
www.allitebooks.com

http://www.allitebooks.org

 by Michael Burton

 Android™

Application
Development

3rd Edition

www.allitebooks.com

http://www.allitebooks.org

Android™ Application Development For Dummies®, 3rd Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written
permission of the Publisher. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Portions of this page are based on work created and shared by the Android Open Source Project and used
according to terms described in the Creative Commons 2.5 Attribution License.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. Android is a trademark of Google, Inc. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand. If
this book refers to media such as a CD or DVD that is not included in the version you purchased, you may
download this material at http://booksupport.wiley.com. For more information about Wiley products,
visit www.wiley.com.

Library of Congress Control Number: 2014954664

ISBN: 978-1-119-01792-9

ISBN: 978-1-119-01793-6 (ePDF); ISBN: 978-1-119-01794-3 (ePub)

Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://www.allitebooks.org

 Table of Contents
Introduction .. 1

About This Book .. 1
Conventions Used in This Book ... 2
Foolish Assumptions ... 2
How This Book Is Organized .. 3

Part I: Getting Started with Your First Android Application 3
Part II: Building and Publishing Your First Android Application 3
Part III: Creating a Feature-Rich Application 3
Part IV: Android Is More than Phones... 3
Part V: The Part of Tens .. 4

Icons Used in This Book ... 4
Beyond the Book ... 4

Part I: Getting Started with Your First
Android Application .. 7

Chapter 1: Developing Spectacular Android Applications 9
Why Develop for Android? ... 9

Market share ... 10
Time to market ... 10
Open platform .. 10
Device compatibility .. 10
Mashup capability ... 11

Android Development Basics ... 12
Java: Your Android programming language 12
Activities ... 13
Fragments ... 13
Intents.. 14
Cursorless controls ... 15
Views ... 15
Background operations ... 16
Background services ... 16
Android support library .. 17
Action bar ... 18
Widgets and notifi cations ... 19

www.allitebooks.com

http://www.allitebooks.org

Android Application Development For Dummies iv
Hardware Tools ... 20

Touchscreen ... 20
GPS ... 21
Accelerometer .. 21
SD card .. 22

Software Tools ... 22
Internet .. 22
Audio and video support .. 22
Contacts .. 23
Security ... 23
Google APIs ... 23

Chapter 2: Prepping Your Development Headquarters25
Developing the Android Developer Inside You ... 25
Assembling Your Toolkit .. 26

Linux kernel .. 26
Android framework.. 27
Application framework .. 28
Java knowledge .. 29

Tuning Up Your Hardware ... 30
Operating system ... 30
Computer hardware .. 30

Installing and Confi guring Your Support Tools ... 31
Installing Android Studio .. 31

Mac users .. 31
Windows users ... 32

Installing Java 7 .. 33
Adding SDK Packages .. 33
Navigating the Android SDK ... 34
Specifying Android Platforms .. 34
Using SDK Tools for Everyday Development ... 35

Saying hello to the emulator .. 35
Getting physical with a real Android device [Windows] 35
Debugging your work .. 37
Trying out the API and SDK samples ... 37
Giving the API demos a spin ... 37

Part II: Building and Publishing
Your First Application ... 39

Chapter 3: Your First Android Project .41
Starting a New Project in Android Studio ... 41
Responding to Errors .. 45
Setting Up an Emulator ... 47

www.allitebooks.com

http://www.allitebooks.org

v Table of Contents

Running the Hello Android App ... 49
Running the app in the emulator ... 49
Checking app logs .. 51

Understanding Project Structure .. 52
Navigating your app’s folders .. 52
Viewing the application’s manifest fi le ... 59
Viewing the build.gradle fi le ... 60
Understanding the Compile SDK, Minimum SDK,

and Target SDK Versions .. 62
What’s Up Next ... 64

Chapter 4: Creating the User Interface. .65
Creating the Silent Mode Toggle Application .. 65
Laying Out the Application .. 67

Working with views ... 68
Using Android layouts ... 70

Adding an Image to Your Application ... 71
Setting image properties ... 73
Setting drawable resources .. 74

Creating a Launcher Icon for the Application .. 75
Designing a custom launcher icon ... 76
Adding a custom launcher icon ... 77

Previewing the Application in the Visual Designer 77

Chapter 5: Coding Your Application .79
Understanding Activities and the Activity Lifecycle 79

The Activity lifecycle ... 80
Important lifecycle loops .. 82
Viewing activity methods ... 82
Following an activity’s path .. 83
Recognizing confi guration changes ... 84

Creating Your First Activity ... 84
Starting with onCreate .. 84
Telling Android to display the user interface 85
Handling user input ... 85
Writing your fi rst click listener .. 86

Working with the Android Framework Classes ... 88
Getting good service .. 88
Toggling Silent mode with AudioManager .. 89

Installing Your Application ... 92
Running your app in an emulator .. 93
Installing on a physical Android device .. 94

Material Design .. 96
Uh-Oh! (Responding to Errors) .. 98

Using the Android view ... 98
Using the Android Studio debugger .. 100

Thinking Beyond the Application Boundaries ... 103
Interacting with your application .. 104

www.allitebooks.com

http://www.allitebooks.org

Android Application Development For Dummies vi
Testing whether your application works .. 105
What about automated testing? ... 105

Chapter 6: Understanding Android Resources 107
Understanding Resources .. 107

Dimensions ... 108
Styles ... 108
Themes .. 109
Values .. 109
Menus .. 109
Colors .. 110

Working with Resources ... 110
Moving strings into resources ... 110
Wrestling the image beast .. 111
Making your apps global with resources .. 113

Different Strokes for Different Folks: Using Resource
Qualifi er Directories .. 114

Using default resources .. 114
Localizing to another language .. 115
Handling different screen sizes .. 115
Portrait versus landscape orientations .. 117
Handling old Android versions .. 117
Qualifi er name rules .. 117

Chapter 7: Turning Your Application into an App Widget 119
Working with App Widgets in Android ... 120

Working with remote views .. 120
Using AppWidgetProviders .. 122

Working with Intents and Pending Intents ... 122
Understanding the Android intent system 123
Understanding intent data .. 124
Evaluating intents .. 125
Using pending intents .. 126

Creating the App Widget .. 127
Implementing the AppWidgetProvider ... 127
Communicating with the app widget .. 128
Building the app widget’s layout ... 129
Doing work inside an AppWidgetProvider 130
Working with the app widget’s metadata 134
Registering your new components with the manifest................... 135

Placing Your Widget on the Home Screen .. 137

Chapter 8: Publishing Your App to the Google Play Store 139
Creating a Distributable File ... 139

Choosing your tools .. 140
Digitally signing your application .. 140
Creating the APK fi le .. 142

www.allitebooks.com

http://www.allitebooks.org

vii Table of Contents

Creating a Google Play Developer Profi le ... 145
Pricing Your Application .. 148

Choosing the paid model .. 149
Choosing the free model ... 149

Getting Screen Shots for Your Application .. 149
Uploading Your Application to the Google Play Store 150
Watching the Number of Installs Soar .. 153

Part III: Creating a Feature-Rich Application 155

Chapter 9: Designing the Tasks Application. .157
Reviewing the Basic Requirements ... 157

Storing data .. 158
Scheduling a reminder script (That’s alarming!) 158
Notifying the user .. 158

Creating the Application’s Screens ... 159
Starting the new project.. 159
Cleaning up the TaskListActivity ... 160
Editing the activity_task_list.xml layout fi le................................... 162
Setting the action bar .. 163
Creating the TaskListFragment .. 163
Making your fragment show a list.. 165
Styling your activity ... 174

Chapter 10: Creating the Task Detail Page .181
Creating the TaskEditActivity .. 181
Linking the List View to the Edit View .. 183
Creating the TaskEditFragment ... 185

Creating the layout .. 186
Creating the fragment.. 189

You Put the Fragment in the Activity and Shake It All Up 193
Updating the Styles ... 194
A Special Bonus ... 196

Chapter 11: Going a la Carte with Your Menu.199
Understanding Options and Context Menus .. 199
Creating Your First Menu ... 200

Defi ning the XML fi le.. 201
Handling user actions .. 202
Creating your second menu ... 203

Creating a Long-Press Action ... 207

Chapter 12: Handling User Input .211
Creating the User Input Interface .. 211

Creating an EditText view ... 211
Displaying an onscreen keyboard ... 212

www.allitebooks.com

http://www.allitebooks.org

Android Application Development For Dummies viii
Getting Choosy with Dates and Times .. 214

Creating picker buttons .. 214
Date and time pickers.. 215

Creating an Alert Dialog .. 225
Seeing why you should work with dialogs...................................... 226
Choosing the appropriate dialog for a task 226
Creating your own alert dialog ... 227

Validating Input ... 230
Toasting the user ... 230
Using other validation techniques... 231

Chapter 13: Getting Persistent with Data Storage233
Finding Places to Put Data .. 233

Viewing your storage options .. 234
Choosing a storage option .. 235

Understanding How the SQLite ContentProvider Works 236
Creating Your Application’s SQLite Database ... 237

Visualizing the SQL table .. 237
Creating the database table .. 238

Using ContentProvider URIs .. 241
Dealing with CRUD ... 244

Create .. 245
Update ... 246
Delete ... 248
Read ... 248

Implementing the Save Button ... 250
Implementing the List View .. 253

Using loaders .. 255
Using adapters ... 257
Deleting a task .. 260

Reading Data into the Edit Page .. 261

Chapter 14: Reminding the User .265
Seeing Why You Need AlarmManager .. 266
Asking the User for Permission ... 266

Seeing how permissions affect the user experience 266
Setting requested permissions in the

AndroidManifest.xml fi le ... 267
Waking Up a Process with AlarmManager ... 267

Creating the ReminderManager helper ... 267
Creating the notifi cation in OnAlarmReceiver 270

Updating a Notifi cation ... 274
Clearing a Notifi cation .. 274
Rebooting Devices ... 275

Creating a boot receiver ... 275
Checking the boot receiver .. 278

www.allitebooks.com

http://www.allitebooks.org

ix Table of Contents

Chapter 15: Working with Android Preferences 279
Understanding the Android Preferences Framework 280
Understanding the Preference Fragment Class 280

Persisting preference values .. 281
Laying out preferences.. 282

Creating Your Preferences Screen .. 283
Building the preferences fi le... 284
Adding string resources .. 285

Working with the Preference Fragment Class .. 285
Starting the PreferencesActivity .. 287
Handling menu selections ... 288

Working with Preferences in Your Activities at Runtime 289
Retrieving preference values .. 290
Setting preference values ... 292

Part IV: Android Is More than Phones 293

Chapter 16: Developing for Tablets .295
Considering the Differences between Phones and Tablets 295
Tweaking the Tasks App for Tablets ... 296

Anticipating screen size with a responsive layout 296
Adding more fragments... 299
Creating different layouts for different devices 299

Confi guring a Tablet Emulator ... 301
Creating a New Product Flavor .. 302
Creating an AndroidManifest for Phones ... 303

Moving the TaskListAdapter .. 303
Informing the Google Play Store .. 304

Creating an AndroidManifest for Tablets ... 305
Making the TaskListAndEditorActivity for Tablets 307

Creating the tablet activity class ... 307
Adding the tablet layout ... 309

Building the Tablet App .. 310
Adding the App Callbacks .. 312
One More Thing 313

Chapter 17: Supporting Older Versions of Android 315
Understanding AppCompat .. 316
Updating the build File .. 317
Adding the Toolbar ... 318
Using the AppCompat Theme .. 319
Testing Your App ... 321
Working with Right-to-Left Languages .. 323
Fixing the Add Task Menu .. 325

www.allitebooks.com

http://www.allitebooks.org

Android Application Development For Dummies x
Fixing the Window Options .. 326
Using Newer APIs ... 329
Using Android Lint .. 330

Chapter 18: Wearing the Tasks App .333
Preparing Your Development Environment ... 335

Prepping your Android phone ... 335
Setting up an Android Wear emulator... 335
Pairing your phone with the Wear emulator 337

Creating a New Wear App ... 339
Creating a new module .. 339
Editing MainActivity .. 340
Adding Google Play Services for data syncing 342
Creating the adapter .. 345

Publishing the Data from Your Phone .. 350
Confi guring the phone’s build .. 350
Publishing the data from the phone .. 350
Testing the sync ... 354

Running the App without Android Studio .. 355
Packaging the App ... 356
What’s Next? ... 356

Chapter 19: Look Ma, I’m on TV! .357
Understanding Guidelines for Building TV Apps 357
Building and Manifesting Changes .. 358
Adding the BrowseActivity ... 360
Creating the TV Browse Fragment .. 361

Creating the MainFragment outline ... 361
Reading data from the database .. 363

Creating the CardPresenter .. 368
Running Your App ... 371
Adding and Editing Items ... 372
Creating Backgrounds ... 373
Creating More Filters .. 375

Chapter 20: Moving beyond Google .381
Working around Google Features .. 381
Setting Up the Fire SDK ... 382
Setting Up Your Fire or Emulator .. 383

Creating a Fire-like emulator .. 383
Enabling Developer Options ... 384
Installing the USB driver (Windows only) 385
Connecting to ADB ... 386

Publishing to Amazon Appstore for Android ... 386

xi Table of Contents

Part V: The Part of Tens .. 393

Chapter 21: Ten Free Sample Applications and SDKs.395
Android Samples .. 395
The Google I/O App ... 396
K-9 Mail ... 396
GitHub Android App .. 396
Facebook SDK for Android ... 396
Notepad Tutorial ... 397
U+2020 ... 397
Lollipop Easter Egg .. 397
Android Bootstrap ... 398
The AOSP .. 398

Chapter 22: Ten Tools to Simplify Your Development Life 399
Android Lint ... 399
Android Systrace ... 399
RoboGuice and Dagger ... 400
Translator Toolkit ... 400
Hierarchy Viewer ... 401
UI/Application Exerciser Monkey .. 401
Git and GitHub ... 401
Picasso and OkHttp ... 402
Memory Analyzer Tool ... 402
Travis-ci .. 402

Index ... 403

 Introduction

 Welcome to Android Application Development For Dummies !

 When Android was acquired by Google in 2005 (yes, Android was a start-up
company at one point), a lot of people didn’t have much interest in it because
Google hadn’t yet entered the mobile space. Fast-forward to a few years later,
when Google announced its first Android phone: the G1. It was the start of
something huge.

 The G1 was the first publicly released Android device. It didn’t match the
rich feature set of the iPhone at the time, but a lot of people believed in the
platform. As soon as Donut (Android 1.6) was released, it was evident that
Google was putting some effort into the product. Immediately after version
1.6 was released, talk of 2.0 was already on the horizon.

 Today, we’re on version 5.0 of the Android platform, with no signs that
things are slowing down. Without doubt, this is an exciting time in Android
development.

 About This Book
 Android Application Development For Dummies is a beginner’s guide to devel-
oping Android applications. You don’t need any Android application develop-
ment experience under your belt to get started.

 The Android platform is a device-independent platform, which means that
you can develop applications for various devices. These devices include, but
aren’t limited to phones, watches, tablets, cars, e-book readers, netbooks,
televisions, and GPS devices.

 Finding out how to develop for the Android platform opens a large variety
of development options for you. This book distills hundreds, if not thou-
sands, of pages of Android documentation, tips, tricks, and tutorials into a
short, digestible format that allows you to springboard into your future as an
Android developer. This book isn’t a recipe book, but it gives you the basic
knowledge to assemble various pieces of the Android framework to create
interactive and compelling applications.

2 Android Application Development For Dummies

 Conventions Used in This Book
 Throughout the book, you use the Android framework classes, and you ’ ll
create Java classes and XML files.

 Code examples in this book appear in a monospace font so that they stand out
from other text in the book. This means that the code you’ll see looks like this:

 public class MainActivity

 Java is a high-level programming language that is case-sensitive, so be sure to
enter the text into the editor exactly as you see it in the book. The examples
follow standard Java conventions so you can transition easily between the
book examples and the example code provided by the Android Software
Development Kit (SDK). All class names, for example, appear in PascalCase
format .

 All the URLs in the book appear in monospace font as well:

 http://d.android.com

 Foolish Assumptions
 To begin programming with Android, you need a computer that runs one of
the following operating systems:

 ✓ Windows 2003, Vista, 7 or 8

 ✓ Mac OS X 10.8.5 or later

 ✓ Linux GNOME or KDE

 You also need to download Android Studio (which is free) and the Java
Development Kit (or JDK, which is also free), if you don’t already have them
on your computer. Chapter 2 outlines the entire installation process for all
the tools and frameworks.

 Because Android applications are developed in the Java programming lan-
guage, you need to understand the Java language. Android also uses XML
quite heavily to define various resources inside the application, so you
should understand XML too. You don’t have to be an expert in these lan-
guages, however.

 You don’t need a physical Android device, because all the applications you
build in this book will work on an emulator.

3 Introduction

 How This Book Is Organized
 Android Application Development For Dummies has five parts, described in
the following sections.

 Part I: Getting Started with Your First
Android Application
 Part I introduces the tools and frameworks that you use to develop Android
applications. It also introduces the various SDK components and shows you
how they’re used in the Android ecosystem.

 Part II: Building and Publishing
Your First Android Application
 Part II introduces you to building your first Android application: the Silent
Mode Toggle application. After you build the initial application, you create an
app widget for the application that you can place on the Home screen of an
Android device. Then you publish your application to the Google Play Store.

 Part III: Creating a Feature-Rich
Application
 Part III takes your development skills up a notch by walking you through the
construction of the Tasks application, which allows users to create various
tasks with reminders. You implement an SQLite backed content provider in
this multiscreen application. You also see how to use the Android status bar
to create notifications that can help increase the usability of your application.

 Part IV: Android Is More than Phones
 Part IV takes the phone app you built in Part III and tweaks it to work on lots
of other devices, including tablets, wearables, televisions, and the Amazon Fire.

4 Android Application Development For Dummies

 Part V: The Part of Tens
 Part V gives you a tour of sample applications that prove to be stellar launch-
ing pads for your Android apps, and useful Android libraries that can make
your Android development career a lot easier.

 Icons Used in This Book

 This icon indicates a useful pointer that you shouldn’t skip.

 This icon represents a friendly reminder about a vital point you should keep
in mind while proceeding through a particular section of the chapter.

 This icon signifies that the accompanying explanation may be informative but
isn’t essential to understanding Android application development. Feel free
to skip these snippets, if you like.

 This icon alerts you to potential problems that you may encounter along the
way. Read and remember these tidbits to avoid possible trouble.

 This icon signifies that you’ll find additional relevant content at www.
dummies.com/extras/androidappdevelopment .

 Beyond the Book
 In addition to the content in this book, you’ll find some extra content avail-
able at the www.dummies.com website:

 ✓ The Cheat Sheet for this book at www.dummies.com/cheatsheet/
androidappdevelopment

 ✓ Online articles covering additional topics at www.dummies.com/
extras/androidappdevelopment

www.dummies.com/extras/androidappdevelopment
http://www.dummies.com/cheatsheet/androidappdevelopment

5 Introduction

 Here you’ll find the articles referred to on the page that introduces each
part of the book. So, feel free to visit www.dummies.com/extras/
androidappdevelopment . You’ll feel at home there . . . find coffee and
donuts . . . okay, maybe not the coffee and donuts, but you can find cool
supplementary information about things we couldn ’ t fit into the book,
such as testing, GPS location tracking, voice control, and other fun topics.

 ✓ Updates to this book, if any, at www.dummies.com/extras/
androidappdevelopment

 ✓ Don’t want to type all the code in the book? You can download it from
the book’s website at www.dummies.com/go/androidappdevfd .

 ✓ If there are ever updates to this book, you can find them at www.
dummies.com/go/androidappdevfdupdates .

www.dummies.com/extras/androidappdevelopment
www.dummies.com/extras/androidappdevelopment
http://www.dummies.com/go/androidappdevfdupdates

 Visit www.dummies.com for great Dummies content online.

Part I

 Getting Started with Your
First Android Application

www.allitebooks.com

http://www.allitebooks.org

 In this part . . .
 Part I introduces you to the Android platform and describes what
makes a spectacular Android application. You explore various
parts of the Android software development kit (SDK) and see how
to use them in your applications. You install the tools and frame-
works necessary to develop Android applications.

 Developing Spectacular
Android Applications

 In This Chapter
 ▶ Seeing reasons to develop Android apps

 ▶ Starting with the basics of Android development

 ▶ Working with the hardware

 ▶ Getting familiar with the software

 Google rocks! Google acquired the Android platform in 2005 (see the
sidebar “The roots of Android,” later in this chapter) to ensure that

a mobile operating system (OS) can be created and maintained in an open
platform. Google continues to pump time and resources into the Android
project. Though devices have been available only since October 2008, over
a billion Android devices have now been activated, and more than a million
more are being added daily. In only a few years, Android has already made a
 huge impact.

 It has never been easier for Android developers to make money by develop-
ing apps. Android users trust Google, and because your app resides in the
Google Play Store, many users will be willing to trust your app, too.

 Why Develop for Android?
 The real question is, “Why not develop for Android?” If you want your app
to be available to millions of users worldwide or if you want to publish apps
as soon as you finish writing and testing them or if you like developing on an
open platform, you have your answer. But in case you’re still undecided,
continue reading.

Chapter 1

10 Part I: Getting Started with Your First Android Application

 Market share
 As a developer, you have an opportunity to develop apps for a booming
market. The number of Android devices in use is greater than the number of
devices on all other mobile operating systems combined. The Google Play
Store puts your app directly and easily into a user’s hands. Users don’t have
to search the Internet to find an app to install — they can simply go to the
preinstalled Google Play Store on their devices and have access to all your
apps. Because the Google Play Store comes preinstalled on most Android
devices (see Chapter 19 for some exceptions), users typically search the
Google Play Store for all their application needs. It isn’t unusual to see an
app’s number of downloads soar in only a few days.

 Time to market
 Because of all the application programming interfaces (APIs) packed into
Android, you can easily develop full-featured applications in a relatively short
time frame. After you register as a developer at the Google Play Store, simply
upload your apps and publish them. Unlike other mobile marketplaces, the
Google Play Store has no app approval process. All you have to do is write
apps and publish them.

 Though anyone can publish almost any type of app, maintain your good
karma — and your compliance with the Google terms of service — by pro-
ducing family-friendly apps. Android has a diverse set of users from all over
the world and of all ages.

 Open platform
 The Android operating system is an open platform: Any hardware manufac-
turer or provider can make or sell Android devices. As you can imagine, the
openness of Android has allowed it to gain market share quickly. Feel free to
dig into the Android source code to see how it works, by visiting https://
source.android.com . By using open source code, manufacturers can create
custom user interfaces (UIs) and even add new features to certain devices.

 Device compatibility
 Android can run on devices of many different screen sizes and resolutions,
including watches, phones, tablets, televisions, and more. Android comes

11 Chapter 1: Developing Spectacular Android Applications

supplied with tools to help you develop applications that support multiple
types of devices. If your app requires a front-facing camera, for example,
only devices with front-facing cameras can “see” your app in the Google Play
Store — an arrangement known as feature detection. (For more information on
publishing your apps to the Google Play Store, see Chapter 8 .)

 Mashup capability
 A mashup combines two or more services to create an application. You can
create a mashup by using the camera and the Android location services, for
example, to take a photo with the exact location displayed on the image.
Or you can use the Map API with the Contacts list to show all contacts on a
map. You can easily make apps by combining services or libraries in count-
less new and exciting ways. A few other types of mashups that can help your
brain juices start pumping out ideas include the following:

 ✓ Geolocation and social networking: Suppose that you want to write an
app that tweets a user’s current location every ten minutes throughout
the day. Using the Android location services and a third-party Twitter
API (such as iTwitter), you can do it easily.

 ✓ Geolocation and gaming: Location-based gaming, which is increasingly
popular, is a helpful way to inject players into the thick of a game. A
game might run a background service to check a player’s current loca-
tion and compare it with other players’ locations in the same area. If
a second player is within a specified distance, the first one could be
notified to challenge her to a battle. All this is possible because of GPS
technology on a strong platform such as Android. If you’re interested
in developing games for Android, check out https://developers.
google.com/games/services/ for more information about Google
Play Games services.

 The roots of Android
 Though most people aren’t aware of it, Google
didn’t start the Android project. The first ver-
sion of the Android operating system was cre-
ated by Android, Inc., a small start-up company
in Silicon Valley that was purchased by Google
in August 2005. The founders (who worked for

various Internet technology companies, such
as Danger, Wildfire Communications, T-Mobile,
and WebTV) became part of the Google team
that helped create what is now the full-fledged
Android mobile operating system.

https://developers.google.com/games/services/

12 Part I: Getting Started with Your First Android Application

 ✓ Contacts and Internet: With all the useful APIs at your disposal, you can
easily make full-featured apps by combining the functionality of two or
more APIs. You can combine the Internet and names from the Contacts
list to create a greeting-card app, for example. Or you may simply want
to add an easy way for users to contact you from an app or enable them
to send your app to their friends. (See “Google APIs,” later in this chap-
ter, for more information on the APIs.)

 Developers can make Android do almost anything they want, so use your
best judgment when creating and publishing apps for mass consumption.
Just because you want live wallpaper to highlight your version of the hula in
your birthday suit doesn’t mean that anyone else wants to see it.

 Android Development Basics
 Thank goodness you don’t have to be a member of Mensa to develop Android
applications! Developing in Android is simple because its default language is
Java. Though writing Android applications is fairly easy, writing code in gen-
eral is no easy feat.

 If you’ve never developed applications before, this book may not be the
best place to start. Pick up a copy of Beginning Programming with Java For
Dummies, by Barry Burd (John Wiley & Sons, Inc.) to learn the ropes. After
you have a basic understanding of Java under your belt, you should be ready
to tackle this book.

 Although the Android operating system consists primarily of Java code, some
of the framework isn’t written in Java. Android apps use small amounts of
XML in addition to Java. You need to cement your basic understanding of
XML before delving into this book.

 If you need an introduction to XML, check out XML For Dummies, by Lucinda
Dykes and Ed Tittel (John Wiley & Sons, Inc.).

 If you already know how to use Java and XML, then congratulations — you’re
ahead of the curve.

 Java: Your Android programming language
 Android applications are written in Java — not the full-blown version of
Java that’s familiar to developers using Java Platform, Enterprise Edition
(JEE), but a subset of the Java libraries that are most useful on Android.

13 Chapter 1: Developing Spectacular Android Applications

This smaller subset of Java excludes classes that aren’t suitable for mobile
devices. If you have experience in Java, you should feel right at home devel-
oping apps in Android.

 Even with a Java reference book on hand, you can always search at www.
google.com or www.stackoverflow.com to find information about topics
you don’t understand. Because Java isn’t a new language, you can find plenty
of examples on the web that demonstrate how to do virtually anything.

 Not every class that’s available to Java programmers is also available on Android.
Verify that it’s available to you before you start trying to use it. If it’s not, an
alternative is probably bundled with Android that can work for your needs.

 Activities
 An Android application can consist of one or more activities. An activity
serves as a container for both the user interface and the code that runs
it. You can think of activities as pages of your app — one page in your
app corresponds to one activity. Activities are discussed in more detail in
Chapters 3 and 5 .

 Fragments
 Every “page” in an Android application is a separate activity. In older versions
of Android, you would place any element that you wanted to display onscreen
directly into the Activity class. This arrangement works well when viewed
on a phone’s small screen, on which you typically can’t see a lot of information
at once. You may be able to see a list of tasks, or a task that you’re editing, but
cramming both elements onto the screen at the same time is impossible.

 On a tablet, however, you’re swimming in real estate. Not only does it make
sense to let users see a list of tasks and edit them on the same page, but it
also looks silly not to let them do so. The screen size on a tablet is simply too
big to fill with a single long list of items or lots of empty space.

 Android doesn’t allow you to easily put two activities on the screen at the
same time. What to do? The answer is fragments .

 Using fragments, a single list fragment can occupy half the screen, and an
edit fragment can occupy the other half. Now each page of your app can con-
tain multiple fragments. You can find out how to use fragments in your phone
application in Chapter 9 and how to scale your app to tablets in Chapter 17 .

14 Part I: Getting Started with Your First Android Application

 You can think of fragments as miniature activities: Because every fragment
has its own lifecycle, you know when it’s being created and destroyed, among
other information. Fragments go inside activities.

 Intents
 Intents make up the core message system that runs Android. An intent is com-
posed of two elements:

 ✓ An action: The general action to be performed (such as view, edit, or
dial) when the intent is received

 ✓ Data: The information that the action operates on, such as the name of a
contact

 Intents are used to start activities and to communicate among various parts
of the Android operating system. An application can send and receive intents.

 Sending messages with intents
 When you send an intent, you send a message telling Android to make some-
thing happen. The intent can tell Android to start a new activity from within
your application or to start another application.

 Registering intent filters
 Sending an intent doesn’t make something happen automatically. You have
to register an intent filter that listens for the intent and then tells Android
what to do — whether the task is starting a new activity or another app. If
more than one receiver can accept a given intent, a chooser can be created
to allow the user to decide which app to use to complete the activity — such
as how the YouTube app allows the user to choose whether to watch videos
in the YouTube app or in a browser.

 Various registered receivers, such as the Gmail and the Hangouts apps, handle
image-sharing intents by default. When you find more than one possible intent
filter, a chooser opens with a list of options to choose from and asks what to
do: Use email, messaging, or another application, as shown in Figure 1-1 .

 Follow best practice and create choosers for intents that don’t target other
activities within your application. If the Android system cannot find a match
for an intent that was sent, and if a chooser wasn’t created manually, the appli-
cation crashes after experiencing a runtime exception — an unhandled error
in the application. (Android expects developers to know what they’re doing.)
See http://d.android.com/training/basics/intents/sending.
html for more information about using intent choosers.

15 Chapter 1: Developing Spectacular Android Applications

 Cursorless controls
 Unlike the PC, where you manipulate the mouse to move the cursor, an
Android device lets you use your fingers to do nearly anything you can do
with a mouse. Rather than right-click in Android, however, you long-press an
element until its context menu appears.

 As a developer, you can create and manipulate context menus. You can allow
users to use two fingers on an Android device, rather than a single mouse
cursor, for example. Fingers come in all sizes, so design the user interface in
your apps accordingly. Buttons should be large enough (and have sufficient
spacing) so that even users with larger fingers can interact with your apps
easily, whether they’re using your app on a phone or tablet.

 Views
 A view, which is a basic element of the Android user interface, is a rectangular
area of the screen that’s responsible for drawing and event handling. Views
are a basic building block of Android user interfaces, much like paragraph
 <p> or anchor <a> tags are building blocks of an HTML page. Some common
views you might use in an Android application might be a TextView ,
 ImageView , Layout , and Button , but there are dozens more out there for
you to explore. You can also implement your own custom views.

 Many more views are ready for you to use. For complete details about
views, check out the android.widget and android.view packages in
the Android documentation at http://d.android.com/reference/
android/widget/package-summary.html .

 Figure 1-1:
 A chooser.

http://d.android.com/reference/android/widget/package-summary.html

16 Part I: Getting Started with Your First Android Application

 Background operations
 There are various ways to run multiple operations at the same time on
Android without having to manage a thread yourself (which is generally not
recommended). When loading data from a database to show on the screen,
you’ll generally find yourself using loaders. Loaders take care of managing
background threads for you, and they also watch your database for changes
so that your UI updates when the data changes. You can find out more about
loaders in Chapter 13 .

 For other kinds of background operations, you may find yourself using the
 AsyncTask class to run an operation on a background thread. AsyncTask (s)
let you start a task to run in the background, and then they return the result
to your foreground thread so that you can update your UI. This creates a
clean programming model for asynchronous processing.

 Threads let you run multiple sets of instructions at the same time on the same
device. They all share the same memory and CPU, but when one thread is blocked
waiting for something, other threads can be resumed to keep the CPU busy.

 You use asynchronous processing for tasks that might take more than a small
fraction of a second, such as network (Internet) communication; reading or
writing to storage; or media processing. When users have to wait for your
task to complete, use an asynchronous call and an element in the user inter-
face to notify them that something is happening.

 Failing to use an asynchronous programming model can cause users of your
application to (correctly) believe that it’s buggy. Downloading the latest Twitter
messages via the Internet takes time, for example. If the network slows and you
aren’t using an asynchronous model, the application will lock up and the user will
likely assume that something is wrong because the application isn’t responding
to her interaction. If the application fails to respond within a reasonable length
of time, the user sees the Application Not Responding (ANR) dialog box, as
shown in Figure 1-2 . The user can then choose whether to close the application
or wait for it to recover. Most of the time, users press OK and close your app.

 To follow the best practice, run CPU-intensive or long-running code inside
another thread, as described in “Keeping Your App Responsive” on the
Android developer site (http://d.android.com/guide/practices/
design/responsiveness.html).

 Background services
 You may already know what a service is: It’s an application that runs in the
background and doesn’t necessarily have a user interface. A classic example

17 Chapter 1: Developing Spectacular Android Applications

is an antivirus application that usually runs in the background as a service.
Even though you don’t see it, you know that it’s running.

 Android apps can also have background services. Most music players that
can be downloaded from the Google Play Store, for example, run as back-
ground services. Users can then listen to music while checking email or
 performing other tasks that require the use of the screen.

 Android support library
 It’s always so much fun to write apps for the latest and greatest devices!
However, you may find yourself wanting to support older devices from time
to time. After all, not all of your users may be running the very latest versions
of Android.

 Luckily, Android provides a solution. You can use the Android support
library to make your apps compatible with devices all the way back to the
Android Stone Age (circa 2010 A.D. or even earlier).

 In addition to supplying fragments and loaders, the support library adds
 several other newer APIs to old devices, such as:

 ✓ RecyclerView : Creates an endless scrollable list of views

 ✓ CardView : A “card” you can use with a RecyclerView to create a
scrollable list of cards in your apps

 ✓ ViewPager : Swipes pages left and right

 ✓ ShareCompat : For sharing things with your friends

 Figure 1-2:
 The ANR

dialog box.

18 Part I: Getting Started with Your First Android Application

 Visit https://developer.android.com/tools/support-library/
features.html to see the complete list of features in the Android support
library. Visit https://developer.android.com/about/dashboards to
see how many Android users are using which versions of Android.

 Action bar
 The action bar is where you’ll put many of the buttons and menus that will
enable users to interact with your application. The action bar is almost
always present across the top of the screen — and it’s therefore extremely
difficult not to notice. See Figure 1-3 for an example of the action bar from the
YouTube application.

 Check out these elements on the action bar:

 ✓ Up Button, app logo: Tap the Up button or the app logo on the action
bar to move up one level.

 Note the subtle distinction between the Up button and the Back button:
Pressing the Back button returns the user to the previous activity,
regardless of which app is being used; pressing the Up button returns
the user to the previous activity in the current application, even if that
activity wasn’t an activity the user was just performing.

 Suppose that you’re viewing a web page in the Chrome browser and you
tap a link to open the YouTube app. Pressing the Back button returns
you to Chrome; pressing the Up button takes you to the YouTube app’s
home page.

 ✓ Page: Next to the application icon on the action bar is the title of
the current page. If your application lets you filter data on the current
page, you can add a drop-down menu there to allow users to change
the filter.

 Figure 1-3:
 The

YouTube
action bar
for a funny
cat video.

https://developer.android.com/tools/support-library/features.html

19 Chapter 1: Developing Spectacular Android Applications

 ✓ Action: You can see, on the right end of the action bar, various actions
that the user can perform. In the YouTube app shown in Figure 1-3 , the
user can add the video to a list, share the video, or search for more
videos. Actions can take the form of text or icons (as shown in the
figure) or both. You can add as many actions as you want. Actions that
don’t fit onscreen are placed on an overflow submenu on the right end.

 ✓ Context action bar (not shown): The action bar can change to show
what the user is doing. For example, if a user chooses several items from
a list, you can replace the standard action bar with a contextual action
bar to let users choose actions based on those items. For example, if you
want to allow bulk deletions, you can provide a Delete Items button on
the contextual action bar.

 Visit http://d.android.com/guide/topics/ui/actionbar.html for
more information about the versatility that this element of the user interface
can add to your app.

 The action bar doesn’t exist at all on Android 2.x and earlier! Any action bars
you add to your application will not show up in these versions of Android.
But don’t despair, you can use the action bar on 2.1 or later by using the
support library.

 Widgets and notifications
 Users might want to access information from your app without explicitly
starting it up first. For example, think about how the Gmail app allows users
to preview emails in a notification before they open the Gmail app, or how
you can see the current time on your launcher without having to open the
clock app. These are examples of using notifications and launcher widgets.

 ✓ Launcher Widgets: Widgets are like “mini apps” that provide access to
functionality in your app directly from the phone ’ s launcher (also known
as Home screen). Widgets are easy to find in the Applications list. They
can display information, contain buttons, and even contain list views to
handle limited swiping and scrolling.

 ✓ Notifications: Android notifications are expandable and collapsible to
allow users to see more information about them. For example, if your
mother sends you a photo of her new puppy in a text message, you can
see it directly in the notification without having to open the app. A noti-
fication about a new email message can show a preview of the message
text so that it can be read directly.

 In addition, a notification also lets the user take action on it directly
from whichever app is being used. To reply to a birthday email from
Grandma, for example, simply tap the Reply button on the notification to
launch Gmail with an editor so that you can thank her.

20 Part I: Getting Started with Your First Android Application

 Hardware Tools
 Google gives developers the tools necessary to create top-notch, full-featured
mobile apps. Google makes it simple to tap into, and make use of, all avail-
able hardware on a device.

 To create a spectacular Android app, you should take advantage of all that
the hardware has to offer. Don’t get us wrong — if you have an idea for an
app that needs no hardware assistance, that’s okay, too.

 Android devices come supplied with several hardware features that you can
use to build apps. Table 1-1 describes the hardware features available on
most Android devices.

 Table 1-1 Android Device Hardware

Android Hardware Feature What It Does
Accelerometer Indicates whether the phone is moving

Bluetooth radio Indicates whether a headset is connected

Compass Indicates in which direction the user is heading

Camera Take pictures and record video

GPS receiver Indicates the user’s location

 Most Android devices are released with the hardware discussed in the fol-
lowing four sections, but not all devices are created equal. Android is free for
hardware manufacturers to distribute, so it’s used in a wide range of devices,
including some made by small manufacturers overseas (and it isn’t uncom-
mon for some of these devices to be missing a feature or two).

 Android devices come in all shapes and sizes: phones, tablets, ebook read-
ers, watches, televisions, and cars. The engineers behind Android provide
tools that let you easily deploy apps on multiple screen sizes and resolutions.
Don’t worry — the Android team has done all the hard work for you.
Chapter 4 covers the basics of screen sizes and densities.

 Touchscreen
 The Android touchscreen opens a ton of possibilities to enhance users’
interaction with your apps. Users can swipe, flip, drag, or pinch to zoom,

21 Chapter 1: Developing Spectacular Android Applications

for example, by moving a finger on the touchscreen. You can even supply
custom gestures in your app, which opens even more possibilities.

 Android also supports multitouch capability, which lets a user touch the
entire screen with more than one finger at a time.

 Hardware buttons are old news. You can place buttons of any shape any-
where on the screen to create the user interface best suited for your app.

 GPS
 Combining the Android operating system with the GPS receiver on a device
lets the developer access, and track, a user’s location at any time. The
Foursquare social networking app is a good example — it uses the GPS fea-
ture to determine the user’s location and then accesses the web to determine
the closest venues to the user.

 Another helpful example is the Maps application’s ability to pinpoint a
user’s location on a map and provide directions to that person’s destination.
Combining Android with GPS hardware gives you access to the user’s exact
GPS location. Many apps use this combination to show users where the near-
est gas station, coffeehouse, or even restroom is located.

 Accelerometer
 An accelerometer is a device that measures acceleration, and Android comes
packed with accelerometer support. The accelerometer tells you whether a
user’s device is being moved or shaken, and even in which direction it’s being
turned. You can then use this information as a way to control your application.

 You can use the accelerometer to perform simple tasks, such as determin-
ing when the device has been turned upside down and then completing an
action. For example, you can immerse users in game play by having them
shake their device to roll the dice. This level of usefulness is setting mobile
devices apart from typical desktop personal computers.

 Android has activity recognition built in, which uses various sensors such as
the accelerometer and the GPS to determine whether your user is likely walk-
ing, running, driving, or bicycling right now. Check out http://d.android.
com/training/location/activity-recognition.html for more infor-
mation about using activity recognition.

http://d.android.com/training/location/activity-recognition.html

22 Part I: Getting Started with Your First Android Application

 SD card
 Android gives you the tools you need to access (save and load) files on
the device’s SD card — a portable storage medium that you can insert into
 compatible phones, tablets, and computers. To avoid bloating your app with
extra required resources and hogging limited built-in memory, you can down-
load some or all of your application’s resources from your web host and save
them to the device’s SD card (which makes users less likely to uninstall your
app when they need to clear space on their devices).

 Not every device has an SD card preinstalled, though most do. Always ensure
that a device has an SD card installed and that adequate space is available
before trying to save files to it. Also, be aware that any file you place on an
SD card is not secure, and can be read by other apps on the user’s phone.

 Software Tools
 Various Android tools are at your disposal while you’re writing Android
applications. The following sections outline some of the most popular tools
to use in your day-to-day Android development process.

 Internet
 Thanks to the Internet capabilities of Android devices, users can find real-
time information on the Internet, such as the next showing of a new movie or
the next arrival of a commuter train. As a developer, you can have your apps
use the Internet to access real-time, up-to-date data, such as weather, news,
and sports scores, or (like Pandora and YouTube) to store your application’s
icons and graphics.

 You can even offload your application’s more intense processes to a web
server when appropriate, to save processing time or to streamline the app. In
this well-established software architecture, known as client–server computing,
the client uses the Internet to make a request to a server that’s ready to per-
form some work for your app. The built-in Maps app is an example of a client
that accesses map and location data from a web server.

 Audio and video support
 Including audio and video in your apps is a breeze in the Android operating
system. Many standard audio and video formats are supported, and adding

23 Chapter 1: Developing Spectacular Android Applications

multimedia content to your apps — such as sound effects, instructional
videos, background music, and streaming video and audio from the Internet —
couldn’t be easier. Be as creative as you want to be. The sky’s the limit.

 Contacts
 Your app can access a user’s Contacts list, which is stored on the device, to
display the contact information in a new or different way, or you can create
your own Contacts list. You might even write an app that couples the contact
information with the GPS system to alert the user whenever she’s near a con-
tact’s address.

 Don’t use information from the Contacts list in a malicious way. Use your
imagination, but be responsible about it. (See the next section, “Security.”)

 Security
 Suppose that someone releases an app that sends a user’s entire Contacts
list to a server for malicious purposes. For this reason, most functions that
modify a user’s Android device or access its protected content need specific
 permissions . For example, if you want to download an image from the web,
you need permission to use the Internet so that you can download the file to
your device, and you need a separate permission to save the image file to an
SD card. When your app is being installed, the user is notified of the permis-
sions your app is requesting and can decide whether to proceed. Though
asking for permission isn’t optional, it’s as easy as implementing a single line
of code in your application’s manifest file. (Manifest files are described in
Chapter 3 .)

 Google API s
 Users of the Android operating system aren’t limited to making calls, organiz-
ing contacts, or installing apps. As a developer, you have great power at your
fingertips — you can even integrate maps into your application, for example,
by using the Google Maps API.

 Pinpointing locations on a map
 Perhaps you want to write an app that displays a user’s current location to
friends. You can spend hundreds of hours developing a mapping system, or

24 Part I: Getting Started with Your First Android Application

you can use the Google Maps API. You can embed the API in your application
without investing hundreds of development hours or even a single cent.
Using the Maps API, you can find almost anything that has an address. The
possibilities are endless — a friend’s location, the nearest grocery store, or
your favorite gas station, for example.

 Showing your current location to friends is cool, but the Google Maps API can
also access the Google Navigation API, to pinpoint your location and show
your users how to reach it.

 Messaging in the cloud
 Suppose that your application’s data is stored in the cloud (the Internet) and
you download all of its assets the first time it runs. And then you realize that
an image is outdated. To update the image, the app needs to know that the
image has changed. You can use the Google Cloud Messaging framework to
send a cloud-to-device notification (a message from the web server to the
device) to direct the app to update the image. This process works even if
your app isn’t running. When the device receives the message, it dispatches a
message to start your app so that it can take the appropriate action.

 The KISS principle
 The most difficult task in developing applica-
tions is remembering the KISS principle: Keep
It Simple, Stupid. One way to unnecessarily
complicate the code you create is to dive into
development before understanding the role of
the built-in APIs. Choosing this route may take
more of your time than simply glossing over
the Android documentation; you don’t have to
memorize the documentation, but do yourself a
favor and at least skim it. Then you can see how
easily you can use the built-in functionality —
and how much time it can save you. You can
easily write multiple lines of code to complete
a one-line task. Changing the volume of the
media player or creating a menu, for example,

is a simple process, but if you don’t know how
to use the APIs, you may cause more problems
by having to rewrite them.

 Another way to muck things up is to add
unnecessary functionality. Just give users
the simplest way to operate their devices. For
example, avoid designing a fancy, custom-
tab layout when a couple of menu items will
suffice. Also, Android comes supplied with
enough widgets (built-in controls) to help you
accomplish virtually any task. Using these
controls makes your app even easier for users
to work with because they already know and
love them.

 Prepping Your Development
Headquarters

 In This Chapter
 ▶ Becoming an Android application developer

 ▶ Collecting your tools of the trade

 ▶ Downloading and installing the Android software development kit (SDKs)

 ▶ Getting and configuring Android Studio

 ▶ Working with the Android development tools

 All the software that you need to develop Android applications is free.
That’s where the beauty of developing Android applications lies. The

basic building blocks you need to develop rich Android applications — the
tools, the frameworks, and even the source code — are free. No one gives you
a free computer, but you get to set up your development environment and
start developing applications for free, and you can’t beat free. Well, maybe you
can — if someone pays you to write an Android application, but you’ll reach
that. This chapter walks you through the necessary steps to install the tools
and frameworks so that you can start building kick-butt Android applications.

 Developing the Android Developer
Inside You

 Becoming an Android developer isn’t a complicated task. And it’s likely sim-
pler than you believe. To see what’s involved, ask yourself these questions:

 ✓ Do I want to develop Android applications?

 ✓ Do I like free software development tools?

Chapter 2

26 Part I: Getting Started with Your First Android Application

 ✓ Do I like to pay no developer fees?

 ✓ Do I have a computer to develop on?

 If you answered yes to every question, today is your lucky day — you’re
ready to become an Android developer.

 There’s always a catch, right? You can develop for free to your heart’s con-
tent, but as soon as you want to publish your application to the Google Play
Store, where you upload and publish your apps, you need to pay a small,
nominal registration fee. At this writing, the fee is $25.

 If you’re developing an application for a client, you can publish your applica-
tion as a redistributable package to give to him. Then your client can publish
the application to the Google Play Store, using his Google account, to ensure
that you don’t have to pay a fee for client work. You can then be a bona fide
Android developer and never have to pay a fee. That’s cool.

 Assembling Your Toolkit
 After you know that you’re ready to be an Android developer, grab your com-
puter and get cracking on installing the tools and frameworks necessary to
build your first blockbuster application.

 Linux kernel
 Android was created on top of the open source Linux kernel. The Android
team chose to use this kernel because it provided proven core features on
which to develop the Android operating system. The features of the Linux
kernel include (but aren’t limited to)

 ✓ Security model: The Linux kernel handles security between the
 application and the system.

 ✓ Memory management: The kernel handles memory management,
 leaving you free to develop your app.

 ✓ Process management: The Linux kernel manages processes well,
 allocating resources to processes as they need them.

 ✓ Network stack: The Linux kernel also handles network communication.

 ✓ Driver model: The goal of Linux is to ensure that the application works.
Hardware manufacturers can build their drivers into the Linux build.

27 Chapter 2: Prepping Your Development Headquarters

 Android framework
 Atop the Linux kernel, the Android framework was developed with various
features. These features were pulled from numerous open source projects.
The output of these projects resulted in these elements:

 ✓ The Android runtime: The Android runtime is composed of Java core
libraries and ART (the Android RunTime). Older versions of Android
(4.x and earlier) use the Dalvik runtime.

 ✓ Open GL (graphics library): This cross-language, cross-platform appli-
cation program interface (API) is used to produce 2D and 3D computer
graphics.

 ✓ WebKit: This open source web browser engine provides the functional-
ity to display web content and to simplify page loading.

 ✓ SQLite: This open source relational database engine is designed to be
embedded in devices.

 ✓ Media frameworks: These libraries allow you to play and record audio
and video.

 ✓ Secure Sockets Layer (SSL): These libraries are responsible for Internet
security.

 See Figure 2-1 for a list of common Android libraries.

 Android source code
 You should be aware that the full Android
source code is open source, which means that
it’s not only free to use but also free to modify.
If you want to download the Android source

code and create a new version of Android,
you’re free to do so. Check out the Android
Open Source Project at https://source.
android.com .

LIBRARIES ANDROID RUNTIME

Surface Manager Media
Framework

FreeType

SSL

SQLite Core Libraries

Dalvik Virtual
MachineWebKit

libc

OpenGL | ES

SGL

 Figure 2-1:
 Android

and other
third-party

libraries
that sit atop
the Linux 3.4

kernel.

https://source.android.com

28 Part I: Getting Started with Your First Android Application

 Application framework
 If you’ve read the preceding section, you may say, “Well, that’s all nice and
well, but how do these libraries affect me as a developer?” It’s simple: All
these open source frameworks are available to you via Android. You don’t
have to worry about how Android interacts with SQLite and the surface man-
ager; you use them as tools in your Android tool belt.

 The Android team has built on a known set of proven libraries, built in the
background, and has given them to you, all exposed through Android inter-
faces. These interfaces wrap up the various libraries and make them useful to
the Android platform and to you as a developer. You benefit from these fea-
tures because you don’t have to build any of the functionality they provide.
Some of these interfaces include

 ✓ Activity manager: Manages the activity lifecycle.

 ✓ Telephony manager: Provides access to telephony services as well as to
certain subscriber information, such as phone numbers.

 ✓ View system: Handles the views and layouts that make up your user
interface (UI).

 ✓ Location manager: Finds the device’s geographic location.

 Take a look at Figure 2-2 to see the libraries that make up the application
framework.

 From kernel to application, the Android operating system has been
developed with proven open source technologies. You, as a developer,
can therefore build rich applications that have been fostered in the open
source community. See Figure 2-3 for a full picture of how the Android
application framework stacks up. The Applications section is where your
application sits.

APPLICATION FRAMEWORK

Activity Manager

Package
Manager

Telephony
Manager

Window
Manager

Resource
Manager

Content
Providers

Location
Manager

View
System

Notification
Manager

 Figure 2-2:
 A glimpse
at part of

the Android
application
framework.

29 Chapter 2: Prepping Your Development Headquarters

 Sometimes when you’re developing an Android application, you want to use
the same resource as in the core Android system. A good example is an icon for
a Settings menu option. By accessing the Android source code, you can browse
the various resources and download the resources you need for your project.
Having access to the source code also allows you to dig in and see exactly how
Android does what it does. Be aware though that you need to follow the
requirements of the license, as well as follow Google’s branding guidelines
when borrowing these resources. Find out more at http://d.android.com/
distribute/googleplay/promote/brand.html .

 Java knowledge
 The Java programming language is one of the glorious tools that make pro-
gramming Android a breeze compared with programming for other mobile
platforms. Whereas other languages insist that you manage memory, allocate
and de-allocate bytes, and then shift bits around like a game of dominoes, the
Java runtime helps take care of that for you. The Java runtime allows you to
focus on writing code to solve a business problem by using a clean, under-
standable programming language (or to build that next cool first-person
shooter game you’ve been dreaming of) instead of focusing on the “plumb-
ing” just to get the screens to show up.

 You’re expected to understand the basics of the Java programming language
before you write your first Android application. If you’re feeling rusty and
need a refresher course on Java, you can visit the Java tutorials site at
 http://docs.oracle.com/javase/tutorial .

APPLICATION FRAMEWORK

LINUX KERNEL

APPLICATIONS

Activity Manager

Package
Manager

Home Contacts Phone Browser …

Telephony
Manager

Window
Manager

Resource
Manager

Content
Providers

Location
Manager

View
System

Notification
Manager

LIBRARIES ANDROID RUNTIME

Surface Manager

Display
Driver

Keypad Driver

Camera Driver Flash Memory
Driver

Binder (IPC)
Driver

Power
Management

Audio
Drivers

WiFi Driver

Media
Framework

FreeType

SSL

SQLite Core Libraries

Dalvik Virtual
MachineWebKit

libc

OpenGL | ES

SGL

 Figure 2-3:
 How the
Android

application
framework
stacks up.

http://d.android.com/distribute/googleplay/promote/brand.html

30 Part I: Getting Started with Your First Android Application

 Though you find a little Java information in this book, you may want to spend
some time with a good book like Java All-in-One For Dummies, by Doug Lowe
(John Wiley & Sons, Inc.), if you have no Java experience.

 Tuning Up Your Hardware
 You can develop Android applications on various operating systems, includ-
ing Windows, Linux, and Mac OS X. In this book, you find a combination of the
Windows 8 operating system and Mac OS X, but you can use Linux as well.

 Operating system
 Android supports these platforms:

 ✓ Windows XP or later

 ✓ Mac OS X 10.5 or later

 ✓ Linux with GNOME or KDE

 Throughout this book, some examples use Windows 7 64-bit Edition.
Windows paths look similar to this:

 c:\path\to\file.txt

 Some examples use Mac OS X; a Mac or Linux path looks similar to this:

 /path/to/file.txt

 Computer hardware
 Before you start installing the required software, make sure that your com-
puter can run it adequately. Just about any desktop or laptop computer man-
ufactured in the past four years will suffice. A computer with 4 or 8 gigabytes
(GB) of RAM should work just fine.

 To ensure that you can install all the tools and frameworks you’ll need, make
sure that you have enough hard drive space to accommodate them. The
Android developer site has a list of hardware requirements, outlining how
much hard drive space each component requires, at https://developer.
android.com/sdk/installing/studio.html .

https://developer.android.com/sdk/installing/studio.html

31 Chapter 2: Prepping Your Development Headquarters

 To save you time, you need at least 3GB of free hard drive space to install all
the tools and frameworks necessary to develop Android applications.

 Installing and Configuring
Your Support Tools

 It’s time to put these exciting Android concepts into action, but before you
can do so, you need to install and configure a few tools, including the SDKs:

 ✓ Android Studio: An easy to use Integrated Development Environment
(IDE) that brings together Java and the Android SDK to make it simple to
write Android apps.

 ✓ Java JDK: The Java Development Kit. Lays the foundation for the
Android SDK.

 ✓ Android SDK: Included in Android Studio. Provides access to Android
libraries and allows you to develop for Android.

 The following sections show you how to acquire and install all these tools.

 A benefit of working with open source software is that, most of the time, you can
get the tools to develop the software for free. Android is no exception to that
rule. All the tools that you need to develop rich Android applications are free.

 Installing Android Studio
 To download Android Studio, first go to https://developer.android.com/
sdk/installing/studio.html and download Android Studio. Then go
through the following steps to get to the Android Studio boot screen, as in
Figure 2-4 :

 Mac users
 If you’re a Mac user, follow these steps to download Android Studio:

1. Open the downloaded DMG file, android-studio-ide-*.dmg .

2. From the resulting Android Studio DMG volume, drag and drop
Android Studio into the Applications folder.

https://developer.android.com/sdk/installing/studio.html

32 Part I: Getting Started with Your First Android Application

3. Eject the Android Studio DMG volume so that you don’t accidentally
run the wrong Android Studio.

4. Open the Applications folder and double-click Android Studio.

 Depending on your security settings, when you attempt to open
Android Studio, you might see a warning that says the package
is damaged and should be moved to the trash. If this happens,
choose System Preferences➪Security & Privacy and, under Allow
applications downloaded from, select Anywhere. Then open Android
Studio again.

5. Depending on your Mac, you may be asked to install Java at this
point.

 Click OK and Java will be automatically installed for you.

 Windows users
 If you’re a Windows user, follow these steps to download Android Studio:

1. Launch the downloaded EXE file, android-studio-bundle-*.exe .

2. Follow the setup wizard to install Android Studio.

3. Open the Start screen and launch Android Studio.

 On some Windows systems, the launcher script does not find where
Java is installed. If you encounter this problem, you need to set an envi-
ronment variable indicating the correct location.

 Figure 2-4:
 The Android
Studio boot

screen.

33 Chapter 2: Prepping Your Development Headquarters

 Choose Start menu➪Computer➪System Properties➪Advanced System
Properties. Then choose Advanced tab➪Environment Variables and add
a new system variable, JAVA_HOME , that points to your JDK folder — for
example, C:\ProgramFiles\Java\jdk1.8.0_20 .

 If you do not have the Java JDK installed, see the next section.

 Installing Java 7
 On some systems, you may see an error that the system cannot find the
Java 7 JDK.

 If this happens, visit www.oracle.com/technetwork/java/javase/
downloads/jdk7-downloads-1880260.html to download the Java 7 JDK
appropriate for your machine. Install it, then run Android Studio again.

 If you’re on a Mac and you continue to see the same error after installing
Java 7, you may also need to install Java 6. Visit http://support.apple.
com/kb/DL1572 to install Java 6 on your Mac, then try again.

 Adding SDK Packages
 Now that you have Android Studio installed, you need to make sure that you
download all the latest SDK components. The first time you launch Android
Studio, it may install part of the SDK for you, but you need to install the full
SDK using the following steps:

1. Choose Tools➪Android➪SDK Manager to launch the SDK manager tool.

2. Click New to select all new packages that are not currently on your
machine, then click the Install button.

3. Click each group in the list and click Accept License for each, then
click Install.

 Now hum the theme from Jeopardy .

 Once this is done, do it again. No seriously. Click New to select all the new
packages, accept the license agreements again, and click Install again. You
shouldn’t have to do it more than twice, but heck, check it a third time while
you’re at it.

www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://support.apple.com/kb/DL1572

34 Part I: Getting Started with Your First Android Application

 Navigating the Android SDK
 Now that you’ve installed the Android SDK, take a look inside the SDK folder:

 On a Mac, open the Terminal app in Applications➪Utilities (or by search-
ing for “Terminal” in Spotlight), then type cd "/Applications/Android
Studio.app/sdk" . On Windows, open the Start menu and search for “cmd”
to launch a command prompt, then type cd "\Users\ <user> \AppData\
Local\Android\android-studio\sdk\" where <user> is your username.

 Whoa — you’ll find a lot of folders in the SDK! Don’t worry: The folder struc-
ture of the Android SDK is easy to understand when you get the hang of it.
You need to understand the structure of the SDK to master it. Table 2-1 out-
lines the contents of each folder.

 Specifying Android Platforms
 Android platform is a fancy way of saying Android version. At this writing, many
versions of Android are available, ranging up through version 5.0. When we say
“specifying an Android platform,” that means that we are developing our app so
that it will work on devices running that specific Android version or later.

 Several versions of Android are still widely used on phones. If you want to
reach the largest number of users, target an earlier version. If you want to
keep your development quick and simple, or if your app requires functionality
that older platforms can’t support, then by all means specify the newer
platform. It would make no sense to write a Bluetooth toggle widget targeting
any platform earlier than 2.0 because earlier platforms can’t use Bluetooth.

 Table 2-1 Folders in the Android SDK

SDK Folder What It Contains
 tools , build-
tools , and
 platform-tools

Various tools that are available for use during
development — such as for debugging, view
management, and building.

 platforms The platforms you target when you build Android applica-
tions, such as folders named android-16 (which is
Android 4.1) and android-8 (which is Android 2.2).

 extras and/or
add-ons

Additional APIs that provide extra functionality. The
Google APIs in this folder include mapping functional-
ity. This folder remains empty until you install any of the
Google Maps APIs.

35 Chapter 2: Prepping Your Development Headquarters

 To view current platform statistics, visit http://d.android.com/
resources/dashboard/platform-versions.html .

 Using SDK Tools for Everyday
Development

 The SDK tools are the building blocks you use in developing Android apps.
New features packed into every release enable you to develop for the latest
version of Android.

 Saying hello to the emulator
 Google provides not only the tools you need to develop apps but also an
 awesome little emulator to test your app. The emulator has some limitations
(for example, it cannot emulate certain hardware components, such as the
accelerometer) but not to worry — plenty of apps can be developed and
tested using only an emulator.

 When you’re developing an app that uses Bluetooth, for example, you should
use a physical device that has Bluetooth on it. If you develop on a speedy
computer, testing on an emulator is fast; on slower machines, however, the
emulator can take a long time to complete a seemingly simple task. If you’re
developing on an older machine, use a physical device. When you’re develop-
ing on a newer, faster machine, use the emulator.

 The emulator is handy for testing apps at different screen sizes and resolu-
tions. It isn’t always practical or possible to have several devices connected
to your computer at the same time, but you can run multiple emulators with
varying screen sizes and resolutions.

 Getting physical with a real
Android device [Windows]
 If you develop on a Windows machine and you want to test your app on
a real-life device, you need to install a driver. If you’re on a Mac or Linux
machine, you can skip this section because you don’t need to install the
USB driver.

http://d.android.com/resources/dashboard/platform-versions.html

36 Part I: Getting Started with Your First Android Application

 When you downloaded the SDK, you also downloaded the USB driver that
you need. To install it, do the following:

1. Enable USB debugging on your phone by following the instructions in
Chapter 5 Installing on a physical Android device.

2. Plug in your device.

3. Choose Control Panel➪Device Manager.

4. Expand Other Devices (Figure 2-5), right-click your device, and select
Update Driver Software.

 Select Browse my computer for driver software.

5. Type \C:\Users\ <user> \AppData\Local\Android\android-
studio\sdk\extras\google\usb_driver (replacing <user> with
your username), and click Next.

 If you can’t find the AppData directory on your computer, it’s because
it’s hidden by default. What you can do is type %appdata% in the loca-
tion field and then click Browse. That unhides the directory and allows
you to navigate the rest of the way there.

6. When asked if you would like to install this device, click Install.

 Figure 2-5:
 Finding

your device
in the

Windows
Device

Manager.

37 Chapter 2: Prepping Your Development Headquarters

 Debugging your work
 The Android Device Monitor equips you with the necessary tools to find
those pesky bugs, allowing you to go behind the scenes as your app is run-
ning to see the state of its hardware, such as the wireless radio. But wait —
there’s more! The Device Monitor also simulates actions normally reserved
for physical devices, such as sending global positioning system (GPS) coor-
dinates manually, simulating phone calls, or simulating text messages. Get
all the Device Monitor details at http://d.android.com/tools/help/
monitor.html .

 Trying out the API and SDK samples
 The API and SDK samples are provided to demonstrate how to use the func-
tionality provided by the API and SDK. If you’re ever stuck and can’t figure
out how to make something work, visit http://d.android.com/samples/
to find samples of almost anything, from using Bluetooth to making a two-way
text application or a 2D game.

 You also have a few samples in your Android SDK. Simply open the Android
SDK and navigate to the samples directory, which contains various samples
that range from interacting with services to manipulating local databases.
Spend some time playing with the samples — the best way to learn to
develop Android applications is to look at existing working code bases and
then experiment with them in Android Studio.

 Giving the API demos a spin
 The API demos inside the samples folder in the SDK are a collection of apps
that demonstrate how to use the included APIs. You can find sample apps
with a ton of examples, such as

 ✓ Notifications

 ✓ Alarms

 ✓ Intents

 ✓ Menus

www.allitebooks.com

http://d.android.com/tools/help/monitor.html
http://d.android.com/samples/
http://www.allitebooks.org

38 Part I: Getting Started with Your First Android Application

 ✓ Search

 ✓ Preferences

 ✓ Background services

 If you get stuck or you simply want to prepare yourself for writing your
next spectacular Android application, check out the complete details at
 http://d.android.com/samples/ .

http://d.android.com/samples/

 Learn how to test your Android app online at www.dummies.com/extras/
androidappdevelopment

 Building and Publishing
Your First Application

Part II

www.dummies.com/extras/androidappdevelopment

 In this part . . .
 Part II walks you through developing a useful Android application.
You start with the basics of the Android tools and then delve into
developing the screens and Home screen widgets that users will
interact with. When the application is complete, you sign your appli-
cation digitally so that you can publish it. You finish by publishing
your application to the Google Play Store.

 Your First Android Project
In This Chapter

 ▶ Creating a new, blank project in Android Studio

 ▶ Understanding errors

 ▶ Creating an emulator

 ▶ Running your first app

 ▶ Studying the anatomy of a project

 Before you start creating that next blockbuster Android application,
I walk you through creating your first Android application to help

 solidify a few key aspects in the Android project-creation process. In this
chapter, you create a simple “Hello Android” application that requires no
coding whatsoever. What — no coding? How is that possible? Follow along
as I show you.

 Starting a New Project
in Android Studio

 First things first: Start Android Studio. You should see a screen that looks
similar to the one shown in Figure 3-1 . Now you’re ready to start cooking with
Android.

 If you haven’t set up your development environment yet, turn to Chapter 2 .
It shows you how to set up all the tools and frameworks necessary to develop
Android applications.

Chapter 3

42 Part II: Building and Publishing Your First Application

 Follow these steps to create your first Android application project:

1. In Android Studio, choose New Project.

 The Create New Project Wizard opens, as shown in Figure 3-2 .

2. Enter Hello Android as the application name.

 The application name is the name of the application as it pertains to
Android. When the application is installed on the emulator or physical
device, this name appears in the application launcher.

3. Enter dummies.com as the Company Domain.

 Your Package name should autocomplete to com.dummies.helloandroid .
This is the name of the application ID, which will generally be the same as
your Java package. (See the nearby sidebar “Java package nomenclature.”)

 Figure 3-1:
 The Android

Studio
development

environ-
ment.

 Figure 3-2 :
 The Create

New Project
Wizard.

43 Chapter 3: Your First Android Project

4. Choose a location for your project.

 The default location will probably be fine. Click Next.

5. Select Phone and Tablet, choose a Minimum SDK version of API 21:
Android 5.0 Lollipop, and click Next.

 The Minimum SDK drop-down list identifies which application program-
ming interface (API) you want to develop for this project. Always set the
Build Target SDK to the latest version that you’ve tested your app on.
When you select Lollipop, you build and test your app on devices going
up to Lollipop. Doing so allows you to develop with the Lollipop APIs,
which include new features such as the Material Design look and feel. If
you had selected Android 2.2 as the target, for example, you wouldn’t be
able to use any features introduced in Lollipop (or 2.3, 3.1, and so on).

6. In the Create Activity box, choose Blank Activity and click Next.

 The Add an Activity screen appears, as shown in Figure 3-3 .

7. Enter MainActivity in the Activity Name box, activity_main in the
Layout name, MainActivity in the Title, and menu_main as the Menu
Resource Name.

 The New Blank Activity screen defines what the initial activity is
called — the entry point to your application. When Android runs your
application, this activity is the first one to be accessed.

 The Layout name is the name of the file that will contain the layout of
your activity’s user interface.

 Java package nomenclature
 A package in Java is a way to organize Java
classes into namespaces similar to modules. Each
package must have a unique name for the classes
it contains. Classes in the same package can
access one another’s package-access members.

 Java packages have a naming convention
defined as the hierarchical naming pattern. Each
level of the hierarchy is separated by periods.
A package name starts with the highest-level
domain name of the organization; then the sub-
domains are listed in reverse order. At the end
of the package name, the company can choose
what it wants to call the package. The package
name com.dummies. helloandroid is
the name used in this example.

 Notice that the highest-level domain is at the
front of the package name (com). Subsequent
subdomains are separated by periods. The
package name traverses through the sub-
domains to get to the final package name of
 helloandroid .

 A great example of another use for a package is
having a Java package for all your web-related
communications. Any time you need to find a
web-related Java class, you can open that Java
package and work on your web-related Java
classes. Packages allow you to keep your code
organized.

44 Part II: Building and Publishing Your First Application

 Understanding Android versioning
 Version codes aren’t the same as version
names. (Huh?) Android has version names and
version codes. Each version name has a single
version code associated with it. The following

table outlines the version names and their
respective version code. You can also find this
information in the Build Target section of the
New Android Project dialog box.

Platform Version API Level Codename

4.0 14 Ice Cream Sandwich

4.0.3 15 Ice Cream Sandwich

4.1 16 Jelly Bean

4.2 17 Jelly Bean

4.3 18 Jelly Bean

4.4 19 Kit Kat

4.4W 20 Wearables

5.0 21 Lollipop

 Figure 3-3:
 Set up your

new activity.

8. Click the Finish button.

 You’re done! You should see Android Studio think for a few moments,
and then create a new project with your new blank activity, ready for
you to populate (see Figure 3-4).

45 Chapter 3: Your First Android Project

 Responding to Errors
 The Android project generated by Android Studio is a fresh, clean project
with no compiled binary sources. You will need to understand what happens
under the hood of Android Studio at a high level. Click the MainActivity
.java tab in Android Studio, then change package com.dummies.
helloandroid to org.dummies.helloandroid , like in Figure 3-5 .

 You may notice a little red square on the upper right-hand side of the window
(refer again to Figure 3-5). That icon is Android Studio’s way of letting you
know that something is wrong with the project in the workspace. If you look
carefully, you’ll see a red line below it that indicates exactly where in the file
the error was detected.

 Now choose Navigate➪Next Highlighted Error. The editor jumps your
cursor to the location of the error so you can fix it. If you keep selecting
it, you can jump from error to error. Once all the errors are fixed, Android
Studio then jumps you from warning to warning until you fix all those as
well. Eventually, once all your problems are fixed, the icon will turn a very
satisfying green.

 Figure 3-4:
 The Android

Studio
develop-

ment
environment

with your
first Android

project,
Hello

Android.

46 Part II: Building and Publishing Your First Application

 Figure 3-5:
 Android

Studio noti-
fies you that
something is

wrong with
the project.

correspond.

 Figure 3-6:
 Package

name org.
dummies.
helloan-

droid
does not

correspond
to the file

path com.
dummies.
helloan-

droid .

 Now put your text cursor back on org.dummies.helloandroid . If you look
carefully in the lower left-hand corner of the screen, Android Studio gives you
some assistance to fix the problem (Figure 3-6). Here it says:

47 Chapter 3: Your First Android Project

 Package name "org.dummies.helloandroid" does not correspond to the file path
"com.dumies.helloandroid"

 If you don’t see it, you can choose View➪Error Description to see the
 message. With your text cursor still on the error, press Alt+Enter to view
a couple Quick Fix options for this error. You want to change the pack-
age name back to what it should be, so choose Set package name to com.
dummies.helloandroid.

 Setting Up an Emulator
 You’re almost ready to run your Hello Android application! The next step is
to set up an emulator.

 An emulator (also known as an AVD) is an Android Virtual Device that
looks, acts, walks, and talks (well, maybe not walks and talks) like a physi-
cal Android device. AVDs can be configured to run just about any particular
 version of Android.

 Follow these steps to create your first AVD:

1. Choose Tools➪Android➪AVD Manager.

 The AVD Manager dialog box opens.

2. Click Create a Virtual Device, then click the Nexus 5 item and click
Next, as in Figure 3-7 .

 Figure 3-7:
 The Select
Hardware

dialog box.

48 Part II: Building and Publishing Your First Application

3. In the System Image dialog box, select the Lollipop x86 item
as in Figure 3-8 , then click Next.

4. In the Configure AVD dialog box, use the default AVD name
or change it to a haiku.

 Leave everything else alone, as in Figure 3-9 .

5. Click the Finish button.

 Figure 3-10 shows the completed AVD Manager dialog box.
You should now see your new AVD listed under Your Virtual
Devices.

 Figure 3-8:
 The System

Image
 dialog box.

 Figure 3-9:
 The

Configure
AVD dialog

box.

49 Chapter 3: Your First Android Project

 Running the Hello Android App
 Understanding the basics of how to get an Android application up and run-
ning is a simple but detailed process. You’re now ready to see your hard
work in action. You’ve created an Android Virtual Device; now it’s time to get
the application running. Finally!

 Running the app in the emulator
 Starting your application is as simple as choosing Run➪Run ’ app ’ . At this
point, Android Studio will compile your app. When it’s done, choose Launch
Emulator and select the emulator you just created. Check Use same device
for future launches, and click OK. Android Studio compiles your application,
deploys it to the emulator, and then runs it, as shown in Figure 3-11 .

 Look for “HAX is working and emulator runs in fast virt mode” in the Run app
log at the bottom of Android Studio, as in Figure 3-12 .

 If you don’t see this, then your emulator will likely run much slower than it
could. To fix this, you will want to enable the

 ✓ Graphics acceleration

 ✓ Intel HAXM virtual machine acceleration

 Visit http://d.android.com/tools/devices/emulator.html#
acceleration for more information about how to enable these two features
to speed up your emulator.

 Figure 3-10:
 The recently

created
AVD in

the AVD
Manager.

http://d.android.com/tools/devices/emulator.html#acceleration

50 Part II: Building and Publishing Your First Application

 Help! If your emulator never loads and stays stuck on the ANDROID
screen(s), there’s no need to worry, comrade. The first time the emulator
starts, it can take many minutes to finish loading because you’re running a
virtual Linux system in the emulator. The emulator has to boot up and initial-
ize. The slower your computer, the slower the emulator is in its boot process.

 You can save valuable time by leaving the emulator running. The emula-
tor doesn’t have to be loaded every time you want to run your application.
After the emulator is running, you can change your source code and then
rerun your application. Because you checked the Use same device for future
launches option, Android Studio will reuse it when running your app.

 When the emulator finishes loading, you see your app running with the
words “Hello world!” like in Figure 3-13 .

 Figure 3-11:
 The Android

Emulator,
showing the
port number

that the
emulator

is running
under and

the AVD
name on the

window’s
title bar.

 Figure 3-12:
 HAX is

working and
emulator

runs in fast
virt mode.

51 Chapter 3: Your First Android Project

 You’ve just created and started your first Android application.

 Checking app logs
 You can view the logs of your application in the Android tool window, as
shown in Figure 3-14 . This tool window should have popped up automati-
cally when you ran your app, but if it didn’t, you can access it by choosing
View➪Tool Windows➪Android.

 Inside the Android view, you’ll see your app’s log output in the logcat tab.
Here’s an example log that you might see:

 1885-1885/com.dummies.helloandroid I/art: Not late-enabling
-Xcheck:jni (already on)

 1885-1898/com.dummies.helloandroid I/art: Profiler disabled.
To enable setprop dalvik.vm.profiler 1

 1885-1885/com.dummies.helloandroid W/Resources: Preloaded drawable resource
#0x1080093 (android:drawable/sym_def_app_icon) that varies with
configuration!!

 1885-1885/com.dummies.helloandroid I/am_on_resume_called: [0,com.dummies.
helloandroid.MainActivity]

 Figure 3-13:
 The Hello

Android
applica-

tion in the
 emulator.

52 Part II: Building and Publishing Your First Application

 The logcat view provides valuable information on the state of your applica-
tion. It lets you know it’s launching an activity, shows which device you’re
connected to, and shows warnings and errors. In the previous example, you
can see that the com.dummies.helloandroid.MainActivity , the activity
you just wrote, was run and its on_resume was called:

 1885-1885/com.dummies.helloandroid I/am_on_resume_called:
[0,com.dummies.helloandroid.MainActivity]

 I’ll explain what on_resume means later in the book, but for now just know
that your activity was started up as expected.

