

Alfresco CMIS

Everything you need to know to start coding
integrations with a content management server
such as Alfresco in a standard way

Martin Bergljung

BIRMINGHAM - MUMBAI

Alfresco CMIS

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Production Reference: 1180314

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-352-7

www.packtpub.com

Cover Image by Veronika Bergljung (vbergljung@yahoo.com)

Credits

Author
Martin Bergljung

Reviewers
Robin Bramley (Ixxus)

Karol Bryd

Nicolas Raoul

Barb Mosher Zinck

Acquisition Editors
Subho Gupta

Content Development Editor
Priyanka S

Technical Editors
Pankaj Kadam

Adrian Raposo

Copy Editors
Tanvi Gaitonde

Dipti Kapadia

Kirti Pai

Project Coordinator
Akash Poojary

Proofreaders
Simran Bhogal

Maria Gould

Indexers
Mehreen Deshmukh

Tejal Soni

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Nilesh Bambardekar

Cover Work
Nilesh Bambardekar

About the Author

Martin Bergljung is a Principal ECM Architect at Ixxus, a UK Platinum Alfresco
partner. He has over 25 years of experience in the IT sector, where he has worked
with the Java platform since 1997.

Martin began working with Alfresco in 2007, developing an e-mail management
extension for Alfresco called OpsMailmanager. In 2009, he started working on
Alfresco consulting projects and has worked with customers such as Pearson, World
Wildlife Fund, International Financial Data Services, NHS, VHI Healthcare, Virgin
Money, Unibet, BPN Paribas, University of Westminster, Aker Oilfield Services,
and Amnesty International.

He is a frequent speaker and has delivered talks at Alfresco conferences in London, Berlin,
and Barcelona. He is also the author of Alfresco 3 Business Solutions, Packt Publishing.

I would like to thank Sumeet Sawant, Priyanka Shah, and Subho Gupta
at Packt Publishing for suggesting the project and getting it on track.

My thanks also goes to Sherin Padayatty and Michelle Quadros, my
Project Coordinators, who were always pushing me to deliver the
next chapter. Thanks to the entire Packt Publishing team for working
so diligently to help bring out a high-quality product.

Thanks to all the book reviewers who gave me invaluable feedback
during the whole project. Specifically, I would like to thank Robin
Bramely, my colleague at Ixxus, who gave me invaluable feedback,
tips, and ideas throughout the book writing process, thanks!

I must also thank the talented team of developers who created the
Alfresco open source product. It opens up a new way for everyone
that wants to build any kind of ECM business solution.

And finally, I would like to thank Paul Samuel and Justin Haynes at
Ixxus for supporting my book project.

About the Reviewers

Robin Bramley is an experienced Alfresco practitioner, having taken Version 0.6
to bits in 2005 and been using, extending, implementing, integrating, and scaling
it ever since. He was the Technical Manager at the first UK Alfresco Gold partner
where he built the original IMAP interface to Alfresco and is now the Chief Scientific
Officer and Chief Architect at Ixxus, a global Alfresco Platinum partner.

Robin has architected many distributed systems over the past 15 years, ranging
from Swaps Trading Platform to Insurance Contract Management and a global
Alfresco-based DAM system. Robin has presented at various international
conferences and meetups in London; he also writes for GroovyMag, including an
article on CMIS integration with Alfresco that NASA wanted the source code for.

I'd like to thank my wife for her patience while I've been glued to my
laptop in the evenings!

Karol Bryd has been working with ECM technologies since 2005, first with
Documentum and then with Alfresco since 2008. He has worked on numerous
ECM-related projects mainly in the Pharmaceuticals sector, performing all manner
of roles from Developer to Technical Consultant to Development Manager.

He was a technical architect at Generis (http://www.generiscorp.com) for CARA,
one of the first products to fully utilize Alfresco and CMIS technologies, and
subsequently, supported its deployment at major corporations. He is also the author
of the Alfresco extension Stamper (http://stamper.metasys.pl) for securing and
watermarking PDF content in Alfresco.

Currently, he holds the position of Documentum Expert at F. Hoffmann-La Roche,
where he is working on Documentum projects that help manage large amounts of
business-critical electronic documentation.

Nicolas Raoul is an ECM consultant at Aegif in Tokyo. After obtaining a Master's
degree from the French Ecole Nationale d'Ingenieurs, he worked in 13 countries,
successfully designing distributed architectures for the French National Library
or the Schengen Information System.

Back when CMIS was still in its draft stage, he created CmisSync, a CMIS
synchronization client that allows Alfresco users to work faster even when they are
offline. Enjoying a strong open source community, CmisSync helps organizations
combine the user friendliness and mobility of cloud storage with the security and
customizability of their CMIS server, be it on-premise or in private/public clouds.

As an ECM architect, he helped Alfresco design their certification program in 2009.
He has been writing open source software since the age of 16. In his free time, he
created AnkiDroid, a flashcards app with a million users, and other popular programs.

Barb Mosher Zinck is a freelance writer and VP, Editorial for CMSWire
(SimplerMedia Group Inc). She has over 10 years of experience as an IT solutions
architect, focused on designing and supporting web-based applications.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

This book is dedicated to my sons Bruce, Thor, and Francisco
and to my wife Veronika.

Table of Contents
Preface 1
Chapter 1: Getting Started with CMIS 7

Understanding CMIS 7
Commercial products and companies supporting CMIS 10
The benefits of using CMIS 11
CMIS use cases 12

Repository to Repository (R2R) 12
Application to Repository (A2R) 12
Application to Multiple Repositories (A2MR) 13

An overview of the CMIS standard 13
The domain model (object model) 14
Services 17
Query language 18
Protocol bindings 20

RESTful AtomPub binding 20
Web Service binding 21
RESTful Browser binding (CMIS 1.1) 21

Summary 22
Chapter 2: Basic CMIS Operations 23

Setting up a CMIS server 24
Installing your own CMIS server 24
Using cmis.alfresco.com 24

Setting up a tool to make HTTP requests 25
Authenticating with the repository 25
Getting repository information 26

Repository information via the AtomPub binding 30
Repository information via the Browser binding 31

Table of Contents

[ii]

Listing the children of the root folder 32
Listing the children of the root folder with the AtomPub binding 36
Listing the children of the root folder with the Browser binding 39

Optional parameters when listing the children of a folder 42
Optional parameters when listing the children of a folder with the AtomPub
binding 43
Optional parameters when listing the children of a folder with the Browser
binding 45

Listing available types and subtypes 47
Listing the types and subtypes with the AtomPub binding 47
Listing the types and subtypes with the Browser binding 49

Getting metadata and content 50
Getting metadata and content with the AtomPub binding 50
Getting metadata and content with the Browser binding 53

Creating, updating, and deleting content 57
Creating folders 59

Creating a folder with the AtomPub binding 59
Creating a folder with the Browser binding 61

Creating documents 62
Creating a document with the AtomPub binding 63
Creating a document with the Browser binding 65

Updating folders and documents 66
Updating a document with the AtomPub binding 67
Updating a document with the Browser binding 67

Deleting a folder or a document 68
Deleting a folder or document with the AtomPub binding 68
Deleting a folder or document with the Browser binding 69

Summary 70
Chapter 3: Advanced CMIS Operations 71

Version management with check out and check in 71
Version management with the AtomPub binding 73

Checking out a document with the AtomPub binding 74
Cancelling the check out with the AtomPub binding 75
Updating the physical contents of the checked-out document with the AtomPub binding 75
Checking in a document with the AtomPub binding 76

Version management with the Browser binding 77
Checking out a document with the Browser binding 77
Cancelling the check out with the Browser binding 78
Updating the physical content of the checked-out document with the Browser binding 78
Checking in a document with the Browser binding 79

Table of Contents

[iii]

Managing permissions for documents and folders 80
Access control list capabilities 80
Access control concepts 81
Supported permissions 82
Allowable actions and permission mapping 83
Managing permissions with the AtomPub binding 84
Managing permissions with the Browser binding 87

Managing relationships between objects 90
Creating and reading relationships with the AtomPub binding 90
Creating and reading relationships with the Browser binding 92

Searching 93
Searching with the AtomPub binding 95
Searching with the Browser binding 96
CMIS query examples 98

A word on transactions 99
Summary 100

Chapter 4: Alfresco and CMIS 101
Timeline 101
Architecture/stack 103
Alfresco content model mapping to the CMIS object model 105

Repository capabilities 105
Type mappings 106
Property mappings 107
Object paths explanation 108
Versioning 112
Access control 113
Change log 115
Renditions 116
Search 118

Support for Alfresco-specific features 119
Aspects 119
Tags 123
Categories 124

Summary 124
Chapter 5: Accessing a CMIS Server with a Java Client 127

Setting up a build environment 128
Connecting and setting up a session with the repository 129

Connecting to a repository by ID 134
Getting repository information 134
Listing the children of the root/top folder 136

Table of Contents

[iv]

Optional parameters when listing the children of a folder 138
Listing available types and subtypes 141
Creating, updating, and deleting content 144

Creating folders 144
Creating documents 147
Updating folders and documents 153
Deleting a document, folder, or folder tree 156

Getting the content for a document 160
Copying and moving folders and documents 162
Working with Alfresco aspects 165

Using secondary types to manage aspects 166
Adding aspects when creating an object 166
Adding aspects to an existing object 167
Reading aspects 168

The Alfresco OpenCMIS extension to manage aspects 169
Adding aspects when creating an object 169
Adding aspects to an existing object 170
Reading aspects 171

Version management with check out and check in 172
Checking out a document 173
Updating the content of the checked-out document and then checking it in 174

Managing permissions for documents and folders 175
Managing relationships between objects 178
Searching 181
Summary 182

Chapter 6: Accessing a CMIS Server Using Scripting Languages 183
Using CMIS in JavaScript and web application pages 184

Solving the same origin policy problem 187
Using JQuery 190

Using CMIS in Groovy scripts 196
Using CMIS in Spring Surf Web Scripts 200

Setting up a build project for Spring Surf
with CMIS 201
Updating the Spring Surf project so that CMIS can be used 203
Updating the home page to display repository info via CMIS 206
Updating the home page to display text from
a file in the repository 208
Using CMIS calls in Alfresco Share extensions 209

Summary 210

Table of Contents

[v]

Chapter 7: System Integration with CMIS 211
Integrating Drupal with a CMS server 211

The CMIS API module 212
Displaying a CMS repository file link on a Drupal page 216

The CMIS Views module 217
Displaying a CMS repository folder on a Drupal page 218
Displaying a result from a CMIS query on a Drupal page 220

Synchronizing the CMS content with Drupal content 221
Enterprise integration with CMIS 224

Moving a file from a folder into a CMS server using Mule 224
Getting a document from a CMS server via Mule 228

Talking to Alfresco in the Cloud via CMIS 232
Setting up an account 232
Registering a client application 232
Setting up a development project 235
Authorizing the client application 237
Making CMIS calls 240

Summary 241
Index 243

Preface
Content Management Servers (CMS), both proprietary and open source, have been
around for a very long time, but there has not been a standard way of talking to them
until recently. The Content Management Interoperability Services (CMIS) standard
provides both an application programming interface and a search language (based
on SQL-92). Today, most of the CMS systems out there support the CMIS standard.

Alfresco CMIS is a practical, hands-on guide that provides you with a number of clear
step-by-step exercises, which will help you take advantage of the real power of CMIS
and give you a good foundation in using it via HTTP/XML, Java, or scripting.

This practical companion will get you up to speed on CMIS in no time.

What this book covers
Chapter 1, Getting Started with CMIS, starts off with an introduction to the CMIS standard
to quickly get you up-to-date on the service API, object model, and query language.

Chapter 2, Basic CMIS Operations, shows you how to add, update, delete, and search
for content using HTTP and XML/JSON.

Chapter 3, Advanced CMIS Operations, teaches you how to version content, set
permissions for content, and create relationships between content items using HTTP
and XML/JSON.

Chapter 4, Alfresco and CMIS, covers specifics around the Alfresco content
management server's implementation of CMIS, such as how to handle aspects, tags,
and categories.

Chapter 5, Accessing a CMIS Server with a Java Client, introduces the Apache Chemistry
project and the OpenCMIS Java library, which is an abstraction on top of the
standard HTTP and XML/JSON protocol bindings.

Preface

[2]

Chapter 6, Accessing a CMIS Server Using Scripting Languages, shows how scripting
languages such as JavaScript and Groovy can be used to talk to content management
servers via the CMIS standard.

Chapter 7, System Integration with CMIS, looks at how CMIS can be used for enterprise
application integration. With specific examples of how to integrate Drupal with
content management servers, connect Enterprise Service Bus (ESB) with one or
more content management servers, and talk to the Alfresco Cloud service.

What you need for this book
For all the chapters except the first one, you will need access to a content management
server that supports CMIS, such as Alfresco. In case of Alfresco, you can use an online
service available at http://cmis.alfresco.com or install the Alfresco community
version from http://downloads.alfresco.com (it is recommended to have your
own local server, so you have control of the content and availability).

For Chapter 2, Basic CMIS Operations, and Chapter 3, Advanced CMIS Operations,
it's good to install a tool such as curl that can be used to make HTTP calls. Chapter
5, Accessing a CMIS Server with a Java Client, will require JDK and Maven installed.
Chapter 6, Accessing a CMIS Server from Scripting Languages, requires the installation
of jQuery and Groovy.

Who this book is for
This book is great for developers who want to learn how to build applications that
talk to content management servers in a standard way using CMIS. It will be helpful
to have a bit of programming experience, but it is not necessary for the first two
chapters. The OpenCMIS chapter and Alfresco Cloud section will assume some basic
knowledge of Java.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and
an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"If we take Documentum as an example, its generic content type is named dm_
document and not cm:content."

Preface

[3]

A block of code is set as follows:

<app:collection href=
 "http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-
 bda8-9465f4f11527/types">
 <cmisra:collectionType>types</cmisra:collectionType>
 <atom:title type="text">Types Collection</atom:title>
 <app:accept></app:accept>
</app:collection>

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

</cmisra:template>
<cmisra:type>objectbypath</cmisra:type>
<cmisra:mediatype>application/atom+xml;type=entry
</cmisra:mediatype>
</cmisra:uritemplate>

Any command-line input or output is written as follows:

$ curl
"http://localhost:8080/alfresco/service/api/login?u=admin&pw=admin"

<?xml version="1.0" encoding="UTF-8"?>

<ticket>TICKET_39ea5e46e83a6d6e43845182f4254f9de50402fb</ticket>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

Preface

[4]

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Preface

[5]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with CMIS
Content Management Interoperability Services (CMIS) is a new interface to talk to
Content Management Systems (CMS) in a standard way. This chapter will introduce
you to the CMIS standard, explain why it is important, and see how it came about.
We will cover the different parts of the CMIS standard, the benefits of using it,
and some example use cases for CMIS.

Understanding CMIS
CMIS is an effort toward standardization and is managed by the Organization for the
Advancement of Structured Information Standards (OASIS) body. The latest version
is 1.1 (http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.html), which
was approved in May 2013. Version 1.0 specifies most of the functionalities and is quite
developed being approved in May 2010. Some content servers might not yet support
Version 1.1, so we will point out when a feature is only available in Version 1.1. CMIS
is all about being able to access and manage content in a so-called content repository in
a standard way. You can think of a content repository as something that can be used to
store files in a folder hierarchy.

The CMIS interface consists of two parts: a number of repository services for things
such as content navigation and content creation, and a repository query language for
content search. The standard also defines what protocols can be used to communicate
with a repository and what formats should be used in requests and responses via
these protocols.

Getting Started with CMIS

[8]

To really explain what CMIS is, and the background to why it came about, one has
to look at how the implementation of content management systems has evolved.
If we go back 15-20 years, most companies (that are large corporations) had one
content management system installed for Document Management (DM) and
workflow. This meant that all the content was available in one system via a single
Application Programming Interface (API), making it easy for other enterprise
systems to integrate with it and access content. For example, the Swedish nuclear
power plant that I worked for in the mid 90s had one big installation
of Documentum that everyone used.

In the last 5-10 years, there has been an explosion in the number of content
management systems used by companies; most companies now have multiple
content management systems in use, sometimes running into double digits.

So you are thinking that this cannot be true; companies having five
content management systems? This is true alright. According to the
Association for Information and Image Management (AIIM), which is
the main Enterprise Content Management (ECM) industry organization,
72 percent of large organizations have three or more ECM, Document
Management, or Record Management systems, while 25 percent have five
or more (as mentioned in State of the ECM Industry, AIIM, 2011).

This is because these days we not only manage documents, but we also manage
records (known as Record Management), images and media files (known as Digital
Asset Management), advanced workflows, web content (known as Web Content
Management), and many other types of content. It is quite often that one content
management system is better than the other in handling one type of content such as
records or web content, so a company ends up buying multiple content management
systems to manage different types of content.

A new type of content management system has also emerged, which is open source and
easily accessible for everyone to try out. Each one of these systems have different APIs
and can be implemented in a different language and on a different type of platform.
All this means that a lot of companies have ended up with many content silos/islands
that are not communicating with each other, sometimes having duplicated content.

Chapter 1

[9]

What this means is that when it comes to implementing the following kind of services,
we might have a problem choosing what API to work with:

• Enterprise service that should aggregate content from several of these systems
• Content transfer from one system to another
• UI client that should display content from more than one of these systems

It would then be necessary to learn about a whole lot of APIs and platforms. Most of
the proprietary APIs were also not based on HTTP, so if you wanted a service or client
to be outside the firewall, you would have to open up new ports in the firewall to take
care of security and so on.

Any company that wants to develop tools or clients to access content management
systems would also have to support many different protocols and formats, making it
difficult to work with more than a handful of the seasoned CMS players. This leads
to people thinking about some sort of standard interface and protocol to access
CMS systems.

The first established standard covering the content management area is Web
Distributed Authoring and Versioning (WebDAV), which was proposed in
February 1999 with RFC 2518 (refer to ftp://ftp.isi.edu/in-notes/rfc2518.
txt). It is supported by most content management systems, including Alfresco, and
is usually used to map a drive to access the content management system via, for
example, Windows Explorer or Mac Finder. The problem with this way of accessing
content is that most of the valuable features of a content management system cannot
be used, such as setting custom metadata, managing versions, setting fine grained
permissions, controlling relationships, and searching for content.

So this led to more comprehensive standards such as the Java Content Repository
(JCR) API, which is managed by the Java Community Process as JSR-170 (https://
www.jcp.org/en/jsr/detail?id=170) and JSR-283 (https://www.jcp.org/en/
jsr/detail?id=283) and was first developed in 2002. The JCR standard has been
supported by Alfresco for a long time, but it has never really taken off as it is Java
centric and excludes content management systems such as SharePoint and Drupal.

Getting Started with CMIS

[10]

Something needed to be done to come up with a new standard that would be easy
to learn and adopt. This is where CMIS comes into the picture. CMIS provides
a standard API and query language that can be used to talk to any CMS system
that implements the CMIS standard. The following figure illustrates how a client
application that adheres to the CMIS standard can talk to many different content
management systems through one standard service-oriented interface:

Alfresco

Repository with
content and metadata
in proprietary format

CMIS Implementation

Documentum FileNet Nuxeo OpenText

Repository with
content and metadata
in proprietary format

Repository with
content and metadata
in proprietary format

Repository with
content and metadata
in proprietary format

Repository with
content and metadata
in proprietary format

CMIS Implementation CMIS Implementation CMIS Implementation CMIS Implementation

Internet, Intr net (HTTP)a

CMIS Service Call

Client A

CMIS Service Call CMIS Service Call

Client B Client C

CMIS Service Interface

The preceding figure shows how each one of the content management systems offers
access to their proprietary content and metadata via the standard CMIS service
interface. The CMIS interface is web-based, which means that it can be accessed via
HTTP through the Internet. Even cloud-based content management systems such as
the Alfresco Cloud installation can be accessed via CMIS.

Commercial products and companies
supporting CMIS
There are quite a few companies that support the CMIS standard. The participants
in the standards process include Adobe Systems Incorporated, Alfresco, EMC,
eXo, FatWire, HP, IBM, ISIS Papyrus, Liferay, Microsoft, Nuxeo, OpenText, Oracle,
Newgen, OmniDocs, and SAP.

To get an idea of how widespread the CMIS standard is, we can have a look at the
following products, clients, and libraries that support it:

• CMS servers: Alfresco, Documentum, HP Interwoven, IBM Content Manager
and FileNet, Lotus Quickr, Microsoft SharePoint, OpenText, and SAP

Chapter 1

[11]

• WCM systems: Magnolia, Liferay, Drupal, Hippo, TYPE3, and dotCMS
• Blogging: Wordpress
• Clients: Libre Office, Adobe Drive, Atlassian Confluence, SAP ECM Integration,

Pentaho Data Integration, SugarCRM, Trac, Kofax, and Salesforce Files
• SOA: Mule ESB and Spring Integration
• Libraries: Apache Chemistry (which includes Java, Python, PHP, .NET,

and Objective-C)

So we can see there is no doubt that the CMIS standard has been very well received
and adopted.

The benefits of using CMIS
The benefits of using CMIS might be quite clear to you now, but let's walk through
some of them:

• Language neutral: Any language can be used to access a CMS system that
implements the CMIS service interface, as long as the language has the
functionality for making HTTP requests and can handle XML or JSON. So you
could have a C++ application accessing a content management system written
in PHP.

• Platform independence: It doesn't matter what platform the CMS system is
implemented on top of. As long as it supports the CMIS standard any client
application can talk to it if it has the capability to make HTTP calls and parse
XML or JSON.

• Standard service API: Clients need to use only one API to access content
management systems and they have a much better chance of not being
limited to only one vendor's API and platform. This is probably a great
benefit as it means that you can work with any CMS system after you learn to
work with the first one, thus saving time and money. It will also be easier to
find people who can work on new CMS projects.

• Standard and easy-to-learn query language: The CMIS query language
is easy to learn and adopt as it is based on the ANSI SQL-92 standard. So
you can use SQL syntax such as SELECT * FROM cmis:document WHERE
cmis:name LIKE '*alfresco*';.

• One application to access them all: End users can now use one application
and user interface to access all content management systems, and do not
have to learn about a new user interface for each and every CMS system that
the organization has deployed.

Getting Started with CMIS

[12]

• Easy workflow integration: It is now much easier for a company to deploy
an enterprise workflow that interacts with content managed by multiple
content management systems.

• Repository vendors get more applications: CMS vendors are more likely to
get many more client applications using their server as any application that
uses the CMIS API can access any CMIS repository.

• Applications get a bigger customer base: Applications that are written to
support the CMIS interface are more likely to get a bigger customer base as they
will work with a multitude of CMIS-compliant content management systems.

CMIS use cases
There are a number of content management use cases that can benefit from using
CMIS. A couple of them are explored as follows:

Repository to Repository (R2R)
R2R is the use case when content management systems talk directly to each other.
The following figure illustrates a typical scenario when content in the enterprise
content management system such as Alfresco should be displayed on a website via
a web content management system such as Drupal:

Drupal

Repository 1

Alfresco

Repository 2End User

CMIS

Application to Repository (A2R)
A2R is probably the most common use case. You have an application such as a
collaboration application, records management application, enterprise CRM system,
business process application, web application, portal, design tool, or Office package
that wants to work with content in your CMS system. This is now easy with the
CMIS interface. The following figure shows a mobile web application, getting its
content from an Alfresco repository via CMIS:

Chapter 1

[13]

Mobile

Website

Application

Alfresco

RepositoryEnd User

CMIS

Application to Multiple Repositories (A2MR)
A2MR is quite a common use case and handles the case when you want to aggregate
content from multiple repositories in an application such as a user interface, or for
example a broker application. The following figure illustrates a typical scenario
that represents this use case when you have an Enterprise Service Bus (ESB),
fetching content from multiple repositories, processing it, and then serving it to
an enterprise application:

Enterprise
Application

Application

MuleESB

Service BrokerEnd User

SharePoint

Repository 1

Alfresco

Repository 2

CMIS

Another common scenario applicable to this use case is federated search, which
is something that is really useful for end users. Instead of going into multiple
applications to search for content in a disparate content management system, they
can now just go into one search application that is hooked up to all the CMS systems.

An overview of the CMIS standard
This section will dig deeper into the CMIS standard and explore its domain model
and the different services that it provides. It will also present the different protocol
bindings that we can work with.

Getting Started with CMIS

[14]

The domain model (object model)
All CMS vendors have their own definitions of a content model, also called an object
model. For example, in Alfresco, there is a folder type (cm:folder), a generic content
type (cm:content), associations described as aspects (for example, cm:contains,
rn:rendition, and cm:references), and so on. These are available out of the box and
are used when you create folders and upload files into the repository. In Alfresco, these
types and aspects have properties and they can inherit definitions from other types and
aspects. Each property has a datatype and other behavior attributes such as multi-
valued and required. When you work with Alfresco in a specific domain, such as
legal, it is possible to create domain-specific subtypes that extend the generic types.
For example, you could create a legal case type that extends the generic folder type.

Now, as you can imagine, other vendors would not necessarily have the same
definitions for their content model. If we take Documentum as an example, its
generic content type is named dm_document and not cm:content. Some content
management systems also do not have the concept of an aspect.

So what the CMIS Standardization group had to do was come up with an object
model that was generic enough for most CMS vendors to be able to implement it.
And it had to be specific enough for the implementations to be meaningful and
usable. So, the group came up with something called the CMIS domain model.

The CMIS domain model defines a repository as a container and an entry point to
all the content items, called objects from now on. All objects are classified by an
object type, which describes a common set of properties (such as type ID, parent, and
display name). There are five base types of objects: Document, Folder, Relationship,
Policy, and Item (CMIS 1.1), and they all inherit from the Object type as shown in
the following figure:

CMIS Domain Model

id
Principal

streamId
mimeType
length
title
kind
height
width

Rendition

Custom Domain Model

length, mimeType, filename, stream

versionable
contentStreamAllowed

allowedSourceTypes
allowedTargetTypes

id
queryName
displayName
propertyType
required
cardinality
choices
defaultValue
...

Content Stream

Document
Folder

Relationship
Policy Item Secondary

Legal Case
caseNumber

Group Emailed

ACE
ACL

Object Property

permission []s
isDirect

id
parent
queryName
displayName
creatable
queryable
fileable
controllablePolicy
controllableACL
fulltextIndexed

1 0..* 0..1 11..*1 1 1 1 0..*

1

0..* 1

1

0..1

1

1

Chapter 1

[15]

Besides these base object types, there are a number of property types that can be
used when defining new properties for an object type. They are, as can be seen in the
preceding figure, String, Boolean, Decimal, Integer, and DateTime. Besides these
property types, there are also the URI, ID, and HTML property types, which are not
shown in the preceding figure.

Let's take a closer look at each one of the following base types:

• Document: This base type is almost always the same as a file, although it
doesn't need to have any content (when you upload a file via, for example,
the AtomPub binding—explained in the RESTful AtomPub binding section—
the metadata is created with the first request and the content for the file is
posted with the second request). The base document type is automatically
assigned to any file, such as an MS Office document or an image, when it is
uploaded to the repository.

• Folder: This is self-explanatory; it is a container for fileable objects such
as folders and documents. As soon as a folder or document is filed in a
folder, an implicit parent-child relationship is automatically created, which
is different from the relationship base object type that has to be created
manually. Whether an object is fileable or not is specified in the object type
definition with the fileable property.

• Relationship: This object defines a relationship between two objects (the
target and source). An object can have multiple relationships with other
objects. The support for relationship objects is optional.

• Policy: This is a way of defining administrative policies to manage objects.
An object to which a policy may be applied is called a controllable object
(the controllablePolicy property has to be set to true). For example, you
can use a CMIS policy to define which documents are subject to retention
policies. A policy is opaque and means nothing to the repository. You would
have to implement and enforce the behavior for your policy in a repository-
specific way. For example, in Alfresco, you could use rules to enforce the
policy. The support for policy objects is optional.

• Item (available from CMIS v1.1): This object represents a generic type of a
CMIS information asset. This could be, for example, a user or group object.
Item objects are not versionable and do not have content streams like
documents, but they have properties like all other CMIS objects. The support
for item objects is optional.

Additional object types can be defined in a repository as custom subtypes of these
base types, such as the Legal Case type in the preceding figure. CMIS services are
provided for the discovery of object types that are defined in a repository. However,
object type management services, such as the creation, modification, and deletion of
an object type, are not covered by the CMIS standard.

Getting Started with CMIS

[16]

An object has one primary base object type, such as document or folder, which
cannot be changed. An object can also have secondary object types applied to it
(CMIS 1.1). A secondary type is a named class that may add properties to an object
in addition to the properties defined by the object's primary base object type (if you
are familiar with Alfresco, you can think of secondary object types to be the same as
aspects; for example, emailed, versionable, published, and more).

Every CMIS object has an opaque and immutable object identity (ID), which is
assigned by the repository when the object is created. In the case of Alfresco,
a so-called node reference is created, which becomes the object ID. An ID uniquely
identifies an object within a repository regardless of the type of the object.

All CMIS objects have a set of named, but not explicitly ordered, properties.
Within an object, each property is uniquely identified by its property ID. In addition,
a document object can have a content stream, which is then used to hold the actual
byte content for the file representing, for example, an image or a Word document.
A document can also have one or more renditions associated with it. A rendition
can be a thumbnail or an alternate representation of the content stream, such as
a different size of an image.

Document or folder objects can have one Access Control List (ACL), which then
controls the access to the document or folder. An ACL is made up of a list of ACEs.
An Access Control Entry (ACE) in turn represents one or more permissions being
granted to a principal, such as a user, group, role, or something similar.

Now, we may ask the questions such as, what does a document object look like?, what
properties does it have?, what namespace is used?, and so on. The following figure
shows you how the document object and the other objects are defined with properties:

CMIS Object Model

cmis:islmmutable: DateTime
cmis:isLatestVersion: Boolean
cmis:isMajorVersion: Boolean
cmis:isPrivateWorkingCopy: Boolean
cmis:versionLabel: String
cmis:versionSeriesId: Id
cmis:isVersionSeriesCheckedOut: Boolean
cmis:versionSeriesCheckedOutBy: String
cmis:versionSeriesCheckedOutId: Id
cmis:checkinComment: String
cmis:contentStreamLength: Integer
cmis:contentStreamMimeType: String
cmis:contentStreamFileName: String
cmis:contentStreamId: Id

cmis:objectId: Id
cmis:baseTypeId: Id
cmis:objectTypeId: Id
cmis:secondaryObjectTypeIds: Id[] (CMIS 1.1)
cmis:name: String
cmis:description: String
cmis:createdBy: String
cmis:creationDate: DateTime
cmis:lastModifiedBy: String
cmis:lastModificationDate: DateTime
cmis:changeToken

cmis:secondary

cmis:item
cmis:policycmis:relationship

cmis:folder
cmis:parentId: Id
cmis:path: String
cmis:allowedChildObjectTypeIds: Id[]

cmis:policyText: Stringcmis:sourceId: Id
cmis:targetId: Id

cmis:document

CMIS Object

Chapter 1

[17]

All the objects and properties are defined in the cmis namespace. From now on, we'll
refer to the different objects and properties by their fully qualified names,
for example, cmis:document or cmis:name.

Services
The CMIS specification also defines the following set of services to access and
manage the CMIS objects in the content repository:

• Repository services: These services are used to discover information about
the repository, including repository IDs (could be more than one repository
managed by the endpoint), capabilities (many features are optional and this
is the way to find out if they are supported or not), available object types,
and descendants. If we are working with a CMIS v1.1-compliant repository,
then it could also support creating new types dynamically on the fly. The
repository service methods are getRepositories, getRepositoryInfo,
getTypeChildren, getTypeDescendants, getTypeDefinition, createType
(CMIS 1.1), updateType (CMIS 1.1), and deleteType (CMIS 1.1).

• Navigation services: These services are used to navigate the folder
hierarchy in a CMIS repository, and to locate documents that are checked
out. The navigation service methods are getChildren, getDescendants,
getFolderTree, getFolderParent, getObjectParents, and
getCheckedOutDocs.

• Object services: These services provide ID-based CRUD (Create, Read,
Update, and Delete) operations on the objects in a repository. The object
service methods are createDocument, createDocumentFromSource,
createFolder, createRelationship, createPolicy, createItem
(CMIS 1.1), getAllowableActions, getObject, getProperties,
getObjectByPath, getContentStream, getRenditions, updateProperties,
bulkUpdateProperties (CMIS 1.1), moveObject, deleteObject,
deleteTree, setContentStream, appendContentStream (CMIS 1.1), and
deleteContentStream.

• Multifiling services: These services are optional; they make it possible to
put an object into several folders (multifiling) or outside the folder hierarchy
(unfiling). This service is not used to create or delete objects. The multifiling
service methods are addObjectToFolder and removeObjectFromFolder.

• Discovery services: These services are used to look for queryable objects
within the repository (objects with the property queryable set to true).
The discovery service methods are query and getContentChanges.

Getting Started with CMIS

[18]

• Versioning services: These services are used to manage versioning of
document objects, other objects not being versionable. Whether or not a
document can be versioned is controlled by the versionable property in the
object type. The versioning service methods are checkOut, cancelCheckOut,
checkIn, getObjectOfLatestVersion, getPropertiesOfLatestVersion,
and getAllVersions.

• Relationship services: These services are optional and are used to retrieve
the relationships in which an object is participating. The relationship service
method is getObjectRelationships.

• Policy services: These services are optional and are used to apply or remove
a policy object to an object which has the property controllablePolicy set
to true. The policy service methods are applyPolicy, removePolicy, and
getAppliedPolicies.

• ACL services: These services are used to discover and manage the access
control list (ACL) for an object, if the object has one. The ACL service
methods are applyACL and getACL.

As we can see, there are quite a few services at our disposal and we will see how
they are used in the upcoming chapters. Note that when working with the different
types of protocols and formats that the CMIS standard supports, the preceding
method names might not be used. For example, if you wanted to get the children
objects for an object, you would use the getChildren method from the navigation
service. However, if we are using the AtomPub binding, this method would be
referred to as the Folder Children Collection and can be accessed via a URL that
looked similar to the following: .../children?id=....

Query language
The query method of the discovery service uses a query language that is based on
a subset of the well known SQL-92 standard for database queries. It also has some
ECM-specific extensions added to it. Each object type is treated as a logical relational
table and joins are supported between these, creating a relational view of the CMIS
model. The query language supports metadata and/or a full-text search
(FTS is optional).

The CMIS object type definitions contain some properties that are related to
searching, which are as follows:

• The queryable property should be set to true if the object type should be
searchable. Non-queryable object types are excluded from the relational view
and cannot appear in the FROM clause of a query statement.

Chapter 1

[19]

• The queryName property of a queryable object type is used to identify the
object type in the FROM clause of a query statement.

• The includedInSuperType property determines if an object subtype is
included in a query for any of its supertypes. So, it may be possible that
all subtypes are not included in the query for a type. If an object type is
not includedInSuperType, a direct query for the type is still supported
if it is defined as queryable. For example, Alfresco internally models
renditions as a subtype of cmis:document. Renditions are not marked as
includedInSuperType and so will not appear in queries for cmis:document.

The following example selects all properties for all documents but does not include
thumbnails (cm:thumbnail):

SELECT * FROM cmis:document

On the other hand, the following example includes cm:thumbnail and any subtypes
that are set as includedInSuperType=true:

SELECT * FROM cm:thumbnail

To select specific properties for all documents, use the following query:

SELECT cmis:name, cmis:description FROM cmis:document

To select all documents that have a name containing the text alfresco, we can use
the following:

SELECT cmis:name FROM cmis:document WHERE cmis:name LIKE
'%alfresco%'

To perform a Full-Text Search (FTS), we need to use the SQL-92 CMIS extension
CONTAINS() to look for any document with the text alfresco in it as follows:

SELECT * FROM cmis:document WHERE CONTAINS('alfresco')

The previous query will return all properties (columns) as we have used the
wildcard *. There are also some folder-related SQL-92 CMIS extensions to search in a
folder (IN_FOLDER) or folder tree (IN_TREE):

SELECT cmis:name FROM cmis:document WHERE IN_FOLDER('folder id')

The preceding query returns all documents in the folder with the identifier folder
id. A folder identifier would be the same as a node reference in the Alfresco world.
The following query returns all objects beneath the folder with folder id:

SELECT cmis:name FROM cmis:folder WHERE IN_TREE('folder id')

Getting Started with CMIS

[20]

Protocol bindings
We have covered the object model and the available repository services. We also
need to have a look at how we can actually communicate with the repository from
a remote client over the wire. This is where protocol bindings come into the picture.
There are three of them available: RESTful AtomPub, SOAP Web Services, and
RESTful Browser (CMIS 1.1). CMIS-compliant repositories must provide a service
endpoint (that is, the starting URL) for each of the bindings. The service URL and an
understanding of the CMIS specifications is all that a client needs to discover both
the capabilities and content of a repository.

RESTful AtomPub binding
The REST binding is built on the Atom Publishing Protocol—based on XML (refer to
http://tools.ietf.org/html/rfc5023)—with CMIS-specific extensions. In this
binding, the client interacts with the repository by acquiring the service document.
The client will request the service document using the URI provided by the vendor; in
the case of Alfresco, this URL has the format http://<hostname>:<port>/alfresco/
api/-default-/public/cmis/versions/1.1/atom (swap 1.1 with 1.0 to use that
version). From the returned service document XML, the client will choose a CMIS
collection, represented by a URI, and start accessing the repository by following the
links in returned XML documents. There are a number of collections of objects that we
can use in the service document. You can think of a collection as a URI pointing to
a place in the repository. The following are the service collections:

• Root collection: An HTTP GET for this collection will give us information
about all the objects at the top level in the repository (in Alfresco, that would
be all the content under /Company Home). Making an HTTP POST to this
collection adds objects to the top folder in the repository.

• Query collection: An HTTP POST to this collection executes a search.
• Checked-Out collection: An HTTP GET for this collection will give us a list

of all checked-out documents. To check-out a document, we POST to this
collection.

• Unfiled collection: This is a collection described in the service document to
manage unfiled documents, policies, and item objects.

• Type Children collection: This collection can be used to GET all base types
in the repository. One can then continue to navigate to the subtype hierarchy
from a base type and so on.

• Bulk Update collection (CMIS 1.1): This collection is used to upload multiple
objects to the repository at the same time.

Chapter 1

[21]

Requests and responses made via the AtomPub binding are in the form of an Atom
XML feed or an Atom XML entry. Usually, the response is extended to include
CMIS-specific tags within one of the CMIS-specific namespaces.

Web Service binding
The Web Service binding uses the SOAP protocol (http://www.w3.org/TR/soap/)
and maps directly to the CMIS domain model, services, and methods defined in
the specification. When using Alfresco, we can access a summary page with all the
services and their WSDL document links via the http://<hostname>:<port>/
alfresco/cmis URL. There are two types of XSD documents that make up the
WSDL for the services: one defines the data model and the other defines the message
formats. For authentication, the repository should support WS-Security 1.1 for
Username Token Profile 1.1 and has the option of supporting other authentication
mechanisms. A CMIS-compliant repository may grant access to some or all of its
services to unauthenticated clients. For content transfer, the repository should
support Message Transmission Optimization Mechanism (MTOM) and must
accept Base64 encoded content.

RESTful Browser binding (CMIS 1.1)
The Browser binding was introduced in Version 1.1 to make it easier to work with
CMIS from HTML and JavaScript within a web browser. Content can be managed
directly from HTML forms and responses from AJAX calls to CMIS services can be
fed directly into JavaScript widgets.

The Browser binding also uses a REST-based approach, but instead of AtomPub feed
and entry XML, it uses JavaScript Object Notation (JSON). (To learn more about
JSON, refer to http://tools.ietf.org/html/rfc4627). This binding is specifically
designed to support applications running in a web browser but is not restricted
to them. It is based on technologies such as HTML, HTML Forms, JavaScript,
and JSON. Importantly, it does not require a specific JavaScript library, but takes
advantage of the existing built-in capabilities of modern browsers.

While this binding is optimized for use in browser applications, it can also serve as
an easy-to-use binding in other application models. To access Alfresco repository
information via the Browser binding, use the http://<hostname>:<port>/
alfresco/api/-default-/public/cmis/versions/1.1/browser URL.

Getting Started with CMIS

[22]

Summary
In this chapter, we introduced the CMIS standard and how it came about. A couple
of use cases, such as one client accessing multiple repositories, were presented,
which illustrated the need for the standard. Then we covered the CMIS domain
model with its five base object types: document, folder, relationship, policy, and item
(CMIS 1.1.). We also learned that the CMIS standard defines a number of services,
such as navigation and discovery, which makes it possible to manipulate objects in
a content management system repository. And finally, we looked at how we can
communicate over the wire with a CMIS-compliant repository; this can be done with,
for example, a REST-based approach over HTTP.

So now that we know what CMIS is, let's take it for a spin. In the next chapter, we will
start using it and see how we can manipulate objects in a CMIS-compliant repository.

Basic CMIS Operations
In this chapter, we will dig into the CMIS API and test it by calling a CMIS server
directly via HTTP, and it will respond in XML or JSON depending on whether we are
using the AtomPub binding or the Browser binding. We will try out most of the common
operations that would be normal to perform against a CMS system such as follows:

• Authenticating and connecting to the server
• Fetching repository information including repository ID and root-folder URL
• Listing the content of a folder
• Listing the content types that are available
• Reading content metadata and downloading content
• Creating, updating, and deleting folders and files

This chapter is particularly useful for those who cannot, for some reason, use a
third-party library that abstracts the inner workings of the CMIS interface. So if you
cannot use any of the libraries from the Apache Chemistry project, this chapter will
be helpful as it will tell you how to interact with any CMIS-compliant server using
only HTTP and XML or JSON.

This chapter will also be very useful if you are using, for example, the OpenCMIS
Java library from the Apache Chemistry project as we will go through and explain
a lot of the capability and object properties.

The REST-based AtomPub binding and Browser binding will be used to demonstrate
how the CMIS API is used. We will not cover the Web Service binding. Each functional
area will first start with a general description on the CMIS service, and then there will
be one section for AtomPub followed by a section for the Browser binding.

You can choose to follow only the AtomPub examples if they are of more interest to
you. Maybe you are not yet interested in the new features of CMIS 1.1 as this version
was approved recently in May 2013 and your content management server might not
support it yet. In that case, you can skip the Browser binding sections of this chapter.

Basic CMIS Operations

[24]

Setting up a CMIS server
Before we start, we are going to need a CMIS server to talk to. There are a number
of ways to get access to a CMIS server. You can, for example, install your own or
use one that is available on the Internet. Actually, it is best to install your own so
that you can have some control over it and you have the confidence that there are
not loads of other users doing stuff at the same time as you.

We will focus on the Alfresco content management server in this book, but all the
exercises should work with any other CMIS-compliant server too. However, if you
use another CMIS server, remember that it will have a different entry point URL
than Alfresco's (different from, for example, http://localhost:8080/alfresco/
cmisatom).

Installing your own CMIS server
This book is about Alfresco and CMIS, so we will use the Alfresco CMS server
when working with CMIS. The quickest way to get going with your own Alfresco
installation is to download the full installation file of the Community version, which
is available at http://downloads.alfresco.com. After you have downloaded the
installation file, execute it and choose the default options for the questions you are
asked during the installation process.

This will install Apache Tomcat with all the Alfresco web application files that you
need. It will also install a local PostgreSQL database and a Java SDK. Also, there is a
start script in the installation directory if you are on Linux; if you are on Windows or
OSX, there is a special management console where you can start and stop the server
and database. If you have started the server, you can check whether it is working by
opening a browser and entering the http://localhost:8080/alfresco/cmisatom
URL, which should prompt you to download the service document for the AtomPub
CMIS binding.

Using cmis.alfresco.com
If you don't want to install a CMIS server on your computer, then another option is
to use a freely available Alfresco server on the Internet. This server is located at the
http://cmis.alfresco.com URL. To test whether it works, enter the
http://cmis.alfresco.com/cmisatom or the http://cmis.alfresco.com/
cmisbrowser URLs. When using this server, remember that there are other people
using it too. So, there might be a lot more items in the responses than you expected.

Chapter 2

[25]

Setting up a tool to make HTTP requests
So we now have an Alfresco CMIS server that we can talk to. Next, we need a tool
that can be used to make HTTP requests to the server. We are going to test the
AtomPub and Browser CMIS bindings, which are based on the HTTP protocol and
the back and forth sending of XML and JSON.

One really good tool that can be used for this is cURL; it is available for most
platforms. On my Ubuntu laptop, I can just use the #sudo apt-get install curl
command to install it. On Windows, you can download cURL from http://curl.
haxx.se/download.html. If you are on a Mac, then Apple has a different version
of cURL as part of the developer tools; it's also available through Homebrew using
brew install curl.

Later on, in this chapter, we will also look at using the Chrome browser to view XML
and JSON responses and some other command-line tools to parse and display XML
and JSON.

Authenticating with the repository
When using the AtomPub binding or the Browser binding, authentication is
delegated to the transport protocol, which is HTTP. All CMIS-compliant servers
must, at the very least, support client authentication using the HTTP Basic
authentication schema. We will use this in the following examples. If the server is
Alfresco, the alternative is to use the Alfresco login service. As this is not supported
by other servers, we will stick to the HTTP Basic authentication, which is portable.

The curl tool can handle Basic Auth for us automatically; we just have to pass the
username and password, as follows, with the -u switch when we use curl:

$ curl -u admin:admin

If you are going to work only with Alfresco, you can log in and get a ticket that you
can use in subsequent calls as follows:

$ curl
"http://localhost:8080/alfresco/service/api/login?u=admin&pw=admin"

<?xml version="1.0" encoding="UTF-8"?>

<ticket>TICKET_39ea5e46e83a6d6e43845182f4254f9de50402fb</ticket>

You should actually never use this call in plain text; it is better to use HTTPS as follows:

$ curl -k
"https://localhost:8443/alfresco/service/api/login?u=admin&pw=admin"

Basic CMIS Operations

[26]

The ticket that is returned from the login call can then be used in any subsequent call
by specifying it as the password for the user and empty username as follows:

$ curl –k -u :TICKET_c49714aed211711e78ac983a11cd63f239f18223
"https://localhost:8443/alfresco/cmisatom"

It is also possible to set the username as ROLE_TICKET. The –k option allows curl to
perform insecure SSL connections and transfers.

Getting repository information
To execute any other operation against a CMIS repository, we first need to find out
its identifier, access points, and capabilities. The identifier is used when we want to
connect and get a session to work within. It is also important to know the capabilities
of a CMIS server, as not all requirements in the CMIS specification are mandatory,
and the capabilities tell us what the repository supports and what it doesn't.
The access points tell us how to, for example, get access to the top-level folders in
the repository. All this information is accessible via the getRepositoryInfo
service call.

Before we look at how to get repository information when using the AtomPub or
the Browser binding, we will walk through the different properties that we will
encounter and explain them. They are the same for all bindings, so it makes sense
to describe them before looking at protocol-specific stuff.

The repository ID, identified by the repositoryId property, is usually needed to
create a session when using client libraries such as the OpenCMIS Java library, which
we will cover in Chapter 5, Accessing a CMIS Server with a Java Client. Also, there
are a number of other properties that will tell you more about the product and the
repository, such as repositoryName, repositoryDescription, productName, and
productVersion.

The next couple of properties of interest are the rootFolderId and rootFolderUrl
properties, which give us the CMIS object ID, or node reference if you speak Alfresco
lingo, for the root folder in Alfresco and a URL to access it directly. The root folder in
Alfresco is referred to as /Company Home, and we will see in a bit how we can fetch
the child folders and files for it.

Another interesting property is the cmisVersionSupported property, which basically
tells us whether we can use the Browser binding completely or not. However, the best
way to find out whether a specific Version 1.1 feature is supported is to try it out with
your server. The reason for this is that some earlier versions of content management
servers, such as Alfresco, might say that they support only Version 1.0 even if they
actually support most of the v1.1 Browser binding features.

Chapter 2

[27]

Next, we will come to properties that indicate which functionality is supported;
for example, the changesIncomplete property. If it is set to true, it means that the
change log includes all the changes made since a particular point in time but not all
the changes ever made. This property is only relevant if the capabilityChanges
property in the capabilities section is not none (see the following table for more
information on capabilities). The changesOnType property indicates which CMIS
base object types will be included in the change log. Here, valid values are any
combination of the five basic CMIS object types—cmis:folder, cmis:document,
cmis:relationship, cmis:policy, and cmis:item (available in CMIS 1.1).

The principalAnonymous property tells us the username for the guest user in
Alfresco (that is, guest), and the principalAnyone property contains what the
anyone group is called within Alfresco (that is, GROUP_EVERYONE).

The repository capabilities can be found in the capabilities section, and they
look something like the following code snippet when called via AtomPub:

<cmis:capabilities>
 <cmis:capabilityACL>manage</cmis:capabilityACL>
 <cmis:capabilityAllVersionsSearchable>false
 </cmis:capabilityAllVersionsSearchable>
 <cmis:capabilityChanges>none</cmis:capabilityChanges>
 <cmis:capabilityContentStreamUpdatability>anytime
 </cmis:capabilityContentStreamUpdatability>
<cmis:capabilityGetDescendants>true</cmis:capabilityGetDescendants>
<cmis:capabilityGetFolderTree>true</cmis:capabilityGetFolderTree>
 <cmis:capabilityMultifiling>true</cmis:capabilityMultifiling>
<cmis:capabilityPWCSearchable>false</cmis:capabilityPWCSearchable>
<cmis:capabilityPWCUpdatable>true</cmis:capabilityPWCUpdatable>
 <cmis:capabilityQuery>bothcombined</cmis:capabilityQuery>
 <cmis:capabilityRenditions>read</cmis:capabilityRenditions>
 <cmis:capabilityUnfiling>false</cmis:capabilityUnfiling>
 <cmis:capabilityVersionSpecificFiling>false
 </cmis:capabilityVersionSpecificFiling>
 <cmis:capabilityJoin>none</cmis:capabilityJoin>
</cmis:capabilities>

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Basic CMIS Operations

[28]

We will go through these properties in more detail in their related sections.
However, some of these properties of the capabilities are not related to anything
we will cover in this chapter, so let's have a look at them now:

Capability Description Valid options
capabilityChanges This indicates the level

of changes (if any)
that the repository
exposes via the
getContentChanges
service.

