Android
Continuous
Integration

Build-Deploy-Test Automation for
Android Mobile Apps

Pradeep Macharla

ApPress’

http://www.allitebooks.org

Android Continuous
Integration

Pradeep Macharla

Apress®

www.allitebooks.cond

http://www.allitebooks.org

Android Continuous Integration

Pradeep Macharla
North Carolina, USA

ISBN-13 (pbk): 978-1-4842-2795-4 ISBN-13 (electronic): 978-1-4842-2796-1
DOI10.1007/978-1-4842-2796-1

Library of Congress Control Number: 2017953099
Copyright © 2017 by Pradeep Macharla

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Nikhil Karkal
Development Editor: Matthew Moodie
Technical Reviewer: Ankita Gupta
Coordinating Editor: Prachi Mehta
Copy Editor: Kezia Endsley
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit waw.springeronline.com. Apress Media,

LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book’s product page, located at
Www.apress.com/978-1-4842-2795-4. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.cond

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-2795-4
http://www.apress.com/source-code
http://www.allitebooks.org

This book is dedicated to all the software engineers who are
passionate about coding and feel the urgency to fix that which is broken,
spend odd hours at night deeply involved in solving the problem,
derive gratification when it works, yet repeat it all over when it doesn’t
the next day. To all who ultimately appreciate the fact that software is art
and singularity is the future.

www.allitebooks.cond

http://www.allitebooks.org

Contents at a Glance

About the AUthorccccsrismmismms e ——————— XV
About the Technical ReVIEWErcucesssessmsmsmssssssasssssssssssssassssnsnnns xvii
Acknowledgmentsccccuuseemmmmssssnsmmssssssnnssssssssnessssssssesssssnsssssssnnnnss Xix
Chapter 1: Introductioncccunnemmmmmmmnmnmmnsssssssnnn s ——————— 1
Chapter 2: Mobile Test Automationccccusseenrnsssssnnnnssssnsnsssssnns 13
Chapter 3: Cl Pattern with Jenkins and Androidooeneennnnnne 23
Chapter 4: Android System Setup..........ccccinmnnemmmmnsssnnnmnsssnannnnne 47
Chapter 5: Build the Android APpPccosseemrrmsssesnnmssssssmsssssssssesnns 67
Chapter 6: Connect Android Target..........cccccunneemnmmnssennmnsssseansnnnns 79
Chapter 7: Deploy or Install Android AppPucccermmmssseanmmssssnansnssnns 91
Chapter 8: Working with Appiumccccccimmnseenmnmmsessmnmsessnnne. 95
Chapter 9: Test Strategy and Execution........c...cccivnnssneennnsssscannnns 117
11— 139
v

www.allitebooks.cond

http://www.allitebooks.org

Contents

About the AUthOrccccceemmssmnmsssnmssssnnssssssssssssssssnssssnsssssnnssssnnsnsns Xv
About the Technical REVIEWETcccccsmssemmmssansmssnsssssnsssssnsssssnnsnns Xvii
Acknowledgmentsccccuuseemmmmssssnsmmssssssnnssssssssnessssssssesssssnsssssssnnnnss Xix
Chapter 1: Introductioncccunneemmmmmmnmnmmnsssssssnsn s ——————— 1
ArChItECIUNE......cece et 1
Prer@qUISItESceceveereeriessersesses s ses e s e sn s sn s sn s snsnnnnnnnns 3
WINAOWS VS. MAC......cccouieiecererccri e 3

The Mac EnVironment..........cco e 4
MODIIE DEVICESevvereerrerierierierie e sre e ssesse e saesse s saesaesae s saesaesaesaesaesaesaesassassasssenes 4
NEEWOTK ... 4
PIAtfOrM ... 5
Programming Language...........coovceemnmncnnnnnensinncsss s 5
Installation ProCESSEScoveminenincninensensse s 5
1153 e 1T T T T=T 14O 5
INSTAING NEXUS ...veereeereereeereesereeseraeseserassesseseraesessesassessesesassssssassessssessssesssnssassasaens 6
Installing SONArQUDEccceverereeirererer s rae s sa e sa e sae e sae e saenenaens 7
Installing the Cl TOOI STACK........ccceveereriereererererererererereesesaesessesessesasesassessssesassesaens 8
Building the Android APP......ccccveerrerrersessessessessessessessessessssssssesssssssssssnsnenns 9
Deploying/Installing the Android APpPc.coeeeeeeeresereree e 9
Testing (Automating) the Android ApPp......cccvverrerrrrrsen s 9
vii

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

Mobile TEChNOIOGIES.......ccererrerrerrerrer e 10
What Do Consumers Want? ... 10
ECOSYSIBMS ...ttt 10
HAFAWANEoeuereceremreeeeesessessesesees s sessessesss s s s st sessessess s sessessensssssses 11
PIAtfOrms/0S ..o —————— 11

Types Of MoDIlE APPS.....cocvrrrrrmrrernersersessese s s se s esneas 11

Chapter 2: Mobile Test Automationccuscsnimmsenssnnssnnssssnnnnns 13

The WebDriver Protocol ... 13
Why Are We Talking About These ProtocolS?cccovcrecniennsennsenssesesssseseneenas 14
HOW DOBS IEWOIK? ..o ss s sses 14
HOW DOES It SCAIBY......cciirricirsirics s 15
How Does It Relate to Mobile Automation? ..., 16

Test Automation LiDraries........ccoueivennneresessessssssessssessssssessssesssssssessens 17

Why AUTOMALE? ... e 17

Mobile Test Strategy........cccvrrmrrirrrirnrre e 18
Manual Testing vs. AUtOMaLioN..........ccoeciecnccen s 18
Speed Of TESHING ..vcucerrrccrrr e e s 19
1o 1111 o OO 19
COSE ettt ———————————— 19
Testing PYramid ... s enas 19

Mobile Test Environment...........coccovcreniicnnnnssssessss e 21
Real Devices vs. Emulators/Simulators...........cccoonnnnnnnnneseeceeeeees 21
Initial Manual Testing on a Local Android Real DeViCec.cocuoeeeeererecserernnsenenenns 21
Initial Manual Testing on a Local Android Emulator.............cooveeecnnnescseresnsenenens 22
Further Manual Testing in the Cloud...........coccceerrrnenenennescnessesese s 22

viii

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 3: Cl Pattern with Jenkins and Androidccuuseeenenisnnes 23
What Is Continuous Integration?cccceevvriennscnsnnnsssnsnsssessessssennens 23
FEEdDACK LOOPScvvveererrreerrerrreersseesseesssessseesnsssnesssnsssnsssnsesssssnsssnnenns 23
Feedback LOOP 1: BUIIcceceveeeererere st ree e rerae e s seesesaesesaesesaesassesassenes 24
Feedback Loop 2: Code Quality ANaIYSIScceeeereerereererrerersereerersesersesessesesersssees 34
Feedback Loop 3: TSt ... 40
Chapter 4: Android System Setup..........cccevninmmmmnnsennnmnsssssnnnssnen 47
INSTAllING JAVA ... s 47
JRE VS. DK VS, SE.....oeeeeeeececeeeeererereses s ssss s sssssssssssssssssssssssssssssssssssssssnens 47
DK ON MAG ...t 48
Installing Android SDK..........cccooreerirerricresr e 49
STANAAIONE SDK........cooeeeeeeieeeeeeeer s nnnnnas 50
QUICK CNECKSceceecrcceeseerese e s s s ss s 51
Installing Android StUdI0cceeeeeeeeceeee e 52
Android StUAI0 BaSICS........ccceererrrecrerirecsesiseesese s enns 53
Associate the System SDK with Android Studiocoevvnrrnnnnnnnsnsiseens 54
INSTAllNG Gradleccoevevererere e 55
DoWnIoad and INSTAILceuceueeeeeereesrersersesseesres s sses s sses s sssessesssssssnses 56
Set Gradle Shell Variables.........c.ourinrminn s 57
Android Studio with Gradle............ccvvminnn s ———— 57
Gradle Quick COMMANGS ..o ————— 58
Gradle TASKS ..cvcvreeisisissisisssssisissss s sns 58
50T o £ L= oo 59
TOOIS 10 KNOW ..ottt 59
ADB........e s 60
RECOrd VItE0.......cov e 60

ix

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

UIAUTOMATOTVIBWET ... s 61
L DL T T -] T 62
10 QT Lo T L= O 63
Android Device MONItOr ... 65
Chapter 5: Build the Android Appccossemmmmssssmnnmmssssnssssssssssesssnnns 67
The Android Build ProCess ... 67
(=T T T 67
Another Perspective on the Build Process..........cccevvvernvnnnennnnnssnnesensesessessnsennas 68
Output of the Build ProCesS.........cccucreeirvennninssise s sesss s e ssessssessssessssssnens 68
Building from the Command Line...........cccemimrensrernsesiesensessssesesensennas 69
GFAGIE TASKSeeeererererererereresesesesesesesesesesesesesesesesesssesesssssesssssssssesssssssessssssssssssssnens 69
The Gradle Clean AssembleDebug TaSK.........cucurerererrsseseresssesesessssssessssssesssssessssennns 70
The .apk File in Debug MOE.cccerrrvererrrneseserrss s e se s seesesssenens 4l
The .apk File in Release MOde..........coovveeenrrnenesensnssesesesssesesessssesesessssssssesessseanns 4l
Building from Android StUiOcccevvverrerrerrer e 72
IMPOrt the ProjEct ... 72
Android StUAI0 VIBWS.......co i sesens 73
PrOJECT VIBW ...ttt sttt 74
Building the SampIe APceeeeeerrer e 75
010 (T 0T T 75
ENVIFONMENT ... 76
Clone and BUild..........ccvvmnninnnissssssssss s 76
Sample App: app-debug @pK ..o —— 77
Chapter 6: Connect Android Target.........ccccuseemmmmssnnnnmssssnsnnssssnnns 79
Testing with Emulators versus Real DeviCes...........ccocverrersersersessesnennens 79
Using the Android Emulator..........cccveeiiennnnessiessse e 80
Hardware ACCEIEIatioN ... e 80
Create @ NEW AVD.........ooeceeerererere e se e sesese e s e e sesesesesesesesesesesssesesesssesesessnens 80

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

SAMPIE AVDS.....coeeceeceeceerte et e s s e e saesaesaesaesae s e e e s e e e sae e e e e e e saesaennenaesnen 82
LEArNING CUIVEvoueeeereirertrc et se e se s s b b e st se s s n s sne s 82
Connecting the Android DEVICEccceeerverrrsrresessersesrssesessessesesessssesnes 82
ADB IS YOUF FHI@NG ... sesenenes 82
EN@ble USB DEDUQ.......ccvverererrreererreeesessssesesesssss s s sssssesssssssssssssssssesssssssssssssnns 83
CoNNECE the DEVICE........ceecccceceeee e 84
TroubleShOOtiNg TiPS.....cveeeeerrrrresererne e sr e sesrs s e e 84
Debugging the WiFic.ccovrvrvrvnrrrrrrrr st 85
ADB COMMANGScocrriiirsriisisissssss s ens 85
ConNECt OVEr WiFic.oveiriricsssss s 86
Remote Debug Chrome ... 87
Chapter 7: Deploy or Install Android AppP ...c.ccccerrrssnnnnsmssssnnssssssnns 91
Connect and Identify the Target.........cccoeeeeeeece e 91
Direct Commands t0 Targetccoeeierriennnresresre e ens 91
Install on the EMUIALON...........cccovnrnininn s 92
Install on Real DEVICE ..o 92
Command-Line Demonstrationcccucernniiesnsenesssesssesessssessssennes 92
Android Studio DemonStrationc.ccccovrerernsenesssesesssese e 93
Chapter 8: Working with Appiumccccinnisemnmmnssssnmmsssssnmnnne 95
L L L)Y 0] 4T 1S 95
APPIUM CONCEPLS ... sre e snesn e e sa e sn e r e snennenas 96
Client/Server ArChiteCLUNE ..o s 96
SBESION ...ttt b s 96
Desired Capabilities........cccuverrrerrrrrererierre e 96

0] 10T JT=T] S 97

D0 10T 108 =T) 97
Appium.app and APPIUMLEXEcccererererereresesresesse s e ses e ssssessesessssessessssessssessesesss 97
APPIUM DESIGN .. e e e e 97

xi

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

APPIUM ANAIOId ... s nan 99
Y o] 0111 ¢ 1 SRS 99
Installing the Appium SEIVErccevrvrrrrerrer e 99
Download and Install the APPiUM SEIVEFcccovrvererrrnsenenrrensesere s 99
GUI Start Androit MOGEccoevererererererecererereresese e sesesesesenens 100
Appium Server Configurationccccevvrvrnnrnnnsr e 101
APPIUM DOCTOT ... ettt 101
Developer MOGE. ..o 103
Server CoOmMMANC LINEooveveeeeererererereresssssenens 103
Appium Androit SELHNGSecveeeeerererererrerrrsereserereseresseressessesersesesesessessssessssesanns 104
Appium Server SEHINGS.......ccverrererrererrerrrere s s s res e sae e sre s seressesassesassesaens 106
INSPECHING AN APP..vcrererecrerre e e s 106
Appium Ruby CONSO0IEcccevereerrerrirrirrer s sesens 107
1110 T 109
MELNOTZ.........eeee e 109
Inspecting USING ARCcovvrrrrerrer e se e e sesessens 109
PrereqUISITES.....cceieecererrer s 110
The ApPIUMAXE File.....coceiercr s 111
Using uiautomatorvieWerccceeeceeecesses s 113
Chapter 9: Test Strategy and Execution...........ccccssseeennnsssnnnnsnsans 117
Continuous Test Automation with Cucumber............covrvienersienernnnns 117
High-Level Mindmapccoceerereneniesnsesesessessssesessssssssesssssssssssssssens 118
Test FramMeEWOrK........ccccovrnnerninsns s s 118
Git Repo and Folder STrUCLUTEccvevererrrertrerer v s e sae e sae e e e saens 119
Writing the TestS......cccccvcrirrrrrr e 120
Cucumber Scenarios (Ci_android.feature)...........cooererecrenennsesenennsescseseseseenes 121
10T oo O 122
BNVID s 123

xii

CONTENTS

DEVICES LaD ... 123
EVICES.YAML......oeeicerce e e p e e r e s 124
EMUIALOrS.YAML......creecer e e 125
CapabIlities.rD...c.e e ——————— 125
ScreenHelper.r (NOt USEd)covceeerreierirereesesi e 126
Step DEfiNitioNScceeeverecere e sa e e sa e sa e naene s 127
Explanation of Key CONCEPLS ... senes 128
Executing the Test from the Local Labccccuceveevccnssenennnsesnnnnnnens 128
Start the APPIUM SEIVE ... s 129
Execute the Test ... 129
Executing the Test from Sauce Labsccccoevvrvrvervnnensensesses e, 130
What Is Sauce Labs? ... 131
Running Against SAUCE LaDScccecvevererererere e eses e ses e saesesseenaes 131
Parallel Devices AUtOMAtioN............covverneensssessese s 135
Start Appium Servers on Different POrtSccocvvevrvrvnsnree s sessenneens 136
ClIENt SIAEceeeiiiirirese s 137
INdeX..iiieriirnie s ————————— 139

xiii

About the Author

Pradeep Macharla is a passionate technical and business leader managing, coaching
and growing teams around the globe ranging from Fortune 500 to small and medium
companies. His background and experience has made him a highly sought after technical
coach and mentor, consulting or working at the senior leadership and executive level with
companies spanning across industries where Digital and IT technologies have significant
impact. Pradeep has been an integral part of several initiatives in the technology space
including mobile, web, financial and consulting services. His github provides an insight
into domains of interest. Pradeep likes to play table tennis for stress busting.

XV

https://github.com/machzqcq#_blank

About the Technical
Reviewer

Ankita Gupta is a software test professional with experience in automation for web
and mobile, and security and performance testing. She has a background of working
with companies including PayPal, LinkedIn, Airtel, Wingify, and Expedia. Ankita has
previously spoken at NullCon, NewGen Testing Conf., and Selenium Conf. She has also
contributed to open source projects related to web-based automation.

xvii

Acknowledgments

While technology constantly changes, the need to optimize, accelerate, and see

things from newer perspectives is a fundamental human need. I owe my learning and
inspiration to the open source community on StackOverflow, GitHub, and countless
blogs, including the Appium web site. I also want to thank the Apress team (Nikhil, Matt,
and Prachi) for grooming the book to a presentable state and collaborating patiently.

Xix

CHAPTER 1

Introduction

This chapter sets the context and the current mobile landscape. We start by introducing
the overall architectural pattern and the definition of Continuous Integration (CI) and
subsequently list the installation steps of the tools and software that form the platform.
The underlying software platform (Jenkins, Nexus, SonarQube, and Docker, et al.) form
the foundation on which we build automation concepts.

Architecture

In this book, I present a pattern for CI,a.k.a. quick feedback as soon as the developer
checks in the code. Although the term CI for some involves merging and building code
in a distributed model, in this book, you will not only merge code, but also build, deploy,
and test it. Only when you complete the loop of build-deploy-test (the key piece is testing)
will you be confident about the quality of the code you checked in.

You will start with a minimum viable product (MVP) that follows the architecture
shown in Figure 1-1. All steps in the process are completely automated—no exceptions!

© Pradeep Macharla 2017 1
P. Macharla, Android Continuous Integration, DOI 10.1007/978-1-4842-2796-1_1

CHAPTER 1 " INTRODUCTION

// _\" SonarQube

¥ Appiy Cod ity Analysis
:p‘:;""“‘-"“"“”’ﬂ ¥ Mare Stegs like linting
aee and upho Trigger Acceptance Tests

+ Trigger Code Quality Analysis &

[—

w Programmer 1

¥ Deploy app
" Smoke/Sanity Tests
¥ Regression Tests
¥ Feature Acceptance Tests

hppium - android Appium - 105
rﬂappium- M appium—y

o =
i e

E

Figure 1-1. Overall architecture

As you reach initial maturity with the CI feedback loop and see continuous builds
and feedback, you will continue to push the envelope and achieve parallel device testing.
Figure 1-2 shows the Test Runner architecture.