 Understanding Project Structure
 You’ve created your first application. You even did it without coding. It’s nice
that Android Studio provides you with the tools to fire up a quick application,
but it won’t write your next blockbuster application for you. The beginning of
this chapter walked you through how to create a boilerplate Android applica-
tion by using the New Android Project Wizard. The rest of this chapter shows
you how to use the file structure that the Wizard created for you.

 The following sections aren’t ones you should skim (they’re vital!), because
you’ll spend your entire Android development time navigating these folders.
Understanding what they’re for and how they got there is a key aspect of
understanding Android development.

 Navigating your app’s folders
 In Android Studio, the Project View expands to show the Hello Android
project, as shown in Figure 3-15 . If you don’t see the Project view, choose
View➪Tool Windows➪Project to turn it on. Then click on Android in the
upper left and select Project to view the Project view.

 Figure 3-14:
 The Android

Tool
window

 displaying
logs from
your app.

53 Chapter 3: Your First Android Project

 The Project view and Android views are both very useful. Try switching back
and forth between them both to see which you prefer. For more information
about the Android view, visit https://developer.android.com/sdk/
installing/studio-androidview.html.

 After the Hello Android project is expanded, you’ll see a few directories and
files. The important ones are

 ✓ app : Where your main app code is placed.

 ✓ build.gradle : Your top-level build file. It’s not the only build.
gradle file in your project, but it’s the one at the top. It tells gradle ,
the Android build system, how to build the various subdirectories in
your project.

 ✓ settings.gradle : This file doesn’t have much in it right now, but it
does contain the list of subdirectories that gradle needs to build. In
this case, it just lists app .

 Go ahead and open up the app directory and look what’s inside. Some of the
interesting folders and files here include

 ✓ Another build.gradle : The build.gradle file in this directory is
different from the one at the top level. This build.gradle file includes
the real meat of what’s necessary to compile your app. You’ll examine it
in more detail later.

 ✓ build : This directory isn’t something you normally look at. It contains
temporary and generated files that are built by the Android build system
during the course of compiling your app.

 Figure 3-15:
 The Project

view with
the Hello
Android
project

folder
structure

expanded.

https://developer.android.com/sdk/installing/studio-androidview.html

54 Part II: Building and Publishing Your First Application

 ✓ libs : This directory is also something you won’t normally look at. If
you need to add third-party libraries to your project, you can download
the jars and put them into this libs directory to include in your app.
However, more commonly you add them as dependencies into your
 build.gradle file. You’ll find out more about how to add dependen-
cies to your Android projects in Chapter 9 .

 ✓ src : This directory is the most interesting one here. It contains all the
source files necessary to build and test your app.

 Go ahead and open up the src directory now. You’ll see two directories:

 ✓ androidTest : This directory is where you’ll put all your test cases to
test your app.

 ✓ main : Your app’s source code is inside the main folder.

 If you open the main folder, you’ll see three things:

 ✓ AndroidManifest.xml

 ✓ java

 ✓ res

 The AndroidManifest.xml file tells Android what’s inside your app.
Android uses this information to find and load the various components of
your app. You’ll find out more about AndroidManifest.xml in Chapter 9 .

 To learn how to use the androidTest folder to create automated test cases
for your app, read the articles online about testing at www.dummies.com/
extras/androidappdevelopment.

 The following sections discuss the other folders.

 Java Source (java) folder
 The Java source folder — known as the java folder in Android projects —
includes your stub MainActivity.java file, which you created in the
New Android Project Wizard earlier in this chapter. If you open the java
folder, you’ll see the com.dummies.helloandroid package, with the
 MainActivity.java file inside.

 You aren’t limited to a single package in your Android applications. In fact,
separating the different pieces of your app into separate packages is con-
sidered to be a best practice. For example, your application might have
 Customer objects that represent a customer, and those customers are
retrieved via a web API. To make that easy, you might also have some http

www.dummies.com/extras/androidappdevelopment

55 Chapter 3: Your First Android Project

classes that represent your API. One way you might organize these classes is
to use packages like the following:

 ✓ com.dummies.helloandroid.models

 ✓ com.dummies.helloandroid.http

 These packages contain their respective Java components. com.dummies.
helloandroid.models contains the domain model Java classes (such as
your Customer object), and com.dummies.helloandroid.http contains
the HTTP-related Java classes used to access your web APIs.

 Resources (res) folder
 The res folder contains the various resources that your application will use.
Classic examples of resources include text strings, images, and layout files,
but there are many other kinds of less-common resources that you might
include with your app. See Table 3-1 for a more complete list.

 Android allows you to define the same resource multiple times in different
folders. For example, if you open up res/values/strings.xml , you’ll see
that the hello_world string is defined to be the text “Hello world!” If you
wanted to, you could define the same hello_world string in res/values-
es/strings.xml and give it the value of "¡Hola Mundo!" Android would
then automatically choose the Spanish translation when the app runs on a
Spanish device, and the English translation when it runs on an English device.
You can use the same trick to use different layouts on different sized devices.

 You can access your resources in code via resource IDs that are generated
by Android Studio in the R class. (See “The mysterious build/generated
folder,” later in this chapter.)

 You should place each resource in a specific subdirectory of your project’s
 res directory. Table 3-1 lists the subdirectories that are the most common
types of resource folders under the parent res directory.

 That is a lot of drawable directories! Don’t worry, you do not need to supply
images and icons for every possible resolution device that your app runs
on. In general, you should provide drawables for the highest resolution you
expect to need (usually xxhdpi), and the device will scale them down to
other resolutions. For performance reasons and to avoid any scaling arti-
facts, you may decide to scale them down yourself and put them into the
appropriate drawables directory, and that’s why Android gives you so many
different drawable directories to choose from.

 A full discussion of the powerful resource mechanism inside Android could
fill its own book, but this book covers the basics to get you up and running.

56 Part II: Building and Publishing Your First Application

 Table 3-1 Supported Subdirectories of the res Directory

Directory Resource Type
 anim/ XML files that define animations.

 color/ XML files that define a list of colors.

 drawable/ Bitmap files (.png , .9.png , .jpg , .gif)
or XML files that are compiled into drawable
resources. Typically you would use one of the
other drawable directories instead of using this
one directly.

 drawable-xxhdpi/ Drawables for screens with extra-extra-high
 resolution, approximately 480 dpi.

 drawable-xhdpi/ Drawables for screens with extra-high resolution,
approximately 320 dpi.

 drawable-hdpi/ Drawables for high-resolution screens,
 approximately 240 dpi.

 drawable-ldpi/ Drawables for low-resolution screens,
 approximately 120 dpi.

 drawable-mdpi/ Drawables for medium-resolution screens,
a pproximately 160 dpi.

 layout/ XML files that define a user interface layout.

 menu/ XML files that represent application menus.

 raw/ Arbitrary files to save in their raw form. Files in
this directory aren’t compressed by the system
and can be accessed by Resources.
openRawResource() .

 values/ XML files that contain simple values, such as
strings, integers, and colors. Whereas XML
resource files in other res/ folders define a
single resource based on the XML filenames,
files in the values/ directory define multiple
resources for various uses. You should follow a
few filename conventions, outlined in the nearby
sidebar “Naming resources in the values direc-
tory,” for the resources you can create in this
directory.

57 Chapter 3: Your First Android Project

The resource mechanism can help with internationalization (enabling your
app for different languages and countries), device size and density, and even
resources for the mode that the phone may be in. To dive into the ocean of
resources, review the “Providing Resources” section of the Dev Guide in the
Android documentation, at http://d.android.com/guide/topics/
resources/providing-resources.html .

 The mysterious build/generated folder
 Ah, you finally get to witness the magic that is the generated folder.
When you create an Android application, before the first compilation, the
 generated folder doesn’t exist. Upon the first compilation, Android Studio
generates the generated folder and its contents. To see it, make sure
Project Tool window is set to Project view instead of Android view.

 The generated folder contains source files generated by Android Studio.
One particular file it creates is the R.java file (I will tell you more about that
topic in a moment). The generated folder contains items generated from
the res directory. Without a proper understanding of what the res folder is
and what it contains, you have no clue what the generated folder is for. But
because you’re already an expert on the res folder, you can dive right into
the generated folder.

 When you write Java code in Android, you reach a point when you need to
reference the items in the res folder. You do this by using the R class. The
 R.java file is an index to all resources defined in your res folder. You use

 Naming resources in the values directory
 You should follow a few filenaming conven-
tions for the resources you can create in the
 values directory:

✓ arrays.xml for resource arrays (stor-
ing like items, such as strings or integers,
together).

 ✓ colors.xml for resources that define
color values; accessed via the R.color
class.

 ✓ dimens.xml for resources that define
dimension values (20px equals 20 pixels,

for example); accessed via the R.dimen
class.

 ✓ strings.xml for string values;
accessed via the R.string class.

 ✓ styles.xml for resources that repre-
sent styles; accessed via the R.style
class. A style is similar to a cascad-
ing style sheet in HTML. You can define
many styles and have them inherit from
one another.

http://d.android.com/guide/topics/resources/providing-resources.html

58 Part II: Building and Publishing Your First Application

this class as a shorthand way to reference resources you’ve included in
your project. This is particularly useful with the code-completion features
of Android Studio because you can quickly identify the proper resource via
code completion.

 Go to the app/build/generated/source/r/debug/com/dummies/
helloandroid folder in the Hello Android project. Now open the R.java
file by double-clicking it. You can see a Java class that contains nested Java
classes. These nested Java classes have the same names as some of the res
folders defined in the preceding res section. Under each of those subclasses,
you can see members that have the same names as the resources in their
respective res folders (excluding their file extensions). The Hello Android
project’s R.java file should look similar to the following code:

 /* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */

 package com.dummies.helloandroid;

 public final class R {
 public static final class attr {
 }
 public static final class dimen {
 public static final int activity_horizontal_margin=0x7f040000;
 public static final int activity_vertical_margin=0x7f040001;
 }
 public static final class drawable {
 public static final int ic_launcher=0x7f020000;
 }
 public static final class id {
 public static final int action_settings=0x7f080000;
 }
 public static final class layout {
 public static final int activity_main=0x7f030000;
 }
 public static final class menu {
 public static final int main=0x7f070000;
 }
 public static final class string {
 public static final int action_settings=0x7f050000;
 public static final int app_name=0x7f050001;
 public static final int hello_world=0x7f050002;
 }
 public static final class style {
 /** Customize your theme here.

59 Chapter 3: Your First Android Project

 */
 public static final int AppTheme=0x7f060000;
 }
 }

 Whoa — what’s all that 0x stuff? Android Studio generates this code for you
so that you don’t have to worry about what’s happening behind the scenes.
As you add resources and the project is rebuilt, Android Studio regenerates
the R.java file. This newly generated file contains members that reference
your recently added resources.

 You should never edit the R.java file by hand. If you do, your application
may not compile, and then you’re in a world of hurt. If you accidentally edit
the R.java file and can’t undo your changes, you can delete the gen folder
and build your project. At this point, Android Studio will regenerate the
 R.java file for you.

 Viewing the application’s manifest file
 You keep track of everything you own and need through lists, don’t you?
Well, that’s similar to what the Android manifest file does. It keeps track
of everything your application needs, requests, and has to use in order
to run.

 The Android manifest file is stored in your src/main directory and is named
 AndroidManifest.xml . Every application must have an Android manifest
file.

 What the Android manifest file contains
 The application manifest file provides essential information to the Android
system — information that it must have before it can run any of your
 application’s code. The application manifest file also provides

 ✓ The name of your application ID for the application, which is the unique
identifier for your application in the Android system as well as in the
Google Play Store

 ✓ The icon for your application

 ✓ The components of the application, such as the activities and
 background services

 ✓ The declaration of the permissions your application requires to run

60 Part II: Building and Publishing Your First Application

 In the application manifest file, you must define which permissions your
application needs to operate. Table 3-2 lists some commonly requested
 permissions.

 Viewing the build.gradle file
 The build.gradle file tells Android Studio how to build your app.

 You can also compile your app using the command line instead of Android
Studio if you want. Simply choose View➪Tool Windows➪Terminal (or open
your own terminal) and cd to the HelloAndroid directory. Then type ./
gradlew assembleDebug to build your app into app/build/outputs/apk .
Type ./gradlew tasks for a list of valid build targets you can use. And visit
 http://d.android.com/sdk/installing/studio-build.html for
more information about using Gradle with Android.

 Your build.gradle file might start off like the following:

 apply plugin: 'com.android.application'

 android {
 compileSdkVersion 21
 buildToolsVersion "21.1.2"

 defaultConfig {

 Table 3-2 Commonly Requested Application Permissions

Permission What It Means
Internet The application needs access to the Internet.

Write External Storage The application needs to write data to the Secure
Digital card (SD card).

Camera The application needs access to the camera.

Access Fine Location The application needs access to the global positioning
system (GPS) location.

Read Phone State The application needs to access the state of the phone
(such as ringing).

 Permissions
 Assume that your application needs to access the Internet to retrieve some
data. Android restricts Internet access by default. For your application to
have access to the Internet, you need to ask for it.

61 Chapter 3: Your First Android Project

 applicationId "com.dummies.helloandroid"
 versionCode 1
 versionName "1.0"
 minSdkVersion 21
 targetSdkVersion 21
 }
 ...

 The following further explains this code:

 ✓ The compileSdkVersion tells Android Studio what version of the
Android SDK you are compiling against. This version is set based off
the choices you made when you went through the New Activity Wizard
 earlier in this chapter.

 ✓ The buildToolsVersion tells Android Studio what version of the
build tools to use (which is the version of the tools that you installed on
your computer).

 ✓ The applicationId must match the package that you set in your
 AndroidManifest.xml file.

 Version code
 The version code is an integer value that represents the version of the applica-
tion relative to other versions of your application. The Google Play Store uses
it as a basis for identifying the application internally and for handling updates.

 You can set the version code to any integer value you want, but you must
make sure that each successive release has a version code greater than the
previous one.

 Typically, on the first release, you set the version code to 1 . Then you mono-
tonically increase the value with each release, whether the release is major
or minor. This means that the version code doesn’t have a strong resem-
blance to the application release version that’s visible to the user, which is
the version name. (See the next section.) The version code typically isn’t
 displayed to your users.

 You must increase the version code with every version of the app that you
publish to the Google Play Store. The Google Play Store does not accept an app
that has the same version code as one that has previously been uploaded.

 Version name
 The version name is a string value that represents the app’s version as it
should display to the user. The value is a string that can be anything, but it

62 Part II: Building and Publishing Your First Application

typically follows a common release-name nomenclature that describes the
application version:

 <major>.<minor>.<optional point>

 An example of this release-name nomenclature might be 2.1 or 3.2.4.

 The Android system doesn’t use this value for any purpose other than to
 display it to users. Android uses the version code rather than the version
name internally.

 The version name may be any other type of absolute or relative version
identifier. The Foursquare application, for example, uses a version-naming
scheme that corresponds to the date. An example of the version application
name is 2012.05.02 , which clearly represents a date. The version name is
left up to you. You should plan ahead and make sure that your versioning
strategy makes sense to you and your users.

 Understanding the Compile SDK ,
Minimum SDK , and Target
 SDK Versions
 This section discusses three very important parameters you should under-
stand about supporting different versions of Android in your app. Reviewing
this section will help you determine what settings to use to support users
who are running your app on older versions of Android.

 Compile SDK Version
 The Compile SDK Version is the version of Android in which you write code.
If you choose 5.0, you can write code with all the APIs in version 21. If you
choose 2.2, you can write code only with the APIs that are in version 2.2
or earlier. You can’t use the Wi-Fi Direct APIs in version 2.2, for example,
because they weren’t introduced until version 4.0.

 Minimum SDK Version
 Android operating system (OS) versions are backward-compatible. If your
 minSdkVersion is set to Android version 4.0, for example, your applica-
tion can run on Android 5.0, 4.4, 4.3, 4.2, 4.1, and 4.0. The benefit of choos-
ing the 4.0 framework is that your application is exposed to a much larger
market share. Your app can be installed on devices going back to 4.0 (and on
future versions, too!). Selecting an older version isn’t free of consequences,

63 Chapter 3: Your First Android Project

 however. By targeting an older framework, you’re limiting the functionality
you have access to.

 You should set the minSdkVersion to the oldest version of Android that
you are willing to support. For this app you will simplify your development
life by supporting only the latest version of Android, but see Chapter 17 for
more information about supporting older versions of Android.

 If your Minimum SDK Version is not the same as your Compile SDK Version,
you must take great care! For example, you might set your Compile SDK
Version to 5.0 in order to use the latest APIs and your Minimum SDK Version
to 16 to support devices running Android 4.1, but your app will crash if you
use 5.0 APIs and run it on an Android 4.1 device (because Android 4.1 did not
have any of 5.0’s APIs).

 The Google Play Store decides which users to show your app to based on
your minSdkVersion . If you’re having trouble deciding which version to set
as your minimum, the current version distribution chart can help you decide:
 http://d.android.com/about/dashboards .

 The minSdkVersion is technically optional, but you should always set
it! If you don’t know what to set it to, then set it to the same value as your
 compileSdkVersion .

 It’s up to you to test your app on all the versions of Android between
your Minimum SDK Version and the latest Android SDK version! To help
automate your testing, visit the book’s website and read the articles
online at www.dummies.com/extras/androidappdevelopment .

 Target SDK Version
 Compile SDK Version and Minimum SDK Version are arguably the most
important SDK version settings that you need to understand. However,
there’s a third SDK version called targetSdkVersion that’s often misunder-
stood and equally important to understand.

 You should set the targetSdkVersion to the most recent version of
Android that you have tested on. In this case, I am building and testing
against Lollipop, so that’s what I’ll set my targetSdkVersion to.

 Whenever a new version of Android comes out, you will want to update the
 targetSdkVersion to the latest Android version and test your app to fix
any problems. If you don’t update the targetSdkVersion , Android devices
will assume that your app wasn’t tested on the latest version of Android, so
they may introduce some backward-compatibility behavior for your app to
make sure your app still looks and feels the way you designed it for that older

64 Part II: Building and Publishing Your First Application

version of Android. It gets a little tricky, so the best policy is to always keep
your targetSdkVersion up to date with the latest versions of Android.

 What’s up next
 You’re now done examining the guts of your Hello World! app. Next, you
are going to create another app with a little more functionality, which you’ll
upload to the Google Play Store so that your mom and her friends can
 download it to their Android phones.

Creating the User Interface
In This Chapter

▶▶ Setting up the Silent Mode Toggle application

▶▶ Designing the layout

▶▶ Developing the user interface

▶▶ Adding an image and a button widget

▶▶ Making a launcher icon

▶▶ Previewing your work

I
n Chapter 3, you discover what Android is and how to build your first
application. Chapter 4 helps you delve into the fun stuff: building a real

application and publishing it to the Google Play Store.

The application you build in this chapter allows the user to toggle the ringer
mode on the phone by simply pressing a button. This application seems
simple, but it solves a real-world problem.

Creating the Silent Mode
Toggle Application

Create the new application by choosing File➪New Module from inside the
project you created in Chapter 3. Choose Phone and Tablet Application from
the list, and then click Next. Use Table 4-1 for your module settings.

On the Add an Activity page, choose Blank Activity and click Next. Use the
settings in Table 4-2 to create your activity.

Now click Finish. You should now have the Silent Mode Toggle application in
your Project, as shown in Figure 4-1.

Chapter 4

66 Part II: Building and Publishing Your First Application

 Table 4-1 Project Settings for Silent Mode Toggle

Setting Value
Application Name Silent Mode Toggle

Module Name Silent Mode Toggle

Package Name com.dummies.silentmo-
detoggle

Minimum Required SDK API 21: Android 5.0 Lollipop

 Table 4-2 Settings for Blank Activity

Setting Value
Activity Name MainActivity

Layout Name activity_main

Title MainActivity

Menu Resource Name menu_main

 Figure 4-1:
 The Silent

Mode
Toggle

application
in Android

Studio.

67 Chapter 4: Creating the User Interface

 Laying Out the Application
 When you have the Silent Mode Toggle application created inside Android
Studio, it’s time for you to design the application’s user interface, the part of
an application that users interact with.

 Your application will have a single image centered in the middle of the screen
to toggle silent mode. The image will also provide visual feedback to let the
user know whether the phone is in silent mode or normal ringer mode.
Figure 4-2 shows what the finished application will look like.

 It’s time to start developing the user interface. First, open the user interface
layout file that you created when you created the new blank activity in the
previous section. The file is called activity_main.xml , and you can find
it by expanding SilentModeToggle , res , and layout as in Figure 4-1 .
Double-click it to open it.

 Then make sure that you’re in the Text tab of your layout by clicking the Text
tab as in Figure 4-3 .

 Figure 4-2:
 The Silent

Mode
Toggle

application
in (left) nor-

mal ringer
mode and in
silent ringer

mode (right).

www.allitebooks.com

http://www.allitebooks.org

68 Part II: Building and Publishing Your First Application �

When you’re on the Text tab, delete the XML and replace it with the
following. Your layout should now look like this:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/content"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

</FrameLayout>

A view occupies a rectangular space on the screen and is responsible for
drawing and event handling. All items that can show up on a device screen
are views. The View class is the superclass that all items inherit from in
Android. This includes all layout classes, such as the FrameLayout used in
this example.

The first line in every XML file provides the default XML declaration, letting
text editors such as Android Studio and platforms such as Android know
what type of file it is:

<?xml version="1.0" encoding="utf-8"?>

Working with views
As stated in the previous section, views in Android are the basic build-
ing blocks of user interface components. Any time you implement a user
interface component in Android such as a layout or TextView, you’re using

Figure 4-3:
The Text

tab for the
activity

_main.
xml layout

file.

69 Chapter 4: Creating the User Interface

a view. Every view must be configured, and the next sections explain the
 configuration you created for your FrameLayout . You can also see them
summarized in Table 4-2 .

 Setting layout_width and layout_height values
 Before a view can be presented to the screen, a couple of settings must be
configured on the view so that Android knows how to lay out the view on
the screen. The attributes that are required, layout_width and layout_
height , are part of the LayoutParams in the Android SDK.

 The layout_width attribute specifies the given width of a view, and the
 layout_height attribute specifies the given height of a view.

 Setting match_parent and wrap_content values
 The layout_width and layout_height attributes can take any pixel value
or density-independent pixel value to specify their respective dimensions.
However, two of the most common values for layout_width and layout_
height are the match_parent and wrap_content constants.

 The match_parent value informs the parent view to make this view the
same width/height as itself. The wrap_content value informs Android to
occupy only as much space as needed to show the view’s content. As the
view’s content grows, as would happen with a TextView when text is added,
the view’s dimension grows (see Table 4-3).

 Table 4-3 XML Layout Attributes

Layout What It Does
 xmlns:android=
". . ."

Defines the XML namespace for android:. . .
 that you will use in your XML elements. This will
always be http://schemas.android.com/
apk/res/android .

 android:id="
@+id/content"

Sets the ID of this view to id/content . All refer-
ences to resources in Android XML files start with
the @ symbol. And because you are defining a new ID
resource, you must also have a + symbol after the @ .

 android:layout_
width="match_
parent"

Informs the view that it should fill as much horizontal
space as it can, up to the size of its parent, to make its
own width the same as its parent’s.

 android:layout_
height="match_
parent"

Informs the view that it should fill as much vertical
space as it can, up to the size of its parent, to make its
own height the same as its parent’s.

http://schemas.android.com/apk/res/android

70 Part II: Building and Publishing Your First Application

 In general, you will set your view parameters in XML. If you’re creating views
dynamically via code, though, you can configure the layout parameters via
Java code. To find out more about dynamic creation of views, see the API
samples that come with the Android SDK.

 Using Android layouts
 When you create a user interface, you sometimes have to lay out components
relative to each other, or in a table, or in a list or grid. Thankfully, the engi-
neering geniuses at Google who created Android thought of all this and pro-
vided the necessary tools to create those types of layouts. Table 4-4 briefly
introduces the common types of layouts available in Android.

 Other, different types of layout tools exist, such as a TabHost for creating
tabs and DrawerLayout for side “drawers” that hide and display views.
Programmers tend to use these layout tools in special-case scenarios.
The items in Table 4-4 outline the most commonly used layouts.

 For now, this example uses the simplest layout, the FrameLayout . You’ll use
more advanced layouts in later chapters.

 Table 4-4 Android SDK Layouts

Layout What It Does
 FrameLayout Designed to block out an area on the screen to dis-

play a single item. You can add multiple children to a
 FrameLayout , but all children are pegged to the
upper left area of the screen by default. Children are
drawn in a stack, with the most recently added child
at the top of the stack.

 This layout is commonly used as a way to lay out views
on top of each other, or to lay them out relative to their
parent.

 LinearLayout Arranges its children in a single row or column.

 RelativeLayout Lets the positions of the children be described in
 relation to each other or to the parent.

 GridLayout Arranges its children into a grid.

71 Chapter 4: Creating the User Interface

 Adding an Image to Your Application
 You will add a ringer icon to your app, so first you need to download the
icon, of course. You can download the image from this book’s source code,
available from this book’s website (at http://www.dummies.com/go/
androidappdevfd3e), or you can use your own.

 Adding images to a project is simple: Drag them from the folder where
they’re stored to the src/main/res/drawable-xxhdpi folder, as shown in
Figure 4-4 .

 For the Silent Mode Toggle application, you need two ringer images: off and
on. Be sure to put both images in the src/main/res/drawable-xxhdpi
folder.

 Figure 4-4:
 Dragging

the image
file into

the src/
main/
res/

draw-
able-
xxhdpi

folder.

http://www.dummies.com/go/androidappdevfd3e

72 Part II: Building and Publishing Your First Application

 To follow along in the rest of the chapter, be sure that the images are named
this way:

 ✓ Normal mode image: ringer_on.png

 ✓ Silent mode image: ringer_off.png

 If your images aren’t named correctly, you can rename them now.

 When you drag images into Android Studio, it regenerates the build/
 generated folder, and the R.java file is updated to include a reference to
the two new images you added.

 You can use the references to these resources to add images to your layout
in code or in XML definition. You declare them in the XML layout in the
 following section.

 To add an image to the layout, type the following into the activity_main.
xml file, overwriting the current content of the file:

 <?xml version="1.0" encoding="utf-8"?>
 <FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/content"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:foreground="?android:attr/selectableItemBackground"
 >

 Why you should worry about density folders
 Android supports various screen sizes and
densities. Elsewhere in this chapter, we men-
tion placing an image in the xxhdpi folder,
which is for extra-high-density devices.
What about low- and high-density devices? If
Android cannot find the requested resource in
the desired density, it uses whatever density
resource it can find and scales it appropri-
ately. If your device has a higher pixel den-
sity than Android can find, Android scales the
image up to the necessary size, resulting in

resize “jaggies.” To avoid this problem, create
multiple versions of your image to target
multiple screen densities. For more informa-
tion, see the Supporting Multiple Screens page
in the Android documentation at http://
d.android.com/guide/practices/
screens_support.html . And to see
a list of which are the most common screen
densities, visit http://d.android.com/
about/dashboards/index.html .

http://d.android.com/guide/practices/screens_support.html
http://d.android.com/about/dashboards/index.html

73 Chapter 4: Creating the User Interface

 <ImageView
 android:id="@+id/phone_icon"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:src="@drawable/ringer_on"/>

 </FrameLayout>

 This code adds the ImageView inside the FrameLayout . An ImageView
allows you to project an image to the screen on the device.

 Setting image properties
 Your ImageView contains a few new parameter attributes:

 ✓ The android:id="@+id/phone_icon" property: The id attribute
defines the unique identifier for the view in the Android system. You can
find an in-depth explanation of the android:id value nomenclature at
 http://d.android.com/guide/topics/ui/declaring-layout.
html .

 ✓ The layout_width and layout_height properties: You used
 layout_width and layout_height in your FrameLayout , but there
you set them to match_parent . For the ImageView , we want the
 ImageView ’s size to be the same as the image it’s showing, so we’ll set
it to have a layout_width and layout_height of wrap_content to
“wrap” the content inside the view. If we had set the height and width to
be match_parent , Android would have scaled the image up much too
large to take up the full screen. Try it!

 ✓ The layout_gravity property: This property defines how to place
the view (both its x- and y-axes) with its parent. In this example, the
value is defined as the center constant. Since the ImageView is
smaller than the FrameLayout , using layout_gravity=center
instructs the Android system to place the ImageView in the center
of the FrameLayout rather than in the default location of the upper
left. You can use many other constants, such as center_vertical ,
 center_horizontal , top , bottom , left , right , and many more.
See the FrameLayout.LayoutParams Android documentation for a
full list.

 ✓ The android:src="@drawable/ringer_on" property: You use this
property to set the image that you want to show up on the screen.

http://d.android.com/guide/topics/ui/declaring-layout.html

74 Part II: Building and Publishing Your First Application

 Notice the value of the src property — "@drawable/ringer_on" . You can
reference drawable resources via XML by typing the “at” symbol (@) and the
type and id of the resource you want.

 Certain Android attributes begin with the l ayout_ prefix — android:
layout_width , android:layout_height , and android:layout_
gravity are all examples. The layout_ convention tells you that the attri-
bute relates to the view’s parent . Attributes that don’t begin with layout_
pertain to the view itself. So the ImageView ’s android:src attribute tells
the ImageView which image to use, but its android:layout_gravity
tells the ImageView ’s parent (the FrameLayout , in this case) to lay out the
 ImageView in the center of the parent.

 Setting drawable resources
 In your ImageView , you set your image src to @drawable/ringer_on .
You don’t type @drawable-xxhdpi/ringer_on for the drawable resource
identifier, because it’s Android’s job (not yours) to figure out the correct
size image for the current device’s screen. At runtime, Android determines
which density is correct for that device, and loads the closest matching
drawables.

 For example, if the app is running on a medium-density device and the
requested drawable resource is available in the drawable-mdpi folder,
Android uses that resource. Otherwise, it uses the closest match it can find.
Support for various screen sizes and densities is a broad topic (and can
be complex!). For an in-depth view into this subject, read the “Supporting
Multiple Screens” article in the Android documentation at http://
d.android.com/guide/practices/screens_support.html .

 The ringer_on portion of the identifier identifies the drawable you want to
use. The image filename is ringer_on.png . If you were to build your project
and open the R.java file in the build/generated folder, you would see a
static field with the name phone_on .

 You can use code completion to see the available resources in Android
Studio. Place the cursor directly after @drawable/ in the src property of
the ImageView in the Android Studio editor, and press Ctrl+spacebar. The
code-completion window opens, as shown in Figure 4-5 . The other resource
names in the window are other options you could choose for the src portion
of the drawable definition.

75 Chapter 4: Creating the User Interface

 Creating a Launcher Icon
for the Application

 When your app is installed, its icon helps users identify its presence in the
application launcher. When you create the Silent Mode Toggle application,
Android Studio automatically includes a default launcher icon, as shown on
the left in Figure 4-6 .

 You should change this icon to one of your own. You can create your own (as
shown in the following section) or use the one from the downloaded source
code at http://www.dummies.com/go/androidappdevfd3e .

 Figure 4-5:
 Code

 completion,
with

resources.

 Figure 4-6:
 The default

icon (left)
and a

unique icon
(right).

76 Part II: Building and Publishing Your First Application

 Designing a custom launcher icon
 Creating your own launcher icons is fairly easy, thanks to the Android proj-
ect. The article “Iconography” in the Android documentation covers all
aspects of icon design — a how-to manual for creating icons for the Android
platform, a style guide, a list of do’s and don’ts, materials and colors, size and
positioning guidelines, and (best of all) icon templates that you can use. You
can find useful resources for designing icons at www.google.com/design/
spec/style/icons.html and http://d.android.com/design/style/
iconography.html .

 Working with templates
 After you download the Android SDK, these icon templates and materials are
available for you to use immediately on your computer’s hard drive. Navigate
to your Android SDK installation directory (see Chapter 2), and from there
navigate to the docs/shareables directory. You’ll find various .zip files
that contain templates and samples. Open the templates in the image editing
program of your choice, and follow the design guidelines in the documenta-
tion to create your next rockin’ icon set.

 Matching icon sizes with screen densities
 Because every screen density requires an icon in a different size, you, as the
designer, need to know how large the icon should be. Each density must have
its own icon size to look appropriate (no pixilation, stretching, or compress-
ing) on the screen.

 Table 4-5 summarizes the finished icon sizes for each of the three generalized
screen densities.

 Table 4-5 Finished Icon Sizes

Screen Density Icon Size in Pixels
Low-density screen (ldpi) 36 x 36

Medium-density screen (mdpi) 48 x 48

High-density screen (hdpi) 72 x 72

Extra-high-density screen (xhdpi) 96 x 96

Extra-extra-high density screen (xxhdpi) 144 x 144

Extra-extra-extra-high density screen (xxxhdpi)
In general, xxxhdpi is not currently used for more
assets. It’s only used for providing extra-large launcher
icons on some devices.

192 x 192

www.google.com/design/spec/style/icons.html
http://d.android.com/design/style/iconography.html

77 Chapter 4: Creating the User Interface

 In general, you won’t need to supply most of your assets in xxxhpi (triple-x).
The only asset you should use xxxhdpi for is your launcher icon. Some
Android devices use the additional resolution to provide an extra-large
launcher icon. On these devices, adding an xxxhdpi launcher icon will make
your app icon look pretty. But don’t bother adding xxxhdpi assets for other
images because the highest resolution that’s currently used in devices is only
 xxhdpi (double-x).

 Adding a custom launcher icon
 To place your custom launcher icon into the project, follow these steps:

1. Rename the image icon to ic_launcher.png .

2. Create the drawable-xxxhdpi folder in src/main/res .

3. Drag your icon into the drawable-xxxhdpi folder.

4. Click Yes.

 The ic_launcher.png file is now in the drawable-xxxhdpi folder.

 You’re not done yet! For the other drawable folders, you need to delete the
other versions of ic_launcher.png or provide your own versions.

 If you don’t delete the icons of other densities in their respective folders,
users who have a low- or high-density device receive the default launcher
icon (refer to Figure 4-6), whereas the xxhdpi-density devices receive the
new icon that you included in the project.

 Previewing the Application
in the Visual Designer

 To take a look at what the layout looks like in the visual designer, click the
Design tab to view it, as shown in Figure 4-7 .

 The visual designer has many different possible configurations.

 Selecting the Devices drop-down list in the visual designer shows you which
devices you can simulate your layout on. You can test out what your app will
look like on many different kinds of phones and tablets.

78 Part II: Building and Publishing Your First Application

 Figure 4-7:
 The Design
view of the

layout.

 Selecting the Orientation drop-down list allows you to see what your app
looks like in portrait and landscape modes.

 You can also preview what your app looks like in other languages, on older
versions of Android (if you enabled backward compatibility), and on devices
that have different default themes.

 Using the visual designer allows you to quickly test out your app on various
configurations so you can fix bugs quickly without having to load up an emu-
lator for each and every one of those configurations. It’s not a substitute for
actually testing on a device, but it can make your development much quicker.

 Try out a few other configurations!

 Coding Your Application
In This Chapter

 ▶ Seeing how activities work in Android

 ▶ Coding your own activity

 ▶ Using the Android framework classes

 ▶ Installing an application

 ▶ Using debugging tools

 ▶ Testing your app in the real world

 You’re probably eager to start coding your application. In this chapter,
you write the Java code, from soup to nuts. Before you can start bang-

ing out bits and bytes, though, you need a firm understanding of activities.

 Understanding Activities and
the Activity Lifecycle

 An activity is a single, focused action that a user can take. You can think of an
activity like a “page” in your app. For example, an activity might present a list
of menu items that a user can choose from, or it might display photographs
along with captions. An app may consist of only one activity or (more com-
monly) several. Though activities may work together to appear to be one
cohesive application, they work independently from each other. Almost all
activities interact with the user, so the Activity class creates for you the
window in which you can place your user interface (UI).

 An activity in Android is an important part of an application’s overall
 lifecycle, and the way the activities are launched and put together is a fun-
damental aspect of the Android application model. Every activity is imple-
mented as a subclass of the Activity base class.

Chapter 5

80 Part II: Building and Publishing Your First Application

 The Activity lifecycle is one of the most important differences between
Android and other phone operating systems. It’s complicated, but it’s an
important set of concepts to grasp before you dive into developing Android
apps.

 The Activity lifecycle
 Two important methods that almost all activities implement are

 ✓ onCreate : Where the activity is initialized. Most importantly, it’s where
you tell the activity which layout to use by using a layout resource
 identifier — considered the entry point of your activity.

 ✓ onPause : Where you deal with the user leaving your activity. Any
changes made by the user should be committed at this point (if you
need to save them).

 Activities in the system are managed as an activity stack. When a new activity
is created, it’s placed on top of the stack and becomes the running activ-
ity. The previous running activity always remains below it in the stack and
returns to the foreground only when the new activity exits.

 To be a successful Android programmer, you must understand the impor-
tance of how and why the activity works behind the scenes. This will make
you a better Android programmer and help you debug strange problems
later.

 An activity essentially has four states, as described in Table 5-1 .

 Table 5-1 Essential States of an Activity

Activity State Description

Active/running The activity is in the foreground of the screen (at the top of
the stack).

Paused The activity has lost focus but is still visible. (A new, non-
full-size or transparent activity has the focus on top of your
activity.) Because a paused activity is completely alive, it
can maintain state and member information and remains
attached to the window manager in Android.

81 Chapter 5: Coding Your Application

 Figure 5-1 shows the important paths of an activity — the activity lifecycle.

 The rectangles represent callback methods you can implement to respond
to events in the activity. The shaded ovals represent the major states of the
activity.

 The activity lifecycle is a large and complex topic, and the following sections
cover only the basics. If you want to read more about activity lifecycles,
check out the “Activity Lifecycle” article in the Android documentation at
 http://d.android.com/reference/android/app/Activity.html .

 Figure 5-1:
 The activity

lifecycle.

Activity State Description

Stopped If an activity becomes obscured by another activity, it is
stopped. It retains all state and member information, but
isn’t visible to the user. Therefore, the window is hidden and
will often be killed by the Android system when memory is
needed elsewhere.

Destroyed When the activity is paused or stopped, the system can
reclaim the memory by asking it to finish, or it can kill the pro-
cess. When it displays the activity again to the user, it must
be completely restarted and restored to its previous state.

82 Part II: Building and Publishing Your First Application

 Important lifecycle loops
 You may be interested in monitoring these three loops in your activity:

 ✓ The entire lifetime takes place between the first call to onCreate()
and the final call to onDestroy() . The activity performs all global setup
in onCreate() and releases all remaining resources in onDestroy() .
For example, if you create a thread to download a file from the Internet
in the background, it may be initialized in the onCreate() method.
That thread can be stopped in the onDestroy() method.

 ✓ The visible lifetime of the activity takes place between the onStart()
and onStop() methods. During this time, the user can see the activ-
ity onscreen (though it may not be in the foreground interacting with
the user, which can happen when the user is interacting with a dialog
box). Between these two methods, you can maintain the resources
that are needed to show and run your activity. For example, you can
create an event handler to monitor the state of the phone. The phone
state can change, and this event handler can inform the activity of the
phone entering Airplane mode and react accordingly. You would set up
the event handler in onStart() and tear down any resources you’re
accessing in onStop() . The onStart() and onStop() methods can be
called multiple times as the activity becomes visible or hidden to
the user.

 ✓ The foreground lifetime of the activity begins at the call to onResume()
and ends at the call to onPause() . During this time, the activity is in
front of all other activities and is interacting with the user. An activity
normally toggles between onResume() and onPause() multiple times,
for example, when the device goes to sleep or when a new activity han-
dles a particular event — therefore, the code in these methods must be
fairly lightweight.

 Viewing activity methods
 The activity lifecycle boils down to these methods:

 public class Activity extends ApplicationContext {
 protected void onCreate(Bundle savedInstanceState);
 protected void onStart();
 protected void onRestart();
 protected void onResume();
 protected void onPause();
 protected void onStop();
 protected void onDestroy();
 }

83 Chapter 5: Coding Your Application

 All methods can be overridden, and custom code can be placed in all of
them. All activities implement onCreate() for initialization and may also
implement onPause() for cleanup. You should always call the superclass
(base class) when implementing these methods.

 Following an activity’s path
 The movement of an activity throughout its lifecycle looks like this:

 ✓ onCreate(): Called when the activity is first created. You initialize
most of your activity’s class-wide variables here. onStart() is always
called next. Killable: No. Next: onStart() .

 ✓ onRestart() : Called after your activity has been stopped before being
started again. onStart() is always called next. Killable: No. Next:
 onStart() .

 ✓ onStart() : Called when your activity is becoming visible to the user.
Followed by onResume() if the activity is brought to the foreground
or onStop() if it becomes hidden from the user. Killable: No. Next:
 onResume() or onStop() .

 ✓ onResume() : Called when the activity will be available for interacting
with the user. The activity is at the top of the activity stack at this point.
Killable: No. Next: onPause() .

 ✓ onPause() : Called when the system is about to resume a previous activ-
ity or if the user has navigated away to another portion of the system,
such as by pressing the Home key. This stage is typically used to commit
unsaved changes to data that needs to be persisted. If the activity is
brought back to the foreground, onResume() is called; if the activity
becomes invisible to the user, onStop() is called. Killable: Yes, but only
on Honeycomb (3.0) or earlier. Next: onResume() or onStop() .

 ✓ onStop() : Called when the activity is no longer visible to the user
because another activity has resumed and is covering this one. This may
happen because another activity has started or a previous activity has
resumed and is now in the foreground of the activity stack. It’s followed
by onRestart() if this activity is returning to interact with the user
or by onDestroy() if this activity is going away. Killable: Yes. Next:
 onRestart() or onDestroy() .

 ✓ onDestroy() : The final call you receive before your activity is
destroyed. This method gets called either because the activity is finish-
ing (such as someone calling finish() on it) or because the system
is temporarily destroying the activity to reclaim space. You can distin-
guish between these two with the isFinishing() method, which helps

84 Part II: Building and Publishing Your First Application

identify whether the method is finishing or the system is killing it. The
 isFinishing() method is often used inside onPause() to determine
whether the activity is pausing or being destroyed. Killable: Yes. Next:
Nothing.

 The killable indicator at the end of each activity method description notes
the activities the Android system can kill at any time and without notice. You
should therefore use the onPause() method to complete any cleanup to
write persistent data (such as user edits to data) to your storage mechanism.

 Recognizing configuration changes
 A configuration change is a change that’s made to the screen orientation (for
example, if the user moves the screen to the side and back or moves it from
portrait to landscape mode or vice versa), the language, or an input device.
A configuration change causes your activity to be destroyed while complet-
ing the normal activity lifecycle: onPause() followed by onStop() and then
 onDestroy() . After the onDestroy() method is called, the system cre-
ates a new instance of the activity to be created, which takes place because
resources and layout files and other elements might need to change depend-
ing on the current system configuration. For example, an application may
look completely different if the user is interacting with it in portrait mode, as
compared to being displayed in landscape mode (on its side).

 Creating Your First Activity
 You may have already created the MainActivity class if you created
a project using the New Android Project Wizard in Chapter 3 . Open the
 MainActivity.java file in the Silent Mode Toggle module to enhance it in
the following sections.

 Starting with onCreate
 The entry point into your application is the onCreate() method. The code
for the MainActivity.java file already contains an implementation of the
 onCreate() method. It’s where you start writing code! For now, your code
should look like this:

 public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override

85 Chapter 5: Coding Your Application

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Initialize our layout using the res/layout/activity_main.xml
 // layout file that contains our views for this activity.
 setContentView(R.layout.activity_main); }
 }

 You write the initialization code directly below the setContentView()
method.

 Be sure to always include this method call to your onCreate() method:

 super.onCreate(savedInstanceState);

 It’s required for the application to run. This line directs the base Activity
class to perform setup work for the MainActivity class. If you omit this line
of code, you receive a runtime exception.

 Telling Android to display
the user interface
 By default, an activity has no idea what its user interface is. It can be a simple
form that allows the user to type information to be saved. It can be a visual,
camera-based, augmented, virtual reality application (such as Layar in the
Google Play Store). Or it can be a drawn-on-the-fly user interface, such as in
a 2D or 3D game. As a developer, it’s your job to tell the activity which layout
the activity should load.

 To show the user interface onscreen, you have to set the content view for the
activity, by adding this line of code:

 setContentView(R.layout.activity_main);

 R.layout.activity_main refers to the activity_main.xml file that’s
located in the src/main/res/layout directory. It’s the layout you defined
in Chapter 4 .

 Handling user input
 The Silent Mode Toggle application has little user interaction. The only user
interaction that your application will have is a single button that the user
taps to toggle Silent mode.

86 Part II: Building and Publishing Your First Application

 To respond to this tap event, you need to register an event listener, which
responds to an event in the Android system. Though you find various types
of events in the Android system, two of the most commonly used are key-
board events and touch events (also known as clicks).

 Keyboard events
 A keyboard event occurs whenever a particular keyboard key is pressed.
For example, if the user presses the Alt+E hot key in your application, you
may want the view to toggle into Edit mode. Responding to keyboard events
allows you to do this. If you need to override the onKeyDown method to use
your own keyboard event, do it this way:

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 return super.onKeyDown(keyCode, event);
 }

 You won’t need to use onKeyDown for the examples in this book, but it’s
useful to know about it.

 Touch events
 A touch event occurs whenever the user taps a widget on the screen. The
Android platform recognizes each tap event as a click event. Examples of
views that can respond to touch events include (but aren’t limited to)

 ✓ Button

 ✓ ImageButton

 ✓ EditText

 ✓ Spinner

 ✓ ListView Rows

 ✓ MenuItem

 All views in the Android system can react to a tap; however, some widgets
have their clickable property set to false by default. You can override this set-
ting in your layout file or in code to allow a view to be clickable by setting the
 clickable attribute on the view or the setClickable() method in code.

 Writing your first click listener
 For your application to respond to the click event of the user toggling Silent
mode, you respond to the click event that’s exposed by the button.

87 Chapter 5: Coding Your Application

 Add the method shown in Listing 5-1 to your MainActivity class. It
 demonstrates how to implement a click handler for contentView . The code
consists of the entire onCreate() method with the new code. You can either
fill in the button code (in bold) or overwrite your entire onCreate code.

 This listing uses the findViewById() method, which is available to all
activities in Android. This method allows you to find any view inside the
activity’s layout and do some work with it.

 Be sure to cast the result of findViewById() to the appropriate type. If the
type in your layout file is different from what you’re casting it to (if you’re
trying to cast an ImageView in the layout file to ImageButton , for example),
you’ll crash your application.

 Immediately following this line of code, you start setting up the event
 handler.

 The event handling code is placed inline after you retrieve the
 contentView from the layout. Setting up the event handler is as simple
as setting a new View.OnClickListener . This click listener contains
an onClick() method that’s called after the user taps the button.
It’s where you place the code to handle the Silent mode toggle.

 What should the view do when it’s clicked? You’ll set that up shortly, but for
now leave it empty.

 Listing 5-1: The Initial Class File with a Default Button OnClickListener

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Find the view with the ID "content" in our layout file.
 FrameLayout contentView =
 (FrameLayout) findViewById(R.id.content);

 // Create a click listener for the contentView that will toggle
 // the phone’s ringer state, and then update the UI to reflect
 // the new state.
 contentView.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 // TODO
 }
 });
 }

88 Part II: Building and Publishing Your First Application

 Working with the Android
Framework Classes

 This section gets into the good stuff — the nitty-gritty of Android develop-
ment and its Android framework classes! Yes, activities and views are inte-
gral parts of the system, but they’re simply the “plumbing” that’s required
in any modern operating system (in one capacity or another). The real fun is
just about to start.

 The following sections describe how to check the state of the phone ringer
to determine whether it’s in Normal mode (ringing loud and proud) or
Silent mode. At this point, you can begin to start toggling the phone’s
ringer mode.

 Getting good service
 To access the Android ringer, you’ll need access to the AudioManager in
Android, which is responsible for managing the ringer state, so you should
initialize it in onCreate() .

 All important initialization needs to happen in onCreate() .

 You first need to create a field of type AudioManager by the name of
 audioManager . Type this name at the top of your class file, directly after the
class declaration line, as shown in Listing 5-2.

 Listing 5-2: Adding the Class-Level AudioManager Variable
 package com.dummies.silentmodetoggle;

 import android.media.AudioManager; ➝3

 . . .

 public class MainActivity extends Activity {

 AudioManager audioManager; ➝9

 @Override
 public void onCreate(Bundle savedInstanceState) {
 // Always call super.onCreate() first.
 super.onCreate(savedInstanceState);

89 Chapter 5: Coding Your Application

 This list briefly explains what the numbered lines denote:

 ➝ 3 The import statement that brings in the necessary package so
that you can use AudioManager .

 ➝ 9 The AudioManager field. Because it’s a field, you can have access
to it in other parts of the activity.

 ➝ 18 Initializes the audioManager field by getting the service from the
 getSystemService() method in the Activity superclass.

 Whoa! What’s getSystemService() ? By inheriting from the base
 Activity class, MainActivity receives all the benefits of being an activ-
ity, including access to the getSystemService() method call. This method
returns the base Java Object class, so you have to cast it to the type of ser-
vice you’re requesting.

 This call returns all available system services that you might need to work
with. All services that are returned can be found in the Context class in
the Android documentation, at http://d.android.com/reference/
android/content/Context.html . Popular system service types
include

 ✓ AUDIO_SERVICE

 ✓ LOCATION_SERVICE

 ✓ ALARM_SERVICE

 Toggling Silent mode with AudioManager
 After you have an instance of AudioManager , you can start checking the
state of the ringer and toggling the ringer. The code you need to add or
modify is in bold in Listing 5-3.

 // Get a reference to Android’s AudioManager so we can use
 // it to toggle our ringer.

 audioManager = (AudioManager) getSystemService(AUDIO_SERVICE); ➝18

 . . .
 }
 }

http://d.android.com/reference/android/content/Context.html

90 Part II: Building and Publishing Your First Application

 Listing 5-3: Adding the Application Toggle to the App

 package com.dummies.silentmodetoggle;

 import android.app.Activity;
 import android.media.AudioManager;
 import android.os.Bundle;
 import android.util.Log;
 import android.view.View;
 import android.widget.FrameLayout;
 import android.widget.ImageView;

 import com.dummies.silentmodetoggle.util.RingerHelper;

 public class MainActivity extends Activity {

 AudioManager audioManager;

 /**
 * This method is called to initialize the activity after the
 * java constructor for this class has been called. This is
 * typically where you would call setContentView to inflate your
 * layout, and findViewById to initialize your views.
 * @param savedInstanceState contains additional data about the
 * saved state of the activity if it was previously shutdown
 * and is now being re-created from saved state.
 */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 // Always call super.onCreate() first.
 super.onCreate(savedInstanceState);

 // Get a reference to Android's AudioManager so we can use
 // it to toggle our ringer.
 audioManager = (AudioManager) getSystemService(AUDIO_SERVICE);

 // Initialize our layout using the res/layout/activity_main.xml
 // layout file that contains our views for this activity.
 setContentView(R.layout.activity_main);

 // Find the view named "content" in our layout file.
 FrameLayout contentView =
 (FrameLayout) findViewById(R.id.content);

 // Create a click listener for the contentView that will toggle
 // the phone's ringer state, and then update the UI to reflect
 // the new state.
 contentView.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {

91 Chapter 5: Coding Your Application

 // Toggle the ringer mode. If it’s currently normal,
 // make it silent. If it’s currently silent,
 // do the opposite.
 RingerHelper.performToggle(audioManager);

 // Update the UI to reflect the new state
 updateUi();
 }
 });
 }

 /**
 * Updates the UI image to show an image representing silent or
 * normal, as appropriate
 */
 private void updateUi() {
 // Find the view named phone_icon in our layout. We know it’s
 // an ImageView in the layout, so downcast it to an ImageView.
 ImageView imageView = (ImageView) findViewById(R.id.phone_icon);

 // Set phoneImage to the ID of image that represents ringer on
 // or off. These are found in res/drawable-xxhdpi
 int phoneImage = RingerHelper.isPhoneSilent(audioManager)
 ? R.drawable.ringer_off
 : R.drawable.ringer_on;

 // Set the imageView to the image in phoneImage
 imageView.setImageResource(phoneImage);
 }

 /**
 * Every time the activity is resumed, make sure to update the
 * buttons to reflect the current state of the system (since the
 * user may have changed the phone’s silent state while we were in
 * the background).
 *
 * Visit http://d.android.com/reference/android/app/Activity.html
 * for more information about the Android Activity lifecycle.
 */
 @Override
 protected void onResume() {
 super.onResume();

 // Update our UI in case anything has changed.
 updateUi();
 }
 }

92 Part II: Building and Publishing Your First Application

 Now, create the file src/main/java/com/dummies/silentmodetoggle/
util/RingerHelper.java and add the following to it:

 package com.dummies.silentmodetoggle.util;

 import android.media.AudioManager;

 public class RingerHelper {
 // private to prevent users from creating a RingerHelper object
 private RingerHelper() {}

 /**
 * Toggles the phone's silent mode
 */
 public static void performToggle(AudioManager audioManager) {
 // If the phone is currently silent, then unsilence it. If
 // it's currently normal, then silence it.
 audioManager.setRingerMode(
 isPhoneSilent(audioManager)
 ? AudioManager.RINGER_MODE_NORMAL
 : AudioManager.RINGER_MODE_SILENT);
 }

 /**
 * Returns whether the phone is currently in silent mode.
 */
 public static boolean isPhoneSilent(AudioManager audioManager) {
 return audioManager.getRingerMode()
 == AudioManager.RINGER_MODE_SILENT;
 }
 }

 RingerHelper is a simple Java class that has only static methods that
help us deal with the AudioManager ringer. These methods are useful in
 MainActivity now, but they’ll also be useful in other classes later, so that’s
why they’re in a separate class.

 Installing Your Application
 You’ve done it — you’ve written your first Android app. Okay, your second,
but your first one that does anything useful. In the next sections, you will
install your app on the emulator and put that baby into action!

93 Chapter 5: Coding Your Application

 Running your app in an emulator
 It’s time to install this app on the emulator. Follow these steps:

1. In Android Studio, choose Run ➪ Run ‘ Silent Mode Toggle ’ .

 You see the Choose Device window, shown in Figure 5-2 .

2. If your emulator is already running, select it now.

 Otherwise, select Launch Emulator and choose your desired
emulator.

 Click the Use same device for future launches check box to avoid having
to see the dialog box every time you launch your app.

3. Wait for the emulator to load and launch your app.

 Your application starts and the emulator runs your program, as shown
in Figure 5-3 .

 If your application doesn’t start, try Step 1 again and watch the Android
view to see the logcat output from your app. Refer to Chapter 3 for how
to use the Android view.

 Figure 5-2:
 The Choose

Device
 window.

94 Part II: Building and Publishing Your First Application

4. Click the Toggle Silent Mode button to see the image toggle, shown in
Figure 5-4 .

 Notice the new icon on the notification bar — the Silent Notification icon.

5. Return to the Home screen by clicking the Home button on the
 emulator.

6. Open the application (it’s the center button at the bottom of screen).

 You see the application launcher icon in the list of applications.

 After the emulator is running, it’s running on its own. The emulator has no
dependencies on Android Studio. In fact, you can close Android Studio and
still interact with the emulator.

 Installing on a physical Android device
 Installing an application on a device is no different from installing it on the
emulator, except for having to make a few small adjustments to get it to work.
If you’re on a Windows machine, refer to Chapter 2 for how to install the
 necessary drivers. The remaining steps are straightforward:

 Figure 5-3:
The

emulator
running the
 application.

95 Chapter 5: Coding Your Application

1. From the Home screen of your phone, access the Settings panel.

2. Choose About Phone.

 Tap on Build number seven times to unlock the developer options. You
should see a message that says “You are now a developer!” If only you’d
known that being an Android developer was so easy, you wouldn’t have
needed to buy this book!

3. Go back to Settings and choose Developer Options, then select the
USB Debugging option, as shown in Figure 5-5 .

 This step allows you to debug your application on a device. (You can
find more about debugging later in this chapter, in the “Using the
Android Studio debugger” section.)

4. Connect your phone to the computer by using a USB cable.

 The phone will ask you whether you want to allow USB debugging for
this computer. Click the Always allow from this computer check box and
click OK.

5. When the phone is detected on your system, run the application by
choosing Run ➪ Run ‘ Silent Mode Toggle ’ .

 Figure 5-4:
 The app
in Silent

mode, with
the Silent

Notification
icon.

96 Part II: Building and Publishing Your First Application

 Your device and any emulators that are currently running will show up
in the device chooser (refer to Figure 5-2).

6. Choose your phone from the list and click OK.

 This step sends the application to your phone, and it launches it just as
it would on the emulator. In a few seconds, the app should show up on
your phone.

 You’ve now deployed the application to your phone.

 If you change the app and you need to test it again, you have to reinstall it
on your phone. It’s a simple matter of plugging in your phone and choosing
Run➪Run ‘ Silent Mode Toggle ’ .

 Material Design
 Your app runs, it works great, and does what it says it will do. But does it feel
right? You may have noticed that every time you click on the toggle button
in the app, there’s no visual acknowledgment of your click. Sure the image
toggles, but is there more that you can do?

 Figure 5-5:
 Enabling

your device
to perform

USB
 debugging.

97� Chapter 5: Coding Your Application

Android’s visual design language, called Material Design, is all about making
your phone’s UI look like physical materials. Backgrounds should look like
card stock paper; views set on top of the background should be elevated to
cast a shadow onto the background; button clicks should cause ripples that
expand out over the view like ripples on a pond. These are the little details
that make your app a delight to use.

Visit http://www.google.com/design/spec/material-design/ for
more information about Material Design and how to use it to build a visually
appealing app.

Your UI is quite simple right now, so there’s no need to elevate one part of it
over another. But what you do need is some sort of click animation.

Luckily, it’s simple to add one. Go back to your activity_main.xml layout
file, and change your FrameLayout to add the following line:

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/content"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:foreground="?android:attr/selectableItemBackground">

The foreground attribute in the FrameLayout class allows you to overlay
a drawable on top of whatever is inside the FrameLayout. By setting your
foreground to ?android:attr/selectableItemBackground, you are
placing the Android-standard selectableItemBackground over your
entire image. What does the selectableItemBackground do? It’s usually
a transparent drawable that when clicked displays a ripple animation across
its view.

The question mark (?) in an attribute value means that you are referencing a
value in the currently applied theme. If you change your app’s theme or run
your app on a phone with another version of Android, the app will look and
behave slightly differently (as it should) because you are referencing values
from the proper theme.

Go ahead and run your app again, and you will see the standard Android
ripple animation when you click your FrameLayout.

You will learn how to use other aspects of Material Design, such as setting
your view elevation, in Chapter 9.

http://www.google.com/design/spec/material-design/

98 Part II: Building and Publishing Your First Application

 Uh-Oh! (Responding to Errors)
 You write perfect code, right? Even if it’s perfect this time, though, the
day will come when it isn’t. When coding doesn’t go as planned, you have
to figure out the problem. To help developers facing application crashes,
Android Studio provides valuable tools to help debug applications.

 Using the Android view
 Debugging is rarely fun. Thankfully, the Android Tool window provides the
tools necessary to help you dig yourself out of a hole filled with bugs. One of
the most commonly used features in the Android Tool window is the logcat
viewer, which allows you to view the output of system log messages from
your system, as shown in Figure 5-6 .

 This system log reports everything from basic information messages (which
include the state of the application and device) to warning and error informa-
tion. Seeing only an “Application Not Responding” or a force-close error mes-
sage on the device doesn’t clarify what has happened. Opening the Android
view and reviewing the entries in logcat can help identify, down to the line
number, where the exception is occurring.

 Figure 5-6:
 A view of
logcat in

the Android
view.

99 Chapter 5: Coding Your Application

 Logging messages to logcat
 Displaying log messages in the Android view is as simple as adding one line
of code to your app. Open the MainActivity.java file, and at the bottom
of the method, add a log entry, as shown in bold in Listing 5-4.

 Line 9 demonstrates how to output a message into the system log.
 SilentModeApp is known as the TAG that you’re giving to this log entry; the
second parameter to the log call is the message you want to output. The tag
helps filter messages while looking at them in Android Studio.

 Declare a TAG constant in your code and use it instead of repeatedly typing
the TAG , as in this example:

 private static final String TAG = "SilentModeApp";

 Another common technique for dealing with tags is to use the class name:

 private static final String TAG = MainActivity.class.getSimpleName();

 Notice the d in Log.d in Listing 5-4, indicating that this is a debug message.
Other options are

 ✓ e : error

 ✓ i : info

 ✓ w : warning

 ✓ wtf : What a terrible failure (Yes, it’s an option.)

 ✓ v : verbose

 The various logging types exist for you to decide how various messages
should be logged.

 Listing 5-4: The onCreate() Method
 import android.util.Log;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 . . .

 Log.d("SilentModeApp", "This is a test"); ➝9
 }

100 Part II: Building and Publishing Your First Application

 Listing 5-5: Commenting Out the setContentView Initialization
 @Override
 public void onCreate(Bundle savedInstanceState) {
 // Always call super.onCreate() first.
 super.onCreate(savedInstanceState);

 // Get a reference to Android's AudioManager so we can use
 // it to toggle our ringer.
 audioManager = (AudioManager) getSystemService(AUDIO_SERVICE);

 Viewing log messages in logcat
 You can view log messages in the Android Studio Android view by choosing
View➪Tool Windows➪Android.

 Start the application by choosing Run➪Run ‘ Silent Mode Toggle ’ . When your
application is running, open the Android view and look for your log mes-
sages. It should look somewhat similar to the one shown in Figure 5-6 .

 By default, the Android view automatically filters the output for you to some
sensible defaults. If you would like to explore other filters, try click ing the
filter selector in the top right of the Android view and select No filter. You can
also filter by log level, and you can search for specific log messages if you like.

 Using the Android Studio debugger
 Although the Android view might be one of your best allies, your number-one
weapon in the battle against the army of bugs is the Android Studio debugger,
which lets you set various breakpoints, inspect variables using the watch
window, and much more.

 Checking runtime errors
 The runtime error is the Wicked Witch of the East — it comes out of nowhere
and leaves everything a mess. Your application might be humming along
and, all of a sudden, it crashes when you click a menu option or a button, for
example. It can be very difficult to solve these kinds of problems just by look-
ing at the source code.

 The debugger can help in this situation because you can set a breakpoint at
the start of onCreate() that allows you to inspect the values of the vari-
ables as the app is running.

 Let’s make your app crash! Listing 5-5 demonstrates one way to crash your
app — commenting out the setContentView initialization will cause an
exception to be thrown at runtime. Go ahead and do this now:

101 Chapter 5: Coding Your Application

 Listing 5-5 works this way:

 ➝ 12 This code, which is intentionally commented out, is a bug and
 prevents our activity from getting a layout.

 ➝ 16 findViewById won’t be able to find R.id.content anymore, so
it will return null .

 ➝ 21 Calling contentView.setOnClickListener will throw a
 NullPointerException because contentView is null .

 Attaching a debugger to your app allows you to track down the root cause of
the error.

 Creating breakpoints
 You have a couple ways to create a breakpoint, which will pause your
 application mid-execution and let you examine its running state:

 ✓ Choose the line where you want to place the breakpoint by clicking it
with the mouse. Choose Run➪Toggle Line Breakpoint.

 ✓ Click the left gutter in the Android Studio editor where you want to
create a breakpoint.

 Either method creates a small, round red icon in the left gutter of the Android
Studio editor, as shown in Figure 5-7 .

 // Initialize our layout using the res/layout/activity_main.xml
 // layout file that contains our views for this activity.
 //setContentView(R.layout.activity_main); ➝12

 // Find the view named "content" in our layout file.
 FrameLayout contentView =
 (FrameLayout) findViewById(R.id.content); ➝16

 // Create a click listener for the contentView that will toggle
 // the phone's ringer state, and then update the UI to reflect
 // the new state.
 contentView.setOnClickListener(new View.OnClickListener() { ➝21
 public void onClick(View v) {
 . . .
 }
 });
 }

102 Part II: Building and Publishing Your First Application

 To try debugging in Android Studio, set a breakpoint on the line with
 contentView.setOnClickListener .

 Starting the debugger
 Follow these steps to debug your code:

1. Choose Run ➪ Debug ‘ Silent Mode Toggle ’ .

 Android Studio installs the application on the emulator (or device) and
then attaches the debugger to it. If your emulator is not running, you will
have the option to start one now.

2. Wait for the debugger to break at your breakpoint.

 You’re now at a breakpoint, as shown in Figure 5-8 . You can hover the
cursor over variables to see their values.

 Figure 5-7:
 A set break-
point in the

left gutter
of Android

Studio’s
 editor

 window.

 Figure 5-8:
 The

SilentMode-
Toggle app
running in
the Debug

view.

103 Chapter 5: Coding Your Application

3. Hover the cursor over the contentView variable.

 The variable is null because you commented out the code. Silly human,
why did you do that?

 If you click the Resume button and look at your emulator, you can see
that your application has now crashed, as shown in Figure 5-9 .

4. To disconnect the debugger, click the Stop button.

 Go back to MainActivity.java and remove the comment you added to
ensure that the application runs successfully.

 Thinking Beyond the Application
Boundaries

 At times, the device may perform extraneous work that can affect your
application, such as downloading a large file in the background while play-
ing music from an online radio application. Will these heavy network-bound
activities affect the application in any way? It depends. If your app needs a

 Figure 5-9:
The app

crash dialog
box opens

after an
exception.

104 Part II: Building and Publishing Your First Application

connection to the Internet and for some reason cannot connect, will it crash?
What will happen? Knowing the answers to these questions means that
you’re thinking beyond your application boundaries.

 Not all apps are created equal — some good ones are out there, along with
some bad ones. Before building or releasing your first Android application,
ensure that you know the ins and outs of your application and anything that
can affect it. Be sure that the app doesn’t crash when users perform routine
tap events and screen navigation.

 Building applications on embedded devices is very different than building them
on a PC or Mac, and the reason is simple: The resources (battery, memory and
processor, for example) are limited. If the Android device is a phone, its main
purpose is to perform phone-like duties, such as recognizing an incoming call,
maintaining a signal, and sending and receiving text messages.

 If a phone call is in progress, the Android system treats that process as vital,
whereas a downloading file in the background is considered non-vital. If the
phone starts to run out of resources, Android kills all non-vital processes to
keep the vital ones alive. A file can be downloaded again, but when a call is
lost, it’s lost forever — you have to make that call again, which would only
frustrate the user if the main purpose for purchasing the device was to have
a phone. Your app might download a file in the background and the process
gets killed — this is a scenario that you need to test. It can also happen if
your phone encounters an area with a poor or non-existent wireless signal.
If the connection gets dropped, your file isn’t downloaded.

 Test for all possible solutions and have a safety guard for them. Otherwise,
your app will be prone to runtime exceptions, which can lead to poor reviews
from users at the Google Play Store.

 Interacting with your application
 To ensure that your app works, fire it up and play with its features. While
your app is running, start another app, such as the browser. Visit a few sites,
and then return to your app. Click any buttons related to your app to see
what happens. Try all kinds of things to see whether you find outcomes that
you didn’t consider. What happens if a user is interacting with your app and
receives a phone call? Are you saving the necessary state in onPause() and
restoring it in onResume() ?

 Android handles the difficult task management for you, but it’s ultimately
your responsibility to manage the state of your application.

105 Chapter 5: Coding Your Application

 The most common errors come from Android developers failing to save
their state properly in onPause and restore it in onResume . Remember that
Android can kill your activity at any time, and it’s up to you to make sure you
properly save your activity’s state so it can be re-created later if necessary!
See Chapter 10 for more information about saving and restoring your
activity state.

 Testing whether your application works
 In the emulator or on your device, open the Silent Mode Toggle application
from the launcher. You’ve already performed the first step in the testing
 process — making sure that the app starts!

 After the app is open, check to see whether the phone is in Silent mode by
looking for the small star icon on the notification bar (refer to Figure 5-3).

 Click the Silent Mode Toggle button to toggle the ringer mode. Did the appli-
cation’s image change? Try various actions to ensure that your application
works as expected. If you find a flaw, use the debugging tools featured in this
chapter to help identify the issue.

 Are you having difficulty turning Silent mode off again? You may have been
hit by a bug introduced in Android 5.0. Visit https://code.google.
com/p/android/issues/detail?id=78652 for more details.

 What about automated testing?
 With the rise of agile methodologies over the past decade, it’s only a matter
of time before you start to wonder how to perform automated testing in
Android. The SDK installs Android unit-testing tools that you can use to
test not only Java classes but also Android-based classes and user interface
interactions. You can read more about unit testing in the Android documen-
tation at http://d.android.com/guide/topics/testing/testing_
android.html .

 Here are some tools at your disposal:

 ✓ JUnit: The Android SDK includes JUnit 3.x integration. You can use
JUnit, a popular unit-testing framework that’s used in Java, to perform
unit testing or interaction testing, and you can find more informa-
tion about JUnit at www.junit.org . To make your development life
easier, Android Studio has built-in tools to help facilitate testing in JUnit
through Android Studio.

https://code.google.com/p/android/issues/detail?id=78652
http://d.android.com/guide/topics/testing/testing_android.html

106 Part II: Building and Publishing Your First Application

 ✓ Monkey: The user interface and application exerciser known as Monkey
runs on your emulator or device and generates pseudorandom streams
of user events, including taps, gestures, touches, clicks, and a number
of system events. Monkey, which is installed with the Android SDK, is a
helpful way to stress-test an application.

 ✓ UI Automator: The UI Automator testing framework lets you test your
user interface (UI) efficiently by creating automated functional UI test
cases that can be run against your app on one or more devices.

 ✓ Espresso: The Espresso library makes unit testing Android significantly
easier than using straight JUnit. It uses a simple and concise style to
write Android unit tests. Beginning with 2.0, Espresso is now distributed
as part of the Android SDK.

 To learn more about how to use Espresso to create automated tests for
your app, visit the book’s online website at www.dummies.com/extras/
androidappdevelopment to read the articles on testing.

www.dummies.com/extras/androidappdevelopment

 Understanding Android Resources
 In This Chapter

 ▶ Knowing why resources are important in Android

 ▶ Extracting resources

 ▶ Working with image resources

 Resources are mentioned in detail throughout this book, so you might
wonder why an entire chapter is devoted to them. Discussing resources

and their use in Chapters 3 and 4 is necessary to help you understand the
basic structure of the resource directory and the use of resources to build
a simple application. One compelling reason to use resources in your
application — localization — is covered in this chapter.

 Understanding Resources
 Resources are additional static content that are an intrinsic part of your app
but aren’t part of your Java code. The most common resources are

 ✓ Layout

 ✓ String

 ✓ Image

 ✓ Dimension

 ✓ Style

 ✓ Theme

 ✓ Value

 ✓ Menu

 ✓ Color

Chapter 6

108 Part II: Building and Publishing Your First Application

 Earlier chapters in this book introduce you to layouts, strings, and images
because they’re the most common types of resources that you use in every-
day Android application development. The remaining resources may need
some explanation, so the following few sections will clear them up.

 Dimensions
 In an Android resource, a dimension is a number followed by a unit of mea-
surement, such as 10px, 2.5in, or 5sp. You use a dimension when specifying
any property in Android that requires a numeric unit of measure. For exam-
ple, you may want the padding of a layout to be 10px. Android supports the
following units of measure:

 ✓ density-independent pixel (dp or dip): This is the most commonly used
dimension. Dp is based on the physical density of the screen. These
units are relative to a screen measuring 160 dots per inch (dpi); there-
fore, 1 dp is equivalent to 1 pixel on a 160-dpi screen. The ratio of dp to
pixels changes with screen density, but not necessarily in proportion.

 The dp concept is complex; you will want to support multiple screen densi-
ties, so check out the “Supporting Multiple Screens” article at http://d.
android.com/guide/practices/screens_support.html .

 ✓ scale-independent pixel (sp or sip): This unit resembles the dp unit but
is scaled according to the user’s font-size preference. Use sp dimensions
when specifying font sizes in your application.

 ✓ pixel (px): A pixel corresponds to a pixel on the screen. This unit of
measure isn’t recommended for most cases. Your app may look great on
a medium-density device but look distorted and out of place on a high-
density screen (and vice versa) because the dpi differs.

 ✓ point (pt): A point is inch, based on the physical size of the screen.

Like px, pt is not recommended.

 ✓ millimeter (mm): This unit is based on the size of the screen. Like px,
mm is not recommended.

 ✓ inch (in): This unit is based on the physical size of the screen. Like px, in
is not recommended.

 Styles
 Styles in Android are similar to Cascading Style Sheets (CSS) in the web
development realm: You use styles to (you guessed it) style an application.
A style is a collection of properties that can be applied to an individual view

http://d.android.com/guide/practices/screens_support.html

109 Chapter 6: Understanding Android Resources

(within the layout file) or to an activity or to your entire application (from
within the manifest file). Styles support inheritance, so you can provide a basic
style and then modify it for each particular use case in your application. Style
 property attribute examples include text size, text color, and background.

 Themes
 A theme is a style applied to an entire activity or application, rather than an
individual view. When a style is applied as a theme, every view in the activ-
ity and/or application inherits the style settings. For example, you can set all
 TextView views to a particular font, and all views in the themed activity or
application then display their text in that font.

 Values
 The value resource can contain many different types of value type resources
for your application, including

 ✓ Bool: A Boolean value defined in XML whose value is stored in an
arbitrary filename in the res/values/ <filename> .xml file, where
 <filename> is the name of the file. An example is bools.xml .

 ✓ Integer: An integer value defined in XML whose value is stored with
an arbitrary filename in the res/values/ <filename> .xml file.
An example is integers.xml .

 ✓ Integer array: An array of integers defined in XML whose set of values
is stored with an arbitrary name in the res/values/ <filename> .xml
file, where <filename> is the name of the file. An example is integers.
xml . You can reference and use these integers in your code to help
define loops, lengths, and other elements.

 ✓ Typed array: An array used to create an array of resources, such as
 drawables . You can create arrays of mixed types. Therefore, the arrays
aren’t required to be homogeneous — however, you must be aware
of the data type so that you can appropriately cast it. As with other
resources, the filename is arbitrary in the res/values/ <filename> .
xml file. An example is types.xml .

 Menus
 Whether your app is using the action bar or a menu, Android treats them
both the same and you’ll define them the same way. A menu can be defined

110 Part II: Building and Publishing Your First Application

via either code or XML. The preferred way to define one is via XML;
therefore, the various menus you create should be placed into the menu/
directory. Each menu has its own .xml file.

 Colors
 The colors file, typically located in the values/colors.xml file, lets you
name colors, such as login_screen_font_color . This might depict the
color of the text you’re using on the logon page, for example. Each color is
defined as a hexadecimal value.

 Working with Resources
 You may have worked with resources a few times in this book, and at this
point you’re likely familiar with using the R class to access resources from
within your application. If you’re rusty on resources and the generated R file,
see Chapter 3 .

 Moving strings into resources
 As you become an experienced programmer, you may start to take shortcuts
to get your project built and working. Say that initially you forget to move
strings into resources, and you have to come back at a later time to do it. You
can extract a string into a resource using the built-in tools.

