work on the costs of such displays

Thinking and acting as a team
Project team members should focus on how the team as a whole can be most pro-
ductive. This focus can mean letting go of individual niches and performance
metrics. In an agile environment, the entire project team should be aligned in its
commitment to the goal, its ownership of the scope of work, and its acknowledg-
ment of the time available to achieve that commitment.

Following are some strategies for thinking and acting as a team:

 » Develop in pairs and switch partners often. Both pair programming (both
partners are knowledgeable in the area) and shadowing (only one partner is
knowledgeable in the area) raise product quality. You can learn more about
pair programming in Chapter 15.

 » Replace individual work titles with a uniform product developer title.
Development activities include all tasks required to take requirements
through to functionality, including design, implementation (coding), testing,
and documentation, not just writing code or turning a screwdriver.

 » Report at the project team level only, as opposed to creating special manage-
ment reports that subdivide the team.

 » Replace individual performance metrics with project team performance metrics.

Visualizing rather than writing
An agile project team should use visualization as much as possible, whether
through simple diagrams or computerized modeling tools. Images are much more
powerful than words. When you use a diagram or mockup instead of a document,
your customer can relate better to the concept and the content.

Our ability to define the features of a system increases exponentially when we step
up our interaction with the proposed solution: A graphical representation is almost
always better than a textual one, and experiencing functionality hands-on is best.

Even a sketch on a piece of paper can be a more effective communication tool than
a formal text-based document. A picture is worth a thousand words. A textual
description is the weakest form of communication if you’re trying to ensure com-
mon understanding — especially when it’s delivered by email with the request to
“let me know if you have any questions.”

CHAPTER 2 Applying the Agile Manifesto and Principles 39

CHANGES TO COME
Enterprises are leveraging agile techniques on a large-scale basis to solve business
problems. Although the methodologies of agile IT groups, as well as non-IT groups, have
undergone radical transformation, the organizations around these groups have often
continued to use historical methodologies and concepts. For example, corporate
 funding and spending cycles are still geared toward the following:

• Long development efforts that deliver working software at the end of the project

• Annual budgeting

• An assumption that certainty is possible at the beginning of a project

• Corporate incentive packages focused on individual rather than team performance

The resulting tension keeps organizations from taking full advantage of the efficiency
and significant savings that agile techniques promise.

A truly integrated agile approach encourages organizations to move away from yester-
day’s traditions and develop a structure at all levels that continually asks what’s best for
the customer, the product, and the project team.

An agile project team can be only as agile as the organization it serves. As the movement
continues to evolve, the values articulated in the Agile Manifesto and its principles pro-
vide a strong foundation for the changes necessary to make individual projects and
entire organizations more productive and profitable. This evolution will be driven by pas-
sionate practitioners who continue to explore and apply agile principles and practices.

Examples of strategies for visualization include the following:

 » Stocking the work environment with plenty of whiteboards, poster paper,
pens, and paper so that drawing tools are readily available

 » Using models instead of text to communicate concepts

 » Reporting project status through charts, graphs, and dashboards, such as
those in Figure 2-2.

40 PART 1 Understanding Agile

FIGURE 2-2:
Charts, graphs,

and dashboards
for reporting

project status.

CHAPTER 2 Applying the Agile Manifesto and Principles 41

Changes as a Result of Agile Values
The publication of the Agile Manifesto and the 12 Agile Principles legitimized and
focused the agile movement in the following ways:

 » Agile approaches changed attitudes toward project management
processes. In trying to improve processes, methodologists in the past worked
to develop a universal process that could be used under all conditions,
assuming that more process and greater formality would yield improved
results. This approach, however, required more time, overhead, and cost and
often diminished quality. The manifesto and the 12 principles acknowledged
that too much process is a problem, not a solution, and that the right process
in the right amount differs in each situation.

 » Agile approaches changed attitudes toward knowledge workers. IT
groups began to remember that development team members aren’t dispos-
able resources but individuals whose skills, talents, and innovation make a
difference to every project. The same product created by different team
members will be a different product.

 » Agile approaches changed the relationship between business and IT
groups. Agile project management addressed the problems associated with
the historical separation between business and IT by bringing these contribu-
tors together on the same project team, at equal levels of involvement and
with shared goals.

 » Agile approaches corrected attitudes toward change. Historical
approaches viewed change as a problem to be avoided or minimized. The
Agile Manifesto and its principles helped identify change as an opportunity to
ensure that the most informed ideas were implemented.

The Agile Litmus Test
To be agile, you need to be able to ask, “Is this agile?” If you’re ever in doubt about
whether a particular process, practice, tool, or approach adheres to the Agile Man-
ifesto or the 12 principles, refer to the following list of questions:

1. Does what we’re doing at this moment support the early and continuous
delivery of valuable software?

2. Does our process welcome and take advantage of change?

42 PART 1 Understanding Agile

3. Does our process lead to and support the delivery of working functionality?

4. Are the developers and the product owner working together daily? Are
customers and business stakeholders working closely with the project team?

5. Does our environment give the development team the support it needs to get
the job done?

6. Are we communicating face to face more than through phone and email?

7. Are we measuring progress by the amount of working functionality produced?

8. Can we maintain this pace indefinitely?

9. Do we support technical excellence and good design that allows for future
changes?

10. Are we maximizing the amount of work not done — namely, doing as little as
necessary to fulfill the goal of the project?

11. Is this development team self-organizing and self-managing? Does it have the
freedom to succeed?

12. Are we reflecting at regular intervals and adjusting our behavior accordingly?

If you answered “yes” to all these questions, congratulations; you’re truly working
on an agile project. If you answered “no” to any of these questions, what can you
do to change that answer to “yes”? You can come back to this exercise at any time
and use the agile litmus test with your project team and the wider organization.

CHAPTER 3 Why Being Agile Works Better 43

Chapter 3

IN THIS CHAPTER

 » Discovering the benefits of agile
project management

 » Comparing agile approaches to
historical approaches

 » Finding out why people like agile
techniques

Why Being Agile
Works Better

Agile approaches work well in the real world. Why is this? In this chapter,
you examine the mechanics of how agile processes improve the way people
work and how they prevent burdensome overhead. Comparisons with his-

torical methods highlight the improvements agile techniques bring.

When talking about agile project management advantages, the bottom line is two-
fold: project success and stakeholder satisfaction.

Evaluating Agile Benefits
The agile concept of project management is different from previous methodolo-
gies. As mentioned in Chapter 1, agile approaches address key challenges of his-
torical project management methods such as waterfall, but they also go much
deeper. Agile processes provide a framework for how we want to work — how we
naturally function when we solve problems and complete tasks.

Historical methods of project management were developed not for contemporary
development lifecycles, such as software development, but for less complex sys-
tems. They also were adapted from other spheres, such as construction, manufac-
turing, and the military. It’s no wonder that these project management methods

44 PART 1 Understanding Agile

don’t fit when attempting to build more complex, modern products, such as
mobile applications or web-centric, object-oriented applications, which require
constant innovation to stay competitive. Even with older technologies, the track
record of traditional methodologies is abysmal, especially when applied to soft-
ware projects. For more details on the high failure rates of projects that are run
traditionally, check out the studies from the Standish Group shown in Chapter 1.

You can use agile project management techniques in many industries besides
software development. If you’re creating a product and want early feedback
throughout the process, you can benefit from agile processes.

When you have a critical looming deadline, your instinct is to go agile. Formality
goes out of the window as you roll up your sleeves and focus on what has to get
done. You solve problems quickly, practically, and in descending order of neces-
sity, making sure you complete the most critical tasks.

More than going agile — it’s about being agile. When you become agile, you don’t
institute unreasonable deadlines to force greater focus. Instead, you realize that
people function well as practical problem solvers, even under stress. For example,
a popular team-building exercise titled the marshmallow challenge involves groups
of four people building the tallest free-standing structure possible out of 20 sticks
of spaghetti, a yard of tape, and a yard of string, and then placing a marshmallow
on the top — in 18 minutes. See www.marshmallowchallenge.com for background
information about the concept. On that site, you can also view the associated TED
Talk by Tom Wujec.

Wujec points out that young children usually build taller and more interesting
structures than most adults because children build incrementally on a series of
successful structures in the time allotted. Adults spend a lot of time planning,
produce one final version, and then run out of time to correct any mistakes. The
youngsters provide a valuable lesson that big bang development — namely, exces-
sive planning and then one shot at product creation — doesn’t work. Formality,
excessive time detailing uninformed future steps, and a single plan are often det-
riments to success.

The marshmallow challenge sets opening conditions that mimic those in real life.
You build a structure (which equates to a software product in the IT industry) using
fixed resources (four people, spaghetti, and so on) and a fixed time (18 minutes).
What you end up with is anyone’s guess, but an underlying assumption in histori-
cal project management approaches is that you can determine the precise destina-
tion (the features or requirements) in the beginning and then estimate the people,
resources, and time required.

This assumption is upside down from how life really is. As you can see in
Figure 3-1, the theories of historical methods are the reverse of agile approaches.

http://www.marshmallowchallenge.com

CHAPTER 3 Why Being Agile Works Better 45

We pretend that we live in the world on the left, but we actually live in the world
on the right.

In the historical approach, which locks the requirements and delivers the product
all in one go, the result is all or nothing. We either succeed completely or fail
absolutely. The stakes are high because everything hinges on work that happens
at the end (that is, putting the marshmallow on the top) of the final phase of the
cycle, which includes integration and customer testing.

In Figure 3-2, you can see how each phase of a waterfall project is dependent on
the previous one. Teams design and develop all features together, meaning you
don’t get the highest-priority feature until you’ve finished developing the
lowest-priority feature. The customer has to wait until the end of the project to
get final delivery of any element of the product.

FIGURE 3-1:
A comparison of
historical project

management and
agile concepts.

FIGURE 3-2:
The waterfall
project cycle

is a linear
methodology.

46 PART 1 Understanding Agile

In the testing phase of a waterfall project, the customers get to see their long-
awaited product. By that time, the investment and effort have been huge, and the
risk of failure is high. Finding defects among all completed product requirements
is like looking for a weed in a cornfield.

Agile project management turns the concept of how software development should be
done upside down. Using agile methods, you develop, test, and launch small groups
of product requirements in short iterative cycles, known as iterations, or sprints, as
illustrated in Figure 3-3. Testing occurs during each iteration. To find defects, the
development team looks for a weed in a flowerpot, rather than in a cornfield.

Product owner, scrum master, and sprint are terms from scrum, a popular agile frame-
work for organizing work and exposing project progress. Scrum refers to a rugby
huddle, in which a rugby team locks together over the ball. Scrum as an approach,
like rugby, encourages the project team to work together closely and take respon-
sibility for the result. (You find out more about scrum and other agile techniques
in Chapter 4.)

FIGURE 3-3:
Agile approaches
have an iterative

project cycle.

CHAPTER 3 Why Being Agile Works Better 47

Moreover, on an agile project, the customers get to see their product at the end of
every short cycle. You can create the highest-priority features first, which gives
you the opportunity to ensure maximum value early on, when less of the cus-
tomer’s money has been invested.

This agile concept is attractive, especially to risk-averse organizations. In addi-
tion, if your product has market value, revenue can be coming in even during
development. Now you have a self-funding project!

WHERE THE WATERFALL FALLS SHORT
As we mention in Chapter 1, before 2008, waterfall was the most widely used traditional
project management methodology. The following list summarizes the major aspects of
the waterfall approach to project management:

• The team must know all requirements up front to estimate time, budgets, team
members, and resources. Knowing all the requirements at the project start means
you have a high investment in detailed requirements gathering before any develop-
ment begins.

• Estimation is complex and requires a high degree of competence and experience
and a lot of effort to complete.

• The customer and stakeholders may not be available to answer questions during
the development period, because they may assume that they provided all the infor-
mation needed during the requirements-gathering and design phases.

• The team needs to resist the addition of new requirements or document them as
change orders, which adds more work to the project and extends the schedule and
budget.

• The team must create and maintain volumes of process documentation to manage
and control the project.

• Although some testing can be done as you go, final testing can’t be completed until
the end of the project, when all functionality has been developed and integrated.

• Full and complete customer feedback is not possible until the end of the project,
when all functionality is complete.

• Funding is ongoing, but the value appears only at the end of the project, creating a
high level of risk.

• The project has to be fully complete for value to be achieved. If funding runs out
prior to the end of the project, the project delivers zero value.

48 PART 1 Understanding Agile

How Agile Approaches Beat
Historical Approaches

Agile frameworks promise significant advantages over historical methods, includ-
ing greater flexibility and stability, less nonproductive work, faster delivery with
higher quality, improved development team performance, tighter project control,
and faster failure detection. We describe all these results in this section.

However, these results can’t be achieved without a highly competent and func-
tional development team. The development team is pivotal to the success of the
project. Agile methods emphasize the importance of the support provided to the
development team as well as the importance of project team members’ actions
and interactions.

The first core value in the Agile Manifesto is “Individuals and interactions over
processes and tools.” Nurturing the development team is central to agile project
management and the reason why you can have such success with agile approaches.

Agile project teams are centered on development teams (which include develop-
ers, testers, designers, and anyone else who does the actual work of creating
the product), and also include project stakeholders, as well as the following
two important team members, without which the development team couldn’t
function:

 » Product owner: The product owner is a project team member who is an
expert on the product and the customer’s business needs. The product owner
works with the business community and prioritizes product requirements,
and supports the development team by being available to provide daily
clarifications and final acceptance to the development team. (Chapter 2 has
more on the product owner.)

 » Scrum master or agile coach: The scrum master or agile coach acts as a
buffer between the development team and distractions that might slow down
the development effort. The scrum master also provides expertise on agile
processes and helps remove obstacles that hinder the development team
from making progress. The scrum master or agile coach facilitates consensus
building and stakeholder communication.

You can find complete descriptions of the product owner, the development team,
and the scrum master in Chapter 6. Later in this chapter, you see how the product
owner and scrum master’s highest priority is supporting and optimizing the
development team’s performance.

CHAPTER 3 Why Being Agile Works Better 49

Greater flexibility and stability
By way of comparison, agile projects offer both greater flexibility and greater sta-
bility than traditional projects. First, you find out how agile projects offer flexibil-
ity, and then we discuss stability.

A project team, regardless of its project management approach, faces two signifi-
cant challenges at the beginning of a project:

 » The project team has limited knowledge of the product end state.

 » The project team cannot predict the future.

This limited knowledge of the product and of future business needs almost guar-
antees project changes.

The fourth core value in the Agile Manifesto is “Responding to change over fol-
lowing a plan.” The agile framework was created with flexibility in mind.

With agile approaches, project teams can adapt to new knowledge and new
requirements that emerge as the project progresses. We provide many details
about the agile processes that enable flexibility throughout this book. Here’s a
simple description of some processes that help agile project teams manage change:

 » At the start of an agile project, the product owner gathers high-level product
requirements from project stakeholders and prioritizes them. The product
owner doesn’t need all the requirements — just enough to have a good
understanding of what the product must accomplish.

 » The development team and the product owner work together to break down
the initial highest-priority requirements into more detailed requirements. The
result is small chunks of work that the development team can start developing
immediately.

 » You focus on the top priorities in each sprint regardless of how soon before
the sprint those priorities were set.

Iterations, or sprints, on agile projects are short — they last up to four weeks,
and are often one or two weeks. You can find details about sprints in
Chapters 8–10.

 » The development team works on groups of requirements within sprints and
learns more about the product with each successive sprint.

 » The development team plans one sprint at a time and drills further into
requirements at the beginning of each sprint. The development team
generally works only on the highest-priority requirements.

50 PART 1 Understanding Agile

 » Concentrating on one sprint at a time and on the highest-priority require-
ments allows the project team to accommodate new high-priority require-
ments at the beginning of each sprint.

 » When changes arise, the product owner updates a list of requirements that
remains to be dealt with in future sprints. The product owner reprioritizes the
list regularly.

 » The product owner can financially invest in high-priority features first and can
choose which features to fund throughout the project.

 » The product owner and development team collect client feedback at the end of
each sprint and act on that feedback. Client feedback often leads to changes to
existing functionality or to new, valuable requirements. Feedback can also lead
to removing or reprioritizing requirements that are not really necessary.

 » The product owner can stop the project once he or she deems that the
product has sufficient functionality to fulfill project goals.

Figure 3-4 illustrates how making changes on agile projects can be more stable
than making changes in waterfall. Think of the two images in the figure as steel
bars. In the top image, the bar represents a two-year project. The bar’s length
makes it much easier to distort, bend, and break. Project changes can be thought
of in the same way — long projects are structurally vulnerable to instability
because the planning stage of a project is different than the execution, when real-
ity sets in, and there is no natural point of give in a long project.

Now look at the bottom image in Figure 3-4. The small steel bars represent
two-week iterations within a project. It is much easier for those small bars to be
stable and unchanging than it is for the larger bar. In the same manner, it is easier
to have project stability in smaller increments with known flexibility points.

FIGURE 3-4:
Stability in

flexibility on
agile projects.

CHAPTER 3 Why Being Agile Works Better 51

Telling a business there can be no changes for two weeks is much easier and more
realistic than saying there can be no changes for two years.

Agile projects are tactically flexible because they are strategically stable. They’re
great at accommodating change because the means for regular change are built
into everyday processes. At the same time, iterations on agile projects offer dis-
tinct areas for project stability. Agile project teams accommodate changes to the
product backlog anytime but do not generally accommodate external changes to
scope during the sprint. The product backlog may be constantly changing, but,
except in emergencies, the sprint is generally stable.

At the beginning of the iteration, the development team plans the work it will
complete for that sprint. After the sprint begins, the development team works
only on the planned requirements. A couple of exceptions to this plan can occur —
if the development team finishes early, it can request more work; if an emergency
arises, the product owner can cancel the sprint. In general, however, the sprint is
a time of great stability for the development team.

This stability can lead to innovation. When development team members have
stability — that is, they know what they will be working on in a set period of
time — they will think about their tasks consciously at work. They may also think
about tasks unconsciously away from work and tend to come up with solutions at
any given time.

Agile projects provide a constant cycle of development, feedback, and change,
allowing project teams the flexibility to create products with only the right fea-
tures and the stability to be creative.

Reduced nonproductive tasks
When you’re creating a product, at any point in your working day, you can work
either on developing the product or on the peripheral processes that are supposed
to manage and control the creation of the product. Clearly, there’s more value in
the first, which you should try to maximize, than in the second, which you want
to minimize.

To finish a project, you have to work on the solution. As obvious as this statement
sounds, it’s routinely neglected on waterfall projects. Programmers on some soft-
ware projects spend only 20 percent of their time generating functionality, with
the rest of the time in meetings, writing emails, or creating unnecessary presen-
tations and documentation.

Product development can be an intense activity that requires sustained periods of
focus. Many developers can’t get enough development time during their normal

52 PART 1 Understanding Agile

workday to keep up with the schedule of a project because they’re doing other
types of tasks. The following causal chain is the result:

Long workday = tired developers = unnecessary defects = more defect fixing =
delayed release = longer time to value

To maximize productive work, the goal is to eliminate overtime and have develop-
ers creating functionality during the working day. To increase productive work,
you have to reduce unproductive tasks, period.

Meetings
Meetings can be a large waste of valuable time. On traditional projects, develop-
ment team members may find themselves in long meetings that provide little or
no benefit to the developers. The following agile approaches can help ensure that
development teams spend time only in productive, meaningful meetings:

 » Agile processes include only a few formal meetings. These meetings are
focused, with specific topics and limited time. On agile projects, you generally
don’t need to attend non-agile meetings.

 » Part of the scrum master’s job is to prevent disruptions to the development
team’s working time, including requests for non-agile meetings. When there’s
a demand to pull developers away from development work, the scrum master
asks “why” to understand the true need. The scrum master then may figure
out how to satisfy that need without disrupting the development team.

 » On agile projects, the current project status is often visually available to the
entire organization, removing the need for status meetings. You can find ways
to streamline status reporting in Chapter 14.

Email
Email is not an efficient mode of communication; agile project teams aim to use
email only sparingly. The email process is asynchronous and slow: You send an
email, you wait for an answer; you have another question, you send another email.
This process eats up time that could be spent more productively.

Instead of sending emails, agile project teams use face-to-face discussions to
resolve questions and issues on the spot.

Presentations
When preparing for a presentation of the functionality to the customer, agile
project teams often use the following techniques:

CHAPTER 3 Why Being Agile Works Better 53

 » Demonstrate, don’t present. In other words, show the customer what
you’ve created, rather than describing what you’ve created.

 » Show how the functionality delivers on the requirement and fulfills the
acceptance criteria. In other words, say, “This was the requirement. These
are the criteria needed to indicate that the feature was complete. Here is the
resulting functionality meeting those criteria.”

 » Avoid formal slide presentations and all the preparation they involve.
When you demonstrate the working functionality, it will speak for itself. Keep
demonstrations raw and real.

Process documentation
Documentation has been the burden of project managers and developers for a
long time. Agile project teams can minimize documentation with the following
approaches:

 » Use iterative development. A lot of documentation is created to reference
decisions made months or years ago. Iterative development shortens the time
between decision and developed product from months or years to days. The
product and associated automated tests, rather than extensive paperwork,
documents the decisions made.

 » Remember that one size doesn’t fit all. You don’t have to create the same
documents for every project. Choose what you need to fit the particular
project.

 » Use informal, flexible documentation tools. Whiteboards, sticky notes,
charts, and other visual representations of the work plan are great tools.

 » Include simple tools that provide adequate information for manage-
ment about project progress. Don’t create special project progress reports,
such as extensive status reports, for the sake of reporting. Agile teams use
visual charts, such as burndown charts, to readily convey project status.

Higher quality, delivered faster
On traditional projects, the period from completion of requirements gathering to
the beginning of customer testing can be painfully long. During this time, the
customer is waiting to see some sort of result, and the development team is
wrapped up in developing. The project manager is making sure that the project
team is following the plan, keeping changes at bay, and updating everyone with
an interest in the outcome by providing frequent and detailed reports.

54 PART 1 Understanding Agile

When testing starts, near the end of the project, defects can cause budget increases,
create schedule delays, and even kill a project. Testing is a project’s largest
unknown, and in traditional projects, it is an unknown carried until the end.

Agile project management is designed to deliver high-quality, shippable func-
tionality quickly. Agile projects achieve better quality and quick delivery with the
following:

 » The client reviews working functionality at the end of each sprint, and gives
immediate feedback to the team for inspection and adaptation as soon as the
next sprint.

 » Short development iterations (sprints) limit the number and complexity of
features in development at any given time, making the finished work easier to
test in each sprint. Only so much can be created in each sprint. Development
teams break down features too complex for one sprint.

 » The development team builds and tests daily and maintains a working
product throughout the project.

 » The product owner is involved throughout the day to answer questions and
clarify misunderstandings quickly.

 » The development team is empowered and motivated and has a reasonable
workday. Because the development team is not worn out, fewer defects occur.

 » Errors are detected quickly because developers test their work as it’s com-
pleted. Extensive automated testing happens frequently, at least every night.

 » Modern software development tools allow many requirements to be written
as test scripts, without the need for programming, which makes automated
testing quicker.

Improved team performance
Central to agile project management is the experience of the project team mem-
bers. Compared with traditional approaches such as waterfall, agile project teams
get more environmental and organizational support, can spend more time focusing
on their work, and can contribute to the continuous improvement of the process.
To find out what these characteristics mean in practice, continue reading.

Support for the team
The development team’s ability to deliver potentially shippable functionality is
central to getting results with agile approaches and is achieved with the following
support mechanisms:

CHAPTER 3 Why Being Agile Works Better 55

 » A common agile practice is collocation — keeping the development team and,
ideally, the product owner together in one place and physically close to the
customer. Collocation encourages collaboration and makes communication
faster, clearer, and easier. You can get out of your seat, have a direct conver-
sation, and eliminate any vagueness or uncertainty immediately.

 » The product owner can respond to development team questions and
requests for clarification without delay, eliminating confusion and allowing
work to proceed smoothly.

 » The scrum master removes impediments and ensures that the development
team has everything it needs to focus and achieve maximum productivity.

Focus
Using agile processes, the development team can focus as much of its work time
as possible on the development of the product. The following approaches help
agile development teams focus:

 » Development team members are allocated 100 percent to one project, eliminat-
ing the time and focus lost by switching context among different projects.

 » Development team members know that their teammates will be fully
available.

 » Developers focus on small units of functionality that are as independent as
possible from other functionality. Every morning, the development team
knows what it means to be successful that day.

 » The scrum master has an explicit responsibility to help protect the develop-
ment team from organizational distractions.

 » The time the development team spends on coding and related productive
activities increases because nonproductive work decreases.

Continuous improvement
An agile process isn’t a mindless check-the-box approach. Different types of
projects and different project teams are able to adapt around their specific situa-
tion, as you see in the discussion of sprint retrospectives in Chapter 10. Here are
some ways that agile project teams can continuously improve:

 » Iterative development makes continuous improvement possible because each
new iteration involves a fresh start.

 » Because sprints happen over only a few weeks, project teams can incorporate
process changes quickly.

56 PART 1 Understanding Agile

 » A review process called the retrospective takes place at the end of each
iteration and gives all agile team members a specific forum for identifying
and planning actions for improvements.

 » The entire scrum team — product owner, development team members,
and scrum master — reviews aspects of the work it feels might need
improvement.

 » The scrum team applies the lessons it learns from the retrospective to the
sprints that follow, which thus become more productive.

Tighter project control
The work goes more quickly under agile projects than under waterfall conditions.
Elevated productivity helps increase project control with the following:

 » Agile processes provide a constant flow of information. Development teams
plan their work together every morning in daily scrum meetings, and they
update task status throughout each day.

 » For every sprint, the customer has the opportunity to reprioritize product
requirements based on business needs.

 » After you deliver working functionality at the end of each sprint, you finalize
the workload for the next sprint according to current priorities. It makes no
difference whether the priorities were set weeks or minutes before the next
sprint.

 » When the product owner sets priorities for the next sprint, this action has no
effect on the current sprint. On an agile project, a change in requirements
adds no administrative costs or time and doesn’t disrupt the current work.

 » Agile techniques make project termination easier. At the end of each iteration,
you can determine whether the features of the product are now adequate.
Low-priority items may never be developed.

In waterfall, project metrics may be outdated by weeks, and demonstrable func-
tionality may be months away. In an agile context, metrics are fresh and relevant
every day, work completed is often compiled and integrated daily, and working
software is demonstrated every few weeks. From the first sprint to the close of the
project, every project team member knows whether the project team is delivering.
Up-to-the-minute project knowledge and the ability to quickly prioritize make
high levels of project control possible.

CHAPTER 3 Why Being Agile Works Better 57

Faster and less costly failure
In a waterfall project, opportunities for failure detection are theoretical until close
to the end of the project schedule, when all the completed work comes together
and when most of the investment is gone. Waiting until the final weeks or days of
the project to find out that the product has serious issues is risky for all concerned.
Figure 3-5 compares the risk and investment profile for waterfall with that for
agile approaches.

Along with opportunities for tighter project control, the agile framework offers you

 » Earlier and more frequent opportunities to detect failure

 » An assessment and action opportunity every few weeks

 » Reduction in failure costs

What sorts of failures have you seen on projects? Would agile approaches have
helped? You can find out more about risk on agile projects in Chapter 15.

Why People Like Being Agile
You’ve seen how an organization can benefit from agile project management with
faster product delivery and lower costs. In the following sections, you find out how
the people involved in a project can benefit as well, whether directly or indirectly.

FIGURE 3-5:
A risk and

investment
chart comparing

waterfall
and agile

methodologies.

58 PART 1 Understanding Agile

Executives
Agile project management provides two benefits that are especially attractive to
executives: efficiency and a higher and quicker return on investment.

Efficiency
Agile practices allow for vastly increased efficiency in the development process in
the following ways:

 » Agile development teams are very productive. They organize the work
themselves, focus on development activities, and are protected from distrac-
tions by the scrum master.

 » Nonproductive efforts are minimized. The agile approach eliminates unfruitful
work; the focus is on development.

 » By using simple, timely, on-demand visual aids — such as graphs and
diagrams — to display what’s been done, what’s in progress, and what’s to
come, the progress of the project is easier to understand at a glance.

 » Through continuous testing, defects are detected and corrected early.

 » An agile project can be halted when it has enough functionality.

Increased ROI opportunity
ROI is significantly enhanced using agile approaches for the following reasons:

 » Functionality is delivered to the marketplace earlier. Features are fully
completed and then released in groups, rather than waiting until the end of all
development and releasing 100 percent of the features at once.

 » Product quality is higher. The scope of development is broken down into
manageable chunks that are tested and verified on an ongoing basis.

 » Revenue opportunity can be accelerated. Increments of the product are
released to the market earlier than with traditional approaches to project
management.

 » Projects can self-fund. A release of functionality might generate revenue
while development of further features is ongoing.

CHAPTER 3 Why Being Agile Works Better 59

Product development and
customers
Customers like agile projects because they can accommodate changing require-
ments and generate higher-value products.

Improved adaptation to change
Changes to product requirements, priorities, timelines, and budgets can greatly
disrupt traditional projects. In contrast, agile processes handle project and prod-
uct changes in beneficial ways. For example:

 » Agile projects create an opportunity for increased customer satisfaction and
return on investment by handling change effectively.

 » Changes can be incorporated into subsequent iterations routinely and
smoothly.

 » Because the team members and the sprint length remain constant, project
changes pose fewer problems than with traditional approaches. Necessary
changes are slotted into the features list based on priority, pushing lower-
priority items down the list. Ultimately, the product owner chooses when
the project will end, at the point where future investment won’t provide
enough value.

 » Because the development team develops the highest-value items first and the
product owner controls the prioritization, the product owner can be confident
that business priorities are aligned with developer activity.

Greater value
With iterative development, product features can be released as the development
team completes them. Iterative development and releases provide greater value in
the following ways:

 » Project teams deliver highest-priority product features earlier.

 » Project teams can deliver valuable products earlier.

 » Project teams can adjust requirements based on market changes and
customer feedback.

60 PART 1 Understanding Agile

Management
People in management tend to like agile projects for the higher quality of the
product, the decreased waste of time and effort, and the emphasis on the value of
the product over checking off lists of features of dubious usefulness.

Higher quality
With software development, through such techniques as test-driven develop-
ment, continuous integration, and frequent customer feedback on working
 software, you can build higher quality into the product upfront.

With non-software development projects, what are ways you can think of to build
in quality upfront?

Less product and process waste
In agile projects, wasted time and features are reduced through a number of strat-
egies, including the following:

 » Just-in-time (JIT) elaboration: Amplification of only the currently highest-
priority requirements means that time isn’t spent working on details for
features that might never be developed.

 » Customer and stakeholder participation: Customers and other stakehold-
ers can provide feedback in each sprint, and the development team incorpo-
rates that feedback into the project. As the project and feedback continue,
value to the customer increases.

 » A bias for face-to-face conversation: Faster, clearer communication saves
time and confusion.

 » Built-in exploitation of change: Only high-priority features and functions are
developed.

 » Emphasis on the evidence of working functionality: If a feature doesn’t
work or doesn’t work in a valuable way, it’s discovered early at a lower cost.

Emphasis on value
The agile principle of simplicity supports the elimination of processes and tools
that don’t support development directly and efficiently, and the exclusion of fea-
tures that add little tangible value. This principle applies to administration and
documentation as well as development in the following ways:

CHAPTER 3 Why Being Agile Works Better 61

 » Fewer, shorter, more focused meetings

 » Reduction in pageantry

 » Barely sufficient documentation

 » Joint responsibility between customer and project team for the quality and
value of the product

Development teams
Agile approaches empower development teams to produce their best work under
reasonable conditions. Agile methods give development teams

 » A clear definition of success through joint sprint goal creation and identifica-
tion of the acceptance criteria during requirements development

 » The power and respect to organize development as they see fit

 » The customer feedback they need to provide value

 » The protection of a dedicated scrum master to remove impediments and
prevent disruptions

 » A humane, sustainable pace of work

 » A culture of learning that supports both personal development and project
improvement

 » A structure that minimizes non-development time

Under the preceding conditions, the development team thrives and delivers results
faster and with higher quality.

On Broadway and in Hollywood, performers who are on stage and onscreen to
connect with the audience are often referred to as “the talent.” They are the rea-
son many entertainment customers come to a show, and the supporting writers,
directors, and producers ensure that they shine. In an agile environment, the
development team is “the talent.” When the talent is successful, everyone
succeeds.

2Being Agile

IN THIS PART . . .

Understand what it means to be agile and how to put
agile practices into action.

Get an overview of the three most popular agile
approaches, and discover how to create the right
environment of physical space, communication, and
tools to facilitate agile interactions.

Examine the behavior shift in values, philosophy, roles,
and skills needed to operate in an agile team.

CHAPTER 4 Agile Approaches 65

Chapter 4

IN THIS CHAPTER

 » Applying agile practices

 » Understanding lean, scrum, and
extreme programming

 » Connecting agile techniques

Agile Approaches

In previous chapters, you read about the history of agile project management.
You may have even heard of common agile frameworks and techniques. Are you
wondering what agile frameworks, methods, and techniques actually look like?

In this chapter, you get an overview of three of the most common approaches used
today to implement an agile project.

Diving under the Umbrella of
Agile Approaches

The Agile Manifesto and the agile principles on their own wouldn’t be enough to
launch you into an agile project, eager as you might be to do so. The reason is that
principles and practices are different. The approaches described in this book,
however, provide you with the necessary practices to be successful on an agile
project.

Agile is a descriptive term for a number of techniques and methods that have the
following similarities:

 » Development within multiple iterations, called iterative development

 » Emphasis on simplicity, transparency, and situation-specific strategies

66 PART 2 Being Agile

 » Cross-functional, self-organizing teams

 » Working functionality as the measure of progress

Agile project management is an empirical project management approach. In other
words, you do something in practice and adjust your approach based on experi-
ence rather than theory.

With regards to product development, the empirical approach is braced by the fol-
lowing pillars:

 » Unfettered transparency: Everyone involved in the process understands
and can contribute to the development of the process.

 » Frequent inspection: The inspector must inspect the product regularly and
possess the skills to identify variances from acceptance criteria.

 » Immediate adaptation: The development team must be able to adjust
quickly to minimize further product deviations.

A host of approaches have agile characteristics. Three, however, are common to
many agile projects: lean product development, scrum, and extreme program-
ming (XP). These three approaches work perfectly together and share many com-
mon elements, although they use different terminology or have a slightly different
focus. Broadly, lean and scrum focus on structure. Extreme programming does
that, too, but is more prescriptive about development practices, focusing more on
technical design, coding, testing, and integration. (From an approach called
extreme programming, this type of focus is to be expected.)

When organizations we work with state that they’re using an agile approach for
managing projects, they’re usually working in an environment that is lean, with
constant attention to limiting work in progress, wasteful practices, and process
steps; using scrum to organize their work and expose project progress; and using
extreme programming practices to build in quality upfront. Each of these
approaches is explained in more detail later in this chapter.

Like any systematic approach, agile techniques didn’t arise out of nothing. The
concepts have historical precedents, some of which have origins outside software
development, which isn’t surprising, given that software development hasn’t
been around that long in the history of human events.

The basis for agile approaches is not the same as that of traditional project man-
agement methodologies such as waterfall, which was rooted in a defined control
method used for World War II materials procurement. Early computer hardware
pioneers used the waterfall process to manage the complexity of the first

CHAPTER 4 Agile Approaches 67

computer systems, which were mostly hardware: 1,600 vacuum tubes but only 30
or so lines of hand-coded software. (See Figure 4-1.) An inflexible process is
effective when the problems are simple and the marketplace is static, but today’s
product development environment is too complex for such an outdated model.

Enter Dr. Winston Royce. In his article, “Managing the Development of Large
 Systems,” published in 1970, Dr. Royce codified the step-by-step software devel-
opment process known as waterfall. When you look at his original diagram in
Figure 4-2, you can see where that name came from.

Over time, however, the computer development situation reversed. Hardware
became repeatable through mass production, and software became the more com-
plex and diverse aspect of a complete solution.

The irony here is that, even though the diagram implies that you complete tasks
step by step, Dr. Royce himself added the cautionary note that you need iteration.
Here’s how he stated it:

“If the computer program in question is being developed for the first time, arrange
matters so that the version being delivered to the customer for operational
deployment is actually the second version insofar as critical design/operations
areas are concerned.”

Royce even included the diagram shown in Figure 4-3 to illustrate that iteration.

FIGURE 4-1:
Early hardware

and software.

68 PART 2 Being Agile

FIGURE 4-2:
The origins of

waterfall.

FIGURE 4-3:
Iteration in

waterfall.

CHAPTER 4 Agile Approaches 69

Now, we’re not sure if the diagram was stuck with chewing gum to other pages,
but the software development community by and large lost this part of the story.
After you allow the idea that you might not know everything when you first start
developing a software component and might have to revisit the code to ensure
that it’s appropriate, you have the ray of light that lets in agile concepts. Agile
might have come to prominence 40 years earlier if people had taken Dr. Royce’s
advice to heart!

Reviewing the Big Three: Lean, Scrum,
and Extreme Programming

Now that you have a brief history of the waterfall approach to project manage-
ment, you’re ready to find out more about three popular agile approaches: lean,
scrum, and extreme programming.

An overview of lean
Lean has its origins in manufacturing. Mass production methods, which have
been around for more than 100 years, were designed to simplify assembly
 processes (for example, putting together a Model-T Ford). These processes use
complex, expensive machinery and low-skilled workers to inexpensively churn
out an item of value. The idea is that if you keep the machines and people working
and stockpile inventory, you generate a lot of efficiency.

The simplicity is deceptive. Traditionally, mass production requires wasteful sup-
porting systems and large amounts of indirect labor to ensure that manufacturing
continues without pause. It generates a huge inventory of parts, extra workers,
extra space, and complex processes that don’t add direct value to the product.
Sound familiar?

Cutting the fat as lean emerges in manufacturing
In the 1940s in Japan, a small company called Toyota wanted to produce cars for
the Japanese market but couldn’t afford the huge investment that mass produc-
tion requires. The company studied supermarkets, noting how consumers buy just
what they need because they know there will always be a supply and how the
stores restock shelves only as they empty. From this observation, Toyota created
a just-in-time process that it could translate to the factory floor.

The result was a significant reduction in inventory of parts and finished goods and
a lower investment in machines, people, and space.

70 PART 2 Being Agile

One big cost of the mass production processes at the time was that humans on the
production line were treated like machines: People had no autonomy and could
not solve problems, make choices, or improve processes. The work was boring and
set aside human potential. By contrast, the just-in-time process gives workers
the ability to make decisions about what is most important to do next, in real
time, on the factory floor. The workers take responsibility for the results. Toyota’s
success with just-in-time processes has helped change mass manufacturing
approaches globally.

Understanding lean and software development
The term lean was coined in the 1990s in The Machine That Changed the World: The
Story of Lean Production (Free Press) by James P. Womack, Daniel T. Jones, and Dan-
iel Roos. eBay was an early adopter of lean principles for software development.
The company led the way with an approach that responded daily to customers’
requests for changes to the website, developing high-value features in a short time.

The focus of lean is business value and minimizing activities outside product
development. Mary and Tom Poppendieck discuss a group of lean principles on
their blog and in their books on lean software development. Following are the lean
principles from their 2003 book, Lean Software Development (Addison-Wesley
Professional):

 » Eliminate waste. Doing anything that is beyond barely sufficient (process
steps, artifacts, meetings) slows down the flow of progress. Waste includes
failing to learn from work, building the wrong thing, and thrashing (context
switching between tasks or projects) — which results in only partially creating
lots of product features but not completely creating any.

 » Amplify learning. Learning drives predictability. Enable improvement
through a mindset of regular and disciplined transparency, inspection, and
adaptation. Encourage an organization-wide culture that allows failure for the
sake of learning from it.

 » Deliver as late as possible. Allow for late adaptation. Don’t deliver late, but
leave your options open long enough to make decisions at the last respon-
sible moment based on facts rather than uncertainty — when you know the
most. Learn from failure. Challenge standards. Use the scientific method —
experiment with hypotheses to find solutions.

 » Deliver as fast as possible. Speed, cost, and quality are compatible. The sooner
you deliver, the sooner you receive feedback. Work on fewer things at once,
limiting work in progress and optimizing flow. Manage workflow, rather than
schedules. Use just-in-time planning to shorten development and release cycles.

CHAPTER 4 Agile Approaches 71

 » Empower the team. Working autonomously, mastering skills, and believing
in the purpose of work can motivate development teams. Managers do not
tell developers how to do their jobs but instead support them to self-organize
around the work to be done and remove their impediments. Make sure teams
and individuals have the environment and tools they need to do their job well.

 » Build quality in. Establish mechanisms to catch and correct defects when
they happen and before final verification. Quality is built in from the begin-
ning, not at the end. Break dependencies, so you can develop and integrate
functionality at any time without regressions.

 » See the whole. An entire system is only as strong as its weakest link. Solve
problems, not just symptoms. Continually pay attention to bottlenecks
throughout the flow of work and remove them. Think long-term when
creating solutions.

Beyond the lean principles, one of the most common lean approaches used by
agile teams is kanban, sometimes referred to as lean-kanban. Adapted from the
Toyota Production System approach, kanban is essentially a method for removing
waste to improve flow and throughput in a system.

Kanban practices can be applied in almost any situation because they’re designed
to start with where you are — you don’t have to change anything about your
existing workflow to get started. Kanban practices include the following:

 » Visualize.

 » Limit work in progress (WIP).

 » Manage flow.

 » Make process policies explicit.

 » Implement feedback loops.

 » Improve collaboratively, evolve experimentally.

The last three practices are commonly found in other agile frameworks, such as
scrum and XP (both discussed later in this chapter). The first three enhance effec-
tiveness for agile teams:

 » Visualize: Visualizing a team’s workflow is the first step in identifying potential
waste. Traditional bloated processes exist in many organizations but do not
reflect reality, even if visualized. As agile teams visualize the flow of their work
(on a whiteboard, on a wall, or in a drawing) and identify where productivity
breaks down, they can easily analyze the root cause and see how to remove
the constraint. And then do it again, and again, and again.

72 PART 2 Being Agile

Kanban is Japanese for visual signal. Hanging on the factory wall or the
development workspace wall, where everyone can see it, the kanban board
shows the items that teams need to produce next. Slotted into the board are
cards representing units of production. As production progresses, the workers
remove, add, and move cards. As the cards move, they act as a signal to
workers when work or inventory replenishment is needed. Agile teams use
kanban boards or task boards to expose their progress and manage their flow
of work (described in more detail in Chapters 5 and 9).

 » Limit work in progress (WIP): When teams keep starting work but don’t finish
it, their work in progress continues to grow. Being agile is all about getting to
done, so the goal is to start things only when other things are completed.
Working on multiple things at once does not mean you complete them all
faster — you actually complete them more slowly than if you had worked on
them one at a time. When agile teams limit their work in progress, items get
completed faster, speeding the pace of completing each item in their queue.

 » Manage flow: We’ve all experienced what happens on a busy street during
rush hour. When there are more cars than the lanes of traffic can handle, all
cars move more slowly. Everyone wants to get somewhere at the same time,
and so everyone has to wait longer to get there. To manage flow better, we
need to regulate the entry of vehicles into the flow of traffic or increase the
number of lanes of traffic where congestion is highest. Like cars in traffic,
development work items move more slowly if developers try to take them all
on at once. Working on one thing at a time and identifying and removing
constraints increases the flow of all items through the system.

Measuring lead and cycle times helps agile teams monitor their management
of flow. A team determines the lead time by tracking the amount of time it
takes a request for functionality to go from arrival in the queue to completed.
They know the cycle time by tracking the time from when work begins to
when it is completed. And the agile team optimizes flow by identifying and
removing bottlenecks that keep its lead and cycle times from decreasing.

To support good product development practices, remember the following:

 » Don’t develop features that you’re unlikely to use.

 » Make the development team central to the project because it adds the biggest
value.

 » Have the customers prioritize features — they know what’s most important to
them. Tackle high-priority items first to deliver value.

 » Use tools that support great communication across all parties.

Today, lean principles continue to influence the development of agile techniques —
and to be influenced by them. Any approach should be agile and adapt over time.

CHAPTER 4 Agile Approaches 73

An overview of scrum
Scrum, the most popular agile framework in software development, is an iterative
approach that has at its core the sprint (the scrum term for iteration). To support
this process, scrum teams use specific roles, artifacts, and events. To make sure
that they meet the goals of each part of the process, scrum teams use inspection and
adaptation throughout the project. The scrum approach is shown in Figure 4-4.

Going the distance with the sprint
Within each sprint, the development team develops and tests a functional part of
the product until the product owner accepts it, often daily, and the functionality
becomes a potentially shippable increment of the overall product. When one sprint
finishes, another sprint starts. Releasing functionality to the market often occurs
at the end of multiple sprints, when the product owner determines that enough
value exists. However, the product owner may decide to release functionality after
every sprint, or even as many times as needed during a sprint.

A core principle of the sprint is its cyclical nature: The sprint, as well as the pro-
cesses within it, repeats over and over, as shown in Figure 4-5.

You use the tenets of inspection and adaptation on a daily basis as part of a scrum
project:

 » During a sprint, you conduct constant inspections to assess progress toward
the sprint goal, and consequentially, toward the release goal.

 » You hold a daily scrum meeting to organize the day by reviewing what the
team completed yesterday and coordinating what it will work on today.
Essentially, the scrum team inspects its progress toward the sprint goal.

 » At the end of the sprint, you use a sprint retrospective meeting to assess
performance and plan necessary adaptations.

FIGURE 4-4:
The scrum
approach.

74 PART 2 Being Agile

These inspections and adaptations may sound formal and process-laden, but they
aren’t. Use inspection and adaptation to solve issues and don’t overthink this
 process. The problem you’re trying to solve today will often change in the future
anyway.

Understanding scrum roles, artifacts, and events
The scrum framework defines specific roles, artifacts, and events for projects.

Scrum’s three roles — people on the project — are as follows:

 » Product owner: Represents and speaks for the business needs of the project.

 » Development team: Performs the day-to-day work. The development team is
dedicated to the project and each team member is multi-skilled — that is,
although team members may have certain strengths, each member is capable
of doing multiple jobs on the project.

 » Scrum master: Protects the team from organizational distractions, clears
roadblocks, ensures that scrum is played properly, and continuously improves
the team’s environment.

FIGURE 4-5:
Sprints are

recurring
processes.

CHAPTER 4 Agile Approaches 75

Additionally, scrum teams find that they’re more effective and efficient when they
work closely with two non-scrum–specific roles:

 » Stakeholders: Anyone who is affected by or has input on the project.
Although stakeholders are not official scrum roles, it is essential for scrum
teams and stakeholders to work closely together throughout a project.

 » Agile mentor: An experienced authority on agile techniques and the scrum
framework. Often this person is external to the project’s department or
organization, so he or she can support the scrum team objectively with an
outsider’s point of view.

In the same way that scrum has specific roles, scrum also has three tangible deliv-
erables, called artifacts:

 » Product backlog: The full list of requirements that defines the product, often
documented in terms of business value from the perspective of the end user.
The product backlog can be fluid throughout the project. All scope items,
regardless of level of detail, are in the product backlog. The product owner
owns the product backlog, determining what goes in it and in what priority.

 » Sprint backlog: The list of requirements and tasks in a given sprint. The
product owner and the development team select the requirements for the
sprint in sprint planning, with the development team breaking down these
requirements into tasks. Unlike the product backlog, the sprint backlog can be
changed only by the development team.

 » Product increment: The usable, potentially shippable functionality. Whether
the product is a website or a new house, the product increment should be
complete enough to demonstrate its working functionality. A scrum project is
complete after a product contains enough shippable functionality to meet the
customer’s business goals for the project.

Finally, scrum also has five events:

 » Sprint: Scrum’s term for iteration. The sprint is the container for each of the
other scrum events, in which the scrum team creates potentially shippable
functionality. Sprints are short cycles, no longer than a month, typically
between one and two weeks, and in some cases as short as one day.
Consistent sprint length reduces variance; a scrum team can confidently
extrapolate what it can do in each sprint based on what it has accomplished in
previous sprints. Sprints give scrum teams the opportunity to make adjust-
ments for continuous improvement immediately, rather than at the end of
the project.

76 PART 2 Being Agile

 » Sprint planning: Takes place at the start of each sprint. In sprint planning
meetings, scrum teams decide which goal, scope, and supporting tasks will be
part of the sprint backlog.

 » Daily scrum: Takes place daily for no more than 15 minutes. During the daily
scrum, development team members make three statements:

• What the team member completed yesterday

• What the team member will work on today

• A list of items impeding the team member

The scrum master also participates in the context of impediments he or she is
working to remove for the developers.

 » Sprint review: Takes place at the end of each sprint. In this meeting, the
development team demonstrates to the stakeholders and the entire organiza-
tion the accepted parts of the product the team completed during the sprint.
The key to the sprint review is collecting feedback from the stakeholders,
which informs the product owner how to update the product backlog and
consider the next sprint goal.

 » Sprint retrospective: Takes place at the end of each sprint. The sprint retro-
spective is an internal team meeting in which the scrum team members (product
owner, development team, and scrum master) discuss what went well during
the sprint, what didn’t work well, and how they can make improvements for the
next sprint. This meeting is action-oriented (frustrations should be vented
elsewhere) and ends with tangible improvement plans for the next sprint.

Scrum is simple: three roles, three artifacts, and five events. Each plays a part to
ensure that the scrum team has continuous transparency, inspection, and adapta-
tion throughout the project. As a framework, scrum accommodates many other
agile techniques, methods, and tools for executing the technical aspects of build-
ing functionality.

An overview of extreme programming
One popular approach to product development, specific to software, is extreme
programming (XP). Extreme programming takes the best practices of software
development to an extreme level. Created in 1996 by Kent Beck, with the help of
Ward Cunningham and Ron Jeffries, the principles of XP were originally described
in Beck’s 1999 book, Extreme Programming Explained (Addison-Wesley Profes-
sional), which has since been updated.

CHAPTER 4 Agile Approaches 77

The focus of extreme programming is customer satisfaction. XP teams achieve
high customer satisfaction by developing features when the customer needs them.
New requests are part of the development team’s daily routine, and the team is
empowered to deal with these requests whenever they crop up. The team orga-
nizes itself around any problem that arises and solves it as efficiently as
possible.

ESSENTIAL CREDENTIALS
If you are — or want to be — an agile practitioner, you may consider getting one or
more agile certifications. The certification training alone can provide valuable informa-
tion and the chance to practice agile processes — lessons you can use in your everyday
work. Many organizations want to hire people with proven agile knowledge, so certifica-
tion can also boost your career.

You can choose from a number of well-recognized, entry-level certifications, including
the following:

• Certified ScrumMaster (CSM): The Scrum Alliance, a professional organization
that promotes the understanding and use of scrum, offers a certification for scrum
masters. The CSM requires a two-day training class, provided by a Certified Scrum
Trainer (CST) and completing a CSM evaluation. CSM training provides an overall
view of scrum and is a good starting point for people starting their agile journey.
See http://scrumalliance.org.

• Certified Scrum Product Owner (CSPO): The Scrum Alliance also provides a certi-
fication for product owners. Like the CSM, the CSPO requires two days of training
from a CST. CSPO training provides a deep dive into the product owner role. See
http://scrumalliance.org.

• Certified Scrum Developer (CSD): For development team members, the Scrum
Alliance offers the CSD. The CSD is a technical-track certification, requiring five days
of training from a CST and passing an exam on agile engineering techniques. CSM
or CSPO training can count toward a CSD; the remaining three days are a technical
skills course. See http://scrumalliance.org.

• PMI Agile Certified Practitioner (PMI-ACP): The Project Management Institute
(PMI) is the largest professional organization for project managers in the world. In
2012, PMI introduced the PMI-ACP certification. The PMI-ACP requires training, gen-
eral project management experience, experience working on agile projects, and
passing an exam on your knowledge of agile fundamentals. See http://pmi.org.

http://scrumalliance.org
http://scrumalliance.org
http://scrumalliance.org
http://pmi.org

78 PART 2 Being Agile

As XP has grown as a practice, XP roles have blurred. A typical project now con-
sists of people in customer, management, technical, and project support groups.
Each person may play a different role at different times.

Discovering extreme programming principles
Basic approaches in extreme programming are based on Agile principles. These
approaches are as follows:

 » Coding is the core activity. Software code not only delivers the solution but
can also be used to explore problems. For example, a programmer can
explain a problem using code.

 » XP teams do lots of testing. If doing just a little testing helps you identify
some defects, a lot of testing will help you find more. In fact, developers don’t
start coding until they’ve worked out the success criteria for the requirement
and designed the unit tests. A defect is not a failure of code; it’s a failure to
define the right test.

 » Communication between customer and programmer is direct. The
programmer must understand the business requirement to design a technical
solution.

 » For complex systems, some level of overall design, beyond any specific
function, is necessary. In XP projects, the overall design is considered during
regular refactoring — namely, using the process of systematically improving
the code to enhance readability, reduce complexity, improve maintainability,
and ensure extensibility across the entire code base.

You may find extreme programming combined with lean or scrum because the
process elements are so similar that they marry well.

Getting to know some extreme programming
practices
In XP, some practices are similar to other agile approaches, but others aren’t.
Table 4-1 lists a few key XP practices, most of which are commonsense practices
and many of which are reflected in agile principles.

Extreme programming intentionally pushes the limits of development customs by
dramatically increasing the intensity of best practice rituals, which has resulted in
a strong track record of XP improving development efficiency and success.

CHAPTER 4 Agile Approaches 79

TABLE 4-1	 Key Practices of Extreme Programming
XP Practice Underpinning Assumption

Planning game All members of the team should participate in planning. No disconnect exists
between business and technical people.

Whole team The customer needs to be collocated (physically located together) with the
development team and be available. This accessibility enables the team to ask more
minor questions, quickly get answers, and ultimately deliver a product more aligned
with customer expectations.

Coding standards Use coding standards to empower developers to make decisions and to maintain
consistency throughout the product; don’t constantly reinvent the basics of how to
develop products in your organization. Standard code identifiers and naming
conventions are two examples of coding standards.

System metaphor When describing how the system works, use an implied comparison, a simple story
that is easily understood (for instance, “the system is like cooking a meal”). This
provides additional context that the team can fall back on in all product discovery
activities and discussions.

Collective
code ownership

The entire team is responsible for the quality of code. Shared ownership and
accountability bring about the best designs and highest quality. Any engineer can
modify another engineer’s code to enable progress to continue.

Sustainable pace Overworked people are not effective. Too much work leads to mistakes, which leads
to more work, which leads to more mistakes. Avoid working more than 40 hours per
week for an extended period of time.

Pair programming Two people work together on a programming task. One person is strategic (the
driver), and one person is tactical (the navigator). They explain their approach to
each other. No piece of code is understood by only one person. Defects can more
easily be found and fixed before merging and integrating code with the system.

Design improvement Continuously improve design by refactoring code — removing duplications and
inefficiencies within the code. A lean code base is simpler to maintain and operates
more efficiently.

Simple design The simpler the design, the lower the cost to change the software code.

Test-driven
development (TDD)

Write automated customer acceptance and unit tests before you code anything.
Write a test, run it, and watch it fail. Then write just enough code to make the test
pass, refactoring until it does (red-green-clean). Test your success before you
claim progress.

Continuous
integration

Team members should be working from the latest code. Integrate code
components across the development team as often as possible to identify issues
and take corrective action before problems build on each other.

Small releases Release value to the customer as often as possible. Some organizations release
daily. Avoid building up large stores of unreleased code requiring extensive risky
regression and integration efforts. Get feedback from your customer as early as
possible, as often as possible.

80 PART 2 Being Agile

Putting It All Together
All three agile approaches — lean, scrum, and extreme programming (XP) — have
common threads. The biggest thing these approaches have in common is adher-
ence to the Agile Manifesto and the 12 Agile Principles. Table 4-2 shows a few
more of the similarities among the three approaches.

In addition to more extensive agile frameworks and practices, scrum also accom-
modates a variety of accouterments that consistently increase success with agile
projects. Just like a physical home is framed to support the plumbing, electrical,
ventilation, and internal convenience features, scrum provides the framework for
many other agile tools and techniques to do the job well. Here is a sampling, most
of which you learn more about in the following chapters:

 » Product vision statement (elevator pitch, clear statement of direction for
reaching the outer boundary of the project)

 » Product roadmap (a representation of the features required to achieve the
product vision)

 » Velocity (a tool for scrum teams to plan the workload for each sprint and
empirically predict the delivery of functionality long-term)

 » Release planning (establishing a specific mid-range goal, the trigger for
releasing functionality to the market)

 » User stories (structuring requirements from an end-user’s point of view to
clarify business value)

 » Relative estimation (using self-correcting relative complexity and effort rather
than inaccurate absolute measures, which give a false sense of precision)

 » Swarming (cross-functional teams working together on one requirement at a
time until completion to get the job done faster)

TABLE 4-2	 Similarities between Lean, Scrum, and Extreme
Programming

Lean Scrum Extreme Programming

Engaging everyone Cross-functional development team Entire team

Collective ownership

Optimizing the whole Product increment Test-driven development

Continuous integration

Delivering fast Sprints of four weeks or less Small release

CHAPTER 5 Agile Environments in Action 81

Chapter 5

IN THIS CHAPTER

 » Creating your agile workspace

 » Rediscovering low-tech
communication and using the right
high-tech communication

 » Finding and using the tools you need

Agile Environments
in Action

Conjure up a mental picture of your current working environment. Perhaps
it looks like the following setup. The IT team sits in cube city in one depart-
mental area with the project manager somewhere within walking distance.

You work with an offshore development team eight time zones away. The business
customer is on the other side of the building. Your manager has a small office
tucked away somewhere. Conference rooms are usually fully booked, and even if
you were to get into one, someone would chase you out within the hour.

Your project documents are stored in folders on a shared drive. The development
team gets at least 100 emails a day. The project manager holds a team meeting
every week and, referring to the project plan, tells the developers what to work on.
The project manager also creates a weekly status report and posts it on the shared
drive. The product manager is usually too busy to talk to the project manager to
review progress but periodically sends emails with some new thoughts about the
application.

Although the description in the preceding paragraphs may not describe your par-
ticular situation, you can see something like it in any given corporate setting.
Agile teams, however, execute projects in short, focused iterative cycles, relying
on timely feedback from project team members. To operate and become more
agile, your working environment is going to have to change.

82 PART 2 Being Agile

This chapter shows you how to create a working space that facilitates communi-
cation, one that will help you best become agile.

Creating the Physical Environment
Agile project teams flourish when scrum team members work closely together in
an environment that supports the process. As noted in other chapters, the devel-
opment team members are central to the success of agile projects. Creating the
right environment for them to operate in goes a long way toward supporting their
success. You can even hire people who specialize in designing optimal agile work
environments.

Collocating the team
If at all possible, the scrum team needs to be collocated — that is, physically located
together. When a scrum team is collocated, the following practices are possible
and significantly increase efficiency and effectiveness:

 » Communicating face to face

 » Physically standing up — rather than sitting — as a group for the daily scrum
meeting (this keeps meetings brief and on topic)

 » Using simple, low-tech tools for communication

 » Getting real-time clarifications from scrum team members

 » Being aware of what others are working on

 » Asking for help with a task

 » Supporting others with their tasks

All these practices uphold agile processes. When everyone resides in the same
area, it’s much easier for one person to lean over, ask a question, and get an
immediate answer. If the question is complex, a face-to-face conversation, with
all the synergy it creates, is much more productive than an email exchange.

This improved communication effectiveness is due to communication fidelity — the
degree of accuracy between the meaning intended and the meaning interpreted.
Albert Mehrabian, Ph.D., a professor at UCLA, has shown that for complex,
 incongruent communication, 55 percent of meaning is conveyed by physical body

CHAPTER 5 Agile Environments in Action 83

language, 38 percent is conveyed through cultural-specific voice tonality inter-
pretation, and only 7 percent is conveyed by words. That’s something to keep in
mind during your next voice-over IP or smartphone conference call to discuss the
design nuances of a system that doesn’t exist.

Alistair Cockburn, one of the Agile Manifesto signatories, created the graph in
Figure 5-1. This graph shows the effectiveness of different forms of communica-
tion. Notice the difference in effectiveness between paper communication and
two people at a whiteboard — with collocation, you get the benefit of better
communication.

Setting up a dedicated area
If the scrum team members are in the same physical place, you want to create as
ideal a working environment for them as you can. The first step is to create a
 dedicated area.

Set up an environment where the scrum team can work in close physical proxim-
ity. If possible, the scrum team should have its own room, sometimes called a
project room or a scrum room. The scrum team members create the setup they need
in this project room, putting whiteboards and bulletin boards on the walls and
moving the furniture. By arranging the space for productivity, it becomes part of
how they work. If a separate room isn’t possible, a pod — with workspaces around
the edges and a table or collaboration center in the middle — works well.

FIGURE 5-1:
Better

 communication
through

collocation.

84 PART 2 Being Agile

If you’re stuck in cube city and can’t tear down walls, ask for some empty cubes
in a group and remove the dividing panels. Create a space that you can treat as
your project room.

The right space allows the scrum team to be fully immersed in solving problems
and crafting solutions.

The situation you have may be far from perfect, but it’s worth the effort to see
how close you can get to the ideal. Before you start an agile transition in your
organization, ask management for the resources necessary to create an optimal
condition. Resources will vary from project to project, but at a minimum, they can
include whiteboards, bulletin boards, markers, pushpins, and sticky notes. You’ll
be surprised at how quickly the efficiency gains pay for the investment and more.

For example, with one client company, dedicating a project room and making a
$6,000 investment in multiple monitors for developers increased productivity,
which saved the company almost two months and $60,000 over the life of the
project. That’s a pretty good return on a simple investment. We show you how to
quantify these savings early on in the project in Chapter 13.

Removing distractions
The development team needs to focus, focus, focus. Agile methods are designed to
create structure for highly productive work carried out in a specific way. The big-
gest threat to this productivity is distraction, such as . . . hold on a minute, I need
to take a call.

Okay, I’m back. The good news is that an agile team has someone dedicated to
deflecting or eliminating distractions: the scrum master. Whether you’re going
to be taking on a scrum master role or some other role, you need to understand
what sorts of distractions can throw the development team off course and how to
handle them. Table 5-1 is a list of common distractions and do’s and don’ts for
dealing with distractions.

Distractions sap the development team’s focus, energy, and performance. The
scrum master needs strength and courage to manage and deflect interruptions.
Every distraction averted is a step toward success.

CHAPTER 5 Agile Environments in Action 85

Going mobile
Judging by the “Going mobile” heading, you might have thought this section was
about smartphone teleconferencing, but it isn’t. Agile project teams take a
 responsive approach, and scrum team members require an environment that
helps them respond to the project needs of the day. An agile team environment
should be mobile — literally:

 » Use movable desks and chairs so that people can move about and reconfig-
ure the space.

 » Get wirelessly connected laptops so that scrum team members can pick them
up and move them about easily.

 » Have a large mobile whiteboard. Also see the next section on low-tech
communication.

TABLE 5-1	 Common Distractions
Distraction Do Don’t

Multiple projects Do make sure that the development team
is dedicated 100 percent to a single project
at a time.

Don’t fragment the development team
between multiple projects, operations
support, and special duties.

Multitasking Do keep the development team focused on
a single task, ideally developing one piece
of functionality at a time. A task board can
help keep track of the tasks in progress and
quickly identify whether someone is
working on multiple tasks at once.

Don’t let the development team switch
between requirements. Switching tasks
creates a huge overhead (a minimum of
30 percent) in lost productivity.

Over-
supervising

Do leave development team members
alone after you collaborate on iteration
goals; they can organize themselves. Watch
their productivity skyrocket.

Don’t interfere with the development
team or allow others to do so. The daily
scrum meeting provides ample
opportunity to assess progress.

Outside
influences

Do redirect any distracters. If a new task
outside the sprint goal surfaces, ask the
product owner to decide whether the task’s
priority is worth sacrificing sprint
functionality.

Don’t mess with the development team
members and their work. They’re
pursuing the sprint goal, which is the top
priority during an active sprint. Even a
seemingly quick task can throw off work
for an entire day.

Management Do shield the development team from
direct requests from management (unless
management wants to give team members
a bonus for their excellent performance).

Don’t allow management to negatively
affect the productivity of the development
team. Make interrupting the development
team the path of greatest resistance.

86 PART 2 Being Agile

With this movable environment, scrum team members can configure and recon-
figure their arrangement as needed. Given that scrum team members will be
working with different members from day to day, mobility is important. Fixed
furniture tends to dictate the communications that take place. Being mobile allows
for freer collaboration and more freedom overall.

Low-Tech Communicating
When a scrum team is collocated, the members can communicate in person with
ease and fluidity. Particularly when you begin your agile transition, you want to
keep the communication tools low-tech. Rely on face-to-face conversations and
good old-fashioned pen and paper. Low-tech promotes informality, allowing
scrum team members to feel that they can change work processes and be innova-
tive as they learn about the product.

The primary tool for communication should be face-to-face conversation.
 Tackling problems in person is the best way to accelerate production:

 » Have short daily scrum meetings in person. Some scrum teams stand
throughout a meeting to discourage it from running longer than 15 minutes.

 » Ask the product owner questions. Also, make sure he or she is involved in
discussions about product features to provide clarity when necessary. The
conversation shouldn’t end when planning ends.

 » Communicate with your co-workers. If you have questions about features,
the project’s progress, or integrating, communicate with co-workers. The
entire development team is responsible for creating the product, and team
members need to talk throughout the day.

As long as the scrum team is in close proximity, you can use physical and visual
approaches to keep everyone on the same page. The tools should enable everyone
to see

 » The goal of the sprint

 » The functionality necessary to achieve the sprint goal

 » What has been accomplished in the sprint

 » What’s coming next in the sprint

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 Agile Environments in Action 87

 » Who is working on which task

 » What remains to be done

Only a few tools are needed to support this low-tech communication:

 » A whiteboard or two (ideally, mobile — on wheels or lightweight). Nothing
beats a whiteboard for collaboration. The scrum team can use one for
brainstorming solutions or sharing ideas.

 » A huge supply of sticky notes in different colors (including poster-sized ones
for communicating critical information you want readily visible — such as
architecture, coding standards, and the project’s definition of done).

A personal favorite is giving each developer at least one tabletop dry erase/
sticky note easel pad combination, with a lightweight easel. These low-cost
tools facilitate communication fantastically.

 » Lots of colorful pens.

 » A sprint-specific task or kanban board (described in Chapters 4 and 9) for
tracking progress tactility.

If you decide to have a sprint-specific kanban board, use sticky notes to represent
units of work (features broken down into tasks). For your work plan, you can place
sticky notes on a large surface (a wall or your second whiteboard), or you can use
a kanban board with cards. You can customize a kanban board in many ways, such
as using different-colored sticky notes for different types of tasks, red flag stick-
ers for features that have an impediment, and team member stickers to easily see
who is working on which task.

An information radiator is a tool that physically displays information to the scrum
team and anyone else in the scrum team’s work area. Information radiators
include kanban boards, whiteboards, bulletin boards, burndown charts, which show
the iteration’s status, and any other sign with details about the project, the prod-
uct, or the scrum team.

Basically, you move sticky notes or cards around the board to show the status (see
Figure 5-2). Everyone knows how to read the board and how to act on what it
shows. In Chapter 9, you find out the details of what to put on the boards.

Whatever tools you use, avoid spending time making things look perfectly neat
and pretty. Formality in layout and presentation (what you might call pageantry)
can give an impression that the work is tidy and elegant. However, the work is
what matters, so focus your energy on activities that support the work.

88 PART 2 Being Agile

High-Tech Communicating
Although collocation almost universally improves effectiveness, many scrum
teams can’t be collocated. Some projects have teammates scattered across multiple
offices; others have off-shore development teams around the world. If you have
multiple, geographically scattered scrum teams, try first to reallocate existing tal-
ent to form scrum teams collocated within each geographic location. If this move
isn’t possible, don’t give up on an agile transition. Instead, simulate collocation as
much as possible.

When scrum team members work in different places, you have to make a
greater effort to set up an environment that creates a sense of connectedness. To
span distance and time zones, you need more sophisticated communication
mechanisms.

FIGURE 5-2:
A scrum task

board on a wall
or whiteboard.

CHAPTER 5 Agile Environments in Action 89

When determining which types of high-tech communication tools to support,
first consider the loss of face-to-face discussions. Some tools you can use
follow:

 » Videoconferencing and webcams: These tools can create a sense of being
together. If you have to communicate remotely, at the very least make sure
you can see and hear each other clearly. Body language provides the majority
of the message.