• none: The repository does not
support the change log feature

• objectidsonly: The change
log can return only the object
IDs for changed objects in the
repository and an indication
of the type of change; not
details of the actual change

• properties: The change
log can return the properties
and object ID for the changed
objects

• all: The change log can
return the object IDs for
changed objects in the
repository and more
information about the actual
change

capabilityRenditions This indicates whether
or not the repository
exposes the renditions
of the document or
folder objects.

• none: The repository does not
expose renditions at all

• read: Renditions are
provided by the repository
and are readable by the client

The following capabilities' properties are also related to functionality that we do not
cover in this chapter, but it is good to know about them:

Capability Description Valid options
capabilityMultifiling This is the ability of

an application to file
a document or other
fileable objects in more
than one folder.

[true | false]

capabilityUnfiling This is the ability of an
application to exclude
a document or other
fileable objects not
filed in any folder.

[true | false]

Chapter 2

[29]

Capability Description Valid options
capabilityVersionSpecificFiling This is the ability

of an application
to file individual
versions (that is, not
all versions) of a
document in a folder.

[true | false]

Some CMIS 1.1-related properties are not seen in the capabilities section when you
are using a CMIS 1.0 server, and we will have a look at them now. One of the major
new features in Version 1.1 is the possibility to create new types via the API. Until
now, you had to bootstrap new types in an XML file for Alfresco to recognize them.

The related CMIS 1.1 capabilities are as follows:

Capability Description Valid options
capabilityCreatable
PropertyTypes

(available in CMIS 1.1)

A list of all
property data
types that can
be used by a
client to create or
update an object
type definition

capabilityNewTypeSettable
Attributes

(available in CMIS 1.1)

This capability
indicates which
object type
attributes can be
set by a client
when a new
object type is
created.

This capability is a set of
Booleans; there is one for each of
the following attributes:
id, localName,
localNamespace,
displayName, queryName,
description, creatable,
fileable, queryable,
fulltextIndexed,
includedInSupertypeQuery,
controllablePolicy, and
controllableACL.

Basic CMIS Operations

[30]

Repository information via the AtomPub binding
To access repository information via the AtomPub protocol, we just need to perform
an HTTP GET method on the http://localhost:8080/alfresco/cmisatom URL
as follows:

$ curl -u admin:admin http://localhost:8080/alfresco/cmisatom

This brings back the so-called service document, which contains all the repository
information that we have just looked at in the previous section. However, it also
contains something called collections that are entry points to the repository for the
root folder's children, the supported base objects types, checked out documents, and
so on. The service document is an XML file that might appear a bit daunting at first,
but so long as you know what you are looking for, it is not that bad.

To get the repository ID directly, you could execute the following command on
a Unix system:

$ curl -u admin:admin http://localhost:8080/alfresco/cmisatom |
xmlstarlet sel -T -t -m '//cmis:repositoryId' -c . -n

f0ebcfb4-ca9f-4991-bda8-9465f4f11527

The xmlstarlet command-line tool (for more information, refer to http://xmlstar.
sourceforge.net/) is great for parsing XML with XPath and extracting the properties
that we are interested in. On a Debian-based system, it could be installed with $ sudo
apt-get install xmlstarlet. The sel option tells xmlstarlet that we want to
query the XML with XPath, the –T option sets the output to text instead of XML,
and the –t option specifies a query template with the –m option for XPath match
expression. In this case, the XPath expression is //cmis:repositoryId, and this
means that xmlstarlet will search for an element with the name repositoryId in
the cmis namespace anywhere (because of //) in the XML file. The –c option prints
a copy of the XPath expression. The . operator represents the XML file piped from
the curl execution, and –n puts a new line at the end.

If xmlstarlet is not available on your system, you could also extract the repository
ID with curl and grep as follows:

$ curl -u admin:admin http://localhost:8080/alfresco/cmisatom | grep
-o "cmis:repositoryId.*repositoryId"

cmis:repositoryId>f0ebcfb4-ca9f-4991-bda8-
9465f4f11527</cmis:repositoryId

If you wanted to check what CMIS version is supported by your repository,
you could use the following command:

Chapter 2

[31]

$ curl -u admin:admin http://cmis.alfresco.com/cmisatom | xmlstarlet
sel -T -t -m '//cmis:cmisVersionSupported' -c . -n

1.0

I am accessing the public Alfresco repository on the Internet.

You could extract most of the other properties by requesting the service document
and then use XPath to extract them as specified earlier. For example, to check the
searching capabilities of the repository, make the following request:

$ curl -u admin:admin http://localhost:8080/alfresco/cmisatom |
xmlstarlet sel -T -t -m '//cmis:capabilityQuery' -c . -n

Bothcombined

The meaning of Bothcombined is that both full-text search and metadata search are
supported by the server.

Repository information via the Browser binding
To access the repository information via the Browser binding, we just need to do an
HTTP GET on the http://localhost:8080/alfresco/cmisbrowser URL as follows:

$ curl -u admin:admin http://localhost:8080/alfresco/cmisbrowser

This brings back a JSON file with all the repository information that was described
in the Getting repository information section.

To get the repository ID directly, you can execute the following command on
a Unix system:

$ curl -u admin:admin http://localhost:8080/alfresco/cmisbrowser |jq
'.[] | .repositoryId'

"f0ebcfb4-ca9f-4991-bda8-9465f4f11527"

In the preceding command, another useful command-line tool called jq is used to
extract properties from the returned JSON. In this case, we tell it to grab the first
member object (the response starts with something like { "f0ebcfb4-ca9f-4991-
bda8-9465f4f11527": {…) and then inside this object, we grab the repositoryId
property value. As the Alfresco server contains only a single repository the response
object is made up of one member named with the repository identifier, which
contains information about the repository. One of the properties for the repository
is repositoryId. So you can actually get to the repository identifier from two
different places.

Basic CMIS Operations

[32]

The jq tool can be installed on a Unix-based system as follows:

$ mkdir jq

$ cd jq/

$ wget http://stedolan.github.io/jq/download/linux64/jq

$ chmod +x jq

$ sudo ln -s /home/mbergljung/apps/jq/jq /usr/bin/jq

If you wanted to check the CMIS version that is supported by your repository, you
could use the following command:

I am accessing the Alfresco repository on the Internet.

$ curl -u admin:admin http://cmis.alfresco.com/cmisbrowser |jq '.[] |
.cmisVersionSupported'

"1.0"

Here is an example of an Alfresco installation that supports some of the features of
Version 1.1 (that is, implementation was done before Version 1.1 was approved) but
actually returns the supported version as 1.0. So it is always worth trying out the 1.1
features even if this property returns 1.0.

You could extract most of the other properties by requesting the JSON document and
then the jq tool for them as mentioned previously. For example, to check the search
capabilities of the repository make the following request:

$ curl -u admin:admin http://localhost:8080/alfresco/cmisbrowser |jq '.[]
| .capabilities.capabilityQuery'

"bothcombined"

Remember to replace the f0ebcfb4-ca9f-4991-bda8-9465f4f11527
repository ID with one that matches your server in the rest of this chapter.

Listing the children of the root folder
After we have the information about the repository via the getRepositoryInfos
service, we would typically want to access some folders and files in it. First, you
would usually access the children of the top-level folder (also called root folder) in
the repository, and this can be done via the getChildren service. This folder is called
/Company Home in the Alfresco world.

Chapter 2

[33]

The getChildren request returns a list of all the folders and files contained in a
particular folder. This call has to be supported by the repository, but there are
other navigation-related service calls too that might or might not be supported. The
getDescendants call will return all the children of a folder to a specified depth. The
getFolderTree call will return a complete folder tree to a specified depth (note that
only folder objects are returned).

The repository information's call will return information on the navigation service
calls that are supported besides the getChildren request:

Capability Description Valid options
capabilityGetDescendants This is the ability of an

application to enumerate
the descendants of a folder
via the getDescendants
service call.

[true | false]

capabilityGetFolderTree This is the ability of an
application to retrieve
the folder tree via the
getFolderTree service
call.

[true | false]

capabilityOrderBy

(available in CMIS 1.1)
Indicates the ordering
capabilities of the
repository.

• none: Ordering is
not supported

• common: Only
common CMIS
properties are
supported

• custom: Common
CMIS properties
and custom object
type properties are
supported

All the properties of a content item are returned in the result from a navigation
service call such as getChildren. (To return specific properties only, see the Optional
parameters when listing the children of a folder section.) Each property is a named and
typed container for zero or more values. In the AtomPub binding, a property that has
no value is said to be in a value not set state, and it cannot have a value of null.
This is not true for the Browser binding where the property value would be set to
null in the JSON result.

There are a number of data types that can be used for a property in CMIS, including
string, boolean, decimal, integer, datetime, uri, id, and html. All properties,
like objects, must have a queryName attribute that can be used in queries.

Basic CMIS Operations

[34]

The following table explains the most common CMIS properties for folders
and documents:

Property Description Data type
cmis:allowedChildObjectTypeIds This lists all the types of child

objects that a folder can contain.
For example, cmis:folder and
cmis:document.
If this value is not set, then the
folder can contain any content.

ID

cmis:objectTypeId This is the type of the
content item, for example,
cmis:folder, and can also be
a custom type from a custom
document model such as
ixxus:itDoc.
To see the base object type of the
item, see cmis:baseTypeId.

ID

cmis:path Path from the repository root
to a folder. For example, /Data
Dictionary.

String

cmis:name The name of the content item;
basically, the filename.

String

cmis:creationDate The date and time when the
content item was created.

DateTime

cmis:changeToken Opaque token used for optimistic
locking and concurrency
checking.
If a repository provides a value
for this property for a content
item, then all the invocations
of the update method on
that item (for example,
updateProperties) will
provide the value of the property
as an input parameter. The
repository will then throw an
updateConflictException if
the value specified for the change
token does not match the change
token value for the object being
updated.

String

Chapter 2

[35]

Property Description Data type
cmis:lastModifiedBy The username of the user who

last modified the content item.
String

cmis:createdBy The username of the user who
created the content item.

String

cmis:objectId The repository-specific unique
identifier for the content item. In
Alfresco, this would be a node
reference. This ID will be system
generated.

ID

cmis:baseTypeId The base object type for this
content item will be one of
the following: cmis:folder,
cmis:document,
cmis:relationship,
cmis:policy, and cmis:item.

ID

alfcmis:nodeRef Alfresco-specific, non-CMIS
standard property that contains
the Alfresco node reference.

ID

cmis:parentId This is the parent content item
ID. For example, this would be
the parent folder node reference
in Alfresco.

ID

cmis:lastModificationDate The date and time when the
content item was last modified.

If the content item is a document (that is, cmis:baseTypeId is cmis:document),
there would be a number of additional properties that you would see in the result.
These properties can be divided into two groups. The properties that have to do with
versioning, only the cmis:document types, can be versioned. The properties that
are related to streaming content, only the cmis:document types, can have physical
content. We will look at these properties in the upcoming sections.

Basic CMIS Operations

[36]

Listing the children of the root folder with the
AtomPub binding
When using the AtomPub binding to list the folders and documents under the
root folder, we have to use the root folder collection and make a GET request on its
URL. The part of the service document that contains the root collection URL looks
something like the following code snippet:

<app:collection href="http://cmis.alfresco.com/cmisatom/bb212ecb-
122d-47ea-b5c1-128affb9cd8f/children?id
=workspace%3A%2F%2FSpacesStore%2F67f87d00-a2cd-4668-9644-
d7a130435045">
 <cmisra:collectionType>root</cmisra:collectionType>
 <atom:title type="text">Root Collection</atom:title>
 <app:accept>application/atom+xml;type=entry</app:accept>
 <app:accept>application/cmisatom+xml</app:accept>
</app:collection>

Execute the following command to get the root folder collection URL from the
service document:

$ curl -u admin:admin http://cmis.alfresco.com/cmisatom | xmlstarlet
sel -t -m "//app:collection[cmisra:collectionType='root']" -m "@href"
-v . -n

http://cmis.alfresco.com/cmisatom/bb212ecb-122d-47ea-b5c1-
128affb9cd8f/children?id=workspace%3A%2F%2FSpacesStore%2F67f87d00-
a2cd-4668-9644-d7a130435045

With this information, we can now list the root folder contents by using the preceding
URL specified in the href attribute of the app:collection element as follows:

$ curl -u admin:admin "http://cmis.alfresco.com/cmisatom/bb212ecb-122d-
47ea-b5c1-128affb9cd8f/children?id
=workspace%3A%2F%2FSpacesStore%2F67f87d00-a2cd-4668-9644-
d7a130435045" | xmllint --format -

Here, another handy Unix command-line utility called xmllint is used to pretty-
print the XML output (for more information, refer to http://xmlsoft.org/
xmllint.html).

If you were not intimidated by the service document XML, you probably will be
when you look at the result of the root collection. The XML response is massive
(specifically if you are accessing cmis.alfresco.com), and you need to know where
to dig in order to find the information you are looking for. The structure and content
of the returned Atom feed is as follows for a standard Alfresco installation:

Chapter 2

[37]

<atom:feed
 ...
 <atom:title>Company Home</atom:title>
 ...
 <cmisra:numItems>5</cmisra:numItems>
 ...
 <atom:link rel="describedby"
 <atom:link rel="http://docs.oasis-
 open.org/ns/cmis/link/200908/allowableactions" ...
 <atom:link rel="http://docs.oasis-
 open.org/ns/cmis/link/200908/foldertree" ...
 <atom:link rel="http://docs.oasis-
 open.org/ns/cmis/link/200908/acl" ...
 <atom:link rel="http://docs.oasis-
 open.org/ns/cmis/link/200908/relationships"
 ...
 <atom:entry>
 ...
 <atom:title>Data Dictionary</atom:title>
 ...
 <cmis:properties>
 <cmis:propertyId queryName="cmis:objectTypeId"
 displayName="Object Type Id"
 localName="objectTypeId"

propertyDefinitionId="cmis:objectTypeId">
 <cmis:value>cmis:folder</cmis:value>
 </cmis:propertyId>
 More properties...
 <aspects:aspects ...
<appliedAspects>P:app:uifacets</appliedAspects>
 Properties...
 <appliedAspects>P:cm:titled</appliedAspects>

<appliedAspects>P:sys:localized</appliedAspects>
 </aspects:aspects>
 </cmis:properties>
 </cmisra:object>
 <atom:link rel="up" ...
 <atom:link rel="down" ...
 Other links...
 </atom:entry>
 <atom:entry>...<atom:title>Guest Home
 </atom:title>...</atom:entry>
 <atom:entry>...<atom:title>User Homes

Basic CMIS Operations

[38]

 </atom:title>...</atom:entry>
 <atom:entry>...<atom:title>Imap Attachments
 </atom:title>...</atom:entry>
 <atom:entry>...<atom:title>Sites</atom:title>...</atom:entry>
</atom:feed>

First, the XML document tells us that we have a listing of the Company Home folder
(atom:title) that contains five items (cmisra:numItems). It then continues with a
number of links that can be used to find more information about the Company Home
folder. We could, for example, find the access control list by getting the /acl link
URL as follows:

$ curl -u admin:admin
"http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/acl?id=workspace%3A%2F%2FSpacesStore%2Fa5c45ceb-2603-
491f-b2c9-6ff7d6579483" | xmllint --format -

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ns2:acl xmlns="http://docs.oasis-open.org/ns/cmis/messaging/200908/"

 xmlns:ns2="http://docs.oasis-open.org/ns/cmis/core/200908/"

 xmlns:ns3="http://docs.oasis-open.org/ns/cmis/restatom/200908/">

 <ns2:permission>

 <ns2:principal>

 <ns2:principalId>GROUP_EVERYONE</ns2:principalId>

 </ns2:principal>

 <ns2:permission>cmis:read</ns2:permission>

 <ns2:direct>true</ns2:direct>

 </ns2:permission>

</ns2:acl>

The response indicates that everyone has read access to the Company Home folder
in Alfresco. This is because GROUP_EVERYONE has the cmis:read permission set.
Next, there will be an atom:entry element for each child document or folder under
Company Home.

Each Atom entry contains the name of the folder or document and all the properties
for it. The properties section will also contain any aspects that have been set for the
content item. (Aspects are specific to Alfresco and are not part of the CMIS standard;
they are represented as secondary types in an Alfresco server version that supports
the CMIS 1.1 specification.)

At the end of the feed entry, you will have links to navigate in different directions
from the folder or document. To list the contents of the Document Library folder,
you would use the down link URL. Following the up link URL will give you an Atom
feed entry for just the Company Home folder.

Chapter 2

[39]

This is basically how you navigate around in the repository when using the
AtomPub binding.

Listing the children of the root folder with the
Browser binding
When using the Browser binding to list the folders and documents under the root
folder, we have to use the root-folder URL that can be found in the JSON document
returned in response to the http://localhost:8080/alfresco/cmisbrowser call.
You can fetch the rootFolderUrl property as follows:

$ curl -u admin:admin http://localhost:8080/alfresco/cmisbrowser |jq '.[]
| .rootFolderUrl'

"http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/root"

With the root-folder URL, you can now list the root folder contents by using the URL
as follows:

$ curl -u admin:admin "http://localhost:8080/alfresco/cmisbrowser/
f0ebcfb4-ca9f-4991-bda8-9465f4f11527/root" | jq '.'

The root folder (that is, Company Home in Alfresco) JSON response looks as follows:

{
 "hasMoreItems" : false,
 "objects" :
 [
 {
 "object" :
 {
 "properties" :
 {
 "cmis:objectTypeId" :
 {
 "id" : "cmis:objectTypeId",
 "localName" : "objectTypeId",
 "queryName" : "cmis:objectTypeId",
 "value" : "cmis:folder",
 "type" : "id",
 "displayName" : "Object Type Id",
 "cardinality" : "single"
 },
 "cmis:objectId" : { …
 "value" : "workspace://SpacesStore/a89c38dd-

Basic CMIS Operations

[40]

 fb27-4016-a1aa-7c8e1c9e9d37", … },
 "cmis:path" : { … "value" : "/Data
 Dictionary", … },
 "cmis:name" : { … "value" : "Data
 Dictionary", … },
 "alfcmis:nodeRef" : { … "value" :
 "workspace://SpacesStore/a89c38dd-fb27-4016-
 a1aa-7c8e1c9e9d37", … },
 "aspects" : { "appliedAspects" :
 "P:sys:localized" ...
 "cmis:allowedChildObjectTypeIds" : { …
 "value" : null, … },
 "cmis:creationDate" : { … "value" :
 1352564716280, … },
 "cmis:changeToken" : { … "value" : null, …
 },
 "cmis:lastModifiedBy" : { … "value" :
 "System", … },
 "cmis:createdBy" : { … "value" : "System", …
 },
 "cmis:baseTypeId" : { … "value" :
 "cmis:folder", … },
 "cmis:lastModificationDate" : { … "value" :
 1352564726570, … },
 "cmis:parentId" : { … "value" :
 "workspace://SpacesStore/a5c45ceb-2603-491f-
 b2c9-6ff7d6579483", … }
 }
 }
 },
 {
 "object" : { "properties" : { ... "Guest Home" ...
 "object" : { "properties" : { ... "User Homes" ...
 "object" : { "properties" : { ... "Imap Attachments" …
 "object" : { "properties" : { ... "Sites" …
 }
 }
],
 "numItems" : 5
}

The JSON response that we get for the root folder listing is a lot easier to grasp than
the XML returned from an AtomPub call requesting the same thing. Also, it can be
easily fed into a JavaScript UI widget such as a list view or tree view.

Chapter 2

[41]

We can see that there is one top JSON array called objects that contains all the returned
folders and documents. Each content item is represented by a JSON property called
object which in turn has a property called properties that is a list of all the properties
for the content object.

You might be familiar with the CMIS properties by now, and you would be able to
recognize, for example, cmis:name, the name of the file or folder and cmis:objectId,
which represents the unique object/content identifier for the file or folder (node
reference in Alfresco). However, there are some non-standard additions also such as
alfcmis:nodeRef that contain the Alfresco node reference for the content item.
Then, there is the aspects property that contains any applied Alfresco aspects to the
content item.

Note the format of the P:sys:localized aspect type. In Alfresco, all
aspect types visible through CMIS are prefixed with P, document types
are prefixed with D, and folder types are prefixed with F.

The getChildren response with the Browser binding differs from the response you
get when you use the AtomPub binding. It does not contain any links to navigate up
or down in the folder hierarchy. Instead, you just supply the folder path in the URL.
For example, to list the /Company Home/Data Dictionary folder contents, use the
following command:

$ curl -u admin:admin
"http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/root/Data%20Dictionary" | jq '.'

A couple of things to be noted here; always start with rootFolderUrl and then add
the path. Make sure that you use a valid encoded URL (for example, %20 instead of
space) for the call to work. If you want to access a document, the same technique can
be used as follows:

$ curl -u admin:admin
http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/root/Data%20Dictionary/Email%20Templates/invite/new-
user-email.html.ftl

Note that you do not get back the metadata for the document but the actual content.
This is because getting a document returns the content and getting a folder returns
its children by default. This can be controlled by a parameter called cmisselector.
Setting this parameter to properties in the last two calls will return the metadata
for the document. The same holds true for a folder; it will return the metadata
instead of the children:

Basic CMIS Operations

[42]

$ curl -u admin:admin
"http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/root/Data%20Dictionary/Email%20Templates/invite/new-
user-email.html.ftl?cmisselector=properties" | jq '.'

We will look at the cmisselector parameter in more detail later in this chapter.

Optional parameters when listing the
children of a folder
The getChildren service call allows us to specify a number of optional parameters
at request time. To control the number of content items that are being returned,
one can use the following parameters in the request URL:

• maxItems: This is the maximum number of items to return in a response.
The default is repository-specific and Alfresco will, for example, return all
content items if you do not specify this parameter.

• skipCount: This is the number of potential results that the repository will
skip/page over before returning any results. This defaults to zero.

These paging input parameters work in parallel with the following output
parameters in the response:

• hasMoreItems: This parameter will be true if the repository contains
additional items after those contained in the response, otherwise it will be
false. If true, a request with a larger skipCount or larger maxItems will
return additional results (unless the contents of the repository have changed).

• numItems: If the repository knows the total number of items in a result set,
it will include the number here.

It is also possible to specify which properties should be returned in the response
by using the filter parameter in the request (also works for the getDescendants
and getFolderTree service calls). This is very useful when you want to save
the bandwidth in, for example, a mobile usage scenario. When using the filter
parameter and specifying a filter such as cmis:name (that is, you want to return only
the name property for each content item), more properties will be returned than just
the cm:name property. This is because some properties such as cmis:objectTypeId,
cmis:objectId and cmis:baseTypeId are always returned no matter what filter
you specify.

Chapter 2

[43]

If you want to see what relationships a content item has with other content items, set
the includeRelationships parameter to one of the following values:

• none: No relationships are returned (default)
• source: Returns only relationships in which the objects returned are the source
• target: Returns only relationships in which the objects returned are the target
• both: Returns relationships in which the objects returned are the source or

the target

To see what actions can be executed against returned content items, set the
includeAllowableActions parameter to true.

Optional parameters when listing the children
of a folder with the AtomPub binding
Here is an example of how to return a listing of the root folder with a maximum of
ten items being returned, and we will only return the cmis:name property for each
item. We will also have all the relationships for each content item in the result to be
returned. Finally, allowable actions for each content item will also be returned:

$ curl -u admin:admin
http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/children?id=workspace%3A%2F%2FSpacesStore%2Fa5c45ceb-2603-
491f-b2c9-6ff7d6579483&filter=cmis:name&includeRelationships=
both&includeAllowableActions=true&maxItems=10

Basic CMIS Operations

[44]

Sometimes, it might be useful to try different combinations of parameters and be able
to view the result directly, without having to save the result for each request to a file
first and then open it in an editor. It is possible to do this with, for example, Google
Chrome having a plugin such as XML Tree. This would give us an immediate view
of the Atom feed response which is similar to the following screenshot:

Chapter 2

[45]

Here, we can see that the result is displayed directly as soon as we enter the URL
and press Enter. Also, the result is displayed in a nice format that is easy to view.

At the bottom of the result, we can see the values for the different allowable
actions. Most of these are quite self-explanatory. There are some allowable
actions that are false as Data Dictionary object is a folder, such as
cmis:canDeleteContentStream, cmis:canCheckOut, cmis:canCancelCheckOut,
cmis:canCheckIn, cmis:canSetContentStream, and cmis:canGetRenditions.

Optional parameters when listing the children
of a folder with the Browser binding
Here is an example of how to return a listing of the root folder with a maximum
of ten items returned, and we will only return the cmis:name property for each
item. We will also have all the relationships for each content item in the result to be
returned. Finally, allowable actions for each content item will be returned too:

$ curl -u admin:admin "http://cmis.alfresco.com/cmisbrowser/371554cd-
ac06-40ba-98b8-e6b60275cca7/root?includeAllowableActions=
true&includeRelationships=both&maxItems=10&filter=cmis:name"

Here we are accessing the public Alfresco installation on the Internet, so it is extra
important to specify the maximum number of items that we want returned.

Basic CMIS Operations

[46]

As with the AtomPub binding, it might sometimes be useful to try different
combinations of parameters and view the JSON result immediately without having
to save to a file and so on. It is possible to do this with, for example, Google Chrome
with a plugin such as JSONView for the developer tools. This would give us an
immediate view of the JSON response as shown in the following screenshot:

Chapter 2

[47]

Again, we can see that the JSON response is more comprehensible than the
corresponding Atom feed response.

Listing available types and subtypes
When we are working with a repository, it is important to be able to find out what
types are available so that we can classify documents and folders properly. One of
the first things to do in a CMS project is to design a domain-specific content model
so that content can be classified appropriately. A proper content model improves
the search capabilities and enables specific behavior to be implemented based on the
type of content.

The getTypeChildren service is used for listing types. This service call can also use
the paging parameters that the getChildren service call uses, such as maxItems.
The type listing will contain a type definition with information about each type.
From the type definition, we can determine whether new objects can be created from
this type (cmis:creatable), objects of this type are fileable (cmis:fileable) in a
folder, you can search for the objects of this type by including the type in the FROM
clause (cmis:queryable), and whether the content of objects of this type is indexed
and searchable via the CONTAINS() predicate (cmis:fulltextIndexed). We will
cover more about searching in the next chapter.

The type definition will also have information on whether the objects of this type can
have policies applied to them (cmis:controllablePolicy) and if the objects can be
controlled by access control lists (cmis:controllableACL).

Listing the types and subtypes with the
AtomPub binding
We can find the root types that are defined and supported by the repository by
fetching the types collection that was returned in the service document as follows:

<app:collection href=
 "http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-
 bda8-9465f4f11527/types">
 <cmisra:collectionType>types</cmisra:collectionType>
 <atom:title type="text">Types Collection</atom:title>
 <app:accept></app:accept>
</app:collection>

Basic CMIS Operations

[48]

Fetching this URL returns the base types, which would typically be cmis:folder,
cmis:document, cmis:relationship, and cmis:policy:

$ curl -u admin:admin
"http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/types" | xmllint --format -

Each type is returned in an Atom feed, and a type definition is available as follows:

<cmisra:type xsi:type="cmis:cmisTypeFolderDefinitionType"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns3="http://docs.oasis-open.org/ns/cmis/messaging/200908/">
 <cmis:id>cmis:folder</cmis:id>
 <cmis:localName>folder</cmis:localName>
 <cmis:localNamespace>
http://www.alfresco.org/model/cmis/1.0/cs01</cmis:localNamespace>
 <cmis:displayName>Folder</cmis:displayName>
 <cmis:queryName>cmis:folder</cmis:queryName>
 <cmis:description>Folder Type</cmis:description>
 <cmis:baseId>cmis:folder</cmis:baseId>
 <cmis:creatable>true</cmis:creatable>
 <cmis:fileable>true</cmis:fileable>
 <cmis:queryable>true</cmis:queryable>
 <cmis:fulltextIndexed>true</cmis:fulltextIndexed>
 <cmis:includedInSupertypeQuery>true
 </cmis:includedInSupertypeQuery>
 <cmis:controllablePolicy>false</cmis:controllablePolicy>
 <cmis:controllableACL>true</cmis:controllableACL>
</cmisra:type>

The Atom entry for a type also contains links to navigate to the subtypes. So in order
to get a listing of any cmis:folder subtypes supported by the repository, we have to
follow the down link:

<atom:link rel="down"
href="http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-
bda8-9465f4f11527/types?typeId=cmis%3Afolder" type=
"application/atom+xml;type=feed"/>

In this way, you can discover the complete type hierarchy supported by the repository.
If you list the folder subtypes with the preceding URL, you will get a lot of subtypes
such as F:cm:systemfolder, F:pub:DeliveryChannel, and F:dl:dataList back.
When using Alfresco, all custom types have a prefix in front of the namespace
indicator. Custom Alfresco folder types have the F: prefix. Any custom document
subtypes would have a D: prefix.

Chapter 2

[49]

Listing the types and subtypes with the
Browser binding
To list the types supported by the repository, the repositoryUrl property is used
with the cmisselector parameter set to typeChildren. To list all the base types,
execute the following request:

$ curl -u admin:admin
"http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527?cmisselector=typeChildren" | jq '.'

This returns a JSON structure with a type definition for each type that looks similar
to the following code snippet:

{
hasMoreItems: false,
types: [
{
 fulltextIndexed: true,
 localName: "policy",
 fileable: false,
 includedInSupertypeQuery: true,
 queryName: "cmis:policy",
 controllablePolicy: false,
 creatable: false,
 id: "cmis:policy",
 controllableACL: false,
 description: "Policy Type",
 localNamespace: "http://www.alfresco.org/model/cmis/1.0/cs01",
 displayName: "Policy",
 baseId: "cmis:policy",
 queryable: true
},
...

To list subtypes for one of the base types, such as cmis:folder, an extra parameter
named typeId is used to specify the type we want to return subtypes for. So, to
return subtypes for cmis:folder, we would use the following call:

$ curl -u admin:admin
"http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527?cmisselector=typeChildren&typeId=cmis:folder" | jq '.'

To list subtypes for an Alfresco custom type, we need to use a special prefix
for folder types (F:) and documents (D:). For example, to list subtypes for
myc:document, which is a custom document type in this example, we would have to
use the following call:

Basic CMIS Operations

[50]

$ curl -u admin:admin
"http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527?cmisselector=typeChildren&typeId=D:myc:document" | jq
'.'

It works in the same way to list subtypes for an Alfresco built-in subtype. For example,
to list dataList subtypes, execute the following command:

$ curl -u admin:admin
http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527?cmisselector=typeChildren&typeId=F:dl:dataList | jq '.'

Getting metadata and content
We now know how to list the contents of a folder. What we would want to do next
is to probably download content files and list metadata (that is, properties) for
individual content items.

Getting metadata and content with the
AtomPub binding
If we take a closer look at the end of the AtomPub service document (that is, the
response from http://localhost:8080/alfresco/cmisatom), we will find
sections with URI templates; one for getting metadata by ID, which is listed
as follows:

<cmisra:uritemplate>
<cmisra:template>
http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/id?id={id}&filter={filter}&includeAllowableActions=
{includeAllowableActions}&includeACL={includeACL}&includePolicyIds
={includePolicyIds}&includeRelationships={includeRelationships}
&renditionFilter={renditionFilter}
</cmisra:template>
<cmisra:type>objectbyid</cmisra:type>
<cmisra:mediatype>application/atom+xml;type=entry
</cmisra:mediatype>
</cmisra:uritemplate>

And another section for getting metadata by path, listed as follows:

<cmisra:uritemplate>
<cmisra:template>
http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/path?path={path}&filter={filter}

Chapter 2

[51]

&includeAllowableActions=
{includeAllowableActions}&includeACL={includeACL}&includePolicyIds={in
cludePolicyIds}&includeRelationships=
{includeRelationships}&renditionFilter={renditionFilter}
</cmisra:template>
<cmisra:type>objectbypath</cmisra:type>
<cmisra:mediatype>application/atom+xml;type=entry
</cmisra:mediatype>
</cmisra:uritemplate>

In these templates, the response from the URLs contains the metadata (that is,
properties such as name, created date, created by, and object ID) for the objects. For
example, to request the properties of an object by ID (that is, via node reference in
the Alfresco world), do as follows:

$ curl -u admin:admin
"http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/id?id=workspace%3A%2F%2FSpacesStore%2F13b534f3-374c-
4d56-a704-c0f1aec9aa06" | xmllint --format -

Requesting the metadata via an object path is done in a similar way as follows:

$ curl -u admin:admin
"http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/path?path=/MyFolder/helloworld.txt" | xmllint --format –

The path in this call does not include the root folder name (/Company
Home in Alfresco). Requesting metadata like this works for both folders
and documents.

To download content (that is, the content stream of bytes for a document) when
using the AtomPub binding, you would look for the atom:content element in the
Atom entry for the document (that is, in the metadata returned with either the object
by ID or object by path call). If you list the children of a folder, you will also get a
content element for each contained document, similar to when navigating via the up
or down link to a document:

<atom:content src="http://localhost:8080/alfresco/cmisatom/
f0ebcfb4-ca9f-4991-bda8-9465f4f11527/content/helloworld.txt?id=
workspace%3A%2F%2FSpacesStore%2F9113eee7-5b14-4868-9117-
b584e1293ba1%3B1.1" type="text/plain"/>

Basic CMIS Operations

[52]

Using this link downloads the document. Note that at the end of the link there is
version information. By default, the link will represent the latest version of the
document, which in this case is 1.1. And this means, you will be downloading
Version 1.1 of this document. If you wanted to download Version 1.0 of the
document, just change the version number at the end of the link to 1.0. The filename
helloworld.txt is used by the server to set a header, indicating what the filename
should be in the download dialog that will pop up if you do this from a browser.
The filename has no relation to what file to download in the repo; the object ID
determines this.

In the upcoming sections of this chapter, we will look at how to upload, update, and
delete content in the repository. Doing these kind of operations needs more than
just read permissions, so it might be useful to know how to get information about
the actions that the current user is allowed to perform on an object; basically, what
actions the users are allowed to do with the permissions they have in a certain folder
or on a certain document.

To see allowable actions, we can use an extra parameter named
includeAllowableActions in the object by ID or object by path call as follows:

$ curl -u admin:admin
"http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/path?path=/MyFolder/helloworld.txt&
includeAllowableActions=true" | xmllint --format -

<cmis:allowableActions>
<cmis:canDeleteObject>true</cmis:canDeleteObject>
<cmis:canUpdateProperties>true</cmis:canUpdateProperties>
<cmis:canGetProperties>true</cmis:canGetProperties>
<cmis:canGetObjectRelationships>true
</cmis:canGetObjectRelationships>
<cmis:canGetObjectParents>true</cmis:canGetObjectParents>
<cmis:canMoveObject>true</cmis:canMoveObject>
<cmis:canDeleteContentStream>true</cmis:canDeleteContentStream>
<cmis:canCheckOut>true</cmis:canCheckOut>
<cmis:canSetContentStream>true</cmis:canSetContentStream>
<cmis:canGetAllVersions>true</cmis:canGetAllVersions>
<cmis:canAddObjectToFolder>true</cmis:canAddObjectToFolder>
<cmis:canRemoveObjectFromFolder>true
</cmis:canRemoveObjectFromFolder>
<cmis:canGetContentStream>true</cmis:canGetContentStream>
<cmis:canGetAppliedPolicies>true</cmis:canGetAppliedPolicies>
<cmis:canCreateRelationship>true</cmis:canCreateRelationship>
<cmis:canGetRenditions>true</cmis:canGetRenditions>
<cmis:canGetACL>true</cmis:canGetACL>

Chapter 2

[53]

<cmis:canApplyACL>true</cmis:canApplyACL>
</cmis:allowableActions>

In this case, we used the Alfresco admin user who has full access to all operations in
the repository. So, if you cannot delete a folder or a document in the coming sections,
check the canDeleteObject and canDeleteContentStream properties, respectively,
and make sure that they are set to true for the user that is used to make the call.

Getting metadata and content with the
Browser binding
Getting content and metadata with the Browser binding is similar to how it's done
with the AtomPub binding. Both the object by ID and object by path operations
are available. When we have the root-folder URL (returned in the http://
localhost:8080/alfresco/cmisbrowser response we discussed earlier), the
template to get object metadata by ID will be similar to the following code:

<rootFolderUrl>?objectId=<objectId>&cmisselector=object

The code for getting metadata by path will be similar to the following:

<rootFolderUrl>/<object path>?cmisselector=object

The response from these URLs contains the metadata (that is, properties such as
name, created date, created by, and object ID) for the objects. For example, to request
the properties for an object by ID (that is, via node reference in the Alfresco world),
do as follows:

$ curl -u admin:admin
"http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/root?objectId=workspace%3A%2F%2FSpacesStore%2F9113eee7-
5b14-4868-9117-b584e1293ba1%3B1.1&cmisselector=object" | jq '.'

Requesting the metadata instead via an object path is done in a similar way as follows:

curl -u admin:admin
"http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/root/MyFolder/helloworld.txt?cmisselector=object " | jq
'.'

The path used in this call does not include the root folder name
(/Company Home in Alfresco). Requesting metadata like this works
for both folders and documents.

Basic CMIS Operations

[54]

To get content for a file when using the Browser binding is easy. Just use the same
URLs as used earlier without the cmisselector parameter. For example, in order to
get content by using path, do as follows:

 $ curl -u admin:admin
“http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/root/MyFolder/helloworld.txt

In this case, I am downloading the latest version of the /Company Home/MyFolder/
helloworld.txt file from Alfresco.

In the upcoming sections in this chapter, we will look at how to upload, update, and
delete content in the repository. Doing these kind of operations needs more than
just read permissions, so it might be useful to know how to get information about
the actions that the current user is allowed to perform on an object; basically, what
actions the users are allowed to do with the permissions they have in a certain folder
or on a certain document.

To see allowable actions, we can set cmisselector to allowableActions in the
object by ID or object by path call as follows:

curl -u admin:admin
"http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/root/MyFolder/helloworld.txt?cmisselector=
allowableActions" | jq '.'

{
 "canApplyACL": true,
 "canGetACL": true,
 "canGetRenditions": true,
 "canDeleteTree": false,
 "canCreateItem": false,
 "canCreateRelationship": true,
 "canCreateFolder": false,
 "canCreateDocument": false,
 "canGetChildren": false,
 "canRemovePolicy": false,
 "canGetAppliedPolicies": true,
 "canApplyPolicy": false,
 "canGetContentStream": true,
 "canRemoveObjectFromFolder": true,
 "canGetDescendants": false,
 "canGetFolderParent": false,
 "canGetObjectParents": true,
 "canGetObjectRelationships": true,

Chapter 2

[55]

 "canGetProperties": true,
 "canGetFolderTree": false,
 "canUpdateProperties": true,
 "canDeleteObject": true,
 "canMoveObject": true,
 "canDeleteContentStream": true,
 "canCheckOut": true,
 "canCancelCheckOut": false,
 "canCheckIn": false,
 "canSetContentStream": true,
 "canGetAllVersions": true,
 "canAddObjectToFolder": true
}

In this case, we used the Alfresco admin user that has full access to all operations in
the repository. So, if you cannot delete a folder or a document in the coming sections,
check the canDeleteObject and canDeleteContentStream properties, respectively,
and make sure that they are set to true for the user that is used to make the call.

When using the Browser binding, we can also get the repository to return an even
more compact JSON response of the properties by using a feature called succinct
representation of properties (this is unique to the Browser binding):

curl -u admin:admin
"http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/root?objectId=workspace%3A%2F%2FSpacesStore%2F9113eee7-
5b14-4868-9117-b584e1293ba1%3B1.1&cmisselector=object&succinct=true"
| jq '.'

This returns only one object named succinctProperties with each property
represented only by name and value:

{
 "succinctProperties": {
 "cm:title": [
 "Hello World!"
],
 "cm:description": [
 "This is the usual Hello World example"
],
 "cm:lastThumbnailModification": [
 "doclib:1387272471009",
 "webpreview:1391759148652"
],
 "ixdd:md5-digest": [
 "b7ec301cd62eb7e20912a15a7df74f5f"
],

Basic CMIS Operations

[56]

 "cmis:contentStreamFileName": "helloworld.txt",
 "cmis:lastModificationDate": 1391759148144,
 "cmis:description": null,
 "cmis:baseTypeId": "cmis:document",
 "cmis:isMajorVersion": false,
 "cmis:isImmutable": false,
 "cmis:objectId": "workspace://SpacesStore/9113eee7-5b14-4868-
 9117-b584e1293ba1;1.1",
 "cmis:checkinComment": null,
 "cmis:secondaryObjectTypeIds": [
 "P:ixdd:digestable",
 "P:cm:thumbnailModification",
 "P:cm:titled",
 "P:cm:copiedfrom",
 "P:rn:renditioned",
 "P:sys:localized"
],
 "cmis:changeToken": null,
 "cmis:creationDate": 1391758674403,
 "cmis:isLatestVersion": true,
 "cmis:versionLabel": "1.1",
 "cmis:versionSeriesId": "workspace://SpacesStore/9113eee7-
 5b14-4868-9117-b584e1293ba1",
 "cmis:isPrivateWorkingCopy": null,
 "cmis:versionSeriesCheckedOutId": null,
 "cmis:versionSeriesCheckedOutBy": null,
 "cmis:objectTypeId": "cmis:document",
 "cmis:contentStreamLength": 20,
 "cmis:isVersionSeriesCheckedOut": false,
 "cmis:lastModifiedBy": "admin",
 "cmis:createdBy": "admin",
 "alfcmis:nodeRef": "workspace://SpacesStore/9113eee7-5b14-
 4868-9117-b584e1293ba1",
 "cmis:isLatestMajorVersion": true,
 "cmis:contentStreamId": "store://2014/2/7/7/45/dfba1362-3ce4-
 4fdd-9c78-3af4abf32592.bin",
 "cmis:name": "helloworld.txt",
 "cmis:contentStreamMimeType": "text/plain"
 }
}

This can be particularly useful to manage HTTP forms and also if you need to
minimize the payload because of a low-bandwidth scenario. The usual properties
object will not be populated in this case.

Chapter 2

[57]

The following is a list of most of the values that can be specified for the
cmisselector parameter and the responses they generate:

• object: The properties (or metadata) for the object (extra parameters such
as filter, includeRelationships, includePolicyIds, renditionFilter,
includeACL, includeAllowableActions, and succinct)

• properties: The same as specifying object but response is not wrapped in
the properties property (extra parameters are filter and succinct)

• children: The child objects such as documents and subfolders (for
example, folders and documents) of a node (extra parameters are maxItems,
skipCount, filter, includeAllowableActions, includeRelationships,
renditionFilter, orderBy, includePathSegment, and succinct)

• allowedActions: The actions that current user is allowed to perform with
permissions currently set for him or her on the object in question

• relationships: The relationships/associations with other objects (extra
parameters are includeSubRelationshipTypes, relationshipDirection,
typeId, maxItems, skipCount, filter, includeAllowableActions, and
succinct)

• renditions: Other formats/renditions of the object such as thumbnails
and web previews (extra parameters are renditionFilter, maxItems, and
skipCount)

Creating, updating, and deleting content
After you have listed content (that is, CMIS objects) in the repository, you would
probably want to be able to create, update, and delete content. This is handled via
the CMIS object services.

The following table gives you an overview of the available object service calls that
are related to creating the content of different types:

Service call name Short
description

Long description

createDocument Creates
a document

Creates a document object of
the specified type (given by the
cmis:objectTypeId property) in the
(optionally) specified location.

createDocumentFromSource Copies
a document

Creates a document object as a copy
of the given source document in the
(optionally) specified location.

Basic CMIS Operations

[58]

Service call name Short
description

Long description

createFolder Creates a
folder

Creates a folder object of the specified
type in the specified location.

createRelationship Creates a
relationship

Creates a relationship object of the
specified type.

createPolicy Creates a
policy

Creates a policy object of the specified
type.

createItem

(CMIS 1.1)
Creates an
item

Creates an item object of the specified
type.

The following service operations are all about getting information about different
types of objects, and we have already covered some of them such as getObject and
getObjectByPath:

Service call name Short
description

Long description

getAllowableActions Get a list
of actions
that can be
executed

Gets the list of allowable actions for
an object.

getObject Get content
information
by objectId

Gets the specified information for the
object such as properties, relationships,
permissions, and policies.

getProperties Get metadata
for content by
objectId

Gets the list of properties for the object.

getObjectByPath Get content
information
by object path

Gets the specified information for the
object such as properties, relationships,
permissions, and policies.

getContentStream Get/
download
physical
content

Gets the content stream for the specified
document object or gets a rendition
stream for a specified rendition of
a document or folder object.

getRenditions Get associated
renditions

Gets the list of associated renditions
for the specified object. Only rendition
attributes are returned, not the rendition
stream.

Chapter 2

[59]

The last couple of object service operations, listed as follows, have to do with
updating properties and deleting content items:

Service call name Short
description

Long description

updateProperties Update
metadata

Updates the properties and secondary
types of the specified object.

bulkUpdateProperties

(CMIS 1.1)

Bulk updates Updates the properties and secondary
types of one or more objects.

moveObject Move content Moves the specified fileable object from
one folder to another.

deleteObject Delete
content

Deletes the specified object.

deleteTree Delete folder
tree

Deletes the specified folder object and all
of its child and descendant objects.

setContentStream Upload
content

Sets the content stream for the specified
document object.

appendContentStream Add content
to existing
content
stream

Appends to the content stream for the
specified document object.

deleteContentStream Delete
content

Deletes the content stream for the
specified document object.

As you can see, there are quite a few object service calls. We will cover the most used
ones in the coming sections.

Creating folders
In this section, we will go through how to create folders with the AtomPub and
Browser bindings. Creating a new folder involves posting the folder data to the
server. To do this, we use the createFolder service call.

Creating a folder with the AtomPub binding
To create a new folder with the AtomPub binding, we have to create an Atom entry
with the folder data and post it to the server. The Atom entry will look similar to the
following code:

<entry xmlns="http://www.w3.org/2005/Atom"
 xmlns:app="http://www.w3.org/2007/app"
 xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"

Basic CMIS Operations

[60]

 xmlns:cmisra="http://docs.oasis-
 open.org/ns/cmis/restatom/200908/">
 <title>CMIS Demo</title>
 <summary>Created via CMIS AtomPub</summary>
 <cmisra:object>
 <cmis:properties>
 <cmis:propertyId propertyDefinitionId="cmis:objectTypeId">
 <cmis:value>cmis:folder</cmis:value>
 </cmis:propertyId>
 </cmis:properties>
 </cmisra:object>
</entry>

In this case, we have only included the minimum number of properties necessary to
create a folder, the type of the folder, and its name. Note that the <atom:summary>
element will be set as cmis:description and the <atom:title> element, when it is
specified, will override the cmis:name property value.

Save the following code in a file named, for example, folder.atom.xml and then
look up the folder collection in the service document. In this case, we will create the
folder under the root folder (that is, under /Company Home in Alfresco):

<app:collection
 href="http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-
4991-bda8-9465f4f11527/children?id=
workspace%3A%2F%2FSpacesStore%2Fa5c45ceb-2603-491f-b2c9-
6ff7d6579483">
 <cmisra:collectionType>root</cmisra:collectionType>
 <atom:title type="text">Root Collection</atom:title>
 <app:accept>application/atom+xml;type=entry</app:accept>
 <app:accept>application/cmisatom+xml</app:accept>
</app:collection>

Execute the following curl command to post the XML file to the root collection and
to have Alfresco create the folder under /Company Home:

$ curl -v -u admin:admin -d @folder.atom.xml -H "Content-
Type:application/atom+xml;type=entry"
"http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/children?id=workspace%3A%2F%2FSpacesStore%2Fa5c45ceb-
2603-491f-b2c9-6ff7d6579483"

The -d cURL switch is used to specify data to POST, and the -H switch is used to add
HTTP request headers, such as in this case, when we need to tell the server that we
are POSTing an Atom entry by specifying the MIME type. If this call is successful, it
will return an Atom entry with information about the newly created folder, such as
its object ID (Alfresco node reference in the Alfresco world).

Chapter 2

[61]

Creating a folder with the Browser binding
The Browser binding is specifically created to make it easy to work with CMIS from
an HTML page in a browser. Creating a new folder with the Browser binding means
we have to POST form data to the server. Create a file named createFolder.html
with the following HTML Form:

<html>
<body>
<form
 name="createFolderForm"
 action="http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-
 ca9f-4991-bda8-9465f4f11527/root"
 method="post">
 <input name="cmisaction" type="hidden" value="createFolder" />
 <input name="propertyId[0]" type="hidden" value="cmis:name" />
 Folder name: <input name="propertyValue[0]" type="text"
 value="CMIS Demo Browser Binding" />
 <input name="propertyId[1]" type="hidden"
 value="cmis:objectTypeId" />
 <input name="propertyValue[1]" type="hidden"
 value="cmis:folder"></td>
 <input type="submit" value="Create Folder" />
</form>
</body>
</html>

Here, we are creating a folder named CMIS Demo Browser Binding under the
root folder in the repository, which would be under /Company Home in Alfresco.
Any HTML form that is used to POST CMIS content must include a control named
cmisaction, which indicates the CMIS operation to be performed.

The way to pass properties is to create two input fields for each property as previously
mentioned, one carrying the name of the property (that is, propertyId[#]) and the
other the value (that is, propertyValue[#]). If you want to create the folder under a
different parent folder than /Company Home, just add the subfolder name after /root,
for example, …/root/Data%20Dictionary.

Not sure why the CMIS standard uses two name-value pairs to persist
a single name-value property. It probably has to do with properties
that can be multivalued.