CHAPTER 1 © INTRODUCTION

®™appium—

WebDriver Controlier ===y

Appium - an! roid
Appium - cm! roid

®appium—

-
i
i
;
E

Webrhver Controller ==

Appium - android

[

Figure 1-2. Test Runner architecture

Prerequisites

The following sections cover the software tools needed to follow the code patterns in this

book.

Windows vs. Mac

To develop an Android app, you can use either Mac or Windows platforms. However, I
recommend using Mac over Windows because of the following experiences I had:

Device drivers are easier to obtain on a Mac (as opposed to
Windows, where you have to identify the hardware and go to the
vendor’s web site)

System resources (CPU, RAM, etc.) perform better on a Mac
The emulator performs relatively better on a Mac
Most online examples refer to the Mac environment

Android OS is a *nix core underneath, hence the experience of
developing, debugging, and testing feels better on a Mac

CHAPTER 1 " INTRODUCTION

Note This book uses a Mac for the hardware and for the underlying OS.

The Mac Environment

The Mac environment shown in Figure 1-3 was used to run all the examples in this book.

OS X Yosemite

Version 10.10.5

Mac mini (Late 2012)

Processor 2.5 GHz Intel Core i5

Memory 16 GB 1600 MHz DDR3

Graphics Intel HD Graphics 4000 1024 MB
Serial Number COTMFSVGDWYL

System Report... Software Update...

Figure 1-3. Mac environment used for the book’s examples

Mobile Devices

You should have at least one real Android device. It’s best to have an Android 4.4
operating system or above, API 17 or above. With Android 4.2 and earlier, the appium
server needs to be started with selendroid-port in addition to bootstrap-port. Details
of port values are listed in Chapter 8, “Work with Appium’”.

Network

It's best if all the servers (Jenkins, Nexus, Sonar, Appium, etc.) and the build machine
were in the same network segment. At a minimum, they should be able to ping (assuming
ICMP is not disabled) and be able to reach each other on the ports that the processes
listen (mostly TCP). (For example, if Jenkins were running on web 8080, you should be
able to reach http://jenkins_url:8080 from all other machines.)

http://dx.doi.org/10.1007/978-1-4842-2796-1_8

CHAPTER 1 © INTRODUCTION

Platform

The following domain knowledge is required to a certain extent.

Java programming language and runtime (the Android app source
isin Java)

Ruby programming language (understand the automation
framework written with Cucumber and Ruby)

Usage of *nix operating systems (the Mac aligns with *nix style)

Programming Language

The test automation framework uses the Ruby programming language. I chose Ruby with
Gherkin, since it’s close to reading the English language.

Installation Processes

For each software program you need, the installation instructions are provided. At the
end of each section, you'll find a link to a video demonstrating the installation process.

Installing Jenkins

The version of Jenkins installed at the time of writing this book is 1.642.1.
Use the following steps to install Jenkins:

1.

Log in to a machine that has Docker installed on it
(installation instructions for Docker, which are machine
dependent, are found at https://docs.docker.com/engine/
installation/). This example uses Ubuntu 14.04 OS.

Run the command docker run -d -name "myjenkins" -p
8083:8080 jenkins:Iatest (latest at the time of this writing
is the 1.642.1 version of Jenkins).

Access the Jenkins URL using http://hostname:8083.

Navigate to Manage Jenkins » Manager Users. Add a user
with the name admin and provide a password.

Navigate to Manage Jenkins » Configure Global Security.
Check the Enable Security checkbox. On the same page,
under Access Control, select Jenkin’s Own User Database.
Under Authorization, select Matrix-Based Security.

Add a user called admin and check all the boxes in all the
columns (for more detailed instructions, watch the video).

Now save the page. This will focus the page to the user login.

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/

CHAPTER 1 " INTRODUCTION

8. Loginasthe admin user.

9. Click New Item in the left menu, provide an Item Name of
HelloWorld, and click OK.

10. Go to Build » Add Build Step » Execute Shell.
11. Inthe text area, type echo "hello world" and click Save.
12. Click Build Now in the left menu.

13. The build passes in and a blue ball shows up against the entry
in Build History.

14. Ifyou want to see the console output, click the build number
(#1) and then click Console Output.

Jenkins is successfully installed now. Figure 1-4 shows the UI.

€ C @ locathost

Jerking DT 70 P!

2. Ceodentals

Buikd Gueus =

He by 1 2o o,

Dulkl Cxecutor Status.
1 lcke
2 i

“in (updates availabis)

i

No»m\EA

Figure 1-4. Jenkins Ul

The link to the video demonstrating the steps is https://vimeo.com/154497273.

Installing Nexus

The version of Nexus installed at the time of writing this book is 2.11.4-01.
Use the following steps to install Nexus:

1. Login to your machine that has Docker installed on it
(installation instructions for Docker, which are machine
dependent, are found at https://docs.docker.com/engine/
installation/). This example uses Ubuntu 14.04 OS.

https://vimeo.com/154497273
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/

CHAPTER 1

2. Runthe command docker run -d -name "mynexus" -p

8081:8081 sonatype/nexus:oss (the latest at the time of this
writing is 2.11.4-01).

3. Access the Nexus URL using http://localhost:8081
(the default credentials are admin/admin123).

Nexus is successfully installed now, and the Ul is shown in Figure 1-5.

L | @ localhost 081 (ivisw-repositories

INTRODUCTION

Barstypa’ - [r——
amr Rt A0 - 2 Daiw T+ Uner Maraged Raponbesies -
Arsitsct Sesach Bl T MmO fomsl Rury Waston Ssta
o | P mscsiterinn [e
Adhraric o) Seerch 3y boums EECUEITED mewd Passs ks
S —— o | e tamiben ey) Pl S Seke
R el oy aF raZ Pasese 3wk
Brpostory Targets [— s el Pesase Sanie
Systi Pecs St S oy j el Sl inSenks R Auarsicly Bl
Fnanes =) rawel Remass e
Sty
] ot) Pwer S B
A aiptrasion.
ety
Select 2 record to view the detas,

Figure 1-5. Nexus Ul

Check out https://vimeo.com/154500108 to see how to install Nexus.

Installing SonarQube

The version of SonarQube installed at the time of writing this book is 5.1.
Use the following steps to install SonarQube:

1. Login to your machine that has Docker installed on it
(installation instructions for Docker, which are machine
dependent, are found at https://docs.docker.com/engine/
installation/). This example uses Ubuntu 14.04 OS.

2. Runthe command docker run -d -name "mysonarqube" -p
9000:9000 sonarqube:5.1 (the latest version at the time of
writing is 5.1).

3. Access the SonarQube URL using http://localhost:9000
(the default credentials are admin/admin).

https://vimeo.com/154500108
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/

CHAPTER 1 " INTRODUCTION

SonarQube is successfully installed now, and its UI is shown in Figure 1-6.

Wecaeme 1o Senathsbe Dushixasd PROECTS
e S R e o0 MAME veRSOM Lo@ TECHNCAL DERT LAST AMALYSES
1 you Rave: 5 901, & 360 means that you have not yet p! $o heve e 2 - =
Sem peictes or your el shoge Hadata

= Do you ros want 1o o ans yuis on a praject?
= Maybe stan cusmizng dastboads?

= Dr amply browse the compliste Secumentation? PROJECTS
= 1 you s, plense st the Det

MY FAVOURITES

o6 MAME. LAST AMALYSS

e tata

Figure 1-6. SonarQube UI

Check out https://vimeo.com/154499186 to see how to install SonarQube.

Installing the CI Tool Stack

Until now, you have installed the tools individually; however, there is another option to
install all of them at once (if you prefer). This section is optional.

1. Login to your machine that has Docker installed on it
(installation instructions for Docker, which are machine
dependent, are found at https://docs.docker.com/engine/
installation/). This example uses Ubuntu 14.04 OS.
Alternately, you can have docker-machine do all the work for
you.

2. Usethe check out code git clone https://github.com/
machzqcq/docker-ci-tool-stack.git.

3. Rundocker-compose up from the root of the folder.

The table of tools listed in Figure 1-7 will be ready in a few seconds (not more than
60 seconds).

Tool Link Credentials
Jenkins http://${docker-machine ip default}:18080/ no login required
SonarQube http://${docker-machine ip default}:19000/ admin/admin
Nexus http:/{${docker-machine ip default}:18081/nexus admin/admin123
GitLab http://${docker-machine ip default}:10080/ root/5ivel!fe

Selenium Grid http://${docker-machine ip default}:4444/grid/consocle no login required

Figure 1-7. ClI tool stack endpoints

Check out https://vimeo.com/154935657 to see how to install the CI tool stack.

https://vimeo.com/154499186
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://github.com/machzqcq/docker-ci-tool-stack.git
https://github.com/machzqcq/docker-ci-tool-stack.git
https://vimeo.com/154935657

CHAPTER 1 © INTRODUCTION

Building the Android App

The build-deploy-test feedback loop starts with the build process. The video at
https://vimeo.com/154936765 quickly walks through the steps involved in building
an Android app. The Android app you are building here is only for demonstrating how
to build an app. In later chapters, when you get to test automation, you will start from
the source code and walk through detailed steps to reach the build phase.

Note Watching the video is not mandatory to move forward in the book, but it gives you
a fast-forward view of the value-add from this book. You may conveniently skip this video
and come back after completing the book. Chapter 5, “Build Android App,” has detailed
instructions and steps if you prefer text instructions.

Check out https://vimeo.com/154936765 to see how to install the Android app.

Deploying/Installing the Android App

The deploy step in build-deploy-test is when the app becomes real and available to
interact. The video quickly walks through the steps involved in building an Android app.
The Android app you are deploying here is only for demonstrating how to build an app.
In later chapters, when you get to test automation, you will start from the source code and
walk through detailed steps to reach the deploy phase.

Note Watching the video is not mandatory to move forward in the book, but it gives you
a fast-forward view of the value-add from this book. You may conveniently skip this video
and come back after completing the book. Chapter 7, “Deploy or Install Android App,” has
detailed instructions and steps if you prefer text instructions.

Check out https://vimeo.com/155159581 to see how to deploy the Android app.

Testing (Automating) the Android App

The test step in the build-deploy-test feedback loop tells you whether the app meets the
specifications and requirements. The test phase feedback is passed into the developer’s
queue to improvise and/or fix bugs. The video fast-forwards the end-state solution when
running the automated tests against the app.

https://vimeo.com/154936765
http://dx.doi.org/10.1007/978-1-4842-2796-1_5
https://vimeo.com/154936765
http://dx.doi.org/10.1007/978-1-4842-2796-1_7
https://vimeo.com/155159581

CHAPTER 1 " INTRODUCTION

Note Watching the video is not mandatory to move forward in the book, but it gives you
a fast-forward view of the value-add from this book. You may conveniently skip this video and
come back after completing the book. Chapter 8, “Working to Appium,” and Chapter 9, “Test
Strategy and Execution,” include detailed instructions and steps if you prefer text instructions.

Check out https://www.youtube.com/watch?v=In9sCFrv-Do&feature=youtu.be to
see how to test the Android app.

Mobile Technologies

Mobile involves hardware, software, platforms, apps, and the overall experience. You can
also look at smart vs. other mobile devices. To put perspective on mobile technologies,
some attributes that help filter the avalanche of information are listed next.

What Do Consumers Want?

See https://info.dynatrace.com/rs/compuware/images/Mobile App Survey Report.pdf
for a great read from Dynatrace.

Ecosystems

Much like how Microsoft, Redhat, Canonical, et al. represent ecosystems in the operating
systems space, there are ecosystems that are present in the mobile apps domain too.
Ecosystems are entry points into the platforms on which mobile applications are
developed, maintained, delivered, and enhanced.

At the time of writing this book, the ecosystems are broadly classified into the
following categories.

e Apple
e Google
e Windows

Within each ecosystem, there can be many more categories, especially in the Google
Android ecosystem (based on phone manufacturer, such as Huawei), as it provides more
flexibility than Apple to tinker with the hardware architecture.

10

http://dx.doi.org/10.1007/978-1-4842-2796-1_8
http://dx.doi.org/10.1007/978-1-4842-2796-1_9
https://www.youtube.com/watch?v=In9sCFrv-D0&feature=youtu.be
https://info.dynatrace.com/rs/compuware/images/Mobile_App_Survey_Report.pdf

CHAPTER 1 © INTRODUCTION

Hardware

Here is a sampling of the hardware you will encounter when developing mobile apps:
e Apple
e Samsung
e Sony
e HTC
e Qualcom
e Motorola
e Huawei
e Lenovo
e IG

You can read more at https://en.wikipedia.org/wiki/List_of best-selling
mobile phones.

Platforms/OS

The four main platforms are:
e i0S
e Android
e Windows

e Firefox OS

Types of Mobile Apps

There are different types of mobile apps that meet various needs. The decision on the
type of mobile app is based on multiple factors. Here are the types that exist at the time of
writing this book (see Figure 1-8).

e Native apps: Mobile apps that are entirely developed using the
tool stack available in the respective ecosystem (Apple, Google,
Windows, etc.) are called native apps. The tool stack could mean
the programming language, the SDK, the underlying platform,
and so on. Native apps by far give the best user experience and
performance.

11

https://en.wikipedia.org/wiki/List_of_best-selling_mobile_phones
https://en.wikipedia.org/wiki/List_of_best-selling_mobile_phones

CHAPTER 1 " INTRODUCTION

e Web apps/HTMLS5 apps: Apps that use web technologies like
HTMLS5, JavaScript, and CSS that align with w3c standards are
called web apps. Web apps do not heavily rely on native platform
support and hence are more cross-platform and portable. That
said, there is significant opportunity for improvement in the areas
of secure local storage and access to device functionalities, like
accelerometers, scanners, cameras, etc.

e Hybrid apps: Hybrid, as the name suggests, takes the positives of
both web and native apps and brings them together.

NATIVE vs. WEB vs. HYBRID: 7 FACTORS OF COMPARISON KEY: CON PRO NEUTRAL
INATIVE | HYBRID

Commanly the highest of the three choices if Similar to pure wel t - o single codebase and
developing for multiple platforms required for hybrid tool commeon skillset

CODE Code for one platform only works for that ost hybrid tools will enable portability of a Browser compatiblity and performance are
REUSABILITY/ platform single cod o the major mobile platforms the only concerns
Many device APls closed to web apps can be e APIs like the geolocation
Platform SDK enables access to all device APls accessed, depending on the tools can be accessed, but the number Is growing
Platform comes with familiar, original Ul chieve a fairly native
components Ul frameworks can achieve a fairly native look
App stores provide marketing benefits, but App stores provide marketing benefits, but also No restrictions to launch, but there are no
also have requirements and restrictions have requirements and restrictions app store benefits
i has direct access to platform For complex apps, the abstraction layers often Performance is based on browser and
PERFORMANCE resulting in better performance prevent native-like performance network connection
No store commissions or setup costs, but
there are few monetization methods

Figure 1-8. Comparing mobile app types

You can read more at https://dzone.com/articles/state-native-vs-web-vs-
hybrid. This book covers native Android mobile apps.

12

https://dzone.com/articles/state-native-vs-web-vs-hybrid
https://dzone.com/articles/state-native-vs-web-vs-hybrid

CHAPTER 2

Mobile Test Automation /

This chapter makes a case for mobile test automation and why it makes sense to invest
in automation from the onset of your mobile app development process. The chapter also
compares and contrasts the benefits of automation over manual testing practices. But
first, you'll learn about a few evolutionary concepts, some of which are borrowed from
web application test automation.

The WebDriver Protocol

WebDriver is a remote control interface that enables introspection and control of user
agents. It provides a platform and language-neutral wire protocol as a way for out-of-process
programs to remotely instruct the behavior of web browsers. A brief processing model is
explained.

The remote end (see https://www.w3.0rg/TR/webdriver/#dfn-remote-end) is
an HTTP server reading requests from the client and writing responses, typically over a
TCP socket. For the purposes of this discussion, I model the data transmission between
a particular local end and remote end with a connection to which the remote end may
write and read bytes.

After such a connection has been established, a remote end must run the
following steps:

1. Read bytes from the connection until an HTTP request can be
constructed from the data.

2. The HTTP request is matched with the request’s method and
URL as parameters.

3. Iftherequest match is of type error, send an error and error
code, then return to Step 1.

4. Letthe session ID be the corresponding variable from the URL
variables.

© Pradeep Macharla 2017 13
P. Macharla, Android Continuous Integration, DOI 10.1007/978-1-4842-2796-1_2

https://www.w3.org/TR/webdriver/#dfn-remote-end)

CHAPTER 2 © MOBILE TEST AUTOMATION

5. Ifthe command is New Session (and doesn’t match the
existing session’s ID), then go back to Step 1.

6. Execute the request and collect the response object.

7. Send the response code and the results to the local end and
return to Step 1.

For further details on WebDriver Protocol, see https://w3c.github.io/webdriver/
webdriver-spec.html.

Selenium, the popular web test automation software, is based on the WebDriver
protocol as its base layer. In fact, as you progress in the book, you will notice that the
Appium communication also follows the WebDriver protocol.

Why Are We Talking About These Protocols?

Much like how micro-service APIs over monolithic applications are preferred in
distributed systems, to take advantage of horizontal scaling, a similar innovation

has happened in the past decade. Selenium (see https://en.wikipedia.org/wiki/
Selenium_(software), with its relatively lightweight architecture, is fast replacing many
licensed and enterprise tools.