 The long way
 Here’s one way to extract a string into a resource:

1. Create a new string resource.

2. Copy its name.

3. Replace the string value in your layout with the resource identifier.

 This way is fine. It’s not a huge pain, but it does take a little time.

 The fast way
 You can cut the time to create a string resource to fewer than 15 seconds.
If you do this 30 times a day (which is feasible in an 8-hour day), you can save
15 minutes of just copying and pasting. That’s five hours a month doing the
copy-and-paste dance!

111� Chapter 6: Understanding Android Resources

Follow these steps:

1.	In Android Studio, open a random layout file such as activity_
main.xml in the layouts directory.

2.	Add a new TextView element that looks like the following:

<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="I need a kombucha refill, please"/>

3.	Place your cursor on the boldface line with the hardcoded text string
and press Alt+Enter.

		 A menu opens with various options.

4.	Choose the Extract String Resource option.

		 The Extract String Resource dialog box opens, as shown in Figure 6-1,
and you can set various options for the resource.

5.	Choose a name for your resource such as kombucha_refill, leave
the other options set to their defaults, and click OK.

		 You can now see that the layout file has been modified. The text
"I need a kombucha refill, please" has been replaced with
"@string/kombucha_refill".

		 If you open the strings.xml file in the res/values folder, you can
see your new string resource.

That’s pretty cool! You can see that doing this 20 or 30 times a day can add
up and save you a lot of time.

Wrestling the image beast
One of the most difficult parts about resources can be images. They might
look great on medium-density devices but look like garbage on high-density

Figure 6-1:
The Extract

Android
String dialog

box.

112 Part II: Building and Publishing Your First Application

devices. This is where multiple-density folders come into play. These density-
specific drawable folders are explained in Chapter 3 .

 Battling pixelation and compression
 The issue you’ll most likely encounter is pixelation and compression/expansion
(moving from higher- to lower-density devices and vice versa). To work around
this issue, design your graphics at a high density, such as 640 dpi in large-size
format. For example, if you’re building the launcher icon, build it at 512px high
and 512px wide to upload to Google Play. Although the xxxhdpi folder might
need an image of only 192px high x 192px wide (the largest in use), it doesn’t
mean that in two or three months a higher resolution device won’t be released.

 This situation can be painful because working with large image files in image
editing programs is difficult if you don’t have a computer with decent capabili-
ties. But you have to trust us on this one: Having a large raw-image file that’s high
density is much easier to mold and shape into the correct densities you’ll need.

 Downsizing a high-resolution image doesn’t distort its quality (other than
losing its fine edges and detail), but upscaling does because it creates pixela-
tion. Starting with a large file reduces the chance that you’ll ever have to
upscale, which means that your app graphics will always look crisp. If possi-
ble, working with vector files will make this even easier.

 Using layers
 If you’re creating graphics in an image editing tool that supports layers, place
each item in your graphic on a different layer. The reasons are many, but
here are the key factors:

 ✓ Changes: At some point, you will need to change something in your
graphic — its background, font, or logo, for example. If you have all
these items in different layers, you can make the change without affect-
ing the rest of the graphic.

 ✓ Localization: An example from an earlier section in this chapter talks
about various strings in different languages, and graphics are no differ-
ent. Many times as you develop applications, you will encounter graph-
ics with stylized text in the graphic itself. If your application is being
translated into Japanese and your graphics contain stylized English text,
you can create a Japanese version of those graphics and place them in
a Japanese drawable region folder, such as res/drawable-ja . The
Android platform recognizes which region it’s in (in this case, Japan).
If the region’s resource folders (res/drawable-ja , res/values-ja ,
and so on) are available, Android uses them in the application. That
being said, it’s always easier to keep your text in text resources and your
images in image resources. Translating text resources is easier than
making new copies of your images for every new language.

113 Chapter 6: Understanding Android Resources

 Making your apps global with resources
 The Android platform surpassed the Apple iPhone in U.S. market share in the
first quarter of 2010. Now carriers around the world are developing Android-
based smartphones, which simply means more potential users for your apps.

 What this statement means to you as a developer is that Android is a
huge market with tons of opportunity waiting to be tapped. Though this
opportunity is exciting, taking the greatest advantage of it requires that
you understand resources and how they affect the usability of your apps.
For example, if a user in the United States uses your app and it was written
for an English-speaking audience (using resources or not), the user can
use it. However, if you hard-code all your string values into your views and
activities and then need to release a Chinese version, you have to rewrite
your application to use resources. When you use resources, you can have
a translator translate your strings and drawables into the region you’re
targeting — such as China.

 Resources allow you to extract human-readable strings, images, and view-
able layouts into resources that you can reference. You can create various
resource folders to handle screens of differing sizes, languages (strings and
drawables), and layout options, such as landscape and portrait. Landscape
and portrait layouts come into play when a user rotates the device 90 degrees
in either direction.

 If you want your apps to be available on as many Android devices as pos-
sible around the world, you should use resources at all times. Always put all
strings into the strings.xml file because, someday, someone from another
country will want your application in another language. To transport your
application to another language, you simply need a translator to translate
your strings.xml file into her language, and then you can create various
 values folders to hold the appropriate region’s values. Android takes care
of the hard work. For example, if the user is in China and his phone is set to
the Chinese Locale, Android looks for the values folder named values-cn ,
which is where Chinese values are stored — including the Chinese version
of the strings.xml file. If Android cannot find such a folder, the platform
defaults to the values folder, which contains the English version of the
 strings.xml file. (For more on strings, see the section, “Moving strings into
resources,” earlier in this chapter.)

 When it comes down to it, having a translator update your strings and creat-
ing a new folder with the new strings.xml file located within are simple
tasks. Expand this concept to other languages and tablets and televisions and
you can see the potential. You’re no longer looking at mobile users as your
target audience. You’re looking at Android users , and with the options being

114 Part II: Building and Publishing Your First Application

released, you could be looking at billions of users. Using resources correctly
can make your expansion into foreign markets that much easier.

 Looking to have your app translated? You have a few options. Visit http://
translate.google.com/toolkit to learn how to upload your strings.
xml file and have it automatically translated by a computer. For higher
quality results, you should look at http://d.android.com/distribute/
tools/localization-checklist.html to learn how to upload your app
and have it translated by a professional translator.

 Designing your application for various regions is a big topic. You can find
more in-depth information in the “Localizing with Resources” article of
the SDK documentation at http://d.android.com/guide/topics/
resources/localization.html .

 You’re not forced into releasing your application to all countries at once —
Google Play will allow you to release your app only to specific countries.
Therefore, if you have written an application for the Berlin bus route
system in Germany, it probably doesn’t make sense to have a Chinese
version, unless you want to cater to Chinese tourists as well as to German
residents.

 Different Strokes for Different Folks:
Using Resource Qualifier Directories

 As discussed in Chapter 3 , you can use different drawable directories to
create different resources for higher and lower resolution devices. This is
an example of using resource qualifiers , and it turns out that you can use the
same trick to do many other things.

 Using default resources
 By default, when you place a resource into your drawable, layout, menu,
value, or other directory in the res folder, you’re supplying a default
resource . This is the resource that will be used if no other resources are
specified. You’ve done this already with drawables, layouts, and strings.

 These default resources will be used if there are no other specific resources
overriding them. To override a resource for special cases, you create files
in directories that have special names. The next sections will go over some
common ways you might want to override resources.

http://d.android.com/distribute/tools/localization-checklist.html
http://d.android.com/guide/topics/resources/localization.html

115 Chapter 6: Understanding Android Resources

 Localizing to another language
 Let’s say that you want to translate the Silent Mode Toggle app into Spanish.
As covered in Chapter 3 , you can do that by creating a values-es direc-
tory, and placing a new strings.xml file into that directory that “overrides”
the default values that are in values/strings.xml . Whenever your app is
opened on a device that is set to use Spanish as the default language, your
app automatically displays the strings from values-es/strings.xml
rather than the default English values.

 This works with any of Android’s supported languages, not just Spanish. You
can use fr for French, de for German, and so on.

 In addition, Android allows you to subdivide languages by region. So you can
provide Portuguese translations for Portugal in values-pt , and in values-
pt-rBR for Brazil (which also speaks Portuguese).

 Visit http://developer.android.com/guide/topics/resources/
localization.html for more information about how to localize your app
to different languages and regions.

 You don’t necessarily need to override every value in your strings.xml
files. For example, if you have a values/strings.xml using U.S. English
and a values-en-rGB/strings.xml for U.K. English, you only need to
supply translations for those few things that mean different things in the U.S.
and the U.K. (such as pants).

 But be careful if you supply selective translations! The above might make
sense for U.S. and U.K. English, but it does not make sense for a French trans-
lation file. If you provide only some French translations, then some of your
app will be in English and some in French!

 Handling different screen sizes
 Resource qualifier directories can be a key tool in your battle to handle the hun-
dreds of different screen sizes and resolutions out there in the Android world.

 There are two main techniques you will want to use: selecting resources
based on screen density or based on screen size.

 Screen density (pixel density)
 Android devices come in many different pixel densities. Older phones came
in mdpi- or ldpi-pixel densities. These days, most newer phones come in

http://developer.android.com/guide/topics/resources/localization.html

116 Part II: Building and Publishing Your First Application

hdpi-or-above pixel densities. But some tablets may still come in mdpi
densities. Here is the list of densities Android supports:

 ✓ ldpi (low): ~120 dpi (dots per inch)

 ✓ mdpi (medium): ~160 dpi

 ✓ hdpi (high): ~240 dpi

 ✓ xhdpi (extra-high): ~320 dpi

 ✓ xxhdpi (extra-extra-high): ~480 dpi

 ✓ xxxhdpi (extra-extra-extra-high): ~640 dpi

 As described in Chapter 3 , you can use these densities as qualifiers in your
drawables directory to provide different images for different density screens.
For example, you can provide different sizes of assets for different devices by
putting the image files in drawables-mdpi , drawables-xxhdpi , and so on.

 In addition, you can use them as qualifiers on your values directories to uti-
lize slightly different values for things like margin, padding, and text size on
different sized devices. These values are typically put into a dimens.xml file
in the corresponding values directory.

 Remember, you do not necessarily have to provide all your images for all
densities. A good rule of thumb is to provide the xxhdpi assets for all your
images and rely on Android to automatically scale them down to the other
sizes as necessary. But if there are some images that don’t look great when
scaled down (such as a company’s logo for example), you may want to pro-
vide that asset at all densities.

 Layouts
 You may want to use different layouts for different sized screens. For exam-
ple, a tablet has much more screen real estate than a phone, so you will likely
want to lay out some of your screens differently on a tablet than on a phone.

 Android provides the smallestWidth qualifier to help you distinguish
between a phone and tablet. “Smallest width” means the smaller of your
height of width, regardless of which orientation your device is in. So if your
phone is 600dp x 800dp, the smallest width would be 600.

 This is very handy for distinguishing between phones and tablets. In general,
the common consensus is that a smallest width of 600dp or more is a tablet,
whereas anything less is a phone.

 The way to use the smallestWidth qualifier is to provide your default
phone layouts in res/layout , and then put any tablet-only layouts that

117 Chapter 6: Understanding Android Resources

you need in res/layout-sw600dp . Android will then pick the correct
layout file depending on whether the user is using a phone or a tablet.

 See Part IV for more information about how to use different layouts for
tablets versus phones.

 Portrait versus landscape orientations
 Similarly, you may want to provide a different layout if the phone is in por-
trait mode or landscape mode. This can be handy for showing multi-pane
layouts when in landscape mode, but collapsing them to a single pane when
in portrait.

 Put all your default layouts into res/layout . These are used regardless of
which orientation your phone is in. If you want to have landscape-only lay-
outs, put them in res/layout-land . Similarly, portrait-only layouts should
go in res/layout-port .

 Handling old Android versions
 You can also use resource qualifiers to supply alternate resources for when
your app is running on different versions of Android. For example, older ver-
sions of Android use different styles and colors, so perhaps you want your
app to use a slightly different color when running on Android 4.1 rather than
Android 5.0.

 To do this, you can put your regular colors in res/values/colors.xml ,
and then put your Android 4.1 colors into res/values-v16/colors.xml
(for platform level 16, or Android 4.1).

 See Chapter 17 for more information about backward compatibility and han-
dling older versions of Android.

 Qualifier name rules
 Now that you know the basics, there are some additional things that can be
helpful to know about using resource qualifiers:

 ✓ You can specify multiple qualifiers for a single set of resources, sepa-
rated by dashes. For example, drawable-en-rUS-land applies to
US-English devices in landscape orientation.

118 Part II: Building and Publishing Your First Application

 ✓ If you use multiple qualifiers, they must be in a special order that you
can find here: http://d.android.com/guide/topics/resources/
providing-resources.html#table2 . For example:

• Wrong: drawable-hdpi-port/

• Correct: drawable-port-hdpi/

 ✓ Only one value for each qualifier type is supported. For example, if you
want to use the same drawable files for Spain and France, you cannot
have a directory named drawable-rES-rFR .

 There are many other things you can customize by using resource qualifiers!
Visit http://d.android.com/guide/topics/resources/ for more
information.

http://d.android.com/guide/topics/resources/providing-resources.html#table2
http://d.android.com/guide/topics/resources/

 Turning Your Application
into an App Widget

 In This Chapter
 ▶ Seeing how app widgets work in Android

 ▶ Understanding remote views and pending intents

 ▶ Building an AppWidgetProvider

 ▶ Putting your widget on the Home screen

 Usability is the name of the game in regard to all disciplines of
 application development: If your application isn’t easy to use,

users simply won’t use it.

 If you’ve followed the first six chapters of this book to build the Silent Mode
Toggle application, it undoubtedly works well. But it still requires launching
an app to use. To make this application even easier to use, simply turn it into
a Home screen widget. A Home screen widget allows you to place a view on
the user’s Home screen, which they can use to interact with your app without
having to open the app.

 In this chapter, you build an app widget for your application. An app widget
normally is a small icon or tiny view on the Home screen. Users can interact
with your application by simply tapping this widget to toggle their phone’s
Silent mode. This chapter introduces you to these classes:

 ✓ Intent

 ✓ BroadcastReceiver

 ✓ AppWidgetProvider

 ✓ IntentService

 Each of these classes plays a vital role in Android as well as in the app widget
framework.

Chapter 7

120 Part II: Building and Publishing Your First Application

 Working with App Widgets in Android
 An app widget in Android is a special kind of view that can be embedded on
your device’s Home screen. An app widget can accept user input via click
events, and it can update itself regularly. A user can add an app widget to the
Home screen by tapping the Applications button and then selecting Widgets.
The result is shown in Figure 7-1 .

 To make the Silent Mode Toggle application more usable, build an app widget
for it so that users can add the widget to the Home screen. Tapping the widget
changes the phone’s ringer mode without having to open the application.
The widget also updates its layout to indicate what state the phone is in, as
shown in Figure 7-2 .

 Working with remote views
 When you develop apps in Android, remember that it’s based on the Linux
kernel. Linux comes supplied with its own idioms about security, and the
Android platform inherits them. For example, the Android security model is
heavily based around the Linux user, file, and process security model.

 Figure 7-1:
 Adding a
widget to
the Home

screen.

121 Chapter 7: Turning Your Application into an App Widget

 Because every Android application is (usually) associated with its own
unique user, Android prevents applications from modifying the files of other
applications. This prevents developers from injecting malicious code into
other apps.

 Because the Home screen (also known as the Launcher) is its own applica-
tion and thus has its own unique user, developers such as yourself aren’t
allowed to directly run your application code on the Home screen for secu-
rity reasons. To provide a way to access the Home screen and modify the
contents of a particular area on it from an application, Android provides the
 RemoteViews architecture: It lets you run code inside your application, in a
separate process from the Home screen application, but it still allows a
widget’s view to be updated on the Home screen. This architecture protects
the Home screen app from buggy or malicious apps, because no third-party
app code needs to run in the Home screen app.

 Suppose that a user taps the Home screen app widget (in this case, an icon
she added to the Home screen). This action sends a request — addressed to
 your application — to change the ringer mode. Android routes the request
to your application, and the application processes the request, instructing
the Android platform to change the ringer mode and update the app widget
on the Home screen with a new image. None of this code is run in the Home
screen application — it’s all run remotely in your application, with Android
routing the message to the appropriate application. These messages are
called intents in Android.

 A remote view combines a little magic with innovative engineering. Known as
the RemoteViews class on the Android platform, it allows your application
to programmatically supply a remote user interface to the Home screen in
another process. The app widget code isn’t an activity (as in earlier chap-
ters), but is an implementation of an AppWidgetProvider . When Android
routes an intent to your application from the Home screen, the message is
handled in your implementation of the AppWidgetProvider class.

 Figure 7-2:
 The two

states of the
app widget.

122 Part II: Building and Publishing Your First Application

 Using AppWidgetProviders
 The AppWidgetProvider class allows the developer to programmatically
interact with the app widget on the Home screen. When this interaction takes
place, messages are sent from the Home screen app widget to your applica-
tion via broadcast events. Using these broadcast events, you can respond
when the app widget is updated, enabled, disabled, or deleted. You can also
update the look and feel of the app widget on the Home screen by providing
a new view. Because this view is located on the Home screen and not within
your running application, you use RemoteViews to update the app widget
layout. All the logic that determines what should happen is contained in an
implementation of AppWidgetProvider and initiated by an intent.

 Picture the app widget framework (AppWidgetManager) as the translator
of a conversation between two entities. If you need to speak to someone who
knows Italian, but you don’t know how to speak Italian, you would find a
translator who would accept your input, translate it into Italian, and relay the
message to the native Italian speaker. The same process applies to the app
widget framework: This framework is your translator.

 When the Italian native (AppWidgetHost , which is the Home screen, in this
case) needs to let you know that something has happened (such as a user
tapping a button), the translator (the app widget framework in the Android
system) translates the action into a message (intent) that you can under-
stand (tapping a particular button). At that time, you can respond with the
action you want to take (such as change the app widget background color to
lime green), and the translator (the app widget framework) relays the mes-
sage to the native Italian speaker (AppWidgetHost ; that is, the Home screen
via the Android system). The Home screen then updates the background
color of the view.

 App widgets can only accept input from tap-type events. When you’re work-
ing within an app widget, you have no access to other basic input views, such
as an editable text box or drop-down lists.

 Working with Intents
and Pending Intents

 When the user needs to interact with your application, she communicates
by tapping the app widget using the Android messaging architecture (as
described earlier), and you aren’t immediately notified. However, this doesn’t

123 Chapter 7: Turning Your Application into an App Widget

mean you can’t be notified about a click event on your app widget — it’s just
done a little differently than regular views.

 App widget click events contain instructions for what to do when a click
event happens via the Intent class in the Android framework.

 Understanding the Android
intent system
 An Intent object in Android is a message telling Android to make some-
thing happen. When you turn on a light using a wall switch, the action of
your intent is to turn on the light, so you flip the switch to the On position.
In Android, this action correlates to creating an instance of the Intent class
with an action in it specifying that the light is to be turned on:

 Intent turnLightOn = new Intent("TURN_LIGHT_ON");

 This intent is fired off using startActivity() in the Android messaging
system (as described in Chapter 1), and the appropriate activity handles the
 Intent . (If multiple activities respond, Android lets the user choose one
to do the work.) However, in the physical world, an electrical connection is
made by positioning the switch to the On position, resulting in illuminating
the light. In Android, you have to provide code, in the form of an activity,
to make this happen. This activity (which could hypothetically be
named TurnLightOnActivity) responds to the turnLightOn intent.
If you’re working with an app widget, you must handle the intent in a
 BroadcastReceiver rather than in an activity. AppWidgetProvider is a
subclass of a BroadcastReceiver with a few extra bells and whistles that
configure a lot of the app widget framework for you. A BroadcastReceiver
is responsible for receiving broadcast intents.

 The AppWidgetProvider (a BroadcastReceiver) handles the intent from
the Home screen and responds with the appropriate result that you deter-
mined, using your code, inside your custom AppWidgetProvider .

 An intent is a message that can carry a wide variety of data describing
an operation that needs to be performed. An intent can be addressed to
a specific activity or broadcast to a generic category of receivers known
as BroadcastReceiver s (which includes AppWidgetProvider). The
 Intent , Activity , and BroadcastReceiver system is reminiscent of the
message bus architecture, where a message is placed on a message bus and
any of the endpoints on the bus respond to the message if (and only if) they
know how. If no endpoint knows how to respond to the message, or if the
message wasn’t addressed to the endpoint, the app will crash.

124 Part II: Building and Publishing Your First Application

 An intent can be launched into the message bus system in a couple of ways:

 ✓ Start another activity: Use the startActivity() call, which accepts
an Intent object as a parameter.

 ✓ Notify any interested BroadcastReceiver components: Use the
 sendBroadcast() call, which also takes an intent as a parameter.

 ✓ Communicate with a background service: Use the startService() or
 bindService() call, which both accept intents as parameters.

 An intent is the glue that binds together the various components of the appli-
cation. It provides a mechanism that allows you to communicate within your
app, as well as communicate with other apps.

 Understanding intent data
 An intent’s data consists of these elements:

 ✓ Action: The general action to be performed. A few common actions
include ACTION_VIEW , ACTION_EDIT , and ACTION_MAIN . You can also
provide your own custom action.

 ✓ Data: The data to operate on, such as a record in a database or a uniform
resource identifier that should be opened, such as a URL.

 Table 7-1 demonstrates a few action and data parameters for Intent objects
and their simple data structure.

 Table 7-1 Intent Data Examples

Action Data Result
 ACTION_VIEW tel:123 Display the dialer with the

given number (123) filled in.

 ACTION_DIAL content://contacts/
people/1

Display the dialer showing
the phone number from the
contact with the ID of 1.

 ACTION_EDIT content://contacts/
people/1

Edit the information about
the person whose given
identifier is 1.

 ACTION_VIEW http://www.example.
org

Display the web page of
the given intent.

 ACTION_VIEW content://contacts/
people

Display a list of all people in
the Contacts system.

http://www.example.org

125 Chapter 7: Turning Your Application into an App Widget

 Intents can also carry an array of other data that include these elements:

 ✓ category: Gives additional information about the action to execute. As
an example, if CATEGORY_LAUNCHER is present, the application should
show up in the application launcher as a top-level application. Another
option, CATEGORY_ALTERNATIVE , can provide alternative actions that
the user can perform on a piece of data.

 ✓ type: Specifies a particular type (MIME type) of intent data. For example,
when you’re setting the type to audio/mpeg , the Android system recog-
nizes that you’re working with an MP3 file. Normally, the type is inferred
by the data itself. By setting the type, you override the inferred type by
explicitly setting the type in the intent.

 ✓ component: Specifies an explicit component name of the class on which
to execute the intent. Normally, the component is inferred by inspection
of other information in the intent (action, data/type, and categories),
and matching components can handle it. If this attribute is set, none of
that evaluation takes place, and this component is used exactly as speci-
fied (likely the most common use case in your applications). You can
provide another activity as the component — this instructs Android to
interact with that specific class.

 ✓ extras: A bundle of additional, key-based information that’s used to pro-
vide extra information to the receiving component. For example, if you
need to send an email address, you use the extras bundle to supply the
body and subject and other components of the email.

 Evaluating intents
 In the Android system, intents are evaluated either explicitly or implicitly.

 Explicitly
 The intent has specified an explicit component or the exact class that will
execute the data in the intent. (Again, this is likely the most common way to
address intents.) This type of intent often contains no other data because it’s
a means to start other activities within an application. You find out later in
this chapter how to use an explicit intent in an application.

 An example of an explicit intent would be new Intent(... ,
MainActivity.class) to create an intent that would explicitly launch your
 MainActivity .

126 Part II: Building and Publishing Your First Application

 Implicitly
 The intent hasn’t specified a component or class. Instead, the intent must pro-
vide enough information about the action that needs to be performed with the
given data for the Android system to determine which available components
can handle the intent — sometimes referred to as an address and a payload.

 An example is setting up an email intent that contains email fields (To, CC,
Subject, and Body) and an email MIME type. Android interprets it as an email
and gives the user of the device the opportunity to choose which application
should handle the intent. Possibilities include Gmail or Exchange or a POP email
account. The user determines which email program to use. The Android capabil-
ity to identify possible matches for the given intent is known as intent resolution.

 To create an implicit email intent, you would do something like the following:

 new Intent(Intent.ACTION_SENDTO,
 Uri.parse("mailto:taylor.swift@gmail.com"));

 Using pending intents
 A PendingIntent is used for something different than regular intents:
A PendingIntent is created by your application and given to another,
completely different application. By giving another application a
 PendingIntent , you’re granting the other application the right to perform
the operation you have specified as though the application were your own
application. When the other application deems that the given work needs to
take place, it executes the PendingIntent , which is sent back to your appli-
cation to perform the necessary work.

 For the purpose of the Silent Mode Toggle application, you use the
 PendingIntent.getService() call to create a PendingIntent . This
call returns a PendingIntent that you can use to wrap a regular intent that
instructs the Silent Mode Toggle app to toggle Silent mode. The call takes
these four parameters:

 ✓ Context : The context to be used to create this PendingIntent .

 ✓ RequestCode : The private request code for the sender. Not currently
used in this app; therefore, a zero is passed in.

 ✓ Intent : The intent for the AppWidgetService.

 ✓ Flags : A set of optional information used to configure the intent when
it’s started.

127� Chapter 7: Turning Your Application into an App Widget

The Intent object is wrapped inside a PendingIntent because a
PendingIntent is used for inter-process communication. When the
PendingIntent is fired off, the AppWidgetService will be started up by
the intent inside the PendingIntent.

That’s a lot of information! Now that you understand the basics of the
Android intent system, it’s time to implement the guts of the application
inside this app widget.

Creating the App Widget
The process of sending messages between the Home screen app widget and your
application is handled via the Android messaging system, the PendingIntent
class, and the AppWidgetProvider. In this section, you build each component
to get your first app widget up and running on the Home screen.

Implementing the AppWidgetProvider
Implementing the AppWidgetProvider is fairly straightforward: Open
Android Studio and open the Silent Mode Toggle application.

Avoiding the dreaded Application
Not Responding (ANR) error

Because all the work that happens in the
AppWidgetProvider takes place on the
main thread of the user interface, you must
complete all your work as quickly as pos-
sible. If your AppWidgetProvider takes
too long to respond, your code holds up the UI
thread and causes your application to display
an Application Not Responding (ANR) dialog
box because the Android system believes
that the application is frozen and not respond-
ing. An example is network communication to
download status updates from a service such
as Twitter. If downloading the statuses takes

too long (which can be much shorter than you
might expect), Android shows the ANR dialog
box letting the user know that the app widget
isn’t responding; at that point, the user can
force-close the application.

One way to avoid the ANR error is to implement
a separate service that performs its work in a
background thread. The IntentService
that you implement in the following sections
helps you avoid ANR errors and allows the
widget to remain very fast.

128 Part II: Building and Publishing Your First Application

 To add a new class to the com.dummies.silentmodetoggle package and
provide a name, such as AppWidget.java , follow these steps:

1. Right-click com.dummies.silentmodetoggle in the src/ folder and
choose Package, then create a package named widget .

2. Right-click com.dummies.silentmodetoggle.widget in the src/
folder and choose New➪Java Class.

3. Name the class AppWidget and click Finish.

 The new class is added to the selected package.

 Communicating with the app widget
 The AppWidget class has no code in it at first — it’s an empty shell. In the
code file you just created, type the code shown in Listing 7-1 into the editor.

 Listing 7-1: The Initial Setup of the App Widget

 /**
 * The main class that represents our app's widget.
 * Dispatches to a service to do all of the heavy lifting.
 */
 public class AppWidget extends AppWidgetProvider { ➝5

 @Override
 public void onUpdate(Context context, AppWidgetManager ➝8
 appWidgetManager, int[] appWidgetIds) {

 context.startService(new Intent(context, AppWidgetService.class)); ➝11
 }
 }

 This list briefly describes the numbered lines:

 ➝5 The AppWidget class extends from AppWidgetProvider .
Remember that AppWidgetProvider is a BroadcastReceiver ,
so it can receive broadcasted intents.

 ➝8 Overrides the onUpdate method in AppWidgetProvider .
 onUpdate is called when the widget is first created. It is also
called periodically at a set interval that you will define later in
 widget_provider.xml .

 ➝11 Starts a service so the service can take on the responsibility of
updating the widget without you having to worry about how long
the responses take to generate. This is necessary for any widgets

129 Chapter 7: Turning Your Application into an App Widget

that do any sort of I/O (network, disk, and so on). Our widget
doesn’t do I/O, so using a service is not strictly speaking neces-
sary, but it’s a very common pattern and it’s important to know.

 The AppWidgetProvider does all the work of responding to events from
the RemoteViews , but how so? Recall that AppWidgetProvider is a sub-
class of BroadcastReceiver . At a high level, a BroadcastReceiver is a
component that can receive broadcast messages from the Android system.
When a user taps a clickable view in the RemoteViews on the Home screen
(such as a button), the Android system broadcasts a message informing
the receiver that the view was clicked. After the message is broadcast, the
 AppWidgetProvider can handle that message.

 Note that because these messages are broadcast, they’re sent system-wide.
If the payload of the message and the destination address information are
vague enough, various BroadcastReceiver objects might handle the mes-
sage. This is similar to walking into a room full of building contractors and
asking whether any of them can do some work for you — everyone would
respond. You have a vague message address and payload. However, if you
ask the same group for a small electronics electrician contractor by the name
of Bob Smith, only one might respond. You have a specifically addressed
message with a detailed address and payload information.

 Building the app widget’s layout
 The app widget needs to have a layout for Android to know what to display
on the Home screen. The widget layout file defines what the widget will look
like while on the Home screen. Earlier in this chapter, Figure 7-2 showed the
app widget running in the emulator.

 To create the widget layout, create an XML layout file in the res/layout
directory. Create one now and name it app_widget.xml .

 The contents of app_widget.xml are shown in Listing 7-2.

 Listing 7-2: The Contents of app_widget.xml

 <?xml version="1.0" encoding="utf-8"?>
 <ImageView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/phone_state" ➝3
 android:layout_height="wrap_content" ➝4
 android:layout_width="wrap_content"
 android:src="@drawable/icon_ringer_on" ➝6
 android:contentDescription="@string/toggle_silent_mode"/> ➝7

130 Part II: Building and Publishing Your First Application

 This layout should be nothing new. It’s simply a single ImageView with an
image that will represent whether the phone is in Silent mode or not.

 Here’s what the code is doing:

 ➝ 3 Sets the ID of the image to phone_state so that it can be refer-
enced later in the Java code. The + tells Android that this is a new
ID and to create it.

 ➝ 4 The height and width of this view is set to wrap the image.

 ➝ 6 Sets the initial icon for the ImageView . You will write the code to
update this icon based on the ringer state of the phone later. You
can download icon_ringer_on from the sample source code on
the book’s website.

 ➝ 7 A simple text string that describes what the image is. This is
provided for accessibility. It’s a good practice to include
 contentDescription text for any images you supply in your
app. Go ahead and create a string resource for this string in your
 res/values/strings.xml file. Name it toggle_silent_mode
and set its value to something like "Toggle Silent Mode" .

 Doing work inside an AppWidgetProvider
 After the PendingIntent has started your AppWidgetProvider , you
perform some work on behalf of the calling application (in this case, the
Home screen application). In the following sections, you perform time-
sensitive work on behalf of the caller.

 The work that your app does to update the widget is divided into two parts:
The AppWidgetProvider , which must finish processing its work quickly,
and the IntentService , which can take as long as it wants to finish.

 Most widgets will have an AppWidgetProvider that does a little bit of light
work, but passes all the heavier work to an IntentService to execute in
the background. Anything that involves I/O (such as reading or writing from
a network, database, or disk) or a lot of CPU processing, should be done on a
background thread in something like an IntentService .

 Understanding the IntentService
 Any code that executes for too long without responding to the Android
system is subject to the Application Not Responding (ANR) error. App
widgets are especially vulnerable to ANR errors because they’re executing
code in a remote process, and because app widgets execute across process
boundaries that can take time to set up, execute, and tear. The Android

131 Chapter 7: Turning Your Application into an App Widget

system watches app widgets to ensure that they don’t take too long to
execute. When they do, the calling application (the Home screen) locks up
and the device is unusable. Therefore, the Android platform wants to ensure
that you’re never capable of making the device unresponsive.

 Because app widgets are expensive in regard to CPU and memory, judging
whether an app widget will cause an ANR error is difficult. If the device
isn’t doing any other expensive tasks, the app widget would probably work
just fine. However, if the device is in the middle of expensive CPU or I/O
operations, the app widget can take too long to respond — causing an ANR
error. To work around this problem, move any CPU- or I/O-intensive work of
the app widget into an IntentService that can take as long as it needs to
complete — which in turn doesn’t affect the Home screen application.

 Unlike most background services, which are long-running, an
 IntentService uses the work queue processor pattern, which handles
each intent in turn using a worker thread, and it stops when it runs out of
work. In layman’s terms, the IntentService simply runs the work given to
it as a background service, and then stops the background service when no
more work needs to be done.

 The AppWidget in this example isn’t doing any I/O and isn’t CPU intensive,
so technically it probably doesn’t need to use an IntentService . But it’s
more common that your widgets will be doing some amount of I/O, so it’s an
important design pattern for you to understand.

 Implementing the IntentService
 Create a new class called AppWidgetService in com.dummies.
silentmodetoggle.widget , then type the code in Listing 7-3 into your
code editor.

 Listing 7-3: The AppWidgetService

 public class AppWidgetService extends IntentService { ➝1

 private static String ACTION_DO_TOGGLE = "actionDoToggle"; ➝3

 AudioManager audioManager;

 public AppWidgetService() {
 super("AppWidgetService"); ➝8
 }

 @Override
 public void onCreate() { ➝12
 // Always call super.onCreate

(continued)

132 Part II: Building and Publishing Your First Application �

 super.onCreate();

 audioManager = (AudioManager) getSystemService(➝16
 Context.AUDIO_SERVICE);
 }

 @Override
 protected void onHandleIntent(Intent intent){	 ➝21

 if(intent!=null && intent.getBooleanExtra(➝23
 ACTION_DO_TOGGLE,false)) {
 RingerHelper.performToggle(audioManager);
 }

 AppWidgetManager mgr = AppWidgetManager.getInstance(this);	 ➝28
 ComponentName name = new ComponentName(this, AppWidget.class);	 ➝30
 mgr.updateAppWidget(name, updateUi());
 }

 private RemoteViews updateUi() {	 ➝35
 RemoteViews remoteViews = new RemoteViews(getPackageName(),	 ➝36
 R.layout.app_widget);

 int phoneImage = RingerHelper.isPhoneSilent(audioManager)	 ➝39
 ? R.drawable.icon_ringer_off
 : R.drawable.icon_ringer_on;
 remoteViews.setImageViewResource(R.id.phone_state, phoneImage);	 ➝42

 Intent intent = new Intent(this, AppWidgetService.class)	 ➝44
 .putExtra(ACTION_DO_TOGGLE,true);

 PendingIntent pendingIntent =	 ➝47
 PendingIntent.getService(this, 0, intent,
 PendingIntent.FLAG_ONE_SHOT);

 remoteViews.setOnClickPendingIntent(R.id.phone_state, 	 ➝51
pendingIntent);

 return remoteViews;
 }
}

Listing 7-3 (continued)

The following list briefly explains the purpose of the major sections of code:

	 ➝ 1	 The service that handles all your widget’s operations. The intent
sent to the service will tell it what you it want to do.

		 This service is an instance of IntentService. An
IntentService is a convenient way to handle things that need to

133 Chapter 7: Turning Your Application into an App Widget

be done on background threads. Whenever a new intent is received,
 onHandleIntent executes in a background thread. This allows
you to perform whatever operations you want to in the
background — no matter how long they might take — without
blocking the foreground UI thread (which would cause the app
to hang).

 ➝ 3 A flag that you set in your intent whenever you want to indicate
that you want to toggle the phone’s silent setting.

 ➝ 8 All IntentServices need to have a name. Ours is called
 AppWidgetService .

 ➝ 12 onCreate is called when the service is initialized, after the
object’s Java constructor.

 ➝ 16 Just like in the activity, you’ll get a reference to Android’s
 AudioManager so you can use it to toggle our ringer.

 ➝ 21 onHandleIntent is called on a background thread. This is where
all your heavy processing happens. All IntentServices must
override onHandleIntent .

 ➝ 23 Checks the intent. If it says ACTION_DO_TOGGLE , then it toggles
the phone’s Silent mode. If it doesn’t say ACTION_DO_TOGGLE ,
then this is just an update request, so it updates the UI.

 ➝ 28 Gets a reference to Android’s AppWidgetManager , which is used
to update the widget’s state.

 ➝ 30 Updates the widget’s UI. First, find the name for your widget, then
ask the AppWidgetManager to update it using the views that
you’ll construct in updateUi() in line 35.

 ➝ 35 Returns the RemoteViews that is used to update the widget.
Similar to updateUi() in MainActivity , but appropriate for
use with widgets.

 ➝ 36 Inflates the res/layout/app_widget.xml layout file into a
 RemoteViews object, which communicates with the widget.

 ➝ 39 Determines which image to use in the widget.

 ➝ 42 Sets the appropriate image.

 ➝ 44 Creates an intent to toggle the phone’s state. This intent
specifies ACTION_DO_TOGGLE=true , which you look for in
 onHandleIntent on line 23.

 ➝ 47 Wraps the intent in a PendingIntent , which gives someone in
another process permission to send you an intent. In this case,
the widget is actually running in another process (the device’s
launcher process), so it must have a pending intent to communi-
cate back into your service.

134 Part II: Building and Publishing Your First Application

 You should specify FLAG_ONE_SHOT to this intent to ensure
it is used only once. There are some situations where a
 PendingIntent can be automatically retried on your behalf,
and you want to ensure that you don’t accidentally do a few extra
toggles. See http://d.android.com/reference/android/
app/PendingIntent.html for more information about pending
intents.

 ➝ 51 Gets the layout for the app widget and attaches an on-click
listener to the button.

 Working with the app widget’s metadata
 After you’ve written the code to handle the updating of the app widget, you
might wonder how to list it on the Widgets menu. This fairly simple process
requires you to add a single XML file to your project. This file describes basic
metadata about the app widget so that the Android platform can determine
how to lay out the app widget on the Home screen. Follow these steps:

1. In your project, right-click the res directory and choose
New➪Android resource directory.

2. Name the folder xml , select XML as the Resource type, and click Finish.

3. Right-click the new res/xml folder, and choose New➪XML Resource
File.

4. In the New Android XML File Wizard, type widget_provider.xml
 for the filename.

5. After the file opens, open the XML editor and type the following code
into the widget_provider.xml file:

 <?xml version="1.0" encoding="utf-8"?>
 <appwidget-provider
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="40dp"
 android:minHeight="40dp"
 android:updatePeriodMillis="1800000"
 android:initialLayout="@layout/app_widget"/>

 The minWidth and minHeight properties are used for setting the minimum
amount of space that the view needs on the Home screen. 40dp represents
the size of one widget “cell,” which is all we need for this widget.

 Your app widget can occupy one Home screen cell or many cells. This app
widget is occupying only one. Your minWidth and minHeight should be set
to 70dp* N – 30dp , where N is the number of cells you want to occupy. For
example, a widget that is one cell tall and two wide would be 40dp x 110dp.

http://d.android.com/reference/android/app/PendingIntent.html

135 Chapter 7: Turning Your Application into an App Widget

 The updatePeriodMillis property defines how often the app widget
should attempt to update itself. You will want the widget to update itself
periodically in case the user changes the state of the ringer using some other
mechanism. Therefore, this value is set to 1800000 milliseconds — 30 minutes.
Every 30 minutes, the app attempts to update itself by sending an intent that
executes the onUpdate() method call in the AppWidgetProvider .

 The initialLayout property identifies what the app widget looks like when
the app widget is first added to the Home screen, before any work takes
place. The initial layout is shown until the widget finishes updating itself.

 An example of a longer delay is an app widget that checks Twitter for status
updates. The initialLayout is shown until updates are received from
Twitter. Inform the user in the initialLayout that information is loading to
keep him aware of what’s happening when the app widget is initially loaded
on the Home screen. You can do this by providing a TextView with the con-
tents of "Loading . . ." while the AppWidgetProvider does its work.

 Registering your new components
with the manifest
 Anytime you add an activity, a service, or a broadcast receiver (or certain
other items) to your application, you need to declare them in the applica-
tion manifest file. The application manifest presents vital information to the
Android platform — namely, the components of the application. The system
doesn’t recognize the Activity , Service , and BroadcastReceiver
objects that aren’t declared in the application manifest.

 To add your AppWidgetProvider and IntentService to your application
manifest file, open the AndroidManifest.xml file and type the code shown
in Listing 7-4 into the already existing file. Bolded lines are newly added lines
for the new components.

 Listing 7-4: An Updated AndroidManifest.xml File with New Components
Registered

 <<?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.dummies.silentmodetoggle">

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:allowBackup="true">

(continued)

136 Part II: Building and Publishing Your First Application

 The following list briefly describes each section:

 ➝ 21 The opening element registers a BroadcastReceiver as part
of this application. The name property identifies the name of the
receiver — in this case, .widget.AppWidget , which correlates
to the AppWidget.java file in the application. The name and
label help identify the receiver.

 ➝ 24 Identifies what kind of intent (based on the action of the intent in
the intent filter) the app widget automatically responds to when
the particular intent is broadcast. Known as an IntentFilter ,
it helps the Android system understand what kind of events your
app should be notified of. In this case, your application is con-
cerned about the APPWIDGET_UPDATE action of the broadcast
intent. This event fires after the updatePeriodMillis property
has elapsed, which is defined in the widget_provider.xml file.
Other actions include enabled, deleted, and disabled.

 <activity
 android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

 <receiver
 android:name="com.dummies.silentmodetoggle.widget.AppWidget"
 android:label="@string/app_name"> ➝21

 <intent-filter>
 <action android:name= ➝24

"android.appwidget.action.APPWIDGET_UPDATE"/>
 </intent-filter>

 <meta-data
 android:name="android.appwidget.provider"
 android:resource="@xml/widget_provider"/> ➝29
 </receiver>

 <service android:name= ➝32

"com.dummies.silentmodetoggle.widget.AppWidgetService"/>

 </application>
 </manifest>

Listing 7-4 (continued)

137 Chapter 7: Turning Your Application into an App Widget

 ➝ 29 Identifies the location of the widget_provider.xml file that you
recently built into your application. Android uses the widget_
provider to help determine defaults and to lay out parameters
for your app widget.

 ➝ 32 The <service> element registers the AppWidgetService with
your application. This is the background service that does most of
the work for your widget.

 At this point, your application is ready to be installed and tested. To install
the application, choose Run➪Run ‘ Silent Mode Toggle ’ . It should show up on
the emulator. Return to the Home screen by pressing the Home key. You can
now add to the Home screen the app widget that you recently created.

 Placing Your Widget on the Home Screen
 Adding a widget to your Home screen is easy — follow these steps:

1. Open the application list on the Home screen of the emulator.

2. When the list of applications is visible, select Widgets.

3. Choose Silent Mode Toggle, as shown in Figure 7-1 , and drag it to your
Home screen.

 You have now added the Silent Mode Toggle widget to the Home screen. You
can tap the icon to change the ringer mode and the icon changes accord-
ingly. (Refer to Figure 7-2 .)

 Publishing Your App to
the Google Play Store

 In This Chapter
 ▶ Building an Android package file

 ▶ Creating a developer profile in the Google Play Store

 ▶ Picking a price for your app

 ▶ Illustrating your app with a screen shot

 ▶ Uploading and publishing your application

 ▶ Monitoring downloads

 The Google Play Store is the official application distribution mechanism
for Android. Publishing your application to the store enables your appli-

cation to be downloaded, installed, and used by millions of users across
the world. Users can also rate your application and leave comments about
it, which helps you identify possible use trends and problematic areas that
users might be encountering.

 The Google Play Store also provides a set of valuable statistics that you can
use to track the success of your application.

 In this chapter, you publish your application to the Google Play Store. You
find out how to provide a couple of screen shots, a promotional screen shot,
and a short description of your application.

 Creating a Distributable File
 So you have a great idea, and it has led you to develop the next hit applica-
tion or game for the Android platform. Now you’re ready to put the applica-
tion into the hands of users. The first thing you need to do is package your

Chapter 8

140 Part II: Building and Publishing Your First Application

application so that it can be placed on their devices. To do so, you create an
Android package file, or APK file, which you will do in the following sections.

 Choosing your tools
 You can build an Android APK file in numerous ways:

 ✓ Android Studio

 ✓ Command line with Gradle

 ✓ Automated build process, such as a continuous integration server

 Really, these are just three different ways to kick off your gradle build.

 In this book you will use Android Studio to create a signed APK file. Android
Studio provides an array of tools that compile, digitally sign, and package
your Android application into an APK file.

 Other options, such as using Gradle and continuous integration to build
signed APKs, are used in more advanced scenarios. You can find more
 information about setting up a command-line build process in the Android
documentation at http://d.android.com/tools/publishing/
app-signing.html .

 Digitally signing your application
 The Android system requires all installed applications to be digitally signed
with a certificate that contains a public/private key pair. The private key is
held by the developer. The certificate that’s used to digitally sign the appli-
cation identifies developer and establishes the trust relationships between
applications.

 You need to know some key information about signing Android applications:

 ✓ All Android applications must be signed. The system won’t install appli-
cations that aren’t signed. By default, your apps are signed by a debug
key generated by the Android SDK.

 ✓ You can use self-signed certificates to sign your applications; a certifi-
cate authority isn’t needed.

 ✓ When you’re ready to release your application to the store, you must
sign it with a private release key. You cannot publish the application

http://d.android.com/tools/publishing/app-signing.html

141 Chapter 8: Publishing Your App to the Google Play Store

with the debug key that signs the APK file when debugging the applica-
tion during development.

 ✓ The certificate has an expiration date, and it’s verified only at install
time. If the certificate expires after the application has been installed,
the application continues to operate normally.

 ✓ If you don’t want to use Android Studio to generate the certificate, you
can use standard JDK tools such as keytool or jarsigner to sign your
APK files.

 You can create modular applications that can communicate with each other
if the applications were signed with the same certificate. This arrangement
allows applications to run within the same process, and the system can, if
requested, treat them as a single application. Using this methodology, you
can create your application in modules, and users can update each module
as they see fit — for example, to create a game and then release update
packs to upgrade it. Users can decide to purchase only the updates
they want.

 The certificate process is outlined in detail in the Android documentation at
 http://d.android.com/tools/publishing/app-signing.html .

 Creating a keystore
 A keystore in Android (and in Java) is a container in which your private
certificates reside. You can use a couple of tools in Android to create a
keystore file:

 ✓ Android Studio Generate Signed APK Wizard: Creates a keystore and a
key that will be used to sign your app APK.

 ✓ Keytool application: Lets you create a self-signed keystore via the com-
mand line. Keytool, located in the Java bin directory, provides many
options via the command line.

 Safeguarding your keystore
 The keystore file contains your private certificate, which Android uses to
identify your application in the Google Play Store. Back up your keystore in a
safe location because if you happen to lose it, you cannot sign the application
with the same private key. Neither can you upgrade your application because
the Google Play Store platform recognizes that the application isn’t signed
by the same key and restricts you from upgrading it — the store sees the file
as a new Android application. This also happens if you change the package
name of the app; Android doesn’t recognize it as a valid update because the
package and/or certificate are not the same.

142 Part II: Building and Publishing Your First Application

 Keep your keystore safe! If your source code is open source, do not check
your keystore into your source code. You don’t want the whole Internet to
have access to your keystore and be able to modify your app in the Google
Play Store whenever it wants. If you ever lose your keystore, you will not be
able to update app in the Play Store, and Google would not be able to help
you even if they wanted to.

 Creating the APK file
 To create your first APK file, follow these steps:

1. Choose Build➪Generate Signed APK.

2. Select the Silent Mode Toggle module and click Next.

 The Generate Signed APK Wizard, shown in Figure 8-1 , opens with the
current project name filled in.

 Figure 8-1:
 The

Generate
Signed APK

Wizard.

3. Press the Create New button (as shown in Figure 8-2).

 Or, if you already have a keystore, press the Choose Existing button
instead.

4. Choose the location of your keystore.

 Find your project directory (the directory above SilentModeToggle) and
create a keystore there named release.jks , as in Figure 8-3 . For example:
 /Users/mike/Projects/android-for-dummies-v3/release.jks .

143 Chapter 8: Publishing Your App to the Google Play Store

5. Enter a password that you’ll remember, and reenter it in the Confirm
field.

 If using an existing keystore, you won’t need to confirm your password.

 Figure 8-2:
 The

Keystore
Selection

screen.

 Figure 8-3:
 The Key
Creation
screen.

144 Part II: Building and Publishing Your First Application

 Figure 8-4:
 The

Generate
Signed APK

Wizard
screen with

fields
filled out.

6. Fill out the following fields:

• Alias: A simple name that you use to identify the key. Call it release .

• Password and Confirm: The password that will be used for the
key. You can use the same password that you used for the key-
store, or you can use a different password.

• Validity: Indicates how long this key will be valid. Your key must
expire after October 22, 2033.

7. Complete the certificate issuer section, filling out at least one of these
fields:

• First and Last Name

• Organization Unit

• Organization

• City or Locality

• State or Province

• Country Code (XX)

8. Click OK.

 You’ll return to the Generate Signed APK Wizard dialog box, but this time
the fields should be filled as in Figure 8-4 .

9. Optionally check the Remember password check box so that you don’t
have to retype it every time, and click Next.

 If you don’t have a Master Password configured for Android Studio, you
may be prompted to set one so that Android Studio can remember your
password securely.

145 Chapter 8: Publishing Your App to the Google Play Store

10. Choose the APK destination folder and the Build Type as in Figure 8-5 .

 The location should be set to the SilentModeToggle directory, and the
Build Type should be release .

11. Click Finish.

 The .apk file is created in your chosen location as well as a keystore in
the location you chose in Step 4. Open these locations, and you can see a
 .jks file as well as an .apk file.

 You have created a distributable APK file and a reusable keystore for future
updates.

 Figure 8-5:
 Providing a
destination

for the
APK file.

 Creating a Google Play Developer Profile
 After you have created an APK file, you can release the application on the
Google Play Store. To do so, you create a Google Play developer profile. To
create this profile, you first need a Google account. Any Google-based account,
such as a Gmail account, works. If you have no Google account, you can open a
free one by navigating to www.google.com/accounts .

 To create the Google Play developer profile, follow these steps:

1. Open your web browser and navigate to http://play.google.com/
apps/publish .

2. Sign in to your Google account.

 If you’re already signed in to your account, you go straight to Step 3 to fill
in your developer profile.

http://play.google.com/apps/publish

146 Part II: Building and Publishing Your First Application

4. On the Secure Checkout page, fill in your credit card details and
 billing information, then click the Accept and Continue button.

 If you already have a credit card on file with Google, you may not see the
page in Figure 8-7 . If you already have a card set up, select one and continue.

5. Fill out the following fields to complete your developer profile, as
shown in Figure 8-8 :

• Developer Name: The name that appears as the developer of the
applications you release, such as your company name or your
personal name. You can change it later, after you’ve created your
developer profile.

• Email Address: The email address to which users can send email
with questions or comments about your application.

• Phone Number: A valid phone number at which to contact you to
discuss problems with your published content.

6. Scroll down and click the Complete Registration button.

 Congratulations, you are now a registered Android developer! The
Android developer home page opens, as shown in Figure 8-9 , where you
can upload your application or set up a merchant account (which you
need, if you’ll be charging a fee for your apps). See the nearby “Google
Wallet merchant accounts” sidebar.

3. Check “I agree” to accept the terms of the developer agreement
(Figure 8-6), and then click Continue to Payment.

 If you don’t pay the developer fee, you cannot publish applications.

 Figure 8-6:
 The Google

Play
Developer

Console.

147 Chapter 8: Publishing Your App to the Google Play Store

 Figure 8-7:
 Pay with

Google
Wallet.

 Figure 8-8:
 Developer

listing
details.

148 Part II: Building and Publishing Your First Application

 Google Wallet merchant accounts
 To have a paid application on the Google Play
Store, you must set up a Google Wallet mer-
chant account. To set it up, choose Setup
Merchant Account from the Google Play devel-
oper console (refer to Figure 8-9) and provide
these types of information:

 ✓ Personal and business name

 ✓ Tax identity (personal or corporation)

 ✓ Expected monthly revenue ($1 billion,
right?)

 After you have set up a Google Wallet merchant
account, you can sell your applications.

 Figure 8-9:
 The Google

Play
Developer

Console.

 Pricing Your Application
 So you have created an APK file and you’re a registered Android developer.
Now you’re ready to put your app into users’ hands. (Finally!) But you must
answer one last question — is your app a free app or a paid app?

 Make this decision before you release your app, because its price has psy-
chological consequences for potential customers or users and monetary
consequences for you. If yours is a paid application, you have to determine
your price point. Only you can make this decision, so check out similar
 applications in the Play Store, and their price points, to determine your pric-
ing strategy. The majority of apps are priced between $0.99 and $9.99. Keeping
the pricing of your app competitive with your market is a game of economics
that you have to play to determine what works for your application.

149 Chapter 8: Publishing Your App to the Google Play Store

 The paid-versus-free discussion is an evergreen debate, and both sides can be
profitable. You only have to figure out what works best for your application,
given your situation.

 Choosing the paid model
 If you choose the paid model for your app, you generally start seeing money in
your pocket within 24 hours of the first sale (barring holidays and weekends).
However, your paid application probably won’t receive many active installs.

 Users who download your app from the Google Play Store get a free, 2-hour
trial period to try out your paid application. During the trial period, users
can experiment with the fully functional application, and if they don’t like
it, simply uninstall it for a full refund. The trial period is extremely useful
because users aren’t penalized for taking your app for a brief test-drive.

 Choosing the free model
 If you choose to take the free route, users can install the application for free.
Between 50 and 80 percent of the users who install your free app will keep
the application on the device; the others will uninstall it. The elephant in the
room now is the question of how to make money by creating free apps.

 As the age-old saying goes, nothing in life is free, and the saying applies to
making money on free apps. You have two basic options:

 ✓ In-app purchases: You identify different “upgrades” that users can buy
when using your app, which are then managed via the Google Play Store.

 ✓ Advertising: Various mobile advertising agencies provide third-party
libraries to display ads on your mobile application.

 The top mobile advertising company is Google (https://developer.
android.com/google/play-services/ads.html). Google offers useful
SDKs and walks you through the steps to run ads on your native Android
applications. Google pays on a net-60-day cycle, so you may have to wait a
few months to receive your first check.

 Getting Screen Shots for Your Application
 Screen shots are a vital part of the Google Play Store ecosystem because
they allow users to preview an application before installing it. Allowing users

150 Part II: Building and Publishing Your First Application

to view a couple of screen shots of your application can be the determining
factor in installing your application. If you’ve spent weeks (or months) creating
detailed graphics for a game that you want users to play, you want potential
users and buyers to see them so that they can see the overall look of your app.

 To grab real-time shots of your application, you use an emulator or a physical
Android device. To grab screen shots with an emulator, follow these steps:

1. Open the emulator.

2. In Android Studio, choose View➪Tool Windows➪Android.

3. Click the Screenshot button to take a screen shot.

 After the screen shot is taken, save the file somewhere on your computer.

 Uploading Your Application
to the Google Play Store

 You’ve finally reached the apex of Android application development: You’re
ready to publish the application. To publish your app, you’ll need to collect
the following information:

 ✓ The signed APK

 ✓ Your screen shots

 ✓ A description and promotional text for your application

 ✓ A promotional image used to advertise your app if it’s featured in the
Google Play Store

 Publishing an application is easy — follow these steps:

1. On the Android developer’s home page (refer to Figure 8-9), click the
Publish an Android App on Google Play button.

 The Add New Application page opens, as shown in Figure 8-10 .

2. Click Upload APK, and choose the .apk file that you created earlier in
this chapter.

 No two applications can have the same package name in the Google Play
Store. Therefore, if you try to upload the Silent Mode Toggle application
at this point, you see this error message:

The package name of your apk (com.dummies.silentmodetoggle) is the same as

the package name of another developer’s application. Choose a
new package name.

151 Chapter 8: Publishing Your App to the Google Play Store

 When you upload an application that you’ve created, you don’t see this
message.

3. Click Store Listing, and set the description for your application (see
Figure 8-11).

 Users see this description when they inspect your application to deter-
mine whether to install it. All this text is indexed for the Google Play
Store search engine.

4. Scroll down to the Screenshots section and add two screen shots from
your application.

 Apps with screen shots have higher install rates than apps without
them. These screen shots allow users to preview your application in a
running state without having to install your application.

5. Add a promotional shot.

 Figure 8-10:
 The Add

New
Application

page.

 Figure 8-11:
 The Store

Listing.

152 Part II: Building and Publishing Your First Application

 The promo shot is not a screen shot but rather an advertisement used
for random promotions that Android chooses to showcase.

6. Upload a high-resolution app icon image.

 Refer to Chapter 6 for instructions on how to create a 512-x-512-high
resolution app icon.

7. Set the promotional text of your application.

 Promotional text is used when your application is featured or promoted
in the Google Play Store. Getting your application featured is likely based
on the popularity of your application. If it’s chosen to be featured in the
promotional area of the Google Play Store (usually in the upper area of
the screen of each category), the promo text shows up as the promo-
tional component for it.

8. Set the application type, category, and content rating.

 This app falls into the Applications type; if you have a game app, choose
the Games type.

 The Category is based on your application type.

 The Content Rating helps to prevent kids from seeing things that are too
mature for them.

9. Fill out the Web Site and E-Mail fields (and Phone, if you want).

 These fields are used to contact you for various reasons, including app
feature requests and bug reports. If you fill in the Phone field, remember
that users can call to speak with you. If you’re writing an app for one com-
pany and publishing it under your developer account, you can change the
Web Site, E-Mail, and Phone fields so that users can’t contact you.

10. Click Save, then click Pricing and Distribution (see Figure 8-12).

 Figure 8-12:
 The

Pricing and
Distribution

page.

153 Chapter 8: Publishing Your App to the Google Play Store

11. Select the list of countries where the application should be visible.

 For example, if your application is meant for an Italian audience, dese-
lect All Locations and select Italy as the destination location, to ensure
that only devices in the Italy region can see it in the store. If you leave
All Locations enabled, all locations can (you guessed it) see your app in
the store.

12. Verify that your application meets the Android content guidelines and
that you have complied with applicable laws by selecting the perti-
nent check boxes.

13. Click Save, then click Publish.

 Your application is published to the Google Play Store.

 Figure 8-13 shows an application in the Google Play Store.

 You’ve probably noticed a certain highlight in this process: It has no app-
approval process (like a certain other platform does). You can create an app
now and publish it, and users can install it within a few minutes or hours.
You can then complete a quick release cycle and get new features out the
door as quickly as you finish them — very cool.

 Watching the Number of Installs Soar
 You’ve finally published your first application. Now it’s time to watch
those millions start rolling in, right? Kind of. You might be an independent

 Figure 8-13:
 The appli-

cation is
released in
the Google
Play Store.

154 Part II: Building and Publishing Your First Application

developer who’s releasing the next standout first-person shooter game, or
you might be a corporate developer who’s pushing out your company’s
Android application. Regardless, to be aware of the user experience on vari-
ous devices, you can identify how your application is doing in various ways
using the Google Play developer console:

 ✓ Five-star rating system: The higher average rating your app receives,
the more likely people will install it.

 ✓ Comments: Give people the courtesy of reading the comments they
leave. You might be surprised at the outstanding ideas people provide
to you for free. Users get excited about new features and return to the
store to update their comments with a much more positive ratings
boost.

 ✓ Error reports: Users who were gracious enough to submit error reports
want to let you know that the app experienced a runtime exception for
an unknown reason. Open these reports in the Google Play developer
console, examine the error, review the stack trace, and fix the problem.
An app that’s reported to force-close frequently can quickly receive lots
of bad reviews.

 ✓ Installs versus active installs: Though this comparison isn’t the best
metric for identifying user satisfaction, it’s an unscientific way to deter-
mine whether users who install your app will tend to keep it on their
devices. Users who keep your app probably like it.

 ✓ Direct email: Users will return to the Google Play Store to find your
email address or website address and ask questions about features or
send comments about their user experience. They may also send you
ideas about how to improve your app or ask you to create another app
that does something they cannot find at the Google Play Store. Reply if
you have the time! Though maintaining an active dialogue with users is
difficult if your app has a million active users, it makes users happy to
know that they can contact you about issues with your app.

 Staying in touch with your user base is a large task in itself, but doing so can
reap the reward of dedicated, happy customers who refer their friends and
family to your application.

 Like the Google Play Store, the Amazon App Store for Android (one of the
largest non-Google app stores for Android devices) offers applications for
users to buy and install. Developers can sell their applications and receive a
competitive rate for their apps from Amazon, or post free apps. Amazon also
provides great sales metrics for developers and marketers. Find out more at
 http://developer.amazon.com . You can find out how to port your app
to the Amazon App Store in Chapter 20 .

 Check out the free articles at www.dummies.com/extras/
androidappdevelopment to learn how to add GPS location features to your app.

 Creating a Feature-Rich
Application

Part III

www.dummies.com/extras/androidappdevelopment

 In this part . . .
 Part III expands on the knowledge that you acquire in Part II by
demonstrating how you can build a feature-rich application from
scratch. By the end of Part III, you will have an advanced app that
interacts with a local database, send notifications, and writes its
settings to preferences.

 Designing the Tasks Application
 In This Chapter

 ▶ Determining what you want your app to do

 ▶ Understanding fragments

 ▶ Creating the Task list fragment

 ▶ Setting the style and action bar of your app

 ▶ Adding library dependencies to your app

 ▶ Using RecyclerView, ViewHolder, and adapters

 Building Android applications is fun, but building truly in-depth
 applications is exciting because you dive into the guts of the Android

platform. This chapter introduces you to the Tasks application, which you
build in the next few chapters.

 The Tasks application lets users create a list of tasks that can each have a
reminder associated with them.

 Reviewing the Basic Requirements
 The Tasks application has a few basic requirements:

 ✓ Users must be able to add, edit, and delete tasks.

 ✓ Tasks must be easy to manage.

 ✓ Every task must have a reminder date and time when the user will be
reminded of the task.

 This application invites lots of interaction between the user and the Android
system. The following sections delve into the features that you need to build
in order to meet the above requirements.

Chapter 9

158 Part III: Creating a Feature-Rich Application

 Storing data
 The task data and alarms needed to make the Tasks app work are stored in
these locations:

 ✓ Task data: In a ContentProvider backed by an SQLite database.
Android uses SQLite as its database. You will create a SQLite database
to contain your task data, and you will then create a ContentProvider
to access that database.

 ✓ Alarm info: In the AlarmManager after being pulled from the
 ContentProvider .

 Scheduling a reminder script
(That’s alarming!)
 For the Tasks application to work well, you need to implement a reminder
system. The first thing that comes to mind is a scheduled task, or cron job.
In the Windows operating system, you create a scheduled task to handle
the execution of code and scripts at a given time. In the world of Unix and
Linux, you use cron (short for the Greek word chronos, which means time) to
schedule scripts or applications.

 Because Android is running the Linux kernel, you might assume that Android
uses cron to schedule tasks. Unfortunately, Android doesn’t have cron , but
instead it has the AlarmManager class, which accomplishes the same thing.
The AlarmManager class lets you specify when things should happen, even
if your app is not currently running. An alarm can be set as a single-use alarm
or repeating. The Tasks application uses AlarmManager to remind users of
pending tasks.

 Notifying the user
 After an alarm fires, the app has to notify the user of the alarm. You have two
ways to grab the user’s attention:

 ✓ Toast: A small view that contains a brief message for the user. The mes-
sage is usually available for only a few seconds — a toast never receives
focus. Because it shows up only briefly, it’s good for showing users a
message when you already have their attention, but it’s bad at getting
their attention when they’re doing something else. The Tasks app uses a

159 Chapter 9: Designing the Tasks Application

toast not for reminding users but instead for notifying users when their
changes have been saved.

 ✓ Notification Manager: The NotificationManager class notifies a
user that events have taken place. They can appear on the status bar
at the top of the screen. Notification items can contain various views
and are identified by icons you provide. The user can slide down the
notification list to view notifications. The Tasks application uses the
 NotificationManager class to handle reminders. (See Chapter 1 if
you’re unsure how the notification area works.)

 Creating the Application’s Screens
 The Tasks application needs two different screens to perform all its basic
functions — create, read, update, and delete (CRUD) tasks:

 ✓ A list view that displays all the tasks in the application. This view also
allows the user to delete a task by long-pressing the item.

 ✓ An edit view to allow the user to view or create a task, read a task’s full
details, or update a task.

 Each screen eventually interacts with a database for changes to be persisted
over the long-term use of the application.

 Each screen consists of a single Android fragment that contains most of the
user interface for the screen, and that fragment is contained in an activity.
See Chapter 1 for more information about fragments.

 You use fragments to reuse UI code between multiple activities. You will
reuse the fragments you create here when you build tablet support into your
app in Part IV.

 Starting the new project
 To get started, choose File➪New Module and create a new module in your
project. (If you’re unfamiliar with how to create an Android project, see
Chapter 3 .) Choose Phone and Tablet as the module type, and use the
 settings in Table 9-1 :

 If you download the source code from this book’s website, you can also open
the Tasks example.

160 Part III: Creating a Feature-Rich Application

 Choose Blank Activity when asked to add an activity, and use the following
settings for the activity:

 Table 9-1 Module Settings for Tasks

Setting Value
Application Name Tasks

Module Name Tasks

Package Name com.dummies.tasks

Minimum Required SDK 21

 Table 9-2 Activity Settings for Tasks

Setting Value
Activity Name TaskListActivity

Layout Name activity_task_list

Title Tasks

Menu Resource Name menu_task_list

 Cleaning up the TaskListActivity
 The TaskListActivity class that Android Studio generated for you is just
a template, so you’ll want to do a few things to fix it up before you go any
further:

 ✓ Change the package to com.dummies.tasks.activity : Edit the
 TaskListActivity.java file, and change the package on the first
line of the file to be com.dummies.tasks.activity . This will cause
an error in the editor. Click on the error, and then press Alt+Enter
to open the Quick Fix dialog box (see Chapter 3 to remind yourself
how to use the Quick Fix dialog box). Choose Move to package
 com.dummies.tasks.activity to move the file to the proper
 directory. If you are given a choice between multiple directories, make
sure you choose the directory path that contains main as in Figure 9-1 .
You may also need to update the entry for TaskListActivity in your
 AndroidManifest.xml .

161 Chapter 9: Designing the Tasks Application

 ✓ Remove the menus: Remove the onCreateOptionsMenu and
 onOptionsItemSelected methods. Also remove the res/menu/
menu_task_list.xml file. You won’t need them in this activity.

 Your new TaskListActivity class now looks like Listing 9-1 .

 Listing 9-1 : The TaskListActivity

public class TaskListActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_task_list);
 }

 }

 Figure 9-1:
 Changing

an activity’s
package.

 Run it now and you will see the familiar “Hello world!” displayed on your
device.

162 Part III: Creating a Feature-Rich Application

 Editing the activity_task_list.xml
layout file
 Now that your activity runs, you will need to edit its layout file. The
 TaskListActivity will have a very simple layout consisting of a toolbar
and a fragment. Open up activity_task_list.xml and edit the file to
match Listing 9-2 :

 Listing 9-2 : The activity_task_list.xml Contents

<?xml version="1.0" encoding="utf-8"?>

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" ➝3
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Toolbar ➝8
 style="?android:actionBarStyle"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:title="@string/app_name"
 android:id="@+id/toolbar"/>

 <fragment ➝15
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/fragment"
 android:name="com.dummies.tasks.fragment.TaskListFragment"/> ➝19

 </LinearLayout>

 There are several things to be aware of in the previous layout file:

 ➝ 3 The top-level layout for this activity. It is a vertically oriented
linear layout that will contain the toolbar and the fragment.

 ➝ 8 The toolbar for the activity. It won’t be styled automatically, so
set its style to the theme’s actionBarStyle . Also, set its title to
the app’s name. Its id is set to @+id/toolbar so that it can be
referenced later in the code.

 ➝ 15 The fragment. A fragment of type TaskListFragment will be
 created using the default constructor, and attached to this layout.
It is named @+id/fragment so that we can reference it later from
the code.

163 Chapter 9: Designing the Tasks Application

 ➝ 19 The com.dummies.tasks.fragment.TaskListFragment class
does not exist yet, but you will create it in a subsequent section.

 Setting the action bar
 You need to tell Android how to find the action bar for the activity. Open up
the TaskListActivity.java file and modify your onCreate method to
add the line in bold:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_task_list);
 setActionBar((Toolbar) findViewById(R.id.toolbar));
 }

 This tells Android how to find the toolbar that you created in your layout,
and use it as your activity’s action bar.

 An action bar is a special case of a toolbar. You can have multiple toolbars in
your activity, but only one may be your activity’s action bar. The action bar
is generally at the top of your activity.

 Then open res/values/styles.xml and change your app’s theme to be
the following:

<resources>

 <!-- By default, most apps for Lollipop and later should use
 some variant of android:Theme.Material.NoActionBar -->
 <style name="AppTheme"
 parent=" android:Theme.Material.NoActionBar ">
 </style>

 </resources>

 If there are any other styles.xml files in other values directories in your
module, delete them now. There should be only one, located in res/values .
So for example, if the New Blank Activity Wizard created a second styles.
xml in res/values-21/ , you should delete it.

 Creating the TaskListFragment
 Fragments are the parts of your activities that are meant to be reused
throughout your application. Most activities have one or two fragments.

164 Part III: Creating a Feature-Rich Application

 The resulting fragment should look like Listing 9-3 .

The list activity needs a fragment to display the list of tasks, so right-click
on tasks (under com/dummies) in the Project view and add a new pack-
age named fragment . Then right-click on fragment and add a new Blank
Fragment. Use the settings in Table 9-3 :

 Table 9-3 Fragment Settings for TaskListFragment

Setting Value
Fragment Name TaskListFragment

Create Layout XML? Yes

Fragment Layout Name fragment_task_list

Include Fragment Factory Methods No

Include Interface Callbacks No

 Listing 9-3 : The TaskListFragment

package com.dummies.tasks.fragment;

 import android.os.Bundle;
 import android.app.Fragment;
 import android.view.LayoutInflater;
 import android.view.View;
 import android.view.ViewGroup;
 import com.dummies.tasks.R;

public class TaskListFragment extends Fragment {

 public TaskListFragment() {
 // Required empty public constructor
 }

 @Override
 public View onCreateView(
 LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 // Inflate the layout for this fragment
 return inflater.inflate(R.layout.fragment_task_list, container, false);
 }

 }

165 Chapter 9: Designing the Tasks Application

 If you run your app now, you should see a slightly modified message that
now says “Hello blank fragment.”

 Making your fragment show a list
 The goal of the TaskListFragment is to show a list of items. There are
three things that need to be done for this to happen: Add a RecyclerView
to your layout, create a view that represents a task in your list, and add an
adapter to supply these task views to your RecyclerView .

 Adding a RecyclerView
 A RecyclerView is a neat view that can display an infinite set of items on
your tiny little phone’s screen. Because your phone has a limited amount of
memory, it won’t always be possible to display your entire database of tasks
on the screen at one time without running out of memory. A RecyclerView
takes care of this for you by only loading into memory the items that can fit
onto the screen at any given time. As you scroll through your infinite list,
items that fall off the screen will be purged from memory, and items that
come onto the screen will be loaded into memory.

 To add a RecyclerView to your fragment, first open the build.gradle
file in your Tasks directory and replace the dependencies section with

 Knowing when to use activities or fragments
 Both activities and fragments are central parts
of your user interface (UI) code. So how then
do you decide whether to put certain function-
ality into a fragment or an activity?

 If activities are the lunchbox of UI code, frag-
ments are its Tupperware. You can insert your
UI code directly into your lunchbox, but like an
egg salad sandwich it would make a big mess
all over your lunchbox. Put your UI code into
your fragment Tupperware instead, where you

can shift it from lunchbox to lunchbox as you
need to use it again.

 If you’re absolutely certain that the code
you’re writing is specific to a given activity, put
it directly into an activity. But if you’re unsure,
put your UI code in a fragment. In most appli-
cations, fragments contain all your UI code,
and your activities contain only the glue that
binds the fragments together.

166 Part III: Creating a Feature-Rich Application

the following (or add a dependencies section at the end if one doesn’t
exist):

// Libraries that our app will use
 dependencies {
 // recyclerview, cardview, and palette are all google libraries
 // used to create Android Lollipop apps.
 compile 'com.android.support:recyclerview-v7:21.0.3'
 compile 'com.android.support:cardview-v7:21.0.3'
 }

 In the old days, if you needed to add a library to your app, you would
have to go out and find the library, download it, and copy it into your
 sourcetree . Not anymore! With Gradle, all you need to do is specify the
name of the dependency you want, and Gradle automatically downloads it
for you. For more information about Gradle dependency management, visit
 http://www.gradle.org/docs/current/userguide/dependency_
management.html .

 Then edit fragment_task_list.xml and replace its contents with a single
 RecyclerView :

<?xml version="1.0" encoding="utf-8"?>

 <!-- Our recyclerview, which shows a scrolling list of items -->
 <android.support.v7.widget.RecyclerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/recycler"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />

 Finally, add the RecyclerView to your fragment by making the following
edits to TaskListFragment.java :

public class TaskListFragment extends Fragment {

 RecyclerView recyclerView;

 public TaskListFragment() {
 // Required empty public constructor
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {

http://www.gradle.org/docs/current/userguide/dependency_management.html

167 Chapter 9: Designing the Tasks Application

 final View v = inflater.inflate(R.layout.fragment_task_list,
 container, false);
 recyclerView = (RecyclerView) v.findViewById(R.id.recycler); ➝16
 recyclerView.setHasFixedSize(true); ➝17
 recyclerView.setLayoutManager(
 new LinearLayoutManager(getActivity())); ➝19
 return v;
 }
 }

 Things to note from the previous changes:

 ➝ 16 Finds the RecyclerView in the layout and assigns it to the
 recyclerView field in the class.

 ➝ 17 If all of a RecyclerView ’s items are going to be the same size, the
 RecyclerView can cut some corners and improve performance
by not having to re-measure the layout after displaying every item.
All the items will be the same size, so turn on setHasFixedSize .

 ➝ 19 Every RecyclerView needs to have a LayoutManager that tells
it how to lay out the views. Because this fragment is just display-
ing a list, use a LinearLayoutManager , which knows how to lay
things out linearly in a list. There are other LayoutManagers ,
such as the GridLayoutManager , which knows how to lay things
out in a two-dimensional grid, but for now all you need is the
 LinearLayoutManager .

 Creating the item view
 Each task in your RecyclerView must have a view to display it.