Basic CMIS Operations

[62]

You could also have POSTed the following data via curl in a similar way
to what you did for the AtomPub binding example. Create a file named
CreateFolderPostData.txt with the following content:

cmisaction=createFolder&propertyId%5B0%5D=cmis%3Aname&propertyValu
e%5B0%5D=CMIS+Demo+Browser+Binding2&propertyId%5B1%5D=cmis%3Aobjec
tTypeId&propertyValue%5B1%5D=cmis%3Afolder

Then, POST it to the server as follows:

$ curl -v -u admin:admin -d @CreateFolderPostData.txt -H
"Content-Type:text/plain"
"http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/root"

Creating documents
In this section, we will go through how to create documents with the AtomPub
and Browser bindings. Creating a new document involves POSTing the document
metadata and the physical content bytes to the server. For this, we use the
createDocument service call.

A document can have an associated content stream. It represents the bytes that make
up the physical file. The maximum permissible file size is specific to the repository
implementation. Alfresco stores the physical file in the filesystem; so, in the case of
Alfresco, the maximum length is dependent on the OS. Each content stream has
a MIME media type and a number of attributes. These are represented as properties
on the document object..

The following are some of the content stream properties:

Property Description Datatype
cmis:contentStreamLength The size of the document file in bytes. Integer

cmis:
contentStreamMimeType

The MIME type for the document. String

cmis:contentStreamId This is the identifier for accessing the content
stream, representing the document. For
Alfresco, this ID would look like this:
store://2012/12/1/12/47/9b7d35e5-
35bc-45cc-a3b9-3f170611563e.bin.
And, this points to where the content file is
located under <alfrescoinstall>/alf_
data/contentstore.

ID

Chapter 2

[63]

Property Description Datatype
cmis:
contentStreamFileName

This is the filename that the content stream
will be represented by during, for example,
a download. In the case of Alfresco, this is the
same as the cmis:name property.

String

Creating a document with the AtomPub binding
To create a new document with the AtomPub binding, we have to first create
an Atom entry with the document metadata and content and post it to the server.
The Atom entry will look something like the following:

<entry xmlns="http://www.w3.org/2005/Atom"
 xmlns:app="http://www.w3.org/2007/app"
 xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"
 xmlns:cmisra=
 "http://docs.oasis-open.org/ns/cmis/restatom/200908/">
 <title>simple.txt</title>
 <summary>A simple text file</summary>
 <cmisra:object>
 <cmis:properties>
 <cmis:propertyId propertyDefinitionId="cmis:objectTypeId">
 <cmis:value>cmis:document</cmis:value>
 </cmis:propertyId>
 </cmis:properties>
 </cmisra:object>
</entry>

In this case, we have only included the minimum number of properties necessary to
create a document, the type of the document, and its title/name. Also note that the
<atom:summary> element will be set as cmis:description, and the <atom:title>
element will be set as the cmis:name property value. The cmis:objectTypeId
property is currently set to the base type cmis:document. If you wanted to set it to
a custom subtype defined in Alfresco, you would prefix the type with D:, for
example, <cmis:value>D:myc:itDocument</cmis:value>.

Save the preceding Atom entry in a file named, for example, document.atom.xml and
then look up the folder collection in the service document. In this case, we will create
the document under the root folder (that is, under /Company Home in Alfresco).

Basic CMIS Operations

[64]

Execute the following curl command to post the XML file to the root collection and
to have Alfresco create the document under /Company Home:

$ curl -v -u admin:admin -d @document.atom.xml -H "Content-
Type:application/atom+xml;type=entry"
"http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/children?id=workspace%3A%2F%2FSpacesStore%2Fa5c45ceb-
2603-491f-b2c9-6ff7d6579483"

If this call is successful, it will return an Atom entry with information about the
newly created document node, such as its object ID (Alfresco node reference in the
Alfresco world). At this point, the document object is only made up of metadata;
there is no physical content. To add physical content, we have used PUT to upload
a file and to associate it with the metadata.

We can use the edit-media link for this as it operates on the media resource, which
represents the contents of the document. The edit-media URL can be found in the
returned Atom entry, as follows, from when we created the document object:

<atom:link rel="edit-media"
href="http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/content?id
=workspace%3A%2F%2FSpacesStore%2Ff3b354b4-5f3e-47f5-a39e-
2844496c3862%3B1.0"
type=""/>

Use the following link to execute an HTTP PUT method and upload the physical
content for the some.txt file:

curl -v -u admin:admin -T some.txt
"http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/content?id=workspace%3A%2F%2FSpacesStore%2Ff3b354b4-
5f3e-47f5-a39e-2844496c3862"

You might be wondering if you really need to make two calls to create a document.
There is actually another way that requires only one operation to do it. However,
you have to Base64-encode the file before you can upload it as part of the Atom
feed. To do this in Linux, Mac, or Windows (via CygWin), you can use the OpenSSL
library as follows:

$ openssl base64 -in some.txt -out some.txt.base64

Then, take the contents of the some.txt.base64 file and add it to the document.
atom.xml file that we created earlier. The encoded content is wrapped by the
cmisra:base64 element, which is contained in the cmisra:content element.
The content element also includes a cmisra:mediatype element that specifies the
content's MIME type. The Atom entry should now look as follows:

Chapter 2

[65]

<entry xmlns="http://www.w3.org/2005/Atom"
 xmlns:app="http://www.w3.org/2007/app"
 xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"
 xmlns:cmisra="http://docs.oasis-
 open.org/ns/cmis/restatom/200908/">
 <title>simple.txt</title>
 <summary>A simple text file</summary>
 <cmisra:content>
 <cmisra:mediatype>text/plain</cmisra:mediatype>
 <cmisra:base64>VGhpcyBpcyBzb21lIHRleHQhCg==</cmisra:base64>
 </cmisra:content>
 <cmisra:object>
 <cmis:properties>
 <cmis:propertyId propertyDefinitionId="cmis:objectTypeId">
 <cmis:value>cmis:document</cmis:value>
 </cmis:propertyId>
 </cmis:properties>
 </cmisra:object>
</entry>

Now we can run curl again and POST the Atom entry to the server (remember to
remove the simple.txt file first if it exists in the repository):

$ curl -v -u admin:admin -d @document.atom.xml -H "Content-
Type:application/atom+xml;type=entry"
"http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/children?id=workspace%3A%2F%2FSpacesStore%2Fa5c45ceb-
2603-491f-b2c9-6ff7d6579483"

Creating a document with the Browser binding
Creating a new document with the Browser binding means that we have to POST
form data, including both the metadata and the content for the document, to the
server. Create a file named createDocument.html with the following HTML Form:

<html>
<body>
<form
 name="createDocumentForm"
 action="http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-
 ca9f-4991-bda8-9465f4f11527/root"
 method="post"
 enctype="multipart/form-data">
 <input name="cmisaction" type="hidden" value="createDocument" />
 <input name="propertyId[0]" type="hidden" value="cmis:name" />
 File name: <input name="propertyValue[0]" type="text"
 value="Simple (from Browser binding).txt" />

Basic CMIS Operations

[66]

 File: <input name="content" type="file">
 <input name="propertyId[1]" type="hidden"
 value="cmis:objectTypeId" />
 <input name="propertyValue[1]" type="hidden"
 value="cmis:document" />
 <input type="submit" value="Create Document" />
</form>
</body>
</html>

Here, we are creating a document named simple(from Browser binding).txt
under the root folder in the repository, which would be under /Company Home
in Alfresco. We set the cmisaction parameter to createDocument as we want to
perform this action with this HTML Form.

To attach content to the POST, a file select input control with the name content
should be used. It should not have any value set as the control will be a normal
file picker and you can select the file from any local disk location. The mandatory
cmis:name and cmis:objectTypeId properties are also set. If you want to set the
object type to something other than the cmis:document base type, then you have to
use the prefix D: for custom Alfresco types, such as D:myc:itDocument. If you want
to create the document under a different parent folder than /Company Home, then
just add the subfolder name after /root, for example, …/root/Data%20Dictionary.

Updating folders and documents
Updating the properties, or metadata if you want, is done in the same way for
folders and documents. We will have a look at how to do this for documents. Let's
set a property value on the files that we just created. Instead of a POST, which is
used to create a new resource, we will perform an HTTP PUT method, which is used
to update an existing object. For this, we use the updateProperties service call from
the object services.

The following capability from the repository information is relevant to updating a
document's content stream:

Capability Description Valid options
capabilityContent
StreamUpdatability

Indicates the support
a repository has for
updating a document's
content stream (basically,
the physical content for
the document).

• none: The content stream
may never be updated

• anytime: The content stream
may be updated any time

• pwconly: The content stream
may be updated only when
checked out to a Private
Working Copy (PWC)

Chapter 2

[67]

Updating a document with the AtomPub binding
To update a document, or a folder for that matter, with the AtomPub binding, we have
to first create an Atom entry with the document metadata, leave out the content stream,
and POST it to the server. The Atom entry will look something like the following:

<entry xmlns="http://www.w3.org/2005/Atom"
 xmlns:app="http://www.w3.org/2007/app"
 xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"
 xmlns:cmisra="http://docs.oasis-
 open.org/ns/cmis/restatom/200908/">
 <title>simple.txt</title>
 <cmisra:object>
 <cmis:properties>
 <cmis:propertyString propertyDefinitionId="cmis:description">
 <cmis:value>A new description for this doc</cmis:value>
 </cmis:propertyString>
 </cmis:properties>
 </cmisra:object>
</entry>

In this case, we are updating the description of the document. Save the preceding
Atom entry in a file named, for example, document-update.atom.xml and then
look up the object ID (that is, node reference) that was returned from the earlier
createDocument call we made.

Execute the following curl command to update the document:

$ curl -X PUT -v -u admin:admin -d @document-update.atom.xml -H
"Content-Type:application/atom+xml;type=entry"
"http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527?id=workspace%3A%2F%2FSpacesStore%2Fd60c6243-e96a-401b-
9537-b4917c0eb8ba"

Updating a document with the Browser binding
Updating a document or folder with the Browser binding means that we have to
POST form data, including metadata but not content, for the document to the server.
Create a file named updateDocument.html with the following HTML form:

<html>
<body>
<form
 name="updateDocumentForm"
 action="http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-
ca9f-4991-bda8-9465f4f11527/root?objectId=

Basic CMIS Operations

[68]

workspace%3A%2F%2FSpacesStore%2Ff574db8e-c9ac-4e5e-81b6-
c9b6bc2b9cba"
 method="post"
 enctype="multipart/form-data">
 <input name="cmisaction" type="hidden" value="update" />
 <input name="propertyId[0]" type="hidden"
 value="cmis:description" />
 Description: <input name="propertyValue[0]" type="text"
 value="A new description (from Browser binding)" />
 <input type="submit" value="Update Document" />
</form>
</body>
</html>

Here we are updating the description of the document. We set the cmisaction
parameter to update as that is the action that we want to perform with this HTML
form. A POST method is used to update the specified properties.

Deleting a folder or a document
Folders and documents are deleted by using the deleteObject service call that is
part of the object service. If you want to delete all the content in a folder recursively,
then the deleteTree service call should be used.

There is an extra parameter named allVersions, which is true by default and
controls whether all document versions should be deleted. If set to false, only then
the specified document object is deleted. The repository will ignore this value if
delete is invoked on a non-document object (that is, non-versionable object).

Deleting a folder or document with the AtomPub
binding
To delete a document, or folder for that matter, with the AtomPub binding, we have
to perform an HTTP DELETE method on the entry.

Execute the following curl command to delete the simple.txt document we
created earlier:

$ curl -X DELETE -v -u admin:admin "http://localhost:8080/alfresco/
cmisatom/f0ebcfb4-ca9f-4991-bda8-9465f4f11527/entry?id=workspace%3A%2F%2F
SpacesStore%2Fd60c6243-e96a-401b-9537-b4917c0eb8ba"

You will see an output similar to the following (the output is shown for completeness):

Chapter 2

[69]

* About to connect() to localhost port 8080 (#0)

* Trying 127.0.0.1... connected

* Server auth using Basic with user 'admin'

> DELETE /alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/entry?id=workspace%3A%2F%2FSpacesStore%2Fd60c6243-e96a-
401b-9537-b4917c0eb8ba HTTP/1.1

> Authorization: Basic YWRtaW46YWRtaW4=

> User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu) libcurl/7.22.0
OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23 librtmp/2.3

> Host: localhost:8080

> Accept: */*

>

< HTTP/1.1 204 No Content

After a successful deletion of the file (or any other object), an HTTP 204 is returned.
If you just want to delete any object, then find out the node reference first and
then change the preceding id parameter. Remember that you need appropriate
permissions to delete a file, and if it is done with the Alfresco admin user as in this
case, it will always work no matter where the file is located in the repository.

Deleting a folder or document with the Browser
binding
Deleting a document or folder with the Browser binding means that we have to POST
with the cmisaction parameter set to delete and have the object ID in the URL.
Create a file named deleteDocument.html with the following HTML Form, which
will delete the simple (from Browser binding).txt document we created earlier:

<html>
<body>
<form
 name="deleteDocumentForm"
 action="http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-
 ca9f-4991-bda8-9465f4f11527/root?objectId=
 workspace://SpacesStore/f574db8e-c9ac-4e5e-81b6-c9b6bc2b9cba"
 method="post"
 enctype="multipart/form-data">
 <input name="cmisaction" type="hidden" value="delete" />
 <input type="submit" value="Delete Document" />
</form>
</body>
</html>

Basic CMIS Operations

[70]

Summary
In this chapter, we have gone through most of the basic functionalities that are
likely to be used on a day-to-day basis and learned how to use them with both the
AtomPub protocol and the Browser binding protocol. We have seen how we can
list the contents of a folder and navigate to the subfolders. The Browser binding has
shown us that it is quite easy to work with CMIS via this binding as you can use
HTML forms for almost all operations and it is easy to integrate with the UI this way.

In this chapter, we also looked into how to download the content types that the
repository supports, which is important as you are likely to set custom types when
uploading new content. We also covered how to create, read, update, and delete
documents and folders for a specific domain. And finally, we went through how
to download a document.

In the next chapter, we will look into more features supported by CMIS such as
version management, access control, and searching for content.

Advanced CMIS Operations
This chapter explores some of the more advanced features of CMIS such as version
management and access control lists. We will continue to work with both the AtomPub
protocol and the Browser binding protocol just like in the previous chapter.

In this chapter, we will look at the following:

• Version management with check in and check out
• Updating the physical content of a document during check in
• Permission management with access control lists
• Managing relationships between objects
• Searching

It is highly recommended that you read the previous chapter first, as it takes you
through all the basic operations and explains how to set up a server, authenticate it,
and what tools to use when calling a CMIS server. Note that the tools mentioned are
primarily for experimenting and familiarization with the mechanics of CMIS rather
than for the actual integration work.

Version management with check out and
check in
Sometimes, when you are working with documents in a team, it is useful to be able
to check out and lock a document so that other people cannot update it at the same
time as you. This can be accomplished by using the checkOut service call from the
versioning services. When you have finished editing the so-called working copy,
it can be checked in with the checkIn service call, which creates a new version and
updates the version label.

Advanced CMIS Operations

[72]

The physical content of a document might not be updateable in the particular
repository that you are using. To find out if an object's content is updateable, check
the value of the capabilityContentStreamUpdatability property. This property
is returned in the getRepositoryInfo service call in the capabilities sections.

Valid values for this property are the following:

• none: The content may never be updated
• anytime: The content may be updated anytime
• pwconly: The content may be updated only when checked out to a Private

Working Copy (PWC)

For my Alfresco installation, this property is set to anytime so I am able to update
content for a document in the repository at any time, even if it is not checked out.
If the value was pwconly, I would be required to check out the document, creating
a PWC before updating it.

Checking out a document turns on versioning. (In Alfresco, this means that the
cm:versionable aspect is applied automatically if it is missing.) The following
versioning capabilities are related:

Capability Description Valid
options

capabilityPWCUpdatable This is the ability of an
application to update the PWC
of a checked-out document.

[true |
false]

capabilityPWCSearchable This is the ability of the
repository to include the PWC
of checked-out documents in
query search scope; otherwise,
PWCs are not searchable.

[true |
false]

capabilityAllVersionsSearchable This is the ability of the
repository to include all the
versions of the document. If
false, either the latest or the
latest major version will be
searchable.

[true |
false]

If we look at the versioning properties, the following are a couple of concepts that we
need to know about:

• Version series: A version series in CMIS is the same thing as the version
history for a document. The position of a document in a version series is
determined by its version label.

Chapter 3

[73]

• Latest version: The document that has the most recent last modification date
(cmis:lastModificationDate) is called the latest version of that document
in a version series.

• Major version: This is an optional property that can be designated to a
document in a version series. The CMIS standard does not define any
semantic differences between the major versions and minor versions. In
Alfresco, we can use major and minor versions for documents such as 2.1.

The following are the main properties related to versioning:

Property Description Data type
cmis:isLatestVersion This would be set to true if this

document item is the latest version
(such as 3.1) in the version series, or
this will be set to false if we are
looking at a previous version in the
version series/version history.

Boolean

cmis:isLatestMajorVersion This would be set to true if this
document item is the latest major
version (such as 3.0), or this would
be set to false if we are looking at a
previous major version in the version
series/version history.

Boolean

cmis:versionSeriesId A unique identifier that gives access
to the version series/version history.
In Alfresco, this would be a node
reference pointing to the version
history node for this document.

ID

cmis:versionLabel The version label, such as 1.1, for this
document. Denotes the order of this
document in the version series.

String

Remember to replace the f0ebcfb4-ca9f-4991-bda8-
9465f4f11527 repository ID with one that matches your server in
the rest of this chapter.

Version management with the AtomPub
binding
This section shows you how to check out a document with the AtomPub binding,
update its physical content, and finally, how to check in the updated document.

Advanced CMIS Operations

[74]

Checking out a document with the AtomPub binding
Checking out a file with the AtomPub binding involves POSTing the document's
Object Id (the Alfresco node reference in the Alfresco world) in an Atom feed to the
checkedout collection URL, which you can find in the Service Document, looking
something like the following:

<app:collection
 href="http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-
 4991-bda8-9465f4f11527/checkedout">
 <cmisra:collectionType>checkedout</cmisra:collectionType>
 <atom:title type="text">Checked Out Collection</atom:title>
 <app:accept>application/cmisatom+xml</app:accept>
</app:collection>

The Object Id property can be found in a folder listing response, object by
path response, or an object navigation response. Make sure the object is of type
cmis:document as you cannot check out anything else; see the cmis:baseTypeId
property. The following is how the object ID looks:

<cmis:propertyId queryName="cmis:objectId" displayName="Object Id"
 localName="objectId" propertyDefinitionId="cmis:objectId">
 <cmis:value>workspace://SpacesStore/a5c45ceb-2603-491f-b2c9-
 6ff7d6579483</cmis:value>
</cmis:propertyId>

To have something to check out, we are going to create a file named simple.txt with
some random text in it. (We created and deleted a file with this name in the previous
chapter; if you never deleted it, then you are ready to go.) Log in to Alfresco with the
http://localhost:8080/share URL using the admin username and the password
given during installation. Then create the file and make a note of the Object Id.
The Object Id (that is, the node reference) can be found in the Document Details
page for the file in Alfresco Share (the main Alfresco user interface). Then, put together
the checked-out Atom entry and put it in a file named, for example, checkout.atom.
xml as follows:

<?xml version="1.0" encoding="utf-8"?>
<entry xmlns="http://www.w3.org/2005/Atom"
 xmlns:cmisra="http://docs.oasis-
 open.org/ns/cmis/restatom/200908/"
 xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/">
 <cmisra:object>
 <cmis:properties>
 <cmis:propertyId propertyDefinitionId="cmis:objectId">
 <cmis:value>workspace://SpacesStore/d60c6243-e96a-401b-
 9537-b4917c0eb8ba</cmis:value>
 </cmis:propertyId>

Chapter 3

[75]

 </cmis:properties>
 </cmisra:object>
</entry>

Finally, we POST this check-out Atom entry to the checked-out collection by
executing the following cURL command:

$ curl -v -u admin:admin -d @checkout.atom.xml -H "Content-
Type:application/atom+xml;type=entry" "http://localhost:8080/alfresco/
cmisatom/f0ebcfb4-ca9f-4991-bda8-9465f4f11527/checkedout"

This locks the simple.txt document in the repository and creates a PWC that can be
edited (in Alfresco, you can log in as the admin and navigate to the working copy via
the Node Browser).

The working copy's Object Id is returned by the check-out call.

Cancelling the check out with the AtomPub binding
If you have changed your mind and want to cancel the check out that was just done,
then you can just delete the PWC that was created from the check out. This is done
with an HTTP DELETE as follows:

$ curl -X DELETE -v -u admin:admin "http://localhost:8080/alfresco/
cmisatom/f0ebcfb4-ca9f-4991-bda8-9465f4f11527/entry?id=workspace%3A%2F%2F
SpacesStore%2Fbb815533-1929-419f-86c5-c095b6538cf9"

This will delete the simple (Working Copy).txt file. The URL's id parameter is a
node reference for the PWC; if you cannot find this node reference, you can log in to
Alfresco as an administrator and locate the PWC via the Node Browser.

Updating the physical contents of the checked-out
document with the AtomPub binding
What you would want to do now is to probably update the checked-out document.
Doing this is very similar to creating a new document; just use PUT instead of POST.

The Atom entry for an update contains the updated Base64 content that is coded as
follows (see Chapter 2, Basic CMIS Operations, for how to do Base64 encoding of text):

<entry xmlns="http://www.w3.org/2005/Atom"
 xmlns:app="http://www.w3.org/2007/app"
 xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"
 xmlns:cmisra="http://docs.oasis-
 open.org/ns/cmis/restatom/200908/">
 <title>simple (Working Copy).txt</title>
 <cmisra:content>

Advanced CMIS Operations

[76]

 <cmisra:mediatype>text/plain</cmisra:mediatype>
 <cmisra:base64>VGhpcyBpcasdadsyBzb21lIadsasdasdsHRleHQhCg
 ==</cmisra:base64>
 </cmisra:content>
 <cmisra:object>
 <cmis:properties>
 <cmis:propertyString propertyDefinitionId="cmis:name">
 <cmis:value>simple (Working Copy).txt</cmis:value>
 </cmis:propertyString>
 </cmis:properties>
 </cmisra:object>
</entry>

Note that you have to use the working copy's filename as the title, and the name
property has to be specified too. Save this Atom entry in a file named something
similar to document-content-update.atom.xml and PUT it to the server via the
working copy's URL that was in the response Atom entry from the check out.

Execute the following cURL command:

$ curl -X PUT -u admin:admin -d @document-content-update.atom.xml -H
"Content-Type: application/atom+xml;type=entry" "http://localhost:8080/
alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-9465f4f11527/entry?id=workspace
%3A%2F%2FSpacesStore%2Fbb815533-1929-419f-86c5-c095b6538cf9"

If this did not work, make sure that the capabilityPWCUpdatable property is true.
If not, then the PWC is not updateable and you will have to resort to updating the
document during the check in instead.

If you prefer to do the update without having to Base64 encode the content then use
the edit-media link for the PWC instead and PUT the file directly into this URL, as
demonstrated in Chapter 2, Basic CMIS Operations.

Checking in a document with the AtomPub binding
When we have finished updating the file, it can be checked-in by POSTing the
following empty Atom entry to the server:

<?xml version="1.0" encoding="utf-8"?>
<entry xmlns="http://www.w3.org/2005/Atom"/>

When calling the server, we use the Atom entry URL and a URL parameter called
checkin that is set to true. Put the above Atom entry in a file called empty.atom.
xml, and use the following cURL command:

Chapter 3

[77]

$ curl -X PUT -v -u admin:admin -d @empty.atom.xml -H "Content-
Type: application/atom+xml;type=entry" "http://localhost:8080/
alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-9465f4f11527/entry
?id=workspace%3A%2F%2FSpacesStore%2Fbb815533-1929-419f-86c5-
c095b6538cf9&checkin=true&checkinComment=some%20updates"

This unlocks the file and removes the working copy. It's also possible to update the
content, and any properties, at the same time as when the check in is being done.
Just add the content and properties to the empty Atom entry previously discussed
when doing the check in. Note that this is the only way to update the content if the
optional capabilityPWCUpdatable property is not supported.

Version management with the Browser
binding
This section shows you how to check out a document with the Browser binding,
update its physical content, and finally, how to check in the updated document.

Checking out a document with the Browser binding
Checking out a file with the Browser binding involves an HTTP form submission
with the cmisaction parameter set to checkout.

Look up the object URL for the Simple (from Browser binding).txt document
that we created in the last chapter (or log in to Alfresco and look up the details page
for the file, and grab the node reference from there); we will use it to check out the
document. Note that you might have to recreate this document if you followed
Chapter 2, Basic CMIS Operations, and deleted it.

Now, create an HTML file named checkoutDocument.html with the following content:

<html>
<body>
<form
 name="checkoutDocumentForm"
 action="http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4
 -ca9f-4991-bda8-
 9465f4f11527/root?objectId=workspace%3A%2F%2FSpacesStore%
 2Ff574db8e-c9ac-4e5e-81b6-c9b6bc2b9cba"
 method="post"
 enctype="multipart/form-data">
 <input name="cmisaction" type="hidden" value="checkout" />
 <input type="submit" value="Check-out Document" />
</form>
</body>
</html>

Advanced CMIS Operations

[78]

This locks the document in the repository and creates a PWC that can be edited.
(In Alfresco, you can log in as the administrator and navigate to the Working Copy
via the Node Browser.)

The working copy's Object Id is returned by the check-out call.

Cancelling the check out with the Browser binding
If you have changed your mind and want to cancel the check out that was just done,
then you can delete the PWC that was created from the check out. With the Browser
binding, this means that we have to POST the cmisaction parameter set to delete
and have the Object Id for the PWC in the URL.

Create a file named cancelCheckOutDocument.html with the following HTML
form, which will delete the Simple (from Browser binding) (Working Copy).
txt document:

<html>
<body>
<form
 name="cancelCheckOutDocumentForm"
 action="http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-
 ca9f-4991-bda8-
 9465f4f11527/root?objectId=workspace%3A%2F%2FSpacesStore%
 2F25cea9bf-d355-426d-b490-21c0a8e561b8"
 method="post"
 enctype="multipart/form-data">
 <input name="cmisaction" type="hidden" value="delete" />
 <input type="submit" value="Cancel Check-out" />
</form>
</body>
</html>

Updating the physical content of the checked-out
document with the Browser binding
What you would want to do now is to probably update the checked-out document.
Doing this is very similar to creating a new document; just set the cmisaction
parameter to update.

The HTTP form looks as follows; put it in a file called updateDocumentContent.
html:

<html>
<body>
<form

Chapter 3

[79]

 name="updateDocumentForm"
 action="http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-
 ca9f-4991-bda8-
 9465f4f11527/root?objectId=workspace%3A%2F%2FSpacesStore%
 2F25cea9bf-d355-426d-b490-21c0a8e561b8"
 method="post"
 enctype="multipart/form-data">
 <input name="cmisaction" type="hidden" value="update" />
 Simple (from Browser binding).txt

 Update with file: <input name="content" type="file">

 <input name="propertyId[0]" type="hidden" value="cmis:name" />
 <input name="propertyValue[0]" type="hidden" value="Simple (from
 Browser binding) (Working Copy).txt" />
 <input type="submit" value="Update Document Content" />
</form>
</body>
</html>

Note that the action URL is referencing the PWC URL, which is for the Simple
(from Browser binding) (Working Copy).txt document. You have to use the
PWC filename as cmis:name, or the update will not work, and the properties section
would need to be set. The dialog will present you with a file picker, so any local file
can be used to update the PWC.

Checking in a document with the Browser binding
When we have finished updating the file, it can be checked-in by POSTing an HTML
form with cmisaction set to checkin and the action URL set to the PWC object
URL. A check-in comment can also be specified via a checkinComment control.

The following is the HTML form:

<html>
<body>
<form
 name="checkinDocumentForm"
 action="http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-
 ca9f-4991-bda8-
 9465f4f11527/root?objectId=workspace%3A%2F%2FSpacesStore%
 2F25cea9bf-d355-426d-b490-21c0a8e561b8"
 method="post"
 enctype="multipart/form-data">
 <input name="cmisaction" type="hidden" value="checkin" />
 <input name="checkinComment" value="some comment" />
 Simple (from Browser binding) (Working Copy).txt

 <input type="submit" value="Check-in Document" />
</form>
</body>
</html>

Advanced CMIS Operations

[80]

This unlocks the file and removes the working copy. It's also possible to update the
content, and any properties, at the same time as when the check in is being done. Just
add the contents and properties to the previously discussed form when doing the
check in, as was previously demonstrated when updating content for the PWC.

Managing permissions for documents
and folders
An access control list (ACL) is used to manage permissions for folders and
documents. The ACL services with the getACL and applyACL calls are used to get
and set permissions.

Access control list capabilities
A repository does not have to support the management of ACLs at all. To find out
if it does, look at the following properties, as they explain what support is available.
These properties are returned by the getRepositoryInfo service call:

Capability Description Valid options
capabilityACL This indicates

the level of
support for the
ACLs by the
repository.

• none: The repository does not support ACL
services.

• discover: The repository supports the
discovery of ACLs (getACL and other
services).

• manage: The repository supports the
discovery of the ACLs and applying ACLs
(getACL and applyACL services).

propagation This specifies
how a non-direct
access control
entry (ACE) can
be handled by
the repository.

• objectonly: This indicates that the
repository is able to apply ACEs to an object
without changing the ACLs of other objects.

• propagate: This indicates that the ACEs
might be inherited by other objects.
propagate includes the support for
objectonly.

• repositorydetermined: This indicates
that the repository has its own mechanism of
computing how changing an ACL for an object
influences the non-direct ACEs of other objects.

Chapter 3

[81]

The Alfresco 4.2 server that I am using has the capabilityACL property set to
manage; so, it should work to both read and write permissions to the repository.

Access control concepts
An ACL is a list of zero or more ACEs. If no ACL is assigned to the object, no permission
is granted (unless specified differently by a cmis:policy applied to the object).

An ACE holds the following:

• A principal that represents a user management object, for example, a user,
group, or role. It holds one string with principalId, such as, for example,
martin.

• One or more strings with the names of permissions, such as cmis:write.
• A Boolean flag, direct, which indicates that the ACE is directly assigned

to the object when true, and indicates that the ACE is somehow derived or
inherited when false.

The following is an example of an ACE used for the AtomPub binding:

<ns2:acl xmlns="http://docs.oasis-
 open.org/ns/cmis/messaging/200908/"
 xmlns:ns2="http://docs.oasis-open.org/ns/cmis/core/200908/"
 xmlns:ns3="http://docs.oasis-open.org/ns/cmis/restatom/200908/">
 <ns2:permission>
 <ns2:principal>
 <ns2:principalId>GROUP_EVERYONE</ns2:principalId>
 </ns2:principal>
 <ns2:permission>cmis:read</ns2:permission>
 <ns2:direct>false</ns2:direct>
 </ns2:permission>
</ns2:acl>

In this case it tells us that the Alfresco group called EVERYONE has read access to the
object that the access control list is associated with. The direct flag is false so this
means that these permissions have been inherited from the parent folder.

Advanced CMIS Operations

[82]

Supported permissions
A repository can support either a base set of CMIS defined permissions and/or its
own set of repository specific permissions. The supportedPermissions property
tells us whether the repository supports both the CMIS permissions and its own
custom permissions. It is returned by the getRepositoryInfo service called together
with the propagation property, as shown in the following table:

Capability Description Valid options
supportedPermissions This indicates if

the repository
supports both the
CMIS permissions
and its own custom
permissions.

• basic: This indicates that the
CMIS basic permissions are
supported.

• repository: This indicates that
repository-specific permissions
are supported.

• both: This indicates that both
CMIS basic permissions and
repository-specific permissions
are supported.

propagation This specifies how
non-direct ACEs
can be handled by
the repository.

• objectonly: This indicates
that the repository is able to
apply ACEs to an object without
changing the ACLs of other
objects.

• propagate: This indicates that
the ACEs might be inherited
by other objects. propagate
includes the support for
objectonly.

• repositorydetermined: This
indicates that the repository has
its own mechanism of computing
how changing an ACL for an
object will influence the non-direct
ACEs of other objects.

The Alfresco 4.2 version I am running has the supportedPermissions property set to
both, so it should be possible to manage both CMIS permissions and Alfresco-specific
permissions. Also, the propagation property is set to propagate, indicating that the
access control entries (that is, permissions) might be inherited by other objects.

Chapter 3

[83]

Looking at the result from the getRepositoryInfo service call, I can see that the
Alfresco-specific permissions are returned as shown in the following example:

<cmis:aclCapability>
...
 <cmis:permissions>
 <cmis:permission>
 {http://www.alfresco.org/model/content/1.0}
 cmobject.Coordinator</cmis:permission>
 <cmis:description>
 {http://www.alfresco.org/model/content/1.0}
 cmobject.Coordinator</cmis:description>
 </cmis:permissions>

The getACL service allows the caller to specify that the result should be expressed
using only the CMIS-defined permissions. The applyACL service permits either CMIS
permissions or repository-specific permissions, or a combination of both to be used.

The following are the three basic permissions predefined by CMIS:

• cmis:read: This means that you have the permission to read the properties
and content of an object.

• cmis:write: This means that you have the permission to write the properties
and content of an object. It may also include the cmis:read permission.

• cmis:all: This means that you have all the permissions of a repository. It
should also include all other basic CMIS permissions.

How these basic permissions are mapped to the allowable actions is repository specific.

Allowable actions and permission mapping
CMIS provides a mechanism called allowable actions that permits an application to
discover the set of service operations that can be currently performed on a particular
object by the current user without having to actually invoke the service.

If a repository supports ACLs, then the repository will provide a mapping table that
defines how the permissions supported by the repository interact with the CMIS
allowable actions, that is, which permissions are necessary for a principal to have on
one or more objects in order to potentially perform each action, subject to the other
constraints on allowable actions mentioned.

Advanced CMIS Operations

[84]

The actual repository semantics for basic permissions with regard to allowable
actions can be discovered by the mapping properties returned by the
getRepositoryInfo service. These properties can be seen in the following example:

<cmis:aclCapability>
...
 <cmis:mapping>
 <cmis:key>canCreateFolder.Folder</cmis:key>
 <cmis:permission>cmis:all</cmis:permission>
 <cmis:permission>
 {http://www.alfresco.org/model/system/1.0}
 base.CreateChildren
 </cmis:permission>
 </cmis:mapping>

Here, we can see that for the user to be able to execute the canCreateFolder
operation, he or she needs to have the cmis:all CMIS permission on the parent
folder and the CreateChildren proprietary Alfresco permission.

Since several allowable actions require permissions on more than one object, the
mapping table is defined in terms of permission keys. For example, moving a
document from one folder to another may require permissions on the document and
on each of the folders.

Each permission key combines the name of the allowable action (for example,
canCreateFolder) and the object for which the principal needs the required
permission (for example, Folder).

Managing permissions with the AtomPub
binding
To get permissions for an object in the repository, we use the getACL service call.
The URL for this call can be found by looking at the links for the object and finding
the Atom link that has a relationship URL ending in /acl, as in the following code:

<atom:link rel="http://docs.oasis-open.org/ns/cmis/link/200908/acl"
href="http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-
9465f4f11527/acl?id=workspace%3A%2F%2FSpacesStore%2Fd60c6243-e96a-
401b-9537-b4917c0eb8ba"

When we have href for this link, we can use it to get the ACL for the file as follows:

$ curl -v -u admin:admin "http://localhost:8080/alfresco/cmisatom/
f0ebcfb4-ca9f-4991-bda8-9465f4f11527/acl?id=workspace%3A%2F%2FSpacesStore
%2Fd60c6243-e96a-401b-9537-b4917c0eb8ba" | xmllint --format -

Chapter 3

[85]

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ns2:acl xmlns="http://docs.oasis-
 open.org/ns/cmis/messaging/200908/"
 xmlns:ns2="http://docs.oasis-open.org/ns/cmis/core/200908/"
 xmlns:ns3="http://docs.oasis-open.org/ns/cmis/restatom/200908/">

 <ns2:permission>

 <ns2:principal>

 <ns2:principalId>GROUP_EVERYONE</ns2:principalId>

 </ns2:principal>

 <ns2:permission>cmis:read</ns2:permission>

 <ns2:direct>false</ns2:direct>

 </ns2:permission>

</ns2:acl>

Here, we can see that everyone has read access (cmis:read) to the simple.txt file.
And the permission is inherited from the parent /Company Home folder (ns2:direct
set to false). By default, only the basic CMIS permissions are returned. We can also
add the parameter &onlyBasicPermissions=false to the URL, and we will then get
the following proprietary permissions returned:

...

<ns2:permission>{http://www.alfresco.org/model/content/1.0}cmobjec
 t.Consumer</ns2:permission>

...

So, in Alfresco, everyone has a consumer access to the file, meaning a read-only access.

To add a permission for the simple.txt file, we need to use the applyACL service
call. This involves doing an HTTP PUT on a CMIS ACL XML file containing the
authority (group or user) and the actual permission to set. Create a file named
applyacl.xml and add the following to it:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:acl xmlns="http://docs.oasis-
 open.org/ns/cmis/messaging/200908/"
 xmlns:ns2="http://docs.oasis-open.org/ns/cmis/core/200908/"
 xmlns:ns3="http://docs.oasis-open.org/ns/cmis/restatom/200908/">
 <ns2:permission>
 <ns2:principal>
 <ns2:principalId>GROUP_MARKETING</ns2:principalId>
 </ns2:principal>
 <ns2:permission>cmis:write</ns2:permission>
 <ns2:direct>true</ns2:direct>
 </ns2:permission>
</ns2:acl>

Advanced CMIS Operations

[86]

In this case, we have given the cmis:write permission to the marketing group, which
needs to exist in Alfresco for this to work (for information on how to create a group in
Alfresco, see http://docs.alfresco.com/4.2/index.jsp). The permission is only
valid for this file as we have set the direct parameter to true.

To apply the permission, execute the following PUT command:

$ curl -X PUT -u admin:admin -d @applyacl.xml -H "Content-Type:
application/cmisacl+xml" "http://localhost:8080/alfresco/cmisatom/
f0ebcfb4-ca9f-4991-bda8-9465f4f11527/acl?id=workspace%3A%2F%2FSpacesStore
%2F0be16ca8-3562-47c1-8a81-3be52a725d56" | xmllint --format -

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<acl xmlns="http://docs.oasis-open.org/ns/cmis/core/200908/"

 xmlns:ns2="http://docs.oasis-open.org/ns/cmis/messaging/200908/"

 xmlns:ns3="http://docs.oasis-open.org/ns/cmis/restatom/200908/">

 <permission>

 <principal>

 <principalId>GROUP_MARKETING</principalId>

 </principal>

 <permission>cmis:write</permission>

<permission>{http://www.alfresco.org/model/system/1.0}base.Write</
permission>

 <direct>true</direct>

 </permission>

 <permission>

 <principal>

 <principalId>GROUP_EVERYONE</principalId>

 </principal>

 <permission>cmis:read</permission>

<permission>{http://www.alfresco.org/model/content/1.0}cmobject.
Consumer</permission>

 <direct>false</direct>

 </permission>

</acl>

The CMIS server responds with the new permission settings for the object.

Chapter 3

[87]

Managing permissions with the Browser
binding
To get permissions for an object with the Browser binding, we use the getACL service
call and set the cmisselector parameter to acl. We can also specify if we just want
the basic permissions returned with the onlyBasicPermissions parameter.

The URL is a normal get-object-by-ID URL with the following parameters (look up
the node reference / Object Id for the Simple (from Browser binding).txt file):

$ curl -v -u admin:admin "http://localhost:8080/alfresco/cmisbrowser/
f0ebcfb4-ca9f-4991-bda8-9465f4f11527/root?objectId=workspace%3A%2F%2FSpac
esStore%2Ff574db8e-c9ac-4e5e-81b6-c9b6bc2b9cba&cmisselector=acl&onlyBasic
Permissions=false"" | jq '.'

{

 aces: [

 {

 isDirect: false,

 principal: {

 principalId: "GROUP_EVERYONE"

 },

 permissions: [

 "cmis:read",

 "{http://www.alfresco.org/model/content/1.0}cmobject.Consumer"

]

 }

],

 isExact: true

}

Here, we can see that everyone has read access (cmis:read) to the simple (from
Browser binding).txt file. The permission is inherited from the parent / company
home folder (isDirect set to false). In Alfresco, everyone has a consumer access to
the file, meaning a read-only access.

To add a permission for the simple (from Browser binding).txt file, we need to
use the applyACL service call. This involves POSTing an HTTP form with cmisaction
set to applyAcl, the authority (group or user), and the actual permission to be set.

Advanced CMIS Operations

[88]

Create a file named applyAcl.html and add the following to it (I looked up the
node reference / Object Id for the file via its Document Details page in Alfresco):

<html>
<body>
<form
 name="applyAclForm"
 action="http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-
 ca9f-4991-bda8-
 9465f4f11527/root?objectId=workspace%3A%2F%2FSpacesStore%
 2Ff574db8e-c9ac-4e5e-81b6-c9b6bc2b9cba"
 method="post"
 enctype="multipart/form-data">
 <input name="cmisaction" type="hidden" value="applyAcl" />
 <input name="addACEPrincipal[0]" type="hidden"
 value="GROUP_MARKETING" />
 <input name="addACEPermission[0][0]" type="hidden"
 value="cmis:write" />
 Set permission for "Simple (from Browser binding) (Working
 Copy).txt"

 <input type="submit" value="Set Permission" />
</form>
</body>
</html>

In this case, we have given the cmis:write permission to the MARKETING group,
which needs to exist in Alfresco for this to work. The permission is only valid for
this file as we have set the direct parameter to true.

When we submit the form the CMIS server responds with the new permission
settings for the object as follows in a JSON structure:

{
 "aces" :
 [
 {
 "isDirect" : true,
 "principal" :
 {
 "principalId" : "GROUP_MARKETING"
 },
 "permissions" :
 [
 "cmis:write",
 "{http://www.alfresco.org/model/system/1.0}base.
Write"
]

Chapter 3

[89]

 },
 {
 "isDirect" : false,
 "principal" :
 {
 "principalId" : "GROUP_EVERYONE"
 },
 "permissions" :
 [
 "cmis:read",
 "{http://www.alfresco.org/model/content/1.0}
cmobject.Consumer"
]
 }
],
 "isExact" : true
}

In order to add an ACE to a CMIS object, a client passes a control named
addACEPrincipal along with a set of corresponding addACEPermission controls.
An index value <addACEIndex> links the principal with its permissions (note that
the index does not imply any order), and a second index <permIndex> differentiates
the permissions.

To set permissions for several principals, you would do something like the following:

...
 <input name="addACEPrincipal[0]" type="hidden" value="martin" />
 <input name="addACEPermission[0][0]" type="hidden"
 value="cmis:read" />
 <input name="addACEPermission[0][1]" type="hidden"
 value="{http://www.alfresco.org/model/system/1.0}
 base.LinkChildren}" />
<input name="addACEPrincipal[1]" type="hidden" value="veronika" />
<input name="addACEPermission[1][0]" type="hidden"
 value="cmis:all" />
...

Here, we intend to give a user with the username martin read access to an object
and the possibility to link to this object. We are also giving the user veronika full
access to an object (that is, no need to give any other permission). To find out all the
available Alfresco-specific permissions, fetch the information page for the Browser
binding with the http://localhost:8080/alfresco/cmisbrowser URL and look
at the permissions array.

Advanced CMIS Operations

[90]

Managing relationships between objects
CMIS supports relationships (the same thing as an association in Alfresco), and
it's possible to set up a relationship via the createRelationship service call and
remove a relationship via the deleteObject service call in the object service.
The getObjectRelationships service call that is part of the relationship service is
used to get relationships where an object is either a source or a target.

The source object in the relationship needs to have the allowable action
canCreateRelationship set to true for it to be possible to set up the relationship.

Alfresco comes with a number of out of the box association/relationship types.
One of them is cm:replaces. We will use this relationship type for the examples
that follow, where we set up a relationship between two documents and one of
them replaces the other. For example, let's say we have a folder with company
policy documents and they can be changed on a yearly basis. The folder contains
the following subfolders: approved, drafts, and archived. We can then use the
cm:replaces relationship whenever a policy is updated, and it should replace an
older version that is to be archived.

Creating and reading relationships with the
AtomPub binding
Creating a new relationship between two objects/documents with the AtomPub
binding involves POSTing an Atom entry with the source Object ID, target Object ID,
and the type of relationship to be set up between the objects.

Create a file named create-relationship.atom.xml with the following contents:

<?xml version="1.0" encoding="utf-8"?>
<entry xmlns="http://www.w3.org/2005/Atom"
 xmlns:cmisra="http://docs.oasis-
 open.org/ns/cmis/restatom/200908/"
 xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/">
<cmisra:object>
 <cmis:properties>
 <cmis:propertyId propertyDefinitionId="cmis:targetId">
 <cmis:value>workspace://SpacesStore/0be16ca8-3562-47c1
 -8a81-3be52a725d56</cmis:value>
 </cmis:propertyId>
 <cmis:propertyId propertyDefinitionId="cmis:objectTypeId">
 <cmis:value>R:cm:replaces</cmis:value>
 </cmis:propertyId>
 <cmis:propertyId propertyDefinitionId="cmis:sourceId">

Chapter 3

[91]

 <cmis:value>workspace://SpacesStore/90d8fd59-7467-488f
 -87c3-35db4d94899d</cmis:value>
 </cmis:propertyId>
 </cmis:properties>
</cmisra:object>
</entry>

Here, we are setting up a cm:replaces relationship between a new file simple2.txt
(source) that replaces the old simple.txt file (target). Because this relationship type
is a subtype of cmis:relationship and is Alfresco specific, we need to prefix it with
R:. The Atom entry needs to be POSTed to the relationship link's href for the source
object; this link can be found for each object as follows:

<atom:link rel="http://docs.oasis-
 open.org/ns/cmis/link/200908/relationships"
 href=http://localhost:8080/alfresco/cmisatom/f0ebcfb4
 -ca9f-4991-bda8-
 9465f4f11527/relationships?id=workspace%3A%2F%2FSpacesStore%
 2F90d8fd59-7467-488f-87c3-35db4d94899d...

Execute the following cURL command to set up the relationship:

$ curl -v -u admin:admin -d @create-relationship.atom.xml -H "Content-
Type: application/atom+xml;type=entry" "http://localhost:8080/alfresco/
cmisatom/f0ebcfb4-ca9f-4991-bda8-9465f4f11527/relationships?id=workspace%
3A%2F%2FSpacesStore%2F90d8fd59-7467-488f-87c3-35db4d94899d"

This returns the newly created cm:replaces relationship object as an Atom entry.
To verify that the relationship was really set up, we can list the relationships for the
simple2.txt file as follows:

$ curl -v -u admin:admin "http://localhost:8080/alfresco/cmisatom/
f0ebcfb4-ca9f-4991-bda8-9465f4f11527/relationships?id=workspace%3A%2F%2FS
pacesStore%2F90d8fd59-7467-488f-87c3-35db4d94899d&includeSubRelationshipT
ypes=true"

This will return atom feed, where one of the Atom entries should be the newly set
up relationship with the simple.txt file.

It's important to set includeSubRelationshipTypes to true;
otherwise, only the cmis:relationship types will be returned.

Advanced CMIS Operations

[92]

Creating and reading relationships with the
Browser binding
Creating a new relationship between two objects/documents with the Browser binding
involves POSTing an HTTP form with the cmisaction set to createRelationship.
Controls also need to be set up for the source Object ID, target Object ID, and the type
of relationship to set up between the objects.

Create a file named createRelationship.html with the following contents:

<html>
<body>
<form
 name="createRelationshipForm"
 action="http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4-
 ca9f-4991-bda8-
 9465f4f11527/root?objectId=workspace%3A%2F%2FSpacesStore%
 2F5a21591a-f354-4581-8972-49b3991a96f1"
 method="post"
 enctype="multipart/form-data">
 <input name="cmisaction" type="hidden"
 value="createRelationship" />
 <input name="sourceId" type="hidden"
 value="workspace://SpacesStore/5a21591a-f354-4581-8972-
 49b3991a96f1" />
 <input name="typeId" type="hidden" value="R:cm:replaces" />
 <input name="targetId" type="hidden"
 value="workspace://SpacesStore/a14f75b1-4e5a-4448-8037-
 b2185add3893" />
 Setup relationship between simpleBrowser2.txt and
 simpleBrowser.txt

 <input type="submit" value="Create Relationship" />
</form>
</body>
</html>

Here, we are setting up a cm:replaces relationship between a new file
simpleBrowser2.txt (source) that replaces the old simpleBrowser.txt file
(target). I created these files in Alfresco before doing this and then used their node
references as source and target. Because this relationship type is a subtype of
cmis:relationship and is Alfresco specific, we need to prefix it with R:.

This returns the newly created cm:replaces relationship object as a JSON structure.
To verify that the relationship was really set up, we can list the relationships for the
simpleBrowser2.txt file as follows:

Chapter 3

[93]

$ curl -v -u admin:admin "http://localhost:8080/alfresco/cmisbrowser/
f0ebcfb4-ca9f-4991-bda8-9465f4f11527/root?objectId=workspace%3A%2F%2FSpac
esStore%2F5a21591a-f354-4581-8972-49b3991a96f1&includeSubRelationshipType
s=true"

This will return a JSON structure where one of the entries should be the newly set
up relationship with the simpleBrowser.txt file. Note that it's important to set
includeSubRelationshipTypes to true; otherwise, only cmis:relationship types
will be returned.

Searching
To be able to search for content is one of the main requirements you would have on
an interface like CMIS. It actually provides great functionality for Full-Text Search
(FTS) and metadata search. When the CMIS specification was developed, a lot of
thought was given to which query language should be used for searching that would
not require everyone to start over and learn a new syntax. So they decided to use
the ANSI SQL-92 standard as the base for the CMIS Query Language (QL), and the
CMIS QL is implemented as a subset of ANSI-SQL with some extensions. What this
means is that you can search using a normal SQL query like the following:

SELECT * FROM cmis:document WHERE cmis:name LIKE '%alfresco%';

This is pretty cool. We know what this means; search for all documents (that is, all
content with base type set to cmis:document) in the repository that have the value of
the meta-data property cmis:name containing the string alfresco. We can actually
think of all the types in the repository as virtual tables.