There are web sites that have covered the web test automation use cases at
http://www.seleniumframework.com/.

Many mobile automation tools and frameworks adopt principles of web test
automation tools. That means that understanding the history of web test automation
tools helps you connect the evolution tools like Appium, Calabash, and other open source
mobile automation tools.

How Does It Work?

The client library (the test automation scripts) communicates with an intermediary server,
which in turn translates into commands understood by the browser. This eventually
emulates an end user's actions on the browser (actually it operates on the DOM).

See Figure 2-1.

14

https://w3c.github.io/webdriver/webdriver-spec.html
https://w3c.github.io/webdriver/webdriver-spec.html
https://en.wikipedia.org/wiki/Selenium_(software
https://en.wikipedia.org/wiki/Selenium_(software
http://www.seleniumframework.com/

CHAPTER 2 © MOBILE TEST AUTOMATION

Windows, Linux, or Mac (as appropriate)...

Internet Explorer Firefox

Safari

IEDriverServer.exe

Web Driver safariDriver
Firefox has in-built driver

- Maching DOUNGAny (OPYONEI) - == === sssssssfattetttttttatttaaaataasaaaaaaaaaaaaaanaanas

Java, Ruby,
Python, Perl,
PHP or .Net

Figure 2-1. Selenium WebDriver architecture

So, as you can see in Figure 2-1, as long as you write automation scripts that the
intermediary server can understand (WebDriver), the server takes care of translating
them into actual commands that emulate user actions on the browser.

How Does It Scale?

In Figure 2-1, you can see that a single intermediary server (chromedriver.exe, Driver
Server.exe) can maintain the session with an active browser and execute commands
that you direct in the automation scripts.

What if you want to execute tests in parallel? How about multiple instances of
browsers on the same machine or on remote machines, and so on?

To solve the problem of parallel execution and leverage horizontal scaling, the
Selenium Grid came into existence. Its architecture is shown in Figure 2-2.

15

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 © MOBILE TEST AUTOMATION

SELENIUM GRID

* Cross Browser Testing
HUB * Infrastructure and Automated
Platform
* Manual Access
o 4 * Automated Access
. <
A

Fi \ =
- / \ ——
/ \ =~
/ \ H""'ﬁ-\.
\ . —~
! e

5, S

Figure 2-2. The Selenium Grid

A couple of noteworthy points:

e The HUB is an HTTP server that listens on a port and redirects
the requests to the appropriate Grid node (which maps to a
WebDriver).

e Since the communication happens on HTTP over TCP/IP, you can
scale this model to the boundaries of the ports available on each
machine in the control chain.

e The HUB is the entry point and communication between HUB
and nodes is purely over REST APIs (GET, POST, etc.)

e The matching of a request from a client is done by the HUB based on
the WebDriver protocol algorithm (a DesiredCapabilities object).

How Does It Relate to Mobile Automation?

Now, you can remotely execute commands on a browser as long as you have the
intermediary server translating it to the right commands emulating user behavior.

The same concept is applied to mobile test automation. The Appium server is like
a ChromeDriver, IEDriverServer, or Safari driver, in that it can communicate with the UI
Automation library for the Android or iOS ecosystems.

16

CHAPTER 2 © MOBILE TEST AUTOMATION

Internally, Appium knows how to talk to the UIAutomation library for Android. The
UIAutomation library will take commands from the Appium server and execute them on
the app, which eventually translates to set, get, click, and all user actions.

As the author of automation scripts, as long as you know how to identify elements
(various locator/selector strategies; this space is quite mature now) and perform
operations on those elements, the intended behavior is automated.

Test Automation Libraries

Over the past few years, the test automation tools that got some traction for Android
apps included MonkeyTalk, Robotium, UiAutomator (uses UI Automation library),
calabash-android, selendroid, Appium, etc.

Android Espresso, a unit testing library that promises to do Ul testing, is also
relatively new as of writing this book. Let's wait and see how Expresso does; however,
the fact that it is inside-out (unit testing) means that it might not cover the scope of
integration testing (i.e., testing the exact path that an end user experiences).

This book uses Appium as the test automation tool/framework because I found it
aligned with my needs of testing native, web, and hybrid apps. It also follows the WebDriver
protocol. You can read Appium's philosophy and competitive analysis with other tools and
frameworks on its web site (http://appium.io/introduction.html?lang=en).

Some tradeoffs between Appium and Espresso are as follows:

e Android Espresso is good because the tests are in the same
language as the source code, which makes it easier to debug/
troubleshoot and fosters collaboration among the technical staff
(the dev and test engineers).

e Ifyouneed access to the source code, executing the tests may work
fine, but requires multiple vetting of build pipelines. CI
(and hence testing from outside) gives relatively higher confidence
before release. Appium is a better choice in this regard.

e Use ATDD/BDD style because it lets lesser technical staff product
owners/business stakeholders define “executable” acceptance
criteria. This helps the three amigos (dev, test, and product) be on
same page and fosters collaboration.

e Availability of developer’s time, test coverage, etc., is also a
tradeoff. Appium, with its support for most programming stacks,
is a better choice in this regard.

Why Automate?

It should be a no-brainer why you automate processes. In fact, continuous

integration and/or continuous delivery (see https://martinfowler.com/bliki/
ContinuousDelivery.html) is not possible without automating the repeatable/mundane
activities. Humans are not great compared to machines for computing repetitive tasks
and performing all permutations and combinations on a certain problem.

17

http://appium.io/introduction.html?lang=en
https://martinfowler.com/bliki/ContinuousDelivery.html
https://martinfowler.com/bliki/ContinuousDelivery.html

CHAPTER 2 © MOBILE TEST AUTOMATION

That said, a human still has to architect and design the overall system, so should
understand what a machine does and, more importantly, be able to troubleshoot when
expected outcomes do not transpire.

For the mobile app space, this article shows the costs associated with resubmitting
a mobile app. The numbers are only suggestive; in fact, the costs might be higher than
what is displayed in the table. The point is to say that the costs associated with defects/
bugs are very dear and include lost customers, countless developer hours, and brand
image, to name a few.

Mobile Test Strategy

Software testers are familiar with writing test plans, test cases, and test release
documents. A test strategy document is generally written by taking into account the
application’s operating environment, the release cycle, test coverage, defect tracking,
and overall a document that can be presented to executive management for approval
of budget and timelines. Mobile test strategy aims to carve out the how, why, and what
aspects that affect mobile testing. The following sections include are few considerations
for creating a mobile test strategy.

Manual Testing vs. Automation

There are very rare scenarios in which the human eye does significantly better than an
automated program when validating software, such as the aesthetics of a web site. That
gap is also getting narrower by the day. Al (artificial intelligence) and ML (machine
learning), for example, provide a much better ROI in the age of speed and continuous
delivery. Visual test automation by tools like Applitools is a great example. This is not
to say that we should make manual testing function redundant in an organization,
rather it is to say that testing capabilities should include both automation and manual
approaches, with a focus on automation.

In the context of mobile testing, it is almost impossible for a human to manually test
permutations and combinations across the dimensions of devices, SDKs, API levels, and
ecosystems. Hence, your testing strategy should include (but not be limited to):

e Automate early and often in the bottom-up order of the testing
pyramid (see the “Test Pyramid” section later in this chapter).

e Use BDD/TDD frameworks in the early stages when acceptance
criteria are not clear and an automation script cannot be run
(use mock frameworks to mitigate the absence of a real system).

e Building and deploying an app should be self-serviced and
automated without any exceptions.

e Collaborate with other roles on the team and, in rare
circumstances (such as during sprint demos), manually walk
through workflows of the system (otherwise, the automation
script should be run as a demo).

18

CHAPTER 2 © MOBILE TEST AUTOMATION

e The programming language should start with known, and tend
toward the most collaborative.

e Inside-out/outside-in (focus on end users).

e Don’tboil the ocean—pick one and pivot.

¢ Interoperability—cloud and on-premises infrastructures.
e Tend toward using real devices.

e Use Appium, Espresso, and XCTest.

Speed of Testing

High-speed testing is a mandatory requirement in the mobile space because a mobile
app is successful in the market based on how fast it is delivered in the face of competition.
There have been research studies suggesting that mobile users have an attention span of
minutes before they uninstall an app. Releasing bug-free apps often is a make-or-break
situation.

Scaling

Think of AWS and Netflix. The services can respond by scaling the systems based on load,
performance, user traffic, and so on. While testing mobile apps, the testing capability
should also be scalable across the three Vs (volume, variety, and velocity) with a tradeoff
against cost. In the beginning of developing a project, it is advisable to rely on open
source and cloud services before investing heavily on paid solutions.

Cost

Cost is a constraint in every decision you make when resources are required. Resources
can be human, machine, time, etc. Hence, investing in open source solutions at the
beginning is less risky because there is no vendor lock-in. It is a tradeoff decision because
if you spend too much time on not-so-mature open source solutions, you might lose time.
When it’s all said and done, open source solutions have come a long way and are mature
in many ways. In fact, they are much more mature than some paid solutions in some
cases. Your strategy should be to spend a week or two and scour the web for solutions and
frameworks that are already built and use one as a starting point.

Testing Pyramid

The testing pyramid helps in terms of having conversations around how much and what
priorities do different kinds of testing have in a project. See Figure 2-3.

19

CHAPTER 2 © MOBILE TEST AUTOMATION

Confidence Automated Confidence

in an GUI Tests in the
individual .

change entire System

Automated API Tests

Automated Integration Tests

Automated Component Tests

Automated Unit Tests

L

Figure 2-3. The testing pyramid

In the context of mobile testing (most mobile apps at the time of writing this book
focus on the GUI layer), the pyramid can be read as follows:

e The confidence while building the app (work-in-progress) is
enhanced with more tests at the bottom of the pyramid. Hence,
automated unit tests that execute successfully give confidence
that the unit/component is a higher quality.

e Since a software application is a network of components,
integration points between the components become important as
you race toward release to production.

e Finally, the user experiences the GUI of the mobile app, hence
from a user’s perspective, automated GUI tests give the highest
confidence in quality. (For example, if a component at the lower
layer breaks, the user’s experience will be felt at the GUI layer.)

e The confidence in the overall system is enhanced by successfully
running tests from lower to higher layers in the testing pyramid.

e The testing pyramid also articulates the relative volume of tests to
be written at various layers of the application.

Further reading on the testing pyramid can be found at http://www.
seleniumframework.com/decision-models/choose-automation-solution-2/.

20

http://www.seleniumframework.com/decision-models/choose-automation-solution-2/
http://www.seleniumframework.com/decision-models/choose-automation-solution-2/

CHAPTER 2 © MOBILE TEST AUTOMATION

Mobile Test Environment

Mobile apps like web apps need an environment to run on. The environment is a function
of hardware and software. To test a mobile app’s functionality, you need a mobile lab

that can emulate a real-world scenario—i.e., a user operating on a mobile app and the
workflows being executed. Mobile test environments can be complex to emulate, because
the experience is controlled in a chain, and the individual links are owned by multiple
entities. For example, the network bandwidth is controlled by the telecom providers, the
software experience is controlled by Google and its Android partners, and so on. You'll
explore the considerations that matter while interacting with a mobile test environment
in the following sections.

Real Devices vs. Emulators/Simulators

One of the biggest challenges with mobile testing is device support. The number of
models and the types of smartphones are increasing by the day and growing at an
accelerating pace. There are differences between devices and which devices to test is not
an easy challenge to solve. It is dependent on identifying the compatibility matrix as early
as possible in the project, yet that becomes a challenge to collect as it is not static.

However, you need to start narrowing it all down with an initial list.

Emulators/simulators cannot emulate every feature of a real device—pixel perfect,
phone hardware quirks, etc. In general, the software representation of underlying hardware
in Android world is called an emulator (as opposed to a simulator in the i0S world).

The test environment for mobile devices involves a mix of real devices and
emulators/simulators to get the test coverage you expect—of course, the tradeoff is
with cost.

Initial Manual Testing on a Local Android Real Device

In the case of a local Android device, use the following steps to experience the first build
of an app.
Android SDK installed on a Windows or Mac:

1. Insure that the SDKis updated with the latest device drivers.
For the Mac, my experience has been relatively easier
with the device drivers; however, with Windows, I had to
explicitly install the driver by going to the handset device
manufacturer's web site.

2. From the source code perspective, the attribute
android:debuggable=true should be set.

3. Onthe actual device, navigate to Settings » Developer Options
» Enable USB Debugging and set that to True. If the setting is
not found, navigate to Settings » About Phone and click Build
Number seven times. That should bring up the option.

21

CHAPTER 2 © MOBILE TEST AUTOMATION

4. Once the device is connected, a dialog box will appear on the
device. Accept the message to allow communication.

5. A quick verification step is to type adb devices from the
terminal (the adb binary is located inside the SDK folder
inside platform-tools directory).

Initial Manual Testing on a Local Android Emulator

Use the Android Virtual Device Manager to create various Android virtual devices with
different devices, SDK versions, and many more hardware characteristics.
Invoke the emulator as follows:

e Navigate to Android SDK folder/tools/ to locate the emulator
binary.

e Theemulator -avd avd_name command invokes the previously
created AVD.

e Ifound it easier to first create an AVD configuration from IDE like
Eclipse or Intelli], because the workflow is easier and the complex
details are abstracted.

Further Manual Testing in the Cloud

You already know that it is almost impossible to have every device, hardware, and
software and maintain a full-blown heterogeneous mobile test environment, as well as
certify all devices and emulators for your mobile app. As you scale, you have to depend on
cloud services.

e Start using Sauce Labs. Sauce Labs natively supports Appium
and that helps you be familiar with the tool for the next phase of
automation.

e Perfecto mobile is a fast growing service in terms of its coverage for
mobile real devices and worth taking a look if you are an enterprise,
as the cost vs. benefit analysis works well for large companies.

e Amazon Device Lab has many options since early 2017 and
the service is maturing with support for Appium and similar
automation tools without leaving the context of Amazon Web
Services Console.

e Google Device Lab is a great option, if you are invested fully
in Android mobile apps. The Google quality of experience is
instantly realized, but bear in mind that the Google Cloud is
slowly adding support for software automation frameworks like
Appium and Calabash and would take a little bit more time as
that is the not the core area they focused on. The purpose of
Device Lab is to provide access to real devices in the cloud, not
necessarily compete with Sauce Labs and Perfecto.

22

CHAPTER 3

Cl Pattern with Jenkins
and Android

This chapter introduces architectural patterns and covers a specific continuous
integration pattern that you will learn to implement in subsequent chapters. The chapter
goes through high-level architecture images of the pattern to help you picture it mentally.
As you progress through the chapter, you'll see the steps needed to configure the feedback
loop(s) that help you model and implement the pattern. It is important to complete the
tools installation described in Chapter 1 before starting this chapter.

What Is Continuous Integration?

Continuous integration (CI) is a development practice that requires developers to
integrate code into a shared repository several times a day. Each check-in is then verified
by an automated build, allowing teams to detect problems early. There are similar
concepts, such as continuous deployment and continuous delivery. However, to keep

this conversation simple, what I mean by continuous integration in this book involves
integration of changes into the source code, building and deploying the binaries, and
delivering the binaries to a target environment where end users can interact with the app.

Feedback Loops

As discussed in Chapter 1, feedback loops can be implemented using the Jenkins tool.
Images are provided to give you an idea about each build step inside the Jenkins UI
interface.

Note | used Jenkins 1.642.1 version. If you installed a different version of Jenkins,
make sure you select the free style job. The interface should be the same.

© Pradeep Macharla 2017 23
P. Macharla, Android Continuous Integration, DOI 10.1007/978-1-4842-2796-1_3

http://dx.doi.org/10.1007/978-1-4842-2796-1_1
http://dx.doi.org/10.1007/978-1-4842-2796-1_1

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

Feedback Loop 1: Build

Figure 3-1 shows the build feedback loop in the overall architecture diagram. This is
where you build the app.

ool Mot i
Github (ﬂ"i .

¥ Cheskout code
¥ fpoly configurtion + Code Quality Analysis
* Compile, unit tests + More Steps like linting
+ Package and upload
' Trigger Acceptance Test:
Trigger Code Quality Analysis — :

I~

w Proarammer 1
g

SonarQube

sl

¥ Smoke/Sanity Tests
 Regressicn Tests
¥ Feature Acceptance Tests

Appium - android Appium - i05

rﬂappium

St ol

Figure 3-1. The build feedback loop

Based on the overall architecture, the first feedback loop does the following:
1. Checks out the code.
Applies (any) configuration.

Compiles.

2

3

4. Runs the unit tests (if any).

5. Packages and uploads the code.
6

Triggers the code quality analysis.

24

CHAPTER 3 ' CI PATTERN WITH JENKINS AND ANDROID

Jenkins Job1 Configuration

Figure 3-2 shows how a Jenkins Job is configured for the first feedback loop.
Name the Jenkins job and specify the Log Rotation strategy.

@ Jenkins B Pradorn Muchurle - Hiog ovt
Juckim chandroid mobite.ci_andmid -onfiguration
& Back o Cashboad Prepset name mobin ¢i_androsd
= = Descripion Buld Android Acp
= Cnarges
W Warkspace
@ Bubd with Farameters [Pain bient] Prasviswr
@ Dekle Project | Ciszord O Buits
Strategy
. Lag Rotsten

#, Contigure
3 warage Cunersrip Diays to b bl

P Job Config Histary tos
) W 8 of builds 1o keep 3

Docker Contamnes

Figure 3-2. The build job rotation

Define an optional Boolean flag called UPLOAD to control the decision of uploading
the build artifact to Nexus. The default value is unchecked. If you check it, then the build
artifact gets uploaded to Nexus. See Figure 3-3.