 » Instant messaging: Although instant messaging doesn’t convey nonverbal
communication, it is real time, accessible, and easy to use. Several people can
also share a session and share files.

 » Web-based desktop sharing: Especially for the development team, sharing
your desktop allows you to highlight issues and updates visually in real time.
Seeing the problem is always better than just talking it out over the phone.

 » Collaboration websites: These sites allow you to do everything from sharing
simple documentation so that everyone has the latest information to using a
virtual whiteboard for brainstorming.

Using a collaboration site (such as SharePoint, Confluence, and Google Drive)
allows you to post documents that show the status of the sprint. When managers
request status updates, you can simply direct them to the collaboration site to pull
the information they need, on demand. By updating these documents daily, you
provide managers with better information than they would have with formalized
status reporting procedures under a traditional project management cycle. Avoid
creating separate status reports for management; these reports duplicate infor-
mation in the sprint burndowns and don’t support production.

DON’T REINVENT THE WHEEL!
In the past, manufacturing processes often involved partially completed items being
shipped to another location for completion. In these situations, the kanban board on a
factory wall in the first location needed to be seen by shop floor management at the
second location. Electronic kanban board software was developed to resolve this prob-
lem, but interestingly, the software looked like a literal kanban board on the wall and
was used in the same way. Don’t fix what’s already working.

90 PART 2 Being Agile

When you have a collaboration site with shared documentation, don’t assume that
everyone automatically understands everything in the documentation. Use a col-
laboration site to make sure everything is published, accessible, and transparent,
but don’t let it give your team a false sense of shared understanding.

Choosing Tools
As noted throughout the chapter, low-tech tools are best suited for agile projects,
especially initially, while the scrum team becomes accustomed to the process.
This section discusses a few points to consider when choosing agile tools: the
purpose of the tool and organizational and compatibility constraints.

The purpose of the tool
When choosing tools, the primary question you need to ask is, “What is the
 purpose of the tool?” Tools should solve a specific problem and support agile pro-
cesses, the focus of which is pushing forward with the work.

Above all, don’t choose anything more complicated than you need. Some tools are
sophisticated and take time to learn before you can use them to be productive. If
you’re working with a collocated scrum team, the training and adoption of agile
practices can be enough of a challenge without adding a suite of complicated tools
to the mix. If you’re working with a dislocated scrum team, introducing new tools
can be even more difficult.

You can find a lot of agile-centric websites, software, and other tools on the
 market. Many are useful, but you shouldn’t invest in expensive agile tools in your
early days of implementing agile. This investment is unnecessary and adds
another level of complexity to adoption. As you go through the first few iterations
and modify your approach, the scrum team will start identifying procedures that
can be improved or need to change. One of these improvements might be the need
for additional tools or replacement tools. When a need emerges naturally, from
the scrum team, finding organizational support for purchasing the necessary
tools is often easier because the need can be tied to a project issue.

Organizational and compatibility
 constraints
Beyond the initial considerations noted in the preceding section, the tools
you choose must operate in your organization. Unless you’re using solely

CHAPTER 5 Agile Environments in Action 91

non-electronic tools, you’ll likely have to take into account organizational policies
with respect to hardware, software, and services as well as cloud computing,
security, and telephony systems.

If you’re part of a distributed organization, some scrum teams may not be able to
support complex solutions, maintain the latest versions of desktop software, or
have the robust Internet bandwidth you take for granted.

The key to creating an agile environment for agile teams is to do so at the strategic
organizational level. Agile teams drive agile projects, so enlist your organization’s
leadership early to provide tools that will empower your teams to succeed.

CHAPTER 6 Agile Behaviors in Action 93

Chapter 6

IN THIS CHAPTER

 » Setting up agile roles

 » Creating agile values in your
organization

 » Transforming your team’s philosophy

 » Sharpening important skills

Agile Behaviors in Action

In this chapter, you look at the behavioral dynamics that need to shift for your
organization to benefit from the performance advantages that agile techniques
enable. You find out about the different roles on an agile project and see how

you can change a project team’s values and philosophy about project manage-
ment. Finally, we discuss some ways for a project team to hone key skills for agile
project success.

Establishing Agile Roles
In Chapter 4, we describe scrum, one of the most popular agile frameworks in use
today. The scrum framework defines common agile roles in an especially succinct
manner. We use scrum terms to describe agile roles throughout this book. These
roles are

 » Product owner

 » Development team member

 » Scrum master

The product owner, development team, and scrum master together make up the
scrum team. Each role is a peer to the others — no one is the boss of anyone else
on the team.

94 PART 2 Being Agile

The following roles are not part of the scrum framework but are still critically
important to agile projects:

 » Stakeholders

 » Agile mentor

The scrum team together with the stakeholders make up the agile project team. At
the center of it all is the development team. The product owner and scrum master
fulfill roles that ensure the development team’s success. Figure 6-1 shows how
these roles and teams fit together. This section discusses these roles in detail.

Product owner
The product owner, sometimes called the customer representative in non-scrum
environments, is responsible for bridging the gaps between the customer, business
stakeholders, and the development team. The product owner is an expert on the
product and the customer’s needs and priorities. The product owner, who is a peer
member of the scrum team, shields the development team from business distrac-
tions, works with the development team daily to help clarify requirements, and
accepts completed work throughout the sprint in preparation for the sprint review.

Product owners make the decisions about what the product does and does not
include. Add to that the responsibility of deciding what to release to the market and
when to do it, and you see that you need a smart and savvy person to fill this role.

FIGURE 6-1:
Agile project
team, scrum

team, and
development

team.

CHAPTER 6 Agile Behaviors in Action 95

On an agile project, the product owner will

 » Develop strategy and direction for the project and set long- and short-
term goals.

 » Provide or have access to product expertise.

 » Understand and convey the customer’s and other business stakeholders’
needs to the development team.

 » Gather, prioritize, and manage product requirements.

 » Take responsibility for the product’s budget and profitability.

 » Decide when to release completed functionality.

 » Work with the development team on a daily basis to answer questions and
make decisions.

 » Accept or reject completed work — as it’s completed — during the sprint.

 » Present the scrum team’s accomplishments at the end of each sprint, before
the development team demonstrates these accomplishments.

What makes a good product owner? Decisiveness. Good product owners under-
stand the customer thoroughly and are empowered by the organization to make
difficult business decisions every day. Although able to gather requirements from
stakeholders, product owners are knowledgeable about the product in their own
right. They can prioritize with confidence.

Good product owners interact well with the business stakeholder community, the
development team, and the scrum master. They are pragmatic and able to make
trade-offs based on reality. They are accessible to the development team and also
ask for what they need. They are patient, especially with questions from the
development team.

Table 6-1 outlines the responsibilities and matching characteristics of a product
owner.

TABLE 6-1	 Characteristics of a Good Product Owner
Responsibility A Good Product Owner . . .

Supplies project strategy
and direction

Envisions the completed product

Firmly understands company strategy

Provides product expertise Has worked with similar products in the past

Understands the needs of the people who will use the product

(continued)

96 PART 2 Being Agile

The product owner takes on a great deal of business-related responsibility during
the project. Although the project sponsor funds and owns the budget, the product
owner manages how the budget is spent.

With a dedicated and decisive product owner, the development team has all the
business support it needs to turn requirements into working functionality. The
following section explains how the product owner helps ensure that the develop-
ment team understands the product it will create.

Responsibility A Good Product Owner . . .

Understands customer and
other stakeholder needs

Understands relevant business processes

Creates a solid customer input and feedback channel

Works well with business stakeholders

Manages and prioritizes
product requirements

Is decisive

Focuses on efficiency

Remains flexible

Turns stakeholder feedback into valuable, customer-focused functionality

Is practical about prioritizing financially valuable features, high-risk features,
and strategic system improvements

Shields the development team from business distractions (competing
stakeholder requests)

Is responsible for budget
and profitability

Understands which product features can deliver the best return on
investment

Manages budgets effectively

Decides on release dates Understands business needs regarding timelines

Works with
development team

Is accessible for daily clarification of requirements

Works with the development team to understand capabilities

Works well with developers

Adeptly describes product features

Accepts or rejects work Understands requirements and ensures that completed features
work correctly

Presents completed work
at the end of each sprint

Clearly introduces the accomplishments of the sprint before the development
team demonstrates the sprint’s working functionality

TABLE	6-1	(continued)

CHAPTER 6 Agile Behaviors in Action 97

Development team member
Development team members are the people who create the product. In software
development, programmers, testers, designers, writers, data engineers, and any-
one else with a hands-on role in product development are development team
members. With other types of product, the development team members may have
different skills.

On an agile project, the development team is

 » Directly accountable for creating project deliverables.

 » Self-organizing and self-managing. The development team members deter-
mine their own tasks and how they want to complete those tasks.

 » Cross-functional. Collectively, the development team possesses all skills
required to elaborate, design, develop, test, integrate and document require-
ments into working functionality.

 » Multi-skilled. Development team members are versatile — they’re not tied to a
single skill set. They have existing skills to immediately contribute at the
beginning of the project, but they are also willing to learn new skills and to
teach what they know to other development team members.

 » Ideally dedicated to one project for the duration of the project.

 » Ideally collocated. The team should be working together in the same area of
the same office.

What makes a good development team member? Take a look at the team respon-
sibilities and matching characteristics in Table 6-2.

TABLE 6-2	 Characteristics of a Good Development Team Member
Responsibility A Good Development Team Member . . .

Creates the product Enjoys creating products

Is skilled in more than one of the jobs necessary to create the product

Is self-organizing and self-managing Exudes initiative and independence

Understands how to work through impediments to achieve goals

Coordinates the work to be done with the rest of the team

(continued)

98 PART 2 Being Agile

The two other members of the scrum team, the product owner and the scrum
master, help support the development team’s efforts in creating the product.
Whereas the product owner ensures that the development team is effective (work-
ing on the right things), the scrum master helps clear the way for the develop-
ment team to work as efficiently as possible.

Scrum master
A scrum master, sometimes called a project facilitator in non-scrum agile environ-
ments, is responsible for supporting the development team, clearing organiza-
tional roadblocks, and keeping processes true to agile principles.

A scrum master is different from a project manager. Teams using traditional proj-
ect approaches work for a project manager. A scrum master, on the other hand, is
a servant-leader peer who supports the team so that it is fully functional and
productive. The scrum master role is an enabling role, rather than an account-
ability role. You can find more about servant leadership in Chapter 14.

On an agile project, the scrum master will

 » Act as a process coach, helping the project team and the organization follow
scrum values and practices.

 » Help remove project impediments — both reactively and proactively — and
shield the development team from external interferences.

 » Foster close cooperation between stakeholders and the scrum team.

 » Facilitate consensus building within the scrum team.

 » Protect the scrum team from organizational distractions.

Responsibility A Good Development Team Member . . .

Is cross-functional Has curiosity

Willingly contributes to areas outside his or her mastery

Enjoys learning new skills

Enthusiastically shares knowledge

Is dedicated and collocated Is part of an organization that understands the gains in efficiency and
effectiveness associated with focused, collocated teams

TABLE	6-2	(continued)

CHAPTER 6 Agile Behaviors in Action 99

We compare the scrum master to the aeronautical engineer whose job is to reduce
drag on the aircraft. Drag is always there but can be reduced through innovative
and proactive engineering. Likewise, all projects have organizational impedi-
ments creating drag on the team’s efficiency, and there is always another con-
straint that can be identified and removed. One of the most significant parts of a
scrum master’s role is removing roadblocks and preventing distractions to the
development team’s work. A scrum master who is good at these tasks is priceless
to the project and to the team. If a development team has seven people, the effect
of a good scrum master is times seven.

The product owner may never have participated in an agile project, but the scrum
master likely has. As such, a scrum master may coach new product owners and
development teams and does everything possible to help them succeed.

What makes a good scrum master? A scrum master doesn’t need project manager
experience. A scrum master is an expert in agile processes and can coach others.
The scrum master must also work collaboratively with the product owner and the
stakeholder community.

Facilitation skills cut through the noise of group gatherings and ensure that
everyone on the scrum team is focused on the right priority at the right time.

Scrum masters have strong communication skills, with enough organizational
clout to secure the conditions for success by negotiating for the right environ-
ment, protecting the team from distractions, and removing impediments. Scrum
masters are great facilitators and great listeners. They can negotiate their way
through conflicting opinions and help the team help itself. Review the scrum
master’s responsibilities and matching characteristics in Table 6-3.

TABLE 6-3	 Characteristics of a Good Scrum Master
Responsibility A Good Scrum Master . . .

Upholds scrum values and practices Is an expert on scrum processes

Is passionate about agile techniques

Removes roadblocks and prevents
disruptions

Has organizational clout and can resolve problems quickly

Is articulate, diplomatic, and professional

Is a good communicator and a good listener

Is firm about the development team’s need to focus only on
the project and the current sprint

(continued)

100 PART 2 Being Agile

Clout is not the same thing as authority. Organizations need to empower their
scrum masters so they can influence change in the project team and organization,
but clout involves earned respect, often through success and experience. Some
types of clout that empower scrum masters come about through expertise (usually
a niche knowledge), longevity (“I’ve been at the company a long time and know
its history first hand”), charisma (“people generally like me”), or associations
(“I know important people”). Don’t underestimate the value of a scrum master
with clout.

The members of the scrum team — the product owner, development team, and
scrum master — work together on the project every day.

As we mention earlier in the chapter, the scrum team plus stakeholders make up
the project team. Sometimes stakeholders have less active participation than
scrum team members but still can have considerable effect and provide a great
deal of value to a project.

Stakeholders
Stakeholders are anyone with an interest in the project. They are not ultimately
responsible for executing the product, but they provide input and are affected by
the project’s outcome. The group of stakeholders is diverse and can include people
from different departments or even different companies.

On an agile project, stakeholders

 » Include the customer

 » May include technical people, such as infrastructure architects or system
administrators

Responsibility A Good Scrum Master . . .

Fosters close cooperation between
external stakeholders and the scrum team

Looks at the needs of the project as a whole

Avoids cliques and helps break down group silos

Facilitates consensus building Understands techniques to help groups reach agreements

Is a servant-leader Does not need or want to be in charge or be the boss

Ensures that all members of the development team have the
information they need to do the job, use their tools, and
track progress

Truly desires to help the scrum team

TABLE	6-3	(continued)

CHAPTER 6 Agile Behaviors in Action 101

 » May include the legal department, account managers, salespeople, marketing
experts, and customer service representatives

 » May include product or subject matter experts besides the product owner

Stakeholders may help provide key insights about the product and its use. Stake-
holders might work closely with the product owner during the sprint, and will
give feedback about the product during the sprint review at the end of each sprint.

Stakeholders and the part they play vary among projects and organizations.
Almost all agile projects have stakeholders outside the scrum team.

GAINING CONSENSUS: THE FIST OF FIVE
Part of working as a team means agreeing on decisions as a team. An important part of
being a scrum master is helping the team build consensus. We’ve all worked with
groups where it was difficult to arrive at consensus, from how long a task would take to
where to go for lunch. A quick, casual way to find out whether a group agrees with an
idea is to use the fist of five, which appears similar to rock-paper-scissors.

On the count of three, each person holds up a number of fingers, reflecting the degree
of comfort with the idea in question:

5: I love the idea.

4: I think it’s a good idea.

3: I can support the idea.

2: I have reservations, so let’s discuss.

1: I am opposed to the idea.

If some people have three, four, or five fingers up, and some have only one or two, dis-
cuss the idea. Find out why the people who support the idea think it will work, and what
reservations the people who oppose the idea have. You want to get all group members
showing at least three fingers — they don’t need to love the idea, but they need to sup-
port it. The scrum master’s consensus-building skills are essential for this task.

You can also quickly get an idea of consensus on a decision by asking for a simple
thumb up (support), thumb down (don’t support), or thumb to the side (undecided). It’s
quicker than a fist of five, and is great for answering yes-or-no questions.

102 PART 2 Being Agile

Some projects also have agile mentors, especially projects with project teams that
are new to agile processes.

Agile mentor
A mentor is a great idea for any area in which you want to develop new expertise.
The agile mentor, sometimes called an agile coach, is someone who has experience
implementing agile projects and can share that experience with a project team.
The agile mentor can provide valuable feedback and advice to new project teams
and to project teams that want to perform at a higher level.

On an agile project, the agile mentor

 » Serves in a mentoring role only and is not part of the scrum team

 » Is often a person from outside the organization, and can provide objective
guidance, without personal or political considerations

 » Is an agile expert with significant experience in implementing agile techniques
and running agile projects of different sizes

You may want to think of an agile mentor the way you think of a golf coach. Most
people use a golf coach not because they don’t know how to play the game of golf
but because a golf coach objectively observes things that a player engaged in the
game never notices. Golf, like implementing agile techniques, is an exercise where
small nuances make a world of difference in performance.

Establishing New Values
Lots of organizations post their core values on the wall. In this section, however,
we are talking about values that represent a way of working together every day,
supporting each other, and doing whatever it takes to achieve the scrum team’s
commitments.

In addition to the values from the Agile Manifesto, the five core values for scrum
teams are

 » Commitment

 » Courage

 » Focus

CHAPTER 6 Agile Behaviors in Action 103

 » Openness

 » Respect

The following sections provide details about each of these values.

Commitment
Commitment implies engagement and involvement. On agile projects, the scrum
team pledges to achieve specific goals. Confident that the scrum team will deliver
what it promises, the organization mobilizes around the pledge to meet each goal.

Agile processes, including the idea of self-organization, provide people with all
the authority they need to meet commitments. However, commitment requires a
conscious effort. Consider the following points:

 » Scrum teams must be realistic when making commitments, especially for
short sprints. It is easier, both logistically and psychologically, to bring new
features into a sprint than it is to take unachievable features out of a sprint.

 » Scrum teams must fully commit to goals. This includes having consensus
among the team that the goal is achievable. After the scrum team agrees on a
goal, the team does whatever it takes to reach that goal.

 » The scrum team is pragmatic but ensures that every sprint has a tangible
value. Achieving a sprint goal and completing every item in the goal’s scope
are different. For example, a sprint goal of proving that a product can perform
a specific action is much better than a goal stating that exactly seven require-
ments will be complete during the sprint. Effective scrum teams focus on the
goal and remain flexible in the specifics of how to reach that goal.

 » Scrum teams are willing to be accountable for results. The scrum team has
the power to be in charge of the project. As a scrum team member, you can
be responsible for how you organize your day, the day-to-day work, and the
outcome.

Consistently meeting commitments is central to using agile approaches for long-
term planning. In Chapter 13, you read about how to use performance to accu-
rately determine project schedules and budgets.

Courage
We all experience fear. We all have certain things we don’t want to do, whether
asking a team member to explain something we don’t understand or confronting

104 PART 2 Being Agile

the boss. Embracing agile techniques is a change for many organizations. Suc-
cessfully making changes requires courage in the face of resistance. Following are
some tips that foster courage:

 » Realize that the processes that worked in the past won’t necessarily
work now. Sometimes you need to remind people of this fact. If you want to
be successful with agile techniques, your everyday work processes need to
change to improve.

 » Be ready to buck the status quo. The status quo will push back. Some
people have vested interests and will not want to change how they work.

 » Temper challenge with respect. Senior members of the organization might
be especially resistant to change; they often created the old rules for how
things were done. Now you’re challenging those rules. Respectfully remind
these individuals that you can achieve the benefits of agile techniques only by
following the 12 agile principles faithfully. Ask them to give change a try.

 » Embrace the other values. Have the courage to make commitments and
stand behind those commitments. Have the courage to focus and tell
distracters “no.” Have the courage to be open and to acknowledge that there
is always an opportunity to improve. And have the courage to be respectful
and tolerant of other people’s views, even when they challenge your views.

As you replace your organization’s antiquated processes with more modern
approaches, expect to be challenged. Take on that challenge; the rewards can be
worth it in the end.

Focus
Working life is full of distractions. Plenty of people in your organization would
love to use your time to make their day easier. Disruptions, however, are costly.
Jonathan Spira, from the consulting firm Basex, published a report called “The
Cost of Not Paying Attention: How Interruptions Impact Knowledge Worker Pro-
ductivity.” His report details how businesses in the United States lose close to
$600 billion a year through workplace distractions.

Scrum team members can help change those dysfunctions by insisting on an
environment that allows them to focus. To reduce distractions and increase pro-
ductivity, scrum team members can

 » Physically separate themselves from company distracters. One of our
favorite techniques for ensuring high productivity is to find an annex away
from the company’s core offices and have that be the scrum team’s work
area. Sometimes the best defense is distance.

CHAPTER 6 Agile Behaviors in Action 105

 » Ensure that you’re not spending time on activities unrelated to the
sprint goal. If someone tries to distract you from the sprint goal with
something that “has to be done,” explain your priorities. Ask, “How will this
request move the sprint goal forward?” This simple question can push a lot of
activities off the to-do list.

 » Figure out what needs to be done and do only that. The development
team determines the tasks necessary to achieve the sprint goal. If you’re a
development team member, use this ownership to drive your focus to the
priority tasks at hand.

 » Balance focused time with accessibility to the rest of the scrum team.
Francesco Cirillo’s Pomodoro technique — splitting work into 25-minute time
blocks, with breaks in between — helps achieve balance between focus and
accessibility. We often recommend giving development team members
noise-canceling headsets, the wearing of which is a "do not disturb" sign.
However, we also suggest a team agreement that all scrum team members
have a minimum set of office hours in which they are available for
collaboration.

 » Check that you’re maintaining your focus. If you’re unsure of whether you
are maintaining focus — it can be hard to tell — go back to the basic question,
“Are my actions consistent with achieving the overall goal and the near-term
goal (such as completing the current task)?”

As you can see, task focus is not a small priority. Extend the effort upfront to cre-
ate a distraction-free environment that helps your team succeed.

Openness
Secrets have no place on an agile team. If the team is responsible for the result of
the project, it only makes sense that they have all the facts at their disposal. Infor-
mation is power, and ensuring that everyone has access to the information neces-
sary to make the right decisions requires a willingness to be transparent. To
leverage the power of openness, you can

 » Ensure that everyone on the team has access to the same information.
Everything from the vision for the project down to the smallest detail about
the status of tasks needs to be in the public domain as far as the team is
concerned. Use a centralized repository as the single source for information,
and then avoid the distraction of “status reporting” by putting all status
(burndowns, impediment list, and so forth) and information in this one place.
We often send a link to this repository to the project stakeholders and say, “All
the information we have is a click away. There is no faster way to get updated.”

106 PART 2 Being Agile

 » Be open and encourage openness in others. Team members must feel free
to speak openly about problems and opportunities to improve, whether the
issues are something that they’re dealing with themselves or see elsewhere in
the team. Openness requires trust within the team, and trust takes time to
develop.

 » Defuse internal politics by discouraging gossip. If someone starts talking to
you about what another team member did or didn’t do, ask him or her to take
the issue to the person who can resolve it. Don’t gossip yourself. Ever.

 » Always be respectful. Openness is never an excuse to be destructive or
mean. Respect is critical to an open team environment.

Small problems unaddressed often grow to become crises. Use an open environ-
ment to benefit from the input of the entire team and ensure that your develop-
ment efforts are focused on the project’s true priorities.

Respect
Each individual on the team has something important to contribute. Your back-
ground, education, and experiences have a distinctive influence on the team.
Share your uniqueness and look for, and appreciate, the same in others. You
encourage respect when you

 » Foster openness. Respect and openness go hand in hand. Openness without
respect causes resentment; openness with respect generates trust.

 » Encourage a positive work environment. Happy people tend to treat one
another better. Encourage positivity, and respect will follow.

 » Seek out differences. Don’t just tolerate differences; try to find them. The
best solutions come from diverse opinions that have been considered and
appropriately challenged.

 » Treat everyone on the team with the same degree of respect. All team
members should be accorded the same respect, regardless of their role, level
of experience, or immediate contribution. Encourage everyone to give his or
her best.

Respect is the safety net that allows innovation to thrive. When people feel com-
fortable raising a wider range of ideas, the final solution can improve in ways that
would never be considered without a respectful team environment. Use respect to
your team’s advantage.

CHAPTER 6 Agile Behaviors in Action 107

Changing Team Philosophy
An agile development team operates differently from a team using a waterfall
approach. Development team members must change their roles based on each
day’s priorities, organize themselves, and think about projects in a whole new way
to achieve their commitments.

To be part of a successful agile project, development teams should embrace the
following attributes:

 » Dedicated team: Each scrum team member works only on the project
assigned to the scrum team, and not with outside teams or projects. Projects
may finish and new projects may start, but the team stays the same.

 » Cross-functionality: The willingness and ability to work on different types of
tasks to create the product.

 » Self-organization: The ability and responsibility to determine how to go
about the work of product development.

 » Self-management: The ability and responsibility to keep work on track.

 » Size-limited teams: Right-size development teams to ensure effective
communication. Smaller is better; the development team should never be
larger than nine people.

 » Ownership: Take initiative for work and responsibility for results.

The following sections look at each of these ideas in more detail.

Dedicated team
A traditional approach to resource allocation (we prefer the term talent allocation)
is to allocate portions of team members’ time across multiple teams and projects
to get to full 100 percent utilization to justify the expense of employing team
members. For management, knowing that all hours of the week are accounted for
and justified is gratifying. However, the result is lower productivity due to con-
tinual context switching — the cost associated with cognitive demobilization and
remobilization to switch from one task to another.

Other common talent allocation practices include moving a team member from
team to team to temporarily fill a skill gap or a manpower gap, and tasking a team
with multiple projects at once. These tactics are often employed to try to do more
with less, but all the input variances make it nearly impossible to predict
outputs.

108 PART 2 Being Agile

These approaches have similar results: a significant decrease in productivity and
an inability to extrapolate performance. Studies clearly show a minimum of 30
percent increase in the time required to complete projects run in parallel instead
of serially.

Thrashing is another term for context switching between tasks. Avoid thrashing by
dedicating team members to a single project at a time.

The following results occur when you dedicate scrum teams to work on only one
project at a time:

 » More accurate release projections: Because the same people are consis-
tently doing the same tasks every sprint with the same amount of time
allocated to the project from sprint to sprint, scrum teams can accurately and
empirically extrapolate how long it will take to complete their remaining
backlog items with more certainty than traditional splintered approaches.

 » Effective, short iterations: Sprints are short because the shorter the
feedback loop, the more quickly scrum teams can respond to feedback and
changing needs. There just isn’t enough time for thrashing team members
between projects.

 » Fewer and less costly defects: Context switching results in more defects
because distracted developers produce lower quality functionality. It costs less
to fix something while it is still fresh in your mind (during the sprint) than later,
when you have to try to remember the context of what you were working on.
Studies show that defects cost 6.5 times more to fix after the sprint ends and
you’ve moved on to other requirements, 24 times more to fix when preparing
for release, and 100 times more to fix after the product is in production.

If you want more predictability, higher productivity, and fewer defects, dedicate
your scrum team members. We’ve found this to be one of the highest factors of
agile transition success.

Cross-functionality
On traditional projects, experienced team members are often typecast as having a
single skill. For example, a .NET programmer may always do .NET work, and a
tester may always do quality control work. Team members with complementary
skills are often considered to be part of separate groups, such as the programming
group or the testing group.

Agile approaches bring the people who create products together into a cohesive
group — the development team. People on agile development teams try to avoid

CHAPTER 6 Agile Behaviors in Action 109

titles and limited roles. Development team members may start a project with one
skill, but learn to perform many different jobs throughout the project to help cre-
ate the product.

Cross-functionality makes development teams more efficient. For example,
 suppose a daily scrum meeting uncovers testing as the highest priority task to
complete the requirement. A programmer might help test to finish the task
quickly. When the development team is cross-functional, it can swarm on product
features, with as many people working on a single requirement as possible, to
quickly complete the feature.

Cross-functionality also helps eliminate single points of failure. Consider tradi-
tional projects, where each person knows how to do one job. When a team member
gets sick, goes on vacation, or leaves the company, no one else may be capable of
doing his or her job. The tasks that person was doing are delayed. By contrast,
cross-functional agile development team members are capable of doing many
jobs. When one person is unavailable, another can step in.

Cross-functionality encourages each team member to

 » Set aside the narrow label of what he or she can do. Titles have no place
on an agile team. Skills and an ability to contribute are what matter. Start
thinking of yourself as a Special Forces commando — knowledgeable enough
in different areas that you can take on any situation.

 » Work to expand skills. Don’t work only in areas you already know. Try to
learn something new each sprint. Techniques such as pair programming —
where two developers work together to code one item — or shadowing other
developers can help you learn new skills quickly and increase overall product
quality.

 » Step up to help someone who has run into a roadblock. Helping someone
with a real-world problem is a great way to learn a new skill.

 » Be flexible. A willingness to be flexible helps to balance workloads and makes
the team more likely to reach its sprint goal.

With cross-functionality in place, you avoid waiting for key people to work on
tasks. Instead, a motivated, even if somewhat less knowledgeable, development
team member can work on a piece of functionality today. That development team
member learns and improves, and the workflow continues to be balanced.

One big payback of cross-functionality is that the development team completes
work quickly. Post-sprint review afternoons are often celebration time. Go to the
movies together. Head to the beach or the bowling alley. Go home early.

110 PART 2 Being Agile

Self-organization
Agile techniques emphasize self-organizing development teams to take advan-
tage of development team members’ varied knowledge and experience.

If you’ve read Chapter 2, you may recall agile principle #11: The best architectures,
requirements, and designs emerge from self-organizing teams.

Self-organization is an important part of being agile. Why? In a word: ownership.
Self-organized teams are not complying with orders from others; they own the
solution developed and that makes a huge difference in team member engage-
ment and solution quality.

For development teams used to a traditional command-and-control project man-
agement model, self-organization may take some extra effort at first. Agile proj-
ects do not have a project manager to tell the development team what to do.
Instead, self-organizing development teams

 » Commit to their own sprint goals. At the beginning of each sprint, the
development team works with the product owner to identify an objective it
can reach, based on project priorities.

 » Identify their tasks. Development team members determine the tasks
necessary to meet each sprint goal. The development team works together to
figure out who takes on which task, how to get the work done, and how to
address risks and issues.

 » Estimate the effort necessary for requirements and related tasks. The
development team knows the most about how much effort it will take to
create specific product features.

 » Focus on communication. Successful agile development teams hone their
communication skills by being transparent, communicating face-to-face, being
aware of nonverbal communication, participating, and listening.

The key to communication is clarity. With complex topics, avoid one-way,
potentially ambiguous modes of communication, such as email. Face-to-face
communication prevents misunderstandings and frustration. You can always
summarize the conversation in a quick email later if details need to be
retained.

 » Collaborate. Getting the input of a diverse scrum team almost always
improves the product but requires solid collaboration skills. Collaboration is
the foundation of an effective agile team.

CHAPTER 6 Agile Behaviors in Action 111

No successful project is an island. Collaboration skills help scrum team
members take risks with ideas and bring innovative solutions to project
problems. A safe and comfortable environment is a cornerstone of a success-
ful agile project.

 » Decide with consensus. For maximum productivity, the entire development
team must be on the same page and committed to the goal at hand. The
scrum master often plays an active role in building consensus, but the
development team ultimately takes responsibility for reaching agreement on
decisions, and everyone owns the decisions.

 » Actively participate. Self-organization may be challenging for the shy. All
development team members must actively participate. No one is going to tell
the development team what to do to create the product. The development
team members tell themselves what to do. And when. And how.

In our agile coaching experience, we’ve heard new agile development team mem-
bers ask questions like, “So, what should I do now?” A good scrum master answers
by asking the developer what he or she needs to do to achieve the sprint goal, or
by asking the rest of the development team what they suggest. Answering ques-
tions with questions can be a helpful way to guide a development team toward
being self-organizing.

Being part of a self-organizing development team takes responsibility, but it also
has its rewards. Self-organization gives development teams the freedom to suc-
ceed. Self-organization increases ownership, which can result in better products,
which can help development team members find more satisfaction in their work.

Self-management
Self-management is closely related to self-organization. Agile development teams
have a lot of control over how they work; that control comes with the responsibil-
ity for ensuring the project is successful. To succeed with self-management,
development teams

 » Allow leadership to ebb and flow. On agile projects, each person on the
development team has the opportunity to lead. For different tasks, different
leaders will naturally emerge; leadership will shift throughout the team based
on skill expertise and previous experiences.

 » Rely on agile processes and tools to manage the work. Agile methods are
tailored to make self-management easy. With an agile approach, meetings
have clear purposes and time limits, and artifacts expose information but rely
on minimal effort to create and maintain. Taking advantage of these processes
allows development teams to spend most of their time creating the product.

112 PART 2 Being Agile

 » Report progress regularly and transparently. Each development team
member is responsible for accurately updating work status on a daily basis.
Luckily, progress reporting is a quick task on agile projects. In Chapter 9, you
find out about burndown charts, which provide status but only require a few
minutes each day to update. Keeping status current and truthful makes
planning and issue management easier.

 » Manage issues within the development team. Many obstacles can arise on
a project: Development challenges and interpersonal problems are a couple
of examples. The development team’s first point of escalation for most issues
is the development team itself.

 » Create a team agreement. Development teams sometimes make up a team
agreement, a document that outlines the expectations each team member
will commit to meet. Working agreements provide a shared understanding of
behavioral expectations and empower the facilitator to keep the team on
track according to what they’ve already agreed together.

 » Inspect and adapt. Figure out what works for your team. Best practices differ
from team to team. Some teams work best by coming in early; others work
best by coming in late. The development team is responsible for reviewing its
own performance and identifying techniques to continue and techniques to
change.

 » Actively participate. As with self-organization, self-management works only
when development team members join in and commit to guiding the project’s
direction.

The development team is primarily responsible for self-organization and self-
management. However, the scrum master can assist the development team in a
number of ways. When development team members look for specific directions,
the scrum master can remind them that they have the power to decide what to do
and how to do it. If someone outside the development team tries to give orders,
insist on tasks, or dictate how to create the product, the scrum master can inter-
vene. The scrum master can be a powerful ally in the development team’s self-
organization and self-management.

Size-limited teams
Agile development teams are intentionally small. A small development team is a
nimble team. As the development team size grows, so does the overhead associ-
ated with orchestrating task flow and communication flow.

Ideally, agile development teams have the least number of people necessary to be
self-encapsulated (can do everything necessary to produce the product) and not

CHAPTER 6 Agile Behaviors in Action 113

have single points of failure. To have skill coverage, teams typically won’t be any
smaller than three people. Statistically, scrum teams are fastest with six develop-
ers, and cheapest with four to five developers. Keeping the development team size
between three and nine people helps teams act as cohesive teams, and avoids
creating subgroups, or silos.

Limiting development team size

 » Encourages diverse skills to be developed

 » Facilitates good team communication

 » Maintains the team in a single unit

 » Promotes joint code ownership, cross-functionality, and face-to-face
communication

When you have a small development team, a similarly limited and focused project
scope follows. Development team members are in close contact throughout the
day as tasks, questions, and peer reviews flow back and forth among teammates.
This cohesiveness ensures consistent engagement, increases communication, and
reduces project risk.

When you have a large project and a correspondingly large development team,
split the work between multiple scrum teams. For more on scaling agile projects
across the enterprise, see Chapter 17.

Ownership
Being part of a cross-functional, self-organized, self-managing development
team requires responsibility and ownership. The top-down management
approaches on traditional projects do not always foster the maturity of ownership
necessary for taking responsibility for projects and results. Even seasoned devel-
opment team members may need to adjust their behavior to get used to making
decisions on agile projects.

Development teams can adapt behavior and increase their level of ownership by
doing the following:

 » Take initiative. Instead of waiting for someone else to tell you what to work
on, take action. Do what is necessary to help meet commitments and goals.

 » Succeed and fail as a team. On agile projects, accomplishments and failures
alike belong to the project team. If problems arise, be accountable as a group,

114 PART 2 Being Agile

rather than finding blame. When you succeed, recognize the group effort
necessary for that success.

 » Trust the ability to make good decisions. Development teams can make
mature, responsible, and sound decisions about product development. This
takes a degree of trust as team members become accustomed to having
more control in a project.

Behavioral maturity and ownership doesn’t mean that agile development teams
are perfect. Rather, they take ownership for the scope they commit to, and they
take responsibility for meeting those commitments. Mistakes happen. If they
don’t, you aren’t pushing yourself outside your comfort zone. A mature develop-
ment team identifies mistakes honestly, accepts responsibility for mistakes
openly, and learns and improves from its mistakes consistently.

3Agile Planning
and Execution

IN THIS PART . . .

Follow the Roadmap to Value, from vision to execution.

Define and estimate requirements.

Create working functionality and showcase it in
iterations.

Inspect your work and adapt your processes for
continuous improvement.

CHAPTER 7 Defining the Product Vision and Product Roadmap 117

Chapter 7

IN THIS CHAPTER

 » Planning agile projects

 » Establishing the product vision

 » Creating features and a product
roadmap

Defining the Product
Vision and Product
Roadmap

To start, let’s dispel a common myth. If you’ve heard that agile projects don’t
include planning, dismiss that thought right now. You will plan not only the
overall project but also every release, every sprint, and every day. Planning

is fundamental to agile project success.

If you’re a project manager, you probably do the bulk of your planning at the
beginning of a project. You may have heard the phrase, “Plan the work, then work
the plan,” which sums up non-agile project management approaches.

Agile projects, in contrast, involve planning upfront and throughout the entire
project. By planning at the last responsible moment, right before an activity starts,
you know the most about that activity. This type of planning, called just-in-time
planning or a situationally informed strategy, is a key to agile project success. Agile
teams plan as much as, if not more than, traditional project teams. However,
agile planning is more evenly distributed throughout the project and is done by
the entire team that will be working on the project.

118 PART 3 Agile Planning and Execution

Helmuth von Moltke, a nineteenth-century German field marshal and military
strategist, once said, “No plan survives contact with the enemy.” That is, in the
heat of a battle — much like in the thick of a project — plans always change. The
agile focus on just-in-time planning allows you to accommodate real situations
and to be well informed as you plan specific tasks.

This chapter describes how just-in-time planning works with agile projects. You
also go through the first two steps of planning an agile project: creating the prod-
uct vision and the product roadmap.

Agile Planning
Planning happens at a number of points in an agile project. A great way to look at
the planning activities in agile projects is with the Roadmap to Value. Figure 7-1
shows the roadmap as a whole.

FIGURE 7-1:
Stages of agile

planning and
execution with

the Roadmap
to Value.

CHAPTER 7 Defining the Product Vision and Product Roadmap 119

The Roadmap to Value has seven stages:

 » In stage 1, the product owner identifies the product vision. The product vision
is your project’s destination or end goal. The product vision includes the outer
boundary of what your product will be, how the product is different from the
competition, how the product will support your company or organization’s
strategy, who will use the product, and why people will use the product. On
longer projects, revisit the product vision at least once a year.

 » In stage 2, the product owner creates a product roadmap. The product roadmap
is a high-level view of the product requirements, with a general time frame for
when you will develop those requirements. It also gives context to the vision by
showing the tangible features that will be produced during the project.
Identifying product requirements and then prioritizing and roughly estimating
the effort for those requirements allow you to establish requirement themes
and identify requirement gaps. The product owner, with support from the
development team, should revise the product roadmap at least biannually.

 » In stage 3, the product owner creates a release plan. The release plan identifies
a high-level timetable for the release of working functionality to the customer.
The release serves as a mid-term boundary against which the scrum team can
mobilize. An agile project will have many releases, with the highest-priority
features appearing first. You create a release plan at the beginning of each
release, which is usually at least quarterly. Find out more about release
planning in Chapter 8.

 » In stage 4, the product owner, the development team, and the scrum master
will plan iterations, also called sprints, and start creating the product function-
ality in those sprints. Sprint planning sessions take place at the start of each
sprint. During sprint planning, the scrum team determines a sprint goal, which
establishes the immediate boundary of work that the team forecasts to
accomplish during the sprint, with requirements that support the goal and can
be completed in the sprint. The scrum team also outlines how to complete
those requirements. Get more information about sprint planning in Chapter 8.

 » In stage 5, the development team has daily scrum meetings during each sprint
to coordinate the day’s priorities. In the daily scrum meeting, you discuss what
you completed yesterday, what you will work on today, and any roadblocks
you have, so that you can address issues immediately. Read about daily
scrums in Chapter 9.

 » In stage 6, the scrum team holds a sprint review at the end of every sprint. In
the sprint review, you demonstrate the working functionality to the product
stakeholders. Find out how to conduct sprint reviews in Chapter 10.

120 PART 3 Agile Planning and Execution

 » In stage 7, the scrum team holds a sprint retrospective. The sprint retrospective
is a meeting where the scrum team discusses the completed sprint with
regard to their processes and environment, and makes plans for process
improvements in the next sprint. Like the sprint review for inspecting and
adapting the product, a sprint retrospective is held at the end of every sprint
to inspect and adapt your processes and environment. Find out how to
conduct sprint retrospectives in Chapter 10.

Each stage in the Roadmap to Value is repeatable, and each stage contains plan-
ning activities. Agile planning, like agile development, is iterative.

Progressive elaboration
During each stage in an agile project, you plan only as much as you need to plan.
In the early stages of your project, you plan widely and holistically to create a
broad outline of how the product will shape up over time. In later stages, you nar-
row your planning and add more details to ensure success in the immediate devel-
opment effort. This process is called a progressive elaboration of requirements.

Planning broadly at first and in detail later, when necessary, prevents you from
wasting time on planning lower-priority product requirements that may never be
implemented. This model also lets you add high-value requirements during the
project without disrupting the development flow.

The more just-in-time your detailed planning is, the more efficient your planning
process becomes.

Some studies show customers rarely or never use 64 percent of the features in an
application. In the first few development cycles of an agile project, you complete
features that have the highest priority and that people will use. Typically, you
release those groups of features as early as possible to gain market share through
first-mover advantage; receive customer feedback for viability; monetize func-
tionality early to optimize return on investment (ROI); and avoid internal and
external obsolescence.

Inspect and adapt
Just-in-time planning brings into play two fundamental tenets of agile tech-
niques: inspect and adapt. At each stage of a project, you need to look at the prod-
uct and the process (inspect) and make changes as necessary (adapt).

CHAPTER 7 Defining the Product Vision and Product Roadmap 121

Agile planning is a rhythmic cycle of inspecting and adapting. Consider the
following:

 » Each day during the sprint, the product owner provides feedback to help
improve the product as the development team creates the product.

 » At the end of each sprint, in the sprint review, stakeholders provide feedback
to further improve the product.

 » Also at the end of each sprint, in the sprint retrospective, the scrum team
discusses the lessons it learned during the past sprint to improve the develop-
ment process.

 » After a release, the customers can provide feedback for improvement. Feedback
might be direct, when a customer contacts the company about the product, or
indirect, when potential customers either do or don’t purchase the product.

Inspect and adapt, together, are fantastic tools for delivering the right product in
the most efficient manner.

At the beginning of a project, you know the least about the product you’re creat-
ing, so trying to plan fine details at that time just doesn’t work. Being agile means
you do the detailed planning when you need it, and immediately develop the spe-
cific requirements you defined with that planning.

Now that you know a little more about how agile planning works, it’s time to
complete the first step in an agile project: defining the product vision.

Defining the Product Vision
The first stage in an agile project is defining your product vision. The product vision
statement is an elevator pitch, or a quick summary, to communicate how your
product supports the company’s or organization’s strategies. The vision state-
ment must articulate the end state for the product.

The product might be a commercial product for release to the marketplace or an
internal solution that will support your organization’s day-to-day functions. For
example, say your company is XYZ Bank and your product is a mobile banking
application. What company strategies does a mobile banking application support?
How does the application support the company’s strategies? Your vision state-
ment clearly and concisely links the product to your business strategy.

Figure 7-2 shows how the vision statement — stage 1 of the Roadmap to Value —
fits with the rest of the stages and activities in an agile project.

122 PART 3 Agile Planning and Execution

The product owner is responsible for knowing about the product, its goals, and its
requirements throughout the project. For those reasons, the product owner cre-
ates the vision statement, although other people may have input. After the vision
statement is complete, it becomes a guiding light, the “what we are trying to
achieve” statement that the development team, scrum master, and stakeholders
refer to throughout the project.

When creating a product vision statement, follow these four steps:

1. Develop the product objective.

2. Create a draft vision statement.

3. Validate the vision statement with product and project stakeholders and
revise it based on feedback.

4. Finalize the vision statement.

The look of a vision statement follows no hard-and-fast rules. However, anyone
involved with the project, from the development team to the CEO, should be able
to understand the statement. The vision statement should be internally focused,
clear, nontechnical, and as brief as possible. The vision statement should also be
explicit and avoid marketing fluff.

Step 1: Developing the product objective
To write your vision statement, you must understand and be able to communicate
the product’s objective. You need to identify the following:

 » Customer: Who will use the product? This question might have more than
one answer.

 » Key product goals: How will the product benefit the company that is creating
it? The goals may include benefits for a specific department in your company,
such as customer service or the marketing department, as well as the com-
pany as a whole. What specific company strategies does the product support?

FIGURE 7-2:
The product

vision statement
as part of the
Roadmap to

Value.

CHAPTER 7 Defining the Product Vision and Product Roadmap 123

 » Need: Why does the customer need the product? What features are critical to
the customer?

 » Competition: How does the product compare with similar products?

 » Primary differentiation: What makes this product different from the status
quo or the competition or both?

Step 2: Creating a draft vision statement
After you have a good grasp of the product’s objective, create a first draft of your
vision statement.

You can find many templates for a product vision statement. For an excellent guide
to defining the overall product vision, see Crossing the Chasm, by Geoffrey Moore
(published by HarperCollins), which focuses on how to bridge the gap (chasm)
between early adopters of new technologies and the majority who follow.

The adoption of any new product is a gamble. Will users like the product? Will the
market take to the product? Will there be an adequate return on investment for
developing the product? In Crossing the Chasm, Moore describes how early adopters
are driven by vision, whereas the majority are skeptical of visionaries and inter-
ested in down-to-earth issues of quality, product maintenance, and longevity.

Return on investment, or ROI, is the benefit or value a company gets from paying for
something. ROI can be quantitative, such as the additional money ABC Products
makes from selling widgets online after investing in a new website. ROI can also
be something intangible, such as better customer satisfaction for XYZ Bank cus-
tomers who use the bank’s new mobile banking application.

By creating your vision statement, you help convey your product’s quality, main-
tenance needs, and longevity.

Moore’s product vision approach is pragmatic. In Figure 7-3, we construct a tem-
plate based on Moore’s approach to more explicitly connect the product to the
company’s strategies. If you use this template for your product vision statement,
it will stand the test of time as your product goes from early adoption to main-
stream usage.

One way to make your product vision statement more compelling is to write it in
the present tense, as if the product already exists. Using present tense helps read-
ers imagine the product in use.

124 PART 3 Agile Planning and Execution

Using our expansion of Moore’s template, a vision statement for a mobile banking
application might look like the following:

For XYZ Bank customers

who want access to banking capability while on the go,

the MyXYZ

is a mobile application

that allows secure, on-demand banking, 24 hours a day.

Unlike online banking from your home or office computer,

our product allows users immediate access,

which supports our strategy to provide quick, convenient banking services,
anytime, anywhere. (Platinum Edge addition)

As you can see, a vision statement identifies a future state for the product when
the product reaches completion. The vision focuses on the conditions that should
exist when the product is complete.

Avoid generalizations in your vision statement such as “make customers happy”
or “sell more products.” Also watch out for too much technological specificity,
such as “using release 9.x of Java, create a program with four modules that . . .”
At this early stage, defining specific technologies might limit you later.

Here are a few extracts from vision statements that should ring warning bells:

 » Secure additional customers for the MyXYZ application.

 » Satisfy our customers by December.

 » Eliminate all defects and improve quality.

FIGURE 7-3:
Expansion of

Moore’s template
for a vision
statement.

CHAPTER 7 Defining the Product Vision and Product Roadmap 125

 » Create a new application in Java.

 » Beat the Widget Company to market by six months.

Step 3: Validating and revising
the vision statement
After you draft your vision statement, review it against the following quality
checklist:

 » Is this vision statement clear, focused, and written for an internal audience?

 » Does the statement provide a compelling description of how the product
meets customer needs?

 » Does the vision describe the best possible outcome?

 » Is the business objective specific enough that the goal is achievable?

 » Does the statement deliver value that is consistent with corporate strategies
and goals?

 » Is the product vision statement compelling?

 » Is the vision concise?

These yes-or-no questions will help you determine whether your vision state-
ment is thorough and clear. If any answers are no, revise the vision statement.

When all answers are yes, move on to reviewing the statement with others,
including the following:

 » Project stakeholders: The stakeholders will be able to identify that the vision
statement includes everything the product should accomplish.

 » Your development team: The team, because it will create the product, must
understand what the product needs to accomplish.

 » Scrum master: A strong understanding of the product will help the scrum
master remove roadblocks and ensure that the development team is on the
right path later in the project.

 » Agile mentor: Share the vision statement with your agile mentor, if you have
one. The agile mentor is independent of the organization and can provide an
external perspective, qualities that can make for a great objective voice.

126 PART 3 Agile Planning and Execution

See whether others think the vision statement is clear and delivers the message
you want to convey. Review and revise the vision statement until the project
stakeholders, the development team, and the scrum master fully understand the
statement.

At this stage of your project, you might not have a development team or scrum
master. After you form a scrum team, be sure to review the vision statement with it.

Step 4: Finalizing the vision statement
After you finish revising the vision statement, make sure your development team,
scrum master, and stakeholders have the final copy. You might even put a copy on
the wall in the scrum team’s work area, where you can see it every day. You will
refer to the vision statement throughout the life of the project.

If your project is more than a year long, you may want to revisit the vision state-
ment. We like to review the product vision statement at least once a year to make
sure the product reflects the marketplace and supports any changes in the com-
pany’s needs. Because the vision statement is the long-term boundary of the
project, the project should end when the vision is no longer viable.

The product owner owns the product vision statement and is responsible for its
preparation and communication across the organization. The product vision sets
expectations for stakeholders and helps the development team stay focused on
the goal.

Congratulations. You’ve just completed the first stage in your agile project. Now
it’s time to create a product roadmap.

Creating a Product Roadmap
The product roadmap, stage 2 in the Roadmap to Value (see Figure 7-4), is an
overall view of the product’s requirements and a valuable tool for planning and
organizing the journey of product development. Use the product roadmap to cat-
egorize requirements, prioritize them, identify gaps and dependencies, and deter-
mine a timetable for releasing to the customer.

As he or she does with the product vision statement, the product owner creates the
product roadmap, with help from the development team and stakeholders. The
development team participates to a greater degree than it did during the creation
of the vision statement.

CHAPTER 7 Defining the Product Vision and Product Roadmap 127

Keep in mind that you will refine requirements and effort estimates throughout
the project. In the product roadmap phase, it’s okay for your requirements, esti-
mates, and time frames to be at a very high level.

To create your product roadmap, you do the following:

1. Identify stakeholders.

2. Establish product requirements and add them to the roadmap.

3. Arrange the product requirements based on values, risks, and dependencies.

4. Estimate the development effort at a high level and prioritize the
product’s requirements.

5. Determine high-level time frames for releasing groups of functionality to
the customer.

Because priorities can change, expect to update your product roadmap throughout
the project. We like to update the product roadmap at least twice a year.

Your product roadmap can be as simple as sticky notes arranged on a whiteboard,
which makes updates as easy as moving a sticky note from one section of the
whiteboard to another.

You use the product roadmap to plan releases — stage 3 in the Roadmap to Value.
Releases are groups of usable product functionality that you release to customers
to gather real-world feedback and to generate return on investment.

The following section details the steps to create a product roadmap.

Step 1: Identifying stakeholders
When initially establishing the product vision, it’s likely you will have identified
only a few key stakeholders who are available to provide high-level feedback. At
the product roadmap stage, you put more context to the product vision and iden-
tify how you achieve the vision, which gives more insight into who will have a
stake in your project.

FIGURE 7-4:
The product

roadmap as part
of the Roadmap

to Value.

128 PART 3 Agile Planning and Execution

This is the time to engage with existing and newly identified stakeholders to
gather feedback on the functionality you want to implement to achieve the vision.
The product roadmap is your first cut at a high-level product backlog, discussed
later in this chapter. With this first round of detail identified, you’ll want to engage
more than just the scrum team, project sponsor, and obvious users. Consider
including the following people:

 » Marketing department: Your customers need to know about your product,
and that’s what the marketing department provides. They need to understand
your plans, and may have input into the order in which you release functional-
ity to the market, based on their experience and research.

 » Customer service department: Once your product is in the market, how will
it be supported? Specific roadmap items might identify the person you’ll need
to prepare for support. For instance, a product owner may not see much
value in plugging in a live online chat feature, but a customer service manager
may see it differently because his or her representatives can handle simulta-
neously only one phone call but as many as six chat sessions.

 » Sales department: Make sure that the sales team members see the product
so that they start selling the same thing you are building. Like the marketing
department, the sales department will have first-hand knowledge about what
your customers are looking for.

 » Legal department: Especially if you’re in a highly regulated industry, review
your roadmap with legal counsel as early as possible to make sure you haven’t
missed anything that could put your project at risk if discovered later in the
project.

 » Additional customers: While identifying features on your roadmap, you may
discover additional people who will find value in what you will create. Give
them a chance to review your roadmap to validate your assumptions.

Step 2: Establishing product requirements
The second step in creating a product roadmap is to identify, or define, the differ-
ent requirements for your product.

When you first create your product roadmap, you typically start with large, high-
level requirements. The requirements on your product roadmap will most likely be
at two different levels: themes and features. Themes are logical groups of features
and requirements at their highest levels. Features are parts of the product at a very
high level and describe a new capability the customer will have once the feature is
complete.

CHAPTER 7 Defining the Product Vision and Product Roadmap 129

To identify product themes and features, the product owner can work with stake-
holders and the development team. It may help to have a requirements session,
where the stakeholders and the development team meet and write down as many
requirements that they can think of.

When you start creating requirements at the theme and feature level, it can help
to write those requirements on index cards or big sticky notes. Using a physical
card that you can move from one category to another and back again can make
organizing and prioritizing those requirements very easy.

DECOMPOSING REQUIREMENTS
Throughout the project, you’ll break down requirements into smaller, more manageable
parts using a process called decomposition, or progressive elaboration. You can break
down requirements into the following sizes, listed from largest to smallest:

Themes: A theme is a logical group of features and is also a requirement at its high-
est level. You may group features into themes in your product roadmap.

Features: Features are parts of products at a very high level. Features describe a
new capability the customers will have once the feature is complete. You use fea-
tures in your product roadmap.

Epic user stories: Epics are medium-sized requirements that are decomposed from
a feature and often contain multiple actions or channels of value. You need to
break down your epics before you can start creating functionality from them. You
can find out how you use epics for release planning in Chapter 8.

User stories: User stories are requirements that contain a single action or integra-
tion and are small enough to start implementing into functionality. You see how
you define user stories and use them at the release and sprint level in Chapter 8.

Tasks: Tasks are the execution steps required to develop a requirement into work-
ing functionality. You break down user stories into different tasks during sprint
planning. You can find out about tasks and sprint planning in Chapter 8.

Keep in mind that each requirement may not go through all these sizes. For example,
you may create a particular requirement at the user story level, and never think of it on
the theme or epic scale. You may create a requirement at the epic user story level, but it
may be a lower-priority requirement. Because of just-in-time planning, you may not
take the time to decompose that lower-priority epic user story until you complete devel-
opment of all the higher-priority requirements.

130 PART 3 Agile Planning and Execution

While you create the product roadmap, the features you identify start to make up
your product backlog — the full list of what is in scope for a product, regardless of
level of detail. Once you have identified your first product features, you have your
product backlog started.

Step 3: Arranging product features
After you identify your product features, you work with the stakeholders to group
them into themes — common, logical groups of features. A stakeholder meeting
works well for grouping features, just like it works for creating requirements. You
can group features by usage flow, technical similarity, or business need.

Visualizing themes and features on your roadmap allows you to assign business
value and risks associated with each feature relative to others. The product owner,
along with the development team and stakeholders, can also identify dependen-
cies between features, locate any gaps, and prioritize the order in which each
feature should be developed based on each of these factors.

Here are questions to consider when grouping and ordering your requirements:

 » How would customers use our product?

 » If we offered this proposed feature, what else would customers need to do?
What else might they want to do?

 » Can the development team identify technical affinities or dependencies?

Use the answers to these questions to identify your themes. Then group the fea-
tures by these themes. For example, in the mobile banking application, the themes
might be

 » Account information

 » Transactions

 » Customer service functions

 » Mobile functions

Figure 7-5 shows features grouped by themes.

CHAPTER 7 Defining the Product Vision and Product Roadmap 131

Step 4: Estimating efforts and
ordering requirements
You’ve identified your product requirements and arranged those requirements
into logical groups. Next, you estimate and prioritize the requirements. Here are a
few terms you need to be familiar with:

 » Effort is the ease or difficulty of creating functionality from a particular
requirement.

 » An estimate, as a noun, can be the number or description you use to express
the estimated effort of a requirement.

 » Estimating a requirement, as a verb, means to come up with an approximate
idea of how easy or hard (how much effort) that requirement will be to create.

FIGURE 7-5:
Features grouped

by themes.

132 PART 3 Agile Planning and Execution

 » Ordering, or prioritizing, a requirement means to determine that requirement’s
value and risk in relation to other requirements, and in what order you will
implement them.

 » Value means how beneficial a product requirement might be to the organiza-
tion creating that product.

 » Risk refers to the negative effect a requirement can have on the project.

You can estimate and prioritize requirements at any level, from themes and
 features down to single user stories.

Prioritizing requirements is really about ordering them. You can find various
methods — many of them complicated — for determining the priority of product
backlog items. We keep things simple by creating an ordered to-do list of product
backlog items, based on business value, risk, and effort, listed in the order in
which you will implement them. Forcing an order requires making a priority deci-
sion for every requirement relative to every other requirement. A scrum team can
work on one thing at a time, so it is important to format your product roadmap
accordingly.

To score your requirements, you work with two different groups of people:

 » The development team determines the effort to implement the functionality
for each requirement.

 » The product owner, with support from the stakeholders, determines the value
and risk of the requirement to the customer and the business.

Estimating effort
To order requirements, the development team must first estimate the effort for
each requirement relative to all other requirements.

In Chapter 8, we show you relative estimation techniques that agile teams use to
accurately estimate effort. Traditional estimation methods aim for precision by
using absolute time estimates at every level of the project schedule, whether the
team is working on the work items today or two years from now. This practice
gives non-agile teams a false sense of precision and isn’t accurate in reality (as
thousands of failed projects prove). How could you possibly know what each team
member will be working on six months from now, and how long it will take to do
that work, when you are just starting to learn about the project at the beginning?

Relative estimating is a self-correcting mechanism that allows agile teams to be
more accurate because it’s much easier to be right when comparing one

CHAPTER 7 Defining the Product Vision and Product Roadmap 133

requirement against another and determining whether one is bigger than another,
and by roughly how much.

To order your requirements, you also want to know any dependencies. Dependen-
cies mean that one requirement is a predecessor for another requirement. For
example, if you were to have an application that needs someone to log in with a
username and password, the requirement for creating the username would be a
dependency for the requirement for creating the password, because you generally
need a username to set up a password.

Assessing business value and risk
Together with stakeholders, the product owner identifies the highest business
value items (either high potential ROI or other perceived value to the end cus-
tomer), as well as those items with high negative impact on the project if
unresolved.

Similar to effort estimates, values or risks can be assigned to each product road-
map item. For example, you might assign value using monetary ROI amounts or,
for an internally used product, assign value or risk by using high, medium, or low.

Effort, business value, and risk estimates inform the product owner’s prioritiza-
tion decisions for each requirement. The highest value and risk items should be at
the top of the product roadmap. High-risk items should be explored and imple-
mented first to avoid rear-loading the project’s risk. If a high-risk item will cause
a project to fail (an issue that cannot be resolved), agile teams learn about it early.
If a project is going to fail, you want to fail early, fail cheap, and move on to a new
project that has value. In that sense, failure is a form of success for an agile team.

After you have your value, risk, and effort estimates, you can determine the rela-
tive priority, or order, of each requirement.

 » A requirement with high value or high risk (or both) and low effort will have a
high relative priority. The product owner might order this item at the top of
the roadmap.

 » A requirement with low value or low risk (or both) and high effort will have a
lower relative priority. This item will likely end up toward the bottom of the
roadmap.

Relative priority is only a tool to help the product owner make decisions and pri-
oritize requirements. It isn’t a mathematical universal that you must follow. Make
sure your tools help rather than hinder.

134 PART 3 Agile Planning and Execution

Prioritizing requirements
To determine the overall priority for your requirements, answer the following
questions:

 » What is the relative priority of the requirement?

 » What are the prerequisites for any requirement?

 » What set of requirements belong together and will constitute a solid set of
functionality you can release to the customer?

Using the answers to these questions, you can place the highest-priority require-
ments first in the product roadmap. When you’ve finished prioritizing your
requirements, you’ll have something that looks like Figure 7-6.

Your prioritized list of requirements is called a product backlog. Your product back-
log is an important agile document, or artifact. You use this backlog throughout
your entire project.

With a product backlog in hand, you can start adding target releases to your prod-
uct roadmap.

FIGURE 7-6:
Product roadmap

with ordered
requirements.

CHAPTER 7 Defining the Product Vision and Product Roadmap 135

Step 5: Determining high-level time frames
When you create your product roadmap, your time frames for releasing product
requirements are at a very high level. For the initial roadmap, choose a logical
time increment for your project, such as a certain number of days, weeks, months,
quarters (three-month periods), or even larger increments. Using both the
requirement and the priority, you can add requirements to each increment of
time.

Creating a product roadmap might seem like a lot of work, but after you get the
hang of it, you can create one in a short time. Some scrum teams can create a
product vision, a product roadmap, and a release plan and be ready to start their
sprint in as little as one day! To begin developing the product, you need only
enough requirements for your first sprint. You can determine the rest as the proj-
ect progresses.

Saving your work
Up until now, you could do all your roadmap planning with whiteboards and sticky
notes. After your first full draft is complete, however, save the product roadmap,
especially if you need to share the roadmap with remote stakeholders or develop-
ment team members. You could take a photo of your sticky notes and whiteboard,
or you could type the information into a document and save it electronically.

You update the product roadmap throughout the project, as priorities change. For
now, the contents of the first release should be clear — and that’s all you need to
worry about at this stage.

Completing the Product Backlog
The product roadmap contains high level features and some tentative release
timelines. The requirements on your product roadmap are the first version of your
product backlog.

The product backlog is the list of all requirements associated with the project. The
product owner is responsible for creating and maintaining the product backlog by
adding and prioritizing requirements. The scrum team uses the prioritized
product backlog throughout the project to plan its work — like a streamlined
project plan.

136 PART 3 Agile Planning and Execution

Figure 7-7 shows a sample product backlog. At a minimum, when creating your
product backlog, be sure to do the following:

 » Include a description of each requirement.

 » Order the requirements based on priority.

 » Add the effort estimate.

We also like to include the type of backlog item as well as the status. Scrum teams
will work mainly on developing features as described in the words of the user
(user stories). But there may be need for other types of product backlog items,
such as overhead items (things the scrum team determines are needed but don’t
contribute to the functionality), maintenance items (design improvements that
need to be done to the product or system but don’t directly increase value to the
customer), or improvement items (action items for process improvements identi-
fied in the sprint retrospective). You can see examples of each of these in
Figure 7-7.

In Chapter 2, we explain how documents for agile projects should be barely suf-
ficient, with only information that is absolutely necessary to create the product. If
you keep your product backlog format simple and barely sufficient, you’ll save
time updating it throughout the project.

The scrum team refers to the product backlog as the main source for project
requirements. If a requirement exists, it’s in the product backlog. The require-
ments in your product backlog will change throughout the project in several ways.
For example, as the team completes requirements, you mark those requirements
as complete in the product backlog. You also record any new requirements gath-
ered based on feedback from stakeholders and customers. Some requirements will

FIGURE 7-7:
Product backlog

items sample.

CHAPTER 7 Defining the Product Vision and Product Roadmap 137

be updated with new or clarified information, broken down into smaller user sto-
ries, or refined in other ways. Additionally, you update the priority and effort
scores of existing requirements as needed.

The total number of story points in the product backlog — all user story points
added together — is your current product backlog estimate. This estimate changes
daily as user stories are completed and new user stories are added. Discover more
about using the product backlog estimate to predict the project length and cost in
Chapter 13.

Keep your product backlog up to date so that you always have accurate cost and
schedule estimates. A current product backlog also gives you the flexibility to pri-
oritize newly identified product requirements — a key agile benefit — against
existing features.

After you have a product backlog, you can begin planning releases and sprints,
which we show you in the next chapter.

CHAPTER 8 Planning Releases and Sprints 139

Chapter 8

IN THIS CHAPTER

 » Decomposing requirements and
creating user stories

 » Creating a product backlog, release
plan, and sprint backlog

 » Planning sprints

Planning Releases and
Sprints

After you create a product roadmap for your agile project (see Chapter 7),
it’s time to start elaborating on your product details. In this chapter, you
discover how to break down your requirements to a more granular level,

refine your product backlog, create a release plan, and build a sprint backlog for
execution. First, you see how to break down the larger requirements from your
product roadmap into smaller, more manageable requirements called user stories.

The concept of breaking down requirements into smaller pieces is called
decomposition.

Refining Requirements and Estimates
You start agile projects with very large requirements. As the project progresses
and you get closer to developing those requirements, you will break them down
into smaller parts — small enough to begin developing.

One clear, effective format for defining product requirements is the user story. The
user story and its larger cousin, the epic user story, are good-sized requirements

140 PART 3 Agile Planning and Execution

for release planning and sprint planning. In this section, you find out how to cre-
ate a user story, prioritize user stories, and estimate user story effort.

What is a user story?
The user story is a simple description of a product requirement in terms of what
that requirement must accomplish for whom. Traditional requirements usually
read something like this: “The system shall [insert technical description].” This
requirement addresses only the technical nature of what will be done; the overall
business objective is unclear. Because the development team has the context to
engage more deeply, it clearly knows the benefit to the user (or the customer or
the business) of each requirement and delivers what the customer wants faster
and with higher quality.

Your user story will have, at a minimum, the following parts:

Title (recognizable name for the user story)

As a (type of user)

I want to (take this action)

so that (I get this benefit)

The user story also includes a list of validation steps (acceptance criteria) to take so
you know that the working requirement for the user story is correct:

When I (take this action), (this happens)

User stories may also include the following:

 » A user story ID: A number to differentiate this user story from other
user stories.

 » The user story value and effort estimate: Value is how beneficial a user
story might be to the organization creating that product. Effort is the ease or
difficulty in creating that user story. We introduce how to score a user story’s
business value, risk, and effort in Chapter 7.

 » The name of the person who thought of the user story: Anyone on the
project team can create a user story.

CHAPTER 8 Planning Releases and Sprints 141

Although agile project management approaches encourage low-tech tools, the
scrum team should also find out what works best for it in each situation. A lot of
electronic user story tools are available, some of which are free. Some are simple
and are only for user stories. Others are complex and will integrate with other
product documents. We love index cards, but that solution may not be for every-
one. Use what works best for your scrum team and your project.

Figure 8-1 shows a typical user story card, front and back. The front has the main
description of the user story. The back shows how you will confirm that the
requirement works correctly, after the development team has created the
functionality.

The product owner gathers the user stories and manages them (that is, deter-
mines the priority and initiates the decomposition discussions). The development
team and other stakeholders are also involved in creating and decomposing user
stories.

Note that user stories aren’t the only way to describe product requirements. You
could simply make a list of requirements without any given structure. However,
because user stories include a lot of useful information in a simple, compact for-
mat, we find that they are very effective in conveying exactly what a requirement
needs to do for the customer.

The big benefit of the user story format is when the development team starts to
create and test requirements. The development team members know exactly for
whom they are creating the requirement, what the requirement should do, and
how to double-check that the requirement satisfies the intention of the
requirement.

We use user stories as examples of requirements throughout the chapter and the
book. Keep in mind that anything we describe that you can do with user stories,
you can do also with more generically expressed requirements.

FIGURE 8-1:
Card-based user

story example.

142 PART 3 Agile Planning and Execution

Steps to create a user story
When creating a user story, follow these steps:

1. Identify the project stakeholders.

2. Identify who will use the product.

3. Working with the stakeholders, write down the requirements that the
product will need and use the format described earlier to create your
user stories.

Find out how to follow these three steps in the following sections.

Being agile and adaptive requires iterating. Don’t spend a ton of time trying to
identify every single requirement your product might have. You can always add
requirements later in the project. The best changes often come at the end of a
project, when you know the most about the product and the customers.