To do a FTS of the content in the repository, we use a CMIS extension to SQL-92
called CONTAINS. This new keyword can be used in the WHERE clause as follows:

SELECT cmis:name FROM myc:itDoc WHERE CONTAINS('alfresco');

Here, we are searching among all the documents that have the myc:itDoc type set
and that have the text alfresco somewhere in the content. The result set will only
include the name of the documents as we have only selected cmis:name. The custom
type myc:itDoc is from a content model that you can install, which comes with
the code for this chapter (content-model.xml); it works only with Alfresco CMS
servers. Drop it into the Models folder under Data Dictionary and make sure the
enable property is set to true for the file (for more information on how to do this,
go to http://docs.alfresco.com/4.2/index.jsp and search for deploy content
model – dynamic).

Advanced CMIS Operations

[94]

If you are working with Alfresco, you can also try these queries out directly from the
so-called Node Browser (for more information, go to Alfresco's online documents
and search for Node Browser); just make sure to select cmis-strict as the query
language, as shown in the following screenshot:

While searching, there are certain things we can do, and not do, depending on the
CMIS capabilities of the repository.

Following are the related capabilities:

Capability Description Valid options
capabilityQuery Indicates

the types of
queries that the
repository has the
ability to fulfill.

• none: Using this, no queries of any kind
can be fulfilled.

• metadataonly: On using this, only
queries that filter based on object
properties can be fulfilled. Specifically,
the CONTAINS() predicate function is not
supported.

• fulltextonly: On using this, only
queries that filter based on the full-text
content of documents can be fulfilled.
Specifically, only the CONTAINS()
predicate function can be included in the
WHERE clause.

• bothseparate: On using this, the
repository can fulfill queries that
filter either on the full-text content of
documents or on their properties, but not
if both the types of filters are included in
the same query.

• bothcombined: On using this, the
repository can fulfill queries that filter on
both the full-text content of documents
and their properties in the same query.

Chapter 3

[95]

Capability Description Valid options
capabilityJoin Indicates the

types of JOIN
keywords that
the repository can
fulfill in queries.

• none: On using this, the repository
cannot fulfill any queries that include
any JOIN clauses on two primary types.
If the repository supports secondary
types (CMIS 1.1), JOIN keywords on the
secondary types might be supported even
if the support level is none.

• inneronly: On using this, the repository
can fulfill queries that include an INNER
JOIN clause but cannot fulfill queries that
include the other types of JOIN clauses.

• innerandouter: On using this, the
repository can fulfill queries that include
any type of JOIN clause defined by the
CMIS query grammar.

Let's now see how you can execute these kind of SQL searches via the AtomPub
binding and the Browser binding.

Searching with the AtomPub binding
Executing a CMIS query with the AtomPub binding involves sending a special CMIS
query XML to the server, which looks like the following:

<cmis:query xmlns:cmis="http://docs.oasis-
 open.org/ns/cmis/core/200908/">
 <cmis:statement>
 <![CDATA[SELECT * FROM cmis:folder WHERE cmis:name IN ('Email
 Templates','Presentation Templates')]]>
 </cmis:statement>
</cmis:query>

The CMIS query file is sent with an HTTP POST to the query collection URL that you
can find in the Service Document as follows:

<app:collection
 href="http://localhost:8080/alfresco/cmisatom/f0ebcfb4
 -ca9f-4991-bda8-9465f4f11527/query">
 <cmisra:collectionType>query</cmisra:collectionType>
 <atom:title type="text">Query Collection</atom:title>
 <app:accept>application/cmisquery+xml</app:accept>
</app:collection>

Advanced CMIS Operations

[96]

So, put the above Query XML in a file named, for example, query.atom.xml and
then POST it to Alfresco as follows:

$ curl -v -u admin:admin -d @query.atom.xml -H "Content-Type:
application/cmisquery+xml" "http://localhost:8080/alfresco/cmisatom/
f0ebcfb4-ca9f-4991-bda8-9465f4f11527/query"

Note that Content-Type is set to application/cmisquery+xml. The server will
respond with a search result that is formatted as an atom:feed with one atom:entry
for each content item that matched the query.

It is also possible to restrict the number of items returned by the server or paginate
the result set by using the maxItems and skipCount parameters that we used before
while using the getChildren service. The parameters that control whether allowable
actions and relationships should be returned also work as follows:

<cmis:query xmlns:cmis="http://docs.oasis-
 open.org/ns/cmis/core/200908/">
 <cmis:statement>
 <![CDATA[SELECT * FROM cmis:folder WHERE cmis:name IN
 ('Scripts')]]>
 </cmis:statement>
 <cmis:skipCount>0</cmis:skipCount>
 <cmis:maxItems>10</cmis:maxItems>
 <searchAllVersions>false</searchAllVersions>
 <includeAllowableActions>false</includeAllowableActions>
 <includeRelationships>none</includeRelationships>
</cmis:query>

Searching with the Browser binding
Executing a CMIS query with the Browser binding involves creating an HTTP
form with cmisaction set to query, a statement field with the SQL, and any extra
parameters as follows:

<html>
<body>
<form name="queryForm"
 action="http://localhost:8080/alfresco/cmisbrowser/f0ebcfb4
 -ca9f-4991-bda8-9465f4f11527" method="post"
 enctype="multipart/form-data">

Chapter 3

[97]

 <input name="cmisaction" type="hidden" value="query" />
 input name="statement" type="text" value="SELECT cmis:name FROM
 cmis:document WHERE cmis:name like '%alfresco%'" />
 <input name="searchAllVersions" type="hidden" value="false" />
 <input name="includeRelationships" type="hidden" value="none" />
 <input name="renditionFilter" type="hidden" value="cmis:none" />
 <input name="includeAllowableActions" type="hidden"
 value="false" />
 <input name="maxItems" type="hidden" value="10" />
 <input name="skipCount" type="hidden" value="0" />
 <input type="submit" value="Search" />
</form>
</body>
</html>

As you can see, it is also possible to restrict the number of items returned by the server
or paginate the result set by using the maxItems and skipCount parameters that we
used before when using the getChildren service. The parameters that control whether
allowable actions and relationships should be returned can also be used.

When we submit the above form the server will respond with a JSON search result
that looks like the following:

{
 "results":[
 {
 "allowableActions":{ ... },
 "properties":{
 "cmis:name":{... "value":"alfresco docs.js.sample",
...

 {
 "allowableActions":{ … },
 "properties":{
 "cmis:name":{... "value":"emailbody_textplain_
alfresco.ftl", ...
...

So, for each document, there are the allowableactions and the properties returned.

Advanced CMIS Operations

[98]

CMIS query examples
The following table contains a number of examples of CMIS queries that demonstrate
the capabilities of the CMIS search functionality:

CMIS query Explanation
SELECT * FROM cmis:document This returns all the properties for all the

documents in the repository, including
any documents that have a type applied
which is a subtype of cmis:document.
Thumbnails are not returned.

SELECT * FROM cmis:folder This returns all the properties for all the
folders in the repository, including any
folders that have a type applied which is a
subtype of cmis:folder.

SELECT cmis:name, cmis:objectId
FROM cmis:document

This returns specific properties, such as the
name and Object ID (node reference) for all
the documents.

SELECT * FROM cmis:document
WHERE cmis:creationDate
>= TIMESTAMP '2012-12-
05T00:00:00.000+00:00'

This returns all the documents created on
December 5, 2012 or after. Date collation
ignores time by default.

SELECT * from cmis:document WHERE
cmis:objectId = 'workspace://
SpacesStore/4412f304-df9d-4c94-
bdeb-6b90bf83b774'

This returns documents with matching
Object IDs (that is, node references).

SELECT cmis:name FROM
cmis:folder WHERE cmis:name IN
('test', 'Company Home')

This returns any folder with the name
test or Company Home. The IN predicate
is supported for single-valued properties
of the type: String, Integer, Decimal,
DateTime, and ID.

SELECT * FROM cmis:document
WHERE cmis:name LIKE
'%alfresco%'

This returns all the documents that have the
word alfresco in their name.

SELECT cmis:name FROM myc:itDoc
WHERE CONTAINS('CIFS')

This returns the name of all My Company
IT documents that have the word CIFS
somewhere in the text. CONTAINS does a
full text search.

Chapter 3

[99]

CMIS query Explanation
SELECT SCORE() docscore
FROM cmis:document WHERE
CONTAINS('\'test\'') ORDER BY
docscore

This returns the relevance that a document
has to the CONTAINS text.
The SCORE() function returns a decimal
value between 0.0 (no relevance) and 1.0
(complete relevance) with respect to the
CONTAINS() function specified in the
query.

SELECT cmis:name FROM
cmis:document WHERE IN_
FOLDER('workspace://SpacesStore/
a89c38dd-fb27-4016-a1aa-
7c8e1c9e9d37')

This returns the name of all the immediate
documents to the passed-in folder node
reference for IN_FOLDER. If you want
to search for all the documents in all
subfolders for the passed-in node reference,
use the IN_TREE predicate instead.

SELECT d.cmis:name,d.
cmis:objectTypeId FROM
cmis:document as d
JOIN cm:emailed as e
ON d.cmis:objectId =
e.cmis:objected

This returns all the documents that have the
cm:emailed aspect applied (aspects are
specific to Alfresco).
Aspects are not supported by CMIS 1.0. To
do searches that involve Aspects, you must
use a JOIN clause.

A word on transactions
Since the CMIS protocol is a stateless protocol, each request creates its own
transaction. Therefore, it is up to the developer to manage rollbacks when several
operations should be part of one logical transaction. So, for example, if you create
three folders and one file, and want all of these calls to be part of one logical
transaction and succeed or be rolled backed so that the system is consistent, then
the rolling back logic has to be written by the developer. Therefore, for example, if
creating the third folder fails, the first two folders that were already created must be
removed automatically.

Advanced CMIS Operations

[100]

Summary
In this chapter, we have gone through some of the more advanced features. We have
looked at how version management works by doing a check out and then a check in,
which creates a new version. Then we looked at how to set permissions for a node by
setting up a group with write permissions for a specific document. We also looked
at how to set up a relationship between two nodes. And finally, the search features
were explored, which are based on the SQL 92 standard and are easy to learn.

In the next chapter, we will look into how the Alfresco platform implements the
CMIS standard and how Alfresco uses CMIS between different clients and the server,
including how Alfresco in the cloud supports CMIS.

Alfresco and CMIS
This chapter will look at how Alfresco has implemented support for the CMIS
standard over the last couple of years. We will investigate how the different parts
of CMIS, such as the object model and services, are supported and mapped into
Alfresco's corresponding entities. This chapter also covers Alfresco-specific features,
such as tags, categories, and aspects, and how to access them via CMIS.

Timeline
The support for CMIS in Alfresco has evolved over a number of years. The following
diagram shows the timeline:

Sep
2008

Labs 3C
First publicly
available open
source
implementation of
CMIS v0.5

Community 3.2
Implementation
of CMIS v0.61

Hosted version of CMIS
repository available at
http://cmis.alfresco.com

Community 3.3
Implementation of
CMIS v1.0 - CD07

CMIS 1.0
approved by
OASIS

Community 3.3g
Enterprise 3.3
Implementation of
CMIS v1.0 - CS01

Community 4.0a
Enterprise 4.0
OpenCMIS Server
Framework used
as runtime

Community 4.2
Support for
CMIS 1.1

June
2009

Aug
2009

April
2010

May
2010

June
2010

Jan
2012

Oct
2012

Alfresco was one of the first companies to support CMIS, making a CMIS v0.5
implementation available in 2008. In 2009, Alfresco started to host an online server
where people could try out the CMIS standard. This server, which is accessible via
the http://cmis.alfresco.com URL, supports the CMIS 1.0 standard and the
Browser binding, which is based on the CMIS 1.1 draft.

In mid 2010, Alfresco released both a Community version and an Enterprise version
that supported the recently-approved CMIS 1.0 standard.

Alfresco and CMIS

[102]

With Version 4.0 of the server, Alfresco switched from using a home-grown
CMIS runtime based on Apache Abdera libraries to handle AtomPub protocol
implementation, to using the OpenCMIS Server Framework. This was done to be
able to benefit the users from the development of this framework that is used by
many CMIS servers. It also made the OpenCMIS Java API available for developers
performing customizations for Alfresco. Developers can also use a new root object
called cmis in the Web Script controllers implemented in JavaScript.

Note that with the release of Alfresco 4 and the move to OpenCMIS, the URLs that are
used to access the CMIS services in an Alfresco server have changed. Alfresco 4.0 uses
the http://localhost:8080/alfresco/cmisatom URL instead of the depreciated
http://localhost:8080/alfresco/service/cmis URL that was used in Version
3.2r2 to 3.4. To confuse everyone a bit more, the Alfresco CMIS URL has changed
again in Version 4.2.d Community and 4.2.0 Enterprise to http://localhost:8080/
alfresco/api/-default-/cmis/versions/1.1/atom (you can switch version in
the URL to 1.0 if Version 1.1 is not of interest). The Browser binding URL in 4.2 is
the same as that for Atom except it ends in /1.1/browser instead of /1.1/atom. The
repository ID also changed from being a UUID to –default-.

In the two preceding chapters, we have used the Version 4.0 URLs (that
is, http://localhost:8080/alfresco/cmisatom and http://
localhost:8080/alfresco/cmisbrowser) when working with
the 4.2 version; this also works. These were used because this book was
started before the 4.2.d and 4.2.0 versions were released.

In the latest Alfresco Community and Enterprise releases of Version 4.2, there is
support for parts of the new CMIS Version 1.1 standard that was released in May
2013, which are as follows:

• The Browser binding: As seen in the previous two chapters, the Browser
binding makes it easy to work with CMIS via JSON and HTML Forms.

• Secondary types: Alfresco aspects are exposed as secondary types in CMIS
1.1. You can dynamically add aspects to an Alfresco object using the
CMIS API.

• Appending content: If you have an application that uses very large files,
such as a media publishing solution, you may want to upload a file in
chunks. You may have large files that timeout during an upload or fail
because of a bad connection. You can use the CMIS 1.1 append parameter
in these situations.

Chapter 4

[103]

The following features from the CMIS 1.1 standard are not supported in Alfresco
Version 4.2:

• Type mutability: This provides the possibility to add, update, and delete
content types via the CMIS API. So when this is supported in the future, you
could have an application inject a domain-specific content model on the fly
when it is installed. When the application is uninstalled, it could remove the
content model. This could also be used by design tools and so on.

• Retention and Hold support: This provides a bit of records management
support without having to install and use the Alfresco Records Management
module. It defines secondary types to formally represent Retentions and
Holds on CMIS objects. These, in turn, can be used by the repository to
protect objects from being deleted or modified. Retention describes a period
of time during which a document must not be deleted, whereas Hold marks
the document as protected as long as the Hold is applied.

• The New cmis:item Object Type: This is a new top-level data model type
that is an extension point for repositories that need to expose any other object
types via CMIS that do not fit the model's definition of a document, folder,
relationship, or policy. This could be used, for example, to model users and
groups in Alfresco.

• The bulkUpdateProperties service: This is a method that supports bulk
property updates on a set of objects within a single service call.

• Extended features discovery: This is an optional new element called
extendedFeatures, which can be part of the repositoryInfo service
call response.

Architecture/stack
The Alfresco implementation of the CMIS standard changed in Version 4.0 when the
OpenCMIS client and server library was adopted as the CMIS server framework for
the Alfresco server.

Alfresco and CMIS

[104]

The following diagram shows the current Alfresco CMIS stack:

OpenCMIS Client API

OpenCMIS Client Impl

OpenCMIS Provider Impl

OpenCMIS Service Provider Interface (SPI)

OpenCMIS Service Implementation

OpenCMIS Service Provider Interface (SPI)

Alfresco OpenCMIS Service Provider Interface (SPI) Implementation

(org.alfresco.opencmis.AlfrescoCmisServiceImpl)

A
lf

re
s
c
o

4
.0

O
p
e
n
C

M
IS

A
p
a
c
h
e

C
h
e
m

is
tr

y

Java API

CMIS Service Calls

CMIS Abstraction Interface

(org.alfresco.opencmis.CMISConnector)

Alfresco Foundation Service Interface

Node Service, Content Service, Dictionary Service, Version Service,

Rendition Service, Permission Service, Authentication Service etc.

Content Repository

ATOMPub Binding

Web Service Binding

Browser Binding

Requests / Responses

Right on top of the Alfresco Service interface is a CMIS abstraction layer called
CMISConnector that works as a façade between the Alfresco system and the
OpenCMIS server framework. The OpenCMIS Service Provider Interface (SPI)
is implemented with the AlfrescoCmisServiceImpl component that ties together
Alfresco's repository with the OpenCMIS server framework. Alfresco then just takes
advantage of the OpenCMIS protocol binding implementations.

Adopting the OpenCMIS library had several benefits for Alfresco, some of which are
as follows:

• The OpenCMIS server framework is used by several CMS servers and not
just Alfresco; so Alfresco automatically benefits from all the bug fixes
and improvements.

• Alfresco will have one code base for all CMIS protocol bindings, AtomPub,
Web Services, and Browser.

• Access to the OpenCMIS client API within the repository is provided,
making it easy to use it from in-process/embedded extensions.

• It provides Spring Surf OpenCMIS integration so you can use the OpenCMIS
client library from Surf Web Scripts. A new cmis JavaScript root object is
also available.

Chapter 4

[105]

• Single-Sign-On support with CMIS.
• Better CMIS specification compliance.
• Better performance with less memory consumption.
• Handling big documents.

OpenCMIS does not support working with aspects prior to Version 4.2.e Community
and 4.2.0 Enterprise when they are handled as secondary types. So, Alfresco has
developed an extension to OpenCMIS that makes it possible to work with aspects in
older Alfresco versions. This project is available at http://apache-extras.org/p/
alfresco-opencmis-extension and we will cover that in the next chapter.

Alfresco content model mapping to the
CMIS object model
This section will walk you through the CMIS object model and have a look at how
Alfresco implements it.

Repository capabilities
The information in this section holds true for my Alfresco Community 4.2.e
installation and 4.2.0 Enterprise installation.

Alfresco supports adding and removing ACL as the capabilityACL property is set
to manage. The capabilityAllVersionsSearchable property is set to false, so
Alfresco does not support searching in all the previous versions of a document when
version management has been turned on.

Alfresco does not log anything when users execute operations such as creating,
reading, updating, or deleting a document as the capabilityChanges value is none.
By default, the change log is turned off to save space; it can be turned on by updating
the tomcat/shared/classes/alfresco-global.properties file and setting
audit.cmischangelog.enabled to true. Once set, the value of capabilityChanges
becomes objectidsonly. This means that the Alfresco change log provides access
to a list of the objects that have changed (those that have been created, updated,
deleted, and for which permissions have been modified) but does not provide a list
of the properties, or the content, that have changed.

Alfresco and CMIS

[106]

The content of a document can be updated as the
capabilityContentStreamUpdatability property is set to anytime, which
means that updates are allowed both when checked out to a working copy, or just
direct updates without a check-out. When a document is checked out, Alfresco also
supports updating of the working copy as the capabilityPWCUpdatable property
is set to true.

It is also possible to get all the descendant content items for a folder as the
capabilityGetDescendants property is set to true; the same concept applies
to capabilityGetFolderTree, which allows you to fetch all its subfolders
recursively. The ability to file a document in multiple folders is also supported
as the capabilityMultifiling property to is set true.

It is possible to search in both metadata and content because the capabilityQuery
property is set to bothcombined. Searching in checked-out PWCs is not supported
as the capabilityPWCSearchable property is set to false.

We can read renditions such as thumbnails as the capabilityRenditions
property is set to read. Then, there a number of features that are not supported
in this Alfresco version, which are as follows: capabilityUnfiling,
capabilityVersionSpecificFiling, and capabilityJoin.

Type mappings
The Alfresco type cm:content is mapped to the CMIS type cmis:document. The query
name is also cmis:document. All Alfresco types that extend cm:content are mapped
to the CMIS type ID D:<alfresco type>, for example, D:dl:dataListItem.
The CMIS query name for these Alfresco types is <alfresco type>.

The mapping for the Alfresco folder types is similar to that for documents. The
Alfresco type cm:folder is mapped to the CMIS type cmis:folder. All Alfresco
types that extend cm:folder are mapped to the CMIS type ID F:<alfresco type>,
for example, F:dl:dataList. The CMIS query name for these Alfresco types is
<alfresco type>.

All Alfresco peer-to-peer associations are mapped to the CMIS type ID
R:<association type>. However, both the source and target types in the
association have to be a cm:folder or cm:content derived type. If that is not
the case, the association is not mapped. The CMIS query name is not relevant as
relationships are not searchable. The CMIS base type cmis:relationship has no
equivalent Alfresco type.

Any Alfresco type outside the cm:content and cm:folder hierarchies is not exposed
via the CMIS interface.

Chapter 4

[107]

The cmis:policy CMIS type has no equivalent Alfresco type. However, it is used to
map aspects so that they are accessible via CMIS if you are using an Alfresco version
prior to 4.2.e Community or 4.2.0 Enterprise.

Property mappings
The cmis:objectId property is mapped into an Alfresco node reference along
with the possible version label as a serializable string such as workspace://
SpacesStore/{uuid};{versionLabel}. An example object ID could be
workspace://SpacesStore/89f42a5a-2a82-4449-bbe3-8e17fc8bd153;1.0,
which includes the version label too. The version label is not included if it is a PWC
or versioning is not enabled for a document (versioning is not applicable to folders).

Note that in the Alfresco 4.2.d and 4.2.0 versions, the repository ID
and object ID formats have changed. So if you are using the new URLs
for these versions, such as http://localhost:8080/alfresco/
api/-default-/cmis/versions/1.1/browser, the repository
ID is going to be –default- and the object IDs are going to look like
89f42a5a-2a82-4449-bbe3-8e17fc8bd153. However, you can still
use the new URL with the old object ID format such as workspace://
SpacesStore/89f42a5a-2a82-4449-bbe3-8e17fc8bd153. If you
use the old object IDs with the new URLs, Alfresco will respond with
old object IDs.

The cmis:objectTypeId is mapped into a "[D|F|R|P]:{prefix}:{localName}"
serializable string; for example, D:dl:dataListItem.

Other common properties are mapped as follows:

CMIS property Alfresco property
cmis:name cm:name

cmis:createdBy cm:creator (cm:auditable)

cmis:createdBy cm:created (cm:auditable)

cmis:lastModifiedBy cm:modifier (cm:auditable)

cmis:lastModificationDate cm:modifiedDate (cm:auditable)

cmis:isLatestVersion (document only) This defaults to true; set to
false if it is a PWC.

cmis:isMajorVersion (document only) This is set to true if the version
type is VersionType.Major; otherwise, it is
set to false. If it is a PWC, always set to false.

cmis:versionLabel (document only) cm:versionLabel
cmis:contentStreamLength (document only) cm:content.size

Alfresco and CMIS

[108]

CMIS property Alfresco property
cmis:name cm:name

cmis:contentStreamMimeType (document only) cm:content.mimetype
cmis:contentStreamFileName (document only) cm:name
cmis:path (folder only) This is the path to the folder

excluding /Company Home. So the path to
/Company Home/Data Dictionary/
Scripts, for example, would be /Data
Dictionary/Scripts.
To get the path for an object, refer to the next
section.

Note that some Alfresco property types are not mapped, such as d:any, d:content,
d:childassocref, d:assocref, d:path, d:locale, and d:version. Any property
that has a type from one of these is not going to be mapped into a CMIS property.

Object path's explanation
Getting the path for an object requires a bit more explanation as it is not always
straightforward. Each object in CMIS has a unique, immutable, and opaque object ID.
As discussed earlier, an object ID is mapped into an Alfresco node reference. We can
use the getObject call in the object services and pass in the object ID to get a folder,
document, document version, relationship, policy, and also the new CMIS 1.1
item object.

If we now look at the object paths, things get complicated. So, a path is another
mechanism to access an object in addition to the object ID. CMIS supports retrieving
objects by their path via the getObjectByPath call in the object service. However,
the path to a document does not have to be unique. If the multifiling feature is used,
an object can be contained in multiple folders and have more than one path, or it can
be an orphaned object that has not yet been filed in any folder. Because of this, there
is no object method such as getPath that returns the path to the object.

The following diagram shows an example of different files (that is, document objects)
that have been filed under different folders in an Alfresco repository:

Chapter 4

[109]

“/” Root folder = “/Company Home”

PathSegment“Book”

“Chapter1”

“chapter1.doc” “Figure1.png”

“Assets” PathSegment

PathSegment“Intro”

cm:contains

PathSegment

cm:containscm:contains

Primary path
in Alfresco

Folder
Object

Document
Object
Fileable

Document
Object
Multi-filed

Document
Object
Unfiled

Legend

cm:contains

cm:contains

The root folder node is always at the top; it should be accessible via the / path
according to the CMIS specification. This is the same folder as /Company Home in
Alfresco, so when referring to the folder paths in Alfresco, the /Company Home folder
is implied and should not be specified in the path, and will not be returned in the
value of the cmis:path property for a folder object.

In CMIS, a path is made up of so-called PathSegments that are folder names and file
names. In Alfresco, a PathSegement is the cm:name of the folder or file node. Path
segments are connected in Alfresco with the cm:contains parent-child association.
The preceding diagram shows a file Figure1.png that has been filed in two different
folders: the /Assets folder and the /Chapter1 folder. This was done by first
uploading the image file via the Alfresco Share UI to the /Assets folder, which
effectively sets what's called the primary path for this file in Alfresco to /Company
Home/Assets/Figure1.png. The primary path is not a concept that exists in CMIS.
To file the image into the Chapter1 folder, a file called MultiFileObjectPostData.
txt was created with the following content:

cmisaction=addObjectToFolder&folderId=aa779fa8-fa01-4ee2-9938-
 def82c48a8d6

In the previous code, folderId is the UUID part of the Alfresco node reference for
the /Chapter1 folder and addObjectToFolder is the CMIS service operation for
multifiling an object. This data is then POSTed to the server using the following
command:

$ curl -v -u admin:admin -d @MultiFileObjectPostData.txt -H "Content-
Type:text/plain" http://localhost:8080/alfresco/api/-default-/public/
cmis/versions/1.1/browser/root?objectId=83c39879-a1e8-493a-9f3f-
cea111a1668f

Alfresco and CMIS

[110]

In the previous snippet, the objectId parameter is the UUID part of the Alfresco
node reference for the Figure1.png file. The result of this is that Alfresco will set up
a new cm:contains association/relationship between the /Chapter1 folder node
and the Figure1.png file. The only thing that is actually created in this multifiling
scenario is this association. If you use Node Browser to navigate to the image file
via the /Book/Chapter1 path, the primary Alfresco path will still be /Company
Home/Assets/Figure1.png when you get to the file. If you change any of the files'
properties, such as the name, it will change in both the locations where it is filed as
there is only one image-file node in the repository.

Now moving on to the paths. Getting the path for a folder is easy; just use the
getObjectById service operation and the response will contain the cm:path
property as follows:

$ curl -u admin:admin "http://localhost:8080/alfresco/api/-default-/
public/cmis/versions/1.1/browser/root?objectId=aa779fa8-fa01-4ee2-9938-de
f82c48a8d6&cmisselector=object&filter=*&succinct=true" | jq .
{
 "succinctProperties": {
…

 "cmis:name": "Chapter1",
 "cmis:path": "/Book/Chapter1",…

For a file such as Figure1.png, getting the path for a folder is not that easy as it can
be multifiled as we have seen earlier. We need to use the getObjectParents service
operation to get to all the paths leading to this file. The following command does that
for the image file:

$ curl -u admin:admin "http://localhost:8080/alfresco/api/-default-/
public/cmis/versions/1.1/browser/root?objectId=83c39879-a1e8-493a-9f3f-ce
a111a1668f%3B1.0&cmisselector=parents&filter=*&includeRelativePathSegment
=true&succinct=true" | jq .

 [

 {

 "relativePathSegment": "Figure1.png",

 "object": {

 "succinctProperties": {…

 "cmis:name": "Assets",

 "cmis:path": "/Assets",…

 },

 {

 "relativePathSegment": "Figure1.png",

 "object": {

Chapter 4

[111]

 "succinctProperties": { …

 "cmis:name": "Chapter1",

 "cmis:path": "/Book/Chapter1",…

We can see in the previous code that the image file has been filed in two different
folders. It is not possible via CMIS to find out which one is the primary path to
the image file. If we want to get the parent folders for an object via the AtomPub
binding, it is done in a similar way.

For example, let's say we have a cmis:document that we got via the AtomPub
navigation (that is, get the root folder collection, navigate via the down link to the
folder, and then navigate via the down link to the doc). The Atom entry for the
document will contain an up link, which corresponds to the getObjectParents
method call, as shown in the following code:

<atom:link rel="up" href="http://localhost:8080/alfresco/api/-
 default-/public/cmis/versions/1.1/atom/parents?id=83c39879-a1e8-
 493a-9f3f-cea111a1668f%3B1.0"
 type="application/atom+xml;type=feed"/>

When we have this up link, we can invoke it with the filter parameter
set to cmis:path to return only the relevant properties and set the
includeRelativePathSegment parameter to true (to get the related file name,
which is always going to be the same), as follows:

$ curl -u admin:admin http://localhost:8080/alfresco/api/-default-/
public/cmis/versions/1.1/atom/parents?id=83c39879-a1e8-493a-9f3f-cea111a1
668f%3B1.0&filter=cmis%3Apath&includeRelativePathSegment=true | xmllingt
--format –

What we will get in return is an Atom feed of the parent folder Atom entries, even if
the object has only a single parent folder. Each parent folder Atom entry will contain
a path and a relative path segment, which can be concatenated to form the path:

 ...
 <atom:entry>...
 <cmisra:object>
 <cmis:properties>
 <cmis:propertyString propertyDefinitionId="cmis:path"
 displayName="Path" localName="path"
 queryName="cmis:path">
 <cmis:value>/Assets</cmis:value>
 </cmis:propertyString>...
 </cmisra:object>
 <cmisra:relativePathSegment>Figure1.png<
 /cmisra:relativePathSegment>
 ...
 <atom:entry>...

Alfresco and CMIS

[112]

 <cmisra:object>
 <cmis:properties>
 <cmis:propertyString propertyDefinitionId="cmis:path"
 displayName="Path" localName="path"
 queryName="cmis:path">
 <cmis:value>/Book/Chapter1</cmis:value>
 </cmis:propertyString>...
 </cmisra:object>
 <cmisra:relativePathSegment>Figure1.png<
 /cmisra:relativePathSegment>

It is not generally good practice to rely on paths when accessing objects or even
object IDs for that matter if you are working with multiple CMIS-compatible servers.
It is particularly bad to have an application rely on object IDs and store them locally
or in a database as they can change between Alfresco versions, as we have seen, and
are most likely going to have a unique format per content manager server vendor.

A better way is to use metadata to uniquely identify an object in the repository.
For example, let's say we are working with legal cases and want to be able to
identify them across repositories and in a repository-independent way. Then, we
could add a custom metadata type such as myc:legalCase with a property such as
myc:legalCaseNumber and use them to fetch the object as in the following example
CMIS Query:

SELECT cmis:name, cmis:objectId FROM myc:legalCase WHERE
 myc:legalCaseNumber = "LC1015";

Versioning
CMIS supports a simple version model where each of the previous versions is stored
in its entirety. Only documents are versionable and the following diagram illustrates
the versioning model:

CMIS Repository

Version Series

Ver 2.0

Ver 1.1

Ver 1.0

Version Series

Ver 3.0

Ver 2.0

Ver 1.0

Ver 1.2

Version Series

Ver 1.1

Ver 1.0

Check-in

Check-out

Latest
Version

Older
Version

Private
Working
Copy

PWC

. . .

Chapter 4

[113]

A CMIS version series contains all the versions that belong to a specific document.
In Alfresco, this is implemented with the standard Version History model. This is
shown in the following diagram:

Alfresco Repository

Version Store
(meta-data)

Version
History

Version
1.0

Version
2.0

File
Content Store
(physical files)

Permissions

Document
Node Properties

Aspects

Document
Node Properties

Aspects
Permissions

File

Working Store
(meta-data)Turning on

versioning
creates
Vesion
History

Document
Node Properties

Aspects
Permissions

References a
physical file

CMIS has some version management features that are not mandatory to implement.
One of them is the ability to search through previous versions. Whether or not the
repository supports this is indicated in the repository information's capabilities
section with the cmis:capabilityAllVersionsSearchable property. In Version
4.2, which I am currently using, this property is set to false, so running a full-text
search through all the previous versions is not supported.

Another version-related feature is the possibility to file different versions of a
document in different folders. Support for this CMIS feature is indicated via the cmi
s:capabilityVersionSpecificFiling property. It is set to false for my Alfresco
installation, so this is not supported either and all the versions are stored in the
same folder.

Access control
An Access Control List (ACL) is used to specify what principals, such as users or
groups, can do with an object in the repository. This is configured in an Access
Control Entry (ACE). CMIS defines three permissions: cmis:read, cmis:write, and
cmis:all. An ACE can also contain an indication of whether or not access control
definitions from parent folders should be inherited; this parameter is called direct.

Alfresco and CMIS

[114]

The Alfresco repository has full support for managing ACLs for objects in the
repository, which means that you can both apply and read permissions. This
is indicated in the repository information's capabilities section with the
cmis:capabilityACL property set to manage. The Alfresco repository also supports
both CMIS permissions and repository-specific permissions. This can be found out
by looking in the cmis:aclCapability section and finding out the value set for the
cmis:supportedPermissions property, which in my case is with Alfresco 4.2, is set
to both.

The following table shows how CMIS access control is mapped to Alfresco:

CMIS Alfresco
direct Inherited permissions
cmis:read Alfresco read permissions
cmis:write Alfresco write permissions
cmis:all Alfresco all permissions
Repository-specific permissions Projected as they are

The underlying permissions for an object are mapped to a set of allowable actions.
These actions represent the operations that the current user is allowed to perform on
a given object. The set of allowable actions is defined by CMIS and we can fetch them
by passing the includeAllowableActions parameter set to true in a getChildren
call, for example.

The mapping of a CMIS service call to the required Alfresco permission is as follows
for document objects:

CMIS call Alfresco permission that the user must have
deleteObject DeleteNode
updateProperties WriteProperties
checkOut CheckOut
cancelCheckout CancelCheckout
checkIn CheckIn
deleteAllVersions Always possible if user can delete the latest version
addDocumentToFolder LinkChildren
setContentStream WriteContent
deleteContentStream WriteProperties
getAllVersions This is always set to true if the user can read latest version
getDocumentParents Always possible if user has read access

Chapter 4

[115]

CMIS call Alfresco permission that the user must have
getRelationships Always possible if user has read access
getProperties ReadProperties
getContentStream ReadContent

Alfresco permissions are defined in the permissionDefinitions.xml file that
can be found in the model directory under tomcat/webapps/alfresco/WEB-INF/
classes/alfresco.

For folder objects, the permission mappings are as follows:

CMIS call Alfresco permission that the user must have
deleteObject DeleteNode
deleteTree DeleteNode
updateProperties WriteProperties
getChildren ReadChildren
getDescendants ReadChildren
getFolderParent This is always set to true if user has read access
getProperties ReadProperties
getRelationships Always possible if user has read access

Change log
CMIS supports a change log that records all create, read, update, and delete
operations that have been performed by different users on objects in the repository.
The following diagram illustrates the CMIS change log feature:

CMIS Server

Object A

Logs
Change
Log

Create Update Delete

Read

Update

UpdateRead
Repository

Discovers
Client

Object B

Timeline for change events

Alfresco and CMIS

[116]

The repository logs the object ID, time, and change type when an event occurs. These
logs can be read by CMIS clients. Alfresco implements the change log feature with a
specific audit log application called CMISChangeLog that is defined in the alfresco-
audit-cmis.xml file located in the audit directory under tomcat/webapps/
alfresco/WEB-INF/classes/alfresco. The change log feature is not enabled by
default in Alfresco as described previously in this chapter.

Renditions
Alfresco has had rendition support since the beginning. However, it is only since
Version 3.3 that they have actually been called renditions. If you have ever used
the Alfresco Share user interface, you have seen examples of content renditions,
such as document thumbnails and document previews. Thumbnails are generated
asynchronously after an upload. Web previews are generated on demand in Alfresco
when you click on the document to see its details and preview.

The CMIS standard only supports retrieving renditions, but this is sufficient to
support most use cases, such as the preview of reduced representations of a content
item, fetching processed images and videos from a Digital Asset Management
(DAM) system, and the publishing of web content from a Web Content
Management (WCM) system.

Alfresco implements full support for CMIS renditions. Renditions created by
Alfresco are accessible via the different CMIS protocol bindings in a standard way.
In CMIS, renditions are categorized via its kind property. There is a CMIS rendition
kind specified in the standard called cmis:thumbnail, the purpose of which is
to provide an image preview of the document without requiring that the client
download the full document content stream.

A common task that you would most likely want to do, for example, is to retrieve
a thumbnail for a document in the Share Document Library and then display it in a
custom client.

To fetch a thumbnail for a document via the AtomPub binding, we first need to fetch
the document's Atom entry to see what the link is for the thumbnail rendition. We
can do this via the object by either ID or path URI template. For more information
about these operations and templates see Chapter 2, Basic CMIS Operations.

So to retrieve a thumbnail rendition link for a document, we are going to use the
GET by object ID operation; for this, we first need to find out the node reference
for the document, which will be set as the Object id parameter, and then specify
rendtionFilter to cmis:thumbnail to get some extra metadata for the rendition
using the following command:

Chapter 4

[117]

$ curl -u admin:admin " http://localhost:8080/alfresco/cmisatom/f0ebcfb4-
ca9f-4991-bda8-9465f4f11527/id?id=workspace%3A%2F%2FSpacesStore%2F1f5f99
ac-a74a-4606-9fe7-85d011d13bc1&renditionFilter=cmis:thumbnail"

The response to the previously mentioned HTTP GET request will include additional
metadata describing the cmis:thumbnail rendition and links to any renditions, as
shown in the following code:

<atom:entry ...
 <cmisra:object ...
 <cmis:properties>
 ...
 </cmis:properties>
 <cmis:rendition>
 <cmis:streamId>workspace://SpacesStore/8b49dd01-56bb-4980-
 b161-1249ac93eb73</cmis:streamId>
 <cmis:mimetype>image/png</cmis:mimetype>
 <cmis:length>539</cmis:length>
 <cmis:kind>cmis:thumbnail</cmis:kind>
 <cmis:title>doclib</cmis:title>
 <cmis:height>100</cmis:height>
 <cmis:width>100</cmis:width>
 <cmis:renditionDocumentId>workspace:
 //SpacesStore/8b49dd01-56bb-4980-b161-1249ac93eb73
 </cmis:renditionDocumentId>
 </cmis:rendition>
 </cmisra:object>
 ...
 <atom:link rel="alternate"
 href="http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-
 4991-bda8-9465f4f11527/content?id=
 workspace%3A%2F%2FSpacesStore%2F1f5f99ac-a74a-4606-9fe7-
 85d011d13bc1%3B1.0&streamId=
 workspace%3A%2F%2FSpacesStore%2F8b49dd01-56bb-4980-b161-
 1249ac93eb73"
 type="image/png" cmisra:renditionKind="cmis:thumbnail"
 title="doclib" length="539"/>
 <atom:link rel="alternate"
 href="http://localhost:8080/alfresco/cmisatom/f0ebcfb4-ca9f-
 4991-bda8-9465f4f11527/content?id=
 workspace%3A%2F%2FSpacesStore%2F1f5f99ac-a74a-4606-9fe7-
 85d011d13bc1%3B1.0&streamId=
 workspace%3A%2F%2FSpacesStore%2F5a401703-8b0d-4d83-845a-
 edc664c48ccb"
 type="application/x-shockwave-flash"
 cmisra:renditionKind="alf:webpreview" title="webpreview"
 length="4238"/>
 ...
</atom:entry>

Alfresco and CMIS

[118]

To get to the thumbnail rendition, we can just do an HTTP GET on the
cmis:thumbnail rendition link previously mentioned. A repository may provide
any number of other rendition kinds. In this case, the document also has a web
preview rendition with a repository-specific rendition kind that is alf:webpreview.

Search
All capabilities of the CMIS Query Language (QL) are supported by Alfresco, except
JOIN operations between types. This means that we can search within both content
and metadata. The Alfresco full-text search (FTS) language can be embedded in the
CONTAINS predicate of the CMIS QL. See the following sections for examples of how
to use the TAG and PATH keywords from the Alfresco FTS language.

The FTS special fields, such as PATH, ASPECT, ID, QNAME, and TYPE,
are available for use in the CMIS CONTAINS predicate from Alfresco
Version 3.4.3.

When Alfresco FTS is embedded in the CONTAINS function, only the following
methods can be used to identify fields:

• CMIS QL style property identifiers, such as cmis:name
• CMIS QL column aliases, such as SELECT cmis:name docName ...
• An Alfresco namespace prefix style, such as cm:name
• Special fields, such as PATH and TAG

Searching under a specific path is a common requirement; let's look at the following
example:

SELECT * FROM cmis:folder WHERE
 CONTAINS('PATH:"/app:company_home/cm:Book/*"')

In the previous code, we are searching for all the folders in the /Book folder. It is
important to note that display paths cannot be used as a value for the PATH predicate.
For example, /Company Home/Book/* will not work. To find the correct path
expression, the Alfresco Node Browser tool can be used.

The cmis:path property on CMIS folder objects is not searchable.
So using the PATH predicate in CONTAINS is pretty useful. The only
disadvantage is that the queries will not be portable to other content
manager servers.

Chapter 4

[119]

The SQL query defines tables and table aliases after the FROM and JOIN clauses. If the
SQL query references more than one table, the CONTAINS function must specify a single
table for use by its alias. All properties in the embedded FTS query are added to this
table and all column aliases used in the FTS query must refer to the same table. For a
single table, the table alias is not required as part of the CONTAINS function.

We are going to need another example to get on top of that, which is as follows:

SELECT d.*, t.*, a.* FROM cmis:document AS d
 JOIN cm:titled AS t ON d.cmis:objectId = t.cmis:objectId
 JOIN cm:author AS a ON d.cmis:objectId = a.cmis:objectId
 WHERE CONTAINS(d,'Authentication')
 ORDER BY d.cmis:name

We have not talked about aspects yet, but to get to them, we can use JOIN as in the
previous example in which we wanted to get the title (from the cm:titled aspect)
and author (from the cm:author aspect) for all documents that contain the text
Authentication. So, when we are bringing in more than one table with the FROM
and JOIN clauses, we need to specify an alias for the table in which we want to
perform an FTS operation. In the previous example, we want to perform an FTS in
cmis:document, so we set up an alias called d for this table and then use it in the
CONTAINS clause. You can learn more about aspects in the following section.

Support for Alfresco-specific features
Some Alfresco features, such as aspects, have no corresponding CMIS definition but
are supported in different ways.

Aspects
In the Alfresco 4.2 Community and Enterprise installations that I have, the
getTypeChildren call (that is, http://localhost:8080/alfresco/api/-
default-/public/cmis/versions/1.1/atom/types) returns the cmis:secondary
type, which means that Alfresco supports this CMIS 1.1 base type. Secondary types
are used to apply extra properties to a CMIS object. More than one secondary type
can be applied to an object. Alfresco exposes any aspects (basically a group of
properties) that have been applied to a node using this type.

To find out what aspects have been applied to an object, we can request the
properties for the object and look at the cmis:secondaryObjectTypeIds property.
In the following command, we are getting the properties for the /Figure1.png file
previously uploaded:

Alfresco and CMIS

[120]

$ curl -u admin:admin "http://localhost:8080/alfresco/api/-default-/
public/cmis/versions/1.1/browser/root?objectId=83c39879-a1e8-493a-9f3f-ce
a111a1668f%3B1.0&cmisselector=object&filter=*&succinct=true" | jq '.'

{

 "succinctProperties": {

…

 "cmis:secondaryObjectTypeIds": [

 "P:cm:thumbnailModification",

 "P:exif:exif",

 "P:cm:titled",

 "P:cm:author",

 "P:rn:renditioned",

 "P:sys:localized"

],

 …

 }

}

We can see that the image file already has a number of aspects applied, such as
the exif metadata from the JPEG image. If we want to add a new aspect (that
is, another secondary type) to this object, we would have to include the already
applied secondary types too. Let's say we want to apply the cm:effectivity
aspects that come out of the box with Alfresco. To do this, we have to update
the cmis:secondaryObjectTypeIds property with an extra value along with
whatever properties are associated with that secondary type. This is done via the
updateProperties operation as usual.

When using the Browser binding and JSON, we start by creating a test
file with the data we are going to perform a POST operation; let's call it
AddSecondaryTypePostData.txt and have it contain the following content:

cmisaction=update&propertyId[0]=cmis%3AsecondaryObjectTypeIds&prop
 ertyValue[0][0]=P%3Acm%3Aeffectivity&propertyValue[0][1]=
 P%3Acm%3AthumbnailModification&propertyValue[0][2]=
 P%3Aexif%3Aexif&propertyValue[0][3]=
 P%3Acm%3Atitled&propertyValue[0][4]=
 P%3Acm%3Aauthor&propertyValue[0][5]=
 P%3Arn%3Arenditioned&propertyValue[0][6]=
 P%3Asys%3Alocalized&propertyId[1]=cm%3Afrom&propertyValue[1]=
 1387130400000&propertyId[2]=cm%3Ato&propertyValue[2]=
 1393610400000

Chapter 4

[121]

The POST data will contain all the existing secondary types plus the new one and
the two properties for the cm:effectivity aspect called cm:from and cm:to, which
are dates. When specifying dates in JSON and the Browser binding, they have to be
coded in milliseconds since 1970/01/01 00:00:00 UTC (you can visit
http://currentmillis.com/ to do the encoding).

Now that we have the data to add an aspect to an object, we can do that with the
following command:

$ curl -v -u admin:admin -d @AddSecondaryTypePostData.txt -H "Content-
Type:text/plain" "http://localhost:8080/alfresco/api/-default-/public/
cmis/versions/1.1/browser/root?objectId=83c39879-a1e8-493a-9f3f-
cea111a1668f"

{

"properties": {

"cmis:secondaryObjectTypeIds": [

"P:cm:thumbnailModification",

"P:exif:exif",

"P:cm:titled",

"P:cm:author",

"P:rn:renditioned",

"P:sys:localized",

"P:cm:effectivity"]

},

The call will return the new values for the secondary types that should now include
the one we just added.

The Alfresco aspects cm:referenceable, cm:auditable, and
cm:versionable are not mapped to secondary types as they are
already mapped to the native document/folder properties defined in
the CMIS domain model.

Alfresco and CMIS

[122]

Now, if the Alfresco server that you are using does not support secondary types,
you will have to use an Alfresco-specific way of adding them. To do this with
the AtomPub binding, we specify the aspect information in a section named
<alf:setAspects> when updating the properties for an object or when creating a
document object. The following example shows this when creating a document; put
the following Atom entry in a file named createDocumentAndSetAspect.atom.xml:

<entry xmlns="http://www.w3.org/2005/Atom"
 xmlns:app="http://www.w3.org/2007/app"
 xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"
 xmlns:cmisra="http://docs.oasis-
 open.org/ns/cmis/restatom/200908/">
 <title>simpleWithAspect.txt</title>
 <summary>A simple text file with aspect</summary>
 <cmisra:object>
 <cmis:properties>
 <cmis:propertyId propertyDefinitionId="cmis:objectTypeId">
 <cmis:value>cmis:document</cmis:value>
 </cmis:propertyId>
 <alf:setAspects xmlns:alf="http://www.alfresco.org">
 <alf:aspectsToAdd>P:cm:effectivity</alf:aspectsToAdd>
 <alf:properties>
 <cmis:propertyDateTime propertyDefinitionId="cm:from"
 displayName="From Date" queryName="cm:from">
 <cmis:value>2012-12-26T18:00:00.000Z</cmis:value>
 </cmis:propertyDateTime>
 <cmis:propertyDateTime propertyDefinitionId="cm:to"
 displayName="To Date" queryName="cm:to">
 <cmis:value>2012-12-29T18:00:00.000Z</cmis:value>
 </cmis:propertyDateTime>
 </alf:properties>
 </alf:setAspects>
 </cmis:properties>
 </cmisra:object>
</entry>

Then perform a POST operation on this file to create this document with the aspect
applied as follows:

$ curl -u admin:admin -d @createDocumentAndSetAspect.atom.xml -H
"Content-Type:application/atom+xml;type=entry" "http://localhost:8080/
alfresco/cmisatom/f0ebcfb4-ca9f-4991-bda8-9465f4f11527/children?id=worksp
ace%3A%2F%2FSpacesStore%2F5d0a13ed-d337-4e0d-a93a-05c71ab3e51e"

When, for example, a getObject request or a getChildren request is executed, the
result will contain an Alfresco-specific section named <aspects:aspects> with all
applied aspects as follows:

Chapter 4

[123]

 <cmisra:object xmlns:ns3="http://docs.oasis-
 open.org/ns/cmis/messaging/200908/">
 <cmis:properties>
 ...
 <aspects:aspects xmlns="http://www.alfresco.org"
 xmlns:aspects="http://www.alfresco.org">
 <appliedAspects>P:cm:titled</appliedAspects>
 <properties>
 <cmis:propertyString xmlns="http://docs.oasis-
 open.org/ns/cmis/core/200908/"
 propertyDefinitionId="cm:description"/>
 <cmis:propertyString xmlns="http://docs.oasis-
 open.org/ns/cmis/core/200908/"
 propertyDefinitionId="cm:title"/>
 </properties>
 <appliedAspects>P:rn:renditioned</appliedAspects>
 <appliedAspects>P:sys:localized</appliedAspects>
 ...
 </aspects:aspects>
 </cmis:properties>
 </cmisra:object>

Alfresco aspects are queried as if they are tables and joined to types by the Object
Id, as in the following code:

select d.*, e.* from cmis:document as d join cm:effectivity as e
 on d.cmis:objectId = e.cmis:objected

For another example, see the Search section in this chapter.