Docker Container
GitHub project

Notify when Job configuration changes
¥ This build is parameterized
Boolean Parameter
o UPLOAD
Default Value

Descriplion | s it activated wil upload files to Nexus for deploy
#% Not being used yet

[Plain text] Preview

String Parameter

Figure 3-3. The build Nexus flag

25

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

Enter the Nexus credentials to interact with Nexus; see Figure 3-4.

[P anaem + configurancn

aunny rarsmmewn
Heroe NEXUS_USERNAME
Default Value jarking

Cescription

[Plain text] Prevlew

Add Parameter =
' Pemmissicn 1o Copy Artifact
I Restrict build axecution causes
2 Prepare an envircnment for the nn
I Cizable Build (Mo new builds wil be executed until the project is re-cnabled)

2 _Execute concument builds if necessary

Figure 3-4. The build Nexus credentials

Enter the GitHub repository URL representing the source code, as shown in Figure 3-5.

Fetieci_anarma o+ confguration

Label is serviced by 1 node
Advanced Project Options

Source Code Management

D ovs
0 CVE Projectset

T S ST ———

Credentals reve . o= Add

Branches to build

Branch Specifier (blank for amy) w0

Figure 3-5. The build source control

26

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

Check the boxes to delete the workspace before the build starts and to mask
passwords, as shown in Figure 3-6.

mobde.ci_andresd configuraticn
Repository browser Auo)
Adgitanal
ddibonal Behavioues [0
Subrersion
Build Triggers

Trigger builds remctely (e g . from scapts)
Build after other projects @ bull

2 Build penocscally
Build when a change is pushed 1o GitHub
Foll SCM

Build Environment
¥ Delete workspace before build stars

Advanced—.

2k casswends (aod soable clobal g

Figure 3-6. The build workspace and mask password checkboxes

Set the Nexus password as shown in Figure 3-7, so that it can be masked.

EELCEL B T T

Mask passwords [ard ensbie giobal passwords)

Password Parameters, or any othar type of buid parametecs selecled for masking in Hudsors/ Jenkins® main configwration screen (Manage Hudson > Configure System), wil be autsmatically maskes

Hame | \EUIS PASSWORD L
Add

Provide Confguration fles.
Abort the build if it's stuck
Color ANS! Ceracie Outpet
Copy fles into the job's workspace before bulding
Inject emvirarment vanables o the bukl process.
Inject ownership variables. o svircnment
Infeet pasiwerds 10 the build a5 envineoment vanables
— Restore 05 X keychaing afer build prozess a8 defined in giobal cenfiguration

SSH Agent

Build

Figure 3-7. The build Nexus password

Set JAVA_HOME, ANDROID HOME, GRADLE_HOME (see Figure 3-8 and the following code)
and build the project. If any unit tests are written, execute that as the next build step. In
this case, there are no unit tests. (Note: SONAR_RUNNER in this job is redundant; you'll use
Sonar in a downstream Jenkins job.)

27

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

S5H Agent
Build

Efecute shell

Confimand

a!/bin/bash
#% uncomment set -xv for debuging

#zet
g

wxport PATHe§PATH: $S0MAR_RUMNER/bin

K_MONE=/Library/JavaflavavirtuslMachines/jdk1.8.8_65. jdk/contents fhome/
HOHE= /Library/Jova/Tavavirtualtiachines/4dk1.6.8_65. jdk/contents/hoae
SPATH:3I0K_HONE/bin

DROID_HOME=/Users/mobile-ci/. droid_SDK/android-sdk-r2d.4.1
SPATH: SANDROTO | atforn-tools
THe §PATH: SANDROTD_HOME/ tools

{E=/Users/mobile-ci/gradle-2.8
+ GRADLE_HOM
t PATH=SPATH: SGRADLE_HOME/ bin

gradle clean assesbleDebug

Figure 3-8. The build Nexus password

#!/bin/bash

uncomment set -xv for debugging

#set -xv

export PATH=$PATH:$HOME/.rvm/bin

[[-s "$HOME/.rvm/scripts/rvm"]] &% source "$HOME/.rvm/scripts/rvm"

pwd

rvm list

curl -u $NEXUS_USERNAME:$NEXUS_PASSWORD -0 https://nexus.com/nexus/service/
local/repositories/snapshots/content-mobile/MOBILE_SNAPSHOT

tar xvzf MOBILE_SNAPSHOT

cp app-debug.apk ./features/support/resources

bundle exec cucumber features/android.feature DEVICE=$DEVICE -t @tag_name

Upload the build artifact (i.e., app-debug.apk) to Nexus so that it can be used further.

This example does not version this artifact with the Jenkins build number, because
this is a snapshot. However, feel free to name the artifact aligned with your versioning
strategy. See Figure 3-9.

28

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

Crandod » mobiec_andiod o corguration

Sew fan bt ol peplab e sshin

! Ein/bash
® Chack if .apk gots crested, if yes, upload to novus

! fein/bach
Files”, fappibuild ioutputs fepk/app- debug. apk™
if [-f “3Pile” |

thar

cd . /app/bulldioutputs fapc
tar -zevf SHORKSPACE/HopaterMobile -SIAPSHOT. tar. g2 ./*
curl wompload-file SPACE/ Androld-SIAPSHOT . tar . g2

cu SNENUS_LISPERIAME: SHENUS_PASSORD <u https: /I e e [ierulce Local repasdtor Les fenapah

else
echo "$file not found. Probably the build failed. Please check the path™
i

Triggercall builds on sthet progects
Sud Trgge

Figure 3-9. The build upload artifact

Kick off the downstream job to trigger SonarQube analysis, which is feedback loop 2.
The UPSTREAM BUILD NUMBER strategy is to pass the value to the downstream job to
pull the “correct” Nexus build artifact, as shown in Figure 3-10.

Jenking + ciandeaid » loci ardrid + configaration

1 —

Triggencall builds on ater projects

Buid Triggers.
Prjects to buld ksl ci_sonar
¥ Block until the triggensd projects firish their budds
Fad this busld step if the triggered buld is werse or equal to EALURE
Mark this bulld 3s fallure if (v Inggened buld is worke of egual 1o FAILURE

Wark this build as unstabie i the tiggered build is warse o squal o UNSTABLE

Predefined parameters
Paramalors | |ipaTREAM_BLILD_MUMBER=SBLILD_NUMEER

Figure 3-10. The build trigger job

29

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

Finally, save the job, as shown in Figure 3-11.

Ciandrold + mobile.cl_android ¢ conhiguration

. Predefined parameters
Parameters | |pSTREAM_BUILD_NUMBER=$BUILD_NUMBER

Add Parameters -

Add ParameterFactories

Add build step v
Post-build Actions

Add post-build action ~

o

Figure 3-11. The build save job

30

CHAPTER 3 ' CI PATTERN WITH JENKINS AND ANDROID

Feedback (Execution Results)

After running the Jenkins job, the console output looks like this (see Figure 3-12 also):

:app:mergeDebugAssets

:app:generateDebugResValues

:app:generateDebugResources

:app:mergeDebugResources

:app:processDebugManifest

:app:processDebugResources

:app:generateDebugSources

:app:processDebugJavaRes UP-TO-DATE

:app:compileDebugJavalithJavacNote: Some input files use or override a
deprecated API.

Note: Recompile with -Xlint:deprecation for details.

Note: /Users/mobile-ci/jenkins/workspace/mobile.android/app/src/main/java/
com/android/app/request/print/gc/GCGetPrinters.java uses unchecked or unsafe
operations.

Note: Recompile with -Xlint:unchecked for details.

:app:compileDebugNdk UP-TO-DATE
:app:compileDebugSources
:app:preDexDebug

:app:dexDebug
:app:validateDebugSigning
:app:packageDebug
rapp:zipalignDebug
:app:assembleDebug

BUILD SUCCESSFUL
Total time: 1 mins 52.858 secs

This build could be faster, please consider using the Gradle Daemon:
https://docs.gradle.org/2.8/userguide/gradle_daemon.html
[mobile.android] $ /bin/bash /var/folders/m6/zpwfiw6s04b
ccjvm4175y4h0000gp/T/hudson7459346908680899717. sh
a ./app-debug-unaligned.apk
a ./app-debug.apk

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

0 0 0 o0 o© 0 0 | JUOCORE N

Tem —mle-ie- 0* Trying 192.168.1.71..
* Connected to nexus.server.com (192.168. 1 71) port 443 (#0)

31

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

0 0 0 0 0 0 0 0 --i--1-- --i--

To- e-ie-ie- 0* TLS 1.2 connection using TLS DHE RSA WITH AES 256 CBC SHA
* Server certificate: *.company.com
* Server certificate: Go Daddy Secure Certificate Authority - G2
* Server certificate: Go Daddy Root Certificate Authority - G2
* Server auth using Basic with user 'jenkins'
> PUT /nexus/service/local/repositories/snapshots/content-mobile/MOBILE
SNAPSHOT HTTP/1.1
> Host: nexus.server.com
> Authorization: Basic amVua2luczpJbmihcjIwMTU=
> User-Agent: curl/7.43.0
> Accept: */*
> Content-Length: 24952303
> Expect: 100-continue
>
<

HTTP/1.1 100 Continue
} [16384 bytes data]

22 23.7M 0 0 22 5536k 0 5327k 0:00:04 0:00:01 0:00:03 5323k
64 23.7M 0 0 64 15.2M 0 7670k 0:00:03 0:00:02 0:00:01 7670k*
We are completely uploaded and fine

HTTP/1.1 201 Created

Server: nginx/1.1.19

Date: Tue, 08 Dec 2015 16:00:35 GMT

Content-Length: 0

Connection: keep-alive

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

AN AN AN AN AN AN AN

32

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

android + #15
tappimergeDebughsacts
sapp:generateDebugResValues
tapp:mergelebugRescurces
rapp:processDebugManifest

FP:P g:

:n;;;;wmnsnn&hug:mvnno_n UP-TO-DATE
Joi pileDebug h Some input f£iles use or override a deprecated API.

Note: Recompile with -Xlint:deprecation for details.

Note: fUsera/mobile-

ei/jenking ‘mobile.h _android/app/erc/main/java/con/inmar fandroid/app/hopater /reque:

etPrinters.java uses unchecked or unsafe operationa.

Note: Recompile with -Xlint:unchecked for dotaila.

rapprecapllebebugfdk UP-TO-CATE
rapprecaplleDebugSources
rapp:preDexDebug

rapp:dexbebug
rapp:validatebebugSigning
rapp:packagaDeabug
tapp:zipalignDebug
:app:assembleDebug

BUILD SUCCESSFUL

Total time: 1 mins 52.856 sccs

This build could be faster, please consider using the Gradle Daemon:
: x ntm

oy q

h - 8 /us d
[mobile.hopster_android] $ /kin/bash
/var/folders/mé/zpwilwés0ib ccivmiliSy4h0000gp/T/hudeonid59346908680899717.8h

s app: dexDebug
rappivalidateDebugSigning
1app:packageDebug
tappizipaligndebug
rapp:assenbledebug

BUILD SUCCESSFUL
Tatal time: 1 mins 52.858 secs

This build could be faster, please consider using the Gradle Dsemon: b : T rgd r i
[mobile.hopster_android] % /binfbash fvar/folders/es/zpaflussadb_cciwmal?sy gp/ 1/ hud 717.5h
a . fapy-debug-unal igned. apk
8 .fapp-debug.apk
% Total % Recelved ¥ ferd Aversge Speed Time Tims Time Current
Dload Upload Total — Spent Left Spesd

e o & o o o 8 L] 2" Trying VBMSMSURME.

* Connected t port 443 (ee)

o e @ @ @] @ @ sspesies segesies saiesies @* TLS 1.2 connection using
TLS_DHE_RSA_WITH_AES_255_C3C_SHA
* Server certificate: *.J8NB. com
* Server certificate: Go Daddy Secure Certificate Authority - G2
Server certificate: Go Daddy Root Certificats Authority - G2
Server auth using Basic with user °jenkins®
PUT /nexus/service/local/repositories/snapshots/content -hopstermobile MRl MCBILE_SNAPSHOT HTTP/1.1

Host:
Authorization: Basic engfiilemabeLhc IwiTy-
User-Agent: curl/7.43.0

Length: 24851303
Expect: 109-continue

ANV RV Y Y EY OB e

HTTP/1.1 182 Continue
+ [16384 bytes data]

22 23.M L] @ 22 5536k @ 5327 @
a

STl 2 PR TR T

@4 0:09:01 0:80:03 5323k
-y

Figure 3-12. Build results

33

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

Feedback Loop 2: Code Quality Analysis

The second feedback loop is the code quality analysis process using SonarQube, as
shown in Figure 3-13.

s
Github ” / _\a\ SonarQube

ey L) e |

¥ Checkout cods
¥ Apply conflguration ¥ Code Quality Analysis
* Compile, unittests + More 5teps llke linting
+ Package and upioad

v fhs
¥ Trigger Code Quallty Anal olggek sceTeets
¥ Deploy app
+ Smoke/Senity Tests

515
[
1 2
W Programmer
: ¥ Regression Tests
Appium - android — Appium - 05
[—"anpium) 3 [—ﬂeppium

Ly
——

Figure 3-13. Sonar feedback loop

34

CHAPTER 3 ' CI PATTERN WITH JENKINS AND ANDROID

Jenkins Job 2: Sonar

Name the Jenkins job and define the Log Rotation strategy, as shown in Figure 3-14.

@ Jenkins

Dack 1o Dashooar Preyact name rcbie «_sorar

\ [——————" T S ——————

=

@ vorxs

© Ove e Plam tor] Borzen

7 Contigure 1 Detars e Buce e

Al
o -
Figure 3-14. Sonar job rotation
Specify where the Sonar runner is available, as shown in Figure 3-15.
mobile.ci_sonar configumation
Docker Contains
GitHub pregect @
Natify when Job confgurabion changes
% This buld is parnetenized L]
Suing Parameter 7]
Lo SONAR_RUNNER @
DeaR Value | 1 prsipmachartisonarnunnes2.4 (7}

Descripticn

[Phas tet] Prgrvien

Figure 3-15. Sonar runner

35

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

Restrict where the project can be run and then download the source code. See

Figure 3-16.

EETEeT e

Agd Paramater =

= Pemission 1o Copy Autifact
= Restrict build axee ubon ¢ mises
= Prapare an environment for tha run
[0 Disable Build (No new builds will be executed urtil the project i re-snatled |
[0 Execute concument builds if necessary
Restrict where this project can be nun
Label Expression MaeMiri-dabs

Labal is serviced by 1 node

Advanced Project Options

Scurce Code Management
< None
' CVE
O CVS Projectset
= Git

Advanced...

LR XX XK

Repasitones Repository L.RL| batps: gt ¢ conmae hege g andecid_app_seurce.git

Figure 3-16. Sonar source code

Specify the checkout strategy, as shown in Figure 3-17.

ciandecid » [motieci_scnar + configuration

= Add

Branches tlobuld Branch Specifier (shank for 0m) o

Fuepostory bronser |y 1)

Adaboral Behaviowrs [s

o Subversion

Add Repository

Add Branch

Agvancod...

Delele Repository

Delete Branch

Build Trioaers

Figure 3-17. Sonar checkout

36

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

Here you don't have sonar-project.properties inside the source code, so you can

download it from Jenkins config file store and then add it to the check-out folder. See
Figure 3-18.

configuration

& Subversion

Build Triggers

) Trgger builds remctely (e.q., from seripts)

1 Build after other projects are built

U Build periogically

Ll Build when a change is pushed to GitHub
1 Pell SCM

® &oe

Build Environment
¥ Delete workspace before build stans
Advanced...

L) Mask passwords (and enable global passwords)
¥ Provide Configuration files
Managed Files File

@9

O 105 cnar-project - sonar-project properis ¥
yiew selected file
Targat sonar-project properies [7]

Vanabla

Add file

Figure 3-18. Sonar project properties

Since the config files are generally copied to the Jenkins master, you can move them
to the build machine and hence use the $sonar variable as a carrier. See Figure 3-19.

T connguranon

e sonar-hopsier

! Abort the build if it's stuck
| Color ANSI Console Qutput
Copy files into the job's workspace before bulding

Files to copy Ssonar

Paths are relative to @ $IEIMINS_HOME fuserContent

& This job's workspace on the master (nol advised)

Advanced...
| Inject environment vaiables to the bulld process

| Inject ownership variables imo environment

ee o o @

! Inject passwords to the build 25 environmant variables
! Restors OS X keychains after bulld process as defined in global configuration
SsHAvenl

Figure 3-19. Sonar job rotation

37

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

You add a build step using the SonarQube plugin for Jenkins and configure it to use
the sonar-runner, as defined on the Jenkins System configuration page. See Figure 3-20.

Build

[Invoke Standalone SonarQube Analysis

Task to run
40K {Inheit From Job)

JOK to be used ‘or ths sonar analysas
SenarQube Runner

mobile-lab

Path o project properies

Analysis properties

T @

‘e

Figure 3-20. Sonar job rotation feedback (execution results)

After you run the job, the Jenkins console log looks like Figure 3-21.