 First, create a layout that’s going to represent an item in your list. Create a
new file named res/layout/card_task.xml , and add the following to it:

<?xml version="1.0" encoding="utf-8"?>

 <android.support.v7.widget.CardView ➝3
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:card_view="http://schemas.android.com/apk/res-auto"
 android:id="@+id/card_view"
 android:layout_width="match_parent"
 android:layout_height="100dp" >

 <RelativeLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent">

168 Part III: Creating a Feature-Rich Application

 <ImageView ➝14
 android:id="@+id/image"
 android:layout_width="100dp"
 android:layout_height="100dp"
 android:scaleType="centerCrop"
 android:layout_alignParentStart="true" />

 <TextView ➝22
 style="@android:style/TextAppearance.Medium.Inverse"
 android:id="@+id/text1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:maxLines="1"
 android:ellipsize="end"
 android:padding="10dp"
 android:layout_alignTop="@id/image"
 android:layout_toEndOf="@id/image"/>

 <TextView ➝33
 style="@android:style/TextAppearance.Inverse"
 android:id="@+id/text2"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:maxLines="2"
 android:ellipsize="end"
 android:padding="10dp"
 android:layout_alignStart="@id/text1"
 android:layout_below="@id/text1"/>

 </RelativeLayout>

 </android.support.v7.widget.CardView>

 Here is some more information about the code you just put into
 card_task.xml :

 ➝ 3 The card into which you’ll place your task information. The view
is the same width as the parent and a height of 100dp.

 ➝ 14 The image for the task. It’s a cropped square image that fills the
height of the card. It’s aligned to the far left of the card (the far
right in languages that read right-to-left like Hebrew and Arabic).

 ➝ 22 The title of the task. You made it a little larger (Medium) than normal
text. You also used the Inverse color because the theme (Theme.
Material) uses light text on a dark background by default, which
is what you want; but if you did that on the light-colored cards,
then you wouldn’t be able to read the text. A maxLines of 1 is set

169 Chapter 9: Designing the Tasks Application

to prevent wrapping of the title, and you’ve ellipsized the end if it
exceeds one line. You placed the title to the right and aligned it with
the top of the task image. You also gave the title a little padding on
all sides to make it look good within the card.

 ➝ 33 The task notes. You limit the number of lines to two and place
them below the title and aligned on the left with the title.

 Now that you have a basic CardView layout, add a little style to it by adding
the following lines in bold:

<android.support.v7.widget.CardView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:card_view="http://schemas.android.com/apk/res-auto"
 android:id="@+id/card_view"
 android:layout_width="match_parent"
 android:layout_height="100dp"
 android:layout_marginTop="@dimen/task_card_half_spacing"
 android:layout_marginBottom="@dimen/task_card_half_spacing"
 android:layout_marginStart="@dimen/gutter"
 android:layout_marginEnd="@dimen/gutter"
 android:layout_gravity="center"
 android:elevation="@dimen/task_card_elevation"
 android:foreground="?android:attr/selectableItemBackground"
 card_view:cardCornerRadius="0dp" >

 The lines in bold in the previous block of code make a few visual improve-
ments to the CardView . You added a margin on the top and bottom to create
an empty space between items in the list, and added a gutter on the left and
right. You’re using an elevation to add a subtle shadowing effect. You set the
foreground drawable to Android’s selectableItemBackground so that
you get a nice click animation when the user clicks on the card. You also
turned off the default rounded corners for the card.

 Now edit res/values/dimens.xml to create some of the values you just
used in your layout:

<?xml version="1.0" encoding="utf-8"?>
 <resources>
 <!-- The gutter on the left and ride side of most of our pages -->
 <dimen name="gutter">10dp</dimen>

 <!-- Half of the spacing we'll add between task cards. The full
 spacing will be double this number. -->
 <dimen name="task_card_half_spacing">5dp</dimen>

 <!-- The elevation of our task cards -->
 <dimen name="task_card_elevation">6dp</dimen>

 </resources>

170 Part III: Creating a Feature-Rich Application

 Adding an adapter
 A RecyclerView isn’t very interesting without a list of data to display. To
use a RecyclerView , you must create an adapter which will supply it with
views of your tasks. An adapter is a class that knows how to read from a list
of data somewhere (whether in a database, file, or wherever), and creates a
view that represents an item in that list.

 Create a new file called com/dummies/tasks/adapter/TaskListAdapter.
java and set its contents to the following:

public class TaskListAdapter
 extends RecyclerView.Adapter<TaskListAdapter.ViewHolder> ➝2
 {
 static String[] fakeData = new String[] { ➝4
 "One",
 "Two",
 "Three",
 "Four",
 "Five",
 "Ah . . . ah . . . ah!"
 };

 @Override
 public ViewHolder onCreateViewHolder(ViewGroup parent, int i) { ➝14
 // create a new view
 CardView v = (CardView) LayoutInflater.from(parent.getContext()) ➝16
 .inflate(R.layout.card_task, parent, false);

 // wrap it in a ViewHolder
 return new ViewHolder(v);
 }

 @Override
 public void onBindViewHolder(ViewHolder viewHolder, int i) { ➝23
 viewHolder.titleView.setText(fakeData[i]);
 }

 @Override
 public int getItemCount() { ➝28
 return fakeData.length;
 }

 static class ViewHolder extends RecyclerView.ViewHolder { ➝32
 CardView cardView;
 TextView titleView;

171 Chapter 9: Designing the Tasks Application

 public ViewHolder(CardView card) {
 super(card);
 cardView = card;
 titleView = (TextView)card.findViewById(R.id.text1); ➝39
 }
 }
 }

 Here’s what the TaskListAdapter is doing:

 ➝ 2 The TaskListAdapter is a subclass of RecyclerView.
Adapter . RecyclerView.Adapter takes a parameter which
represents the kind of ViewHolder that will be used by this
adapter. The ViewHolder you will use is TaskListAdapter.
ViewHolder , which will be defined on line 32.

 ➝ 4 In Chapter 13 you will create a SQLite database that will contain
all your task data. But for now, just use some dummy data.

 ➝ 14 Every RecyclerView.Adapter must override
 onCreateViewHolder , which will be called whenever a new
 ViewHolder is needed. You must do two things to create a new
view holder. First, you must inflate a card_task view. This
 card_task view will be reused over and over to display new
tasks as they scroll onto the screen. Second, you must create a
 ViewHolder to wrap this card_task view.

 The purpose of a ViewHolder is to improve performance.
Every call to findViewById is relatively expensive. By using a
 ViewHolder , you only need to make your calls to findViewById
when the view is created in onCreateViewHolder , rather than
every time a view is recycled in onBindViewHolder . Because
you will create only a handful of views, this can be a significant
time savings if you’re scrolling through a nearly infinite list of
tasks.

 ➝ 16 Inflates the CardView from card_task.xml using a
 LayoutInflater . The call to inflate takes as parameters
the XML file to inflate, the parent view to instantiate the right
 LayoutParams subclass, and false to indicate that this view
should not be automatically attached to the parent (because the
 RecyclerView takes care of attaching and detaching the views).

 ➝ 23 There will be roughly as many ViewHolders created by
 onCreateViewHolder as can fit on the screen at any one time,
and each of these ViewHolders will be reused whenever a new
item needs to be displayed. onBindViewHolder is responsible
for recycling one of these ViewHolders and updating it to

172 Part III: Creating a Feature-Rich Application

 display the information for the item that’s currently being shown
on the screen. The only thing that must be done to update the
 ViewHolder is to set its titleView to display the appropriate
string from our fakeData .

 ➝ 28 Returns the count of items in the list.

 ➝ 32 The TaskListAdapter.ViewHolder class is a subclass of
 RecyclerView.ViewHolder . The purpose of the ViewHolder
is to make it quick and easy to access the subviews in your
 CardView without having to call findViewById all the time. The
two subviews you’ll need access to for now are the cardView
itself, as well as the titleView that contains the title of the card.

 ➝ 39 Finds the titleView of the card by calling findViewById on the
 cardView .

 Now modify your TaskListFragment.java file to add the adapter:

public class TaskListFragment extends Fragment {

 RecyclerView recyclerView;
 TaskListAdapter adapter;

 public TaskListFragment() {
 // Required empty public constructor
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 adapter = new TaskListAdapter();
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {

 final View v = inflater.inflate(R.layout.fragment_task_list,
 container, false);
 recyclerView = (RecyclerView) v.findViewById(R.id.recycler);
 recyclerView.setAdapter(adapter);
 recyclerView.setHasFixedSize(true);
 recyclerView.setLayoutManager(
 new LinearLayoutManager(getActivity()));
 return v;
 }
 }

173 Chapter 9: Designing the Tasks Application

 Now run your app. You should see something like what’s in Figure 9-2 :

 Figure 9-2:
 The Tasks

app running
with fake

data.

 The fragment lifecycle
 Just like activities (see Chapter 5), fragments have their own lifecycle.

 Like an activity, a fragment can exist in three states:

 ✓ Resumed: The fragment is visible in the running activity.

 ✓ Paused: Another activity is in the foreground and has focus, but the activity in which this frag-
ment lives is still visible (the foreground activity is partially transparent or doesn’t cover the
entire screen).

 ✓ Stopped: The fragment is not visible. Either the host activity has been stopped, or the fragment
has been removed from the activity but added to the back stack. A stopped fragment is still
alive (all state and member information is retained by the system). However, it is no longer
visible to the user and will be killed if the activity is killed.

(continued)

174 Part III: Creating a Feature-Rich Application

 Styling your activity
 Now that you have a working list view for your tasks, it’s time to make it a
little bit prettier. Here’s the list of changes you will make:

 ✓ Pick a color scheme for your app.

 ✓ Color the action bar, status bar, and navigation bar based on your
scheme.

 ✓ Add an image to your cards.

 Coloring your activity
 Every Android app needs to have several colors defined:

 ✓ Primary: This is the main color of your app. You should set it to some-
thing distinctive that represents your app’s brand. Your action bar will
use this color to help users visually identify your app.

 ✓ Primary Dark: A slightly darker version of the primary color. Primary
Dark will be used in the status bar above your action bar, as well as
other places throughout your app.

 ✓ Text Color Primary: The main color for text in your app. There is also
Text Color Primary Inverse for when you need to display text against a
different colored background.

 Most of the fragment callbacks are very similar to the activity callbacks. However, there are some
important differences. The three most common fragment callbacks are

 ✓ onCreate : Unlike an activity, fragments don’t have a setContentView() method.
Unlike activities, views are not created at all in a fragment’s onCreate() method, so there
is no way to manipulate views in onCreate() .

 ✓ onCreateView : To create a view in a fragment, override the onCreateView() method
and inflate the view yourself, and then return it at the end of the function. See Listing 9-3
for an example. One important thing to note: Even though the views are created, they aren’t
fully constructed yet. If any saved state needs to be restored to the view (for example, if the
activity was destroyed and re-created because of a screen rotation), that state isn’t available
until the next step.

 ✓ onActivityCreated : onActivityCreated() is the final step called before your
fragment is fully created. At this point, your fragment is fully set up. Because of this, it’s usually
best to put most of the code involving views or saved state in onActivityCreated() .

(continued)

175 Chapter 9: Designing the Tasks Application

 ✓ Accent: An accent color that can be used to draw attention to things in
your app. Typically, the accent color should be something bold and eye-
catching.

 ✓ Background: The background color of your app.

 You can see how these colors are used in a typical activity in Figure 9-3 .

 Figure 9-3:
 The main

colors used
to describe
an Android

app.

 Open the res/values/styles.xml file and edit it to look like the following:

<?xml version="1.0" encoding="utf-8"?>
 <resources xmlns:android="http://schemas.android.com/apk/res/android">

 <!-- define your colors so that they can be referenced
 anywhere else you might need them -->
 <color name="primary">#1eabf2</color> ➝6
 <color name="primary_dark">#178acf</color>
 <color name="accent">#ffb936</color>
 <color name="window_background">#c1dae6</color>

176 Part III: Creating a Feature-Rich Application

 <!-- By default, most apps for Lollipop and later should use
 some variant of android:Theme.Material.NoActionBar -->
 <style name="AppTheme"
 parent="android:Theme.Material.NoActionBar"> ➝15

 <!-- your app's branding color (for the app bar) -->
 <item name="android:colorPrimary">@color/primary</item>

 <!-- darker variant of colorPrimary (for status bar, contextual
 app bars) -->
 <item name="android:colorPrimaryDark">@color/primary_dark</item>

 <!-- theme UI controls like checkboxes and text fields -->
 <item name="android:colorAccent">@color/accent</item>

 <!-- the background color of your windows -->
 <item name="android:windowBackground">
 @color/window_background
 </item>

 <!-- the background of the device's navigation bar (visible if the
 device doesn't have physical navigation buttons) -->
 <item name="android:navigationBarColor">@color/primary_dark</item>

 <!-- your primary and inverse text colors used in things like
 the actionbar. These are commented out because we are
 happy with the default values. Uncomment and set your own
 colors if desired. -->
 <!--<item name="android:textColorPrimary">-->
 <!--@color/text_color_primary-->
 <!--</item>-->
 <!--<item name="android:textColorPrimaryInverse">-->
 <!--@color/text_color_primary_inverse-->
 <!--</item>-->
 </style>

 </resources>

 About this listing:

 ➝ 6 First, you define the various colors that you will need to use
throughout your app’s theme.

 ➝ 15 Now take the AppTheme you defined earlier in the chapter and
update it to use the colors you defined in line 6.

177 Chapter 9: Designing the Tasks Application

 Now run your app. You should see the same app as before, only now it will be
using some prettier colors as in Figure 9-4 :

 Figure 9-4:
 The styled
Tasks app.

 Adding an image
 Most cards in a list view look better with an image. For now, there aren’t any
images for the tasks in the list, but you can add some dummy placeholder
images and replace them later.

 To do this, you will want to use a handy image library called Picasso. Add it
to your project dependencies by opening Tasks/build.gradle and adding
the lines in bold:

// Libraries that our app will use
 dependencies {
 // recyclerview and cardview are google libraries
 // used to create Android Lollipop apps.
 compile 'com.android.support:recyclerview-v7:21.0.3'
 compile 'com.android.support:cardview-v7:21.0.3'
 // Picasso is a library from Square that makes downloading images easy
 compile 'com.squareup.picasso:picasso:2.4.0'
 }

178 Part III: Creating a Feature-Rich Application

 For more information on Picasso, visit http://square.github.io/
picasso/

 Now open up TaskListAdapter.java and add the lines in bold:

public class TaskListAdapter
 extends RecyclerView.Adapter<TaskListAdapter.ViewHolder>
 {
 . . .

 @Override
 public void onBindViewHolder(ViewHolder viewHolder, int i) {
 Context context = viewHolder.titleView.getContext(); ➝8

 viewHolder.titleView.setText(fakeData[i]);

 // set the thumbnail image
 Picasso.with(context) ➝13
 .load(getImageUrlForTask(i))
 .into(viewHolder.imageView);
 }

. . .

 static class ViewHolder extends RecyclerView.ViewHolder {
 CardView cardView;
 TextView titleView;
 ImageView imageView; ➝24

 public ViewHolder(CardView card) {
 super(card);
 cardView = card;
 titleView = (TextView)card.findViewById(R.id.text1);
 imageView = (ImageView)card.findViewById(R.id.image);
 }
 }
 }

 The new code does the following:

 ➝ 8 Finds the context (the current activity) for the item in the list.
Picasso will need the context later.

 ➝ 13 Uses Picasso to load an image into the card’s ImageView . All
Picasso commands start with a with() clause, which instructs

http://square.github.io/picasso/

179 Chapter 9: Designing the Tasks Application

Picasso which context to use to download the image. This gener-
ally is your current activity. Next, you tell Picasso which URL to
load using the load() command. In this case, the URL comes
from getImageUrlForTask , which hasn’t been defined yet.
Finally, you tell Picasso which ImageView to put the image into
after it has been downloaded. Picasso then fires up an HTTP
request on a background thread to download the image and dis-
plays it after it’s available.

 ➝ 24 Adds the ImageView to the ViewHolder . You previously defined
the ImageView when you created card_task.xml , so all you
have to do here is create a field for it and call findViewById to
set it.

 Because Picasso downloads images from the Internet, add the line in bold
to your AndroidManifest.xml to give your app permission to access the
Internet:

<?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.dummies.tasks" >

 <uses-permission android:name="android.permission.INTERNET"/>

 This does everything that’s necessary to display an image for each task. The
only thing left to do is to determine which image to display.

 Add the following method to TaskListAdapter.java :

 public static String getImageUrlForTask(long taskId) {
 return "http://lorempixel.com/600/400/cats/?fakeId=" + taskId;
 }

 This uses the lorempixel.com service to download a random 600-x-400-pixel
cat image for the given taskId . Because cats. (If you prefer a different random
image, you may also be interested in checking out fillmurray.com .)

180 Part III: Creating a Feature-Rich Application

 Figure 9-5:
 The fully

styled
TaskList-
Activity.

 You are now done styling your TaskListActivity ! Run the app and you
should see something like Figure 9-5 :

 Are you interested to learn more about how to style your Android app?
There is a lot more information available on the web. Check out
 http://android-developers.blogspot.com/2014/10/material-
design-on-android-checklist.html and http://d.android.com/
design and http://developer.android.com/training/material/
index.html for more information.

http://d.android.com/design and http://developer.android.com/training/material/index.html
http://d.android.com/design
http://developer.android.com/training/material/index.html

 Creating the Task Detail Page
 In This Chapter

 ▶ Create the TaskEditActivity and TaskEditFragment

 ▶ Using the FragmentManager to start fragments

 ▶ Creating click listeners and starting activities

 ▶ Saving fragment state and restoring it later

 ▶ Transparent status, action, and navigation bars

 ▶ Using the Palette library

 This chapter continues the Tasks app that you started in Chapter 9 .
You’ve already built a rudimentary list view for the app; now it’s time

to allow users to create and edit tasks.

 This will require the following steps:

 ✓ Create a new activity and fragment to allow editing and updating tasks.

 ✓ Allow users to click on items in the list to open them in the editor.

 Creating the TaskEditActivity
 First things first, you will need a new activity to hold all this editing goodness.
Right-click the com/dummies/tasks/activity folder and select New Blank
Activity. Input the settings in Table 10-1 :

 After you’ve created the activity, delete the onCreateOptionsMenu and
 onOptionsItemSelected methods, as well as the res/menu/menu_task_
edit.xml files. You won’t be using them.

Chapter 10

182 Part III: Creating a Feature-Rich Application

 Add the lines in bold below, and your activity should now look like this:

 public class TaskEditActivity extends Activity {

 public static final String EXTRA_TASKID = "taskId"; ➝3

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_task_edit);
 setActionBar((Toolbar) findViewById(R.id.toolbar)); ➝9
 }

 }

 Some quick notes on the previous code:

 ➝ 3 You use this constant later in the chapter, so add it in now to save
yourself a little trouble later.

 ➝ 9 Set the action bar for the activity to the toolbar in your layout.
You will add a toolbar to your layout next. You may recognize this
code from Chapter 9 ; you did the same thing there.

 Now edit res/layout/activity_task_edit.xml and set it to the following:

 <?xml version="1.0" encoding="uft-8"?>

 <FrameLayout xmlns:android="http://schemas.android.com/apk/res/android" ➝3
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 Table 10-1 Activity Settings for TaskEditActivity

Setting Value
Activity name TaskEditActivity

Layout name activity_task_edit

Title Tasks

Menu resource name menu_task_edit

Launcher activity No

Hierarchical parent com.dummies.tasks.
activity. TaskListActivity

Package name com.dummies.tasks.activity

183 Chapter 10: Creating the Task Detail Page

 <FrameLayout ➝7
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/container"/>

 <Toolbar ➝12
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="@dimen/status_bar_height"
 android:layout_gravity="top"
 android:id="@+id/toolbar"/>
 </FrameLayout>

 Some comments about the previous code:

 ➝ 3 A view group that holds the fragment and your toolbar. Order is
important: The first item in the FrameLayout is drawn first, and
the last item drawn last. This means that the views at the top of
the FrameLayout will be under the later views.

 ➝ 7 This FrameLayout is an “anchor” into which the fragment is
placed. It takes up the entire screen. Unlike activity_task_list ,
you do not use the <fragment> tag here because you do not want
Android to auto-instantiate the fragment for you. Instead, you man-
ually instantiate it so that you can pass in parameters to the non-
default constructor (specifically, the ID of the task to be edited).

 ➝ 12 This is the Toolbar view, which is placed at the top of the screen
and in front of the fragment. Most of its styling settings are
defined in the AppTheme.TransparentActionBar style in the
 styles.xml (which you set up later in this chapter). But you do
need to add a little bit of buffer at the top of the screen to account
for the status bar, because the status bar is translucent and con-
tent of the page has shifted up by a few pixels to slide under the
status bar. To do this, create a new dimension named status_
bar_height in your dimens.xml file and set it to 25dp.

 Linking the List View to the Edit View
 So you have a fancy new activity. Good for you. Now the question is, how do
you get to it?

 Because this activity will be used to edit tasks, you want to reach it from
the list view you created in Chapter 9 . To do that, you need to create an
 OnClickListener to listen to clicks on the list view (the RecyclerView),
which then starts up the TaskEditActivity .

184 Part III: Creating a Feature-Rich Application

 To do so, first open up TaskListAdapter.java and add code in bold to the
end of onBindViewHolder:

 @Override
 public void onBindViewHolder(ViewHolder viewHolder, final int i) { ➝2
 final Context context = viewHolder.titleView.getContext();

 viewHolder.titleView.setText(fakeData[i]);

 // set the thumbnail image
 Picasso.with(context)
 .load(getImageUrlForTask(i))
 .into(viewHolder.imageView);

 // Set the click action
 viewHolder.cardView.setOnClickListener(➝13
 new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 ((OnEditTask) context).editTask(i); ➝17
 }
 });
 }

 Here’s what this code does:

 ➝ 2 The i parameter is used inside an inner class on line 17, so Java
requires that you declare it final. Same thing for the context
parameter on the next line.

 ➝ 13 Here you set the OnClickListener on the cardView by calling
 cardView.setOnClickListener .

 ➝ 17 The OnClickListener is going to ask the context (also the
activity) to edit the task by calling editTask on the activity. The
 editTask method does not exist yet, but you will create it and
the OnEditTask interface in the next section. Technically, you
don’t need an interface to use an OnClickListener , but using
one here will be handy in Chapter 16 when you begin adapting
your app for tablets.

 Now that you have the OnClickListener set up, you need to create
the OnEditTask interface so that it can be implemented by the
 TaskListActivity .

185 Chapter 10: Creating the Task Detail Page

 Create a new package named com.dummies.tasks.interfaces and
add a new interface to it called OnEditTask . Edit the file to contain the
following code:

 public interface OnEditTask {
 /**
 * Called when the user asks to edit or insert a task.
 */
 public void editTask(long id);
 }

 Now if you go back to TaskListAdapter.java , it should compile fine.
However, it won’t run yet because you cast context to the OnEditTask
interface, but your context does not yet implement OnEditTask . So modify
 TaskListActivity.java with the following changes:

 public class TaskListActivity extends Activity implements OnEditTask {

 . . .

 /**
 * Called when the user asks to edit or insert a task.
 */
 @Override
 public void editTask(long id) {
 // When we are asked to edit or insert a task, start the
 // TaskEditActivity with the id of the task to edit.
 startActivity(new Intent(this, TaskEditActivity.class)
 .putExtra(TaskEditActivity.EXTRA_TASKID, id));
 }
 }

 Now run your app and try clicking on one of the items in your list view. You
should then see a blank activity on your screen. You can press the Back
button to go back to the list and try again with another item in the list.

 Creating the TaskEditFragment
 The edit fragment is going to do all the heavy lifting for editing tasks. It is the
part of the app that knows how to display a detailed view of the current task
and allow the user to edit it.

 To create the edit fragment, first create the layout.

186 Part III: Creating a Feature-Rich Application

 Creating the layout
 Create a new file named res/layout/fragment_task_edit.xml and put
the following in it:

 <?xml version="1.0" encoding="utf-8"?>
 <ScrollView xmlns:android="http://schemas.android.com/apk/res/android" ➝2
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <RelativeLayout ➝6
 android:layout_width="match_parent"
 android:layout_height="wrap_content" >

 <ImageView ➝10
 android:id="@+id/image"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:minHeight="?android:actionBarSize"
 android:adjustViewBounds="true"
 android:layout_alignParentTop="true"
 />

 <EditText ➝19
 android:id="@+id/title"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginStart="@dimen/gutter" ➝23
 android:layout_marginEnd="@dimen/gutter"
 android:layout_below="@id/image" ➝25
 android:hint="@string/title"/> ➝26

 <TextView ➝28
 style="@android:style/TextAppearance.Medium" ➝29
 android:id="@+id/task_time"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/title" ➝33
 android:layout_alignEnd="@id/title" ➝34
 android:layout_marginEnd="3dp"/> ➝35

 <TextView ➝37
 style="@android:style/TextAppearance.Medium"
 android:id="@+id/task_date"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toStartOf="@id/task_time" ➝42
 android:layout_alignBottom="@id/task_time" ➝43
 android:layout_marginEnd="10dp"/> ➝44

187 Chapter 10: Creating the Task Detail Page

 <EditText ➝46
 android:id="@+id/notes"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignStart="@id/title"
 android:layout_marginEnd="@dimen/gutter"
 android:layout_below="@id/task_time"
 android:gravity="top" ➝53
 android:hint="@string/notes"
 android:minLines="5"/> ➝55
 </RelativeLayout>
 </ScrollView>

 Some additional information about the listing above:

 ➝ 2 You place the entire edit fragment inside a scroll view. If you
don’t do this, the user can’t see the bottom of the screen on small
devices or when she is in landscape mode. Most screens should
be wrapped inside a scroll view, except views like RecyclerView
that have their own built-in scrolling.

 ➝ 6 A RelativeLayout lets you position things directly relative
to each other. It gives more control than something like a
 LinearLayout , which only allows you to position things in
a line, one after another. To use a RelativeLayout , you uti-
lize positioning commands such as layout_below , layout_
alignStart , and layout_parentStart . You’ll see examples of
these commands in the child views of this layout. For more infor-
mation about RelativeLayout , visit http://d.android.com/
guide/topics/ui/layout/relative.html .

 ➝ 10 This is the same image used on the list view, but here you show
the full image instead of cropping it. When you downloaded the
image, you made sure it was a size that fully filled the screen hori-
zontally. You enable adjustViewBounds so that the ImageView
shrinks or expands itself to properly fit the image after it’s loaded.
You set the minHeight to the height of the action bar, so that if
the image isn’t available yet, the action bar won’t cover up the
title field.

 ➝ 19 Allows the user to edit the task’s title. I provide hint text (“Title”)
which indicates what field the user is editing.

 ➝ 23 Every well-designed page should have some margin on its left
and right sides. This is called the gutter . This line tells Android to
place a gutter of 10dp (defined in dimens.xml) on the left of the
 EditText . The next line adds the same gutter on the right.

http://d.android.com/guide/topics/ui/layout/relative.html

188 Part III: Creating a Feature-Rich Application

 You could also use marginLeft and marginRight rather than
 marginStart and marginEnd . However, it’s better practice to
use marginStart and marginEnd , because layouts that use
start and end automagically work in locales where text is laid
out right-to-left rather than left-to-right. Examples of right-to-left
languages are Hebrew and Arabic. You might think you’ll never
translate your app to one of these languages, but it’s better
to follow the best practice just in case you ever find your app
wildly popular in Israel or Saudi Arabia! See Chapter 17 for more
information about using right-to-left languages.

 ➝ 25 Positions the title directly below the image in the layout. All
the layout parameters relate to the Layout view that this
 TextView is a child of, in this case a RelativeLayout .

 ➝ 26 The hint text for the EditText displays a hint to users concern-
ing what kind of information they can input into this field. For
example, a hint might say “Phone number” or “(xxx) xxx-xxxx”
for a field expecting a phone number in the U.S. The hint text
appears in the EditText when the field is empty.

 ➝ 28 The time button.

 ➝ 29 The default text size is relatively small. Because the date and
time TextViews are going to be clickable, you want them a
little larger than normal. To do this, you change the style of the
 textview to use android:style/TextAppearance.Medium ,
which is a standard Android style for TextViews . The default
is android:style/TextAppearance.DeviceDefault ,
but there is also Large , Small , and many others. See
 http://d.android.com/reference/android/R.style.
html#TextAppearance for an exhaustive list.

 ➝ 33-34 Positions the time button directly below the title, and aligns it
to the right-hand side of the title as well. This puts the time on
the far right side of the screen.

 ➝ 35 Adds a little bit of extra padding to the right of this view to
make the text line up with the horizontal line above it.

 ➝ 37 The date button. You’ll place this to the left of the time button.

 ➝ 42-43 Positions the date button to the left of the time button, and
aligns the bottom of the date and time so they line up.

 ➝ 44 Adds a little padding to the right of this EditText to put a little
space between the date and the time text. Without this space,
the two sets of text look very crowded.

http://d.android.com/reference/android/R.style.html#TextAppearance

189 Chapter 10: Creating the Task Detail Page

 ➝ 46 Allows the user to edit the task’s notes. You’ll place this below the
title. You’ll also give it a minimum of 5 lines of height to accommo-
date longer notes. You set the gravity to "top" to make the text
align with the top of the text field because it looks better.

 ➝ 53 The default gravity for a TextView (as well as an EditText)
is center. This looks a little funny for a multiline TextView , so
change the gravity to "top" . You may recall using the layout_
gravity parameter in Chapter 4 . layout_gravity tells Android
how to position the current view inside its parent, whereas the
 gravity parameter tells Android how to position the content
inside the current view.

 ➝ 55 Make sure this EditText is at least 5 lines high. It expands to
more lines for extra-long notes.

 You used a couple of new strings in the layout, so open up strings.xml and
add them there:

 <string name="title">Title</string>
 <string name="notes">Notes</string>

 Creating the fragment
 Now that you’ve created the layout, it’s time to create the fragment.
Create a new Java file in com/dummies/tasks/fragment named
 TaskEditFragment.java , and add the following to it:

 public class TaskEditFragment extends Fragment {

 public static final String DEFAULT_FRAGMENT_TAG = "taskEditFragment"; ➝3

 // Views
 View rootView;
 EditText titleText;
 EditText notesText;
 ImageView imageView;

 long taskId; ➝11

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 Bundle arguments = getArguments(); ➝17
 if (arguments != null) {

190 Part III: Creating a Feature-Rich Application

 taskId = arguments.getLong(TaskEditActivity.EXTRA_TASKID, 0L);
 }
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragment_task_edit, ➝27
 container, false);

 rootView = v.getRootView(); ➝30
 titleText = (EditText) v.findViewById(R.id.title);
 notesText = (EditText) v.findViewById(R.id.notes);
 imageView = (ImageView) v.findViewById(R.id.image);

 return v;
 }
 }

 The class in the previous code does essentially two things. It knows how to

 ✓ Inflate the layout and find the views in the layout.

 ✓ Read the task ID from the fragment arguments.

 Here are more details on the previous code:

 ➝ 3 The “name” that you’ll usually use to identify this fragment.
You need this constant later in the chapter when you use the
 FragmentManager to add the fragment to the activity.

 ➝ 11 The ID of the task being edited. When editing existing tasks, the ID
is the ID of the task. When creating a new task, the ID is initially 0,
but it is set to the new ID of the task after the task is saved.

 ➝ 17 Sets the task ID from the intent arguments, if available. Fragments
do not get their arguments from their constructors like normal
Java objects. Instead, you must get and set their arguments using
the getArguments and setArguments methods.

 ➝ 27 Inflates the layout and sets the container. The layout is the view
that you will return.

 ➝ 30 From the layout, gets a few views that you’re going to work with.

 Those are the basics of creating a fragment that can show the details of a task.
However, there’s one more very important step that you must not leave out.
You must remember to persist your in-memory state whenever the fragment
is destroyed, and use that persisted state (if it exists) when your fragment
starts up.

191 Chapter 10: Creating the Task Detail Page

 Saving your state
 Android activities can be killed at any time to
save memory when they’re in the background.
If the user returns to the activity, it may be
re-created again. When it’s destroyed, the
Android OS automatically saves the current
state of any views (such as EditTexts) that
the user may have changed into the outState
bundle. When it’s re-created, those values are
automatically set for you in onCreate from
the savedInstanceState bundle.

 However, although Android can save the
state of views for you automatically, it cannot
do that for non-views. So any time you have
any state that you or the user may modify in
your fragments or activities, it’s UP TO YOU
to make sure you save them properly! To do
this, just save the value to the outState
bundle, and then read it back in again from
the savedInstanceState bundle in
 onCreate .

 DO NOT FORGET TO DO THIS!

 If you forget, your app will appear to work fine.
You won’t immediately notice anything wrong.
But any time you rotate your phone, or leave
an app running for awhile in the background
and then later return to it, you may experience
random crashes and unexpected behavior. It
won’t happen every time, and it will be very dif-
ficult to track down.

 To make these situations easier to discover, you
can enable the “Don’t keep activities” option in
the developer options for your phone. This tells
Android to destroy each activity as soon as it
goes to the background, as happens when your
phone runs low on memory. If you hit the Back
button to return to the activity, it is re-created
from its outState bundle. See Chapter 5 to
refresh your memory on how to access the
developer options for your phone.

 Saving your fragment’s state involves two things:

 ✓ Overriding onSaveInstanceState to save any of your fields that may
have changed while the fragment was running.

 ✓ Checking for any saved instance state when the activity is created in
 onCreate .

 Go back to your TaskEditFragment.java and add the lines in bold:

 public class TaskEditFragment extends Fragment {

 static final String TASK_ID = "taskId"; ➝3

 . . .
 long taskId;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 . . .

192 Part III: Creating a Feature-Rich Application

 if (savedInstanceState != null) { ➝13
 taskId = savedInstanceState.getLong(TASK_ID);
 }
 }

 @Override ➝18
 public void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 // This field may have changed while our activity was
 // running, so make sure we save it to our outState bundle so
 // we can restore it later in onCreate.
 outState.putLong(TASK_ID, taskId);
 }
 }

 ➝ 3 The name of the entry that you’ll use to store the taskId when
the fragment needs to save its state.

 ➝ 13 Restores the taskId from savedInstanceState , if available.

 ➝ 18 onSaveInstanceState is called whenever Android needs to
destroy your fragment, most likely to free up memory. However, it
may need to resurrect your fragment again later. You are respon-
sible for saving any fields that may have changed into the bundle
so that they can be used later when the activity is resurrected.
See the “Saving your state” sidebar for more information.

 Finally, there’s one more thing you need to do in this fragment. Because the
fragment needs the ID of the task that it is going to edit, you need to create a
method that can create a new fragment for a given ID. To do this, add the fol-
lowing static factory method to the TaskEditFragment class:

 public static TaskEditFragment newInstance(long id) {
 TaskEditFragment fragment = new TaskEditFragment();
 Bundle args = new Bundle();
 args.putLong(TaskEditActivity.EXTRA_TASKID, id);
 fragment.setArguments(args);
 return fragment;
 }

 You’ll use this method in the next section.

 But first, your page needs an image. Add the following to onCreateView :

 // Set the thumbnail image
 Picasso.with(getActivity())
 .load(TaskListAdapter.getImageUrlForTask(taskId))
 .into(imageView);

193 Chapter 10: Creating the Task Detail Page

 You Put the Fragment in the Activity
and Shake It All Up

 Now, you have an activity that you can reach by clicking on an item in the
list, and you have a fragment that displays the details of an item, but you do
not yet have any way to see the fragment from the activity. What you need to
do is put the fragment in the activity.

 You may recall from Chapter 9 that this was super-easy to do. All you needed
to do was put a <fragment> tag in your activity’s layout, and everything
worked magically.

 Things are a little more complicated this time around.

 In Chapter 9 , the fragment did not take any parameters, so it was easy to
instantiate. The fragment in this chapter, on the other hand, does need a
parameter. Specifically, it needs to know the ID of the task that’s being edited.
Because of this difference, you cannot just inflate the fragment in the layout.
You must create the fragment programmatically using the FragmentManager .

 Open up TaskEditActivity and add the lines in bold:

 public class TaskEditActivity extends Activity {

 . . .

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_task_edit);
 setActionBar((Toolbar) findViewById(R.id.toolbar));

 long id = getIntent().getLongExtra(TaskEditActivity.EXTRA_TASKID,0L);
 ➝11

 Fragment fragment = TaskEditFragment.newInstance(id);

 String fragmentTag = TaskEditFragment.DEFAULT_FRAGMENT_TAG; ➝14

 if (savedInstanceState == null) ➝16
 getFragmentManager().beginTransaction().add(
 R.id.container,
 fragment,
 fragmentTag).commit();
 }

 }

194 Part III: Creating a Feature-Rich Application

 In brief, you are getting the ID of the task from the activity’s intent extras,
using that ID to create a new TaskEditFragment , and then using the
 FragmentManager to add the fragment to your activity in a fragment trans-
action. Some comments about the code are

 ➝ 11 Creates a new edit fragment for the specified task ID.

 ➝ 14 The tag that you’ll use to add the fragment to the activity. This
allows you to reference this fragment from other fragments, such
as the Date and Time picker dialog fragments, which you will
create in Chapter 12 .

 ➝ 16 Adds the fragment if it has not already been added to the
 FragmentManager . If you don’t do this, a new fragment will be
added every time this method is called (such as on orientation
change). The FragmentManager saves previously added frag-
ments to the savedInstanceState . So if savedInstanceState
is null , you know there were no previous fragments. The frag-
ment is attached as a child of the container view.

 Updating the Styles
 You’re close to being able to view your handiwork. You can run it now, but
there will be some bugs because there are a couple of changes you need to
make to your activity’s style.

 This activity is a bit different from the list activity, so it should have a
 different style. Because the page is a detail view, you should remove as
much of the app’s distracting “chrome” from the page as possible, so that
users can focus on their beautiful content. Things like the action bar, the
status bar, and the navigation bar are all going to be reduced in promi-
nence. You wouldn’t want to do this on every page of your app because
that chrome can give users a visual indication of where they are in the
app and what app they’re using, but it can be a powerful technique if used
 judiciously.

 Open styles.xml and add the following to the bottom of the file:

 <!-- A variation of the AppTheme, but with a transparent (clear)
 ActionBar. Also has a translucent (grey) status and navigation
 bar. -->
 <style name="AppTheme.TransparentActionBar" parent="AppTheme"> ➝4
 <item name="android:windowTranslucentStatus">true</item>

195 Chapter 10: Creating the Task Detail Page

 <item name="android:windowActionBarOverlay">true</item> ➝6
 <item name="android:windowTranslucentNavigation">true</item>
 <item name="android:actionBarStyle">@style/TransparentActionBar</item>

 ➝8
 </style>

 <!-- The TransparentActionBar style used by
 AppTheme.TransparentActionBar -->
 <style name="TransparentActionBar" parent="android:Theme.Material">
 <item name="android:background">@android:color/transparent</item> ➝14

 </style>

 About the previous code:

 ➝ 4 This style definition is for activities that want a transparent action
bar. It also uses a translucent (slightly opaque) status and naviga-
tion bar. Notice that it inherits from the AppTheme you created in
Chapter 9 .

 ➝ 6 Normally the action bar is at the top of the page, and all the
other content (such as the image) is arranged below it. However,
because the action bar is transparent, you want to move the image
all the way up to the top of the screen so that it is under the action
bar. Setting the action bar to windowActionBarOverlay=true
is the way to do that.

 ➝ 8 The way to make the action bar transparent is to set its style,
so set the action bar style to a style that you will create on
line 14.

 ➝ 14 Sets the background color of the action bar style to
 transparent .

 Next, update the following lines in your AndroidManifest.xml :

 <activity
 android:theme="@style/AppTheme.TransparentActionBar"
 android:name="com.dummies.tasks.activity.TaskEditActivity"
 android:label=""
 android:parentActivityName=
 "com.dummies.tasks.activity.TaskListActivity">
 . . .

196 Part III: Creating a Feature-Rich Application

 Now run your app! You should be able to click on any item in the list
and have it open a blank edit fragment like Figure 10-1 :

 A Special Bonus
 There’s a fun library called Palette that scans an image and picks out a few
key colors. Try using this library to add some dynamic color to your fragment.

 First, add the library to your dependencies in build.gradle :

 compile 'com.android.support:palette-v7:21.0.3'

 Then, update your call to Picasso in TaskEditFragment.java to be like the
following:

 Picasso.with(getActivity())
 .load(TaskListAdapter.getImageUrlForTask(taskId))
 .into(
 imageView, new Callback() { ➝4
 @Override
 public void onSuccess() { ➝6

 Figure 10-1:
 The blank

Edit activity
and frag-

ment.

197 Chapter 10: Creating the Task Detail Page

 Activity activity = getActivity();

 if (activity == null) ➝9
 return;

 // Set the colors of the activity based on the
 // colors of the image, if available
 Bitmap bitmap = ((BitmapDrawable) imageView
 .getDrawable())
 .getBitmap(); ➝16
 Palette palette ➝17
 = Palette.generate(bitmap, 32);
 int bgColor = palette.getLightMutedColor(0);

 if (bgColor != 0) {
 rootView.setBackgroundColor(bgColor); ➝22
 }
 }

 @Override
 public void onError() {
 // do nothing, we'll use the default colors
 }
 });

 What is this code doing?

 ➝ 4 Like before, you’re still telling Picasso to load the image “into”
the imageView . However, this time you’re also adding a callback,
which is invoked when the image is done loading. This callback is
where you do the magic if you are inspecting the image for colors.

 ➝ 6 The callback has two methods: onSuccess and onError . If the
image successfully loaded, onSuccess is called so that you can
inspect the image. If there was an error, you do nothing.

 ➝ 9 Because Picasso downloads images in the background, you can’t
be sure that the user didn’t close the activity while the images were
loading. If he did, you will bomb out, so do a sanity check to be sure.

 ➝ 16 You’ll get the image from the imageView because it’s not passed
into the callback for you directly.

 ➝ 17 Uses the Palette library to generate a color palette for the image.
From that palette, you’ll pick out the “light muted color” to use as
the background for your activity.

 ➝ 22 If Palette can find a color for you, then use it to set your background.
Palette is usually but not always successful at finding colors.

 For more information about the Palette library, visit https://d.android.
com/reference/android/support/v7/graphics/Palette.html .

https://d.android.com/reference/android/support/v7/graphics/Palette.html

 Going a la Carte with Your Menu
 In This Chapter

 ▶ Building an Options menu

 ▶ Creating a long-press action

 Every good Android application includes menus. If you have an Android
device and you’ve downloaded a few applications from the Google Play

Store, you’ve probably encountered plenty of menu implementations. You’ll
recognize them by their icons or text in the action bar, or their text in the
drop-down overflow menu on the far right of the action bar.

 Activities and fragments can both have menus, in which case they’ll both be
combined into one. In this chapter, you add option and context menus to
the fragments in the Tasks app, but you could just as easily add them to an
activity, too.

 Understanding Options
and Context Menus

 Android provides a simple mechanism for you to add menus to your applica-
tions. This is the Options menu (also known as the action bar menu). This
is, most likely, the most common type of menu that you’ll work with. It’s the
primary menu for an activity or fragment.

 The Options menu is in the action bar at the top of the screen (read more
about the action bar in Chapter 1). Figure 11-1 shows the Options menu with
the overflow menu collapsed and expanded.

Chapter 11

200 Part III: Creating a Feature-Rich Application

 Android 2.x and earlier didn’t have an action bar, so menus on those devices
showed up behind a dedicated hardware menu button and were shown at the
bottom of the screen in a grid of icons. Most apps won’t need to worry about
Android 2.x at this point. If you want to learn more about supporting older
versions of Android, see Chapter 17 .

 You have two choices when making Options menus:

 ✓ Show in action bar or put in the overflow menu: Options menu items
can either be shown in the action bar, as is the case with the magnifying
glass and folder icons in Figure 11-1 , or displayed in the overflow menu.
Use the action bar for the one or two most important actions that can
be taken in your activity. For anything less important, use the overflow
menu. It’s important to not overload your action bar with a ton of menu
options, both because you have limited real estate, but also because too
many options can be overwhelming to the user.

 ✓ Icon or Text: For option menus that are shown in the action bar, you
have a choice between using an icon or using text. Icons are generally
preferable, but in the case where you have only a single action in the
action bar, it often makes sense to use text. For example, an app might
have a single action called “Save” in the action bar, but you wouldn’t
want to have multiple text actions such as “Save” and “Share” because
the text can start to get crowded.

 Creating Your First Menu
 You can create a menu through code or through an XML file that’s provided
in the res/menu directory. The preferred method of creating a menu is to
define it through XML and then inflate it into a Java object that you can

 Figure 11-1:
 The Options

menu with
(top) menu
icons and

(bottom) the
overflow

menu
expanded.

201 Chapter 11: Going a la Carte with Your Menu

interact with. This helps separate the menu definition from the application
code.

 Defining the XML file
 To define an XML menu, follow these steps:

1. Create a menu folder in the res directory.

2. Add a file by the name of menu_list.xml to the menu directory.

3. Type the following code into the menu_list.xml file:

<?xml version="1.0" encoding="utf-8"?>
 <!-- Our default menu, which we'll load into the action bar of our main
 app activity -->
 <menu xmlns:android="http://schemas.android.com/apk/res/android">

 <!-- The Insert button, used to create a new task. This button
 is important and small, so we'll force it to always be
 in the action bar. In general, you should try to have as
 few items as possible configured with showAsAction=always.
 We'll use the default Add button icon that ships with
 Android. If you want to see what other drawables Android
 ships with, you can look in
 $ANDROID_SDK/platforms/android-*/res/drawable-*
 -->
 <item
 android:id="@+id/menu_insert"
 android:icon="@android:drawable/ic_menu_add"
 android:showAsAction="always"
 android:title="@string/menu_insert"/>

</menu>

 Notice that a new string resource is included (shown in bold). You’ll
create that in Step 4. The android:icon value is a built-in Android
icon. The ldpi, mdpi, hdpi, xhdi, and so on, versions of this icon are all
built into the Android platform, so you don’t have to provide this bitmap
in your drawable resources. To view other available resources, view the
 android.R.drawable documentation at

http://d.android.com/reference/android/R.drawable.html

 All resources in the android.R class (as opposed to your own app’s R
class) give your application a common user interface and user experi-
ence with the Android platform.

4. Create a new string resource with the name menu_insert with the
value of Add Task in the strings.xml resource file.

202 Part III: Creating a Feature-Rich Application

5. Open the TaskListFragment class and add the following method:

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 setHasOptionsMenu(true);
 }

 setHasOptionsMenu() tells the activity that this fragment has an
Options menu to show in the action bar. You place this call in
 onActivityCreated to be sure that the activity has finished calling
its own onCreate before you call setHasOptionsMenu .

6. Add the onCreateOptionsMenu() method to your class:

@Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 super.onCreateOptionsMenu(menu,inflater);
 inflater.inflate(R.menu.menu_list, menu);
 }

 The MenuInflater inflates the XML menu created earlier and adds it to
the menu that was passed as an argument to the method call.

7. Install the application in the emulator, and click the Menu button.

 Figure 11-2 shows the Add Task menu icon that you just created. If you
long-press on the icon, you can see the text “Add Task”.

 Figure 11-2:
 The Add

Task menu
icon.

 Handling user actions
 After you’ve created the menu, you then have to add what happens
when a user clicks it. To do this, type the following code at the end of the
 TaskListFragment Java file:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) { ➝2
 switch (item.getItemId()) { ➝3
 case R.id.menu_insert:

203 Chapter 11: Going a la Carte with Your Menu

 ((OnEditTask) getActivity()).editTask(0); ➝5
 return true; ➝6
 }

 return super.onOptionsItemSelected(item); ➝9
 }

 The lines of code are explained in detail here:

 ➝ 2 This is the method that’s called when a menu item is selected. The
 item parameter identifies which menu item the user tapped.

 ➝ 3 To determine which item you’re working with, compare the ID of
the menu items with the known menu items you have. Therefore,
a switch statement is used to check each possible valid case.
You obtain the menu’s ID through the MenuItem method
 getItemId() .

 ➝ 5 If the user selected the Add Task menu item, the application is
instructed to create a task through the editTask() method
(defined in Chapter 10). By convention, calling editTask() with
an ID of 0 means the app should create a new task.

 ➝ 6 This line returns true to inform the onMenuItemSelected()
method that a menu selection was handled.

 ➝ 9 If the menu selection and return isn’t handled earlier, the parent
class tries to handle the menu item.

 If you run your app, you will now be able to access the edit screen of the
app by pressing the Add Task button in the action bar. You won’t actually
be able to create a new task, of course, because the app is using hardcoded
dummy data for now, but you will be able to after you create your database
in Chapter 13 .

 Creating your second menu
 One good thing deserves another. Why stop at one menu when you could
have two? In particular, your edit page needs an option to allow users to save
their changes.

 In this section, you will create a menu programmatically instead of
using XML.

204 Part III: Creating a Feature-Rich Application

 Open TaskEditFragment.java and add the following methods and
 constant:

 private static final int MENU_SAVE = 1; ➝1

 @Override
 public void onActivityCreated(Bundle savedInstanceState) { ➝4
 super.onActivityCreated(savedInstanceState);
 setHasOptionsMenu(true);
 }

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 super.onCreateOptionsMenu(menu, inflater);

 menu.add(0, MENU_SAVE, 0, R.string.confirm) ➝13
 .setShowAsAction(MenuItem.SHOW_AS_ACTION_ALWAYS); ➝14
 }

 There are some differences from the previous menu:

 ➝ 1 Creates a constant int that will represent the Save menu. Each
menu item within an activity should have a unique integer.

 ➝ 4 The onActivityCreated method is identical to the one you
added to TaskListFragment in the previous section.

 ➝ 13 Creates a menu item named “Save” and gives it an id of 1. If you
have multiple menu items, it’s a good practice to create static
final ints to name them.

 ➝ 14 setShowAsAction has several possible values that determine
the way that the menu item appears in the action bar:

• ifRoom : Only place this item in the action bar if there is room
for it.

• withText : Also include the title text (defined by
 android:title) with the action item. You can include this
value along with one of the others as a flag set, by separating
them with a pipe (|).

• never : Never place this item in the action bar.

• always : Always place this item in the action bar. Avoid using
this unless it’s critical that the item always appear in the action
bar. Setting multiple items to always appear as action items can
result in them overlapping with other UI in the action bar. In this
case, because the Save option is a critical piece of UI functionality
that we never want hidden, it’s okay to use always .

205 Chapter 11: Going a la Carte with Your Menu

• collapseActionView : The action view associated with this
action item (as declared by android:actionLayout or
 android:actionViewClass) is collapsible. This is a more
advanced option used for custom menu items.

 You added a new string, so add it to strings.xml :

 <string name="confirm">Save</string>

 Now, add the following method to handle the menu option when it is
selected:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch(item.getItemId()) {
 // The Save button was pressed
 case MENU_SAVE: ➝5
 //save(); ➝6

 ((OnEditFinished) getActivity()).finishEditingTask(); ➝8

 return true;
 }

 return super.onOptionsItemSelected(item); ➝13
 }

 The onOptionsItemSelected method for TaskEditFragment is similar
to the one you added to TaskListFragment , but it has some differences:

 ➝ 5 Was onOptionItemsSelected called with a menu ID of
 MENU_SAVE ? If so, then . . .

 ➝ 6 . . . call the save method. But really, the save method is com-
mented out for now because the Tasks app is using dummy data
and does not yet have a way to save items. That will be added in
Chapter 13 .

 ➝ 8 Tells the enclosing activity that you are done so that it can clean
up whatever it needs to clean up. You will implement this method
later in this section.

 ➝ 13 If you can’t handle this menu item, see if your parent can return
 super.onOptionsItemSelected(item); .

206 Part III: Creating a Feature-Rich Application

 The previous code handles most of the things necessary to implement a Save
menu item for the fragment. The one thing that remains is to figure out what
to do after the Save button has been clicked. In this case, the activity
should close and return the user to the previous activity. Much like you
did when you created the OnEditTask interface in Chapter 10 , you will
create an interface named OnEditFinished that has a method called
 finishEditingTask() that handles this behavior. In Chapter 16 , you will
make finishEditingTask do something different for tablets, but for now
it just needs to close the activity.

 Create a new interface named OnEditFinished in com/dummies/tasks/
interfaces . Put the following code in it:

public interface OnEditFinished {
 /**
 * Called when the user finishes editing a task.
 */
 public void finishEditingTask();
 }

 And then implement the interface in TaskEditActivity.java :

public class TaskEditActivity extends Activity
 implements OnEditFinished
 {
 /**
 * Called when the user finishes editing a task.
 */
 @Override
 public void finishEditingTask() {
 // When the user dismisses the editor, call finish to destroy
 // this activity.
 finish();
 }

 . . .
 }

 Now run the app; you should see a Save menu overlaying the task image, as
in Figure 11-3 . If you tap it, the activity should dismiss.

207 Chapter 11: Going a la Carte with Your Menu

 Try setting setAsActionBar to MenuItem.SHOW_AS_ACTION_NEVER to
see what the Add Task item would look like in the overflow menu.

 Creating a Long-Press Action
 The Tasks application needs a mechanism in which to delete a task when
it’s no longer needed. Users can long-press the task in the list, and a dialog
appears that allows them to delete the task by selecting an item from the
menu. For this section, you’re going to implement a dialog.

 Open TaskListAdapter.java and add the following code below your call
to setOnClickListener in onBindViewHolder :

 // Set the long-press action
 viewHolder.cardView.setOnLongClickListener(
 new View.OnLongClickListener()
 {
 @Override
 public boolean onLongClick(View view) {

 Figure 11-3:
 The Save

menu
action.

208 Part III: Creating a Feature-Rich Application

 new AlertDialog.Builder(context) ➝7
 .setTitle(R.string.delete_q) ➝8
 .setMessage(viewHolder.titleView.getText()) ➝9
 .setCancelable(true) ➝10
 .setNegativeButton(android.R.string.cancel, null) ➝11
 .setPositiveButton(➝12
 R.string.delete,
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(
 DialogInterface dialogInterface,
 int i)
 {
 deleteTask(context, i); ➝20
 }
 })
 .show(); ➝23
 return true;
 }
 });

 ➝ 7 Uses the AlertDialog.Builder class to construct a new
 AlertDialog . The Builder has several methods such as
 setTitle , setMessage , setPositiveButton , and so on, that
will construct an alert to your specifications. When you’re all
done, you will call show on line 23 to show the dialog.

 ➝ 8 Sets the top-line title of the dialog. Add the following line to your
 strings.xml :

 <string name="delete_q">Delete?</string>

 ➝ 9 Sets the message body of the dialog to the title of the task, so that
the user can confirm exactly which item she is deleting.

 ➝ 10 Makes the dialog cancelable. This means that if the user hits
the Back button, the dialog behaves as if the user hit the Cancel
button. You can set this to false to disable the Back button in
dialogs.

 ➝ 11 Sets the text and action for the negative button in the dialog. In
this case, the text is Cancel . You don’t need to add this string
to your app because the android.R file has it built-in. Also, you
can set the click action to null , because by default the negative
button dismisses the dialog, and that’s the only behavior you
need for this dialog.

 ➝ 12 Sets the text and action for the positive button in the dialog. The
text is Delete , which you should add now to your strings.xml :

 <string name="delete">Delete</string>

209 Chapter 11: Going a la Carte with Your Menu

 Unlike the negative button, the positive button has to do some
specific stuff to the Tasks app, so you need to implement a
 DialogInterface.OnClickListener to handle the behavior
of a positive button click.

 ➝ 20 When the positive button is clicked, call the method deleteTask .
For now, this method does not need to do anything, so add a
 deleteTask method to your TaskListAdapter like so:

 void deleteTask(Context context, long id) {
 Log.d("TaskListAdapter", "Called deleteTask");
 }

 ➝ 23 You must call show() to display your dialog.

 Because your viewHolder is being accessed from within an inner class, you
also need to change the signature of your method:

public void onBindViewHolder(final ViewHolder viewHolder, final int i)

 Now run your app. When you long-press on a task, you should see a dialog
like the one in Figure 11-4 :

 Figure 11-4:
 The Delete

dialog.

210 Part III: Creating a Feature-Rich Application

 And when you press the Delete button, a message should appear in your
logcat output that says Called deleteTask . See Chapter 3 for more infor-
mation about how to use logcat.

 In Chapter 10 , you used DialogFragments to create dialogs, but here you
are using an AlertDialog (which is not a DialogFragment). What is the
difference?

 DialogFragments are more complicated to set up, but they interact prop-
erly with the Android activity and fragment lifecycle (see Chapter 5 and 9
for more information about Android activities and fragments). In particular,
if a fragment is asked to save itself in onSaveInstanceState and then re-
create itself later in onCreate (see Chapter 10 for more information about
 onSaveInstanceState), a DialogFragment will behave properly but an
 AlertDialog will not.

 You can see this in action by going to the edit page of your app, dismissing
the keyboard, and then clicking on the date to open the date picker. If you
rotate your device, the date picker remains on the screen and retains what-
ever date you clicked on.

 However, if you long-press on an item in the list view to open the Delete
dialog and then rotate your device, the Delete dialog disappears! This is
because you did not use a DialogFragment to create it.

 In general, it’s best to always use DialogFragments because they result
in the best user experience. As an exercise, try re-implementing the Delete
dialog as a DialogFragment using the lessons described in Chapter 10 .

 Handling User Input
In This Chapter

 ▶ Working with EditText views

 ▶ Creating date pickers and time pickers

 ▶ Setting up alert dialogs

 ▶ Validating user input

 Rarely does an application not allow users to interact with it. Whether
they use text, a date or time picker, a radio button, a check box, or any

other input mechanism, users need to interact with your application in one
way or another. This chapter focuses solely on user input in the form of alert
confirmation, free-form text, and dates and times.

 Creating the User Input Interface
 The most common input type is the EditText view, used for free-form text
entry. With an EditText view, you can provide an onscreen keyboard or let the
user choose the physical keyboard (if the device provides one) to enter input.

 Creating an EditText view
 In Chapter 10 , you created a view layout XML file, named fragment_task_
edit.xml , that contained these lines of code:

 <EditText
 android:id="@+id/title"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 . . .
 android:hint="@string/title"/>

Chapter 12

212 Part III: Creating a Feature-Rich Application

 The snippet creates an input mechanism on the screen where the user can
type a task title. The EditText view spans the width of the screen and occu-
pies only as much height as it needs. When the view is selected, Android
automatically opens the onscreen keyboard to allow user input. And when
the EditText is empty, it displays a hint to the user describing what it’s for;
in this case, the hint text is “Title”.

 The previous example takes a minimalistic approach, compared to the follow-
ing EditText example, which is also present in the fragment_task_edit.
xml layout file:

 <EditText
 android:id="@+id/notes"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 . . .
 android:gravity="top"
 android:hint="@string/notes"
 android:minLines="5"/>

 This code creates the body description text of the task. The layout width and
height are the same as in the EditText view in the previous example. These
three properties outline the differences in this EditText definition:

 ✓ minLines : Specifies the height of the EditText view. Because the
 EditText view is a subclass of the TextView object, they share this
property. This code specifies a minimum of five lines for the EditText
object onscreen so that the view resembles a text input mechanism for
long messages.

 Compare this view to the body portion of any email client, and you can
see that they’re much the same — the body is much larger than the
 subject. In this case, the body is much larger than the title.

 ✓ gravity : The default gravity of an EditText aligns text to the middle
of the view when the user places focus into the field, though it isn’t what
users would expect when they work with a multiline input mechanism.
To position the cursor at the top of the EditText view, as users might
expect, you must set the gravity of the EditText view to top , to force
the text to gravitate to the top of the EditText input as shown on the
right in Figure 12-1 .

 Displaying an onscreen keyboard
 The EditText view is responsible for the onscreen keyboard display.
Because most devices have no physical keyboard, an onscreen keyboard

213 Chapter 12: Handling User Input

must be present for interaction with the input mechanisms. One property
that the EditText view provides is a way to manipulate the visual aspect of
the onscreen keyboard.

 You adjust the onscreen keyboard because different EditText input types
might need different keys. For example, if the EditText is a phone number,
the onscreen keyboard should display only numbers. If the EditText value
is an email address, however, the onscreen keyboard should display common
email style attributes — such as the at (@) symbol.

 Configuring the onscreen keyboard properly can significantly increase the
usability of your application.

 You can configure the way the onscreen keyboard looks by using the
 inputType property on the EditText view. For example, if you set
 android:inputType="number" on the body EditText , the keyboard
 displays number keys rather than letter keys, as shown in Figure 12-2 .

 The inputType attribute has too many options to cover in this book, but
you can examine the full list at http://d.android.com/reference/
android/widget/TextView.html#attr_android:inputType .

 Figure 12-1:
An

 EditText
view, with
gravity set

to center
(left) and top

(right).

http://d.android.com/reference/android/widget/TextView.html#attr_android:inputType

214 Part III: Creating a Feature-Rich Application

 Getting Choosy with Dates and Times
 A Task Reminder application without a way to set the date and time is a poor
Task Reminder application — it would be only a simple task list application.

 If you’ve programmed dates and times in another programming language,
you realize that building a mechanism for a user to enter the date and time
can be a painstaking process. The Android platform comes to your rescue by
providing two classes to assist you: DatePicker and TimePicker . These
pickers also provide built-in classes for opening a dialog where the user
selects a date and time. Therefore, you can either embed the DatePicker
or TimePicker into your application’s views or use the DialogFragment
classes.

 Creating picker buttons
 The fragment_task_edit.xml file contains two TextViews to help
show the DatePicker and TimePicker (under the EditText definitions
described earlier). You can see these two buttons in Listing 12-1 .

 Figure 12-2:
 Keyboard

customized
for number

entry.

215 Chapter 12: Handling User Input

 You already added these buttons to your layout in Chapter 10 . See that
 chapter for a description of what this code does.

 Date and time pickers
 Every task in your app should have an associated date and time, which can
be used to set reminders for the user at a future date. As noted in the previ-
ous section, you already have two TextViews that represent the task’s date
and time. All that remains is to

 ✓ Show the task’s date and time.

 ✓ Create picker dialogs that display the date and time.

 ✓ Hook up the dialogs to the TaskEditFragment to let the user change
the date and time.

 Showing the task’s date and time
 Open TaskEditFragment and add the lines in bold:

public class TaskEditFragment extends Fragment {
 . . .
 // Constants for saving instance state
 static final String TASK_ID = "taskId";
 static final String TASK_DATE_AND_TIME = "taskDateAndTime"; ➝6

 Listing 12-1: The Date and Time TextViews
 <!-- The time button. -->
 <TextView
 style="@android:style/TextAppearance.Medium"
 android:id="@+id/task_time"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/title"
 android:layout_alignEnd="@id/title"
 android:layout_marginEnd="3dp"/>

 <!-- The date button. -->
 <TextView
 style="@android:style/TextAppearance.Medium"
 android:id="@+id/task_date"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toStartOf="@id/task_time"
 android:layout_alignBottom="@id/task_time"
 android:layout_marginEnd="10dp"/>

216 Part III: Creating a Feature-Rich Application

 // Views
 View rootView;
 EditText titleText;
 EditText notesText;
 ImageView imageView;
 TextView dateButton; ➝13
 TextView timeButton;

 // Some information about this task that we'll store here until we
 // save it to the database
 long taskId;
 Calendar taskDateAndTime; ➝19

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // If we're restoring state from a previous activity, restore the
 // previous date as well
 if (savedInstanceState != null) {
 taskId = savedInstanceState.getLong(TASK_ID);
 taskDateAndTime = ➝29
 (Calendar) savedInstanceState.getSerializable
 (TASK_DATE_AND_TIME);
 }

 // If we didn’t have a previous date, use "now"
 if (taskDateAndTime == null) { ➝35
 taskDateAndTime = Calendar.getInstance();
 }

 . . .
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

 . . .

 // From the layout, get a few views that we're going to work with
 rootView = v.getRootView();
 titleText = (EditText) v.findViewById(R.id.title);
 notesText = (EditText) v.findViewById(R.id.notes);
 imageView = (ImageView) v.findViewById(R.id.image);
 dateButton = (TextView) v.findViewById(R.id.task_date); ➝53
 timeButton = (TextView) v.findViewById(R.id.task_time);

 . . .

217� Chapter 12: Handling User Input

 updateDateAndTimeButtons();	 ➝58

 return v;
 }

 @Override
 public void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 // These two fields may have changed while our activity was
 // running, so make sure we save them to our outState bundle so
 // we can restore them later in onCreate.
 outState.putLong(TASK_ID, taskId);
 outState.putSerializable(TASK_DATE_AND_TIME, taskDateAndTime);	 ➝71
 }

 /**
 * Call this method whenever the task’s date/time has changed and
 * we need to update our date and time buttons.
 */
 private void updateDateAndTimeButtons() {
 // Set the time button text
 // Make sure you import java.text.DateFormat below
 DateFormat timeFormat = � ➝80
 DateFormat.getTimeInstance(DateFormat.SHORT);
 String timeForButton = timeFormat.format(
 taskDateAndTime.getTime());
 timeButton.setText(timeForButton);

 // Set the date button text
 DateFormat dateFormat = DateFormat.getDateInstance();	 ➝87
 String dateForButton = dateFormat.format(
 taskDateAndTime.getTime());
 dateButton.setText(dateForButton);
 }
}

Now if you run the app, you will see that each edit page has a date and time
appear underneath the title. Here’s an explanation of what the additions in
the previous code do:

	 ➝ 6	 Much like you needed to create a constant string to name the
taskId data when it’s saved in onSaveInstanceState, you do
the same here for the date and time information.

	 ➝ 13	 Creates two TextViews, one for the date of the task and one for
the time. You will make each one individually clickable later in the
chapter so that the user can set them.

	 ➝ 19	 The taskDateAndTime field stores both the date and the time
for the task. Remember: Because this is a new field that may be

218 Part III: Creating a Feature-Rich Application

changed, you must remember to save it in onSaveInstanceState
and restore it in onCreate !

 ➝ 29 When the activity is created, check and see if there was already
a date and time saved for it. If there was, then read it out of the
 savedInstanceState bundle and save it to taskDateAndTime .

 ➝ 35 If there wasn’t a previous value set for the date and time, then just
use the current time.

 ➝ 53 Finds the date and time TextViews from the layout.

 ➝ 58 At the end of onCreate , call updateDateAndTimeButtons to
. . . you guessed it, update the date and time buttons. You will
end up calling this method a few times later, whenever the user
changes the values of the date and time.

 ➝ 71 If Android is shutting down this activity and asking you to save your
instance state, then make sure to save the taskDateAndTime to
the outState bundle. Calendar objects can be serialized (stored
as data), so this line uses the putSerializable() method to
save them.

 Find out more information about Java serialization at https://
docs.oracle.com/javase/tutorial/jndi/objects/
serial.html .

 Saving field names in Android
 Android activities and fragments aren’t
like standard Java objects, where you can
store information in a field in the object and
expect it always to be there. Normally in
Java, if a person object is set to the name
 "Michael" , you can expect that name to
always be "Michael" , but surprisingly this
isn’t always the case in Android.

 Unlike in Java, Android can destroy activities
and fragments at any time. These elements can
also be re-created later — and a re-created
activity needs to look indistinguishable from
one that was never destroyed and re-created.
Android reserves the right to destroy objects
when memory is running low, but it retains the
ability to re-create them later, to offer the user
a seamless experience.

 If you store the string "Michael" in a field
named name , that field isn’t saved automati-
cally if the activity or fragment is destroyed
and re-created. You have to save the field
manually, by storing it in a bundle in
 onSaveInstanceState() and restoring
it from the savedInstanceState bundle
in onCreate() .

 Remember: Anytime you add a field to an activity
or a fragment, you must add the appropriate code
to the onSavedInstanceState() and
 onCreate() methods to save it and restore
it — otherwise, your app will behave strangely
in some circumstances but not in others.

https://docs.oracle.com/javase/tutorial/jndi/objects/serial.html

219 Chapter 12: Handling User Input

 You can save all kinds of other types into bundles, such as ints,
longs, strings, parcelables, and other exotic elements, so check
 http://d.android.com/reference/android/os/Bundle.
html to see the full list.

 ➝ 80 Updates the time button text. First, get a Time formatter by calling
 DateFormat.getTimeInstance(DateFormat.SHORT) , which
will return times such as "5:45 PM" in the United States (but dif-
ferent formats in other locales). Then call format on this formatter
to format the taskDateAndTime . Finally, update the timeButton
with the string returned by the formatter.

 ➝ 87 Updates the date button text. This is the same as the code for
the time formatter, but it uses getDateInstance rather than
 getTimeInstance . Because we didn’t specify a type of format to
the getDateInstance call, it will use the default, which evalu-
ates to strings like "Jan 19, 2038" in the United States.

 Creating date and time pickers
 Android has built-in date picker and time picker dialogs that you may use to
let users pick dates and times. They require a little bit of massaging to work
in recent versions of Android, so here is how you use them.

 First, create a file in the com/dummies/tasks/fragment directory named
 DatePickerDialogFragment.java . The DatePickerDialogFragment
will be a reusable dialog fragment that “wraps” a standard Android
 DatePickerDialog .

 In the file, put the following code:

/**
 * A lightweight wrapper for a DatePickerDialog that wraps the dialog
 * in a fragment.
 */
 public class DatePickerDialogFragment extends DialogFragment { ➝5
 static final String YEAR = "year"; ➝6
 static final String MONTH = "month";
 static final String DAY = "day";

 public static DatePickerDialogFragment newInstance(➝10
 Calendar date) {
 DatePickerDialogFragment fragment =
 new DatePickerDialogFragment();

 Bundle args = new Bundle();
 args.putInt(YEAR, date.get(Calendar.YEAR));
 args.putInt(MONTH, date.get(Calendar.MONTH));
 args.putInt(DAY, date.get(Calendar.DAY_OF_MONTH));

http://d.android.com/reference/android/os/Bundle.html

220 Part III: Creating a Feature-Rich Application

 fragment.setArguments(args);

 return fragment;
 }

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {

 OnDateSetListener callback = (OnDateSetListener) ➝27
 getFragmentManager()
 .findFragmentByTag
 (TaskEditFragment
 .DEFAULT_FRAGMENT_TAG);

 Bundle args = getArguments(); ➝33
 return new DatePickerDialog(getActivity(), callback,
 args.getInt(YEAR),
 args.getInt(MONTH),
 args.getInt(DAY));
 }
 }

 Here’s what the code does:

 ➝ 5 Every dialog that you use in your app should extend
 DialogFragment . For more information about
 DialogFragment , visit http://d.android.com/reference/
android/app/DialogFragment.html .

 ➝ 6 The constant strings that will be used in this class to read and
write the year, month, and day in bundles.

 ➝ 10 Creates a newInstance method like you created for
the TaskEditFragment earlier in this chapter. The
 newInstance method knows how to construct an instance
of the date picker for a given date. First, it constructs a new
 DatePickerDialogFragment . Then, it constructs the bundle
of parameters containing the year, month, and day, which the
 DatePickerDialogFragment will use to create a dialog
showing that date.

 ➝ 27 Finds the TaskEditFragment that created this dialog by name.
You’ll use that fragment as the edit callback, so that when the
user chooses a new date in the DatePicker dialog, the dialog
calls back into the edit fragment to set the new date.

 ➝ 33 Constructs a new DatePicker dialog that is hosted by this frag-
ment. It sets its Year, Month, and Day to the values specified in
the args bundle.

http://d.android.com/reference/android/app/DialogFragment.html

221 Chapter 12: Handling User Input

 Next, you do the same thing but for the TimePickerDialogFragment .
Create TimePickerDialogFragment.java in com/dummies/tasks/
fragment , and add the following code:

 /**
 * A lightweight wrapper for a TimePickerDialog that wraps the dialog
 * in a fragment.
 */
 public class TimePickerDialogFragment extends DialogFragment {
 static final String HOUR = "hour";
 static final String MINS = "mins";

 public static TimePickerDialogFragment newInstance(
 Calendar time) {

 TimePickerDialogFragment fragment =
 new TimePickerDialogFragment();

 Bundle args = new Bundle();
 args.putInt(HOUR, time.get(Calendar.HOUR_OF_DAY));
 args.putInt(MINS, time.get(Calendar.MINUTE));
 fragment.setArguments(args);
 return fragment;
 }

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 OnTimeSetListener listener = (OnTimeSetListener)
 getFragmentManager()
 .findFragmentByTag(
 TaskEditFragment
 .DEFAULT_FRAGMENT_TAG);

 Bundle args = getArguments();
 return new TimePickerDialog(getActivity(), listener,
 args.getInt(HOUR),
 args.getInt(MINS), false);
 }
 }

 This code is basically identical to the DatePickerDialogFragment in the
previous listing, but this one is for time rather than for dates.

 Sometimes you may need to use savedInstanceState to restore the state
from previous instances. However, in this case, the dialog already does it for
you, so you can safely ignore savedInstanceState in this method.

222 Part III: Creating a Feature-Rich Application

 Hooking up the date and time pickers to the fragment
 Now modify the TaskEditFragment to open the date and time pickers when
the date or time is clicked.

 Edit TaskEditFragment.java and add the code in bold:

 public class TaskEditFragment extends Fragment {

 . . .

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

 . . .

 updateDateAndTimeButtons();

 // Tell the date and time buttons what to do when we click on
 // them.
 dateButton.setOnClickListener(➝15
 new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 showDatePicker();
 }
 });
 timeButton.setOnClickListener(
 new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 showTimePicker();
 }
 });

 return v;
 }

 /**
 * A helper method to show our Date picker
 */
 private void showDatePicker() {
 // Create a fragment transaction

223 Chapter 12: Handling User Input

 FragmentTransaction ft = getFragmentManager().beginTransaction(); ➝40

 DatePickerDialogFragment newFragment = ➝42
 DatePickerDialogFragment.newInstance(taskDateAndTime);

 newFragment.show(ft, "datePicker"); ➝45
 }

 private void showTimePicker() { ➝48
 // Create a fragment transaction
 FragmentTransaction ft = getFragmentManager().beginTransaction();

 TimePickerDialogFragment fragment = ➝52
 TimePickerDialogFragment.newInstance(taskDateAndTime);

 fragment.show(ft, "timePicker"); ➝55
 }
 }

 This code adds two methods: showDatePicker and showTimePicker .
It also calls those two methods from inside OnClickListeners that are
attached to the date and time text views. Here are some more details:

 ➝ 15 Creates an OnClickListener and attaches it to the dateButton .
When clicked, the OnClickListener will call showDatePicker ,
which is defined on line 40. The same thing is next done for the
 timeButton .

 ➝ 40 The showDatePicker method does three things. First, it begins
a fragment transaction using the FragmentManager , just like you
did earlier in the chapter inside TaskEditActivity . Then . . .

 ➝ 42 . . . it creates the DatePickerDialogFragment and initializes it
with the appropriate values.

 ➝ 45 Show the dialog, and name it datePicker . By naming it, Android
can automatically manage its state for you if it needs to be killed
and re-created.

 ➝ 48 The showTimePicker method does the same thing that show-
DatePicker did, except for times rather than dates.

 ➝ 52 Creates the TimePickerDialogFragment and initializes it with
the appropriate values.

 ➝ 55 Shows the dialog, and names it timePicker . By naming it,
Android can automatically manage its state for you if the dialog
needs to be killed and re-created.

 In theory, you should now be able to run the app and click on a date or time
to see the picker dialogs. However, there’s a bug in the code. The app will

224 Part III: Creating a Feature-Rich Application

crash because the pickers have no way to return the value that the user picks
to the TaskEditFragment . If the user selects a new date or time, how does
the TaskEditFragment know?