Identifying project stakeholders
You probably have a good idea about who your project stakeholders are — anyone
involved with, affected by, or who can affect the product and its creation.

You will also work with stakeholders when you create your product vision and
your product roadmap.

Make sure the stakeholders are available to help you create requirements. Stake-
holders of the sample mobile banking application introduced in Chapter 7 might
include the following:

 » People who interact with customers on a regular basis, such as customer
service representatives or bank branch personnel.

 » Business experts for the different areas where your product’s customers
interact. For example, XYZ Bank might have one manager in charge of
checking accounts, another manager in charge of savings accounts, and a
third manager in charge of online bill payment services. If you’re creating a
mobile banking application, all these people would be project stakeholders.

 » Users of your product, if they’re available.

 » Experts of the type of product you’re creating. For example, a developer who
has created mobile applications, a marketing manager who knows how to
create mobile campaigns, and a user experience specialist who specializes
in mobile interfaces all might be helpful on the sample XYZ Bank mobile
banking project.

CHAPTER 8 Planning Releases and Sprints 143

 » Technical stakeholders. These are people who work with the systems that
might need to interact with your product.

Identifying users
Your customers and stakeholders provide requirements for the product owner to
vet for placement on your product backlog. Your customers may or may not be the
same people who will use your product. Knowing who your end users are and how
they will interact with your product drive how you define and implement each
requirement on your product roadmap.

With your product roadmap visualized, you can identify each type of user. For the
mobile banking application, you would have individual and business bankers. The
individual category would include youth, young adults, students, and single, mar-
ried, retired, and wealthy users. Businesses of all sizes might be represented.
Employee users would include tellers, branch managers, account managers, and
fund managers. Each type of user will interact with your application in different
ways and for different reasons. Knowing who these people are enables you to bet-
ter define the purpose and desired benefits of each of their interactions.

We like to define users using personas, or a written description about a type of user
represented by a fictitious person. For instance, “Robert is a 65-year-old retired engi-
neer who is spending his retirement traveling the world. His net worth is $1,000,000,
and he has residual income from several investment real estate properties.”

“Robert” represents 30 percent of XYZ Bank’s customers, and a good portion of
the product roadmap includes features that someone like Robert will use. Instead
of repeating all the details about Robert every time the scrum team discusses
these features, they can simply refer to the type of user as “Robert.” The product
owner might identify several of these, as needed, and will even print the descrip-
tions with a stock photo of what Robert might look like and post them on the wall
in the team’s work area to refer to throughout the project.

Know who your users are, so you can develop features they’ll actually use.

Suppose that you’re the product owner for the XYZ Bank’s mobile banking project.
You’re responsible for the department that will bring the product to market,
 preferably in the next six months. You have the following ideas about the applica-
tion’s users:

 » The customers (the end users of the application) probably want quick access
to up-to-date information about their balances and recent transactions.

 » Maybe the customers are about to buy a large-ticket item, and they want to
make sure they can charge it.

144 PART 3 Agile Planning and Execution

 » Maybe the customers’ ATM cards were just refused, but they have no idea
why, and they want to check recent transactions for possible fraudulent
activities.

 » Maybe the customers just realized that they forgot to pay their credit card bill
and will have penalty charges if they don’t pay the card today.

Who are your personas for this application? Here are a few examples:

 » Persona #1: Jason is a young, tech-savvy executive who travels a lot. When he
has a spare moment, he wants to handle personal business quickly. He
carefully invests his money in high-interest portfolios. He keeps his avail-
able cash low.

 » Persona #2: Carol is a small-business owner who stages properties when
clients are trying to sell their home. She shops at consignment centers and
often finds furnishings she wants to buy for her clients.

 » Persona #3: Nick is a student who lives on student loans and a part-time job.
He knows he can be flaky with money because he’s flaky with everything else.
He just lost his checkbook.

Your product stakeholders can help you create personas. Find people who are
experts on the day-to-day business for your product. Those stakeholders will
know a lot about your potential customers.

Determining product requirements and
creating user stories
After you have identified your different customers, you can start to determine
product requirements and create user stories for the personas. A good way to cre-
ate user stories is to bring your stakeholders together for a user story creation
session.

Have the stakeholders write down as many requirements as they can think of,
using the user story format. One user story for the project and personas from the
preceding sections might be as follows:

 » Front side of card:

• Title See bank account balance

• As Jason,

• I want to see my checking account balance on my smartphone

• so that I can see how much money I have in my checking account

CHAPTER 8 Planning Releases and Sprints 145

 » Back side of card:

• When I sign into the XYZ Bank mobile application, my checking account
balance appears at the top of the page.

• When I sign into the XYZ Bank mobile application after making a purchase
or a deposit, my checking account balance reflects that purchase or
deposit.

You can see sample user stories in card format in Figure 8-2.

Be sure to continuously add and prioritize new user stories to your product back-
log. Keeping your product backlog up-to-date will help you have the highest-
priority user stories when it is time to plan your sprint.

Throughout an agile project, you will create new user stories. You’ll also take
existing large requirements and decompose them until they’re manageable
enough to work on during a sprint.

FIGURE 8-2:
Sample user

stories.

146 PART 3 Agile Planning and Execution

Breaking down requirements
You refine requirements many times throughout an agile project. For example:

 » When you create the product roadmap (see Chapter 7), you create features
(capabilities your customers will have after you develop the features), as well
as themes (logical groups of features). Although features are intentionally
large, we require features at the product roadmap level to be no larger than
144 story points on the Fibonacci scale.

 » When you plan releases, you break down the features into more concise user
stories. User stories at the release plan level can be either epics, very large user
stories with multiple actions, or individual user stories, which contain a single
action. For our clients, user stories at the release plan level should be no larger
than 34 story points. You find out more about releases later in this chapter.

 » When you plan sprints, you can break down user stories even further. You
also identify individual tasks associated with each user story in the sprint. For
our clients, user stories at the sprint level should be no larger than eight story
points. Tasks will be estimated in hours and should be no larger than what
can be accomplished in a day.

To decompose requirements, you’ll want to think about how to break down the
requirement into individual actions. Table 8-1 shows a requirement from the XYZ
Bank application introduced in Chapter 7 that is decomposed from the theme level
down to the user story level.

TABLE 8-1	 Decomposing a Requirement
Requirement Level Requirement

Theme See bank account data on a mobile device.

Features See account balances.

See a list of recent withdrawals or purchases.

See a list of recent deposits.

See my upcoming automatic bill payments.

See my account alerts.

Epic user stories — decomposed from “see
account balances”

See checking account balance.

See savings account balance.

See loan balance.

See investment account balance.

See retirement account balance.

CHAPTER 8 Planning Releases and Sprints 147

USER STORIES AND THE INVEST APPROACH
You may be asking, just how decomposed does a user story have to be? Bill Wake, in his
blog at XP123.com, describes the INVEST approach to ensure quality in user stories. We
like his method so much we include it here.

Using the INVEST approach, user stories should be

• Independent: To the extent possible, a story should need no other stories to imple-
ment the feature that the story describes.

• Negotiable: Not overly detailed. The user story has room for discussion and an
expansion of details.

• Valuable: The story demonstrates product value to the customer. The story
describes features, not technical tasks to implement it. The story is in the user’s
language and is easy to explain. The people using the product or system can under-
stand the story.

• Estimable: The story is descriptive, accurate, and concise, so the developers can
generally estimate the work necessary to create the functionality in the user story.

• Small: It is easier to plan and accurately estimate small user stories. A good rule of
thumb is that the development team can complete 6-10 user stories in a sprint.

• Testable: You can easily validate the user story, and the results are definitive.

Requirement Level Requirement

User stories — decomposed from “see checking
account balance”

See a list of my accounts once securely logged in.

Select and view my checking account.

See account balance changes after withdrawals.

See account balance changes after purchases.

See day’s end account balance.

See available account balance.

See mobile application navigation items.

Change account view.

Log out of mobile application.

148 PART 3 Agile Planning and Execution

Estimation poker
As you refine your requirements, you need to refine your estimates as well. It’s
time to have some fun!

One of the most popular ways of estimating user stories is by playing estimation
poker, sometimes called planning poker, a game to determine user story size and to
build consensus among the development team members.

The scrum master can help coordinate estimation, and the product owner can
provide information about features, but the development team is responsible for
estimating the level of effort required for the user stories. After all, the develop-
ment team has to do the work to create the features that those stories describe.

To play estimation poker, you need a deck of cards like the one in Figure 8-3. You
can get a digital version online at our website (www.platinumedge.com/
estimationpoker), or you can make your own with index cards and markers. The
numbers on the cards are from the Fibonacci sequence.

The Fibonacci sequence follows this progression:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, and so on

Each number after the first two is the sum of the previous two numbers.

Each user story receives an estimate relative to other user stories. For instance, a
user story that is a 5 requires more work than a 3, a 2, and a 1. It is about 5 times
as much effort as a 1, more than double the effort of a 2, and roughly the amount
of effort as a 3 and a 2 combined. It is not as much effort as an 8, but is just over
half the effort of an 8.

As user stories and epic user stories increase in size, the difference between Fibo-
nacci numbers gets bigger. Acknowledging these increasing gaps in precision for
larger requirements is why the Fibonacci sequence works so well for relative
estimation.

FIGURE 8-3:
A deck of

estimation poker
cards.

http://www.platinumedge.com/estimationpoker
http://www.platinumedge.com/estimationpoker

CHAPTER 8 Planning Releases and Sprints 149

To play estimation poker, follow these steps:

1. Provide each member of the development team with a deck of estima-
tion poker cards.

2. From the list of user stories presented by the product owner, the team
agrees on one user story that would be a 5.

The team follows two rules: (1) The development team should not allow any
single user story larger than an 8 to be pulled into a sprint, and (2) scrum
teams should be able to complete roughly 6-10 user stories in a sprint.

The scrum master helps the development team reach consensus by using fist
of five or thumbs up/thumbs down (as described in Chapter 6). This user story
becomes the anchor story.

3. The product owner reads a high-priority user story to the players.

4. Each player selects a card representing his or her estimate of the effort
involved in the user story and lays the card facedown on the table.

The players should compare the user story to other user stories they have
estimated. (The first time through, the players compare the user story to only
the anchor story.) Make sure no other players can see your card.

5. All players turn over their cards simultaneously.

6. If the players have different story points:

a. It’s time for discussion.

The players with the highest and lowest scores talk about their assumptions
and why they think the estimate for the user story should be higher or
lower, respectively. The players compare the effort for the user story
against the anchor story. The product owner provides more clarification
about the story, as necessary.

b. Once everyone agrees on assumptions and has any necessary clarifications, the
players reevaluate their estimates and place their new selected cards on
the table.

c. If the story points are different, the players repeat the process, usually up to
three times.

d. If the players can’t agree on the estimated effort, the scrum master helps the
development team determine a score that all the players can support (he or she
may use fist of five or thumbs up/thumbs down, as described in Chapter 6), or
determine that the user story requires more detail or needs to be further
broken down.

7. The players repeat Steps 3 through 6 for each user story.

150 PART 3 Agile Planning and Execution

Consider each part of the definition of done — developed, integrated, tested, and
documented — when you create estimates.

You can play estimation poker at any point — but definitely play during the prod-
uct roadmap development and as you progressively break down user stories for
inclusion in releases and sprints. With practice, the development team will get
into a planning rhythm and become more adept at quickly estimating.

On average, development teams will spend about 10 percent of their time on a
project decomposing requirements, including estimating and reestimating. Make
your estimation poker games fun! Bring in snacks, take breaks as needed, use
humor, and keep the mood light.

Affinity estimating
Estimation poker can be effective, but what if you have many user stories? Playing
estimation poker for, say, 500 user stories could take a long time. You need a way
to focus on only the user stories you must discuss to gain consensus.

When you have a large number of user stories, many of them are probably similar
and would require a similar amount of effort to complete. One way to determine
the right stories for discussion is to use affinity estimating. In affinity estimating,
you quickly categorize your user stories and then apply estimates to these catego-
ries of stories.

When estimating by affinity, write your user stories on index cards or sticky notes.
These types of user story cards work well when quickly categorizing stories.

Affinity estimating can be a fast and furious activity — the development team
may choose to have the scrum master help facilitate affinity estimating sessions.
To estimate by affinity, follow these steps:

1. Taking no more than 60 seconds for each category, the development
team agrees on a single user story in each of the following categories:

• Extra-small user story

• Small user story

• Medium user story

• Large user story

• Extra-large user story

• Epic user story that is too large to come into the sprint

• Needs clarification before estimating

CHAPTER 8 Planning Releases and Sprints 151

2. Taking no more than 60 seconds per user story, the development team
puts all remaining stories into the categories listed in Step 1.

If you’re using index cards or sticky notes for your user stories, you can
physically place those cards into categories on a table or a whiteboard,
respectively. If you split the user stories among the development team
members, having each development team member categorize a group of
stories, this step can go quickly!

3. Taking another 30 minutes, maximum, for each 100 stories, the develop-
ment team reviews and adjusts the placement of the user stories.

The entire development team must agree on the placement of the user stories
into size categories.

4. The product owner reviews the categorization.

5. When the product owner’s expected estimate and the team’s actual
estimate differ by more than one story size, they discuss that user story.

The development team may or may not decide to adjust the story size.

6. The development team plays estimation poker on the user stories in both
the epic and the needs clarification categories.

The number of user stories in these categories should be minimal.

Note that after the product owner and the development team discuss
clarifications, the development team has the final say on the user story size.

User stories in the same size category will have the same user story score. You can
play a round of estimation poker to double-check a few, but you won’t need to
waste time in unnecessary discussion for every user story.

Story sizes are like T-shirt sizes and should correspond to Fibonacci scale num-
bers, as shown in Figure 8-4.

FIGURE 8-4:
Story sizes as

T-shirt sizes and
their Fibonacci

numbers.

152 PART 3 Agile Planning and Execution

You can use the estimating and prioritizing techniques in this chapter for require-
ments at any level, from themes and features down to single user stories.

That’s it. In a few hours, your entire product backlog was estimated. In addition,
your scrum team has a shared understanding of what the requirements mean,
having discussed them face to face rather than relying on interpretations of
extensive documentation.

Release Planning
A release is a group of usable product features that you deploy to the market. A
release does not need to include all the functionality outlined in the product road-
map but should include at least the minimal marketable features, the smallest group
of product features that you can effectively deploy and promote in the market-
place. Your early releases will exclude many of the medium- and low-priority
requirements you identified during the product roadmap stage.

When planning a release, you establish the next set of minimal marketable
 features and identify an imminent product launch date around which the team can
mobilize. As when creating the vision statement and the product roadmap, the
product owner is responsible for creating the release goal and establishing the
release date. However, the development team’s estimates, with the scrum mas-
ter’s facilitation, contribute to the process.

Release planning is stage 3 in the Roadmap to Value (refer to Chapter 7 to see the
roadmap as a whole). Figure 8-5 shows how release planning fits into an agile
project.

Release planning involves completing two key activities:

 » Revising the product backlog: In Chapter 7, we tell you that the product
backlog is a comprehensive list of all the user stories you currently know for

FIGURE 8-5:
Release planning

as part of the
Roadmap to

Value.

CHAPTER 8 Planning Releases and Sprints 153

your project, whether or not they belong in the current release. Keep in mind
that your list of user stories will probably change throughout the project.

 » Creating the release plan: This activity consists of the release goal, release
target date, and prioritization of product backlog items that support the
release goal. The release plan provides a midrange goal that the team can
accomplish.

Don’t create a new, separate backlog during release planning. The task is unnec-
essary and reduces the product owner’s flexibility. Prioritizing the existing prod-
uct backlog based on the release goal is sufficient and enables the product owner
to have the latest information when he or she commits to the scope during sprint
planning.

The product backlog and release plan are some of the most important communi-
cation channels between the product owner and the development team. In
 Chapter 7, you find out how to complete a product backlog. How to create a release
plan is described next.

The release plan contains a release schedule for a specific set of features. The
product owner creates a release plan at the start of each release. To create a release
plan, follow these steps:

1. Establish the release goal.

The release goal is an overall business goal for the product features in your
release. The product owner and development team collaborate to create a
release goal based on business priorities and the development team’s
development speed and capabilities.

2. Identify a target release date.

Some scrum teams determine release dates based on the completion of
functionality; others may have hard dates, such as March 31 or September 1.

3. Review the product backlog and the product roadmap to determine the
highest-priority user stories that support your release goal (the minimum
marketable features).

These user stories will make up your first release.

We like to achieve releases with about 80 percent of the user stories, using the
final 20 percent to add robust features that will meet the release goal while
adding to the product’s “wow” factor.

4. Refine the user stories in your release goal.

During release planning, dependencies, gaps, or new details are often identi-
fied that affect estimates and prioritization. This is the time to make sure the

154 PART 3 Agile Planning and Execution

portion of the product backlog supporting your release is sized appropriately.
We like to make sure that requirements supporting the current release goal
are sized no larger than 34. The development team helps the product owner
by updating estimates for any added or revised user stories, and commits to
the release goal and scope with the product owner.

5. Estimate the number of sprints needed, based on the scrum team’s
velocity.

Scrum teams use velocity to plan how much work they can take on in a release
and sprint. Velocity is the sum of all user story points completed within a sprint.
So, if a scrum team completed six user stories during its first sprint with sizes 8,
5, 5, 3, 2, 1, their velocity for the first sprint is 24. The scrum team would plan
its second sprint keeping in mind that it completed 24 story points during the
first sprint.

After multiple sprints, scrum teams can use their running average velocity as
an input to determine how much work they can take on in a sprint, as well as
to extrapolate their release schedule by dividing the total number of story
points in the release by their average velocity. You learn more about velocity in
Chapter 13.

6. Identify work necessary to release that can’t be completed within a
sprint. Plan a release sprint, if necessary, and determine how long it
should be.

Some project teams add a release sprint to some releases to conduct activities
that are unrelated to product development but necessary to release the
product to customers. If you need a release sprint, be sure to factor that into
the date you choose. You can find more about release sprints in Chapter 11.

Some tasks, such as security testing or load testing a software project, can’t be
completed within a sprint, because the security or load testing environments
take time to set up and request. Although release sprints allow scrum teams to
plan for these types of activities, doing so is an anti-pattern, or the opposite of
being agile. Your goal should be to complete all work required for functionality
to be shippable at the end of each sprint.

Not all agile projects use release planning. Some scrum teams release functional-
ity for customer use with every sprint, or even every day. The development team,
product, organization, customers, stakeholders, and the project’s technological
complexity can all help determine your approach to product releases.

The planned releases now go from a tentative plan to a more concrete goal.
 Figure 8-6 represents a typical release plan.

CHAPTER 8 Planning Releases and Sprints 155

Bear in mind the pen-pencil rule: You can commit to (write in pen) the plan for
the first release, but anything beyond the first release is tentative (written in pen-
cil). In other words, use just-in-time planning (see Chapter 7) for each release.
After all, things change, so why bother getting microscopic too early?

Sprint Planning
In agile projects, a sprint is a consistent iteration of time in which the development
team creates a specific group of product capabilities from start to finish. At the
end of each sprint, the functionality that the development team has created should
be working, ready to demonstrate, and potentially shippable to the customer.

Sprints should be the same length within a project. Keeping the sprint lengths
consistent helps the development team measure its performance and plan better
at each new sprint.

Sprints generally last one to four weeks. Four weeks is the longest amount of time
any sprint should last; longer iterations make changes riskier, defeating the pur-
pose of being agile. We rarely see sprints lasting longer than two weeks, and more
often see sprints lasting a week. One-week sprints are a natural cycle with the
Monday-to-Friday business week that structurally prevents weekend work. Some
scrum teams work in one-day sprints where priorities change on a daily basis.
Market and customer needs are changing more and more quickly, and the amount
of time you can afford between opportunities to gather customer feedback only
gets shorter. Our rule of thumb is that your sprint shouldn’t be longer than your
stakeholders can consistently go without changes in priority regarding what the
scrum team should be working on in the sprint.

FIGURE 8-6:
Sample release

plan.

156 PART 3 Agile Planning and Execution

Each sprint includes the following:

 » Sprint planning at the beginning of the sprint

 » Daily scrum meetings

 » Development time — the bulk of the sprint

 » A sprint review and a sprint retrospective at the end of the sprint

Discover more about daily scrums, sprint development, the sprint review, and the
sprint retrospective in Chapters 9 and 10. In this chapter, you find out how to plan
sprints.

Sprint planning is stage 4 in the Roadmap to Value, as you can see in Figure 8-7.
The entire scrum team — the Product owner, the scrum master, and the develop-
ment team — works together to plan sprints.

The sprint backlog
The sprint backlog is a list of user stories associated with the current sprint and
related tasks. When planning your sprint, you do the following:

 » Establish goals for your sprint.

 » Choose the user stories that support those goals.

 » Break user stories into specific development tasks.

 » Create a sprint backlog. The sprint backlog consists of the following:

• The list of user stories within the sprint in order of priority.

• The relative effort estimate for each user story.

• The tasks necessary to develop each user story.

• The effort, in hours, to complete each task.

At the task level, you estimate the number of hours each task will take to
complete, instead of using story points. Because your sprint has a specific

FIGURE 8-7:
Sprint planning as

part of the
Roadmap to

Value.

CHAPTER 8 Planning Releases and Sprints 157

length, and thus a set number of available working hours, you can use
the time each task takes to determine whether the tasks will fit into
your sprint.

Each task should take one day or less for the development team to complete.

Some mature development teams may not need to estimate their tasks as
they get more consistent at breaking down their user stories into execut-
able tasks. Estimating tasks is helpful for newer development teams to
ensure that they understand their capacity and plan each sprint
appropriately.

• A burndown chart, which shows the status of the work the development
team has completed.

Tasks in agile projects should take a day or less to complete for two reasons. The
first reason involves basic psychology: People are motivated to get to the finish
line. If you have a task that you know you can complete quickly, you are more
likely to finish it on time, just to check it off your to-do list. The second reason is
that one-day tasks provide good red flags that a project might be veering off
course. If a development team member reports that he or she is working on the
same task for more than one or two days, that team member probably has a road-
block. The scrum master should take the opportunity to investigate what might be
keeping the team member from finishing work. (For more on managing road-
blocks, see Chapter 9.)

The development team collaborates to create and maintain the sprint backlog, and
only the development team can modify the sprint backlog. The sprint backlog
should reflect an up-to-the-day snapshot of the sprint’s progress. Figure 8-8
shows a sample sprint backlog at the end of the sprint planning meeting. You can
use this example, find other samples, or even use a whiteboard.

The sprint planning meeting
On the first day of each sprint, often a Monday morning, the scrum team holds the
sprint planning meeting.

For a successful sprint planning meeting, make sure everyone involved in the ses-
sion (the product owner, the development team, the scrum master, and anyone
else the scrum team requests) is dedicated to the effort for the entire meeting.

Base the length of your sprint planning meeting on the length of your sprints:
Meet for no more than two hours for every week of your sprints. This timebox is
one of the rules of scrum and helps ensure that the meeting stays focused and on
track. Figure 8-9 illustrates this and is a good quick reference for your sprint
planning meeting lengths.

158 PART 3 Agile Planning and Execution

On agile projects, the practice of limiting the time of your meetings is sometimes
called timeboxing. Keeping your meetings timeboxed ensures that the develop-
ment team has the time it needs to create the product.

You’ll split your sprint planning meetings into two parts: one to set a sprint goal
(the “why”) and choose user stories for the sprint (the “what”), and another to
break down your user stories into individual tasks (the “how” and “how much”).
The details on each part are discussed next.

FIGURE 8-8:
Sprint backlog

example.

FIGURE 8-9:
Ratio of sprint

planning meeting
to sprint length.

CHAPTER 8 Planning Releases and Sprints 159

Part 1: Setting goals and choosing user stories
In the first part of your sprint planning meeting, the product owner and develop-
ment team, with support from the scrum master, do the following:

1. Discuss and set a sprint goal.

2. Review the user stories from the product backlog that support the sprint goal
and revisit their relative estimates.

3. If needed, create user stories to fill gaps to achieve the sprint goal.

4. Determine what the team can commit to in the current sprint.

At the beginning of your sprint planning meeting, the product owner should pro-
pose a sprint goal and then together with the development team discuss and agree
on the sprint goal. The sprint goal should be an overall description of the working
customer functionality that the team will demonstrate and possibly release at the
end of the sprint. The goal is supported by the highest-priority user stories in the
product backlog. A sample sprint goal for the mobile banking application (refer to
Chapter 7) might be as follows:

Demonstrate the ability of a mobile banking customer to log in and view account
balances and pending and prior transactions.

Using the sprint goal, you determine the user stories that belong in the sprint. You
also take another look at the estimates for those stories and make changes to the
estimates if necessary. For the mobile banking application sample, the group of
user stories for the sprint might include the following:

 » Log in and access my accounts.

 » View account balances.

 » View pending transactions.

 » View prior transactions.

All these would be high-priority user stories in the product backlog that support
the sprint goal.

The second part of reviewing user stories is confirming that the effort estimates
for each user story have been reviewed and adjusted if needed, and reflect the
development team’s current knowledge of the user story. Adjust the estimate if
necessary. With the product owner in the meeting, resolve any outstanding ques-
tions. At the beginning of the sprint, the scrum team has the most up-to-date
knowledge about the system and the customer’s needs up to this point in the

160 PART 3 Agile Planning and Execution

project, so make sure the development team and product owner have one more
chance to clarify and size the user stories going into the sprint.

Finally, after you know which user stories support the sprint goal, the develop-
ment team should agree and confirm that it can complete the goal planned for the
sprint. If any of the user stories you discussed earlier don’t fit in the current sprint,
remove them from the sprint and add them back into the product backlog.

Always plan and work one sprint at a time. An easy trap to fall into is to place user
stories into specific future sprints. For example, when you’re still planning sprint
1, don’t decide that user story X should go into sprint 2 or 3. Instead, keep the
ordered list of user stories up to date in the product backlog and focus on always
developing the next highest-priority stories. Commit to planning only for the
current sprint.

After you have a sprint goal, user stories for the sprint, and a commitment to the
goal, move on to the second part of sprint planning.

Because a sprint planning meeting for sprints longer than one week might last a
few hours, you might want to take a break between the two parts of the meeting.

Part 2: Breaking down user stories into
tasks for the sprint backlog
In the second part of the sprint planning meeting, the scrum team does the
following:

1. The development team creates the sprint backlog tasks associated with each
user story. Make sure that tasks encompass each part of the definition of
done: developed, integrated, tested, and documented.

2. The development team double-checks that it can complete the tasks in the
time available in the sprint.

3. Each development team member should choose his or her first task to
accomplish before leaving the meeting.

Development team members should each work on only one task on one user story
at a time to enable swarming — the practice of the entire development team work-
ing on one user story until completion. Swarming can be an efficient way to com-
plete work in a short amount of time. In this way, scrum teams avoid getting to
the end of the sprint with all user stories started but few finished.

At the beginning of part two of the meeting, break the user stories into individual
tasks and allocate a number of hours to each task. The development team’s target

CHAPTER 8 Planning Releases and Sprints 161

should be completing a task in a day or less. For example, a user story for the XYZ
Bank mobile application might be as follows:

Log in and access my accounts.

The team decomposes this user story into tasks, such as the following:

 » Write the unit test.

 » Create an authentication screen for a username and password, with a Submit
button.

 » Create an error screen for the user to reenter credentials.

 » Create a screen (once logged in) displaying a list of accounts.

 » Using authentication code from the online banking application, rewrite code
for an iPhone/iPad application.

 » Create calls to the database to verify the username and password.

 » Refactor code for mobile devices.

 » Write the integration test.

 » Update the wiki documentation.

After you know the number of hours that each task will take, do a final check to
make sure that the number of hours available to the development team reasonably
matches the total of the tasks’ estimates. If the tasks exceed the hours available,
one or more user stories will have to come out of the sprint. Discuss with the
product owner what tasks or user stories are the best to remove.

If extra time is available within the sprint, the development team might be able to
include another user story. Just be careful about over-committing at the begin-
ning of a sprint, especially in the project’s first few sprints.

After you know which tasks will be part of the sprint, choose what you will work
on first. Each development team member should select his or her initial task to
accomplish for the sprint. Team members should focus on one task at a time.

As the development team members think about what they can complete in a
sprint, use the following guidelines to ensure that they don’t take on more work
than they can handle while they’re learning new roles and techniques:

 » Sprint 1: 25 percent of what the development team thinks it can accomplish.
Include overhead for learning the new process and starting a new project.

162 PART 3 Agile Planning and Execution

 » Sprint 2: 50 percent of what the development team thinks it can accomplish.

 » Sprint 3: 75 percent of what the development team thinks it can accomplish.

 » Sprint 4 and forward: 100 percent. The development team will have devel-
oped a rhythm and velocity, gained insight into agile principles and the
project, and will be working at close to full pace.

The scrum team should constantly evaluate the sprint backlog against the devel-
opment team’s progress on the tasks. At the end of the sprint, the scrum team can
also assess estimation skills and capacity for work during the sprint retrospective
(see Chapter 10). This evaluation is especially important for the first sprint.

For the sprint, how many total working hours are available? In a 40-hour week,
you could wisely assume, for a two-week sprint, that nine working days are avail-
able to develop user stories. If you assume each full-time team member has
35 hours per week (7 productive hours per day) to focus on the project, the number
of working hours available is

Number of team members × 7 hours × 9 days

Why nine days? Half of day one is taken up with planning, and half of day ten is
taken up with the sprint review (when the stakeholders review the completed
work) and the sprint retrospective (when the scrum team identifies improve-
ments for future sprints). That leaves nine days of development.

After the sprint planning is finished, the development team can immediately start
working on the tasks to create the product!

The scrum master should make sure the product roadmap, product backlog, and
sprint backlog are in a prominent place and accessible to everyone. This allows
managers and other interested parties to view the artifacts and get the status of
progress without interrupting the development team.

CHAPTER 9 Working throughout the Day 163

Chapter 9

IN THIS CHAPTER

 » Planning each day

 » Tracking daily progress

 » Developing and testing every day

 » Ending the day

Working throughout
the Day

It’s Tuesday, 9 a.m. Yesterday, you completed sprint planning, and the develop-
ment team started work. For the rest of the sprint, you’ll be working cyclically,
where each day follows the same pattern.

In this chapter, you find out how to use agile principles daily throughout each
sprint. You see the work that you will do every day as part of a scrum team: plan-
ning and coordinating your day, tracking progress, creating and verifying usable
functionality, and identifying and dealing with impediments to your work. You
see how the different scrum team members work together each day during the
sprint to help create the product.

Planning Your Day: The Daily Scrum
On agile projects, you make plans throughout the entire project — and on a daily
basis. Agile development teams start each workday with a daily scrum meeting to
note completed items, to identify impediments, or roadblocks, requiring scrum
master involvement, and to synchronize and plan what each team member will do
during the day to achieve the sprint goal.

164 PART 3 Agile Planning and Execution

The daily scrum is Stage 5 on the Roadmap to Value. You can see how the sprint
and the daily scrum fit into an agile project in Figure 9-1. Note how they both
repeat.

In the daily scrum meeting, each development team member makes the following
three statements, which enable team coordination:

 » Yesterday, I completed (state items completed).

 » Today, I’m going to take on (state task).

 » My impediments are (state impediments, if any).

Other names you might hear for the daily scrum meeting are the daily huddle or the
daily standup meeting. Daily scrum, daily huddle, and daily standup all refer to the
same thing.

We also have the scrum master address these three statements regarding the
team’s impediments:

 » Yesterday, I resolved to (state impediments completed).

 » Today, I’m going to work on removing (state impediment).

 » The impediments I’m going to escalate are (state impediments you need
assistance with, if any).

One of the rules of scrum is that the daily scrum meeting lasts 15 minutes or less;
longer meetings eat into the development team’s day. The meeting is also referred
to as the daily standup because standing encourages shorter meetings. You can
also use props to keep daily scrum meetings quick.

FIGURE 9-1:
The sprint and

the daily scrum in
the Roadmap

to Value.

CHAPTER 9 Working throughout the Day 165

We start meetings by tossing a squeaky burger-shaped dog toy — don’t worry; it’s
clean — to a random development team member. Each person makes his or her three
statements and then passes the squeaky toy to someone else. If people are long-
winded, we change the prop to a 500-page ream of copy paper, which weighs about
five pounds. Each person can talk for as long as he or she can hold the ream out to
one side. Either meetings will quickly become shorter, or development team mem-
bers will quickly build up their arm strength — in our experience, it’s the former.

To keep daily scrums brief and effective, the scrum team can follow several
guidelines:

 » Anyone may attend a daily scrum, but only the development team, the
scrum master, and the product owner may talk. The daily scrum is the
scrum team’s opportunity to coordinate daily activities, not take on additional
requirements or changes from stakeholders. Stakeholders can discuss
questions with the scrum master or product owner afterward, but stakehold-
ers should not approach the development team.

 » The focus is on immediate priorities. The scrum team should review only
completed tasks, tasks to be done, and roadblocks.

 » Daily scrum meetings are for coordination, not problem-solving. The
development team and the scrum master are responsible for removing
roadblocks during the day.

 » To keep meetings from drifting into problem-solving sessions, scrum
teams can

• Create a list on a whiteboard to keep track of issues that need immediate
attention, and then address those issues directly after the meeting with
only those team members who need to be involved.

• Hold a meeting, called an after-party, to solve problems after the daily
scrum is finished. Some scrum teams schedule time for an after-party
every day; others meet only as needed.

 » The daily scrum is for peer-to-peer coordination. It is not used for an
individual to report status to one person, such as the scrum master or
product owner. Status is reported at the end of each day in the sprint backlog.

 » Such a short meeting must start on time. It is not unusual for the scrum
team to have creative punishments for tardiness (such as doing pushups or
adding penalty money into a team celebration fund or another inconvenience).
Whatever method is used, the scrum team agrees on it together; the method
is not dictated to them by someone outside the team, such as a manager.

 » The scrum team may request that daily scrum attendees stand up —
rather than sit down — during the meeting. Standing up makes people
eager to finish the meeting and get on with the day’s work.

166 PART 3 Agile Planning and Execution

When you have only 15 minutes to meet, every minute counts. Scrum teams should
not be afraid to make being late to the daily scrum appropriately unpleasant. If
members of the team love to sing, for example, performing a karaoke song
 probably won’t have much of an effect. We’ve helped cure perpetual tardiness
problems overnight by suggesting that the scrum team change its punishment
from a $1 to a $20 contribution to the team celebration fund.

Daily scrum meetings are effective for keeping the development team focused on
the right tasks for any given day. Because the development team members are
accountable for their work in front of their peers, they are less likely to stray from
their daily commitments. Daily scrum meetings also help ensure that the scrum
master and development team can deal with roadblocks immediately. These
 meetings are so useful that even organizations that are not using any other agile
techniques sometimes adopt daily scrums.

We like to hold daily scrum meetings one hour after the development team’s normal
start time to allow for traffic jams, emails, coffee, and other rituals when starting
the day. Having a later scrum meeting also allows the development team time to
review defect reports from automated testing tools that were run the night before.

The daily scrum is for discussing progress and planning each upcoming day. As
you see next, you also track progress — not just discuss it — every day.

Tracking Progress
You also need to track the progress of your sprint daily. This section discusses
ways to keep track of the tasks in your sprint.

Two tools for tracking progress are the sprint backlog and a task board. Both the
sprint backlog and the task board enable the scrum team to show the sprint’s
progress to anyone at any given time.

The Agile Manifesto values individuals and interactions over processes and tools.
Make sure your tools support, rather than hinder, your scrum team. Modify or even
replace tools if you have to. Read more about the Agile Manifesto in Chapter 2.

The sprint backlog
During sprint planning, you concentrate on adding user stories and tasks to the
spring backlog. During the sprint itself, you update the sprint backlog daily, track-
ing progress of the development team’s tasks for each working day. Figure 9-2

CHAPTER 9 Working throughout the Day 167

shows the sprint backlog for this book’s sample application, the XYZ Bank’s
mobile banking application, as it would appear after day 4 of the first sprint.
(Chapter 8 discusses details of the sprint backlog.)

Make the sprint backlog available to the entire project team every day. That way,
anyone who needs to know the sprint status can find it instantly.

Near the top left of Figure 9-2, note the sprint burndown chart, which shows the
progress that the development team is making. You can see that the development
team members have completed tasks close to the even burn rate of their available
hours, and the product owner has accepted several user stories as complete.

You can include burndown charts on your sprint backlog and on your product
backlog. (This chapter concentrates on the sprint backlog.) Figure 9-3 shows the
burndown chart in detail.

A burndown chart is a powerful tool for visualizing progress and the work remain-
ing. The chart shows the following:

 » The outstanding work (in hours) on the first vertical axis

 » Time, in days along the horizontal axis

FIGURE 9-2:
Sample sprint

backlog.

168 PART 3 Agile Planning and Execution

Some sprint burndown charts, like the one in Figure 9-3, also show the outstand-
ing story points on a second vertical axis that is plotted against the same horizon-
tal time axis as hours of work remaining.

A burndown chart enables anyone, at a glance, to see the status of the sprint.
Progress is clear. By comparing the realistic number of hours available to the work
remaining, you can find out daily whether the effort is going as planned, is in bet-
ter shape than expected, or is in trouble. This information helps you determine
whether the development team is likely to accomplish the targeted number of user
stories and helps you make informed decisions early in the sprint.

You can create a sprint backlog using a spreadsheet and charting program such as
Microsoft Excel. You can also download our sprint backlog template, which
includes a burndown chart, from the book’s website at www.dummies.com/go/
agileprojectmanagementfd2e.

Figure 9-4 shows samples of burndown charts for sprints in different situations.
Looking at these charts, you can tell how the work is progressing:

 » 1. Expected: This chart shows a normal sprint pattern. The remaining work
hours rise and fall as the development team completes tasks, ferrets out
details, and identifies tactical work it may not have initially considered.
Although work occasionally increases, it is manageable, and the team
mobilizes to complete all user stories by the end of the sprint.

 » 2. More complicated: In this sprint, the work increased beyond the point at
which the development team felt it could accomplish everything. The team
identified this issue early, worked with the product owner to remove some user
stories, and still achieved the sprint goal. The key to scope changes within a
sprint is that they are always initiated by the development team — no one else.

FIGURE 9-3:
A burndown

chart.

http://www.dummies.com/go/agileprojectmanagementfd2e
http://www.dummies.com/go/agileprojectmanagementfd2e

CHAPTER 9 Working throughout the Day 169

 » 3. Less complicated: In this sprint, the development team completed some
critical user stories faster than anticipated and worked with the product
owner to identify additional user stories it could add to the sprint.

 » 4. Not participating: A straight line in a burndown means that the team
didn’t update the burndown or made zero progress that day. Either case is a
red flag for future problems.

Just like on a heartbeat graph, a horizontal straight line on a sprint burndown
chart is never a good thing.

 » 5. Lying (or conforming): This burndown pattern is common for a new agile
development team that might be accustomed to reporting the hours that
management expects, instead of the time the work really takes, and conse-
quently tends to adjust the team’s work estimates to the exact number of
remaining hours. This pattern often reflects a fear-based environment, where
the managers lead by intimidation.

 » 6. Failing fast: One of the strongest benefits of this simple visualization of
progress is the immediate proof of progress or lack thereof. This pattern
shows an example of a team that wasn’t participating or progressing. Halfway
through the sprint, the product owner decided to cut losses by killing the
sprint and starting a new sprint with a new sprint goal. Only product owners
can end a sprint early.

The sprint backlog helps you track progress throughout each sprint. You can also
refer to earlier sprint backlogs to compare progress from sprint to sprint. You
make changes to your process in each sprint (read more about the concept of
inspect and adapt in Chapter 10). Constantly inspect your work and adapt to make
it better. Hold on to those old sprint backlogs.

FIGURE 9-4:
Profiles of

burndown charts.

170 PART 3 Agile Planning and Execution

Another way to keep track of your sprint is by using a task board. Read on to find
out how to create and use one.

The task board
Although the sprint backlog is a great way to track and show project progress, it’s
probably in an electronic format, so it might not be immediately accessible to
anyone who wants to see it. Some scrum development teams use a task board
along with their sprint backlog. A task board provides a quick, easy view of the
items in the sprint that the development team is working on and has completed.

We like task boards because you can’t deny the status they show. Like the product
roadmap, the task board can be made up of sticky notes on a whiteboard. The task
board will have at least the following four columns, from left to right:

 » To Do: The user stories and tasks that remain to be accomplished are in the
far left column.

 » In Progress: User stories and tasks that the development team is currently
working on are in the In Progress column. Only one user story should be in
this column. Having more user stories in progress is an alert that develop-
ment team members are not working cross-functionally and, instead, are
hoarding desired tasks. You risk having multiple user stories partially done
instead of more user stories completely done by the end of the sprint.

 » Accept: After the development team completes a user story, it moves it to the
Accept column. User stories in the Accept column are ready for the product
owner to review and either provide feedback or accept.

 » Done: When the product owner has reviewed a user story and verifies that
the user story is complete, the product owner can move that user story to the
Done column.

Limit your work in progress! Only select one task at a time. Leave other tasks
available in the To Do column. Ideally, a development team will work on only one
user story at a time and swarm on the tasks of that user story to complete it
quickly.

Because the task board is tactile — people physically move a user story card
through its completion — it can engage the development team more than an elec-
tronic document ever could. The task board encourages thought and action just by
existing in the scrum team’s work area, where everyone can see the board.

Allowing only the product owner to move user stories to the Done column pre-
vents misunderstandings about user story status.

CHAPTER 9 Working throughout the Day 171

Figure 9-5 shows a typical task board. As you can see, the task board is a strong
visual representation of the work in progress.

The task board is a lot like a kanban board. Kanban is a Japanese term that means
visual signal. (For more on kanban boards, see Chapter 4.) Toyota created these
boards as part of its lean manufacturing process.

In Figure 9-5, the task board shows four user stories, each separated by a horizontal
line called swim lanes. The first user story is done. All tasks are completed, and the
product owner has accepted the work done. For the second user story, the develop-
ment work is completed but is waiting for acceptance by the product owner. The
third user story is in progress, and the fourth user story has not yet been started. At
a glance, the status of each user story is clear not only to the scrum team, making
tactical coordination faster and easier, but also to interested stakeholders.

Day-to-day work on an agile project involves more than just planning and track-
ing progress. In the next section, you see what most of your day’s work will
include, whether you’re a member of the development team, a product owner, or
a scrum master.

FIGURE 9-5:
Sample task

board.

172 PART 3 Agile Planning and Execution

Some development teams report status only with a task board and ask the scrum
master to convert the status into the sprint backlog. This process helps the scrum
master see trends and potential issues.

Agile Roles in the Sprint
Each member of a scrum team has specific daily roles and responsibilities during
the sprint. The day’s focus for the development team is producing shippable func-
tionality. For the product owner, the focus is on preparing the product backlog for
future sprints while supporting the development team’s execution of the sprint
backlog with real-time clarifications. The scrum master is the agile coach and
maximizes the development team’s productivity by removing roadblocks and pro-
tecting the development team from external distractions.

Following are descriptions of the tasks each member of the scrum team performs
during the sprint. If you’re a member of the development team, you

 » Select the tasks of highest need and complete them as quickly as possible.

 » Request clarification from the product owner when you are unclear about a
user story.

 » Collaborate with other development team members to design the approach
to a specific user story, seek help when you need it, and provide help when
another development team member needs it.

 » Conduct peer reviews on one another’s work.

 » Take on tasks beyond your normal role as the sprint demands.

 » Fully develop functionality as agreed to in the definition of done (described in
the next section, “Creating Shippable Functionality”).

 » Report daily on your progress completing tasks in the sprint backlog.

 » Alert the scrum master to any roadblocks you can’t effectively remove on
your own.

 » Achieve the sprint goal you committed to during sprint planning.

The product owner has the following tasks during the sprint:

 » Make investments required to keep development speed high.

 » Prioritize product functionality.

CHAPTER 9 Working throughout the Day 173

 » Represent the product stakeholders to the development team.

 » Report on cost and schedule status to project stakeholders.

 » Elaborate user stories with the development team so that the team clearly
understands what it is creating.

 » Provide immediate clarification and decisions about requirements to keep the
development team developing.

 » Remove business impediments brought to you by other members of the
scrum team.

 » Review completed functionality for user stories and provide feedback to the
development team.

 » Add new user stories to the product backlog as necessary and ensure that
new user stories support the product vision, the release goal, and the
sprint goal.

 » Look forward to the next sprint and elaborate user stories in readiness for the
next sprint planning meeting.

Nonverbal communication says a lot. Scrum masters can benefit from under-
standing body language to identify unspoken tensions in the scrum team.

If you’re a scrum master, you do the following during the sprint:

 » Uphold agile values and practices by coaching the product owner, the
development team, and the organization when necessary.

 » Shield the development team from external distractions.

 » Remove roadblocks, both tactically for immediate problems and strategically
for potential long-term issues. In Chapter 6, we compare the scrum master to
an aeronautical engineer, continually removing and preventing organizational
drag on the development team.

 » Facilitate consensus building in the scrum team.

 » Build relationships to foster close cooperation with people working with the
scrum team.

We often tell scrum masters, "Never lunch alone. Always be building relation-
ships." You never know when you will need to call in a favor on a project.

As you can see, each scrum team member has a specific job in the sprint. In the
next section, you see how the product owner and the development team work
together to create the product.

174 PART 3 Agile Planning and Execution

Creating Shippable Functionality
The objective of the day-to-day work of a sprint is to create shippable functional-
ity for the product in a form that can be delivered to a customer or user.

Within the context of a single sprint, a product increment or shippable functionality
means that a work product has been developed, integrated, tested, and docu-
mented according to the project definition of done and is deemed ready to release.
The development team may or may not release that product at the end of the
sprint — release timing depends on the release plan. The project may require
multiple sprints before the product contains the set of minimum marketable fea-
tures necessary to justify a market release.

It helps to think about shippable functionality in terms of user stories. A user
story starts out as a written requirement on a card. As the development team cre-
ates functionality, each user story becomes an action a user can take. Shippable
functionality equals completed user stories.

To create shippable functionality, the development team and the product owner
are involved in three major activities:

 » Elaborating

 » Developing

 » Verifying

During the sprint, any or all of these activities can be happening at any given time.
As you review them in detail, remember that they don’t always occur in a
linear way.

Elaborating
In an agile project, elaboration is the process of determining the details of a prod-
uct feature. Whenever the development team tackles a new user story, elaboration
ensures that any unanswered questions about a user story are answered so that
the process of development can proceed.

The product owner works with the development team to elaborate user stories,
but the development team should have the final say on design decisions. The
product owner should be available for consultation if the development team needs
further clarification on requirements throughout the day.

CHAPTER 9 Working throughout the Day 175

Collaborative design is a major factor for successful projects. Remember these
agile principles: “The best architectures, requirements, and designs emerge from
self-organizing teams,” and “Business people and developers must work together
daily throughout a project.” Watch out for development team members who have
a tendency to try to work alone on elaborating user stories. If a member of the
development team separates himself or herself from the team, perhaps part of the
scrum master’s job should be coaching that person on upholding agile values and
practices.

Developing
During product development, most of the activity, naturally, falls to the develop-
ment team. The product owner continues to work with the development team on an
as-needed basis to provide clarification and to approve developed functionality.

The development team should have immediate access to the product owner. Ide-
ally, the product owner sits with the development team when he or she is not
interacting with customers and stakeholders.

The scrum master should focus on protecting the development team from outside
disruptions and removing impediments that the development team encounters.

To sustain agile practices during development, be sure to implement the type of
development practices from extreme programming we show you in Chapter 4,
including the following:

 » Pair up development team members to complete tasks. Doing so
enhances the quality of the work and encourages the sharing of skills.

 » Follow the development team’s agreed-upon design standards. If you
can’t follow them for whatever reason, revisit these standards and improve
them.

 » Start development by setting up automated tests. You can find more
about automated testing in the following section and in Chapter 15.

 » If new, nice-to-have features become apparent during development, add
them to the product backlog. Avoid coding new features that are outside
the sprint goal.

 » Integrate changes that were coded during the day, one set at a time. Test
for 100 percent correctness. Integrate changes at least once a day; some
teams integrate many times a day.

176 PART 3 Agile Planning and Execution

 » Undertake code reviews to ensure that the code follows development
standards. Identify areas that need revising. Add the revisions as tasks in the
sprint backlog.

 » Create technical documentation as you work. Don’t wait until the end of
the sprint or, worse, the end of the sprint prior to a release.

Continuous integration is the term used in software development for integrating
and comprehensively testing with every code build. Continuous integration helps
identify problems before they become crises.

Verifying
Verifying the work done in a sprint has three parts: automated testing, peer
review, and product owner review.

It is exponentially cheaper to prevent a defect than it is to rip it out of a deployed
system.

Automated testing
Automated testing means using a computer program to do the majority of your code
testing for you. With automated testing, the development team can quickly
develop and test code, which is a big benefit for agile projects.

Often, agile project teams code during the day and let the tests run overnight. In
the morning, the project team can review the defect report that the testing pro-
gram generated, report on any problems during the daily scrum, and correct those
issues immediately during the day.

Automated testing can include the following:

 » Unit testing: Testing source code in its smallest parts — the component level

 » System testing: Testing the code with the rest of the system

 » Static testing: Verifying that the product’s code meets standards based on
rules and best practices that the development team has agreed upon

Peer review
Peer review simply means that development team members review one another’s
code. If Sam writes program A and Joan writes program B, Sam could review Joan’s
code, and vice versa. Objective peer review helps ensure code quality.

CHAPTER 9 Working throughout the Day 177

Pair programming is another form of peer review, but the review takes place during
development. While one developer (the pilot) sits at the keyboard and writes the
code, another developer (the navigator) is thinking strategically, looking ahead,
and actively listening and responding to decisions made tactically by the pilot. Not
only is the review happening in the moment — catching defects and making more
informed decisions — but there are two developers, instead of only one, who are
intimately familiar with the part of the system being developed.

Pair programming is a great way to develop cross-functional individuals to reduce
single points of failure.

The development team can conduct peer reviews during development. Collocation
helps make this easy — you can turn to the person next to you and ask him or her
to take a quick look at what you just completed. The development team can also
set aside time during the day specifically for reviewing code. Self-managing teams
should decide what works best for them.

Product owner review
When a user story has been developed and tested, the development team moves
the stories to the Accept column on the task board. The product owner then
reviews the functionality and verifies that it meets the goals of the user story, per
the user story’s acceptance criteria. The product owner verifies user stories
throughout each day.

As discussed in Chapter 8, the back side of each user story card has verification
steps. These steps allow the product owner to review and confirm that the code
works and supports the user story. Figure 9-6 shows a sample user story card’s
verification steps.

Finally, the product owner should run through some checks to verify that the user
story in question meets the definition of done. When a user story meets the defi-
nition of done, the product owner updates the task board by moving the user story
from the Accept column to the Done column.

FIGURE 9-6:
User story

verification.

178 PART 3 Agile Planning and Execution

While the product owner and the development team are working together to cre-
ate shippable functionality for the product, the scrum master helps the scrum
team to identify and clear roadblocks that appear along the way.

Identifying roadblocks
It’s a major part of the scrum master’s role to manage and help resolve roadblocks
that the scrum team identifies. Roadblocks are anything that thwarts a team
member from working to full capacity.

Although the daily scrum is a good place for the development team to identify
roadblocks, the development team may come to the scrum master with issues
anytime throughout the day.

Examples of roadblocks follow:

 » Local, tactical issues, such as

• A manager trying to pull away a team member to work on a “priority” sales
report.

• The development team needing additional hardware or software to
facilitate progress.

• A development team member who doesn’t understand a user story and
says the product owner isn’t available to help.

 » Organizational impediments, such as

• An overall resistance to agile techniques, especially when the company
established and maintained prior processes at significant cost.

• Managers who might not be in touch with the work on the ground.
Technologies, development practices, and project management practices
are always progressing.

• External departments that may not be familiar with scrum needs and the
pace of development when using agile techniques.

• An organization that enforces policies that don’t make sense for agile
project teams. Centralized tools, budget restrictions, and standardized
processes that don’t align with agile processes can all cause issues for
agile teams.

The most important trait a scrum master can have is organizational clout or influ-
ence. Organizational clout gives the scrum master the ability to have difficult con-
versations and make the small and large changes necessary for the scrum team to
be successful. We provide examples of different types of clout in Chapter 4.

CHAPTER 9 Working throughout the Day 179

Beyond the primary focus of creating shippable functionality, other things happen
during the day on an agile project. Many of these tasks fall to the scrum master.
Table 9-1 shows potential roadblocks and the action that the scrum master can
take to remove the impediments.

So far in this chapter, you have seen how the scrum team starts its day and works
throughout the day. The scrum team wraps up each day with a few tasks as well.
The next section shows you how to end a day within a sprint.

The End of the Day
At the end of each day, the development team reports on task progress by updat-
ing the sprint backlog with which tasks were completed and how much work, in
hours, remains to be done on new tasks started. Depending on the software that
the scrum team uses, the sprint backlog data may automatically update the sprint
burndown chart as well.

TABLE 9-1	 Common Roadblocks and Solutions
Roadblock Action

The development team needs
simulation software for a range of
mobile devices so that it can test the
user interface and code.

Do some research to estimate the cost of the software, prepare a
summary of that for the product owner, and have a discussion
about funding. Process the purchase through procurement, and
deliver the software to the development team.

Management wants to borrow a
development team member to write
a couple of reports. All your
development team members are
fully occupied.

Tell the requesting manager that the person is not available and
probably will not be for the duration of the project. Recommend that
the requester discuss the need with the product owner so he or she
can prioritize it against the rest of the product backlog. As you’re
likely a problem solver, you may want to suggest alternative ways in
which the manager could get what he or she needs.

A development team member can’t
move forward on a user story
because he or she does not fully
understand the story. The product
owner is out of the office for the day
on a personal emergency.

Work with the development team member to determine if any work
can happen around this user story while waiting for an answer. Help
locate another person who could answer the question. Failing that,
ask the development team to review upcoming tasks (not related to
this stopped one) and move things around to keep productivity up.

A user story has grown in complexity
and now appears to be too large for
the sprint length.

Have the development team work with the product owner to break
the user story down so that some demonstrable value can be
completed in the current sprint and the rest can be put back into the
product backlog. The goal is to ensure that the sprint ends with
completed user stories, even smaller ones, rather than incomplete
user stories.

180 PART 3 Agile Planning and Execution

Update the sprint backlog with the amount of work remaining — not the amount
of time already spent — on open tasks. The important point is how much time is
left, which informs the project team as to whether the scrum team is on track to
meet its sprint goal. If possible, avoid spending time tracking how many hours
were spent working on tasks, which is less necessary with self-correcting agile
models.

The product owner should also update the task board, at least at the end of the
day, and move any user stories that have passed review to the Done column.

The scrum master can review the sprint backlog or task board for any risks before
the next day’s daily scrum.

The scrum team follows this daily cycle until the end of the sprint, when it will be
time to step back, inspect, and adapt at the sprint review and the sprint retrospective
meetings.

CHAPTER 10 Showcasing Work, Inspecting, and Adapting 181

Chapter 10

IN THIS CHAPTER

 » Showcasing work and collecting
feedback

 » Reviewing the sprint and improving
processes

Showcasing Work,
Inspecting, and Adapting

At the end of each sprint, the scrum team gets a chance to put the results of
its hard work on display in the sprint review. The sprint review is where
the product owner and the development team demonstrate the sprint’s

completed, potentially shippable functionality to the stakeholders. In the sprint
retrospective, the scrum team (the product owner, development team, and scrum
master) review how the sprint went and determine whether they need any adjust-
ments for the next sprint.

Underpinning both of these events is the agile concept of inspect and adapt, which
Chapter 7 explains.

In this chapter, you find out how to conduct a sprint review and a sprint
retrospective.

The Sprint Review
The sprint review is a meeting to review and demonstrate the functionality created
from the user stories that the development team completed during the sprint, and
for the product owner to collect feedback and update the product backlog

182 PART 3 Agile Planning and Execution

accordingly. The sprint review is open to anyone interested in reviewing the
sprint’s accomplishments. This means that all stakeholders get a chance to see
product progress and accuracy, and provide feedback.

The sprint review is stage 6 in the Roadmap to Value. Figure 10-1 shows how the
sprint review fits into an agile project.

The following sections show you what you need to do to prepare for a sprint
review, how to run a sprint review meeting, and the importance of collecting
feedback.

Preparing to demonstrate
Preparation for the sprint review meeting should not take more than a few min-
utes at most. Even though the sprint review might sound formal, the essence of
showcasing for agile teams is informality. The meeting needs to be prepared and
organized, but it doesn’t require a lot of flashy materials. Instead, the sprint
review focuses on demonstrating what the development team has done.

If your sprint review is overly showy, ask yourself if you’re covering up for not
spending enough time developing. Get back to working on value — creating a
working product. Pageantry is the enemy of agility.

The preparation for the sprint review meeting involves the product owner and the
development team, facilitated by the scrum master as needed. The product owner
needs to know which user stories the development team completed during the
sprint. The development team needs to be ready to demonstrate completed, ship-
pable functionality.

The time needed to prepare for a sprint review should not be more than
20 minutes — just enough time to make sure everyone knows who is doing what
and when so the demonstration goes smoothly.

FIGURE 10-1:
The sprint review

in the Roadmap
to Value.

CHAPTER 10 Showcasing Work, Inspecting, and Adapting 183

Work not delivered has no business value. Within the context of a single sprint,
shippable functionality means that the development team has satisfied its definition
of done for each requirement, and the product owner has verified that the work
product meets all acceptance criteria and could be released to the market, or
shipped, if the value and timing are right for the marketplace. The actual release
may be at a later time, per the communicated release plan. Find out more about
shippable functionality in Chapter 9.

For the development team to demonstrate the code in the sprint review, it must be
complete according to the definition of done. This means that the code is fully

 » Developed

 » Tested

 » Integrated

 » Documented

As user stories are moved to a status of done throughout the sprint, the product
owner and development team should check that the functionality meets these
standards. This continuous validation throughout the sprint reduces end-of-
sprint risks and helps the scrum team spend as little time as possible preparing
for the sprint review.

Knowing the completed user stories and being ready to demonstrate those stories’
functionality prepares you to confidently start the sprint review meeting.

The sprint review meeting
Sprint review meetings have two activities: demonstrate and showcase the scrum
team’s finished work, and allow stakeholders to provide feedback on that work.
Figure 10-2 shows the different loops of feedback a scrum team receives about a
product.

This cycle of feedback repeats throughout the project as follows:

 » Each day, development team members work together in a collaborative
environment that encourages feedback through peer reviews and informal
communication.

 » Throughout each sprint, as soon as the development team completes each
requirement, the product owner provides feedback by reviewing the working
functionality for acceptance. The development team then immediately
incorporates that feedback, if any, to satisfy the user story’s acceptance

184 PART 3 Agile Planning and Execution

criteria. When the user story is complete, the product owner gives final
acceptance of the functionality created for the user story, according to the
user story’s acceptance criteria.

 » At the end of each sprint, project stakeholders provide feedback about
completed functionality in the sprint review meeting.

 » With each release, customers who use the product provide feedback about
new working functionality.

The sprint review usually takes place later in the day on the last day of the sprint,
often a Friday. One of the rules of scrum is to spend no more than one hour in a
sprint review meeting for every week of the sprint — Figure 10-3 shows a quick
reference.

Here are some guidelines for your sprint review meeting:

 » No PowerPoint slides! Show actual working functionality. Refer to the sprint
backlog if you need to display a list of completed user stories.

 » The entire scrum team should participate in the meeting.

FIGURE 10-2:
Agile project

feedback loops.

FIGURE 10-3:
Ratio of sprint

review meeting to
sprint length.

CHAPTER 10 Showcasing Work, Inspecting, and Adapting 185

 » Anyone who is interested in the meeting may attend. The project stakehold-
ers, the summer interns, and the CEO could all theoretically be in a sprint
review. Customers may also be invited whenever available.

 » The product owner introduces the release goal, the sprint goal, and the new
capabilities included.

 » The development team demonstrates what it completed during the sprint.
Typically, the development team showcases new features or architecture.

 » The demonstration should be on equipment as close as possible to the
planned production environment. For example, if you’re creating a mobile
application, present the features on a smartphone — perhaps hooked up to a
monitor — rather than on a laptop.

 » The stakeholders can ask questions and provide feedback on the demon-
strated product.

 » No non-disclosed rigged functionality, such as hard-coded values and other
programming shortcuts that make the application look more mature than it
currently is. Rigged functionality creates more overhead work for the scrum
team in future sprints to catch up to what the stakeholders think already
exists.

 » The product owner can lead a discussion about what is coming next based on
the features just presented and new items that have been added to the
product backlog during the current sprint.

By the time you get to the sprint review, the product owner has already seen the
functionality for each of the user stories that are going to be presented and has
agreed that they are complete.

The sprint review meeting is valuable to the development team. The sprint review
provides an opportunity for the development team to show its work directly. The
meeting allows the stakeholders to recognize the development team for its efforts.
The meeting contributes to development team morale, keeping the team moti-
vated to try and produce ever-increasing volumes of quality work. The sprint
review even establishes a certain level of friendly comparative competition
between scrum teams that keeps everyone focused.

Sometimes, healthy competition can result in developers trying to create the cool-
est features or exceed the requirements of a user story — an issue known as gold
plating. A tenet of agility is to produce only what a user story needs to pass the
acceptance test. There is a risk that development team members will go beyond
requirement needs in their enthusiasm, essentially wasting time that should be
spent on useful product functionality. The product owner should be watchful for
this. Gold-plating can be identified and avoided on a daily basis at the daily scrum
or as the development team seeks clarification from the product owner.

186 PART 3 Agile Planning and Execution

Next, you see how to note and use the stakeholders’ feedback during the sprint
review meeting.

Collecting feedback in the
sprint review meeting
Gather sprint review feedback informally. The product owner or scrum master can
take notes on behalf of the development team, as team members often will be
engaged in the presentation and resulting conversation.

Keep in mind the example project we use throughout the book: a mobile applica-
tion for XYZ Bank. Stakeholders responding to functionality they saw for the XYZ
Bank mobile application might have comments such as the following:

 » From a person in sales or marketing: “You might want to consider letting the
customers save their preferences, based on the results you showed. It will
make for a more personalized experience going forward.”

 » From a functional director or manager: “Given what I’ve seen, you might be
able to leverage some of the code modules that were developed for the ABC
project last year. They needed to do similar data manipulation.”

 » From someone who works with the quality or user experience professionals
in the company: “I noticed your logins were pretty straightforward; will the
application be able to handle special characters?”

New user stories may come out of the sprint review. These new user stories might
be new features or changes to the existing functionality.

In the first few sprint reviews, the scrum master may need to remind stakeholders
about agile practices. Some people hear the word “demonstration” and immedi-
ately expect fancy slides and printouts. The scrum master has a responsibility to
manage these expectations and uphold agile values and practices.

The product owner needs to add any new user stories to the product backlog and
order those stories by priority. The product owner also adds back into the product
backlog any stories that were scheduled for the current sprint but not completed,
and reorders those stories based on the most recent priorities.

The product owner needs to complete updates to the product backlog in time for
the next sprint planning meeting.

When the sprint review is over, it is time for the sprint retrospective.

CHAPTER 10 Showcasing Work, Inspecting, and Adapting 187

You may want to take a brief break between the sprint review and the sprint ret-
rospective so that scrum team members can come to the retrospective discussion
fresh and relaxed.

Having just completed the sprint review, the scrum team will come into the ret-
rospective ready to inspect its processes and will have ideas for adaptation.

The Sprint Retrospective
The sprint retrospective is a meeting in which the product owner, development
team, and scrum master discuss how the sprint went and what they can do to
improve the next sprint. The scrum team should conduct this meeting in a self-
directed way. If managers or supervisors attend sprint retrospectives, scrum team
members will avoid being open with each other, which limits the effectiveness of
the team inspecting and adapting in a self-organizing way.

If the scrum team likes, members can invite other stakeholders to attend as well.
If the scrum team regularly interacts with outside stakeholders, those stakehold-
ers’ insights can be valuable.

The sprint retrospective is stage 7 in the Roadmap to Value. Figure 10-4 shows
how the sprint retrospective fits into an agile project.

The goal of the sprint retrospective is to continuously improve your processes.
Improving and customizing processes according to the needs of each individual
scrum team increases scrum team morale, improves efficiency, and increases
velocity — work output. (Find details on velocity in Chapter 13.) However, what
works for one team won’t necessarily work for another team. Managers outside the
scrum team should not dictate how all scrum teams should overcome their chal-
lenges and should instead allow them to find the best solutions for themselves.

FIGURE 10-4:
The sprint

retrospective in
the Roadmap to

Value.

188 PART 3 Agile Planning and Execution

Your sprint retrospective results may be unique for your scrum team. For exam-
ple, members of one scrum team we worked with decided that they would like to
come into work early and leave early, and spend summer afternoons with their
families. Another team at the same organization felt that they did better work late
at night, and decided to come to the office in the afternoon and work into the
evenings. The result for both teams was increased morale and increased velocity.

Use the information you learn in the retrospective to review and revise your work
processes and make your next sprint better.

Agile approaches — particularly scrum — quickly reveal problems in projects.
Scrum doesn’t fix problems; it simply exposes them and provides a framework for
inspecting and adapting exposed issues. Data from the sprint backlog shows
exactly where the development team has been slowed down. The development
team talks and collaborates. All these tools and practices help reveal inefficiencies
and allow the scrum team to refine practices to improve sprint after sprint. Pay
attention to what gets exposed. Don’t ignore it, and don’t work around it.

In the following sections, you find out how to plan for a retrospective, how to run
a sprint retrospective meeting, and how to use the results of each sprint retro-
spective to improve future sprints.

STOPPING THE LINE
Taiichi Ohno, who built the Toyota Production System in the 1950s and 1960s — the
beginning of lean manufacturing — decentralized assembly-line management to
empower line workers to make decisions. Line workers actually had a responsibility to
stop the line by pushing a red button when they found a defect or a problem on the
assembly line. Traditionally, plant managers viewed stopping the line as a failure and
focused on running the assembly line at capacity as many hours of the day as possible
to maximize throughput. Ohno’s philosophy was that by removing constraints as they
occur, you proactively create a better system rather than trying to optimize your existing
process.

When first introduced, the productivity of managers who implemented this practice
took an initial drop because they spent more time fixing defects in the system than the
managers’ teams who did not adopt the practice. The old teams declared this a victory
at first. However, it didn’t take long until the new teams not only caught up but also
began producing more quickly, more cheaply, and with fewer defects and variance than
the teams who weren’t making continuous improvements in their system. This process
of regular and continuous improvement is what made Toyota so successful.

CHAPTER 10 Showcasing Work, Inspecting, and Adapting 189

Planning for sprint retrospectives
For the first sprint retrospective, everyone on the scrum team should think about
a few key questions and be ready to discuss them. What went well during the
sprint? What would you change, and how?

Everyone on the scrum team may want to make a few notes beforehand, or even
take notes throughout the sprint. The scrum team could keep the roadblocks from
the sprint’s daily scrum meetings in mind. For the second sprint retrospective
forward, you can also start to compare the current sprint with prior sprints, and
track progress on the improvement efforts from sprint to sprint. In Chapter 9, we
mention saving sprint backlogs from prior sprints; this is where they might come
in handy.

If the scrum team has honestly and thoroughly thought about what went right and
what could be better, it can go into the sprint retrospective ready to have a useful
conversation.

The sprint retrospective meeting
The sprint retrospective meeting is an action-oriented meeting. The scrum team
immediately applies what it learned in the retrospective to the next sprint.

The sprint retrospective meeting is an action-oriented meeting, not a justification
meeting. If you are hearing words like “because,” the conversation is moving
away from action and toward rationale.

One of the rules of scrum is to spend no more than 45 minutes in a sprint
 retrospective meeting for every week of the sprint. Figure 10-5 shows a quick
reference.

FIGURE 10-5:
Ratio of sprint
retrospective

meeting to sprint
length.

190 PART 3 Agile Planning and Execution

The sprint retrospective should cover three primary questions:

 » What went well during the sprint?

 » What would we like to change?

 » How can we implement that change?

The following areas are also open for discussion:

 » Results: Compare the amount of work planned with what the development
team completed. Review the sprint burndown chart (see Chapter 9) and what
it tells the development team about how it’s working.

 » People: Discuss team composition and alignment.

 » Relationships: Talk about communication, collaboration, and working
in pairs.

 » Processes: Go over support, development, and peer review processes.