INFO
INFO
INFO
INFO
INFO - Install plugins

Load _global repositories

Server id: 20151185102752

INFO

19:30:23.525 INFO
123.668 INFO
19:30:23.735 INFO

10:30:23.933 INFO
19:30:23.937 INFO
10:30:23.959 INFO
19:30:24.121 INFO
19:30:24.125 INFO
19:30:24.145 INFO
19:39:25.438 INFO Initializing Hibernate

:26.934 INFO - Load project repositories

Install JOBC driver

Figure 3-21. Sonar console output

38

Load global repositories (done) | timesmd3éms
User cache: /Users/mobile-ci/.sonar/cache

INFO - Download sonar-stylecop-plugin-1.1.jar
Download sonar-javascript-plugin-2.6.jar

INFO - Dewnlead sonar-resharper-plugin-1.8.jar
INFO - Download sonar-android-plugin-1.1.jar
INFO - Download sonar-xml-plugin-1.2.jar

INFO - Download sonar-web-plugin-2.3.jar

INFO - Download sonar-11@n-en-plugin-5.1.jar

INFO - Download sonar-clover-plugin-3.@.jar

INFO - Download sonar-python-plugin-1.5.jar
10:30:23.371 INFO - Download sonar-scm-git-plugin-1.0.jar
:30:23.444 INFO - Download sonar-jira-plugin-1.2.jar
108:30:23.515 INFO - Download sonar-scm-sun-plugin-1.8.jar
Download sonar-pmd-plugin-2.4.1.7ar
Download sonar-core-plugin-5.1,jar
Dewnload sonar-java-plugin-3.5.jar
19:39:23.821 INFO - Download sonar-csharp-plugin-4.0.jar
Dewnload sonar-cobertura-plugin-1.6.3.jar
Download sonar-email-notifications-plugin-5.1.jar
Download sonar-build-breaker-plugin-1.1.jar

Download postgresql-9.3-1182-jdbc4l. jar
Create JDBC datasource for jdbc:postgresql://18.182.12.51:5432/postgres

CHAPTER 3 ' CI PATTERN WITH JENKINS AND ANDROID

Click the SonarQube icon. It will open the SonarQube home page/dashboard as you
have configured it on the server. See Figure 3-22.

Jenkins

Jenkins m mobile G-

4 Back to Dashboard
L), status

= Changes

@ workspace

@ Build with Parameters
@ Delete Project

#. Configure

&L Manage Ownership

) s

&“.‘- Job Config History]
Build History trend e presreey
o / Recent Changes
@8 dov 5, 2015 10:30 AN 20 KB
. Disk Usage
) RSS for all) RSS for failures Jé Q_‘ S0
oy = Al builds.
o Locked builds
o All workspaces 30 MB
o Slave workspaces 30 MB

- Mon-slave workspaces

Figure 3-22. Sonar icon link

Figure 3-23 shows the Sonar Dashboard and each of the orange highlights (and many
more hyperlinks) opens information that contains great feedback for developers.

Issues Moee

o data
MY FAVOURITES bt © Blocker o
Ha dlata 9d Sh Q Critical A
© Msjor ws A
es unctions © Minar % A
6 445 a O info #an
ecirer Lrss Ciasse
o 9304 A & Directory Tangle incex

0.0%

Figure 3-23. Sonar Dashboard

39

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

Feedback Loop 3: Test

This feedback loop is the integration automation test—i.e., the acceptance tests that an
end user would experience (see Figure 3-24). This is the relative difficult part to automate,
so I discuss it in detail in Chapter 8.

Github ”

&

m Programmer

-
LN

v Checkout cods
v pply configuration o
Code Anal
+ Compile, unit tests el Im‘:‘;
v Seps
e ses arxdlipioed ¥ Trigger Acceptance Tests

¥ Trigger Code Quallty Analysis

OJRO

Appium - android /

[—l\enpium

Welsliive Corsts e

Figure 3-24. Test feedback loop

Jenkins Job 3: Acceptance Tests

Name the Jenkins job as smoke tests/acceptance tests, depending on how many you want
to execute. This example uses smoke tests, as shown in Figure 3-25.

40

SonarQube

¥ Deploy app
" Smoke/Sanity Tests
v Regression Tests
» Feature Acceptance Tests

Appium - 105
M appium
[_

Webihte Contrisie

http://dx.doi.org/10.1007/978-1-4842-2796-1_8

CHAPTER 3 ' CI PATTERN WITH JENKINS AND ANDROID

@ Jenkins L —
Serkins 1 eiackod + robie ci_sred_ymoka_bests irfypedon
4 Back to Dashdoard Propect nama mickile ci_ancroid_smoke_tests
\, Status Description
= Cnanges
W workspace
(2 Bum wn Parameters [Pin tent] Exeien

(S Detete Project Discard Old Buiids

£, Contigure Strategy Leg Rstaten
@ Manage Ommership Days 16 ki buidds
B cucumber Reports

f,’ Jab Config MEtory

N # of bkl 12 keep | 4

Doeir Contsiner

Figure 3-25. Test job rotation
Enter the Nexus username if you want to upload the results of the test execution

(this example does not). Then define the DEVICE string parameter and add all the devices
that are defined in the devices.yaml file in the acceptance tests projects. See Figure 3-26.

mokile.c|_andresd_smoke lesls configuration

Swing Parameter

Py NEXUS_USERNAME
e i -

Default Value joriking

Descripton

[Plain text] Pravies

Chelea Parameter

Maras DEVICE

Cnoices mtortagoogle-ZX 18222FCD
Ige-rxus, 50551188638 bata

sampung-ddditaeddodbI bt

Desclplon vzl Davices fist

Figure 3-26. Test Nexus and device parameters

41

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

Specify where the project should run and download the acceptance tests code, as

shown in Figure 3-27.

chandrosd + mobdeci_androsd_smoke_tests + configuration
Add Parameter v
! Permission 1o Copy Arifact
L Restriet buld execution causes
' Fropane an environmant for the mun
J Disable Buld (No new buids will be executed untd the project is re-enabied)

| Exscune concument bulds if necessary
¥ Restrict whers this project can be nn
Label Expretsicn Machini-dsb
Labe] 18 seraced by 1 node

Advenced Project Options

Source Code Management
@ Nenw
o oovE
© EVS Projectsat
@ a
Reposiones Repostoey URL | e o

o -

Credertials

Figure 3-27. Test source code

Specify the master branch for code checkout, as shown in Figure 3-28.

mobide.ci_android_smoke_tests » configuration

Branches Lo build Beanch Specifier (blank for ‘amy) Ymaster

Rapasitory browser (o)

Additional Behavicurs

' Subversicn
Build Triggers
O Trigger builcs remctely [e.g., from senipte)
El Build after other projects. are built

o Build pericdially

T Build when a change is pushed 1o GitHub
o Bl SCM

Add Branch

Figure 3-28. Test Nexus and device parameters

42

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

For Ruby dependencies, pull gems from the Nexus repo. You must then specify the
Nexus access credentials, as shown in Figure 3-29.

crandrod

+ mobleci_androd_smoke_tests + configuraton

o Dalats workspace before buld stans

¥ Mash pasywords (and enable global passaonds)

D Provice Configueation files

~ Cepy fles into the job's workspace before buildng

0 Irpact onership vanables o efrvsonment
£ Irject passwonds 1o the build as environment vansbles

ﬂ Ay

Acvanced_.

Password Parameters. or any other type of bkl parameters selected for masking in Hudsorn's/ Jenkins” main configuration screen (Manage Hudson » Configure Systerm) wil be automatf af
masked

RamEErainG_NEXUS PSEADI | ,...ooseesmsrsonssssemssmmmassnsassanrens .

Add

Abod the buld if it's stuck
Color ANS| Comscle Output

Irjact emasanment variabies to the buld process

Glebal passwords

5 passeonss
e Mame | NEXUS PASSWORD

Figure 3-29. Test Nexus access for Jenkins

Download the app from Nexus, place it in the resources folder, and then execute the
acceptance tests. See Figure 3-30.

b chandiod

+ mnobila.cl_andiokl_smcke st - coniguraton

Avd

Easpards i

Mtk pastword parameners o

5 Restore 05 X beychains after build process a8 defined in global configuration

S5H Agent

Command [y /1nrbash

#& unconment set -wv for debeging

et v

hpw‘ PATH=EPATH: SHOVE .rvm/Bin

[[-5 “$one/,rm/scrlpti/ome |] 8k source “$A0Me/ . rmscrlpts/rm®

wrl u suxu S LA | BNIOE PASSHORD -0 hTtps i/ fnens ame ek Lireposis / h angws SHAFFHE
Ear xvrf CONTATT_SKAPSHOT

cp appe d.b..,, apk” /features fvmpport [resources

tundle exec cucumber features/ci_sndroid.feature DEVICE=SOEVICE

Figure 3-30. Test Nexus and device parameters

43

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

#!/bin/bash

uncomment set -xv for debuging

#set -xv

export PATH=$PATH:$HOME/.rvm/bin

[[-s "$HOME/.rvm/scripts/rvm"]] &% source "$HOME/.rvm/scripts/rvm"
pwd

echo $UPSTREAM_ BUILD NUMBER

rvm list

curl -u$NEXUS_USERNAME:$NEXUS_PASSWORD -O https://nexus.inmar.com/nexus/
service/local/repositories/snapshots/content-mobile/HOPSTER_MOBILE_
SNAPSHOT_$UPSTREAM_BUILD_NUMBER

1s -1

bundle exec cucumber features/android.feature:19 DEVICE=$DEVICE

Choose Publish Cucumber Results as a Report, as shown in Figure 3-31.

+.selenfunfrasevark , coninexus/service/local /repositorLes/snapshots/content - Frammmork/ CONTACT_SHGPSHe

e DEVICERSDEVICE

Addealdstep =

Postbuild Actions

Fublish cucumbar results 88 8 repon

Advanced_.

Aod post baid action =

= -

Figure 3-31. Test publish Cucumber results

44

CHAPTER 3 ' CI PATTERN WITH JENKINS AND ANDROID

Feedback (Execution Results)

Since you choose to publish the Cucumber results as a report, you can get reports, as
shown in Figures 3-32 and 3-33.

B8 Cucumb

Reports

The following graph shows passing and failing statistics for features in thia build.

@ Passed @ Failed © Sxipped
. Pending Undefined Missdig

Steps Scenarios

@ Cucumber

Reports

Scenarios
ature Statistics
Scenarios
Feature Total | Passed | Failed
181 Android 2 2 o
1 2 2 o

Figure 3-32. Test Cucumber graphical reports-1

45

CHAPTER 3 " CI PATTERN WITH JENKINS AND ANDROID

€3 Cucumber

Reports

Scenarios Steps
Featre | Toul | Passed Falled | Too [[Passed QIR Skeped Pending | Undefined | Missing | Duraton | Stus
[re——— 2 | 2 0 4 4 0 0 o | 0 0 205 821ms

Feature: Wpgkay A ndroid
All screens should launch fine

Scenario: Open«sliligge app and take scroanshots
Given | open e app 05s 072ms
Did not specify emulator target. Assuming device is sat
Execute anything before scenarioftest case
Print Queve tab exists
Accounts tab exists
Then | save screenshots of print queue, offers and account screen 10s 031ms
Print screen loaded
Sign in butlon found
Execute anything after scenanio/test case

Figure 3-33. Test cucumber graphical reports-2

46

CHAPTER 4

Android System Setup

Chapter 3 focused on how fast you can get to a quick feedback loop, and this chapter
covers what is needed for an MVP. The Android world has great tools and utilities that
address the varied needs of a developer.

You will install the following so that you can learn to build an app:

e Java

e Android SDK

¢ Android Studio
e Gradle

Installing Java

This section explains the Java platform and how to install it.

JRE vs. JDK vs. SE

You will download and install the Java Development Kit (JDK) in this section. As a quick

refresher, you might wonder which Java package you need.

¢ JDK: Software developers generally tend to use the JDK. It
includes the Java runtime and libraries for troubleshooting and
monitoring applications.

e SE (Standard Edition): Administrators typically use the SE
version.

¢ JRE (Java Runtime Environment): This is the minimal version
used by end users to run Java applications.

© Pradeep Macharla 2017
P. Macharla, Android Continuous Integration, DOI 10.1007/978-1-4842-2796-1_4

47

http://dx.doi.org/10.1007/978-1-4842-2796-1_3

CHAPTER 4 " ANDROID SYSTEM SETUP

JDK on Mac

To install the JDK on your Mac, you simply accept the license agreement, download the
.dmg file, and install it, as shown in Figure 4-1.

ownloads/jdk8-downloads-213315Lhtml

e e T v

New fo Java + Java Developer Day hands-on workshops (free) and other events
Community » Java Magazine
Java Magazine JDK 8uB5 Checksum

JOK 8uB6 Checksum

Java SE Development Kit 8ué5
You must accept the Oracle Binary Code lense Agreement for Java SE to download this
50! are.

Accept License Agreement '® Decline License Agreement

Product | File Description File Size Download
Linux ARM vE/vT Hard Float ABI TT6OMB jdk-BuB5-linux-arm32-vip-hilt tar gz
Linux ARM v8 Hard Float ABI T466MB jdk-BubS-linux-armB4-vip-hilt tar.gz
Linux 186 154,67 MB jdik-Bub5-linux-i586 rpm
Linux %86 17484 MB jdk-BuBS-linux-i585 tar gz
Linux x64 15269 MB jdk-BuBS-linux-x64. rpm
Loy B LR N ke BBt Ling Bl tar o

22714 MB jdk-BuB5-macosx-x64.dmg
- v

= ? SRR i
Solaris SPARC 64-bit 9901 MB jdk-BubS-solaris-sparcv.tar.gz
Solans xB64 (SVR4 packags) 14022 M8 pdk-Bubb-solans-xB4 tar.
Solaris x64 96.7T4MB jdk-BuBS-solaris-x64 tar.gz
Windows x86 181.24 MB jdk-BuBS-windows-i586 exe
Windows x64 186,57 MB jdk-BuBS-windows-x64 exe

Java SE Development Kit 8u66

You must accept the Oracle Binary Code License Agreement for Java SE to download this
software.

Accept License Agreement '® Decline License Agreement

Product / File Description File Size Download
Linux x26 154 67T MB jdk-8uB6-linux-iS86 rpm

Figure 4-1. JDK download for the Mac

After installing and making modifications to ~/.profile, you'll see something
similar to the output shown in Figure 4-2. Ensure that the Java executable is available

on the path and that the shell variables $JAVA_HOME, $JDK_HOME, and $PATH are updated
as shown.

48

CHAPTER 4 " ANDROID SYSTEM SETUP

node bash bash pmachart@CORP-NEXUS: ~

Anyones-Mac-mini:~ pmacharl$ which java

fusribin/java

Anyones-Mac-nini:~ pascharl$ 1s =1 fuse/bin/java

Lrwxr=xr=-x 1 root wheel 74 Det 17 2014 Jusr/bin/java -» /Systen/Library/Fraveworks/JavaVM. frasework/Versions/Current/Conmands/java

'3
export JDK_HOME=/Library/Java/JavaVirtualMachines/jdkl.8.0_62, jdk/Contents/Home
export JAVA_HOME=Si{usr/libexec/java_home)

export PATH=$PATH:$JDK_HOME/bin

export ANDROID_HOME=/Users/pmacharl/Library/Android/sdk
export PATHsSPATH:SANDROID_HOME platform-tools

export PATH=S$PATH: $ANDROID_HOME/tools

SGradle
GRADLE_HOME=/Users/pmacharil/Installations/gradle-2.7
export GRADLE_HOME

export PATH=$PATH: $GRADLE_HOME/bin

FAppium

export PATH="$PATH:$HOME/.rvm/bin" # Add AVM to PATH for scripting

[[-= "SHOME/.rvm/scripts/rvm”)] && source "SHOMES.rvm/scripts/rva™ & Load RVM into & shell session #as & functions
Anyones=Mac-nini:~ pmacharls

Figure 4-2. Shell variables

export JDK HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home
export JAVA_HOME=$(usr/libexec/java_home)
export PATH=$PATH:$IDK_HOME/bin

Installing Android SDK

Android SDK tools can be installed from the Android developer site. If you are a
developer, it makes more sense to download Android Studio (which comes bundled with
the SDK). However, if you are a devops/build/release/CI engineer, you might want to do
things headless, so it makes more sense to download the standalone tools.

This book focuses more on doing things headless, because IDEs in the background
mostly call the commands.

49

CHAPTER 4 " ANDROID SYSTEM SETUP

Standalone SDK

Download the standalone SDK from https://developer.android.com/studio/index.html.
Navigate to the bottom of the page for installing the tools, as shown in Figure 4-3.