 The answer is to have TaskEditFragment implement OnDateSetListener
and OnTimeSetListener .

 Edit TaskEditFragment and make the following changes:

 public class TaskEditFragment extends Fragment
 implements DatePickerDialog.OnDateSetListener,
 TimePickerDialog.OnTimeSetListener
 {
 . . .

 /**
 * This is the method that our DatePicker dialog will call when
 * the user picks a date in the dialog.
 */
 @Override
 public void onDateSet(DatePicker view, int year, int monthOfYear,
 int dayOfMonth) {
 taskDateAndTime.set(Calendar.YEAR, year);
 taskDateAndTime.set(Calendar.MONTH, monthOfYear);
 taskDateAndTime.set(Calendar.DAY_OF_MONTH, dayOfMonth);
 updateDateAndTimeButtons();
 }

 /**
 * This is the method that our TimePicker dialog will call when
 * the user picks a time in the dialog.
 */
 @Override
 public void onTimeSet(TimePicker view, int hour, int minute) {
 taskDateAndTime.set(Calendar.HOUR_OF_DAY, hour);
 taskDateAndTime.set(Calendar.MINUTE, minute);
 updateDateAndTimeButtons();
 }
 }

 These two methods are callbacks. When the user chooses a new date or time
in the picker dialogs, the dialogs call back to the fragment named DEFAULT_
FRAGMENT_TAG (see line 27 of DatePickerDialogFragment), in this case
the TaskEditFragment , and call onDateSet or onTimeSet as appropriate.

 The onDateSet method then sets the year, month, and day of
 taskDateAndTime , and calls updateDateAndTimeButtons . The
onTimeSet method does the same, except for the time.

225 Chapter 12: Handling User Input

 Try running your app! You should now be able to click any date or time,
choose a new date or time, and watch that date and time update when you
return to the TaskEditFragment . You should see something like Figure 12-3 .

 Figure 12-3:
 The Edit

page show-
ing date and

time (left),
the date

picker (mid-
dle), and the

time picker
(right).

 If you leave the TaskEditActivity and return to it later, you may wonder
why the date and time don’t remember the values you set. This is because
you have not yet implemented the database to store all these values. You will
do that in Chapter 13 .

 Creating an Alert Dialog
 From time to time it may be necessary to alert the user to something that has
happened. In the Tasks app, perhaps you want to display a welcome mes-
sage and offer instructions on how to create a task. The Android system has
a framework built around dialogs that provide you with the implementation
you may need.

 Various types of dialogs are available:

 ✓ Alert: Notifies the user of an important occurrence. Also allows you to
set the text value of a button and the action to be performed when it’s
clicked. As a developer, you can provide the AlertDialog with a list
of items to display, from which the user can make a selection. You used

226 Part III: Creating a Feature-Rich Application

an AlertDialog in Chapter 11 to confirm whether the user wanted to
delete a task or not.

 ✓ Custom: A custom dialog created and programmed by you, the master
Android developer. You create a custom dialog class by extending the
 Dialog base class or using custom layout XML files.

 Seeing why you should work with dialogs
 If you’ve never worked with an application that failed to alert you, or warn
you appropriately, consider the example of an email client not notifying you
that you have new email. How annoying would that be? Alerting users to
important issues or choices that need to be made is an integral part of any
user experience.

 This list gives a few examples of using a dialog to inform the user of a mes-
sage or a necessary action:

 ✓ The user is trying to input some data that is invalid.

 ✓ The network has become unavailable.

 ✓ The user needs to select a date or time (as in the Tasks app).

 ✓ The state of the phone is incompatible with the application. (It might
need to have GPS enabled or an SD card added, for example.)

 ✓ The user needs to choose from a list of items.

 Though this list isn’t comprehensive, it gives you an idea into what is possible
with dialogs.

 Choosing the appropriate dialog for a task
 Though you determine which dialog to use for a given scenario, you can ask a
logical series of questions to choose the appropriate one:

1. Does the user need to be able to perform an advanced action in the
dialog?

 An advanced action isn’t supported by the AlertDialog class.

• Yes: Create a custom Dialog class by extending the Dialog
base class or creating one from a custom layout XML file. You
can find more information about custom dialogs at http://

http://developer.android.com/guide/topics/ui/dialogs.html#CustomLayout

227 Chapter 12: Handling User Input

developer.android.com/guide/topics/ui/dialogs.
html#CustomLayout .

• No: Continue to Step 2.

2. Does the user need to answer a question such as “Are you sure?” with
a Yes or No value?

• Yes: Create an AlertDialog and react to the buttons on the
 AlertDialog by using onClickListener() calls.

• No: Continue to Step 3.

3. Does the user need to make a selection from a simple list of items?

• Yes: Create an AlertDialog .

• No: Continue to Step 4.

4. Does the user simply need to be alerted?

• Yes: Create a simple AlertDialog .

• No: You may not need a dialog if you can notify the user another
way.

 Creating your own alert dialog
 At times, you need to notify the user of important information by present-
ing a dialog. Android makes it quite simple with its introduction of the
 AlertDialog.Builder class, which lets you easily create an AlertDialog
with various options and buttons. Your app can react to these button clicks
via the onClickListener() of each button.

 You used the AlertDialog.Builder in Chapter 11 . Listing 12-2 shows
another example of how to create one, this time using a DialogFragment .

 Dialogs should always use DialogFragment in Android apps. Refer to
Chapter 11 for more details.

 Suppose that the user has tapped the Save button in the Tasks application,
and you want to open a window (similar to the one in Figure 12-4) so that the
user can confirm.

 In Listing 12-2 , you create an AlertDialog object using the AlertDialog.
Builder class and then add an AlertDialogFragment (which works simi-
larly to DatePickerDialogFragment and TimePickerDialogFragment).

http://developer.android.com/guide/topics/ui/dialogs.html#CustomLayout

228 Part III: Creating a Feature-Rich Application

 The code is explained in this list:

 ➝ 5 Sets up the AlertDialog.Builder class with the context of the
 AlertDialog.Builder as the current running activity.

 ➝ 6 Specifies the message to show in the middle of the AlertDialog
(as shown in Figure 12-4). The value can be a string or a string
resource.

 Figure 12-4:
 A hypo-
thetical

confirmation
 Alert

Dialog .

 Listing 12-2: Creating an AlertDialogFragment with the AlertDialog.
Builder Class

 public class AlertDialogFragment extends DialogFragment {
 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 AlertDialog.Builder builder
 = new AlertDialog.Builder(getActivity()); ➝5
 builder.setMessage("Are you sure you want to save the task?") ➝6
 .setTitle("Are you sure?") ➝7
 .setCancelable(false) ➝8
 .setPositiveButton("Yes", ➝9
 new DialogInterface.OnClickListener() { ➝10
 public void onClick(DialogInterface dialog, int id) {
 // Perform some action such as saving the item ➝12
 }
 })
 .setNegativeButton("No", new DialogInterface.OnClickListener() ➝15
 public void onClick(DialogInterface dialog, int id) {
 dialog.cancel(); ➝17
 }
 });
 return builder.create(); ➝20
 }
 }

229 Chapter 12: Handling User Input

 ➝ 7 Sets the title of the AlertDialog . The value can be a string or a
string resource.

 ➝ 8 Sets the cancelable attribute to false , requiring the user to
select a button in the AlertDialog . If this flag is set to false ,
the user cannot tap the Back button on the device to exit the
 AlertDialog . Set it to true and the user can tap the Back
button.

 ➝ 9 Specifies the text on the positive button. The user clicks the Yes
button to perform the action indicated on line 10. This value can
be a string or a string resource.

 ➝ 10 A block of code (ending on line 12) that defines the
 onClickListener() for the Yes button. The code on line 12
executes when the button is tapped.

 ➝ 15 Specifies the text on the negative button. This button indicates
that the user doesn’t want to perform the action being requested
via AlertDialog . The text value of this button is set to No. It can
be a string or a string resource.

 ➝ 17 Sets the onClickListener() for the negative button. The lis-
tener provides a reference to the dialog that’s being shown. It’s
called the cancel() method on the Dialog object to close the
dialog when the user clicks No on the AlertDialog .

 ➝ 20 Notifies Android to create the AlertDialog via the create()
method.

 To show the dialog, you start a fragment transaction in the usual manner:

 FragmentTransaction ft = getFragmentManager().beginTransaction();
 DialogFragment newFragment = new AlertDialogFragment();
 newFragment.show(ft, "alertDialog");

 Creating a dialog with the AlertDialog.Builder class is easier than
having to derive your own Dialog class. If possible, create your dialog with
the AlertDialog.Builder class because it gives your application a consis-
tent user experience that’s familiar to most Android users.

 When the user taps the Save button (or whatever button the code is attached
to), an AlertDialog opens so that the user can confirm saving the task.
This data most likely is stored in a database, as covered in Chapter 13 .

 You can find helpful examples of using other options on the Dialog class at
 http://d.android.com/guide/topics/ui/dialogs.html .

230 Part III: Creating a Feature-Rich Application

 Validating Input
 What happens when the user enters invalid text or no text? Input validation
now enters the picture.

 Input validation verifies the input before the save takes place. If a user enters
no text for the title or the message and attempts to save, should she be
allowed to? Of course not.

 The method in which you provide validation to the user is up to you. Here
are some common methods:

 ✓ EditText.setError() : If you detect that the user has tried to enter
invalid text in a field, simply call setError() and pass the error mes-
sage. Android then decorates EditText with an error icon and displays
an error message. The message stays onscreen until the user changes
the value of the field or until you call setError(null) .

 ✓ TextWatcher : Implement a TextWatcher on the EditText view.
This class provides callbacks to you every time the text changes in the
 EditText view. Therefore, you can inspect the text on each keystroke.

 ✓ On Save : When the user attempts to save a form, inspect all the form
fields at that time and inform the user of any issues that were found.

 ✓ onFocusChanged() : Inspect the values of the form when the onFocus-
Changed() event is called — which is called when the view has focus
and when it loses focus. This is usually a good place to set up validation.

 The Task application provides no input validation. However, you can add
validation via one or more of the methods described.

 Toasting the user
 The most common way to inform the user of a potential problem, such as
an error in input value, is to display a Toast message. This type of message
appears onscreen for only a few seconds by default.

 Providing a Toast message is as simple as implementing the following code,
where you inform the user of the input error:

 Toast.makeText(getActivity(), "Title must be filled in", Toast.LENGTH_SHORT).
show();

231 Chapter 12: Handling User Input

 You might show this message when the user fails to enter a title in the title
field and then clicks the Save button.

 The only problem with a Toast message is that it’s short-lived by default.
A user who happens to glance away at the wrong time will likely miss seeing
it. You can configure your Toast messages to appear longer by using
 Toast.LENGTH_LONG rather than Toast.LENGTH_SHORT , but remember
that it still disappears after a slightly longer time. Use a dialog rather than a
 Toast for critical messages that you need to be sure a user sees.

 Using other validation techniques
 A Toast message isn’t the only way to inform users of a problem with their
input. A few other popular validation techniques are described in this list:

 ✓ AlertDialog : Create an instance of an AlertDialog that informs the
user of errors. This method ensures that the user sees the error mes-
sage because the alert must be either canceled or accepted.

 ✓ Input-field highlighting: If the field is invalid, the background color of
the input field (the EditText view) can change to indicate that the
value is incorrect.

 ✓ Custom validation: If you’re feeling adventurous, you can create a
custom validation library to handle validations of all sorts. It might high-
light the field and draw small views with arrows pointing to the error,
for example, similar to the Google validation of its sign-in window when
you log on to a device for the first time.

 You can use these common methods to display input validation information, or
you can dream up new ways to inform users of errors. For example, Chapter 9
mentions the NotificationManager , which you can use to inform users of a
problem with a background service in the status bar.

 Getting Persistent
with Data Storage

 In This Chapter
 ▶ Discovering data storage

 ▶ Creating an SQLite database

 ▶ Querying your database

 ▶ Using loaders and adapters

 In certain types of applications, Android requires application developers
to use data persistence, where information about a user’s preferences,

such as favorite background colors or radio stations, is saved on the device
for reuse later, after the device is turned off and then on again. For example,
the Tasks application wouldn’t be useful if it didn’t save tasks, would it?
Thankfully, the Android platform provides a robust set of tools that you can
use to store user data.

 This chapter delves deeply into creating and updating an SQLite database and
producing a ContentProvider to access it. You need to be familiar with a
certain level of database theory to tackle the data storage tasks in this chapter.

 If you’re unfamiliar with SQL (Structured Query Language) or the SQL data-
base, see the SQLite website at www.sqlite.org for more information.

 This chapter is code intensive — if you start feeling lost, you can download
the completed application source code from this book’s website.

 Finding Places to Put Data
 Depending on the requirements of your application, you may need to store
data in a variety of places. For example, if an application interacts with music

Chapter 13

234 Part III: Creating a Feature-Rich Application

files and a user wants to play them in more than one music program, you have
to store them in a location where all applications can access them. An appli-
cation that needs to store sensitive data, such as encrypted usernames and
password details, shouldn’t share data — placing it in a secure, local storage
environment is the best strategy. Regardless of your situation, Android
 provides various options for storing data.

 Viewing your storage options
 The Android ecosystem provides various locations where data can be
 persisted:

 ✓ Shared preferences: Private data stored in key-value pairs. (See
Chapter 15 to find out how to handle shared preferences.)

 ✓ Internal storage: A location for saving files on the device. Files stored
in internal storage are private to your application by default, and other
applications cannot access them. (Neither can the user, except by using
your application.) When the application is uninstalled, the private files
are deleted as well.

 ✓ Local cache: The internal data directory for caching data rather than
storing it persistently. Cached files may be deleted at any time. You use
the getCacheDir() method, available on the Activity or Context
objects in Android.

 If you store data in an internal data directory and the internal storage
space begins to run low, Android may delete files to reclaim space. Don’t
rely on Android to delete your files for you though! You should delete
your cache files yourself to stay within a reasonable limit (for example,
around 1MB) of space consumed in the cache directory.

 ✓ External storage: Every Android device supports shared external stor-
age for files — either removable storage, such as a Secure Digital card
(SD card) or non-removable storage. Files saved to external storage are
 public (any person or application can alter them), and no level of secu-
rity is enforced. Users can modify files by either using a file manager
application or connecting the device to a computer via a USB cable and
mounting the device as external storage. Before you work with exter-
nal storage, check the current state of the external storage with the
 Environment object, using a call to getExternalStorageState()
to check whether the media is available.

235 Chapter 13: Getting Persistent with Data Storage

 The main method is a call on the Context object — getExternal
FilesDir() . This call takes a string parameter as a key to help define
the type of media you’re saving, such as ringtones, music, or photos.
For more information, view the external data storage examples and
documents at http://d.android.com/guide/topics/data/
data-storage.html#filesExternal .

 ✓ SQLite database: A lightweight SQL database implementation that’s
available across various platforms (including Android, iPhone, Windows,
Linux, and Mac) and fully supported by Android. You can create tables
and perform SQL queries against the tables accordingly. You implement
an SQLite database in this chapter to handle the persistence of the tasks
in the Tasks application.

 ✓ Content provider: A “wrapper” around another storage mechanism. A
content provider is used by an app to read and write application data
that can be stored in preferences, files, or SQLite databases, for example.
 ContentProviders are smart in that they also keep track of when
your data is modified, and automatically notify any listeners to changes.
In this chapter, you will implement a ContentProvider to wrap your
database access.

 ✓ Network connection: (Also known as remote storage.) Any remote data
source that you have access to. For example, because Flickr exposes
an API that allows you to store images on its servers, your application
might work with Flickr to store images. If your application works with a
popular tool on the Internet (such as Twitter, Facebook, or Basecamp),
your app might send information via HTTP — or any other protocol you
deem necessary — to third-party APIs to store the data.

 ✓ Storage Access Framework: The SAF makes it simple for users to
browse and open documents, images, and other files across all their
preferred document storage providers. A standard, easy-to-use UI lets
users browse files and access recents in a consistent way across apps
and providers. For example, you can use the SAF to provide access to a
remote cloud storage provider for documents.

 Choosing a storage option
 The various data storage locations offer quite the palette of options. However,
you have to figure out which one to use, and you may even want to use
 multiple storage mechanisms.

http://d.android.com/guide/topics/data/data-storage.html#filesExternal

236 Part III: Creating a Feature-Rich Application

 Suppose that your application communicates with a third-party remote
API such as Twitter, and network communication is slow and less than
100 percent reliable. You may want to retain a local copy of all data since
the last update from the server, to allow the application to remain usable
(in some fashion) until the next update. When you store the data in a local
copy of an SQLite database and the user initiates an update, the new updates
refresh the SQLite database with the new data.

 If your application relies solely on network communication for information
retrieval and storage, use the SQLite database (or any other storage mecha-
nism) to make the application remain usable when the user cannot connect
to a network and must work offline — a common occurrence. If your applica-
tion doesn’t function when a network connection is unavailable, you’ll likely
receive negative reviews in the Google Play Store — as well as feature
requests to make your app work offline. This strategy introduces quite a bit
of extra work into the application development process, but it’s worth your
time tenfold in user experience.

 Understanding How the SQLite
ContentProvider Works

 The two fragments in the Tasks application need to perform various duties to
operate. TaskEditFragment needs to complete these steps:

1. Create a new record.

2. Read a record so that it can display the details for editing.

3. Update the existing record.

 The TaskListFragment needs to perform these duties:

1. Read all tasks to show them onscreen.

2. Delete a task by responding to the click event from the context menu
after a user has long-pressed an item.

 To work with an SQLite database, you communicate with the database via a
 ContentProvider . Programmers commonly remove as much of the data-
base communication as possible from the Activity and Fragment objects.
The database mechanisms are placed into a ContentProvider to help
 separate the application into layers of functionality. Therefore, if you need to
alter code that affects the database, you know that you need to change the
code in only one location to do so.

237 Chapter 13: Getting Persistent with Data Storage

 Creating Your Application’s
SQLite Database

 The first step to creating a new SQLite database ContentProvider is to
create the SQLite database that it will use.

 Visualizing the SQL table
 The table in SQL is what holds the data you manage. Visualizing a table in
SQLite is similar to looking at a spreadsheet: Each row consists of data, and
each column represents the data inside the row. Listing 13-1 defines column
names for the database. These column names equate to the header values in
a spreadsheet, as shown in Figure 13-1 . Each row contains a value for each
column, which is how data is stored in SQLite.

 The SQL script to create a table like the one in the previous figure is shown in
Listing 13-1 :

 Figure 13-1:
 Visualizing

data in
the Tasks

 application.

 Listing 13-1: Creating an SQL Database Table
 create table tasks (➝1
 _id integer primary key autoincrement, ➝2
 title text not null, ➝3
 notes text not null, ➝4
 task_date_time integer not null); ➝5

 Getting into the details about SQL is beyond the scope of the book, but here’s
a brief synopsis about what this SQL script does:

 ➝ 1 Creates a table named tasks .

 ➝ 2 Adds a primary key to that table named _id . Android assumes
that the id field for every table begins with an underscore.

238 Part III: Creating a Feature-Rich Application �

	 ➝ 3	 Adds a non‐null field named title to the table. This field can be
any length.

	 ➝ 4	 Adds a non‐null notes field.

	 ➝ 5	 Adds a date/time field to the table. In this table, the date/time is
stored as an integer.

For more information on dates and times in SQLite, visit http://www.
sqlite.org/datatype3.html.

Creating the database table
Android apps create SQLite databases using an SQLiteOpenHelper. Because
this database is going to be used exclusively from a ContentProvider,
you’re going to create an SQLiteOpenHelper class nested inside a
ContentProvider.

Create a new class named TaskProvider in the directory com/dummies/
tasks/provider. Add the following code to it:

public class TaskProvider extends ContentProvider {	 ➝1

 // Database Columns	 ➝3
 public static final String COLUMN_TASKID = "_id";
 public static final String COLUMN_DATE_TIME = "task_date_time";
 public static final String COLUMN_NOTES = "notes";
 public static final String COLUMN_TITLE = "title";

 // Database Related Constants	 ➝9
 private static final int DATABASE_VERSION = 1;	 ➝10
 private static final String DATABASE_NAME = "data";	 ➝11
 private static final String DATABASE_TABLE = "tasks";	 ➝12

 // The database itself
 SQLiteDatabase db;	 ➝15

 @Override		 ➝18
 public boolean onCreate() {
 // Grab a connection to our database
 db = new DatabaseHelper(getContext()).getWritableDatabase();	 ➝21
 return true;
 }

 /**
 * A helper class which knows how to create and update our database.
 */
 protected static class DatabaseHelper extends SQLiteOpenHelper {

www.sqlite.org/datatype3.html

239 Chapter 13: Getting Persistent with Data Storage

 static final String DATABASE_CREATE = ➝30
 "create table " + DATABASE_TABLE + " (" +
 COLUMN_TASKID + " integer primary key autoincrement, " +
 COLUMN_TITLE + " text not null, " +
 COLUMN_NOTES + " text not null, " +
 COLUMN_DATE_TIME + " integer not null);";

 DatabaseHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION); ➝39
 }

 @Override ➝42
 public void onCreate(SQLiteDatabase db) {
 db.execSQL(DATABASE_CREATE);
 }

 @Override ➝48
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 throw new UnsupportedOperationException(); ➝51
 }
 }
 }

 The numbered lines are described in this list:

 ➝ 1 A ContentProvider that knows how to read and write
tasks from your tasks database. For now, it’s practically
empty. The only thing it does is create a database using a
 SQLiteOpenHelper .

 ➝ 3 The names of the various columns in the Task table. These
 correspond to the columns in Listing 13-1 and Figure 13-1 . These
column names are going to be needed outside of this class, so
make them public.

 ➝ 9 Various database-related constants. These constants will not be
needed outside this class, so they are private.

 ➝ 10 The version number for this database. Because it’s the first ver-
sion, give it a version of 1 . Whenever you change the database,
increment this number by one so that Android knows that the
database has changed. This allows you to know whether you need
to upgrade the database schema in onUpgrade on line 48 (an
advanced topic outside of the scope of this book).

 ➝ 11 The database name. This is the name of the file on the file system.

 ➝ 12 The name of the database table. This table is named "tasks" .

240 Part III: Creating a Feature-Rich Application

 ➝ 15 The database object that will be created in onCreate using
your SQLiteOpenHelper below. This is the object that your
 ContentProvider will use to read and write from your database.

 ➝ 18 This method is called when the ContentProvider is created.
This is usually done once on app startup.

 ➝ 21 Creates the database object by using a DatabaseHelper . First
you create a new DatabaseHelper , passing in the current con-
text. Then, you call getWritableDatabase() . Some apps might
want to use getReadableDatabase() instead, but because this
app is reading and writing, it needs a writable database.

 ➝ 30 The database creation script from Listing 13-1 .

 ➝ 39 The constructor for the database helper. It must call the super’s
constructor, and pass in the current context, the database name,
an optional CursorFactory for advanced usages, and the
 version of the database.

 ➝ 42 This method is called when the app is first installed and no data-
base has yet been created. This is where the magic happens and
your database creation SQL script is executed.

 ➝ 48 This method will be called in the future when version 2.0 of the
Tasks app is released. At that point, you’ll need to upgrade the
database from version 1.0 to version 2.0. For now, there’s nothing
you need to do here.

 ➝ 51 Because this method will never be called (because there was
no version 0 of the database before version 1), just throw an
 UnsupportedOperationException here. You will need to
change this code before you release version 2 of the database.

 Upgrading your database
 Suppose that you release your application and
10,000 users install it and are using it — and they
love it! Some even send you feature requests,
so you implement one that requires a change
in the database schema. You then perform SQL
 ALTER statements inside the onUpgrade()
call to update your database. If you were lazy,

you could upgrade the database by “dropping”
the existing one and then creating a new one.
But you don’t want to do this — dropping a
database deletes all the user’s data. Imagine
updating your favorite Tasks application, only
to see that the upgrade has erased all preexist-
ing tasks (a major bug).

241 Chapter 13: Getting Persistent with Data Storage

 Using ContentProvider URIs
 Now that you’ve created the basic SQLite table, you need to start
 providing all the methods you’ll need to read and write from that table
using your ContentProvider . But first, you need to understand how
 ContentProviders use URIs.

 An Android ContentProvider uses URIs to identify data. Typically, you can
use a URI to identify a specific piece of data, such as a single task, or all the
tasks in your database. If you store other types of data there, you can use
URIs for them, too.

 In your application, you use two kinds of URIs — content://com.dummies.
tasks.provider.TaskProvider/task to retrieve a list of all tasks
in your database, or content://com.dummies.tasks.provider.
TaskProvider/task/9 to retrieve a specific task from the database (in this
case the task with the ID of 9).

 These ContentProvider URIs are undoubtedly similar to the URIs you’re
already familiar with. Their main differences are described in this list:

 ✓ content:// : A ContentProvider begins with content:// rather
than with http:// .

 ✓ com.dummies.tasks.provider.TaskProvider : The second part
of the URI identifies the authority (the TaskProvider) of the content.
Though this string can be virtually anything, convention dictates using
the fully qualified class name of your ContentProvider .

 ✓ task : The third part of the URI identifies the path — in this case, the
type of data you’re looking up. This string identifies which table in the
database to read. If the application stores multiple types in the database
(say, a list of users in addition to a list of tasks), a second type of path
might be named user , for example.

 ✓ 9 : In the first URI, the path ends with task . However, in the second URI,
the path continues to include the specific ID of the task being requested.

 Now you have to add the code to support these URIs in your
 ContentProvider . Open TaskProvider and add the following lines
to the class:

 // Content Provider Uri and Authority
 public static final String AUTHORITY
 = "com.dummies.tasks.provider.TaskProvider"; ➝3
 public static final Uri CONTENT_URI
 = Uri.parse("content://" + AUTHORITY + "/task"); ➝5

242 Part III: Creating a Feature-Rich Application

 // MIME types used for listing tasks or looking up a single
 // task
 private static final String TASKS_MIME_TYPE
 = ContentResolver.CURSOR_DIR_BASE_TYPE
 + "/vnd.com.dummies.tasks.tasks"; ➝11
 private static final String TASK_MIME_TYPE
 = ContentResolver.CURSOR_ITEM_BASE_TYPE
 + "/vnd.com.dummies.tasks.task";
 // UriMatcher stuff
 private static final int LIST_TASK = 0; ➝17
 private static final int ITEM_TASK = 1;
 private static final UriMatcher URI_MATCHER = buildUriMatcher(); ➝19

 /**
 * Builds up a UriMatcher for search suggestion and shortcut refresh
 * queries.
 */
 private static UriMatcher buildUriMatcher() {
 UriMatcher matcher = new UriMatcher(UriMatcher.NO_MATCH); ➝26
 matcher.addURI(AUTHORITY, "task", LIST_TASK); ➝27
 matcher.addURI(AUTHORITY, "task/#", ITEM_TASK); ➝28
 return matcher;
 }

 /**
 * This method is required in order to query the supported types.
 */
 @Override
 public String getType(Uri uri) {
 switch (URI_MATCHER.match(uri)) { ➝37
 case LIST_TASK:
 return TASKS_MIME_TYPE;
 case ITEM_TASK:
 return TASK_MIME_TYPE;
 default:
 throw new IllegalArgumentException("Unknown Uri: " + uri);
 }
 }

 This chunk of code may seem intimidating, but it consists mostly of constants
with one useful method (getType()). Here’s how the numbered lines work:

 ➝ 3 The authority for the ContentProvider — by convention, the
same as the fully qualified class name. This value must match the
value you will add to your AndroidManifest.xml file for the
provider authorities.

 ➝ 5 The base URI for the ContentProvider . Every time your applica-
tion asks for data for this URI, Android routes the request to this
 ContentProvider .

243 Chapter 13: Getting Persistent with Data Storage

 The ContentProvider supports two types of URIs: one for
 listing all tasks and one for listing a specific task.

 The first type of URI is the CONTENT_URI , and the second one is
the CONTENT_URI with the task ID appended to the end.

 ➝ 11 Because the ContentProvider supports two types of data, it
defines two types (or MIME types) for this data. MIME types are
simply strings commonly used on the web to identify data types.
For example, web HTML content typically has a MIME type of
 text/html , and audio MP3 files have audio/mpeg3 . Because the
tasks are of no known standard type, you can make up MIME type
strings as long as you follow Android and MIME conventions.

 The list MIME type begins with ContentResolver.CURSOR_
DIR_BASE_TYPE , and the individual task MIME type begins with
 ContentResolver.CURSOR_ITEM_BASE_TYPE . DIR represents
the list, and ITEM represents the item — simple enough.

 The subtype (which follows the /) must begin with vnd . The
subtype is followed by the fully qualified class name and the type
of data — in this case, com.dummies.tasks and task . Visit
 http://developer.android.com/reference/android/
content/ContentResolver.html for more information about
the Android conventions for MIME types.

 You use "task" singular almost everywhere in the
 ContentProvider . The only places where it is plural is in the
MIME type for lists, in the name of the database file, and when
referring to the name of the app. Everywhere else it is singular.

 ➝ 17 Uses another constant to identify list types versus item types,
which are ints .

 ➝ 19 The UriMatcher is used to determine the URI type: list or item.
You build a UriMatcher using the method named
 buildUriMatcher() on line 25.

 ➝ 26 Creates the UriMatcher , which can indicate whether a given URI
is the list type or item type. The UriMatcher.NO_MATCH param-
eter tells the application which default value to return for a match.

 ➝ 27 Defines the list type. Any URI that uses the com.dummies.
tasks.provider.TaskProvider authority and has a path
named "task" returns the value LIST_TASK .

 ➝ 28 Defines the item type. Any URI that uses the com.dummies.
tasks.TaskProvider authority and has a path that looks like
 task/# (where # is a number) returns the value
 ITEM_TASK .

http://developer.android.com/reference/android/content/ContentResolver.html

244 Part III: Creating a Feature-Rich Application

 ➝ 37 Uses the UriMatcher on line 19 to determine which MIME type to
return. If the URI is a list URI, it returns TASKS_MIME_TYPE . If it’s
an item URI, it returns TASK_MIME_TYPE .

 Before you can use the TaskProvider , make sure that it’s listed in the
 AndroidManifest.xml file, by adding this code before the
 </application> tag:

 <provider
 android:name=".provider.TaskProvider"
 android:authorities="com.dummies.tasks.provider.TaskProvider"
 android:exported="false" />

 It tells Android that a ContentProvider named TaskProvider will
handle URIs that use the specific authority of com.dummies.tasks.
TaskProvider . It also indicates that the data in the provider is not
exported to other apps on the user’s phone. In general, you should set
 exported="false" unless you want to make your provider available to
other apps.

 There are two main times when you need a ContentProvider instead of
just using a database directly. The first is when you want to export your
 content to other apps. The Android Calendar app allows you to browse
your calendar from other apps using this mechanism. The second case is
when you need to use a CursorLoader , which you will use later in this
chapter.

 Dealing with CRUD
 Your ContentProvider needs to be able to deal with CRUD. Specifically, it
needs to handle the following operations:

 ✓ Create

 ✓ Read

 ✓ Update

 ✓ Delete

 To do this, you must add the necessary methods to support these four
 operations to the TaskProvider . I’ll tackle these slightly out of order.

245 Chapter 13: Getting Persistent with Data Storage

 Create
 Adding a new item to the database is easy. Add the following method to your
 TaskProvider :

 /**
 * This method is called when someone wants to insert something
 * into our content provider.
 */
 @Override
 public Uri insert(Uri uri, ContentValues values) { ➝6
 // you can't choose your own task id
 if(values.containsKey(COLUMN_TASKID))
 throw new UnsupportedOperationException(); ➝9

 long id = db.insertOrThrow(DATABASE_TABLE, null,
 values); ➝12
 getContext().getContentResolver().notifyChange(uri, null); ➝13
 return ContentUris.withAppendedId(uri, id); ➝14
 }

 Here’s what the insert method is doing:

 ➝ 6 The insert method takes two parameters. The first is the URI
that identifies which table to insert into, which will always be
 CONTENT_URI for this ContentProvider . The second parameter
is a hashmap with keys and values that represent the data being
inserted into the database. Typically, this would include the task’s
title and notes.

 ➝ 9 When you insert something into the database, the database
creates a new row and returns the ID to you. Because of this, it
doesn’t make sense to allow you to specify a row id when you
insert into the db . Doing so is an error, so throw an exception.

 ➝ 12 Calls insertOrThrow on the database object to insert the
value. As the name implies, this method throws an exception
if there’s any problem inserting into the database. Typically,
this would only happen if the user is running out of space on
his or her phone. Because this is fairly rare, you do not need
to add any explicit exception handling to catch this case. The
 insertOrThrow method returns the ID of the task that was
added to the db .

246 Part III: Creating a Feature-Rich Application

 ➝ 13 As mentioned before, one of the main responsibilities of a
 ContentProvider is to notify listeners of changes to their
data. If a list page in your app is watching the tasks table, and
the edit page adds a new item to the table, the list page needs
to be notified of the change so that it can be refreshed. This is
done on this line by calling notifyChange() on the context’s
 ContentResolver . The notifyChange() method takes the
 uri of the content that has changed. The second parameter of
 notifyChange() can be ignored.

 ➝ 14 Returns the URI for the newly added task. To do this, take the URI
and append the new ID using ContentUris.withAppendedId() .

 Update
 Editing (also known as updating) a task in the database is very similar to
 creating a new one. Add the following method to your TaskProvider :

 /**
 * This method is called when someone wants to update something
 * in our content provider.
 */
 @Override
 public int update(Uri uri, ContentValues values, String ignored1,
 String[] ignored2) { ➝7
 // you can't change a task id
 if(values.containsKey(COLUMN_TASKID))
 throw new UnsupportedOperationException(); ➝10

 int count = db.update(➝12
 DATABASE_TABLE,
 values,
 COLUMN_TASKID + "=?", ➝15
 new String[]{Long.toString(ContentUris.parseId(uri))}); ➝16

 if (count > 0)
 getContext().getContentResolver().notifyChange(uri, null); ➝19

 return count; ➝21
 }

247 Chapter 13: Getting Persistent with Data Storage

 Here’s a description of what this listing is doing:

 ➝ 7 The update method takes four parameters. The first is the URI,
which is the same URI as the insert method, except this URI will
also have the ID of the task to be edited appended to the end. For
example, the URI might be content://com.dummies.tasks.
provider.TaskProvider/task/8 to edit the eighth task in the
 db . The second parameter is the values to be set for that task.
Typically this would include the title and/or the notes. The third
and fourth parameters are SQL selection arguments for advanced
usages and can be ignored.

 ➝ 10 Just like in the insert method, it is illegal to try to change the ID
of a given task, so throw an exception if anyone tries.

 ➝ 12 Calls the update() method on the db object. Much like in the
call to insertOrThrow() in the previous section, the first two
parameters to the update call are the table to be edited and the
values to be set. The next parameters, however, are different.

 ➝ 15 Specifies the WHERE clause to the SQL query. In this case, the
 WHERE clause will be "_id=?" , indicating that you want to update
the row that has an _id of "?" . The "?" will be replaced by the
value on line 16.

 ➝ 16 Computes the id of the task to be edited. This is done by pars-
ing it from the URI using ContentUris.parseId() , converting
the resulting long into a String , and then putting that String
into an array of Strings to be passed as the whereArgs for the
update call. Each "?" in the where clause will be replaced by the
respective entry from the String array, so there should always
be exactly as many question marks in the where clause as there
are items in the String array.

 The lazy or enterprising among you might wonder, why do I need
to use a bunch of question marks and String arrays? Can’t I just
make a WHERE clause that says "_id=10" and skip the whole
question mark business entirely? Don’t do it! Using a question
mark is a security practice that can prevent you from getting hit
from SQL injection attacks. To learn more about SQL injection,
visit http://en.wikipedia.org/wiki/SQL_injection .

 ➝ 19 If anything in the table was changed, notify any listeners.

 ➝ 21 Returns the count of items update. It should only ever be zero
or one.

248 Part III: Creating a Feature-Rich Application

 Delete
 The delete method is even easier to implement than the update method.

 /**
 * This method is called when someone wants to delete something
 * from our content provider.
 */
 @Override
 public int delete(Uri uri, String ignored1, String[] ignored2) { ➝6
 int count = db.delete(➝7
 DATABASE_TABLE,
 COLUMN_TASKID + "=?",
 new String[]{Long.toString(ContentUris.parseId(uri))});

 if (count > 0)
 getContext().getContentResolver().notifyChange(uri, null); ➝13

 return count;
 }

 By now, most of this should be familiar to you. However, there are some
 differences:

 ➝ 6 As was the case with the update method, the last two arguments
(the selection and the selectionArgs) can be ignored for
 delete .

 ➝ 7 Calls the delete method, and passes in the table name, the
 where clause for the _id , and the _id .

 ➝ 13 If anything was deleted, notify any listeners. Then return the
count of rows that were deleted (should be zero or one).

 Read
 Were insert , update , and delete too easy for you? Are you ready for a
challenge? Well, let’s give you something a little trickier. Here’s how you
implement the query (also known as Read) method:

 /**
 * This method is called when someone wants to read something from
 * our content provider. We'll turn around and ask our database
 * for the information, and then return it in a Cursor.
 */
 @Override
 public Cursor query(Uri uri, String[] ignored1, String selection, ➝7
 String[] selectionArgs, String sortOrder) {

249 Chapter 13: Getting Persistent with Data Storage

 String[] projection = new String[]{ ➝10
 COLUMN_TASKID,
 COLUMN_TITLE,
 COLUMN_NOTES,
 COLUMN_DATE_TIME};

 Cursor c;
 switch (URI_MATCHER.match(uri)) { ➝17

 case LIST_TASK: ➝19
 c = db.query(DATABASE_TABLE, ➝20
 projection, selection,
 selectionArgs, null, null, sortOrder);
 break;

 case ITEM_TASK: ➝25
 c = db.query(DATABASE_TABLE, projection, ➝26
 COLUMN_TASKID + "=?",
 new String[]{Long.toString(ContentUris.parseId
 (uri))},
 null, null, null, null);
 if (c.getCount() > 0) {
 c.moveToFirst(); ➝32
 }
 break;
 default:
 throw new IllegalArgumentException("Unknown Uri: " + uri); ➝36
 }

 c.setNotificationUri(getContext().getContentResolver(), uri); ➝39
 return c;
 }

 Okay, that wasn’t so bad, but it still warrants some explanation:

 ➝7 The query method takes a URI that represents the content to be
queried. The selection parameter specifies an optional where
clause (such as title=?), and the selectionArgs parameter is
an array of strings that fill in any question marks in that selection
parameter. The sortOrder parameter indicates how the results
should be sorted.

 ➝10 Creates a list of column names to represent the data and the order
of the data that will be returned. This is called a projection to
people who hold their pinkies up when they drink tea.

 ➝17 Uses the UriMatcher to see what kind of query you have and
 formats the database query accordingly.

 ➝19 You are asked to return a list of tasks.

250 Part III: Creating a Feature-Rich Application

 ➝20 Queries the database table named "tasks" with the projection
specified on line 10. The selection parameter indicates which
tasks will be selected. If no selection is specified, this returns ALL
of the rows in this table. The result is an SQL cursor that contains
each of the columns specified in the projection.

 ➝ 25 You are asked to return a specific task.

 ➝ 26 Unlike line 20, line 26 is about querying a single specific task. To
do that, you construct a where clause with an _id specified in
the where args, exactly like you did for the update and delete
methods. The other parameters of the db.query method can be
ignored.

 ➝ 32 If the query returned any results (for example, getCount() is
larger than zero), then move the cursor to the first item in the list.

 ➝ 36 If the URI wasn’t a list URI and it wasn’t an item URI, then some-
thing went wrong, so throw an error.

 ➝ 39 Sets the notification URI for this cursor. This URI must agree with
the URIs you used in insert , update , and delete . The loader
(explained later in this chapter) uses this URI to watch for any
changes to the data; and if the data changes, the loader automati-
cally refreshes the UI.

 Your ContentProvider is now complete! The next step is to use it in
your app.

 Implementing the Save Button
 There are two fundamental things your ContentProvider is used for.
The first is reading from your database, and the second is writing to your
 database. Let’s look at the simpler of the two first, which is writing to your
database.

 Open TaskEditFragment.java and add the following method:

 private void save() {
 // Put all the values the user entered into a
 // ContentValues object
 String title = titleText.getText().toString(); ➝4
 ContentValues values = new ContentValues();
 values.put(TaskProvider.COLUMN_TITLE, title);
 values.put(TaskProvider.COLUMN_NOTES,
 notesText.getText().toString());

251 Chapter 13: Getting Persistent with Data Storage

 values.put(TaskProvider.COLUMN_DATE_TIME,
 taskDateAndTime.getTimeInMillis());

 // taskId==0 when we create a new task,
 // otherwise it's the id of the task being edited.
 if (taskId == 0) {

 // Create the new task and set taskId to the id of
 // the new task.
 Uri itemUri = getActivity().getContentResolver()
 .insert(TaskProvider.CONTENT_URI, values); ➝19
 taskId = ContentUris.parseId(itemUri); ➝20

 } else {

 // Update the existing task
 Uri uri = ContentUris.withAppendedId(TaskProvider.CONTENT_URI,
 taskId); ➝26
 int count = getActivity().getContentResolver().update(
 uri, values, null, null); ➝28

 // If somehow we didn't edit exactly one task,
 // throw an error
 if (count != 1) ➝32
 throw new IllegalStateException(
 "Unable to update " + taskId);

 }

 Toast.makeText(➝38
 getActivity(),
 getString(R.string.task_saved_message),
 Toast.LENGTH_SHORT).show();

 }

 At a high level, the save method is doing three things:

 ✓ It’s putting all the values that the user entered into a ContentValues
key-value map.

 ✓ It’s using a ContentResolver to insert or update those values,
depending on whether the taskId is zero (to insert a new task) or
non-zero (to edit an existing task). Most of the time, you don’t access a
 ContentProvider directly. Instead, you use a ContentResolver to
resolve an operation on a ContentProvider by using a URI.

 ✓ It’s messaging the user that the save was successful using a Toast .

252 Part III: Creating a Feature-Rich Application

 Here is the code in more detail:

 ➝ 4 Creates a new ContentValues map, then takes all the values that
the user entered into the fragment (such as title, notes, date, and
time), and puts them into the ContentValues instance. Note that
you do not put the task ID into the ContentValues because it’s
illegal to try to change it.

 ➝ 19 This line gets a ContentResolver from the activity. It then
calls insert() on that ContentResolver and specifies the
URI of the task table and all the values that you want to insert.
The ContentResolver will inspect that URI, figure out which
 ContentProvider is responsible for that URI, and ultimately
call into your TaskProvider.insert method to insert the data
for you.

 ➝ 20 The call to insert() returns the URI of the data that was
inserted, so parse out the ID of the newly inserted task and update
the taskId field with the new value. That way, if the fragment
does anything else later, the taskId will be set correctly and
everything will work as it should. (In this case, it’s not strictly
 necessary because the fragment finishes itself as soon as the save
is complete, but it’s usually better to leave yourself in a clean
state than to open yourself up to future bugs.)

 ➝ 26 In this section, you are updating an existing task rather than
inserting a new one, so figure out what the URI is for that task
by appending it to the CONTENT_URI using ContentUris.
withAppendedId .

 ➝ 28 Edit the task by giving the task’s URI and new values to the
 ContentResolver , like you did on line 19.

 ➝ 32 If everything went well, then exactly one task should have been
edited. If somehow more or less than one task was edited, throw
an error.

 ➝ 38 Notifies the user of the change using a Toast .

 You added a new string, so add it to strings.xml :

 <string name="task_saved_message">Task has been saved</string>

 Now that you have a save() method, you need to call it. Uncomment the line
you added in Chapter 11 in TaskEditFragment.onOptionsItemSelected
that called save :

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch(item.getItemId()) {

253 Chapter 13: Getting Persistent with Data Storage

 case MENU_SAVE:
 save();

 ((OnEditFinished) getActivity()).finishEditingTask();
 return true;
 }

 // If we can't handle this menu item, see if our parent can
 return super.onOptionsItemSelected(item);
 }

 Now run your app! Click the Add button in the action bar and create a new
task with whatever title you want, then click Save. A Toast message will pop
up and indicate the task was saved. But how do you know for sure it was
saved? The app has no way to show you the saved task yet.

 You may not be able to view the data in the app, but if you are using an emu-
lator or a rooted phone, you should be able to examine the SQLite database
directly from the command line.

 If you would like to consider rooting your phone (not all phones allow this),
visit http://www.androidcentral.com/root .

 To view the database directly:

1. Open a terminal on your computer and type adb shell to get a login
shell on your device.

2. Type cd /data/data/com.dummies.tasks/databases .

3. If your device has the sqlite3 command installed (most do), you can
run sqlite3 data to examine and manipulate your database directly.

 "data" is the DATABASE_NAME of the database you created in the
 SQLiteOpenHelper .

4. Try running select * from tasks; to get a list of your tasks.

 You should now see the task you just created.

 If your device does not have sqlite3 installed, you can search the App Store
to find an sqlite3 binary that you can install on rooted phones.

 Implementing the List View
 You might think that reading from a database should be simpler than writ-
ing to a database. After all, you don’t have to change anything when you do
a read. However, reading from a database is actually more complicated than
writing for this example.

254 Part III: Creating a Feature-Rich Application

 The reason is that when you’re doing any kind of I/O operation, such as
 reading from a network or from disk (reading a database, for example), you
must do this work from a background thread. If you work from the main
thread of the user interface, you run the risk of locking it up for an unknown
period, which can cause it to feel jerky and unresponsive. Under particularly
bad circumstances, it can even lead to displaying the dreaded Application
Not Responsive dialog box, which can leave many users believing that your
application has crashed.

 Because the read operation is reading a bunch of items in a list, it may take a
little time. It might take a few hundred milliseconds or so, for example. That
may not seem like a long time, but it’s long enough to make your app stutter,
and in rare circumstances it’s possible you might see an ANR.

 Technically, both reading and writing from a database should be done on a
background thread. So if we’re following best practices, the previous section
on implementing the Save button should have used a background thread to
write to the database. However, because the save operation is writing such
a small amount of data to just a single task at a time, and because the UI isn’t
doing anything fancy during that time, we took a shortcut and skipped the
background thread. It’s reasonably safe to do so in this case, but you may
want to consider going back after reading this chapter and reimplementing
 save using a loader.

 Android provides a system based on loaders and adapters to read a list of
data from a datastore (such as a database or file system) on a background
thread.

 ✓ Loaders are objects that read data from somewhere, often a database.
Loaders have two responsibilities:

• They must be able to load data into memory. This is usually
accomplished by using an SQLite cursor to read data from the
database into memory a few records at a time.

• They must watch your database table for changes, and if they are
notified of a change, they will reload the data as necessary.

 ✓ Adapters are objects that know how to create views for each item
in a list. You created a simple adapter named TaskListAdapter
in Chapter 9 to read data from a dummy list of strings and create
 CardViews for each item.

 In the next sections, you are going to create a loader to load data from your
database, and an adapter to create views for that data.

255 Chapter 13: Getting Persistent with Data Storage

 Using loaders
 The loader provides a mechanism by which you can launch background
operations (such as reading from your database) and then get a callback
when those operations finish so that you can update the user interface.

 A typical example of a loader is a CursorLoader . You use a CursorLoader
to load data from an SQLite database using a cursor. To add a CursorLoader
to one of your list fragments, you implement the LoaderCallback interface
in your callback and implement the three LoaderCallback methods:

 ✓ onCreateLoader() : This method is called in a background thread
when you create a loader using initLoader() . In this method, you’re
responsible for creating a CursorLoader object and returning it. The
 CursorLoader uses a URI to ask a ContentProvider for data.

 ✓ onLoadFinished() : This method is called when the CursorLoader
object finishes loading its data from the database. In this method, you’re
responsible for updating the UI to show the new data to the user.

 ✓ onLoaderReset() : This method is called when the loader is being
reset or shut down. When this happens you’re responsible for making
sure your fragment no longer uses the loader or its cursor.

 To kick off a loader, you first obtain a LoaderManager from your activity
by calling getLoaderManager() and then initLoader() . initLoader()
starts loading data in the background by calling onCreateLoader() ,
and when it finishes it executes onLoaderFinished() in your
 LoaderCallback object.

 You can use loaders for things other than loading data from a database, but all
loaders must implement the same three methods regardless of whether they’re
loading their data from a database, a network, or somewhere else entirely.

 Visit http://developer.android.com/guide/components/loaders.
html for more information about loaders.

 Open TaskListFragment.java and add the following code in bold:

 public class TaskListFragment extends Fragment
 implements LoaderManager.LoaderCallbacks<Cursor> ➝2
 {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 . . .

 getLoaderManager().initLoader(0, null, this); ➝8
 }

http://developer.android.com/guide/components/loaders.html

256 Part III: Creating a Feature-Rich Application

 @Override
 public Loader<Cursor> onCreateLoader(int ignored, Bundle args) {
 return new CursorLoader(getActivity(), ➝13
 TaskProvider.CONTENT_URI, null, null, null, null);
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 adapter.swapCursor(cursor); ➝19
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 adapter.swapCursor(null); ➝24
 }
 }

 You will get a couple of errors when you add this code, but skip those for
now. What this code is doing:

 ➝ 2 Adds the LoaderManager.LoaderCallbacks interface to this
fragment, which is needed when we call initLoader on line 8.

 ➝ 8 This is where you tell Android to start up a loader for you. Get a
 LoaderManager by calling getLoaderManager() , then initial-
ize a loader by calling initLoader . initLoader takes three
 parameters:

 • An ID for the loader. If you have multiple loaders, it’s handy to
give them each different IDs.

 • A Bundle of args that can be used to initialize the loader. In
this case, there’s nothing special we need to initialize, so we’ll
pass in null for the args .

 • A LoaderManager.LoaderCallbacks implementation. Oh
hey, that’s us!

 ➝ 13 initLoader on line 8 will call onCreateLoader to create a new
loader. Because you are going to be reading data from an SQL
database, you will use Android’s built-in CursorLoader to do the
heavy lifting. Create a new CursorLoader and initialize it with
the URI of the ContentProvider you want to use. The other
parameters are for advanced usage; see http://d.android.
com/reference/android/content/CursorLoader.html for
more information.

 ➝ 19 When the loader is finished loading data into memory, it needs to
do something with that data. You can do whatever you want with
the data, but the traditional thing is to give the data to an adapter

http://d.android.com/reference/android/content/CursorLoader.html

257 Chapter 13: Getting Persistent with Data Storage

so that the adapter can display it to the user. The adapter has a
method called swapCursor , which replaces whatever cursor it
was using with a new cursor, so call swapCursor with the new
cursor you just received.

 ➝ 24 onLoaderReset is called when the last cursor provided to
 onLoadFinished() above is about to be closed. You need to
make sure the adapter is no longer using it, so set it to null .

 That is essentially all you need to do to use a loader. The next step is to
implement the adapter that can take the data and create a view for it.

 Using adapters
 Adapters are objects that know how to create views for each item in a list.
You created a simple adapter in Chapter 9 , and now you are going to update
it to read data from an SQL Cursor .

 Open TaskListAdapter and add the bold lines to it:

 public class TaskListAdapter
 extends RecyclerView.Adapter<TaskListAdapter.ViewHolder>
 {
 static String[] fakeData = new String[] { ➝4
 "One",
 "Two",
 "Three",
 "Four",
 "Five",
 "Ah... ah... ah!"
 };

 Cursor cursor; ➝13
 int titleColumnIndex; ➝14
 int notesColumnIndex;
 int idColumnIndex;

 public void swapCursor(Cursor c) { ➝18
 cursor = c; ➝19
 if(cursor!=null) {
 cursor.moveToFirst(); ➝21
 titleColumnIndex = cursor.getColumnIndex(TaskProvider.COLUMN_TITLE);

 ➝22
 notesColumnIndex = cursor.getColumnIndex(TaskProvider.COLUMN_NOTES);
 idColumnIndex = cursor.getColumnIndex(TaskProvider.COLUMN_TASKID);
 }
 notifyDataSetChanged(); ➝26
 }

258 Part III: Creating a Feature-Rich Application

 @Override
 public void onBindViewHolder(final ViewHolder viewHolder,
 final int i) {
 final Context context = viewHolder.titleView.getContext();
 final long id = getItemId(i); ➝33

 // set the text
 cursor.moveToPosition(i); ➝36
 viewHolder.titleView.setText(cursor.getString(titleColumnIndex)); ➝37
 viewHolder.notesView.setText(cursor.getString(notesColumnIndex)); ➝38

 // set the thumbnail image
 Picasso.with(context)
 .load(getImageUrlForTask(id)) ➝42
 .into(viewHolder.imageView);

 // Set the click action
 viewHolder.cardView.setOnClickListener(
 . . .
 ((OnEditTask) context).editTask(id); ➝48
 });

 viewHolder.cardView.setOnLongClickListener(
 new View.OnLongClickListener()
 {
 . . .
 deleteTask(context, id); ➝55
 });

 }

 @Override
 public long getItemId(int position) { ➝61
 cursor.moveToPosition(position);
 return cursor.getLong(idColumnIndex); ➝63
 }

 @Override
 public int getItemCount() {
 return cursor!=null ? cursor.getCount() : 0; ➝68
 }

 static class ViewHolder extends RecyclerView.ViewHolder {
 CardView cardView;
 TextView titleView;
 TextView notesView; ➝74
 ImageView imageView;

 public ViewHolder(CardView card) {
 super(card);
 cardView = card;

259 Chapter 13: Getting Persistent with Data Storage

 titleView = (TextView)card.findViewById(R.id.text1);
 notesView = (TextView) itemView.findViewById(R.id.text2); ➝81
 imageView = (ImageView)card.findViewById(R.id.image);
 }
 }
 }

 These changes to TaskListAdapter make it possible to read the list of
tasks from a cursor rather than from a hardcoded fakeData array. In more
detail:

 ➝ 4 Remove the fakeData array; it is no longer necessary.
You also need to remove the call to titleView.
setText(fakeData[position]) in onBindViewHolder .

 ➝ 13 The TaskListAdapter is going to read data from a cursor, so
add a field for the cursor here.

 ➝ 14 When reading through the cursor, each column of data is referred
to by an index. For example, the index of the title column might
be 1, the index of notes might be 2, and so on. You don’t need the
index for the date/time column because the list view does not dis-
play the date/time of each task. Store the indices of each column
here for quick reference; you will determine their values on line 22.

 ➝ 18 Creates a method named swapCursor . This method is called
whenever the data in your database has changed. This might occur
because someone added or deleted an item from the database, or
because the app just started up and is reading all the previously
created tasks for the first time. swapCursor is responsible for

 • Replacing the previous cursor (if there was one) with the new
cursor

 • Figuring out the indices of the various columns of data

 • Notifying any listeners that the data has changed

 ➝ 19 Replaces the previous cursor with the new cursor.

 ➝ 21 Whenever you use a cursor, you must first move the cursor to its
first location before you may attempt to read data from it. This
line moves to the first position so that we can read the various
column indices in the next few lines.

 ➝ 22 Determines the column index for the title column in the cursor.
This is done by asking the cursor for the index of the column
named "title" . Technically, you can skip this step entirely and
just ask for columns by their name rather than by their index, but
it’s more efficient to ask by index. On the next two lines, do the
same thing for the notes and id columns.

260 Part III: Creating a Feature-Rich Application

 ➝ 26 When the cursor has been swapped, that means that the data
likely has changed. Notify any listeners (in particular, the
 RecyclerView from Chapter 9) that the data has changed so
that they can refresh their displays.

 ➝ 33 Each task in the database has an ID associated with it. You
will need the id later, so find the ID for this task by calling
getItemId and passing in the position of the item in the list.

 ➝ 36 You are about to update the view with the data from the cursor,
so make sure you move your cursor to the proper position
before you begin to read.

 ➝ 37 Reads the title string from the cursor using the getString
method, and then uses that string to set the titleView
 TextView .

 ➝ 38 Does the same for the notesView .

 ➝ 42–55 In the old TaskListAdapter , items in the fakeData array
didn’t have an ID, so we just used the position in the index as a
sort of fake ID. In the new version of TaskListAdapter , every
task has an ID that is stored in the database, so make sure to
use that ID when calling getImageUrlForTask , editTask ,
and deleteTask .

 ➝ 61 The implementation for getItemId which was called from
line 33.

 ➝ 63 After moving the cursor to the appropriate row in the database,
this line asks the cursor what the ID is for that row.

 ➝ 68 Updates getItemCount to return the count of items in the
cursor, assuming that the cursor is not null . If the cursor is
 null , this line just returns 0 .

 ➝ 74 Adds the notesView TextView to your ViewHolder . Return
to Chapter 9 for a reminder of what a ViewHolder does.

 ➝ 81 Sets the notesView field by looking for the TextView named
 text2 in the card_task.xml layout.

 If you run your app now, you should be able to add tasks! Give it a try.

 Deleting a task
 There is one more thing to do. You need to add the ability to delete tasks
from your database.

261 Chapter 13: Getting Persistent with Data Storage

 This is pretty straightforward. Update TaskListAdapter to implement the
 deleteTask method as shown:

 private void deleteTask(Context context, long id) {
 context.getContentResolver()
 .delete(
 ContentUris.withAppendedId(
 TaskProvider.CONTENT_URI,
 id),
 null, null);
 }

 This code gets the ContentResolver from the context, calls delete on it,
and passes in the URI of the task to be deleted.

 Run the app and long-press on an item in the list to try deleting it. You should
see it automatically disappear from the list after the delete is confirmed.

 Reading Data into the Edit Page
 The Edit page can now save data into the database, but it cannot yet read
data from the database. This makes it impossible for users to edit existing
tasks, so let’s wrap up this final bit of functionality now.

 Now that you know how loaders work, let’s use a loader to read the task data
from the database into the edit page. As you recall, loaders are the best way
to perform I/O on a background thread without blocking the main UI thread.

 Open TaskEditFragment and make the following changes:

 public class TaskEditFragment extends Fragment
 implements DatePickerDialog.OnDateSetListener,
 TimePickerDialog.OnTimeSetListener,
 LoaderManager.LoaderCallbacks<Cursor> ➝4
 {
 . . .

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

 // Inflate the layout and set the container. The layout is the
 // view that we will return.
 View v = inflater.inflate(R.layout.fragment_task_edit,
 container, false);

262 Part III: Creating a Feature-Rich Application

 // From the layout, get a few views that we're going to work with
 rootView = v.getRootView();
 titleText = (EditText) v.findViewById(R.id.title);
 notesText = (EditText) v.findViewById(R.id.notes);
 imageView = (ImageView) v.findViewById(R.id.image);
 dateButton = (TextView) v.findViewById(R.id.task_date);
 timeButton = (TextView) v.findViewById(R.id.task_time);

 // Set the thumbnail image ➝25
 Picasso.with(getActivity())
 .load(TaskListAdapter.getImageUrlForTask(taskId))
 .into(. . .);

 updateDateAndTimeButtons(); ➝30

 // Tell the date and time buttons what to do when we click on
 // them.
 dateButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 showDatePicker();
 }
 });
 timeButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 showTimePicker();
 }
 });

 if (taskId == 0) { ➝47

 updateDateAndTimeButtons();

 } else {

 // Fire off a background loader to retrieve the data from the
 // database
 getLoaderManager().initLoader(0, null, this); ➝55

 }

 return v;
 }

 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) { ➝63
 Uri taskUri = ContentUris.withAppendedId(➝64
 TaskProvider.CONTENT_URI, taskId);

263 Chapter 13: Getting Persistent with Data Storage

 return new CursorLoader(➝67
 getActivity(),
 taskUri, null, null, null, null);
 }
 /**
 * This method is called when the loader has finished loading its
 * data
 */
 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor task) {
 if (task.getCount() == 0) { ➝78
 getActivity().runOnUiThread(➝79
 new Runnable() {
 @Override
 public void run() {
 ((OnEditFinished) getActivity())
 .finishEditingTask(); ➝84
 }
 });
 return;
 }

 titleText.setText(➝90
 task.getString(
 task.getColumnIndexOrThrow(TaskProvider.COLUMN_TITLE)));
 notesText.setText(
 task.getString(
 task.getColumnIndexOrThrow(TaskProvider.COLUMN_NOTES)));

 Long dateInMillis = task.getLong(➝97
 task.getColumnIndexOrThrow(TaskProvider.COLUMN_DATE_TIME));
 Date date = new Date(dateInMillis);
 taskDateAndTime.setTime(date);

 Picasso.with(getActivity()) ➝103
 .load(TaskListAdapter.getImageUrlForTask(taskId))
 .into(. . .);

 updateDateAndTimeButtons(); ➝107
 }

 @Override
 public void onLoaderReset(Loader<Cursor> arg0) { ➝111
 // nothing to reset for this fragment.
 }
 }

264 Part III: Creating a Feature-Rich Application

 This code reads the task information from the database rather than from the
 fakeData list. It does it using a loader to avoid blocking the main UI thread.
Here’s what the code does in more detail:

 ➝ 4 Similar to what you did when you put a loader into
the list view, you must implement LoaderManager.
LoaderCallbacks in your fragment to use a loader here.

 ➝ 25–30 It doesn’t make sense to try to download the image or update
the date and time buttons yet if you don’t know what data
has been loaded from the task, so move these lines from here
to lines 103–107 when the loader has finished.

 ➝ 47 If the task ID is 0, then you know you’re inserting a new item
into the database. This means that there’s no data to load,
so skip the loader and just update the time and date buttons
instead.

 ➝ 55 If the task ID was non-zero, then the loader needs to
read data out of the database. Start it up by calling
 initLoader , and pass in yourself as the LoaderManager.
LoaderCallbacks object.

 ➝ 63 onCreateLoader is called by initLoader when it is time
to create the loader.

 ➝ 64 Computes the URI for the task you want to load.

 ➝ 67 Creates a cursor loader to load the specified task.

 ➝ 78 Sanity check. If you weren’t able to load anything, just close
this activity.

 ➝ 79 onLoadFinished is called from a background thread. Many
operations that affect the UI aren’t allowed from background
threads. So make sure that you call finishEditingTask
from the UI thread instead of from a background thread.

 ➝ 84 Calls finishEditingTask from the main UI thread. You
implemented finishEditingTask in Chapter 11 .

 ➝ 90 Sets the title and notes from the DB.

 ➝ 97 Sets the task date/time from the DB.

 ➝ 103–107 The code that you moved from lines 25–30.

 ➝ 111 onLoaderReset is called when a previously created loader
is being reset, thus making its data unavailable. In the list
view, you needed to tell the adapter to stop using the old
cursor. But in this fragment, there is nothing using the old
cursor, so there is nothing to be done in this method.

 Now you should have a fully working Tasks app that can create, read, update,
and delete tasks from its database. Congratulations! Try running the app now
and test it out.

 Reminding the User
 In This Chapter

 ▶ Understanding scheduled tasks

 ▶ Planning permissions

 ▶ Setting up alarms

 ▶ Using notifications

 ▶ Seeing how device reboots affect alarms

 Many tasks need to happen daily, right? Wake up, take a shower, eat
breakfast — we do all these things every day. These tasks make up

the standard Monday-through-Friday morning routine for many people. You
may have an internal clock and awaken every day on time, but most people
have to set alarms to wake up on time. At work, employees have calendars
that remind them of upcoming events they need to attend, such as meet-
ings and important server upgrades. Reminders and alarms are part of most
everyday routines, and people rely on them in one way or another.

 Building your own scheduled task system from scratch would be a pain.
Thankfully, Windows has scheduled tasks, Linux has cron , and Android
has the AlarmManager class. Though Android is based on Linux, it doesn’t
have access to cron ; therefore, you have to set up scheduled actions via the
Android AlarmManager .

 These are the steps to reminding the user of something when the app isn’t
running:

 ✓ Asking for permissions to wake up the device

 ✓ Registering a new alarm

 ✓ Creating a class to handle the alarm

 ✓ Re-registering alarms when the phone reboots

 ✓ Creating a notification

Chapter 14

266 Part III: Creating a Feature-Rich Application

 Seeing Why You Need AlarmManager
 A user adds a couple of tasks in the Tasks application (all due later today),
puts his device away, and goes about his business. If he isn’t reminded
about the tasks, he might forget about them; therefore, he needs a way to be
reminded of what should happen — which is where the AlarmManager class
comes into play.

 The AlarmManager class allows users to schedule a time when the Tasks
application should be run. When an alarm goes off, an intent is broadcast
by the system. Your application then responds to that broadcast intent and
performs an action, such as opening the application, notifying the user via a
status bar notification (which you will write later in this chapter), or performing
another type of action.

 Asking the User for Permission
 You wouldn’t let your next-door neighbor store holiday decorations in your
shed without permission, would you? Probably not. Android is no different.
Performing some actions on a user’s Android device requires permission, as
explained in the following sections.

 You added the INTERNET permission to the Tasks app in Chapter 9 . In this
section, you’ll learn more about how Android permissions work.

 Seeing how permissions affect
the user experience
 When a user installs an application from the Google Play Store, the appli-
cation’s manifest file is inspected for required permissions. Anytime your
application needs access to sensitive components (such as external storage,
the Internet, or device information), the user is notified at install time and
decides whether to continue the installation.

 Don’t request unnecessary permissions for your app — security-savvy
users are likely to reject it. For example, the Silent Mode Toggle application
(described in Part II) doesn’t need GPS locations, Internet access, or hardware-
related information. (But if you’d like to learn how to incorporate GPS loca-
tion into your apps, visit the book’s online web extras at www.dummies.
com/extras/androidappdevelopment .)

www.dummies.com/extras/androidappdevelopment

267 Chapter 14: Reminding the User

 If your application doesn’t need a permission, yank it. The fewer permissions
your application requests, the more likely the user is to install it.

 Setting requested permissions in the
AndroidManifest.xml file
 When you need to request permissions, add them to the AndroidManifest.
xml file in your project. You need to add the android.permission.
RECEIVE_BOOT_COMPLETED permission to the Tasks application. It allows
the application to know when the device reboots so that it can re-register its
alarms with the AlarmManager .

 You edit the AndroidManifest.xml file to add the uses-permission ele-
ment to the manifest element . The XML permission request looks like this:

<uses-permission
 android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>

 To view a full list of available permissions, view the Android permission
documentation at http://d.android.com/reference/android/
Manifest.permission.html .

 If you don’t declare the permissions that your application needs, it won’t
function as expected on either a device or an emulator, and any runtime
exceptions that are thrown may crash your application. Always ensure that
your permissions are present.

 Waking Up a Process
with AlarmManager

 To wake up a process with AlarmManager , you have to set the alarm first.
In the Tasks application, the best place to do it is right after you save a task
in the Save button’s save() call.

 Creating the ReminderManager helper
 Creating an alarm isn’t hard, but it does take a few lines of code. You will use
this code in a couple of places, so it makes sense to have a method to do it

http://d.android.com/reference/android/Manifest.permission.html

268 Part III: Creating a Feature-Rich Application

for you. Put this method into a new class named ReminderManager.java in
a new package named com/dummies/tasks/util :

/**
 * A helper class that knows how to set reminders using the AlarmManager
 */
 public class ReminderManager {

 private ReminderManager() {} ➝6

 public static void setReminder(Context context, long taskId, ➝8
 String title, Calendar when) {

 AlarmManager alarmManager = (AlarmManager) context
 .getSystemService(Context.ALARM_SERVICE); ➝12

 Intent i = new Intent(context, OnAlarmReceiver.class); ➝14
 i.putExtra(TaskProvider.COLUMN_TASKID, taskId);
 i.putExtra(TaskProvider.COLUMN_TITLE, title);

 PendingIntent pi = PendingIntent.getBroadcast(context, 0, i, ➝18
 PendingIntent.FLAG_ONE_SHOT);

 alarmManager.setExact(AlarmManager.RTC_WAKEUP, ➝21
 when.getTimeInMillis(), pi);
 }
 }

 Here’s an explanation of what the previous code does:

 ➝ 6 The ReminderManager class should not be instantiated, so make
the constructor private.

 ➝ 8 The setReminder method takes the task ID, the task’s title, and
the date/time of the reminder and creates an alarm to wake up
your OnAlarmReceiver (not yet written) at the specified time.

 ➝ 12 Asks the context for an AlarmManager by calling
 getSystemService(ALARM_SERVICE) .

 ➝ 14 Creates an intent for the AlarmReceiver class, which you
haven’t written yet. The intent tells the AlarmReceiver the ID
and the title of the task that the AlarmReceiver needs to create
a notification for.

 ➝ 18 Creates the PendingIntent that will wrap the intent from line
14. All intents used in the AlarmManager must be wrapped in a
 PendingIntent to “give permission” to the AlarmManager to
call back into our application.

269 Chapter 14: Reminding the User

 A pending intent is a wrapper around an intent and target action to
perform with it. A pending intent can be handed to other applications
so that they can perform the action you described on your behalf at a
later time.

 By giving a PendingIntent to another application (in this case,
the Android OS which runs the AlarmManager), you are granting
it the right to perform the operation you have specified as if the
other application was yourself (with the same permissions and
identity). As such, you should be careful about how you build the
 PendingIntent : Almost always, for example, the base intent you
supply should have the component name explicitly set to one of
your own components, to ensure it is ultimately sent there and
nowhere else.

 ➝ 21 Sets the alarm using the pending intent and the date/time for the
task. The AlarmManager can use one of the following:

• RTC (Real Time Clock): Specifies the exact time to wake up

• ELAPSED_REALTIME : Specifies the exact time to wake up rela-
tive to when the device booted

• INTERVAL : Specifies a periodic wake up

 Additionally, most of the settings just described have WAKEUP and non-
 WAKEUP options:

 ✓ WAKEUP : Specifying this means that the phone will wake up at exactly
the time you specified and do whatever you say.

 ✓ non- WAKEUP : Specifying this means that the device will wake up some-
time around the time you specified.

 Whenever possible you should choose non- WAKEUP so that the device can
group wakeup alarms together and minimize draining your battery. In this
app, a WAKEUP is necessary because we don’t want to remind the user later
than expected.

 The next step is to call setReminder when a task is created or edited. To
do this, open up TaskEditFragment and add the following to the bottom of
your save() method:

 // Create a reminder for this task
 ReminderManager.setReminder(getActivity(),
 taskId, title, taskDateAndTime);

 This line of code instructs ReminderManager to set a new reminder for the
task with a row ID of taskId at the particular date and time as defined by the
 taskDateAndTime variable.

270 Part III: Creating a Feature-Rich Application

 If an alarm is already scheduled with a pending intent that contains the same
signature, the previous alarm is canceled and the new one is set up.

 Creating the notification
in OnAlarmReceiver
 Now that you have created an alarm, you need to specify what happens when
the alarm fires.

 The OnAlarmReceiver class, shown in Listing 14-1 , is responsible for
handling the intent that’s fired when an alarm is raised. It’s a simple
 BroadcastReceiver called whenever an intent is broadcast that is
addressed to it, like the one that was registered in TaskEditFragment in
the previous section.

 Create a new package named com.dummies.tasks.receiver , and add the
 OnAlarmReceiver class as follows:

 Listing 14-1: The OnAlarmReceiver Class

 /**
 * This class is called when our reminder alarm fires,
 * at which point we'll create a notification and show it to the user.
 */
 public class OnAlarmReceiver extends BroadcastReceiver { ➝5
 @Override
 public void onReceive(Context context, Intent intent) { ➝7

 // Important: Do not do any asynchronous operations in
 // BroadcastReceive.onReceive! See the sidebar

 NotificationManager mgr = (NotificationManager) context
 .getSystemService(Context.NOTIFICATION_SERVICE); ➝13

 Intent taskEditIntent = ➝15
 new Intent(context, TaskEditActivity.class);
 long taskId = intent.getLongExtra(TaskProvider.COLUMN_TASKID, -1); ➝17
 String title = intent.getStringExtra(TaskProvider.COLUMN_TITLE); ➝18
 taskEditIntent.putExtra(TaskProvider.COLUMN_TASKID, taskId); ➝19

 PendingIntent pi = PendingIntent.getActivity(context, 0, ➝21
 taskEditIntent, PendingIntent.FLAG_ONE_SHOT);

 // Build the Notification object using a Notification.Builder
 Notification note = new Notification.Builder(context) ➝25
 .setContentTitle(

271 Chapter 14: Reminding the User

 The numbered lines are explained in this list:

 ➝ 5 The OnAlarmReceiver is a BroadcastReceiver . This means
that when the AlarmManager broadcasts the intent you cre-
ated previously, the OnAlarmReceiver will wake up and
receive the intent.

 ➝ 7 onReceive is called when the intent is received. The intent
passed in will be the intent inside of your pending intent (not
the pending intent itself).

 ➝ 13 Gets a NotificationManager from the context, which you’ll
use to create a notification.

 ➝ 15 Creates the intent that opens the TaskEditActivity for
the specified task id. You get the ID of the task from the
 OnAlarmReceiver ’s broadcast intent. This intent is invoked
when the user clicks on your notification. When that happens,
the TaskEditActivity starts and users can view and edit
their task.

 ➝ 17–18 Gets the task’s ID and title from the intent that you created in
 ReminderManager .

 ➝ 19 Adds the task’s ID to the edit intent because the receiver of
the intent needs to know which task to edit.

 ➝ 21 Creates the PendingIntent that wraps the taskEditIntent .
See the previous section to find out more about pending intents.

 ➝ 25–32 Now that you have the task’s ID, title, and an intent that starts
the TaskEditActivity when invoked, it’s time to create
the actual notification itself. Create a notification using the
 Notification.Builder .

 ➝ 27 Sets the title of the notification. Add the following string to
your strings.xml :

 <string name="notify_new_task_title">Task Reminder!</string>

 ➝ 28 Sets the content of the notification (displayed below the title)
to the text of the task itself.

 context.getString(R.string.notify_new_task_title)) ➝27
 .setContentText(title) ➝28
 .setSmallIcon(android.R.drawable.stat_sys_warning) ➝29
 .setContentIntent(pi) ➝30
 .setAutoCancel(true) ➝31
 .build(); ➝32
 // Send the notification.
 mgr.notify((int) taskId, note); ➝35
 }
 }

272 Part III: Creating a Feature-Rich Application

 ➝ 29 Gives the notification a simple icon. The stat_sys_warning is
built into Android and works as a reasonable default.

 ➝ 30 Sets the intent for the notification to the pending intent that you
created on line 21. This is the intent fired when the user clicks a
notification.

 ➝ 31 Turns on “auto cancel.” This means that when a user clicks the
notification, it is automatically dismissed. If you turn this off, the
user must manually dismiss his notifications, or you must pro-
grammatically dismiss them for the user.

 ➝ 32 Builds the notification object and returns it.

 ➝ 35 Takes the notification object created on the previous line, and
asks the NotificationManager to display it to the user.

 Do not do any asynchronous operations (for example, using background
threads) in BroadcastReceiver.onReceive !

 The OS may kill your process immediately after onReceive returns, so if you
attempt to do asynchronous operations in onReceive , they may get killed
before they ever finish! The result is that sometimes things will appear to
work, and sometimes they won’t.

 Similarly, do not do any long-running operations (such as network requests,
disk or database reads or writes, and so on) in BroadcastReceiver.
onReceive ! onReceive is called from the UI thread, so if you do anything
that may take more than a few hundred milliseconds, you can cause your app
to appear to hang.