 » Tools: How are the different tools working for the scrum team? Think about
the artifacts, electronic tools, communication tools, and technical tools.

 » Productivity: How can the team improve productivity and get the most work
done in the next sprint?

It helps to have these discussions in a structured format. Esther Derby and Diana
Larsen, authors of Agile Retrospectives: Making Good Teams Great (Pragmatic Book-
shelf, 2006), have a great agenda for sprint retrospectives that keeps the team
focused on discussions that will lead to real improvement:

1. Set the stage.

Establishing the goals for the retrospective upfront will help keep your scrum
team focused on providing the right kind of feedback later in the meeting. As
you progress into later sprints, you may want to have retrospectives that focus
on one or two specific areas for improvement.

2. Gather data.

Discuss the facts about what went well in the last sprint and what needed
improvement. Create an overall picture of the sprint; consider using a white-
board to write down the input from meeting attendees.

3. Generate insights.

Take a look at the information you just gathered and come up with ideas about
how to make improvements for the next sprint.

CHAPTER 10 Showcasing Work, Inspecting, and Adapting 191

4. Decide what to do.

Determine — as a team — which ideas you’ll put into place. Decide on specific
actions you can take to make the ideas a reality.

5. Close the retrospective.

Reiterate your plan of action for the next sprint. Thank people for contributing.
Also find ways to make the next retrospective better!

For some scrum teams, it might be difficult to open up at first. The scrum master
may need to ask specific questions to start discussions. Participating in retrospec-
tives takes practice. What matters is to encourage the scrum team to take respon-
sibility for the sprint — to truly embrace being self-managing.

In other scrum teams, a lot of debate and discussion ensues during the retrospec-
tive. The scrum master can find it challenging to manage these discussions and
keep the meeting within its allotted time, but that is what needs to be done.

Be sure to use the results from your sprint retrospectives to inspect and adapt
throughout your project.

Inspecting and adapting
The sprint retrospective is one of the best opportunities you have to put the ideas
of inspect and adapt into action. You came up with challenges and solutions
during the retrospective. Don’t leave those solutions behind after the meeting;
make the improvements part of your work every day.

You could record your recommendations for improvement informally. Some
scrum teams post the actions identified during the retrospective meeting in the
team area to ensure visibility and action on the items listed. Many teams also add
action items to the product backlog to ensure that they implement them during an
upcoming sprint.

To become more agile, scrum teams focus on small changes with big value.
We like teams to take at least one improvement into each sprint, a process
 sometimes referred to as scrumming the scrum.

In subsequent sprint retrospective meetings, it’s important to review the evalua-
tions of the prior sprint and make sure you put the suggested improvements into
place.

CHAPTER 11 Preparing for Release 193

Chapter 11

IN THIS CHAPTER

 » Getting your product ready to ship

 » Organizing for operational support

 » Preparing the rest of the organization
for the release

 » Making sure the marketplace is ready
for your release

Preparing for Release

Releasing new product features to customers has a special set of challenges.
The development team has specific tasks for a product release that differ
from the tasks involved with creating functionality during normal sprints.

The organization sponsoring the product may need to prepare to support the
product. You want customers to be able to correctly use the released product.

This chapter covers how to manage the final sprint, if needed — the release
sprint — before product release. You also discover how to prepare your organiza-
tion and the marketplace for the product release.

Preparing the Product for Deployment:
The Release Sprint

The work that takes place during regular development sprints should be whole and
complete, including testing and technical documentation, before you demonstrate
your product. The product of a development sprint is working functionality.

However, there may be activities, not related to creating product features, that the
development team can’t realistically complete within development sprints and
that might even introduce unacceptable overhead. To accommodate prerelease

194 PART 3 Agile Planning and Execution

activities and help ensure that the release goes well, scrum teams may schedule a
release sprint as the final sprint prior to releasing functionality to customers.

If a scrum team requires a release sprint, it probably means that the broader orga-
nization can’t support it, which is an anti-pattern to becoming agile. Every type
of work or activity required to release functionality to the market should be part
of the sprint-level definition of done. That is the goal for agile teams.

The release sprint contains only those things needed to move working functionality
to the marketplace. The following are examples of release sprint backlog items. See
if you can think of possible ways to shift any of these into the development sprint:

 » Creating user documentation for the most recent version of the product

 » Performance testing, load testing, security testing, and any other checks to
ensure that the working software will perform acceptably in production

 » Integrating the product with enterprise-wide systems, where testing might
take days or weeks

 » Completing organizational or regulatory procedures that are mandatory prior
to release

 » Preparing release notes — final notes about changes to the product

 » Preparing the deployment package, enabling all the code for the product
features to move to production at one time

 » Deploying your code to the production environment

Some aspects of a release sprint are different from a development sprint:

 » You do not develop any new functionality requirements from the product
backlog. Although you have functionality freeze, you do not have code freeze
because the development team will need to make adjustments to respond
to feedback from release sprint activities, such as performance testing or
focus groups.

 » Based on the work you need to do, your release sprint may be a different
length than your regular development sprints. In addition, you won’t have the
concept of velocity because you won’t be doing the same type of work that
you do in development sprints.

 » The definition of done is different for work completed during a release sprint.
In a development sprint, done means the completion of working functionality
for a user story. In a release sprint, the definition is the completion of all tasks
required for release.

CHAPTER 11 Preparing for Release 195

 » A release sprint includes tests and approvals that may not be practical to do
in a development sprint, such as performance testing, load testing, security
testing, focus groups, and legal review.

Agile development teams may create two definitions of done: one for sprints and
one for releases.

Table 11-1 shows a comparison between the activities of a development sprint and
a release sprint. For detailed descriptions of the key elements in a sprint, see
Chapters 8 through 10.

UNDERSTANDING THE ROLE OF
DOCUMENTATION
What’s the difference between the technical documentation that you create during a
sprint and the user documentation that you may create in your release sprint?

Your technical documentation should be barely sufficient, with no frills and just enough
information to tell the development team — and perhaps future development teams —
how to create and update the product. If, on the last day of the sprint, the development
team won the lottery and retired to Costa Rica, a new development team should be able
to review the technical documentation and easily pick up where the former team left off.

Your user documentation tells your customers how to use your product. You may want
user documentation crafted specifically for each of your customers. For example, a
mobile banking application might need a frequently asked questions (FAQs) section for
banking customers. The same application might have a feature that enables marketing
managers to upload ad messages to the application; you’d want to make sure those
managers have instructions for the upload feature as well. Because your product will
have changes throughout each sprint of the release, it might be more efficient to wait
until the last responsible minute to create your user documentation, after the stake-
holders agree that the functionality is ready for release.

TABLE 11-1	 Development Sprint Elements versus Release
Sprint Elements

Element Used in Development Sprint Used in Release Sprint

Sprint planning Yes Yes

Product backlog Yes No

(continued)

196 PART 3 Agile Planning and Execution

A release sprint should not be a parking lot for tasks that the development team
didn’t finish in the development sprints. You may not be surprised to hear that
development teams are sometimes tempted to delay tasks until the release sprint.
You can avoid this by ensuring that the scrum team has created a proper definition
of done for requirements in development sprints, including testing, integration,
and documentation.

While running a release sprint, you also need to prepare your organization for the
product release. The next sections discuss how to prepare for supporting the new
functionality in the marketplace and how to get stakeholders in your company or
organization ready for product deployment.

Element Used in Development Sprint Used in Release Sprint

Sprint backlog Yes

For a development sprint, your
sprint backlog contains user stories
and the tasks needed to create
each user story. You estimate user
stories relatively, with story points.
(See Chapters 7 and 8.)

Yes

In a release sprint, you no longer need to put your
requirements in the user story format. Instead,
you create only a list of tasks needed for the
release. You also do not use story points. Instead,
add the estimated hours each task will take when
planning the release sprint, in the same way you
break down and estimate tasks during the
development sprint planning.

Burndown chart Yes Yes

Daily scrum Yes Yes

Involve stakeholders from outside the scrum team
who have tasks associated with releasing the
product, such as enterprise build managers or
other configuration managers.

Daily activities In a development sprint, your daily
activities focus on creating
shippable functionality.

In a release sprint, your daily activities focus on
preparing your working functionality for
external release.

End-of-
day reporting

Yes Yes

Sprint review Yes Yes

Some organizations use a release sprint review as
a go or no-go meeting to authorize launching the
functionality.

Sprint
retrospective

Yes Yes

This can be an opportunity to inspect the entire
sprint and plan for adapting in the next release.

TABLE	11-1	(continued)

CHAPTER 11 Preparing for Release 197

Preparing for Operational Support
After your product is released to the customer, someone will have to support it.
Supporting your product involves responding to customer inquiries, maintaining
the system in a production environment, and enhancing existing functionality to
fill minor gaps. Although new development work and operational support work
are both important, they involve different approaches and cadences.

Separating new development and support work ensures that new development
teams can focus on continuing to bring innovative solutions to customers at a
faster rate than if the team frequently switches between the two types of work.

A scrum team doing new development can plan and develop new working function-
ality within a one- to two-week sprint, but it’s difficult to plan when operational
or maintenance issues will arise. Maintenance work usually requires shorter time-
boxed iterations, typically no more than one day, which is usually the longest the
organization can go without changing priorities with any issues in production.

We recommend a model that separates new development and maintenance work,
as illustrated in Figure 11-1.

For a scrum team of nine developers, for instance, we would divide the develop-
ment team into two teams, one with six developers, and the other with three.
(These numbers are flexible.) The team of six does new development project work
from the product backlog in one-week to two-week sprints, as described in
 Chapters 7 through 10. The work that the team commits to during the sprint plan-
ning meeting will be the only work they do.

FIGURE 11-1:
Operational

support scrum
team model.

198 PART 3 Agile Planning and Execution

The team of three are our firefighters and do maintenance and support work in
one-day sprints or by using kanban. (You learn about kanban in Chapter 4.)
 Single-day sprints allow the scrum team to triage all incoming requests from the
previous day, plan the highest-priority items, implement those items as a team,
and review the results at the end of the day (or even earlier) for go or no-go
approval before pushing the changes to production. For continuity, the product
owner and scrum master are the same for each team.

Although the newly modified project development team is smaller than before,
there are still enough developers to keep new development efforts moving for-
ward, uninterrupted by maintenance work. By the time you begin releasing func-
tionality to the market, your scrum team will be working well together and the
developers will have increased their versatility by being able to complete more
types of tasks than when the project first started.

The project development team will have periodic releases to production, such as
once every 90 days. At each release, one developer will rotate to the maintenance
team, armed with first-hand knowledge of the functionality being deployed to
production. At the same time, one developer from the maintenance team will be
rotated into the project development team, equipped with first-hand knowledge
of what it’s like to support the product in the real world. This rotation continues
at each release.

Development Operations (DevOps) is the collaboration and integration between soft-
ware developers and IT operations (which includes functions such as systems
administration and server maintenance). Taking a DevOps approach enables
developers and operations to work together to tighten cycle times of deployment.

This DevOps model ensures that everyone gets to do new product development as
well as maintenance work, and that product knowledge is continually shared
effectively between the two development teams. This approach improves DevOps
and facilitates cross-functional team members. It also minimizes any disruption
the teams may experience from changing team members because the rotations
happen only at each release rather than daily or weekly.

When preparing for release, establishing expectations upfront of how the func-
tionality will be supported in production allows the scrum team to develop the
product in a way that enables the team to effectively support the product after it
is deployed. It increases ownership across the scrum team and heightens the
team’s awareness and dedication to long-term success.

CHAPTER 11 Preparing for Release 199

Preparing the Organization for
Product Deployment

A product release often affects a number of departments in a company or organi-
zation. To get the organization ready for the new product, the product owner and
scrum master need to add items relevant to the organization to the release sprint
backlog. (See how to create a sprint backlog in Chapter 8.)

The release sprint backlog should also cover activities for the development team.
It also needs to address activities to be performed by groups in the organization
but outside the scrum team to prepare for the product deployment. These depart-
ments might include the following:

 » Marketing: Do marketing campaigns related to the new product need to
launch at the same time as the product?

 » Sales: Are there specific customers who need to know about the product? Will
the new product cause an increase in sales?

 » Logistics: Is the product a physical item that includes packaging or shipping?

ONE-DAY SPRINTS
We recommend running one-day sprints for maintenance teams. By framing each day
in the sprint cycle, the scrum team operates in a solid feedback loop, ensuring continu-
ous inspection and adaptation as well as regular stakeholder involvement.

By using the same formulas for timeboxing scrum events, you won’t spend hours in
planning or reviews as you would with one- to four-week sprints. Dividing one-week
scrum event timeboxes by five days means you spend about 25 minutes triaging the
maintenance product backlog and planning the day, about 12-15 minutes for the sprint
review to determine go or no-go to production, and an additional 10 minutes to inspect
and adapt the team’s processes and identify any issues that should be continued or dis-
continued the next day.

The key to operating in one-day sprints is making sure maintenance items are broken
down small enough so that developers can complete them in less than a day. This
approach ensures that customers get something every day rather than wait for weeks.

200 PART 3 Agile Planning and Execution

 » Product support: Does the customer service group have the information it
needs to answer questions about the new product? Will this group have
enough people on hand in case customer questions increase when the
product launches?

 » Legal: Does the product meet legal standards, including pricing, licensing, and
correct verbiage, for release to the public?

The departments that need to be ready for the product launch and the specific
tasks these groups need to complete will, of course, vary from organization to
organization. A key to release success, however, is that the product owner and
scrum master involve the right people and ensure that those people clearly under-
stand what they need to do to be ready for the functionality release.

As with development sprints, in your release sprint, you can effectively use daily
scrums, sprint review meetings, and sprint retrospectives with department col-
leagues involved in preparing for product deployment. You can even use a task
board, like the one we describe in Chapter 9.

During your release sprint, you also need to include one more group in your plan-
ning: the product customer. The next section discusses getting the marketplace
ready for your product.

Preparing the Marketplace for
Product Deployment

The product owner is responsible for working with other departments to ensure
that the marketplace — existing customers and potential customers — is ready
for what’s coming. The marketing or sales teams may lead this effort; team mem-
bers look to the product owner to keep them informed on the release date and the
features that will be part of the release.

Some software products are only for internal employee use. Certain things you’re
reading in this section might seem like overkill for an internal application — an
application released only within your company. However, many of these steps are
still good guidelines for promoting internal applications. Preparing customers,
whether internal or external, for new products can be a key part of product
success.

CHAPTER 11 Preparing for Release 201

To help prepare customers for the product release, the product owner may want
to work with different teams to ensure the following:

 » Marketing support: Whether you’re dealing with a new product or new
features for an existing product, the marketing department should leverage
the excitement of the new product functionality to help promote the product
and the organization.

 » Customer testing: If possible, work with your customers (some people use
focus groups) to get real-world feedback about the product from a subset of
end users. Your marketing team can also use this feedback translate into
testimonials for promoting the product right away.

 » Marketing materials: An organization’s marketing group also prepares the
promotional and advertising plans, as well as packaging for physical media.
Media materials, such as press releases and information for analysts, need to
be ready, as do marketing and sales materials.

 » Support channels: Ensure that customers understand the available support
channels in case they have questions about the product.

Review the tasks on your release sprint backlog from the customer’s standpoint.
Think of the personas you used when creating your user stories. Do those perso-
nas need to know something about the product? Update your launch checklist with
items that would be valuable to customers represented by your personas. You can
find more information about personas in Chapter 8.

Finally, you’re there — release day. Whatever role you played along the way, this
is the day you worked hard to achieve. It’s time to celebrate!

4Agile
Management

IN THIS PART . . .

Respond effectively to changes in scope.

Manage vendors and contracts for success.

Monitor and adjust schedules and budget.

Self-organize for optimal communications.

Inspect and adapt to increase quality and mitigate risk.

CHAPTER 12 Managing Scope and Procurement 205

Chapter 12

IN THIS CHAPTER

 » Finding out how scope management
is different on agile projects

 » Managing scope and scope changes
with agile processes

 » Seeing the different approach agile
processes bring to procurement

 » Managing procurement on agile
projects

Managing Scope and
Procurement

Scope management is part of every project. To create a product, you have to
understand basic product requirements and the work it will take to fulfill
those requirements. You need to be able to prioritize and manage scope

changes as new requirements arise. You have to verify that finished product fea-
tures fulfill customers’ needs.

Procurement is also part of many projects. If you need to look outside your
 organization for help completing a project, you should know how to go about pro-
curing goods and services. You will want to know how to collaborate with vendor
teams during the project. You should also know something about creating con-
tracts and different cost structures.

In this chapter, you find out how to manage scope in an agile project and take
advantage of agile methods’ welcoming approach to informed change. You also
find out how to manage procurement of goods and services to deliver product
scope on an agile project. First, we review traditional scope management.

206 PART 4 Agile Management

What’s Different about Agile
Scope Management?

Historically, a large part of project management is scope management. Product
scope is all the features and requirements that a product includes. Project scope is
all the work involved in creating a product.

Traditional project management treats changing requirements as a sign of failure
in upfront planning. Agile projects, however, have variable scope so that project
teams can immediately and incrementally incorporate learning and feedback, and
ultimately create better products. The signers of the Agile Manifesto recognized
that scope change is natural and beneficial. Agile approaches specifically embrace
change and use it to make better-informed decisions and more useful products.

If you run an agile project and your requirements don’t change because you
learned nothing along the way, that is a failure. Your product backlog should
change often as you learn from stakeholder and customer feedback. It’s unlikely
that you knew everything at the beginning of the project.

Chapter 2 details the Agile Manifesto and the 12 Agile Principles. (If you haven’t
yet checked out that chapter, flip back to it now. We’ll wait.) The manifesto and
the principles answer the question, “How agile are we?” The degree to which your
project approach supports the manifesto and the principles helps determine how
agile your methods are.

The agile principles that relate the most to scope management follow:

 1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

 2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

 3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

 10.	Simplicity —	the	art	of	maximizing	the	amount	of	work	not	done —	is	essential.

Agile approaches to scope management are fundamentally different than tradi-
tional methods for scope management. Consider the differences you see in
Table 12-1.

CHAPTER 12 Managing Scope and Procurement 207

At any point in an agile project, anyone — the scrum team, stakeholders, or any-
one else in the organization with a good idea — can identify new product require-
ments. The product owner determines the value and priority of new requirements
and prioritizes those requirements against other requirements in the product
backlog.

Traditional project management has a term to describe requirements that change
after the project’s initial definition phase: scope creep. Waterfall doesn’t have a
positive way to incorporate changes mid-project, so scope changes often cause
large problems with a waterfall project’s schedule and budget. (For more on the

TABLE 12-1	 Traditional versus Agile Scope Management
Scope Management with
Traditional Approaches Scope Management with Agile Approaches

Project teams attempt to identify and
document complete scope at the
beginning of the project, when the
teams are the least informed about
the product.

The product owner gathers high-level requirements at the
beginning of the project, breaking down and further detailing
requirements that are going to be implemented in the immediate
future.	Requirements	are	gathered	and	refined	throughout	the	
project as the team’s knowledge of customer needs and project
realities grows.

Organizations	view	scope	change	
after the requirements phase is
complete as negative.

Organizations	view	change	as	a	positive	way	to	improve	a	product	
as the project progresses.

Changes late in the project, when you know the most about the
product, are often the most valuable changes.

Project managers rigidly control
and discourage	changes	after	
stakeholders	sign	off	on	
requirements.

Change management is an inherent part of agile processes.

You assess scope and have an opportunity to include new
requirements with every sprint.

The product owner determines the value and priority of new
requirements and adds those requirements to the product backlog.

The cost of change increases over
time, while the ability to make
changes decreases.

You	fix	resources	and	schedule	initially.

New features with high priority don’t necessarily cause budget or
schedule slip; they simply push out the lowest-priority features.

Iterative development allows for changes with each new sprint.

Projects often include scope bloat,
unnecessary product features
included out of fear of mid-
project change.

The scrum team determines scope by considering which features
directly support the product vision, the release goal, and the
sprint goal.

The	development	team	creates	the	most	valuable	features	first	to	
guarantee their inclusion and to ship those features as soon as
possible.

Less valuable features might never be created, which may be
acceptable to the business and the customer after they have the
highest-value features.

208 PART 4 Agile Management

waterfall methodology, see Chapter 1.) Mention “scope creep” to a seasoned proj-
ect manager, and you might even see him or her shudder.

During sprint planning at the beginning of each sprint, the scrum team can use
the product backlog priority to help decide whether a new requirement should be
part of the sprint. Lower-priority requirements stay in the product backlog for
future consideration. You can read about planning sprints in Chapter 8.

The next section addresses how to manage scope on an agile project.

Managing Agile Scope
Welcoming scope change helps you create the best product possible. Embracing
change, however, requires that you understand the current scope and know how
to deal with updates as they arise. Luckily, agile approaches have straightforward
ways to manage new and existing requirements:

 » The	product	owner	ensures	that	the	rest	of	the	project	team —	the	scrum	
team	plus	the	project	stakeholders —	clearly	understands	the	existing	scope	
for the project, the product vision, the current release goal, and the current
sprint goal.

 » The product owner determines the value and priority of new requirements in
relation	to	the	product	vision,	release	goal,	sprint	goals,	and	existing	
requirements.

 » The development team creates product requirements in order of priority to
release	the	most	important	parts	of	the	product	first.

In the following sections, you find out how to understand and convey scope in
different parts of an agile project. You see how to evaluate priorities as new
requirements arise. You also find out how to use the product backlog and other
agile artifacts to manage scope.

Understanding scope throughout
the project
At each stage in an agile project, the scrum team manages scope in different ways.
A good way to look at scope management throughout a project is by using the
Roadmap to Value, first presented in Chapter 7 and shown again in Figure 12-1.

CHAPTER 12 Managing Scope and Procurement 209

Consider each part of the Roadmap to Value:

 » Stage 1, product vision: The product vision statement establishes the outer
boundary	of	the	functionality	that	the	product	will	include,	and	is	the	first	step	
in establishing project scope. The product owner is responsible for ensuring
that all members of the project team know the product vision statement and
that everyone on the project team interprets the statement correctly.

 » Stage 2, product roadmap: During product roadmap creation, the product
owner refers to the vision statement and ensures that features support the
vision	statement.	As	new	features	materialize,	the	product	owner	needs	to	
understand them and be able to clearly communicate to the development
team and stakeholders the scope of these features and how they support the
product vision.

 » Stage 3, release planning: During release planning, the product owner needs
to	determine	a	release	goal —	the	midterm	boundary	of	functionality	that	is	
planned	to	go	to	market	at	the	next	release —	and	select	only	the	scope	that	
supports that release goal.

 » Stage 4, sprint planning: During sprint planning, the product owner needs to
ensure that the scrum team understands the release goal and plans each

FIGURE 12-1:
The Roadmap to

Value.

210 PART 4 Agile Management

sprint	goal —	the	immediate	boundary	of	functionality	to	be	potentially	
shippable	at	the	end	of	the	sprint —	based	on	that	release	goal.	The	product	
owner and development team select only the scope that supports the sprint
goal as part of the sprint. The product owner will also ensure that the
development team understands the scope of the individual user stories
selected for the sprint.

 » Stage 5, daily scrum: The daily scrum meeting can be a launching point for
scope change for future sprints. The daily scrum meeting is a focused,
15-minute meeting for the development team to state three things: the
preceding day’s completed work, the scope of work for the coming day, and
any roadblocks the development team may have. However, the three subjects
of the daily scrum often reveal larger opportunities for scope changes.

When topics come up that warrant a bigger discussion than the time and
format of the daily scrum meeting allows, a scrum team can decide to have an
after-party meeting. In the after-party, scrum team members talk about issues
affecting	their	progress	toward	the	sprint	goal.	If	opportunities	for	new	
functionality —	new	scope —	are	identified	during	the	sprint,	the	product	
owner	evaluates	them	and	may	add	and	prioritize	them	on	the	product	
backlog for a future sprint.

 » Stage 6, sprint review: The product owner sets the tone of each sprint review
meeting	by	reiterating	the	scope	of	the	sprint —	the	sprint	goal	that	the	scrum	
team	pursued	and	what	was	completed.	Especially	during	the	first	sprint	
review, it’s important that the stakeholders in the meeting have the right
expectations	about	scope.

Sprint reviews can be inspiring. When the entire project team is in one room,
interacting with the working product, members may look at the product in
new ways and come up with ideas to improve the product. The product owner
updates the product backlog with new scope based on feedback received in
the sprint review.

 » Stage 7, sprint retrospective: In the sprint retrospective, the scrum team
members can discuss how well they met the scope commitments they made
at the beginning of the sprint. If the development team was not able to
achieve	the	sprint	goal	identified	during	sprint	planning,	its	members	will	
need	to	refine	planning	and	work	processes	to	make	sure	they	can	select	the	
right amount of work for each sprint. If the development team met its goals, it
can use the sprint retrospective to come up with ways to add more scope to
future sprints. Scrum teams aim to improve productivity with every sprint.

CHAPTER 12 Managing Scope and Procurement 211

Introducing scope changes
Many people, even people outside the organization, can suggest a new product
feature on an agile project. You might see new ideas for features from the
following:

 » User community feedback, including groups or people who are given an
opportunity to preview the product

 » Business stakeholders who see a new market opportunity or threat

 » Executives	and	senior	managers	who	have	insight	into	long-term	organiza-
tional strategies and changes

 » The development team, which is learning more about the product every day,
and is closest to the working product

 » The	scrum	master,	who	may	find	an	opportunity	while	working	with	external	
departments or clearing development team roadblocks

 » The product owner, who often knows the most about the product and the
stakeholders’ needs

Because you will receive suggestions for product changes throughout an agile
project, you want to determine which changes are valid and manage the updates.
Read on to see how.

Managing scope changes
When you get new requirements, use the following steps to evaluate and prioritize
the requirements and update the product backlog.

Do not add new requirements to sprints already in progress, unless the develop-
ment team requests them, usually due to unexpected increased capacity.

1. Assess whether the new requirement should be part of the product,
the release, or the sprint by asking some key questions about the
requirement:

a. Does the new requirement support the product vision statement?

• If yes, add the requirement to the product backlog and product roadmap.

• If no, the requirement shouldn’t be part of the project. It may be a good
candidate for a separate project.

212 PART 4 Agile Management

b. If the new requirement supports the product vision, does the new requirement
support the current release goal?

• If yes, the requirement is a candidate for the current release plan.

• If no, leave the requirement on the product backlog for a future release.

c. If the new requirement supports the release goal, does the new requirement
support the current sprint goal?

• If yes and if the sprint has not started, the requirement is a candidate for
the current sprint backlog.

• If no or the sprint has already started or both, leave the requirement on the
product backlog for a future sprint.

2. Estimate the effort for the new requirement.

The	development	team	estimates	the	effort.	Find	out	how	to	estimate	
requirements	in	Chapter 7.

3. Prioritize the requirement against other requirements in the product
backlog and add the new requirement to the product backlog, in order of
priority.

Consider the following:

• The product owner knows the most about the product’s business needs
and how important the new requirement may be in relation to other
requirements. The product owner may also reach out to project stakehold-
ers for additional insight to a requirement’s priority.

• The development team may also have technical insight about a new
requirement’s	priority.	For	example,	if	Requirement	A	and	Requirement	B	
have equal business value, but you need to complete Requirement B for
Requirement A to be feasible, the development team will need to alert the
product	owner.	Requirement	B	may	need	to	be	completed	first.

• Although the development team and project stakeholders can provide
information	to	help	prioritize	a	requirement,	determining	priority	is	
ultimately the product owner’s decision.

• Adding new requirements to the product backlog may mean other
requirements	move	down	the	list	in	the	product	backlog.	Figure 12-2	
shows the addition of a new requirement in the product backlog.

The product backlog is a complete list of all known scope for the product and is
your most important tool for managing scope change on an agile project.

CHAPTER 12 Managing Scope and Procurement 213

Keeping the product backlog up to date will allow you to quickly prioritize and
add new requirements. With a current product backlog, you always understand
the scope left in a project. Chapter 7 has more information about prioritizing
requirements.

Using agile artifacts for scope management
From the vision statement through the sprint plan, all the artifacts in agile project
management support you in your scope management efforts. Progressively
decompose, or break down, requirements as features rise to the top of the priority
list. We talk about decomposition and progressive elaboration of requirements in
Chapter 7.

Table 12-2 reveals how each agile artifact, including the product backlog, contrib-
utes to ongoing scope refinement.

FIGURE 12-2:
Adding a new

requirement to
the product

backlog.

TABLE 12-2	 Agile Artifacts and Scope Management Roles
Artifact Role in Establishing Scope Role in Scope Change

Vision statement:	A	definition	
of the product’s end goal.
Chapter 7	has	more	about	the	
vision statement.

Use the vision statement as a
benchmark to judge whether
features belong in the scope for the
current project.

When someone introduces new
requirements, those requirements
must support the product vision
statement.

Product roadmap: A holistic
view of product features that
create the product vision.
Chapter 7	has	more	about	the	
product roadmap.

Product scope is part of the
product roadmap. Requirements at
a feature level are good for
business conversations about what
it	means	to	realize	the	
product vision.

Update the product roadmap as
new requirements arise. The
product roadmap provides visual
communication of the new feature’s
inclusion in the project.

(continued)

214 PART 4 Agile Management

What’s Different about Agile
Procurement?

Another part of project management is procurement, managing the purchase of
services or goods needed to deliver the product’s scope. Like scope, procurement
is part of the investment side of a project.

Chapter 2 explains that the Agile Manifesto values customer collaboration over con-
tract negotiation. This sets an important tone for procurement relationships on
agile projects.

Valuing customer collaboration more than contract negotiation doesn’t mean that
agile projects have no contracts: Contracts and negotiation are critical to business
relationships. However, the Agile Manifesto sets forth the idea that a buyer and
seller should work together to create products, and that the relationship between
the two is more important than quibbling over ill-informed details and checking
off contract items that may or may not ultimately be valuable to customers.

All 12 Agile Principles apply to procurement on agile projects. However, the following
seem to stand out the most when securing goods and services for an agile project:

 2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

Artifact Role in Establishing Scope Role in Scope Change

Release plan: A digestible
mid-term target focused
around a minimum set of
marketable features.
Chapter 8	has	more	about	
the release	plan.

The release plan shows the scope
of the current release. You may
want to plan your releases by
themes —	logical	groups	of	
requirements.

Add new features that belong in the
current release to the release plan.
If the new user story doesn’t belong
in the current release, leave it on
the product backlog for a
future release.

Product backlog: A complete
list of all known scope for the
product.	Chapters 7	and 8	
offer	more	about	the	
product backlog.

If a requirement is in the scope of
the product vision, it is part of the
product backlog.

The product backlog contains all
scope changes. New, high-priority
features push lower-priority
features down on the
product backlog.

Sprint backlog: The user
stories and tasks in the scope
of the current sprint.
Chapter 8	has	more	about	the	
sprint backlog.

The sprint backlog contains the
user stories that are in scope for
the current sprint.

The sprint backlog establishes what
is allowed in the sprint. After the
development team commits to the
sprint goal in the sprint-planning
meeting, only the development
team can modify the sprint backlog.

TABLE	12-2	(continued)

CHAPTER 12 Managing Scope and Procurement 215

 3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

 4. Business people and developers must work together daily throughout the project.

 5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

 10.	Simplicity —	the	art	of	maximizing	the	amount	of	work	not	done —	is	essential.

 11.	The	best	architectures,	requirements,	and	designs	emerge	from	self-organizing	
teams.

Table 12-3 highlights the differences between procurement on traditional projects
and procurement on agile projects.

Both waterfall and agile project teams are interested in vendor success. Tradi-
tional project approaches were firm in their accountability for compliance, defin-
ing success as checking off documents and deliverables in a list. Agile project
approaches, by contrast, are firm in their accountability for end results, defining
success with working functionality.

The next section shows how to manage procurement on agile projects.

TABLE 12-3	 Traditional versus Agile Procurement Management
Procurement Management with Traditional
Approaches

Procurement Management with Agile
Approaches

The	project	manager	and	the	organization	are	
responsible for procurement activities.

The self-managing development team plays a larger
part in identifying items needing procurement. The
scrum master facilitates the acquisition of needed
items for the development team.

Contracts with service providers often include
provisions	for	fixed	requirements,	extensive	
documentation, a comprehensive project plan, and
other traditional deliverables based on a waterfall
lifecycle.

Contracts for agile projects are based on the
evaluation of working functionality at the end of
each	sprint,	not	on	fixed	deliverables	and	
documentation that may or may not contribute to
delivering quality products.

Contract negotiation between buyers and sellers
can sometimes	be	challenging.	Because	negotiation	
is often a stressful activity, it can damage the
relationship between the buyer and the seller before
work even starts on a project.

Agile project teams focus on keeping a positive,
cooperative relationship between buyers and sellers
from the start of the procurement process.

Switching vendors after a project starts can be costly
and time-consuming because a new vendor must try
to understand the old vendor’s massive amount of
work in progress.

Vendors provide completed, working functionality at
the end of each sprint. If vendors change mid-
project, the new vendor can immediately start
developing	requirements	for	the	next	sprint,	
avoiding a long, costly transition.

216 PART 4 Agile Management

Managing Agile Procurement
This section focuses on how agile project teams go through the procurement pro-
cess: from determining need, selecting a vendor, and creating a contract through
working with a vendor and closing out the contract at the end of a buyer-seller
project.

Determining need and selecting a vendor
On agile projects, procurement starts when the development team decides it needs
a tool or the services of a third-party to create the product.

Agile project development teams are self-managing and self-organizing, and
they get to make the decisions about what is best for maximizing development
output. Self-management applies to all project management areas, including pro-
curement. Find out more about self-managing teams in Chapters 6 and 14.

Development teams have a number of opportunities to consider outside goods and
services:

 » Product vision stage: The development team may start thinking about the
tools and skills necessary to help reach the product vision. At this stage, it may
be prudent to research needs but not begin the purchase process.

 » Product roadmap stage:	The	development	team	starts	to	see	specific	
features to create and may know some of the goods or services necessary to
help create the product.

 » Release planning: The development team knows more about the product and
can	identify	specific	goods	or	services	that	will	help	meet	the	next	release	goal.

 » Sprint planning: The development team is in the trenches of development
and may identify urgent needs for the sprint.

 » Daily scrum: Development team members state impediments. Procuring
goods or services may help remove these impediments.

 » Throughout the day: Development team members communicate with one
another	and	collaborate	on	tasks.	Specific	needs	may	arise	from	the	develop-
ment team’s conversations.

 » Sprint review meeting: Project stakeholders may identify new requirements
for future sprints that warrant procurement of goods or services.

 » Sprint retrospective: The development team may discuss how having a
specific	tool	or	service	could	have	helped	the	past	sprint	and	suggest	a	
purchase for future sprints.

CHAPTER 12 Managing Scope and Procurement 217

Sometimes you can find the goods or services you need for a project in your
 organization. Before looking at buying an item or working with vendors, the
scrum master determines whether the tool or the person with the skills to fulfill
the services the development team needs is available internally. If internal
resources or people can meet the development team’s needs, the scrum team
saves money.

After the development team determines it needs a good or service, the develop-
ment team and the scrum master work with the product owner to procure any
necessary funds. The product owner is responsible for managing project scope
against the project budget, so the product owner is ultimately responsible for any
project purchases. The scrum master usually manages the vendor relationship on
behalf of the scrum team after procurement is initiated with the vendor.

When procuring goods, the development team may need to compare tools and
vendors before deciding on a purchase. When procuring goods, after you choose
what to buy and where to get it, the process is usually straightforward: Make the
purchase and take delivery.

Procuring services is usually a longer and more complex process than purchasing
goods. Some agile-specific considerations for selecting a services vendor include
the following:

 » Whether the vendor can work in an agile project environment and, if so, how
much	experience	the	vendor	has	with	agile	projects

 » Whether the vendor can work on-site with the development team

 » Whether the relationship between the vendor and the scrum team is likely to
be positive and collaborative

The organization or company you work for may be subject to laws and regulations
for choosing vendors. Companies involved in government work, for example,
often need to gather multiple proposals and bids from companies for work that
will cost more than a certain amount of money. Although your cousin or your
friend from college might be the most qualified person to complete the work, you
may run into trouble if you don’t follow applicable laws. Check with your com-
pany’s legal department if you’re in doubt about how to streamline bloated
processes.

After you choose a service vendor, you need to create a contract so that the vendor
can start work. The next section explains how contracts work on agile projects.

218 PART 4 Agile Management

Understanding cost approaches
and contracts for services
After the development team and the product owner have chosen a vendor, they
need a contract to ensure agreement on the services and pricing. To start the con-
tract process, you should know about different pricing structures and how they
work with agile projects. After you understand these approaches, you see how to
create a contract.

Cost structures
When you are procuring services for an agile project, it is important to know the
difference between a fixed-price project, a fixed-time project, a time-and-materials
project, and a not-to-exceed project. Each approach has its own strengths in an
agile setting:

 » Fixed-price project:	Starts	out	with	a	set	budget.	In	a	fixed-price	project,	a	
vendor works on the product and creates releases until that vendor has spent
all the money in the budget or until you have delivered enough product
features,	whichever	comes	first.

For	example,	if	you	have	a	$250,000	budget,	and	your	vendor	costs	are	
$10,000	a	week,	the	vendor’s	portion	of	the	project	will	be	able	to	last	
25 weeks.	Within	those	25	weeks,	the	vendor	creates	and	releases	as	much	
shippable functionality as possible.

 » Fixed-time project:	Has	specific	deadlines.	For	example,	you	may	need	to	
launch	a	product	in	time	for	the	next	holiday	season,	for	a	specific	event,	or	
to coincide	with	the	release	of	another	product.	With	fixed-time	projects,	
you determine	costs	based	on	the	cost	of	the	vendor’s	team	for	the	duration	
of the project, along with any additional resource costs, such as hardware or
software.

 » Time-and-materials project:	Is	more	open-ended	than	fixed-priced	or	
fixed-time	projects.	In	a	time-and-materials	project,	your	work	with	the	vendor	
lasts until enough product functionality is complete, without regard to total
project cost. You know the total project cost at the end of the project, after
your stakeholders have determined that the product has enough features to
call the project complete.

For	example,	suppose	your	project	costs	$10,000	a	week.	After	20	weeks,	the	
stakeholders feel that they have enough valuable product features, so your
project	cost	is	$200,000.	If	the	stakeholders	instead	deem	that	they	have	enough	
value	by	the	end	of	10	weeks,	the	project	cost	is	half	that	amount,	$100,000.

 » Not-to-exceed project: Is a project in which time and materials have a
fixed-price	cap.

CHAPTER 12 Managing Scope and Procurement 219

Regardless of the cost approach, on agile projects, concentrate on completing the
highest-value product features first.

Contract creation
After you know the project’s cost approach, the scrum master might help create a
contract. Contracts are legally binding agreements between buyers and sellers
that set expectations about work and payment.

The person responsible for creating contracts differs by organization. In some
cases, a person from the legal or procurement department drafts a contract and
then asks the scrum master to review it. In other cases, the opposite occurs: The
scrum master drafts the contract and has a legal or procurement expert review it.

Regardless of who creates the contract, the scrum master usually acts on behalf of
the scrum team to do any of the following: Initiate the contract creation, negotiate
the contract details, and route the contract through any necessary internal
approvals.

The agile approach of placing value on collaboration over negotiation is a key to
maintaining a positive relationship between a buyer and a seller while creating and
negotiating a contract. The scrum master works closely with the vendor and com-
municates openly and often with the vendor throughout the contract creation
process.

THE FALLACY OF LOW-BALLING
THE VENDOR
Trying to bully vendors into providing the lowest possible price is always a lose-lose
 situation. Contractors in industries where projects always go to the lowest bidder have a
saying: Bid it low, and watch it grow. It is common for vendors to provide a low price
during a project’s proposal process and then add multiple change orders until the buyer
ends	up	paying	as	much	or	more	than	he	or	she	would	have	for	higher-priced	offers.

Waterfall project management supports this practice by locking in scope and price at
the	project	start,	when	you	know	almost	nothing	about	the	project.	Change	orders —	
and	their	accompanying	cost	increases —	are	inevitable.

A	better	model	is	for	the	vendor	and	buyer	to	collaborate	on	defining	the	project	scope,	
within	fixed	cost	and	schedule	constraints,	as	the	project	unfolds.	Both	parties	can	reap	
the	benefits	of	what	they	learn	during	the	project,	and	you	end	up	with	a	better	product	
full	of	the	highest-value	functionality	delivered	and	identified	at	the	end	of	each	sprint.	
Instead of trying to be a tough negotiator, be a good collaborator.

220 PART 4 Agile Management

The Agile Manifesto does not state that contracts are unnecessary. Regardless of
the size of your company or organization, it is a very good idea to create a contract
between your company and your vendor for services. Skipping the contract can
leave buyers and sellers open to confusion about expectations, unfinished work,
and even legal problems.

At the very least, most contracts have legal language describing the parties and
the work, the budget, the cost approach, and payment terms. A contract for an
agile project may also include the following:

 » A description of the work that the vendor will complete: The vendor may
have its own product vision statement, which may be a good starting point
to describe	the	vendor’s	work.	You	may	want	to	refer	to	the	product	vision	
statement	in	Chapter 7.

 » Agile approaches that the vendor may use: They may include

• Meetings that the vendor will attend, such as the daily scrum, sprint
planning, sprint review, and sprint retrospective meetings

• Delivery of working functionality at the end of each sprint

• The	definition	of	done	(discussed	in	Chapter 9):	work	that	is	developed,	
tested,	integrated,	and	documented,	per an	agreement	between	the	
product owner, the development team, and the scrum master

• Artifacts that the vendor will provide, such as a sprint backlog with a
burndown chart for status

• People whom the vendor will have on the project, such as the develop-
ment team

• Where the vendor will work, such as on-site at your company

• Whether the vendor will work with its own scrum master and product
owner, or if it will work with your scrum master and product owner

• A	definition	of	what	may	constitute	the	end	of	the	engagement:	the	end	of	
a	fixed	budget	or	fixed	time,	or	enough	complete,	working	functionality

 » For a vendor that doesn’t use an agile approach, a description of how
the vendor and the vendor’s work will integrate with the buyer’s
development team and sprints.

This is not a comprehensive list; contract items vary by project and organization.

The contract will likely go through a few rounds of reviews and changes before the
final version is complete. One way to clearly communicate changes and maintain
a good relationship with a vendor is to speak with the vendor each time you

CHAPTER 12 Managing Scope and Procurement 221

propose a change. If you email a revised contract, follow up with a call to explain
what you changed and why, to answer any questions, and to discuss any ideas for
further revision. Open discussion helps the contract process to be positive.

If anything substantial about the vendor’s services changes during contract dis-
cussions, it is a good idea for the product owner or the scrum master to review
those changes with the development team. The development team especially
needs to know and provide input about changes to the service the vendor will
provide, the vendor’s approach, and the people on the vendor’s team.

It is quite likely that your company and the vendor will require reviews and
approvals by people outside their respective project teams. People who review
contracts might include high-level managers or executives, procurement special-
ists, accounting people, and company attorneys. This differs by organization; the
scrum master needs to ensure that anyone who needs to read the contract does so.

Now that you understand a little about how to select a vendor and create a con-
tract, it’s time to look at how procurement differs among companies and
organizations.

Organizational considerations
for procurement
The way your company approaches procurement will make a difference in how
you go about selecting a vendor and creating and negotiating a contract. Because
procurement involves money and legal contracts, purchase procedures and deci-
sions are sometimes outside a project team’s control. Considerations for procure-
ment activities can include the following:

 » Company or organization size and experience: Smaller and newer compa-
nies may have less formality, allowing more autonomy over purchases. Larger
and more established companies tend to have more overhead with purchas-
ing. Some companies have entire departments with people working full-time
on procurement.

 » Company or organization type:	Some	organizations,	such	as	government	
agencies, have legally required procurement processes and documents to
complete. Private companies may have fewer restrictions on procurement
than	publicly	traded	companies	because	of	differences	in	laws	for	public	
companies.

 » Company or organization culture:	Many	organizations	involve	the	project	
team in procurement decisions. However, this is not always the case, and
project	teams	sometimes	find	themselves	working	with	goods	or	service	

222 PART 4 Agile Management

providers they had no part in choosing. Some companies are rather informal
and don’t require much documentation or process for procurement. Other
companies require documents to justify the need for a good or service, formal
proposals from sellers, and multiple approvals at each step in procurement.

If you’re working on an agile project in an organization with heavy procurement
processes and a separate procurement department, you must balance those pro-
cesses with agile processes. A good way to ensure agile processes during procure-
ment is for the scrum master to work closely with the procurement department
staffers.

In Chapter 6, we note that the scrum master makes sure that the organization
follows agile practices and principles. In this role, the scrum master helps explain
agile approaches to procurement specialists. The scrum master may find it worth-
while to help adjust organizational requirements to support agile processes.

The scrum master makes sure procurement people understand why a contract
may need to accommodate changing requirements and iterations. The scrum
master sets the tone for the contract creation process to be collaborative.

If an agile project team has support from an organization’s upper management, it
will usually be easier to work agile approaches into an organization’s procure-
ment processes.

One good way to get support for moving agile approaches into your organization’s
procurement processes is to ensure that upper management understands how
agile methods enable agile teams and organizations to deliver higher customer
value more often. Benefits such as better product quality, reduced risk, and more
control and visibility of project performance help make a strong argument for
using agile processes when working with vendors. Chapter 19 provides a list of key
benefits of agile project management.

Organizations with light or no procurement processes provide different chal-
lenges for an agile project — or for any project, for that matter. Scrum masters
may find themselves starting procurement activities from scratch, with little
precedent or support.

People who sign contracts should have the authorization to make financial
 decisions for a company, and they often are people at the executive level. Scrum
masters and product owners usually don’t have this type of authorization. When
in doubt, ask around. Find the right signatory.

CHAPTER 12 Managing Scope and Procurement 223

After you choose a vendor and have a signed contract, the vendor can start work.
In the next section, you see that, like the initial procurement processes, working
with vendors has special considerations for agile projects.

Working with a vendor
How you work with a vendor on an agile project depends in part on the vendor
team’s structure. In an ideal situation, vendor teams are fully integrated with the
buyer’s organization. The vendor’s team members are collocated with the buyer’s
scrum team. Vendor team members work as part of the buyer’s development team
for as long as necessary.

Some development teams include vendor team members in their daily scrum
meetings. This can be a good way to get an idea of what the vendor team is doing
every day and to help the development team work more closely with the vendor.
You can also invite vendors to your sprint reviews to keep them informed on your
progress.

Vendor teams also can be integrated but dislocated. If the vendor can’t work
 on-site at the buyer’s company, it can still be part of the buyer’s scrum team.
Chapter 14 has more information on team dynamics on agile projects.

If a vendor can’t be collocated, or if the vendor is responsible for a discrete, sepa-
rate part of the product, the vendor may have a separate scrum team. The vendor’s
scrum team works on the same sprint schedule as the buyer’s scrum team. See
Chapters 13 and 17 to find out how to work with more than one scrum team on a
project.

If a vendor doesn’t use agile project management processes, the vendor’s team
works separately from the buyer’s scrum team, outside the sprints, and on its own
schedule. The vendor’s traditional project manager helps ensure that the vendor
can deliver its services when the development team needs them. The buyer’s
scrum master may need to step in if the vendor’s processes or timeline becomes a
roadblock or a disruption for the development team. See the “Managing projects
with dislocated teams” section in Chapter 14 for information about working with
non-agile teams.

Vendors may provide services for a defined amount of time, or for the life of the
project. After the vendor’s work is complete, the contract is closed.

224 PART 4 Agile Management

Closing a contract
After a vendor completes work on a contract, the buyer’s scrum master usually
has some final tasks to close the contract.

If the project finishes normally, according to the contract terms, the scrum master
may want to acknowledge the end of the contract in writing. If the project is a
time-and-materials project, the scrum master should definitely end it in writing
to ensure that the vendor doesn’t keep working on lower-priority requirements —
and billing for them.

Depending on the organizational structure and the contract’s cost structure, the
scrum master may be responsible for notifying the buyer’s company accounting
department after work is complete to ensure that the vendor is paid properly.

If the project finishes before the contract dictates the end, the scrum master needs
to notify the vendor in writing and follow any early termination instructions from
the contract.

End the engagement on a positive note. If the vendor did a good job, the scrum
team may want to acknowledge the people on the vendor’s team at the sprint
reviews. Everyone on the project could potentially work together again, and a
simple, sincere “thank-you” can help maintain a good relationship for future
projects.

CHAPTER 13 Managing Time and Cost 225

Chapter 13

IN THIS CHAPTER

 » Understanding what’s unique about
time management on agile projects

 » Finding out how to manage time on
agile projects

 » Recognizing how cost management is
different on agile projects

 » Seeing how to manage cost on agile
projects

Managing Time and Cost

Managing project time and controlling project costs are key aspects of
managing a project. In this chapter, you see agile approaches to time and
cost management. You find out how to use a scrum team’s development

speed to determine time and cost on a given project and how to increase develop-
ment speed to lower your project’s time and cost.

What’s Different about Agile
Time Management?

In project management terms, time refers to the processes that ensure timely
project completion. To understand agile time management, it helps to review
some of the Agile Principles we discuss in Chapter 2:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

226 PART 4 Agile Management

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

Table 13-1 shows some of the differences between time management on tradi-
tional projects and on agile projects.

Fixed-schedule and fixed-price projects have lower risk with agile techniques
because agile development teams always deliver the highest-priority functional-
ity within the time or budget constraints.

A big benefit of agile time management techniques is that agile project teams can
deliver products much earlier than traditional project teams. For example, start-
ing development earlier and completing functionality in iterations often allow
agile project teams that work with our company, Platinum Edge, to bring value to
the market 30 percent to 40 percent faster.

TABLE 13-1	 Traditional versus Agile Time Management
Time Management with Traditional
Approaches Time Management with Agile Approaches

Fixed scope directly drives the schedule. Scope is not fixed on agile projects. Time can be fixed,
and development teams can create the requirements
that will fit into a specific time frame.

Project managers determine time based on the
requirements gathered at the beginning of
the project.

During the project, scrum teams assess and reassess how
much work they can complete in a given time frame.

Teams work at one time in phases on all project
requirements, such as requirements gathering,
design, development, testing, and deployment.
No schedule difference exists between critical
requirements and optional requirements.

Scrum teams work in sprints and complete all the work
on the highest-priority, highest-value requirements first.

Teams do not start actual product development
until later in the project, after the requirements-
gathering and design phases are complete.

Scrum teams start product development in the
first sprint.

Time is more variable on traditional projects. Timeboxed sprints on agile projects stay stable, enabling
predictability.

Project managers try to predict schedules at the
project start, when they know little about
the product.

Scrum teams determine long-range schedules on actual
development performance in sprints. Scrum teams adjust
time estimates throughout the project as they learn more
about the product and the development team’s speed, or
velocity. You find more about velocity later in this chapter.

CHAPTER 13 Managing Time and Cost 227

The reason agile projects finish sooner isn’t complicated; they simply start devel-
opment sooner.

In the next section, find out how to manage time on an agile project.

Managing Agile Schedules
Agile practices support both strategic and tactical schedules and time management:

 » Your early planning is strategic in nature. The high-level requirements in the
product roadmap and the product backlog can help you get an early idea of
the overall schedule. Find out how to create a product roadmap and product
backlog in Chapter 7.

 » Your detailed planning for each release and at each sprint is tactical. Read
more about release planning and sprint planning in Chapter 8.

• At release planning, you can plan your release to match a specific date,
with minimal marketable features.

• You also can plan your release with enough time to create a specific set of
features.

• During each sprint planning meeting, in addition to selecting the scope for
the sprint, the development team estimates the time, in hours, to complete
individual tasks for each of that sprint’s requirements. Use the sprint
backlog to manage detailed time allocations throughout the sprint.

 » After your project is underway, use the scrum team’s velocity (development
speed) to fine-tune your scheduling. We discuss velocity in the next section.

In Chapter 8, we describe planning releases for minimal marketable features, the
smallest group of product functionality providing enough value that you can
effectively deploy and promote in the marketplace.

To determine how much functionality an agile development team can deliver
within a set amount of time, you need to know your development team’s velocity.
In the next section, you take a look at how to measure velocity, how to use velocity
for a project timeline, and how to increase velocity throughout the project.

228 PART 4 Agile Management

Introducing velocity
One of the most important things about time management on agile projects is the
use of velocity, a powerful tool for forecasting long-term timelines. Velocity, in
agile terms, is a development team’s work speed. In Chapter 7, we describe mea-
suring the effort for requirements, or user stories, in story points. You measure
velocity by the number of user story points that the development team completes
in each sprint.

A user story is a simple description of a product requirement, identifying what a
requirement must accomplish, and for whom. User story points are relative num-
bers that describe the amount of effort necessary to develop a user story. Chap-
ter 8 delves into the details of creating user stories and estimating the effort using
story points.

When you know the development team’s velocity, you can use it as a long-range
planning tool. Velocity can help you forecast how long the scrum team will take to
complete a certain number of requirements and how much a project may cost.

DETERMINING AN AGILE PROJECT’S
LENGTH
A few factors determine the length of agile projects:

Assigned deadline: For business reasons, agile project teams may want to set a
specific end date. For example, you may want to get a product to market for a spe-
cific shopping season or to coincide with the timing of a competitor’s product
release. In that case, you set a specific end date, and create as much shippable
functionality as possible from the project start until the end date.

Budget considerations: Agile project teams may also have budget considerations
that affect the amount of time a project will last. For example, if you have a
$1,600,000 budget, and your project costs $20,000 a week to run, your project will
be able to last 80 weeks. You’ll have 80 weeks to create and release as much ship-
pable functionality as possible.

Functionality completed: Agile projects may also last only until enough functional-
ity is complete. Project teams may run sprints until the requirements with the highest
value are complete, and then determine that the lower-value requirements — the
ones that few people will use or that will not generate much revenue — aren’t
necessary.

CHAPTER 13 Managing Time and Cost 229

In the next section, you dive into velocity as a tool for time management. You see
how scope changes affect an agile project’s timeline. You also find out how to work
with multiple scrum teams and review agile artifacts for time management.

Monitoring and adjusting velocity
After a project starts, the scrum team starts to monitor its velocity. You measure
velocity from sprint to sprint. You use velocity for long-term schedule and budget
planning as well as for sprint planning.

In general, people are good at planning and estimating in the short term, so iden-
tifying hours for tasks in an upcoming sprint works well. At the same time, people
are often terrible at estimating distant tasks in absolute terms such as hours.
Tools such as relative estimating and velocity, which are based on performance,
are more accurate measurements for longer-term planning.

Velocity is a good trending tool. You can use it to determine future timelines
because the activities and development time within sprints is the same from
sprint to sprint.

Velocity is a post-sprint fact, not a goal. Avoid attempting to guess or commit to
a certain velocity before a project starts or in the middle of a sprint. You’ll only set
unrealistic expectations about how much work the team can complete. If velocity
turns into a target rather than a past measurement, scrum teams may be tempted
to exaggerate estimated story points to meet that target, rendering velocity mean-
ingless. Instead, use the scrum team’s actual velocity to forecast how much longer
the project may take and cost. Also focus on increasing velocity by removing con-
straints identified during the sprint and at the sprint retrospective.

In the next section, you see how to calculate velocity, how to use velocity to pre-
dict a project’s schedule, and how to increase your scrum team’s velocity.

Calculating velocity
At the end of each sprint, the scrum team looks at the requirements it has finished
and adds up the number of story points associated with those requirements. The
total number of completed story points is the scrum team’s velocity for that
sprint. After the first few sprints, you will start to see a trend and will be able to
calculate the average velocity.

Because velocity is a number, managers and executives may be tempted to use
velocity as a performance metric for compensating and comparing teams. Velocity
is not a performance metric, is team-specific, and should not be used outside the
scrum team. It is no more than a planning tool scrum teams can use to forecast
remaining work.

230 PART 4 Agile Management

The average velocity is the total number of story points completed, divided by the
total number of sprints completed. For example, if the development team’s veloc-
ity was

Sprint 1 = 15 points

Sprint 2 = 13 points

Sprint 3 = 16 points

Sprint 4 = 20 points

your total number of story points completed will be 64. Your average velocity will
be 16: 64 story points divided by 4 sprints.

After you have run a sprint and know the scrum team’s velocity, you can start
forecasting the remaining time on your project.

Using velocity to estimate the project timeline
When you know your velocity, you can determine how long your project will last.
Follow these steps:

1. Add up the number of story points for the remaining requirements in the
product backlog.

2. Determine the number of sprints you’ll need by dividing the number of
story points remaining in the product backlog by the velocity:

• To get a pessimistic estimate, use the lowest velocity the development
team has accomplished.

• To get an optimistic estimate, use the highest velocity the development
team has accomplished.

• To get a most likely estimate, use the average velocity the development
team has accomplished.

Using this empirical data — actual output speed — a product owner can give
stakeholders a range of release outcomes, and they can work together to
make business prioritization decisions early in the project. These decisions
might include whether there is a need to spin up an additional scrum team to
develop more scope items, adjust market release dates, or request project
budget.

3. Determine how much time it will take to complete the story points in the
product backlog by multiplying sprint length by the number of remaining
sprints.

CHAPTER 13 Managing Time and Cost 231

For example, assume that

• Your remaining product backlog contains 800 story points.

• Your development team velocity averages 20 story points per sprint.

How many more sprints will your product backlog need? Divide the number of
story points by your velocity, and you get your remaining sprints. In this case,
800/20 = 40.

If you’re using two-week sprints on your project, your project will last 80 weeks.

After the scrum team knows its velocity and the number of story points for the
requirements, you can use the velocity to determine how long any given group of
requirements will take to create. For example:

 » You can calculate the time an individual release may take if you have an idea
of the number of story points that will go into that release. At the release level,
your story point estimates will be more high level than at the sprint level. If
you’re basing your release timing on delivering specific functionality, your
release date may change as you refine your user stories and estimates
throughout the project.

 » You can calculate the time you need for a specific group of user stories —
such as all high-priority stories or all stories relating to a particular theme —
by using the number of story points in that group of user stories.

Velocity differs from sprint to sprint. In the first few sprints, when the project is
new, the scrum team will typically have a low velocity. As the project progresses,
velocity should increase because the scrum team will have learned more about the
product and will have matured as a team working together. Setbacks within spe-
cific sprints can temporarily decrease velocity from time to time, but agile pro-
cesses such as the sprint retrospective can help the scrum team ensure that those
setbacks are temporary.

In the beginning of a project, velocity will vary considerably from sprint to sprint.
Velocity will become more consistent over time, as long as the scrum team mem-
bers remain consistent.

Scrum teams can also increase their velocity throughout agile projects, making
projects shorter and less costly. In the next section, you find ways to increase
velocity in each consecutive sprint.

232 PART 4 Agile Management

Increasing velocity
If a scrum team has a product backlog with 800 story points and an average veloc-
ity of 20 story points, the project will last 40 sprints — 80 weeks, with 2-week
sprints. But what if the scrum team could increase its velocity?

 » Increasing the average velocity to 23 story points per sprint would mean 34.78
sprints. If you round that up to 35 sprints, the same project would
last 70 weeks.

 » An average velocity of 26 would take about 31 sprints, or 62 weeks.

 » An average velocity of 31 would take about 26 sprints, or 52 weeks.

As you can see, increasing velocity can save a good deal of time and, consequently,
money.

Velocity can naturally increase with each sprint, as the scrum team finds its
rhythm of working together on the project. However, opportunities exist to also
raise velocity on agile projects, past the common increases that come with time.
Everyone on a scrum team plays a part in helping get higher velocity with every
successive sprint:

 » Remove project roadblocks: One way to increase velocity is to quickly
remove project roadblocks, or impediments. Roadblocks are anything that
keeps a development team member from working to full capacity. By
definition, roadblocks can decrease velocity. Clearing roadblocks as soon as
they arise increases velocity by helping the scrum team to be fully functional
and productive. Find out more about removing project impediments in
Chapter 9.

 » Avoid project roadblocks: The best way to increase velocity is to strategically
create ways to avoid roadblocks in the first place. By knowing — or learning
about — the processes and the specific needs of groups your team will work
with, you can head off roadblocks before they arise.

 » Eliminate distractions: Another way to increase velocity is for the scrum
master to protect the development team from distractions. By making sure
people don’t request work outside the sprint goal from the development
team — even tasks that might take a small amount of time — the scrum
master will be able to help keep the development team focused on the sprint.

Having a dedicated scrum master who continually helps remove constraints
for the scrum team will result in continually increasing velocity. The value of a
dedicated scrum master is quantifiable.

CHAPTER 13 Managing Time and Cost 233

 » Solicit input from the team: Finally, everyone on the scrum team can
provide ideas for increasing velocity in the sprint retrospective meeting. The
development team knows its work the best, and may have ideas on how to
improve output. The product owner may have insights into the requirements
that can help the development team work faster. The scrum master will have
seen any repetitive roadblocks and can discuss how to prevent the roadblocks
in the first place.

Increasing velocity is valuable, but remember that you may not see changes over-
night. Scrum team velocity often has a pattern of slow increases, some big velocity
jumps, a flat period, and then slow increases again as the scrum team identifies,
experiments, and corrects constraints that are holding it back.

Consistency for useful velocity
Because velocity is a measure of work completed in terms of story points, it’s an
accurate indicator and predictor of project performance only when you use the
following practices:

 » Consistent sprint lengths: Each sprint should last the same amount of time
throughout the life of the project. If sprint lengths are different, the amount of
work the development team can complete in each sprint will be different, and
velocity won’t be relevant in predicting the remaining time on the project.

PREVENTING ROADBLOCKS
One development team we worked with needed feedback from its company’s legal
department but had not been able to get a response via email or voicemail. In a daily
scrum meeting, one of the development team members stated this lack of response as
a roadblock. After the scrum meeting was over, the scrum master walked over to the
legal department and found the right person to work with. After talking to that person,
the scrum master found out that her email was constantly flooded with requests, and
her voicemail was not much better.

The scrum master then suggested a process for future legal requests: Moving forward,
the development team members could walk over to the legal department with requests
and get feedback right there, in person, immediately. The new process took only a few
minutes, but saved days on turnaround from the legal department, effectively prevent-
ing similar roadblocks in the future. Finding ways to prevent roadblocks helps increase
the scrum team’s velocity.

234 PART 4 Agile Management

 » Consistent work hours: Individual development team members should work
the same number of hours in each sprint. If Sandy works 45 hours in one
sprint, 23 in another, and 68 in yet another, she will naturally complete a
different amount of work from sprint to sprint. However, if Sandy always
works the same number hours in one sprint, her velocity will be comparable
between sprints.

 » Consistent development team members: Different people work at different
rates. Tom might work faster than Bob, so if Tom works on one sprint and
Bob works on the next sprint, the velocity of Tom’s sprint will not be a good
prediction for Bob’s sprint.

When sprint lengths, work hours, and team members remain consistent through-
out a project, you can use velocity to truly know whether development speed is
increasing or decreasing and to accurately estimate the project timeline.

Performance does not scale linearly with available time. For example, if you have
two-week sprints with 20 story points per sprint, going to three-week sprints
does not guarantee 30 story points. The new sprint length will generate an
unknown change in velocity.

Although changing sprint lengths does introduce variance into a scrum team’s
velocity and projections, we rarely discourage scrum teams from decreasing their
sprint lengths (from three weeks to two, or from two weeks to one) because
shorter feedback loops allow scrum teams to react faster to customer feedback,
enabling them to deliver more value to their customer. However, changing sprint
lengths always comes with the same caution: Velocity does not scale linearly in
the opposite direction either, and scrum teams will have to establish a new veloc-
ity for their shorter sprint before their projections will become reliable again.

When you know how to accurately measure and increase velocity, you have a pow-
erful tool for managing time and cost on a project. In the next section, we talk
about how to manage a timeline in an ever-changing agile environment.

Managing scope changes from a
time perspective
Agile project teams welcome changing requirements at any time throughout a
project, which means project scope reflects the real priorities of the business. It is
“requirements Darwinism” at its purest — development teams complete require-
ments of highest priority first. Fixed sprint lengths force out requirements that
sound like good ideas in theory but never win the “either this requirement or that
requirement” contest.

CHAPTER 13 Managing Time and Cost 235

New requirements may have no effect on a project’s timeline; you just have to
prioritize. Working with the project stakeholders, the product owner can deter-
mine to develop only the requirements that will fit in a certain window of time or
budget. The priority ranking of items in the product backlog determines which
requirements are important enough to develop. The scrum team can guarantee
completing higher-priority requirements. The lower-priority requirements might
be part of another project or may never be created.

In Chapter 12, we discuss how to manage scope changes with the product backlog.
When you add a new requirement to an agile project, you prioritize that require-
ment against all other items in your product backlog and add the new item into
the appropriate spot in the product backlog. This may move other product backlog
items down in priority. If you keep your product backlog and its estimates up-to-
date as new requirements arise, you’ll always have a good idea of the project
timeline, even with constantly changing scope.

On the other hand, the product owner and the project stakeholders may determine
that all the requirements in the product backlog, including new requirements, are
useful enough to include in the project. In this case, you extend the project end
date to accommodate the additional scope, increase velocity, or divide the project
scope among multiple scrum teams that will work simultaneously on different
product features. Learn more about multi-team projects in Chapter 17.

Project teams often make schedule decisions about lower-priority requirements
toward the end of a project. The reasons for these just-in-time decisions are
because marketplace demands for specific scope items change, and also because
velocity tends to increase as the development team gets into a rhythm. Changes in
velocity increase your predictions about how many product backlog items the
development team can complete in a given amount of time. On agile projects, you
wait until the last responsible moment — when you know the most about the
question at hand — to make decisions you’ll be committed to for the rest of the
project.

The next section shows you how to work with more than one scrum team on a
project.

Managing time by using multiple teams
For larger projects, multiple scrum teams working in parallel may be able to com-
plete a project in a shorter time frame.

236 PART 4 Agile Management

You may want to create a project with multiple scrum teams if

 » Your project is very large and will require more than a single development
team of nine or fewer development team members to complete.

 » Your project has a specific end date that you must meet, and the scrum
team’s velocity will not be sufficient to complete the most valuable require-
ments by that end date.

The ideal size for a development team on an agile project is no less than three and
no more than nine people. Groups of more than nine people start to build silos,
and the number of communication channels makes self-management more dif-
ficult. (In some cases, we’ve seen these issues in teams smaller than nine.) When
your product development requires more development team members than can
effectively communicate, it may be time to consider using multiple scrum teams.

If you have multiple scrum teams on a project, break the work into themes, or
logical groups of product features, for each team.

Before rushing into that, though, you need to consider the overall scope of the
themes and the relationship between them. The work needs to be sufficiently sep-
arate to allow the teams to operate independently, with as few interdependencies
as possible. In Chapter 17, we show you several techniques for scaling product
development work across multiple teams.

Using agile artifacts for time management
The product roadmap, product backlog, release plan, and sprint backlog all play a
part in time management. Table 13-2 shows how each artifact contributes to time
management.

In the next sections, you dive into cost management for agile projects. Cost man-
agement is directly related to time management. You compare traditional
approaches to cost management to those in agile projects. You find out how to
estimate costs on an agile project and how to use velocity to forecast your long-
term budget.

CHAPTER 13 Managing Time and Cost 237

What’s Different about Agile Cost
Management?

Cost is a project’s financial budget. When you work on an agile project, you focus
on value, exploit the power of change, and aim for simplicity. Agile Principles 1, 2,
and 10 state the following:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

10. Simplicity — the art of maximizing the amount of work not done — is
essential.

Because of this emphasis on value, change, and simplicity, agile projects have a
different approach to budget and cost management than traditional projects.
Table 13-3 highlights some of the differences.

TABLE 13-2	 Agile Artifacts and Time Management
Artifact Role in Time Management

Product roadmap: The product roadmap is
a prioritized, holistic view of the high-level
requirements that support the product’s
vision. Find more about the product roadmap
in Chapter 7.

The product roadmap is a strategic look at the overall
project priorities. Although the product roadmap likely will
not have specific dates, it will have general date ranges for
groups of functionality and will allow an initial framing for
bringing the product to market.

Product backlog: The product backlog is a
complete list of all currently known product
requirements. Find more about the product
backlog in Chapters 7 and 8.

The requirements in your product backlog will have
estimated story points. After you know your development
team’s velocity, you can use the total number of story
points in the product backlog to determine a realistic
project end date.

Release plan: The release plan contains a
release schedule for a minimum set of
requirements. Find more about the release
plan in Chapter 8.

The release plan will have a target release date for a specific
goal supported by a minimal set of marketable
functionalities. Scrum teams plan and work on only one
release at a time.