-

i
gt Developers

C | [developer.android.comy/scdk/indax. HminCther

Develop > Tools > Download Android Studio and SDK Tools

¥ Developer Console

download the stand-alone Android SDK Tools. These packages provide the basic SDK tools for app development,

Dawnload A~ without an IDE. Also see the SDK tools release notes.
Installing the SDK Package SHA-1 Checksum
Windows installer_r24.4.1-windows. exe 151659917 {9h59d72413649d3 1263320723 1145644367 calb
Adding S04 Packages (Recommended) bytes
Android Studie & android-sdk_r24.4.1- 199701062 33053152022 9cOf
windows. zip bytes
Workflow v MacOSX android-sdk_r2d 4.1- 102781947 85ad9ccch0b19e6f11616335¢5/07107553840cd
macosx.zip bytes
Tools Help -
Linux android-sdk_r24.4.1-linux.igz 326412652 7 Sa2ds7 1326d
Build System - bytes

Figure 4-3. Android SDK download

vy vwvyevw

The contents are extracted to the /Users/pmacharl/Library/Android/sdk folder, as
shown in Figure 4-4.

sdK

9 Accounts

"9 Address Book Plug-ins
[Android

"1 Application Support
[Assistants

™ Audio

9 Caches

I calendars

[ColorPickers

B Colors

[com.apple.nsurisessiond
™9 Compositions

[Containers

Yy ¥ ¥ ¥ ¥ ¥ ¥ ¥y ¥y vy vy V¥w

Figure 4-4. Android SDK folder view

50

[add-ons
'3 build-tools
[extras
' platform-tools
[0 platforms

" SDK Readme.txt
' sources
[system-images
[temp
M tools

¥y ¥y v v ¥

Yy vvuw

https://developer.android.com/studio/index.html

CHAPTER 4 " ANDROID SYSTEM SETUP

Now add these shell variables to the ~/.profile path (see Figure 4-5):
e ANDROID HOME=/Users/pmacharl/Library/Android/sdk
e PATH=$PATH:$ANDROID_HOME/platform-tools
e PATH=$PATH:$ANDROID_ HOME/tools

Anyones-Mac-mini:sdk pmacharls cat ~/.profile
export JDK_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.8_6@. jdk/Contents/Home
export JAVA_HOME=${usr/libexec/java_home)
rt PATH=SPATH: $1DK H n

narol
export ANDRDID_HOME=/Users/pmacharl/Library/Android/sdk
export PATH=SPATH:SANDROID_HOME/platform-tools
export PATH=SPATH:SANDROID_HOME/tools

#Gradle
GRADLE_HOME=/Users/pmacharl/Installations/gradle-2.7
export GRADLE_HOME

export PATH=SPATH:SGRADLE_HOME/bin

#FAppium
export PATH="$PATH:SHOME/.rvm/bin" # Add RVM to PATH for scripting

[[-5 "SHOME/.rve/scripts/rvm” |_] && source “SHOME/.rvm/scripts/rvm" & Load RVM into a shell session =as a functions
Anyones-Mac-mini:sdk pmacharls [|

Figure 4-5. Update shell variables

Quick Checks

Since you will use the adb and uiautomatorviewer executables in subsequent sections,
it’s smart to check that they are available in the PATH now.
Type uiatomatorviewer, as shown in Figure 4-6.

node fe@a - 1sh

Anyones-Mac-mini:sdk pmacharl$ adb devices
List of devices attached 3
802a2192e09d05912 device A

Anyones-Mac-mini:sdk pmacharl$ viautomatorviewer
M

MNode Detail

Figure 4-6. uiautomatorviewer

51

CHAPTER 4 " ANDROID SYSTEM SETUP

Press Ctrl+C in the shell or close uiautomatorviewer directly.
This ensures that you have Android SDK set up and ready for building apps.

Installing Android Studio

In the previous section, you installed the Android SDK as a standalone and made it
available to your build environments by setting the PATH variables.
In this section, you will learn how to install and set up Android Studio.

Note Android Studio is not required for building, deploying, or testing apps. It is a
developer environment that enables you to develop apps.

There are many benefits to having Android Studio, because the IDE centralizes
accessibility of features like updating the SDK, adb, the device monitor, looking at logs,
and more. Hence, it is strongly recommended that you install Android Studio even
though it’s not required.

Download it from https://developer.android.com/studio/index.html.

See Figure 4-7.

- c andraid, 1/ /i htmi? phg=studi
= b
l'l Developers Design Develop Distribute B Developer
Training AP Guides Reference Tools Google Services Samples
Download

Installing Android Studio

Android Studio provides everything you need to start developing apps for Android, including the Android

Installing the SDK

Adding SDK Packages Android SDK teals.

If you didn't download Android Studio, go download Android Studio now, or switch to the stand-alone 5D
Android Studio . .

instructions.

Workflow ~ Before you set up Android Studio, be sure you have installed JOK 6 or higher (the JRE alone is not suffici

Figure 4-7. Install Android Studio

Follow the instructions from the installer and go with the defaults.

52

https://developer.android.com/studio/index.html

Android Studio Basics

In this section, you will walk through some of the functionalities in Android Studio that
matter to the use cases in this book. Just follow along and click through at this stage in

the book.

Open an Android project. Point to the Android project that you are working on, as

shown in Figure 4-8.

T

Recent Projects

1| ¥

CHAPTER 4 " ANDROID SYSTEM SETUP

Q Welcome to Android Studio

Quick Start

Start a new Android Studio project

i

Open an existing Android Studio project

2 &

S & «

rﬂ':

Figure 4-8. Open the Android project

Import an Android code sample

Check out project from Version Control

Import project (Eclipse ADT, Cradle, etc.)

Configure

Docs and How-Tos

53

CHAPTER 4 " ANDROID SYSTEM SETUP

Hover over the icons shown in Figure 4-9 and click each to get a feel for navigating in
Android Studio.

Figure 4-9. Android Studio subtools

Hovering over the icons highlighted in Figure 4-9 shows you options related to the
following:

e AVD Manager: This will launch AVD manager. You will learn
how to create emulators and manage Android virtual devices in
another section.

e SDK Manager: This will help you manage all updates to the
Android SDK.

¢ Android Device Monitor: This will let you monitor your Android
device when connected and talking to adb.

Associate the System SDK with Android Studio

By default, Android Studio comes bundled with Android SDK. However, if you are
already using an SDK bundle (as mentioned in previous section, if you already have SDK
downloaded and set in another folder), then point it to that.

" Note Remember that this book uses an SDK downloaded separately because you need
the flexibility to be able to build, deploy, and test the examples with and without Android
Studio.

54

CHAPTER 4 " ANDROID SYSTEM SETUP

At the top left, choose Android Studio » Preferences to open up this page. Edit the
value to point to the folder where you downloaded the Android SDK. See Figure 4-10.

=}

Appearance & Behavior » System Settings » Android SDK

¥ Appearance & Behavior Manager for the Android SDK a

Appearance Android SDK Lecation:
Mi d Toolbars
enus and Tool SDK Teals SDK Update Sites |
¥ System Settings
Pl Each Android SDK Platform package includes the Android platform and sources pertaining to
an APl level by default. Once installed, Android Studio will automatically check for updates.
HTTP Proxy Check "show package details” to display individual SDK components.
Updates Name APlLevel Revision Status
Usage Statistics =) Android 6.0 (Marshmallow) 23 1 Update avallable
- Android 5.1 (Lollipop) 22 2 Mot installed
Android SOK Andraid 5.0 (Lollipop) 2 2 Mot installed
File Colors T Android 4.4 (KitKat Wear) 20 2 Notinstalled
Scopes Android 4.4 (Kitkar) 19 4 Not installed
- Android 4.3 (Jelly Bean) 18 3 Met installed
Notifications
cHfication Android 4.2 (jelly Bean) 17 3 Netinstalled
Quick Lists Android 4.1 (Jelly Bean) 16 5 Notinstalled
Keymap Android 4.0.3 fceCreamSandwich) 15 5 Mot installed
> Editer Android 2.3.3 (Cingerbread) 10 2 Mot installed
Plugins Android 2.2 (Froyo) 8 3 Mot installed
» Version Cantrol
* Build, Execution, Deployment
» Languages & Frameworks
> Tools _ Show Package Details

ch Standalone SDK Manag Preview packages available! Switch to Preview Channel to see them

(2) Cancel | Apply oK

Figure 4-10. Associate SDK with Android Studio

Installing Gradle

Gradle is a build package manager that helps dependency management when building
Android apps. Compare it with Ant, Maven, npm, Rake, etc.

55

CHAPTER 4 " ANDROID SYSTEM SETUP

Download and Install

Download the binary from https://gradle.org/gradle-download/. It is an archive, so
you need to extract the contents to a folder on your machine. See Figure 4-11.

@ | @ Secure | hitps//gradie.arg/instal

[) Suggested Sites || Inmar Favories

Scoopisac line installer for Wi inspired by Homebrew,

% geoop install gradle

Install manually

Ste latest Gradle distribution

The current Gradle release is version 2.5, released on 10 Apr 2017, The distribution zip file
comes in two flavors:

. 0 e (with docs and sources)

It in doubt, choose the binary-only version and browse docs and sou

Meed towork with an older version? See the releases page.

Step 2. Unpack the distribution
Linux & MacOS users

Unzip the distribution zip file in the directory of your choosing. e.g:

% mkdir fopt/gradie

Figure 4-11. Download Gradle

Figure 4-12 shows where it looks after it’s extracted. The version being used is 2.7, but
you should download the latest version you can. There are not too many differences that
will affect your Android app build.

[Applications » [|7 gradle-2.7 *» [bin »
Assets.car | changelog.txt
"9 Base.lproj > ¢ getting-started.htmil
|59 Desktop - [init.d >
¥ Documents > B b >
|4 Downloads > LICENSE
3 droidAtScreen-1.2.jar [media »
9 Frameworks > NOTICE
[gitprojects >
~¢ Hopster
Info.plist
|7 Installations >

Figure 4-12. Gradle folder structure

56

https://gradle.org/gradle-download/

CHAPTER 4 " ANDROID SYSTEM SETUP

Set Gradle Shell Variables

Add the following code to your ~/.profile so that the Gradle binary is available in $PATH
and $GRADLE_HOME is available when building the Android app. See Figure 4-13.

node basgh bash pmacharl@CORP

Anyones-Mac-mini:sdk pmacharl$ cat ~/.profile

export JDK_HOME=/Library/lava/JavaVirtualMachines/jdkl.8.0_60.jdk/Contents/Home
export JAVA_HOME=S{usr/libexec/java_hone)

export PATH=5PATH: $IDK_HOME/bin

#Android

export ANDROID_HOME=/Users/pracharl/Library/Android/sdk

export PATH=SPATH: $ANDROID_HOME/platform-tools

export PATH=SPATH: $ANDROID_HOME/tools

#Gradle
(GRADLE_HOME=/Users/pmacharl/Installations/gradle-2.7
export GRADLE_HOME

export PATH=SPATH: SGRADLE_HOME/bin

#hppium

export PATH="$PATH: SHOME/.rve/bin" & Add RVM to PATH for scripting

![-5 "SEOHE!‘_r_rnJ'-“:ripts:frvf': l.] &5 source “SHOME/.rvm/scripts/rvm" # Load RVM into a shell session was a functionw
Figure 4-13. Gradle shell variables
GRADLE_HOME=/Users/pmacharl/Installations/gradle-2.7

export GRADLE_HOME
export PATH=$PATH: $GRADLE_HOME/bin

Android Studio with Gradle

Android Studio comes bundled with Gradle and uses its own version internally. If you
are a developer, you might find it more comfortable to use the built-in version so that you
don’t have to manage yet another tool.

57

CHAPTER 4 " ANDROID SYSTEM SETUP

Since you need the flexibility to do this with an IDE and do it in the CI (headless)
way for this book’s examples, I suggest you direct Android Studio to use the Gradle
downloaded previously, as shown in Figure 4-14.

@ ") Bulld, Execution, Deployment » Build Tools » Gradle © For current project Reset

L

Appearance & Behavior
Keymap

Editor

Plugins

Linked Gradle projects

L

* Version Control

Project-level settings
Build, Execution, Deployment . e

<

¥ Build Tools () Use default gradle wrapper (recommended)
*) Use local gradle diftribution
Experimental eadls o - — diez?
¢ home: Users/, lations fgradle-2.
Cloud Test Lab :
Compiler Clobal Gradle setlings
Coverage
Offline work
» Debugger
Path Variables Service directory path: Users /pmacharlf .gradle
» languages & Frameworks
* Tools
I Cancel.. Apply L

Figure 4-14. Gradle setting in Android Studio

Gradle Quick Commands

gradle --help will give you the options for quick commands.

Gradle Tasks

Gradle works by executing tasks. There can be two types:
¢ Built-in tasks: Come by default
¢ Gradle custom tasks: Craft your own tasks

You will use the built-in tasks to start with. It's beyond the scope of this chapter to go
into the details of writing custom tasks.

58

CHAPTER 4 " ANDROID SYSTEM SETUP

Built-in tasks are categorized into the following areas:
e Android tasks
e Build tasks
e Build Setup tasks
e Help tasks
e [Install tasks
e Verification tasks
e Other tasks

To see all the tasks and more detail, run gradle tasks --all.
To see more details about a task, run gradle help --task.

Build the App

Gradle generally looks for a build.gradle file in the current directory and parses the file
to follow the instructions.

In this book, you will build the app using the following command, which runs inside
the Android project root directory:

gradle clean assembleDebug

I will go into details about building the app from the project in subsequent chapters.

Note If you do not want to worry about managing Gradle versions (downloading,
extracting, and ensuring the right version is used), you can use the Gradle wrapper. The
Gradle wrapper comes bundled with Gradle. The only change is, instead of using the gradle
binary, you use the gradlew binary in the same folder.

Tools to Know
Some of the Android SDK tools that I found useful (from the perspective of CI) are:
e ADB (Android Debug Bridge)
¢ Record Video
e uiautomatorviewer
e AVD Manager
e SDKManager
e Device Monitor

The next few sections cover how to use these tools.
59

CHAPTER 4 " ANDROID SYSTEM SETUP

ADB

Android Debug Bridge (adb) is a client that runs on a developer box and instructs a
component that runs on the developer box, which in turn communicates with a daemon
that runs either on an emulator or on a real device.

Here is an example of an adb command. It lists the number of devices connected to
the machine on which adb is executed.

pradeep@seleniumframework.com:~ pmacharl$ adb devices
List of devices attached
00a219ae09d05912 device

This is one of the most important tools that I recommend you learn to use. You will
use adb to communicate with the app on the emulator/real device, to install the app, and
to accomplish many other feats.

Here are some adb commands that I use extensively:

e adb devices lists all emulators and devices that can
communicate with this adb server.

e adb install <apk> installs apk on the one emulator/device that
is available to the adb server.

e adb install -e <serial number> <apk> installs apk ona
targeted emulator or device.

e adb kill-server kills the adb server. I use this when the server is
in an unstable state.

e adb start-server starts the adb server.

It will be very beneficial to go over the complete list of options that adb provides,
especially when you're troubleshooting. I recommend the official page, found at
https://www.gitbook.com/book/machzqcq/ci-automation-mobileapps/edit.

You will use the previous commands when you build-deploy-test the CI pattern in a
later chapter.

Record Video

From Android Kitkat, i.e. 4.4 version and above, adb provides a way to record screen video
and save it to the device storage. You can pull the video to the local system from there.
Here are the steps for screen recording and saving:

1. Startadb shell screenrecord /path.

2. Recording starts and waits until you no longer need to record
the screen.

3. Press Ctrl+C in the shell to stop recording.

4. Pull the video to your local filesystem.

60

https://www.gitbook.com/book/machzqcq/ci-automation-mobileapps/edit

CHAPTER 4 " ANDROID SYSTEM SETUP

pradeep@seleniumframework.com $ adb shell screenrecord /sdcard/example.mp4 "C
pradeep@seleniumframework.com $ adb pull /sdcard/example.mp4
4972 KB/s (2900775 bytes in 0.569s)

uiautomatorviewer

From the perspective of an automation engineer, uiautomatorviewer is very similar to
Chrome’s dev-tools, Firefox’s dev-tools, etc. Writing web-based automation code (such
as with Selenium), identifying HTML elements (like ID, name, and other properties),

and passing that as input to identify objects is very similar to what you can achieve with
uiautomatorviewer, but on the mobile side. Figure 4-15 shows the interface.

Y NIV

¥ (0) View [0,50][768,1184]
¥(2) View {Home screen
¥(0) View [40,185)[728
(0) TextView:Comr
» (1) LinearLayout {f
¥(2) LinearLayout {}

(0) ImageView [
(1) TextView [4C
¥(3) android.appwit

(0) View {16:26}

Node Detail

HOM InStall. INmT HEw, SE o index =
: : Settings toxt
class android.view.View
package com.android.launcher

content-desc Home screen 3
checkable false

checked false
clickable true
enabled true

focusable false
focused false
scrollable false
long-clickable true
password false

Figure 4-15. uiautomatorviewer

Some notes about uiautomatorviewer:
e It’s generally located in the $ANDROID_HOME/tools directory.
e Youlaunch it by typing uiautomatorviewer.

e Figure 4-15 is taken by clicking the Device Screenshot button,
which is the second icon from the left.

61

CHAPTER 4 " ANDROID SYSTEM SETUP

e You can see the XML hierarchy of the elements and each node
property in the node detail. This is useful when you’re writing
Appium automated tests (if you want to use uiautomatorviewer).

e You can save a screenshot using this tool.

AVD Manager

The AVD Manager provides a graphical user interface in which you can create and
manage Android Virtual Devices (AVDs), which are required by the Android Emulator.

Launch AVD Manager using either of these options (one is from the command line
and the other is from Android Studio):

e Runtheandroid avd command at the command line. It launches
avd (shell variables should be set so that the executables are in PATH).

e C(lick the AVD Manager icon in Android Studio IDE, as shown in
Figure 4-16. Figure 4-17 shows the AVDs.

D (R D W2 L@ @-a- ?

< | % 1| @app x|
apply plugin: ‘com.android.application’
apply plugin: ‘com.neenbedankt.android-apt’

android {
compileSdkVersion 23
buildToolsVersion "23.0.1"

Figure 4-16. AVD Manager

. Your Virtual Devices

J Android Studio

Type Name Resalution AW Targer CPUJAB Size on Disk Actions.
Nexus 4 API 23 768 x 1280: xhdpi 23 Google APis *86 168 | R
Nexus 4 AFI 23 x86 768 % 1280 xhdpi 23 Google APls xB6 1G8 b

ErTr—— =]

Figure 4-17. AVD Manager with AVDs

62

CHAPTER 4 " ANDROID SYSTEM SETUP

When you start to understand the Android world, you want a sandbox to play with.
Android Virtual Device Manager lets you create AVDs/emulators for different hardware
and software configurations. I found the following features beneficial while learning the
platform:

e You can create emulators for phones, tablets, wearing, TV, etc.

¢ You can play with different form factors, screen resolutions, and
sizes.

¢ You can experiment with different memory sizes, API levels of
software, cameras, sensors, etc.

Sure, there is no substitute for a real device, but emulators at least help you
understand the various configuration(s) available, as well as identify which ones matter
while developing, building, and testing the apps. More domain knowledge for the
engineers means a higher chance of a better quality app.

SDK Manager

The Android SDK Manager (see Figure 4-18) separates the SDK tools, platforms, and
other components into packages for easy access and management.