 If you need to do asynchronous or long-running operations, update
 OnAlarmReceiver to subclass android.support.v4.content.
WakefulBroadcastReceiver and create a new service to do all your heavy
lifting. Remember to call startWakefulService to start your service, and
remember to call WakefulBroadcastReceiver.completeWakefulIntent
from your service when you are done.

 See http://d.android.com/reference/android/content/
BroadcastReceiver.html and https://developer.android.com/
reference/android/support/v4/content/
WakefulBroadcastReceiver.html for more information.

 Now, register the OnAlarmReceiver in your AndroidManifest.xml by
adding the following line inside your application element:

 <receiver android:name=".receiver.OnAlarmReceiver"
 android:exported="false"/>

http://d.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/support/v4/content/
https://developer.android.com/reference/android/support/v4/content/WakefulBroadcastReceiver.html

273 Chapter 14: Reminding the User

 At this point, you should be able to run your app, create a new task, and
watch it immediately pop up a reminder notification in your status bar, as in
Figure 14-1 .

 The NotificationManager has a lot of other options for getting the user’s
attention. You can augment a notification using one — or more — of these
options:

 ✓ Vibration: The device vibrates briefly when a notification is received —
useful when the device is in the user’s pocket.

 ✓ Sound: An alarm sounds when the notification is received. A ringtone or
a prerecorded tone that you install along with your application is useful
when the user has cranked up the notification sound level.

 ✓ Light: The LED light on the device flashes at a given interval in the color
you specify. (Many devices contain an LED that you can program.) If the
LED supports only a single color, such as white, it flashes in that color and
ignores your color specification. If the user has set the volume level to
silent, the light provides an excellent cue that something needs attention.

 Figure 14-1:
 An

 important
reminder.

274 Part III: Creating a Feature-Rich Application

 ✓ Expandable preview: The user can expand a notification by using the
pinch-and-zoom gesture. The expandable notification is a helpful way to
show users an expanded preview of the notification content, such as a
message preview for an email application.

 ✓ Action buttons: A user has always been able to tap a notification to launch
the app that created it. However, you can add as many as three additional
buttons to a Jelly Bean app to make it perform whatever operations you
want. One outstanding example in the Tasks app is having the Snooze
button temporarily dismiss the notification and bring it back later.

 Go to http://d.android.com/guide/topics/ui/notifiers/
notifications.html for more information about creating more advanced
notifications.

 Updating a Notification
 At some point, you might need to update the view of your notification, such
as when your code runs in the background, to see whether tasks have been
reviewed. This code checks to see whether any notifications are overdue.
Suppose that after the two-hour mark passes, you want to change the icon of
the notification to a red exclamation point and quickly flash the LED in red.
Thankfully, updating the notification is a fairly simple process.

 If you call the notify() method again with an ID that’s already active on the
status bar, the notification is updated on the status bar. Therefore, to update
the notification, you simply create a new Notification object with the
same ID and text (but with a different red icon) and then call notify() again
to update the notification.

 Clearing a Notification
 Users constitute an unpredictable group — whether they’re first-time users
or advanced power users, they can be located anywhere in the world and
use their devices in their own, special ways. At some point, a user may see a
notification and decide to open the app using the app launcher instead. If this
happens while a notification is active, the notification persists. Even if the
user looks at the task at hand, the notification still persists on the status bar.
Your application should be able to simply recognize the state of the applica-
tion and take the appropriate measures to cancel any existing notifications
for the task. However, if the user opens your app and reviews a different task
that has no active notification, your app shouldn’t clear the notification.

http://d.android.com/guide/topics/ui/notifiers/notifications.html

275 Chapter 14: Reminding the User

 Clear only the notification that the user is reviewing.

 The NotificationManager makes it simple to cancel an existing notifica-
tion by using the cancel() method. This method accepts one parameter —
the ID of the notification. You may recall using the ID of the task as the ID of
the note. The ID of the task is unique to the Tasks application. By doing this,
you can easily open a task and cancel any existing notification by calling the
 cancel() method with the ID of the task.

 At some point, you might also need to clear all previously shown noti-
fications. To do this, simply call the cancelAll() method on the
 NotificationManager .

 Rebooting Devices
 You probably forget things from time to time. It’s only human. The Android
 AlarmManager is no different. The AlarmManager doesn’t persist alarms;
therefore, when the device reboots, you must set up the alarms again.

 If you don’t set up your alarms again, they simply don’t fire because, to
Android, they don’t exist.

 Creating a boot receiver
 The RECEIVE_BOOT_COMPLETED permission allows your application to
receive a broadcast notification from Android when the device is done boot-
ing and is eligible to be interactive with the user. Because the Android system
can broadcast a message when this event is complete, you need to add
another BroadcastReceiver to your project. This BroadcastReceiver
is responsible for handling the boot notification from Android. When the
broadcast is received, the receiver needs to retrieve the tasks from the
 TaskProvider and loop through each task and schedule an alarm for it, to
ensure that your alarms don’t get lost in the reboot.

 Add a new BroadcastReceiver to your application. For the Tasks applica-
tion, the BroadcastReceiver has the name OnBootReceiver . You also
need to add the following lines of code to the application element in the
 AndroidManifest.xml file:

<receiver android:name=".receiver.OnBootReceiver" android:exported="false">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>
 </receiver>

276 Part III: Creating a Feature-Rich Application

 This snippet informs Android that OnBootReceiver should receive boot
notifications for the BOOT_COMPLETED action. In layman’s terms, it lets
 OnBootReceiver know when the device is done booting up.

 The full implementation of OnBootReceiver is shown in Listing 14-2 . Add
this class to your com/dummies/tasks/receiver directory:

 Listing 14-2: The OnBootReceiver Class

public class OnBootReceiver extends BroadcastReceiver { ➝1

 @Override
 public void onReceive(Context context, Intent intent) { ➝4

 Cursor cursor = context.getContentResolver().query(
 TaskProvider.CONTENT_URI, null, null, null, null); ➝7

 // If our db is empty, don't do anything
 if (cursor == null)
 return;

 try {
 cursor.moveToFirst(); ➝14

 int taskIdColumnIndex = cursor
 .getColumnIndex(TaskProvider.COLUMN_TASKID); ➝17
 int dateTimeColumnIndex = cursor
 .getColumnIndex(TaskProvider.COLUMN_DATE_TIME);
 int titleColumnIndex = cursor
 .getColumnIndex(TaskProvider.COLUMN_TITLE); ➝21

 while (!cursor.isAfterLast()) { ➝23

 long taskId = cursor.getLong(taskIdColumnIndex); ➝25
 long dateTime = cursor.getLong(dateTimeColumnIndex); ➝26
 String title = cursor.getString(titleColumnIndex); ➝27

 Calendar cal = Calendar.getInstance();
 cal.setTime(new Date(dateTime)); ➝30

 ReminderManager.setReminder(context, taskId, ➝32
 title, cal);

 cursor.moveToNext(); ➝35
 }

 } finally {
 cursor.close(); ➝39
 }
 }
 }

277 Chapter 14: Reminding the User

 The numbered lines are detailed in this list:

 ➝ 1 The definition of the OnBootReceiver .

 ➝ 4 The onReceive() method that’s called when the receiver
receives an intent to perform an action.

 ➝ 7 Obtains a cursor with all the reminders from the TaskProvider
via the ContentResolver . It’s similar to the calls used to
update and delete reminders in the TaskEditFragment and
 TaskListFragment .

 ➝ 14 Moves to the first record in the Cursor .

 ➝ 17–21 Each row in the cursor contains several columns of data. These
lines get the index for the task, date/time, and title.

 You want to find the ID of the row as well as the date and time
so that you can schedule the reminder. You also need the title to
display to the user. To get this information, you need to find the
index of the columns that contain this information.

 ➝ 23 Sets up a while loop that checks to see whether the cursor has
moved past the last record. If it equals false, the app moves to line
25. If this value is true, no more records are available to use in the
cursor.

 ➝ 25–27 The ID, title, and dateTime are retrieved from the cursor for this
row using the column indices from lines 17–21.

 ➝ 30 After the date is retrieved from the cursor, the Calendar variable
needs to be updated with the correct time. This line sets the local
 Calendar object to the time of the task in the row.

 ➝ 32 Schedules a new reminder with the row ID from the database at
the time defined by the recently built Calendar variable.

 ➝ 35 Moves to the next record in the cursor. If no more records exist in
the cursor, the call to isAfterLast() on line 23 returns true ,
which means that the while loop exits. Otherwise, the next row is
processed.

 ➝ 39 Closes the cursor because it’s no longer needed.
 BroadcastReceivers generally don’t use loaders, so you need
to close the cursor.

 When you previously worked with the Cursor object in
Chapter 13 , you didn’t have to close the cursor. This is because
the Loader object was managing the cursor.

 If you were to start the application, create a few reminders, and then reboot
the device, you would see that the reminders persisted.

278 Part III: Creating a Feature-Rich Application

 Checking the boot receiver
 If you’re unsure whether OnBootReceiver is working, you can place log
statements into the while loop, like this:

Log.d("OnBootReceiver", "Adding alarm from boot.");
 Log.d("OnBootReceiver", "Row Id - " + rowId);

 This snippet prints messages to the system log. You can then shut down the
emulator (or device) and start it again. Watch the messages stream in logcat,
and look for OnBootReceiver messages. If you have two tasks in your
database, you should see two sets of messages informing you of the system
adding an alarm during boot.

 Interested in adding even more features to your feature-rich app? Visit the
book’s online web extras at www.dummies.com/extras/androidapp
development to learn how to incorporate GPS location information into
your Tasks app.

www.dummies.com/extras/androidappdevelopment

 Working with Android
Preferences

 In This Chapter
 ▶ Seeing how preferences work in Android

 ▶ Building a preferences screen

 ▶ Working with preferences programmatically

 Most programs need to be configured to suit a user’s needs with
 individual settings or preferences. Allowing users to configure your

Android application gives it a usability advantage. Thankfully, creating
and providing a mechanism to edit preferences in Android is a fairly easy
 process.

 Android provides, out of the box, a robust preferences framework that lets
you define preferences for your application. Android stores preferences as
persistent key-value pairs of primitive data types for you. The Android pref-
erences framework commits the values you provide to internal storage on
behalf of your application. You can use the preferences framework to store
Boolean, float, int, long, and string elements. The data persists across user
sessions — if the user closes the app and reopens it later, the preferences
are saved and can be used, even if your application is killed or the phone
restarts.

 This chapter delves into the Android preferences framework and describes
how to incorporate it into your applications. You find out how to use
the built-in PreferenceFragment to create and edit preferences and
how to read and write preferences from code within your application. At
the end of this chapter, you’ll have integrated preferences fully into the
Tasks app.

Chapter 15

280 Part III: Creating a Feature-Rich Application

 Understanding the Android
Preferences Framework

 One outstanding quality of the Android preferences framework is the sim-
plicity of developing a screen that allows users to modify their preferences.
Most of the heavy lifting is done for you by Android because developing a
preferences screen is as simple as defining it in the XML located in the res/
xml folder of your project. Though these XML files aren’t the same as layout
files, there are specific XML definitions that define screens, categories, and
actual preferences. Common preferences that are built into the framework
include

 ✓ EditTextPreference : Stores plain text as a string

 ✓ CheckBoxPreference : Stores a Boolean value

 ✓ RingtonePreference : Allows the user to store a preferred ringtone
from those available on the device

 ✓ ListPreference : Allows the user to select a preferred item from a list
of items in the dialog box

 If the built-in preferences don’t suit your needs, you can create your
own preference by deriving it from the base Preference class or
 DialogPreference . A DialogPreference is the base class for pref-
erences that are dialog-box-based. Tapping one of these preferences
opens a dialog box showing the preference controls. Examples of built-in
 DialogPreferences are EditTextPreference and ListPreference .

 Android also provides a PreferenceFragment in which you can load a pref-
erences screen similar to how you load a layout for a basic Fragment class.
This base class allows you to tap into the PreferenceFragment events and
perform advanced work, such as setting an EditTextPreference to accept
only numbers.

 Understanding the Preference
Fragment Class

 The responsibility of the PreferenceFragment class is to show a hierar-
chy of Preference objects as lists, possibly spanning multiple screens, as
shown in Figure 15-1 .

281 Chapter 15: Working with Android Preferences

 Figure 15-1:
 The

 preferences
screen for

the call
settings in

Android.

 When preferences are edited, they’re stored using an instance of
 SharedPreferences . The SharedPreferences class is an interface
for accessing and modifying preference data returned by getShared
Preferences() from any Context object.

 A PreferenceFragment is a base class that’s similar to the Fragment
base class. However, the PreferenceFragment behaves a bit differ-
ently. One of the most important features that the PreferenceFragment
handles is the displaying of preferences in the visual style that resembles
the system preferences. This gives your application a consistent feel across
the board in regard to Android user interface components. You should use
the PreferenceFragment when dealing with preferences screens in your
Android applications.

 Persisting preference values
 Because the Android framework stores preferences in the
 SharedPreferences , which automatically stores the preference data in
internal storage, you can easily create a preference. When a user edits a

282 Part III: Creating a Feature-Rich Application

 preference, the value is automatically saved for you; you don’t have to do
any persisting yourself.

 Figure 15-2 shows a preference being set in the Tasks app. After the user taps
OK, Android persists the value to SharedPreferences . Android does all the
heavy lifting in regard to persisting the preference values.

 Figure 15-2:
 Setting a

preference.

 Laying out preferences
 Working with layouts in Android can sometimes be a painstaking process of
alignment, gravity, and other complicating factors. Building layouts is almost
like building a website with various tables all over the place. Sometimes it’s
easy; sometimes it isn’t. Thankfully, laying out Android preferences is much
simpler than defining a layout for the application screen.

 Android preference building blocks are broken into these types:

 ✓ Preference : A preference that’s shown onscreen. This preference
can be any common preference (such as a check box or text field), or a
custom one that you define.

283 Chapter 15: Working with Android Preferences

 ✓ PreferenceCategory : This building block is used to group preference
objects and provide a title that describes the category. In Figure 15-1 ,
the Contact display options item is a PreferenceCategory .

 ✓ PreferenceScreen : Represents a top-level preference that’s the
root of a preference hierarchy. All the categories and preferences in
Figure 15-1 are rooted in a PreferenceScreen called “General set-
tings.” You can use a PreferenceScreen in these two places:

• In a PreferenceFragment : All the categories and preferences in
the PreferenceScreen are shown in the PreferenceFragment .

• In another preference hierarchy: When present in another hier-
archy, the PreferenceScreen serves as a gateway to another
screen of preferences (similar to nesting PreferenceScreen
 declarations inside other PreferenceScreen declarations).
Though this concept might seem confusing, you can think of it
as XML, where you can declare an element and any element can
contain the same parent element. At that point, you’re nesting the
elements. The same statement applies to the PreferenceScreen .
By nesting PreferenceScreen s, you’re informing Android that it
should show a new screen when selected.

 By laying out a combination of the PreferenceScreen ,
 PreferenceCategory , and Preference in XML, you can easily create a
preferences screen that looks similar to Figure 15-1 .

 Creating Your Preferences Screen
 Creating preferences using the PreferenceFragment and a preference XML
file is a fairly straightforward process. The first thing you do is create the
preference XML file, which defines the layout of the preferences and the string
resource values that show up onscreen. These string resources are presented
as TextViews onscreen to help the user determine what the preference does.

 Your PreferenceScreen should give users the chance to set the default
time for a reminder (in minutes) and a default title for a new task. As the
application stands now, the default title is empty and the default reminder
time is set to the current time. These preferences allow the user to save a
couple of steps while building new tasks. For example, if the user normally
builds tasks with a reminder time of 60 minutes from the current time, the
user can now specify it in the preferences. This new value becomes the value
of the reminder time when the user creates a new task.

284 Part III: Creating a Feature-Rich Application

 Building the preferences file
 To build your first preferences screen, create a res/xml folder in your
 project. Inside the res/xml folder, create an XML file and name it task_
preferences.xml . Add the code in Listing 15-1 to the file.

 Listing 15-1: The task_preferences.xml File

<?xml version="1.0" encoding=”utf-8”?>
 <PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android"> ➝2

 <PreferenceCategory ➝4
 android:title="@string/tasks"> ➝5

 <EditTextPreference ➝7
 android:key="@string/pref_task_title_key" ➝8
 android:summary="@string/default_title_description" ➝9
 android:title="@string/default_title"/> ➝10

 <EditTextPreference ➝12
 android:key="@string/pref_default_time_from_now_key" ➝13
 android:summary="@string/minutes_from_now_description" ➝14
 android:title="@string/minutes_from_now"/> ➝15

 </PreferenceCategory>
 </PreferenceScreen>

 Each numbered line of code is explained as follows:

 ➝ 2 The root-level PreferenceScreen ; it’s the container for the
screen itself. All other preferences live below this declaration.

 ➝ 4 A PreferenceCategory that defines the category for task
defaults, such as title or body.

 ➝ 5 Defines the category title. You define the @string/tasks and
other strings in the next section.

 ➝ 7 Contains the definition of the EditTextPreference , which is
responsible for storing the preference for the default title of a
task.

 ➝ 8 Contains the key for the default title text EditTextPreference .
The key is the name of the preference, which you will use when
you want to check the value of the preference.

 ➝ 9 Defines the summary text that’s present on the preferences
screen. It’s a helpful message that describes what the preference
does in more detail.

285 Chapter 15: Working with Android Preferences

 ➝ 10 Defines the title of the preference on the preferences screen. It is
also the title used in the dialog box that pops up when the user
edits the preference.

 ➝ 12 The start of the definition of the EditTextPreference , which
stores the default time in minutes (digits) that the task reminder
time defaults to from the current time.

 ➝ 13 Defines the key for the default task time preference.

 ➝ 14 Defines the summary of the preference that’s present on the main
preferences screen.

 ➝ 15 Defines the title of the preference on the preferences screen.

 Adding string resources
 For your application to compile, you need the string resources for the prefer-
ences. In the res/values/strings.xml file, add these values:

 <string name="default_title">Default Title</string>
 <string name="tasks">Tasks</string>
 <string name="default_title_description">
 The default title for a task.</string>
 <string name="minutes_from_now">Minutes From Now</string>
 <string name="minutes_from_now_description">
 The number of minutes into the future to set the reminder.</string>
 <string name="pref_task_title_key">default_task_title</string>
 <string name="pref_default_time_from_now_key">time_from_now_default</string>

 You should now be able to compile your application.

 Working with the Preference
Fragment Class

 Defining a preferences screen is fairly simple: You provide the values to
the necessary attributes and you’re done. Though the preferences screen
may be defined in XML, simply defining it in XML doesn’t mean that it
will show up onscreen. To display your preferences screen, you create a
 PreferenceFragment .

 To inflate and display the PreferenceScreen you may have just built, add
a fragment that derives from PreferenceFragment to your application and
name it PreferencesFragment . Add the code in Listing 15-2 .

286 Part III: Creating a Feature-Rich Application

 That’s all the code needed to display, edit, and persist preferences in
Android. The numbered lines of code are explained in this list:

 ➝ 1 The PreferencesFragment class file is defined by inheriting
from the PreferenceFragment base class.

 ➝ 8 The call to the addPreferencesFromResource() method is
provided with the resource ID of the task_preferences.xml
file that’s stored in the res/xml directory.

 ➝ 11 Retrieves the EditTextPreference for the default task
reminder time by calling the findPreference() method and
providing it with the key that was defined in the task_
preferences.xml file.

 ➝ 14 Obtains the EditText object from the EditTextPreference
using the getEditText() method. The setKeyListener()
method is called to set the key listener on the EditText to an
instance of DigitsKeyListener , which allows only digits to be
typed into the EditTextPreference .

 You don’t want users to enter string values such as foo or bar
into the field because it isn’t a valid integer value. Using the
 DigitsKeyListener ensures that the only values passed into
the preferences are digits.

 Listing 15-2: The PreferencesFragment File

public class PreferencesFragment extends PreferenceFragment { ➝1

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Construct the preferences screen from the XML config
 addPreferencesFromResource(R.xml.task_preferences); ➝8

 // Use the number keyboard when editing the time preference
 EditTextPreference timeDefault = (EditTextPreference) ➝11
 findPreference(getString(R.string
 .pref_default_time_from_now_key));
 timeDefault.getEditText().setKeyListener(DigitsKeyListener ➝14
 .getInstance());
 }
 }

287 Chapter 15: Working with Android Preferences

 Now that you have the PreferencesFragment , you need an activity to
 display it. Create a new file named PreferencesActivity.java in com/
dummies/tasks/activity and add the following code:

/**
 * An activity for displaying and editing preferences.
 * Uses a PreferencesFragment to do all of the dirty work.
 */
 public class PreferencesActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 getFragmentManager().beginTransaction().replace(➝11
 android.R.id.content,
 new PreferencesFragment()).commit();
 }

 }

 This activity is very simple. All it does is create a new
 PreferencesFragment and replace the existing activity content
with that fragment on line 11.

 At this point, you can use your activity. This PreferencesActivity allows
users to edit and save their preferences. As you can see, this implementation
requires only a snippet of code.

 Add your new PreferencesActivity to the AndroidManifest.xml file
by using this line of code:

<activity android:name="com.dummies.tasks.activity.PreferencesActivity"/>

 The next step is displaying the preferences screen by adding a menu item.

 Starting the PreferencesActivity
 To open this new activity, you add a menu item to the TaskListFragment
by simply adding a new menu definition to the menu_list.xml file that’s
located in the res/menu directory. Updating this file updates the menu on
the TaskListFragment . The updated menu_list.xml file is shown here
with the new entry in bold:

288 Part III: Creating a Feature-Rich Application

<?xml version="1.0" encoding="utf-8"?>
 <menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/menu_insert"
 android:icon="@android:drawable/ic_menu_add"
 android:showAsAction="always"
 android:title="@string/menu_insert"/>

 <item
 android:id="@+id/menu_settings"
 android:showAsAction="never"
 android:title="@string/menu_settings"/>
 </menu>

 The last item adds a menu item for settings, which uses the menu_settings
string resource. You add a new string resource named menu_settings with
a value of Settings in your string resources. Because the Settings menu
is significantly less important than the Insert menu item, you don’t want
to clutter the action bar with an icon for the Settings menu. Instead, use
 showAsAction="never" to ensure that the Settings menu is always dis-
played in the overflow menu rather than directly on the action bar.

 See http://d.android.com/design/patterns/settings.html and
 http://www.google.com/design/spec/patterns/settings.html for
more tips about how to create your settings menus.

 Handling menu selections
 After your menu is updated, the app needs to respond whenever the user
taps a menu item. To make it do this, you add code to the onOptions
ItemSelected() method in the TaskListFragment . The code to handle
the Settings menu selection is bold in this snippet:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.menu_insert:
 ((OnEditTask) getActivity()).editTask(0);
 return true;
 case R.id.menu_settings:
 startActivity(new Intent(getActivity(),
 PreferencesActivity.class));
 return true;
 }

 return super.onOptionsItemSelected(item);
 }

289 Chapter 15: Working with Android Preferences

 This code creates a new Intent object with a destination class of
 PreferencesActivity . A user who selects the Settings menu item is
shown the preferences screen to edit his preferences. If you start the app
and select Settings, you should see a screen similar to the one shown in
Figure 15-3 .

 Figure 15-3:
The

 preferences
screen.

 Working with Preferences in Your
Activities at Runtime

 Though setting preferences in a PreferencesFragment is useful, it
 provides no value in the end unless you can read the preferences from the
 SharedPreferences object at runtime and use them in your application.
Thankfully, Android makes the process fairly simple.

 In the Tasks app, you read these values in the TaskEditFragment to set
the default values when a user creates a new task. Because the preferences
are stored in SharedPreferences , you can access the preferences across
 various activities in your application.

290 Part III: Creating a Feature-Rich Application

 Retrieving preference values
 Open the TaskEditFragment and navigate to the onCreateView()
method. It determines whether the task is an existing task or a new task. If
the task is new, you pull the default values from SharedPreferences and
load them into the activity for the user. If for some reason the user has never
specified her preferences, they’re empty strings and you ignore the defaults.
You use the preferences only if the user has set them.

 To retrieve preference values, you use the SharedPreferences object,
as shown in Listing 15-3 . Add the bold code to the very bottom of
onCreateView() .

 Listing 15-3: Retrieving Values from SharedPreferences
 if (taskId == 0) { ➝1
 SharedPreferences prefs = PreferenceManager ➝2
 .getDefaultSharedPreferences(getActivity());
 String defaultTitleKey = getString(R.string ➝4
 .pref_task_title_key);
 String defaultTimeKey = getString(R.string ➝6
 .pref_default_time_from_now_key);

 String defaultTitle = prefs.getString(defaultTitleKey, null); ➝9
 String defaultTime = prefs.getString(defaultTimeKey, null); ➝10

 if (defaultTitle != null)
 titleText.setText(defaultTitle); ➝13

 if (defaultTime != null && defaultTime.length() > 0)
 taskDateAndTime.add(Calendar.MINUTE, ➝16
 Integer.parseInt(defaultTime));

 updateDateAndTimeButtons(); ➝19

 } else {

 // Fire off a background loader to retrieve the data from the
 // database
 getLoaderManager().initLoader(0, null, this);

 }

 Each new line of code is explained in this list:

 ➝ 1 If the taskId is 0, then you know the task’s ID hasn’t been set yet.
This means it’s a new task.

291 Chapter 15: Working with Android Preferences

 ➝ 2 Retrieves the SharedPreferences object from the
static getDefaultSharedPreferences() call on the
 PreferenceManager object.

 ➝ 4 Retrieves the key value for the default title preference from the
string resources. This same key is used in Listing 15-1 to define
the preference.

 ➝ 6 Retrieves the key value for the default time offset, in minutes, from
the preferences.

 ➝ 9 Retrieves the default title value from the preferences with a call
to getString() on the SharedPreferences object. The first
parameter is the key for the preference, and the second parameter
is the default value if the preference doesn’t exist (or hasn’t been
set). In this instance, the default value is null if the preference
doesn’t exist.

 ➝ 10 Retrieves the default time value from the preferences, using the
same method as described on line 9 with a different key.

 ➝ 13 Sets the text value of the EditText view — which is the title of
the task. This value is set if the preference wasn’t null .

 ➝ 16 Increments time on the taskDateAndTime Calendar field by
calling the add() method with the parameter of Calendar.
MINUTE if the value from the preferences wasn’t equal to an
empty string. The Calendar.MINUTE constant informs the
 Calendar object that the next parameter should be treated as
minutes and the value should be added to the calendar’s Minute
field. If the minutes force the calendar into a new hour or day, the
 Calendar object updates the other fields for you.

 For example, if the calendar was originally set to 2016-08-31
11:45 p.m. and you add 60 minutes to the calendar, the new
value of the calendar is 2016-09-01 12:45 a.m. Because
 EditTextPreference stores all values as strings, the
string parses the minute value to an integer with the Integer.
parseInt() method. By adding time to the taskDateAndTime
 Calendar field, the time picker and button text associated with
opening the time picker update as well.

 ➝ 19 Updates the date and time buttons to reflect the time added to the
existing taskDateAndTime Calendar field.

 When you build, reinstall, and start the application, you can now set the
preferences and see them reflected when you choose to add a new task to
the list. Try clearing the preferences and then choosing to create a new task.
Notice that the defaults no longer apply — easy!

292 Part III: Creating a Feature-Rich Application

 Setting preference values
 Though updating preference values via Java isn’t done in the Tasks app, at
times you might need to in your own apps. Suppose that you develop a help-
desk ticket system application that requires users to enter their current depart-
ments. You have a Preference object for the default department, but the user
never uses the preferences screen and therefore repeatedly enters the depart-
ment into your application manually. Using logic that you define and write, you
determine that the user is entering the same department for each help-desk
ticket (assume that it’s the Accounting department), so you prompt him to
determine whether he wants to set the default department to Accounting. If he
chooses Yes, you programmatically update the preferences for him.

 To edit preferences programmatically, you need an instance of
Shared Preferences . You can obtain it via PreferenceManager ,
as shown in Listing 15-4 . After you obtain an instance of
 SharedPreferences , you can edit various preferences by obtaining an
instance of the preference Editor object. After the preferences are edited,
you need to apply the changes, also demonstrated in Listing 15-4 .

 Listing 15-4: Programmatically Editing Preferences
 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(this); ➝2
 Editor editor = prefs.edit(); ➝3
 editor.putString("default_department", "Accounting"); ➝4
 editor.apply(); ➝5

 The numbered lines of code are explained in this list:

 ➝ 2 An instance of SharedPreferences is retrieved from the
 PreferenceManager .

 ➝ 3 An instance of the preferences Editor object is obtained by
 calling the edit() method on the SharedPreferences object.

 ➝ 4 Edits a preference with the key value of default_department by
calling the putString() method on the Editor object. The value is
set to "Accounting" . Normally, the key value is retrieved from the
string resources, and the value of the string is retrieved via your pro-
gram or user input. The code snippet remains simple for brevity.

 ➝ 5 After changes are made to any preferences, you must call the
 apply() method on the Editor object to persist them to Shared
Preferences . The apply call automatically replaces any value stored
in SharedPreferences with the key given in the putString() call.

 If you don’t call apply() on the Editor object, your changes don’t persist
and your application may not function as you expect.

 Supplement your Android apps with voice input using the articles online at
 www.dummies.com/extras/androidappdevelopment

 Android Is More than Phones

Part IV

 In this part . . .
 Part IV introduces you to the world beyond Android phones.
Android tablets, watches, and TVs are a different sort of beast
than Android phones, and this part walks you through all the
changes you need to make to your app so it can run on these other
Android devices.

 Should you want to go beyond the realm of standard Android,
you will also find everything you need to add support for Android-
based (but non-Google) devices, such as the Amazon Fire.

 Developing for Tablets
In This Chapter

 ▶ Zeroing in on why a tablet is a different digital beast

 ▶ Modifying your existing app to run on tablets

 ▶ Downloading a tablet emulator

 ▶ Using responsive layouts

 ▶ Building product flavors

 ▶ Creating a tablet-only activity

 You need to master some tricks of the trade to make your apps work on
tablets and on phones. In this chapter, you can get an overview of the

differences betweeen phones and tablets, and then find out how to design the
Tasks application to work on both types of devices.

 Considering the Differences between
Phones and Tablets

 Android tablets and Android phones have some obvious differences, and size
immediately comes to mind, but that is only one of the differences:

 ✓ Tablets are designed to be held in two hands, whereas phones are
designed for only one.

 ✓ Android tablet screens tend not to extend past the 7-to-10-inch range,
and the largest phones max out around 6 inches.

 The line between tablet and phone can blur at the 5-inch mark. Some
“tweener” devices are marketed as phones, and others with nearly the
same specs are marketed as tablets.

Chapter 16

296 Part IV: Android Is More Than Phones

 ✓ Tablet orientation varies depending on usage, whereas almost all
Android phones have settled on portrait orientation for their screens.

 Many Android tablets are designed for wide-screen media viewing,
so they favor landscape orientation. Others, such as the Nexus 7 and
Kindle Fire, are designed primarily for use in portrait mode. That’s not
to say that you can’t run an app in portrait mode on a landscape tablet
(or vice versa), but be aware that many users may run your app in an
orientation other than the one in which you completed most of your
testing.

 Tablets and phones also have some differences in hardware design and
operation that affect app design. This list describes them from the tablet
 perspective:

 ✓ Tablets often lack always-on 3G or 4G data connections.

 ✓ Tablets tend to be larger, use larger batteries, and benefit from much
longer battery life than their phone counterparts.

 ✓ Tablets may have cheaper cameras — or no cameras — because tablet
cameras typically get less use than phone cameras.

 ✓ Tablets often lack such common phone capabilities as GPS location
service.

 In addition, don’t be surprised if you have to design your app (or tweak an
existing one) to accommodate new tablet features.

 Tweaking the Tasks App for Tablets
 To help accommodate the differences, you use a few techniques to upgrade
the Tasks app so that it can work on both tablets and phones.

 Use these strategies every time you design an Android application because
it’s likely that most of your apps target users of both types of devices.

 Anticipating screen size with
a responsive layout
 Go with the flow when you’re designing your layout to fit multiple screen
sizes. A flowing, or responsive , layout skips a lot of hassle and frustration for
both the designer and the user.

297 Chapter 16: Developing for Tablets

 If you’re familiar with iOS development from a few years back, you know that
back then you only had a few screen sizes to worry about: a couple of iPhone
sizes, and a couple of iPad sizes. Each size required both low- and high-
resolution images, but that was easy enough to handle: Design for iPhone
first, and then for iPad, and then plug in the low- and high-resolution images
in the respective versions and you were done.

 Android has never been quite as simple to design for. Layouts in Android
need to “flow” — that is, resize and rearrange themselves — so that they can
accommodate minor (and sometimes major) differences in the width and
height of users’ devices. Android developers have dozens or hundreds of
 different sizes of devices to worry about.

 It’s similar to designing for websites — when you’re building a website, you
can’t assume that all users will view it in browser windows that are exactly
the same size (800 x 600 pixels). Users may view the site from bigger (or
sometimes smaller) browser windows; your design must be flexible enough
to give a good experience to the whole range of sizes. Designing for Android
makes the same requirement. In fact, iOS is now moving in this same direc-
tion, and encouraging their developers to use flowing layouts as well.

 So how do you perform this bit of magic? For openers, don’t try to use fixed
dimensions (such as 10px or 120dp) in your layouts. Instead, favor relative
dimensions, such as "wrap_content" and "match_parent" as much as
possible. The idea is to achieve a responsive layout that can resize to fit the
device.

 The following code shows a layout that makes too many assumptions about
the device it’s on:

 <?xml version="1.0" encoding="utf-8”?>
 <TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="300px"
 android:layout_height="match_parent"
 android:lines="1"
 android:text="Occurrences of the word 'Internet' in the Gettysburg

Address: 0 (unverified)"/>

 The code has multiple problems:

 ✓ It uses a fixed-sized TextView rather than flexible dimensions, like
 wrap_content and match_parent .

 ✓ It uses pixels (px) to measure size, which doesn’t scale automatically
across different devices, as dp (device-independent pixels) would.

 ✓ It hard-codes the number of lines in TextView to 1 and doesn’t tell
Android what to do with any overflow.

298 Part IV: Android Is More Than Phones

 ✓ It doesn’t use ScrollView , so if your layout is taller than the device
screen, there’s no way to see the offscreen views.

 ✓ Generally speaking, many of your layouts should be wrapped in a single
 ScrollView to handle unanticipated overflow off the bottom of the
screen. Exceptions include layouts that already handle scrolling, such
as ListView , which shouldn’t be wrapped in a ScrollView . The
example above uses only a single TextView , so it’s unlikely to need a
 ScrollView , but more complicated layouts should consider them.

 Figure 16-1 shows the TextView from the above code. It abruptly cuts off
text midsentence because of the fixed size. If the developer had used a
responsive layout, the text wouldn’t have been cut off.

 Figure 16-1:
 A non-

responsive
layout that

abruptly
truncates

after
“Occurr-

ences
of . . .”

 Fixing this particular example is easy by changing the width of the TextView
and replacing android:lines="1" with android:maxLines="3" :

<?xml version="1.0" encoding="utf-8”?>
 <TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:maxLines="3"
 android:text="Occurrences of the word 'Internet' in the Gettysburg Address:

0 (unverified)"/>

 When you’re designing your layouts, always consider the maximum size of
each item in your layout. The app content can take up more space than you
expect, and it’s important to anticipate these situations and plan for them
rather than end up with an app that looks ugly.

299 Chapter 16: Developing for Tablets

 Adding more fragments
 Android uses fragments to help you deal with the additional real estate on
tablets. The basic idea is that a typical phone activity centers on one, two, or
three distinct groups of reusable onscreen items. Put each of these groups
into its own fragment and it becomes easy to reuse across multiple activities.

 You’re going to do exactly this — you’ll add the TaskEditFragment and the
 TaskListFragment from your two phone activities into a single new activ-
ity that tablet users will enjoy.

 Figure 16-2 shows how Tasks fragments lay out on a phone and on a tablet.

 Figure 16-2:
 Fragments
can handle

a single
activity on

a phone
(left) or two

activities
on a tablet

(right).

 Without fragments, you’d have to reinvent the wheel every time you wanted
to make an activity that shows a list of tasks. Using fragments, just write the
code once and you can reuse it as many times as you want.

 Creating different layouts
for different devices
 The fragment is a handy feature for the designer, but how do you slice and
dice fragments to show the right experience for the right device? The tablet’s
relatively vast screen real estate (compared to a phone) can show one or two
more fragments on a single activity.

300 Part IV: Android Is More Than Phones

 You can use one layout containing a single activity for your phone
and another layout containing multiple fragments for your tablet. For
example, here’s the TaskListActivity layout for the phone size in
the Tasks app:

 <?xml version="1.0" encoding="utf-8"?>
 <fragment xmlns:android="http://schemas.android.com/apk/res/android"
 android:name="com.dummies.tasks.fragment.TaskListFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />

 And Listing 16-1 shows how you might modify the code using two fragments
to create a two-column layout on a tablet:

 Listing 16-1: Two-Column Table Layout Example
 <?xml version="1.0" encoding="utf-8?>"
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:orientation="horizontal"
 android:layout_height="match_parent">

 <fragment
 android:id="@+id/list_fragment"
 android:name="com.dummies.tasks.fragment.TaskListFragment"
 android:layout_width="0dp"
 android:layout_weight="1"
 android:layout_height="match_parent"
 />

 <fragment
 android:id="@+id/edit_fragment"
 android:name="com.dummies.tasks.fragment.TaskEditFragment"
 android:layout_width="0dp"
 android:layout_weight="1"
 android:layout_height="match_parent"
 />

 </LinearLayout>

 This is very similar to what you’ll do later in the chapter to put two fragments
next to each other.

301 Chapter 16: Developing for Tablets

 Configuring a Tablet Emulator
 First things first — you need a tablet on which to test your application. If you
already have a tablet, you’re well on your way; if you don’t, then you need an
emulator to emulate an Android device on your computer. Google calls these
Android Virtual Devices (AVDs). Follow these steps to get the Google Nexus
7 AVD:

1. Choose Tools➪Android➪AVD Manager in Android Studio.

2. Click Create Virtual Device.

 Three strategies for adding tablet support
 There are three main strategies that you can
use to make your phone app work on tablets.
Each is perfectly reasonable and has its own
set of advantages and disadvantages.

 The first strategy is to make two different apps:
one for phones and one for tablets. This sounds
wasteful, but in fact it’s quite easy to use build
variants to create two different apps from
nearly the same codebase.

 The advantage of this strategy is that you can
keep all your shared code in one place but keep
any phone-specific or tablet-specific code in
separate directories. That way, the tablet code
won’t need to be installed on phones where it
won’t be used, and vice versa. The disadvan-
tage of this strategy is that you need to manage
two APKs, one for phones and one for tablets,
every time you make a new release of your app.

 The second strategy is to use a single app
for both types of devices, but use different
activities and choose between them when you
launch the app. For example, the phone app
might have a TaskListActivity which
shows a list of tasks, and the tablet might
have a TaskListAndEditActivity
which shows a list of tasks, but also shows
the edit fragment next to the list (as described
in the previous section). You would then

add a special LaunchActivity which
would be your app’s main launcher activity
in the AndroidManifest . At startup, the
 LaunchActivity would quickly detect if
you were on a tablet or on a phone, and start
the appropriate activity before finishing itself. It
would happen so fast that users would never
even see the LaunchActivity itself.

 The advantage of this strategy is that your app
will still appear as a single app in the Google
Play Store. The disadvantage is that all the
phone code will also be installed on all your
tablets, and vice versa.

 The third strategy is to use the exact same
activities on both phones and tablets, but to
change the layouts for each type of device. This
can work great for simple apps. The advantage
of this strategy is that you don’t need to worry
about writing additional activities to handle dif-
ferent device types. The disadvantage is that
your phone and tablet code can start getting
tangled in your activities, potentially making the
activities complicated.

 In this chapter, you will use the first strategy
and build two separate apps for phones and
tablets. However, you may want to experiment
with the second strategy (or even the third)
after you finish this chapter.

302 Part IV: Android Is More Than Phones

3. Choose Tablet, then Nexus 7, and click Next.

4. Choose Lollipop 21 x86 and click Next.

5. Click Finish.

6. Choose the AVD you just created from the list of AVDs, and click the
Start button to launch it.

 See Chapter 3 for a reminder of how to configure an emulator.

 Creating a New Product Flavor
 As mentioned in the “Three strategies for adding tablet support” sidebar, you
are going to create two product “flavors” for your app — one for phones and
one for tablets. Each flavor will have its own APK file. For the most part, the
flavors will share the same code, but they can have some slight differences in
code and configuration.

 Add the following to the android section of your Tasks build.gradle :

 productFlavors {
 phone {}
 tablet {}
 }

 Both flavors will use all of the default settings, so there is no need to add
any configuration to either of them. Later, you will set up each flavor to
use a slightly different set of files, but for now they’re identical. When you
do this, the shared code and resources will go into src/main (shared by
all flavors), and the code for phones and tablets will go into src/phone
and src/tablet , respectively, as specified by the name of the flavors you
defined in the previous code.

 Now choose Build➪Rebuild Project and build your project again. If you then
choose View➪Tool Windows➪Messages, you should see your project being
built for both phones and tablets as in Figure 16-3 .

 Figure 16-3:
Build

Messages
showing

Tasks being
built for

phones and
tablets.

303 Chapter 16: Developing for Tablets

 There’s more to do, so go through the next sections before you try to install
and run your two flavors.

 Creating an AndroidManifest for Phones
 There are going to be slight differences between your phone and tablet apps.
Both require their own AndroidManifest.xml file. For the most part,
the configuration will remain in your existing AndroidManifest.xml , but
you’ll need to make some specific changes for each flavor that goes into a
phone and tablet AndroidManifest.xml . The information in the phone
and tablet AndroidManifest.xml will override the information in the main
 AndroidManifest.xml .

 Moving the TaskListAdapter
 First, go to your AndroidManifest.xml file and remove the following code:

 <activity
 android:name="com.dummies.tasks.activity.TaskListActivity"
 . . . >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 <intent-filter>
 </activity>

 The TaskListActivity will be used only on your phone. You create a
 different activity for tablets. So for that reason, you just removed it from the
shared AndroidManifest.xml .

 The next step is to create the phone’s AndroidManifest.xml . But before
creating it, first create the phone directory by going to your src directory
and creating a new directory named phone . The directory phone must match
the name of the flavor you created in your build.gradle in the previous
section.

304 Part IV: Android Is More Than Phones

 Next, create a new AndroidManifest.xml file in the src/phone directory
with the following contents:

 <?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android" >

 <application>
 <activity android:name="com.dummies.tasks.activity.TaskListActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

 </manifest>

 You just moved the TaskListActivity from the shared
 AndroidManifest.xml to the phone-specific AndroidManifest.xml .

 Now build and run your app to make sure you haven’t broken anything. If
everything worked properly, the app should run identically to how it did
before you split the AndroidManifest.xml .

 Informing the Google Play Store
 There is one more thing you need to do: Tell the Google Play Store that the
phone version of your app should only be visible and installable on phones,
not tablets. If you do not do this, the Google Play Store will show the phone
app to people on tablets!

 Open the src/phone/AndroidManifest.xml file and add the code in bold:

 <?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android" >

 <compatible-screens>
 <!-- all small size screens -->
 <screen android:screenSize="small" android:screenDensity="ldpi" /> ➝6
 <screen android:screenSize="small" android:screenDensity="mdpi" />
 <screen android:screenSize="small" android:screenDensity="hdpi" />
 <screen android:screenSize="small" android:screenDensity="xhdpi"/>
 <screen android:screenSize="small" android:screenDensity="480" /> ➝10
 <!-- all normal size screens --/>
 <screen android:screenSize="normal" android:screenDensity="ldpi" /> ➝12
 <screen android:screenSize="normal" android:screenDensity="mdpi" />
 <screen android:screenSize="normal" android:screenDensity="hdpi" />

305 Chapter 16: Developing for Tablets

 <screen android:screenSize="normal" android:screenDensity="xhdpi"/>
 <screen android:screenSize="normal" android:screenDensity="480" /> ➝16
 </compatible-screens>

 <application>
 <activity android:name="com.dummies.tasks.activity.TaskListActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

 </manifest>

 The compatible-screens element is not used by Android or your app
directly. It is used only by the Google Play Store to determine which devices
this app is compatible with.

 ➝ 10 Declares that your app is compatible with all five resolutions of
 "small" screens (ldpi, mdpi, hdpi, xhdpi, and xxhdpi). You’ll
notice that instead of saying xxhdpi on line 10, we say 480. This is
because, at the time of this writing, the compatible-screens
element does not yet support xxhdpi directly, so we need to use
the numerical value for xxhdpi, which is 480.

 ➝ 12—16 Does the same, but for "normal" size devices.

 These two sections declare that your app will run fine on small and normal
devices, but will not run on large or extra-large devices (generally tablets).

 The compatible-screen element is a little tricky. If you want to make
changes to this section, make sure you read http://d.android.com/
guide/practices/screens-distribution.html .

 Creating an AndroidManifest for Tablets
 Now that you have a fully functioning phone app again, it’s time to start work-
ing on the tablet app.

 Create a directory named tablet inside the src directory. Inside the
 tablet directory, create an AndroidManifest.xml for tablets that looks
like the following:

 When creating new product flavors, the name of the directory under src
must match the name of the flavor in the build.gradle . You can name
them whatever you want, as long as they agree.

http://d.android.com/guide/practices/screens-distribution.html

306 Part IV: Android Is More Than Phones

 <?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android" >

 <application>

 <!-- Declare our main activity, which will be different than the
 main activity for phones.
 -->
 <activity android:name=
 "com.dummies.tasks.tablet.activity.TaskListAndEditorActivity" > ➝10
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

 </application>

 </manifest>

 Just like the phone manifest in the previous section, this manifest declares
a single activity that will be the main launcher activity for the app — except
the activity for tablets is different from the one for phones.

 You should receive an error on line 10. That’s okay; you create the
 TaskListAndEditorActivity in the next section.

 There is one more thing to do. You must tell the Google Play Store that this
app is available only for tablets and not for phones. Add the following to your
manifest:

 <?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android" >

 <compatible-screens>
 <!-- all large size screens -->
 <screen android:screenSize="large" android:screenDensity="ldpi" />
 <screen android:screenSize="large" android:screenDensity="mdpi" />
 <screen android:screenSize="large" android:screenDensity="hdpi" />
 <screen android:screenSize="large" android:screenDensity="xhdpi"/>
 <screen android:screenSize="large" android:screenDensity="480" />
 <!-- all xlarge size screens -->
 <screen android:screenSize="xlarge" android:screenDensity="ldpi" />
 <screen android:screenSize="xlarge" android:screenDensity="mdpi" />
 <screen android:screenSize="xlarge" android:screenDensity="hdpi" />
 <screen android:screenSize="xlarge" android:screenDensity="xhdpi"/>
 <screen android:screenSize="xlarge" android:screenDensity="480" />
 </compatible-screens>

307 Chapter 16: Developing for Tablets

 <application>

 <!-- Declare our main activity, which will be different than the
 main activity for phones.
 -->
 <activity android:name=
 "com.dummies.tasks.tablet.activity.TaskListAndEditorActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

 </application>

 </manifest>

 Notice the difference between the phone manifest and the tablet manifest. In
the phone manifest, you said the flavor supported small and normal screens,
but in the tablet manifest you say it supports large and xlarge screens.

 Making the TaskListAndEditorActivity
for Tablets

 You’ve created and built the phone app. You’ve declared the manifest file for
the tablet app. The next step is to create the TaskListAndEditorActivity
which only tablets will use.

 Creating the tablet activity class
 The first step is to create the directories you need. Create the following direc-
tories inside the tablet directory:

 ✓ java

 ✓ java/com

 ✓ java/com/dummies

 ✓ java/com/dummies/tasks

 ✓ java/com/dummies/tasks/tablet

 ✓ java/com/dummies/tasks/tablet/activity

308 Part IV: Android Is More Than Phones

 Then create a new file inside the tablet/java/com/dummies/tasks/
tablet/activity directory named TaskListAndEditorActivity.java
with the following code:

 public class TaskListAndEditorActivity extends Activity
 implements OnEditTask, OnEditFinished ➝2
 {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_task_list_and_editor);
 setActionBar((Toolbar) findViewById(R.id.toolbar));
 }

 /**
 * Called when the user asks to edit or insert a task.
 */
 @Override
 public void editTask(long id) { ➝16
 }

 /**
 * Called when the user finishes editing a task.
 */
 @Override
 public void finishEditingTask() { ➝23
 }

 }

 The onCreate method creates a new activity, sets its content to the
 activity_task_list_and_editor.xml layout (which you will create),
and sets its action bar to the toolbar element.

 In addition, you’ll see the following happen on these lines:

 ➝ 2 You declare that this activity will implement the OnEditTask
and OnEditFinished interfaces.

 ➝ 16-23 The methods from the interfaces on line 2 are defined on
these lines. Currently they are empty, but you will recall from
Chapters 9 and 10 that these methods are used to figure out
what the fragment will do when the user asks to edit a task and
finishes editing a task. You will complete these methods in a
later section.

309 Chapter 16: Developing for Tablets

 Adding the tablet layout
 Next, add the layout file. Create a new directory inside the src/tablet
directory called res . Inside res , create a directory named layout ,
and inside the layout directory create the layout file named
 activity_task_list_and_editor.xml :

 <?xml version="1.0" encoding="utf-8"?>
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" ➝2
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:baselineAligned="false">

 <Toolbar ➝8
 style="?android:actionBarStyle"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:title="@string/app_name"
 android:id="@+id/toolbar"/>

 <LinearLayout ➝15
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal"
 android:baselineAligned="false">

 <fragment ➝21
 android:id="@+id/list_fragment"
 android:name="com.dummies.tasks.fragment.TaskListFragment"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1"/>

 <FrameLayout ➝28
 android:id="@+id/edit_container"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="2"/>

 </LinearLayout>

 </LinearLayout>

 This layout consists of three main parts:

 ✓ A toolbar

 ✓ The list fragment

 ✓ A framelayout which holds your edit fragment

310 Part IV: Android Is More Than Phones

 If you look back to Listing 16-1 at the beginning of the chapter, you’ll see that
the layout is pretty similar, but instead of having two fragments in the layout,
it has one fragment and one placeholder. The reason the second fragment
needs to be a placeholder is because the edit fragment cannot be instantiated
without knowing the ID of the task that needs to be edited. Because the ID isn’t
known at the time the layout is created, you must inflate the fragment manu-
ally so that you can specify the ID. Look back at Chapter 10 and you’ll see you
needed to do the same thing there for the TaskEditFragment .

 Discussion of the previous code in more detail:

 ➝ 2 A vertical LinearLayout that holds the two fragments for your
tablet layout. Set baselineAligned to false as recommended
by Android lint to get a tiny bump in performance. See Chapter 17
for more information about Android lint.

 ➝ 8 The toolbar for the activity. It won’t be styled automatically, so
set its style to the theme’s actionBarStyle . Also set its title to
the app’s name.

 ➝ 15 A second LinearLayout , this one arranged horizontally. This
 LinearLayout is used to hold the two side-by-side fragments.

 ➝ 21 The list view fragment, which occupies the leftmost third
of the screen. It is using one-third of the screen because its
 layout_weight is set to 1 , whereas the layout_weight of the
other fragment on line 28 is set to 2 , and 1 out of 3 is one-third.
Remember, when using layout_weight , you must set your
 layout_width to 0 .

 ➝ 28 The edit view fragment, which occupies the remaining two of
three parts of the screen.

 Building the Tablet App
 The tablet app isn’t quite done yet, but it’s time to run it and see what hap-
pens. How do you choose whether to build the phone app or the tablet app?
Android Studio gives you a simple way to choose.

 Choose View➪Tool Windows➪Build Variants. You should see a tool window,
listing the build types for each of your apps. Click the build variant for Tasks
and change it to say tabletDebug (see Figure 16-4):

 There are four build variants listed for the Tasks app. These correspond to
the two buildTypes and the two productFlavors in your build.gradle
as shown in Table 16-1 .

311 Chapter 16: Developing for Tablets

 Your build.gradle may not explicitly list a debug buildType , but it is
always there by default.

 You can add additional buildTypes or productFlavors if you want, but
be careful! The number of build configurations can explode very quickly if
you add a bunch of new productFlavors or buildTypes .

 Now choose Build➪Make Project and build the tablet app. Then choose
Run➪Run ‘Tasks ’ to run your app, and choose the tablet emulator you cre-
ated earlier in this chapter. You should see a list view but no editor view, as in
Figure 16-5 .

 Figure 16-4:
 The Build
Variants

tool window
with the

 tablet
Debug

flavor
selected.

 Table 16-1 The Four Build Configurations for the Tasks App

buildTypes / productFlavors Debug Release
Phone phoneDebug phoneRelease

Tablet tabletDebug tabletRelease

 Figure 16-5 :
 The Tasks

app with
only a list

view
running in

the Nexus 7
emulator.

312 Part IV: Android Is More Than Phones

 The emulator has several special keys that control it. To rotate the emulator,
use Ctrl-F11 or Ctrl-F12. Note that, if you’re on a Mac, you may also need to
hold down the Fn key depending on how your keyboard is set up.

 It looks great! But the problem is that there is no way add or edit tasks. You
need to fill out the editTask() and finishEditingTask() methods.

 Adding the App Callbacks
 Recall from Chapter 10 that, on phones, the editTask() method started a
new TaskEditActivity as shown in Listing 16-2 (do not add this code to
your tablet app!):

 Listing 16-2: The editTask() Method for Phones (Not Tablets)
 @Override
 public void editTask(long id) {
 // When we are asked to edit a reminder, start the
 // TaskEditActivity with the id of the task to edit.
 startActivity(new Intent(this, TaskEditActivity.class)
 .putExtra(TaskEditActivity.EXTRA_TASKID, id));
 }

 Instead of starting a new activity on tablets, it makes more sense to use some
of the empty real estate on the right-hand side of the page as a task editor.
So for tablets, you’ll use a different version of editTask() , which opens the
editor fragment inside the current activity.

 Add the following code to TaskListAndEditorActivity.java :

 @Override
 public void editTask(long id) {
 TaskEditFragment fragment = TaskEditFragment.newInstance(id); ➝3

 FragmentTransaction ft = getFragmentManager() ➝5
 .beginTransaction();
 ft.replace(R.id.edit_container, fragment,
 TaskEditFragment.DEFAULT_FRAGMENT_TAG);

 ft.addToBackStack(null); ➝10

 ft.commit(); ➝12
 }

313 Chapter 16: Developing for Tablets

 This code should look familiar. It’s very similar to the code you used in
Chapter 10 to instantiate the TaskEditFragment there. As a recap:

 ➝ 3 Creates the fragment for the given task id.

 ➝ 5 Adds the fragment to the activity. If there’s one already there (for
example, the user clicks on another task), then replace it. Tag the
fragment with a name (DEFAULT_FRAGMENT_TAG in this case) so
that you can find it again later.

 ➝ 10 Adds this change to the backstack, so that when the user clicks
the Back button you’ll pop this editor off the stack. If you don’t
do this, the whole activity closes when the user clicks the Back
button, which will be disruptive and unexpected.

 ➝ 12 Make it so!

 Now the only thing left to do is implement finishEditingTask() . All this
method needs to do is remove the fragment you just created, so add the code
in bold:

 @Override
 public void finishEditingTask() {
 FragmentManager fm = getFragmentManager();
 FragmentTransaction transaction = fm.beginTransaction();

 // Find the edit fragment using the tag,
 // and remove it from the activity.
 Fragment fragment = fm.findFragmentByTag(
 TaskEditFragment.DEFAULT_FRAGMENT_TAG);
 transaction.remove(fragment);

 transaction.commit();
 }

 Run the app again and you should be able to add and edit tasks.

 One More Thing . . .
 Do you remember adding that super cool code in Chapter 10 to change the
colors of your window based on the color of the image being displayed? Well,
that was pretty cool back then, but it looks a bit goofy now. For phones, the
colors take over the entire window, but here in the tablet they only cover the
right half of the page.

 Let’s disable the color change for tablets but keep it there for phones.

314 Part IV: Android Is More Than Phones

 First, define a SHOULD_USE_PALETTE field in your build configuration. Open
 build.gradle and add the lines in bold:

 productFlavors {
 phone {
 buildConfigField ‘boolean’, ‘SHOULD_USE_PALETTE’, ‘true’
 }
 tablet {
 buildConfigField ‘boolean’, ‘SHOULD_USE_PALETTE’, ‘false’
 }
 }

 This creates a new field named SHOULD_USE_PALETTE in the BuildConfig
class. The field is set to true for the APK built for phones, and to false for
the APK built for tablets.

 The next step is to use the field in your code. Open TaskEditFragment
.java and add the code in bold:

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor task) {
 . . .

 // Set the thumbnail image
 Picasso.with(getActivity())
 .load(TaskListAdapter.getImageUrlForTask(taskId))
 .into(
 imageView,
 new Callback() {
 @Override
 public void onSuccess() {
 Activity activity = getActivity();

 if (activity == null)
 return;

 // Don’t do this for tablets, only phones,
 // since it doesn’t really work with a split
 // screen view.
 if(!BuildConfig.SHOULD_USE_PALETTE)
 return;

 . . .
 }

 Now run your app again on the tablet; the Palette behavior should be disabled.
Verify that you haven’t broken anything on phones by changing your build
variant to phoneDebug and running the app again on your Nexus 5 phone
 emulator. The Palette behavior should still be present on your phone app.

 Congratulations! You now have a fully implemented version of your Tasks
app designed for tablets!

 Supporting Older Versions
of Android

 In This Chapter
 ▶ Learning about AppCompat

 ▶ Using the backward-compatibility theme

 ▶ Using the backward-compatibility toolbar

 ▶ Understanding resource directories for different Android versions

 ▶ Working with right-to-left languages on older devices

 ▶ Working around newer APIs on older devices

 ▶ Using Android lint

 It’s always nice to be able to write apps for the latest and greatest version
of Android. You can reduce the complexity of your app by targeting a

single version. It also makes testing your app much easier because there are
fewer devices you need to test every new feature on.

 Unfortunately, most of us (maybe not Uncle Jimmy) live in the real world. In
the real world, not everyone who wants to use your app is necessarily using
the latest version of Android.

 Why is this? Because the economics of device production make it profitable
for manufacturers to produce a wide range of Android handsets, but not nec-
essarily to keep upgrading those devices after they’ve been on the market
for a few years. Invariably, some devices stop getting updates, and users on
those phones are stuck with whatever version of Android they can get.

 Although it can be useful to support older versions of Android, it’s also
important to know where to draw the line. The older you go, the more dif-
ficult your job of developing and testing your app will become. Figure 17-1
shows you the distribution of Android versions across all devices in the
world as of the time of this writing.

Chapter 17

316 Part IV: Android Is More Than Phones

 To find the latest data, visit https://developer.android.com/about/
dashboards .

 Using the data in the figure, you can see that about 80 percent of the market
is covered by Android 4.1 and later. Knowing that the 80/20 rule says that
covering the last 20 percent of the market will take 80 percent of the work, it
makes sense to draw the line at Android 4.1.

 For more about the 80/20 rule (also known as the Pareto Principle), visit
 http://en.wikipedia.org/wiki/Pareto_principle .

 This chapter will show you how to make the Tasks app backward compatible
to Android 4.1 Jelly Bean (API 16).

 Understanding AppCompat
 Google provides a library, called AppCompat , that emulates many of the fea-
tures of later versions of Android on earlier versions. For example, features
that were introduced in Android 5.0, such as the Toolbar and Material Design,
have become available to Android 4.1 users using the AppCompat library.

 You use the AppCompat library in this chapter to make your app work on
Android 4.1.

 For more information about the AppCompat library, visit https://
developer.android.com/tools/support-library/features.html
and http://android-developers.blogspot.com/2014/10/
appcompat-v21-material-design-for-pre.html .

 Figure 17-1 :
 Percentage

of Android
devices by

OS version.

https://developer.android.com/about/dashboards
http://android-developers.blogspot.com/2014/10/appcompat-v21-material-design-for-pre.html

317 Chapter 17: Supporting Older Versions of Android

 Updating the build File
 The first step is to update your build file to indicate that your app supports
Android 4.1 (API level 16).

 Open the build.gradle file in the Tasks directory and make the following
changes:

android {
 compileSdkVersion 21

 . . .

 defaultConfig {
 applicationId "com.dummies.tasks"
 minSdkVersion 16 ➝8
 targetSdkVersion 21
 versionCode 1
 versionName "1.0"
 }

 . . .

 dependencies {
 . . .

 // For backward compatibility to 16
 compile "com.android.support:appcompat-v7:21.0.0" ➝20

 . . .
 }

 The following explains the code:

 ➝ 8 You changed the minSdkVersion from 21 to 16. This means
that your app can be installed on versions of Android as old as
Android 4.1 Jelly Bean (rather than Android 5.0 Lollipop). You
will leave the targetSdkVersion and the compileSdkVersion
alone.

 It’s important to keep the targetSdkVersion as close to the
latest Android version as possible. Whenever a new version of
Android comes out, you should increase the targetSdkVersion
(and possibly the compileSdkVersion if you want to use any
new features), and then build and test your app. See Chapter 3
for more information about the minSdkVersion , compileSdk
Version , and targetSdkVersion .

318 Part IV: Android Is More Than Phones

 ➝ 20 You added the AppCompat library to your project. As mentioned
in the previous section, AppCompat provides most of what you
need to support the features of the newest Android OS on earlier
versions of Android. It won’t do everything under the sun, but it
does support everything you need for the Tasks app.

 Adding the Toolbar
 In Chapters 9 and 10 you used the Toolbar widget to create both visible and
invisible action bars on the various pages of the Tasks app. You may not
have realized it then, but Toolbar was introduced in Android 5.0 and is not
available on Android 4.1.

 Luckily, the AppCompat library supplies its own implementation of Toolbar
which works on 4.1 and later. You just need to switch over to it.

 Open the following layout files:

 ✓ activity_task_edit.xml

 ✓ activity_task_list.xml

 ✓ activity_task_list_and_editor.xml

 In each file, change the Toolbar view to the android.support.v7.
widget.Toolbar , as in the following example:

 <android.support.v7.widget. Toolbar
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 . . .
 />

 This changes your layouts to use the AppCompat version of Toolbar. The
next step is to change your Java code to also use the AppCompat version
of Toolbar.

 Open the following Java files:

 ✓ TaskEditActivity.java

 ✓ TaskListActivity.java

 ✓ TaskListAndEditorActivity.java

319 Chapter 17: Supporting Older Versions of Android

 In each file, make the following changes:

 import android.widget.Toolbar; ➝1
 import android.support.v7.widget.Toolbar; ➝2

 . . .

 public class . . . extends ActionBarActivity ➝6
 {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 . . .
 setSupportActionBar((Toolbar) findViewById(R.id.toolbar)); ➝12
 . . .
 }
 }

 Here is a description of each of the changes above:

 ➝ 1 Previously, you used the Toolbar that ships as part of Android 5.0.
Remove the reference to this Toolbar; you replace it on the next
line.

 ➝ 2 Import the AppCompat version of Toolbar rather than the Android
5.0 version. This ensures that your app won’t crash on versions of
Android older than 5.0.

 ➝ 6 The Activity class that comes with Android 5.0 knows about the
Android 5.0 Toolbar, but it does not know about the AppCompat
version of Toolbar. Instead of using the built-in version of the
 Activity class, use the ActionBarActivity that comes with
 AppCompat . The ActionBarActivity class knows about the
 AppCompat Toolbar.

 ➝ 12 Similarly, the setActionBar() method you used in the old
 Activity class does not know about the AppCompat version of
Toolbar, so change that method call to one that does.

 Using the AppCompat Theme
 Open the Tasks styles.xml file. You’ll notice that the Tasks app theme
inherits from the Material Design theme:

 <style name="AppTheme"
 parent="android:Theme.Material.NoActionBar">

320 Part IV: Android Is More Than Phones

 This is a beautiful theme, but the problem is that the Material Design theme
did not exist prior to Android 5.0. You must use a different theme if you want
to support Android 4.1.

 Luckily, AppCompat ships with a backward-compatibility version of the
Material Design theme. This theme looks the same as the Material Design
theme on Android 5.0, and looks close to the same on older devices. You
need to update your theme to use the AppCompat theme.

 Make the changes in bold to your styles.xml file as shown in Listing 17-1 .

 Listing 17-1: Making the styles.xml File Backward Compatible
 <style name="AppTheme"
 parent="Theme.AppCompat.NoActionBar"> ➝2

 <item name="colorPrimary">@color/primary</item> ➝4
 <item name="colorPrimaryDark">@color/primary_dark</item> ➝5
 <item name="colorAccent">@color/accent</item> ➝6

 <!--<item name="android:navigationBarColor">@color/primary_
dark</item>--> ➝8

 . . .
 </style>

 <style name="AppTheme.TransparentActionBar" parent="AppTheme">
 <!--<item name="android:windowTranslucentStatus">true</item>--> ➝14
 <!--<item name="android:windowTranslucentNavigation">

true</item>-->` ➝15
 . . .
 </style>

 <style name="TransparentActionBar" parent="Theme.AppCompat"> ➝19
 . . .
 </style>

 Here is what the changes do:

 ➝ 2 Change your AppTheme to inherit from the AppCompat Theme.
AppCompat.NoActionBar rather than from Android 5.0’s
 Theme.Material.NoActionBar .

 ➝ 4–6 Remove the android: namespace from the various theme color
definitions. These three color definitions were introduced in
Android 5.0, so they did not exist in 4.1. The AppCompat theme
will find them without the android: namespace.

321 Chapter 17: Supporting Older Versions of Android

 ➝ 8 Comment this line out. navigationBarColor isn’t supported
on 16. You fix this in a later section.

 ➝ 14 Comment this line out. windowTranslucentStatus isn’t sup-
ported on 16. You fix this in a later section.

 ➝ 15 Comment this line out. windowTranslucentNavigation isn’t
supported on 16. You fix this in a later section.

 ➝ 19 Replace Android 5.0’s Theme.Material with AppCompat ’s equiv-
alent Theme.AppCompat .

 Testing Your App
 At this point, you should be able to try running your app. However, I have
bad news: Your life just got a whole lot more complicated.

 To thoroughly test your app, you should create the following 12 emulators,
shown in Table 17-1 :

 Table 17-1 One. MILLION. Emulators . . .

Phone Tablet
 16 Nexus 5 API 16 Nexus 7 API 16

 17 Nexus 5 API 17 Nexus 7 API 17

 18 Nexus 5 API 18 Nexus 7 API 18

 19 Nexus 5 API 19 Nexus 7 API 19

 20 Nexus 5 API 20 Nexus 7 API 20

 21 Nexus 5 API 21 Nexus 7 API 21

 Go ahead, I’ll wait. And while you’re doing that, maybe you want to create
another 12 emulators to test out the Nexus 4 and Nexus 9? But that wouldn’t be
fair to all the other Android manufacturers, so maybe you want to create a few
emulators for Samsung, Motorola, HTC, LG, and other manufacturers . . .

 As you can see, this can quickly get out of hand. For simplicity, it’s best to
just pick a few representative extremes on the device matrix and test those
thoroughly. Then you can spot-check other devices as necessary.

322 Part IV: Android Is More Than Phones

 For this section, let’s test with the following 4 emulators (or are you an over-
achiever? Go ahead and create the 12 emulators from Table 17-1):

 ✓ Nexus 5 API 16

 ✓ Nexus 5 API 21

 ✓ Nexus 7 API 16

 ✓ Nexus 7 API 21

 Choose Tools➪Android➪AVD Manager and create the four emulators. See
Chapter 3 for more information about how to create emulators.

 After your emulators are available, try running the app on each, one at a
time. You should see something like what’s in Figure 17-2 .

 Poke around in the app a bit. As you can see, the app seems to work fine on
Android 5.0 phones and tablets, but there are some bugs on Android 4.1 devices.

 Figure 17-2 :
 Tasks app

on a 4.1
phone (a),
5.0 phone

(b), 4.1 tablet
(c), and 5.0

tablet (d).

323 Chapter 17: Supporting Older Versions of Android

 Working with Right-to-Left Languages
 Looking at Figure 17-2 a, it appears that the Tasks app does not lay out the
text on its cards correctly for Android 4.1 devices.

 The reason is that we used some features in our layouts that added sup-
port for right-to-left languages (such as Hebrew and Arabic) in Chapter 9 .
However, right-to-left languages were not added to Android until Android 4.2,
so these layouts do not render properly on Android 4.1.

 To fix this, you need to change your layouts to have the proper right-to-left
directives, but add the older non-right-to-left directives as well.

 For the next set of code changes, it’s helpful to look at the next two figures.
Figure 17-3 illustrates how to configure things for left-to-right languages.

 Figure 17-3 :
 Laying out

left-to-right
languages

like English.

 Because you are reading this book in English, presumably you are accus-
tomed to read in left-to-right languages. For left-to-right languages, things
that are on the left of something can be thought of as at the start of the item.
Things to the right can be thought of as at the end of the item.

 For right-to-left languages, this is reversed, as you can see in Figure 17-4 .

 In the next few code blocks, you will add toLeftOf directives to anything
that is currently using toStartOf . Similarly, you will add toRightOf any-
where that toEndOf is currently being used.

 Figure 17-4 :
 Laying out

right-to-left
languages

like Hebrew
and Arabic.

324 Part IV: Android Is More Than Phones

 Open card_task.xml and make the following additions:

 <ImageView
 android:id="@+id/image"
 . . .
 android:layout_alignParentStart="true"
 android:layout_alignParentLeft="true" ➝5
 />

 <TextView
 android:id="@+id/text1"
 . . .
 android:layout_toEndOf="@id/image"
 android:layout_toRightOf="@id/image"/> ➝12

 <TextView
 android:id="@+id/text2"
 . . .
 android:layout_alignStart="@id/text1"
 android:layout_alignLeft="@id/text1" ➝18
 />

 These changes do the following:

 ➝ 5 The ImageView is intended to align with the left side of the
parent view. The way to indicate this in a non-directional way
is to say that it is aligned with the parent start, as shown on the
previous line. However, for older Android versions that don’t have
a non-directional way to specify parent start, you must add the
 alignParentLeft directive.

 ➝ 12 Similarly, this text view is intended to be laid out to the right of
the image on left-to-right devices, and to the left of the image on
right-to-left devices. Hence, it uses layout_toEndOf on the pre-
vious line to indicate this. For older versions of Android, you must
add the layout_toRightOf , which means the same thing in
 left-to-right languages.

 ➝ 18 Adds layout_alignLef t to the TextView that is already using
 layout_alignStart .

 Next, open fragment_task_edit.xml and make the following additions:

 <TextView
 android:id="@+id/task_time"
 . . .
 android:layout_marginEnd="3dp"
 android:layout_marginRight="3dp"
 android:layout_alignEnd="@id/title"
 android:layout_alignRight="@id/title"/>

325 Chapter 17: Supporting Older Versions of Android

 <TextView
 android:id="@+id/task_date"
 . . .
 android:layout_marginEnd="10dp"
 android:layout_marginRight="10dp"
 android:layout_toStartOf="@id/task_time"
 android:layout_toLeftOf="@id/task_time"/>

 <EditText
 android:id="@+id/notes"
 . . .
 android:layout_alignStart="@id/title"
 android:layout_alignLeft="@id/title"
 android:layout_marginEnd="@dimen/gutter"
 android:layout_marginRight="@dimen/gutter"/>

 Now when you rerun the app, the text on the list card and the edit fragment
should be where you expect them to be.

 Fixing the Add Task Menu
 If you look at the screen shots in Figure 17-2 , you may notice that the Add
Task menu icon is missing.

 Where did it go? The answer is in the menu_list.xml file. Open it now and
look at the lines that use showAsAction .

 The problem is that android:showAsAction was not available on very old
versions of Android, so the AppCompat library doesn’t look for it. Instead, it
looks in its own namespace.

 Open menu_list.xml and add the lines in bold:

 <menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"> ➝2

 <item
 android:id="@+id/menu_insert"
 android:showAsAction="always"
 app:showAsAction="always" ➝7
 . . . />

326 Part IV: Android Is More Than Phones

 <item
 android:id="@+id/menu_settings"
 android:showAsAction="never"
 app:showAsAction="never" ➝13
 . . . />

 </menu>

 Lines 7 and 13 add a second showAsAction directive in the app: namespace
in addition to the one that’s already there in the android: namespace. But
before you can use the app namespace, you have to declare it as on line 2.

 The http://schemas.android.com/apk/res-auto namespace (also
known as the res-auto namespace) is a special placeholder namespace that
Android replaces with a namespace containing your app’s package name.
You use it whenever you want custom attributes, which you can create for
the custom views in your app. You also use it when you need custom attri-
butes defined by a third-party library, such as the showAsAction attribute
which is defined in the AppCompat library.

 If you rerun the app on your 4.1 and 5.0 emulators, you should see that the
Add Task menu has now returned.

 Fixing the Window Options
 If you run the app on a 5.0 phone emulator and click an item, you will
notice some differences from how you built the app in Chapter 10 , shown
in Figure 17-5 .

 The differences are

 ✓ The status bar at the top is no longer translucent.

 ✓ The navigation bar at the bottom is no longer translucent.

 ✓ The Save button has been pushed down.

 The problem is that Android 4.1 does not support transparent/translucent
action, status, and navigation bars. You commented out these lines in Listing
 17-1 , and that’s why they’re broken now. You will need to add back in this
functionality, but do it in a way that won’t break Android 4.1.

 The solution is to create a new style specific to API level 21 (Android 5.0)
but otherwise leave the existing style alone. In order to avoid copying and
pasting code everywhere, share as much of the style as possible between
the existing and the 5.0 styles by using inheritance.

327 Chapter 17: Supporting Older Versions of Android

 Figure 17-5 :
 The Edit

Task page
on a 5.0

phone
 emulator.

 Open styles.xml now and make the following changes:

 <!-- This theme will be overridden in newer SDKs -->
 <style name="AppTheme" parent="AppTheme.Base"/> ➝2

 <style name="AppTheme.Base" ➝4
 parent="Theme.AppCompat.NoActionBar">
 . . .
 </style>

 <!-- This theme will be overridden in newer SDKs -->
 <style name="AppTheme.TransparentActionBar"
 parent="AppTheme.TransparentActionBar.Base" /> ➝11

 <style name="AppTheme.TransparentActionBar.Base" parent="AppTheme"> ➝13
 . . .
 </style>

 Here is a description of the changes you just made:

 ➝ 2 Adds a new style, named AppTheme , which inherits from the
 AppTheme.Base . AppTheme.Base is the old style you had for
the app (previously it was called AppTheme). By separating

328 Part IV: Android Is More Than Phones

them out, you created a new “base” theme with all your app’s
style definitions, and a new theme that inherits from that base.
Practically speaking, this code will still behave exactly the same
as the old code. But by doing it this way, you can override values
for Android 5.0 later in this section.

 ➝ 4 Renames the old AppTheme theme to AppTheme.Base .

 ➝ 11 Do the same thing here as you did on line 2. Create a new
theme named AppTheme.TransparentActionBar for
the edit task page, and make it inherit from AppTheme.
TransparentActionBar.Base , which you create on line 13.