Sprint backlog: The sprint backlog contains
the requirements and tasks for the current
sprint. Find more about the sprint backlog in
Chapter 8.

During your sprint-planning meeting, you estimate
individual tasks in the backlog in hours. At the end of each
sprint, you take the total completed story points from the
sprint backlog to calculate your development team’s velocity
for that sprint.

238 PART 4 Agile Management

When costs increase, project sponsors sometimes find themselves in a kind of
hostage situation. A waterfall approach does not call for any complete product
functionality until the end of a project. Because traditional approaches to develop-
ment are all-or-nothing proposals, if costs increase and stakeholders don’t pay
more for the product, they will not get any finished requirements. The incomplete
product becomes a kidnapped hostage; pay more, or get nothing.

In the following sections, you find out about cost approaches in agile projects,
how to estimate costs for an agile project, how to control your budget, and how to
lower costs.

Managing Agile Budgets
On agile projects, cost is mostly a direct expression of project time. Because scrum
teams consist of full-time, dedicated team members, they have a set team cost —
generally expressed as an hourly or fixed rate per person — that should be the
same for each sprint. Consistent sprint lengths, work hours, and team members

TABLE 13-3	 Traditional versus Agile Cost Management
Cost Management with Traditional
Approaches Cost Management with Agile Approaches

Cost, like time, is based on fixed scope. Project schedule, not scope, has the biggest effect on cost.
You can start with a fixed cost and a fixed amount of time,
and then complete requirements as potentially shippable
functionality that fit into your budget and schedule.

Organizations estimate project costs and
fund projects before the project starts.

Product owners often secure project funding after the
product roadmap stage is complete. Some organizations
even fund agile projects one release at a time; product
owners will secure funding after completing release planning
for each release.

New requirements mean higher costs.
Because project managers estimate costs
based on what they know at the project start,
which is very little, cost overruns
are common.

Project teams can replace lower-priority requirements with
new, equivalently sized high-priority requirements with no
effect on time or cost.

Scope bloat (see Chapter 12) wastes large
amounts of money on features that people
simply do not use.

Because agile development teams complete requirements
by priority, they concentrate on creating only the product
features that users need, whether those features are added
on day 1 or day 100 of the project.

Projects cannot generate revenue until the
project is complete.

Project teams can release working, revenue-generating
functionality early, creating a self-funding project.

CHAPTER 13 Managing Time and Cost 239

enable you to accurately use velocity to predict development speed. Once you use
velocity to determine how many sprints your project will take — that is, how long
your project will be — you can know how much your scrum team will cost for the
whole project.

Project cost also includes the cost for resources like hardware, software, licenses,
and any other supplies you might need to complete your project.

In this section, you find out how to create an initial budget and how to use the
scrum team’s velocity to determine long-range costs.

Creating an initial budget
To create your project budget, you need to know the cost for your scrum team, per
sprint, and the cost for any additional resources you need to complete the
project.

Typically, you calculate the cost for your scrum team by using an hourly rate for
each team member. Multiply each team member’s hourly rate by his or her avail-
able hours per week by the number of weeks in your sprints to calculate your scrum
team’s per-sprint cost. Table 13-4 shows a sample budget for a scrum team — the
product owner, five development team members, and the scrum master — for a
two-week sprint.

TABLE 13-4	 Sample Scrum Team Budget for a Two-Week Sprint
Team Member Hourly Rate Weekly Hours Weekly Cost Sprint Cost (2 Weeks)

Don $80 40 $3,200 $6,400

Peggy $70 40 $2,800 $5,600

Bob $70 40 $2,800 $5,600

Mike $65 40 $2,600 $5,200

Joan $85 40 $3,400 $6,800

Tommy $75 40 $3,000 $6,000

Pete $55 40 $2,200 $4,400

Total 280 $20,000 $40,000

240 PART 4 Agile Management

The cost for additional resources will vary by project. In addition to scrum team
member costs, take the following into account when determining your project
costs:

 » Hardware costs

 » Software, including license costs

 » Hosting costs

 » Training costs

 » Miscellaneous team expenses, such as additional office supplies, team
lunches, travel costs, and the price of any tools you may need

These costs may be one-time costs, rather than per-sprint costs. We suggest sep-
arating these costs in your budget; as you see in the next section, you need your
cost for each sprint to determine the cost for the project. (To keep calculations
simple throughout this chapter, we assume that the project cost of $40,000
includes scrum team member costs as well as any additional resources, such as
those just listed.)

Resources typically refer to inanimate objects, not people. Resources need to be
managed. When discussing resources on a project, refer to people as team mem-
bers, talent, or just people. This issue may seem minor, but the more you focus on
individuals and interactions over processes and tools, even in the details, the more
your mindset will change to think and be more agile.

Creating a self-funding project
A big benefit of agile projects is the capability to have a self-funding project.
Scrum teams deliver working functionality at the end of each sprint and make that
functionality available to the marketplace at the end of each release cycle. If your
product is an income-generating product, you could use revenue from early
releases to help fund the rest of your project.

For example, an ecommerce website might generate $15,000 a month in sales
after the first release, $40,000 a month after the second release, and so on.
Tables 13-5 and 13-6 compare income on a sample traditional project to the
income from a self-funding agile project.

CHAPTER 13 Managing Time and Cost 241

In Table 13-5, the project created $100,000 in income after six months of
 development. Now compare the income in Table 13-5 to the income generated in
Table 13-6.

In Table 13-6, the project generated income with the first release. By the end of six
months, the project had generated $330,000 — $230,000 more than the project in
Table 13-5.

TABLE 13-5	 Income from a Traditional Project with a Final Release
after Six Months

Month Income Generated Total Project Income

January $0 $0

February $0 $0

March $0 $0

April $0 $0

May $0 $0

June $0 $0

July $100,000 $100,000

TABLE 13-6	 Income from a Project with Monthly Releases and a Final
Release after Six Months

Month/Release Income Generated Total Project Income

January $0 $0

February $15,000 $15,000

March $25,000 $40,000

April $40,000 $80,000

May $70,000 $150,000

June $80,000 $230,000

July $100,000 $330,000

242 PART 4 Agile Management

Using velocity to determine
long-range costs
The “Using velocity to estimate the project timeline” section, earlier in this
 chapter, shows you how to determine how much time a project will take, using the
scrum team’s velocity and the remaining story points in the product backlog. You
can use the same information to determine the cost for the project or for your
 current release.

After you know the scrum team’s velocity, you can calculate the cost for the
remainder of the project.

In the velocity example from earlier in this chapter, where your scrum team veloc-
ity averages 16 story points per sprint, your product backlog contains 800 story
points, and your sprints are 2 weeks long, your project will take 50 sprints, or 100
weeks, to complete.

To determine the remaining cost for your project, multiply the cost per sprint by
the number of sprints the scrum team needs to complete the product backlog.

If your scrum team cost is $40,000 per sprint and you have 50 sprints left, your
remaining cost for your project will be $2,000,000.

In the next sections, you find out different ways to lower your project costs.

Lowering cost by increasing velocity
In the time management section of this chapter, we talk about increasing the
scrum team’s velocity. Using the examples from the earlier section, and the
$40,000 per two-week sprint from Table 13-4, increasing velocity could reduce
your costs, as follows:

 » If the scrum team increases its average velocity from 16 to 20 story points
per sprint

• You will have 40 remaining sprints.

• Your project will cost $1.6 million, saving you more than $400,000.

 » If the scrum team increases its velocity to 23 story points

• You will have 35 remaining sprints.

• Your project will cost $1.4 million, saving you an additional $200,000.

CHAPTER 13 Managing Time and Cost 243

 » If the scrum team increases its velocity to 26 story points

• You will have 31 remaining sprints.

• Your project will cost $1.24 million, an additional $160,000 savings.

As you can see, increasing the scrum team’s velocity by removing impediments
can provide real savings on project costs. See how to help the scrum team become
more productive in the “Increasing velocity” section, earlier in this chapter.

Lowering cost by reducing time
You can also lower your project costs by not completing lower-priority require-
ments, thus lowering the number of sprints you need. Because completed func-
tionality is delivered with each sprint in an agile project, the project stakeholders
can make a business decision to end a project when the cost of future development
is higher than the value of that future development.

Project stakeholders can then use the remaining budget from the old project to
start a new, more valuable project. The practice of moving the budget from one
project to another is called capital redeployment.

To determine a project’s end based on cost, you need to know

 » The business value (V) of the remaining requirements in the product backlog

 » The actual cost (AC) of the work it will take to complete the requirements in
the product backlog

 » The opportunity cost (OC), or the value of having the scrum team work on a
new project

When V < AC + OC, the project can stop because the cost you’ll sink into the project
will be more than the value you will receive from the project.

Consider this example: A company is running an agile project and

 » The remaining features in the product backlog will generate $100,000 in
income (V = $100,000).

 » It will take three sprints with a cost of $40,000 per sprint to create those
features, a total of $120,000 (AC = $120,000).

 » The scrum team could be working on a new project that would generate
$150,000 after three sprints, minus the scrum team’s cost (OC = $150,000).

 » The project value, $100,000, is less than the actual costs plus opportunity
costs, or $270,000. This would be a good time to end the project.

244 PART 4 Agile Management

The opportunity for capital redeployment sometimes arises in emergencies, when
an organization needs members of the scrum team to pause a project for critical
unplanned work. Project sponsors sometimes evaluate a project’s remaining value
and cost before restarting a paused project.

Pausing a project can be expensive. The costs associated with demobilization and
remobilization — saving work in progress, documenting current state, debriefing
paused project team members, retooling for the new project, briefing team mem-
bers on the new project, learning new skills required on the new project — can be
significant and should be evaluated before making the decision to pause a project
that may need to be remobilized again in the future. V < AC + OC can help with this
decision.

Project sponsors may also compare the product backlog value to remaining devel-
opment costs throughout the project, so they know just the right time to end the
project and receive the most value.

Determining other costs
Similar to time management, after you know the scrum team’s velocity, you can
determine the cost of anything in the project. For example:

 » You can calculate the cost for an individual release if you have an idea of the
number of story points that will go into that release. Divide the number of
story points in the release by the scrum team’s velocity to determine how
many sprints will be required. At the release, your story point estimates will be
more high-level than at the sprint, so your costs may change, depending on
how you determine your release date.

 » You can calculate the cost for a specific group of user stories, such as all
high-priority stories or all stories relating to a particular theme, by using the
number of story points in that group of user stories.

Using agile artifacts for cost management
You can use the product roadmap, release plan, and sprint backlog for cost man-
agement. Table 13-2 shows how each artifact helps you measure and evaluate
project time and costs.

Time and cost forecasts based on actual development team performance are more
accurate than forecasts based on hope.

CHAPTER 14 Managing Team Dynamics and Communication 245

Chapter 14

IN THIS CHAPTER

 » Recognizing what makes agile team
dynamics different

 » Finding out how to work with agile
teams

 » Understanding how communication
differs on agile projects

 » Seeing how communication works on
agile projects

Managing Team
Dynamics and
Communication

Team dynamics and communication are significant parts of project manage-
ment. In this chapter, you find out about traditional and agile approaches to
project teams and communication. You see how a high value on individuals

and interactions makes agile project teams great teams to work on. You also find
out how face-to-face communication helps make agile projects successful.

What’s Different about Agile
Team Dynamics?

What makes a project team on an agile project unique? The core reason agile teams
are different from traditional teams is their team dynamics. The Agile Manifesto
(refer to Chapter 2) sets the framework for how agile project team members work

246 PART 4 Agile Management

together: The very first item of value in the manifesto is individuals and interactions
over processes and tools.

The following agile principles, also from Chapter 2, support valuing people on the
project team and how they work together:

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

The agile principles apply to many different project management areas. You see
some of these principles repeated in different chapters of this book.

On agile projects, the development team contains the people who do the physical
work of creating the product. The scrum team contains the development team,
plus the product owner and the scrum master. The project team is the scrum team
and your project stakeholder. Everyone on the scrum team has responsibilities
related to self-management.

Table 14-1 shows some differences between team management on traditional
projects and on agile projects.

We avoid the term resources when referring people. Referring to people and equip-
ment with the same term is the beginning of thinking of team members as inter-
changeable objects that can be swapped in and out. Resources are things, utilitarian
and expendable. The people on your project team are human beings, with emo-
tions, ideas, and priorities inside and outside the project. People can learn and
create and grow throughout the project. Respecting your fellow project team
members by referring to them as people instead of resources is a subtle but power-
ful way to reinforce the fact that people are at the core of an agile mindset.

The following sections discuss how working with a dedicated, cross-functional,
self-organizing, size-limited team benefits agile projects. You find out more
about servant leadership and creating a good environment for a scrum team. In
short, you find out how team dynamics help agile projects succeed.

CHAPTER 14 Managing Team Dynamics and Communication 247

Managing Agile Team Dynamics
Time and again, when we talk with product owners, developers, and scrum
 masters, we hear the same thing: People enjoy working on agile projects. Agile
team dynamics enable people to do great work in the best way they know how.
People on scrum teams have opportunities to learn, to teach, to lead, and to be
part of a cohesive, self-managing team.

The following sections show you how to work as part of an agile team (using
scrum as the context) and why agile approaches to teamwork make agile projects
successful.

TABLE 14-1	 Traditional versus Agile Team Dynamics
Team Management with
Traditional Approaches Team Dynamics with Agile Approaches

Project teams rely on command and
control — a top-down approach to project
management, where the project manager is
responsible for assigning tasks to team
members and attempting to control what
the team does.

Agile teams are self-managing, self-organizing, and benefit
from servant leadership. Instead of top-down management,
a servant-leader coaches, removes obstacles, and prevents
distractions to enable the team to thrive.

Companies evaluate individual employee
performance.

Agile organizations evaluate agile team performance. Agile
teams, like any sports team, succeed or fail as a whole team.
Whole-team performance encourages individual team
members to increase the ways they can contribute to the
team’s success.

Team members often find themselves
working on more than one project at a time,
switching their attention back and forth.

Development teams are dedicated to one project at a time,
and reap the benefits of focus.

Development team members have distinct
roles, such as programmer or tester.

Agile organizations focus on skills instead of titles.
Development teams work cross-functionally, doing different
jobs within the team to ensure that they complete priority
requirements quickly.

Development teams have no specific
size limits.

Development teams are intentionally limited in size. Ideally,
development teams have no fewer than three and no more
than nine people.

Team members are commonly referred to
as resources, a shortened term for human
resources.

Team members are called people, talent, or simply team
members. On an agile project, you probably will not hear the
term resource used to refer to people.

248 PART 4 Agile Management

Becoming self-managing
and self-organizing
On agile projects, scrum teams are directly accountable for creating deliverables.
Scrum teams manage themselves, organizing their own work and tasks. No one
person tells the scrum team what to do. This doesn’t mean that agile projects have
no leadership. Each member of the scrum team has the opportunity to lead infor-
mally, based on his or her skills, ideas, and initiative.

On agile projects, the development team contains the people who are doing the
physical work of creating the product. The scrum team contains the development
team, plus the product owner and the scrum master. The project team is the scrum
team and your project stakeholders. Both the development team and the overall
scrum team have responsibilities related to self-management.

The idea of self-management and self-organization is a mature way of thinking
about work. Self-management assumes that people are professional, motivated,
and dedicated enough to commit to a job and see it through. At the core of self-
management is the idea that the people who are doing a job from day to day know
the most about that job and are best qualified to determine how to complete it.
Working with a self-managing scrum team requires trust and respect within the
team and within the team’s organization as a whole.

Nonetheless, let’s be clear: Accountability is at the core of agile projects. The dif-
ference is that in an agile project, teams are held accountable for tangible results
that you can see and demonstrate. Traditionally, companies held teams account-
able for compliance to the organization’s step-by-step process — stripping them
of the ability or incentive to be innovative. Self-management, however, returns
innovation and creativity to development teams.

For a scrum team to be self-managing, you need an environment of trust. Every-
one on the scrum team must trust one another to do his or her best for the scrum
team and the project. The scrum team’s company or organization must also trust
the scrum team to be competent, to make decisions, and to manage itself. To cre-
ate and maintain an environment of trust, each member of the scrum team must
commit, individually and as a team, to the project and to one another.

Self-managing development teams create better product architectures, require-
ments, and design for a simple reason: ownership. When you give people the free-
dom and responsibility to solve problems, they are more mentally engaged in
their work.

Scrum team members play roles in all areas of project management. Table 14-2
shows how scrum teams and development teams manage scope, procurement,
time, cost, team dynamics, communication, stakeholders, quality, and risk.

CHAPTER 14 Managing Team Dynamics and Communication 249

TABLE 14-2	 Project Management and Self-Managing Teams
Area of Project
Management

How Product Owners
Self-Manage

How Development
Teams Self-Manage

How Scrum Masters
Self-Manage

Scope Use the product vision,
the release goal, and
each sprint goal to
determine if and where
scope items belong.

Use product backlog
prioritization to
determine which
requirements are
developed.

May suggest features
based on technical affinity.

Work directly with the
product owner to clarify
requirements.

Identify how much work
they can take on
in a sprint.

Identify the tasks to
complete scope in the
sprint backlog.

Determine the best way to
create specific features.

Remove impediments that
limit the amount of scope the
development team can create.

Through coaching, help
development teams become
more productive with each
successive sprint.

Procurement Secure necessary
funding for tools and
equipment for
development teams.

Identify the tools they
need to create
the product.

Work with the product
owner to get those tools.

Help procure tools and
equipment that accelerate
development team velocity.

Time Ensure that the
development team
correctly understands
product features so that
development teams can
correctly estimate the
effort to create
those features.

Use velocity —
development speed —
to forecast long-term
timelines.

Provide effort estimates
for product features.

Identify what features they
can create in a given time
frame — the sprint.

Often provide time
estimates for tasks in
each sprint.

Choose their own daily
schedules and manage
their own time.

Facilitate estimation
poker games.

Help development teams
increase velocity, which
affects time.

Shield the team from
organizational time-wasters
and distractions.

Cost Ultimately responsible
for the budget and
return on investment on
an agile project.

Use velocity to forecast
long-term costs, based
on timelines.

Provide effort estimates
for product features.

Facilitate estimation
poker games.

Help development teams
increase velocity, which
affects cost.

(continued)

250 PART 4 Agile Management

Area of Project
Management

How Product Owners
Self-Manage

How Development
Teams Self-Manage

How Scrum Masters
Self-Manage

Team dynamics Commit to their projects
as an integrated peer
member of the
scrum team.

Prevent bottlenecks by
working cross-functionally,
and are willing to take on
different types of tasks.

Continuously learn and
teach one another.

Commit, both individually
and as part of the scrum
team, to their projects and
to one another.

Strive to build consensus
when making important
decisions.

Facilitate scrum team
collocation.

Help remove impediments to
scrum team self-management.

Commit to their projects and
are integrated members of
the scrum team.

Strive to build consensus
within the scrum team when
making important decisions.

Facilitate relationships
between the scrum team and
stakeholders.

Communication Communicate
information about the
product and the
business needs to
development teams on
an ongoing basis.

Communicate
information about the
project progress to
stakeholders.

Help present working
functionality to
stakeholders at the
sprint review meetings
at the end of each sprint.

Report on progress,
upcoming tasks, and
identify roadblocks in their
daily scrum meetings.

Keep the sprint backlog
up-to-date daily, providing
accurate, immediate
information about a
project’s status.

Present working
functionality to project
stakeholders at the sprint
review meetings at the
end of each sprint.

Encourage face-to-face
communication between all
scrum team members.

Foster close cooperation
between the scrum team and
other departments within the
company or organization.

Stakeholders Set vision, release, and
sprint goal expectations.

Shield development
team from
business noise.

Collect feedback during
sprint reviews.

Gather requirements
throughout project.

Communicate release
dates and how new
feature requests affect
release dates.

Demonstrate working
functionality at
sprint reviews.

Work through product
owner to decompose
requirements.

Report on project progress
through release and sprint
burndown charts.

Update task status no less
than at the end
of each day.

Coach on scrum and agile
principles as they relate to
their interaction with the
scrum team.

Shield developers from non-
business distractions.

Facilitate sprint reviews for
gathering feedback.

Facilitate interactions outside
sprint reviews.

TABLE	14-2	(continued)

CHAPTER 14 Managing Team Dynamics and Communication 251

All in all, people on agile projects tend to find a great deal of job satisfaction. Self-
management speaks to a deeply rooted human desire for autonomy — to control
our own destiny — and allows people this control on a daily basis.

The next section discusses another reason that people on agile projects are happy:
the servant-leader.

Area of Project
Management

How Product Owners
Self-Manage

How Development
Teams Self-Manage

How Scrum Masters
Self-Manage

Quality Add acceptance criteria
to requirements.

Ensure that the
development team
correctly understands
and interprets
requirements.

Provide development
teams with feedback
about the product from
the organization and
from the marketplace.

Accept functionality as
done during each sprint.

Commit to providing
technical excellence and
good design.

Test their work throughout
the day and
comprehensively test all
development each day.

Inspect their work and
adapt for improvements
at sprint retrospective
meetings at the end of
each sprint.

Help facilitate the sprint
retrospective.

Help ensure face-to-face
communication between
scrum team members, which
in turn helps ensure
quality work.

Help create a sustainable
development environment so
that the development team
can perform at its best.

Risk Look at overall project
risks as well as risks to
their ROI commitment.

Prioritize high-risk items
on the product backlog
near the top to address
them sooner rather
than later.

Identify and develop the
risk mitigation approach
for each sprint.

Alert the scrum master to
roadblocks and
distractions.

Use information from
each sprint retrospective
to reduce risk in
future sprints.

Embrace cross-
functionality to reduce risk
if one member
unexpectedly
leaves the team.

Commit to delivering
shippable functionality at
the end of each sprint,
reducing risk in the
overall project.

Help prevent roadblocks and
distractions.

Help remove roadblocks and
identified risks.

Facilitate development team
conversations about
possible risks.

252 PART 4 Agile Management

Supporting the team: The servant-leader
The scrum master serves as a servant-leader, someone who leads by removing
obstacles, preventing distractions, and helping the rest of the scrum team do its
job to the best of its ability. Leaders on agile projects help find solutions rather
than assign tasks. Scrum masters coach, trust, and challenge the scrum team to
manage itself.

Other members of the scrum team can also take on servant leadership roles. While
the scrum master helps get rid of distractions and roadblocks, the product owner
and members of the development team can also help where needed. The product
owner can lead by proactively providing important details about the product needs
and quickly providing answers to questions from the development team. Develop-
ment team members can teach and mentor one another as they become more
cross-functional. Each person on a scrum team may act as a servant-leader at
some point in the project.

Larry Spears identified ten characteristics of a servant-leader in his paper, “The
Understanding and Practice of Servant-Leadership” (Servant Leadership Round-
table, School of Leadership Studies, Regent University, August 2005). Here are
those characteristics, along with our additions for how each characteristic can
benefit the team dynamics on an agile project.

 » Listening: Listening closely to other members of the scrum team will help the
people on the scrum team identify areas to help one another. A servant-
leader may need to listen to what people are saying, as well as what people
are not saying, in order to remove obstacles.

 » Empathy: A servant-leader tries to understand and empathize with people on
the scrum team, and to help them understand one another.

 » Healing: On an agile project, healing can mean undoing the damage of
non-people-centric processes. These are processes that treat people like
equipment and other replaceable parts. Many traditional project manage-
ment approaches can be described as being non-people-centric.

 » Awareness: On an agile project, the people on the scrum team may need to
be aware of activities on many levels to best serve the scrum team.

 » Persuasion: Servant-leaders rely on an ability to convince, rather than on
top-down authority. Strong persuasion skills, along with organizational clout or
influence, will help a scrum master advocate for the scrum team to the
company or organization. A servant-leader can also pass along persuasion skills
to the rest of the scrum team, helping maintain harmony and build consensus.

CHAPTER 14 Managing Team Dynamics and Communication 253

 » Conceptualization: Each member of a scrum team can use conceptualization
skills on an agile project. The changing nature of agile projects encourages the
scrum team to envision ideas beyond those at hand. A servant-leader will help
nurture the scrum team’s creativity, both for the development of the product
and for team dynamics.

 » Foresight: Scrum teams gain foresight with each sprint retrospective. By
inspecting its work, processes, and team dynamics on a regular basis, the
scrum team can continuously adapt and understand how to make better
decisions for future sprints.

 » Stewardship: A servant-leader is the steward of the scrum team’s needs.
Stewardship is about trust. Members of the scrum team trust one another to
look out for the needs of the team and the project as a whole.

 » Commitment to the growth of people: Growth is essential to a scrum
team’s ability to be cross-functional. A servant-leader will encourage and
enable a scrum team to learn and grow.

 » Building community: A scrum team is its own community. A servant-leader
will help build and maintain positive team dynamics within that community.

Servant leadership works because it positively focuses on individuals and interac-
tions, a key tenet of agile project management. Much like self-management,
 servant leadership requires trust and respect.

The concept of servant leadership is not specific to agile projects. If you have
studied management techniques, you may recognize the works of Robert K. Green-
leaf, who started the modern movement for servant-leadership — and coined the
term servant-leader — in an essay in 1970. Greenleaf founded the Center for
Applied Ethics, now known as the Greenleaf Center for Servant Leadership, which
promotes the concept of servant leadership worldwide.

Another servant-leader expert, Kenneth Blanchard, co-wrote with Spencer John-
son the One Minute Manager (published by William Morrow), wherein he describes
characteristics that make great managers of high-functioning people and teams.
(The book has since been updated as The New One-Minute Manager, published by
Harper Collins India.) The reason the managers Blanchard studied were so effec-
tive is because they focused on ensuring that the people doing the work had direc-
tion, resources, and protection from noise to do their job as quickly as possible.

The next two sections largely relate to team factors for agile project success: the
dedicated team and the cross-functional team.

254 PART 4 Agile Management

Working with a dedicated team
Having a dedicated scrum team provides the following important benefits to
projects:

 » Keeping people focused on one project at a time helps prevent distrac-
tions. Dedication to one project increases productivity by reducing task-
switching — moving back and forth between different tasks without really
completing any of them.

 » Dedicated scrum teams have fewer distractions — and fewer distrac-
tions mean fewer mistakes. When a person doesn’t have to meet the
demands of more than one project, that person has the time and clarity to
ensure his or her work is the best it can be. Chapter 15 discusses ways to
increase product quality in detail.

 » When people work on dedicated scrum teams, they know what they will
be working on every day. An interesting reality of behavioral science is that
when people know what they will be working on in the immediate future, their
minds engage those issues consciously at work and unconsciously outside the
work environment. Stability of tasks engages your mind for much longer each
day, enabling better solutions and higher quality products.

 » Dedicated scrum team members are able to innovate more on projects.
When people immerse themselves in a product without distractions, they can
come up with creative solutions for product functionality.

 » People on dedicated scrum teams are more likely to be happy in their
jobs. By being able to concentrate on one project, a scrum team member’s
job is easier. Many, if not most, people enjoy producing quality work, being
productive, and being creative. Dedicated scrum teams lead to higher
satisfaction.

 » When you have a dedicated scrum team working the same amount of
time each week, you can accurately calculate velocity — the team’s
development speed. In Chapter 13, we talk about determining a scrum
team’s velocity at the end of each sprint and using velocity to determine
long-term timelines and costs. Because velocity relies on comparing output
from one sprint to the next, using velocity to forecast time and cost works
best if the scrum team’s work hours are constant. If you are unable to have a
dedicated scrum team, at least try to have team members allocated to your
project for the same amount of time each week.

The idea of the productive multitasker is a myth. In the past 25 years, and espe-
cially in the last decade, a number of studies have concluded that task-switching
reduces productivity, impairs decision-making skills, and results in more errors.

CHAPTER 14 Managing Team Dynamics and Communication 255

To have a dedicated scrum team, you need strong commitment from your organi-
zation. Many companies ask employees to work on multiple projects at one time,
under the mistaken assumption that the company will save money by hiring fewer
people. When companies start to embrace a more agile mindset, they learn that
the least expensive approach is to reduce defects and raise development produc-
tivity through focus.

Each member of the scrum team can help ensure dedication:

 » If you’re a product owner, make sure that the company knows that a dedi-
cated scrum team is a good fiscal decision. You are responsible for project
return on investment, so be willing to fight for your project’s success.

 » If you’re a member of the development team and anyone requests that you
do work outside the project, you can push back and involve the product
owner or scrum master, if necessary. A request for outside work, regardless of
how benign, is a potential roadblock.

 » If you’re a scrum master, as the expert on agile approaches, you can educate
the company on why a dedicated scrum team means increased productivity,
quality, and innovation. A good scrum master should also have the organiza-
tional clout to keep the company from poaching people from the scrum team
for other projects.

Another characteristic of scrum teams is that they are cross-functional.

Working with a cross-functional team
Cross-functional development teams are also important on agile projects. The
development team on an agile software project doesn’t just include programmers;
it could include all the people who will have a job on the project. For example, a
development team on a software project might include programmers, database
experts, quality assurance people, usability experts, and graphic designers. While
each person has specialties, being cross-functional means that everyone on the
team is willing to pitch in on different parts of the project, as much as possible.

On an agile development team, you continuously ask yourself two questions:
“What can I contribute today?” and “How can I expand my contribution in the
future?” Everyone on the development team will use his or her current skills and
specialties in each sprint. Cross-functionality gives development team members
the opportunity to learn new skills by working on areas outside of their expertise.
Cross-functionality also allows people to share their knowledge with their fellow
development team members. You don’t need to be a jack-of-all-trades to work on
an agile development team, but you should be willing to learn new skills and help
with all kinds of tasks.

256 PART 4 Agile Management

Although task-switching decreases productivity, cross-functionality works because
you’re not changing the context of what you are working on; you’re looking at the
same problem from a different perspective. Working on different aspects of the
same problem increases knowledge depth and your ability to do a better job.

The biggest benefit of a cross-functional development team is the elimination of
single points of failure. If you have worked on a project before, how many times
have you experienced delays because a critical member of the team is on vacation,
out sick, or, worse, has left the company? Vacations, illness, and turnover are facts
of life, but with a cross-functional development team, other team members can
jump in and continue work with minimal disruption. Even if an expert leaves the
project team unexpectedly and abruptly, other development team members will
know enough about the work to keep it progressing.

Development team members go on vacation or catch the flu. Don’t sabotage your
project by having only one person know a skill or functional area.

Cross-functionality takes strong commitment from the development team, both
as individual members and as a group. The old phrase, “There is no i in team” is
especially true on agile projects. Working on an agile development team is about
skills, rather than titles.

Development teams without titles are more merit-based because team seniority
and status is based on current knowledge, skills, and contribution.

Letting go of the idea that you’re a “senior quality assurance tester” or a “junior
developer” can require a new way of thinking about yourself. Embracing the con-
cept of being part of a cross-functional development team may take some work, but
it can be rewarding as you learn new skills and develop a rhythm of teamwork.

When developers also test, they create code that is test-friendly.

Having a cross-functional development team also requires commitment and sup-
port from your organization. Some companies eliminate titles or keep them inten-
tionally vague (you might see something like “application development”) to
encourage teamwork. Other techniques for creating a strong cross-functional
development team from an organizational standpoint include offering training,
recognizing scrum teams as a whole, and being willing to make changes if a par-
ticular person does not fit in with a team environment. When hiring, your com-
pany can actively look for people who will work well in a highly collaborative
environment, who want to learn new tasks, and who are willing to work on all
areas of a project.

CHAPTER 14 Managing Team Dynamics and Communication 257

Both the physical environment and the cultural environment of an organization
are important keys to success with agile projects. The next section shows you how.

Reinforcing openness
As we explain in other chapters, a collocated scrum team is ideal. The Internet has
brought people together globally, but nothing — not the best combination of
emails, instant messages, videoconferencing, phone calls, and online collabora-
tion tools — can replace the simplicity and effectiveness of a face-to-face conver-
sation. Figure 14-1 illustrates the difference between an email exchange and a
conversation in person.

The idea of scrum team members working in the same physical location and being
able to talk in person, instantly, is important to team dynamics. You find more
details on communication later in this chapter. Also, Chapter 5 provides details on
how to set up the physical environment for a scrum team.

FIGURE 14-1:
Email versus
face-to-face

conversation.

258 PART 4 Agile Management

Having a cultural environment of openness, which is conducive to scrum team
growth, is another success factor for agile projects. Everyone on a scrum team
should be able to

 » Feel safe.

 » Speak his or her mind in a positive way.

 » Challenge the status quo.

 » Be open about challenges without being penalized.

 » Request resources that will make a difference to the project.

 » Make mistakes and learn from them.

 » Suggest change and have other scrum team members seriously consider
those changes.

 » Respect fellow scrum team members.

 » Be respected by other members of the scrum team.

Trust, openness, and respect are fundamental to team dynamics on an agile
project.

Some of the best product and process improvements come from novices asking
“silly” questions.

Another facet of agile team dynamics is the concept of the size-limited team.

Limiting development team size
An interesting psychological aspect of team dynamics on an agile project is the
number of people on a development team. Development teams usually have
between three and nine people. An ideal size is somewhere in the middle.

Limiting development team size to this range provides a team with enough diverse
skills to take a requirement from paper to production while keeping communica-
tion and collaboration simple. Development team members can easily interact
with one another and make decisions by consensus.

When you have development teams with more than nine people, the people on
those teams tend to break into subgroups and build silos. This is normal social
human behavior, but subgroups can be disruptive to a development team striving
to be self-managing. It is also more difficult to communicate with larger develop-
ment teams; there are more communication channels and opportunities to lose or

CHAPTER 14 Managing Team Dynamics and Communication 259

misconstrue a message. With more than nine people on a development team, you
often need an extra person just to help manage communication.

Development teams with fewer than nine people, on the other hand, tend to natu-
rally gravitate to an agile approach. However, development teams that are too
small may find working cross-functionally difficult because there may not be
enough people with varying skills on the project.

If your product development requires more than nine development team members,
consider breaking up the work between multiple scrum teams. Creating teams of
people with similar personalities, skills, and work styles can improve productivity.
Find details on how to work with multiple scrum teams in Chapters 13 and 17.

Managing projects with dislocated teams
As we say throughout the book, a collocated scrum team is ideal for agile projects.
However, sometimes it isn’t possible for a scrum team to work together in one
place. Dislocated teams, teams with people who work in different locations, exist
for many reasons and in different forms.

In some companies, the people with the right skills for a project may work in dif-
ferent offices, and the company may not want the cost of bringing those people
together for the project’s duration. Some organizations work jointly with other
organizations on projects, but may not want or be able to share office space. Some
people may telecommute, especially contractors, live long distances from the
company they work with, and never visit that company’s office. Some companies
work with offshore groups and create projects with people from other countries.

The good news is that you can still have an agile project with a dislocated scrum
team or teams. If you have to work with a dislocated team, we’ve found that an
agile approach allows you to see working functionality much sooner and limits the
risk of inevitable misunderstandings that a dislocated team will experience.

In A Scrum Handbook (Scrum Institute Training Press), Jeff Sutherland describes
three models of distributed scrum teams:

 » Isolated scrums: With isolated scrums, individual scrum teams have collo-
cated scrum team members, but each scrum team is in a separate geographic
location and works separately. Product development with isolated scrums has
only code-level integration; that is, the different teams don’t communicate or
work together but expect the code to work when it is time to integrate each
module due to organizational coding standards. Isolated scrums tend to
struggle because different people interpret coding standards differently.

260 PART 4 Agile Management

 » Distributed scrum of scrums: With a distributed scrum of scrums model,
scrum teams are in different locations, like in isolated scrums. To coordinate
work, scrum teams hold a scrum of scrums — a meeting of multiple scrum
masters — to integrate on a daily basis.

 » Integrated scrums: Integrated scrum teams are cross-functional, with scrum
team members in different locations. A scrum of scrums still occurs but
face-to-face communication is lost.

Table 14-3, from Ambysoft’s “Agile Adoption Rate Survey Results” in 2008, shows
a comparison of success rates for projects with collocated scrum teams against
those with geographically dispersed scrum teams.

How do you have a successful agile project with a dislocated scrum team? We have
three words: communicate, communicate, and communicate. Because daily in-
person conversations are not possible, agile projects with dislocated scrum teams
require unique efforts by everyone working on the project. Here are some tips for
successful communication among non-collocated scrum team members:

 » Use videoconferencing technology to simulate face-to-face conversa-
tions. The majority of interpersonal communication is visual, involving facial
cues, hand gestures, and even shoulder shrugs. Videoconferencing enables
people to see one another and benefit from nonverbal communication as well
as a discussion. Use videoconferencing, or even telepresence robots, liberally
throughout the day, not just for sprint meetings. Make sure team members
are ready for impromptu video chats, and that the technology makes it easy
to initiate them.

 » If possible, arrange for the scrum team members to meet in-person in a
central location at least once at the beginning of the project, and
preferably multiple times throughout the project. The shared experience
of meeting in-person, even once or twice, can help build teamwork among

TABLE 14-3	 Success of Collocated and Dislocated Scrum Teams
Team Location Success Percentage

Collocated scrum team 83%

Dislocated but physically reachable 72%

Distributed across geographies 60%

“Agile Adoption Rate Survey Results” (Scott W. Ambler, Ambysoft, Copyright © 2008)

CHAPTER 14 Managing Team Dynamics and Communication 261

dislocated team members. Working relationships built through face-to-face
visits are stronger and carry on after the visit ends.

 » Use an online collaboration tool. Some tools simulate whiteboards and user
story cards, track conversations, and enable multiple people to update
artifacts at the same time.

 » Include scrum team members’ pictures on online collaboration tools, or
even in email address signature lines. Humans respond to faces more than
written words alone. A simple picture can help humanize instant messages
and emails.

 » Be cognizant of time zone differences. Put multiple clocks showing different
time zones on the wall so you don’t accidentally call someone’s cellphone at
3 a.m. and wake up that person — or wonder why he or she isn’t answering.

 » Be flexible because of time zone differences as well. You may need to take
video calls or phone calls at odd hours from time to time to help keep project
work moving. For drastic time zone differences, consider trading off on times
you are available. One week, Team A can be available in the early morning.
The next, Team B can be available later in the evening. That way, no one
always has an inconvenience.

 » If you have any doubt about a conversation or a written message, ask
for clarification by phone or video. It always helps to double-check when
you’re unsure of what someone meant. Follow up with a call to avoid mistakes
from miscommunication.

 » Be aware of language and cultural differences between scrum team
members, especially when working with groups in multiple countries.
Understanding colloquialisms and pronunciation differences can increase the
quality of your communication across borders. It helps to know about local
holidays, too. We’ve been blindsided more than once by closed offices outside
our region.

 » Make an extra attempt to discuss non-work topics sometimes. Discussing
non-work topics helps you grow closer to scrum team members, regardless of
location.

With dedication, awareness, and strong communication, distributed agile projects
can succeed.

The unique approaches to team dynamics on agile projects are part of what make
agile projects successful. Communication is closely related to team dynamics, and
the communication methods on agile projects also have big differences from tra-
ditional projects, as you see in the following section.

262 PART 4 Agile Management

What’s Different about Agile
Communication?

Communication, in project management terms, is the formal and informal ways
the people on the project team convey information to each other. As with tradi-
tional projects, good communication is a necessity for agile projects.

However, the agile principles set a different tone for agile projects, emphasizing
simplicity, directness, and face-to-face conversations. The following agile prin-
ciples relate to communication:

4. Business people and developers must work together daily throughout the
project.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

10. Simplicity — the art of maximizing the amount of work not done — is essential.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

The Agile Manifesto also addresses communication, valuing working software
over comprehensive documentation. Although documentation has value, working
functionality has more importance on an agile project.

Table 14-4 shows some differences between communication on traditional proj-
ects and on agile projects.

The question of how much documentation is required is not a volume question but
an appropriateness question. Why do you need a specific document? How can you
create it in the simplest way possible? You can use poster-sized sticky sheets to
put on the wall and make information digestible. This can also work best for visu-
ally conveying artifacts such as the vision statement, the definition of done, the
impediments log, and important architectural decisions. Pictures truly are worth
a thousand words.

The following sections show how to take advantage of the agile framework’s
emphasis on in-person communication, focus on simplicity, and value of working
functionality as a communication medium.

CHAPTER 14 Managing Team Dynamics and Communication 263

Managing Agile Communication
To manage communication on agile projects, you need to understand how differ-
ent agile communication methods work and how to use them together. You also
need to know why status on an agile project is different and how to report project
progress to stakeholders. The following sections show you how.

Understanding agile communication
methods
You can communicate on an agile project through artifacts, meetings, and
informally.

Face-to-face conversations are the heart and soul of agile projects. When scrum
team members talk with one another about the project throughout every day,
communication is easy. Over time, scrum team members understand each other’s
personality, communication style, and thought processes, and will be able to
communicate quickly and effectively.

Figure 14-2, from Alistair Cockburn’s presentation Software Development as a
Cooperative Game, shows the effectiveness of face-to-face communication versus
other types of communication.

TABLE 14-4	 Traditional versus Agile Communication
Communication Management
with Traditional Approaches Communication Management with Agile Approaches

Team members might make no special
effort for in-person conversations.

Agile project management approaches value face-to-face
communication as the best way to convey information.

Traditional approaches place high
value on documentation. Teams may
create a large number of complex
documents and status reports based
on process, rather than considering
actual need.

Agile documents, or artifacts, are intentionally simple and provide
information that is barely sufficient. Agile artifacts only contain
essential information and can often convey project status
at a glance.

Project teams use the show, don’t tell concept, showing working
software to communicate progress on a regular basis in the
sprint review.

Team members may be required to
attend a large number of meetings,
whether or not those meetings are
useful or necessary.

Meetings on agile projects are, by design, as quick as possible and
include only people who will add to the meeting and benefit from
the meeting. Agile meetings provide all the benefits of face-to-face
communication without wasting time. The structure of agile
meetings is to enhance, not reduce, productivity.

264 PART 4 Agile Management

In previous chapters, we describe a number of artifacts and meetings that fit with
agile projects. All the agile artifacts and meetings play a role in communication.
Agile meetings provide a format for communicating in a face-to-face environ-
ment. Meetings on agile projects have a specific purpose and a specific amount of
time so that the development team can work, rather than sit in meetings. Agile
artifacts provide a format for written communication that is structured but not
cumbersome or unnecessary.

Table 14-5 provides a view of the different communication channels on an agile
project.

FIGURE 14-2:
Comparison of

communication
types.

Copyright © Humans and Technology, Inc.

TABLE 14-5	 Agile Project Communication Channels
Channel Type Role in Communication

Project planning, release
planning, and
sprint planning

Meetings Planning meetings have specific desired outcomes and concisely
communicate the purpose and details of the project, the release,
and the sprint to the scrum team. Learn more about planning
meetings in Chapters 7 and 8.

Product vision statement Artifact The product vision statement communicates the end goal of the
project to the project team and the organization. Find out more
about the product vision in Chapter 7.

Product roadmap Artifact The product roadmap communicates a long-term view of the
features that support the product vision and are likely to be part of
the project. Find out more about the product roadmap in
Chapter 7.

Product backlog Artifact The product backlog communicates the scope of the project as a
whole to the project team. Find out more about the product
backlog in Chapters 7 and 8.

CHAPTER 14 Managing Team Dynamics and Communication 265

Channel Type Role in Communication

Release plan Artifact The release plan communicates the goals and timing for a specific
release. Find out more about the release plan in Chapter 8.

Sprint backlog Artifact When updated daily, the sprint backlog provides immediate sprint
and project status to anyone who needs that information. The
burndown chart on the sprint backlog provides a quick visual of
the sprint progress. Find out more about the sprint backlog in
Chapters 8 and 9.

Task board Artifact Using a task board visually radiates the status of the current sprint
or release to anyone who walks by the scrum team’s work area.
Find out more about the task board in Chapter 9.

Daily scrum Meeting The daily scrum provides the scrum team with a verbal, face-to-
face opportunity to coordinate the priorities of the day and identify
any challenges. Find out more about daily scrum meetings in
Chapter 9.

Face-to-face conversations Informal Face-to-face conversations are the most important mode of
communication on an agile project.

Sprint review Meeting The sprint review is the embodiment of show, don’t tell,
philosophy. Displaying working functionality to the entire project
team conveys project progress in a more meaningful way than a
written report or a conceptual presentation ever could. Find out
more about sprint reviews in Chapter 10.

Sprint retrospective Meeting The sprint retrospective allows the scrum team to communicate
with one another specifically for improvement. Find out more
about sprint retrospectives in Chapter 10.

Meeting notes Informal Meeting notes are an optional, informal communication method
on an agile project. Meeting notes can capture action items from a
meeting to ensure that people on the scrum team remember
them for later.

Notes from a sprint review include new features for the
product backlog.

Notes from a sprint retrospective can remind the scrum team of
plans for improvement.

Collaborative solutions Informal Whiteboards, sticky notes, and electronic collaboration tools all
help the scrum team communicate. Ensure that these tools
augment, rather than replace, face-to-face conversations.
Capturing and saving collaboration results is a low-fidelity way to
remind the team of decisions made for immediate and future
consideration.

266 PART 4 Agile Management

Artifacts, meetings, and more informal communication channels are all tools.
Keep in mind that even the best tools need people to use those tools correctly to be
effective. Agile projects are about people and interactions; tools are secondary to
success.

The next section addresses a specific area of agile project communication: status
reporting.

Status and progress reporting
All projects have stakeholders, people outside the immediate scrum team who
have a vested interest in the project. At least one of the stakeholders is the person
responsible for paying for your project (the project sponsor). It is important for
stakeholders, especially those responsible for budgets, to know how the project is
progressing. This section shows how to communicate your project’s status.

Status on an agile project is a measure of the features that the scrum team has
completed. Using the definition of done from Chapters 2, 8, 10, and 15, a feature is
complete if the scrum team has developed, tested, integrated, and documented
that feature, per the agreement between the product owner and the development
team.

If you’ve worked on a traditional software project, how many times have you been
in a status meeting and reported that the project was, say, 64 percent complete?
If your stakeholders had replied, “Great! We would like that 64 percent now; we
ran out of funds,” you and the stakeholders alike would be at a loss, because you
didn’t mean that 64 percent of your features were ready to use. You meant that
each one of the product features was only 64 percent in progress, you had no
working functionality, and you still had a lot of work to do before anyone could
use the product.

On an agile project, working functionality that meets the definition of done is the
primary measure of progress. You can confidently say that project features are
complete. Because scope changes constantly on agile projects, you would not
express status as a percentage. Instead, a list of potentially shippable features
would be more interesting for stakeholders to see as it grows.

Track the progress of your sprint and the project daily. Your primary tools for
communicating status and progress are the task board, sprint backlog, product
backlog, release and sprint burndown charts, and the sprint review.

CHAPTER 14 Managing Team Dynamics and Communication 267

The sprint review is where you demonstrate working software to your project
stakeholders. Resist creating slides or handouts; the key to the sprint review is
showing your stakeholders progress as a demonstration, rather than only telling
them what you completed. Show, don’t tell.

Strongly encourage anyone who may have an interest in your project to come
to your sprint reviews. When people see the working functionality in action,
 especially on a regular basis, they get a much better sense of the work you’ve
completed.

Companies and organizations that are starting out using agile techniques may
expect to see traditional status reports, in addition to agile artifacts. These orga-
nizations may also want members of the scrum team to attend regular status
meetings, outside of the daily scrums and other agile meetings. This is called
double work agile, because you are doing twice as much work as necessary. Double
work agile is one of the top pitfalls for agile projects. Scrum teams will burn out
quickly if they try to meet the demands of two drastically different project
approaches. You can avoid double work agile by educating your company about
why agile artifacts and events are a better replacement for old documents and
meetings. Insist on experimenting with agile artifacts and events to conduct a
successful agile project.

The sprint backlog is a report of the daily status of your current sprint. The sprint
backlog contains the sprint’s user stories and their related tasks and estimates.
The sprint backlog also often has a burndown chart that visually shows the status
of the work the development team has completed and the remaining work to com-
plete the requirements in the sprint. The development team is in charge of updat-
ing the sprint backlog at least once a day by updating the number of hours of work
remaining for each task.

If you’re a project manager now, or if you study project management in the future,
you may come across the concept of earned value management (EVM), as a way of
measuring project progress and performance. Some agile practitioners try to use
an agile-like version of EVM, but we avoid EVM for agile projects. EVM assumes
that your project has a fixed scope, which is antithetical to an agile approach.
Instead of trying to change agile approaches to fit into old models, use the tools
here — they work.

The burndown chart quickly shows, rather than tells, status. When you look at a
sprint burndown chart, you can instantly see whether the sprint is going well or
might be in trouble. In Chapter 9, we show you an image of sample burndown
charts for different sprint scenarios; here it is again in Figure 14-3.

268 PART 4 Agile Management

If you update your sprint backlog every day, you’ll always have an up-to-date
status for your project stakeholders. You can also show them the product backlog
so that they know which features the scrum team has completed to date, which
features will be part of future sprints, and the priority of the features.

The product backlog will change as you add and reprioritize features. Make sure
that people who review the product backlog, especially for status purposes, under-
stand this concept.

A task board is a great way to quickly show your project team the status of a
sprint, release, or even of the entire project. Task boards have sticky notes with
user story titles in at least four columns: To Do, In Progress, Accept, and Done. If
you display your task board in the scrum team’s work area, anyone who walks by
can see a high-level status of which product features are done and which features
are in progress. The scrum team always knows where the project stands, because
the scrum team sees the task board every day.

Always strive for simple, low-fidelity information radiators to communicate
 status and progress. The more you can make information accessible and on-
demand, the less time you and your stakeholders will spend preparing and
 wondering about status.

FIGURE 14-3:
Profiles of

burndown charts.

CHAPTER 15 Managing Quality and Risk 269

Chapter 15

IN THIS CHAPTER

 » Learning how agile project
management quality approaches
reduce risk

 » Discovering ways to ensure quality
development

 » Taking advantage of automated
testing for better productivity

 » Understanding how agile project
approaches reduce risk

Managing Quality
and Risk

Quality and risk are closely related parts of project management. In this
chapter, you find out how to deliver quality products using agile project
management methods. You understand how to take advantage of agile

approaches to manage risk on your projects. You see how quality has historically
affected project risk, and how quality management on agile projects fundamen-
tally reduces project risk.

What’s Different about Agile Quality?
Quality refers to whether a product works, and whether it fulfills the project
stakeholders’ needs. Quality is an inherent part of agile project management.

270 PART 4 Agile Management

All 12 agile principles that we list in Chapter 2 promote quality either directly or
indirectly. Those principles follow:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances
agility.

10. Simplicity — the art of maximizing the amount of work not done — is
essential.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

These principles emphasize creating an environment where agile teams are able
to produce valuable, working functionality. Agile approaches encourage quality
both in the sense of products working correctly and meeting the needs of project
stakeholders.

Table 15-1 shows some differences between quality management on traditional
projects and on agile projects.

CHAPTER 15 Managing Quality and Risk 271

At the start of this chapter, we state that quality and risk are closely related. The
agile approaches in Table 15-1 greatly reduce the risk and unnecessary cost that
usually accompany quality management.

TABLE 15-1	 Traditional versus Agile Quality
Quality Management with Traditional Approaches Quality Dynamics with Agile Approaches

Testing is the last phase of a project before product
deployment. Some features are tested months after they
were created.

Testing is a daily part of each sprint and is
included in each requirement’s definition of
done. You use automated testing, allowing quick
and robust testing every day.

Quality is often a reactive practice, with the focus mostly
on product testing and issue resolution.

You address quality both reactively, through
testing, and proactively, encouraging practices
to set the stage for quality work. Examples of
proactive quality approaches include face-to-
face communication, pair programming, and
established coding standards.

Problems are riskier when found at the end of a project.
Sunk costs are high by the time teams reach testing.

You can create and test riskier features in early
sprints, when sunk costs are still low.

Problems or defects, sometimes called bugs in software
development, are hard to find at the end of a project, and
fixes for problems at the end of a project are costly.

Problems are easy to find when you test a
smaller amount of work. Fixes are easier when
you fix something you just created, rather than
something you created months earlier.

Sometimes, to meet a deadline or save money, teams cut
the testing phase short.

Testing is assured on agile projects because it is
part of every sprint.

BUGS. BUGS? BUGS!
Why do we call computer problems bugs? The first computers were large, glass-encased
machines that took up entire rooms. In 1945, one of these behemoth computers, the
Mark II Aiken Relay Calculator at Harvard University, had problems with one of its cir-
cuits. Engineers traced the issue to a moth — a literal bug — in the machine. After that,
the team’s running joke was that any issue with the computer had to be a bug. The term
stuck, and people still use bug today to describe hardware problems, software prob-
lems, and sometimes even problems outside of the computer science realm. The engi-
neers at Harvard even taped the moth to a logbook. That first bug is now on display at
the Smithsonian National Museum of American History.

272 PART 4 Agile Management

Another difference about quality on agile projects is the multiple quality feedback
loops throughout a project. In Figure 15-1, you see the different types of product
feedback a scrum team receives in the course of a project. The development team
can immediately incorporate this feedback into the product, increasing product
quality on a regular basis.

In Chapter 14, we tell you that development teams on agile projects can include
everyone who works on a product. Development teams on agile projects typically
include people who are experts in creating and executing tests and ensuring
quality. Development team members are cross-functional; that is, every team
member may do different jobs at different times during the project. Cross-
functionality extends to quality activities such as preventing issues, testing, and
fixing bugs.

In the next section, you see how to use agile project management techniques to
increase quality.

Managing Agile Quality
Agile development teams have the primary responsibility for quality on agile proj-
ects. The responsibility for quality is an extension of the responsibilities and free-
doms that come with self-management. When the development team is free to
determine its development methods, the development team is also responsible for
ensuring that those methods result in quality work.

Organizations often refer to quality management as a whole as quality assurance, or
QA. You may see QA departments, QA testers, QA managers, QA analysts, and all
other flavors of QA-prefixed titles to refer to people who are responsible for
 quality activities. QA is also sometimes used as shorthand for testing, as in “we
performed QA on the product” or “now we are in the QA phase.” Quality control
(QC) is also a common way to refer to quality management.

FIGURE 15-1:
Quality feedback

in an agile
project.

CHAPTER 15 Managing Quality and Risk 273

The other members of the scrum team — the scrum master and the product
owner — also play parts in quality management. Product owners provide clarifi-
cation on requirements and also accept those requirements as being done through-
out each sprint. Scrum masters help ensure development teams have a work
environment where the people on development teams can work to the best of their
abilities.

Luckily, agile project management approaches have several ways to help scrum
teams create quality products. In this section, you see how testing in sprints
increases the likelihood of finding defects and reduces the cost of fixing them. You
gain an understanding of the many ways agile project management proactively
encourages quality product development. You see how inspecting and adapting on
a regular basis addresses quality. Finally, you find out how automated testing is
essential to delivering valuable products continuously throughout an agile project.

Quality and the sprint
Quality management is a daily part of agile projects. Scrum teams run agile proj-
ects in sprints, short development cycles that last one to four weeks. Each cycle
includes activities from the different phases of a traditional project for each user
story in the sprint: requirements, design, development, testing, and integration
for deployment. Find out more about working in sprints in Chapters 8, 9, and 10.

Here’s a quick riddle: Is it easier to find a quarter on a table or in a stadium?
Obviously, the answer is a table. Just as obvious is that it is easier to find a defect
in 100 lines of software code than in 100,000 lines. Iterative development makes
quality product development easier.

Scrum teams test throughout each sprint. Figure 15-2 shows how testing fits into
sprints on an agile project. Notice that testing begins in the first sprint, right after
developers start creating the first requirement in the project.

When development teams test throughout each sprint, they can find and fix
defects very quickly. With agile project management, development teams create
product requirements, immediately test those requirements, and fix any problems
immediately before considering the work done. Instead of trying to remember
how to fix something they created weeks or months ago, development teams are,
at the most, fixing the requirement they worked on one or two days earlier.

Testing every day on an agile project is a great way to ensure product quality.
Another way to ensure product quality is to create a better product from the start.
The next section shows you different ways that agile project management helps
you avoid errors and create an excellent product.

274 PART 4 Agile Management

FIGURE 15-2:
Testing within sprints.

CHAPTER 15 Managing Quality and Risk 275

Proactive quality
An important and often-neglected aspect of quality is the idea of preventing
problems. A number of agile approaches allow and encourage scrum teams to
proactively create quality products. These practices include

 » An emphasis on technical excellence and good design

 » Incorporation of quality-specific development techniques into product
creation

 » Daily communication between the development team and the product owner

 » Acceptance criteria built into user stories

 » Face-to-face communication and collocation

 » Sustainable development

 » Regular inspection and adaption of work and behavior

The following sections provide a detailed look at each of these proactive quality
practices.

Quality means both that a product works correctly and that the product does what
the project stakeholders need it to do.

Continuous attention to technical excellence
and good design
Agile teams focus on technical excellence and good design because these traits
lead to valuable products. How do development teams provide great technical
solutions and designs?

One way that development teams provide technical excellence is through self-
management, which provides them with the freedom to innovate technically. Tra-
ditional organizations may have mandatory technical standards that may or may
not make sense for a given project. Self-organizing development teams have the
freedom to decide whether a standard will provide value in creating a product, or
if a different approach will work better. Innovation can lead to good design, tech-
nical excellence, and product quality.

Self-management also provides development teams with a sense of product own-
ership. When people on development teams feel a deep responsibility for the
product they’re creating, they often strive to find the best solutions and execute
those solutions in the best way possible.

276 PART 4 Agile Management

Nothing is more sophisticated than a simple solution.

Organizational commitment also plays a role in technical excellence. Some com-
panies and organizations, regardless of their project management approaches,
have a commitment to excellence. Think about the products that you use every day
and associate with quality; chances are those products come from companies that
value good technical solutions. If you’re working on an agile project for a company
that believes in and rewards technical excellence, enacting this agile principle will
be easy.

Other companies may undervalue technical excellence; agile project teams at
these companies may struggle when trying to justify training or tools that will
help create better products. Some companies do not make the connection between
good technology, good products, and profitability. Scrum masters and product
owners may need to educate their companies on why good technology and design
are important and may need to lobby to get development teams what they need to
create a great product.

Don’t confuse technical excellence with using new technologies for the sake of
using something new or trendy. Your technology solutions should efficiently sup-
port the product needs, not just add to a resume or a company skills profile.

By incorporating technical excellence and good design into your everyday work,
you create a quality product that you are proud of.

Quality development techniques
During the past several decades of software development, the motivation to be
more adaptive and agile has inspired a number of agile development techniques
that focus on quality. This section provides a high-level view of a few extreme
programming (XP) development approaches that help ensure quality proactively.
For more information on XP practices, see Chapter 4.

Many agile quality management techniques were created with software develop-
ment in mind. You can adapt some of these techniques when creating other types
of products, such as hardware products or even building construction. If you’re
going to work on a non-software project, read about the development methods in
this section with adaptability in mind:

 » Test-driven development (TDD): This development method begins with a
developer creating a test for the requirement he or she wants to create.
The developer then runs the test, which should fail at first because the

CHAPTER 15 Managing Quality and Risk 277

functionality does not yet exist. The developer develops until the test passes,
and then refactors the code — takes out as much code as possible, while still
having the test pass. With TDD, you know that the newly created functionality
of a requirement works correctly because you test while you create the
functionality and develop the functionality until the test passes.

 » Pair programming: With pair programming, developers work in groups of
two. Both developers sit at the same computer and work as a team to create
one product requirement. The developers take turns at the keyboard to
collaborate. Usually, the one at the keyboard takes a direct tactical role, while
the observing partner takes a more strategic or navigating role, looking ahead
and providing in-the-moment feedback. Because the developers are literally
looking over one another’s shoulder, they can catch errors quickly. Pair
programming increases quality by providing instant error checks and
balances.

 » Peer review: Sometimes called peer code review, a peer review involves
members of the development team reviewing one another’s code. Like pair
programming, peer reviews have a collaborative nature; when developers
review each other’s finished products, the developers work together to
provide solutions for any issues they find. If development teams don’t practice
pair programming, they should at least practice peer reviews, which increase
quality by allowing development experts to look for structural problems
within product code.

 » Collective code ownership: In this approach, everyone on the development
team can create, change, or fix any part of the code on the project. Collective
code ownership can speed up development, encourage innovation, and with
multiple pairs of eyes on the code, help development team members quickly
find defects.

 » Continuous integration: This approach involves the creation of integrated
code builds one or more times each day. Continuous integration allows
members of the development team to check how the user story that the
development team is creating works with the rest of the product. Continuous
integration helps ensure quality by allowing the development team to check
for conflicts regularly. Continuous integration is essential to automated testing
on agile projects; you need to create a code build at the end of the day before
running automated tests overnight. Find out more about automated testing
later in this chapter.

On an agile project, the development team decides which tools and techniques will
work best for the project, the product, and the individual development team.

278 PART 4 Agile Management

Many agile software development techniques help ensure quality, and there is a
lot of discussion and information about these techniques in the community of
people who use agile project management approaches. We encourage you to learn
more about these approaches if you’re going to work on an agile project, especially
if you’re a developer. Entire books are dedicated to some of these techniques, such
as test-driven development. The information we provide here is at the tip of the
iceberg. See Chapter 22 for more recommendations.

The product owner and development team
Another aspect of agile project management that encourages quality is the close
relationship between the development team and the product owner. The product
owner is the voice of business needs for the product. In this role, the product
owner works with the development team every day to ensure that the functional-
ity meets those business needs.

During planning stages, the product owner’s job is to help the development team
understand each requirement correctly. During the sprint, the product owner
answers questions that the development team has about requirements and is
responsible for reviewing functionality and accepting them as done. When the
product owner accepts requirements, he or she ensures that the development
team correctly interpreted the business need for each requirement, and that the
new functionality performs the task that it needs to perform.

In waterfall projects, feedback loops between developers and business owners are
less frequent, so a development team’s work typically strays from the original
product goals set in the product vision statement.

A product owner who reviews requirements daily catches misinterpretations early.
The product owner can then set the development team back on the right path,
avoiding a lot of wasted time and effort.

The product vision statement communicates how your product supports the com-
pany’s or organization’s strategies. The vision statement articulates the product’s
goals. Chapter 7 explains how to create a product vision statement.

User stories and acceptance criteria
Another proactive quality measure on agile projects is the acceptance criteria you
build into each user story. In Chapter 7, we explain that a user story is one format
for describing product requirements. User stories increase quality by outlining the
specific actions the user will take to correctly meet business needs. Figure 15-3
shows a user story and its acceptance criteria.

CHAPTER 15 Managing Quality and Risk 279

Even if you don’t describe your requirements in a user story format, consider add-
ing validation steps to each of your requirements. Acceptance criteria don’t just
help the product owner review requirements; they help the development team
understand how to create the product in the first place.

Face-to-face communication
Have you ever had a conversation with someone and known, just by looking at
that person’s face, that he or she didn’t understand you? In Chapter 14, we explain
that face-to-face conversations are the quickest, most effective form of commu-
nication. This is because humans convey information with more than just words;
our facial expressions, gestures, body language, and even where we are looking
contribute to communicating and understanding one another.

Face-to-face communication helps ensure quality on agile projects because it
leads to better interpretation of requirements, roadblocks, and discussions between
scrum team members. Regular face-to-face communication requires a collocated
scrum team.

Sustainable development
Chances are, at some point in your life, you’ve found yourself working or studying
long hours for an extended period of time. You may have even pulled an all-
nighter or two, getting no sleep at all for a night. How did you feel during this
time? Did you make good decisions? Did you make any silly mistakes?

Unfortunately, many teams on traditional projects find themselves working long,
crazy hours, especially toward the end of a project, when a deadline is looming
and it seems like the only way to finish is to spend weeks working extra-long
days. Those long days often mean more problems later, as team members start
making mistakes — some silly, some more serious — and eventually burn out.

FIGURE 15-3:
A user story and

acceptance
criteria.

280 PART 4 Agile Management

On agile projects, scrum teams help ensure that they do quality work by creating
an environment where members of the development team sustain a constant
working pace throughout the project. Working in sprints helps sustain a constant
working pace; when the development team chooses the work it can accomplish in
each sprint, it shouldn’t have to rush at the end.

The development team can determine what sustainable means for itself, whether
that means working a regular 40-hour workweek, a schedule with more or fewer
days or hours, or working outside a standard nine-to-five time frame.

If your fellow scrum team members start coming to work with their shirts on
inside out, you might want to double-check that you’re maintaining a sustainable
development environment.

Keeping the development team happy, rested, and able to have a life outside of
work can lead to fewer mistakes, more creativity and innovation, and better over-
all products.

Being proactive about quality saves you a lot of headaches in the long run. It is
much easier and more enjoyable to work on a product with fewer defects to fix.
The next section discusses an agile approach that addresses quality from both a
proactive and a reactive standpoint: inspect and adapt.

Quality through regular inspecting
and adapting
The agile tenet of inspect and adapt is a key to creating quality products. Through-
out an agile project, you look at both your product and your process (inspect) and
make changes as necessary (adapt). Chapters 7 and 10 have more information
about this tenet.

In the sprint review and sprint retrospective meetings, agile project teams regu-
larly step back and review their work and methods and determine how to make
adjustments for a better project. We provide details on the sprint review and sprint
retrospective in Chapter 10. Following is a quick overview of how these meetings
help ensure quality on agile projects.

In a sprint review, agile project teams review requirements completed at the end
of each sprint. Sprint reviews address quality by letting project stakeholders see
working requirements and provide feedback on those requirements throughout
the course of the project. If a requirement doesn’t meet stakeholder expectations,
the stakeholders tell the scrum team immediately. The scrum team can then

CHAPTER 15 Managing Quality and Risk 281

adjust the product in a future sprint. The scrum team can also apply its revised
understanding of how the product needs to work on other product requirements.

In a sprint retrospective, scrum teams meet to discuss what worked and what
might need adjusting at the end of each sprint. Sprint retrospectives help ensure
quality by allowing the scrum team to discuss and immediately fix problems.
Sprint retrospectives also allow the team to come together and formally discuss
changes to the product, project, or work environment that might increase
quality.

The sprint review and sprint retrospective aren’t the only opportunities for
inspecting and adapting for quality on an agile project. Agile approaches encour-
age reviewing work and adjusting behavior and methods throughout each work-
day. Daily inspecting and adapting everything you do on the project help ensure
quality.

Another way to manage and help assure quality on an agile project is to use auto-
mated testing tools. The next section explains why automated testing is important
to agile projects and how to incorporate automated testing into your project.

Automated testing
Automated testing is the use of software to test your product. Automated testing
is critical to agile projects. If you want to quickly create software functionality that
meets the definition of done — coded, tested, integrated, and documented — you
need a way to quickly test each piece of functionality as it’s created. Automated
testing means quick and robust testing on a daily basis. Agile teams continually
increase the frequency with which they automatically test their system so they
can continually decrease the time it takes them to complete and deploy new valu-
able functionality to their customers.

Project teams won’t become agile without automated testing. Manual testing
simply takes too long.

Throughout this book, we explain how agile project teams embrace low-tech
solutions. Why, then, is there a section in this book about automated testing, a
rather high-tech quality management technique? The answer to this question is
efficiency. Automated testing is like the spell-check feature in word-processing
programs. As a matter of fact, spell-checking is a form of automated testing. In
the same way, automated testing is a much quicker and often more accurate —
thus, more efficient — method of finding software defects than manual testing.

282 PART 4 Agile Management

To develop a product using automated testing, development teams develop and
test using the following steps:

1. Develop code and automated tests in support of user stories during the day.

2. Create an integrated code build at the end of each day.

3. Schedule the automated testing software to test the newest build overnight.

4. Check the automated test results first thing each morning.

5. Fix any defects immediately.

Comprehensive code testing while you’re sleeping is cool.

Automated testing allows development teams to take advantage of non-working
time for productivity and to have rapid create-test-fix cycles. Also, automated
testing software can often test requirements quicker and with more accuracy and
consistency than a person testing those requirements.

Today’s market has a lot of automated testing tools. Some automated testing tools
are open-source and free; others are available for purchase. The development
team needs to review automated testing options and choose the tool that will
work best.

Automated testing changes the work for people in quality roles on the development
team. Traditionally, a large part of a quality management person’s work involved
manually testing products. The tester on a traditional project would use the prod-
uct and look for problems. With automated testing, however, quality activities
largely involve creating tests to run on automated testing software. Automated
testing tools augment, rather than replace, people’s skills, knowledge, and work.

It is still a good idea to have humans periodically check that the requirements
you’re developing work correctly, especially when you first start using an auto-
mated testing tool. Any automated tool can have hiccups from time to time. By
manually double-checking (sometimes called smoke-testing) small parts of
automated tests, you help avoid getting to the end of a sprint and finding out that
your product doesn’t work like it should.