Tags
In Alfresco, content can be tagged to improve its filtering and narrow down the
number of searches. The CMIS query language can be used to fetch documents with
a certain tag and fetch all the tags for a document.

To fetch documents that have been tagged with a certain word, such as training,
use the CONTAINS keyword and execute the following type of CMIS query:

SELECT * FROM cmis:document WHERE CONTAINS ('TAG:training')

To fetch all the tags for a document, perform a JOIN operation with the cm:taggable
aspect as follows:

SELECT d.*, t.* FROM cmis:document AS d JOIN cm:taggable AS t ON
 d.cmis:objectId = t.cmis:objectId WHERE d.cmis:name='Test word
 doc.docx'

Alfresco and CMIS

[124]

The response will contain the cm:taggable property, which is a collection of node
references to tags.

Categories
To search for documents that have been categorized, we can use a similar technique
as that for tags as they are actually implemented as categories under the hood.
Instead of joining with cm:taggable, we need to use the category aspect, which is
called cm:generalclassifiable.

Execute the following CMIS query to get all the documents that have been
categorized:

SELECT d.*, c.* FROM cmis:document AS d JOIN
 cm:generalclassifiable AS c ON d.cmis:objectId = c.cmis:objectId

The response will contain the cm:categories property, which is a collection of
node references to categories. To categorize a document, you first have to apply the
cm:classifiable aspect to it and then select categories for it.

Categories are treated as special paths to nodes in Alfresco. To select all documents
that have been categorized with the Languages / English category, execute the
following CMIS query:

SELECT * FROM cmis:document WHERE CONTAINS
 ('PATH:"/cm:generalclassifiable/cm:Languages/
 cm:English/member"')

To find out the paths to different categories, use the Alfresco Node Browser.

Summary
In this chapter, we looked into the Alfresco platform to see how it implements
support for CMIS. We have looked at the timeline and seen that Alfresco was one
of the first companies to be CMIS 1.0 compliant in June 2010. The Alfresco platform
uses the Apache Chemistry OpenCMIS Java library to implement support for all
protocol bindings in CMIS, which makes it possible for Alfresco to benefit from all
the testing and advances in that project.

Alfresco supports all content types defined by CMIS and Alfresco aspects are also
handled via the CMIS 1.1 secondary type. When searching, Alfresco supports both
metadata searches and FTS in content. If we would like to use the special Alfresco FTS
language, it is possible to do so by including it in the CMIS QL CONTAINS function.

Chapter 4

[125]

So far in the book, we have worked with the bare-bones protocol bindings without
an abstraction layer between the protocols and us. This can be a bit too much
sometimes and you are probably wondering whether or not there is an easier way to
use CMIS from Java. This is what we will have a look at in the next chapter when we
enter the world of Apache Chemistry and OpenCMIS.

Accessing a CMIS Server
with a Java Client

Up until now, we have accessed the CMIS server via the low-level AtomPub protocol
binding and the Browser protocol binding. This has required a lot of coding, which
could be error prone. However, it is always good to know how low-level APIs work
before going on to higher-level abstraction APIs. In this chapter, we will look at how
the Apache Chemistry project (http://chemistry.apache.org/) offers a high-level
API for CMIS.

In this chapter, we will see how we can perform the following tasks from a CMIS
Java client:

• Authenticating and connecting to the server
• Fetching repository information including the repository ID and top

folder URL
• Listing the content of a folder
• Listing the content types that are available
• Creating, updating, and deleting folders and files
• Downloading the content
• Content versioning
• Managing permissions
• Relationship management
• Searching

Accessing a CMIS Server with a Java Client

[128]

Apache Chemistry contains a number of libraries that abstract the CMIS low-level
protocol bindings. OpenCMIS is the library used by Java developers. It provides an
abstraction layer on top of all the CMIS protocol bindings, the AtomPub binding,
the Web Service binding, and the Browser binding. We will be using the AtomPub
binding as the transport protocol for OpenCMIS.

Setting up a build environment
We are going to use Apache Maven (http://maven.apache.org/) when building
the examples in this chapter. Create a basic Java client project as follows by using the
Maven Quick Start artifact:

$ mvn archetype:generate -DgroupId=com.mycompany.app -DartifactId=my-
app -DarchetypeArtifactId=maven-archetype-quickstart -
DinteractiveMode=false

The preceding command gives us a build project, a directory structure, and a Java
file (com.mycompany.app.App.java) to put some code in. To use the OpenCMIS
library, we need to first configure it in the Maven POM file's dependency section,
open the generated pom.xml file, and add the following:

<project ...
 <dependencies>
 <!-- Bring in the OpenCMIS library for talking to CMIS
 servers -->
 <dependency>
 <groupId>org.apache.chemistry.opencmis</groupId>
 <artifactId>chemistry-opencmis-client-impl
 </artifactId>
 <version>0.10.0</version>
 </dependency>
 <dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 <version>1.1.1</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

Chapter 5

[129]

Version 0.10.0 of OpenCMIS is the latest version available at the moment. There might
be newer versions available when you read this (see http://chemistry.apache.
org/java/opencmis.html). I added the Apache Commons Logging library too in the
preceding code, so we can do some logging from our examples. We are also going to
add another Java class named CmisClient in the same package as the autogenerated
App class. Let's create it with your favorite editor so that it looks as follows:

public class CmisClient {
 private static Log logger =
 LogFactory.getLog(CmisClient.class);
 public CmisClient() { }
}

This is all that is needed; we can now start using the OpenCMIS Java library.

Connecting and setting up a session with
the repository
Before we start working with the repository, we must first create a session and
connect to it. In the CmisClient class, add the following Hash map that will contain
active sessions:

public class CmisClient {
 private static Log logger = LogFactory.getLog(CmisClient.class);
 private static Map<String, Session> connections = new
 ConcurrentHashMap<String, Session>();
 public CmisClient() { }
}

The Session interface is from the org.apache.chemistry.opencmis.client.api
package in the OpenCMIS library. It represents a session/connection for a specific
user with the CMIS repository. A session holds the configuration settings and cache
settings to use across multiple calls to the repository. The session is also the entry
point to perform all operations on the repository, such as listing folders, creating
documents and folders, finding out the capabilities of the repository, and searching.

To create a new connection with the repository, use the Session Factory interface
and query it for all the available repositories, and then create a new session for one
of them. We will create a new getSession method in the CmisClient class to do the
job as follows:

public Session getSession(
 String connectionName, String username, String pwd) {
 Session session = connections.get(connectionName);

Accessing a CMIS Server with a Java Client

[130]

 if (session == null) {
 logger.info("Not connected, creating new connection to" +
 " Alfresco with the connection id (" + connectionName +
 ")");

 // No connection to Alfresco available, create a new one
 SessionFactory sessionFactory =
 SessionFactoryImpl.newInstance();
 Map<String, String> parameters = new HashMap<String,
 String>();
 parameters.put(SessionParameter.USER, username);
 parameters.put(SessionParameter.PASSWORD, pwd);
 parameters.put(SessionParameter.ATOMPUB_URL,
 "http://localhost:8080/alfresco/api/-default-
 /cmis/versions/1.1/atom");
 parameters.put(SessionParameter.BINDING_TYPE,
 BindingType.ATOMPUB.value());
 parameters.put(SessionParameter.COMPRESSION, "true");
 parameters.put(SessionParameter.CACHE_TTL_OBJECTS, "0");

 // If there is only one repository exposed (e.g. Alfresco),
 // these lines will help detect it and its ID
 List<Repository> repositories =
 sessionFactory.getRepositories(parameters);
 Repository alfrescoRepository = null;
 if (repositories != null && repositories.size() > 0) {
 logger.info("Found (" + repositories.size() +
 ") Alfresco repositories");
 alfrescoRepository = repositories.get(0);
 logger.info("Info about the first Alfresco repo [ID=" +
 alfrescoRepository.getId() + "][name=" +
 alfrescoRepository.getName() + "][CMIS ver supported=" +
 alfrescoRepository.getCmisVersionSupported() + "]");
 } else {
 throw new CmisConnectionException(
 "Could not connect to the Alfresco Server, " +
 "no repository found!");
 }

 // Create a new session with the Alfresco repository
 session = alfrescoRepository.createSession();

 // Save connection for reuse
 connections.put(connectionName, session);

Chapter 5

[131]

 } else {
 logger.info("Already connected to Alfresco with the " +
 "connection id (" + connectionName + ")");
 }

 return session;
}

This method starts off by checking if the Hash map already has a connection available
for the connection identifier passed in. We don't want to create a new connection
for every call that we do to the repository. If there is no connection, we will use the
SessionFactoryImpl class to create a new SessionFactory interface, which we can
use to get a list of repositories for the CMIS server.

A CMIS server can provide more than one repository, so we need to tell the server
about which one we want to talk to; this is usually done by passing in a repository
ID. All OpenCMIS operations require a repository ID parameter; however, there is
one operation named getRepositories that does not, so it is used to get a list of the
available repositories. When the repository information is fetched from the server,
we pass in a map of configuration parameters that tells OpenCMIS what username
and password to use to connect to the CMIS server, what protocol binding to use
underneath OpenCMIS, and so on.

We are connecting to Alfresco and it only provides one repository, so we can grab
the first Repository object in the repositories list and use it to create a session/
connection.

The Repository object provides information about the repository, such as its ID,
name, and the version of CMIS it supports. In case of Alfresco, the ID is -default-,
and if running with the older AtomPub URL (see the following explanation), it will
be a universally unique identifier (UUID) that looks something like f0ebcfb4-
ca9f-4991-bda8-9465f4f11527.

Accessing a CMIS Server with a Java Client

[132]

The following table explains each configuration parameter:

Parameter names Parameter values Description
USER admin This is the repository username to use when

connecting to the server.
In case of Alfresco, this must be a username
that exists in the repository database.
The OpenCMIS operations that can be
executed are dependent on the permissions
assigned to this user.

PASSWORD admin This is the password for the username.
BINDING_TYPE ATOMPUB This is the low-level protocol binding to

use when talking to the repository via
OpenCMIS. The other available values
are WEBSERVICES and BROWSER, which
represent the other two CMIS protocol
bindings.
There is also a LOCAL binding type that is
used specifically when the repository runs
in the same Java Virtual Machine (JVM) as
the client.

ATOMPUB_URL http://
localhost:8080/
alfresco/api/-
default-/cmis/
versions/1.1/atom

This is the repository-specific URL to use
the AtomPub low-level binding when
talking to the repository. This is only
relevant when BINDING_TYPE is set
to ATOMPUB. If you are using Alfresco
Community version older than 4.2.e or an
Alfresco Enterprise version 4.2.0, use the
http://localhost:8080/alfresco/
cmisatom URL instead.

COMPRESSION true This is a switch to turn HTTP response
compression on or off. This gives you less
transport payload when set to true.

Chapter 5

[133]

Parameter names Parameter values Description
CACHE_TTL_
OBJECTS

0 Setting the cache Time To Live (TTL) to
0 means that the caching is turned off. By
default, if this parameter is not specified,
the cache TTL is set to 7200000, which
means that all objects will be cached for
2 hours before the repository is checked
for updates. This can be a bit of a problem
during development as it can confuse
developers and testers because not all
might be aware of the cache settings. It
might also be that the content is updated
very frequently, so it does not make sense
to have a cache. The best is to wait and
set the cache when you have performance
problems within an environment that is
mostly read-only or where objects are not
updated very frequently.

Now add the following code in the autogenerated App class:

public static void main(String[] args) {
 CmisClient cmisClient = new CmisClient();
 String connectionName = "martinAlf01";
 Session session = cmisClient.getSession(
 connectionName, "admin", "admin");
}

To run the code, go to the directory where the Maven POM resides (that is,
the pom.xml file) and execute the following command:

my-app$ mvn compile exec:java
-Dexec.mainClass="com.mycompany.app.App"

Running the preceding code should produce a log that looks something like
the following:

Feb 19, 2014 7:05:22 AM com.mycompany.app.CmisClient getSession

INFO: Not connected, creating new connection to Alfresco with the
connection id (martinAlf01)

Feb 19, 2014 7:05:22 AM com.mycompany.app.CmisClient getSession

INFO: Found (1) Alfresco repositories

Feb 19, 2014 7:05:22 AM com.mycompany.app.CmisClient getSession

INFO: Info about the first Alfresco repo [ID=-default-][name=][CMIS
ver supported=1.1]

Accessing a CMIS Server with a Java Client

[134]

If you are running the code with an earlier version of Alfresco using the
http://localhost:8080/alfresco/cmisatom URL, the output should look
something like the following:

INFO: Not connected, creating new connection to Alfresco with the
connection id (martinAlf01)

INFO: Found (1) Alfresco repositories

INFO: Info about the first Alfresco repo [ID=f0ebcfb4-ca9f-4991-bda8-
9465f4f11527][name=Main Repository][CMIS ver supported=1.0]

Connecting to a repository by ID
In a production environment, the client code will probably know the ID of the
repository that it wants to connect to. The following code snippet shows how to
connect to a repository using its ID:

parameters.put(SessionParameter.REPOSITORY_ID, "-default-");
// For older AtomPub URL
// parameters.put(SessionParameter.REPOSITORY_ID,
// "f0ebcfb4-ca9f-4991-bda8-9465f4f11527");
Session session = sessionFactory.createSession(parameters);

We use the preceding code instead of using the getRepositories method.

Getting repository information
Now when we get a connection to the repository, we can take a look at its
capabilities. The session object that we got a reference to has a method named
getRepositoryInfo, which returns a RepositoryInfo object that can be used to
get to the repository capabilities.

In the CmisClient class, add a new method named listRepoCapabilities as
follows:

public void listRepoCapabilities(RepositoryInfo repositoryInfo) {
 RepositoryCapabilities repoCapabilities =
 repositoryInfo.getCapabilities();
 logger.info("aclCapability = " +
 repoCapabilities.getAclCapability().name());
 logger.info("changesCapability = " +
 repoCapabilities.getChangesCapability().name());
 logger.info("contentStreamUpdatable = " +
 repoCapabilities.getContentStreamUpdatesCapability().name());
 logger.info("joinCapability = " +

Chapter 5

[135]

 repoCapabilities.getJoinCapability().name());
 logger.info("queryCapability = " +
 repoCapabilities.getQueryCapability().name());
 logger.info("renditionCapability = " +
 repoCapabilities.getRenditionsCapability().name());
 logger.info("allVersionsSearchable? = " +
 repoCapabilities.isAllVersionsSearchableSupported());
 logger.info("getDescendantSupported? = " +
 repoCapabilities.isGetDescendantsSupported());
 logger.info("getFolderTreeSupported? = " +
 repoCapabilities.isGetFolderTreeSupported());
 logger.info("multiFilingSupported? = " +
 repoCapabilities.isMultifilingSupported());
 logger.info("privateWorkingCopySearchable? = " +
 repoCapabilities.isPwcSearchableSupported());
 logger.info("pwcUpdateable? = " +
 repoCapabilities.isPwcUpdatableSupported());
 logger.info("unfilingSupported? = " +
 repoCapabilities.isUnfilingSupported());
 logger.info("versionSpecificFilingSupported? = " +
 repoCapabilities.isVersionSpecificFilingSupported());
}

Here we are listing the basic capabilities of the Alfresco repository. Call this method
from the App class as follows:

public static void main(String[] args) {
 CmisClient cmisClient = new CmisClient();
 String connectionName = "martinAlf01";
 Session session = cmisClient.getSession(
 connectionName, "admin", "admin");
 cmisClient.listRepoCapabilities(session.getRepositoryInfo());
}

Running the preceding code prints the following log:

INFO: aclCapability = MANAGE

INFO: changesCapability = NONE

INFO: contentStreamUpdatable = ANYTIME

INFO: joinCapability = NONE

INFO: queryCapability = BOTHCOMBINED

INFO: renditionCapability = READ

INFO: allVersionsSearchable? = false

INFO: getDescendantSupported? = true

Accessing a CMIS Server with a Java Client

[136]

INFO: getFolderTreeSupported? = true

INFO: multiFilingSupported? = true

INFO: privateWorkingCopySearchable? = false

INFO: pwcUpdateable? = true

INFO: unfilingSupported? = false

INFO: versionSpecificFilingSupported? = false

Here we can see how easy it is to get to the capabilities of the Alfresco repository
with OpenCMIS instead of, for example, using the AtomPub binding directly.
There is also the possibility to get to the Access Control List (ACL) capabilities
of the repository by calling the getAclCapabilities method. It will return an
AclCapabilities object from which we can get to supported permissions, and
CMIS to Alfresco permission mappings.

For an explanation of the different capabilities, refer to Chapter 2, Basic CMIS
Operations, which covers them in detail.

Listing the children of the root/top folder
To get a list of all the content in the top folder in the repository, we first have to get
to the top folder, referred to as the root folder. The root folder can be accessed via the
session. The top folder in Alfresco is named /Company Home.

To get the root folder and then a listing of its content, add the following code in a
new method named listTopFolder:

public void listTopFolder(Session session) {
 Folder root = session.getRootFolder();
 ItemIterable<CmisObject> contentItems= root.getChildren();
 for (CmisObject contentItem : contentItems) {
 if (contentItem instanceof Document) {
 Document docMetadata = (Document)contentItem;
 ContentStream docContent = docMetadata.getContentStream();
 logger.info(docMetadata.getName() + " [size=" +
 docContent.getLength()+"][Mimetype=" +
 docContent.getMimeType()+"][type=" +
 docMetadata.getType().getDisplayName()+"]");
 } else {
 logger.info(contentItem.getName() + "
 [type="+contentItem.getType().getDisplayName()+"]");
 }
 }
}

Chapter 5

[137]

The getChildren call returns a list of CmisObjects that can either be cast to
Document, Folder, Policy, or Relationship. If it is a Document class, we can get to
the information about the content via the getContentStream method. The Document
class as well as the Folder class contains extra methods only related to these types.

Now, call this new method from the App class as follows:

public static void main(String[] args) {
 CmisClient cmisClient = new CmisClient();
 String connectionName = "martinAlf01";
 Session session = cmisClient.getSession(
 connectionName, "admin", "admin");
 cmisClient.listRepoCapabilities(session.getRepositoryInfo());
 cmisClient.listTopFolder(session);
}

Running the preceding code will print logs that look something like the following:

INFO: Data Dictionary [type=Folder]

INFO: Guest Home [type=Folder]

INFO: User Homes [type=Folder]

INFO: Imap Attachments [type=Folder]

INFO: Sites [type=Sites]

INFO: CMIS Demo [type=Folder]

INFO: CMIS Demo Browser Binding [type=Folder]

INFO: Simple (from Browser binding).txt [size=-
1][Mimetype=text/plain][type=Document]

INFO: simple.txt [size=-1][Mimetype=text/plain][type=Document]

INFO: simple2.txt [size=-1][Mimetype=text/plain][type=Document]

INFO: SimpleBrowser.txt [size=-1][Mimetype=text/plain][type=Document]

INFO: SimpleBrowser2.txt [size=-
1][Mimetype=text/plain][type=Document]

INFO: Some it doc.txt [size=-1][Mimetype=text/plain][type=My Company
IT Doc]

Here we are logging the name of the file and the type. The last file has a custom
document type applied as we can see in the preceding log.

Accessing a CMIS Server with a Java Client

[138]

Optional parameters when listing the
children of a folder
Listing a folder can return a lot of content items, so it might be a good idea to be able
to do some form of paging of the result. It is also beneficial to be able to only fetch
those properties that we are interested in, so we can minimize the payload and speed
up the application response time.

For this we can use the OperationContext class. The OperationContext class allows
you to tune the amount of information returned for each content item by setting
property filters and renditions filters, or by setting flags to include path segments,
ACLs, allowable actions, policies, and relationships. The OperationContext class is
also used to control paging and caching during an operation.

Once paging is set up, OpenCMIS fetches each page asynchronously when it is
requested. To set up paging, create a new method as follows:

public void listTopFolderWithPagingAndPropFilter(Session session) {
 Folder root = session.getRootFolder();
 OperationContext operationContext = new OperationContextImpl();
 int maxItemsPerPage = 5;
 operationContext.setMaxItemsPerPage(maxItemsPerPage);
 ItemIterable<CmisObject> contentItems =
 root.getChildren(operationContext);
 long numerOfPages = Math.abs(contentItems.getTotalNumItems() /
 maxItemsPerPage);
 int pageNumber = 1;
 boolean finishedPaging = false;
 int count = 0;

 while (!finishedPaging) {
 logger.info("Page "+ pageNumber + " (" + numerOfPages + ")");
 ItemIterable<CmisObject> currentPage =
 contentItems.skipTo(count).getPage();
 for (CmisObject contentItem : currentPage) {
 logger.info(contentItem.getName() + " [type=" +
 contentItem.getType().getDisplayName() + "]");
 count++;
 }
 pageNumber++;
 if (!currentPage.getHasMoreItems()) {
 finishedPaging = true;
 }
 }
}

Chapter 5

[139]

We start off by fetching the root folder for which we are going to get the children.
Then we set up the maximum items per page to 5 and create an operational context
with this configuration. The operational context is then passed in to the getChildren
method, setting it up for asynchronous paging.

The content items for each page are then listed. We get to each new page by using
the skipTo method on the complete resultset that is contained in the contentItems
variable.

Running the preceding code produces a log that looks something as follows:

INFO: Page 1 (3)

INFO: Data Dictionary [type=Folder]

INFO: Guest Home [type=Folder]

INFO: User Homes [type=Folder]

INFO: Imap Attachments [type=Folder]

INFO: Sites [type=Sites]

INFO: Page 2 (3)

INFO: Training [type=Folder]

INFO: Test [type=Folder]

INFO: CMIS Demo [type=Folder]

INFO: CMIS Demo Browser Binding [type=Folder]

INFO: Simple (from Browser binding).txt [type=Document]

INFO: Page 3 (3)

INFO: simple.txt [type=Document]

INFO: simple2.txt [type=Document]

INFO: SimpleBrowser.txt [type=Document]

INFO: SimpleBrowser2.txt [type=Document]

INFO: Some it doc.txt [type=My Company IT Doc]

To set up a properties filter, use the setFilter method on the operational context.
In the following example, only the Created_By and Name properties are returned.
However, this is not strictly true; some properties such as object type ID are always
returned, as we saw in Chapter 2, Basic CMIS Operations.

Set<String> propertyFilter = new HashSet<String>();
propertyFilter.add(PropertyIds.CREATED_BY);
propertyFilter.add(PropertyIds.NAME);
operationContext.setFilter(propertyFilter);

Accessing a CMIS Server with a Java Client

[140]

If you want to list the properties for each content item returned in a getChildren
listing, the following code can be used:

private void listProperties(CmisObject cmisObject) {
 for (Property<?> p : cmisObject.getProperties()) {
 if (PropertyType.DATETIME == p.getType()) {
 Calendar calValue = (Calendar) p.getValue();
 logger.info(" - " +p.getId()+ " = "+ (calValue != null ?
 new SimpleDateFormat("yyyy-MM-dd HH:mm:ss z").
 format(calValue.getTime()) : ""));
 } else {
 logger.info(" - " + p.getId() + " = " + p.getValue());
 }
 }
}

If we now run this with the properties filter set in the operational context, we would
see the following properties listed for each content item:

…

INFO: - cmis:name = simple.txt

INFO: - cmis:createdBy = admin

INFO: - cmis:objectId = 0be16ca8-3562-47c1-8a81-3be52a725d56;1.0

INFO: - cmis:baseTypeId = cmis:document

...

To see all the properties, we would have to remove the properties filter.

If we have custom types and we want to check if they are of a particular base type,
we can use the getBaseType method on the content item as shown in the following
code example:

if (ObjectType.FOLDER_BASETYPE_ID.equals(
 contentItem.getBaseType().getId())) {
 // We got a folder, do something...
} else if (ObjectType.DOCUMENT_BASETYPE_ID.equals(
 contentItem.getBaseType().getId())) {
 // We got a document, do something...
}

Chapter 5

[141]

Listing available types and subtypes
Getting to know the content model that the CMS server supports is important so that
we can classify objects according to the specific domain we are in. The OpenCMIS
API provides methods to list types and their subtypes.

Add the following code to the CmisClient class:

public void listTypesAndSubtypes(Session session) {
 boolean includePropertyDefinitions = false;
 List<Tree<ObjectType>> typeTrees =
 session.getTypeDescendants(
 null, -1, includePropertyDefinitions);
 for (Tree<ObjectType> typeTree : typeTrees) {
 logTypes(typeTree, "");
 }
}

The preceding listTypesAndSubtypes method uses the getTypeDescendants
method on the session object to get the type hierarchy that has been deployed to
the server. The getTypeDescendants method takes three parameters: the first one
specifies if we should start at the top of the tree or not; null indicates that we should
start from the top. On the other hand, if we wanted to only list the type tree for the
base type Document, we would specify the first parameter as cmis:document.

The second parameter specifies how deep we should search in the type hierarchy; -1
means infinite depth. If you just want the first base type level and one more subtype
level, then specify 1, which means searching one level under the base types. The last
parameter indicates if all the property type definitions should be returned for all
types; we don't list the property type definitions, so it is set to false.

The getTypeDescendants method returns a list of type trees, basically one list for
each one of the base types document, folder, policy, and relationship. For each base
type tree, we call the logTypes method that looks like the following:

private void logTypes(Tree<ObjectType> typeTree, String tab) {
 ObjectType objType = typeTree.getItem();
 String docInfo = "";
 if (objType instanceof DocumentType) {
 DocumentType docType = (DocumentType)objType;
 docInfo = "[versionable=" + docType.isVersionable() +
 "][content="+docType.getContentStreamAllowed()+"]";

Accessing a CMIS Server with a Java Client

[142]

 }
 logger.info(tab + objType.getDisplayName() + " [id=" +
 objType.getId() + "][fileable=" + objType.isFileable() +
 "][queryable=" + objType.isQueryable() + "]" + docInfo);

 for (Tree<ObjectType> subTypeTree : typeTree.getChildren()) {
 logTypes(subTypeTree, tab + " ");
 }
}

This method first checks if the object type is a document type, in which case we fetch
some extra properties and store them in a string that we can add to the log message.
Then we log a number of the most common properties for the type. And finally, we
recursively call ourselves if there are more subtypes to log, which we find out by
calling getChildren on the current type tree.

Running the preceding code produces a log with a type hierarchy that looks
something like the following for Alfresco 4.2 with the custom content model that
accompanies this book applied:

INFO: Policy [id=cmis:policy][fileable=false][queryable=true]

INFO: Relationship [id=cmis:relationship][fileable=false]
[queryable=false]

INFO: Attachment [id=R:imap:attachment][fileable=false]
[queryable=false]

INFO: Replaces [id=R:cm:replaces][fileable=false]
[queryable=false]

INFO: References [id=R:cm:references][fileable=false]
[queryable=false]

INFO: Attachments [id=R:dl:attachments][fileable=false]
[queryable=false]

...

INFO: Folder [id=cmis:folder][fileable=true][queryable=true]

INFO: System Folder [id=F:cm:systemfolder][fileable=true]
[queryable=true]

INFO: Saved Action Folder [id=F:act:savedactionfolder]
[fileable=true][queryable=true]

INFO: Delivery Channel [id=F:pub:DeliveryChannel][fileable=true]
[queryable=true]

INFO: Twitter Delivery Channel [id=F:twitter:DeliveryChannel]
[fileable=true][queryable=true]

INFO: Data List folder type [id=F:dl:dataList][fileable=true]

Chapter 5

[143]

[queryable=true]

INFO: MyCompany Project [id=F:myc:project][fileable=true]
[queryable=true]

...

INFO: Secondary Type [id=cmis:secondary][fileable=false]
[queryable=true]

INFO: Renditioned [id=P:rn:renditioned][fileable=false]
[queryable=true]

INFO: Restrictable [id=P:dp:restrictable][fileable=false]
[queryable=true]

INFO: Emailed [id=P:cm:emailed]
[fileable=false][queryable=true]

INFO: Effectivity [id=P:cm:effectivity][fileable=false]
[queryable=true]

INFO: Attached [id=P:emailserver:attached][fileable=false]
[queryable=true]

INFO: EXIF [id=P:exif:exif][fileable=false][queryable=true]

...

INFO: Document [id=cmis:document][fileable=true][queryable=true]
[versionable=true][content=ALLOWED]

INFO: MyCompany Base Doc [id=D:myc:document][fileable=true]
[queryable=true][versionable=true][content=ALLOWED]

INFO: MyCompany IT Doc [id=D:myc:itDoc][fileable=true]
[queryable=true][versionable=true][content=ALLOWED]

INFO: Custom Document [id=D:cmiscustom:document]
[fileable=true][queryable=true][versionable=true][content=ALLOWED]

INFO: Transfer Record [id=D:trx:transferRecord][fileable=true]
[queryable=true][versionable=true][content=ALLOWED]

......

Here we can see that all the aspects that are defined in the deployed content models
are defined as secondary types when CMIS 1.1 is supported by your Alfresco
server. If you are using a CMIS 1.0 server, the secondary types listed previously
representing Alfresco aspects will instead be exposed as policies as follows:

INFO: Policy [id=cmis:relationship][fileable=false][queryable=false]

...

INFO: Google Editable [id=P:gd:googleEditable]
[fileable=false][queryable=true]

INFO: Subscribable [id=P:cm:subscribable]
[fileable=false][queryable=true]

INFO: Working Copy [id=P:cm:workingcopy]

Accessing a CMIS Server with a Java Client

[144]

[fileable=false][queryable=true]

INFO: Email Alias [id=P:emailserver:aliasable]
[fileable=false][queryable=true]

INFO: Author [id=P:cm:author][fileable=false][queryable=true]

Creating, updating, and deleting content
We now know how to list folder content and how to get the available content type
hierarchy. It's time to look at how we can create objects.

Creating folders
Creating folders is easy, just get a Folder object for the parent folder in which you
want to create a new folder and then use the createFolder method on the parent
folder object as in the following code:

public Folder createFolder(Session session) {
 String folderName = "OpenCMISTest";
 Folder parentFolder = session.getRootFolder();

 // Make sure the user is allowed to create a folder
 // under the root folder
 if (parentFolder.getAllowableActions().getAllowableActions().
 contains(Action.CAN_CREATE_FOLDER) == false) {
 throw new CmisUnauthorizedException(
 "Current user does not have permission to create a " +
 "sub-folder in " + parentFolder.getPath());
 }

 // Check if folder already exist, if not create it
 Folder newFolder = (Folder) getObject(
 session, parentFolder, folderName);
 if (newFolder == null) {
 Map<String, Object> newFolderProps =
 new HashMap<String, Object>();
 newFolderProps.put(
 PropertyIds.OBJECT_TYPE_ID, "cmis:folder");
 newFolderProps.put(PropertyIds.NAME, folderName);
 newFolder = parentFolder.createFolder(newFolderProps);

 logger.info("Created new folder: " + newFolder.getPath() +
 " [creator=" + newFolder.getCreatedBy() + "][created=" +
 date2String(newFolder.getCreationDate().getTime()) + "]");

Chapter 5

[145]

 } else {
 logger.info("Folder already exist: " + newFolder.getPath());
 }

 return newFolder;
}

Here we are creating the new folder under the root folder, which is represented by the
/ path, and is the same as /Company Home in Alfresco. Before we go ahead and create
the folder, we first check if the current user is authorized to create a subfolder under
the root folder. We can do this by getting the allowed actions on the root folder; if they
contain the canCreateFolder action, we can go ahead and create the folder. If not,
then we throw an unauthorized runtime exception that will stop execution. This is
actually the same exception that will be thrown by the OpenCMIS library if we do not
check anything before creating the folder with an unauthorized user.

When we know we are allowed to create a folder, we call a custom method named
getObject, which we will define in a second. This method will return a Folder
object if it can find it, or null if it can't. If the folder was not found, it will be created
via the createFolder method.

The createFolder method takes a map of metadata that should be set for the new
folder. The name and type of the folder are mandatory properties, so this is the
minimum metadata we can use to create a folder. The createFolder method returns
a new CMIS object that represents the newly created folder, which we can use in future
methods to create documents in it and to log some information about the new folder.

Before we can run the code, we need to include the preceding method in the App
class and also implement the getObject method as follows:

private CmisObject getObject(
Session session, Folder parentFolder, String objectName) {
 CmisObject object = null;

 try {
 String path2Object = parentFolder.getPath();
 if (!path2Object.endsWith("/")) {
 path2Object += "/";
 }
 path2Object += objectName;
 object = session.getObjectByPath(path2Object);
 } catch (CmisObjectNotFoundException nfe0) {
 // Nothing to do, object does not exist
 }

 return object;
}

Accessing a CMIS Server with a Java Client

[146]

The preceding method will use the getObjectByPath method on session to get the
Folder object. If it cannot find an object at the specified path, then null is returned.
The root folder is represented by /, so we need to check if we have this path
separator or not before we add the object name to the path.

There is also the date2String method that we will use throughout this chapter; it is
implemented as follows and used when logging date properties:

private String date2String(Date date) {
 return new SimpleDateFormat
 ("yyyy-MM-dd HH:mm:ss z").format(date);
}

Running the preceding code generates a log as follows:

INFO: Created new folder: /OpenCMISTest [creator=admin]
[created=2014-02-23 17:33:47 GMT]

If we run the code again, we should see a message saying the folder already exists.

The content model delivered with the book contains a custom project folder type
defined as follows:

<type name="myc:project" >
 <title>MyCompany Project</title>
 <parent>cm:folder</parent>
 <properties>
 <property name="myc:projectCode">
 <title>Project Code</title>
 <type>d:text</type>
 </property>
 </properties>
</type>

If we want to create a folder with the preceding custom type set, we can do that as
follows by just specifying the type via the OBJECT_TYPE_ID property and making
sure we prefix the type with F: (for folder):

public void createFolderWithCustomType(Session session) {
 String folderName = "OpenCMISTest2";
 Folder parentFolder = session.getRootFolder();

 // Check if folder already exist, if not create it
 Folder newFolder = (Folder)getObject(
 session, parentFolder, folderName);
 if (newFolder == null) {
 Map<String, Object> newFolderProps =

Chapter 5

[147]

 new HashMap<String, Object>();
 newFolderProps.put(PropertyIds.OBJECT_TYPE_ID,
 "F:myc:project");
 newFolderProps.put(PropertyIds.NAME, folderName);
 newFolderProps.put("myc:projectCode", "PROJ001");
 newFolder = parentFolder.createFolder(newFolderProps);

 logger.info("Created new folder: " + newFolder.getPath() +
 " [creator=" + newFolder.getCreatedBy() + "][created=" +
 date2String(newFolder.getCreationDate().getTime()) + "]");
 } else {
 logger.info("Folder already exist: " + newFolder.getPath());
 }
}

If we are using a CMIS 1.0 Alfresco repository, the myc:projectCode
property on the custom project type has to be specified directly in the
type definition in the content model XML. It cannot be specified via an
aspect and then included in the type with the mandatory-aspects
syntax. Aspects were not supported by CMIS until Version 1.1 when they
were exposed as secondary types. We are coming to how aspects can be
used later on in this chapter, whether you are using Version 1.0 or 1.1.

Creating documents
After creating some folders, we probably want to create or upload documents into
them. Creating a document, or file if you like, is almost the same as creating a folder.
However, a document object can also contain content bytes in the form of a so-called
content stream that represents the physical bytes of the file.

So, to create a document object with content, we first create a content stream object
and then use that object when creating the document object as follows:

public Document createDocument(Session session, Folder
parentFolder)
throws IOException {
 String documentName = "OpenCMISTest.txt";

 // Make sure the user is allowed to create a document
 // in the passed in folder
 if (parentFolder.getAllowableActions().getAllowableActions().
 contains(Action.CAN_CREATE_DOCUMENT) == false) {
 throw new CmisUnauthorizedException("Current user does not "+
 "have permission to create a document in " +

Accessing a CMIS Server with a Java Client

[148]

 parentFolder.getPath());
 }

 // Check if document already exist, if not create it
 Document newDocument = (Document) getObject(
 session, parentFolder, documentName);
 if (newDocument == null) {
 // Setup document metadata
 Map<String, Object> newDocumentProps =
 new HashMap<String, Object>();
 newDocumentProps.put(PropertyIds.OBJECT_TYPE_ID,
 "cmis:document");
 newDocumentProps.put(PropertyIds.NAME, documentName);

 // Setup document content
 String mimetype = "text/plain; charset=UTF-8";
 String documentText = "This is a test document!";
 byte[] bytes = documentText.getBytes("UTF-8");
 ByteArrayInputStream input = new ByteArrayInputStream(bytes);
 ContentStream contentStream =
 session.getObjectFactory().createContentStream(
 documentName, bytes.length, mimetype, input);

 // Create versioned document object
 newDocument = parentFolder.createDocument(
 newDocumentProps, contentStream, VersioningState.MAJOR);

 logger.info("Created new document: " +
 getDocumentPath(newDocument) + " [version=" +
 newDocument.getVersionLabel() + "][creator=" +
 newDocument.getCreatedBy() + "][created=" +
 date2String(newDocument.getCreationDate().getTime())+"]");
 } else {
 logger.info("Document already exist: " +
 getDocumentPath(newDocument));
 }

 return newDocument;
}

The new document should be created in the OpenCMISTest folder that we just created
in one of the previous examples. To do this, we feed the folder reference into the
createDocument method as follows in the App class:

Chapter 5

[149]

Folder folder = cmisClient.createFolder(session);
document = cmisClient.createDocument(session, folder);

So, as we can see, creating a document is similar to how folders are created. We start
by checking if the user is allowed and then just specify a document type (that is,
cmis:document) instead of a folder type, create the content stream with the document
content, and use the createDocument method instead of the createFolder method on
the parent Folder object.

There is also a difference between folders and documents when it comes to versioning.
Folders cannot be versioned according to the CMIS specification, but documents can. If
the document type is versionable, then using versioning is mandatory. So you cannot
pass in VersioningState.NONE to the createDocument method in this case. You can
extend the code to check the versioning state of the document type, as follows:

String typeId = "cmis:document";
VersioningState versioningState = VersioningState.NONE;
DocumentType docType =
(DocumentType)session.getTypeDefinition(typeId);
if (Boolean.TRUE.equals(docType.isVersionable())) {
 versioningState = VersioningState.MAJOR;
}

In the case of Alfresco, we cannot set versioning to NONE as the cmis:document
type is always versionable. At first you might think that it's a bad idea to have
versioning turned on for all content created in Alfresco. In reality this is not the case
as by default autoversioning of content is turned off. More on this later when we talk
about versioning with check out and check in.

In this example, the content stream is created from a String literal (that is,
documentText) by passing the bytes of the string to the createContentStream
method that is available on the session's object factory. We make sure to get the
string bytes with UTF-8 encoding and setting UTF-8 encoding in the MIME type.

Running the preceding code generates the following log:

INFO: Created new document: /OpenCMISTest/OpenCMISTest.txt
[version=1.0][creator=admin][created=2014-02-23 17:33:47 GMT]

By using the MAJOR versioning state, we start the version label at 1.0. This example
uses a custom method named getDocumentPath to find out the absolute repository
path for a document. This method looks like the following:

private String getDocumentPath(Document document) {
 String path2Doc = getParentFolderPath(document);
 if (!path2Doc.endsWith("/")) {

Accessing a CMIS Server with a Java Client

[150]

 path2Doc += "/";
 }
 path2Doc += document.getName();
 return path2Doc;
}

What this method does is call another custom method named getParentFolderPath
to get the path for the parent folder of the document object passed in. When it has
this path, it checks if it ends in /;if not, it adds / (if it is the root folder, it will end in
slash as it is represented by /). To complete the full path for the document, it then
adds the name of the document to the parent folder path and returns the result.

The getParentFolderPath method is implemented as follows:

private String getParentFolderPath(Document document) {
 Folder parentFolder = getDocumentParentFolder(document);
 return parentFolder == null ?
 "Un-filed" : parentFolder.getPath();
}

The preceding code just calls another custom method named
getDocumentParentFolder to get the parent Folder object for the passed in
Document object. It then checks if it is null, which means that the document has not
been filed/contained in any folder and is in a state called unfiled. If we have a parent
folder object, we just return the absolute repository path for it.

The getDocumentParentFolder method is implemented as follows:

private Folder getDocumentParentFolder(Document document) {
 // Get all the parent folders (could be more than one
 // if multi-filed)
 List<Folder> parentFolders = document.getParents();

 // Grab the first parent folder
 if (parentFolders.size() > 0) {
 if (parentFolders.size() > 1) {
 logger.info("The " + document.getName() +
 " has more than one parent folder, it is multi-filed");
 }

 return parentFolders.get(0);
 } else {
 logger.info("Document " + document.getName() +
 " is un-filed and does not have a parent folder");
 return null;
 }
}

Chapter 5

[151]

A document can have multiple folders as parents (that is, multifiled), so we start
out by finding out what parents the document have by calling getParents on it.
Then we grab the first parent in the list assuming that most document objects will
only be filed/contained in one folder. If it is multifiled, we print out a message about
that. If no parent folders could be found for the document, then it is unfiled and null
is returned as the document does not have a parent folder. The preceding helper
methods will be used throughout this chapter.

In the previous example, we did not upload a file from the disk. If we, for example,
wanted to upload a PDF file from disk and set the document type to a custom type,
such as the myc:itDoc type from the content model in the book, we could do
the following:

public Document createDocumentFromFileWithCustomType(Session
session) {
 String documentName = "OpenCMISTest2.pdf";
 File file = new File("Some.pdf");
 Folder parentFolder = session.getRootFolder();

 // Check if document already exist, if not create it
 Document newDocument = (Document) getObject(
 session, parentFolder, documentName);
 if (newDocument == null) {
 // Setup document metadata
 Map<String, Object> newDocumentProps =
 new HashMap<String, Object>();
 newDocumentProps.put(
 PropertyIds.OBJECT_TYPE_ID, "D:myc:itDoc");
 newDocumentProps.put(PropertyIds.NAME, documentName);

 InputStream is = null;
 try {
 // Setup document content
 is = new FileInputStream(file);
 String mimetype = "application/pdf";
 ContentStream contentStream =
 session.getObjectFactory().createContentStream(
 documentName, file.length(), mimetype, is);

 // Create versioned document object
 newDocument = parentFolder.createDocument(
 newDocumentProps, contentStream, VersioningState.MAJOR);
 logger.info("Created new document: " +
 getDocumentPath(newDocument) + " [version=" +

Accessing a CMIS Server with a Java Client

[152]

 newDocument.getVersionLabel() + "][creator=" +
 newDocument.getCreatedBy() + "][created=" +
 date2String(newDocument.getCreationDate().getTime()) + "]");

 // Close the stream to handle any IO Exception
 is.close();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 } finally {
 IOUtils.closeQuietly(is);
 }
 } else {
 logger.info("Document already exist: " +
 getDocumentPath(newDocument));
 }

 return newDocument;
}

The difference in the previous example is that here we are uploading a PDF document
named Some.pdf, which exists in the same directory that we are running the application
from. We create a new file input stream and hand it over to the createContentStream
method, which extracts the bytes from the file and writes them as file content in the
repository. We make sure to close the input stream afterwards so that we don't lose OS
file descriptors. The document type is set to the custom type myc:itDoc, prefixed with
D: to indicate that it is a document type.

When creating folders or documents, it is not possible to set the CREATED_BY,
CREATION_DATE, LAST_MODIFIED_BY, or LAST_MODIFICATION_DATE properties,
as they are controlled by Alfresco. They belong to an Alfresco aspect named
cm:auditable, which is managed completely by the system. So doing something
like the following will not have any effect:

// Setup document metadata
Map<String, Object> newDocumentProps =
new HashMap<String, Object>();
newDocumentProps.put(PropertyIds.OBJECT_TYPE_ID, "cmis:document");
newDocumentProps.put(PropertyIds.NAME, documentName);
newDocumentProps.put(PropertyIds.CREATED_BY, "mjackson");
Calendar createdDate = Calendar.getInstance();
createdDate.set(Calendar.YEAR, 2011);
newDocumentProps.put(PropertyIds.CREATION_DATE,
createdDate.getTime());
newDocumentProps.put(PropertyIds.LAST_MODIFIED_BY, "mjackson");
newDocumentProps.put(PropertyIds.LAST_MODIFICATION_DATE,
createdDate.getTime());

Chapter 5

[153]

The Alfresco system will still create the document with the user that was used to
create the OpenCMIS session, and the current date and time. The code will run but it
will not do anything.

It is also possible to create a document without specifying the parent folder that it
should be contained in. This is then called an unfiled object. To do this, we have to
use the createDocument method on the session object instead and pass in null
as the folder reference. However, this will only work if the repository supports
this. Check the unfilingSupported capability and make sure it is set to true. In
an upcoming section in this chapter, the deleteFolderTree method shows how to
check if this capability is set. The Alfresco 4.2 version that I use does not support it.

It is also possible that the requirement to create a document without a content
stream may come up in a project, which basically means creating a metadata entry
for the document in the repository. Then maybe some content bytes can be added
for it in the future. This is possible in some repositories such as Alfresco; others,
such as Microsoft SharePoint, require a content stream at all times. To figure out
if your repository requires it, check the contentStreamAllowed attribute on the
cmis:document object type. See the logTypes method previously described in
this chapter for an example of how to check this. If it has the value allowed, the
document may have a content stream, but may not need to. Other values are
required and notallowed.

Updating folders and documents
To update the properties (that is, metadata) for a folder, we call the
updateProperties method on it as follows:

public Folder updateFolder(Folder folder) {
 String newFolderName = "OpenCMISTest_Updated";
 Folder updatedFolder = null;

 // If we got a folder update the name of it
 if (folder != null) {
 // Make sure the user is allowed to update folder properties
 if (folder.getAllowableActions().getAllowableActions().
 contains(Action.CAN_UPDATE_PROPERTIES) == false) {
 throw new CmisUnauthorizedException(
 "Current user does not have permission to update " + "folder
 properties for " + folder.getPath());
 }

 // Update the folder with a new name
 String oldName = folder.getName();

Accessing a CMIS Server with a Java Client

[154]

 Map<String, Object> newFolderProps =
 new HashMap<String, Object>();
 newFolderProps.put(PropertyIds.NAME, newFolderName);
 updatedFolder = (Folder)
 folder.updateProperties(newFolderProps);

 logger.info("Updated " + oldName + " with new name: " +
 updatedFolder.getPath() + " [creator=" +
 updatedFolder.getCreatedBy() + "][created=" +
 date2String(updatedFolder.getCreationDate().getTime()) +
 "][modifier=" + updatedFolder.getLastModifiedBy() + "]
 [modified="+date2String(updatedFolder.
 getLastModificationDate().getTime()) + "]");
 } else {
 logger.error("Folder to update is null!");
 }

 return updatedFolder;
}

Here we are renaming a folder by updating its NAME property (that is, cmis:name).
The updateProperties method returns a new Folder object with the latest properties
set. Before we do the actual update, we check if the current user has permission to do
an update of the object's properties; the canUpdateProperties action needs to be set
to true for the object. After the update, we will have a new last modified date set as
can be seen in the following log output produced by running the code:

INFO: Updated OpenCMISTest with new name: /OpenCMISTest_Updated [
creator=admin][created=2014-02-23 17:33:47
GMT][modifier=admin][modified=2014-02-23 17:33:48 GMT]

The process for updating a document is very similar; in fact, it is the same if we
just want to update the properties for it. But we probably want to update the
content for the document, and this can be done by updating the content stream
for the document object with the setContentStream method. First, we need to
make sure that the content can be updated without being checked out first. It is
not mandatory for a repository to support this. We check this by looking at the
contentStreamUpdatesCapability property and making sure that it is set to
ANYTIME, as follows:

public Document updateDocument(Session session, Document document)
throws IOException {
 RepositoryInfo repoInfo = session.getRepositoryInfo();
 if (!repoInfo.getCapabilities().
 getContentStreamUpdatesCapability()
 .equals(CapabilityContentStreamUpdates.ANYTIME)) {

Chapter 5

[155]

 logger.warn("Updating content stream without a checkout is" +
 " not supported by this repository [repoName=" +
 repoInfo.getProductName() + "][repoVersion=" +
 repoInfo.getProductVersion() + "]");
 return document;
 }

 // Make sure we got a document, then update it
 Document updatedDocument = null;
 if (document != null) {
 // Make sure the user is allowed to update the content
 // for this document
 if (document.getAllowableActions().getAllowableActions().
 contains(Action.CAN_SET_CONTENT_STREAM) == false) {
 throw new CmisUnauthorizedException("Current user does not"
 + " have permission to set/update content stream for " +
 getDocumentPath(document));
 }

 // Setup new document content
 String newDocumentText = "This is a test document that has " +
 "been updated with new content!";
 String mimetype = "text/plain; charset=UTF-8";
 byte[] bytes = newDocumentText.getBytes("UTF-8");
 ByteArrayInputStream input = new ByteArrayInputStream(bytes);
 ContentStream contentStream =
 session.getObjectFactory().createContentStream(
 document.getName(), bytes.length, mimetype, input);
 boolean overwriteContent = true;
 updatedDocument = document.setContentStream(
 contentStream, overwriteContent);
 if (updatedDocument == null) {
 logger.info("No new version was created when " +
 "content stream was updated for " +
 getDocumentPath(document));
 updatedDocument = document;
 }

 logger.info("Updated content for document: " +
 getDocumentPath(updatedDocument) +
 " [version=" + updatedDocument.getVersionLabel() + "]
 [modifier=" + updatedDocument.getLastModifiedBy() +
 "][modified=" + date2String(updatedDocument.
 getLastModificationDate().getTime()) + "]");

Accessing a CMIS Server with a Java Client

[156]

 } else {
 logger.info("Document is null, cannot update it!");
 }

 return updatedDocument;
}

If we run the preceding code, we will get the following output, where we can see
that a new version has not been created:

INFO: No new version was created when content stream was updated for
/OpenCMISTest_Updated/OpenCMISTest.txt

INFO: Updated content for document:
/OpenCMISTest_Updated/OpenCMISTest.txt [version=1.0][modifier=admin]
[modified=2014-02-23 17:33:48 GMT]

To update the content and create a new version, we have to check it out first, which
we will cover later in this chapter.