 ➝ 13 Renames the old AppTheme.TransparentActionBar to
 AppTheme.TransparentActionBar.Base .

 If you run the app now, it still behaves exactly as it did before.

 The next thing to do is to add the special 5.0-specific overrides to a style defi-
nition that is applied only to Android 5.0. Create a new directory in the res
folder named values-v21 , and then create a new file named styles.xml :

 <?xml version="1.0" encoding="utf-8"?>
 <resources>

 <style name="AppTheme" parent="AppTheme.Base">
 <item name="android:navigationBarColor">@color/primary_dark</item> ➝5
 </style>

 <style name="AppTheme.TransparentActionBar"
parent="AppTheme.TransparentActionBar.Base">

 <item name="android:windowTranslucentStatus">true</item> ➝9
 <item name="android:windowTranslucentNavigation">true</item> ➝10
 </style>

 </resources>

 This file contains the style items that you commented out from Listing 17-1 .
By putting them in the values-v21 directory, you are telling Android to use
resource directories to apply them only on Android 21 (also known as 5.0) or
later. See Chapter 6 for more information about resource directories.

 Here is more information about the previous code:

 ➝ 5 Sets the android:navigationBarColor in the AppTheme . This
fixes the bug that caused the navigation bar to not be colored cor-
rectly on tablets. And because this change is in the values-v21
directory, it applies only to Android 5.0 or later.

329 Chapter 17: Supporting Older Versions of Android

 ➝ 9 Tells Android 5.0 or later to set the android:windowTranslucent
 Status to true , which makes the status bar translucent on the
Edit page.

 ➝ 10 Tells Android 5.0 or later to set the android:windowTranslucent
Navigation to true , which makes the navigation bar translucent
on the Edit page.

 Using Newer APIs
 Every version of Android introduces some new APIs. For example, as you
saw earlier in this chapter, Android 5.0 introduced the new Toolbar API. To
use the Toolbar, the AppCompat library provides an alternative version of
Toolbar that works on older versions of Android.

 But what do you do if you have no equivalent for a new API in AppCompat ?
After all, AppCompat can’t be expected to provide ports of new functionality
for every single old version of Android.

 In cases where a new API isn’t available on older versions of Android, and
you have no support for it in the AppCompat or other Android support librar-
ies, you must disable that functionality in your app when it is run on versions
of Android that do not support that feature.

 See https://developer.android.com/tools/support-library/
features.html for more information about the various Android support
libraries, including AppCompat .

 The way to do this is to check the version of Android before you attempt to
use one of these APIs. If you’re running on a version of Android that is too
old, then disable that feature; otherwise, let it go through. For example, if
your app uses the new Advanced Camera APIs introduced with Android 5.0,
you could do something like the following:

 if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 String[] ids = cameraManager.getCameraIdList();
 . . .
 } else {
 Toast.makeText(this,
 "Sorry, that feature is not available on this " +
 "version of Android",
 Toast.LENGTH_SHORT).show();
 }

 You won’t need to do this for any of the APIs that the Tasks app uses, but it’s
good to know what to do should you ever need it.

https://developer.android.com/tools/support-library/features.html

330 Part IV: Android Is More Than Phones

 Using Android Lint
 When dealing with backward compatibility, it’s very easy to accidentally use
some APIs that are available on your current API version, but weren’t avail-
able a few years ago on older versions of Android. If you’re not paying atten-
tion and do this, everything will seem to work fine on your latest-and-greatest
phone, but your users will see crashes on their older phones.

 A great tool is available to help you find these sorts of situations before they
happen. It’s called Android lint.

 If you are familiar with the lint tool on other programming platforms, Android
lint is very similar. Android lint examines the source code for your project
and finds anything that looks suspicious and could possibly be a bug. Not
all these warnings may, in fact, turn out to be bugs, but it’s important to go
through each one and make sure you know whether they are or aren’t.

 The reason that Android lint is so useful when working with backward com-
patibility is that it automatically flags any use of older APIs that haven’t been
wrapped in build version checks.

 To run Android lint, open a file in the Tasks project and then choose
Analyze➪Inspect Code. Click Module ’ Tasks ’ as in Figure 17-6 and click OK.

 After Android lint has finished running, you see a report similar to what’s in
Figure 17-7 .

 Figure 17-6 :
 Choosing

which
modules

to inspect
using

Android lint.

331 Chapter 17: Supporting Older Versions of Android

 This report gives you a list of warnings that may or may not be bugs in your
app. You click each warning to view a description of it. If it’s a bug, then you
should fix it. If it’s not in this particular case, you are given the option to sup-
press the warning. By suppressing the warning, you indicate to the lint tool
that you acknowledge the warning, you have checked it, and you know it’s
not an error.

 Android lint can be a very powerful tool to find potential problems with your
code before you release it. Make sure you run it frequently and keep your
codebase clean and lint free! For more information about Android lint, visit
 http://d.android.com/tools/help/lint.html .

 Figure 17-7 :
 The Android

lint report
for the

Tasks app.

 Wearing the Tasks App
In This Chapter

 ▶ Understanding Android Wear

 ▶ Creating an Android Wear emulator

 ▶ Connecting Android Wear to your phone

 ▶ Building a Wear app

 ▶ Syncing data to your Wear app using Google Play

 ▶ Packaging your Wear app

 Android Wear extends the Android platform to a new generation
of devices, with a user experience that’s designed specifically for

 wearables.

 Android Wear devices (usually watches) are designed to complement your
existing Android phone or tablet (see Figure 18-1). They are not designed
to be standalone and usually do not have their own Wi-Fi or LTE radios, but
instead communicate with the Internet through your phone over Bluetooth.
Any Android phone running Android 4.3 or later can easily pair with an
Android Wear watch.

 Users typically interact with Android Wear in one of three ways:

 ✓ The Context stream: This is a vertically scrolling list of cards much like
you might find in the Google Now app. The Context stream is a list of
notifications that are relevant to you right now. They might include the
current weather in your area, the traffic report for your evening com-
mute, notifications from apps on your phone, or just about anything
else. These notifications are usually the same notifications that show up
on your Android phone.

 ✓ Voice control: Android Wear allows you to do many things simply by
speaking to your watch. (To learn how to add voice control to your
wearable app, visit the book’s online web extras at www.dummies.com/
extras/androidappdevelopment).

Chapter 18

www.dummies.com/extras/androidappdevelopment

334 Part IV: Android Is More Than Phones

 ✓ Apps: You can install specially designed Android Wear apps on your
watch. These are usually not the same as regular Android phone apps
because they need to run on much smaller screens and use much less
memory.

 Figure 18-1:
 A notifica-
tion on an

Android
Wear

watch.

 By default, any Android phone app that posts notifications automatically
displays its notifications in the Context stream on your Android Wear watch.
If you have an Android Wear device, you can try it now with the reminders
from Part III!

 Developers interested in bringing a richer experience to their apps on
Android Wear devices have two main options:

 ✓ You can leave the app running on the phone, and improve the notifica-
tions to allow them to do more stuff on the watch. For example, you
might enable users to snooze reminders for the Tasks app right from
their watch without having to open the app on the phone. In this sce-
nario, the app stays on the phone, but provides rich notification actions
that can be used on the watch. See https://developer.android.
com/training/wearables/notifications/ for more information
about building rich Android Wear notifications.

 ✓ You can build a second app that runs directly on the watch, and
 synchronizes data with the app on your phone via Bluetooth.

 This chapter focuses on building a second app that runs directly on the
watch.

 You can do much with Android Wear, much more than this chapter or book
can explore. In many ways, Android Wear is its own platform. To learn more
about it, visit https://developer.android.com/wear/ .

https://developer.android.com/training/wearables/notifications/

335 Chapter 18: Wearing the Tasks App

 At the time of this writing, you must have a real Android phone to develop
for Android Wear. This is because you must install the Android Wear app on
your phone, and the app is not currently available on the Android emulator.
You do not need to have a real Android Wear watch though. It is possible to
develop for Android Wear using a watch emulator.

 Preparing Your Development
Environment

 Because Android Wear is a companion to your phone rather than a com-
pletely standalone product, the development environment is familiar but
slightly different from developing on regular Android.

 Prepping your Android phone
 Before you create the Android Wear emulator, you should prepare your
phone.

 Checking for system updates
 Android Wear is an evolving platform, and it requires that certain services
be up to date on your phone. Go to your phone’s Settings page, scroll down
to About phone, and click System updates to make sure your phone has the
latest software.

 Installing Android Wear on your phone
 Visit the Google Play Store and search for Android Wear. Install the app and
then run it. You should see something like Figure 18-2 .

 Setting up an Android Wear emulator
 The next step is to create your Android Wear emulators. These are the
devices on which you will develop your Wear apps.

1. In Android Studio, choose Tools➪Android➪AVD Manager.

2. Click Create Virtual Device.

3. Choose Wear, select Android Wear Square, and click Next.

336 Part IV: Android Is More Than Phones

4. Choose Lollipop API 21 x86, click Next, and then click Finished.

5. Start the emulator by pressing the green right-pointing triangle Play
button.

 Wait until the emulator initializes and shows the Android Wear Home
screen as in Figure 18-3 .

 Figure 18-2:
 The Android
Wear setup

screen.

 Figure 18-3:
 The Android

Wear
Square

emulator.

337 Chapter 18: Wearing the Tasks App

6. Repeat the Steps 1 to 4 but create an Android Wear Round emulator.

 You don’t need to run it at this time, but you will need it later in the
chapter.

 Pairing your phone with the Wear emulator
 Now that your phone and emulator are ready to use Android Wear, you must
pair them. Every Android Wear user pairs his watch to his phone, and the
Android Wear app makes this easy. Because you are using an emulator rather
than a physical device, you must go through a few extra steps to pair your
devices:

1. Connect the phone to your machine through USB.

2. Forward the emulator’s communication port to the connected phone.

 You must do this every time the phone is connected:

 adb -d forward tcp:5601 tcp:5601

 The wearable emulator and your phone should now be listed when you
run the adb devices command.

 $ adb devices
 List of devices attached
 emulator-5554 device
 5b44a488839e3171 device

3. Start the Android Wear app on your phone and connect to the emulator.

 You do this by choosing Pair with a new wearable and then choosing
Pair with emulator from the overflow menu, as shown on the left and
right images in Figure 18-4 .

 The Android Wear app should now report that your emulator is
“Connected.” Your phone and emulator are now paired!

4. Check that the pairing is working.

 You do this by tapping the menu on the top right corner of the Android
Wear app, selecting Demo cards, then clicking a Demo card. As shown
in Figure 18-5 , the card you select (left) appears as a notification(s) on
the Home screen (right). You can dismiss the card by swiping it off the
screen to the right.

 Do you want to develop with a real Android device rather than the
 emulator? Then visit https://developer.android.com/training/
wearables/apps/creating.html for more information.

https://developer.android.com/training/wearables/apps/creating.html

338 Part IV: Android Is More Than Phones

 Figure 18-4:
 Pairing your

Android
Wear

 emulator to
your phone.

 Figure 18-5:
 Sending
a demo

notifica-
tion to your

Android
Wear

 emulator.

339 Chapter 18: Wearing the Tasks App

 Creating a New Wear App
 In this section, you create a new Android Wear app that runs directly on your
watch emulator, and you add the code necessary to allow it to sync with
your phone.

 Creating a new module
 You can create a new module in your Android Studio project by following
these steps:

1. Choose File➪New Module.

 Select Android Wear module, and press Next.

2. Create a new Wear module using the settings in Table 18-1 .

 The package name you use here MUST be the same as the package name
you use for your Tasks app. If they’re not the same, your tasks won’t
sync between the two apps.

3. Press Next and add a new Blank Wear Activity.

 Use the settings from Table 18-2 for your new activity, and then click Finish.

4. Run your app on your Wear emulator.

 You can do this by choosing Run➪Run ‘ TasksWear ’ and choosing your
emulator (not your phone). You should see the “Hello world” app
 running as shown in Figure 18-6 .

 Table 18-1 Settings for Creating a New Wear Module

Application Name Tasks
Module name TasksWear

Package name com.dummies.tasks

Minimum SDK API 21 Lollipop

 Table 18-2 Settings for Creating a New Android Wear Activity

Activity Name MainActivity
Layout name activity_main

Round layout name round_activity_main

Rectangular layout name rect_activity_main

340 Part IV: Android Is More Than Phones

 Figure 18-6:
 The Hello

World app
running on

the Wear
emulator.

 Editing MainActivity
 You’re now going to replace the sample code in MainActivity with the
beginning of a real app.

 Open MainActivity.java and replace the contents of that file with the
 following:

 public class MainActivity extends Activity
 {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
 }

 This code loads the activity_main.xml layout into your activity.

 Now open res/layout/activity_main.xml and replace it with the
 following code:

 <?xml version="1.0" encoding="utf-8"?>
 <android.support.wearable.view.BoxInsetLayout ➝2
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto" ➝4
 android:layout_height="match_parent"
 android:layout_width="match_parent"
 android:padding="15dp"> ➝7

 <android.support.wearable.view.WearableListView ➝9

341� Chapter 18: Wearing the Tasks App

 android:id="@+id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_box="all"/>	 ➝13

</android.support.wearable.view.BoxInsetLayout>

This layout uses a few views specific to Android Wear. They are included in
the Android Wear support library. Chances are you have not encountered
them yet while developing regular Android apps. Here is what the code is
doing:

	 ➝ 2	 The outer view is the BoxInsetLayout. Think of this view as a
fancy FrameLayout. Like a FrameLayout, the BoxInsetLayout
lets you put other views inside it but doesn’t give you any sophis-
ticated layout options. However, unlike a FrameLayout, the
BoxInsetLayout knows the difference between round and rect-
angular Android Wear devices, and it resizes its children appropri-
ately to make sure that they fit on a round watch face.

		 Because Android Wear devices come in many different shapes and
sizes, it’s important to ensure your layouts work with them all.
You have a few ways to make your layouts work with both round
and rectangular devices. BoxInsetLayout is what you use in this
chapter. Another useful tool is WatchViewStub. WatchViewStub
is great when you want to use significantly different layouts for
a round watch than a rectangular watch. For more information
about WatchViewStub, visit https://developer.android.
com/training/wearables/apps/layouts.html.

	 ➝ 4	 You’ve been using the xmlns:android namespace for some time
now and are probably quite used to it. This may be the first time
you’ve seen a different namespace in your Android layouts. The
BoxInsetLayout uses an additional layout parameter (layout_
box on line 13) that is not present in the default xmlns:android
namespace, so it must use its own namespace to add the layout_
box parameter. I call this namespace app, but you can call it
whatever you want as long as lines 4 and 13 agree.

	 ➝ 7	 This line assigns padding to the BoxInsetLayout element.
Because the window insets on round devices are larger than 15dp,
this padding applies only to square screens.

	 ➝ 9	 WearableListView is a Wear-specific layout very similar to the
regular Android ListView or RecyclerView. It shows items one
at a time in a list, and creates only as many views as will cover
the screen, no matter how long the list is. WearableListView is
optimized for ease of use on small screen wearable devices.

https://developer.android.com/training/wearables/apps/layouts.html

342 Part IV: Android Is More Than Phones

 ➝ 13 This line ensures that the FrameLayout element and its children
are boxed inside the area defined by the window insets on round
screens. This line has no effect on square screens. Other options
for layout_box are left, right, bottom, and top. See the documen-
tation for BoxInsetLayout for more details.

 You now have a Wear app that can theoretically show a list of data. However,
you have no data yet to display. The next few sections will fix that.

 Adding Google Play Services
for data syncing
 Android Wear apps use the Google Play Services library (which is different
than the Google Play Store) for a lot of functionality. In this section you use
Google Play Services to sync data between your phone and watch.

 Open your AndroidManifest.xml and add the following meta-data entry
to your application element:

 <meta-data android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />

 This meta-data is necessary for apps that use the Google Play Services
library.

 You then open the TasksWear build.gradle and ensure that the Google
Play dependency is listed there. If it’s not already there, then add it to the
 dependencies section:

 dependencies {
 . . .
 compile 'com.google.android.gms:play-services-wearable:6.5.87'
 }

 Now add Google Play Services to your activity. Open MainActivity.java
and add the code in bold:

 public class MainActivity extends Activity ➝1
 implements DataApi.DataListener, GoogleApiClient.ConnectionCallbacks,

GoogleApiClient.OnConnectionFailedListener
 {

343 Chapter 18: Wearing the Tasks App

 GoogleApiClient googleApiClient; ➝5

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 googleApiClient = new GoogleApiClient.Builder(this) ➝13
 .addApi(Wearable.API)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .build();
 }

 @Override
 protected void onStart() { ➝21
 super.onStart();

 googleApiClient.connect(); ➝24
 }

 @Override
 protected void onStop() {
 super.onStop();

 googleApiClient.disconnect(); ➝31
 }

 @Override
 public void onConnected(Bundle bundle) { ➝35
 Log.d("MainActivity", "onConnected"); ➝36

 Wearable.DataApi.addListener(googleApiClient, this); ➝38

 updateList(); ➝40
 }

 @Override
 public void onDataChanged(DataEventBuffer dataEvents) {
 Log.d("MainActivity", "onDataChanged");

 dataEvents.release(); ➝47

 updateList(); ➝49
 }

 @Override
 public void onConnectionSuspended(int i) { ➝53

344 Part IV: Android Is More Than Phones

 Log.d("MainActivity", "onConnectionSuspended"); ➝54
 }

 @Override
 public void onConnectionFailed(ConnectionResult connectionResult) { ➝58
 Log.d("MainActivity", "onConnectionFailed");
 }

 private void updateList() { ➝62
 // TBD
 }
 }

 This code adds support for Google Play data syncing. How does it do it? It
basically connects to the Google Play service, subscribes to updates, and
then calls updateList() whenever there is new data. Here is more detail
about the code:

 ➝ 1 The main activity for this app. This activity implements
the DataApi.DataListener interface to be notified of
sync events. It also implements the GoogleApiClient
ConnectionCallback s and OnConnectionFailedListener
to handle connectivity events. If you’re writing an app that needs
to sync in the background (this one doesn’t), then consider using
a WearableListenerService to run continuously in the
background.

 ➝ 5 Wearables use the GoogleApiClient to communicate with their
host devices (usually your phone).

 ➝ 13 This sets up the GoogleApiClient . You tell it you need the
 Wearable.API , and also that it should call you back on this for
any connectivity notifications.

 ➝ 21 The onStart method is an Android callback (not Google Play)
that happens after onCreate . onStart is called when the activ-
ity is visible on the screen, although it may not necessarily be the
frontmost activity. You want to make sure that you are connected
to Google Play any time the activity is visible (and disconnect
from Google Play after the activity is no longer visible), so you
connect to Google Play in onStart and disconnect in onStop . For
more information about onStart and onStop , refer to Chapter 5 .

 ➝ 24 Connects to the GoogleApiClient . Upon connection, you will
receive a callback on onConnected() .

 ➝ 31 We’re done, so disconnect from the GoogleApiClient .

345 Chapter 18: Wearing the Tasks App

 ➝ 35 onConnected is a Google Play callback that is called after a con-
nection has been established (which was initiated on line 24). It
is defined in the ConnectionCallbacks interface. This method
needs to do two things: It needs to start listening for data changes
on line 38, and it needs to update the list with whatever data has
already been cached on the watch on line 40.

 ➝ 36 Logs a simple message to let you know that onConnected has
been called. This may be helpful later when you’re debugging your
app and need to know whether a connection between the phone
and the wearable has been established.

 ➝ 38 Subscribes for any more data updates. You will be called back on
 onDataChanged if anything is updated.

 ➝ 40 Updates the adapter as soon as you’re connected.

 ➝ 47 Always release the dataEvents when you’re done. In this case,
you don’t use the dataEvents directly, so release them right
away.

 ➝ 49 You were told there was an update, so this line updates your
adapter.

 ➝ 53 onConnectionSuspended is also defined in the Connection
Callbacks interface, and it is called whenever the Google Play
connection has been shut down.

 ➝ 54 Just logs a message. You don’t have to do anything at all, but a log
message can help you debug any issues.

 ➝ 58 onConnectionFailed is defined in OnConnectionFailed
Listener . It is called if there was an error connecting to the
device. There is nothing that you need to do here, but again you
should log a message as an aid during debugging.

 ➝ 62 The updateList refreshes the UI with the latest data. At this
time it doesn’t do anything yet, but you will implement it in the
next section.

 Creating the adapter
 Recall that an adapter is responsible for taking data from a data source (such
as a database) and creating views for each item in the list. See Chapter 9 for
more information about adapters.

 You created a list view earlier in the chapter. Now you just need an adapter
to feed it data.

346 Part IV: Android Is More Than Phones

 Create a new file WearableTaskListAdapter.java in the same directory
as your MainActivity.java , and add the following to it:

 /**
 * A WearableListAdapter that knows how to display our Task items in a
 * list.
 */
 public class WearableTaskListAdapter
 extends WearableListView.Adapter ➝6
 {
 static final String COLUMN_TITLE = "title"; ➝8

 List<DataItem> dataItems; ➝10

 LayoutInflater inflater; ➝12

 public WearableTaskListAdapter(Context context) {
 inflater = LayoutInflater.from(context); ➝15
 }

 @Override ➝18
 public WearableListView.ViewHolder onCreateViewHolder(
 ViewGroup viewGroup, int i) {

 return new ViewHolder(➝22
 inflater.inflate(R.layout.item_task, null));
 }

 @Override ➝26
 public void onBindViewHolder(
 WearableListView.ViewHolder viewHolder, int i) {

 DataItem dataItem = dataItems.get(i); ➝30

 DataMap map ➝32
 = DataMapItem.fromDataItem(dataItem).getDataMap();

 ((ViewHolder) viewHolder).titleView.setText(➝35
 map.getString(COLUMN_TITLE)
);
 }

 @Override
 public int getItemCount() { ➝41
 return dataItems != null ? dataItems.size() : 0;
 }

 public void setResults(List<DataItem> dataItems) { ➝45
 this.dataItems = dataItems;
 notifyDataSetChanged(); ➝47
 }

347 Chapter 18: Wearing the Tasks App

 static class ViewHolder extends WearableListView.ViewHolder { ➝51
 TextView titleView;

 public ViewHolder(View itemView) {
 super(itemView);
 titleView = (TextView) itemView.findViewById(R.id.title);
 }
 }
 }

 This adapter takes a list of DataItems and creates views for each one from
 item_task.xml . Here is a look at the code in detail:

 ➝ 6 All adapters used by the WearableListView must inherit from
 WearableListView.Adapter . The WearableListView.
Adapter is pretty similar to the RecyclerView.Adapter you
used in Chapter 9 .

 ➝ 8 The name of the column containing the data you are looking for.
The only column shown in this list view is the title, due to the
 limited screen real estate. This string must match the name used
in the phone app.

 ➝ 10 The current list of dataItems . May be null .

 ➝ 12 The layout inflater used to inflate the views.

 ➝ 15 Retrieves a LayoutInflater from the current context.

 ➝ 18 Creates a ViewHolder that holds a reference to the views that
you will need to update for each new item in the list.

 ➝ 22 Returns a new ViewHolder (see line 51 for class ViewHolder).
Each view in your list will use the item_task.xml layout. Note
that you haven’t created item_task.xml yet, but you will
shortly.

 ➝ 26 Updates the views in the ViewHolder using the information in
the item in position i .

 ➝ 30 Finds the DataItem for the item in position i .

 ➝ 32 Reconstructs the original DataMap for that item.

 ➝ 35 Sets the title view text based on the COLUMN_TITLE in the
 DataMap .

 ➝ 41 As in Chapter 13 , getItemCount returns the count of items in the
list. In this case it is equal to dataItems.getCount() , or zero if
 dataItems is null .

348 Part IV: Android Is More Than Phones

 ➝ 45 Updates the items in the list, and notifies listeners (particularly
the ListView) that the data in the adapter has changed.

 ➝ 47 notifyDataSetChanged works the same way here as it
did in Chapter 9 . It notifies any listeners (in particular, the
 WearableListView) that the data has been updated and that the
listener should be refreshed.

 ➝ 51 A simple ViewHolder that just holds the titleView for the list
item. See Chapter 9 for more information about ViewHolders .

 The previous code used a layout called item_task for each item in the list,
so add a new layout file in res/layout and call it item_task.xml :

 <?xml version="1.0" encoding="utf-8"?>
 <TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/title"
 android:gravity="center_vertical|start" ➝5
 android:layout_width="wrap_content"
 android:layout_marginEnd="16dp" ➝7
 android:layout_height="80dp" ➝8
 android:fontFamily="sans-serif-condensed-light" ➝9
 android:lineSpacingExtra="-4sp" ➝10
 android:textSize="16sp"/> ➝11

 This layout is just a single, simple TextView .

 ➝ 5 Positions the text to the far left and centers it vertically in the
view.

 ➝ 7-11 These lines represent some styling choices to make sure the
text fits on the screen and is readable. Feel free to play around
with these values to find the right look for your app.

 Now you need to hook the adapter up to the list view. Open MainActivity.
java and add the code in bold:

 public class MainActivity extends Activity
 implements DataApi.DataListener, GoogleApiClient.ConnectionCallbacks,

GoogleApiClient.OnConnectionFailedListener
 {

 WearableTaskListAdapter adapter; ➝5

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

349 Chapter 18: Wearing the Tasks App

 . . .

 adapter = new WearableTaskListAdapter(this); ➝15

 WearableListView listView = ➝17
 (WearableListView) findViewById(R.id.list);

 listView.setAdapter(adapter); ➝20
 }

 private void updateList() {
 Wearable.DataApi.getDataItems(googleApiClient).setResultCallback(➝25
 new ResultCallback<DataItemBuffer>() {
 @Override
 public void onResult(DataItemBuffer dataItems) { ➝28
 try {
 List<DataItem> items ➝30
 = FreezableUtils.freezeIterable(dataItems);

 adapter.setResults(items); ➝33

 Log.d("MainActivity", "adapter.setResults"); ➝35
 } finally {
 dataItems.release(); ➝38
 }
 }
 });
 }
 }

 If you run the app now, you won’t see anything because you haven’t
 published any data to the watch yet.

 ➝ 5 The adapter you just created.

 ➝ 15 Creates the adapter.

 ➝ 17 Finds the WearableListView in the view hierarchy.

 ➝ 20 Links the adapter and the ListView .

 ➝ 25 Retrieves the complete list of dataitems using DataApi
getDataItems . Because this may involve a network sync and
may take some time, you get the results back in a ResultCall
back at a later time .

 ➝ 28 The onResult method of your callback is called when data is
received. It returns to you the list of items that resulted from your
query.

350 Part IV: Android Is More Than Phones

 ➝ 30 Before you start using dataItems , you must “freeze” them to
make sure they don’t change while you are iterating over them.

 ➝ 33 Updates the adapter with the new items.

 ➝ 35 Logs a message to logcat to assist with debugging.

 ➝ 38 Always releases the dataItems when you are through.

 Your Android Wear app is now complete! However, if you run it, you will see
just a blank screen. This is because it does not yet have any data to show.
You will fix that in the next section.

 Publishing the Data from Your Phone
 Now that you’ve created a Wear app, it’s time to publish the tasks from your
phone so they can be synced to your Wear app. This involves adding the
Google Play sync services to your phone and then testing the sync between
your phone and Wear app. But before you do that, you need to do a little
setup work.

 Configuring the phone’s build
 Open build.gradle in your original Tasks (not TasksWear) directory, and
add the following dependency:

 compile ‘com.google.android.gms:play-services-wearable:6.5.87’

 Make sure the version you use agrees with the version in your Tasks
Wear build.gradle from earlier in this chapter.

 Next, open AndroidManifest.xml for your Tasks app and add the required
 meta-data tag to your application element (like you did for TasksWear):

 <meta-data android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />

 Publishing the data from the phone
 With those preliminaries over, it’s time to add Google Play data syncing to
your phone’s TaskProvider . Go back to TaskProvider.java in your
Tasks app, and add the code in bold:

351 Chapter 18: Wearing the Tasks App

 /**
 * A Content Provider that knows how to read and write tasks from our
 * tasks database.
 */
 public class TaskProvider extends ContentProvider
 implements GoogleApiClient.ConnectionCallbacks,
 GoogleApiClient.OnConnectionFailedListener ➝7
 {
 . . .
 // Google Play Constants
 private static final String PLAY_BASE_URL = "/" + DATABASE_TABLE; ➝12

 GoogleApiClient googleApiClient; ➝14

 @Override
 public boolean onCreate() {
 . . .

 googleApiClient = new GoogleApiClient.Builder(getContext()) ➝20
 .addApi(Wearable.API)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .build();
 googleApiClient.connect(); ➝25

 . . .
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {

 . . .

 // Save to google Play for wearable support
 PutDataMapRequest dataMap = PutDataMapRequest.create(
 PLAY_BASE_URL + "/" + id); ➝38
 DataMap map = dataMap.getDataMap(); ➝39
 map.putLong(COLUMN_TASKID, id); ➝40
 map.putString(COLUMN_TITLE, values.getAsString(COLUMN_TITLE));
 map.putLong(COLUMN_DATE_TIME, values.getAsLong(COLUMN_DATE_TIME));
 map.putString(COLUMN_NOTES, values.getAsString(COLUMN_NOTES)); ➝43
 PutDataRequest request = dataMap.asPutDataRequest(); ➝44
 Wearable.DataApi.putDataItem(googleApiClient, request); ➝45

 . . .
 }

 /**
 * This method is called when someone wants to delete something

352 Part IV: Android Is More Than Phones

 * from our content provider.
 */
 @Override
 public int delete(Uri uri, String ignored1, String[] ignored2) {

 . . .

 // Delete from google Play for wearable support
 long id = ContentUris.parseId(uri); ➝60
 Uri wearUri
 = new Uri.Builder().scheme(PutDataRequest.WEAR_URI_SCHEME)
 .path(PLAY_BASE_URL + "/" + id).build(); ➝63
 Wearable.DataApi.deleteDataItems(googleApiClient, wearUri); ➝64

 . . .
 }

 /**
 * This method is called when someone wants to update something
 * in our content provider.
 */
 @Override
 public int update(Uri uri, ContentValues values, String ignored1,
 String[] ignored2) {
 . . .

 // Update to google Play for wearable support
 long id = ContentUris.parseId(uri); ➝79
 PutDataMapRequest dataMap = PutDataMapRequest.create(
 PLAY_BASE_URL + "/" + id);
 DataMap map = dataMap.getDataMap();
 map.putLong(COLUMN_TASKID, values.getAsLong(COLUMN_TASKID));
 map.putString(COLUMN_TITLE, values.getAsString(COLUMN_TITLE));
 map.putLong(COLUMN_DATE_TIME, values.getAsLong(COLUMN_DATE_TIME));
 map.putString(COLUMN_NOTES, values.getAsString(COLUMN_NOTES));

 PutDataRequest request = dataMap.asPutDataRequest();
 Wearable.DataApi.putDataItem(googleApiClient, request); ➝88

 . . .
 }

 @Override
 public void onConnected(Bundle bundle) {
 Log.d("TaskProvider", "connected to Google Play");

 }

 @Override
 public void onConnectionSuspended(int i) {
 Log.d("TaskProvider", "Google Play connection suspended");

353 Chapter 18: Wearing the Tasks App

 }

 @Override
 public void onConnectionFailed(ConnectionResult connectionResult) {
 Log.e("TaskProvider", "Google Play connection failed");
 }
 }

 You recall that the TaskProvider manages all of your database access for
you. This code added the ability to sync data to Google Play whenever your
database changes. Here is more detail about how this code works:

 ➝ 7 As you did for the Wear app, add the ConnectionCallbacks
and OnConnectionFailedListener interfaces to get noti-
fied when you connect and disconnect from Google Play.

 ➝ 12 Every item that is to be synced with Google Play must have a
unique URI. This URI must be unique for all items within your
app, but does not have to be unique globally across all apps.
For this reason, you use a very simple URI which looks like /
tasks to reference all tasks, or /tasks/<id> to reference a
specific task by id.

 ➝ 14 Google Play API client, used for Android Wearable syncing.

 ➝ 20 This block of code connects to Google Play. It is identical
to the connection you made for the Wear app earlier in this
chapter.

 ➝ 25 Connects to the Google Play services. In the TaskWear app,
you waited to connect to Google Play until the onStart
method. TaskProviders do not have an onStart method,
so they connect right away.

 ➝ 38 Lines 38–45 sync a new task to Google Play. PutDataMap
Request.create() on line 37 creates a new PutDataMap
Request that requests that you sync a DataMap to Google
Play. The DataMap is basically a hashmap that contains all the
data for the task.

 ➝ 39 Gets the DataMap from the PutDataMapRequest so you can
put your data in it.

 ➝ 40—43 These lines insert all the task data into the hashmap. This
includes the task ID, title, notes, and date/time.

 ➝ 44 Converts the PutDataMapRequest to a PutDataRequest so
that it can be sent to Google Play.

 ➝ 45 Finally, this line sends the request to Google Play. The call to
 Wearable.DataApi.putDataItem is what actually does the
syncing to the watch.

354 Part IV: Android Is More Than Phones

 ➝ 60 Lines 60–64 delete a task from Google Play. First you must
determine the task ID from the task provider URI.

 ➝ 63 Once you have the task ID from line 60, you must determine
the Google Play URI for that task. This is done by using a URI.
Builder to create a new URI with the PutDataRequest.
WEAR_URI_SCHEME scheme, followed by the path to your
task. The path to the task is /tasks/<id> as was indicated in
the description for line 12.

 ➝ 64 Deletes the task identified by the wearUri .

 ➝ 78—87 These lines update a task. The code is identical to lines 38–45
when you inserted a task into Google Play. If the task already
exists, it is updated with the new data.

 Testing the sync
 Congratulations, you should now have a working sync between your Tasks
phone app and your Tasks Wear app!

 To test it out, follow these steps:

1. Uninstall the app from your phone and watch emulator.

 This is important to clear out the database.

 adb –e uninstall com.dummies.tasks # uninstall from the emulator
 adb –d uninstall com.dummies.tasks # uninstall from your phone

2. Run the Android Wear app and make sure that it still says
“Connected” at the top.

 If not, go back to the section “Preparing Your Development
Environment” and reconnect your emulator to your phone.

3. Run the app on your phone and add a few new tasks.

4. Run the TasksWear app on your emulator.

 You should see the items you just added in your emulator, as in
Figure 18-7 . If you add more items, they should appear immediately
on your emulator.

5. Shut down the Android Wear Square emulator, then start up the
Android Wear Round emulator that you created earlier in this
 chapter.

 Connect the round emulator to your phone using the Android Wear app.
Then run the app on that emulator to make sure that all the text is vis-
ible on a round display. You should see something like Figure 18-8 .

355 Chapter 18: Wearing the Tasks App

 Figure 18-7:
 The Tasks
app show-

ing one
item on the

rectangular
emulator.

 Figure 18-8:
 The Tasks

app on
the round
 emulator.

 Running the App without Android Studio
 So far, you’ve been using Android Studio to run your Android Wear app. Most
users are not developers, of course, and will not have Android Studio handy.

 Unlike regular Android, you have no launcher on Android Wear, which can
make it hard to find the app that you installed on your watch. How do you
run your app without a launcher or Android Studio?

 You have two ways:

 ✓ You can tap on your watch face and wait until it says Speak Now, and
then say “Start tasks.” Your watch will launch the Tasks app.

 ✓ If you prefer the long way, you can tap on your watch face and wait
until it says Speak Now, and then scroll down to the Start option. Then
choose the Tasks app.

356 Part IV: Android Is More Than Phones

 Packaging the App
 One more difference between Android and Android Wear is that you have no
Google Play Store for Android Wear. Wait, there’s no Play Store for Android
Wear? How are people supposed to download and install your app?

 The answer is that you need to bundle your Android Wear app into your
phone app so that it automatically installs when your phone app does.

 To bundle your Wear app inside your phone app, add the following line to
your build.gradle in Tasks (not TasksWear):

 dependencies {
 . . .
 wearApp project(':TasksWear')
 }

 Now, choose Build➪Generate Signed APK and generate a signed APK for your
Tasks app (not TasksWear). Now if you install the signed APK, the Wear app
automatically installs on your Wear watch.

 What’s Next?
 This is just the tip of the iceberg. There are plenty of additional things you
can do with your new Android Wear app. Consider making a few of the
 following changes:

 ✓ Improve your phone’s notifications to make them actionable from your
watch.

 ✓ Allow users to be able to click into individual tasks and view them.

 ✓ Add voice control so users can edit tasks or search them.

 ✓ Use GridViewPager and CardFragment to add images and make a
more visually appealing interface.

 ✓ Create a WearableListenerService to sync data from your phone
while the MainActivity isn’t running.

 Visit https://developer.android.com/wear for more information
about how to add some of these exciting features.

 To learn how to add voice control to your Android Wear apps, visit the book’s
online web extras at www.dummies.com/extras/androidappdevelopment .

 Look Ma, I’m on TV!
 In This Chapter

 ▶ Creating an Android TV emulator

 ▶ Coding apps for TVs

 ▶ Using multiple loaders and adapters

 ▶ Filtering your SQL queries

 ▶ Launching a non-default activity from Android Studio

 I wish there was a knob on the TV so you could turn up the intelligence.
They got one marked “brightness” but it don’t work, does it?

 — Leo Anthony Gallagher

 Smart TVs are changing the living room. Up until now, every TV manu-
facturer has developed their own unique interfaces for their TVs. Now

Android is available on TVs to consolidate those interfaces and bring devel-
oper apps to your living room. Android is available in set top boxes such as
the Android TV, which you can plug into any modern TV, and it’s being built
directly into televisions shipping from Sony, Sharp, and Phillips.

 As a developer, this is an opportunity for you to bring your apps to a whole
new audience. In this chapter, you will port the Tasks app to Android TV.

 Understanding Guidelines
for Building TV Apps

 It goes without saying that the way people use their TVs is different from
the ways they use their phones. TVs are good for browsing information, but
they’re not as great for entering information, given their lack of a keyboard

Chapter 19

358 Part IV: Android Is More than Phones

and touchscreen. Android TV is designed for casual consumption, simplicity,
and a beautiful, cinematic experience.

 Consequently, you should build your TV apps differently than you build them
for tablets or phones. Here are some of the differences you should take into
account when building TV apps:

 ✓ Build for browsing, not for data entry.

 ✓ TVs have no touchscreen, so build your interfaces so they can be navi-
gable with a D-pad (imagine a remote control with up, down, left, and
right buttons).

 ✓ Put onscreen navigation controls on the left or right side of the screen
and save the vertical space for content. Do not use an action bar.

 ✓ Don’t just reuse your phone or tablet activities; they will be hard to use
and won’t look good on the TV.

 For more information about designing for Android TV, visit https://
developer.android.com/design/tv . For more information about
developing for Android TV, visit https://developer.android.com/
training/tv .

 You will use these techniques to transform your Tasks app into a TV-like
browsing experience.

 Building and Manifesting Changes
 To build an app for TVs, you must make some changes to your build settings
and your AndroidManifest.xml .

 Open the build.gradle file in the Tasks directory, and add the line
in bold:

 dependencies {
 . . .
 compile 'com.android.support:leanback-v17:21.0.3'
 }

 If you set your minSdkVersion to 16 in Chapter 17 , you will receive an error
message when you add the leanback-v17 dependency from the previous
code. This is because the leanback library requires platform API 17 or later,
as the name implies. To continue, change your minSdkVersion to 17 in your
 build.gradle file.

https://developer.android.com/training/tv

359 Chapter 19: Look Ma, I’m on TV!

 This adds the Android TV dependency (also known as the “leanback” library,
because that’s what you do when you watch TV) to your Tasks project.

 Now open the AndroidManifest.xml file in your src/main directory and
add the two sections in bold:

 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.dummies.tasks">

 <!-- For Android TV -->
 <uses-feature android:name="android.hardware.touchscreen" ➝5
 android:required="false" />
 <application . . . >

 . . .

 <activity android:name="com.dummies.tasks.tv.BrowseActivity" ➝11
 android:theme="@style/Theme.Leanback" ➝12
 android:screenOrientation="landscape" > ➝13
 <intent-filter>
 <action android:name="android.intent.action.MAIN" /> ➝15
 <category
 android:name ="android.intent.category.LEANBACK_LAUNCHER"/>

 ➝17
 </intent-filter>
 </activity>

 . . .

 </application>

 </manifest>

 Here is a description of what these lines do:

 ➝ 5 Your Android TV is not going to have a touchscreen, because
most couch potatoes do not have a long enough backscratcher
that can reach the screen from their La-Z-Boy. You must tell the
Google Play Store that a touchscreen is not required to install this
app if you want the app to be displayed to users browsing the
store from their TVs.

 ➝ 11 Declares a new activity for the TV. This activity will be your
“browse” activity, which users will use to browse their tasks on
your TV.

 ➝ 12 All TV activities should use the Theme.Leanback style, which
among other things disables the action bar (which is really hard
to use on a TV).

360 Part IV: Android Is More than Phones

 ➝ 13 This line forces Android to display this activity in landscape mode.
There are very few TVs out there that display in portrait mode.

 ➝ 15 Every launcher activity should also be a MAIN activity. You did
the same thing for your phone and tablet activities.

 ➝ 17 Unlike your phone and tablet, Android TV uses a different launcher.
Thus, the category will be android.intent.category.
LEANBACK_LAUNCHER rather than android.intent.category.
LAUNCHER . This is convenient because it means you can have two
 MAIN activities in your app, and Android can automatically pick the
appropriate one depending on whether your app is running on a
phone/tablet or a TV.

 Adding the BrowseActivity
 In the previous section, you added a new activity to your manifest. In this
section, you will create the activity.

 The BrowseActivity is just a simple activity wrapper around a fragment,
which you will write in the next section. It consists of two parts:

 ✓ The BrowseActivity class

 ✓ The activity_browse.xml layout

 Create a new package in src/main/java/com/dummies/tasks named tv ,
then create a new file named BrowseActivity.java in the tv directory
and add the following code to it:

 public class BrowseActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_browse);
 }
 }

 Then add the following layout to res/layout in a file named activity_
browse.xml :

 <?xml version="1.0" encoding="utf-8"?>
 <fragment xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/main_browse_fragment"
 android:name="com.dummies.tasks.tv.MainFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

361 Chapter 19: Look Ma, I’m on TV!

 This layout is similar to the one you created in Listing 9-2. It declares
that this layout consists of one element, a fragment with code defined in
 com.dummies.tasks.tv.MainFragment , which you will create next.

 Creating the TV Browse Fragment
 As you can see, the BrowseActivity does very little. All it does is create
the MainFragment , which is where most of your TV code is going to go.

 The MainFragment is an instance of an Android TV’s BrowseFragment .
The built-in BrowseFragment consists of three parts:

 ✓ A column of headings, or categories, on the left

 ✓ Rows of content on the right, divided into the appropriate heading

 ✓ A transparent title bar at the top containing a title and an optional
search icon

 You can see how these parts are arranged in Figure 19-1 .

 Creating the MainFragment outline
 Let’s focus first on putting your tasks into the section on the right.

 Create a new class named MainActivity in the com.dummies.tasks.tv
package, and add the following code to it:

 Figure 19-1 :
 Android TV’s

 Browse
Fragment

layout.

362 Part IV: Android Is More than Phones

 public class MainFragment extends BrowseFragment
 implements LoaderManager.LoaderCallbacks<Cursor> ➝2
 {
 @Override
 public void onActivityCreated(Bundle savedInstanceState) { ➝5
 super.onActivityCreated(savedInstanceState);

 setTitle(getString(R.string.app_name)); ➝8
 setBrandColor(getResources().getColor(R.color.primary)); ➝9

 ArrayObjectAdapter adapter
 = new ArrayObjectAdapter(new ListRowPresenter()); ➝12

 setAdapter(adapter); ➝14
 }

 @Override ➝18
 public Loader<Cursor> onCreateLoader(int id, final Bundle args) {
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 } ➝28
 }

 This class creates a new BrowseFragment named MainFragment , sets
some properties on the fragment, creates an adapter, and then sets up the
loader callbacks needed to populate the adapter. For a refresher on how
loaders and adapters work, see Chapter 13 .

 Here is more information about the previous listing:

 ➝ 2 This line creates the MainFragment , declares that it extends
 BrowseFragment , and implements the loader callbacks that
you’ll need to load data into your adapter.

 ➝ 5 These lines override the onActivityCreated() method, and call
 super.onActivityCreated() to make sure that the fragment is
initialized properly. onActivityCreated is called when the activ-
ity has been created and the fragment has been attached to it. This
is where you’ll do most of your initialization code for the fragment.
See Chapter 9 for more examples of using onActivityCreated .

 ➝ 8 Sets the title of the activity. This will be displayed in the upper
right-hand side of the screen, as in Figure 19-1 .

363 Chapter 19: Look Ma, I’m on TV!

 ➝ 9 Sets the “brand” color of the activity. This is the color that
will be used for the background of the left half of Figure 19-1
containing your headers. For phones and tablets, you used
this color in your action bar, but because TVs have no action
bar, you will use this color on the left side of the screen.

 ➝ 12 Creates a new ArrayObjectAdapter which will be the
main adapter used by the BrowseFragment . Recall from
Chapter 13 that an adapter knows how to read a list of items
(usually from a database) and create views for them. In this
case, an ArrayObjectAdapter knows how to read a list of
items from an array and create views for them.

 Why an array rather than a database? The array contains one
entry for each row in the grid in Figure 19-1 . Each row has its
own adapter, and that adapter reads items from the database.
So you’ll still be reading from the database, but not directly
from this adapter.

 Android TV adapters require a Presenter object to create
views from objects. Presenters are very similar to the
 RecyclerView.Adapters you used in Chapter 13 , but
they are not position based (their methods take objects
rather than positions). In this case you are using the built-in
 ListRowPresenter , which knows how to take ListRow
objects (which you will create in the next section) and create
views for them.

 ➝ 14 Tells the BrowseFragment to use the adapter you just created.

 ➝ 18–28 Adds the loader callback methods that you’ll need to use a
loader. See Chapter 13 for more information about loaders.
These callbacks are not fully implemented yet.

 Reading data from the database
 The next step is to actually read your tasks from the database. You will use a
 CursorObjectAdapter with a loader to load your tasks.

 First you will need a simple model class to represent a task. Create a new file
named Task.java in com.dummies.tasks.tv and add the following:

 public class Task {
 long id;
 String title;
 String notes;
 }

 This class will hold the data that you read out of the database.

364 Part IV: Android Is More than Phones

 Displaying tasks using loaders and CardPresenters
 Now that you have the Task model, you need to set up your fragment so that
it can read items from the database and present them to the user. This is
similar to using the loaders and adapters you used in Chapter 9 , except for
Android TV you will also use a Presenter and a CursorMapper .

 Open MainFragment.java again and add the lines in bold:

 public class MainFragment extends BrowseFragment
 implements LoaderManager.LoaderCallbacks<Cursor>
 {
 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 setTitle(getString(R.string.app_name));
 setBrandColor(getResources().getColor(R.color.primary));

 ArrayObjectAdapter adapter
 = new ArrayObjectAdapter(new ListRowPresenter()); ➝13

 CardPresenter cardPresenter = new CardPresenter(); ➝15
 CursorMapper simpleMapper = new CursorToTaskMapper(); ➝16

 HeaderItem header = new HeaderItem(0,"All", null); ➝18
 CursorObjectAdapter cursorObjectAdapter
 = new CursorObjectAdapter(cardPresenter); ➝20
 cursorObjectAdapter.setMapper(simpleMapper); ➝21

 adapter.add(new ListRow(header, cursorObjectAdapter)); ➝23

 setAdapter(adapter);

 LoaderManager loaderManager = getLoaderManager(); ➝28
 loaderManager.initLoader(0, null, this); ➝29

 }

 @Override
 public Loader<Cursor> onCreateLoader(int id, final Bundle args) { ➝35
 return new CursorLoader(getActivity(), ➝36
 TaskProvider.CONTENT_URI,
 null, null,null,null);
 }

365 Chapter 19: Look Ma, I’m on TV!

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 ListRow row = (ListRow) getAdapter().get(0); ➝43
 CursorObjectAdapter rowAdapter
 = (CursorObjectAdapter) row.getAdapter(); ➝45
 rowAdapter.swapCursor(cursor); ➝46
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 // This is called when the last Cursor provided to
 // onLoadFinished()
 // above is about to be closed. We need to make sure we are no
 // longer using it.
 ListRow row = (ListRow) getAdapter().get(0); ➝55
 CursorObjectAdapter rowAdapter
 = (CursorObjectAdapter) row.getAdapter(); ➝57
 rowAdapter.swapCursor(null); ➝58
 }
 }

 Here is what the code is doing:

 ➝ 15 In the previous section you used a ListRowPresenter to
convert rows into views. Similarly, on this line you will use
a CardPresenter to convert each task into a card. The
 CardPresenter does not exist yet; you will write it in the next
section.

 ➝ 16 Every CursorObjectAdapter must have a CursorMapper
that knows how to map rows in the database to objects
that the adapter can read. You will create one called
 CursorToTaskMapper a little later.

 ➝ 18 Each row in the grid needs to have a header associated with it.
For your first header, the row will contain all the tasks in the data-
base, so name this header "All" and give it an id of 0 .

 ➝ 20 On this line you finally get to meet the CursorObjectAdapter
that we’ve been referring to throughout this section. The
 CursorObjectAdapter is an adapter that knows how to read
rows from the database and convert them into views. To do that,
it uses the mapper and the presenter that you configured earlier
and are added to the CursorObjectAdapter on lines 20 and 21.
Remember that the CursorObjectAdapter is the second adapter
you’ve created for this fragment. The first (and main) adapter is
the ArrayObjectAdapter you created in the previous section.
The ArrayObjectAdapter represents the rows in our grid, and
the CursorObjectAdapter represents the items in the row.

366 Part IV: Android Is More than Phones

 ➝ 23 You created the CursorObjectAdapter on line 20, so now
you need to add it to the ArrayObjectAdapter . Recall
that the ListRowPresenter that you added on line 13
knows how to read ListRow objects, so on this line you
create a new ListRow object and add it to the adapter.
The ListRow object represents one row in the grid, so
it will have the "All" header you created on line 19 and
the CursorObjectAdapter that you created on line 20.
Together, those two objects contain all the data (the header
and the items) needed to construct one row in the grid.

 ➝ 28–29 Kicks off the loader so that it starts running. initLoader will
call your onCreateLoader callback on line 35 to create the
loader, and then it will call the onLoadFinished callback
when the data is done loading. Refer to Chapter 13 for more
information about initLoader .

 ➝ 36 onCreateLoader is called when the fragment has been asked
to create a loader, so create a new CursorLoader that knows
how to load tasks from the TaskProvider . This code is the
same as what you used in Chapter 13 to load tasks from the
database.

 ➝ 43–47 onLoadFinished is called when the database has finished
loading data and has a cursor to give you. You need to take
that cursor and hand it to the adapter. But remember there
are two adapters, so which one? Call getAdapter() to get
the main adapter from the fragment, which in this case is
the ArrayObjectAdapter . Then get the first object from
that adapter (which you added on line 23). That object is a
 ListRow , so call getAdapter() on the ListRow and that
will return to you the CursorObjectAdapter that you set
on line 23.

 Now that you have the CursorObjectAdapter , call swap
Cursor() to set the cursor that the loader just gave you.
This is similar to how you implemented onLoadFinished in
Chapter 13 , except it requires an additional step to find the
right adapter.

 ➝ 58 Do the same thing you did above, but in this case set the cursor
to null . onLoaderReset is called when the loader is reset,
and it should zero-out any data that it’s holding onto. In this
case, that means swapping out the old cursor and setting the
cursor to null . This is similar to what you did in Chapter 13 .

 Mapping database cursors to tasks
 The next step is to add the CursorToTaskMapper referenced on line 16 in
the previous code. Create a new class in com.dummies.tasks.tv called
 CursorToTaskMapper , and add the following to it:

367 Chapter 19: Look Ma, I’m on TV!

 public class CursorToTaskMapper extends CursorMapper {
 int idIndex; ➝2
 int titleIndex;
 int notesIndex; ➝4

 @Override
 protected void bindColumns(Cursor cursor) { ➝7
 idIndex = ➝8
 cursor.getColumnIndexOrThrow(TaskProvider.COLUMN_TASKID);
 titleIndex =
 cursor.getColumnIndexOrThrow(TaskProvider.COLUMN_TITLE);
 notesIndex =
 cursor.getColumnIndexOrThrow(TaskProvider.COLUMN_NOTES); ➝13
 }

 @Override
 protected Task bind(Cursor cursor) {
 long id = cursor.getLong(idIndex); ➝18
 String title = cursor.getString(titleIndex);
 String notes = cursor.getString(notesIndex); ➝20

 Task t = new Task(); ➝22
 t.id=id; ➝23
 t.title=title;
 t.notes=notes; ➝25
 return t; ➝26
 }
 }

 The CursorToTaskMapper knows how to read a row in the cursor and con-
vert it to a Task object. The following explains the way this is done:

 ➝ 2–4 Creates fields that store the indices of the ID, title, and notes
columns in the database. Recall from Chapter 13 that you
must know the index of the column you want to retrieve from
the cursor.

 ➝ 7 Overrides the bindColumns() method. This method is
called once when the cursor is obtained so that you can ask
the cursor what the indices of the columns are. Lines 8–13
retrieve these indices and store them in the fields on lines 2–4.
Refer to Chapter 13 for more information about using cursors.

 ➝ 18–20 The bind() method is called to generate a Task object
from a cursor. Lines 18–20 get the ID, title, and notes of the
task from the cursor by using the column indices that were
obtained in bindColumns on line 7.

 ➝ 22–26 Creates a new Task object, and sets its fields based on the
data you obtained from lines 18–20, then returns the object.

368 Part IV: Android Is More than Phones

 Now your TV app is very close to working. The only thing you still need to
implement is the CardPresenter , which knows how to convert tasks into
cards.

 Creating the CardPresenter
 Presenters are objects in Android TV used by adapters to convert objects
(in this case, tasks) into views. They are similar to the RecyclerView.
Adapter s you used in Chapter 9 , so they should look familiar to you.

 Create a new class named CardPresenter.java in the com.dummies.
tasks.tv package, and add the following code:

 public class CardPresenter extends Presenter { ➝1
 private static int CARD_WIDTH = 313; ➝2
 private static int CARD_HEIGHT = 176; ➝3

 @Override
 public ViewHolder onCreateViewHolder(ViewGroup parent) { ➝6
 Context context = parent.getContext(); ➝7
 ImageCardView cardView = new ImageCardView(context); ➝8
 cardView.setFocusable(true); ➝9
 cardView.setFocusableInTouchMode(true); ➝10
 cardView.setBackgroundResource(R.color.window_background); ➝11
 return new ViewHolder(cardView); ➝12
 }

 @Override
 public void onBindViewHolder(Presenter.ViewHolder viewHolder, Object item) {

 ➝16
 Task task = (Task)item; ➝17

 // Update card
 ViewHolder vh = (ViewHolder) viewHolder; ➝20
 ImageCardView cardView = vh.cardView; ➝21
 cardView.setTitleText(task.title);
 cardView.setContentText(task.notes); ➝23
 cardView.setMainImageDimensions(CARD_WIDTH, CARD_HEIGHT); ➝24

 Context context= cardView.getContext(); ➝26
 Picasso.with(context) ➝27
 .load(TaskListAdapter.getImageUrlForTask(task.id)) ➝28
 .resize(CARD_WIDTH, CARD_HEIGHT) ➝29
 .centerCrop() ➝30
 .into(cardView.getMainImageView()); ➝31
 }

369 Chapter 19: Look Ma, I’m on TV!

 @Override
 public void onUnbindViewHolder(Presenter.ViewHolder viewHolder) { ➝35
 }

 // The ViewHolder class
 static class ViewHolder extends Presenter.ViewHolder { ➝39
 ImageCardView cardView;

 public ViewHolder(View view) {
 super(view);
 cardView = (ImageCardView) view;
 }
 }
 }

 About this class:

 ➝ 1 Every presenter class must be a subclass of the Presenter
class and must implement three methods and one class:

 • onCreateViewHolder

 • onBindViewHolder

 • onUnbindViewHolder

 • A ViewHolder class

 ➝ 2–3 The width and height of the ImageCardView . This needs to be
in Java because you are creating views in Java rather than in an
XML layout file.

 ➝ 6 onCreateViewHolder is called when the ViewHolder is cre-
ated. One ViewHolder is created for every visible card on the
screen. So if your screen is large enough to show four cards at
once, approximately four ViewHolder s and CardView s are
created, no matter how long your list is. See Chapter 9 for more
information about using ViewHolder s.

 ➝ 7 Gets the current context from the parent view. You will need
this later.

 ➝ 8 Creates a new instance of Android TV’s built-in
 ImageCardView . This view will be recycled over and over
to display tasks in a row. You can see examples of the
 ImageCardView in Figure 19-1 on the right-hand side. In
Chapter 9 you used a LayoutInflater to inflate an XML
layout for the card view there, but it’s also okay to create views
directly in Java instead of using XML.

 ➝ 9–10 Makes sure that the ImageCardView is focusable when using a
D-pad and when using touch.

370 Part IV: Android Is More than Phones

 For more information on using focus for navigation on devices
without touchscreens, see http://d.android.com/guide/
topics/ui/ui-events.html#HandlingFocus .

 ➝ 11 Sets the background of the view to the default window back-
ground color for this theme.

 ➝ 12 Creates a new ViewHolder , defined on line 45, and returns it
for the view you just created. See Chapter 9 for more informa-
tion about using ViewHolder s.

 ➝ 16 onBindViewHolder is called when it’s time to populate a
card with data from the object in the adapter. onBindView
Holder will get the card view from the ViewHolder object,
and then update that card to reflect the data in the object
that’s passed in. As you scroll through your list, onBind
ViewHolder will be called every time an item scrolls onto
the screen. Again, see Chapter 9 for more information about
binding views to objects.

 ➝ 17 The item in this case is a Task object (because the mapper
returns tasks), so this line casts the item to a Task .

 ➝ 20 Casts the viewHolder object to a CardPresenter.
ViewHolder (rather than a Presenter.ViewHolder) so
that you can access the cardView on line 9.

 ➝ 21–23 Sets the title and content of the cardView using the data from
the task.

 ➝ 24 Sets the dimensions of the ImageView inside the
 ImageCardView to be the size from line 2–3.

 ➝ 26 Gets the current context from the cardView .

 ➝ 27 Uses Picasso to download the image for this task. Refer to
Chapter 9 for more information about using Picasso. In this
case, you will load the image using the task’s image URL
obtained from getImageUrlForTask() (line 28) into the
 ImageView that’s managed by the cardView on line 31. In
addition, on line 29 and 30, you will resize and crop the image
to fit the size of the ImageView .

 ➝ 35 onUnbindViewHolder is called whenever a view is about
to be unbound from a ViewHolder . It’s the opposite of
 onBindViewHolder on line 16. Most presenters do not
need to do anything here.

 ➝ 39 Most presenters will need to implement a ViewHolder that
contains references to the views that need to be updated
in onBindViewHolder . This ViewHolder is a simple one
that has a reference to a single view, Android TV’s built-in
 ImageCardView . See Chapter 9 for more information about
using ViewHolder s.

http://d.android.com/guide/topics/ui/ui-events.html#HandlingFocus

371 Chapter 19: Look Ma, I’m on TV!

 Running Your App
 Your app isn’t done yet, but it should be possible to build and run it. To do
that, you’ll need to create an Android TV emulator.

 Choose Tools ➪ Android ➪ AVD Manager, click Create Virtual Device, and
create a new device with the settings in Table 19-1 .

 See Chapter 3 for more information about creating an Android emulator.

 Once the emulator has been created, click the Run icon to start it up. Be
aware that because the Android TV does not have a touchscreen, many items
in the interface may not be clickable. Instead, you should use the arrow keys
on your keyboard to navigate the Android TV emulator interface.

 Now that the emulator has been created, go to Android Studio and select
Run ➪ Run ’ Tasks ’ , then choose to run it on the emulator that you just created.
You should see something like Figure 19-2 .

 Table 19-1 Settings for Creating a New TV Emulator

Category TV
Name Android TV (720p)

Release name Lollipop

API level 21

ABI x86

 Figure 19-2 :
 The Tasks

app running
on Android
TV with no

data.

372 Part IV: Android Is More than Phones

 Well, that’s fun, but there’s no data to view. And there’s no way to add data!
Let’s fix that.

 Adding and Editing Items
 Android TV isn’t really designed for inputting data. There’s no keyboard on
most devices, and although there’s a virtual onscreen keyboard, using it with
a standard TV remote control can be a real pain.

 For that reason, the BrowseFragment doesn’t really have a built-in way for
adding items to the database. But without a way to add items to the data-
base, how are you going to test your app?

 The trick is to launch the TaskEditActivity on your emulator, directly from
Android Studio. Once the TaskEditActivity is running, you can use it to save
tasks to the database. Your users can’t launch TaskEditActivity directly
from the app, but you can launch it from Android Studio for testing purposes.

 Because TVs aren’t a good way to input data, it probably doesn’t make
sense to have a permanent Add Item button on the Tasks app for TVs. The
technique in this section is a good way to test your app, but most users will
expect your TV Tasks app to sync with their apps on their phones. Cloud
storage is not covered in this book, but take a look at Google Cloud Save
(http://developer.android.com/google/gcs) for one potential way to
sync your tasks between devices.

 Using voice input can be a great way to allow your users to add data to apps
on your TV. Many Android TVs support voice input either directly on the TV,
or built into the Android TV remote. For more information about using Voice
Input on Android, visit the book’s web extras online at www.dummies.com/
extras/androidappdevelopment .

 To launch TaskEditActivity , open the TaskEditActivity.java file
and right-click on TaskEditActivity , then choose Run ’ TaskEditActivity ’ ,
as in Figure 19-3 .

 The TaskEditActivity should run on your emulator, and you should be
able to save a new task into your database. If you repeat this a few times, you
should see a few items in your app, like in Figure 19-4 .

www.dummies.com/extras/androidappdevelopment

373 Chapter 19: Look Ma, I’m on TV!

 Creating Backgrounds
 As mentioned in the first section, Android TV apps should be a little bit more
cinematic than their phone and tablet counterparts. Let’s add a touch of
visual flair by changing the background of the app when you select each task.

 Open MainFragment.java and add the lines in bold:

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 final BackgroundManager backgroundManager
 = BackgroundManager.getInstance(getActivity()); ➝6

 Figure 19-3 :
 Running the
 TaskEdit
Activity

from
Android
Studio.

 Figure 19-4 :
 The Tasks

app with
one item
selected.

374 Part IV: Android Is More than Phones

 backgroundManager.attach(getActivity().getWindow()); ➝7

 . . .

 setOnItemViewSelectedListener(➝11
 new OnItemViewSelectedListener() {
 @Override
 public void onItemSelected(Presenter.ViewHolder
 itemViewHolder,
 Object item,
 RowPresenter.ViewHolder
 rowViewHolder, Row row)
 {
 if(itemViewHolder==null) ➝20
 return;

 ImageCardView cardView =
 ((CardPresenter.ViewHolder)itemViewHolder).cardView; ➝24
 Drawable d = cardView.getMainImage(); ➝25
 if(d!=null) { ➝26
 Bitmap b = ((BitmapDrawable)d).getBitmap(); ➝27
 backgroundManager.setBitmap(b); ➝28
 }
 }
 }
);

 . . .
 }

 Here is what the code does:

 ➝ 6 Gets a BackgroundManager from the activity. The Android
TV BackgroundManager is responsible for setting the back-
ground of the app.

 ➝ 7 Every time you want to use a BackgroundManager , you must
make sure that it is associated with the current activity’s
window.

 ➝ 11 Calls setOnItemViewSelectedListener() when you
want to set the listener that is invoked whenever an item is
selected. You will use this listener to change the background
to be a scaled-up version of the image for the currently
selected task.

 ➝ 20 You must use the itemViewHolder to get the current card
View for the selected item, but the itemViewHolder may
sometimes be null . This can happen when a row header is
selected rather than a row item. To protect against this case,
make sure to check for null .

375 Chapter 19: Look Ma, I’m on TV!

 ➝ 24 Gets the cardView from the ViewHolder .

 ➝ 25–27 Gets the bitmap from the ImageCardView by first getting
the drawable, and then getting the bitmap from the drawable.
It’s possible that the drawable may be null if it hasn’t been
downloaded from the network yet, so make sure to check for
that case.

 ➝ 28 Uses the BackgroundManager to set the background to the
bitmap you got from line 27.

 BackgroundManager has a setDrawable() method, so you might be
tempted to call backgroundManager.setDrawable() using the drawable
on line 25 and skipping line 26 entirely. Do not do this; it’s not safe to reuse
drawables in multiple places. ImageViews may modify their drawables, and
if you’re using the same drawable in two different ImageViews , you can get
some very weird-looking behavior. ImageViews do not modify bitmaps, so
they are safe to reuse here.

 Try running the app now, and you will see that the background changes as
you select different tasks.

 Creating More Filters
 Currently, the only header you have on the left-hand side of the app is the
“All” filter. Let’s add some additional filters to make it easier for users to
 navigate their tasks. In this section, you add the following filters:

 ✓ All

 ✓ Today

 ✓ This Week

 ✓ This Month

 ✓ This Year

 The way to do this is to add one HeaderItem for each new filter, then add a
new CursorObjectAdapter for each filter’s row of data. You also need to
create several more loaders to handle all the new CursorObjectAdapters .

 First add the following to your MainFragment :

 public static final Object[] CATEGORIES[] = {
 new Object[]{ "All",new int[]{
 Calendar.YEAR,
 Calendar.DAY_OF_YEAR,

376 Part IV: Android Is More than Phones

 Calendar.HOUR_OF_DAY,
 Calendar.MINUTE,
 Calendar.SECOND
 }
 },
 new Object[]{ "Today", new int[]{
 Calendar.HOUR_OF_DAY,
 Calendar.MINUTE,
 Calendar.SECOND
 }
 },
 new Object[]{"This Week", new int[]{
 Calendar.DAY_OF_WEEK,
 Calendar.HOUR_OF_DAY,
 Calendar.MINUTE,
 Calendar.SECOND
 }
 },
 new Object[]{"This Month", new int[]{
 Calendar.DAY_OF_MONTH,
 Calendar.HOUR_OF_DAY,
 Calendar.MINUTE,
 Calendar.SECOND
 }
 },
 new Object[]{ "This Year",new int[]{
 Calendar.DAY_OF_YEAR,
 Calendar.HOUR_OF_DAY,
 Calendar.MINUTE,
 Calendar.SECOND
 }
 },
 };

 This static field defines all the categories you’re going to use as headers on
the left-hand side of the app. It also defines the fields that you need to zero-
out if you want to take a timestamp and create a filter for it.

 Let’s say that you want to find all the tasks that have a reminder set for
today. To do that, you would take a timestamp that represents your time
right now, and zero-out the hour, minutes, and seconds to get the time at
midnight this morning. Anything with a reminder after midnight would be
selected by your filter.

 Similarly, if you want to find all of the reminders that are set this week, you
would still zero-out the hours, minutes, and seconds, but you would ALSO
zero-out the day of the week. This would tell you the time that the current
week started, so any reminder after that time would be for this week.

377 Chapter 19: Look Ma, I’m on TV!

 Now that you’ve defined your filters, you just need to use them. Edit
 MainFragment again and change the following lines in onActivityCreated :

 HeaderItem header = new HeaderItem(0,"All", null);
 CursorObjectAdapter cursorObjectAdapter
 = new CursorObjectAdapter(cardPresenter);
 cursorObjectAdapter.setMapper(simpleMapper);

 adapter.add(new ListRow(header, cursorObjectAdapter));

 for(int i=0; i< CATEGORIES.length; ++i) { ➝9
 HeaderItem header = new HeaderItem(i,
 (String)CATEGORIES[i][0], null); ➝11
 CursorObjectAdapter cursorObjectAdapter
 = new CursorObjectAdapter(cardPresenter); ➝13
 cursorObjectAdapter.setMapper(simpleMapper); ➝14

 adapter.add(new ListRow(header, cursorObjectAdapter)); ➝16
 }

 setAdapter(adapter);

 LoaderManager loaderManager = getLoaderManager();
 loaderManager.initLoader(0, null, this); ➝22

 for(int i=0; i<CATEGORIES.length; ++i) ➝24
 loaderManager.initLoader(i, null, this); ➝25

 You just took the previous code that created a single row in the grid, and
replaced it with code that created one row for each item in the CATEGORIES
variable. Here’s how the code works:

 ➝ 9 Loops over each item in the CATEGORIES array. Each of these cat-
egories will become a row in your grid.

 ➝ 11 Creates a HeaderItem for each category in the for loop. The ID
of the HeaderItem will be the current position in the category
array (i), and the name of the HeaderItem will be set to "All" ,
 "Today" , "This Week" , and so on as appropriate. The last
parameter is an optional image URL which you won’t use for the
category headers.

 ➝ 13 Because each category corresponds to a row in the grid, this line
creates a new CursorObjectAdapter to load the data for that
row. As before, you create the CursorObjectAdapter and pass
in a cardPresenter and a simpleMapper (lines 13 and 14).

 ➝ 16 Just like before, this line creates a new ListRow using the
 HeaderItem and the CursorObjectAdapter , and adds it to the
 ArrayObjectAdapter .

378 Part IV: Android Is More than Phones

 ➝ 22 Make sure you delete this line.

 ➝ 24–25 Instead of initializing just one loader, this line calls
 initLoader() once for each row in the grid. You pass
in the index of the row as the ID of the loader to initialize.
You will use that ID later to find the correct loader in
 onCreateLoader .

 The last step is to update the loader callbacks to know that they need to
work with multiple loaders rather than just one. Replace your existing loader
callbacks with the following:

 @Override
 public Loader<Cursor> onCreateLoader(int id, final Bundle args) {
 long filterTimestamp = getFilterTimeForSelectedFilter(id); ➝3
 return new CursorLoader(getActivity(), ➝4
 TaskProvider.CONTENT_URI,
 null,
 TaskProvider.COLUMN_DATE_TIME + "> ?", ➝7
 new String[]{Long.toString(filterTimestamp)}, ➝8
 null);
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 int id = loader.getId(); ➝14
 ObjectAdapter adapter = getAdapter(); ➝15
 ListRow row = (ListRow) adapter.get(id); ➝16
 CursorObjectAdapter rowAdapter = (CursorObjectAdapter) row
 .getAdapter(); ➝18
 rowAdapter.swapCursor(cursor); ➝19
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 int id = loader.getId(); ➝24
 ObjectAdapter adapter = getAdapter(); ➝25
 ListRow row = (ListRow) adapter.get(id); ➝26
 CursorObjectAdapter rowAdapter = (CursorObjectAdapter) row
 .getAdapter();
 rowAdapter.swapCursor(null);
 }

 The last two methods are virtually identical to their predecessors, only now
they use the ID of the loader to pick the correct adapter to update. The first
method requires a little more explanation:

 ➝ 3 Calls getFilterTimeForSelectedFilter() to get the
timestamp for the selected filter. For example, if the filter was
 "Today" , then the timestamp will correspond to midnight

379 Chapter 19: Look Ma, I’m on TV!

this morning as described previously in this section. You’ll
add the getFilterTimeForSelectedFilter() shortly.

 ➝ 4 As before, this line creates the CursorLoader using the
 CONTENT_URI for our task ContentProvider . The only
difference is on lines 7 and 8. Line 7 specifies a filter criteria
for the query. It’s beyond the scope of this book to explain
SQL, but the idea is that you create a query that says "task_
date_time > ? " , and the ? will be replaced by the time you
specify on line 8. This way, each CursorLoader gets its own
unique query (one for Today, one for This Week, one for This
Month, and so on).

 ➝ 14–16 The functions onLoadFinished() and onLoaderReset()
are nearly identical to what they were before, except instead
of assuming that they should use the CursorObjectAdapter
in index 0 of the ArrayObjectAdapter like they did before,
they now get the ID of the loader from the loader object, and
use that as the index into the ArrayObjectAdapter to find
the correct CursorObjectLoader . You’re using the loader’s
ID to pass around the index for the correct adapter.

 ➝ 24–26 The same as lines 14–16.

 Finally, add the getFilterTimeForSelectedFilter method:

 private long getFilterTimeForSelectedFilter(int id) { ➝1
 Calendar calendar = Calendar.getInstance(); ➝2
 int[] calendarFieldsToZero = (int[])CATEGORIES[id][1]; ➝3

 for(int fieldToZero : calendarFieldsToZero) ➝5
 calendar.set(➝6
 fieldToZero,
 calendar.getActualMinimum(fieldToZero)); ➝8

 return calendar.getTimeInMillis(); ➝10
 }

 This method isn’t really related to Android at all, but what it does is this:

 ➝ 1 getFilterTimeForSelectedFilter takes an index into the
 CATEGORIES array that indicates which filter to use. Index 0 is
 "All" , index 1 is "Today" , and so on.

 ➝ 2 Gets a new calendar instance that corresponds to “now.”

 ➝ 3 Gets the list of fields to zero-out from the array. For example, if
the selected filter is "Today" , then according to the CATEGORIES
array, the fields will be HOUR_OF_DAY , MINUTE , SECOND .

380 Part IV: Android Is More than Phones

 ➝ 5–8 For each field that needs to be zeroed, these lines call
 calendar.set() on the field and set it to its minimum. In
most cases, this will be zero or one, but in some cases it may
be other values. For example, the beginning of the week is con-
sidered to be SUNDAY (1) in the U.S., but in Europe it is consid-
ered to be MONDAY (2). Calendar.getActualMini
mum() will tell us the appropriate value for each field, given the
user’s current locale.

 Programming dates and times in Java can get quite compli-
cated. For more information about Java’s date and time classes,
visit https://docs.oracle.com/javase/
tutorial/datetime/iso . You may also be interested in
checking out ThreeTenBackport at http://www.threeten.
org/threetenbp .

 ➝ 10 Returns the timestamp for the result, in UNIX time (a long rep-
resenting milliseconds since Jan 1, 1970 UTC).

 Run the app again and create a few tasks with reminder times today, yesterday,
and earlier this month, and you should see something similar to Figure 19-5 .

 Figure 19-5 :
 The com-

pleted Tasks
app on

Android TV.

http://www.threeten.org/threetenbp
https://docs.oracle.com/javase/tutorial/datetime/iso

 Moving beyond Google
 In This Chapter

 ▶ Making your app work on Amazon Fire

 ▶ Finding out which features don’t work with Fire

 ▶ Configuring and testing with an emulator

 ▶ Uploading your app to the Amazon Appstore

 For Android, Google may be the biggest game in town, but it isn’t the only
one. Because Google makes every release of Android open to the public

via the Android Open Source Project, many companies produce their own,
custom versions of the Android source code.

 One company that you may be familiar with, Amazon, chose Android to run
on its devices — the Fire OS tablet and phone.

 The Android-based Fire devices can run Android apps with few or no modifi-
cations. It has no access to the Google Play Store, though, which means that
if you want Fire users to be able to download your app, you have to publish
it to the Amazon Appstore for Android. In this chapter, you find out how to
port your application to the Fire OS and then publish it via Amazon.