You can automate almost any type of software test. If you’re new to software
development, you may not know that there are many different types of software
testing. A small sample includes the following:

 » Unit testing: Tests individual units, or the smallest parts, of product code.

 » Regression testing: Tests an entire product from start to finish, including
requirements you have tested previously.

CHAPTER 15 Managing Quality and Risk 283

 » User acceptance testing: Product stakeholders or even some of the
product’s end users review a product and accept it as complete.

 » Functional testing: Tests to make sure the product works according to
acceptance criteria from the user story.

 » Integration testing: Tests to make sure the product works with other parts
of the product.

 » Enterprise testing: Tests to make sure the product works with other
products in the organization, as necessary.

 » Performance testing: Tests how fast a product runs on a given system
under different scenarios.

 » Load testing: Tests how well a product handles different amounts of
concurrent activity.

 » Smoke testing: Tests on small but critical parts of code or of a system to
help determine if the system as a whole is likely to work.

 » Static testing: Focuses on checking code standards, rather than working
software.

Automated testing works for these tests and the many other types of software
tests out there.

As you may understand by now, quality is an integral part of agile projects. Quality
is just one factor, however, that differentiates risk on agile projects from tradi-
tional projects. In the next sections, you see how risk on traditional projects com-
pares to risk on agile projects.

What’s Different about Agile Risk
Management?

Risk refers to the factors that contribute to a project’s success or failure. On agile
projects, risk management doesn’t have to involve formal risk documentation and
meetings. Instead, risk management is built into scrum roles, artifacts, and
events. In addition, consider the following agile principles that support risk
management:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

284 PART 4 Agile Management

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Working software is the primary measure of progress.

The preceding principles, and any practice that demonstrates those principles,
significantly mitigate or eliminate many risks that frequently lead to project chal-
lenges and failure.

According to the Standish Group’s “2015 Chaos Report,” a study of 10,000 software
projects, small agile projects are 30 percent more likely to succeed than traditional
projects. See Figure 15-4. Medium-sized projects are four times (400 percent)
more likely to succeed with an agile approach than a traditional approach, and
large, complex projects are six times (600 percent) more likely to succeed with an
agile approach.

FIGURE 15-4:
Standish Group’s

“2015 Chaos
Report.”

CHAPTER 15 Managing Quality and Risk 285

Table 15-2 shows some of the differences between risk on traditional projects and
on agile projects.

Risk on agile projects declines as the project progresses. Figure 15-5 shows a com-
parison of risk and time between waterfall projects and agile projects.

All projects have some risk, regardless of your project approach. However, with
agile project management, the days of catastrophic project failure — spending

TABLE 15-2	 Traditional versus Agile Risk
Risk Management with Traditional Approaches Risk Dynamics with Agile Approaches

Large numbers of projects fail or are challenged. Risk of catastrophic failure — spending large
amounts of money with nothing to show — is
almost eliminated.

The bigger, longer, and more complex the project,
the more risky it is. Risk is highest at the end of
a project.

Product value is gained immediately, rather than
sinking costs into a project for months or even years
with the growing chance of failure.

Conducting all the testing at the end of a project
means that finding serious problems can put the
entire project at risk.

Testing occurs while you develop. If a technical
approach, a requirement, or even an entire product
is not feasible, the development team discovers this
in a short time, and you have more time to course
correct. If correction is not possible, stakeholders
spend less money on a failed project.

Projects are unable to accommodate new
requirements mid-project without increased time
and cost because extensive sunk cost exists in even
the lowest-priority requirements.

Change for the benefit of the product is welcomed.
Agile projects accommodate new high-priority
requirements without increasing time or cost by
removing a low-priority requirement of equal
time and cost.

Traditional projects require time and cost estimates
at the project start, when teams know the least about
the project. Estimates are often inaccurate, creating a
gap between expected and actual project schedules
and budgets.

Project time and cost is estimated using the scrum
team’s actual performance, or velocity. You refine
estimates throughout the project, because the
longer you work on a project, the more you learn
about the project, the requirements, and the
scrum team.

When stakeholders don’t have a unified goal, they
can end up confusing the project team with
conflicting information about what the product
should achieve.

A single product owner is responsible for creating
a vision for the product and represents the
stakeholders to the project team.

Unresponsive or absent stakeholders can cause
project delays and result in products that do not
achieve the right goals.

The product owner is responsible for providing
information about the product immediately. In
addition, the scrum master helps remove
impediments on a daily basis.

286 PART 4 Agile Management

large amounts of time and money with no return on investment (ROI) — are over.
The elimination of large-scale failure is the biggest difference between risk on
traditional projects and on agile projects. In the next section, you see why.

Managing Agile Risk
In this section, you examine key structures of agile projects that reduce risk over
the life of the project. You find out how to use agile tools and events to find risks
at the right time in a project and how to prioritize and mitigate those risks.

Reducing risk inherently
Agile approaches, when implemented correctly, inherently reduce risk in product
development. Developing in sprints ensures a short time between project invest-
ment and proof that the product works. Sprints also provide the potential for a
project to generate revenue early. The sprint review, the sprint retrospective, and
the product owner’s involvement during each sprint provide constant product
feedback to the development team. Ongoing feedback helps prevent deviations
between product expectations and the completed product.

Three especially important factors in risk reduction on agile projects are the defi-
nition of done, self-funding projects, and the idea of failing fast. You find out
more about each of these factors in this section.

FIGURE 15-5:
Agile projects’
declining risk

model.

CHAPTER 15 Managing Quality and Risk 287

Risk and the definition of done
In Chapter 10, we discuss when a requirement is done. To consider a requirement
complete and ready to demonstrate at the end of a sprint, that requirement must
meet the scrum team’s definition of done. The product owner and the develop-
ment team agree upon the details of the definition; definitions of done usually
include the following:

 » Developed: The development team must fully create the working product
requirement.

 » Tested: The development team must have tested that the product works
correctly and is defect-free.

 » Integrated: The development team must have ensured that the requirement
works with the whole product and any related systems.

 » Documented: The development team must have created notes about how it
created the product and the rationale behind key technical decisions made.

Figure 15-6 shows a sample definition of done, with details.

The product owner and the development team may also create a list of acceptable
risks. For example, they may agree that end-to-end regression testing or perfor-
mance testing is overkill for the sprint definition of done. Or, with cloud

FIGURE 15-6:
Sample

definition of
done.

288 PART 4 Agile Management

computing, load testing may not be as crucial because additional capacity can be
easily and quickly added on demand at nominal costs. Acceptable risks allow the
development team to concentrate on the most important activities.

The definition of done drastically changes the risk factor for agile projects. By
creating a product that meets the definition of done in every sprint, you end each
sprint with a working build and usable functionality. Even if outside factors cause
a project to end early, project stakeholders will always see some value and have
working functionality to use now and build upon later.

Self-funding projects
Agile projects can mitigate financial risk in a unique way that traditional projects
cannot: the self-funding project. Chapter 13 includes examples of self-funding
projects. If your product is an income-generating product, you could use that
income to help fund the rest of your project.

In Chapter 13, we show you two different project ROI models. Here they are again,
in Tables 15-3 and 15-4. The projects in both tables create identical products.

In Table 15-3, the project created $100,000 in income after six months of develop-
ment. Now compare the ROI in Table 15-3 to the ROI in Table 15-4.

In Table 15-4, the project generated income with the very first release. By the end
of six months, the project had generated $330,000 — $230,000 more than the
project in Table 15-3.

TABLE 15-3	 Income from a Traditional Project with a Final Release
after Six Months

Month Income Generated Total Project Income

January $0 $0

February $0 $0

March $0 $0

April $0 $0

May $0 $0

June $0 $0

July $100,000 $100,000

CHAPTER 15 Managing Quality and Risk 289

The capability to generate income in a short amount of time has a number of benefits
for companies and project teams. Self-funding agile projects make good financial
sense for almost any organization, but they can be especially useful to organizations
that may not have the funds to create a product upfront. For groups short on cash,
self-funding can enable projects that would otherwise not be feasible.

Self-funding projects also help mitigate the risk that a project will be cancelled
due to lack of funds. A company emergency may dictate diverting a traditional
project’s budget elsewhere, delaying or cancelling the project. However, an agile
project that generates additional revenue with every release has a good chance of
continuing during a crisis.

Finally, self-funding projects help sell stakeholders on a project in the first place;
it’s hard to argue with a project that provides continuous value and pays for at
least part of the project costs from the start.

Failing fast
All product development efforts carry some risk of failure. Testing within sprints
introduces the idea of failing fast: Instead of sinking costs into a long effort for
requirements, design, and development, and then finding problems that will pre-
vent the project from moving forward during the testing phase, development
teams on agile projects can identify critical problems within a few sprints. This
quantitative risk mitigation can save organizations large amounts of money.

Tables 15-5 and 15-6 illustrate the difference in sunk costs for a failed waterfall
project and a failed agile project. The projects in both tables are for identical prod-
ucts with identical costs.

TABLE 15-4	 Income from an Agile Project with Monthly Releases and a
Final Release after Six Months

Month/Release Income Generated Total Project Income

January $0 $0

February $15,000 $15,000

March $25,000 $40,000

April $40,000 $80,000

May $70,000 $150,000

June $80,000 $230,000

July $100,000 $330,000

290 PART 4 Agile Management

In Table 15-5, the project stakeholders spent 11 months and close to a million
dollars to find out that a product idea would not work. Compare the sunk cost in
Table 15-5 to that in Table 15-6.

TABLE 15-6	 Cost of Failure on an Agile Project
Month Sprint and Issues Sunk Project Cost Total Sunk Project Cost

January Sprint 1: No issues.

Sprint 2: No issues.

$80,000 $80,000

February Sprint 3: Large-scale problem uncovered
during testing resulted in failed sprint.

Sprint 4: Development team attempted
to resolve problem to continue
development; sprint ultimately failed.

$80,000 $160,000

Final Project cancelled; product not viable. 0 $160,000

TABLE 15-5	 Cost of Failure on a Waterfall Project
Month Phase and Issues Sunk Project Cost Total Sunk Project Cost

January Requirements Phase $80,000 $80,000

February Requirements Phase $80,000 $160,000

March Design Phase $80,000 $240,000

April Design Phase $80,000 $320,000

May Design Phase $80,000 $400,000

June Development Phase $80,000 $480,000

July Development Phase $80,000 $560,000

August Development Phase $80,000 $640,000

September Development Phase $80,000 $720,000

October QA Phase: Large-scale problem
uncovered during testing.

$80,000 $800,000

November QA Phase: Development team
attempted to resolve problem to
continue development.

$80,000 $880,000

December Project cancelled; product not viable. 0 $880,000

CHAPTER 15 Managing Quality and Risk 291

By testing early, the development team from Table 15-6 determined that the
product would not work by the end of February, spending less than one-sixth of
the time and money spent in the project in Table 15-5.

Because of the definition of done, even failed projects produce something
tangible that an organization may leverage or improve. For example, the failed
project in Table 15-5 would have provided working functionality in the first two
sprints.

The concept of failing fast can apply beyond technical problems with a product.
You can also use development within sprints and fast failure to see if a product
will work in the marketplace, and to cancel the project early if it looks like cus-
tomers won’t buy or use the product. By releasing small parts of the product and
testing the product with potential customers early in the project, you get a good
idea of whether your product is commercially viable, and save large amounts of
money if you find that people will not buy the product. You also discover impor-
tant changes you might make to the product to better meet customer needs.

Finally, failing fast does not necessarily mean project cancellation. If you find
catastrophic issues when sunk costs are low, you may have the time and budget to
determine a completely different approach to create a product.

The definition of done, self-funding projects, and the idea of failing fast, along
with the foundation of agile principles, all help lower risk on agile projects. In the
next section, you see how to actively use agile project management tools to
manage risk.

Identifying, prioritizing, and responding
to risks early
Although the structure of agile projects inherently reduces many traditional risks,
development teams still should be aware of the problems that can arise during a
project. Scrum teams are self-managing; in the same way that they are respon-
sible for quality, scrum teams are responsible for trying to identify risks and ways
to prevent those risks from materializing.

On agile projects, you prioritize the highest-value and highest-risk requirements
first.

Instead of spending hours or days documenting all of a project’s potential risks,
the likelihood of those risks happening, the severity of those risks, and ways to
mitigate those risks, scrum teams use existing agile artifacts and meetings to

292 PART 4 Agile Management

TABLE 15-7	 Agile Project Risk Management Tools
Artifact or Meeting Role in Risk Management

Product vision The product vision statement helps unify the project team’s definition of product
goals, mitigating the risk of misunderstandings about what the product will need
to accomplish.

While creating the product vision, the project team might think of risks on a
very high level, based on marketplace and customer feedback, and inline with
organizational strategy. Find out more about the product vision in Chapter 7.

Product roadmap The product roadmap provides a visual overview of the project’s requirements
and priorities. This overview allows the project team to quickly identify gaps in
requirements and incorrectly prioritized requirements. Find out more about the
product roadmap in Chapter 7.

Product backlog The product backlog is a tool for accommodating change in the project. Being
able to add changes to the product backlog and reprioritize requirements
regularly helps turn the traditional risk associated with scope changes into a
way to create a better product.

Keeping the requirements and the priorities in the product backlog current
helps ensure that the development team can work on the most important
requirements at the right time. Find out more about the product backlog in
Chapters 7 and 8.

Release planning During release planning, the scrum team discusses risks to the release and how
to mitigate those risks. Risk discussions in the release planning meeting should
be high-level and relate to the release as a whole. Address risks with individual
requirements in the sprint planning meetings. Find out more about release
planning in Chapter 8.

Sprint planning During each sprint-planning meeting, the scrum team discusses risks to the
specific requirements and tasks in the sprint and how to mitigate those risks.
Risk discussions during sprint planning can be done in depth, but should only
relate to the current sprint. Find out more about sprint planning in Chapter 8.

Sprint backlog The burndown chart on the sprint backlog provides a quick view of the sprint
status. This quick view helps the scrum team manage risks to the sprint as they
arise and minimize their effect by addressing problems immediately. Find out
more about sprint backlogs and how burndown charts show project status in
Chapter 9.

Daily scrum During each daily scrum, development team members discuss roadblocks.
Roadblocks, or impediments, are sometimes risks. Talking about roadblocks
every day gives the development team and the scrum master the chance to
mitigate those risks immediately. Find out more about the daily scrum in
Chapter 9.

manage risk. Scrum teams also wait until the last responsible minute to address
risk, when they know the most about the project and problems that are more
likely to arise. Table 15-7 shows how scrum teams can use the different agile proj-
ect management tools to manage risk at the right time.

CHAPTER 15 Managing Quality and Risk 293

The artifacts and meetings discussed in this section systematically help agile
teams manage risk on an agile project by addressing risk by the responsible roles
at appropriate times. The larger and more complex the project, the higher the
likelihood that an agile approach can eliminate the risk of failure.

Artifact or Meeting Role in Risk Management

Task board The task board provides an unavoidable view of the sprint status, allowing the
scrum team to catch risks to the sprint and manage them right away.

Find out more about task boards in Chapter 9.

Sprint review During the sprint review, the scrum team regularly ensures that the product
meets stakeholders’ expectations. The sprint review also provides opportunities
for stakeholders to discuss changes to the product to accommodate changing
business needs. Both aspects of the sprint review help manage the risk of getting
to the end of a project with the wrong product. Find out more about sprint
reviews in Chapter 10.

Sprint retrospective During the sprint retrospective, the scrum team discusses issues with the past
sprint and identifies which of those issues may be risks in future sprints. The
development team needs to determine ways to prevent those risks from
becoming problems again. Find out more about sprint retrospectives in
Chapter 10.

5Ensuring Agile
Success

IN THIS PART . . .

Build a foundation through organizational and individual
commitment to becoming more agile.

Choose a project and create an environment that will
optimize agile transition success.

Scale agile techniques across multi-team projects
appropriately.

Become a change agent in your organization and help
avoid common pitfalls in agile transitions.

CHAPTER 16 Building a Foundation 297

Chapter 16

IN THIS CHAPTER

 » Obtaining organizational and
individual commitment

 » Assembling teams with the necessary
skills and abilities

 » Establishing an appropriate
environment

 » Investing in training

 » Securing initial and ongoing support

Building a Foundation

To successfully move from traditional project management processes to agile
processes, you must start with a good foundation. You need commitment,
both from your organization and from people as individuals, and you need

to find a good project team for your first agile project, providing them an environ-
ment conducive to agile approaches. You want to find the right training for your
project team, and sustainably support your organization’s agile approach so that
it can grow beyond your first project.

In this chapter, we show you how to build a strong agile foundation within your
organization.

Organizational and Individual
Commitment

Commitment to agile project management means making an active, conscious
effort to work with new methods and to abandon old habits. Commitment at both
an individual level and at an organizational level is critical to agile transition
success.

298 PART 5 Ensuring Agile Success

Without organizational support, even the most enthusiastic agile project team
members may find themselves forced back into old project management pro-
cesses. Without the commitment of individual project team members, a company
that embraces agile approaches may encounter too much resistance, or even sab-
otage, to be able to become an agile organization.

The following sections provide details on how organizations and people can
 support an agile transition.

Organizational commitment
Organizational commitment plays a large role in agile transition. When a com-
pany and the groups in that company embrace agile principles, the transition can
be easier for the project team members.

Organizations can commit to an agile transition by doing the following:

 » Engaging an experienced agile expert to create a realistic transition plan and
to guide the company through that plan

 » Investing in employee training, starting with the members of the company’s
first agile project team and the leadership at all levels who support them

 » Allowing scrum teams to abandon waterfall processes, meetings, and
documents in favor of streamlined agile approaches

 » Ensuring all scrum team members necessary for each agile project are
dedicated: an empowered product owner, a cross-functional development
team of multi-skilled people, and an influential servant-leader scrum master

 » Encouraging development teams to continuously increase their skill sets

 » Providing automated testing tools and a continuous integration framework

 » Logistically supporting scrum team collocation

 » Allowing scrum teams to manage themselves

 » Giving the agile project team the time and freedom to go through a healthy
trial-and-error process

 » Revising employee performance reviews to emphasize team performance

 » Encouraging agile project teams and celebrating successes

Organizational support is also important beyond the agile transition. Companies
can ensure that agile processes continue to work by hiring with agile project teams
in mind and by providing agile training to new employees. Organizations can also

CHAPTER 16 Building a Foundation 299

engage the ongoing support of an agile mentor, who can guide project teams as
they encounter new and challenging situations.

Organizations, of course, are made up of individuals. Organizational commitment
and individual commitment go hand in hand.

Individual commitment
Individual commitment has an equal role to organizational commitment in agile
transitions. When each person on a project team works at adopting agile practices,
the changes become easier for everyone on the project team.

People can individually commit to an agile transition by using these methods:

 » Attending training and conferences and being willing to learn about
agile methods

 » Being open to change, willing to try new processes, and making an effort to
adapt new habits

 » Resisting the temptation to fall back on old processes

 » Acting as a peer coach for project team members who are less experienced in
agile techniques

 » Allowing themselves to make mistakes and learn from those mistakes

 » Reflecting on each sprint honestly in the sprint retrospective and committing
to improvement efforts

 » Actively becoming multi-skilled development team members

 » Letting go of ego and working as a part of a team

 » Taking responsibility for successes and failures as a team

 » Taking the initiative to be self-managing

 » Being active and present throughout each agile project

Like organizational commitment, individual commitment is important beyond
the agile transition period. The people on the first agile project team will become
change agents throughout the company, setting the stage and exemplifying for
other project teams how to effectively work with agile methods.

Getting commitment
Commitment to agile methods may not be instant. You’ll need to help people in
your organization overcome the natural impulse to resist change.

300 PART 5 Ensuring Agile Success

A good early step in an agile transition is to find an agile champion, a senior-level
manager or executive who can help ensure organizational change. The fundamen-
tal process changes that accompany agile transitions require support from the
people who make and enforce business decisions. A good agile champion will be
able to rally the organization and its people around process changes.

Another important way to get commitment is to identify challenges with the orga-
nization’s current projects and provide potential solutions with agile approaches.
Agile project management can address many problems, including issues with prod-
uct quality, customer satisfaction, team morale, budget and schedule overruns,
funding, portfolio management, and overall project issues.

Finally, highlight some of agile project management’s overall benefits. Some of
the real and tangible benefits that drive shifts from traditional methods of project
management to agile methods include the following:

 » Happier customers: Agile projects often have higher customer satisfaction
because agile project teams produce working products quickly, can respond
to change, and collaborate with customers as partners.

 » Profit benefits: Agile approaches allow project teams to deliver functionality
to market quicker than with traditional approaches. Agile organizations can
realize higher return on investment, often resulting in self-funded projects.

 » Defect reduction: Quality is a key part of agile approaches. Proactive quality
measures, continuous integration and testing, and continuous improvement
all contribute to higher-quality products.

 » Improved morale: Agile practices such as sustainable development and
self-managing development teams can mean happier employees, improved
efficiency, and less company turnover.

You can find more benefits of agile project management in Chapter 19.

Can you make the transition?
You’ve established many valuable reasons for moving to an agile approach, and
your case looks good. But will your organization be able to make the transition?
Here are some key questions to consider:

 » What are the organizational roadblocks? Does your organization have a
value-delivery culture or a risk-management culture? Does it support coaching
and mentorship alongside management? Is there support for training? How
does the organization define success? Does it have an open culture that will
embrace a high visibility of project progress?

CHAPTER 16 Building a Foundation 301

 » How are you doing business today? How are projects planned at the macro
level? Is the organization fixated on fixed scope? How engaged are business
representatives? Do you outsource development?

 » How do your teams work today, and what will need to shift under agile
methods? How ingrained is waterfall? Does the team have a strong command-
and-control mentality? Can good ideas come from anywhere? Is there trust
in the team? Are people shared across teams? What do you need to ask for
to secure a shift? Can you get people, tools, space, and commitment to pilot
the change?

 » What are the regulatory challenges? Are there processes and procedures
that relate to regulatory requirements? Are these requirements imposed
upon you from externally or internally adopted regulations and standards?
Will you need to create additional documentation to satisfy regulatory
requirements? Are you likely to be audited for compliance, and what would
be the cost of noncompliance?

As you review your analysis of the roadblocks and challenges, you may uncover
the following concerns:

 » Agile approaches reveal that the organization needs to change. As you
compare agile practices and results with what you have done traditionally, you
may reveal that performance has not been all it could have been. You need to
tackle this head on. Your organization has been operating within a framework
of how projects were expected to be run. Your organization has done its best
to produce a result, often in the face of extreme challenges. For all parties
involved, you have to acknowledge their efforts and introduce the potential of
agile processes to allow them to produce yet greater results.

 » Project management leaders may misinterpret agile techniques as
insufficient. Often the values and principles of the Agile Manifesto are
misinterpreted to mean agile frameworks involve insufficient planning and
documentation and attempt to disregard generally accepted project manage-
ment standards. Experienced project managers may view some of that value
slipping away in a transition to agile processes. Take every opportunity to
clarify what agile values and principles support and do not support. Show how
each principle addresses the same challenges that traditional project manage-
ment attempts to resolve, and how agile techniques are an extension of
project managers’ capabilities and career, not as devaluing anything they’ve
worked hard to secure.

 » Moving from a leadership to a service model can be challenging. Agile
leaders are service oriented. Command and control gives way to facilitation.
Servant leadership is a big shift for many project teams and functional
managers. Demonstrate how the shift provides more effective outcomes for
everyone. You can read more about servant leadership in Chapter 14.

302 PART 5 Ensuring Agile Success

Keep in mind that some resistance will arise; change can’t happen without oppo-
sition. Be ready for resistance, but don’t let it thwart your overall plan.

Timing the transition
Organizationally, you can start your initiative to move to an agile approach at any
time. You might consider a few optimal times:

 » When you need to prove that agile project management is necessary: Use
the end of a large project, when you can see clearly what did not work (for
example, during a sunset review). You’ll be able to demonstrate clearly the issues
with waterfall, and you’ll gain a springboard for piloting your first agile project.

 » When your challenge is doing accurate budgeting: Run your first agile
project in the quarter before the start of the annual budget year (namely, one
quarter before the end of the current budget cycle). You’ll get metrics from
your first project that will allow you to be more informed when planning
next year’s budget.

 » When you’re starting a new project: Moving to agile processes when you
have a new project lets you start fresh without the baggage of old approaches.

 » When you’re trying to reach a new market or industry: Agile techniques
allow you to deliver quick innovation to help your organization create
products for new types of customers.

 » When you have new leadership: Management changes are great opportuni-
ties for setting new expectations with agile approaches.

Although you can take advantage of any of these opportunities to start using agile
processes, they’re not required. The best time to become more agile is . . . today!

Choosing the Right Pilot Team Members
Determining the right people to work with, especially in the early stages, is
important to agile project success. Here are things to think about when choosing
people for the different roles in your organization’s first agile project.

The agile champion
At the beginning of an agile transition, the agile champion will be a key person
in helping ensure the project team can succeed. This person should be able to

CHAPTER 16 Building a Foundation 303

effectively and quickly influence each level of the organization that affects the
pilot agile teams’ chances for success. A good agile champion should be able to do
all these tasks:

 » Be passionate about agility and the organizational and market issues agile
approaches will address.

 » Make decisions about company processes. If there is a status quo, the agile
champion should be able to influence a change.

 » Get the organization excited about what’s possible with agile processes.

 » Regularly and directly collaborate with and support the project team as it goes
through the steps to establish agile processes.

 » Acquire the project team members necessary for success, both for the first
project and in the long term.

 » Be an escalation point to remove unnecessary distractions and non-agile
processes.

When choosing an agile champion, look for someone who has authority in the
organization — whose voice is respected and who has led change initiatives
 successfully in the past.

The agile transition team
As important as the agile champion is, one person can’t do everything. The agile
champion should work together with other organizational leaders whom the agile
project team relies on for support in the transition. Together, the agile transition
team removes organizational impediments to ensure the success of the pilot team
and future agile teams. The agile transition team should

 » Be committed to organizational success through the continuous support of
pilot agile teams.

 » Establish a clear vision and roadmap for how the organization will become
agile.

 » Be organized like a scrum team, with a product owner (agile champion),
development team (leaders who can make organizational changes in support
of the pilot scrum teams), and a scrum master (an organizational leader who
can focus on helping the agile transition team adopt agile principles and
enforce the rules of scrum).

 » Operate as a scrum team, holding all five scrum events and implementing all
three scrum artifacts.

304 PART 5 Ensuring Agile Success

Figure 16-1 illustrates how the agile transition team’s and pilot scrum team’s
sprint cadences are aligned. Impediments identified in the sprint retrospective of
the pilot team become backlog items for the transition team to resolve as process
improvements for the pilot team.

Not only does the agile transition team provide systematic support for the pilot
scrum team, but the organizational leadership also becomes more agile by using
scrum alongside the pilot team.

The product owner
With an agile champion and an agile transition team in place, the focus turns to
pilot scrum teams. The pilot scrum team product owners should come from the
business side of the organization, aligning the business with technology. During
the first agile project, the product owner may need to acclimate to working on the
project daily with the development team. A good product owner should

 » Be decisive.

 » Be an expert about customer requirements and business needs.

FIGURE 16-1:
Alignment of the

agile transition
team and the

pilot scrum team
cadences.

CHAPTER 16 Building a Foundation 305

 » Have the business authority and be empowered to prioritize and reprioritize
product requirements.

 » Be organized enough to manage ongoing changes to the product backlog.

 » Be committed to working with the rest of the scrum team and to being
available to the development team daily throughout a project.

 » Have the ability to obtain project funding and other resources.

When choosing a product owner for your first agile project, find someone who can
provide product expertise and commitment to the project.

The development team
On agile projects, the self-managing development team is central to the success
of the project. The development team determines how to go about the work of
creating the product. Good development team members should be able to do the
following:

 » Be versatile.

 » Be willing to work cross-functionally.

 » Plan a sprint and self-manage around that plan.

 » Understand the product requirements and provide effort estimates.

 » Provide technical advice to the product owner so that he or she can under-
stand the complexity of the requirements and make appropriate decisions.

 » Respond to circumstances and adjust processes, standards, and tools to
optimize performance.

Intellectually curious developers, eager to learn new things and contribute to
project goals in a variety of ways, are most likely to thrive in an agile environment.
When choosing a development team for the pilot project, select people who are
open to change, enjoy a challenge, like to be in the forefront of new developments,
and are willing to do whatever it will take to ensure success, including learning
and using new skills outside their existing skill set.

The scrum master
The scrum master on a company’s first agile project may need to be more sensi-
tive to potential development team distractions than on later projects. A good
scrum master should

306 PART 5 Ensuring Agile Success

 » Have influence (clout).

 » Have enough organizational influence to remove outside distractions that
prevent the project team from successfully using agile methods.

 » Know enough about agile project management to be able to help the project
team uphold agile processes throughout a project.

 » Have the communication and facilitation skills to guide the development team
in reaching consensus.

 » Trust enough to step back and allow the development team to organize and
manage itself.

When determining the scrum master for a company’s first agile project, you want
to select someone who is willing to be a servant-leader. At the same time, the
scrum master will need to have a strong enough temperament to help thwart dis-
tractions and uphold agile processes in the face of organizational and individual
resistance.

The project stakeholders
On an organization’s first agile project, good project stakeholders should

 » Be involved.

 » Defer to the product owner for final product decisions.

 » Attend sprint reviews and provide product feedback.

 » Understand agile processes. Sending project stakeholders to the same
training as the rest of the project team will help them be more comfortable
with new processes.

 » Receive project information in agile formats, such as sprint reviews, product
backlogs, and sprint backlogs.

 » Provide details when the product owner and development team have
questions.

 » Work collaboratively with the product owner and the rest of the project team.

The project stakeholders for your agile project should be trustworthy, cooperative,
and active contributors to a project.

CHAPTER 16 Building a Foundation 307

The agile mentor
An agile mentor, sometimes called an agile coach, is key to keeping teams and
organizations on track while learning scrum and beginning to establish a more
agile environment. A good agile mentor should

 » Be experienced.

 » Be an expert at agile processes, especially in the agile processes your
 organization chooses.

 » Be familiar with projects of different sizes, large and small.

 » Help teams self-manage, ask questions to help them learn for themselves,
and provide useful advice and support without taking over a project.

 » Guide the project team through its first sprint at the beginning of the project
and be available to answer questions as needed throughout the project.

 » Work with and relate to the product owner, the development team members,
and the scrum master.

 » Be a person from outside a department or organization. Internal agile
mentors often come from a company’s project management group or center
of excellence. If the agile mentor comes from inside the organization, he or
she should be able to put aside political considerations when making sugges-
tions and providing advice.

A number of organizations offer agile strategy, planning, and mentorship, includ-
ing our company, Platinum Edge.

Creating an Environment
That Enables Agility

When you’re laying the foundation for adjusting your approach from traditional
methods to agile methods, create an environment where agile projects can be suc-
cessful and project teams can thrive. An agile environment refers to not only
physical environments, such as the one we describe in Chapter 5, but also a good
organizational environment. To create a good agile project environment, you
should have the following:

 » Good use of agile processes: This may seem obvious, but using proven agile
frameworks and techniques from the beginning. Use the Roadmap to Value in
Figure 16-2, using scrum and the other key agile practices to increase your

308 PART 5 Ensuring Agile Success

chances of success. Start with the basics; build on them only when the project
and your knowledge progress. Progress for the sake of progress doesn’t lead
to perfection. Remember, practice doesn’t make perfect; practice makes
permanent. Start out correctly.

 » Unfettered transparency: Be open about project status and upcoming
process changes. People on the project team and throughout the organization
should be privy to project details.

 » Frequent inspection: Use the regular feedback loop opportunities that
scrum provides to see firsthand how the project is going.

 » Immediate adaptation: Follow up on inspection by making necessary
changes for improvement throughout the project. Take opportunities to
improve today; don’t wait until the end of a release or the entire project.

 » A dedicated scrum team: Ideally, the product owner, development team,
and scrum master will be fully allocated to the project.

 » A collocated scrum team: For best results, the product owner, development
team, and scrum master should sit together, in the same area of the same office.

FIGURE 16-2:
The Roadmap

to Value.

CHAPTER 16 Building a Foundation 309

 » A well-trained project team: When the members of the project team work
together to learn about agile values and principles and experiment with agile
techniques, they have shared understanding and common expectations
about where they’re headed as an agile organization.

Luckily, many opportunities for training in agile processes are available. You can
find formal certification programs as well as non-certification agile courses and
workshops. Available agile certifications include the following:

 » From the Scrum Alliance:

• Certified ScrumMaster (CSM)

• Advanced Certified ScrumMaster (A-CSM)

• Certified Scrum Product Owner (CSPO)

• Advanced Certified Scrum Product Owner (A-CSPO)

• Certified Scrum Developer (CSD)

• Advanced Certified Scrum Developer (A-CSD)

• Certified Scrum Professional (CSP) for ScrumMasters (CSP-SM), Product
Owners (CSP-PO), and Developers (CSP-D)

• Certified Team Coach (CTC)

• Certified Enterprise Coach (CEC)

• Certified Agile Leadership (CAL)

 » The Project Management Institute Agile Certified Practitioner (PMI-ACP)
accreditation

 » From Scrum.org:

• Professional Scrum Master (PSM I, II, III)

• Professional Scrum Product Owner (PSPO I, II)

• Professional Scrum Developer (PSD)

 » From the International Consortium for Agile (ICAgile):

• Various tracks in agile coaching, engineering, training, business agility,
delivery management, DevOps, enterprise, agility, and value management

 » Numerous university certificate programs

With a good environment, you have a good chance at success.

310 PART 5 Ensuring Agile Success

Support Agility Initially and Over Time
When you first launch into agile processes, give your agile transition every chance
for success by paying attention to key success factors:

 » Choose a good pilot. Select a project that’s important enough to get every-
one’s support. At the same time, set expectations: Although the project will
produce measurable improvements, the results will be modest while the
project team is learning new methods and will improve over time.

 » Get an agile mentor. Use a mentor or coach to increase your chances of
setting up a good agile environment and maximizing your chances of great
performance.

 » Communicate — a lot. Keep talking about agile processes at every level of
the organization. Use your agile champion to encourage progress through the
pilot and toward more extensive agile adaptation.

 » Prepare to move forward. Keep thinking ahead. Consider how you’ll take the
lessons from the pilot to new projects and teams. Also think about how you’ll
scale from a single project to many projects, including those with multiple
teams.

CHAPTER 17 Scaling across Agile Teams 311

Chapter 17

IN THIS CHAPTER

 » Identifying when and why to scale
across multi-team projects

 » Understanding the basics of scaling

 » Exploring scaling challenges

Scaling across
Agile Teams

Depending on the schedule, scope, and required skills, many small and
medium-sized projects can be accomplished with a single scrum team.
Larger projects, however, may require more than one scrum team to

achieve the product vision and release goals in a reasonable go-to-market
time frame. When more than one scrum team is required, the teams need effective
inter-team collaboration, communication, and synchronization — they need to be
agile at scale. Regardless of project size, if interdependencies exist between mul-
tiple teams working together on the same project, or even across a collection of
projects, you may need to scale.

Scale only if you have to. Even though you may have the talent and resources
available to deploy multiple teams on your project, multiple teams don’t auto-
matically ensure higher quality and faster time to market. Always look for ways to
implement the tenth agile principle, “Simplicity — the art of maximizing the
amount of work not done — is essential.” Less is more.

As an agile framework, scrum helps teams organize their work and expose prog-
ress effectively, whether your project comprises one scrum team or one thousand
scrum teams. Scaling brings new challenges, however, so you want to implement
techniques for coordination and collaboration across teams that not only support

312 PART 5 Ensuring Agile Success

agile values and principles, but also address the specific challenges facing your
project and organization.

In this chapter, we discuss some of the issues to address when you need multiple
teams on an agile project. We also provide overviews of some common agile scal-
ing frameworks and approaches that address the challenges of scaling.

Multi-Team Agile Projects
Organizations determine the need for multiple scrum teams when the product
backlog and release plan require a faster speed of development than a single scrum
team can achieve.

With agile projects, cross-functional teams work together during every sprint of
the project, doing the same types of work each sprint and implementing require-
ments from the product backlog into completed, working, shippable functionality.
When multiple teams work from the same product backlog, however, you have
new challenges to address.

Common challenges with more than one scrum team working on the same project
include the following:

 » Project planning: Agile planning is collaborative, from the beginning.
Collaboration for large groups is different than for single scrum teams.
Establishing a vision with the broader project team (all scrum teams and
stakeholders) and building a product roadmap and product backlog with
collaborative input from all parties involved requires a different approach
than with single-team projects.

 » Release planning: Similar to the challenge of project planning, releases
involve more specific planning of scope and release timing. Coordinating who
will work on what and when throughout the release cycle is even more critical
to ensure that dependencies, scope gaps, and talent allocation match the
needs across the project.

 » Decomposition: To break down larger requirements in the same backlog,
multiple teams may need to be involved in research and refinement discus-
sions and activities. Who initiates these discussions? Who facilitates?

 » Sprint planning: Although not the last opportunity to coordinate planning
and execution between scrum teams, sprint planning is when scrum teams
lock in a certain amount of scope from the product backlog to execute. At this
stage, dependencies between scrum teams become reality. If the preceding

CHAPTER 17 Scaling across Agile Teams 313

activities of developing the product roadmap and release plan have not
exposed dependencies, what are some ways scrum teams can expose and
address them at sprint planning?

 » Daily coordination: Even after effective planning and collaboration from
project initiation through sprint planning, scrum teams can and should
collaborate each day. Who participates and what can be done while teams are
in execution mode?

 » Sprint review: With so many teams demonstrating their product increments
and seeking feedback, how can stakeholders participate with their limited
schedules? How can product owners update the product backlog with all that
was learned across multiple scrum teams? How do development teams know
what was accomplished by other development teams?

 » Sprint retrospective: Multiple scrum teams working together make up a
broader project team. How do they identify opportunities for improvement
and implement those improvements across the program?

 » Integration: All product increments need to work together in an integrated
environment. Who does the integration? Who provides the infrastructure to
the teams? Who ensures the integrations work?

 » Architecture decisions: Who oversees the architecture and technical
standards? How can these decisions be decentralized to enable teams to be
self-organizing and work as autonomously as possible?

These are some examples; you might be able to identify others based on your
experience. Whatever your situation, select solutions to your scaling challenges
that address your specific challenge.

Some scaling frameworks offer solutions to challenges you may not have. Be care-
ful not to bloat your framework fixing things that are not broken.

Throughout this chapter, we refer to products, projects, programs, and portfolios.
In general, a product is a set of features that provide some sort of value or useful-
ness to a customer. A project is a planned set of work that requires time, effort, and
planning to complete. It has a distinct start and end. A program is a collection of
projects with an affinity to each other (addressing a certain market segment or
rolling into the same product). A portfolio is a collection of programs and projects
used to meet specific strategic business objectives. The projects or programs of
the portfolio may not be directly related to each other but are grouped to facilitate
management of the work.

Since the first scrum teams in the mid-1990s, there have been agile projects
requiring multiple scrum teams collaborating effectively together. Following are
overviews of various scaling frameworks and techniques addressing many of
these challenges.

314 PART 5 Ensuring Agile Success

Making Work Digestible
through Vertical Slicing

One of the simplest scaling approaches is known as vertical slicing, which
 provides a straightforward solution for dividing the work across teams so they
can incrementally deliver and integrate functionality at every sprint. If your
 scaling challenge is breaking down the work across teams, vertical slicing is the
solution.

The concept of vertical slicing applies to single team projects, too. Development
teams consist of people who collectively possess all skills required to turn a
requirement into completed, shippable functionality. The development team
swarms on one requirement at a time, which is a vertical slice of the product
backlog, potentially touching all aspects of the technology and skills required.

With vertical slicing, multiple scrum teams work in synchronized sprints of the
same length on a vertical slice — a separate portion or module of the overall
 product — and then those modules are integrated by an integration scrum team
after each sprint. The integration scrum team lags the development scrum teams
by one sprint and is its own scrum team, with a dedicated product owner, devel-
opment team members, and scrum master.

Figure 17-1 illustrates how a product backlog is sliced into specific requirements
for each scrum team. Then, at the end of each sprint, the individual teams imple-
ment working functionality that can be integrated with other working functional-
ity in the broader set of product features. Each individual team’s features feed into
an integration team’s backlog (the scrum team directly above it in the illustration)
for architectural and system-level coordination.

The number of integration scrum team levels required depends on the complexity
of each project. The figure shows you four levels that a suite of features in Micro-
soft Office might logically require. (We use Microsoft as an example because it is
familiar to most people.)

Each integration scrum team handles all system-level development work for the
integration of functionality produced by the teams that feed into it, and provides
architectural oversight to unify the individual scrum teams.

With Microsoft Office as an illustration:

 » A single scrum team develops the functionality for the Email feature
“compose/transmit messages” (requirement ID 1.1.1.1).

CHAPTER 17 Scaling across Agile Teams 315

 » A different scrum team develops the functionality for “grammar/spell check
messages” (1.1.1.2).

 » A third scrum team develops the functionality for “search messages” (1.1.1.3).

 » The integration scrum team (at the Activity level) does the development work
to integrate the functionality from these three scrum teams’ functionality into
a package (1.1.1) that the Email integration team can integrate into the entire
Email module.

 » The Outlook integration team then takes the Email modules, along with the
Calendar, Contacts, and other modules, to integrate them into an Outlook
package (1.1) that can then be integrated by the MS Office integration team
into the entire MS Office suite (1).

In this example, integration teams operate as separate scrum teams, with dedi-
cated team members for each role.

Scrum of scrums
How do these different scrum teams coordinate with each other daily? The scrum
of scrums model facilitates effective integration, coordination, and collaboration
among scrum teams using vertical slicing. Almost all scaling frameworks we show
you in this chapter use scrum of scrums to enable daily coordination between
scrum teams.

FIGURE 17-1:
Scrum teams

working on
vertical slices of

product features,
using Microsoft

Office as an
example.

316 PART 5 Ensuring Agile Success

Figure 17-2 illustrates each role of each team coordinating daily with people of the
same role in other teams regarding priorities, dependencies, and impediments
that affect the broader program team. The scrum of scrums for each role is facili-
tated by the integration-level person for each role. Thorough integration and
release efforts establish a consistent and regular scrum of scrums model.

Each day, individual scrum teams hold their own daily scrums at approximately
the same time, in separate locations. Following these daily scrums, the scrum of
scrums meetings described next occur.

Product owner scrum of scrums
Each day, following the individual scrum teams’ daily scrums, the product owners
from each scrum team meet with the integration team product owner for no lon-
ger than 15 minutes. They address the requirements being completed and make
any adjustments based on the realities uncovered during the individual scrum
team’s daily scrum. Each product owner addresses the following:

 » The business requirements that each has accepted or rejected since the last
time they met

 » The requirements that should be accepted by the time they meet again

FIGURE 17-2:
Scrum of scrums
for coordinating
between scrum

teams.

CHAPTER 17 Scaling across Agile Teams 317

 » Which requirements are impeded and need help from other teams to resolve
(such as “John, we won’t be able to do requirement 123 until you complete
requirement xyz from your current sprint backlog.”)

The integration team product owner makes the cross-team prioritization deci-
sions necessary to ensure that the impediments are addressed during the daily
scrum of scrums.

Development team scrum of scrums
Each day following the individual scrum teams’ daily scrums, one development
team member representative from each scrum team attends the integration
team’s daily scrum (which is the scrum of scrums for developers) and participates
with the integration development team members in discussing the following:

 » Their team’s accomplishments since the last time they met

 » Their team’s planned accomplishments between now and the next meeting

 » Technical concerns with which they need help

 » Technical direction decisions that the team has made and what anyone
should be aware of to prevent potential issues

Consider rotating development team members from the individual scrum teams
who attend the scrum of scrums (integration team’s daily scrum), either daily or
for each sprint, to ensure that everyone stays tuned in to the integration efforts of
the portfolio.

Scrum master scrum of scrums
The scrum masters from each scrum team also meet with the integration scrum
team scrum master for no longer than 15 minutes to address the impediments that
each team is dealing with. Each scrum master addresses the following:

 » The individual team-level impediments resolved since the last time they met
and how they were resolved, in case other scrum masters run into the issue

 » New impediments identified since last time they met and any unresolved
impediments

 » Which impediments they need help resolving

 » Potential impediments that everyone should be aware of

318 PART 5 Ensuring Agile Success

The integration team scrum master then makes sure that escalated impediments
are addressed after the daily scrum of scrums.

With vertical slicing, a single product backlog exists, and team attributes are
assigned to those requirements as they are broken down and move to the develop-
ment scrum team. With this model, you can see the overall program and also
quickly filter down to your own team’s piece of that overall program.

A common question is “Who is responsible for architecture in a vertically sliced
program?” The answer is that it depends on which modules will be affected by the
decision.

Your organization should have existing architectural standards, coding standards,
and style guides. This way, each team doesn’t have to reinvent the wheel.

Consider an architectural decision that needs to be made and that will affect only
module A. The development team of module A would make that decision. If it were
going to affect multiple teams, the development team at the integration level that
all affected teams roll into would make that decision. That integration level might
be one level up or four levels up.

Using Figure 17-2 as an example, an architectural decision affecting two of the
Email module teams (1.1.1.2 and 1.1.1.3) would be made by the Email integration
team (1.1.1). A decision affecting the search messages Email module team (1.1.1.3)
and the Calendar integration scrum team (1.1.2) would be made by the Outlook
integration scrum team (1.1).

Vertical slicing is a simple way to maintain the autonomy of each scrum team to
deliver valuable functionality within a wider program context. It is also effective
at helping teams have timely and relevant conversations about constraints and
progress.

Aligning through Roles with Scrum at Scale
Agile scaling models vary in complexity and simplicity. The Scrum at Scale
approach for two or hundreds of scrum teams working together is a form of basic
scrum of scrums model for scrum masters and product owners coordinating com-
munication, impediment removal, priorities, requirement refinement, and plan-
ning. Using a scrum of scrums model for the scrum master and product owner
roles is how this daily synchronization occurs between teams across programs of
varying sizes.

CHAPTER 17 Scaling across Agile Teams 319

Scaling the scrum master
Following the vertical slicing model of scrum of scrums, Scrum at Scale groups
five scrum masters into a scrum master scrum of scrums. It mirrors the daily
scrum for individual scrum teams to surface and remove impediments. With
Scrum at Scale, narrowing the scope of a scrum of scrums to five scrum masters
from each of five scrum teams limits the communication complexities for effec-
tive cross-team collaboration on what the scrum teams are working on and how
their work might be affecting each other. A scrum master scrum of scrums
 coordinates release activities as the release team.

Figure 17-3 illustrates the Scrum at Scale scrum of scrums model.

With projects of more than five scrum teams, Scrum at Scale implements a scrum
of scrums of scrums, where a representative of each scrum master scrum of
scrums attends with four other scrum of scrums representatives to surface and
remove impediments at the scrum of scrums of scrums level.

Figure 17-4 illustrates the Scrum at Scale scrum of scrums of scrums model.

When a project has more than 25 teams, an executive action team (EAT) supports
a third-level scrum of scrums of scrums to remove the organizational impedi-
ments the scrum of scrums groups cannot remove themselves.

Figure 17-5 illustrates the Scrum at Scale third-level scrum of scrums of scrums
model with an executive action team (EAT).

FIGURE 17-3:
Scrum at

Scale scrum of
scrums model.

© 1993-2017 Jeff Sutherland & Scrum, Inc.

320 PART 5 Ensuring Agile Success

Scaling the product owner
The product owners organize in a similar and aligned way, only instead of labeling
them as scrum of scrums, they are meta scrums. A first-level meta scrum brings
five product owners together for meta scrum meetings to refine and plan priori-
ties. Each meta scrum has a chief product owner (CPO) who oversees the bigger

FIGURE 17-4:
Scrum at Scale

scrum of scrums
of scrums model.

© 1993-2017 Jeff Sutherland & Scrum, Inc.

FIGURE 17-5:
Scrum at Scale

third-level scrum
of scrums of

scrums model
with executive

action team (EAT).
© 1993-2017 Jeff Sutherland & Scrum, Inc.

CHAPTER 17 Scaling across Agile Teams 321

picture of the vision and product backlog and facilitates the coordination between
product owners in the meta scrum.

Figure 17-6 illustrates the Scrum at Scale meta scrum for product owners.

At the second- and third-level meta scrums, the grouping aligns with that of the
scrum master scrum of scrums of scrums. An executive meta scrum (EMS) sup-
ports the meta scrums by owning and communicating the organization-wide
vision, taking in technical priority feedback from the meta scrums and providing
overall priority decisions for the program.

Figure 17-7 illustrates the Scrum at Scale third-level meta scrums model with
executive meta scrum (EMS).

Figure 17-8 illustrates the aligned grouping of Scrum at Scale’s third-level scrum
of scrums of scrums and meta scrums model with executive action team (EAT)
and executive meta scrum (EMS).

A meta scrum should be a synchronization meeting that includes stakeholders. All
stakeholders at the CPO level should be present to ensure alignment across the
organization and support of the CPO’s product backlog prioritization during every
sprint.

FIGURE 17-6:
Scrum at Scale

meta scrum for
product owners.

© 1993-2017 Jeff Sutherland & Scrum, Inc.

322 PART 5 Ensuring Agile Success

Synchronizing in one hour a day
In an hour or less per day, an entire organization can align priorities for the day and
accomplish effective coordination of impediment removal. For instance, at 8:00 a.m.,
each individual scrum team holds their daily scrums separately. At 8:45 a.m., the
scrum masters hold their scrum of scrums and the product owners hold their

FIGURE 17-7:
Scrum at Scale

third-level meta
scrum model with

executive meta
scrum (EMS).

© 1993-2017 Jeff Sutherland & Scrum, Inc.

FIGURE 17-8:
Alignment of

Scrum at Scale
third-level scrum

of scrums of
scrums and meta

scrums.
© 1993-2017 Jeff Sutherland & Scrum, Inc.

CHAPTER 17 Scaling across Agile Teams 323

level-one meta scrum meetings. At 9:00 a.m., scrum masters meet in scrum of
scrums of scrums, and the product owners meet in level-two meta scrums. Finally,
at 9:15 a.m., the scrum master scrum of scrums of scrums meets with the EAT and
the product owner meta scrum representatives meets with the EMS.

Multi-Team Coordination with LeSS
Large-scale scrum (LeSS) is another way to scale scrum across massive projects.
LeSS is based on principles that support keeping scrum simple when putting mul-
tiple scrum teams together to work on the same product backlog. LeSS focuses
more on how scrum teams work together than on organizational structures. It
also presents a variety of options for addressing each scaling challenge. In this
section, we present an overview and then cover a few options that stand out.

LeSS defines two framework sizes: LeSS and LeSS Huge. The difference lies in the
size of the total teams involved.

LeSS, the smaller framework
Figure 17-9 illustrates the basic LeSS framework, using three scrum teams as an
example. LeSS recommends no more than eight scrum teams follow the basic
model.

FIGURE 17-9:
Basic LeSS

framework.
Used with permission, Craig Larman and Bas Vodde.

324 PART 5 Ensuring Agile Success

LeSS outlines how scrum teams work together one sprint at a time, starting with
sprint planning, followed by sprint execution and daily scrums, and ending with
sprint review and sprint planning. Although much of LeSS remains true to
the scrum framework, the following significant differences exist:

 » In LeSS, scrum masters typically work with one to three teams, and there is
only one product owner for up to eight teams.

We strongly recommend dedicating product owners and scrum masters to
each scrum team to ensure that development teams have immediate, direct
access to business decisions and clarifications and fast impediment resolu-
tion, so they can keep moving without interruption.

 » Sprint planning (Part 1) does not require all developers to attend, but at least
two members per scrum team, along with the product owner, attend. The
representative team members then go back and share their information with
their teams.

 » Independent sprint planning (Part 2) and daily scrum meetings occur, and
members from different teams can attend each other’s meeting to facilitate
information sharing.

 » Sprint reviews are usually combined across all teams.

 » Overall sprint retrospectives are held in addition to individual team retrospec-
tives. Scrum masters, product owners, and representatives from development
teams inspect and adapt the overall system of the project, such as processes,
tools, and communication.

LeSS Huge framework
With LeSS Huge, a few thousand people could work on one project. But the struc-
ture remains simple.

The scrum teams are grouped around major areas of customer requirements,
called requirement areas. This grouping might be similar to the group of teams
who work together under an integration team in vertical slicing.

For each area, you have one area product owner and between four and eight scrum
teams (a minimum of four teams in each requirement area prevents too much
local optimization and complexity). One overall product owner works with several
area product owners, forming a product owner team for the project. Figure 17-10
illustrates LeSS Huge.

CHAPTER 17 Scaling across Agile Teams 325

As in scrum at a single team level, as well as in basic LeSS, you have one product
backlog, one definition of done, one potentially shippable product increment, one
(area) product owner, and one sprint cadence across teams. LeSS Huge is simply a
stacking of multiple smaller LeSS implementations for each requirement area.

To enable these teams to work together effectively across the requirement areas

 » The area PO regularly coordinates with each product owner.

 » Requirement areas are added to the product backlog to identify who is
planning to work on which parts of the product.

 » A set of parallel sprint meetings is needed per requirement area. Overall
sprint reviews and retrospectives involving all teams are necessary to enable
continuous inspection and adaptation beyond single teams. These multi-team
events help coordinate the overall work and process across the program.

With the exception of limiting opportunities for developers to work closely with
business people (the product owner) on a daily basis, LeSS provides a simple way
for scaling scrum across projects. We also find the flexibility of coordination tech-
niques suggested in LeSS to be effective for teams addressing their specific multi-
team coordination challenges. In addition to a scrum of scrums (discussed earlier
in this chapter) and continuous integration (see Chapter 4), LeSS suggests several
options for scrum teams coordinating with other scrum teams, as described in the
following sections.

Sprint review bazaar
Multiple teams work toward the same product increment in each sprint, so all
teams have something to demonstrate, and all teams need stakeholder feedback

FIGURE 17-10:
The LeSS Huge

framework.
Used with permission, Craig Larman and Bas Vodde.

326 PART 5 Ensuring Agile Success

for updating their portion of the product backlog. Because all scrum teams are on
the same cadence, even a LeSS basic organization would involve a lot of sprint
review meetings for stakeholders to attend on the same day.

LeSS recommends a diverge-converge pattern to the sprint review, similar to a
science fair or bazaar format. Each scrum team sets up in one part of a room large
enough to accommodate all scrum teams. Each scrum team demonstrates what it
did during the sprint, collecting feedback from the stakeholders visiting its area.
Stakeholders visit their areas of interest. Scrum teams may loop through their
demonstrations a few times to accommodate stakeholders visiting multiple teams.
This approach also allows scrum team members to see demonstrations of other
scrum teams. Note that combined sprint reviews can be held in other ways.

Combining sprint reviews increases transparency and collaboration culture across
scrum teams.

Observers at the daily scrum
Although daily scrums are conducted so that the scrum team can coordinate their
work for the day, anyone is invited to listen. Transparency is key for agility. The
scrum of scrums model described previously in this chapter is a participatory
model — developers attending the integration scrum team daily scrum participate
in the discussion. However, sometimes other scrum team members just need to be
aware of what other teams are doing.

A representative of the development team from one team may attend the daily
scrum of another team, observe, and then report back to his or her own team to
determine any action to take. This can be a non-disruptive way for other scrum
teams to be involved without extra meeting time overhead.

Component communities and mentors
LeSS takes a vertical slicing approach also to dividing up the product backlog
across teams, so multiple teams may "touch" the same system or technology
components. For instance, multiple teams may work in a common database, user
interface, or automated testing suite. Setting up communities of practice (CoP)
around these areas gives these people a chance to collaborate informally on the
component areas where they spend most of their time.

CoPs are usually organized by someone from one of the scrum teams who has the
knowledge and experience to teach people how the component works, monitor the
component long-term, and engage the community in regular discussions, work-
shops, and reviews of work being done in the component area.

CHAPTER 17 Scaling across Agile Teams 327

Multi-team meetings
Similar to the combined sprint review model, LeSS scrum teams may benefit from
meeting together for other scrum planning events and activities. Product backlog
refinement, sprint planning part two, and other design workshops are some
examples. LeSS recommends similar formats for each situation, common ele-
ments of which include the following:

 » An overall session first, shared among all teams, to identify which teams are
likely to take on which product backlog items.

 » Representatives of each team attend overall sessions (all can attend, but
attendance is not required).

 » Team-level sessions follow overall sessions to dive into details.

 » Multi-team breakouts follow overall session, as needed, with just those teams
involved.

The key to these sessions is that they are face to face, in the same room, allowing
for real-time collaboration to break down dependencies. For distributed LeSS
groups (one team in one geographic location and other teams in other locations),
videoconferencing is key.

Travelers
The more versatile your development team, the fewer bottlenecks your scrum
team will experience. Traditional organizations have specialists in technical areas,
and there are not enough of them to go around to all the scrum teams when start-
ing an agile transition. To begin bridging skill gaps across teams, technical experts
can become travelers, joining scrum teams to coach and mentor in their area of
expertise through pairing (see Chapter 4), workshops, and teaching sessions.

As this expertise is shared, the expert mentor continues to lead and grow the skills
across the organization (as a CoP organizer). In addition, scrum teams increase
their cross-functionality and can develop more efficiently.

Reducing Dependencies with Nexus
Dependencies between teams working on the same product impede the kind of
productivity single scrum teams usually experience without those dependencies.
Nexus is a scaling framework focused on treating multiple teams as a single unit.
Reduction of inter-team dependencies is key to scaling success.

328 PART 5 Ensuring Agile Success

Inter-team dependencies usually revolve around how teams structure require-
ments and the product backlog, the domain knowledge differences between teams,
and the software and test artifacts. Mapping requirements, team members’
knowledge, and test artifacts to the same scrum teams reduces dependencies.

Nexus is a framework that describes how three to nine scrum teams — a Nexus —
work together on the same product backlog, and under the guidance of a single
product owner, to deliver potentially shippable functionality to every sprint.

Figure 17-11 illustrates the Nexus framework.

In addition to scrum roles, artifacts, and events, Nexus introduces one new role,
three new artifacts, and five new events to support the larger group of scrum
teams operating together.

Nexus helps scrum teams working on the same product identify and resolve
dependencies quickly and early, enabling each scrum team to move forward in
their work unblocked and unimpeded. Inter-team dependencies are often created
when product backlog items are not sufficiently refined, or not broken down into
relatively independent items that can be worked on by a single scrum team.
Dependencies can also arise from differences in technical skills or domain knowl-
edge between teams. Joint product backlog refinement helps teams identify
dependencies and minimize them before they cause conflict.

Nexus role — Nexus integration team
Similar to the vertical slicing model’s integration team concept, the Nexus inte-
gration team ensures that an integrated product increment is produced at least

FIGURE 17-11:
The Nexus

framework.
© 2017 Scrum.org. All rights reserved.

CHAPTER 17 Scaling across Agile Teams 329

every sprint for the Nexus. The scrum teams do the work, but the Nexus integra-
tion team remains accountable for the integrated product as a whole.

The Nexus integration team’s activities may include developing tools and prac-
tices that will help with integration or serving as coaches and consultants to help
with coordination. To accomplish these activities, Nexus integration team mem-
bers must have a teaching mindset. Their roles are to help expose issues that need
to be solved at the Nexus level, and to help the scrum teams solve the issues.

The Nexus integration team consists of people from the member scrum teams of
the Nexus. It is a scrum team that consists of the following:

 » The product owner is accountable for ordering and refining the Nexus product
backlog so that maximum value is derived from the work created by the Nexus
each sprint. The product owner’s role does not change from scrum; the scope
of the work is simply more complex.

 » Development team members are usually also members of scrum teams in
the Nexus. The priority for the Nexus integration development team mem-
bers is the Nexus integration team over the individual scrum teams, with the
integrated product increment being the prime goal for each sprint. Over time,
the members of the Nexus integration team may change depending on
specific integration needs over the life of the project.

Dedicating scrum team members to one team eliminates the overhead of
frequent cognitive demobilization and remobilization due to context switch-
ing. Always be aware of the risks of splitting the focus of team members
across multiple teams.

 » The scrum master has overall responsibility for ensuring the Nexus frame-
work is enacted and understood. This Nexus integration team scrum master
may also be a scrum master in one or more of the other scrum teams in
the Nexus.

As a last resort, the Nexus integration team members may pull items from the
product backlog to implement them as a scrum team, but they undertake this
emergency mode behavior only when all other options have been exhausted and
the scrum teams are not capable of producing an integrated product increment. As
the term emergency mode suggests, this situation is highly unusual, highly unde-
sirable, and not sustainable. It is undertaken only when it is the only way to help
the scrum teams get back on track.

330 PART 5 Ensuring Agile Success

Nexus artifacts
Three additional artifacts provide transparency at the Nexus level for inspection
and adaptation:

 » Nexus goal: Although the sprint goal is not a separate artifact in scrum, a
Nexus sprint goal is explicitly called out. Having a clear, visible, common
purpose for all scrum teams in the Nexus is key to keeping all teams in sync
throughout the sprint, working toward the integrated product increment.

 » Nexus sprint backlog: Each scrum team has its own sprint backlog of
implementation and integration tasks. The Nexus sprint backlog is not an
aggregation of these sprint backlogs; it exists to expose and map inter-team
dependencies and how work is flowing across all scrum teams in the Nexus.
The Nexus sprint backlog is updated daily as part of the Nexus daily scrum.

 » Integrated increment: All integrated work completed by all the scrum teams
in the Nexus during the sprint is the integrated increment. It meets the
definition of done for usable, potentially shippable functionality.

Nexus events
Five additional events enhance inter-team coordination of dependencies at the
Nexus level.

Nexus sprint planning
During Nexus sprint planning, the product owner provides priority and business
context for the sprint, and sets the sprint goal. The individual scrum teams select
work for the sprint while highlighting and minimizing dependencies. Each scrum
team then holds its own sprint planning to plan the execution of the work it has
pulled from the Nexus sprint backlog. Nexus sprint planning concludes when the
last scrum team is finished with its individual sprint planning.

Nexus daily scrum
Nexus does not prescribe who should attend the daily scrum — the right people
are members of individual scrums teams who understand how their work may
affect, or be affected by, the work of other scrum teams. The questions addressed
are similar to a single scrum team’s daily scrum but focused on cross-team inte-
gration, including the following:

CHAPTER 17 Scaling across Agile Teams 331

 » Did yesterday’s work get successfully integrated?

 » What new dependencies have been discovered?

 » What information needs to be shared across teams?

The Nexus daily scrum is held before each scrum team holds its own daily scrum
to provide the scrum teams with input to better help them plan their day’s work.

Nexus sprint review
Similar to other scaling frameworks, the Nexus sprint review can replace indi-
vidual scrum team sprint reviews, because the focus is the integrated increment.
You can use a variety of techniques for conducting the meeting to maximize
stakeholder feedback, but none are prescribed. Techniques suggested in this
chapter can be utilized.

Nexus sprint retrospective
The Nexus sprint retrospective is a formal opportunity to improve the way the
Nexus works through inspection and adaption. The Nexus sprint retrospective
includes three parts:

 » Representatives from Nexus scrum teams meet to identify cross-team issues
and make them transparent across the Nexus.

 » Individual scrum teams hold their own sprint retrospectives.

 » Representatives from the scrum teams meet again to decide what to do to
resolve Nexus-wide issues.

Refinement
A Nexus uses refinement to decompose product backlog items so they can be
developed as independently as possible by a scrum team. In addition to the gen-
eral process of progressively elaborating requirements we show you in Chapter 7,
the Nexus process for refining them includes the following:

 » Breaking product backlog items down enough to understand which scrum
teams might be able to implement them

 » Identifying and visualizing dependencies between product backlog items

Nexus is a lightweight framework, focused on extending scrum’s empirical
approach to products whose development requires more than one scrum team.

332 PART 5 Ensuring Agile Success

Joint Program Planning with SAFe
Scaled Agile Framework (SAFe) is used to scale scrum and agile principles across
multiple layers of an IT and software or systems development organization. SAFe
addresses scaling at four levels: portfolio, large solutions, program, and team.
Figure 17-12 shows the full SAFe 4.5 big picture.

SAFe has four configurations, utilizing combinations of the four SAFe levels. Full
SAFe (refer to Figure 17-12) contains all levels (portfolio, large solution, pro-
gram, and team). Essential SAFe, shown in Figure 17-13, is a basic starting point
for smaller organizations and consists of only the program and team levels.
Portfolio SAFe adds the portfolio level to essential SAFe, and is for organizations
that have smaller programs within a portfolio. Large solution SAFe adds the
large solution level to essential SAFe and is aimed at organizations that are
building large solutions that require hundreds of people, but do not require port-
folio coordination.

FIGURE 17-12:
SAFe 4.5 for

lean software
and systems
engineering.

Reproduced with permission from © 2011-2017 Scaled Agile, Inc.  All rights reserved. SAFe and Scaled Agile
Framework are registered trademarks of Scaled Agile, Inc.

CHAPTER 17 Scaling across Agile Teams 333

SAFe is underscored by a set of core values, a lean-agile mindset, and the agile
values and principles in the Agile Manifesto. Although other scaling frameworks
have tactical differences, they also have many similarities, such as the following:

 » Development is done in agile teams.

 » The teams are aligned in sprint length and cadence.

 » A scrum of scrums coordinates at the program level.

We don’t go into all details of SAFe here, but we do provide a general overview and
highlight a few practices that address some of the scaling challenges discussed
previously in this chapter.

Understanding the four SAFe levels
In SAFe, you find up to four prescribed levels of integration and coordination, each
aimed at decentralizing decisions to the lower levels. We emphasize up to four
because not all organizations require all levels, such as the large solution level.

Frameworks provide flexibility over rigidity. Although SAFe provides a detailed
visualization at all levels of the portfolio organization, avoid implementing struc-
tures that are unnecessary for your situation.

The four levels — portfolio, large solution, program, and team — are described
next.

Portfolio level
At the portfolio level, the vision and roadmap for the entire portfolio are estab-
lished. Strategic themes are developed to support the vision. Budget, business

FIGURE 17-13:
Essential SAFe
configuration.

Reproduced with permission from © 2011-2017 Scaled Agile, Inc.  All rights reserved. SAFe and Scaled
Agile Framework are registered trademarks of Scaled Agile, Inc.

334 PART 5 Ensuring Agile Success

objectives, and enterprise architecture governance are managed. The portfolio is
organized in value streams that align the organization to the value delivered.

SAFe defines a value stream as the sequence of steps to deliver value to the cus-
tomer, from concept to delivery or receipt of payment. It includes the people who
do the work, systems, and the flow of materials.

Three portfolio-level roles drive portfolio decisions:

 » Lean portfolio management (LPM): This role aligns strategy and execution
by communicating strategic themes to the portfolio, establishing value
streams, and allocating budgets. LPM is responsible for strategy, investment
funding, agile program guidance, and lean governance of the entire portfolio.
(Learn more about lean in Chapter 4.) LPM collaborates with many groups
across all levels of the organization.

 » Epic owner: Epics are introduced in Chapter 8, although SAFe uses a different
feature-epic relationship. In SAFe, epics are the largest and most long-term
initiatives and drive the business value for the organization. They are broken
down into features, or capabilities, which are then broken down into user
stories that can be executed by single development teams at the team level.
Epic owners work with solutions management and product management at
the large solution and program levels, and with agile teams at the team level.

 » Enterprise architect: The enterprise architect establishes a common
technical vision and drives the holistic approach to technology across
programs through continuous feedback, collaboration, and adaptive engi-
neering design and engineering practices.

The portfolio backlog in SAFe consists of both business and enabler epics. Enablers
are requirements for extending architectural capabilities to support future busi-
ness functionality. LPM guides the flow of large initiatives using kanban. (Learn
more about kanban in Chapter 4.)

Large solution level
The large solution level hosts the solution train, which is an organizational con-
struct for coordination of multiple agile release trains (ARTs), defined next in the
“Program level” section. The large solution level is for organizations building
solutions that require more than 125 people.

Solution trains are coordinated by three roles, similar to the program-level roles,
which are all described in the next section, “Program level.”

CHAPTER 17 Scaling across Agile Teams 335

Program level
In line with the portfolio vision and backlog, programs establish a vision and road-
map to define the outer boundary of their scope of work, focused on selected epics
from the portfolio backlog.

At the program level, release and product management occur. This level uses
the agile release train (ART) model, which is a team of multiple agile teams (50–125
people in total) delivering incremental releases of value. The “train” departs the
station on a reliable schedule and features can be loaded onto the train if ready.
The ART provides a fixed cadence with which the teams of the program align and
synchronize. The rest of the organization, knowing this cadence, can also reliably
plan its work around this known release schedule.