Deleting a document, folder, or folder tree
Any CMIS object can be deleted with the delete method. We are going to start
looking at how to delete one of the documents we created earlier:

public void deleteDocument(Document document) {
 // If we got a document try and delete it
 if (document != null) {
 // Make sure the user is allowed to delete the document
 if (document.getAllowableActions().getAllowableActions().
 contains(Action.CAN_DELETE_OBJECT) == false) {
 throw new CmisUnauthorizedException("Current user does " +
 "not have permission to delete document " +
 document.getName()+" with Object ID "+document.getId());
 }

 String docPath = getDocumentPath(document);
 boolean deleteAllVersions = true;
 document.delete(deleteAllVersions);
 logger.info("Deleted document: " + docPath);
 } else {
 logger.info("Cannot delete document as it is null!");
 }
}

Chapter 5

[157]

When a document is deleted, we have the option to delete the document and all its
previous versions or only the latest version. This is specified by passing an extra
parameter to the delete method. If this parameter is set to true, all versions will
be deleted like in a normal delete operation in Alfresco. If this parameter is set to
false and versioning has been turned on for the document, only the latest version
will be deleted. If there is only one version, the complete document will be deleted.
After the document is deleted, we cannot use the document object anymore to, for
example, get the path to the document. That's why we store the path in a separate
docPath variable before deleting the object. Before we delete the object, we also
make sure that the user has the permission to delete the object by checking whether
the canDeleteObject action is allowed.

Now, we will also delete the folder that contained the document we just deleted:

public void deleteFolder(Folder folder) {
 // If we got a folder then delete
 if (folder != null) {
 // Make sure the user is allowed to delete the folder
 if (folder.getAllowableActions().getAllowableActions().
 contains(Action.CAN_DELETE_OBJECT) == false) {
 throw new CmisUnauthorizedException("Current user does "+
 "not have permission to delete folder " + folder.getPath());
 }

 String folderPath = folder.getPath();
 folder.delete();
 logger.info("Deleted folder: " + folderPath);
 } else {
 logger.info("Cannot delete folder that is null");
 }
}

The folder object that we want to delete is passed in to the method, and the first
thing we check is whether the user has permission to delete it. Then we store the
path to the folder as the folder object will not be usable after we delete the folder.
Next, we execute the delete method on the folder object. Note that the folder has
to be empty; it cannot contain subfolders or documents. If it contains any content,
an exception will be thrown. If we have a folder with content, the deleteTree
method needs to be used instead as shown in the following example:

public void deleteFolderTree(Session session) {
 UnfileObject unfileMode = UnfileObject.UNFILE;
 RepositoryInfo repoInfo = session.getRepositoryInfo();
 if (!repoInfo.getCapabilities().isUnfilingSupported()) {

Accessing a CMIS Server with a Java Client

[158]

 logger.warn("The repository does not support unfiling" +
 " a document from a folder, documents will " +
 "be deleted completely from all associated folders " +
 "[repoName=" + repoInfo.getProductName() + "][repoVersion=" +
 repoInfo.getProductVersion() + "]");
 unfileMode = UnfileObject.DELETE;
 }

 String folderName = "OpenCMISTestWithContent";
 Folder parentFolder = session.getRootFolder();

 // Check if folder exist, if not don't try and delete it
 Folder someFolder = (Folder) getObject(
 session, parentFolder, folderName);
 if (someFolder != null) {
 // Make sure the user is allowed to delete the folder
 if (someFolder.getAllowableActions().getAllowableActions().
 contains(Action.CAN_DELETE_TREE) == false) {
 throw new CmisUnauthorizedException("Current user does" +
 " not have permission to delete folder tree" +
 parentFolder.getPath());
 }

 boolean deleteAllVersions = true;
 boolean continueOnFailure = true;
 List<String> failedObjectIds =
 someFolder.deleteTree(
 deleteAllVersions, unfileMode, continueOnFailure);
 logger.info("Deleted folder and all its content: " +
 someFolder.getName());
 if (failedObjectIds != null && failedObjectIds.size() > 1) {
 for (String failedObjectId : failedObjectIds) {
 logger.info("Could not delete Alfresco node with " +
 "Node Ref: " + failedObjectId);
 }
 }
 } else {
 logger.info("Did not delete folder as it does not exist: " +
 parentFolder.getPath() + folderName);
 }
}

Before running this code, we first need to create a folder named
OpenCMISTestWithContent with a subfolder and some documents in it. When this code
is executed, it uses the deleteTree method and takes the following three parameters:

Chapter 5

[159]

• deleteAllVersions: If this parameter is set to true, all versions for all the
documents will be deleted. This is not relevant to Alfresco because if you
delete a folder, all the content is going to be deleted, including all versions,
and moved to the archive store.

• unfileMode: This parameter can be set to DELETE, which means that the
document should be completely deleted and unfiled from any folder
referencing it. If set to UNFILE, this means that the document will be unfiled
from the folder that is being deleted, and if set to DELETESINGLEFILED,
the document will be deleted if it is only filed under the folder that
is being deleted. This parameter is dependent on the value of the
isUnfilingSupported capability, which for Alfresco 4.2 is set to false, so
we cannot unfile documents.

• continueOnFailure: With this parameter set to true, folders and documents
are deleted individually. If a document or folder cannot be deleted, the
method moves to the next document or folder in the list. When the method
completes, it returns a list of the document IDs and the folder IDs that were
not deleted. With this parameter set to false, all the folders and documents
can be deleted in a single batch, which depending on the repository design,
may improve performance. If a document or folder cannot be deleted, an
exception is raised.

Running the preceding code produces the following log:

WARNING: The repository does not support unfiling a document from a
folder, documents will be deleted completely from all associated
folders [repoName=Alfresco Enterprise][repoVersion=4.2.0 (r57217-
b28)]

INFO: Deleted folder and all its content: OpenCMISTestWithContent

Now, let's create the OpenCMISTestWithContent folder again but with one of
the documents checked out. This should lock the document, and it should not be
possible to delete it. The following log is then produced:

INFO: Deleted folder and all its content: OpenCMISTestWithContent

INFO: Could not delete Alfresco node with Node Ref:
workspace://SpacesStore/c979a3e4-a9ea-498b-96aa-d17e6f29a832

INFO: Could not delete Alfresco node with Node Ref:
workspace://SpacesStore/5e0a1c1f-e279-403b-a04d-2ad164a7105a;1.0

INFO: Could not delete Alfresco node with Node Ref:
workspace://SpacesStore/c67e8807-5056-491e-afab-bc8d58eec85d;1.0

INFO: Could not delete Alfresco node with Node Ref:
workspace://SpacesStore/5e0a1c1f-e279-403b-a04d-2ad164a7105a;pwc

Accessing a CMIS Server with a Java Client

[160]

Here we can see that the continueOnFailure feature does not really work with
Alfresco 4.2, and all documents and folders remain and cannot be deleted when one
of them is locked. Also, note the log for the working copy (that is, …;pwc), generated
when the document was checked out.

Getting the content for a document
So far in this chapter, we have created the content in Alfresco based on in-memory
text or from a file stored locally. Now, we will see how the content in the repository
can be extracted and stored locally in a file. We will use an existing Alfresco e-mail
template to demonstrate this. So if you are not running an Alfresco server, the path
to the document will have to be changed in the following example.

To get the content of a document, we first have to get the Document object via path
and then get the content stream. In this example, we want to get the content for the
invite-email.html.ftl file located in the /Company Home/Data Dictionary/
Email Templates/invite folder in Alfresco. Then write the content of this file to a
new local file with the same name. It will be written to the local directory from which
we are running the application.

The following is the code:

public void getContentForDocumentAndStoreInFile(Session session) {
 // This is one of the out-of-the-box email templates in Alfresco
 String documentPath =
 "/Data Dictionary/Email Templates/invite/invite-email.html.ftl";

 // Get the document object by path so we can
 // get to the content stream
 Document templateDocument = (Document)
 session.getObjectByPath(documentPath);
 if (templateDocument != null) {
 // Make sure the user is allowed to get the
 // content stream (bytes) for the document
 if (templateDocument.getAllowableActions().
 getAllowableActions().contains(Action.CAN_GET_CONTENT_STREAM)
 == false) {
 throw new CmisUnauthorizedException(
 "Current user does not have permission to get the" +
 " content stream for " + documentPath);
 }

 File file = null;
 InputStream input = null;
 OutputStream output = null;

Chapter 5

[161]

 try {
 // Create the file on the local drive without any content
 file = new File(templateDocument.getName());
 if (!file.exists()) {
 file.createNewFile();
 }

 // Get the object content stream and write to
 // the new local file
 input = templateDocument.getContentStream().getStream();
 output = new FileOutputStream(file);
 IOUtils.copy(input, output);

 // Close streams and handle exceptions
 input.close();
 output.close();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 } finally {
 IOUtils.closeQuietly(output);
 IOUtils.closeQuietly(input);
 }

 logger.info("Created a new file " + file.getAbsolutePath() +
 " with content from document: " + documentPath);
 } else {
 logger.error("Template document could not be found: " +
 documentPath);
 }
}

So we start off by getting the Document object for the template file by using
the getObjectByPath method. We then use this object to check if the user has
permission to get the content stream for it. After this, we create an empty invite-
email.html.ftl file on disk that we can use to stream the document content to.
The getContentStream().getStream() methods are then called to get directly to
an InputStream, which we can use to read the bytes representing the template file.
The Apache Commons IO library is used to copy the bytes from the input stream to
the output stream. Note that we need to close all the streams so we don't keep file
descriptors open. Also, it is not enough to just call closeQuietly on each stream; we
have to first call close.

Accessing a CMIS Server with a Java Client

[162]

Running the preceding code produces the following log:

INFO: Created a new file /home/mbergljung/my-app/invite-
email.html.ftl with content from document: /Data Dictionary/Email
Templates/invite/invite-email.html.ftl

The Apache Commons IO library is included in the Maven project as follows:

<dependency>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 <version>2.4</version>
</dependency>

Copying and moving folders and
documents
A document can be copied to a different folder with the Document object's copy
method. The copy will be an independent document and it will be of the same type
as the original document with the same properties and relationships.

The following code shows how to copy the previously uploaded OpenCMISTest2.
pdf document to the /Company Home/Guest Home folder in Alfresco:

public void copyDocument(Session session, Document document) {
 Folder parentFolder = session.getRootFolder();
 String destinationFolderName = "Guest Home";
 Folder destinationFolder = (Folder)
 getObject(session, parentFolder, destinationFolderName);

 if (destinationFolder == null) {
 logger.error("Cannot copy " + document.getName() +
 ", could not find folder with the name " +
 destinationFolderName + ", are you using Alfresco?");
 return;
 }

 // Check that we got the document, then copy
 if (document != null) {
 try {
 document.copy(destinationFolder);
 logger.info("Copied document " + document.getName() +
 " from folder " + parentFolder.getPath() +
 " to folder " + destinationFolder.getPath());

Chapter 5

[163]

 } catch (CmisContentAlreadyExistsException e) {
 logger.error("Cannot copy document " + document.getName() +
 ", already exist in to folder " +
 destinationFolder.getPath());
 }
 } else {
 logger.error("Document is null, cannot copy to " +
 destinationFolder.getPath());
 }
}

So to copy the passed in document object, we first get the destination Folder object
by path using the getObject custom method. This is all that is needed and we can
then use the copy method and pass in the Folder object of Guest Home folder.
Running the preceding code produces the following log:

INFO: Copied document OpenCMISTest2.pdf from folder / to folder
/Guest Home

If we wanted to copy the document but not keep all the original properties, there
is another variant of the copy method that takes a number of parameters with
properties to be set and so on, which looks as follows:

copy(ObjectId targetFolderId, Map<String,?> properties,
VersioningState versioningState, List<Policy> policies,
List<Ace> addACEs, List<Ace> removeACEs, OperationContext context)

So if we wanted to copy the document but not the custom type, we could do
something as follows:

Map<String, Object> documentProperties =
new HashMap<String, Object>(2);
documentProperties.put(PropertyIds.NAME, pdfDocument.getName());
documentProperties.put(PropertyIds.OBJECT_TYPE_ID, pdfDocument.
getBaseTypeId().value());
pdfDocument.copy(destinationFolder, documentProperties ,
null, null, null, null, null);

Folders cannot be copied via OpenCMIS. To copy a folder, first create the same
folder manually via the createFolder method at the destination, copy the
documents from the source folder, and manually create the subfolders recursively.
You would do something as follows:

public void copyFolder(Folder destinationFolder,
Folder toCopyFolder) {
 Map<String, Object> folderProperties =
 new HashMap<String, Object>();

Accessing a CMIS Server with a Java Client

[164]

 folderProperties.put(PropertyIds.NAME, toCopyFolder.getName());
 folderProperties.put(PropertyIds.OBJECT_TYPE_ID,
 toCopyFolder.getBaseTypeId().value());
 Folder newFolder =
 destinationFolder.createFolder(folderProperties);
 copyChildren(newFolder, toCopyFolder);
}

public void copyChildren(
Folder destinationFolder, Folder toCopyFolder) {
 ItemIterable<CmisObject> immediateChildren =
 toCopyFolder.getChildren();
 for (CmisObject child : immediateChildren) {
 if (child instanceof Document) {
 ((Document) child).copy(destinationFolder);
 } else if (child instanceof Folder) {
 copyFolder(destinationFolder, (Folder) child);
 }
 }
}

The first method named copyFolder copies the folder by manually creating a folder
under the destination folder. Then the copyChildren method is called that copies each
document child and calls the copyFolder method recursively for each folder child.

Both documents and folders can be moved with the move method that takes a source
folder object and a target folder object as input. To move a document, the following
code can be used:

public void moveDocument(Session session, Document document) {
 Folder parentFolder = session.getRootFolder();
 Folder sourceFolder = getDocumentParentFolder(document);
 String destinationFolderName = "User Homes";
 Folder destinationFolder = (Folder) getObject(
 session, parentFolder, destinationFolderName);

 // Check that we got the document, then move
 if (document != null) {
 // Make sure the user is allowed to move the document
 // to a new folder
 if (document.getAllowableActions().getAllowableActions().
 contains(Action.CAN_MOVE_OBJECT) == false) {
 throw new CmisUnauthorizedException("Current user does" +
 " not have permission to move " +
 getDocumentPath(document) + document.getName());

Chapter 5

[165]

 }

 String pathBeforeMove = getDocumentPath(document);
 try {
 document.move(sourceFolder, destinationFolder);
 logger.info("Moved document " + pathBeforeMove +
 " to folder " + destinationFolder.getPath());
 } catch (CmisRuntimeException e) {
 logger.error("Cannot move document to folder " +
 destinationFolder.getPath() + ": " + e.getMessage());
 }
 } else {
 logger.error("Document is null, cannot move!");
 }
}

The source folder's object is really only needed when the document has been
multifiled in several folders, then the source folder's object specifies from which
folder the document should be unfiled and moved from. In the preceding code,
I could have, for example, changed the move method call to the following:

pdfDocument.move(pdfDocument.getParents().get(0),
destinationFolder);

And that would have also worked as the document only has one parent folder. Also
note that we make sure the user has permission to move the document by checking
that the canMoveObject action is allowed.

Working with Alfresco aspects
Alfresco has two types of classes that can be used to classify content, types and
aspects. A node in Alfresco (that is, a CMIS object) can have one and only one type
set but zero or more aspects applied. We have seen in a number of examples how
we can set the basic CMIS types and custom types for a document or folder object.
To manage the aspects for an object in Alfresco, we can use CMIS secondary types,
as Alfresco exposes any aspects that are set on an object as secondary types. This
will work if you are running Alfresco 4.2.e Community, Alfresco 4.2.0 Enterprise, or
newer versions. With earlier versions, you have to use a special Alfresco OpenCMIS
extension to manage aspects. We will look at both.

Accessing a CMIS Server with a Java Client

[166]

Using secondary types to manage aspects
When we want to manage aspects via secondary types, we will just use standard
OpenCMIS library functions like we have done so far to manage properties.
Secondary object types are managed in a specific multivalued property named
cmis:secondaryObjectTypeIds. Using the following code, we will define it globally
so that we can use it in subsequent methods:

private static final String SECONDARY_OBJECT_TYPE_IDS_PROP_NAME =
"cmis:secondaryObjectTypeIds";

Adding aspects when creating an object
To demonstrate how to add an aspect when we are creating an object, we will add
one of the out-of-the-box Alfresco aspects called Titled (cm:titled) when we create
a folder. This aspect, or the CMIS secondary type, requires two extra properties to be
filled in, title and description:

public void createFolderWithTitledAspect(Session session) {
 String folderName = "OpenCMISTestTitled";
 Folder parentFolder = session.getRootFolder();

 // Check if folder already exist, if not create it
 Folder newFolder = (Folder) getObject(
 session, parentFolder, folderName);
 if (newFolder == null) {
 List<Object> aspects = new ArrayList<Object>();
 aspects.add("P:cm:titled");
 Map<String, Object> newFolderProps =
 new HashMap<String, Object>();
 newFolderProps.put(PropertyIds.OBJECT_TYPE_ID, "cmis:folder");
 newFolderProps.put(PropertyIds.NAME, folderName);
 newFolderProps.put(
 SECONDARY_OBJECT_TYPE_IDS_PROP_NAME, aspects);
 newFolderProps.put("cm:title", "Folder Title");
 newFolderProps.put("cm:description", "Folder Description");
 newFolder = parentFolder.createFolder(newFolderProps);

 logger.info("Created new folder with Titled aspect: " +
 newFolder.getPath() + " [creator=" + newFolder.getCreatedBy()
 + "][created=" +
 date2String(newFolder.getCreationDate().getTime()) + "]");
 } else {
 logger.info("Cannot create folder, it already exist: " +
 newFolder.getPath());
 }
}

Chapter 5

[167]

Here we first check whether the folder we intend to create already exists. If it doesn't,
we go ahead and create a list of aspects that we want to set for the folder object.
In this case, it is just the one aspect called P:cm:titled (P stands for policy; it is the
way Alfresco traditionally exposes aspects, and you still have to use this prefix), but
the secondaryObjectTypeids property is a multivalued property, so we need to
keep the aspect name in a list. Then the standard properties map is created where
one of the properties is the secondaryObjectTypeIds property, keeping the list of
aspects. The folder is then created with this map of properties, and the aspect is set
for us and exposed as a secondary type via CMIS.

Adding aspects to an existing object
If we already have an object and want to add an aspect to it, we can also use the
cmis:secondaryObjectTypeIds property and update it via the updateProperties
operation. We are going to use another of Alfresco's out-of-the-box aspects called
Effectivity (cm:effectivity). It can be used to set a from date and a to date for an
object, representing some form of time period when the object is effective. To do this
for a document object, do as follows:

public void addAspectToExistingDocument(Document document) {
 String aspectName = "P:cm:effectivity";
 // Make sure we got a document, and then add the aspect to it
 if (document != null) {
 // Check that document don't already got the aspect applied
 List<Object> aspects = document.getProperty(
 SECONDARY_OBJECT_TYPE_IDS_PROP_NAME).getValues();
 if (!aspects.contains(aspectName)) {
 aspects.add(aspectName);
 Map<String, Object> properties =
 new HashMap<String, Object>();
 properties.put(
 SECONDARY_OBJECT_TYPE_IDS_PROP_NAME, aspects);
 properties.put("cm:from", new Date());
 Calendar toDate = Calendar.getInstance();
 toDate.add(Calendar.MONTH, 2);
 properties.put("cm:to", toDate.getTime());
 Document updatedDocument =
 (Document) document.updateProperties(properties);
 logger.info("Added aspect " + aspectName + " to " +
 getDocumentPath(updatedDocument));
 } else {
 logger.info("Aspect " + aspectName +
 " is already applied to " + getDocumentPath(document));
 }

Accessing a CMIS Server with a Java Client

[168]

 } else {
 logger.error("Document is null, cannot add aspect to it!");
 }
}

The document object that we want to apply the aspect to is passed to the method.
We start by getting currently set aspects, so we can see if the cm:effectivity aspect is
already set. We also need to keep a list of aspects that are already set as we need to add
them to the aspect list together with the new aspect. If we don't include the aspects that
are already set, we will basically unset them when we update the properties.

Reading aspects
To read aspects that have been applied to an object, we just need to get the values of
the multivalued cmis:secondaryObjectTypeIds property. For a document, this can
be done as follows:

public void readAspectsForExistingDocument(Document document) {
 // Make sure we got a document, then list aspects
 if (document != null) {
 List<SecondaryType> aspects = document.getSecondaryTypes();
 logger.info("Aspects for: " + getDocumentPath(document));
 for (SecondaryType aspect : aspects) {
 logger.info(" " + aspect.getDisplayName() +
 " (" + aspect.getId() + ")");
 }
 } else {
 logger.error("Document is null, cannot list aspects for it!");
 }
}

The getSecondaryTypes method on a document object will respond with a list of
the SecondaryType objects that we can list and print the display name for. Running
this code produces the following log:

INFO: Aspects for: /User Homes/OpenCMISTest2.pdf

INFO: Titled (P:cm:titled)

INFO: Document Data (P:myc:documentData)

INFO: Author (P:cm:author)

INFO: Translation (P:sys:localized)

INFO: Effectivity (P:cm:effectivity)

Chapter 5

[169]

The Alfresco OpenCMIS extension to manage
aspects
Now, if are not using an Alfresco version that exposes aspects as CMIS secondary
types, we can still manage them with the Alfresco OpenCMIS extension (http://
code.google.com/a/apache-extras.org/p/alfresco-opencmis-extension/).
To use it, we need to do two things. First, we need to add a dependency to the library
in Maven POM as follows:

<dependency>
 <groupId>org.alfresco.cmis.client</groupId>
 <artifactId>alfresco-opencmis-extension</artifactId>
 <version>0.4</version>
 <exclusions>
 <exclusion>
 <groupId>org.apache.chemistry.opencmis</groupId>
 <artifactId>chemistry-opencmis-client-impl</artifactId>
 </exclusion>
 </exclusions>
</dependency>

The Alfresco OpenCMIS extension actually has a dependency on the OpenCMIS
library, so we exclude it. This way, we don't end up with two different versions of the
OpenCMIS library in, for example, WEB-INF/lib if we are building a WAR artifact.

Next, we need to update the object factory that OpenCMIS uses so that it
creates Alfresco CMIS objects instead of CMIS objects. We do this by setting the
OBJECT_FACTORY_CLASS session property to org.alfresco.cmis.client.impl.
AlfrescoObjectFactoryImpl. In the getSession method that we created in the
beginning, add the property as follows:

parameters.put(SessionParameter.OBJECT_FACTORY_CLASS,
"org.alfresco.cmis.client.impl.AlfrescoObjectFactoryImpl");

Adding aspects when creating an object
To apply the cm:titled aspect with the Alfresco OpenCMIS extension, we use the
following code:

public void createFolderWithTitledAspectWithAlfrescoExtension (
Session session) {
 String folderName = "OpenCMISTestTitled";
 Folder parentFolder = session.getRootFolder();

Accessing a CMIS Server with a Java Client

[170]

 // Check if folder already exist, if not create it
 Folder newFolder = (Folder) getObject(
 session, parentFolder, folderName);
 if (newFolder == null) {
 Map<String, Object> newFolderProps =
 new HashMap<String, Object>();
 newFolderProps.put(
 PropertyIds.OBJECT_TYPE_ID, "cmis:folder,P:cm:titled");
 newFolderProps.put(PropertyIds.NAME, folderName);
 newFolderProps.put("cm:title", "Folder Title");
 newFolderProps.put("cm:description", "Folder Description");
 newFolder = parentFolder.createFolder(newFolderProps);

 logger.info("Created new folder with Titled aspect: " +
 newFolder.getPath() + " [creator=" +
 newFolder.getCreatedBy() + "][created=" +
 date2String(newFolder.getCreationDate().getTime()) +"]");
 } else {
 logger.info("Folder already exist: " + newFolder.getPath());
 }
}

The important thing here is to include the name of the aspect (or aspects) in the
OBJECT_TYPE_ID property value. The fully qualified Alfresco aspect name, such as
cm:titled, should be prefixed with P as aspects are handled as policy objects.

Then we can just add the custom properties belonging to the aspects to the properties
map, and they will be applied to the object when it is created.

Adding aspects to an existing object
If we already have an object and want to add an aspect to it, we can use the addAspect
method on the Alfresco object. To do this for a document object, do as follows:

public void addAspectToExistingDocumentWithAlfrescoExtension(
Session session) {
 String documentName = "OpenCMISTest2.pdf";
 String aspectName = "P:cm:effectivity";
 Folder parentFolder = session.getRootFolder();

 // Make sure document exists and get the object for it,
 // if not don't try and add the aspect
 AlfrescoDocument someDocument = (AlfrescoDocument)
 getObject(session, parentFolder, documentName);
 if (someDocument != null) {

Chapter 5

[171]

 // Check that document don't already got the aspect applied
 if (!someDocument.hasAspect(aspectName)) {
 Map<String, Object> aspectProperties =
 new HashMap<String, Object>();
 aspectProperties.put("cm:from", new Date());
 Calendar toDate = Calendar.getInstance();
 toDate.add(Calendar.MONTH, 2);
 aspectProperties.put("cm:to", toDate.getTime());
 someDocument.addAspect(aspectName, aspectProperties);

 logger.info("Added aspect " + aspectName + " to " +
 getDocumentPath(someDocument));
 } else {
 logger.info("Aspect " + aspectName+" is already applied to "
 + getDocumentPath(someDocument));
 }
 } else {
 logger.info("Document does not exist, cannot add aspect to
 it:"
 + parentFolder.getPath() + documentName);
 }
}

Here we get a document object by path and then cast it to an AlfrescoDocument
object. This is possible as we are using the Alfresco object factory, which is provided
by the Alfresco OpenCMIS extension. If the AlfrescoDocument object is not null,
we check whether it already has the aspect applied with the hasAspect method. If
the aspect is not applied to the object, we set up a map with the two aspect properties
and then pass it, together with the aspect name, to the addAspect method.

Reading aspects
To read aspects that have been applied to an object, we first get an object via an ID
or path and then cast it to an Alfresco object. We can then use the getAspects
method to get a collection of the applied aspects, as shown in the following code:

public void readAspectsForExistingDocumentWithAlfrescoExtension (
Session session) {
 String documentName = "OpenCMISTest2.pdf";
 Folder parentFolder = session.getRootFolder();

 // Make sure document exists and get the object for it,
 // if not don't try and list aspects
 AlfrescoDocument someDocument = (AlfrescoDocument) getObject(
 session, parentFolder, documentName);

Accessing a CMIS Server with a Java Client

[172]

 if (someDocument != null) {
 Collection<ObjectType> aspects = someDocument.getAspects();
 logger.info("Aspects for: " +someDocument.getPaths().get(0));
 for (ObjectType aspect : aspects) {
 logger.info(" " + aspect.getDisplayName() + " (" +
 aspect.getId()+ ")");
 }
 } else {
 ogger.info("Document does not exist, cannot list aspects for
 it: " + parentFolder.getPath() + documentName);
 }
}

The getAspect method returns a collection of the ObjectType policy. Alfresco
aspects are managed as policies. We can then get the aspect name with the
getDisplayPath method and the aspect's fully qualified name with the getId
method, according to how the aspect has been defined in the Alfresco content model.

Version management with check out and
check in
As mentioned before, only document objects can be versioned. When a document
is created via CMIS, it always has versioning enabled even if the check-out and
check-in features have not been used. So when we created, for example, the
OpenCMISTest.txt file with the createDocument method, Alfresco automatically
applied the cm:versionable aspect and set its properties as follows:

• cm:autoVersionOnUpdateProps: This property is set to true, which means
that a new version will be created every time a property is updated

• cm:versionLabel: This property is set to 1.0
• cm:autoVersion: This property is set to false, so a new version will not be

created if content is updated for the document
• cm:initialVersion: This property is set to false, so an initial version will

not be created in the version history when document is first created

Because the cm:autoVersion property is set to false, a new version
will not be created if the document is updated . However, as the
cm:autoVersionOnUpdateProps is set to true a new version will be created if any
metadata/properties are updated for the document. To turn on automatic versioning
of content, we have to use the checkOut method, which creates a Private Working
Copy (PWC) that we later check in, which creates a new version.

For more information on the CMIS version service, refer to Chapter 3, Advanced CMIS
Operations, and Chapter 4, Alfresco and CMIS.

Chapter 5

[173]

Checking out a document
A document can be checked out using the checkOut method on the object:

public Document checkOutDocument(
Session session, Document document) {
// Check that we got the document before we try and do a check-out
 Document workingCopy = null;
 if (document != null) {
 // If it is already checked out cancel that checkout
 if (document.isVersionSeriesCheckedOut()) {
 document.cancelCheckOut();
 logger.info("Document was already checked out, "+
 "cancelled check out for document: " +
 getDocumentPath(document));
 }

 ObjectId workingCopyId = document.checkOut();
 workingCopy = (Document) session.getObject(workingCopyId);

 logger.info("Checked Out document:
 "+getDocumentPath(document)+
 " [version=" + document.getVersionLabel() + "][pwcName=" +
 workingCopy.getName() + "]");
 } else {
 logger.error("Document is null, cannot check-out!");
 }

 return workingCopy;
}

Before the OpenCMISTest2.pdf document is checked out, we check if it has already
been checked out with the isVersionSeriesCheckedOut method. If it has been
checked out, we cancel that check out so that we can do a new check out. When
a document is checked out, the PWC of the document is created. We can use this
PWC to update the content of the document and then check in as a new version. The
document is also locked, so other users cannot update it. Running the code produces
the following log:

INFO: Checked Out document: /User Homes/OpenCMISTest2.pdf
[version=1.0][pwcName=OpenCMISTest2 (Working Copy).pdf]

Accessing a CMIS Server with a Java Client

[174]

Updating the content of the checked-out
document and then checking it in
When we have checked out the document and have a working copy, we can update
the content by updating the content stream for the working copy. In the following
example, we will update the content from an existing PDF file with the name
UpdatedContent.pdf that needs to exist in the directory from where we are running
the example:

public void updateContentAndCheckInDocument(
Session session, Document pwc) {
 String documentName = "OpenCMISTest2.pdf";
 File file = new File("UpdatedContent.pdf");

 InputStream is = null;
 ObjectId newObjectId = null;
 try {
 // Setup updated document content
 is = new FileInputStream(file);
 String mimetype = "application/pdf";
 ContentStream contentStream =
 session.getObjectFactory().createContentStream(
 documentName, file.length(), mimetype, is);

 // Check in the Private Working Copy (pwc) with new content
 boolean majorVersion = false;
 Map<String, Object> props = null;
 String checkInComment = "This is just a minor update";
 newObjectId = pwc.checkIn(
 majorVersion, props, contentStream, checkInComment);

 // Close stream and handle exceptions
 is.close();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 } finally {
 IOUtils.closeQuietly(is);
 }

 // Get the document so we can check the new version
 Document updatedDocument = (Document)
 session.getObject(newObjectId);
 logger.info("Checked In document: " +
 getDocumentPath(updatedDocument) + " [newVersion=" +

Chapter 5

[175]

 updatedDocument.getVersionLabel() + "][checkInComment=" +
 updatedDocument.getCheckinComment() + "]");
}

The content stream that points to the updated PDF is used to check in the private
working copy. The majorVersion property is set to false, so we will update the
version label in minor steps such as 1.0, 1.1, and so on. In this case, we are not
updating any of the document's properties, so the property map is null. The last
parameter sent to the checkIn method is the comment that we want to make about
what was updated in the content.

We can now get the document object again and check the version label to see what it
has been updated to. The check-in comment can also be retrieved from the document
object. Running this code produces a log as follows:

INFO: Checked In document: /User Homes/OpenCMISTest2.pdf
[newVersion=1.1][checkInComment=This is just a minor update]

Managing permissions for documents
and folders
ACLs are used to manage permissions for folders and documents. Each ACL
contains one or more Access Control Entries (ACE). Each ACE contains a principal,
permission(s), and propagation direction. To add a new permission for an object such
as a folder, we use the addAcl method on the object. To be able to use this method,
we have to first check if the repository supports managing permissions, as follows:

public void addPermissionToFolder(Session session, Folder folder) {
 // Check if the repo supports ACLs
 RepositoryInfo repoInfo = session.getRepositoryInfo();
 if (!repoInfo.getCapabilities().getAclCapability().equals(
 CapabilityAcl.MANAGE)) {
 logger.warn("Repository does not allow ACL management" +
 " [repoName=" + repoInfo.getProductName() +
 "][repoVersion=" + repoInfo.getProductVersion() + "]");
 } else {
 // Check that we got the folder, if not don't
 // assign new permission to it
 if (folder != null) {
 List<String> permissions = new ArrayList<String>();
 permissions.add(
 "{http://www.alfresco.org/model/content/1.0}folder.
 Collaborator");
 String principal = "GROUP_MARKETING";

Accessing a CMIS Server with a Java Client

[176]

 Ace aceIn = session.getObjectFactory().
 createAce(principal, permissions);
 List<Ace> aceListIn = new ArrayList<Ace>();
 aceListIn.add(aceIn);
 folder.addAcl(
 aceListIn, AclPropagation.REPOSITORYDETERMINED);

 logger.info("ACL for " + folder.getPath() +
 " after adding an ACE:");
 OperationContextImpl operationContext =
 new OperationContextImpl();
 operationContext.setIncludeAcls(true);
 folder = (Folder) session.getObject(
 folder, operationContext);
 for (Ace ace : folder.getAcl().getAces()) {
 logger.info(" " + ace.getPrincipalId() +
 " " + ace.toString());
 }
 } else {
 logger.error("Folder is null, cannot add permission!");
 }
 }
}

When we have discovered that the repository supports permission management, by
verifying that the ACL capability is set to MANAGE, we can create an ACL, which in
itself is represented as a list of Ace objects. We can create each new ACE object that we
need via the createAce method on the object factory. This method takes a principal,
which is a user or group; one or more CMIS permissions (that is, cmis:read,
cmis:write, and cmis:all); and/or repository-specific permissions (for example,
{http://www.alfresco.org/model/content/1.0}folder.Collaborator).

In this example, we set up the MARKETING group to have the Collaboration role on
the folder. When working with Alfresco groups, we have to prefix them with GROUP_
to distinguish them from, for example, roles that are prefixed with ROLE_. When we
call the addAcl method on the folder and pass in the ACE list, we also specify how
the ACL change should be propagated in the repository. In this case, when it is set
to REPOSITORYDETERMINED, Alfresco will manage the ACL change as it normally
manages changes to permissions.

Chapter 5

[177]

After we have added the new permission to the folder, we will also want to list all
the permissions for the folder after this. To do this, we have to get the folder object
again and specify that we also want the access control list for the object returned.
We do this with the getObject method and pass in an operational context that has
includeAcls set to true. As the object ID, we pass in the Folder object as it extends
the ObjectId class. Running the preceding code will print the following log:

INFO: ACL for /OpenCMISTest2 after adding an ACE:

 GROUP_MARKETING Access Control Entry [principal=Access Control
Principal [principalId=GROUP_MARKETING][extensions=null],
permissions=[cmis:read, cmis:write,
{http://www.alfresco.org/model/content/1.0}cmobject.Collaborator], is
direct=true][extensions=null]

 GROUP_EVERYONE Access Control Entry [principal=Access Control
Principal [principalId=GROUP_EVERYONE][extensions=null],
permissions=[cmis:read,
{http://www.alfresco.org/model/content/1.0}cmobject.Consumer], is
direct=false][extensions=null]

If we wanted to add a permission related to performing a specific operation, such as
a check out, we can first ask the repository info object for the permissions needed to
do this operation and then add those permissions to the principal. For example, to
add check-out permissions for the OpenCMISTest2.pdf document to a user named
mjackson, do as follows:

public void addCheckOutPermissionsToUser(
Session session, Document document) {
 String principal = "mjackson";
 Folder parentFolder = session.getRootFolder();

 // Make sure we got a document, if not don't
 // try and add permission
 if (document != null) {
 RepositoryInfo repositoryInfo = session.getRepositoryInfo();
 AclCapabilities aclCapabilities =
 repositoryInfo.getAclCapabilities();
 Map<String, PermissionMapping> permissionMappings =
 aclCapabilities.getPermissionMapping();
 PermissionMapping permissionMapping =
 permissionMappings.get(
 PermissionMapping.CAN_CHECKOUT_DOCUMENT);
 List<String> permissions = permissionMapping.getPermissions();
 Ace addAce = session.getObjectFactory().createAce(
 principal, permissions);
 List<Ace> addAces = new LinkedList<Ace>();

Accessing a CMIS Server with a Java Client

[178]

 addAces.add(addAce);
 document.addAcl(addAces, AclPropagation.REPOSITORYDETERMINED);

 logger.info("Added check-out permissions for user " +
 principal + " to " + getDocumentPath(document));
 } else {
 logger.error("Document is null, cannot add permission!");
 }
}

Here, we utilize the possibility to get the permission mapping for the check-out
document operation directly from the repository. When we have the permission
mapping for CAN_CHECKOUT_DOCUMENT, we can just ask for the permissions and
then pass them in the addAcl method.

Managing relationships between objects
CMIS supports relationships, which is the same thing as an association in Alfresco.
To set up a relationship between two objects with OpenCMIS, we first have to get the
objects and then we can use the createRelationship method on the session object.
In Alfresco, there are many associations defined and available out of the box. One of
these associations is Copied From, and it is defined as follows in the Alfresco
content model:

<aspect name="cm:copiedfrom">
 <title>Copied From</title>
 <associations>
 <association name="cm:original">
 <source>
 <mandatory>false</mandatory>
 <many>true</many>
 </source>
 <target>
 <class>cm:cmobject</class>
 <mandatory>false</mandatory>
 <many>false</many>
 </target>
 </association>
 </associations>
</aspect>

Note that the actual association is contained in an aspect, and we should not use the
aspect name when we refer to the association but instead use the association name,
which in this case is cm:original. In the following example, we are going to set up
this association between two folders where one folder has been copied from the other.

Chapter 5

[179]

The following code will first check whether the cmis:relationship base object type
is supported by the repository as it is not a mandatory base type. Then we check
whether the custom Alfresco association is available.

public void setupRelationshipBetween2Folders(Session session) {
 // First check that relationship types are supported and
 // that the custom Alfresco relationship/assocation is supported
 String cmisRelationshipTypeName = "cmis:relationship";
 String customCopiedFromAssociation = "R:cm:original";

 try {
 session.getTypeDefinition(cmisRelationshipTypeName);
 } catch (CmisObjectNotFoundException e) {
 logger.warn("Repository does not support " +
 cmisRelationshipTypeName + "objects");
 }

 try {
 session.getTypeDefinition(customCopiedFromAssociation);
 } catch (CmisObjectNotFoundException e) {
 logger.warn("Repository does not support " +
 customCopiedFromAssociation + " objects");
 return;
 }

 String oldFolderBeingReplacedName = "OpenCMISTest2";
 String newFolderName = "OpenCMISTestTitled";
 Folder parentFolder = session.getRootFolder();

 // Get the folder objects and check that the folders exists
 Folder sourceFolder = (Folder) getObject(
 session, parentFolder, newFolderName);
 Folder targetFolder = (Folder) getObject(
 session, parentFolder, oldFolderBeingReplacedName);
 if (sourceFolder == null || targetFolder == null) {
 logger.warn("Cannot setup relationship as at least one
 of the folders does not exist");
 }

 // Check that relationship does not already exist
 OperationContextImpl operationContext =
 new OperationContextImpl();
 operationContext.setIncludeRelationships(
 IncludeRelationships.SOURCE);

Accessing a CMIS Server with a Java Client

[180]

 sourceFolder = (Folder) session.getObject(
 sourceFolder, operationContext);
 List<Relationship> existingRelationships =
 sourceFolder.getRelationships();
 for (Relationship existingRelationship : existingRelationships)
 {
 logger.warn("Relationship: " +
 existingRelationship.toString());
 if (existingRelationship.getType().getId().
 equalsIgnoreCase(customCopiedFromAssociation)) {
 logger.warn("Folders are already setup with relationship:
 "+customCopiedFromAssociation);
 }
 return;
 }

 // Setup copiedFrom relationship between folders
 Map<String, String> relationshipProperties =
 new HashMap<String, String>();
 relationshipProperties.put(
 "cmis:objectTypeId", customCopiedFromAssociation);
 relationshipProperties.put(
 "cmis:sourceId", sourceFolder.getId());
 relationshipProperties.put(
 "cmis:targetId", targetFolder.getId());
 session.createRelationship(
 relationshipProperties, null, null, null);

 logger.info("Setup " + customCopiedFromAssociation +
 " relationship between folder " + sourceFolder.getPath() +
 " and folder " + targetFolder.getPath());
}

After we have checked that the association is available, we get the Folder objects for
the two folders between which we want to set up the relationship. When we have
them, they will act as the source and target in the relationship.

Before we go ahead and set up the relationship, we need to check if it has already
been set up. To do this, we need to get the source folder again with an operational
context that is set up to include relationships. If the relationship already exists, we
abort the operation as you cannot add the relationship if it is already there—you will
get an exception.

Chapter 5

[181]

When we specify the object type ID for the relationship/association, we must
prefix it with R: when using Alfresco. The relationship is created with the
createRelationship method on the session; in this case, we pass in null for
policies and access control lists and keep the default one.

Searching
To be able to search for content is one of the main requirements you would have on
a CMS system library such as OpenCMIS. And, it supports both searching in
metadata and a full-text search in content. Before doing any searches, we first need
to see which search features are supported by the repository. We want it to support
both a metadata search and FTS:

public void searchMetadataAndFTS(Session session) {
 // Check if the repo supports Metadata search and
 // Full Text Search (FTS)
 RepositoryInfo repoInfo = session.getRepositoryInfo();
 if (repoInfo.getCapabilities().getQueryCapability().equals(
 CapabilityQuery.METADATAONLY)) {
 logger.warn("Repository does not support FTS [repoName=" +
 repoInfo.getProductName() + "][repoVersion=" +
 repoInfo.getProductVersion() + "]");
 } else {
 String query = "SELECT * FROM cmis:document WHERE "+
 "cmis:name LIKE 'OpenCMIS%'";
 ItemIterable<QueryResult> searchResult =
 session.query(query, false);
 logSearchResult(query, searchResult);

 query = "SELECT * FROM cmis:document WHERE "+
 "cmis:name LIKE 'OpenCMIS%' AND CONTAINS('testing')";
 searchResult = session.query(query, false);
 logSearchResult(query, searchResult);
 }
}
private void logSearchResult(
String query, ItemIterable<QueryResult> searchResult) {
 logger.info("Results from query " + query);
 int i = 1;
 for (QueryResult resultRow : searchResult) {
 logger.info("--\n" +
 i + " , " + resultRow.getPropertyByQueryName("cmis:objectId").

Accessing a CMIS Server with a Java Client

[182]

 getFirstValue() + " , " +
 resultRow.getPropertyByQueryName("cmis:objectTypeId").
 getFirstValue() + " , " + resultRow.getPropertyByQueryName
 ("cmis:name").getFirstValue());
 i++;
 }
}

When we know that the repository supports more than just a metadata search and
the CapabilityQuery property is not set to METADATAONLY, we do the first search in
metadata by looking for all the documents that have a name starting with OpenCMIS%.
Then we do another search in both metadata and content by also looking for the word
testing in the documents that matched the name OpenCMIS%. Running the preceding
code produces a search result as follows:

INFO: Results from query SELECT * FROM cmis:document WHERE cmis:name
LIKE 'OpenCMIS%'

1 , D:myc:itDoc , OpenCMISTest2.pdf

2 , cmis:document , OpenCMISTest5.txt

INFO: Results from query SELECT * FROM cmis:document WHERE cmis:name
LIKE 'OpenCMIS%' AND CONTAINS('testing')

1 , cmis:document , OpenCMIS part 1 - DevCon 2010.pptx

2 , D:myc:itDoc , OpenCMISTest2.pdf

Note that the result will be different depending on what content you have in your
repository. For more information on the CMIS Query language search syntax and
examples, refer to Chapter 3, Advanced CMIS Operations.

Summary
In this chapter, we looked at the Apache Chemistry project and the OpenCMIS Java
library and saw how much more efficient it is than using the AtomPub or Browser
binding protocols directly. We have gone through most of the operations that one
might want to perform against a repository, and we have also looked at how to
use the Alfresco OpenCMIS extension for handling aspects when using an earlier
Alfresco version.

In the next chapter, we will look at how you can access a CMIS-compatible
repository using a scripting language such as JavaScript or Groovy.

Accessing a CMIS Server
Using Scripting Languages

So far we have seen how we can access a CMIS server via basic protocol bindings
and from an OpenCMIS Java abstraction layer. Sometimes it is also useful to be able
to abstract the CMIS interface even further and access the CMIS server using
a scripting language such as JavaScript or Groovy.

So why would we want to do that? Well, when working on web application
development, it is often very useful to be able to make AJAX calls directly from
JavaScript code to CMS servers and get back JSON with repository data.

Scripting languages also make the coding operation a lot quicker in many cases;
they abstract the application programming interface even further, making it easier
to work with the interface.

In this chapter, we learn how to do the following:

• Access a CMS server directly from the JavaScript code in the browser,
and also see how that works if it is in a different domain

• Use JQuery to make the AJAX calls to the CMS server more efficient
• Populate JavaScript widgets directly with JSON from CMIS service calls
• Use Groovy to make CMIS service calls
• Use CMIS from the Spring Surf development framework

Accessing a CMIS Server Using Scripting Languages

[184]

Using CMIS in JavaScript and web
application pages
We have already seen how the Browser binding can be used to manage folders and
documents directly from HTML forms. However, we did not go into how we can use
JavaScript to call a CMIS service via the Browser binding and then process the JSON
response.

Now let's see how easy it is to use the Browser binding and JSON to navigate
through the repository and populate data trees and data lists. First thing first though,
we need to get hold of the Alfresco repository ID so that we can use it in our service
calls. If you remember, the Browser binding-based URL for Alfresco Version 4 is
http://localhost:8080/alfresco/cmisbrowser, and it will return information
about the repository, such as the ID.

If you are using Alfresco Version 4.2.d Community, 4.2.0 Enterprise,
or newer, then the correct CMIS browser binding URL is http://
localhost:8080/alfresco/api/-default-/cmis/
versions/1.1/browser.

Let's set up a web page that makes a service call to this URL, and then parse the
JSON response to get to the repository ID.

Create a file called testCMISfromJS.html with the following initial content:

<!DOCTYPE html>
<html>
<head>
 <title>Testing CMIS from JavaScript</title>
 <meta charset="UTF-8">
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <script src="testCMISfromJS.js" type="text/javascript"></script>
</head>
<body>
<p>Get the Repository ID from the Alfresco server: </p>
<input type="button" value="Get Repository ID"
 onClick="getRepoId()">
<div id="repo_id"></div>
</body>
</html>

This HTML page will display a button and when we click on it, the getRepoId
JavaScript function is called. This function is defined in the testCMISfromJS.js file
that is loaded in the head section. Create this file and code the function as follows:

Chapter 6

[185]

function getRepoId() {
 callCmisServer(
 "http://localhost:8080/alfresco/cmisbrowser",
 function (cmisServiceResponseJSON) {
 for (repositoryId in cmisServiceResponseJSON) {
 var repository = cmisServiceResponseJSON[repositoryId];
 document.getElementById('repo_id').innerHTML =
 "Repository found [id=" + repository.repositoryId +"]
 [name="+ repository.vendorName + "[version=" +
 repository.productVersion + "]";
 }
 }
);
}

What this function does is call another function, callCmisServer, which is also
a custom function that we will define in a bit. It will make an AJAX call to the CMIS
server with the URL passed in. The server will respond with a result formatted as
JSON. You may remember from Chapter 2, Basic CMIS Operations, the JSON response
from the http://localhost:8080/alfresco/cmisbrowser call looks similar to
the following:

{
 f0ebcfb4-ca9f-4991-bda8-9465f4f11527: {
 principalIdAnyone: "GROUP_EVERYONE",
 principalIdAnonymous: "guest",
 repositoryDescription: "Main Repository",
 vendorName: "Alfresco",
 aclCapabilities: {
 permissionMapping: [...
 cmisVersionSupported: "1.0",
 productVersion: "4.2.0 (4480)",
 repositoryId: "f0ebcfb4-ca9f-4991-bda8-9465f4f11527",
 ...
}

The JSON response will be passed in as an argument to the anonymous function that
is passed in as the second argument to the callCmisServer function. The anonymous
function will loop through the JSON response as it can contain information for more
than one repository. For each repository ID it finds, it will get the value for it, which is
an object representing the repository information. It then prints a couple of properties
for the repository, such as vendorName. Running this program produces the following
output in div with the repo_id ID:

Get the Repository ID from the Alfresco server:

[Get Repository Id]

Accessing a CMIS Server Using Scripting Languages

[186]

Repository found [id=f0ebcfb4-ca9f-4991-bda8-9465f4f11527]
[name=Alfresco[version=4.2.0 (4480)]

The callCmisServer function looks as follows:

function callCmisServer(cmisServiceUrl, callback) {
 var httpRequest = new XMLHttpRequest();
 var asynchronousRequest = true;
 var alfrescoUsername = "admin";
 var alfrescoPwd = "admin";
 httpRequest.callback = callback;
 httpRequest.open("GET", cmisServiceUrl, asynchronousRequest,
 alfrescoUsername, alfrescoPwd);
 httpRequest.onreadystatechange = handleCmisServiceCallResponse;
 httpRequest.send(null);
}

This program uses the XMLHttpRequest class to make an AJAX call to the CMIS
server. The call is made to the URL that is passed in as the cmisServiceUrl
parameter. The call will be asynchronous, and the function that should handle the
response once it is complete is called handleCmisServiceCallResponse; we will
define this function in a bit. We also set up the HTTP request object with a reference
to the callback function, so we can access it from the handler function.