 One reason you may want to port to the Fire is to reach more users. But only
you can decide whether the additional users you’ll acquire are worth the
extra effort that’s necessary. Do your homework and read relevant statistics
on how many users each new platform has before you commit to expending
the effort.

 Working around Google Features
 Because the Fire isn’t a “true” Android device (it doesn’t use the official
Google Android source code but instead uses a modified version), it doesn’t

Chapter 20

382 Part IV: Android Is More than Phones

have access to any of the closed-source Google services that you might
already be using. In addition, the device itself may not have certain features
that you’re accustomed to:

 ✓ Google Maps: If you’re using the Google Maps library to bring maps to
your Android application, you can’t use this library on the Fire. If you use
maps, you may be able to use Amazon’s Map v2, available at https://
developer.amazon.com/public/apis/experience/maps .

 ✓ Google Play Store in-app purchasing: If your app uses in-app purchas-
ing to allow users to purchase from inside it, you can’t use this same
API in your Fire app. Luckily, Amazon has a version of in-app purchasing
that you can use on the Fire.

 ✓ GCM push notifications: If you’re using Google Cloud Messaging for
push notifications, you won’t be able to use these on the Fire. Amazon
has an alternative that you can use for Fire devices.

 ✓ Android Lollipop: Amazon uses the version of Android source code
before Lollipop was released, so the Fire has no access to any of the
features in Lollipop. In particular, you’ll notice that the Fire has a unique
look and feel unlike any other Android tablet.

 Even without these features and services, many Android applications work
on the Fire with little or no modification. If this includes your app, read on.

 The Amazon App Testing Service can inspect your Android app and tell you
what, if anything, needs to be updated to support the Fire OS. You can learn
more about the App Testing Service at https://developer.amazon.com/
public/resources/development-tools/app-testing-service .

 Setting Up the Fire SDK
 Much like developing on Android requires the Android SDK, developing
on Fire requires the Fire SDK. Because you already have the Android SDK,
installing the components necessary for Fire development is simple:

1. Open Android Studio and choose Tools ➪ Android ➪ SDK Manager.

2. In the SDK Manager, choose Tools ➪ Manage Add-on Sites.

3. Click User Defined Sites, click New, and add the following URL:
 https://s3.amazonaws.com/android-sdk-manager/redist/
addon.xml .

 Click Close, and wait for the SDK to download.

https://developer.amazon.com/public/resources/development-tools/app-testing-service
https://s3.amazonaws.com/android-sdk-manager/redist/addon.xml

383 Chapter 20: Moving beyond Google

4. Uncheck “Installed” to only show you SDKs that are not yet installed.

 Then check the Amazon Fire Phone SDK Addon, and click Install.

 After the SDK is installed, you need to modify your Gradle build file to use the
new SDK.

 In the build.gradle in the top level of your project (not the build.gradle
in your individual app directories), change the line in bold to the following:

 buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:1.0.1'
 classpath 'com.amazon.device.tools.build:gradle:1.0.0'
 }
 }

 In the build.gradle for your app, change your compileSdkVersion to
the following:

 compileSdkVersion "Amazon.com:Amazon Fire Phone SDK Addon:17"

 Now you should be able to rebuild your project for the Fire.

 Setting Up Your Fire or Emulator
 If you want to develop for the Fire, you need either the Fire itself to test
your app with or an emulator that can act as a surrogate. Because the Fire
is its own breed of Android, you can’t use the same ADB you use with other
Android devices unless you make a few configuration changes.

 Creating a Fire-like emulator
 If you don’t have access to a Fire, you need to create an emulator for one.
Follow these steps:

1. Choose Tools ➪ Android ➪ AVD Manager, then click Create Virtual
Device.

2. Click New Hardware Profile to create a new kind of virtual device.

3. Enter the settings from Figure 20-1 and click Finish.

384 Part IV: Android Is More than Phones

4. Select your newly created Fire Phone virtual device and click Next.

 Then choose Jelly Bean API level 17 for x86 devices, as in Figure 20-2 .

5. Click Next.

 Use the default configuration and then click Finish to create your Fire
Phone AVD.

 Do you need to create an emulator for a different kind of Fire device?
Visit https://developer.amazon.com/public/solutions/
devices/kindle-fire/specifications/01-device-and-feature-
specifications for a list of all of the emulator settings for all of the
 available Fire devices.

 Enabling Developer Options
 If you are using a real Fire device, you need to enable Developer Options to
be able to use it with ADB on your computer. To enable Developer Options

1. Open the Settings interface.

2. Scroll to and expand the Device section.

 Figure 20-1:
 Settings

in the
Create new

Android
Virtual
Device
(AVD)

 dialog.

https://developer.amazon.com/public/solutions/devices/kindle-fire/specifications/01-device-and-featurespecifications

385 Chapter 20: Moving beyond Google

3. Tap Get info about your Fire.

4. Now tap any item in the list repeatedly.

 You must tap the item at least seven times within five seconds.

5. Click the Developer Options button that appears at the bottom of
the screen.

6. Set the Developer Options slider to the ON position.

7. Select USB Debugging.

 Installing the USB driver (Windows only)
 On Windows, to detect the Fire phone on your development computer, you
must first install a modified version of the Kindle Fire USB driver that is
included with the Fire Phone SDK add-on:

1. Run the USB driver installer at <ANDROID_SDK>/add-ons/
addon-fire_phone_sdk_addon-amazon-17/tools/
KindleDrivers.exe .

2. After installing the driver, wait a few minutes for the system to update
before attempting to connect the Fire phone to your development
computer.

 Figure 20-2:
 The Virtual

Device
Configura-
tion dialog.

386 Part IV: Android Is More than Phones

 Connecting to ADB
 You will now need to restart ADB. In a terminal, go to ANDROID_SDK/
platform-tools and run

 Windows:

 ✓ adb kill-server

 ✓ adb start-server

 ✓ adb devices

 Mac OS X or Linux:

 ✓ ./adb kill-server

 ✓ ./adb start-server

 ✓ ./adb devices

 You now see your Fire in the output from the adb devices command.

 Publishing to Amazon Appstore
for Android

 Publishing to the Amazon Appstore for Android is similar to publishing to the
Google Play Store: You create an account, and then you may need to pay a
developer fee.

 Unlike the Google Play Store, apps must be reviewed on the Amazon
Appstore for Android, so plan a few days between the day you submit your
app and the day it becomes available on the store.

 Follow these steps:

1. Go to https://developer.amazon.com/appsandservices and
click Sign In.

2. Sign in using your Amazon login, or create a new account.

3. Enter your developer information, such as in Figure 20-3 .

4. Agree to the Amazon Distribution Terms by scrolling down and click-
ing Accept and Continue (Figure 20-4).

387 Chapter 20: Moving beyond Google

 Figure 20-3:
 The

Registration
window.

 Figure 20-4:
 Click to

Accept the
Distribution

Terms.

388 Part IV: Android Is More than Phones

5. Indicate whether you intend to monetize your apps.

 If so, fill in the necessary details, then click Save and Continue.

6. Click the Add a New App button.

7. Enter your app’s important information as in Figure 20-5 , and click
Save when you’re done.

 Feel free to fill in the other optional fields such as SKU if it’s useful to
you; see Figure 20-5 .

8. Click the Availability and Pricing tab (Figure 20-6) to choose in which
countries to make your app available — and its price.

9. Click the Description tab to set your app’s short and long descriptions,
and add translations for other languages.

 Click Save when you’re done (see Figure 20-7).

10. Click the Images and Multimedia tab (Figure 20-8) to upload icons and
screen shots to include in your app description, then click Save.

11. Click the Content Rating tab (Figure 20-9) to choose your app’s content
rating and age restrictions by clicking the appropriate radio buttons,
then click Save.

 Figure 20-5:
 The New

App
Submission

window.

389 Chapter 20: Moving beyond Google

 Figure 20-6:
 The

Availability
and Pricing

tab for the
Silent Mode
Toggle app.

 Figure 20-7:
 The

Description
tab for the

Silent Mode
Toggle app.

390 Part IV: Android Is More than Phones

 Figure 20-8:
 The Images

and
Multimedia
tab for the

Silent Mode
Toggle app.

 Figure 20-9:
 The Content

Rating tab
for the

Silent Mode
Toggle app.

391 Chapter 20: Moving beyond Google

12. Click the Binary File(s) tab (Figure 20-10) to upload your app’s binary
code, then click Save.

 See Chapter 8 for more information about how to build and upload your
app’s APK file.

13. Click the Submit App button.

 The review process can take anywhere from hours to days to weeks.
However, when your app launches in the Appstore, you can find it in the
Amazon Appstore for Android alongside other apps as shown in Figure 20-11 .

 Figure 20-10:
 The Binary

File(s) tab
for the

Silent Mode
Toggle app.

392 Part IV: Android Is More than Phones

 Figure 20-11:
 The Amazon
Appstore for

Android.

 To find out more about the Amazon Appstore submission process,
visit https://developer.amazon.com/public/support/
submitting-your-app/tech-docs/submitting-your-app .

https://developer.amazon.com/public/support/submitting-your-app/tech-docs/submitting-your-app

 Enjoy an additional Android Part of Tens chapter online at
 www.dummies.con/cheatsheet/androidappdevelopment .

 The Part of Tens

Part V

 In this part . . .
 Part V consists of some of the best secret-sauce-covered Android
nuggets that you acquire only after having been in the develop-
ment trenches for quite some time. Chapter 21 lists some of the
best sample applications that can help springboard you on your
way to creating the next hit application. These applications range
from database-oriented apps to interactive games to applications
that interact with third-party web application programming
 interfaces (APIs).

 Part V closes with a list of professional tools and libraries that can
help streamline and improve the productivity of your application
development process and make your life as a developer much
easier.

 Ten Free Sample Applications
and SDKs

 When you develop Android apps, you may run into various roadblocks
based on the code. Perhaps you want an app to communicate with a

third-party API that returns JSON or to perform collision detection in a game.
You can usually search the web for sample code because someone else has
likely already written it. Then all you have to do is review the code, alter it to
fit your needs, and continue with development.

 Reviewing sample code increases your knowledge even if you don’t need the
code in an application. In fact, a good way to find out how to program for
Android is to look at sample code. Sure, it comes supplied with the Android
SDK — in the API Demos, for example (see Chapter 2) — but a truly cool
plethora of real-world application code is freely available on the web. You
can find on the Internet plenty of high-quality open source applications to
serve as examples, thanks to the open source nature of Android.

 Most of the ten excellent open source applications and samples in this chapter
are real-world Android applications that you can install from the Google Play
Store. Try an application on your device, and then crack open its source code
to see how the gears turn.

 Android Samples
 The samples folder of the Android SDK holds the source code for the vari-
ous Android samples, which demonstrate how to use various Android APIs
via small, digestible, working examples. You can find tons of simple, straight-
to-the-point examples in the Android samples source code. Incorporating
animation into your project or playing an audio file inside your app is easy
because API Demos provides examples of both. If you have a lot of ideas but
not a lot of time, you should definitely install this demo app on your device
and play with its numerous examples to see exactly what they can do. The

Chapter 21

396 Part V: The Part of Tens

samples are easy to use with Android Studio: Just go to File➪Import Sample
to browse the list of available samples and import them into a new Android
Studio project.

 The Google I/O App
 https://github.com/google/iosched

 Every year, throngs of Google developer groupies descend on Moscone West
in San Francisco for a multi-day conference to discuss all things Google. The
official conference app is written for Android devices, and the source code
serves as an example of how to write good apps for the platform.

 K-9 Mail
 http://code.google.com/p/k9mail/

 K-9 Mail is a popular email client for Android that used to ship with Android
before it became a separate app. It’s an extraordinarily full-featured open
source application, with functionality such as search, push, sync, flagging,
signatures, and more.

 GitHub Android App
 https://github.com/github/android

 GitHub is a popular community of open source projects that uses the Git
Distributed Version Control System (DVCS). The GitHub Android App lets
you view, from the palm of your hand, all your favorite GitHub repositories
located on GitHub.com . The application demonstrates how to use the
GitHub API as well as the RoboGuice framework.

 Facebook SDK for Android
 http://github.com/facebook/facebook-android-sdk

 If you’re feeling ambitious, you can tackle the task of creating the next popu-
lar Facebook application, even if you don’t know where to begin. Use the

397 Chapter 21: Ten Free Sample Applications and SDKs

Facebook Android SDK to easily integrate Facebook functionality into your
application — authorize users, make API requests, and much more. Integrate
all the goodness of Facebook without breaking a sweat.

 Notepad Tutorial
 http://d.android.com/guide/tutorials/notepad/

 If you’re interested in understanding the basic principles of SQLite without
all the fluff of services, background tasks, and other technical concepts,
Notepad Tutorial is for you. Although simple in its execution and usage, the
source code and tutorial that go along with it are helpful.

 U+2020
 https://github.com/JakeWharton/u2020

 Jake Wharton is a prodigious contributor to the Android open source com-
munity. Among his many projects is the U+2020 app, which showcases a
number of open source libraries including Dagger, Retrofit, Picasso, OkHttp,
RxJava, Staggered Grid, and many others.

 Lollipop Easter Egg
 https://github.com/android/platform_frameworks_base/blob/

master/packages/SystemUI/src/com/android/
systemui/egg/LLand.java

 Were you alive in 2014? Then you’ve probably heard of Flappy Bird. Perhaps
even you or someone you love were unlucky enough to succumb to that ter-
rible affliction. Well, now you can unleash it upon everyone you know who
has Android 5.0 by tapping a bunch of times on “Android version” in Settings,
and then long-pressing on the resulting lollipop. And if that’s not enough,
take a tour of the source code on Android Open Source Project (AOSP) using
the link above.

https://github.com/android/platform_frameworks_base/blob/master/packages/SystemUI/src/com/android/systemui/egg/LLand.java

398 Part V: The Part of Tens

 Android Bootstrap
 http://www.androidbootstrap.com

 Building an app from scratch takes time. Android Bootstrap can be a great
way to shortcut that process. It includes a full working implementation of
Fragments, Fragment Pager, ActionBar via AppCompat, Navigation Drawer,
ViewPagerIndicator, Retrofit, GSON, Robotium for integration testing, API
Consumption with an API on Parse.com, and much more. It’s no substitute
for understanding how to build Android apps, but it can be a helpful tool to
bootstrap your next Android project with a few commonly used tools.

 The AOSP
 https://source.android.com

 Nearly everything about Android is open source. This means that the source
code of the operating system itself, including many of the apps it ships with,
is available online for you to browse at the Android Open Source Project
(AOSP). The source is massive and you may find it a little difficult to navi-
gate, so you may want to check out the GitHub mirror at http://android.
github.io , which makes it easier to contribute to the source if you’re a
github user.

http://android.github.io

 Ten Tools to Simplify Your
Development Life

 As a developer, you inherently build tools to become more productive —
for example, to assist in asynchronous communication, XML and JSON

parsing, date and time utilities, and much more. Before you write a ton of
helper classes or frameworks to handle items for you, seek out tools that
already exist. This chapter lists ten tools and utilities that can simplify your
development life by increasing your productivity and ensuring that your app
is up to snuff.

 Android Lint
 http://developer.android.com/tools/help/lint.html

 If you’ve done other non-Android development, you may be familiar with the
concept of lint tools, which helps you find the “lint” that collects around your
code. Lint helps you flag code that may technically run, but it may not be
doing exactly what you think it may be doing. Android lint is a sort of warn-
ing system on steroids for Android code. To run it, go to Android Studio and
choose Analyze➪Inspect Code. To run it from the command line, use the
gradle target check ; for example, ./gradlew check .

 Android Systrace
 http://developer.android.com/tools/debugging/systrace.html

 Are you interested in finding out why your app is so slow? Chances are that
you are, or at least you should be. Android’s Systrace tool can be instru-
mental to rooting out the causes of poor performance. Using it, you can get

Chapter 22

400 Part V: The Part of Tens

very detailed information about what your app is doing at any given time, an
example of which is in Figure 22-1 :

 Figure 22-1:
 Example

output from
Android

Systrace.

 RoboGuice and Dagger
 http://roboguice.org
 https://github.com/google/dagger

 No, RoboGuice isn’t the latest and greatest energy drink marketed to
 developers — it’s a framework that uses the Google Guice library to stream-
line dependency injection. Dependency injection handles the initializing of
variables at the right time so that you don’t have to. This concept cuts down
the amount of code you have to write overall, and it makes maintaining your
application a breeze. Where RoboGuice focuses on ease of use, Dagger is
another popular dependency injection library focused primarily on speed.

 Translator Toolkit
 http://translate.google.com/toolkit

 If you want to increase the number of people who can use your app, there’s
almost no better way to do it than to translate your app into other languages.

401 Chapter 22: Ten Tools to Simplify Your Development Life

The answer is to use Google to find helpers to translate your app for you. The
translations aren’t as clean as if you found a native speaker to translate for you,
but they’re a great place to start on the cheap. You might consider getting the
initial translations done by Google, then reaching out to your user community
to find volunteers to edit the translations for you, or using an outsourcing web-
site such as ODesk to find translators. Even craigslist can be a great resource!

 Hierarchy Viewer
 http://developer.android.com/tools/help/monitor.html

 Working with various views inside the layout file to create a user interface
isn’t always a straightforward process. Hierarchy Viewer, located in the
Android Device Monitor, lets you see exactly how your widgets are laid out
onscreen graphically. This format lets you clearly see a widget’s boundar-
ies so that you can determine what’s going on inside the layout. Hierarchy
Viewer, the ultimate tool to make a pixel-perfect user interface, also lets you
magnify the display in the pixel-perfect view to ensure that images and UIs
display flawlessly on all screen sizes and at all densities.

 UI /Application Exerciser Monkey
 http://developer.android.com/tools/help/monkey.html

 Don’t worry: The UI/Application Exerciser Monkey doesn’t need to be fed
bananas to remain happy! You use Exerciser Monkey to stress-test your
application. It simulates random touches, clicks, and other user events to
ensure that abnormal usage doesn’t make the app explode. Exerciser Monkey
can be used to test apps on either your emulator or your own device.

 Git and GitHub
 http://git-scm.com
 http://github.com

 Git — a superfast, free, and open-source-distributed version control system —
manages repositories quickly and efficiently, making it painless to back
up work. Don’t let a system crash ruin your day by not having a version
control system for your next spectacular app. Git makes working with
branching simple and effective, and it integrates into your workflow easily.
Although Git is distributed, you’ll likely want a remote location where the
Git repository is stored. You can obtain a free, private Git repository from

402 Part V: The Part of Tens

 http://bitbucket.org . If your code is open source, you can create free
repositories on Github.com , where there is a huge community of open source
developers contributing to each other’s open sourced projects. Also, the
Github Android app is open source (see Chapter 21) and worth a good browse.

 Picasso and OkHttp
 http://square.github.io/picasso/
 http://square.github.io/okhttp/

 Images add much-needed context and visual flair to Android applications.
Picasso allows for hassle-free image loading in your application — often
in one line of code! You’ve already seen Picasso in use in the Tasks app in
Chapter 9 , but there’s much more it can do for you in your other apps.

 Picasso is built on OkHttp, which makes uploading and downloading informa-
tion over http significantly easier than the built-in libraries included with
Android.

 Memory Analyzer Tool
 https://developer.android.com/tools/debugging/debugging-

memory.html

 Java does a lot of memory management for you, but that doesn’t mean that you
can’t leak memory on Java. In fact, memory leaks on Android are one of the
most common ways that long-running apps can become unstable. The Eclipse
Memory Analyzer Tool (MAT) can help you track down the cause of your
memory leaks on Android. Visit the link above to get more information about
how to use MAT and other tools to investigate your app’s memory usage.

 Travis-ci
 http://travis-ci.org

 Once you have a source code control system such as Git set up, the next
step is to set up a Continuous Integration (CI) server such as Travis-CI. A CI
system such as Travis-CI automatically builds your app every time you push
a new change to GitHub. It also runs your test cases, checks Android lint, and
can also build a release version of your app that’s ready to be uploaded to
the Google Play Store. Travis-CI is free for open source projects, but you can
also buy a subscription if you want to build your closed source projects.

 • Symbols •
 | (pipe symbol), 204
 ? (question mark), 96
 @ symbol, 213

 • A •
 accelerometer, 20–21
 accent color, 175
 Access Fine Location permission, 60
 action

 action bar, 19
 advanced, 226
 intents, 14, 124–125
 long-press, 207–210

 action bar
 action, 19
 Android development basics, 18–19
 contextual, 19
 page, 18
 setting the, 163
 Up button, 18
 YouTube, 18

 action buttons, 274
 ACTION_DIAL intent data, 124
 ACTION_EDIT intent data, 124
 ACTION_VIEW intent data, 124
 active/running activity state, 80
 activities

 Android development basics, 13
 basic description, 79
 callback methods, 81
 click event, 86–87
 creating, 84–86
 versus fragments, 165
 killable indicator, 84
 lifecycle, 80–82
 methods, 80–83
 preference, 287–288
 showing user interface onscreen, 85
 stack, 80
 styling, 174–180

 task settings, 160
 user input handling, 85–86
 when to use, 165

 Activity class, 13, 79
 Activity manager, 28
 Activity name activity setting, 182
 Activity name blank activity setting, 66
 activity recognition, 21
 activity_main activity, 339
 activity_task_edit.xml file, 318
 activity_task_list_and_editor.xml

file, 318
 activity_task_list.xml file, 162, 318
 adapters

 creating Android Wear application, 346–350
 showing list of items, 170–172
 SQLite database, 257–260

 Add New Application page (Google Play
Store), 151

 Add Task menu, 325–326
 add-ons folder, 34
 advanced action, 226
 advertising, pricing applications, 149
 alarm information

 data storage, 158
 reminder scripts, 158
 user notification, 158–159

 AlarmManager class, 265, 267–274
 ALARM_SERVICE system service, 89
 alert dialogs
 basic description, 225–226

 choosing for task, 226–227
 creating, 227–229
 reasons for using, 226

 AlertDialog validation, 231
 always action, 204
 Amazon App Store for Android

 application publishing options, 154
 Availability and Pricing tab, 389
 distribution terms, 386–387
 New App Submission window, 388
 publishing to, 386–392
 Registration window, 387
 submission process, 388–392

 Index

404 Android Application Development For Dummies

 Android
 framework features, 27
 libraries, 27
 platforms, 34–35
 roots, 11
 runtime, 27
 as start-up company, 1

 Android Bootstrap application, 398
 Android Device Manager, 37
 Android lint tool, 330–331, 399
 Android Lollipop, 382
 Android Open Source Project, 27, 398
 Android SDK. See also SDKs

 basic description, 31
 folders, 3

 Android source code, 10, 27
 Android Studio

 basic description, 31
 boot screen, 32
 Choose Device window, 93
 debugger, 100–103
 development environment, 41–42, 45
 downloading, 31
 error messages, 45–47
 installing on Mac, 31–32
 installing on Windows, 32–33
 new project creation, 41–45
 Project view, 52–53

 Android support library, 17–18
 Android Systrace tool, 399–400
 Android TV

 adding and editing items, 372–373
 adding BrowseActivity class, 360–361
 AndroidManifest.xml file, 358–360
 backgrounds, 373–375
 browse fragment, creating, 361
 BrowseFragment class, 361
 building and manifesting changes, 358–360
 completed Tasks app on, 380
 creating CardPresenter.java class,

368–370
 database cursors, mapping to tasks, 366–367
 displaying tasks using loaders and

 CardPresenter class, 364–366
 filters, 375–380
 MainFragment class, 361–363
 reading data from database, 363–368
 running application, 371–372
 running Tasks application on, 371
 TV app building guidelines, 357–358

 Android version, 34–35
 Android Virtual Device (AVD), 47. See also

emulator
 Android Wear

 adding Google Play Services for data syncing,
342–345

 creating adapter, 346–350
 creating new app, 339–350
 creating new module, 339
 development environment, 335–338
 editing MainActivity class for, 340–341
 Hello World app running on, 340
 installing on phone, 335
 notifications on, 334
 packaging application, 356
 pairing phone with emulator, 337–338
 publishing data from phone, 350–355
 running application without Android Studio,

355–356
 sending demo notification to emulator, 338
 setting up emulator, 335–337
 setup screen, 336
 testing sync, 354
 user interaction with, 333–334
 uses for, 356

 AndroidManifest.xml file
 Android TV, 358–360
 creating phones, 303–305
 creating tablets, 305–307
 setting requested permissions in, 267

 anim/ subdirectory, 56
 ANR (Application Not Responding) dialog box,

16
 ANR (Application Not Responding) error, 127,

130–131
 API demos, 37–38
 API samples, 37
 APK Destination Folder (Generate Signed APK

Wizard), 145
 APK file creation, 142–145
 app directory, 53
 app widgets

 AppWidgetProvider class, 127–134
 broadcast messages, 129
 communicating with, 128–129
 creating, 127–137
 framework, 122
 intents, 122–125
 IntentService class, 130–134
 layout, 129–130

405405 Index

 manifest file, 135–137
 metadata, 134–135
 pending intents, 126–127
 placing on home screen, 137
 remote views, 120–121
 states, 121
 usability, 119

 AppCompat library, 316, 319–321
 application

 callbacks, 81, 312–313
 color scheme, 174–177
 framework, 28–29
 global, 113–114
 how this book is organized, 3–4
 installing, 92–96
 interaction, 104–105
 laying out, 67–68
 manifest file, 59–60
 previewing in visual designer, 78
 pricing, 148–149
 running on emulator, 93–94
 sample, 395–398
 signing, 140–142
 testing, 105, 321–322
 uploading to Google Play Store, 150–153

 Application Name project setting, 66
 Application Not Responding (ANR) error, 127,

130–131
 applicationId value, 61
 apply() method, 292
 Appstore. See Amazon App Store for Android
 AppWidgetHost class, 122
 AppWidgetManager class, 122
 AppWidgetProvider class, 122
 appwidget.xml file, 129
 arrays, value resources, 109
 arrays.xml filenaming convention, 57
 asynchronous processing, 16
 AsyncTask class, 15
 audio and video support, 22–23
 AudioManager variable

 getting good service, 88–89
 toggling silent mode with, 89–92

 AUDIO_SERVICE system service, 89
 automated testing, 105–106
 Availability and Pricing tab (Silent Mode Toggle

app), 389
 AVD (Android Virtual Device), 47. See also

emulator
 AVD Manager dialog box, 47

 • B •
 background services, 16–17
 BackgroundManager class, 374–375
 backgrounds

 Android TV, 373–375
 color, 175

 Beginning Programming with Java For Dummies
(Burd), 12

 bindService() method, 124
 Bluetooth radio, 20
 Bool (Boolean value), 109
 boot receiver

 checking, 278
 creating, 275–277

 boot screen, Android, 32
 branding guidelines, Google, 29
 breakpoints, 101–102
 broadcast messages, 129
 BroadcastReceiver class, 123, 275
 BrowseActivity class, 360–361
 BrowseFragment class, 361
 build configurations

 phones, 350
 tablets, 310–311

 build directory, 53
 build file, 317–318
 build messages, 302
 build.gradle directory, 53, 60–62
 build-tools folder, 34
 buildToolsVersion value, 61
 Burd, Barry

 Beginning Programming with Java For
Dummies, 12

 Button view, 86
 buttons

 action, 274
 picker, 214–215

 • C •
 cached files, 234
 callbacks

 application, 81, 312–313
 fragment, 174

 camera, 20
 Camera permission, 60
 cancel() method, 275
 CardPresenter class, 364
 CardPresenter.java class, 368–370

406 Android Application Development For Dummies

 card_task.xml file, 168
 CardView API, 17
 CardView layout, 169
 case-sensitivity, 2
 category element, intents, 125
 changes, image layers, 112
 cheat sheet, 4–5
 CheckBoxPreference preference, 280
 Choose Device window (Audio Studio), 93
 CI (Continuous Integration) server, 402
 class

 Activity , 13, 79
 AlarmManager , 265, 267–274
 AppWidgetHost , 122
 AppWidgetManager , 122
 AppWidgetProvider , 122, 127–134
 AsyncTask , 15
 BackgroundManager , 374–375
 BroadcastReceiver , 123, 275
 BrowseActivity , 360–361
 BrowseFragment , 361
 CardPresenter , 364–366
 CardPresenter.java , 368–370
 ContentProvider , 236
 CursorObjectAdapter , 363
 CursorToTaskMapper , 366–367
 DatabaseHelper , 240
 DatePicker , 214
 DatePickerDialog , 219–220
 DialogPreference , 280
 framework, 88–92
 ImageView , 72–74
 IntentService , 130–134
 MainActivity , 84, 340–341
 MainFragment , 361–363
 NotificationManager , 159, 273
 OnAlarmReceiver , 270–273
 OnBootReceiver , 276–278
 onClickListener , 87
 PreferenceActivity , 287–288
 PreferenceFragment , 280–281, 285–287
 RecyclerView , 165–167
 ReminderManager , 267–274
 ReminderManager.java , 268
 RemoteViews , 120–121
 RingerHelper , 92
 SQLiteOpenHelper , 237–238
 TaskEditActivity , 181–183, 193, 372
 TaskEditFragment , 185–192
 TaskListActivity , 160–163
 TaskListAdapter , 170–172, 303–304

 TaskListAndEditActivity , 307–310
 TaskListFragment , 163–165, 288
 TimePicker , 214
 TimePickerDialog , 221

 clearing notifications, 274–275
 click event, 86–87
 clickable property, 86
 client-server computing, 22
 Cloud Messaging framework, 24
 code, 2
 coding applications

 activities, 79–87
 errors, 98–103
 framework classes, 88–92
 installing application, 92–96
 interaction, 104–105
 Material Design language, 96–98
 recognizing all possible solutions, 103–106
 testing application, 105–106

 collapseActionView action, 205
 color scheme, 174–177
 color/ subdirectory, 56
 colors resource, 110
 colors.xml filenaming convention, 57
 comments (Google Play developer

console), 154
 compass, 20
 compatibility, device, 10–11
 compatible-screen element, 305
 Compile SDK Version, 62
 compileSdkVersion value, 61
 component element, intents, 125
 compression, image, 112
 computer hardware, 30
 configuration

 support tools, 31
 Virtual Device Configuration dialog box, 385

 configuration change, 84
 Configure AVD dialog box, 48
 contacts

 mashup capability, 12
 ways to use, 23

 Content and Rating tab (Silent Mode Toggle
app), 390

 content providers, 235
 ContentProvider class, 236
 ContentProvider URIs, 241–244
 context menus

 basic description, 201
 creating programmatically, 203–206
 long-press action, 207–210

407407 Index

 user action handling, 202–203
 XML menu file, 201–202

 context parameter, 126
 Context stream (Android Wear devices), 333
 contextual action bar, 19
 Continuous Integration (CI) server, 402
 create() method, 244–245
 Create New Project Wizard, 42
 create, read, update, and delete (CRUD) tasks,

159, 244
 cron job, 158
 CRUD (create, read, update, and delete) tasks,

159, 244
 cursorless controls, 15
 CursorObjectAdapter class, 363
 CursorToTaskMapper class, 366–367
 custom validation, 231

 • D •
 Dagger tool, 400
 data

 intents, 14, 124–125
 reading into edit page, 261–264
 storing, 158

 data storage
 alarm information, 158
 content providers, 235
 ContentProvider URIs, 241–244
 create, read, update, and delete (CRUD), 244
 external storage, 234–235
 finding places to put data, 233–234
 internal storage, 234
 local cache, 234
 multiple storage mechanisms, 235–236
 network connections, 235
 public, 234
 reading data into edit page, 261–264
 remote, 235
 save() method, 250–253
 selecting storage option, 235–236
 shared preferences, 234
 SQLite database, 235–240
 Storage Access Framework (SAF), 235
 task data, 158

 data syncing, 344
 database cursors, 366–367
 DatabaseHelper class, 240
 DataItems parameter, 347
 date and time pickers

 creating, 219–222

 hooking up to fragments, 222–225
 showing task date and time, 215–219

 DatePicker class, 214
 DatePickerDialog class, 219–220
 Debug view, 102
 debugger (Android Studio)

 creating breakpoints, 101–102
 runtime errors, checking, 100–101
 starting, 102–103

 debugging
 with Device Manager, 37
 USB, 96

 default resources, 114
 Delete dialog box, 209
 delete() method, 248
 deleting tasks, 260–261
 demos, 37–38
 density folders, 72
 density-independent pixel (dpi), 108
 dependency injection, 400
 Description tab (Silent Mode Toggle app), 389
 Design view, 78
 destroyed activity state, 81
 developer

 considerations of becoming, 25–26
 cursorless controls, 15
 reasons for developing for Android, 9–12

 Developer Options, 384–385
 developer profile (Google Play Store), 145–148
 development

 action bar, 18–19
 activities, 13
 Android framework, 27
 Android platform, 34–35
 Android SDK navigation, 34
 Android source code, 27
 Android support library, 17–18
 application framework, 28–29
 background operations, 15
 fragments, 13
 hardware, 30–31
 installing and configuring support tools, 31
 installing Android Studio, 31–33
 installing Java 7, 33
 intents, 14
 Java programming language, 12–13, 29–30
 Linux kernel, 26
 SDK packages, adding, 33
 SDK tools for, 35–38
 views, 15
 widgets and notifications, 19

408 Android Application Development For Dummies

 development environment, Android Studio,
41–42, 45

 device
 compatibility, 10–11
 downloading Windows USB driver for, 35–36
 installing application on, 94–96
 rebooting, 275–278

 Device Manager, 37
 device-independent platform, 1
 DialogPreference class, 280
 dialogs

 alert, 225–226
 choosing for task, 226–227
 creating, 227–229
 custom, 226
 reasons for using, 226

 digital signature, 140–142
 dimensions, resource, 108
 dimens.xml filenaming convention, 57
 directories

 build.gradle, 60–62
 folder navigation, 53
 res directory subdirectories, 56

 distributable file
 creating, 139–142
 tool selection, 140

 distribution terms, Amazon App Store, 386–387
 docs/shareables directory, 76
 dpi (density-independent pixel), 108
 drawable resources, 74–75
 drawable/ subdirectories, 56
 DrawerLayout layout, 70
 driver model (Linux kernel), 26
 Dykes, Lucinda

 XML For Dummies, 12

 • E •
 e (error) value, 99
 edit fragment, 185–192
 edit page, 261–264
 Edit Task page, 327
 edit view, linking list view to, 183–185
 editing preferences, 292
 editTask() method, 312
 EditText view, 86, 211–212
 EditTextPreference preference, 280
 EditText.setError() method, 230
 emulator

 Android Wear devices, 335–338

 benefits, 35
 Fire SDK, 383–384
 Hello Android app running in, 49–51
 limitations, 35
 running application of, 93–94
 sending demo notification to, 338
 setting up, 47–48
 tablet, 301–302

 entire lifetime (activity lifecycle), 82
 error

 Application Not Responding (ANR) error, 127,
130–131

 coding application, 98–100, 102–103
 runtime, 100–101

 error message, 45–47
 error reports (Google Play developer console),

154
 Espresso library, 106
 event listener, 86
 expandable preview option, 274
 explicitly intent, 125
 external storage, 234–235
 Extract Android String dialog box, 111
 extra-high screen densities, 77
 extras element, intents, 125
 extras folder, 34

 • F •
 Facebook Android SDK, 396–397
 feature detection, 11
 field names, 218
 filenaming conventions, 57
 File(s) tab (Silent Mode Toggle app), 391
 filters, Android TV, 375–380
 findViewById() method, 87
 finish() method, 83
 finishEditingTask() method, 312
 Fire SDK

 connecting to ADB, 386
 creating emulator, 383–384
 enabling Developer Options, 384–385
 Fire Phone add-on, 385
 setting up, 382–383
 USB driver installation, 385

 five-star rating system, 154
 flags parameter, 126
 folders

 Android SDK, 3
 density, 72

409409 Index

 generated , 57–59
 Java source, 54–55
 navigation, 52–54
 res , 55–56
 samples , 395

 font color, 110
 foreground lifetime (activity lifecycle), 82
 fragments

 versus activities, 165
 adapters, adding, 170–172
 adding RecyclerView class, 165–167
 Android development basics, 13–14
 callbacks, 174
 CardView layout, 169
 edit, 185–192
 item view, creating, 167–169
 lifecycle, 173
 PreferenceFragment class, 280–281
 preferences, 285–287
 state, 191
 tablets, 299
 TaskListFragment class, 163–165
 when to use, 165

 fragment_task_edit.xml file, 211–212
 fragment_task_list.xml file, 166
 FrameLayout layout, 70
 framework

 Android, 27
 app widget, 122
 application, 28–29
 conventions used in this book, 2
 media, 27
 preferences, 279–280

 framework class
 getting good service, 88–89
 toggling silent mode, 89–92

 free applications, 149

 • G •
 gaming, location-based, 11
 GCM push notifications, 382
 Generate Signed APK Wizard, 142–144
 generated folder, 57–59
 geolocation, 11
 getSystemService() method, 89
 getType() method, 242
 Git tool, 401–402
 GitHub application, 396, 401–402
 global applications, 113–114

 Google branding guidelines, 29
 Google Cloud Messaging framework, 24
 Google I/O application, 396
 Google Maps, 382
 Google Maps API, 23–24
 Google Nexus 7 AVD, 301–302
 Google Play Services library, 342
 Google Play Store. See also publishing

applications
 Add New Application page, 151
 application pricing, 148–149
 creating AndroidManifest for phones,

304–305
 data syncing, 344
 developer profile, 145–148
 ease of use, 10
 free application on, 149
 in-app purchasing, 382
 paid application on, 148–149
 Pricing and Distribution page, 152
 screen shots, 149–150
 Store Listing option, 151
 uploading application to, 150–153
 writing and publishing apps, 10

 Google Wallet merchant account, 148
 GPS feature, 21
 GPS receiver, 20
 Gradle dependency management, 166
 gravity property, 212
 GridLayout layout, 70

 • H •
 hard drive space, 30
 hardware

 accelerometer, 21
 Android device features, 20
 computer, 30
 development basics, 30–31
 GPS feature, 21
 hard drive space, 30
 operating system, 30
 SD card, 22
 touchscreen, 20–21

 Hello Android app
 checking app logs, 51–52
 running in emulator, 49–51

 Hello World app on Android Wear, 340
 Hierarchical parent activity setting, 182
 Hierarchy Viewer tool, 401

410 Android Application Development For Dummies

 high-density screen, 77
 hint text, 188
 home screen widgets. See app widgets

 • I •
 i (info) value, 99
 icons

 launcher, 75–77
 ringer, 71
 Silent Notification, 95
 used in this book, 4

 id attribute, 73
 ifRoom action, 204
 Image and Multimedia tab (Silent Mode Toggle

app), 390
 ImageButton view, 86
 images

 adding to applications, 71–75
 drawable resources, 74–75
 layers, 112
 names, 72
 Picasso image library, 177–179
 pixelation and compression, 112
 placeholder, 177
 properties, setting, 73–74
 resources, 111–112

 ImageView class, 72–74
 implicitly intent, 126
 in (inch) unit, 108
 in-app purchases, 149
 initialLayout property, 135
 input validation

 AlertDialog, 231
 common methods, 230
 custom validation, 231
 input-field highlighting, 231
 Toast message, 230–231

 input-field highlighting, 231
 inputType attribute, 213
 insert() method, 245
 installation

 Android Studio, 31–33
 Android Wear on phone, 335
 application, 92–96
 application on physical device, 94–96
 Java 7, 33
 running application on emulator, 93–94
 support tools, 31
 USB driver, 35–36

 installs versus active installs
comparison, 154

 integer array value resource, 109
 integer value resource, 109
 Intent object, 289
 intent parameter, 126
 intents

 action elements, 124–125
 Android development basics, 14
 data elements, 124–125
 elements, 14, 124–125
 evaluation, 125–126
 explicitly, 125
 implicitly, 126
 intent filter registration, 14
 intent system, 123–124
 launching into message bus system, 124
 pending, 126–127, 269
 resolution, 124
 sending messages with, 14
 turning application into app widget,

122–123
 IntentService class, 130–134
 internal storage, 234
 Internet

 client-server computing, 22
 mashup capability, 12
 permissions, 60

 isFinishing() method, 83–84
 item view, 167–169
 ItemSelected() method, 288
 item_task layout, 348

 • J •
 Java

 package, 43
 source folder, 54–55

 Java 7 installation, 33
 Java All-in-One For Dummies (Lowe), 30
 Java JDK, 31
 Java programming language

 Android development basics, 12–13
 case-sensitivity, 2
 development basics, 29–30
 package naming conventions, 43
 runtime, 29
 tutorials site, 29

 JUnit testing framework tool, 105

411411 Index

 • K •
 K-9 Mail email client, 396
 Key Creation screen (Generate Signed APK

Wizard), 143
 keyboard

 event, 86
 onscreen, 212–213

 keystore, 141–142
 Keystore Selection screen (Generate Signed APK

Wizard), 143
 killable indicator (activity method), 84
 KISS (Keep It Simple, Stupid) principle, 24

 • L •
 landscape versus portrait orientation, 117
 Launcher activity setting, 182
 launcher icon

 custom, 75–76
 matching sizes with screen density, 76–77
 placing into project, 77
 templates, 76

 launcher widgets, 19
 layers, image, 112
 layout

 Android SDK, 70
 app widget, 129–130
 Design view, 78
 edit fragment, 186–189
 handling different screen sizes, 116–117
 responsive, 296–298
 Silent Mode Toggle application, 67–70
 tablet, 299–300, 309–310
 XML attributes, 69

 Layout name activity setting, 182
 Layout name blank activity setting, 66
 layout/ subdirectory, 56
 layout_height attribute, 69
 layout_width attribute, 69
 left-to-right languages, 323–325
 libraries

 Android, 27
 Android support, 17–18
 AppCompat , 316, 319–321
 Espresso, 106
 Google Play Services, 342
 Palette, 196–197
 Picasso image, 177–179

 libs directory, 54

 lifecycle, activity
 activity paths, 82–83
 configuration changes, 84
 loops, 82
 methods, 80–83
 states, 80–81

 lifecycle, fragment, 173
 light option, 273
 LinearLayout layout, 70
 LinearLayoutManager layout, 167
 lint tool, 330–331
 Linux kernel features, 26
 list view

 implementing, 253–254
 linking to edit view, 183–185

 ListPreference preference, 280
 ListView Rows view, 86
 load() method, 179
 loaders

 background operations, 16
 SQLite database, 255–257

 local cache, 234
 localization, image layers, 112
 location

 location-based gaming, 11
 pinpointing on map, 23–24

 Location manager, 28
 LOCATION_SERVICE system service, 89
 log messages, 99
 logcat view, 98–100
 Lollipop application, 382, 397
 long-press action, 207–210
 loops, activity lifecycle, 82
 low-density screen, 77
 Lowe, Doug

 Java All-in-One For Dummies, 30

 • M •
 Macs, installing Android Studio, 31–32
 MainActivity class, 84, 340–341
 MainFragment class, 361–363
 manifest file

 AndroidManifest.xml file, 266
 app widgets, 135–137
 building applications, 59–60
 registering new components with, 135–137

 Maps API, 23–24
 Maps app, 21
 margins, 188

412 Android Application Development For Dummies

 market share, 10
 mashup capability, 11–12
 MAT (Memory Analyzer Tool), 402
 match_parent value, 69
 Material Design language, 96–97
 media frameworks, 27
 medium-density screen, 77
 Memory Analyzer Tool (MAT), 402
 memory management (Linux kernel), 26
 menu

 Add Task, 325–326
 options, 199–200
 XML, 201–202

 Menu resource name activity setting, 66, 182
 menu/ subdirectory, 56
 MenuItem view, 86
 menu_list.xml file, 326
 menus

 context, 200–203
 as resource, 109–110
 selections, 288–289

 metadata, 134–135
 methods

 activity, 80–83
 bindService() , 124
 callback, 81
 cancel() , 275
 create() , 244–245
 delete() , 248
 editTask() , 312
 EditText.setError() , 230
 findViewById() , 87
 finish() , 83
 finishEditingTask() , 83
 getSystemService() , 89
 getType() , 89
 input validation, 230
 insert() , 245
 isFinishing() , 83–84
 ItemSelected() , 288
 load() , 179
 notify() , 274
 OnActivityCreated() , 174
 onClick() , 87
 onCreate() , 80, 82–85, 174
 onCreateView() , 174, 290
 onDateSet() , 224
 onDestroy() , 82–83
 onFocusChanged() , 230
 onKeyDown() , 86
 onPause() , 80, 82–83

 onRestart() , 83
 onResume() , 82–83
 onSave() , 230
 onStart() , 82–83
 onStop() , 82–83
 onTimeSet() , 224
 read() , 248–250
 save() , 250–253
 savedInstanceStat() , 221
 selectableItem

Background() , 169
 sendBroadcast() , 124
 setClickable() , 86
 setContentView() , 100–101
 setError() , 230
 setHasOptionsMenu() , 202
 show() , 209
 showDatePicker() , 223
 ShowTimePicker() , 223
 startActivity() , 123
 startService() , 124
 TextWatcher() , 230
 update() , 246–247
 with() , 178

 millimeter (mm) unit, 108
 minHeight property, 134
 Minimum Required SDK project setting, 66
 Minimum SDK version, 62–63
 minLines property, 212
 minWidth property, 134
 mm (millimeter) unit, 108
 module, Android Wear, 339
 Module Name project setting, 66
 module settings (Tasks application), 160
 Monkey user interface and application

exerciser, 106
 multitouch capability, touchscreen, 21

 • N •
 names

 field, 218
 image, 72
 resource qualifier, 117–118

 network connections, 235
 network stack (Linux kernel), 26
 never action, 204
 New App Submission window (Amazon App

Store), 388
 newer APIs, 329

413413 Index

 Nexus 5 API 16 emulator, 322
 Nexus 5 API 21 emulator, 322
 Nexus 7 API 16 emulator, 322
 Nexus 7 API 21 emulator, 322
 normal ring mode (Silent Mode Toggle

application), 67
 Notepad Tutorial, 397
 NotificationManager class, 159, 273
 notifications

 Android development basics, 19
 on Android Wear devices, 334
 clearing, 274–275
 push, 382
 Reply button, 19
 updating, 274

 notify() method, 274

 • O •
 off ringer image, 71
 OkHttp tool, 402
 on ringer image, 71
 On Save() method, 230
 onActivityCreated() method, 174
 OnAlarmReceiver class, 270–273
 OnBootReceiver class, 276–278
 onClick() method, 87
 onClickListener class, 87
 onCreate() method, 80, 82–85, 174
 onCreateOptionsMenu() method, 202
 onCreateView() method, 174, 290
 onDateSet() method, 224
 onDestroy() method, 82–83
 OnEditTask interface, 185
 onFocusChanged() method, 230
 onKeyDown() method, 86
 onPause() method, 80, 82–83
 onRestart() method, 83
 onResume() method, 82–83
 on_resume parameter, 52
 onscreen keyboard, 212–213
 onStart() method, 82–83
 onStop() method, 82–83
 onTimeSet() method, 224
 Open GL (graphics library) application, 27
 open platform, 10
 operating system

 compatibility, 2
 platforms, 30
 roots, 9

 option menus, 199–200

 • P •
 Package Name activity setting, 182
 Package Name project setting, 66
 packages

 Java, 43
 SDK, 33

 page (action bar), 18
 paid applications, 149
 Palette library, 196–197
 paused activity state, 80
 paused fragment lifecycle state, 173
 pending intents, 126–127, 269
 permissions

 application manifest file, 59–60
 commonly requested, 60
 security, 23
 setting in AndroidManifest.xml file, 266
 user experience affects, 266–267

 phone
 Android Wear installation, 335
 build configuration, 350
 checking for system updates, 335
 Fire Phone SDK add-on, 385
 pairing with Android Wear emulator, 337–338
 prepping for Android Wear devices, 335
 publishing Android Wear data from, 350–355

 phoneDebug parameter, 313
 phones

 build configurations, 310–311
 creating AndroidManifest for, 303–305
 versus tablets, 295–296

 Picasso image library, 177–179, 402
 picker buttons, 214–215
 pipe (|) symbol, 204
 pixel density, 115–116
 pixel (px), 77, 108
 pixelation, image, 112
 placeholder images, 177
 platforms

 Android, 34–35
 version codes and names, 44

 platforms folder, 34
 platform-tools folder, 34
 Play Store. See Google Play Store
 point (pt), 108
 portrait versus landscape orientation, 117
 Preference building block, 282
 PreferenceActivity class, 287–288
 PreferenceCategory building block, 283
 PreferenceFragment class, 280–281, 285–287

414 Android Application Development For Dummies

 preferences
 in activities at runtime, 289–292
 editing, 292
 framework, 279–280
 hierarchy, 283
 laying out, 282–283
 persisting values, 281–282
 retrieving values, 290
 screen, 283–285
 setting, 282
 shared, 281–282, 290
 values, setting, 292

 PreferenceScreen building block, 283–285
 price, application, 148–149
 Pricing and Distribution page (Google Play

Store), 152
 primary color, 174
 primary dark color, 174
 process management (Linux kernel), 26
 project

 application manifest file, 59–60
 build.gradle file, 60–62
 emulator setup, 47–48
 error messages, 45–47
 folder navigation, 52–54
 Hello Android app, 49–52
 starting new, 41–45, 159–160
 structure, 52–63

 Project view (Android Studio), 52–53
 promotional text, 152
 pt (point), 108
 public storage, 234
 publishing applications. See also Google Play

Store
 APK file, creating, 142–145
 digital signatures, 140–142
 distributable file, creating, 139–142
 keystores, 141–142
 managing application progress, 153–154

 publishing to Amazon App Store, 386–392
 push notifications, 382
 px (pixel), 77, 108

 • Q •
 qualifiers, resource

 default resources, 114
 handling old Android versions, 117
 localizing to another language, 115
 name rules, 117–118

 portrait versus landscape orientation, 117
 screen sizes, handling different, 115–117

 question mark (?), 96

• R •
 raw/ subdirectory, 56
 read() method, 248–250
 Read Phone State permission, 60
 readable database, 240
 rebooting devices

 checking boot receiver, 278
 creating boot receiver, 275–277

 RECEIVE_BOOT_COMPLETED permission, 275
 rect_activity_main activity, 339
 RecyclerView API, 17
 RecyclerView class, 165–167
 Registration window (Amazon App Store), 387
 RelativeLayout layout, 70
 reminder scripts, 158
 ReminderManager class, 267–274
 ReminderManager.java class, 268
 remote storage, 235
 remote views, 120–121
 RemoteViews class, 120–121
 Reply button, 19
 RequestCode parameter, 126
 res folder, 55–56
 res/layout layout, 117
 resources

 colors, 110
 common types, 107
 dimensions, 108
 global application, 113–114
 image, 111–112
 menus, 109–110
 moving strings into, 110–111
 qualifiers, 114–118
 string, 285
 styles, 108–109
 themes, 109
 value, 109

 responsive layout, 296–298
 resumed state (fragment lifecycle), 173
 right-to-left languages, 323–325
 ring modes (Silent Mode Toggle application), 67
 ringer icon, 71
 RingerHelper class, 92
 ringer_off.png, 74–75
 ringer_on.png, 74–75

415415 Index

 RingtonePreference preference, 280
 RoboGuice tool, 400
 round_activity_main activity, 339
 runtime

 Android, 27
 errors, 100–101
 Java programming language, 29
 preferences in activities at, 289–292

 • S •
 SAF (Storage Access Framework), 235
 sample applications

 Android Bootstrap, 398
 Android Open Source Project, 398
 Facebook Android SDK, 396–397
 GitHub, 396
 Google I/O, 396
 importing, 396
 K-9 Mail email client, 396
 Lollipop, 397
 Notepad Tutorial, 397
 samples folder, 395
 U+2020, 397

 save() method, 250–253
 savedInstanceStat() method, 221
 scale-indepedent pixel (sp or sip), 108
 screen density

 density folders, 71
 handling different screen sizes, 115–116
 matching icon size with, 76–77

 screen shots, 149–150
 screen size

 layouts, 116–117
 pixel density, 115–116
 tablet, 296–298

 SD card, 11
 SDKs (software development kits)

 Android SDK, 31
 Android Studio, 31
 Java JDK, 31
 layouts, 70
 packages, 33
 samples, 37

 Secure Sockets Layer (SSL), 27
 security

 permissions, 23
 security model (Linux kernel), 26

 Select Hardware dialog box, 47
 selectableItemBackground() method, 169

 sendBroadcast() method, 124
 service, background, 16–17
 setAsActionBar setting, 206
 setClickable() method, 86
 setContentView () method, 100–101
 setError() method, 230
 setHasOptionsMenu() method, 202
 settings.gradle directory, 53
 setup screen, Android Wear, 336
 ShareCompat API, 17
 shared preferences, 234, 281–282, 290
 show() method, 209
 showDatePicker() method, 223
 ShowTimePicker() method, 223
 signing application, 140–142
 silent mode, 89–91
 Silent Mode Toggle application

 Availability and Pricing tab, 389
 blank activity settings, 66
 Content and Rating tab, 390
 Description tab, 389
 File(s) tab, 391
 Image and Multimedia tab, 390
 in normal ring mode, 67
 off ringer image, 71
 project settings, 65–66
 ringer images, 71
 running in Debug view, 102
 in silent mode, 67
 views, 68–70

 Silent Notification icon, 95
 silent ringer mode (Silent Mode Toggle

application), 67
 smallestWidth qualifier, 116
 software

 audio and video support, 22–23
 contacts, 23
 Google APIs, 23–24
 Internet, 22
 security, 23

 software development kits. See SDKs
 sound option, 273
 source code, Android, 10, 27
 Spinner view, 86
 SQL (Structured Query Language), 233
 SQLite database

 adapters, 257–260
 ContentProvider class, 236
 data storage options, 235
 deleting tasks, 260–261
 loaders, 255–257

416 Android Application Development For Dummies

SQLite database (continued)

 table, 237–240
 table creation, 238–240
 table object, 237–238
 upgrading, 240

 SQLite open source database engine, 27
 SQLite website, 233
 SQLiteOpenHelper class, 237–238
 src directory, 54
 SSL (Secure Sockets Layer), 27
 startActivity() method, 123
 startService() method, 124
 state

 app widget, 121
 fragment, 191
 saving, 191

 stopped activity state, 81
 stopped fragment lifecycle state, 173
 Storage Access Framework (SAF), 235
 Store Listing (Google Play Store), 151
 storing data. See data storage
 strings

 moving into resources, 110–111
 resources, 285

 strings.xml filenaming convention, 57
 Structured Query Language (SQL), 233
 styles, resource, 108–109
 styles, updating, 194–196
 styles.xml file, 319–320, 327
 styles.xml filenaming convention, 57
 System Image dialog box, 48
 system updates, phone, 335

 • T •
 TabHost layout, 70
 table, SQL database, 237–240
 tabletDebug parameter, 313
 tablets

 adding layout, 309–310
 application callbacks, 312–313
 build configurations, 310–311
 build messages, 302
 building applications, 310–312
 configuring emulator, 301–302
 creating activity class, 307–308
 creating activity layout, 301
 creating AndroidManifest for, 305–307
 creating layouts for different devices, 299–300
 disabling color change, 313
 fragments, 299

 hardware design, 296
 versus phones, 295–296
 screen size, 296–298
 size, 295–296

 TAG constant, 99
 Target SDK version, 63
 TaskEditActivity class, 181–183, 193, 372
 TaskEditActivity.java file, 318
 TaskEditFragment class, 185–192
 taskId value, 179
 TaskListActivity class, 160–163
 TaskListActivity.java file, 318
 TaskListAdapter class, 170–172, 303–304
 TaskListAndEditActivity class, 307–310
 TaskListAndEditorActivity.java file, 318
 TaskListFragment class, 163–165, 288
 TaskListFragment.java file, 172
 task_preferences.xml file, 284
 Tasks application

 action bar, setting, 163
 activities, styling, 174–180
 activity settings, 160
 application's screens, 159–180
 basic requirements, 157–159
 fragment lifecycle, 173
 fragment list, 165–166, 168–173
 images, 177–179
 layout file, editing, 162–163
 linking list view to edit view, 183–185
 module settings, 160
 reminder scripts, 158
 running on Android TV, 371
 running with fake data, 173
 starting new project, 159–160
 storing data, 158
 styles, updating, 194–196
 TaskEditActivity class, 181–183, 193
 TaskEditFragment class, 185–192
 TaskListActivity class, cleaning up,

160–161
 TaskListFragment class, 163–165
 user notification, 158–159
 visualizing data in, 237

 TasksWear tasks, 339
 Telephony manager, 28
 templates, launcher icon, 76
 testing

 Android Wear sync, 354
 application, 105, 321–322
 automated, 105–106

 Text Color Primary, 174

417417 Index

 TextWatcher() method, 230
 themes

 AppCompat library, 319–321
 resources, 109

 threads
 background services, 16

 time pickers
 creating, 219–222
 hooking up to fragments, 222–225
 showing task date and time, 215–219

 TimePicker class, 214
 TimePickerDialog class, 221
 Title activity setting, 182
 Title blank activity setting, 66
 Tittel, Ed

 XML For Dummies, 12
 Toast message, 230–231
 Toast view, 158–159
 Toolbar view, 318–319
 tools

 Android lint, 399
 Android Systrace, 399–400
 Dagger, 400
 Git, 401–402
 GitHub, 401–402
 hardware, 20–22
 Hierarchy Viewer, 401
 Memory Analyzer Tool (MAT), 402
 OkHttp, 402
 Picasso image library, 402
 RoboGuice, 400
 SDK, 35–38
 software, 22–24
 Translator Toolkit, 400–401
 travis-ci, 402
 UI/Application Exerciser Monkey, 401

 tools folder, 34
 touch event, 86
 touchscreen, 20–21
 Translator Toolkit, 400–401
 travis-ci tool, 402
 tutorials site, Java, 29
 TV application. See Android TV
 type array, 109
 type element, intents, 125

 • U •
 U+2020 application, 397
 UI Automator testing framework, 106

 UI/Application Exerciser Monkey tool, 401
 Up button (action bar), 18
 update() method, 246–247
 updateList() method, 344
 updatePeriodMillis property, 135
 updating tasks, 246–247
 uploading applications, 150–153
 USB debugging, 96
 USB driver

 installation, 35–36
 installing for Fire Phone SDK, 385

 user action handling, 202–203
 user input

 alert dialog box, 225–229
 clickable property, 86
 date and time pickers, 215–225
 EditText view, 211–212
handling for activity, 85–86
 input validation, 230–231
 keyboard event, 86
 onscreen keyboard display, 212–213
 picker buttons, 214–215
 touch event, 86

 user interface
 adding images to applications, 71–75
 creating launcher icons for application, 75–77
 laying out applications, 67–70
 previewing applications in visual designer, 78–79
 showing onscreen, 85
 Silent Mode Toggle application, 65–70

 user notification, 158–159

 • V •
 v (verbose) value, 99
 validation. See input validation
 value resource, 109
 values directory, 57
 values/ subdirectory, 56
 values-es directory, 115
 version code, 44, 61
 version name, 44, 61–62
 versions

 Android, 34–35
 Compile SDK, 62
 handling old, 117
 Minimum SDK, 62–63
 supporting older, 315–331
 Target SDK, 63
 updating build file, 317–318

418 Android Application Development For Dummies

 vibration option, 273
 video and audio support, 22–23
 View system, 28
 ViewPager API, 17
 views

 Android development basics, 15
 logcat, 98–100
 Silent Mode Toggle application, 68–70
 switching between, 53

 Virtual Device Configuration dialog box, 385
 visible lifetime (activity lifecycle), 82
 visual designer, 78
 voice control (Android Wear devices), 333

 • W •
 w (warning) value, 99
 WAKEUP option, 269
 Wear devices. See Android Wear
 WearableTaskListAdapter file, 346
 WebKit open source web browser, 27
 widgets. See also app widgets

 Android development basics, 19
 launcher, 19

 window options, fixing, 326–329
 Windows

 installing Android Studio, 32–33
 USB driver, 35–36

 with() method, 178
 withText action, 204
 wizards

 Create New Project, 42
 Generate Signed APK, 142–144

 wrap_content value, 69
 writable database, 240
 Write External Storage permission, 60
 wtf (what a terrible failure) value, 99

 • X •
 XML For Dummies (Dykes and Tittel), 12
 XML layout attributes, 69
 XML menu file, 201–202

 • Y •
 YouTube, 18

 About the Author
 Michael Burton is the Director of Mobile Engineering at Groupon. He wrote
the Digg, TripIt, OpenTable, and award-winning Groupon Android apps,
among others. He’s flown a project on the space shuttle. He’s spoken on
Android application development at conferences in London, Boston, Silicon
Valley, Rio de Janeiro, and elsewhere. He’s also the author of RoboGuice, the
open-source dependency injection framework used by thousands of apps,
including Microsoft, Nike, and others. Follow Michael on Twitter (@roboguice)
or check out RoboGuice at http://roboguice.org .

 Dedication
 To a never-ending list of new desserts.

 Author’s Acknowledgments
 A big thank you to the extended Android open-source community, including
Carlos Sessa, Stéphane Nicolas, Manfred Moser, Michael Bailey, and Donn
Felker among others, who contributed their code, expertise, and reviews of
this book.

 Thank you to my boss Greg and to the great Android team at Groupon —
Carlos, Alan, Aliya, David, Eric, Hemant, Michael, Richard, Stéphane, Snow,
Valampuri, Wentao, Cristian, Andrei, Bogdan, Marius, Alin, and Trevor, who
have pushed me to deeply understand the Android platform.

 I ’ d also like to thank my friends at Google, Roman, Boris, and Sarah, without
whom the Lollipop sections of this book would have been that much more
difficult to write.

 Thank you to my team at Wiley for their tireless efforts, especially Maureen,
Michael, Kyle, and Andy.

 And finally, thank you to Carrie, my friends, and my family who have
supported me through the many evenings and weekends I have spent
working on this project over the years.

 Publisher’s Acknowledgments

 Acquisitions Editor: Kyle Looper

 Publisher: Andy Cummings

 Project and Copy Editors: T-Squared Services

 Technical Editor: Michael Bailey

 Editorial Assistant: Claire Brock

 Sr. Editorial Assistant: Cherie Case

 Project Coordinator: Sheree Montgomery

 Cover Image: © iStockphoto.com / Cary Westfall

	Title Page
	Copyright Page
	Table of Contents������������������������
	Introduction
	About This Book����������������������
	Conventions Used in This Book������������������������������������
	Foolish Assumptions��������������������������
	How This Book Is Organized���������������������������������
	Part I: Getting Started with Your First Android Application��
	Part II: Building and Publishing Your First Android Application��
	Part III: Creating a Feature-Rich Application��
	Part IV: Android Is More than Phones���
	Part V: The Part of Tens�������������������������������

	Icons Used in This Book������������������������������
	Beyond the Book����������������������

	Part I: Getting Started with Your First Android Application
	Chapter 1: Developing Spectacular Android Applications
	Why Develop for Android?�������������������������������
	Market share�������������������
	Time to market���������������������
	Open platform��������������������
	Device compatibility���������������������������
	Mashup capability������������������������

	Android Development Basics���������������������������������
	Java: Your Android programming language��
	Activities�����������������
	Fragments����������������
	Intents��������������
	Cursorless controls��������������������������
	Views������������
	Background operations����������������������������
	Background services��������������������������
	Android support library������������������������������
	Action bar�����������������
	Widgets and notifications

	Hardware Tools���������������������
	Touchscreen������������������
	GPS����������
	Accelerometer��������������������
	SD card��������������

	Software Tools���������������������
	Internet���������������
	Audio and video support������������������������������
	Contacts���������������
	Security���������������
	Google APIs������������������

	Chapter 2: Prepping Your Development Headquarters
	Developing the Android Developer Inside You��
	Assembling Your Toolkit������������������������������
	Linux kernel�������������������
	Android framework������������������������
	Application framework����������������������������
	Java knowledge���������������������

	Tuning Up Your Hardware������������������������������
	Operating system�����������������������
	Computer hardware������������������������

	Installing and Configuring Your Support Tools
	Installing Android Studio��������������������������������
	Mac users����������������
	Windows users��������������������

	Installing Java 7������������������������
	Adding SDK Packages��������������������������
	Navigating the Android SDK���������������������������������
	Specifying Android Platforms�����������������������������������
	Using SDK Tools for Everyday Development���
	Saying hello to the emulator�����������������������������������
	Getting physical with a real Android device [Windows]��
	Debugging your work��������������������������
	Trying out the API and SDK samples���
	Giving the API demos a spin����������������������������������

	Part II: Building and Publishing Your First Application
	Chapter 3: Your First Android Project
	Starting a New Project in Android Studio���
	Responding to Errors���������������������������
	Setting Up an Emulator�����������������������������
	Running the Hello Android App������������������������������������
	Running the app in the emulator��������������������������������������
	Checking app logs������������������������

	Understanding Project Structure��������������������������������������
	Navigating your app’s folders������������������������������������
	Viewing the application’s manifest file
	Viewing the build.gradle file
	Understanding the Compile SDK, Minimum SDK, and Target SDK Versions��
	What’s Up Next���������������������

	Chapter 4: Creating the User Interface
	Creating the Silent Mode Toggle Application��
	Laying Out the Application���������������������������������
	Working with views�������������������������
	Using Android layouts����������������������������

	Adding an Image to Your Application��
	Setting image properties�������������������������������
	Setting drawable resources���������������������������������

	Creating a Launcher Icon for the Application���
	Designing a custom launcher icon���������������������������������������
	Adding a custom launcher icon������������������������������������

	Previewing the Application in the Visual Designer��

	Chapter 5: Coding Your Application
	Understanding Activities and the Activity Lifecycle��
	The Activity lifecycle�����������������������������
	Important lifecycle loops��������������������������������
	Viewing activity methods�������������������������������
	Following an activity’s path�����������������������������������
	Recognizing configuration changes

	Creating Your First Activity�����������������������������������
	Starting with onCreate�����������������������������
	Telling Android to display the user interface��
	Handling user input��������������������������
	Writing your fi rst click listener���

	Working with the Android Framework Classes���
	Getting good service���������������������������
	Toggling Silent mode with AudioManager���

	Installing Your Application����������������������������������
	Running your app in an emulator��������������������������������������
	Installing on a physical Android device��

	Material Design����������������������
	Uh-Oh! (Responding to Errors)������������������������������������
	Using the Android view�����������������������������
	Using the Android Studio debugger��

	Thinking Beyond the Application Boundaries���
	Interacting with your application��
	Testing whether your application works���
	What about automated testing?������������������������������������

	Chapter 6: Understanding Android Resources
	Understanding Resources������������������������������
	Dimensions�����������������
	Styles�������������
	Themes�������������
	Values�������������
	Menus������������
	Colors�������������

	Working with Resources�����������������������������
	Moving strings into resources������������������������������������
	Wrestling the image beast��������������������������������
	Making your apps global with resources���

	Different Strokes for Different Folks: Using Resource Qualifier Directories
	Using default resources������������������������������
	Localizing to another language�������������������������������������
	Handling different screen sizes��������������������������������������
	Portrait versus landscape orientations���
	Handling old Android versions������������������������������������
	Qualifier name rules

	Chapter 7: Turning Your Application into an App Widget
	Working with App Widgets in Android��
	Working with remote views��������������������������������
	Using AppWidgetProviders�������������������������������

	Working with Intents and Pending Intents���
	Understanding the Android intent system��
	Understanding intent data��������������������������������
	Evaluating intents�������������������������
	Using pending intents����������������������������

	Creating the App Widget������������������������������
	Implementing the AppWidgetProvider���
	Communicating with the app widget��
	Building the app widget’s layout���������������������������������������
	Doing work inside an AppWidgetProvider���
	Working with the app widget’s metadata���
	Registering your new components with the manifest��

	Placing Your Widget on the Home Screen���

	Chapter 8: Publishing Your App to the Google Play Store
	Creating a Distributable File������������������������������������
	Choosing your tools��������������������������
	Digitally signing your application���
	Creating the APK file

	Creating a Google Play Developer Profile
	Pricing Your Application�������������������������������
	Choosing the paid model������������������������������
	Choosing the free model������������������������������

	Getting Screen Shots for Your Application��
	Uploading Your Application to the Google Play Store��
	Watching the Number of Installs Soar���

	Part III: Creating a Feature-Rich Application
	Chapter 9: Designing the Tasks Application
	Reviewing the Basic Requirements���������������������������������������
	Storing data�������������������
	Scheduling a reminder script (That’s alarming!)��
	Notifying the user�������������������������

	Creating the Application’s Screens���
	Starting the new project�������������������������������
	Cleaning up the TaskListActivity���������������������������������������
	Editing the activity_task_list.xml layout file
	Setting the action bar�����������������������������
	Creating the TaskListFragment������������������������������������
	Making your fragment show a list���������������������������������������
	Styling your activity����������������������������

	Chapter 10: Creating the Task Detail Page
	Creating the TaskEditActivity������������������������������������
	Linking the List View to the Edit View���
	Creating the TaskEditFragment������������������������������������
	Creating the layout��������������������������
	Creating the fragment����������������������������

	You Put the Fragment in the Activity and Shake It All Up���
	Updating the Styles��������������������������
	A Special Bonus����������������������

	Chapter 11: Going a la Carte with Your Menu
	Understanding Options and Context Menus��
	Creating Your First Menu�������������������������������
	Defining the XML file
	Handling user actions����������������������������
	Creating your second menu��������������������������������

	Creating a Long-Press Action�����������������������������������

	Chapter 12: Handling User Input
	Creating the User Input Interface��
	Creating an EditText view��������������������������������
	Displaying an onscreen keyboard��������������������������������������

	Getting Choosy with Dates and Times��
	Creating picker buttons������������������������������
	Date and time pickers����������������������������

	Creating an Alert Dialog�������������������������������
	Seeing why you should work with dialogs��
	Choosing the appropriate dialog for a task���
	Creating your own alert dialog�������������������������������������

	Validating Input�����������������������
	Toasting the user������������������������
	Using other validation techniques��

	Chapter 13: Getting Persistent with Data Storage
	Finding Places to Put Data���������������������������������
	Viewing your storage options�����������������������������������
	Choosing a storage option��������������������������������

	Understanding How the SQLite ContentProvider Works���
	Creating Your Application’s SQLite Database��
	Visualizing the SQL table��������������������������������
	Creating the database table����������������������������������

	Using ContentProvider URIs���������������������������������
	Dealing with CRUD������������������������
	Create�������������
	Update�������������
	Delete�������������
	Read�����������

	Implementing the Save Button�����������������������������������
	Implementing the List View���������������������������������
	Using loaders��������������������
	Using adapters���������������������
	Deleting a task����������������������

	Reading Data into the Edit Page��������������������������������������

	Chapter 14: Reminding the User
	Seeing Why You Need AlarmManager���������������������������������������
	Asking the User for Permission�������������������������������������
	Seeing how permissions affect the user experience��
	Setting requested permissions in the AndroidManifest.xml file

	Waking Up a Process with AlarmManager��
	Creating the ReminderManager helper��
	Creating the notification in OnAlarmReceiver

	Updating a Notification
	Clearing a Notification
	Rebooting Devices������������������������
	Creating a boot receiver�������������������������������
	Checking the boot receiver���������������������������������

	Chapter 15: Working with Android Preferences
	Understanding the Android Preferences Framework��
	Understanding the Preference Fragment Class��
	Persisting preference values�����������������������������������
	Laying out preferences�����������������������������

	Creating Your Preferences Screen���������������������������������������
	Building the preferences file
	Adding string resources������������������������������

	Working with the Preference Fragment Class���
	Starting the PreferencesActivity���������������������������������������
	Handling menu selections�������������������������������

	Working with Preferences in Your Activities at Runtime���
	Retrieving preference values�����������������������������������
	Setting preference values��������������������������������

	Part IV: Android Is More than Phones
	Chapter 16: Developing for Tablets
	Considering the Differences between Phones and Tablets���
	Tweaking the Tasks App for Tablets���
	Anticipating screen size with a responsive layout��
	Adding more fragments����������������������������
	Creating different layouts for different devices���

	Configuring a Tablet Emulator
	Creating a New Product Flavor������������������������������������
	Creating an AndroidManifest for Phones���
	Moving the TaskListAdapter���������������������������������
	Informing the Google Play Store��������������������������������������

	Creating an AndroidManifest for Tablets��
	Making the TaskListAndEditorActivity for Tablets���
	Creating the tablet activity class���
	Adding the tablet layout�������������������������������

	Building the Tablet App������������������������������
	Adding the App Callbacks�������������������������������
	One More Thing

	Chapter 17: Supporting Older Versions of Android
	Understanding AppCompat������������������������������
	Updating the build File������������������������������
	Adding the Toolbar�������������������������
	Using the AppCompat Theme��������������������������������
	Testing Your App�����������������������
	Working with Right-to-Left Languages���
	Fixing the Add Task Menu�������������������������������
	Fixing the Window Options��������������������������������
	Using Newer APIs�����������������������
	Using Android Lint�������������������������

	Chapter 18: Wearing the Tasks App
	Preparing Your Development Environment���
	Prepping your Android phone����������������������������������
	Setting up an Android Wear emulator��
	Pairing your phone with the Wear emulator��

	Creating a New Wear App������������������������������
	Creating a new module����������������������������
	Editing MainActivity���������������������������
	Adding Google Play Services for data syncing���
	Creating the adapter���������������������������

	Publishing the Data from Your Phone��
	Configuring the phone’s build
	Publishing the data from the phone���
	Testing the sync�����������������������

	Running the App without Android Studio���
	Packaging the App������������������������
	What’s Next?�������������������

	Chapter 19: Look Ma, I’m on TV!
	Understanding Guidelines for Building TV Apps��
	Building and Manifesting Changes���������������������������������������
	Adding the BrowseActivity��������������������������������
	Creating the TV Browse Fragment��������������������������������������
	Creating the MainFragment outline��
	Reading data from the database�������������������������������������

	Creating the CardPresenter���������������������������������
	Running Your App�����������������������
	Adding and Editing Items�������������������������������
	Creating Backgrounds���������������������������
	Creating More Filters����������������������������

	Chapter 20: Moving beyond Google
	Working around Google Features�������������������������������������
	Setting Up the Fire SDK������������������������������
	Setting Up Your Fire or Emulator���������������������������������������
	Creating a Fire-like emulator������������������������������������
	Enabling Developer Options���������������������������������
	Installing the USB driver (Windows only)���
	Connecting to ADB������������������������

	Publishing to Amazon Appstore for Android��

	Part V: The Part of Tens
	Chapter 21: Ten Free Sample Applications and SDKs
	Android Samples����������������������
	The Google I/O App�������������������������
	K-9 Mail���������������
	GitHub Android App�������������������������
	Facebook SDK for Android�������������������������������
	Notepad Tutorial�����������������������
	U+2020�������������
	Lollipop Easter Egg��������������������������
	Android Bootstrap������������������������
	The AOSP���������������

	Chapter 22: Ten Tools to Simplify Your Development Life
	Android Lint�������������������
	Android Systrace�����������������������
	RoboGuice and Dagger���������������������������
	Translator Toolkit�������������������������
	Hierarchy Viewer�����������������������
	UI/Application Exerciser Monkey��������������������������������������
	Git and GitHub���������������������
	Picasso and OkHttp�������������������������
	Memory Analyzer Tool���������������������������
	Travis-ci����������������

	Index
	EULA

Android

App Development