SDK Path:
Packages
W' Name API Rev. Status

¥ _1Tools
-+ Android SDK Tools 24.41 [Installed
+~ Android SDK Platform-tools 23.0.1 @ Installed
¢~ Android SDK Build-tools 23.0.2 Not installed
+" Android SDK Build-tools 23.0.1 {7 Installed
+" Android SDK Build-tools 22.0.1 — Not installed
-+~ Android SDK Build-tools 21.1.2 Not installed
~" Android SDK Build-tools 20 [Not installed
+" Android SDK Build-tools 19.1 Not installed

¥ [} Tools (Preview Channel)
" Android SDK Platform-tools 23.1re1_ Not installed

¥ [} Android 6.0 (API 23)
(@ Documentation for Android SDK 23 1 Not installed

] ' SDK Platform 23 1 s Update available: rev. 2
L Samples for SDK 23 2 Not installed
Show: + Updates/New + Installed Select New or Updates Install 7 packages...
Obsolete Deselect All Delete 7 packages...

O v

Done loading packages.

Figure 4-18. SDK Manager

63

CHAPTER 4 " ANDROID SYSTEM SETUP

Launch SDK Manager using one of these options (one is from the command line and
the other is from Android Studio):

¢ Runtheandroid sdk command from the command line. It
launches the SDK manager (the shell variables should be set so
that the executables are in PATH). See https://www.gitbook.
com/book/machzqcq/ci-automation-mobileapps/edit for more
information.

e (Click the SDK Manager icon in the Android Studio IDE, as shown
in Figure 4-19. Figure 4-20 shows the result.

252
an
H
L

Fawee > ¥ b @ ¢ B ?

I-| @app x

apply plugin: 'com.android.application’
apply plugin: 'com.neenbedankt.android-apt’

android {
compileSdkVersion 23
buildToolsVersion "23.0.1"

Figure 4-19. SDK Manager: Android Studio icon

@ | Appearance & Behavior » System Sertings > Android SDK
¥ Appearance & Behavior Manager for the Android SDK and Tools used by Andreid Studio
Appearance Android SDK Location: /Users /pmacharl /Library/Android/ sdk

Menus and Toolbars
¥ System Settings

LA ETEN SDK Tools | SDK Update Sites

Pasgwords Each Android SDK Platform package includes the Android platform and sources pertaining to
an APl level by default. Once installed, Android Studio will automatically check for updates.
HTTP Praxy Check "show package details” to display individual SDK components.
Updates Narne APiLevel Revision | Status
Usage Statistics =/ Android 6.0 {MII"_S'II’"!"W) 3 1 Update available
= - Android 5.1 (Lollipop) 22 2 Not installed
Android SDK Android 5.0 (Lollipop) 2 z Nt installed
Notifications Android 4.4 (Kitkat Wear) 20 2 Not installed
Quick Lists Android 4.4 (Kitkat) 19 4 Not instalied
e Andro:d 4.3 (Jelly Bean) 18 3 Not :Mulled
Android 4.2 (Jelly Bean) 17 3 Not ingtalied
» Editor Android 4.1 Uelly Bean) 16 H Not installed
Plugins Android 4.0.3 (lceCreamSandwich) 15 5 Not installed
» Build, Execution, Deployment Android 2.3.3 (Gingerbread) 10 H Not installed
Android 2.2 (Froyo) 8 3 Not installed
* Tools
|| Show Package Details
Launch Standalone SDK Manager Preview packages available! Switch to Preview Channel to see them
(@ | Cancel Apply ok |

Figure 4-20. SDK Manager: Android Studio

64

https://www.gitbook.com/book/machzqcq/ci-automation-mobileapps/edit
https://www.gitbook.com/book/machzqcq/ci-automation-mobileapps/edit

CHAPTER 4 " ANDROID SYSTEM SETUP

Android Device Monitor

Android Device Monitor is a standalone tool that provides a graphical user interface for

several Android application debugging and analysis tools.

Launch SDK Manager using one of these options (one is from the command line and

the other is from Android Studio):

e Runthe monitor command from the command line. It launches

the device monitor (shell variables should be set so that the
executables are in PATH). See https://www.gitbook.com/
book/machzqcq/ci-automation-mobileapps/edit for more
information).

e (Click the Device Monitor icon in the Android Studio IDE, as
shown in Figure 4-21.

Wapp - | P ¥ L @ ¢ L Eﬂ'ﬁili?:

o app X
apply plugin: 'com.android.application’
apply plugin: 'com.neenbedankt.android-apt’

Figure 4-21. Device Monitor: Android Studio

You can see the view when one device is connected in Figure 4-22.

@ Devices 2 =0
#F &0 322 O @@ P

Namg
g nexus_4-00a219a009d05912 Online

2 LogCat | B console 32 ,
O

Figure 4-22. Device Monitor: device connected

65

https://www.gitbook.com/book/machzqcq/ci-automation-mobileapps/edit
https://www.gitbook.com/book/machzqcq/ci-automation-mobileapps/edit

CHAPTER 5

Build the Android App

The Android app can be built in debug or release mode—the difference being the
keystore used to sign the app. If you build the app in release mode, the keystore will let
you push to Google Play (assuming that the keystore associated with the user ID has
already been registered through Google Play).

Since the CI process requires building many times before being ready to be release,
this chapter shows you how to build the app in debug mode and use the .apk that’s
generated to pass it to the CI test automation step.

The Android Build Process

The following section contains a quick, high-level architecture overview of the Android
app build process. Minor variations might exist in your specific projects.

Overview

Understanding the build process and being able to tweak it to suit your requirements is
necessary once you have an MVP. I am a big fan of building the thin slice first, although
there are many inefficiencies that can exist in the process. Once you see the result, the
confidence and optimism will motivate you to go back and optimize the process. This
is a good way to keep the stakeholders happy too, because it demonstrates continuous
progress. Figure 5-1 shows an overview of the build process.

Android Package (.apk)

dex resources
| files | .arsc A
Signing 2 Device or
LCOmsac Emulator
resources
AndroidManifest.xmi

Android Compilati
Project and Packaging

Figure 5-1. The Android build process

© Pradeep Macharla 2017 67

P. Macharla, Android Continuous Integration, DOI 10.1007/978-1-4842-2796-1_5

CHAPTER 5 ' BUILD THE ANDROID APP

Another Perspective on the Build Process

Consider another perspective with Gradle, which is a build and packaging tool that drives
the build process.

Figure 5-2 shows this build process.

Byte Code

Android
n B

Manifest

Figure 5-2. Android build process with Gradle

Output of the Build Process

After successfully building the app from the source code, you'll generally be interested in
the . apk file, which is the app ready to be deployed. There are other folders created in the
./app folder inside the project too. Figure 5-3 shows the folder contents for reference.

LN]
&
Pavorites [L anpiml 0 generated » Bk
B At by s [0 B » [bus ® I memaciates * s
L] E Build.groaie bud.gradie 9 oapas L
& iClowd Drive * [gradie - POgUA- ks B mwmp
AirD Wrcwen ¢ B gradieprepenes L L] .
® tacetmsts + B gradiew
Apphcations || jos * ® gradiewbat
Deskt b
-) 2482 jar ® local propertie
[Documents f pun gnptsn README.mo
) Downloads settings. gradie
{3 pmachart
Devices
@ Remote...
snared
G Device L.
M pwTmwin...
M twTomac...

Figure 5-3. Build output folders

68

CHAPTER 5 BUILD THE ANDROID APP

Building from the Command Line

You can build your Android app in two main ways:

e IDEssuch as Android Studio and Xamarin have a menu option for
building the app once the project is imported.

e Open ashell command and start calling Android build binaries
(that are part of the SDK).

Note Even the IDE calls into SDK binaries internally, but it is abstracted from the user,
hence it seems easier.

Gradle Tasks

The Gradle task that you are interested in here is the one that enables you to build,
compile, and output the . apk file. This falls under the category of Gradle tasks viz. build
tasks. Figure 5-4 shows the tasks available from the gradle tasks command. Type gradle
tasks in the command line and check out the output. It is not necessary to remember all
the tasks; however, the more you practice the commands, the easier and faster it gets to
script it out.

Install tasks

To see all tasks ond more detail, #On gradle tesks —-all

To see more detail asbout a task, radle help --task <tasks
BUILD SUCCESSFUL
Total time: 14.577 secs

This build could be faster, please consider using the Gradle Daemon: https://docs.gradle.org/2.7/userguide/gradle_daeson. htal

Figure 5-4. Gradle tasks

69

CHAPTER 5 ' BUILD THE ANDROID APP

The Gradle Clean AssembleDebug Task

The assembleDebug gradle task follows the build process, as mentioned in the
architecture view, and the clean task cleans the build folder in the project.

Figure 5-5 shows how the process would look when building an app with the
following command:

gradle clean assembleDebug

Anyones-Mac-mini: pmacharlﬁradle clean assenblebebub

:app:clean
tapp:preBuild
:app:preDebugBuild
:app:checkDebugManifest
:app:preReleaseBuild
rapp: prepareCoIAndroidSuppurtAppcompatv72316Library
:app:prepareComAndroidSupportDesign2310Library
:app:prepareComAndroidSupportMultidex1@iLibrary
:app:prepareComAndroidSupportRecyclerviewV72310Library
:app:prepareComAndroidSupportSupportV4231@Library
:app:prepareComFacebookAndroidFacebookAndroidSdk481Library
:app:prepareComGoogleAndroidGmsPlayServicesBase81@Library
:app:prepareComGoogleAndroidGmsPlayServicesBasementB8lOLibrary
:app:prepareComGoogleAndroidGmsPlayServicesIdentityB10Library
:app:prepareComSquareuplLeakcanaryleakcanaryAndroidi3iLibrary
:app:prepareComZendeskSdki411Llibrary
rapp:prepareDebugDependencies

:app:compileDebugAidl

:app:compileDebugRenderscript

:app:generateDebugBuildConfig

:app:generateDebugAssets

:app:mergeDebugAssets

:app:generateDebugResValues

rapp:generateDebugResources _

> Building 63% > :app:mergeDebugResources

Figure 5-5. Gradle clean assembleDebug

A successful build should look like Figure 5-6.

Note: Some input files use or override a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
Note: /Users/pmacharl/gitprojects/hopster_android/app/src/main/java/com/inmar/android/app/hopster/request/p
Note: Recompile with -Xlint:unchecked for details.
sapp:compileDebugNdk UP-TO-DATE

:app:compileDebugSources

:app:preDexDebug

:app:dexDebug

:app:validateDebugSigning

:app:packageDebug

:app:zipalignDebug

:app:assembleDebug

UILD SUCCESSFUL >

Total time: 1 mins 59.454 secs

Figure 5-6. assembleDebug is successful

70

CHAPTER 5 BUILD THE ANDROID APP

The .apk File in Debug Mode

The output you are interested in is the . apk file, which is generally found in the relative
folder path /app/build/outputs/apk.

The debug app is typically named app-debug. apk and found in the folder structure
shown in Figure 5-7.

a=0
..... taa * Wap . acpml B0 genernted [-
object = [bui = [oue = [neemeciates = [ogs
by Fil
B iy Fllen . buiid gradie buid.gradie [autputs »
7 Cloud Drive » I gacke . proguard-rules.pro B tmp
- wncesst » ® grackpropetes B .
i tancatests + W graciew
% Applications | jos » = graciewbat
1 Deskiop b
-2.48.2 jar ® local properties

[Documents | nun sngasn README.ma

3 Downloads sittings.oradie

13 pmachar
Davices

@ Remote..
Shard

) Device L.

o twTmett...

[mwiomas...

Figure 5-7. Apk debug file

The .apk File in Release Mode

The following command puts the .apk file in app/output/apk/release:

./gradlew assembleRelease

Note To build the app in release mode, you need to sign the app in release mode with
keystore and private keys, as detailed at https://developer.android.com/studio/
publish/app-signing.html.

71

https://developer.android.com/studio/publish/app-signing.html
https://developer.android.com/studio/publish/app-signing.html

CHAPTER 5 ' BUILD THE ANDROID APP

Building from Android Studio

This section explains how you can build the Android app from Android Studio IDE.

Import the Project

Figure 5-8 shows a sample Android project imported into Android Studio. You would
simply click the Play button to build the Android app.

DHG «» X000 AR ¢ HSeel(P = b ¥@ FLES ?

[app
> CImanifests
» Cljava
» Cires
» [CHassets
(# Gradle Scripts
(& build.gradle (Project: 1)
' build.gradle (Module: app)
[gradie-wrapper.properties (Gradle Version)
[21 proguard-rules.pro (ProGuard Rules for app)
Dyadle.pmperﬂes ({Project Properties)
(@ settings.gradle (Project Settings)
[local.properties (50K Location)

=] 7: Structure
4

& Captures

Variants

Figure 5-8. Build the Android app in Android Studio

The Play button will run the last run configuration. To see a list of all configurations,
click the App dropdown, as shown in Figure 5-9. Choose Edit Configurations to see the
screen in Figure 5-10.

Figure 5-9. Edit Configurations in Android Studio

72

CHAPTER 5 BUILD THE ANDROID APP

® ® Run/Debug Configurations
N Ay Name: |app
¥ & Android Application
| wapp | | Generall Y]
» 5 Defaults
Module: app
Package

(+) Deploy default APK
") Deploy custom artifact:
() Do not deploy anything
Activity
Do not launch Activity
(#) Launch default Activity
Launch:
Target Device
(#) Show chooser dialog
Use same device for future launches
USB device

Emulator
Prefer Android Virtual Device:

Figure 5-10. Edit Configuration screen in Android Studio

Feel free to click each of the tabs and customize as needed. This example uses the

defaults.

Android Studio Views
Android Studio provides different views for the project viz.
e Project
e Packages
e Scratches
e Android
e Projectfiles
e Problems
e Production

. Tests

Logcat

73

CHAPTER 5 ' BUILD THE ANDROID APP

The version of Android Studio that is stable and works with the code in this book is
illustrated in Figure 5-11.

Android
/X Studio

Android Studio 2.2.3
Build #Al-145.3537739, built on December 2, 2016

JRE: 1.8.0_112-release-b05 x86_64
JVM: OpenJDK 64-Bit Server VM by JetBrains s.r.o

Figure 5-11. About Android Studio

Project View

Switch to the Project view so that you can see the changes as Android Studio builds the
project. After you run the build configuration, the /app/build/outputs folder and the
*. apk file will appear, as shown in Figure 5-12.

74

CHAPTER 5 BUILD THE ANDROID APP

[3- Project - 0 & | %P
s _android (~/gitprojects android
» [.gradie
| Jdea
v Liapp
v build
generated
> intermediates

4 1:Project
4

<] 7:Structure
L 4

)
3
=%
]
o
(0 .gitignore

Jl app.iml

** build.gradle
IR proguard-rules.pro
§ v [build
§ ¥ [Cintermediates
=2 S dex-cache
3
- I' gradle_project_sync_data.bin
Ml * Cigradle
v =] .gitignore
£ build.gradle
2 4l gradle.properties
[
Nl =| gradlew

nrardlow har

Figure 5-12. Project view in Android Studio

Note Since you configured Android Studio to use the System Gradle and System
Android SDK (see the Android system setup section in Chapter 4), the resultant output
should be the same as that of running it from the command line in the previous section.

Building the Sample App

This section shows you how to build an app from the source code.

Source Code

This section shows you how to use an app that’s already out there and very popular.
The Sunshine app is used for tutorials, so let’s use it as your candidate.

https://github.com/udacity/Sunshine-Version-2

75

http://dx.doi.org/10.1007/978-1-4842-2796-1_4
https://github.com/udacity/Sunshine-Version-2

CHAPTER 5 ' BUILD THE ANDROID APP

Environment

Assuming that you have set up the Android system environment described in Chapter 4,
you'll see the environment shown in Figure 5-13.

cat /opt/android-sdk-linux/platform-tools/source.properties | grep Pkg.Revision
cat /opt/android-sdk-linux/tools/sources.properties | grep Pkg.Revision

root@df33@5d84dcc:~# cat /opt/android-sdk-1inux/platform-tools//source.properties | grep Pkg.Revision
Pkg.Revision=23.1

root@df9305d84dcc:~# cat fopt/android-sdk-1inux/tools/source.properties | grep Pkg.Revision
Pkg.Revision=24.4.1

root@dfa305d84dcc:~# gradle -v

Build time: 2015-05-05 08:99:24 UTC
Build number: none

Revision: 5c9c3bc20calc281ac7972643F1e2d190F2c943¢c

Groovy: 2.3.10

Ant: Apache Ant(TM) version 1.9.4 compiled on April 29 2014
I 1.7.0_80 (Oracle Corporation 24.80-b11)

0S: Linux 4.1.17-boot2docker amd64

Figure 5-13. Android build environment

Note As mentioned on the git repo, sign up for the weather app key at http://
openweathermap.org/appid#use. Once you have the key, place it inside the ~/.gradle/
gradle.properties file. If the file doesn't exist, create it.

Clone and Build

To clone and build your sample app, cd into the repo and then run this command:

gradle clean assembleDebug

Note You can see a video of this process at https://vimeo.com/154936765.

Eventually, your successful build should look like Figure 5-14.