A CMIS call requires authentication, so we supply the username and password to the
administrator in Alfresco. The last thing that is done is call the send function on the
HTTP request object, and this executes the HTTP GET method and makes the CMIS
service call.

The response handler function looks as follows:

function handleCmisServiceCallResponse() {
 var responseContentFinishedLoading = 4;
 var responseStatusCodeOk = 200;
 if (this.readyState == responseContentFinishedLoading &&
 this.status == responseStatusCodeOk) {
 var cmisServiceResponseJSON = JSON.parse(this.responseText);
 this.callback(cmisServiceResponseJSON);
 }
}

The function will take the JSON string that is returned by the server and parse it into
a JSON object. This JSON object is then passed back into the callback function (that is,
the anonymous function passed in as the second parameter to the callCmisServer
function).

Chapter 6

[187]

Now, if we just double-click on the testCMISfromJS.html file and open the page
in a browser, it will not work to run the example. This is because of the same origin
problem. The Alfresco CMIS server that we are accessing is running in the http://
localhost:8080/alfresco domain, and the HTML page will have a path in the
browser that looks like file:///home/mbergljung/Documents/Alfresco%20CMIS/
chapters/chapter%206/code/testCMISfromJS.html. For security reasons, the
browser will not allow the web page to make a call to a different domain.

To get around this, we can put the HTML file and the JS file in the alfresco
directory under <alfrescoinstalldir>/tomcat/webapps and restart Tomcat.
Then, we can access the web page with the http://localhost:8080/alfresco/
testCMISfromJS.html URL, which would make both the web application and the
CMS server reside in the same domain, and the call would work. However, this is
not really a solution for a production web application that might call out to many
different servers for information.

To get around this, we can use a technique that involves wrapping the response from
the service call in a function, which can then be called to get the JSON object.

Solving the same origin policy problem
The technique that we will use to solve the problem of calling several different
domains from a web application is sometimes referred to as JSONP, which stands
for JSON with padding. This means that you wrap/pad the JSON response inside
a JavaScript function, as in the following example:

getResponse(
{
 f0ebcfb4-ca9f-4991-bda8-9465f4f11527: {
 principalIdAnyone: "GROUP_EVERYONE",
 principalIdAnonymous: "guest",
 repositoryDescription: "Main Repository",
 vendorName: "Alfresco",
 aclCapabilities: {
 permissionMapping: [...
 cmisVersionSupported: "1.0",
 productVersion: "4.2.0 (4480)",
 repositoryId: "f0ebcfb4-ca9f-4991-bda8-9465f4f11527",
 ...
}
)

The CMIS service call will be made via a script tag directly in the page body instead
of via the XMLHttpRequest class. When script is loaded, the function is defined
and called.

Accessing a CMIS Server Using Scripting Languages

[188]

Obviously, for this to work in our scenario, the CMIS server must support
JSONP. The CMIS specification states that any CMIS-compliant server needs to
support an optional URL parameter named callback. So, to get the above JSONP
response, we would make the following call to the Alfresco server: http://
localhost:8080/alfresco/cmisbrowser?callback=getResponse.

The following changes to the code are necessary to support JSONP and cross-domain
calls. First make a copy of the HTML file we created earlier called testCMISfromJS.
html and give it a new name, testCMISfromJS-JSONP.html. Update it to load
a different JS file as follows:

<!DOCTYPE html>
<html>
<head>
 <title>Testing CMIS from JavaScript (JSONP)</title>
 <meta charset="UTF-8">
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <script src="testCMISfromJS-JSONP.js"
 type="text/javascript"></script>
</head>
<body>
<p>Get the Repository ID from the Alfresco server (JSONP): </p>
<input type="button" value="Get Repository ID"
 onClick="getRepoId()">
<div id="repo_id"></div>
</body>
</html>

Then, starting with the getRepoId function, create the new testCMISfromJS-JSONP.
js file as follows:

function getRepoId() {
 var serviceCallUrl =
 "http://localhost:8080/alfresco/cmisbrowser?
 callback=listRepoInfo";
 var listRepoInfoScript = document.createElement('script');
 listRepoInfoScript.setAttribute('src', serviceCallUrl);
 listRepoInfoScript.setAttribute('type', 'text/javascript');
 document.body.appendChild(listRepoInfoScript);
}

In the preceding code, we can see that the service call URL has been appended
with the name of the callback function that should wrap the returned JSON.
Then, a script tag is created that will automatically call the CMIS service.
The listRepoInfo callback function looks as follows:

Chapter 6

[189]

function listRepoInfo(cmisServiceResponseJSON) {
 for (repositoryId in cmisServiceResponseJSON) {
 var repository = cmisServiceResponseJSON[repositoryId];
 document.getElementById('repo_id').innerHTML =
 "Repository found [id=" + repository.repositoryId +
 "][name="+ repository.vendorName + "[version=" +
 repository.productVersion + "]";
 }
}

If we debug the preceding function, we will see the following HTML page after the
button has been clicked on. Note the extra script tag in the body section of the page
with the function call.

It will now work to just double-click on the testCMISfromJS-JSONP.html file and
then click on the Get Repository Id button. So, this does not look that complicated.
However, it's not the whole story. If we are building a real web application, we are
going to need a lot more callback functions. What you normally do then is add an
id parameter to the script, so it can be removed later on. This script ID needs to be
modified for each request, and this requires a bit more logic and code to implement.
Luckily, there are JavaScript libraries that provide this functionality, so we don't
have to write it from scratch.

Accessing a CMIS Server Using Scripting Languages

[190]

Using JQuery
One JavaScript library that provides JSONP functionality is JQuery. This library is
also good to use in general as it covers a lot of the shortcomings of various other
browsers. To rewrite our example with the JQuery library, we must first include its
JS file in our HTML page. Copy the previous HTML file we created earlier and give it
the name testCMISfromJS-JQuery.html. Then, update the file with an extra script
tag, so it looks like the following:

<!DOCTYPE html>
<html>
<head>
 <title>Testing CMIS from JavaScript (JQuery)</title>
 <meta charset="UTF-8">
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <script src="jquery-1.9.0.js" type="text/javascript"></script>
 <script src="testCMISfromJS-JQuery.js"
 type="text/javascript"></script>
</head>
<body>
<p>Get the Repository ID from the Alfresco server (JQuery): </p>
<input type="button" value="Get Repository ID"
 onClick="getRepoId()">
<div id="repo_id"></div>
</body>
</html>

In the preceding code, the JQuery library script is included and we have also
changed the name of our custom JS file that will use the JQuery library. Note
that you will have to download the JQuery library (http://jquery.com/) and
put it in the same directory as the HTML file. Now, create a new JS file called
testCMISfromJS-JQuery.js and implement the getRepoId function as follows:

function getRepoId() {
 var useJSONP = true;
 $.ajax(
 {
 url: "http://localhost:8080/alfresco/cmisbrowser",
 data: null,
 dataType: (useJSONP ? "jsonp" : "json"),
 type: "GET",
 username: "admin",
 password: "admin",
 success: listRepoInfo,
 error: errorHandler,

Chapter 6

[191]

 timeout: 5000
 }
);
}

Now when we use the JQuery library, we can take advantage of the ajax function
to make the CMIS service call. It takes the service call URL as a parameter; note that
it does not need the callback function parameter. It also takes a parameter called
dataType that specifies if we want to use the JSONP functionality or not. We also
pass in the username and password for the Alfresco server. And finally, we specify
what function should be called if successful (listRepoInfo) and what function
should be called if an error occurs (errorHandler).

So we can see that it is much easier to make AJAX calls cross domains when using a
library such as JQuery, and it also gives us a chance to take care of service call errors.
In the following code, the listRepoInfo function looks the same as above, the error
function is new:

function listRepoInfo(cmisServiceResponseJSON) {
 for (repositoryId in cmisServiceResponseJSON) {
 var repository = cmisServiceResponseJSON[repositoryId];
 $('#repo_id').html("Repository found [id=" +
 repository.repositoryId + "]
 [name="+ repository.vendorName + "[version=" +
 repository.productVersion + "]");
 }
}

function errorHandler(event, jqXHR, settings, exception) {
 alert("CMIS Service call was aborted:" + jqXHR + " : " +
 event.statusText);
}

Now that we got the main structure of how to make CMIS calls from JavaScript,
it is easy to extend the example with other calls. Let's say that we also want to list
children of the top folder when clicking on the Get Repository Info button. We can
do that in a lot of different ways. A good and efficient way is to look for a widget that
can take a JSON response as data and load itself automatically. There are loads of
widgets that can do this with JavaScript libraries such as JQuery, Yahoo UI Library
(YUI), and extJS.

Accessing a CMIS Server Using Scripting Languages

[192]

In this example, we will use a table widget plugin for JQuery that is called DataTables
(http://www.datatables.net). Follow the URL and download a file called something
like jquery.dataTables-1.9.4.min.js. The DataTables plugin can use a JSON object
downloaded from the server side in order to populate an HTML table. We will also use
a theme called UI Darkness from the JQuery UI ThemeRoller to get a neater UI (you
can download it from http://jqueryui.com/). JQuery UI consists of a JavaScript
file called something like jquery-ui-1.10.0.custom.js, and a stylesheet called
something like jquery-ui-1.10.0.custom.css.

For this example, we create a new HTML file called testCMISfromJS-JQuery-
DataTable.html and include the extra JavaScript libraries and the JQuery UI
stylesheet with an HTML table to populate, as follows:

<!DOCTYPE html>
<html>
<head>
 <title>Testing CMIS from JavaScript (JQuery)</title>
 <meta charset="UTF-8">
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <script src="jquery-1.9.0.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.0.custom.js"
 type="text/javascript"></script>
 <script src="jquery.dataTables-1.9.4.min.js"
 type="text/javascript"></script>
 <script src="testCMISfromJS-JQuery-DataTable.js"
 type="text/javascript"></script>
 <link rel="stylesheet" href="jquery-ui-1.10.0.custom.css">
</head>
<body>
<p>Get the Repository ID from the Alfresco server (JQuery): </p>
<input type="button" value="Get Repository ID"
 onClick="getRepoId()">
<div id="repo_id"></div>

<table id="folderContentDataTable" cellpadding="0" cellspacing="0"
 border="0">
 <thead>
 <tr>
 <th align="left">Name</th>
 <th align="left">Type</th>
 <th align="left">NodeRef</th>
 </tr>
 </thead>
 <tbody>

Chapter 6

[193]

 <tr>
 <td>Row 1 Data 1</td>
 <td>Row 1 Data 2</td>
 <td>etc</td>
 </tr>
 <tr>
 <td>Row 2 Data 1</td>
 <td>Row 2 Data 2</td>
 <td>etc</td>
 </tr>
 </tbody>
</table>
</body>
</html>

The HTML table is constructed with the number of columns that we want and their
headers. There also need to be some dummy rows with data. The table identifier
folderContentDataTable will be used later to hook up the JavaScript code with
this table.

The new JavaScript file called testCMISfromJS-JQuery-DataTable.js contains
a new function call listTopFolderChildren in the listRepoInfo function
as follows:

function getRepoId() {
 var useJSONP = true;
 $.ajax(
 {
 url: "http://localhost:8080/alfresco/cmisbrowser",
 data: null,
 dataType: (useJSONP ? "jsonp" : "json"),
 type: "GET",
 username: "admin",
 password: "admin",
 success: listRepoInfo,
 error: errorHandler,
 timeout: 5000
 }
);
}

function listRepoInfo(cmisServiceResponseJSON) {
 for (repositoryId in cmisServiceResponseJSON) {
 var repository = cmisServiceResponseJSON[repositoryId];
 $('#repo_id').html("Repository found [id=" +
 repository.repositoryId + "]

Accessing a CMIS Server Using Scripting Languages

[194]

 [name="+ repository.vendorName + "[version=" +
 repository.productVersion + "]");
 listTopFolderChildren(repository.repositoryId);
 }
}

When the listTopFolderChildren function is called with the repository identifier,
it will populate the new HTML table that we just added with the folders and
documents in the /Company Home top folder in Alfresco as follows:

function listTopFolderChildren(repositoryId) {
 var listTopFolderChildrenUrl =
 "http://localhost:8080/alfresco/cmisbrowser/" +
 repositoryId + "/root";
 $("#folderContentDataTable").dataTable(
 {
 "bJQueryUI": true,
 "sAjaxSource": listTopFolderChildrenUrl,
 "sAjaxDataProp": "objects",
 "aoColumns": [
 { "mData": "object.properties.cmis:name.value" },
 { "mData": "object.properties.cmis:objectTypeId.value" },
 { "mData": "object.properties.cmis:objectId.value" }
],
 "fnServerData": function (sSource, aoData, fnCallback) {
 $.ajax({
 url: sSource,
 data: aoData,
 dataType: "jsonp",
 type: "GET",
 username: "admin",
 password: "admin",
 success: fnCallback,
 error: errorHandler,
 timeout: 5000
 });
 }
 }
);
}

The first thing we do in this function is construct the URL that will list the children
of the root folder; it has the following template http://<host>:<port>/alfresco/
cmisbrowser/<repositoryId>/root. Getting this URL will return JSON as in the
following example:

Chapter 6

[195]

{
"hasMoreItems" : false,
 "objects" :
 [
 {
 "object" :
 {
 "properties" :
 {
 "cmis:objectTypeId" :
 {
 "id" : "cmis:objectTypeId",
 "localName" : "objectTypeId",
 "queryName" : "cmis:objectTypeId",
 "value" : "cmis:folder",
 "type" : "id",
 "displayName" : "Object Type Id",
 "cardinality" : "single"
 },
 "cmis:objectId" : { …

Next, we use the new DataTable widget that we downloaded by calling
$("#folderContentDataTable").dataTable. This connects the JavaScript widget
with the HTML table. Then, we initialize the DataTable widget to run in the AJAX
source mode; for this you need to set the URL for the CMIS service call that will
return JSON in the sAjaxSource parameter. The bJQueryUI Boolean property is
set to true, so we can use the Darkness theme from the JQuery UI stuff that we
included. The sAjaxDataProp and aoColumns properties tell the DataTable widget
how it will be able to get to the name, type, and node reference for the folder or
document retrieved via the CMIS AJAX call, compared to the getChildren JSON
response previously discussed.

Then, because we are calling a CMS server located in a different domain, we again
need to make a JSONP call. The standard AJAX call functionality in the DataTable
widget does not support this, so we override the server-calling functionality by
specifying the fnServerData property and setting it to use a normal JQuery AJAX
call that uses the JSONP mechanism.

Accessing a CMIS Server Using Scripting Languages

[196]

Running this example produces the output shown in the following screenshot:

So, by using a couple of JavaScript libraries and some available stylesheets, we can
produce a web page with a lot of functionality. It supports paging, sorting, searching,
and setting number of items per page. And we got that for free. This also handled all
the JSON processing and injecting that into the table.

Using CMIS in Groovy scripts
Using OpenCMIS to talk to a CMIS server via Java is quite easy compared to using
basic protocol bindings such as the AtomPub binding. But by using the OpenCMIS
API via the Groovy scripting language, we can also do the following:

• Get less code, making the application more readable
• Run the code without the need to compile it, making a round trip from code

change to test quicker
• Script content updates so we can easily run checks or updates, such as

cron jobs
• Use any Java library as Groovy runs on the JVM

Chapter 6

[197]

Install Groovy using the following command:

$ sudo apt-get install groovy

If you are not familiar with Groovy, I recommend that you spend 1 to 2 hours
reading a tutorial about it before coding anything in this section at http://groovy.
codehaus.org/Beginners+Tutorial.

So to get started, create a file named testCMIS.groovy and add the following code
to it to import the OpenCMIS classes that we need:

@Grab(group='org.apache.chemistry.opencmis', module='chemistry-
opencmis-client-impl', version='0.10.0')
import org.apache.chemistry.opencmis.commons.enums.BindingType
import org.apache.chemistry.opencmis.client.runtime.SessionFactoryImpl
import org.apache.chemistry.opencmis.client.api.Document
import org.apache.chemistry.opencmis.commons.exceptions.
CmisObjectNotFoundException

These classes live in some libraries that we need to resolve, and this is done with the
help of the Groovy dependency resolution using Grape with Grab annotations.
Now, add the following code to connect to the repository and set up a session:

// Setup session parameters to connect with
 def props = ['org.apache.chemistry.opencmis.user' : 'admin',
 'org.apache.chemistry.opencmis.password': "admin",
 'org.apache.chemistry.opencmis.binding.atompub.url' :
 "http://localhost:8080/alfresco/cmisatom",
 'org.apache.chemistry.opencmis.binding.spi.type' :
 BindingType.ATOMPUB.value(),
 'org.apache.chemistry.opencmis.binding.compression' : "true",
 'org.apache.chemistry.opencmis.cache.objects.ttl' : "0"]

// Get all repositories from the server and then use the first one
 def repositories =
 SessionFactoryImpl.newInstance().getRepositories(props)
 def alfrescoRepository = repositories.get(0)

// List info for all repos, if there would be more
// than one we would see it now
 repositories.eachWithIndex { repo, i ->
 println "Info about Alfresco repo # ${i}
 [ID=${repo.id}][name=${repo.name}][CMIS ver
 supported=${repo.cmisVersionSupported}]"
}

// Create a new session with the Alfresco repository
 def session = alfrescoRepository.createSession()

Accessing a CMIS Server Using Scripting Languages

[198]

Running this code from the command line produces the following output:

$ groovy testCMIS.groovy

Info about Alfresco repo # 0 [ID=615c7c4c-05ff-4f73-b261-5a19b7c5bc34]
[name=Main Repository][CMIS ver supported=1.0]

Listing the top folders in the repository is easy; add the following code to the
Groovy file:

def root = session.rootFolder
def contentItems = root.children
contentItems.each { contentItem ->
 if (contentItem instanceof Document) {
 def docContent = contentItem.contentStream
 println "${contentItem.name}
 [size=${docContent.length}][Mimetype=${docContent.mimeType}]
 [type=${contentItem.type.displayName}]"
 } else {
 println "${contentItem.name}
 [type=${contentItem.type.displayName}]"
 }
}

Running this code produces a log that looks as follows:

Data Dictionary [type=Folder]

Guest Home [type=Folder]

User Homes [type=Folder]

Imap Attachments [type=Folder]

Sites [type=Sites]

CMIS Demo [type=Folder]

CMIS Demo Browser Binding [type=Folder]

Simple (from Browser binding).txt [size=-1][Mimetype=text/plain]
[type=Document]

simple.txt [size=-1][Mimetype=text/plain][type=Document]

simple2.txt [size=-1][Mimetype=text/plain][type=Document]

SimpleBrowser.txt [size=-1][Mimetype=text/plain][type=Document]

SimpleBrowser2.txt [size=-1][Mimetype=text/plain][type=Document]

Some it doc.txt [size=-1][Mimetype=text/plain][type=MyCompany IT Doc]

OpenCMISTest_Updated [type=Folder]

OpenCMISTest2 [type=MyCompany Project]

OpenCMISTest2.pdf [size=-1][Mimetype=application/pdf][type=MyCompany IT
Doc]

OpenCMISTestTitled [type=Folder]

Chapter 6

[199]

To create a folder, add the following code to the Groovy file:

def folderName = "GroovyStuff"
def someFolder = null

try {
 someFolder = session.getObjectByPath("/" + folderName)
} catch (CmisObjectNotFoundException nfe) {
 // Nothing to do, object does not exist
}

if (someFolder == null) {
 props = ['cmis:objectTypeId': 'cmis:folder',
 'cmis:name': 'GroovyStuff']
 someFolder = root.createFolder(props)

 println "Created new folder: " + someFolder.name + "
 [creator=" + someFolder.createdBy + "][created=" +
 someFolder.creationDate.time + "]"
} else {
 println "Folder already exist: " + folderName
}

The preceding code assumes that we already have the other Groovy code before this
one, where the root folder has already been acquired and where the props variable
has been defined. Running this code produces the following output:

Created new folder: GroovyStuff [creator=admin][created=Fri Jan 11
13:14:18 GMT 2013]

When using Groovy, we can make use of a class named CMIS, which is available
in the Apache Chemistry project in the CMIS.groovy file. If you cannot find it,
try to Google it. Save this file in a directory named scripts, which should be
a subdirectory to the directory where you have the testCMIS.groovy file.

The CMIS class contains a lot of helper methods, such as an easy method for creating
a document. If you remember from the previous chapter, it requires creating a
content stream, setting up properties, specifying a mime type, and so on. To create
a document from a file on a disk with the CMIS helper class, use the following code:

// Load the CMIS Helper class
def cmis = new scripts.CMIS(session)

// Create doc
def groovyFolder = session.getObjectByPath '/GroovyStuff'
def file = new File('test.pdf')
def testDoc = cmis.createDocumentFromFile groovyFolder, file,
 "cmis:document", null

Accessing a CMIS Server Using Scripting Languages

[200]

Here, I am expecting the test.pdf file to be in the same directory as the Groovy
script. The createDocumentFromFile method in the CMIS class takes care of
creating the content stream, figuring out the mime type, and setting up the necessary
properties. The only property we pass in is the type of the document.

The CMIS class has loads of useful methods such as the following:

cmis.printProperties testDoc
cmis.download(testDoc, "/some/path/test.pdf")
cmis.delete testDoc.id

Have a look in the file for more useful methods.

By now we have seen that we get a lot less code using Groovy than when Java is
used, and it's quicker to go from a code change to a test. We have also seen that if
you get an example in Java on how to use OpenCMIS to perform a certain operation,
it is then easy to convert the example to a Groovy code. So, refer to the previous
chapter for information about how to do more with OpenCMIS in Groovy.

Using CMIS in Spring Surf Web Scripts
Many of Alfresco's user interfaces are built with a development framework called
Spring Surf. The Spring Surf framework was originally developed by Alfresco and
later on donated to the Spring Source foundation (http://www.springsource.
org/extensions/se-surf). It is based on the Spring MVC framework and provides
a way of breaking an HTML page into reusable component parts. This is also the
framework that underpins the Alfresco Share application (the main user interface for
Alfresco). One of the subprojects of Spring Surf is Spring Surf Web Scripts.

A Web Script is built up in the same way as a REST-based request and response
model; the predominant web service design model. It is accessed via HTTP at a
specific URL and when invoked, it responds with, for example, JSON. The Web
Script implementation that produces the JSON response can use CMIS to talk to
a CMS server to fetch data that should go into the JSON.

A Web Script is built up of a descriptor that specifies the URL it should be bound
to, a controller that implements the logic that builds a data model (usually coded in
JavaScript), and a template that produces the response, such as JSON, based on the
data model.

Chapter 6

[201]

Setting up a build project for Spring Surf
with CMIS
Before we start creating Web Scripts that uses CMIS to talk to Alfresco, we need to
have a look at how to set up a build project for Spring Surf. We also need to know
how Web Scripts come into the picture when using the Spring Surf web development
framework.

There is a great starting point available in the form of a Maven artifact for a Spring
Surf project. To create a project based on it, run the following command:

$ mvn archetype:generate -DarchetypeCatalog=https://artifacts.alfresco.
com/nexus/content/groups/public-snapshots/archetype-catalog.xml

This brings up a list of available Alfresco artifacts, and last time I checked, number
10 in the list is the one you want. The resulting project structure looks like what is
shown in the following screenshot:

All the configuration for web pages built with Spring Surf reside in the surf-config
directory under WEB-INF. This book is not about Spring Surf development, so we will
not go too much into this. However, a quick run through of how it all goes together
is necessary.

Accessing a CMIS Server Using Scripting Languages

[202]

A Spring Surf web page is defined in the pages directory under surf-config as an
XML file, and it uses a template instance that is defined in the templates directory
under surf-config as an XML file. The template instance in turn points to a
FreeMarker template located in the templates directory under WEB-INF.

A FreeMarker template defines regions that are implemented as components, and
they are defined in the components directory under surf-config. Each one of the
components is implemented with a Web Script defined in the webscripts directory
under WEB-INF. As said before, a Web Script is made up of a descriptor, controller,
and a template. CMIS can be used in the controller to talk to any CMIS repository.

Confused yet? Coding with Spring Surf means creating lots of files, but it also
means that the web application framework is very flexible and allows web page
components to be reused.

If we build and package the generated web application and put the resulting WAR
into the webapps directory under alfresco/tomcat (or in another Tomcat), then
the home page of the web app can be accessed with the http://localhost:8080/
surfcmistest-1.0-SNAPSHOT/page/home URL. The following screenshot shows
what the home page looks like:

Now, if we wanted to update the home page for it to use CMIS to connect to, for
example, an Alfresco server, and then show its repository ID, we need to bring in
some more libraries.

Chapter 6

[203]

Updating the Spring Surf project so that CMIS
can be used
We want to update the Spring Surf project so that we can make CMIS calls from the
Spring Web Script controllers implemented in either Java or JavaScript. To do this,
we have to add a few libraries to our Maven project as follows:

• First, we want to bring in OpenCMIS so that we can make use of a high-level
API in our Java-based controllers.

• If we are using Alfresco, it is also good to be able to handle aspects. So, we
will bring in the Alfresco OpenCMIS extension library.

• We also want to be able to use the OpenCMIS API from JavaScript controllers
via a new root object called cmis.

Add the following libraries to the dependency section of the POM as follows:

<dependencies>
...
 <dependency>
 <groupId>org.apache.chemistry.opencmis</groupId>
 <artifactId>chemistry-opencmis-client-impl</artifactId>
 <version>0.10.0</version>
 </dependency>
 <dependency>
 <groupId>org.alfresco.cmis.client</groupId>
 <artifactId>alfresco-opencmis-extension</artifactId>
 <version>0.4</version>
 <exclusions>
 <exclusion>
 <groupId>org.apache.chemistry.opencmis</groupId>
 <artifactId>chemistry-opencmis-client-impl</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.springframework.extensions.surf</groupId>
 <artifactId>spring-cmis-framework</artifactId>
 version>1.2.0-SNAPSHOT</version>
 <exclusions>
 <exclusion>
 <groupId>org.apache.chemistry.opencmis</groupId>
 <artifactId>chemistry-opencmis-client-impl</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
</dependencies>

Accessing a CMIS Server Using Scripting Languages

[204]

First, we bring in the OpenCMIS Java library. When you are reading this, there
might be a newer version than 0.10.0. After this, we bring in the Alfresco OpenCMIS
extensions library to manage aspects. When we do this, we also exclude the
dependency on OpenCMIS, so we do not end up with multiple versions of the
OpenCMIS libraries in WEB-INF/lib. This can happen if, for example, the POM file
for the Alfresco OpenCMIS extension library contains a dependency to a different
version of the OpenCMIS library than 0.10.0.

The last library we bring in is the Spring Surf CMIS extension library that provides
a cmis root object to use in JavaScript controllers, and also authentication and
configuration functionality. We exclude the OpenCMIS library here too, so we don't
end up with multiple versions of it in the WAR.

All the libraries that we need are now included in the project. But we also need
to load some beans from the Spring Surf CMIS extension project to register, for
example, the cmis JavaScript root object. Add the following import tag to the
beginning of the surf-config.xml Spring context file as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans
 ...
<import
 resource="classpath*:org/springframework/extensions/
 cmis/*-context.xml" />
<import
 resource="classpath*:org/springframework/extensions/
 webscripts/*-context.xml" />
<import
 resource="classpath*:org/springframework/extensions/surf/*-
 context.xml" />
<bean id="handlerMappings" parent="webframeworkHandlerMappings">
 <property name="order" value="0" />
 <property name="defaultHandler">
 <bean
 class="org.springframework.web.servlet.mvc.
 UrlFilenameViewController" />
 </property>
</bean>
</beans>

The last thing we need to do before we can start using CMIS is configure the
connection parameters. This is done in the surf.xml file under surfcmistest/src/
main/webapp/WEB-INF; add the following section at the end with the OpenCMIS
configuration parameters:

Chapter 6

[205]

<alfresco-config>
 ...
 <!-- Open CMIS client configuration -->
 <plug-ins>
 <element-readers>
 <element-reader element-name="cmis-servers"
 class="org.springframework.extensions.cmis.
 CMISServersConfigElementReader"/>
 </element-readers>
 </plug-ins>

 <config evaluator="string-compare" condition="CMIS">
 <cmis-servers>
 <!-- Configure a locally running Alfresco Server -->
 <server>
 <parameter key="name" value="default"/>
 <parameter key="description"
 value="Local Alfresco Server"/>
 <parameter key="org.apache.chemistry.opencmis.user"
 value="admin"/>
 <parameter key="org.apache.chemistry.opencmis.password"
 value="admin"/>
 <parameter
 key="org.apache.chemistry.opencmis.binding.spi.type"
 value="atompub"/>
 <parameter
 key="org.apache.chemistry.opencmis.binding.atompub.
 url" value="http://localhost:8080/alfresco/cmisatom"/>
 <parameter
 key="org.apache.chemistry.opencmis.binding.
 compression" value="true"/>
 <parameter
 key="org.apache.chemistry.opencmis.cache.objects.ttl"
 value="0"/> <!-- no content caching is done -->
 <!-- Override Object Factory class when running with
 Alfresco CMIS extensions for Aspect support -->
 <parameter
 key="org.apache.chemistry.opencmis.objectfactory.
 classname" value="org.alfresco.cmis.client.impl.
 AlfrescoObjectFactoryImpl"/>
 </server>
 </cmis-servers>
 </config>
</alfresco-config>

Accessing a CMIS Server Using Scripting Languages

[206]

We first define a plugin that can read the <cmis-servers> element with the entire
OpenCMIS configuration, and then we define the connection and configuration
parameters to talk to a local Alfresco server. We are now ready to use CMIS in our
Surf Web Script controllers.

Updating the home page to display repository
info via CMIS
To update a Spring Surf page, we have to first figure out what regions it has and
which one our new content should go into. As mentioned previously, the regions are
defined in the page's FreeMarker template. The template for the home page in our
example application is located in the package directory under surfcmistest/src/
main/webapp/WEB-INF/templates/org/example and is called home.ftl.
After opening this file, we will discover that it has three regions defined as follows:

<html>
 <head>
 <title>Example Surf Page</title>
 ...
 </head>
 <body>
 <div id="main">
 <@region id="header" scope="page"/>
 <@region id="body" scope="page"/>
 </div>
 <@region id="footer" scope="page"/>
 </body>
</html>

We will add our new repository information to the body region. This means that
we have to add it to the controller for the body Web Script defined by the body.
get.desc.xml descriptor under surfcmistest/src/main/webapp/WEB-INF/
webscripts/home. In the home directory, we can see that there is no controller
defined for this Web Script; it would have been in a file named body.get.js.
There's just a template to display static content for the home page. So, we got to
add a file called body.get.js to the home directory under surfcmistest/src/
main/webapp/WEB-INF/webscripts. It will contain the following code:

var SERVER_NAME = "default";
var CONNECTION_ID = "my-webapp-" + SERVER_NAME;
var connection = cmis.getConnection(CONNECTION_ID);
if (connection == null) {
 var serverDefinition = cmis.getServerDefinition(SERVER_NAME);

Chapter 6

[207]

 if (serverDefinition == null) {
 status.code = 400;
 status.message = "Could not find server definition for server
 name " + SERVER_NAME + " - see surf.xml!";
 status.redirect = true;
 }
 try {
 connection = cmis.createUserConnection(serverDefinition,
 CONNECTION_ID);
 logger.warn("Connected with connection id: " + CONNECTION_ID);
 } catch (e) {
 logger.warn((e.javaException == null ?
 e.rhinoException.message : e.javaException.message));
 }
} else {
 logger.warn("Already connected with connection id: " +
 CONNECTION_ID);
}

This code basically sets up an OpenCMIS connection to the CMIS repository that we
configured in the <cmis-servers> section of the surf.xml file. This configuration
section has the CMIS server name set to default; so we set up a variable named
SERVER_NAME with this value. We then put together a connection identifier by using
the server name and the client application name and keep this in the CONNECTION_
ID variable. We then pass in the connection ID to the Spring Surf CMIS extension
method getConnection, which will return a connection object if we already have
a connection established for the connection ID passed in.

If there is no connection available, we use the connection ID to get the
server configuration via the Spring Surf CMIS extension method named
getServerDefinition. The server definition, together with the connection ID, is
then used to create a connection via another Spring Surf CMIS extension method
named createUserConnection.

We are now ready to use this connection and work with the OpenCMIS API as we
normally do. To get the repository information, we use the following code:

var repoInfo = connection.session.getRepositoryInfo();

model.productName = repoInfo.getProductName();
model.productVersion = repoInfo.getProductVersion();

Here, we are setting up two new properties in the model that are passed between the
controller and the template. The first property will contain the CMS server product
name, and the second property will contain the version of the product. We also need
to update the template file body.get.html.ftl under surfcmistest/src/main/
webapp/WEB-INF/webscripts/home as follows, so it shows the product information:

Accessing a CMIS Server Using Scripting Languages

[208]

<@link href="${url.context}/res/css/body.css" group="default"/>
<div class="body">
 <p>
 Connected to CMIS Repository: ${productName}
 ${productVersion}
 </p>
</div>

This is all that is necessary to display that extra repository information in the home
web page.

Updating the home page to display text from
a file in the repository
Now we can just keep building on this with other OpenCMIS calls. Let's say, for
example, that we wanted to display the text from a file stored in the repository on
the home page right under the repository information. Let's say that the file is called
Page.txt and stored directly under /Company Home in Alfresco. We can do this by
adding the following code to the JavaScript controller (that is, body.get.js):

var pageTextObject =
 connection.session.getObjectByPath("/Page.txt");
var contentStreamInfo = pageTextObject.getContentStream();
model.pageText =
 cmisUtil.inputStream2Text(contentStreamInfo.getStream());

The first thing we do here is get a Document object for the Page.txt file under /
Company Home. Then, we get the content stream object with information such as
mime-type, content length, and access to the input stream for the file. The last line
uses a custom root object named cmisUtil, which we will define in a minute, to get
the text contained in the file via a custom method that converts an input stream to
text. The custom root object is defined in a Java class called CmisUtils as follows:

package com.mycompany.util.jscript;
import org.apache.commons.io.IOUtils;
import org.springframework.extensions.webscripts.processor.
 BaseProcessorExtension;
import java.io.InputStream;
import java.io.StringWriter;

public class CmisUtils extends BaseProcessorExtension {
 public String inputStream2Text(InputStream inputStream) throws
 java.io.IOException{
 StringWriter writer = new StringWriter();
 IOUtils.copy(inputStream, writer, "UTF-8");

Chapter 6

[209]

 return writer.toString();
 }
}

We make use of the Apache commons IO Utils to make a safe copy of the input
stream to a string writer (that is, the input stream will be closed). Then, we just
return what was written to the string writer. This class needs to extend the Spring
Web Scripts base process extension class to hook into the root object framework.
Finally, we need to define a Spring bean for it and configure what root object name
we want to use in the JavaScript when referring to this utility; add the following bean
to surf-config.xml:

<bean id="cmisUtil" parent="baseScriptExtension"
 class="com.mycompany.util.jscript.CmisUtils">
 <property name="extensionName" value="cmisUtil" />
</bean>

The body.get.js controller also sets up a new property called pageText in the
model, so we need to display it in the home web page by adding the following code
to the body.get.html.ftl template:

<@link href="${url.context}/res/css/body.css" group="default"/>
<div class="body">
 <p>
 Connected to CMIS Repository: ${productName}
 ${productVersion}
 </p>
 <p>
 ${pageText}
 </p>
</div>

Hopefully, this has given you some ideas on how you can use CMIS to talk to a CMS
server from a web application developed with the Spring Surf UI Development
framework.

Using CMIS calls in Alfresco Share extensions
The stuff that we just went through to set up the possibility of using OpenCMIS and
the cmis root object in Spring Surf Web Scripts is not necessary if you are working
with Spring Surf Web Scripts in the Alfresco Share web application. It has already
been set up, so you have full access to the OpenCMIS Java API from Java-backed
controllers, and access to the cmis root object from controllers written in JavaScript.

Accessing a CMIS Server Using Scripting Languages

[210]

Summary
In this chapter, we have looked at how to access a CMS server directly from a JavaScript
code in the browser. We also saw how the JSONP mechanism can be used to get around
the same origin policy. The JQuery JavaScript library was used to make it more efficient
to develop AJAX calls to the CMS server. We also saw how we can load JavaScript
widgets such as a data table with JSON coming directly from a CMIS service call.

The Groovy scripting language was explored to demonstrate that you can use
the OpenCMIS API directly from your scripting code. This makes your normal
OpenCMIS Java code shorter and easier to grasp. It is also quick to make a change
and test it immediately without the need to compile and build.

Then we had a look at how we can incorporate the OpenCMIS library to talk to
CMS servers when building web applications with the Spring Surf development
framework.

In the final chapter, we will look at different types of integrations that use CMIS,
such as Drupal's integration with Alfresco through CMIS.

System Integration with CMIS
In this chapter, we will take a look at how to integrate different systems or applications
with CMIS. First we will see how the Drupal Web Content Management (WCM)
system can be integrated with a CMS server to fetch information about documents
in the repository to keep the content in one place. Then we will look at Enterprise
Application Integration (EIA) with Mule ESB and how it can talk to CMS servers.
In the last part of this chapter, we will see how CMIS can be used to talk to Alfresco's
Cloud offering.

In this chapter we learn how to:

• Display a file link in Drupal that references a document in a CMIS repository
• Display a table of files in Drupal that references documents in a folder in

a CMIS repository
• Use an Enterprise Service Bus (ESB) to poll for files in a folder and store

them in a CMS server
• Use an ESB to transfer documents between Alfresco and a filesystem folder
• Talk to the Alfresco Cloud service

Integrating Drupal with a CMS server
In this section, we will look at how you can integrate Drupal 7 with a CMIS server
via a couple of Drupal modules. I have already installed a LAMP stack (http://
en.wikipedia.org/wiki/LAMP_%28software_bundle%29) plus Drupal 7 on an
Ubuntu 12.04 box.

Note that it is possible to integrate any PHP application with a CMIS repository by
using the Apache Chemistry subproject PHP Client (http://chemistry.apache.
org/php/phpclient.html). We can, for example, write our own Drupal module
using this library. However, we are not going to do that now; we will look at some
available modules instead.

System Integration with CMIS

[212]

The CMIS-related modules require Drupal to be configured to use clean URLs
(http://drupal.org/getting-started/clean-urls), and for the Apache mod_
rewrite module to be installed. The Drupal application should also be accessible
directly as the root web application under /, for example, as http://localhost/.
Drupal is probably installed in a directory such as drupal under /var/www. So
within Apache, we would want to have a virtual host configuration for our site in,
for example, /etc/apache2/sites-enabled/000-default as follows:

<VirtualHost 127.0.1.1:80>
 …
 DocumentRoot /var/www/drupal

The CMIS modules will assume that Drupal is the root web application and use
URLs such as http://localhost/cmis/browser.

The CMIS API module
The CMIS API module (http://drupal.org/project/cmis) provides a generic API
to integrate with CMIS-compliant repositories. The CMIS API module is made up of
a number of submodules as follows:

• cmis.module: This is the CMIS client API
• cmis_common.module: This is the CMIS common-client library

implementation
• cmis_browser.module: This is the CMIS repository tree browser
• cmis_field.module: This defines a new Drupal field type called CMIS

Field, which can be used to attach one or more repository files to a Drupal
content entity

• cmis_query.module: This provides the ability to run CMIS 1.0 queries
against the current CMIS repository

• cmis_sync.module: This allows synchronization between Drupal nodes and
CMIS objects

• cmis_headerswing.module: This is the demo module that demonstrates
using hook_cmis_invoke() to access the CMIS repository via header-based
authentication such as Basic Auth or NTLM

• cmis_dev.module: This provides CMIS repository information such as repo
name, repo description, vendor name, product name, and product version

Chapter 7

[213]

Installing the CMIS API module is easy; after downloading and extracting the
package (cmis-7.x-1.x-dev.tar.gz from https://drupal.org/node/1118770),
copy the /cmis folder into the Drupal modules directory under /var/www/drupal/
sites/all/ as follows:

/var/www/drupal/sites/all/modules$ sudo cp -r ~/Downloads/cmis .

/var/www/drupal/sites/all/modules$ sudo chown -R www-data:www-data cmis

Note that it is important to change the file permissions for the new module so that
the Apache HTTP server can read the files; this is what we do with the recursive
chown command. Now we need to enable the CMIS modules. So click on Modules
in the top Drupal toolbar and scroll down to the CMIS section. Then, enable all the
CMIS modules as a Drupal site administrator and click on Save configuration.

Before we do anything, we need to configure at least one CMIS repository. Open up
the settings.php file located in the default directory under /var/www/drupal/
sites/. Add the following CMIS repository configuration to the end of the file:

$conf['cmis_repositories'] = array(
 'default' => array(
 'user' => 'admin',
 'password' => 'admin',
 'url' => 'http://localhost:8080/alfresco/cmisatom'
)
);

The user and password parameters is for an account that exists in Alfresco.
The url parameter, in this case, is the CMIS URL for the AtomPub binding when
using Alfresco Version 4.

If you are using Alfresco Version 4.2.d Community, 4.2.0 Enterprise,
or newer, the correct CMIS Atom binding URL is http://
localhost:8080/alfresco/api/-default-/cmis/
versions/1.1/atom.

System Integration with CMIS

[214]

We can now log in to our Drupal site via, for example, http://brutor.com, and we
should see some new links on the home page, as shown in the following screenshot
(my hostname is set to brutor in this case):

We can click on the CMIS Information link, and it will display information about
the repository we are connected to, as shown in the following screenshot:

If you cannot see this page, maybe the URL in the configuration is not correct or you
have specified an incorrect username or password.

To find out whether there are any errors, click on the Reports main menu
item in Drupal, then click on the Recent log messages menu item. On this
page, you will see a list of logs. All error logs are displayed in red. You
should also have a look at the Apache logs in /var/log/apache2.

Chapter 7

[215]

The next link, CMIS Query, provides a page where we can try out CMIS queries, as
in the following example:

The last link, CMIS Repository, just gives you a folder view into the repository from
the top-level folder, as shown in the following screenshot:

From this folder view, we can actually manipulate the folder hierarchy by clicking on
Actions at the top, and then clicking on, for example, the delete link in each folder row.

System Integration with CMIS

[216]

Displaying a CMS repository file link on a Drupal
page
In the following example, we will extend the out-of-the-box Drupal Article content
type with an extra field that will contain a link to a file held within our CMS server
repository. The new field will be called More Info, and if we write an article with
some Alfresco information and a link to more information about Alfresco, it will look
something like what is shown in the following screenshot:

Clicking on the More Info link downloads the Administrator Guide PDF.

As example files in the repository, we have some Alfresco-related documents and
white papers located in an Alfresco Share site called Alfresco Information (/Company
Home/Sites/alfresco-information). We want to display one of these documents
in an article about Alfresco Information as previously discussed.

To do this, we first need to add a field to the Drupal Article type, which will
represent the reference to the document on the Alfresco Share site (or any document
in Alfresco or other CMS systems that the user has permission to view).

Go to Structure | Content Types and then click on manage fields for the Article type.

Create a new field called More Info, as shown in the following screenshot:

After clicking on the Save button, accept the default settings for help text, field size,
required, number of values, and so on, for the new field.

Chapter 7

[217]

Now, add a new Article by going to Add content | Article. Call it, for example,
Alfresco Information and fill in some text for the body. Then set up a link to a
document in Alfresco by clicking on the Browse button after the field representing
More Info. This brings up a CMIS browser where we can navigate to the desired
document. Then, click on the Choose link at the end of the document row, as shown
in the following screenshot:

If we want the CMIS browser to start browsing further down in the folder hierarchy,
we can set that up by going to Structure | Content Types | Article | manage fields
| More Info | edit. Then, select a new root directory (that is, a new folder to start
browsing from).

The CMIS Views module
The CMIS Views project (http://drupal.org/project/cmis_views) aims to build
on the Drupal CMIS API by allowing Drupal developers to save a list of folder
contents from a CMIS repository as a block or field, and then display this at runtime.
This functionality is dynamic; so if the folder content in the CMIS repository changes,
the Drupal display reflects this. A new Drupal field type called CMIS Folder is
available for this.

In addition to creating blocks and fields based on the CMIS Folder type, it is also
possible to write your own specific CMIS queries to pull content items back by their
tags, title, or any other metadata that is exposed via CMIS.

Download the CMIS Views package (cmis_views-7.x-1.x-dev.tar.gz) and unzip
it into the modules directory under /var/www/drupal/sites/all/. This module
is dependent on the ctools module (http://drupal.org/project/ctools), so
download and install this package too (ctools-7.x-1.x-dev.tar.gz).

We need to enable the new modules, so click on Modules in the toolbar at the top
in Drupal and scroll down first to the Chaos Tool Suite and enable all modules, and
then scroll to the CMIS Views section and enable the CMIS Views module. Then,
click on Save configuration.

System Integration with CMIS

[218]

Displaying a CMS repository folder on a Drupal
page
In the following example, we will extend the out-of-the-box Drupal Article
content type with a field that can contain a reference to a folder in Alfresco with
presentations. If we update our Alfresco information article with a presentations
field of the type CMIS Folder and have it displayed in a table widget, it will look
something like what is shown in the following screenshot:

In this example, we have some Alfresco-related presentations located in the Alfresco
Share site called Alfresco Information, which we used previously for the More Info
field. To display these in a table at the end of the article on Alfresco Information, we
first need to add another field to the Drupal Article type to hold the reference to the
folder in the Alfresco Share site (or any folder in Alfresco or other CMS systems that
the user has the permission to view).

Go to Structure | Content Types and then click on manage fields for the Article type.

Create a new field called Presentations, as shown in the following screenshot:

Chapter 7

[219]

After clicking on the Save button, accept the default settings for the new field.
Now update the Alfresco Information article we created earlier by clicking on
Find content. Set up a link to a folder in Alfresco by clicking on the Browse CMIS
Repository button after the field representing Presentations. This brings up a CMIS
browser where we can navigate to the desired folder; click on the Select This Folder
button, as shown in the following screenshot:

Finally, click on Save for the updated article and we should now have the table of
presentations listed at the end of the Alfresco Information article. To get the table
widget instead of a list, we have to change the display of the field. Go to Structure |
Content Types. Click on manage display for the Article type and choose the Table
with file name, title, description, type, size and date option from the Format list for
the Presentations field, as shown in the following screenshot:

System Integration with CMIS

[220]

In the preceding screenshot, we can see that we switched to using a table instead of
a bullet list.

This switching only works with Alfresco by default. This is due to
Alfresco using additional title and description metadata that is not part
of the standard CMIS specification. And the standard file-path query
performs a join to retrieve this extra data.

Displaying a result from a CMIS query on a Drupal
page
So far we have displayed links to a single file or files from a folder on a Drupal
page by adding a field to the Article type. We can also define a CMIS View block
and have it represent the result of a CMIS query. This block can then be displayed
in a region somewhere on the web page. Let's say we want to display all the files in
the repository that have alfresco in their name in the footer of all pages, as in the
following screenshot:

We can get the files with the following CMIS query:

SELECT * FROM cmis:document WHERE cmis:name LIKE '%alfresco%'

Chapter 7

[221]

To do this, we start by defining a new CMIS View block by navigating to Structure |
Blocks | Add a CMIS View. Then, we give the view a name, click on the CMIS radio
button to make that a CMIS query, and specify the query, as shown in the
following screenshot:

In this example, we also change the display of the view to a table so that it looks better.

The only thing we still need to do is to select which region should contain the view.
Go to Structure | Blocks and then scroll down to the disable section where you will
find the new CMIS View block. In the Region combobox, select Footer.

Synchronizing the CMS content with Drupal
content
The CMIS Sync feature pulls content from Alfresco and creates a copy in Drupal.
The module is intended for use with HTML or TEXT content, as that is what Drupal
understands in nodes. If you need to sync images, or for example, PDFs, use the
CMIS Field or CMIS Folder field type instead, as described in previous sections.
These field types store the file reference or folder reference in Drupal and the actual
content is not downloaded from Alfresco until the user requests it; the content is
never cached in Drupal.

System Integration with CMIS

[222]

When working with the CMIS Sync Module Version 7.x-1.x-dev,
I had to manually update the code to get the content sync to work.
The patch that was supposed to fix this, syncfixes-1291988.
patch, has been applied to my build, but it is still not working;
only metadata is synced. I had to update the code in cmis_sync.
cmis.inc located in the cmis_sync directory under sites/all/
modules/cmis/ and around line 240, which is as follows:

try {

 // Strip of version number
 $cmis_object->id = substr($cmis_object->id, 0, -4);

 _cmis_sync_drupal_node_field_value($node,
 $sync_map_type['content_field'],
 cmisapi_getContentStream($repository->repositoryId,
 $cmis_object->id),
 $cmis_content_context);

The fix is to strip off the version information (that is, 1.0) from the end
of the node reference.

So if we want to synchronize HTML files from Alfresco and then display them in
Drupal as nodes, here is what we need to do. First find out where the HTML files
that we want to sync are located in Alfresco. For this example, we have created a
new folder in Alfresco called /WebPageContent directly under the root folder. I have
added an HTML file to this folder, as shown in the following screenshot:

The file contains some styled text. We want any file in this folder synchronized
over to Drupal as the Basic Page Drupal type (that is, page). To make this happen,
we have to set up a sync configuration in /var/www/drupal/sites/default/
settings.php as follows:

$conf['cmis_sync_map'] = array(
 'page' => array(
 'enabled' => TRUE,

Chapter 7

[223]

 'cmis_repositoryId' => 'default',
 'cmis_type' => 'cmis:document',
 'cmis_folderPath' => '/WebPageContent',
 'content_field' => 'body',
 'fields' => array(
 'title' => 'cmis:name'),
 'full_sync_next_cron' => TRUE, // Grab only new items if
 FALSE, otherwise sync all items under cmis_folderPath ,
 deletes' => TRUE
)
);

This will enable a synchronization process that will synchronize (that is, copy)
Alfresco nodes of type cmis:document under the /WebPageContent folder into
Drupal page nodes. The title of each Drupal page node will be set to cmis:name, and
body of the page node will be set to the CMIS object's content stream.