If organized at the large solution level, three roles provide coordination for the
ARTs in each respective value stream: solution train engineer (STE), solution
management, and solution architect/engineer.

Without the large solution level, ARTs are driven by a release train engineer (RTE),
product management, and a system architect/engineer. ART roles and solution
train roles are similar, so we explain them together:

 » Release train engineer (or solution train engineer): ARTs are generally
self-organizing, but they need coordination to steer themselves. RTEs facilitate
program level processes, impediment escalation, risk management, and
continuous improvement. STEs provide a similar service, working with RTEs
guiding the work of all ARTs in the solution train. Similar to scrum masters at
the team level, RTEs and VSEs are servant-leaders.

 » Product management (or solution management): These people continu-
ously define and prioritize requirements for the ART or solution train so that
product owners have the information and empowerment they need to make
fast decisions and provide instant clarification to the developers on individual
scrum teams.

 » System architect/engineer (or solution architect/engineer): A cross-
discipline team with system view responsibility for overall architectural and
engineering design for the respective ART or solution train. Similar to the way
architecture decisions are made at the lowest-level integration team in vertical
slicing, the architect/engineer provides the standards to enable developers on
the individual scrum teams to make in-the-moment technical decisions.

At this level of integration, the ART works at a cadence of five iterations by default
to create what is known as program increments (PI).

336 PART 5 Ensuring Agile Success

Team level
ARTs are made up of a certain number of individual agile teams, which make up
the team level of SAFe. Agile teams in an ART work in cadence with each other,
and their team backlogs each support and align with the program vision and
backlog.

SAFe has many aspects, but we find the following to be most valuable in address-
ing challenges of scaling.

Joint program increment planning
Joint program increment (PI) planning unifies agile teams across an ART. In PI
planning, agile teams plan their work for the next PI together, face-to-face, in the
same room at the same time.

PI planning includes the following:

 » Setting business context for the PI by a senior executive or business owner.

 » Communicating program vision by product management, and supporting
features from the program backlog.

 » Presenting the system architecture vision and any agile-supportive changes to
development practices (such as test automation).

 » Outlining the planning process by the RTE.

 » Setting up agile team breakout sessions to determine capacity and backlog
items that they will work on in support of the program vision.

 » Reviewing draft plans with all agile teams, with each team presenting key
planning outputs, potential risks, and dependencies. Product management
and other stakeholders provide input and feedback.

 » Reviewing draft plans by management to identify any issues with scope, talent
allocation constraints, and dependencies. Facilitated by the RTE.

 » Breaking out of agile teams to adjust planning based on all feedback.

 » Reviewing the final plan, facilitated by the RTE.

The magic of PI planning is that dependencies are identified and coordinated in
the moment during these two-day sessions — two days well spent. If one team
identifies a dependency in one of its own requirements during the team breakouts,
that team sends a team member to another team to discuss the dependency right
there and then. No back-and-forth occurs.

CHAPTER 17 Scaling across Agile Teams 337

Although no amount of planning can identify every issue upfront, this type of col-
laboration addresses most issues ahead of time. In addition, it establishes an open
line of communication throughout the program increment execution, ensuring
teams synchronize and address issues immediately and more effectively than if
they had planned as separate teams, sharing documentation without discussion.

Clarity for managers
In Chapters 3 and 14, we discuss ways management changes to enable teams to be
more agile and adaptive in nature. For larger organizations, SAFe provides struc-
ture for middle management’s involvement with agile teams. The portfolio, large
solution, and program levels outline roles and functions not fulfilled by individual
team members, providing some clarity to how functional, technical, and other
leadership types can clear the way and enable the individual agile teams to be as
effective and efficient as possible, as well as connect strategy to execution.

Modular Structures with Enterprise Scrum
Of all the scaling models presented in this chapter, Enterprise Scrum (ES) may
offer the most modular approach to scaling. The ES framework is highly configu-
rable for the sake of achieving overall business agility.

For larger projects, programs, and portfolios, ES stretches the foundations of
 single-team scrum practice across many teams and supports self-organization at
scale through menus of structuring options. These options allow teams of teams
to not only track their work of creating functionality but also specify, test, inspect,
and adapt everything that matters to their success, including all their configura-
tion choices, at the end of each iteration.

Some configuration menus include patterns for structuring teams and roles,
 collaboration style, delivery modes, contract types, and a range of metrics. ES
also generalizes some of the core elements of scrum (roles, artifacts, and events).
We discuss the ES scrum element generalizations and key configuration menus in
this section.

ES scrum elements generalizations
Scaling agility across an organization pulls in people who may not initially be
familiar with specific terms used in scrum. ES generalizes some names of scrum
roles, artifacts, and events to make them more familiar to members of the broader
organization but keeps their functions inline with scrum.

338 PART 5 Ensuring Agile Success

The elements of scrum — three roles, three artifacts, five events — are central to
the scrum framework. Removing or changing any of them means you’re not doing
scrum. You don’t have to use scrum, but always use the four agile values and
12 agile principles as your litmus test to determine if you’re being agile. You can
learn more about the agile values and principles in Chapters 1 and 2.

Some examples of ES scrum generalizations include the following:

 » A product owner becomes a business owner to highlight that this role applies
to the overall business, even on initiatives that may not be product focused,
but rather service or initiative-focused.

 » The scrum master role becomes a coach to emphasize the enabling nature of
the role both within the team and externally with all stakeholders and
business units.

 » A product backlog becomes a value list to emphasize that each value list
item may consist of user stories directly affecting functionality, or anything
providing value to the business regarding any items outlined in the canvas.
Learn about canvases in the next section, “ES key activities.”

The idea of adding more than just product functionality requirements to a
product backlog is introduced in Chapter 7, where we show you examples of
product backlog items that include not only requirements (functionality) but
also maintenance (development on existing functionality), overhead (required
work that does not affect functionality), and improvement (action items from
sprint retrospectives to improve structures and processes for the team and
organization).

 » A sprint backlog becomes a scrumboard to emphasize the value of visualizing
the work to be done in a sprint on a wall or a task board. You can learn more
about task boards in Chapter 9.

 » A sprint becomes a cycle. With software projects, cycles are still one to four
weeks, with the same cadence of planning, inspecting, and adapting (review
and retrospective) as sprints. Non-software cycles may be longer.

 » Sprint planning and sprint review become cycle planning and cycle review,
respectively, to align with the renaming of sprint.

 » Sprint retrospective becomes improvement to emphasize the forward-looking
direction of inspecting and adapting.

ES key activities
ES has three key activities, which we outline here by how each applies to scaling
across multiple teams.

CHAPTER 17 Scaling across Agile Teams 339

Step 1: Visualize everything that matters
ES offers a growing library of templates for organizing project information,
including vision, roadmap, roles, teams involved, resources, value list items,
deployment methods, stakeholders, and customers. These templates are called
canvases and are the foundation for teams visualizing their work. Figure 17-14
illustrates the canvas template for a scaled software development project.
(ES canvas templates exist for other types of non-software development, but we
focus on the scaled software development canvas here.)

Each section contains the work or issues that need to be addressed for each cate-
gory. The team pulls the items in each section into the value list and subsets of the
list onto the scrumboard for implementation during each cycle.

The ES canvas contains everything that matters for successful delivery. It expands
the concept of product backlog into a customized value list of every kind of work
required. The contents of the value list start at a high level and are refined to
whatever level of detail is needed to complete the work in a cycle. The entire con-
tents of the canvas and value list are reviewed for possible improvements after
every cycle.

When scaling with multiple teams, the canvas holds the value list, including all
user stories, sliced and detailed as the work progresses (middle section). The value
list also includes the full range of surrounding issues and relationships from the
canvas, including vision, resources, business ownership, coaching, teams involved,
metrics, and interactions with stakeholders, deployment, and customers.

FIGURE 17-14:
ES scaled
software

development
canvas.

Used with permission, © 2017 Enterprise Scrum Inc.

340 PART 5 Ensuring Agile Success

Step 2: Make active configuration choices
At scale, ES also provides options for how the desired outcomes of some roles,
artifacts, or events are achieved to address individual circumstances. Drawing on
a set of menus that offer a range of options, teams make active choices about their
configurations. Some of the most important menus and choices are described in
this section.

DELIVERY TARGETS MENU

Understanding the level of scale you need is an important first step to determining
what approach you need to take. To begin, ES provides a delivery targets menu,
which is a set of guidelines for determining the highest level of coordinated deliv-
ery that the set of teams in the scaling effort is targeting:

 » Large project: Two or more teams working together to deliver a project

 » Program: Two or more projects serving the same customer segment

 » Portfolio: Two or more application teams working together on multiple
programs in a business unit

 » Enterprise architecture: Two or more business areas requiring the use of
common architecture elements

 » Business process: Applying agile techniques to non-software organizational
units, such as human resources, finance, marketing, sales, compliance, or
finance

 » Business agility: Applying agile principles company wide

In contrast to other scaling models that provide a range of multi-team sizes for
specific approaches, ES considers two or more teams to be the basis for consider-
ing any options in the menus.

STRUCTURAL PATTERNS MENU

ES focuses on roles rather than titles assigned to individual people. Structural pat-
tern menu options for structuring the business owner and coach roles for each
team include the following:

 » Dedicated business owner and dedicated coach for each scrum team (as we
outline in Chapter 6)

 » One business owner for all teams and one coach for all teams

 » One business owner for all teams and one coach for each team

 » One business owner for each team and one coach for all teams

CHAPTER 17 Scaling across Agile Teams 341

Dedicating each role on a scrum team reduces the risk of lost productivity and
defects that often result from task switching, or thrashing.

 » Virtual business owner or virtual coach — a business owner or coach steps
into the role as needed, while also filling another role as a developer or an
external role to the team

 » Chief business owner or coach to provide direction to individual team
business owners or coaches, respectively

 » Virtual teams of business owners or coaches, where either function can be
fulfilled by a collaborative, self-managing team of business owners or coaches

Having multiple people in the business owner (product owner) or coach (scrum
master) roles increases complexity of communication channels, and may intro-
duce confusion for all project team members.

The configuration you choose depends on many factors, including budget, orga-
nizational culture, management style, and individual expertise.

COLLABORATION MODES MENU

The collaboration modes menu is used to coordinate business priorities and clari-
fication across teams. Various approaches may be used to support or align with
the chosen structural pattern:

 » Centralization: A business owner makes prioritization decisions and provides
clarification to all teams.

 » Delegation: A chief business owner provides overall prioritization and meets
regularly with individual team business owners to empower them to do the
same for their teams for their portion of the value list.

 » Collaboration: Each team’s business owner works with the other teams’
business owners to make collaborative agreements without the oversight of a
chief business owner.

 » Subsumption: Experts from broader areas of the organization outside
developing functionality (such as marketing, finance, and sales) collaborate on
everything that the business needs to deliver value to the customer. This
scope of collaboration is usually needed to address business process or
overall business agility delivery targets outlined previously.

Like other scaling approaches, the scrum of scrums (see the section in this
 chapter on vertical slicing) is also used in ES to help facilitate the resolution of
dependencies across teams, with the encouragement to keep lines of communi-
cation always open.

342 PART 5 Ensuring Agile Success

DELIVERY MODES MENU

Each organization will have different requirements and constraints for how often
and on what cadence it delivers functionality to the customer. The frequency and
type of delivery will also determine the level of coordination needed between
teams on a daily basis, during each cycle, and with each release. Delivery modes
menu examples include the following:

 » Continuous delivery: The product increment is continuously integrated and
tested but not deployed to production.

 » Continuous deployment: As each requirement is implemented, it is
deployed to production as soon as it is completed.

 » Cycle: The product increment is deployed to production at the end of each
cycle.

 » Release: The product increment is deployed after multiple cycles.

Organizations may progress or evolve from one of the delivery modes to another
as they inspect and adapt over time, without breaking the ES framework. You can
learn more about releasing functionality in Chapter 8.

Step 3: Plan, collaborate, review,
and improve everything, every cycle
ES is about the continuous inspection and adaptation of all aspects of the canvas
as well as all configuration choices made from each of the menus. At the end of
each cycle, everything completed and everything yet to be done on the canvas is
open for inspection and adaptation.

ES also invites teams to consider metrics toward more balanced agile manage-
ment, and to provide transparency into the team’s or program’s progress for
inspection and adaptation. You can learn more about agile metrics in Chapter 21.

Each of these scaling models has many things in common. They all aim to address
the challenges of coordination, communication, prioritization, execution, and
integration that come with complex projects and systems requiring more than a
single team. Scaling projects across multiple cross-functional feature teams
requires coordination and leadership guidance at the highest level of an organi-
zation. Management structures need to change from traditional command and
control to distributed decision-making and autonomy to the lowest level possible
where the work is being executed.

Making this transition requires organization-wide commitment to long-term
changes in mindset and structure, which we discuss in Chapter 18.

CHAPTER 18 Being a Change Agent 343

Chapter 18

IN THIS CHAPTER

 » Understanding change management
issues and common change
management models

 » Following steps for agile adoption in
your organization

 » Avoiding common problems in
adopting agile

 » Asking the right questions to prevent
issues along the way

Being a Change Agent

If you’re contemplating the idea of introducing agile project management to
your company or organization, this chapter can help get you started on those
changes. Introducing agility means learning and practicing a new mindset, cul-

ture, organizational structures, frameworks, and techniques. In this chapter, you
learn key principles and steps to implementing agile project management tech-
niques. We also introduce common change models, including the model we use at
our company, Platinum Edge. We also cover common pitfalls to avoid in your agile
transition.

Becoming Agile Requires Change
Traditional project management is focused on processes, tools, comprehensive
documentation, contract negotiation, and following a plan. Although agile project
management remains dedicated to addressing each of these, the focus shifts to
individuals, interactions, working functionality, customer collaboration, and
responding to change.

Waterfall organizations didn’t get where they are overnight and won’t change
overnight. For some organizations, decades of forming habits, establishing and
protecting fiefdoms, and reinforcing a traditional mindset are engrained.

344 PART 5 Ensuring Agile Success

The organizational structure will require some type of change, the leadership will
need to learn a new way of looking at developing people and empowering them to
do their work, and those doing the work will have to learn to work together and
manage themselves in ways they may not be used to.

Why Change Doesn’t Happen on Its Own
Change is about people more than it is about defining a process. People resist
change, and that resistance is based on personal experience, emotion, and fear.
We see these reactions firsthand as we help organizations make these changes.
Often our first exposure to an organization is when it asks for formal classroom
training to learn what it means to be agile and how scrum works. After a two-day
class, the level of excitement about implementing this more modern way of think-
ing and working usually increases, and our students consistently express how
much it makes sense.

Scrum is simple. Agile values and principles resonate with almost everyone. But
none of it is easy. Scrum for developing products and services is like playing a new
game, with new positions, new rules, and a different playing field. Imagine that
an American football coach came to his team one day and said, “We’re going
to learn how to play futbol (American soccer) today. Meet me out on the pitch in
15 minutes with your gear, and we’ll get right to work.” What would happen?
Everyone might know how to play futbol based on what he or she had seen on TV
or experienced as a youth, but the team wouldn’t be ready to make the change.

A lot of confusion would ensue. Old rules, techniques, training, and thinking
would have to be unlearned for the team to learn the new stuff and come together
to compete effectively. Immediately, you’d hear questions from the players, such
as the following:

 » When can I use my hands?

 » How many timeout calls do we get?

 » Am I on offense or defense during this play?

 » Where do I line up at kick-off?

 » Who holds the ball when we kick a goal?

 » How many tries do we get before the other team gets the ball?

 » Where’s my helmet?

 » These shoes make it hard to kick sometimes.

CHAPTER 18 Being a Change Agent 345

Transitioning to agile techniques won’t happen overnight, but it will happen if
you and your organization’s leadership take a change management approach to
your agile transition. For existing waterfall organizations, agile transformation
takes at least one to three years from the time management commits to it. It’s an
ongoing journey, not a destination.

Strategic Approaches to Implementing
and Managing Change

Organizational change initiatives typically fail without a strategy and discipline.
Here, we define failure as not reaching the desired end state goal of what the
 organization will look like after the change. Failure is often due to being unclear as
to the goal or because the change plan doesn’t address the highest risk factors and
challenges impeding the desired change.

Various approaches exist to managing change. We show you several here, includ-
ing ours (Platinum Edge), so you know what to expect as you embark on your own
change initiative.

Lewin
Kurt Lewin was an innovator in social and organizational psychology in the 1940s
and established a cornerstone model for understanding effective organizational
change. Most modern change models are based on this philosophy, which is
unfreeze — change — refreeze, as illustrated in Figure 18-1.

If you want to change the shape of a cube of ice, you first have to change it from
its existing frozen state to liquid so that it can be changed or reshaped, then mold
the liquid into the new shape you want, then put it through a solidification process
to form the new shape. Unfreezing is implied between the first two states in the
figure, and the changes made are implied during the unfrozen state.

FIGURE 18-1:
Lewin’s

unfreeze, change,
refreeze change

philosophy.

346 PART 5 Ensuring Agile Success

Unfreeze
The first stage represents the preparation needed before change can take place —
challenging existing beliefs, values, and behaviors. Reexamination and seeking
motivation for a new equilibrium is what leads to participation and buy-in for
meaningful change.

Change
The next stage involves uncertainty and resolving that uncertainty to do things a
new way. This transitional stage represents the formation of new beliefs, values,
and behaviors. Time and communication are the keys to seeing the changes begin
to take effect.

Refreeze
As people embrace new ways, confidence and stability increase, and the change
starts to take shape into a solid new process, structure, belief system, or set of
behaviors.

This simple pattern provides the foundation for most change management tools
and frameworks, including those we discuss in this chapter.

ADKAR’s five steps to change
Prosci is one of the leading organizations in change management and bench-
marking research. One of Prosci’s change management tools, ADKAR, is an acro-
nym for the five outcomes (awareness, desire, knowledge, ability, and
reinforcement) individuals and organizations need to achieve for successful
change. It is a goal-oriented model for individuals, and a focus model for the dis-
cussions and actions organizations need to take together.

Organizational changes still require change for individuals, so the secret to suc-
cess is affecting change for everyone involved.

ADKAR outlines the individual’s successful journey through change. The five steps
of the journey also each align with organizational change activities. They should
be completed in the order described next.

Awareness
Humans find change difficult. When change initiatives come top-down in an
organization, people may verbally agree to them, but their actions tell a different
story. Mismatch of actions and words is usually innocent and natural. Without

CHAPTER 18 Being a Change Agent 347

awareness, or an understanding of the factors influencing management’s desire
to change, or especially without a recognition that something should change,
individuals will not be motivated to change. Informing the individuals in an orga-
nization, helping them have a shared understanding of the challenges that exist,
and then assessing whether awareness is common constitute the first step to suc-
cessful, lasting change. It is the basis, without which the initiative won’t make
progress.

Desire
Based on their awareness of a challenge needing to be addressed, individuals will
have an opinion on whether or not change is necessary or desired to address it.
Making the connection between the awareness of an issue and what could or
should be done about it is the next step. After desire exists for the individuals in
an organization, there is motivation to move together to change.

Knowledge
Desire is key, but knowledge of how to make the change and where each individual
fits into the change make up the next crucial part of the change process. Individu-
als throughout the organization need to understand what the changes mean for
them, and leadership needs to facilitate education and actions in a cooperative
way across the organization. Knowledge comes from training and coaching.

Ability
With new knowledge of how to change, implementation requires acquiring skills,
redefining roles, and clearly defining new performance expectations. Other com-
mitments may need to be delayed or replaced with new behaviors or responsibili-
ties. Continued coaching and mentoring may be required, and leadership needs to
be clear that this reprioritization of commitments is expected and encouraged.

Reinforcement
Changes don’t stick after one successful iteration. New behaviors, skills, and pro-
cesses must be reinforced through continued corrective action and coaching to
ensure that old habits don’t return.

The ADKAR model surrounds these steps with assessments and action plans to
guide leaders and individuals through their change journey. ADKAR should be
used iteratively, using scrum, inspecting and adapting until each step is achieved
before progressing to the next step.

348 PART 5 Ensuring Agile Success

Kotter’s eight steps for leading change
John Kotter’s process for leading change identifies eight common but preventable
reasons why organizations fail at their change initiatives, and addresses each with
actions that should be taken to successfully lead change.

 » Permitting too much complacency: The leadership action is to create a
sense of urgency. People get used to the status quo, and learn to deal with it.
Helping others see the need for change requires the creation of a sense of
urgency for change. Leaders must communicate the importance of immedi-
ate action.

 » Lack of a powerful guiding coalition: The leadership action is to build a
guiding coalition. Successful change will require more than just one active
supporter, even if that one person is at the highest level of the organization.
Executives, directors, managers, and even informal social leaders with
influence need to be unified in the need for and vision of a change. This
coalition must be formed and drive the change.

 » Underestimating and undercommunicating the power of vision: The
leadership action is to form a strategic vision and initiatives. Kotter estimates
that leadership undercommunicates the vision for change by as much as
1,000 times. Even if people are unhappy with the status quo, they won’t
always make sacrifices for a change unless they believe in the proposed
benefits and that change is possible. As a change coalition, clearly define how
the future is different from the past and present, as well as the steps to make
that future a reality. We discuss visions and roadmaps for products and
services in Chapter 7 — change management also needs to begin with a clear
vision of where you’re headed.

 » Lack of rallying around a common opportunity: The leadership action is to
enlist a volunteer army. Change will accelerate and last if people buy in and
are internally driven. As a result of leadership’s effective communication of
vision and need, people should rally around a cause they come to believe in.
If they don’t rally, reevaluate your messaging, tone, and frequency.

 » Allowing obstacles to block the vision: The leadership action is to remove
barriers to action. Some obstacles may be only perceived, but others are real.
However, both must be overcome. One blocker in the “right” place can be the
single reason for failure. Many people tend to avoid confronting obstacles
(processes, hierarchies, working across silos), so leadership must act as
servant-leaders to identify and remove impediments that are reducing the
empowerment of individuals implementing the changes on the front lines.

 » Lack of short-term wins: The leadership action is to generate short-term
wins. The end transformation goal usually can’t be achieved in the short term,
so fatigue can set in for everyone involved if successes and progress go

CHAPTER 18 Being a Change Agent 349

unrecognized along the way. Evidence of change should be highlighted and
exposed early and regularly. This reinforcement increases morale through
difficult times of change, and motivates and encourages continued efforts and
progress.

 » Declaring victory too early: The leadership action is to sustain acceleration.
Celebrating short-term wins sets a false sense of security that change is
complete. Each success should build on the previous success. Push on, and
push on harder after each success, with increased confidence and credibility.
Continue to overcommunicate the vision throughout the transformation.

 » Neglecting anchoring of changes in organizational culture: The leadership
action is to institute change. Leadership will have the opportunity throughout
the change process to connect successes and new behaviors with the culture’s
evolution and growing strength to keep old habits from returning. These
connections should be recognized openly and made visible to everyone as
soon as successes and new behaviors are realized.

Platinum Edge’s Change Roadmap
Throughout this book, we highlight the fact that agile processes are different from
traditional project management. Moving an organization from waterfall to an
agile mindset is a significant change. Through our experience guiding companies
through this type of change, we’ve identified the following important steps to
take to successfully become an agile organization.

Figure 18-2 illustrates our agile transition roadmap for successful agile
transformation.

Step 1: Conduct an implementation
strategy with success metrics
An implementation strategy is a plan that outlines the following:

 » Your current strengths to build on as you transition

 » The challenges you’ll face based on your current structure

 » Action items for how your organization will transition to agile project
management

350 PART 5 Ensuring Agile Success

Implementation strategies are most effectively performed by external agile
experts in the form of an assessment or a current state audit.

Whether you engage with a third party or conduct the assessment yourself, make
sure the following questions are addressed:

FIGURE 18-2:
Platinum Edge
agile transition

roadmap.

CHAPTER 18 Being a Change Agent 351

 » Current processes: How does your organization run projects today? What
does it do well? What are its problems?

 » Future processes: How can your company benefit from agile approaches?
What agile methods or frameworks will you use? What key changes will your
organization need to make? What will your transformed company look like
from a team and process perspective?

 » Step-by-step plan: How will you move from existing processes to agile
processes? What will change immediately? In six months? In a year or longer?
This plan should be a roadmap of successive steps getting the company to a
sustainable state of agile maturity.

 » Benefits: What advantages will the agile transition provide for the people and
groups in your organization and the organization as a whole? Agile techniques
are a win for most people; identify how they will benefit.

 » Potential challenges: What will be the most difficult changes? What depart-
ments or people will have the most trouble with agile approaches? Whose
fiefdom is being disrupted? What are your potential roadblocks? How will you
overcome these challenges?

 » Success factors: What organizational factors will help you while switching to
agile processes? How will the company commit to a new approach? Which
people or departments will be agile champions?

A good implementation strategy will guide your company through its move to
agile practices. A strategy can provide supporters with a clear plan to rally around
and support, and it can set realistic expectations for your organization’s agile
transition.

For your first agile project, identify a quantifiable way to recognize project success.
Using metrics will give you a way to instantly demonstrate success to project
stakeholders and your organization. Metrics provide specific goals and talking
points for sprint retrospectives and help set clear expectations for the project
team.

Metrics related to people and performance work best when related to teams rather
than to individuals. Scrum teams manage themselves as a team, succeed as a
team, fail as a team — and should be evaluated as a team.

Keeping track of project success measurements can do more than help you improve
throughout the project. Metrics can provide clear proof of success when you move
past your first project and start to scale agile practices throughout your
organization.

Chapter 21 describes metrics for success in detail.

352 PART 5 Ensuring Agile Success

Step 2: Build awareness and excitement
After you have a roadmap showing you the “how” of your agile transition, you
need to communicate the coming changes to people in your organization. Agile
approaches have many benefits; be sure to let all individuals in your company
know about those benefits and get them excited about the coming changes. Here
are some ways to build awareness:

 » Educate people. People in your organization may not know much — or
anything — about agile project management. Educate people about agile
principles and approaches and the change that will accompany the new
approaches. You can create an agile wiki, hold lunchtime learning sessions,
and even have hot-seat discussions (face-to-face discussions with leadership
where people can talk safely about concerns and get their questions
answered about changes and agile topics) to address concerns with the
transition.

 » Use a variety of communication tools. Take advantage of communication
channels such as newsletters, blogs, intranets, email, and face-to-face
workshops to get the word out about the change coming to your organization.

 » Highlight the benefits. Make sure people in your company know how an
agile approach will help the organization create high-value products, lead to
customer satisfaction, and increase employee morale. Chapter 19 has a great
list of the benefits of agile project management for this step.

 » Share the implementation plan. Make your transition plan available to
everyone. Talk about it, both formally and informally. Offer to walk people
through it and answer questions. We often print the transition roadmap on
posters and distribute it throughout the organization.

 » Involve the initial scrum team. As early as you can, let the people who may
work on your company’s first agile project know about the upcoming changes.
Involve the initial scrum team members in planning the transition to help
them become enthusiastic agile practitioners.

 » Be open. Drive the conversation about new processes. Try to stay ahead of
the company rumor mill by speaking openly, answering questions, and
quelling myths about agile project management. Structured communications
like the hot-seat sessions we mention earlier are a great example of open
communication.

Building awareness will generate support for the upcoming changes and alleviate
some of the fear that naturally comes with change. Communication will be an
important tool to help you successfully implement agile processes.

CHAPTER 18 Being a Change Agent 353

Step 3: Form a transformation team and
identify a pilot project
Identify a team in your company that can be responsible for the agile transforma-
tion at the organization level. This agile transition team, which is described in
Chapter 16, is made up of executives and other leaders who will systematically
improve processes, reporting requirements, and performance measurements
across the organization.

The transformation team will create changes within sprints, just like the develop-
ment team creates product features within sprints. The transformation team will
focus on the highest-priority changes supporting agility in each sprint and
will demonstrate its implementation, when possible, during a sprint review with
all stakeholders, including the pilot scrum team members.

Starting your agile transition with just one pilot project is a great idea. Having one
initial project allows you to figure out how to work with agile methods with little
disruption to your organization’s overall business. Concentrating on one project
to start also lets you work out some of the kinks that inevitably follow change.
Figure 18-3 shows the types of projects that benefit most from the agile approach.

When selecting your first agile project, look for an endeavor with these qualities:

 » Appropriately important: Make sure the project you choose is important
enough to merit interest within your company. However, avoid the most
important project coming up; you want room to make and learn from mistakes.
See the note on the blame game in the later section "Avoiding Pitfalls."

FIGURE 18-3:
Projects that can

benefit from agile
techniques.

354 PART 5 Ensuring Agile Success

 » Sufficiently visible: Your pilot project should be visible to your organization’s
key influencers, but don’t make it the most high-profile item on the agenda.
You will need the freedom to adjust to new processes; critical projects may
not allow for that freedom on the first try of a new approach.

 » Clear and containable: Look for a product with clear requirements and a
business group that can commit to defining and prioritizing those require-
ments. Try to choose a project that has a distinct end point, rather than one
that can expand indefinitely.

 » Not too large: Select a project that you can complete with no more than two
scrum teams working simultaneously to prevent too many moving parts at
once.

 » Tangibly measurable: Choose a project that you know can show measurable
value within sprints.

People need time to adjust to organizational changes of any type, not just agile
transitions. Studies have found that with large changes, companies and teams will
see dips in performance before they see improvements. Satir’s Curve, shown in
Figure 18-4, illustrates the process of teams’ excitement, chaos, and finally
adjustment to new processes.

After you’ve successfully run one agile project, you’ll have a foundation for future
successes.

FIGURE 18-4:
Satir’s Curve.

CHAPTER 18 Being a Change Agent 355

Step 4: Build an environment for success
One of the agile principles states, “Build projects around motivated individu-
als. Give them the environment and support they need, and trust them to get the
job done.”

We outline what it means to create an environment to enable success in Chapter 5.
Study the 4 agile values and the 12 agile principles carefully (see Chapter 2) and
seriously to determine whether you’re creating an environment for success or
rationalizing that the status quo is good enough.

Start fixing and improving your environment as early as possible.

Step 5: Train sufficiently and recruit
as needed
Training is a critical step when shifting to an agile mindset. The combination of
face-to-face training with experienced agile experts and the ability to work
through exercises using agile processes is the best way to help the project team to
absorb and develop the knowledge needed to successfully begin an agile project.

Training works best when the members of the project team can train and learn
together. As agile trainers and mentors, we’ve had the opportunity to overhear
conversations between project team members that start, “Remember when Mark
showed us how to . . .? That worked when we did it in class. Let’s try it and see
what happens.” If the product owner, development team, scrum master, and
project stakeholders can attend the same class, they can apply lessons to their
work as a team.

Recruiting talent to fill gaps in the roles you need avoids the obvious problems
you’ll have at the start of the transition. Without a dedicated product owner and
his or her clear direction to the team, how likely is your project to succeed? How
will that affect the team’s ability to self-organize? Who will facilitate the many
interactions if you’re missing a scrum master? What will the first sprint look like
if you’re missing a key skill on the development team required to minimally
achieve the first sprint goal?

Work with your human resources department as early as possible to start the
recruiting process. Work with your agile expert advisers to tap into their network
of experienced agile practitioners.

356 PART 5 Ensuring Agile Success

Step 6: Kick off the pilot with
active coaching
When you have a clear agile implementation strategy, an excited and trained proj-
ect team, a pilot project with a product backlog, and clear measures for success,
congratulations! You’re ready to run your first sprint.

Don’t forget, though — agile approaches are new to the pilot team. Teams need
coaching to become high performing. Engage with agile experts for agile coaching
to start the project right.

Practice doesn’t make perfect. Practice makes permanent.

As the scrum team plans its first sprint, it should not bite off too many require-
ments. Keep in mind that you’re just starting to learn about a new process and a
new product. New scrum teams often take on a smaller amount of work than they
think they can complete in their first sprints. A typical progression follows.

After you establish overall goals through the product’s vision statement, product
roadmap, and initial release goal, your product backlog needs only enough user-
story level requirements (see Chapter 8) for one sprint for the scrum team to start
development.

 » In sprint 1, scrum teams take on 25 percent of the work they think they can
complete during sprint planning.

 » In sprint 2, scrum teams take on 50 percent of the work they think they can
complete during sprint planning.

 » In sprint 3, scrum teams take on 75 percent of the work they think they can
complete during sprint planning.

 » In sprint 4 and beyond, scrum teams take on 100 percent of the work they
think they can complete during sprint planning.

By sprint 4, the scrum team will be more comfortable with new processes, will
know more about the product, and will be able to estimate tasks with more
accuracy.

You can’t plan away uncertainty. Don’t fall victim to analysis paralysis; set a
direction and go!

CHAPTER 18 Being a Change Agent 357

Throughout the first sprint, be sure to consciously stick with agile practices. Think
about the following during your first sprint:

 » Have your daily scrum meeting, even if you feel like you didn’t make any
progress. Remember to state roadblocks, too!

 » The development team may need to remember to manage itself and not look
to the product owner, the scrum master, or anywhere besides the sprint
backlog for task assignments.

 » The scrum master may have to remember to protect the development team
from outside work and distractions, especially while other members of the
organization get used to having a dedicated agile project team around.

 » The product owner may have to become accustomed to working directly with
the development team, being available for questions, and reviewing and
accepting completed requirements immediately.

In the first sprint, expect the road to be a little bumpy. That’s okay; agile pro-
cesses are about learning and adapting.

In Chapter 8, you can see how the scrum team can plan the sprint. Chapter 9
provides the day-to-day details on running the sprint.

Step 7: Execute the Roadmap to Value
When you’ve chosen your pilot project, don’t fall into the trap of using a plan from
an old methodology or set of habits. Instead, use agile processes from the project’s
start.

We outline the Roadmap to Value throughout this book, introducing it in Chapter 7
and leading you through each of the seven stages in Chapters 7 through 10.

Step 8: Gather feedback and improve
You’ll naturally make mistakes at first. No problem. At the end of your first sprint,
you gather feedback and improve with two important events: the sprint review
and the sprint retrospective.

In your first sprint review, it will be important for the product owner to set expec-
tations about the format of the meeting, along with the sprint goal and completed
product functionality. The sprint review is about product demonstration — fancy

358 PART 5 Ensuring Agile Success

presentations and handouts are unnecessary overhead. Project stakeholders may
initially be taken aback by a bare-bones approach. However, those stakeholders
will soon be impressed as they find a working product replacing the fluff of slides
and lists. Transparency and visibility — show, rather than tell.

The first sprint retrospective may require setting some expectations as well. It will
help to conduct the meeting with a preset format, such as the one in Chapter 10,
both to spark conversation and avoid a free-for-all complaining session.

In your first sprint retrospective, pay extra attention to the following:

 » Keep in mind how well you met the sprint goal, not how many user stories
you completed.

 » Go over how well you completed requirements to meet the definition of done:
defined, tested, integrated, and documented.

 » Discuss how you met your project success metrics.

 » Talk about how well you stuck with agile principles. We start the journey with
principles.

 » Celebrate successes, even small gains, as well as examine problems and
solutions.

 » Remember that the scrum team should manage the meeting as a team, gain
consensus on how to improve, and leave the meeting with a plan of action.

You can find more details about both sprint reviews and sprint retrospectives in
Chapter 10.

Step 9: Mature and solidify
improvements
Inspecting and adapting enables scrum teams to grow as a team and to mature
with each sprint.

Agile practitioners sometimes compare the process of maturing with the martial
arts learning technique of Shu Ha Ri, a Japanese term that can be translated to
“maintain, detach, transcend.” The term describes three stages in which people
learn new skills:

 » In the Shu stage, students follow a new skill as they were taught, without
deviation, to commit that skill to memory and make it automatic.

CHAPTER 18 Being a Change Agent 359

New scrum teams can benefit from making a habit of closely following agile
processes, until those processes become familiar. During the Shu stage,
scrum teams may work closely with an agile coach or mentor to follow
processes correctly.

 » In the Ha stage, students start to improvise as they understand more about
how their new skill works. Sometimes the improvisations will work, and
sometimes they won’t. The students will learn more about the skill from these
successes and failures.

As scrum teams understand more about how agile approaches work, they
may try variations on processes for their own project. During the Ha stage,
scrum teams will find that the sprint retrospective is a valuable tool for talking
about how their improvisations worked or did not work. In this stage, scrum
team members may still learn from an agile mentor, but they may also learn
from one another, from other agile professionals, and from starting to teach
agile skills to others.

 » In the Ri stage, the skill comes naturally to the former student, who will know
what works and what doesn’t. The former student can now innovate with
confidence.

With practice, scrum teams will get to the point where agile processes are
easy and comfortable, like riding a bicycle or driving a car. In the Ri stage,
scrum teams can customize processes, knowing what works in the spirit of the
Agile Manifesto and 12 Agile Principles.

At first, maturing as a scrum team can take a concentrated effort and commitment
to using agile processes and upholding agile values. Eventually, however, the
scrum team will be humming along, improving from sprint to sprint, and inspir-
ing others throughout the organization.

With time, as scrum teams and project stakeholders mature, entire companies can
mature into successful agile organizations.

Step 10: Progressively expand
within the organization
Completing a successful project is an important step in moving an organization to
agile project management. With metrics that prove the success of your project and
the value of agile methodologies, you can garner commitment from your company
to support new agile projects.

360 PART 5 Ensuring Agile Success

To progressively scale agile project management across an organization, start
with the following:

 » Seed new teams. An agile project team that has reached maturity — the
people who worked on the first agile project — should now have the expertise
and enthusiasm to become agile ambassadors in the organization. These
people can join new agile project teams and help those teams learn and grow.

 » Redefine metrics. Identify measurements for success, across the organiza-
tion, with each new scrum team and with each new project.

 » Scale methodically. It can be exciting to produce great results, but company-
wide improvements require significant process changes. Don’t move faster
than the organization can handle. Check out Chapter 17 for different ways of
scaling agile projects across multiple teams.

 » Identify new challenges. Your first agile project may have uncovered
roadblocks that you didn’t consider in your original implementation plan.
Update your strategy and maturity roadmap as needed.

 » Continue learning. As you roll out new processes, make sure that new team
members have the proper training, mentorship, and resources to effectively
run agile projects.

The preceding steps work for successful agile project management transitions.
Use these steps and return to them as you scale, and you can make agile practices
thrive in your organization.

Avoiding Pitfalls
Project teams can make a number of common but serious mistakes when imple-
menting agile practices. Table 18-1 provides an overview of some typical problems
and ways to turn them around.

As you may notice, many of these pitfalls are related to a lack of organizational
support, the need for training, and falling back on old project management prac-
tices. If your company supports positive changes, if the project team is trained,
and if the scrum team makes an active commitment to upholding agile values,
you’ll have a successful agile transition.

CHAPTER 18 Being a Change Agent 361

TABLE 18-1	 Common Agile Transition Problems and Solutions
Problem Description Potential Solution

Faux agile or double
work agile or both

Sometimes organizations will say that they are
“doing agile.” They may go through some of the
practices used on agile projects, but they haven’t
embraced agile principles and continue creating
waterfall deliverables and products. This is
sometimes called faux agile and is a sure path to
avoiding the benefits of agile techniques.

Trying to complete agile processes in addition to
waterfall processes, documents, and meetings is
another faux agile approach. Double work agile
results in quick project team burnout. If you’re
doing twice the work, you aren’t adhering to agile
principles.

Insist on following one
process — an agile process.
Garner support from
management to avoid non-agile
principles and practices.

Lack of training Investment in a hands-on training class will
provide a quicker, better learning environment
than even the best book, video, blog, or white
paper. Lack of training often indicates an overall
lack of organizational commitment to agile
practices.

Keep in mind that training can help scrum teams
avoid many of the mistakes on this list.

Build training into your
implementation strategy. Giving
teams the right foundation of
skills is critical to success and
necessary at the start of your
agile transition.

Ineffective
product owner

The product owner role is non-traditional. Agile
project teams need a product owner who is an
expert on business needs and priorities and can
work well with the rest of the scrum team on a
daily basis. An absent or indecisive product owner
will quickly sink an agile project.

Start the project with a person
who has the time, expertise,
and temperament to be a good
product owner.

Ensure the product owner has
proper training.

The scrum master can help
coach the product owner and
may try to clear roadblocks
preventing the product owner
from being effective. If
removing impediments doesn’t
work, the scrum team should
insist on replacing the
ineffective product owner with
a product owner — or at least
an agent — who can make
product decisions and help the
scrum team be successful.

(continued)

362 PART 5 Ensuring Agile Success

TABLE 18-1	(continued)

Problem Description Potential Solution

Lack of
automated testing

Without automated testing, it may be impossible
to fully complete and test work within a sprint.
Manual testing requires time that fast-moving
scrum teams don’t have.

You can find many low-cost,
open-source testing tools on
the market today. Look into
the right tools and make a
commitment as a development
team to using those tools.

Lack of
transition support

Making the transition successfully is difficult and
far from guaranteed. It pays to do it right the first
time with people who know what they are doing.

When you decide to move to
agile project management,
enlist the help of an agile
mentor — either internally from
your organization or externally
from a consulting firm — who
can support your transition.

Process is easy, but people are
hard. It pays to invest in
professional transition support
with an experienced partner
who understands behavioral
science and
organizational change.

Inappropriate
physical
environment

When scrum teams are not collocated, they lose
the advantage of face-to-face communication.
Being in the same building isn’t enough; scrum
teams need to sit together in the same area.

If your scrum team is in the
same building but not sitting
in the same area, move the
team together.

Consider creating a room or
annex for the scrum team to
continually collaborate.

Try to keep the scrum team
area away from distracters,
such as the guy who can talk
forever or the manager who
needs just one small favor.

Before starting a project with a
dislocated scrum team, do what
you can to enlist local talent. If
you must work with a dislocated
scrum team, take a look at
Chapter 14 to see how to
manage dislocated teams.

Poor team
selection

Scrum team members who don’t support agile
processes, don’t work well with others, or don’t
have capacity for self-management will sabotage a
new agile project from within.

When creating a scrum team,
consider how well potential
team members will enact
the agile principles. The keys
are versatility and a willingness
to learn.

CHAPTER 18 Being a Change Agent 363

Signs Your Changes Are Slipping
The following list of questions helps you see warning signs and provide ideas on
what to do if problematic circumstances arise:

 » Are you doing “scrum, but . . .”?

“ScrumBut occurs when organizations partially adopt scrum. Some agile
purists say that ScrumBut is unacceptable; other agile practitioners allow
room for gradual growth into a new method. Having said that, beware of old
practices that thwart agile principles, such as finishing sprints with incomplete
functionality.

Scrum is three roles, three artifacts, and five events. If you find your team
tweaking those basic framework components, ask why. Is scrum exposing
something you’re not willing to inspect and adapt?

Problem Description Potential Solution

Discipline slips Remember that agile projects still need
requirements, design, development, testing, and
releases. Doing that work in sprints requires
discipline.

You need more, not less,
discipline to deliver working
functionality in a short iteration.
Progress needs to be consistent
and constant.

The daily scrum helps ensure
that progress is occurring
throughout the sprint.

Use the sprint retrospective as
an opportunity to reset
approaches to discipline.

Lack of support
for learning

Scrum teams succeed as teams and fail as teams;
calling out one person’s mistakes (known as the
blame game) destroys the learning environment
and destroys innovation.

The scrum team can make a
commitment at the project start
to leaving room for learning
and to accepting success and
failures as a group.

Diluting until dead Watering down agile processes with old waterfall
habits erodes the benefits of agile processes until
those benefits no longer exist.

When making process changes,
stop and consider whether
those changes support the
Agile Manifesto and the 12 Agile
Principles. Resist changes that
don’t work with the manifesto
and principles. Remember to
maximize work not done.

364 PART 5 Ensuring Agile Success

 » Are you still documenting and reporting in the old way?

If you’re still burning hours on hefty documentation and reporting, it’s a sign
that the organization has not accepted agile approaches for conveying project
status. Help managers understand how to use existing agile reporting artifacts
and quit doing double work!

 » A team completing 50 story points in a sprint is better than another
team doing 10, right?

No. Keep in mind that story points are relative and consistent within one
scrum team, not across multiple scrum teams. Velocity isn’t a team compari-
son metric. It is simply a post-sprint fact that scrum teams use to help them in
their own planning. You can see more about story points and velocity in
Chapter 8.

 » When will the stakeholders sign off on all the specifications?

If you’re waiting for sign-offs on comprehensive requirements to start
developing, you’re not following agile practices. You can start development
as soon as you have enough requirements for one sprint.

 » Are we using offshore to reduce costs?

Ideally, scrum teams are collocated. The ability for instant face-to-face
communication saves more time and money and prevents more costly
mistakes than the initial hourly savings you may see with some offshore
teams.

If you do work with offshore teams, invest in good collaboration tools such as
individual video cameras and persistent, virtual team rooms.

 » Are development team members asking for more time in a sprint to
finish tasks?

The development team may not be working cross-functionally or swarming on
priority requirements. Development team members can help one another
finish tasks, even if those tasks are outside of a person’s core expertise.

This question can also indicate outside pressures to underestimate tasks and
fit more work into a sprint than the development team can handle.

 » Are development team members asking what they should do next?

After a sprint is planned and development work is under way, if the developers
are waiting for direction from the scrum master or product owner, they aren’t
self-organizing. The development team should be telling the scrum master and
the product owner what it’s doing next, not the other way round.

CHAPTER 18 Being a Change Agent 365

 » Are team members waiting until the end of the sprint to do testing?

Agile development teams should test every day in a sprint. All development
team members are testers.

 » Are the stakeholders showing up for sprint reviews?

If the only people at sprint reviews are the scrum team members, it’s time
to remind stakeholders of the value of frequent feedback loops. Let stake-
holders know that they’re missing their chance to review working product
functionality regularly, correct course early, and see firsthand how the project
is progressing.

 » Is the scrum team complaining about being bossed around by the scrum
master?

Command-and-control techniques are the antithesis of self-management and
are in direct conflict with agile principles. Scrum teams are teams of peers —
the only boss is the team. Have a discussion with the agile mentor and act
quickly to reset the scrum master’s expectations of his or her role.

 » Is the scrum team putting in a lot of overtime?

If the end of each sprint becomes a rush to complete tasks, you aren’t
practicing sustainable development. Look for root causes, such as pressure
to underestimate. The scrum master may need to coach the development
team and shield its members from product owner pressure if this is the case.
Reduce the story points for each sprint until the development team can
get a handle on the work.

 » What retrospective?

If scrum team members start avoiding or cancelling sprint retrospectives,
you’re on the slide back to waterfall. Remember the importance of inspecting
and adapting and be sure to look at why people are missing the retrospective
in the first place. If you’re not progressing, complacency usually results in
sliding backwards. Even if the scrum team has great velocity, development
speed can always be better, so keep the retrospective, and keep improving.

6The Part of Tens

IN THIS PART . . .

Communicate the benefits of agile project management.

Address key factors for agile project success.

Measure progress in appropriately inspecting and
adapting to become more agile as an organization.

Become an agile professional by learnin g, with support
from valuable resources.

CHAPTER 19 Ten Key Benefits of Agile Project Management 369

Chapter 19

IN THIS CHAPTER

 » Ensuring that projects are rewarding

 » Making reporting easy

 » Improving results

 » Reducing risk

Ten Key Benefits of Agile
Project Management

I
n this chapter, we provide ten important benefits that agile project management
provides to organizations, project teams, and products.

To take advantage of agile project management benefits, you need to trust in agile
practices, learn more about different agile approaches, and use what’s best for
your project team.

Better Product Quality
Projects exist to build great products and purpose-driven outcomes. Agile methods
have excellent safeguards to make sure that quality is as high as possible. Agile
project teams help ensure quality by doing the following:

 » Take a proactive approach to quality to prevent product problems.

 » Embrace technological excellence, good design, and sustainable development.

370 PART 6 The Part of Tens

 » Define and elaborate requirements just in time so that knowledge of product
features is as relevant as possible.

 » Build acceptance criteria into user stories so that the development team
better understands them and the product owner can accurately validate
them.

 » Incorporate continuous integration and daily testing into the development
process, allowing the development team to address issues while they’re fresh.

 » Take advantage of automated testing tools to develop during the day, test
overnight, and fix defects in the morning.

 » Conduct sprint retrospectives, allowing the scrum team to continuously
improve processes and work.

 » Complete work using the definition of done: developed, tested, integrated,
and documented.

You can find more information about project quality in Chapter 15.

Higher Customer Satisfaction
Agile project teams are committed to producing products that satisfy customers.
Agile approaches for happier project sponsors include the following:

 » Collaborate with customers as partners and keep customers involved and
engaged throughout projects.

 » Have a product owner who is an expert on product requirements and
customer needs. (Check out Chapters 6 and 9 to find out more information
about the product owner role.)

 » Keep the product backlog updated and prioritized to respond quickly to
change. (You can find out about the product backlog in Chapter 8 and its role
in responding to change in Chapter 12.)

 » Demonstrate working functionality to customers in every sprint review.
(Chapter 10 shows you how to conduct a sprint review.)

 » Deliver products to market quicker and more often with every release.

 » Possess the potential for self-funding projects. (Chapter 13 tells you about
self-funding projects.)

CHAPTER 19 Ten Key Benefits of Agile Project Management 371

Reduced Risk
Agile project management techniques virtually eliminate the chance of absolute
project failure — spending large amounts of time and money with no return on
investment. Agile project teams run projects with lower risk by doing the following:

 » Develop in sprints, ensuring a short time between initial project investment
and either failing fast or knowing that a product or an approach will work.

 » Always have a working, integrated product, starting with the first sprint, so
that some value is added as shippable functionality every sprint, ensuring an
agile project won’t fail completely.

 » Develop requirements according to the definition of done in each sprint so
that project sponsors have completed, usable functionality, regardless of what
may happen with the project in the future.

 » Provide constant feedback on products and processes through the following:

• Daily scrum meetings and constant development team communication

• Regular daily clarification about requirements and review and acceptance
of features by the product owner

• Sprint reviews, with stakeholder and customer input about completed
product functionality

• Sprint retrospectives, where the development team discusses process
improvement

• Releases, where the end user can see and react to new features on a
regular basis

 » Generate revenue early with self-funding projects, allowing organizations to
pay for a project with little up-front expense.

You can find more information about managing risk in Chapter 15.

Increased Collaboration and Ownership
When development teams take responsibility for projects and products, they can
produce great results. Agile development teams collaborate and take ownership of
product quality and project performance by doing the following:

 » Make sure that the development team, the product owner, and the scrum
master work closely together on a daily basis.

372 PART 6 The Part of Tens

 » Conduct goal-driven sprint planning meetings, allowing the development
team to commit to the sprint goal and organize its work to achieve it.

 » Hold daily scrum meetings led by the development team, where development
team members organize around work completed, future work, and roadblocks.

 » Conduct sprint reviews, where the development team can demonstrate and
discuss the product directly with stakeholders.

 » Conduct sprint retrospectives, allowing development team members to review
past work and recommend better practices with every sprint.

 » Work in a collocated environment, allowing for instant communication and
collaboration among development team members.

 » Make decisions by consensus, using techniques such as estimation poker and
the fist of five.

You can find out how development teams estimate effort for requirements,
decompose requirements, and gain team consensus in Chapter 7. To discover
more about sprint planning and daily scrum meetings, see Chapter 9. For more
information about sprint retrospectives, check out Chapter 10.

More Relevant Metrics
The metrics that agile project teams use to estimate time and cost, measure project
performance, and make project decisions are often more relevant and more accu-
rate than metrics on traditional projects. Agile metrics should encourage sustain-
able team progress and efficiency in a way that works best for the team to deliver
value to the customer early and often. On agile projects, you provide metrics by
doing the following:

 » Determine project timelines and budgets based on each development team’s
actual performance and capabilities.

 » Make sure that the development team that will be doing the work, and no one
else, provides effort estimates for project requirements.

 » Use relative estimates, rather than hours or days, to accurately tailor estimated
effort to an individual development team’s knowledge and capabilities.

 » Refine estimated effort, time, and cost on a regular basis, as the development
team learns more about the project.

 » Update the sprint burndown chart every day to provide accurate metrics
about how the development team is performing within each sprint.

CHAPTER 19 Ten Key Benefits of Agile Project Management 373

 » Compare the cost of future development with the value of that future
development, which helps project teams determine when to end a project
and redeploy capital to a new project.

You might notice that velocity is missing from this list. Velocity (a measure of
development speed, as detailed in Chapter 13) is a tool you can use to determine
timelines and costs, but it works only when tailored to an individual team. The
velocity of Team A has no bearing on the velocity of Team B. Also, velocity is great
for measurement and trending, but it doesn’t work as a control mechanism.
 Trying to make a development team meet a certain velocity number only disrupts
team performance and thwarts self-management.

If you’re interested in finding out more about relative estimating, be sure to check
out Chapter 7. You can find out about tools for determining timelines and budgets,
along with information about capital redeployment, in Chapter 13. Chapter 21
shows you ten key metrics for agile project management.

Improved Performance Visibility
On agile projects, every member of the project team has the opportunity to know
how the project is going at any given time. Agile projects can provide a high level
of performance visibility by doing the following:

 » Place a high value on open, honest communication among the scrum team,
stakeholders, customers, and anyone else in an organization who wants to
know about a project.

 » Provide daily measurements of sprint performance with sprint backlog
updates. Sprint backlogs can be available for anyone in an organization to
review.

 » Provide daily insight into the development team’s immediate progress and
roadblocks through the daily scrum meeting. Although only the development
team may speak at the daily scrum meeting, any member of the project team
may attend.

 » Physically display progress by using task boards and posting sprint burndown
charts in the development team’s work area every day.

 » Demonstrate accomplishments in sprint reviews. Anyone within an organiza-
tion may attend a sprint review.

Improved project visibility can lead to greater project control and predictability, as
described in the following sections.

374 PART 6 The Part of Tens

Increased Project Control
Agile project teams have numerous opportunities to control project performance
and make corrections as needed because of the following:

 » Adjusting priorities throughout the project allows the organization to have
fixed-time and fixed-price projects while accommodating change.

 » Embracing change allows the project team to react to outside factors such as
market demand.

 » Daily scrum meetings allow the scrum team to quickly address issues as
they arise.

 » Daily updates to sprint backlogs mean sprint burndown charts accurately
reflect sprint performance, giving the scrum team the opportunity to make
changes the moment it sees problems.

 » Face-to-face conversations remove roadblocks to communication and issue
resolution.

 » Sprint reviews let project stakeholders see working products and provide
input about the products before release.

 » Sprint retrospectives enable the scrum team to make informed course
adjustments at the end of every sprint to enhance product quality, increase
development team performance, and refine project processes.

The many opportunities to inspect and adapt throughout agile projects allow all
members of the project team — the product owner, development team, scrum
master, and stakeholders — to exercise control and ultimately create better
products.

Improved Project Predictability
Agile project management techniques help the project team accurately predict
how things will go as the project progresses. Here are some practices, artifacts,
and tools for improved predictability:

 » Keeping sprint lengths and development team allocation the same through-
out the project allows the project team to know the exact cost for each sprint.

 » Using individual development team speed allows the project team to predict
timelines and budgets for releases, the remaining product backlog, or any
group of requirements.

CHAPTER 19 Ten Key Benefits of Agile Project Management 375

 » Using the information from daily scrum meetings, sprint burndown charts,
and task boards allows the project team to predict performance for individual
sprints.

You can find more information about sprint lengths in Chapter 8.

Customized Team Structures
Self-management puts decisions that would normally be made by a manager or
the organization into scrum team members’ hands. Because of the limited size of
development teams — which consist of three to nine people — agile projects can
have multiple scrum teams on one project if necessary. Self-management and
size-limiting mean that agile projects can provide unique opportunities to cus-
tomize team structures and work environments. Here are a few examples:

 » Development teams may organize themselves into groups with specific skills
or that work on specific parts of the product system and features.

 » Development teams may organize their team structure around people with
specific work styles and personalities. Organization around work styles
provides these benefits:

• Allows team members to work the way they want to work

• Encourages team members to expand their skills to fit into teams they like

• Helps increase team performance because people who do good work like
to work together and naturally gravitate toward one another

 » Scrum teams can make decisions tailored to provide balance between team
members’ professional and personal lives.

 » Ultimately, scrum teams can make their own rules about whom they work
with and how they work.

The idea of team customization allows agile workplaces to have more diversity.
Organizations with traditional management styles tend to have monolithic teams
where everyone follows the same rules. Agile work environments are much like
the old salad bowl analogy. Just like salads can have ingredients with wildly dif-
ferent tastes that fit in to make a delicious dish, agile projects can have people on
teams with very diverse strengths that fit in to make great products.

376 PART 6 The Part of Tens

Higher Team Morale
Working with happy people who enjoy their jobs can be satisfying and rewarding.
Agile project management improves the morale of scrum teams in these ways:

 » Being part of a self-managing team allows people to be creative, innovative,
and acknowledged for their contributions.

 » Focusing on sustainable work practices ensures that people don’t burn out
from stress or overwork.

 » Encouraging a servant-leader approach assists scrum teams in self-
management and actively avoids command-and-control methods.

 » Having a dedicated scrum master, who serves the scrum team, removes
impediments, and shields the development team from external interferences.

 » Providing an environment of support and trust increases people’s overall
motivation and morale.

 » Having face-to-face conversations helps reduce the frustration of
miscommunication.

 » Working cross-functionally allows development team members to learn new
skills and to grow by teaching others.

You can find out more about team dynamics in Chapter 14.

CHAPTER 20 Ten Key Factors for Project Success 377

Chapter 20

IN THIS CHAPTER

 » Ensuring scrum teams have the
environment and tools they need

 » Filling all roles with the right talent

 » Enabling teams with clear direction
and support

Ten Key Factors for
Project Success

Here are ten key factors that determine whether an agile transition will
succeed. You don’t need all issues resolved before you begin. You just need
to be aware of them and have a plan to address them as early in your

journey as possible.

We have found that the first three are the strongest indicators for success. Get
those right and the likelihood of your success increases dramatically.

Dedicated Team Members
In Chapter 6, we talk about the importance of dedicating team members — product
owner, development team members, as well as scrum master — to a single project
at a time. This is especially critical at the beginning, when the scrum team and the
rest of the organization are still learning what it means to value agility and
embody agile principles.

If team members are jumping between project contexts hourly, daily, weekly, or
even monthly, the focus on getting agile techniques right is minimized at the

378 PART 6 The Part of Tens

expense of just trying to keep up with multiple task lists. Also, the time lost due to
the continual cognitive demobilization and remobilization involved with task
switching is very costly to each project involved.

If you think you don’t have enough people to dedicate to your scrum teams, you
definitely don’t have enough people to thrash them across multiple projects
simultaneously. The American Psychological Association reports that task switch-
ing wastes as much as 40 percent of time.

Collocation
The Agile Manifesto lists individuals and interactions as the first value. The way
you get this value right is by collocating team members to be able to have clear,
effective, and direct communication throughout a project.

In Chapter 5, we talk about collocation as the first crucial element of an agile
 environment. Bell Laboratories showed a fifty-fold improvement in productivity
simply by getting individuals and interactions right through collocation. With this
success factor addressed adequately, customer collaboration, working functionality,
and responding effectively to change become much more of a reality.

Automated Testing
Development teams cannot develop at the rate technology and market conditions
change if they have to manually test their work every time they integrate new
pieces of functionality throughout the sprint. The longer teams rely on manual
testing, the larger the holes in test coverage become — manual testing simply takes
too long and in reality becomes spot-checking. Without automation, scrum teams
will struggle to completely deliver value in every sprint.

In Chapter 4, we discuss extreme programming practices aimed at building in
quality upfront; automated testing is one of the primary practices. Chapter 15 also
discusses building in quality through automation and continuous integration.

Enforced Definition of Done
Ending sprints with non-shippable functionality is an anti-pattern to becoming
more agile. Your definition of done should clarify the following:

CHAPTER 20 Ten Key Factors for Project Success 379

 » The environment in which the functionality should be integrated

 » The types of testing

 » The types of required documentation

The scrum team should also enforce its definition of done. If scrum teams tell
their stakeholders that they are done after a sprint, but an aspect of the definition
of done is not met, the work to finish meeting the definition of done must be
added to the next sprint, taking capacity away from working on new valuable
product backlog items. This scenario is a Ponzi scheme.

Development teams get to done by swarming on user stories — working on one
user story together at a time until it is complete before starting the next. Developers
hold each other accountable by ensuring that all rules for their definition of done
are satisfied before starting a new user story. Product owners review completed
work against the scrum team’s definition of done (as well as the user story’s accep-
tance criteria — see Chapter 8) as soon as developers complete it, and the scrum
master ensures that developers resolve issues rejected by the product owner before
moving on to new user stories.

Swarming to follow a clear definition of done makes sprints successful. See
Chapters 2, 8, 10, and 15 for more on the definition of done.

Clear Product Vision and Roadmap
Although the product owner owns the product vision and product roadmap, many
people have the responsibility to ensure the clarity of these agile artifacts. Product
owners need access to stakeholders and customers at the beginning during project
planning as well as throughout the project to ensure that the vision and roadmap
continually reflect what the customer and market need. Purpose-driven develop-
ment delivers business and customer value and mitigates risk effectively.

Without a clear purpose, people wander and lack ownership. When all team mem-
bers understand the purpose, they come together. Remember the agile principle,
“The best architectures, requirements, and designs emerge from self-organizing
teams.”

We discuss the mechanics of developing the vision and product roadmap in
Chapter 7.

380 PART 6 The Part of Tens

Product Owner Empowerment
The product owner’s role is to optimize the value produced by the development
team. This product owner responsibility requires someone to be knowledgeable
about the product and customer, available to the development team throughout
each day, and empowered to make priority decisions and give clarification in the
moment so that development teams don’t wait or make inappropriate decisions
for the product’s direction.

Although all roles on the scrum team are vital and equally important, an unem-
powered and ineffective product owner usually causes scrum teams to ultimately
fail at delivering the value customers need from the team. See Chapter 6 for more
on the product owner role.

Developer Versatility
You probably won’t start your first agile project with a development team that has
the ideal level of skills required for every requirement on your product backlog.
However, the goal should be to achieve skill coverage as soon as possible. Your
team will also be challenged to meet its sprint goal if you have single points of
failure on any one skill, including testing.

From day one, you need developers on your team with the intellectual curiosity
and interest to learn new things, to experiment, to mentor and to receive mentor-
ing, and to work together as a team to get things to done as quickly as possible.
This versatility is discussed more in Chapter 6.

Scrum Master Clout
As you depart from command and control leadership to empower the people doing
the work to make decisions, servant leadership provides the solution. With formal
authority, a scrum master would be viewed as a manager — someone to report to.
Scrum masters should not be given formal authority but should be empowered by
leadership to work with members of the scrum team, stakeholders, and other
third parties to clear the way so that the development team can function
unhindered.

If scrum masters have organizational clout, which is informal and is a socially
earned ability to influence, they can best serve their teams to optimize their

CHAPTER 20 Ten Key Factors for Project Success 381

working environment. In Chapter 6, we talk more about different types of clout.
Provide training and mentorship to ensure that your scrum masters develop the
soft skills of servant leadership and put off the tendencies of commanding and
directing.

Management Support for Learning
When executive leaders decide to become agile, their mindset has to change. Too
often we see leadership directives without any follow-through for supporting the
learning process to implement the changes. It is unrealistic to expect all the ben-
efits of following agile principles after the first sprint. In Chapter 18, we talk about
choosing an appropriate agile pilot project, one with leeway to stumble a bit at
first as everyone learns a new way of working together.

The bottom line: If support for learning is merely lip service, scrum teams will
pick up on it early, will lose motivation to try new things, and will go back to wait-
ing for top-down directives on how to do their job.

Transition Support
Chapter 18 compares an agile transition to a sports team transitioning to play a
different sport. Good coaching at leadership and team levels increases your
chances to succeed. Coaching provides support in the following forms:

 » In-the-moment course correction when discipline starts to slip or mistakes
are made

 » Reenforcing training

 » One-on-one mentoring for specific role-based challenges

 » Executive leadership style and mindset adjustments

See our Platinum Edge agile transition roadmap in Chapter 18 for specific steps to
take alongside your trusted agile expert coaches.

CHAPTER 21 Ten Metrics for Agile Organizations 383

Chapter 21

IN THIS CHAPTER

 » Using success metrics

 » Calculating time and cost metrics

 » Understanding satisfaction metrics

Ten Metrics for Agile
Organizations

On an agile project, metrics can be powerful tools for planning, inspecting,
adapting, and understanding progress over time. Rates of success or fail-
ure can let a scrum team know whether it needs to make positive changes

or keep up its good work. Time and cost numbers can highlight the benefits of
agile projects and provide support for an organization’s financial activities.
Metrics that quantify people’s satisfaction can help a scrum team identify areas
for improvement with customers and with the team itself.

This chapter describes ten key metrics to help guide agile project teams.

Return on Investment
Return on investment (ROI) is income generated by the product less project costs:
money in versus money out. ROI is fundamentally different in agile projects than
it is in traditional projects. Agile projects have the potential to generate income
with the first release and can increase revenue with each new release.

384 PART 6 The Part of Tens

To fully appreciate the difference between ROI on traditional and agile projects,
compare the examples in Tables 21-1 and 21-2. The projects for both examples
have the same project costs and take the same amount of time to complete. Both
products have the potential to generate $100,000 in income every month when all
the requirements are finished.

First, look at the ROI on a traditional project in Table 21-1.

Here are some key points of the traditional project in Table 21-1:

 » The project first generated income in July, after the project launch the end of June.

 » The project finally had a positive total ROI in November, 11 months after the
project started.

 » By the end of one year, the project generated $600,000 in revenue.

 » At the year’s end, the project’s total ROI was $120,000.

Now look at the ROI for an agile project in Table 21-2.

TABLE 21-1	 ROI on a Traditional Project

Month
Monthly
Income

Monthly
Costs

Monthly
ROI

Total
Income

Total
Costs

Total
ROI

January $0 $80,000 –$80,000 $0 $80,000 –$80,000

February $0 $80,000 –$80,000 $0 $160,000 –$160,000

March $0 $80,000 –$80,000 $0 $240,000 –$240,000

April $0 $80,000 –$80,000 $0 $320,000 –$320,000

May $0 $80,000 –$80,000 $0 $400,000 –$400,000

June (project
launch)

$0 $80,000 –$80,000 $0 $480,000 –$480,000

July $100,000 $0 $100,000 $100,000 $480,000 –$380,000

August $100,000 $0 $100,000 $200,000 $480,000 –$280,000

September $100,000 $0 $100,000 $300,000 $480,000 –$180,000

October $100,000 $0 $100,000 $400,000 $480,000 –$80,000

November
(breakeven)

$100,000 $0 $100,000 $500,000 $480,000 $20,000

December $100,000 $0 $100,000 $600,000 $480,000 $120,000

CHAPTER 21 Ten Metrics for Agile Organizations 385

Pay special attention to these points of the agile project in Table 21-2:

 » The project first generated income in February, shortly after the project start.

 » The project had a positive total ROI in September — two months earlier than
the traditional project.

 » By the end of one year, the project generated $830,000 in revenue, nearly
40 percent more than the traditional project.

 » At the year’s end, the total ROI was $350,000, almost threefold the ROI on the
traditional project.

Like time to market, ROI metrics are a great way for an organization to appreciate
the ongoing value of an agile project. ROI metrics help justify projects from the
start because companies can fund projects based on ROI potential. Organizations
can track ROI for individual projects as well as for the organization as a whole.

TABLE 21-2	 ROI on an Agile Project

Month
Monthly
Income

Monthly
Costs

Monthly
ROI

Total
Income

Total
Costs

Total
ROI

January $0 $80,000 –$80,000 $0 $80,000 –$80,000

February $15,000 $80,000 –$65,000 $15,000 $160,000 –$145,000

March $25,000 $80,000 –$55,000 $40,000 $240,000 –$200,000

April $40,000 $80,000 –$40,000 $80,000 $320,000 –$240,000

May $70,000 $80,000 –$10,000 $150,000 $400,000 –$250,000

June (project
end)

$80,000 $80,000 $0 $230,000 $480,000 –$250,000

July $100,000 $0 $100,000 $330,000 $480,000 –$150,000

August $100,000 $0 $100,000 $430,000 $480,000 –$50,000

September
(breakeven)

$100,000 $0 $100,000 $530,000 $480,000 $50,000

October $100,000 $0 $100,000 $630,000 $480,000 $150,000

November $100,000 $0 $100,000 $730,000 $480,000 $250,000

December $100,000 $0 $100,000 $830,000 $480,000 $350,000

386 PART 6 The Part of Tens

New requests in ROI budgets
An agile project’s capability to quickly generate high ROI provides organizations
with a unique way to fund additional product development. New product func-
tionality may translate to higher product income.