A lot of the properties that have been specified are not strictly necessary as they
have the same values by default (that is, cmis_repositoryId, cmis_type, content_
field, fields, and full_sync_next_cron). But it's good to know what properties
are available; you can check the module documentation for more information about
the sync feature.

The actual sync process does not just happen by itself; something needs to kick it off.
It is hooked up to Drupal's cron process. So if we go to Configuration | Cron and
then click on Run cron, this will start the CMIS sync process. The result will look like
what is shown in the following screenshot in Drupal:

The synchronization also works in the opposite direction; create a basic page node
in Drupal and it will show up in Alfresco. However, I could only get this to work if I
did not use any HTML markup or new lines.

System Integration with CMIS

[224]

Enterprise integration with CMIS
If you are working on a larger enterprise integration project, some form of
integration framework is probably used, such as an ESB. Sooner or later, you would
want to use the ESB to fetch content from one system and maybe do some processing
on it, and then inject it into a CMS server. There are several integration frameworks
that you could use for this, some of which are as follows:

• Apache Camel: This is an open source Java framework that focuses on
making integration easier (http://camel.apache.org/). It has a CMIS
connector to talk to CMS servers.

• Mule ESB: This is an ESB and integration framework (http://www.
mulesoft.org/). It has a CMIS connector to talk to CMS servers.

• Spring Integration: This is an open source Java framework for enterprise
application integration (http://www.springsource.org/spring-
integration).

In this section, we will use Mule ESB to demonstrate how to integrate CMS servers in
a larger enterprise application scenario.

An ESB such as Mule can help out when CMS servers need to participate in an
enterprise application integration scenario; Mule has a CMIS Cloud Connector
(http://www.mulesoft.org/extensions/cmis-cloud-connector) that can be
used for this. With the CMIS Connector module, we can do the following:

• Create documents and folders
• Retrieve documents and contents of a folder
• Manage document properties
• Query the repository
• Query the change log

For the examples in this section, we will use Mule Studio with which we can both
graphically draw our message flow and run in an embedded Mule runtime. The
Mule community edition includes Mule Studio and can be downloaded from
http://www.mulesoft.org/download-mule-esb-community-edition.

Moving a file from a folder into a CMS server
using Mule
A common use case is to have files dropped into a folder, then have the ESB pick
them up for some processing, and finally store them in a CMS server. To implement
this example, we will use Mule Studio and assume that we are importing PDF files.

Chapter 7

[225]

Start up Mule Studio and create a new Mule project by navigating to File | New |
Mule Project. Call the project File Importer and select to create a Maven pom.xml
file. Now, in the Message Flow view/tab, draw the following message flow:

We now have to configure the components in the message flow. Start with the File
inbound endpoint. We will pick up PDF files from a folder in our project workspace
and poll this folder every 3 seconds for new files. When a new file is found, the ESB
will grab it and feed it into the message pipeline after which the file will be deleted.
To configure this, right-click on the inbound File component and select Properties
from the pop-up menu; the resulting window is shown in the following screenshot:

In the Advanced tab in the Properties dialog, we also select to scan only for the
application/pdf MIME type.

System Integration with CMIS

[226]

The next component to configure is the object-to-byte-array transformer that loads
the file in-memory (see the following information box for an alternative). The only
configuration needed for it is to set the MIME type to application/pdf.

When implementing a more complex and bigger message pipeline,
it might not make sense to pass around the complete content of a
document as a message payload in memory. Out-of-memory errors
will probably happen sooner or later because of resource exhaustion.
Consider implementing the Claim Check EAI pattern instead
(http://eaipatterns.com/StoreInLibrary.html) where you
check-in the document content in a durable storage and get a claim
check back, which you pass around between components. The claim
check could be, for example, the CMIS object ID for the document
(that is, Alfresco node reference). Each component could then decide
whether it is interested in any of the content or metadata for the
document and retrieve it via the Claim Check EAI pattern. This will
make the system more performant, scalable, and easier
to troubleshoot.

The last component will make the CMIS call and should be configured as follows.
In the Properties dialog, start by configuring the CMIS configuration; it will keep
information about how to connect to Alfresco. Click on the plus (+) sign after the
Config Reference field:

Here we are configuring the username and password for the Alfresco account that
we want to connect with; in this case, we connect as admin. We then specify the Base
Url as the AtomPub CMIS binding URL for Alfresco (this would be different for
another CMS server). If we do an HTTP GET on this URL in a browser, we can also
find out the Repository Id in the Service Document page that is returned. That's it for
the connection configuration; click on OK to get back to the main Properties dialog.

Chapter 7

[227]

Now we also need to configure what CMIS service call/operation we want to make.
From the Operation drop-down list, select Create document by path; this displays
the relevant configuration properties for this operation, as shown in the
following screenshot:

The first property we set up is the Filename for the new document that will be
created in Alfresco. This is picked up from the Inbound File Transport component
with the #[header:originalFilename] expression. I have created a folder in
Alfresco named /Company Home/MuleFiles so that the Folder Path property is set
to /MuleFiles. We are storing PDF files; so Mime Type is set accordingly. Then
we have to decide what CMIS Object Type the new file should have in the CMIS
repository; in this case, we are just using the base document type cmis:document.
Finally, Versioning State is set to MAJOR as the document type cmis:document is
versionable.

If we now switch to the Configuration XML tab in Mule Studio, we should see the
XML configuration for this message flow looking something like the following code:

<?xml version="1.0" encoding="UTF-8"?>
<mule ...>
 <cmis:config name="CMIS" username="admin" password="admin"
 repositoryId="f0ebcfb4-ca9f-4991-bda8-9465f4f11527"
 baseUrl="http://localhost:8080/alfresco/cmisatom"
 doc:name="CMIS"/>
 <flow name="File_ImporterFlow1" doc:name="File_ImporterFlow1">
 <file:inbound-endpoint responseTimeout="10000"
 doc:name="Incoming File"
 path="/home/mbergljung/MuleStudio/workspace/file_importer/
 inboundFiles" pollingFrequency="3000"
 mimeType="application/pdf"/>
 <object-to-byte-array-transformer doc:name="Object to Byte

System Integration with CMIS

[228]

 Array" mimeType="application/pdf"/>
 <cmis:create-document-by-path config-ref="CMIS"
 doc:name="Store File as Doc in Alfresco"
 filename="#[header:originalFilename]"
 folderPath="/MuleFiles" mimeType="application/pdf"
 objectType="cmis:document" versioningState="MAJOR"/>
 </flow>
</mule>

To try this out, we can kick off this message flow in the Mule Studio's embedded ESB
runtime. In the Package Explorer pane, right-click on the File Importer.mflow
file, then go to Run As | 1. Mule Application. Now all we have to do is to drag-
and-drop a PDF file into the inboundFiles directory under /home/mbergljung/
MuleStudio/workspace/file_importer/, and it should be picked up by Mule and
stored in Alfresco in the /Company Home/MuleFiles folder. After an import, the file
is removed from the inboundFiles directory.

If you wanted to save a copy of the file after it has been processed on the
Mule server, a directory for processed files can be specified in the Inbound
File's endpoint Move to Directory property. In a production environment,
we would also want to handle any errors happening when processing
the incoming files. There is plenty of Mule documentation about this at
http://blogs.mulesoft.org/error-handling-in-mule-3-3-
catch-exception-strategy/ and http://www.mulesoft.org/
documentation/display/current/Error+Handling.

Getting a document from a CMS server via Mule
What if we wanted to get a document from a CMS server and store it in a folder in
the local filesystem? This can also be handled with the Mule ESB in the same way
that we stored files in the CMS server. The use case is this: a one-way HTTP request
comes into to Mule requesting a document from the CMS server to be stored in the
filesystem in a specific folder. The document is identified via its Object ID (that is, the
ID part of the Alfresco node reference).

Create a new project called Get Document and draw up the following message flow
in Mule Studio:

Chapter 7

[229]

This flow starts with an inbound HTTP endpoint that will take care of our HTTP
request. The CMIS Object ID for the document is then passed on to the CMIS
component that will get the content stream for the document via CMIS. The content
stream is then extracted via some Groovy code and written to a file via the File
outbound endpoint.

Start configuring the HTTP inbound endpoint as shown in the following screenshot:

We are setting two properties for the HTTP endpoint. The first one is Exchange
Patterns, which we set to one-way. We set it to one-way as we cannot read the
content stream more than once (that is, we cannot send the content stream to both
the browser and to a file). The second property we are setting is the URL Path, which
we set to getdoc.

The next component to configure is the CMIS connector; start by configuring the
CMIS connection properties in the same way we did when storing a file in Alfresco
via Mule (see the previous section). Then, set the CMIS Operation to Get content
stream, as shown in the following screenshot:

System Integration with CMIS

[230]

There are two ways of specifying what document we want to download the
content stream for; the first one is to use an already fetched Document object
(that is, metadata for a document file) and then pass that in as the Cmis Object
Reference property. The other way is to specify a CMIS Object Id (Alfresco node
reference). We will use the Object Id method as we have not previously fetched a
Document object. We specify it as workspace://SpacesStore/#[groovy:message.
getProperty('id',org.mule.api.transport.PropertyScope.INBOUND)], which
means that we will, with the help of some Groovy code, construct the CMIS Object
ID. So, when we make the call from the browser, we would have to specify a URL
parameter as follows: ?id=<UUID of the Alfresco Node Ref>.

The next component to configure is the Groovy script component, as shown in the
following screenshot:

What we do here is just print the name of the file and then set up the name to be
accessible via the filename property. Finally, we return the content stream for the
file so that it can be written to the local filesystem in the File outbound endpoint.
The final component to configure is the one that stores the file in the local
filesystem, as shown in the following screenshot:

Chapter 7

[231]

We store the file under an Output directory in the project workspace, specified by the
Path property. The filename will be fetched from the filename property we set in
the Groovy script component.

The XML for this message flow configuration will look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<mule ...>
 <cmis:config name="CMIS" username="admin" password="admin"
 repositoryId="f0ebcfb4-ca9f-4991-bda8-9465f4f11527"
 baseUrl="http://localhost:8080/alfresco/cmisatom"
 doc:name="CMIS"/>
 <flow name="Get_DocumentFlow1" doc:name="Get_DocumentFlow1">
 <http:inbound-endpoint exchange-pattern="one-way"
 host="localhost" port="8081" path="getdoc" doc:name="HTTP"/>
 <cmis:get-content-stream config-ref="CMIS" doc:name="CMIS"
 objectId="workspace://SpacesStore/#[groovy:message.
 getProperty('id',org.mule.api.transport.PropertyScope.
 INBOUND)]"/>
 <scripting:transformer doc:name="Groovy">
 <scripting:script engine="Groovy">
 <scripting:text><![CDATA[println message.payload.filename
 message.setProperty("filename",
 message.payload.filename);
 return message.payload.stream;]]></scripting:text>
 </scripting:script>
 </scripting:transformer>
 <file:outbound-endpoint responseTimeout="10000"
 doc:name="Outgoing File"
 outputPattern="#[groovy:message.getProperty
 ('filename',org.mule.api.transport.PropertyScope.OUTBOUND)]"
 path="/home/mbergljung/MuleStudio/workspace/get_document/
 Output"/>
 </flow>
</mule>

We can try this now by first starting the Mule ESB via the Package Explorer pane;
right-click on the Get Document.mflow file, and then go to Run As | 1. Mule
Application. Now, all we have to do is request the following URL from a web
browser: http://localhost:8081/getdoc?id=794f7b2e-e6ee-4265-9ad7-
e0193486c006; where id in this case corresponds to the ID part of the Alfresco node
reference for the file we previously stored in Alfresco via Mule.

If we want to return the content output stream to the browser instead of
writing it to a file, we can remove the File outbound endpoint and change
Exchange Patterns for the HTTP endpoint to request-response.

System Integration with CMIS

[232]

Talking to Alfresco in the Cloud via CMIS
The Alfresco CMS server that we have been using throughout this book is also
available as a Cloud service. It's free and it's easy to set up an account and get our
own CMS service in the cloud. Besides using the normal Alfresco Share UI to manage
content in the cloud, we can also use CMIS to talk to our Alfresco Cloud instance.

This section will go through how to use CMIS to talk to Alfresco in the cloud.

Setting up an account
The first thing we need to do is to create an account for the Alfresco Cloud service.
This can be done from the http://www.alfresco.com/products/cloud page,
which at the time of writing this book, offered a 10 GB free storage area in the cloud.
However, this is if signing up with a company e-mail address (might work for
private e-mails when this book is published). Fill in your company e-mail address
and click on the Get Started button.

You will receive a welcome e-mail with an Activate Account button; click on it and it
will take you to the https://my.alfresco.com/share/ site, where you can complete
your profile with your name and password. After completing the profile, you will see
your personal dashboard and there will also be an Alfresco Share site created in your
name. This site is private and cannot be seen by any other person. We will upload
content via CMIS to this personal site that was created automatically for us.

Registering a client application
When we talk to Alfresco Cloud via CMIS, we have to authorize a client application
for it to be granted access to talk to our personal site. Basically, we will tell Alfresco
Cloud that we have a client application called, for example, MyEnterpriseApp,
that wants to talk to it using the account that we just created.

To configure a new client application with access to Alfresco Cloud, we have to
 use the Alfresco Developer portal, which is accessible via the https://developer.
alfresco.com/ URL. On the main page in the portal, under the In the cloud section,
click on the Register as a developer link to get going. Fill in your name, e-mail
address, and password to create a developer account. A developer account activation
e-mail is sent to your e-mail address. After clicking on the link in this activation
e-mail, you can log in to the developer portal. You should see something like what
is shown in the following screenshot:

Chapter 7

[233]

To register a new application that wants to talk to Alfresco Cloud click on the
APPLICATIONS menu item on the left-hand side. As this is your first application
you will see an Add Application button; click on it.

Fill in the Application Information tab as follows:

Choose the Java platform (used by Alfresco to see what the community is mostly
using) as we will be talking to CMIS via the OpenCMIS Java library.

Alfresco Cloud services uses OAuth2 (http://en.wikipedia.org/wiki/OAuth)
for authorization. OAuth2 provides a process for end users to authorize (allow)
third-party access (that is, MyEnterpriseApp) to their server resources (that is,
content in Alfresco) without sharing their credentials. This means that the
username and password for the Alfresco Cloud account we just set up is never
exposed to third-party applications.

System Integration with CMIS

[234]

The following diagram illustrates the OAuth2 authorization flow:

My Enterprise App Web Browser
Chrome in our example

Alfresco Authorisation
Server

Alfresco API
Endpoint

Launch browser with
authorization URL

Request
Authorization code

Allow?

User Login &
Consent (Allow)

Authorization Code

Call API with Access Token

Access Token

Exchange Authorization Code for Access Token

User

To specify the needed parameters for the OAuth2 authorization, click on the API
Management tab; there is only one API, so select that from the drop-down box.
Agree to the terms and conditions for the API. Then click on the last tab called Auth.

What we need to specify here is the callback URL that Alfresco will be invoking
to notify MyEnterpriseApp about an authorization code. Set this URL to http://
localhost:8090/callback. Once the application receives the authorization code,
it can exchange the code for an access token and a refresh token.

When we register the MyEnterpriseApp client application, it is assigned an API key
and a secret. We need to make a note of them as they will be used when we make the
connection from our Java code. They are displayed in the Auth tab under Key and
Secret, as shown in the following screenshot:

This is all that is required to enable a new application to talk to Alfresco in the cloud
via CMIS.

Chapter 7

[235]

Setting up a development project
We will be using Maven to build this solution as we can bring in all the needed
libraries automatically. We will need the OpenCMIS Java library from the Apache
Chemistry project to make CMIS calls, Google's OAuth2 client for Java for
authorization, and Jetty Servlet engine for callbacks.

When this book is published, Version 0.11.0 of the OpenCMIS
library may be released. It contains support for OAuth2, so
it may be a more straightforward alternative to using Google
OAuth2 libraries. See http://svn.apache.org/repos/asf/
chemistry/opencmis/trunk/chemistry-opencmis-client/
chemistry-opencmis-client-bindings/src/main/java/
org/apache/chemistry/opencmis/client/bindings/
spi/OAuthAuthenticationProvider.java (for the Jira issue
at https://issues.apache.org/jira/browse/CMIS-745.
Also have a look at the Alfresco extension OAuth2 at https://
code.google.com/a/apache-extras.org/p/alfresco-
opencmis-extension/source/browse/trunk/src/main/
java/org/alfresco/cmis/client/authentication/
OAuthCMISAuthenticationProvider.java?r=19.

Start by creating a basic Java client project as follows by using the Maven Quick
Start archetype:

$ mvn archetype:generate -DgroupId=com.mycompany.app -DartifactId=my-
enterprise-app -DarchetypeArtifactId=maven-archetype-quickstart
-DinteractiveMode=false

This command gives us a build project, a directory structure, and a Java file (App.
java at com/mycompany/app) to put some code in. To bring in the necessary
libraries, we need to first configure them in the POM's dependency section; open the
generated pom.xml file and add the following contents:

<project ...
 <dependencies>
 <!-- Bring in the OpenCMIS library for talking to CMIS servers
 -->
 <dependency>
 <groupId>org.apache.chemistry.opencmis</groupId>
 <artifactId>chemistry-opencmis-client-impl</artifactId>
 <version>0.10.0</version>
 </dependency>

System Integration with CMIS

[236]

 <!-- Bring in the Google Auth library for Authorization with
 Alfresco Cloud -->
 <dependency>
 <groupId>com.google.oauth-client</groupId>
 <artifactId>google-oauth-client</artifactId>
 <version>1.13.1-beta</version>
 </dependency>
 <dependency>
 <groupId>com.google.http-client</groupId>
 <artifactId>google-http-client-jackson</artifactId>
 <version>1.13.1-beta</version>
 </dependency>

 <!-- Bring in the Servlet API and Jetty Servlet Engine so we
 can handle authorization callback -->
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.5</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>jetty</artifactId>
 <version>6.1.26</version>
 </dependency>

 <!-- Bring in commons logging library -->
 <dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 <version>1.1.1</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

Chapter 7

[237]

I added the Apache Commons Logging library so that we can do some logging from
our examples. We will also add another Java class named CmisClient in the same
package as the autogenerated App class; create it with your favorite editor so it looks
like the following code:

public class CmisClient {
 private static Log logger =
 LogFactory.getLog(CmisClient.class);
 public CmisClient() { }
}

This is all that is required; now we can start implementing the OAuth2 communication
and CMIS calls to Alfresco Cloud.

Authorizing the client application
Before we start making any CMIS calls, some code is required to handle the OAuth2
communication. We will use classes from Google's client API to help out. We can
base this on some existing sample code from Google and Alfresco.

In the CmisClient class, start by adding a number of constants with URLs to access
Alfresco Cloud. Also, add the client app key and secret that we previously generated
via the developer portal as follows:

public class CmisClient {
 private static Log logger =
 LogFactory.getLog(CmisClient.class);
 public static final String ALFRESCO_API_URL =
 "https://api.alfresco.com/";
 public static final String TOKEN_SERVER_URL = ALFRESCO_API_URL
 + "auth/oauth/versions/2/token";
 public static final String AUTHORIZATION_SERVER_URL =
 ALFRESCO_API_URL + "auth/oauth/versions/2/authorize";
 public static final String ATOMPUB_URL = ALFRESCO_API_URL +
 "cmis/versions/1.0/atom";
 public static final String SCOPE = "public_api";
 public static final String CLIENT_APP_ID =
 "l7xx5e11e85c4a764cc********************";
 public static final String CLIENT_APP_SECRET =
 "c7fa1952bfaf4cb7***********************";
 public static final HttpTransport HTTP_TRANSPORT =
 new NetHttpTransport();
 public static final JsonFactory JSON_FACTORY =
 new JacksonFactory();

System Integration with CMIS

[238]

We also define the URL for the CMIS AtomPub binding (that is, ATOMPUB_URL);
note that it is not the standard Alfresco 4.0 URL that we have been using before
(that is, http://<hostname>:<port>/alfresco/cmisatom), it looks more like the
4.2 URLs such as http://<hostname>:<port>/alfresco/api/-default-/cmis/
versions/1.0/atom.

Then, define a new method called authorizeAndMakeCmisCalls, which will be our
only public method with the main method doing most of the work by calling other
private methods as follows:

public void authorizeAndMakeCmisCalls() throws Exception {
 VerificationCodeReceiver receiver = new
 LocalServerReceiver();
 try {
 // Authorize this client application
 String callbackURL = receiver.getRedirectUri();
 launchBrowserAndMakeTokenRequest(
 "google-chrome", callbackURL, CLIENT_APP_ID, SCOPE);
 final Credential credential =
 exchangeCodeForToken(receiver, callbackURL);
 HttpRequestFactory requestFactory =
 HTTP_TRANSPORT.createRequestFactory(
 new HttpRequestInitializer() {
 @Override
 public void initialize(HttpRequest request)
 throws IOException {
 credential.initialize(request);
 request.addParser(new JsonHttpParser(JSON_FACTORY));
 }
 });
 // Make some CMIS calls
 makeCmisCall(requestFactory, credential);
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 eceiver.stop();
 }
}

Chapter 7

[239]

The previously discussed method starts by creating a new
VerificationCodeReceiver parameter, which will run a local Jetty server on port
8090 and wait for OAuth2 to redirect to it via the http://localhost:8090/callback
URL. This is the same URL that we entered under the Auth tab in the developer
portal when registering the client application. The redirection call will contain the
verification code. This class will not be displayed here, but you can download the
source code to see how it looks. When the Jetty server is started, we get the redirection
URL and then pass it on to a method called launchBrowserAndMakeTokenRequest,
which will open up the Google Chrome web browser and call the Alfresco Cloud
Authorization service. The URL will look something like https://api.alfresco.
com/auth/oauth/versions/2/authorize?client_id=l7xx5e11e85c4a764cc9af
182c35e0711854&redirect_uri=http://localhost:8090/callback&response_
type=code&scope=public_api.

When this happens, we will be prompted to enter the username and password for
the Alfresco Cloud user account that we set up in the beginning, as shown in the
following screenshot:

Clicking on Allow here means that I will grant access to my content in the Alfresco
Cloud for the client application via my user account. The Alfresco server will now
respond with an authorization code that we can use to get an access token; this is
what we do with the exchangeCodeForToken method. With the accesses token,
we can start calling the CMIS services; this is what we do with the makeCmisCall
method.

You can download the source code for the launchBrowserAndMakeTokenRequest
and exchangeCodeForToken methods from the book's website; the code is not
relevant to CMIS, so is beyond the scope of this book.

System Integration with CMIS

[240]

Making CMIS calls
The makeCmisCall method, however, is of interest and looks like the following code:

private void makeCmisCall(
 HttpRequestFactory requestFactory, Credential credential)
 throws IOException {
 String accessToken = credential.getAccessToken();
 Session cmisSession = getCmisSession(accessToken);

 // Get information about the repository we are connected to
 RepositoryInfo repositoryInfo =
 cmisSession.getRepositoryInfo();

 logger.info(" Name: " + repositoryInfo.getName());
 logger.info(" Vendor: " + repositoryInfo.getVendorName());
 logger.info(" Version: " +
 repositoryInfo.getProductVersion());
}

Passed into this method is a credential object that contains the access token that we
need to make a CMIS call. We pass the token into the getCmisSession method,
which will use it to create a new session that we can use for our CMIS service calls.
When we get the session, we can start by getting information about the repository
that we are connected to by using the getRepositoryInfo method. From now on,
we can basically use the normal OpenCMIS Java API calls that we saw in Chapter 5,
Accessing a CMIS Server with a Java Client.

The getCmisSession method has the following code to pass the access token to
Alfresco Cloud:

public Session getCmisSession(String accessToken) {
 // default factory implementation
 SessionFactory factory = SessionFactoryImpl.newInstance();
 Map<String, String> parameter = new HashMap<String, String>();

 // connection settings
 parameter.put(SessionParameter.ATOMPUB_URL, ATOMPUB_URL);
 parameter.put(SessionParameter.BINDING_TYPE,
 BindingType.ATOMPUB.value());
 parameter.put(SessionParameter.AUTH_HTTP_BASIC, "false");
 parameter.put(SessionParameter.HEADER + ".0", "Authorization:
 Bearer " + accessToken);
 java.util.List<Repository> repositories =
 factory.getRepositories(parameter);
 return repositories.get(0).createSession();
}

Chapter 7

[241]

So, as we can see, setting up a CMIS session with the OpenCMIS library is the
same as before with the extra thing that we need to pass the access token in the
Authorization header as a Bearer token (defined by the RFC6750 standard—
http://tools.ietf.org/html/rfc6750).

If we run the preceding code we will get the following output:

my-enterprise-app$ mvn compile exec:java -Dexec.mainClass="com.mycompany.
app.App"

[INFO] Scanning for projects...

11-Feb-2013 16:57:48 com.mycompany.app.CmisClient
authorizeAndMakeCmisCalls

INFO: Access token:baf86fdd-bf6f-4f2f-bc95-88b5f34ffa67

INFO: Name: ixxus.com

INFO: Vendor: Alfresco

INFO: Version: 4.0.2 (Cloud 351)

Summary
In this chapter, we have seen that CMIS is becoming a major part of many different
environments that integrate CMS systems into enterprise solutions. Drupal is one
of the major WCM systems used today. We looked at how easy it is to display
documents, links, or folder listings from a CMS repository to a web page generated by
Drupal. This is important as we don't want to store our content in more than one place.

Next, we enabled a CMS system to participate in ESB message flows, which is
a commonplace scenario in many large enterprises.

Finally, we saw how we can use CMIS to talk to Alfresco in the cloud. This was
based on the use of the OAuth2 authorization protocol and the OpenCMIS Java
library to make CMIS service calls.

In this book, we have seen that the Content Management Interoperability Services
(CMIS) standard is something to count on in the future. It is a comprehensive
standard that has been adopted in many different places. Most CMS server providers
support it, WCM systems support it, tools support it, Enterprise Integration products
support it, and so on. It provides ways of working with content from many different
platforms and from all kinds of languages.

Index
Symbols
#sudo apt-get install curl command 25

A
Abdera libraries 102
Access Control Entry. See ACE
Access Control List. See ACL
access controls

concepts 81
ACE 16, 113, 136, 175
ACL

about 16, 80, 113, 136
capabilities 80
service methods 18

ACL services 18
alfcmis:nodeRef property 35
Alfresco

about 101
URL, for installation file of Community

version 24
AlfrescoCmisServiceImpl component 104
Alfresco CMIS stack 104
Alfresco content model mapping, to CMIS

object model
access control 113-115
change log 115, 116
object paths explanation 108-112
property mappings 107, 108
rendition support 116, 118
repository capabilities 105, 106
search capability 118, 119
type mappings 106
versioning 112, 113

Alfresco, in Cloud via CMIS
account, setting up 232
client application, authorizing 237-239
client application, registering 232-234
CMIS calls, making 240, 241
development project, setting up 235, 237

Alfresco OpenCMIS extension
aspects, adding to existing object 170, 171
aspects, adding when creating object

169, 170
aspects, managing 169
aspects, reading 171

Alfresco Records Management module 103
Alfresco server

URL, for downloading 24
Alfresco Share extensions

CMIS calls, using in 209
allowable actions 83, 114
Apache Camel

about 224
URL 224

Apache Chemistry
about 128
URL 127

Apache Maven
URL 128

API (Application Programming Interface) 8
appendContentStream service call 59
append parameter 102
Application to Multiple Repositories

(A2MR) 13
Application to Repository (A2R) 12
applyACL service call 80

[244]

aspects
adding, to existing object 167-170
adding, when creating object 166, 167
managing, secondary types used 166
overview 119-123
reading 168, 171
working with 165

Association for Information and Image
Management (AIIM) 8

AtomPub binding
content, obtaining with 50-53
document, checking out with 74, 75
document check-out, cancelling with 75
document, creating with 63-65
document, deleting with 68
document, updating with 67
folder, creating with 59, 60
folder, deleting with 68
metadata, obtaining with 50-53
permissions, managing with 84-86
relationships, creating with 90, 91
relationships, reading with 90, 91
repository information, obtaining via 30, 31
subtypes, listing with 47, 48
types, listing with 47, 48
used, for document check-in 76
used, for listing children of root folder

36, 38
used, for searching 95-97
used, for updating physical content of

checked-out document 75
version management 73

ATOMPUB_URL parameter 132
authentication

performing, with repository 25

B
BINDING_TYPE parameter 132
Browser binding

about 21
content, obtaining with 53-56
document check-out, cancelling with 78
document, creating with 66
document, deleting with 69
document, updating with 67
folder, creating with 61

folder, deleting with 69
metadata, obtaining with 53-56
permissions, managing with 87-89
physical content, updating of checked-out

document 78
relationships, creating with 92
relationships, reading with 92
repository information, obtaining via 31, 32
REST-based approach, used 21
subtypes, listing with 49
types, listing with 49
used, for document check-in 79, 80
used, for document check-out 77, 78
used, for listing children of root folder

39-41
build environment

setting up 128, 129
build project

setting up, for Spring Surf with CMIS
201, 202

bulkUpdateProperties service 103
bulkUpdateProperties service call 59

C
CACHE_TTL_OBJECTS parameter 133
callCmisServer function 185
capabilities, access control list (ACL)

capabilityACL 80
propagation 80

capabilities, of searching
capabilityJoin 95
capabilityQuery 94

capabilities properties
capabilityChanges 28
capabilityCreatablePropertyTypes 29
capabilityMultifiling 28
capabilityNewTypeSettableAttributes 29
capabilityRenditions 28
capabilityUnfiling 28
capabilityVersionSpecificFiling 29

capabilityAllVersionsSearchable property
72

capabilityChanges property 27, 28
capabilityContentStreamUpdatability

property

[245]

about 66, 72
values 72

capabilityCreatablePropertyTypes property
29

capabilityGetDescendants property 33
capabilityGetFolderTree property 33
capabilityJoin property 95
capabilityMultifiling property 28
capabilityNewTypeSettableAttributes 29
capabilityOrderBy property 33
capabilityPWCSearchable property 72
capabilityPWCUpdatable property 72, 76
capabilityQuery property 94
capabilityRenditions property 28
capabilityUnfiling property 28
capabilityVersionSpecificFiling property 29
categories

overview 124
change log 115, 116
changesIncomplete property 27
changesOnType property 27
checked-out document

physical content, updating with AtomPub
binding 75

physical content, updating with Browser
binding 78

checkIn service call 71
checkOut service call 173 71
children

listing, of root folder 32, 33, 136, 137
listing, of root folder with AtomPub

binding 36, 38
listing, of root folder with Browser binding

39-41
listing, of top folder 136, 137

Claim Check EAI pattern 226
cm:autoVersion aspect 172
cm:initialVersion aspect 172
CMIS

about 7-10
build project, setting up for Spring Surf

201, 202
domain model 14-17
protocol bindings 20, 21
query examples 98
query language 18, 19
services 17, 18

supported permissions 82, 83
supporting companies 10, 11
supporting products 10, 11
use cases 12, 13
using, benefits 11, 12
using, in Groovy scripts 196-200
using, in JavaScript 184-187
using, in Spring Surf Web Scripts 200
using, in web application pages 184-187

CMIS 1.1 standard
features, not supported in Alfresco Version

4.2 103
cmis.alfresco.com

using 24
cmis:allowedChildObjectTypeIds property

34
CMIS API module

about 212
installing 213, 214
submodules 212
URL 212

cmis:baseTypeId property 35
CMIS benefits

bigger customer base applications 12
easy workflow integration 12
language neutral 11
one application to access them all 11
platform independence 11
standard and easy-to-learn query language

11
standard service API 11

cmis_browser.module 212
CMIS call

addDocumentToFolder 114
cancelCheckout 114
checkIn 114
checkOut 114
deleteAllVersions 114
deleteContentStream 114
deleteObject 114, 115
deleteTree 115
getAllVersions 114
getChildren 115
getContentStream 115
getDescendants 115
getDocumentParents 114
getFolderParent 115

[246]

getProperties 115
getRelationships 115
making 240
setContentStream 114
updateProperties 114, 115
using, in Alfresco Share extensions 209

cmis:changeToken property 34
CMIS Cloud Connector

functions 224
URL 224

cmis_common.module 212
CMISConnector 104
cmis:contentStreamFileName property 63
cmis:contentStreamId property 62
cmis:contentStreamLength property 62
cmis:contentStreamMimeType property 62
cmis:createdBy property 35
cmis:creationDate property 34
cmis_dev.module 212
CMIS Field 212
cmis_field.module 212
CMIS Folder 217
cmis_headerswing.module 212
CMIS, in Spring Surf Web Scripts

build project, setting up for Spring Surf
201, 202

home page, updating for repository info
display 206, 207

home page, updating for text display in
repository 208, 209

Spring Surf project, updating for CMIS
usage 203-206

cmis:item Object Type 103
cmis:lastModificationDate property 35
cmis:lastModifiedBy property 35
cmis.module 212
cmis:name property 34
cmis:objectId property 35
cmis:objectTypeId property 34
cmis:parentId property 35
cmis:path property 34
CMIS properties

allowedChildObjectTypeIds 34
baseTypeId 35
changeToken 34
contentStreamFileName 108
contentStreamLength 107

contentStreamMimeType 108
createdBy 35, 107
creationDate 34
isLatestVersion 107
isMajorVersion 107
lastModificationDate 35, 107
lastModifiedBy 35, 107
name 34, 107
nodeRef 35
objectId 35
objectTypeId 34
parentId 35
path 34, 108
versionLabel 107

CMIS Query Language (QL) 93, 118
cmis_query.module 212
CMIS server

installing 24
setting up 24

CMIS services
ACL services 18
Discovery services 17
Multifiling services 17
Navigation services 17
Object services 17
Policy services 18
Relationship services 18
Repository services 17
Versioning services 18

cmis_sync.module 212
CMIS usage

Spring Surf project, updating for 203-206
CMIS Version 1.1 standard

support 102
cmisVersionSupported property 26
CMIS Views module

about 217
URL 217

CMS content
synchronizing, with Drupal content

221-223
CMS repository file link

displaying, on Drupal page 216, 217
CMS repository folder

displaying, on Drupal page 218-220
CMS server

Drupal, integrating with 211, 212

[247]

cm:versionLabel aspect 172
COMPRESSION parameter 132
CONTAINS keyword 123
content, obtaining

for document 160, 161
with AtomPub binding 50-53
with Browser binding 53-56

Content Management Interoperability
Services. See CMIS

Content Management Systems (CMS) 7
continueOnFailure parameter 159
createDocumentFromSource service call 57
createDocument service call 57
createFolder service call 58, 145
createItem service call 58
createPolicy service call 58
createRelationship service call 58
CRUD (Create, Read, Update, and Delete)

operations 17
cURL

about 25
URL, for downloading 25

D
DataTables

about 192
URL 192

deleteAllVersions parameter 159
deleteContentStream service call 59
delete method 157
deleteObject service call 59
deleteTree service call 59, 158
Digital Asset Management (DAM)

system 116
document

checking, in with AtomPub binding 76
checking, in with Browser binding 79, 80
checking out 173
checking, out with AtomPub binding 74, 75
content, obtaining for 160, 161
copying 162-165
creating 147-153
creating, with AtomPub binding 63, 64
creating, with Browser binding 66
deleting 156-158
deleting, with AtomPub binding 68

deleting, with Browser binding 69
obtaining, from CMS server 228-231
moving 162-165
permissions, managing for 80
updating 153-156
updating, with AtomPub binding 67
updating, with Browser binding 67

document check-out
cancelling, with AtomPub binding 75
cancelling, with Browser binding 78
with Browser binding 77, 78

Document Management (DM) 8
domain model

about 14
base types 15
objects 14-17
property types 15

domain model base types
custom subtypes 15
Document 15
Folder 15
Item 15
Policy 15
Relationship 15

Drupal
integrating, with CMS server 211, 212

Drupal content
CMS content, synchronizing with 221-223

Drupal page
CMS repository file link, displaying on

216, 217
CMS repository folder, displaying on

218-220
result, displaying from CMIS query on

220, 221

E
Enterprise Application Integration

(EIA) 211
Enterprise Content Management (ECM) 8
Enterprise integration, with CMIS

about 224
Apache Camel 224
Mule ESB 224
Spring Integration 224

Enterprise Service Bus (ESB) 13, 211

[248]

extended features discovery 103
extJS 191

F
file

moving, from folder into CMS server with
Mule 224-228

folder
copying 162-165
creating 144-146
creating, with AtomPub binding 59, 60
creating, with Browser binding 61
deleting 156-158
deleting, with AtomPub binding 68
deleting, with Browser binding 69
moving 162-165
permissions, managing for 80
updating 153-156

folder tree
deleting 156-158

FreeMarker template 202
Full-Text Search (FTS) 19, 93, 118

G
getACL service call 80, 84
getAllowableActions service call 58
getChildren service

optional parameters 42
getChildren service, with AtomPub binding

optional parameters 43, 44
getChildren service, with Browser binding

optional parameters 45, 47
getCmisSession method 240
getContentStream service call 58
getDocumentParentFolder method 150
getObjectByPath service call 58
getObject service call 58, 145
getParentFolderPath method 150
getProperties service call 58
getRenditions service call 58
getRepoId function 184
getRepositoryInfo service call 26, 72, 240
getTypeChildren service 47
Groovy

URL, for tutorial 197

Groovy scripts
CMIS, using in 196-200

H
home page, updating

for repository info display 206, 207
for text display in repository 208, 209

HTTP 25

I
includedInSuperType property 19
installation, CMIS API module 213, 214
installation, CMIS server 24
isLatestMajorVersion property 73
isLatestVersion property 73

J
Java Community Process 9
Java Content Repository. See JCR
JavaScript

CMIS, using in 184-187
JavaScript Object Notation (JSON) 21
Java Virtual Machine (JVM) 132
JCR 9
JQuery

about 190
URL 190
used, for making AJAX calls 190-195

JQuery UI
URL 192

JSONP functionality 190

L
LAMP stack 211
latest version 73

M
major version 73
makeCmisCall method 240
Message Transmission Optimization

Mechanism (MTOM) 21

[249]

metadata, obtaining
with AtomPub binding 50-53
with Browser binding 53-56

moveObject service call 59
Mule

document, obtaining from CMS server
228-231

used, for moving file from folder into
CMS server 224-228

Mule ESB
about 224
URL 224

multifiling services 17

N
Navigation services 17

O
OASIS 7
OAuth2

URL 233
object

aspects, adding to 167, 168
relationships, managing between 90,

178-181
object model. See domain model
object paths 108-112
object service 17, 90
OpenCMIS library 128

adoptions benefits, for Alfresco 104, 105
OpenCMIS Service Provider Interface

(SPI) 104
OperationContext class 138
optional parameters, for getChildren

service
about 138-140
hasMoreItems 42
maxItems 42
numItems 42
skipCount 42

Organization for the Advancement of
Structured Information Standards. See
OASIS

P
parameters, deleteTree method

continueOnFailure 159
deleteAllVersions 159
unfileMode 159

PASSWORD parameter 132
PathSegments

path 109
permission mapping 84
permissions, managing

for documents 80, 175-178
for folders 80, 175-178
with AtomPub binding 84-86
with Browser binding 87-89

permissions, by CMIS
all 83
read 83
write 83

physical contents
updating, of checked-out document with

AtomPub binding 75
updating, of checked-out document with

Browser binding 78
policy services 18
principalAnonymous property 27
Private Working Copy (PWC) 72, 172
properties, versioning

isLatestMajorVersion 73
isLatestVersion 73
versionLabel 73
versionSeriesId 73

property mappings 107, 108
protocol bindings

about 20
Browser (CMIS 1.1) 21
RESTful AtomPub 20, 21
Web Service 21

Q
queryable property 18
query language

properties 18
using 18, 19

query method 18
queryName property 19

[250]

R
relationships

creating, with AtomPub binding 90, 91
creating, with Browser binding 92
managing, between objects 90, 178-181
reading, with AtomPub binding 90, 91
reading, with Browser binding 92

relationship services 18, 90
renditions support 116, 118
repository

connecting to, by ID 134
used, for performing authentication 25

repository capabilities 105, 106
repositoryId property 26
repository information, obtaining

about 26-29, 134, 135
via AtomPub binding 30, 31
via Browser binding 31, 32

Repository services 17
Repository to Repository (R2R) 12
REST binding

about 20
service collections 20

result, from CMIS query
displaying, on Drupal page 220, 221

Retention and Hold support feature 103
root folder

children, listing of 32, 33

S
same origin policy problem

about 187
solving 187-189

searching
about 93, 181, 182
with AtomPub binding 95, 96
with Browser binding 96, 97

secondary types
used, for managing aspects 166

service collections
Bulk Update collection 20
Checked-Out collection 20
Query collection 20
Root collection 20
Type Children collection 20
Unfiled collection 20

service document 20, 30
session

connecting to 129-134
setting up, with repository 129-134

Session Factory interface 129
setContentStream service call 59
Spring Integration

about 224
URL 224

Spring Source foundation
URL 200

Spring Surf project
updating, for CMIS usage 203-206

Spring Surf Web Scripts
CMIS, using in 200

submodules, CMIS API module
cmis_browser.module 212
cmis_common.module 212
cmis_dev.module 212
cmis_field.module 212
cmis_headerswing.module 212
cmis.module 212
cmis_query.module 212
cmis_sync.module 212

subtypes, listing
about 141-143
with AtomPub binding 47, 48
with Browser binding 49

succinct representation 55
support, CMIS Version 1.1 standard

browser binding 102
content, appending 102
secondary types 102

supportedPermissions property 82
support, for Alfresco-specific features

aspects 119-123
categories 124
tags 123

T
tags

overview 123
ThemeRoller 192
timeline

overview 101, 102
Time To Live (TTL) 133

[251]

tool setup
for making HTTP requests 25

transactions 99
type mappings 106
type mutability feature 103
types, listing

about 141-143
with AtomPub binding 47, 48
with Browser binding 49

U
UI Darkness theme 192
unfileMode parameter 159
universally unique identifier (UUID) 131
updateProperties service call 59
use cases, example

A2MR 13
A2R 12
R2R 12

USER parameter 132

V
values, capabilityContentStream

Updatability property
anytime 72
none 72
pwconly 72

versioning 112, 113
versioning capabilities

capabilityAllVersionsSearchable 72
capabilityPWCSearchable 72
capabilityPWCUpdatable 72

versioning services 18, 71
versionLabel property 73
version management

content of checked-out document,
updating 174, 175

document, checking in 174, 175
document, checking out 173
with AtomPub binding 73
with Browser binding 77
with checkIn service call 71, 172
with checkOut service call 71, 172

version series 72
versionSeriesId property 73

W
web application pages

CMIS, using in 184-187
Web Content Management (WCM)

system 116, 211
Web Distributed Authoring and Versioning

(WebDAV) 9
Web Service binding 21

X
xmlstarlet command-line tool 30
XPath 30

Y
Yahoo UI Library (YUI) 191

Thank you for buying
Alfresco CMIS

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Alfresco 4 Enterprise Content
Management Implementation
ISBN: 978-1-78216-002-1 Paperback: 514 pages

Install, administer, and manage this powerful open
source Java-based Enterprise CMS

1. Manage your business documents with
standard practices like content organization,
version control, tagging, categorization, library
services, and advanced search.

2. Automate your business process with the
advanced workflow concepts of Alfresco using
the Activiti workflow engine.

Alfresco Share
ISBN: 978-1-84951-710-2 Paperback: 360 pages

Enterprise Collaboration and Efficient Social Content
Management

1. Understand the concepts and benefits of Share.

2. Leverage a single installation to manage
multiple sites.

3. Case Study-based approach for effective
understanding.

Please check www.PacktPub.com for information on our titles

Alfresco 3 Records Management
ISBN: 978-1-84951-436-1 Paperback: 488 pages

Comply with regulations and secure your orgnization's
records with Alfresco Records Management

1. Successfully implement your records program
using Alfresco Records Management, fully
certified for DoD-5015.2 compliance.

2. The first and only book to focus exclusively
on Alfresco Records Management.

3. Step-by-step instructions describe how to
identify records, organize records, and manage
records to comply with regulatory requirements.

Alfresco 3 Business Solutions
ISBN: 978-1-84951-334-0 Paperback: 608 pages

Practical implementation techniques and guidance for
delivering business solutions with Alfresco

1. Deep practical insights into the vast possibilities
that exist with the Alfresco platform for
designing business solutions.

2. Each and every type of business solution is
implemented through the eyes of a fictitious
financial organization - giving you the right
amount of practical exposure you need.

3. Packed with numerous case studies which
will enable you to learn in various real
world scenarios.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with CMIS
	Understanding CMIS
	Commercial products and companies supporting CMIS
	The benefits of using CMIS
	CMIS use cases
	Repository to Repository (R2R)
	Application to Repository (A2R)
	Application to Multiple Repositories (A2MR)

	An overview of the CMIS standard
	The domain model (object model)
	Services
	Query language
	Protocol bindings
	RESTful AtomPub binding
	Web Service binding
	RESTful Browser binding (CMIS 1.1)

	Summary

	Chapter 2: Basic CMIS Operations
	Setting up a CMIS server
	Installing your own CMIS server
	Using cmis.alfresco.com

	Setting up a tool to make HTTP requests
	Authenticating with the repository
	Getting repository information
	Repository information via the AtomPub binding
	Repository information via the Browser binding

	Listing the children of the root folder
	Listing the children of the root folder with the AtomPub binding
	Listing the children of the root folder with the Browser binding

	Optional parameters when listing the children of a folder
	Optional parameters when listing the children of a folder with the AtomPub binding
	Optional parameters when listing the children of a folder with the Browser binding

	Listing available types and subtypes
	Listing the types and subtypes with the AtomPub binding
	Listing the types and subtypes with the Browser binding

	Getting metadata and content
	Getting metadata and content with the AtomPub binding
	Getting metadata and content with the Browser binding

	Creating, updating, and deleting content
	Creating folders
	Creating a folder with the AtomPub binding
	Creating a folder with the Browser binding

	Creating documents
	Creating a document with the AtomPub binding
	Creating a document with the Browser binding

	Updating folders and documents
	Updating a document with the AtomPub binding
	Updating a document with the Browser binding

	Deleting a folder or a document
	Deleting a folder or document with the AtomPub binding
	Deleting a folder or document with the Browser binding

	Summary

	Chapter 3: Advanced CMIS Operations
	Version management with check out and check in
	Version management with the AtomPub binding
	Checking out a document with the AtomPub binding
	Cancelling the check out with the AtomPub binding
	Updating the physical contents of the checked-out document with the AtomPub binding
	Checking in a document with the AtomPub binding

	Version management with the Browser binding
	Checking out a document with the Browser binding
	Cancelling the check out with the Browser binding
	Updating the physical content of the checked-out document with the Browser binding
	Checking in a document with the Browser binding

	Managing permissions for documents and folders
	Access control list capabilities
	Access control concepts
	Supported permissions
	Allowable actions and permission mapping
	Managing permissions with the AtomPub binding
	Managing permissions with the Browser binding

	Managing relationships between objects
	Creating and reading relationships with the AtomPub binding
	Creating and reading relationships with the Browser binding

	Searching
	Searching with the AtomPub binding
	Searching with the Browser binding
	CMIS query examples

	A word on transactions
	Summary

	Chapter 4: Alfresco and CMIS
	Timeline
	Architecture/stack
	Alfresco content model mapping to the CMIS object model
	Repository capabilities
	Type mappings
	Property mappings
	Object paths explanation
	Versioning
	Access control
	Change log
	Renditions
	Search

	Support for Alfresco-specific features
	Aspects
	Tags
	Categories

	Summary

	Chapter 5: Accessing a CMIS Server with a Java Client
	Setting up a build environment
	Connecting and setting up a session with the repository
	Connecting to a repository by ID

	Getting repository information
	Listing the children of the root/top folder
	Optional parameters when listing the children of a folder
	Listing available types and subtypes
	Creating, updating, and deleting content
	Creating folders
	Creating documents
	Updating folders and documents
	Deleting a document, folder, or folder tree

	Getting the content for a document
	Copying and moving folders and documents
	Working with Alfresco aspects
	Using secondary types to manage aspects
	Adding aspects when creating an object
	Adding aspects to an existing object
	Reading aspects

	The Alfresco OpenCMIS extension to manage aspects
	Adding aspects when creating an object
	Adding aspects to an existing object
	Reading aspects

	Version management with check out and check in
	Checking out a document
	Updating the content of the checked-out document and then checking it in

	Managing permissions for documents and folders
	Managing relationships between objects
	Searching
	Summary

	Chapter 6: Accessing a CMIS Server from Scripting Languages
	Using CMIS in JavaScript and web application pages
	Solving the same origin policy problem
	Using JQuery

	Using CMIS in Groovy scripts
	Using CMIS in Spring Surf Web Scripts
	Setting up a build project for Spring Surf
with CMIS
	Updating the Spring Surf project so that CMIS can be used
	Updating the home page to display repository info via CMIS
	Updating the home page to display text from
a file in the repository
	Using CMIS calls in Alfresco Share extensions

	Summary

	Chapter 7: System Integration with CMIS
	Integrating Drupal with a CMS server
	The CMIS API module
	Displaying a CMS repository file link on a Drupal page

	The CMIS Views module
	Displaying a CMS repository folder on a Drupal page
	Displaying a result from a CMIS query on a Drupal page

	Synchronizing the CMS content with Drupal content

	Enterprise integration with CMIS
	Moving a file from a folder into a CMS server using Mule
	Getting a document from a CMS server via Mule

	Talking to Alfresco in the Cloud via CMIS
	Setting up an account
	Registering a client application
	Setting up a development project
	Authorizing the client application
	Making CMIS calls

	Summary

	Index