For example, suppose that in the example project from Table 21-2, the project
team were to identify a new feature that would take one month to complete and
would boost the product income from $100,000 a month to $120,000 a month.
Here’s what the effect would be on ROI:

 » The project would still have its first positive ROI in September, with an ROI of
$110,000 instead of $50,000.

 » By the end of the year, the project would have generated a total income of
$950,000 — 14 percent more than if it generated $100,000 a month.

 » By the end of the year, the total ROI would be $470,000 — 34 percent higher
than the original project.

If a project is already generating income, it can make sense for an organization to
roll that income back into new development and see higher revenue.

Capital redeployment
On an agile project, when the cost of future development is higher than the value
of that future development, it’s time for the project to end.

The product owner prioritizes requirements, in part, by their capability to gener-
ate revenue or value. If only low-revenue or low-value requirements remain in
the backlog, a project may end before the project team has used its entire budget.
The organization may then use the remaining budget from the old project to start
a new, more valuable project. The practice of moving a budget from one project to
another is called capital redeployment.

To determine a project’s end, you need the following metrics:

 » The value (V) of the remaining requirements in the product backlog

 » The actual cost (AC) for the work to complete the requirements in the product
backlog

 » The opportunity cost (OC), or the value of having the scrum team work on a
new project

CHAPTER 21 Ten Metrics for Agile Organizations 387

When V < AC + OC, the project can stop. The cost you would sink into the project
would be more than the value you would receive from the project.

Capital redeployment allows an organization to spend efficiently on valuable
product development and maximize the organization’s overall ROI. You can find
the details on capital redeployment in Chapter 13.

Satisfaction Surveys
On agile projects, a scrum team’s highest priority is to satisfy the customer early
and often. At the same time, the scrum team strives to motivate individual team
members and promote sustainable development practices.

A scrum team can benefit from digging deeper into customer and team member
experiences. One way to get measurable information about how well a scrum team
is embodying agile principles is through satisfaction surveys:

 » Customer satisfaction surveys: Measure the customer’s experience with the
project, the process, and the scrum team.

The scrum team may want to use customer surveys multiple times during a
project. The scrum team can use customer survey results to examine
processes, continue positive practices, and adjust behavior as necessary.

 » Team satisfaction surveys: Measure the scrum team members’ experience
with the organization, the work environment, processes, other project team
members, and their work. Everyone on the scrum team can take team
surveys.

As with the customer survey, the scrum team may choose to give team
surveys throughout a project. Scrum team members can use team survey
results to regularly fine-tune and adjust personal and team behaviors. The
scrum team can also use results to address organizational issues. Customer
survey results over time can provide a quantitative look at how the scrum
team is maturing as a team.

Survey results will be more honest and freely given if the organization fosters a
culture of openness, transparency, and support for learning.

You can put together informal paper surveys, or use one of the many online survey
tools. Some companies even have survey software available through their human
resources department.

388 PART 6 The Part of Tens

Defects in Production
Defects are a part of any project. However, testing and fixing them can be time-
consuming and costly, especially when they reach production. Agile approaches
help development teams proactively minimize defects.

As development teams iterate through the development of a requirement, they
test and find defects. The sprint cycle facilitates fixing those defects immediately
before they reach production. Ideally, defects in production don’t occur due to
automated testing and continuous integration, as discussed in Chapters 7 and 15.

Tracking defect metrics can let the development team know how well it’s pre-
venting issues and when to refine its processes. To track defects, it helps to look
at the following numbers:

 » Build defects: If the development team uses automated testing and continuous
integration, it can track the number of defects at the build level in each sprint.

By understanding the number of build defects, the development team can
know whether to adjust development processes and environmental factors to
be able to catch defects even sooner in their development process.

 » User acceptance testing (UAT) defects: The development team can track
the number of defects the product owner finds when reviewing completed
functionality in each sprint.

By tracking UAT defects, the development team and the product owner can
identify the need to refine processes for understanding requirements. The
development team can also determine whether adjustments to automated
testing tools are necessary.

 » Release defects: The development team can track the number of defects that
make it past the release to the marketplace.

Development teams can also track the number of days between user story
acceptance and defect discovery. The fewer days passed since a developer
worked on the functionality, the lower the cost to fix the defect.

By tracking release defects, the development team and the product owner
can know whether changes to the UAT process, automated testing, or the
development process are necessary. Large numbers of defects at the release
level may indicate bigger problems in the scrum team.

CHAPTER 21 Ten Metrics for Agile Organizations 389

The number of defects and whether defects are increasing, decreasing, or staying
the same are good metrics to spark discussions on project processes and develop-
ment techniques at sprint retrospectives.

You can find out more about proactive quality management and testing in
Chapter 15.

Sprint Goal Success Rates
One way to measure agile project performance is the rate of achieving the
sprint goal.

The sprint may not need all the requirements and tasks in the sprint backlog to
achieve the goal. However, a successful sprint should have a working product
increment that fulfills the sprint goals and meets the scrum team’s definition of
done: developed, tested, integrated, and documented.

Throughout the project, the scrum team can track how frequently it succeeds in
reaching the sprint goals and use success rates to see whether the team is matur-
ing or needs to correct its course. Sprint success rates are a useful launching point
for inspection and adaptation.

You can find out more about setting sprint goals in Chapter 8.

Time to Market
Time to market is the amount of time an agile project takes to provide value by
releasing working functionality to users. Organizations may perceive value in a
couple of ways:

 » When a product directly generates income, its value is the money it can make.

 » When a product is for an organization’s internal use, its value will be the
employees’ ability to use the product and will contain subjective factors based
on what the product can do.

390 PART 6 The Part of Tens

When measuring time to market, consider the following:

 » Measure the time from the project start until you first show value.

 » Some scrum teams deploy new product features for use at the end of each
sprint. For scrum teams that release with every sprint, the time to market is
simply the sprint length, measured in days.

 » Other scrum teams plan releases after multiple sprints and deploy product
features in groups. For scrum teams that use longer release times, the time to
market is the number of days between each release.

Time to market helps organizations recognize and quantify the ongoing value of
agile projects. Time to market is especially important for companies with revenue-
generating products because it aids in budgeting throughout the year. It’s
important also if you have a self-funding project — a project being paid for by the
income from the product.

You can find out more about product-income generation and self-funding proj-
ects in Chapter 13.

Lead and Cycle Times
Lead time is the average amount of time between receiving a request for a require-
ment and delivering it finished. Cycle time is the average time between when
development on a requirement begins and when it is delivered.

Agile teams work in a lean environment, one that seeks to eliminate waste. Con-
straints exist in every flow of work or stream of creating value. Agile teams con-
tinually seek ways to identify and remove constraints to maximize the flow of
work through their system.

Lead and cycle time provide not only a measurement of where bottlenecks may
exist but also expectations for stakeholders regarding how long a request they
submit may take to be completed, on average.

If the lead time for a particular scrum team is 45 days but the cycle time is only
5 days, this discrepancy may alert the team to evaluate its planning and product
backlog refinement process to see how it might tighten the 40-day difference.
Likewise, if the lead time is 45 days and the cycle time is 40 days, the team may
want to evaluate its development workflow for bottlenecks. In any case, scrum
teams should always be looking at removing constraints to decrease both lead and
cycle time appropriately.

CHAPTER 21 Ten Metrics for Agile Organizations 391

Cost of Change
Agile leaders and teams embrace change for the customer’s competitive advan-
tage. But acceptance of change should not mean acceptance of unnecessary costs
associated with changes. As agile teams inspect and adapt the product and their
processes, their goal should be to continuously minimize the effect of change.

Increasing product flexibility is a common way of reducing the cost of change.
With software development, using a service oriented architecture (SOA) strategy
allows agile teams to make each component of an application independent of
 others, so that the entire system doesn’t require changes when one component
must be changed. Development, testing, and documentation require significantly
less effort.

In manufacturing, standardization and modularization of parts has allowed car
manufacturers such as Toyota and more recently WikiSpeed to build cars more
quickly and with less wasteful rework due to incompatibility. (See Chapter 4 for
more on the Toyota Production System.)

Value stream mapping is a common technique for identifying constraints in a
system or a workflow. By visualizing (on a whiteboard, for instance) each step in
a process, agile teams can identify where introducing changes forces the most
stress or cost on its processes. When a constraint is identified, the scrum master
and other organizational change agents can work to remove that constraint to
decrease the cost of future changes in the system.

Team Member Turnover
Agile projects tend to have higher morale. One way of quantifying morale is by
measuring turnover. Although turnover isn’t always directly tied to satisfaction, it
can help to look at the following metrics:

 » Scrum team turnover: Low scrum team turnover can be one sign of a
healthy team environment. High scrum team turnover can indicate problems
with the project, the organization, the work, individual scrum team members,
burnout, ineffective product owners forcing development team commitments,
personality incompatibility, a scrum master who fails to remove impediments,
or overall team dynamics.

 » Company turnover: High company turnover, even if it doesn’t include the
scrum team, can affect morale and effectiveness. High company turnover can
be a sign of problems in the organization. As a company adopts agile practices,
it may see turnover decrease.

392 PART 6 The Part of Tens

When the scrum team knows turnover metrics and understands the reasons
behind those metrics, it may be able to take actions to maintain morale and
improve the work environment. If turnover is high, start asking why.

Skill Versatility
Mature scrum teams are typically more cross functional than less mature scrum
teams. By eliminating single points of failure in a scrum team, you increase its
ability to move faster and produce higher-quality products. Tracking skill versa-
tility allows scrum teams and functional managers to gauge the growth of
cross-functionality.

When starting out, capture the existing skills and levels contained at each of the
following organizational structures:

 » Per person skills and levels

 » Per team skills and levels

 » Per organization skills and levels

Over time, as each person increases his or her quantity and level of skills, the
constraints and delays due to skill gaps disappear. Agile teams are about skills, not
titles. You want team members who can contribute to the sprint goal each and
every day without the risk of single points of failure.

Manager-to-Creator Ratio
Larger organizations likely have developed a heavy middle layer of managers.
Many organizations haven’t figured out how to function well without multiple
managers handling personnel, training, and technical direction on development
issues. However, you need to strike the right balance of managers and individuals
who produce product.

Imagine two professional rival futbol (American soccer) teams of 11 players each
who both train intensively and prepare for a match against each other. Team B
beats Team A 1-0.

Both teams go back to train for the next match. Team A’s management calls on an
analyst to provide a solution. After careful analysis of both teams, he sees that

CHAPTER 21 Ten Metrics for Agile Organizations 393

Team B has one player as goalkeeper, and ten spread across the field as defenders,
midfielders, and forwards, while Team A plays ten goalkeepers at once and one
forward to maneuver the ball down the field to the goal without any team mem-
bers getting in the way.

Team A’s management calls in a consultant to restructure the team. She finds
what seems obvious: Team A is playing way too many goalkeepers. The consultant
recommends that the team play half as many goalkeepers (five), and play five
defenders who can relay instructions to the forward from the goalkeepers who
have a view of the entire field. She also suggests doubling the assistant coaching
staff to increase training and motivation of the forward to score goals.

At the next match, Team B again beats Team A, but this time 2-0.

The forward gets cut, the assistant coaches and defenders get recognized for their
motivation strategy, but management calls for another analysis. As a result of the
analysis, they build a more modern practice facility and invest in the latest shoe
technology for the next season.

Every dollar spent on someone who manages organizational processes is a dollar
not spent on a product creator.

Track your manager-to-creator ratio to identify bloat and ways to minimize the
investment you’re making in people who don’t create product.

CHAPTER 22 Ten Valuable Resources for Agile Professionals 395

Chapter 22

IN THIS CHAPTER

 » Finding support for successful agile
transitions

 » Getting involved with active agile
communities

 » Accessing resources for common
agile approaches

Ten Valuable Resources
for Agile Professionals

Many organizations, websites, blogs, and companies exist to provide
information about and support for agile project management. To help
you get started, we compiled a list of ten resources that we think are

valuable to support your journey to agile project management.

Agile Project Management For Dummies
Online Cheat Sheet

www.dummies.com

You can use our online cheat sheet as a companion to this book as you start
implementing the agile values and principles from the Agile Manifesto, as well as
models outlined throughout the book. You’ll find how-to guides, tools, templates,
and other helpful resources for your agile toolkit. To get to the cheat sheet, go to
www.dummies.com, and then type Agile Project Management For Dummies in the
Search box.

http://www.dummies.com
http://www.dummies.com

396 PART 6 The Part of Tens

Scrum For Dummies
In 2014, we published Scrum For Dummies (Wiley) as a field guide not only to scrum
but also to scrum in industries and business functions outside information tech-
nology (IT) and software development. Scrum can be applied in any situation
where you want early empirical feedback on what you’re building or pursuing on
a project.

Learn about scrum in industries such as game software development and tangible
goods production (construction, manufacturing, hardware development) and in
services such as healthcare, education, and publishing.

Explore scrum’s applications in business functions, including operations, portfolio
management, human resources, finance, sales, marketing, and customer service.

And in everyday life, see how scrum can help you organize your pursuits of dating,
family life, retirement planning, and education.

The Scrum Alliance
www.scrumalliance.org

The Scrum Alliance is a nonprofit professional membership organization that
promotes the understanding and usage of scrum. The alliance achieves this goal
by promoting scrum training and certification classes, hosting international and
regional scrum gatherings, and supporting local scrum user communities. The
Scrum Alliance site is rich in blog entries, white papers, case studies, and other
tools for learning and working with scrum. Chapter 16 lists many of the Scrum
Alliance certifications.

The Agile Alliance
www.agilealliance.org

The Agile Alliance is the original global agile community, with a mission to help
advance the 12 Agile Principles and common agile practices, regardless of
approach. The Agile Alliance site has an extensive resources section that includes
articles, videos, presentations, and an index of independent agile community
groups across the world.

https://www.scrumalliance.org
https://www.agilealliance.org

CHAPTER 22 Ten Valuable Resources for Agile Professionals 397

The Project Management Institute
Agile Community

www.projectmanagement.com/practices/agile

The Project Management Institute (PMI) is the largest nonprofit project manage-
ment membership association in the world. It has more than 400,000 members
and a presence in more than 200 countries. PMI supports an agile community of
practice and an agile certification, the PMI Agile Certified Practitioner
(PMI-ACP).

The PMI website provides information and requirements for certification along
with access to papers, books, and seminars about agile project management. PMI
members can also access PMI’s agile community website, with an extensive
knowledge center including blog posts, forums, webinars, and information about
local agile networking events.

International Consortium for
Agile (ICAgile)

icagile.com

ICAgile is a community-driven organization helping people become agile through
education, awareness, and certification. Its learning roadmap provides career path
development support in business agility, enterprise and team agile coaching,
value management, delivery management, agile engineering, agile testing, and
DevOps.

InfoQ
www.infoq.com/agile

InfoQ is an independent online community with a prominent agile section offer-
ing news, articles, video interviews, video presentations, and minibooks, all writ-
ten by domain experts in agile techniques. The resources at InfoQ tend to be high
quality, and the content is both unique and relevant to the issues facing agile
project teams.

https://www.projectmanagement.com/practices/agile/
http://icagile.com
https://www.infoq.com/agile

398 PART 6 The Part of Tens

Lean Enterprise Institute
www.lean.org

Lean Enterprise Institute publishes books, blogs, knowledge bases, news, and
events for the broader community of lean thinkers and practitioners. As you pur-
sue agile project management, remember to incorporate lean thinking in all that
you do. Lean.org is a good launching pad for you to explore the lean topics relevant
to your situation.

Extreme Programming
ronjeffries.com/xprog/what-is-extreme-programming/

Ron Jeffries was one of the originators of the extreme programming (XP)
development approach, along with Kent Beck and Ward Cunningham. Ron provides
resources and services in support of XP’s advancement on his ronjeffries.com site.
The “What Is Extreme Programming?” section of the site summarizes the core
concepts of XP. Other articles and extreme programming resources are also available
in wiki format at http://wiki.c2.com/?ExtremeProgrammingCorePractices.

Platinum Edge
www.platinumedge.com

Since 2001, our team at Platinum Edge has been helping companies maximize
organizational return on investment (ROI). Visit our blog to get the latest insights
on practices, tools, and innovative solutions emerging from our work with Global
1000 companies and the dynamic agile community.

We also provide the following services, which are outlined in more detail in
Chapter 18:

 » Agile audits: Auditing your current organizational structure and processes to
create an agile implementation strategy that delivers bottom-line results.

 » Recruiting: With access to the best agile and scrum talent — because we’ve
trained them — we help you find the right people to bootstrap your scrum
projects, including scrum masters, scrum product owners, and scrum
developers.

https://www.lean.org
http://ronjeffries.com/xprog/what-is-extreme-programming/
http://wiki.c2.com/?ExtremeProgrammingCorePractices
https://www.platinumedge.com

CHAPTER 22 Ten Valuable Resources for Agile Professionals 399

 » Training: Public and private customized corporate agile and scrum training
and certification, regardless of your level of knowledge. In addition to custom
and non-certified training options, we offer the following certifications:

• Certified ScrumMaster classes (CSM)

• Certified Scrum Product Owner classes (CSPO)

• Certified Scrum Developer classes (CSD)

• SAFe Scaled Agile training and implementations

• PMI Agile Certified Practitioner (PMI-ACP) test preparation classes

 » Transformation: Nothing is a larger factor of future success than proper
coaching. We follow up on agile training with embedded agile coaching and
mentoring to ensure that the right practices occur in the real world.

Index 401

A
ability, in ADKAR, 347
acceptance criteria, user stories, 140, 278–279
accountability, in team dynamics, 248
adaptation

in agile approach, 16, 59
in agile project environment, 308
in empirical approach, 14, 66
in Enterprise Scrum, 342
in just-in-time planning, 120–121
in quality management, 280–281
in scrum framework, 73–74
in self-managing development teams, 112
sprint retrospective, 191

ADKAR change management tool, 346–347
affinity estimating, 150–152
after-party, 165
Agile Alliance, 18, 396
agile audits, 398
agile champion, 300, 302–303
agile coach. See agile mentor; scrum master
agile litmus test, 41–42
Agile Manifesto

agile litmus test, 41–42
changes resulting from, 40–41
customer collaboration, 20, 24–25
defined, 18
general discussion, 17–20
individuals and interactions, 19, 20–22
overview, 13
responding to change, 20, 25–26
working functionality, 19, 22–24

agile mentor, 75, 102, 125, 307, 310
Agile Principles

agile litmus test, 41–42
changes resulting from, 40–41
of customer satisfaction, 27–30
defined, 18
overview, 13, 26–27
Platinum Principles, 37–40

of project management, 33–36
of quality, 30–31
of teamwork, 31–33

agile project management. See also specific agile
approaches and features

approaches, overview, 65–69
approaches, similarities between, 80
benefits of, 57–61, 300, 369–376
certifications, 77, 309
commitment to, 297–299
defined, 7
double work agile, 267, 361
as empirical approach, 13–14, 66
environment enabling, creation of, 307–309
failure in, 57
faux agile, 361
flexibility and stability of, 49–51
versus historical approaches, 43–48
history of, 11–13
integrated approach in organizations, 40
key factors for success, 377–381
nonproductive tasks as reduced in, 51–53
overview, 1–3
project control with, 56
quality and delivery with, 53–54
resources for, 395–399
superiority of, 14, 16
support for, 310
team performance in, 54–56
transition to, 300–302, 343–344, 360–363, 381
versus waterfall methodology, 15, 45–46

agile release train (ART) model, 335–336
agile transition team, 303–304, 353
anchor story, 149
architecture, 313, 318
artifacts

accessibility of, 162
in agile communication, 264–265
cost management, 244
defined, 134
Nexus, 330

Index

402 Agile Project Management For Dummies

artifacts (continued)

overview, 263
risk management, 292–293
scope management, 213–214
scrum, 75
time management, 236–237

assembly-line management, 188
audits, Platinum Edge, 398
automated testing, 176, 281–283, 362, 378
average velocity, 230
awareness, 346–347, 352

B
barely sufficient documentation, 23
Beck, Kent, 76
big bang development, 44
blame game, 363
Blanchard, Kenneth, 253
bloat, scope, 10–11, 207, 238
budget, 228, 239–240
bugs, 271
build defects, tracking, 388
burndown chart, 87, 157, 167–169, 267–268
business owner, in Enterprise Scrum, 338
business value and risk, assessing, 133

C
canvases, Enterprise Scrum, 339
capital redeployment, 243–244, 386–387
certifications, 77, 309, 399
change. See also Platinum Edge change roadmap;

scope management
adaptation to as benefit of agile, 59
becoming agile as requiring, 343–344
challenges related to, 344–345
cost of, 391
lack of, as failure, 206
pitfalls, avoiding, 360–363
responding to, in Agile Manifesto values, 20, 25–26
stability and flexibility of agile approach, 48–50
strategic approaches to, 345–349
warning signs related to, 363–365

cheat sheet, 2, 395
chief product owner (CPO), 320–321

CI (continuous integration), 31, 79, 176, 277
Cirillo, Francesco, 105
clout, of scrum master, 100, 178, 380–381
coaching, 338, 356–357, 381. See also agile mentor;

scrum master
Cockburn, Alistair, 83, 263–264
coding, in XP, 78, 79
collaboration

communication channels, 265
customer, in Agile Manifesto values, 20, 24–25
in elaboration process, 175
as key benefit of agile, 371–372
in procurement management, 214, 219–221
in self-organizing development teams, 110–111

collaboration modes menu, ES, 341
collaboration websites, 89–90, 261
collective code ownership, 79, 277
collocation

agile trouble signs, 364
creating agile project environment, 308
as key factor for success, 378
role in teamwork, 33, 55
setting up, 82–83
success of, 260

command and control approach, 247
commitment, 103, 297–299
communication

agile methods, 263–266
collocation, role in, 82–83
in dislocated teams, 260–261
in extreme programming, 78
high-tech, 88–90
low-tech, 86–88
overview, 245
in Platinum Edge change roadmap, 352
proactive quality practices, 279
in self-managing teams, 250
in self-organizing development teams, 110
status and progress reporting, 266–268
in success of agile, 310
in teamwork, 32–33
traditional versus agile, 262–263

communication fidelity, 82–83
communication plan, 23
communities of practice (CoP), in LeSS, 326

Index 403

company turnover, 391. See also organization
compatibility constraints, agile tools, 90–91
comprehensive documentation, 19, 22–24
computer-related project management, 8–11,

66–69, 271. See also software development
configuration menus, ES, 340–342
Conforming burndown pattern, 169
consensus, 101, 111
consistency, importance to velocity, 233–234
context switching, 107–108
continuous improvement, project team, 55–56
continuous integration (CI), 31, 79, 176, 277
contracts, 20, 24–25, 215, 219–221, 224
control, with agile, 56, 374
cost management

artifacts for, 244
ending projects based on cost, 243–244
initial budget, creating, 239–240
long-range costs, determining, 242–244
overview, 238–239
self-funding project, creating, 240–241
self-managing teams, 249
traditional versus agile, 237–238
velocity, determining costs with, 242–244

cost of change, 391
cost structures, 218–219
courage, as core value, 103–104
CPO (chief product owner), 320–321
cross-functional teams

in LeSS, 327
overview, 97, 98
in quality management, 272
team dynamics, 255–257
team philosophy, 107, 108–109

customer representative. See product owner
customer satisfaction, 27–30, 77, 370, 387
customer service department, 128
customers

benefits of agile for, 59
collaboration with, 20, 24–25
feedback from, 184
identifying, 122
participation in projects, 60
preparing for product deployment, 200–201
as stakeholders, 128

customized team structures, 375

cycle time, 72, 390
cycles, in Enterprise Scrum, 338
cyclical work, 163

D
daily process, agile

daily scrum, 163–166
end-of-day activities, 179–180
multiple teams, challenges for, 313
overview, 163
procurement management, 216
roadblocks, identifying, 178–179
roles and responsibilities, 172–173
shippable functionality, creating, 173–179
sprint backlog, 166–170
task board, 170–172
tracking progress, 166–172

daily scrum
communication channels, 265
face-to-face communication in, 86
general discussion, 163–166
Nexus, 330–331
observers at, in LeSS, 326
procurement management, 216
in release sprints, 196
risk management, 292
in Roadmap to Value, 119
scope management, 210
in scrum framework, 73, 76
tardiness punishments, 165, 166

deadline, as determining project length, 228
death march, 35
decomposition, 120, 129, 139, 312
dedicated area, setting up, 83–84
dedicated teams, 107–108, 254–255, 308, 377–378
defect metrics, 388–389
definition of done. See done, definition of
delivery, 53–54, 70
delivery modes menu, ES, 342
delivery targets menu, ES, 340
dependencies, requirement, 133
Derby, Esther, 190–191
design, 79, 275–276
desire, in ADKAR, 347
desktop sharing, Web-based, 89

404 Agile Project Management For Dummies

detailed project communication plan, 23
development

proactive quality practices, 276–278
shippable functionality, 175–176
sustainable, 32, 35, 79, 279–280

Development Operations (DevOps), 198
development speed. See velocity
development sprints. See sprints
development team. See also multiple teams;

team dynamics; velocity
affinity estimating, 150–152
agile roles, 97–98
agile trouble signs, 364–365
benefits of agile for, 61
better quality and delivery, achieving, 54
cross-functionality, 108–109
daily roles and responsibilities, 172
daily scrum, 164, 165
dedicated teams, 107–108, 255
defined, 94, 246
definition of done, and risk, 287–288
in development process, 175
elaboration process, 174–175
end-of-day activities, 179–180
estimating effort, 132–133
estimation poker, 148–150
feedback from, 183–184
focus, 55
improved performance of, 54–55
limiting size of, 112–113, 258–259
members of, in scrum team, 93
Nexus integration team, 329
nonproductive tasks, 51–53
operational support, 197–199
overview, 48
ownership in, 113–114
physical environment for, 82–86
pilot team members, 305
proactive quality practices, 278
procurement management, 216–217
product owner as helping, 55, 96, 98
product roadmap creation role, 126
product vision statement, 125
in quality management, 272
relation to other agile teams, 94

responsibilities of, 97–98
roadblocks, 178–179
scope management, 208, 212
in scrum framework, 73, 74
scrum master support for, 55, 98, 111, 112
scrum of scrums, 317
self-management, 111–112, 249–251
self-organization, 110–111
servant leadership, 252
sprint backlog, 157
sprint planning meetings, 159–162
sprint retrospective, 187–191
sprint review, 182, 183, 185
stability and flexibility, 49–50, 51
support mechanisms, 54–55
team philosophy, 107–114
technical excellence and good design, 275
time management, 235–236
user stories, benefits of, 141
verifying shippable functionality, 176–178
versatility of, as factor for success, 380
vertical slicing, 314

differences, seeking out, 106
discipline, in transition to agile, 363
dislocated teams, 259–261
distractions, 84–85, 104–105, 232, 254
distributed teams, 259–261
documentation

agile approaches to, 53
in Agile Manifesto values, 19, 22–24
Agile Principles, 34
needed, 262
technical, 195
trouble signs, 364
user, 195

done, definition of
enforced, 378–379
estimation poker, 150
quality management, 31
in release sprints, 194
risk management, 287–288
sprint review, 183
working functionality, 22

double work agile, 267, 361
draft product vision statement, 123–125

Index 405

E
early adopters, 123
earned value management (EVM), 267
eBay, 70
efficiency, as benefit of agile, 58
effort

confirming estimates, 159–160
defined, 131, 140
estimating, 132–133
estimation poker, 148–150
in sprint backlog, 156–157

elaboration process, 174–175
electronic kanban board software, 89
email, 52, 257
empirical project management approach, 13–14, 66
end-of-day activities, 179–180
enforced definition of done, 378–379
enterprise architect, SAFe, 334
Enterprise Scrum (ES), 337–342
enterprise testing, 283
environment, agile, 307–309. See also working

environment
epic owners, SAFe, 334
epic user stories, 129, 146, 334
Essential SAFe, 332, 333
estimate, defined, 131
estimating

affinity, 150–152
effort, in sprint backlog, 156–157
project timeline, with velocity, 230–231
requirements, 131–134

estimation poker, 148–150
excitement about change, building, 352
executive action team (EAT), 319, 320, 321, 322
executive meta scrum (EMS), 321, 322
executives, benefits of agile for, 58
Expected burndown pattern, 168, 169
extreme programming (XP)

basic approaches in, 78
development methods, 276–278
development process, 175–176
key practices, 78–79
overview, 66, 76–78
resources, 398
similarities to lean and scrum, 80
sustainable development, 35

F
face-to-face communication

in agile communication, 263
benefits of, 86
communication channels, 265
in dislocated teams, 260–261
importance of, 257
versus other types of communication, 263–264
proactive quality practices, 279
role in teamwork, 32

failing fast, 57, 169, 289–291
failure, with agile, 57
faux agile, 361
features. See also release planning; releases

decomposing requirements for, 146
defined, 129, 146
grouping, on product roadmap, 130–131
identifying, on product roadmap, 128–130
minimal marketable, 152, 227
suggestions for, 211
used by customers, focusing on, 120

feedback, 183–184, 186–187, 272, 357–358
Fibonacci sequence, 148
fist of five, 101
fixed-price projects, 218
fixed-time projects, 218
flexibility, 49–51
flow, managing, 72
focus, 55, 104–105, 254
formality, resisting, 37–38
Full SAFe, 332
functional testing, 283
functionality

completed, and project length, 228
early delivery of, 58
rigged, 185
shippable, 174–179, 183
working, 19, 22–24, 193–196, 266

G
gold plating, 23, 185
good design, 275–276
gossip, discouraging, 106
Greenleaf, Robert K., 253
guiding coalition, 348

406 Agile Project Management For Dummies

H
Ha stage, Shu Ha Ri technique, 359
high-level time frames, determining, 135
high-tech communication, 88–90
Huge framework, LeSS, 324–325

I
icons, explained, 2
immediate adaptation, 14, 66
implementation strategy, 349–351
InfoQ, 397
information radiators, 87
innovation, 51, 254
inspection

creating agile project environment, 308
in empirical approach, 14, 66
in Enterprise Scrum, 342
in just-in-time planning, 120–121
overview, 16
in quality management, 280–281
in scrum framework, 73–74
in self-managing development teams, 112
sprint retrospective, 191

instant messaging, 89
integrated agile approach, 40
integrated increment, Nexus, 330
integrated scrums, 260
integration teams, 314–315, 316–318, 328–329
integration testing, 283
interactions, in Agile Manifesto, 19, 20–22
International Consortium for Agile (ICAgile), 309, 397
INVEST approach, 147
isolated scrums, 259
IT operations, DevOps model, 198
iteration, in waterfall methodology, 67–68
iterations, 14, 28, 46, 155. See also sprints
iterative development, 53, 55, 59, 65

J
Jeffries, Ron, 398
joint program increment (PI) planning, 336–337
just-in-time (JIT) elaboration, 60, 69–70
just-in-time (JIT) planning. See planning

K
kanban board, 72, 87–88, 89
kanban practices, 71–72
knowledge, in ADKAR, 347
Kotter, John, 348–349

L
large solution SAFe®, 332, 334, 335
large-scale scrum (LeSS), 323–327
Larsen, Diana, 190–191
lead time, 72, 390
leadership, 111. See also servant leadership
leading change, 348–349
Lean Enterprise Institute, 398
lean portfolio management (LPM), 334
lean product development, 66, 69–72, 80, 188
lean-kanban, 71–72
learning, 70, 363, 381
legal department, 128
Less complicated burndown pattern, 169
Lewin, Kurt, 345–346
load testing, 283
long-range costs, 242–244
low-balling vendors, 219
low-tech communication, 86–88
Lying burndown pattern, 169

M
maintenance work, 197–199
management, 60–61, 85, 337, 381
manager-to-creator ratio, 392–393
manufacturing, 8, 69–70
Mark II Aiken Relay Calculator, 271
marketing department, 128, 201
marketplace, preparing for release, 200–201
marshmallow challenge, 44
mass production methods, 69–70
maturing improvements, 358–359
meetings. See also daily scrum

agile approaches to, 52
in agile communication, 264–265
in dislocated teams, 260–261
multi-team, in LeSS, 327

Index 407

notes from, 265
sprint planning, 157–162
traditional versus agile, 263

Mehrabian, Albert, 82–83
meta scrums, 320–322
metrics

agile, relevance of, 372–373
cost of change, 391
defects in production, 388–389
lead and cycle times, 390
manager-to-creator ratio, 392–393
overview, 383
return on investment, 383–387
satisfaction surveys, 387
skill versatility, 392
sprint goal success rates, 389
success, 349–351
team member turnover, 391–392
time to market, 389–390

minimal marketable features, 152, 227
mobile working environment, 85–86
Moore, Geoffrey, 123–124
morale, team, 376
More complicated burndown pattern, 168, 169
multiple projects, 85
multiple teams

challenges to working with, 312–313
Enterprise Scrum, 337–342
large-scale scrum, 323–327
Nexus, 327–331
overview, 311–312
Scaled Agile Framework, 332–337
Scrum at Scale approach, 318–323
in time management, 235–236
vertical slicing, 314–318

multi-skilled team members, 74, 97
multitasking, 85, 254
multi-team meetings, in LeSS, 327

N
Nexus, 327–331
Nonaka, Ikujiro, 13
nonproductive tasks, 51–53
Not participating burndown pattern, 169
not-to-exceed projects, 218

O
Ohno, Taiichi, 188
On The Web icon, explained, 2
one-day sprints, 199
openness, 105–106, 257–258, 352
operational support, 197–199
organization

commitment, 276, 298–299
constraints on agile tools, 90–91
cross-functional teams, support for, 256
environment enabling agile in, 307–309
integrated agile approach in, 40
preparing for product deployment, 199–200
procurement considerations, 221–223
roadblocks in, 178, 300–301

organizational change. See change; Platinum Edge
change roadmap

outside influences, as distraction, 85
oversupervising, as distraction, 85
ownership

collective code, 79, 277
as key benefit of agile, 371–372
in self-managing teams, 248
in team philosophy, 107, 113–114

P
pair programming, 38, 79, 177, 277
peer review, 176–177, 277
performance testing, 283
performance visibility, 373
personas, 143, 144–145
physical environment, 82–86, 362
PI (program increments), 335, 336–337
pilot projects, 353–354, 356–357
pilot team, choosing, 302–307
planning. See also release planning; sprint planning

affinity estimating, 150–152
communication channels, 264
decomposing requirements, 129, 146–147
estimation poker, 148–150
in extreme programming, 79
inspection and adaptation, 120–121
multiple teams, challenges for, 312
overview, 117–120, 139–140

408 Agile Project Management For Dummies

planning (continued)

product backlog, 135–137
product roadmap, 126–135
product vision statement, 121–126
program increment, 336–337
progressive elaboration, 120
for sprint retrospective, 189
user stories, 140–145

planning poker, 148–150
plans, in Agile Manifesto values, 20, 25–26
Platinum Edge change roadmap

active coaching, 356–357
awareness and excitement, 352
environment for success, 355
gathering feedback, 357–358
implementation strategy, 349–351
improvements, 357–359
overview, 349, 350
pilot project, identifying, 353–354
progressively expanding, 359–360
Roadmap to Value, executing, 357
training and recruiting, 355
transformation team, forming, 353–354

Platinum Edge services, 398–399
Platinum Principles, 37–39
PMI (Project Management Institute), 77, 397
Pomodoro technique, 105
Poppendieck, Mary, 70–71
Poppendieck, Tom, 70–71
portfolio, defined, 313
Portfolio SAFe®, 332, 333–334
positivity, encouraging, 106
predictability, 374–375
presentations, 52–53
pricing structures, 218–219
prioritization

as increasing project control, 56
of requirements, 48–49, 132, 134
of risk, early, 291–293
in scope management, 212

proactive quality practices, 271, 275–280
processes, 19, 20–22, 53
procurement management

contract, closing, 224
contract creation, 219–221

cost structures, 218–219
determining need and selecting vendor, 216–217
organizational considerations, 221–223
overview, 205
self-managing teams, 249
traditional versus agile, 214–215
working with vendor, 223

product
benefits of agile for, 60
defined, 313
objective of, developing, 122–123
quality of, 369–370
support, preparing for, 197–199
technical specifications, 23

product backlog
communication channels, 264
completing, 135–137
defined, 130, 134
in Enterprise Scrum, 338
prioritizing user stories in, 145
revising in release planning, 152–153
risk management, 292
scope management, 212–213, 214
in scrum framework, 75
status and progress reporting, 268
in time management, 235, 237

product backlog estimate, 137
product features. See features
product increment, 75. See also shippable functionality
product management, SAFe®, 335
product owner

affinity estimating, 151
as agile role, 94–96
daily roles and responsibilities, 172–173
daily scrum, 165
dedicated teams, ensuring, 255
defined, 28, 48
definition of done, relation to risk, 287–288
in development process, 175
development team, support for, 55, 96, 98
elaboration process, 174
end-of-day activities, 180
in Enterprise Scrum, 338
estimation poker, 148, 149
face-to-face communication with, 86

Index 409

feedback from, 183–184
as key factor for success, 380
LeSS, 324–325
Nexus integration team, 329
in pilot team, 304–305
preparing marketplace, 200–201
prioritizing requirements, 132, 133
proactive quality practices, 278
procurement management, 217
product roadmap creation, 126–135
product vision statement, 121–126
quality management, 273
release planning, 152–155
responsibilities of, 95–96
scope management, 208–210, 212
Scrum at Scale approach, 320–322
in scrum framework, 73, 74
scrum of scrums, 316–317
in scrum team, 93
self-management, 249–251
servant leadership, 252
sprint planning meetings, 159–160
sprint retrospective, 187–191
sprint review, 182, 185, 186
stability and flexibility of agile, 49–50
in transition to agile, 361
verifying shippable functionality, 177–178

product release. See release planning; release sprints;
releases

product requirements. See requirements; scope
management

product roadmap
clarity of, relation to success, 379
communication channels, 264
decomposing requirements for, 146
estimating and prioritizing requirements, 131–134
features, arranging, 130–131
high-level time frames, 135
overview, 80, 126–127
procurement management, 216
requirements, establishing, 128–130
risk management, 292
in Roadmap to Value, 119
saving work, 135
scope management, 209, 213

stakeholders, identifying, 127–128
time management, 237

product scope, 206. See also scope management
product themes, 128–131, 146
product vision statement

clarity of as key factor for success, 379
communication channels, 264
draft, creating, 123–125
finalizing, 126
overview, 80, 121–122, 278
procurement management, 216
product objective, 122–123
risk management, 292
in Roadmap to Value, 119
scope management, 209, 211, 213
validating and revising, 125–126

productive work, maximizing, 51–53
program, defined, 313
program increments (PI), 335, 336–337
program level, SAFe®, 335
progress

reporting, 112, 266–268
tracking daily, 166–172

progressive elaboration, 120, 129
project

control of, 374
defined, 7, 313
key factors for success, 377–381
pausing, 244
predictability, 374–375

project cost. See cost management
project facilitator. See scrum master
project management. See also agile project

management; specific management aspects;
waterfall methodology

agile principles of, 33–36
need to modernize, 7–11
origins of modern, 8–10
scope bloat, 10–11
traditional versus agile, 35–36, 43–48
waterfall methodology, 15

Project Management Institute (PMI), 77, 397
project planning. See planning
project room, 83–84
project schedule, 23

410 Agile Project Management For Dummies

project scope, 206. See also scope management
project stakeholders. See stakeholders
project team. See also team dynamics

agile mentor role, 102
creating agile project environment, 309
defined, 94, 100, 246
improved performance of, 54–56
nonproductive tasks, reducing, 52–53
overview, 48
physical environment for, 82–86
relation to other agile teams, 94
stability and flexibility of agile, 49–50

project timeline, 228, 230–231
Prosci ADKAR tool, 346–347

Q
quality

with agile, 53–54, 60, 369–370
agile principles of, 30–31
building in, in lean, 71
defined, 269, 275

quality management
automated testing, 281–283
development methods, 276–278
face-to-face communication, 279
overview, 31, 272–273
proactive practices, 275–280
product owner and development team, 278
regular inspecting and adapting, 280–281
self-managing teams, 251
in sprints, 273–274
sustainable development, 279–280
technical excellence and good design, 275–276
traditional versus agile, 269–272
user stories and acceptance criteria, 278–279

R
recruiting, 355, 398
refactoring, in XP, 78
refinement, Nexus, 331
refreeze stage, Lewin change model, 346
regression testing, 282
regulatory challenges, 301

reinforcement, in ADKAR, 347
relative estimation, 80, 132–133
relative priority, 133
release planning

communication channels, 264, 265
decomposing requirements for, 146
defined, 80
general discussion, 152–155
multiple teams, challenges for, 312
procurement management, 216
risk management, 292
in Roadmap to Value, 119
scope management, 209, 214
time management, 227, 237

release sprint backlog, 199–200
release sprints

general discussion, 193–196
marketplace, preparing, 200–201
operational support, 197–199
organization, preparing, 199–200
overview, 154, 193

release train engineer (RTE), 335
releases

calculating cost of, 244
defects, tracking, 388
defined, 127
estimating project length, 231
in extreme programming, 79
scope management, 212

Remember icon, explained, 2
requirement areas, LeSS Huge, 324, 325
requirements. See also scope management

affinity estimating, 150–152
in agile project management, 48–49, 56
decomposition of, 146–147
documentation of, 23
establishing, 128–130
estimating, 131–134
estimation poker, 148–150
prioritizing, 134
product backlog, 135–137
progressive elaboration of, 120, 129
user stories, 140–145

resources, 107–108, 240, 246

Index 411

respect, 104, 106
return on investment (ROI), 58, 123, 383–387
Ri stage, Shu Ha Ri technique, 359
rigged functionality, 185
risk, 132, 133, 283, 371
risk and investment profile, 57
risk management

definition of done, 287–288
early identifying, prioritizing, and responding, 291–293
failing fast, 289–291
overview, 286
self-funding projects, 288–289
self-managing teams, 251
traditional versus agile, 283–286

Roadmap to Value, 118–120, 208–210, 307–308, 357
ROI (return on investment), 58, 123, 383–387
Royce, Winston, 8–9, 67–68
RTE (release train engineer), 335

S
sales department, 128
Satir’s Curve, 354
satisfaction surveys, 387
Scaled Agile Framework® (SAFe®), 332–337
scaling across agile teams. See multiple teams
schedule, 23. See also time management
scope bloat, 10–11, 207, 238
scope creep, 16, 207–208
scope management

artifacts for, 213–214
introducing scope changes, 211
managing scope changes, 211–213
overview, 205–224
self-managing teams, 249
throughout project, 208–210
time management, 234–235
traditional versus agile, 206–208

scrum
certifications, 77
ES generalizations of elements, 337–338
history of, 13
overview, 46, 66, 73
resources for, 396
roles, artifacts, and events, 74–76

similarities to lean and XP, 80
sprints, 73–74

Scrum Alliance, 77, 309, 396
Scrum at Scale approach, 318–323
scrum master

as agile role, 98–100
agile trouble signs, 365
artifact accessibility, 162
clout of, 100, 178, 380–381
consensus-building skills, 101
contract creation for procurement, 219
daily roles and responsibilities, 172, 173
daily scrum, 164, 165
dedicated teams, ensuring, 255
in development process, 175
development team support, 55, 98, 111, 112
distractions, removing, 84–85, 232
end-of-day activities, 180
in Enterprise Scrum, 338
estimation poker, 148, 149
in LeSS, 324
Nexus integration team, 329
nonproductive tasks, reducing, 52
overview, 48
in pilot team, 305–306
procurement management, 217, 222, 224
quality management, 273
responsibilities of, 99–100
revising product vision statement, 125
roadblocks, identifying, 178–179
roadblocks, preventing, 233
Scrum at Scale approach, 319–320
in scrum framework, 74
scrum of scrums, 317–318
in scrum team, 93
self-management, 249–251
servant leadership, 252–253
sprint planning meetings, 159
sprint retrospective, 187–191
sprint review, 186
tracking progress, 172

scrum of scrums, 260, 315–318
scrum of scrums of scrums, 319, 320, 321, 322
scrum room, 83–84

412 Agile Project Management For Dummies

scrum team. See also daily process, agile;
multiple teams; team dynamics; velocity

active coaching for, 356–357
agile trouble signs, 365
budget, creating initial, 239
continuous improvement, 56
core values, 102–106
creating agile project environment, 308
defined, 93, 246
distributed, 259–260
end-of-day activities, 179–180
long-range cost of, determining, 242
lowering cost of, 242–243
operational support, preparing for, 197–199
physical environment for, 82–86
pilot, 304
relation to other agile teams, 94
release sprints, 193–196
risk management, 291–293
Shu Ha Ri learning technique, 358–359
sprint planning, 156–162
sprint retrospective, 187–191
sprint review, 181–187
team philosophy, 107–114
time management, 235–236
turnover on, 391
velocity, 154

scrumboard, in ES, 338
ScrumBut, 363
scrumming the scrum, 191
Scrum.org certifications, 309
self-funding projects, 58, 240–241, 288–289
self-management, team, 97, 107, 111–112, 248–251, 275
self-organization, team, 97, 107, 110–111, 248–251
servant leadership, 98, 100, 247, 252–253, 301
shadowing, defined, 38
shippable functionality, 174–179, 183
show, don’t tell concept, 263
Shu Ha Ri learning technique, 358–359
simplicity, 60–61, 79
situationally informed strategy. See planning
size-limited teams, 107, 112–113, 258–259
skill versatility, tracking, 392
small releases, in XP, 79
smoke testing, 282, 283
software development. See also development team;

specific aspects of development

in Agile Manifesto, 20
agile principles of quality, 30, 31
automated testing, 281–283
bugs, 271
development methods, 276–278
DevOps model, 198
empirical control method, 13–14
extreme programming, 76–79
lean, 70–72
modernizing project management in, 10–11, 17–18
project success and failure rates, 9
scope bloat, 10–11
waterfall methodology, 8–9, 67–69

solution architect/engineer, SAFe®, 335
solution management, SAFe®, 335
solution train engineer (STE), 335
solution train, SAFe®, 334
Spears, Larry, 252–253
Spira, Jonathan, 104
sprint backlog

breaking user stories into tasks, 160–162
communication channels, 265
end-of-day activities, 179–180
in Enterprise Scrum, 338
example of, 158
Nexus, 330
release sprints, 194, 196
risk management, 292
scope management, 214
in scrum framework, 75
status and progress reporting, 267, 268
time management, 237
tracking progress, 166–170

sprint planning
communication channels, 264
decomposing requirements for, 146
in Enterprise Scrum, 338
in LeSS, 324
meeting for, 157–162
multiple teams, challenges for, 312–313
Nexus, 330
overview, 155–156
procurement management, 216
risk management, 292
in Roadmap to Value, 119
scope management, 209–210

Index 413

in scrum approach, 76
sprint backlog, 156–157
sprint planning meeting, 157–162
time management, 227

sprint retrospective
agenda for, 190–191
agile trouble signs, 365
communication channels, 265
defined, 56
in Enterprise Scrum, 338
inspecting and adapting, 191
items to discuss in, 190
length of, 189
in LeSS, 324
meeting for, 189–191
multiple teams, challenges for, 313
Nexus, 331
overview, 181, 187–188
planning for, 189
in Platinum Edge change roadmap, 358
procurement management, 216
quality management, 280, 281
in release sprints, 196
risk management, 293
in Roadmap to Value, 120
scope management, 210
in scrum framework, 73, 76

sprint review
agile trouble signs, 365
communication channels, 265
in Enterprise Scrum, 338
feedback, 183–184, 186–187
guidelines for, 184–185
in large-scale scrum, 325–326
length of, 184
in LeSS, 324
multiple teams, challenges for, 313
Nexus, 331
overview, 181–182
Platinum Edge change roadmap, 357–358
preparing for, 182–183
procurement management, 216
quality management, 280–281
in release sprints, 196
risk management, 293
in Roadmap to Value, 119

scope management, 210
in scrum framework, 76
status and progress reporting, 267

sprints. See also daily process, agile; release sprints;
velocity

activities involved in, 156
agile principles, 35
agile trouble signs, 364
budget, creating initial, 239
burndown charts, 167–169
dedicated teams, benefits of, 108
defined, 14, 28, 155
in Enterprise Scrum, 338
estimating number needed, 154
goal success rates, 389
length of, 155, 233, 234
Nexus goals for, 330
one-day, 199
Platinum Edge change roadmap, 356–357
quality and delivery related to, 54
quality management in, 273–274
in risk management, 286
roles and responsibilities in, 172–173
scope management, 212
in scrum approach, 73–74, 75
stability and flexibility due to, 49–50
testing in, 273–274
tracking progress, 166–172
versus traditional methods, 46

sprint-specific kanban board, 87
stability, of agile, 49–51
stakeholders

as agile role, 100–102
agile trouble signs, 365
feedback from, 184
participation in projects, 60
persona creation with help of, 144
in pilot team, 306
product roadmap, identifying in, 127–128
in project team, 94
revising product vision statement with, 125
in scrum framework, 75
self-managing teams, 250
sprint retrospective, 187
sprint review, 185, 186
user stories, identifying for, 142–143

414 Agile Project Management For Dummies

standard code, in XP, 79
Standish Group, 9, 10, 11, 14, 284
static testing, 176, 283
status reporting, 23, 266–268
STE (solution train engineer), 335
step-based manufacturing processes, 8
sticky notes, 87
story points, 364. See also user stories; velocity
strategic approaches to change, 345–349
strategic schedules, 227
streamlining, 34
structural patterns menu, ES, 340–341
success metrics, 349–351
success rates, 16. See also risk management
sustainable development, 32, 35, 79, 279–280
Sutherland, Jeff, 259–260
swarming, 80, 160, 379
system architect/engineer, SAFe®, 335
system metaphor, in XP, 79
system testing, automated, 176

T
tactical roadblocks, 178
tactical schedules, 227
Takeuchi, Hirotaka, 13
talent allocation, 107–108
task board

communication channels, 265
end-of-day activities, 180
overview, 72, 87–88
risk management, 293
status and progress reporting, 268
tracking progress with, 170–172

tasks
breaking user stories into, 160–162
defined, 129
estimating effort to complete, 156–157
tracking progress of, 166–172

task-switching, 254
TDD (test-driven development), 79, 276–277
team agreement, 112
team dynamics

communication, 262–268
cross-functional teams, 255–257
dedicated teams, 254–255

dislocated teams, 259–261
limiting development team size, 258–259
openness, reinforcing, 257–258
overview, 247
self-management and self-organization, 248–251
servant leadership, 252–253
traditional versus agile, 245–247

team level, SAFe®, 336
team philosophy

cross-functionality, 108–109
dedicated team, 107–108
overview, 107
ownership, 113–114
self-management, 111–112
self-organization, 110–111
size-limited teams, 112–113

team satisfaction surveys, 387
teams. See also cross-functional teams; development

team; multiple teams; project team; scrum team
agile transition, 303–304, 353
customized structures for, 375
dedicated, 107–108, 254–255, 308, 377–378
dislocated, 259–261
empowerment of in lean, 71
executive action, 319, 320, 321, 322
extreme programming, 78, 79
integration, 314–315, 316–318, 328–329
kanban practices, 71–72
member turnover, 391–392
morale of, 376
performance of, in agile, 54–56
pilot, choosing members of, 302–307
in Platinum Principles, 38
size-limited, 107, 112–113, 258–259
transformation, forming, 353–354
transition problems related to, 362

teamwork, agile principles of, 31–33
technical documentation, 195
technical excellence, 275–276
technical specifications, 23
Technical Stuff icon, explained, 2
test-driven development (TDD), 79, 276–277
testing

automated, 176, 281–283, 362, 378
customer, 201
in extreme programming, 78

Index 415

in quality management, 271, 273–274
in risk management, 285
in sprints, 273–274
in waterfall versus agile methodology, 46

themes, 128–131, 146
thrashing, 70, 108
time frames, determining high-level, 135
time management

artifacts for, 236–237
lowering cost by reducing time, 243–244
multiple teams, 235–236
overview, 227
project length, determining, 228
scope management, 234–235
self-managing teams, 249
traditional versus agile, 225–227
velocity, 228–234

time to market, 389–390
time-and-materials projects, 218
timeboxing, 158, 199
Tip icon, explained, 2
Toyota, 69–70, 188
training, 355, 361, 399
transformation team, forming, 353–354
transition team, agile, 303–304, 353
transparency, 14, 66, 308
travelers, in LeSS, 327
trust, 114, 248
turnover, team member, 391–392

U
unfreeze stage, Lewin change model, 346
unit testing, automated, 176, 282
units of work, 87
user acceptance testing (UAT), 283, 388
user documentation, 195
user stories

affinity estimating, 150–152
anchor story, 149
breaking into tasks, 160–162
calculating cost of, 244
choosing for sprint, 159–160
decomposing requirements for, 147
defined, 80, 129, 139, 228
elaboration, 174–175

epic, 129, 146, 334
estimation poker, 148–150
INVEST approach, 147
overview, 140–141
proactive quality practices, 278–279
release planning, 153–154
requirements, determining, 144–145
shippable functionality in terms of, 174
sprint backlog, 156–157
stakeholders, identifying, 142–143
steps to create, 142–145
swarming, 160
on task board, 171
users, identifying, 143–144
verifying, 177

users, 28, 143–144

V
value

as benefit of agile, 59, 60–61
business, assessing, 133
defined, 132
time to market, 389–390
user story, 140

value list, in ES, 338, 339
value stream mapping, 391
value stream, SAFe®, 334
values

Agile Manifesto, 19–26
core agile, 102–106

velocity
average, 230
calculating, 229–230
consistency, importance of, 233–234
of dedicated teams, 254
estimating project timeline with, 230–231
increasing, 231–233
long-range costs, determining, 242–244
lowering cost by increasing, 242–243
monitoring, 229
overview, 80, 228–229, 373
scrum team, 154

vendors, in procurement management, 215, 216–217,
219, 223

verifying shippable functionality, 176–178

416 Agile Project Management For Dummies

versatility, 380, 392
vertical slicing, 314–318, 326
video conferencing, 89, 260
vision, leading change through, 348
visualization, 38–39, 71–72, 339
von Moltke, Helmuth, 118

W
Wake, Bill, 147
Warning icon, explained, 2
waste, 60, 70
waterfall methodology

versus agile methods, 15, 45–46
in computer-related project management, 66–69
cost of failed projects in, 289–290
iteration in, 67–68
major aspects of, 47
opportunity for change, 26
overview, 8–9
risk and investment profile for, 57
risk management in, 285, 286
scope creep, 207–208

Web-based desktop sharing, 89

webcams, 89
weekly status reports, 23
whiteboards, 87
work in progress (WIP), limiting, 72
work speed. See velocity
working environment

collocating team, 82–83
dedicated area, setting up, 83–84
distractions, removing, 84–85
going mobile, 85–86
high-tech communication, 88–90
low-tech communication, 86–88
overview, 81–82
physical environment, 82–86
in Platinum Edge change roadmap, 355
tools, choosing, 90–91
for transition to agile, 362

working functionality, 19, 22–24, 193–196, 266
writing, preferring visualization to, 38–39
Wujec, Tom, 44

X
XP. See extreme programming

About the Authors
Mark C. Layton, known globally as Mr. Agile, is an organizational strategist and
Scrum Alliance certification instructor with over 20 years in the project/program
management field. He is the Los Angeles chair for the Agile Leadership Network,
the author of the international Scrum For Dummies and Agile Project Management
For Dummies book series (both published by Wiley), the creator of the Agile
 Foundations Complete Video Course with Pearson Education, and the founder of
Platinum Edge, LLC — an organizational improvement company that supports
businesses making the waterfall-to-agile transition.

Prior to founding Platinum Edge in 2001, Mark developed his expertise as a con-
sulting firm executive, a program management coach, and an in-the-trenches
project leader. He also spent 11 years as a Cryptographic Specialist for the US Air
Force, where he earned both Commendation and Achievement medals for his
accomplishments.

Mark holds MBAs from the University of California, Los Angeles, and the National
University of Singapore; a B.Sc. (summa cum laude) in Behavioral Science from
Pitzer College/University of La Verne; and an A.S. in Electronic Systems from the
Air Force’s Air College. He is also a Distinguished Graduate of the Air Force’s
Leadership School, a Certified Scrum Trainer (CST), a certified Project Manage-
ment Professional (PMP), a recipient of Stanford University’s advanced project
management certification (SCPM), and a certified Scaled Agile Framework Pro-
gram Consultant (SAFe SPC).

In addition to his books and videos, Mark is a frequent speaker at major confer-
ences on Lean, Scrum, XP, and other agile solutions.

Additional information can be found at platinumedge.com.

Steven J Ostermiller is a coach, mentor, and trainer empowering leaders, teams,
and individuals to become more agile. Steve is co-founder and organizer of Utah
Agile (sponsored by Agile Alliance, Scrum Alliance, and Agile Leadership Network),
a professional community committed to increasing agility for Utah businesses,
technology, and individuals. He developed and taught a business college’s agile
project management curriculum and serves on its project management advisory
board. Steve was also technical editor on projects such as Scrum For Dummies and
Pearson Education’s Agile Foundations Complete Video Course. He also occasionally
speaks and writes about his experience with agile techniques for households.

https://platinumedge.com

Steve facilitates Platinum Edge, LLC’s agile transformation engagements through
audit, recruiting, training, and embedded coaching. He has worked with executive
leadership and individual teams in finance, healthcare, media, entertainment,
defense and energy, local and state government, logistics, ecommerce, manufac-
turing, ERP implementations, PMO development, startups, and nonprofits.
He is a Certified Scrum Professional (CSP) and a Project Management Professional
(PMP), and holds a B.S. in Business Management/Organizational Behavior from
the Marriott School of Management at Brigham Young University.

Steve spends as much time as possible with his adorable wife and their five charm-
ing children in Utah living their dreams, one home-cooked meal at a time.

Dedications
To the friends, family, and special loved ones who tirelessly love and support as I
pursue these wild ideas. Your time is now. — Mark

To Gwen, my complete and final answer. And to our five littles, who give me every
reason to continuously inspect and adapt. — Steve

Authors’ Acknowledgments
We’d like to again thank the numerous people who contributed to the first edition
of this book and helped make it a reality.

We are also very grateful to those who helped make this second edition a more
valuable field guide: David Morrow for his insight and technical editing; Caroline
Patchen for ensuring that these concepts are more easily understood through
clear visualization; Jeff Sutherland, Ken Schwaber, Kurt Bittner, Patricia Kong,
Dean Leffingwell, Alex Yakyma, Inbar Oren, Craig Larman, Bas Vodde, Mike
 Beedle, and Michael Herman for providing scaling options to the public and for
their valuable feedback with the new scaling chapter; and to Amy Fandrei, Susan
Pink, and the broader John Wiley & Sons team. You are all fantastic professionals;
thank you for the opportunity to make this book even better.

And a shout-out to the signers of the Agile Manifesto. Thanks for coming together,
finding common ground, and kickstarting the discussion that inspires us to keep
becoming more agile.

Publisher’s Acknowledgments

Acquisitions Editor: Amy Fandrei

Project Editor: Susan Pink

Copy Editor: Susan Pink

Technical Editor: David Morrow

Sr. Editorial Assistant: Cherie Case

Production Editor: Antony Sami

Cover Image: © wsfurlan/iStockphoto

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Understanding Agile
	Chapter 1 Modernizing Project Management
	Project Management Needed a Makeover
	The origins of modern project management
	The problem with the status quo

	Introducing Agile Project Management
	How agile projects work
	Why agile projects work better

	Chapter 2 Applying the Agile Manifesto and Principles
	Understanding the Agile Manifesto
	Outlining the Four Values of the Agile Manifesto
	Value 1: Individuals and interactions over processes and tools
	Value 2: Working software over comprehensive documentation
	Value 3: Customer collaboration over contract negotiation
	Value 4: Responding to change over following a plan

	Defining the 12 Agile Principles
	Agile principles of customer satisfaction
	Agile principles of quality
	Agile principles of teamwork
	Agile principles of project management

	Adding the Platinum Principles
	Resisting formality
	Thinking and acting as a team
	Visualizing rather than writing

	Changes as a Result of Agile Values
	The Agile Litmus Test

	Chapter 3 Why Being Agile Works Better
	Evaluating Agile Benefits
	How Agile Approaches Beat Historical Approaches
	Greater flexibility and stability
	Reduced nonproductive tasks
	Higher quality, delivered faster
	Improved team performance
	Tighter project control
	Faster and less costly failure

	Why People Like Being Agile
	Executives
	Product development and customers
	Management
	Development teams

	Part 2 Being Agile
	Chapter 4 Agile Approaches
	Diving under the Umbrella of Agile Approaches
	Reviewing the Big Three: Lean, Scrum, and Extreme Programming
	An overview of lean
	An overview of scrum
	An overview of extreme programming

	Putting It All Together

	Chapter 5 Agile Environments in Action
	Creating the Physical Environment
	Collocating the team
	Setting up a dedicated area
	Removing distractions
	Going mobile

	Low-Tech Communicating
	High-Tech Communicating
	Choosing Tools
	The purpose of the tool
	Organizational and compatibility constraints

	Chapter 6 Agile Behaviors in Action
	Establishing Agile Roles
	Product owner
	Development team member
	Scrum master
	Stakeholders
	Agile mentor

	Establishing New Values
	Commitment
	Courage
	Focus
	Openness
	Respect

	Changing Team Philosophy
	Dedicated team
	Cross-functionality
	Self-organization
	Self-management
	Size-limited teams
	Ownership

	Part 3 Agile Planning and Execution
	Chapter 7 Defining the Product Vision and Product Roadmap
	Agile Planning
	Progressive elaboration
	Inspect and adapt

	Defining the Product Vision
	Step 1: Developing the product objective
	Step 2: Creating a draft vision statement
	Step 3: Validating and revising the vision statement
	Step 4: Finalizing the vision statement

	Creating a Product Roadmap
	Step 1: Identifying stakeholders
	Step 2: Establishing product requirements
	Step 3: Arranging product features
	Step 4: Estimating efforts and ordering requirements
	Step 5: Determining high-level time frames
	Saving your work

	Completing the Product Backlog

	Chapter 8 Planning Releases and Sprints
	Refining Requirements and Estimates
	What is a user story?
	Steps to create a user story
	Breaking down requirements
	Estimation poker
	Affinity estimating

	Release Planning
	Sprint Planning
	The sprint backlog
	The sprint planning meeting

	Chapter 9 Working throughout the Day
	Planning Your Day: The Daily Scrum
	Tracking Progress
	The sprint backlog
	The task board

	Agile Roles in the Sprint
	Creating Shippable Functionality
	Elaborating
	Developing
	Verifying
	Identifying roadblocks

	The End of the Day

	Chapter 10 Showcasing Work, Inspecting, and Adapting
	The Sprint Review
	Preparing to demonstrate
	The sprint review meeting
	Collecting feedback in the sprint review meeting

	The Sprint Retrospective
	Planning for sprint retrospectives
	The sprint retrospective meeting
	Inspecting and adapting

	Chapter 11 Preparing for Release
	Preparing the Product for Deployment: The Release Sprint
	Preparing for Operational Support
	Preparing the Organization for Product Deployment
	Preparing the Marketplace for Product Deployment

	Part 4 Agile Management
	Chapter 12 Managing Scope and Procurement
	What’s Different about Agile Scope Management?
	Managing Agile Scope
	Understanding scope throughout the project
	Introducing scope changes
	Managing scope changes
	Using agile artifacts for scope management

	What’s Different about Agile Procurement?
	Managing Agile Procurement
	Determining need and selecting a vendor
	Understanding cost approaches and contracts for services
	Organizational considerations for procurement
	Working with a vendor
	Closing a contract

	Chapter 13 Managing Time and Cost
	What’s Different about Agile Time Management?
	Managing Agile Schedules
	Introducing velocity
	Monitoring and adjusting velocity
	Managing scope changes from a time perspective
	Managing time by using multiple teams
	Using agile artifacts for time management

	What’s Different about Agile Cost Management?
	Managing Agile Budgets
	Creating an initial budget
	Creating a self-funding project
	Using velocity to determine long-range costs
	Using agile artifacts for cost management

	Chapter 14 Managing Team Dynamics and Communication
	What’s Different about Agile Team Dynamics?
	Managing Agile Team Dynamics
	Becoming self-managing and self-organizing
	Supporting the team: The servant-leader
	Working with a dedicated team
	Working with a cross-functional team
	Reinforcing openness
	Limiting development team size
	Managing projects with dislocated teams

	What’s Different about Agile Communication?
	Managing Agile Communication
	Understanding agile communication methods
	Status and progress reporting

	Chapter 15 Managing Quality and Risk
	What’s Different about Agile Quality?
	Managing Agile Quality
	Quality and the sprint
	Proactive quality
	Quality through regular inspecting and adapting
	Automated testing

	What’s Different about Agile Risk Management?
	Managing Agile Risk
	Reducing risk inherently
	Identifying, prioritizing, and responding to risks early

	Part 5 Ensuring Agile Success
	Chapter 16 Building a Foundation
	Organizational and Individual Commitment
	Organizational commitment
	Individual commitment
	Getting commitment
	Can you make the transition?
	Timing the transition

	Choosing the Right Pilot Team Members
	The agile champion
	The agile transition team
	The product owner
	The development team
	The scrum master
	The project stakeholders
	The agile mentor

	Creating an Environment That Enables Agility
	Support Agility Initially and Over Time

	Chapter 17 Scaling across Agile Teams
	Multi-Team Agile Projects
	Making Work Digestible through Vertical Slicing
	Scrum of scrums

	Aligning through Roles with Scrum at Scale
	Scaling the scrum master
	Scaling the product owner
	Synchronizing in one hour a day

	Multi-Team Coordination with LeSS
	LeSS, the smaller framework
	LeSS Huge framework
	Sprint review bazaar
	Observers at the daily scrum
	Component communities and mentors
	Multi-team meetings
	Travelers

	Reducing Dependencies with Nexus
	Nexus role — Nexus integration team
	Nexus artifacts
	Nexus events

	Joint Program Planning with SAFe
	Understanding the four SAFe levels
	Joint program increment planning
	Clarity for managers

	Modular Structures with Enterprise Scrum
	ES scrum elements generalizations
	ES key activities

	Chapter 18 Being a Change Agent
	Becoming Agile Requires Change
	Why Change Doesn’t Happen on Its Own
	Strategic Approaches to Implementing and Managing Change
	Lewin
	ADKAR’s five steps to change
	Kotter’s eight steps for leading change

	Platinum Edge’s Change Roadmap
	Step 1: Conduct an implementation strategy with success metrics
	Step 2: Build awareness and excitement
	Step 3: Form a transformation team and identify a pilot project
	Step 4: Build an environment for success
	Step 5: Train sufficiently and recruit as needed
	Step 6: Kick off the pilot with active coaching
	Step 7: Execute the Roadmap to Value
	Step 8: Gather feedback and improve
	Step 9: Mature and solidify improvements
	Step 10: Progressively expand within the organization

	Avoiding Pitfalls
	Signs Your Changes Are Slipping

	Part 5 The Part of Tens
	Chapter 19 Ten Key Benefits of Agile Project Management
	Better Product Quality
	Higher Customer Satisfaction
	Reduced Risk
	Increased Collaboration and Ownership
	More Relevant Metrics
	Improved Performance Visibility
	Increased Project Control
	Improved Project Predictability
	Customized Team Structures
	Higher Team Morale

	Chapter 20 Ten Key Factors for Project Success
	Dedicated Team Members
	Collocation
	Automated Testing
	Enforced Definition of Done
	Clear Product Vision and Roadmap
	Product Owner Empowerment
	Developer Versatility
	Scrum Master Clout
	Management Support for Learning
	Transition Support

	Chapter 21 Ten Metrics for Agile Organizations
	Return on Investment
	New requests in ROI budgets
	Capital redeployment

	Satisfaction Surveys
	Defects in Production
	Sprint Goal Success Rates
	Time to Market
	Lead and Cycle Times
	Cost of Change
	Team Member Turnover
	Skill Versatility
	Manager-to-Creator Ratio

	Chapter 22 Ten Valuable Resources for Agile Professionals
	Agile Project Management For Dummies Online Cheat Sheet
	Scrum For Dummies
	The Scrum Alliance
	The Agile Alliance
	The Project Management Institute Agile Community
	International Consortium for Agile (ICAgile)
	InfoQ
	Lean Enterprise Institute
	Extreme Programming
	Platinum Edge

	Index
	EULA

o'
Agile Project
Management
> comeies

o 2B s