76

http://dx.doi.org/10.1007/978-1-4842-2796-1_4
http://openweathermap.org/appid#use
http://openweathermap.org/appid#use
https://vimeo.com/154936765

CHAPTER 5 BUILD THE ANDROID APP

n edited

:app:processDebugMant fest

:app:processDebugResources

:app:generatelebugSources

:app: compileDebuglava

Note: Some input files use or override o deprecated API.
Mote: Recompile with -Xlint:deprecation for details.
:app:preDexDebug

:app: dexDebug

:app:processDebuglavailes UP-TO-DATE
zapp:validateDebugSigning

:app: packageDebug

-app: zipalignDebug

:app:assembleDebug

BUILD SUCCESSFUL
Totol time: 1 mins 1.511 secs

This build could be faster, please consider using the Grodle Doemon: http://grodle.org/docs/2.4/userguide/gradle_daoemon. html

Figure 5-14. The sample app build

Sample App: app-debug apk

The app-debug.apk sample app is found in the app/build/outputs/apk folder, as shown
in Figure 5-15.

root@df9305d84dcc: ~/Sunshine-Version-2# cd app/build/outputs/apk/
| root@df93@5d84dcc: ~/Sunshine-Version-2/app/build/outputs/apk# 11
total 5856

drwxr-xr-x 2 root root 4096 Feb 10 22:05 ./
drwxr-xr-x 3 root root 4096 Feb 10 22:04 ../
-rw-r--r-- 1 root root 2986111 Feb 10JEEToT~Gp

=mw-r--r-- 1 root root 2986491 Feb 10§22:05 q:lp—ddmg r.pk
-mw-r--r-- 1 root root 4704 Feb 10°p2=e - mg=report.txt
root@df9305d84dcc: ~/&.nsh1ne—Versmn-Z/:ppfbuﬂd/mtputs/q:k! [l

Figure 5-15. Sample app debug apk

At this point, you can install the debug apk by following the instructions in Chapter 6.

Note This source code is used only for demonstrating the build process. Be sure to use
your own e-mail ID to create the API key. You need the proper API key to be able to launch
the weather app.

77

http://dx.doi.org/10.1007/978-1-4842-2796-1_6

CHAPTER 6

Connect Android Target)

This chapter builds on Chapter 5, in which you learned how to successfully build an
.apk file (either through the debug or release APK). Once the . apk file is ready on your
filesystem, you have to ensure that you are connected to the target device/emulator
where you intend to deploy the . apk file.

Testing with Emulators versus Real Devices

There is lots of information online about when to use emulators versus real devices. After
working with mobile apps that utilize Android to the fullest extent, I have come to believe
that real-device testing provides significantly higher confidence when releasing the app
to production.

You can start your app testing on an emulator, but because emulators cannot fully
emulate the hardware, platform, and software conditions, your testing will be incomplete
without testing on real devices too.

For emulators, AVD (Android Virtual Device) Manager helps create virtual devices.

For real devices, you have to purchase and maintain them or lease them from device
clouds.

© Pradeep Macharla 2017 79
P. Macharla, Android Continuous Integration, DOI 10.1007/978-1-4842-2796-1_6

http://dx.doi.org/10.1007/978-1-4842-2796-1_5

CHAPTER 6 © ' CONNECT ANDROID TARGET

Using the Android Emulator

The Android Emulator, as the name suggests, emulates an Android device. The utility
strives to emulate the mobile hardware components, as well as the gestures (swipe, tap,
etc.). You deploy your app into the emulator and then launch and test it as if it were
running on a real device.

Features that the emulator cannot imitate are geo-location, actual testing of cell
towers, network bandwidth conditions, etc.

For more information about using the Android Emulator, see https://developer.
android.com/studio/run/emulator.html.

Hardware Acceleration

When launching and configuring AVD, enabling hardware virtualization will greatly
improve performance. You can enable this setting by choosing Emulated Performance:
Graphics on the Verify Configuration page after you create the AVD.

To enable hardware acceleration, choose GPU Emulation: True when configuring
the AVD.

Note that GPU Emulation and Snapshot: Enabled are mutually exclusive.

The URL mentioned previously has more information and details and explains the
various configurations possible.

Create a New AVD

After launching the AVD Manager, choose Create Virtual Device to open the screens
shown in Figure 6-1.

80

https://developer.android.com/studio/run/emulator.html
https://developer.android.com/studio/run/emulator.html

CHAPTER 6 © ' CONNECT ANDROID TARGET

e o Virtual Device Configuration

Select Hardware

H Choose a device definition

& D) [] Nexus 5
Cangary Kame = Size. Resolution Densiy
Nesxus § &0 480x200 hdpi
Tablat Muus One r 480x800 helpi .
Size: normal
Wear Nesus 6 5.06" 1440x2550 SB0dpi g:,m fcfiong
™ 19200
Nexus 4 &7 76ExL1280 xhegi
Galaxy Nexus 465" 720¢1280 whopi
5.4° FWVGCA 5.4° 480x854 mdal
5.1" WVCA 5.1° 4B0xE00 mdpi
4.7 WXCA 47 TF20x1280 xhdpi
4.65" 720p (Cala... 4.65° 720x1280 xhdpi
New Hardware Profile | | Impert Hardware Profiles | (@ Clone Device...
[Cancel | Previous | [NSHGKENN | Finish
L 2SK) Virtual Device Configuration

System Image

Select a system image

Marshmallow

P
¥ o
h Google Inc.

Syszem Image
x86

Quustions on AP level?
See the AP level distr|bution chart

1] Show downlcadable system images @)

| Cancel | | Previous 'EE Finish

Figure 6-1. Android Virtual Device

81

CHAPTER 6 © ' CONNECT ANDROID TARGET

Sample AVDs

I created the sample AVDs shown in Figure 6-2 on my machine for this book. Feel free to
name yours as you see fit.

LN Android Virtual Device Manager

. Your Virtual Devices

"\ Android Studio

Tyee Kame Resolution AP Targer CPUJAB Size on Disk Actons
[wexus s api2z 768 % 1280: xhdp! 23 Google APl %86 168 [
[T mexus 4 aP122 x86 768 x 1280: xhdp! 23 Coogle AP 86 168 P

Figure 6-2. Sample virtual devices

Learning Curve

In the beginning stages, you should experiment with various combinations of AVDs.
This will help you

e Understand concepts and solidify your memory about the various
configuration parameters available.

e Fathom the breadth and depth of form factors and devices
available in the market.

e Give you context on this knowledge, so that during
troubleshooting, you can connect the dots and find the root cause
faster.

Connecting the Android Device

This section gets into the details and steps on how to connect an Android device as the
target.

ADB Is Your Friend

When connecting real devices to an Android build machine for debugging purposes,
ADB (Android Debug Bridge) is your friend. ADB was covered briefly in the “Tools to
Know - ADB” section in Chapter 4, and it’s explored more in this section.

ADB is a command-line utility included with Google’s Android SDK. ADB can
control your device over USB from a computer, copy files back and forth, install and
uninstall apps, run shell commands, and more.

82

http://dx.doi.org/10.1007/978-1-4842-2796-1_4

CHAPTER 6 © ' CONNECT ANDROID TARGET

ADB comes with Android SDK and is available in ANDROID HOME/platform-tools.
You can check it by launching android sdk from the command line. On my machine,
as you can see, it is already installed. (I make an assumption here that you have Android
SDK installed and configured with PATH variables).

You can verify that the Android SDK platform tools are installed by opening the SDK
Manager, as shown in Figure 6-3.

Appearance & Behavior » System Settings » Android SDK
Manager for the Android SDK and Tools used by Android Studio
Android SDK Location: | /Users/pmacharl/Library/Android/sdk

SDK Platforms IS ETIEEY SDK Update Sites

Below are the available SDK developer tools. Once installed, Android Studio will automatically
check for updates. Check "show package details" to display available versions of an SDK Tool.

Name Version Status
Update Available: 23.0.2
24.4.1 Installed
23.0.1 Update Available: 23.1.0
Documentation for Android SDK 1 Not installed
CPU Debugging tools 1.0.3 Not installed
- Android Support Repository, rev 24 24.0.0 Update Available: 25
=| Android Support Library, rev 23.1 23.1.0 Update Available: 23.1.1
Android Auto Desktop Head Unit emulater 1.1.0 Not installed
- Google Play services, rev 27 27.0.0 Update Available: 29
=/ Google Repository, rev 22 22.0.0 Update Available: 24
Google Play APK Expansion Library 3.0.0 Not installed
GCoogle Play Billing Library 5.0.0 Not instalied
Google Play Licensing Library 2.0.0 Not installed
Android Auto APl Simulators 1.0.0 Not installed
GCoogle Web Driver 2.0.0 Not installed
= Intel x86 Emulator Accelerator (HAXM installi5.4.0 Update Available: 6.0.1

Show Package Details

Figure 6-3. Android SDK Tools

Enable USB Debug

Before connecting your real device via USB to the computer, you have to enable the
Developer options, since only then will ADB be able to talk to this device.

To access these settings, open the Developer options in the system settings. On Android
4.2 and higher, the Developer options screen is hidden by default. To make it visible, go to
Settings » About Phone and click Build Number seven times. Return to the previous screen
to find the Developer options at the bottom (see Figure 6-4). For more details about this
process, see https://developer.android.com/studio/run/device.html.

83

https://developer.android.com/studio/run/device.html

CHAPTER 6 © ' CONNECT ANDROID TARGET

Your version of the image in Figure 6-4 might differ, depending on your device.

Developer options

DEBUGGING

USB debugging

Figure 6-4. USB Debug enable screen

Connect the Device

Now you can connect the device using a USB cable to your computer. Open a command
prompt (or shell if you are on a Mac) and type:

adb devices

This command will list all the devices that are connected and have USB debugging
enabled.
If all goes well, you should see that your device is recognized, as shown in Figure 6-5.

Anyones-Mac-mini:~ pmacharl$ adb devices
List of devices attached
0022192e09d05912 device

Anyones-Mac-mini:~ pmacharl$

Figure 6-5. adb devices output

Troubleshooting Tips

Sometimes, you might see unauthorized instead of the device listed, as shown in the
following code. The reason this generally happens is because of an improper handshake
between the device and the Mac. The RSA fingerprint should be generated and the

Mac should have the public key. You should see a pop-up on the device to accept the
connection. The effect of unauthorized is that any subsequent commands will throw an
error, such as the $ADB_VENDOR_KEYS not being set:

pradeep@seleniumframework.com: $ adb devices List of devices attached
209c6111 unauthorized

pradeep@seleniumframework.com: $ adb tcpip 5555 error: device unauthorized
This adbd's $ADB_VENDOR_KEYS is not set; try 'adb kill-server' if that seems
wrong. Otherwise check for a confirmation dialog on your device

84

CHAPTER 6 © ' CONNECT ANDROID TARGET

To solve this unauthorized problem, delete the files adbkey, adbkey . pub from all of
these locations. (It is okay to do this, because the files are generated every time the device
is connected if one is not found).

~/.android
~/.AndroidStudioXX/.android

After deleting these files, restart ADB with adb kill-server and thenadb start-
server. At this point, you should see a pop-up on the device to accept the connection.
Click Yes. For full details of this problem, see http://forum.xda-developers.com/
verizon-1g-g3/help/unable-to-access-adb-t2830087.

Debugging the WiFi

This section is applicable only if you are interested in exploring with WiFi. As a beginner,
a USB wired connection will get you the MVP faster.

It is possible to connect an Android device over WiFi. While the experience is not as
smooth as connecting to a USB cable, understanding the fundamentals of networking
concepts helps you debug and troubleshoot any connection issues.

I find these two links to be helpful for first timers:

http://codetheory.in/android-debug-bridge-adb-
wireless-debugging-over-wi-fi/

https://stackoverflow.com/questions/2604727/how-can-
i-connect-to-android-with-adb-over-tcp

ADB Commands

adb commands are quite helpful in this context.
There are many options for adb. Simply type adb in the command line to see the
options. A few I tried were:

adb get-serialno adb get-devpath

adb get-state (prints: offline | bootloader | device) adb usb (back to
listening on usb)

adb tcp (listen on tcp protocol)

85

http://forum.xda-developers.com/verizon-lg-g3/help/unable-to-access-adb-t2830087
http://forum.xda-developers.com/verizon-lg-g3/help/unable-to-access-adb-t2830087
http://codetheory.in/android-debug-bridge-adb-wireless-debugging-over-wi-fi/
http://codetheory.in/android-debug-bridge-adb-wireless-debugging-over-wi-fi/
https://stackoverflow.com/questions/2604727/how-can-i-connect-to-android-with-adb-over-tcp
https://stackoverflow.com/questions/2604727/how-can-i-connect-to-android-with-adb-over-tcp

CHAPTER 6 © ' CONNECT ANDROID TARGET

All these options can also be seen on the command line by typing adb help, as
shown in Figure 6-6.

adb disable-verity = dizable dn—verity checking on USERDEBUG builds

adh enable-verity = re-enable dn—verity checking on USERDEBUG builds

adh keygen <file> = generate adb public/private key. The private key iz stored in <filel.
and the public key iz stored in {file>.pub. finy existing files
are overuritten.

adb help — show thiz help message

adb verzion = show verzion nun

peripting:

adh wait-for-device = block until device iz online

adh start-server — ensure that there iz a server running

adh kill-zerver = kill the server if it iz running

adh get-state - offline | hootloader | device

a get—zerialno = : {zerial-nunber}

a get—devpath = {devic th}

a renount = the ssysten, svendor (if present)} and soen (if present) partitions on the

a reboot [hootloaderirecoveryl

b

b

b

b
= reboots the device, optionally inte the bootloader or recovery progran.

adb reboot =ideload — reboots the device into the sideload mode in recovery progran {adb root reguirvedl.

b reboot zideload-auto-reboot

= into the sideload node. then reboots automatically after the sideload regar

adl reboot-hoot loader = the device into the bootloader

adb root - the adbd daerwon with root pernissions
adb unreot - arts the adbd daenon wvithout root raissions
adb ush - starts the adbd daerwn 1i ing on USE

starts the adbd daenon lis

adb tepip {portl
netuworking:

adb ppp <tty? [parameters]
Hote: you should not automati
{tty> refers to the tty for PPP s
[(parameters] - Eg. defaultroute

g on TCP on the specified port
PPP over USB.

i_ttyl

kb sync notes: adh sync [<di
<localdir? can be interpreted in several ways:

If <directory} is not specified, /systen, svendor (if present), soen (if present) and data partitions will be u

If it is "systen". "wendor”. “oen" or "data”, only the corresponding partition
is updated.

environnental variabhles:

Figure 6-6. ADB help

Connect Over WiFi

If the mobile device and machine are in the same network (the adb client has to
communicate with the adb daemon running on mobile devices), then the experience
will be much easier. Ensure that both of them are connected to the same WiFi connection
before following these steps.

1. Manually discover the IP address of the device by navigating
to Settings » About Phone » Status.

2. Auto discover the IP address with the adb shell.... command.
Any devices that have adbd (the adb daemon) listening will
show up here. (You can also check if the Android debug
interface is enabled on your device by going to Settings
» Developer Options » Debugging section » Android
Debugging.)

C:\Users\pmacharl>adb tcpip 5555
C:\Users\pmacharl>adb devices

List of devices attached

86

CHAPTER 6 © ' CONNECT ANDROID TARGET

C:\Users\pmacharl>adb connect 192.168.1.141:5555 connected to
192.168.1.141:5555 C:\Users\pmacharl>adb devices

List of devices attached 192.168.1.141:5555 device
C:\Users\pmacharl>adb shell ip -f inet addr show wlano
wlanO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP qlen
1000 inet 192.168.1.141/24 brd 192.168.1.255 scope global wlano
C:\Users\pmacharl>adb usb
restarting in USB mode
C:\Users\pmacharl>adb devices
List of devices attached

You can also choose to make adb listen on another port, such as 4455.

Asyou can see in the following code, first the device was connected to the PC/Mac
in both USB and TCP/IP (network) mode, hence, there were two rows listed. But when I
unplugged the USB cable, only the TCP/IP mode was enabled and hence only one row is
shown.
C:\Users\pmacharl>adb tcpip 4455
restarting in TCP mode port: 4455
C:\Users\pmacharl>adb shell ip -f inet addr show wlano
wlan0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc mq state UP qglen
1000 inet 192.168.1.141/24 brd 192.168.1.255 scope global wlano
C:\Users\pmacharl>adb connect 192.168.1.141:5555 unable to connect to
192.168.1.141:5555 C:\Users\pmacharl>adb connect 192.168.1.141:4455
connected to 192.168.1.141:4455 C:\Users\pmacharl>adb devices

List of devices attached 209c6111 device 192.168.1.141:4455 device

C:\Users\pmacharl>adb devices List of devices attached 192.168.1.141:4455
device

Remote Debug Chrome

This section is more useful when you start writing automation scripts and have to identify
Ul element locators; otherwise, the USB wired connection will help with MVP.

87

www.allitebooks.cond

http://www.allitebooks.org

CHAPTER 6 © ' CONNECT ANDROID TARGET

To use remote debugging, you need the following:
e Chrome (version 32) or later installed on your machine
e Android device running Android 4.4+
e USB debugging enabled
e USBcable

Once the basic things are in place, connect your device to the machine using a USB
cable. Launch Chrome and open a tab with target chrome://inspect. The Chrome screen
should resemble Figure 6-7.

<« c | chrome://inspact/#devices
DevTools Devices
I Devices @ Diszover USB davicas Port forwarding...

No devices detected. Pleasa read the remols debugging documentation to varity your device is anabled for LSB dabugging.

*‘:'| | ow L&

The computer's RSA key fingerprint is:
51:CF:2E:2C:9A:A1:13:1D:E7:A9:3F:55:CA:65:D2:C5

Always allow from this computer

Cancel

Figure 6-7. Chrome connect

88

CHAPTER 6 © ' CONNECT ANDROID TARGET

Once you click OK, your device will show up in the browser tab, as shown in
Figure 6-8.

&~ C chrome://inspect/#devices =
DevTools Devices
I Devices o Discover USB devices | Port forwarding...
Nexus 5
Chrome Beta (39.0.2171.44) Open

@ Chrome for Android
inspect focus lab reload close

Chrome (38.0.2125.114) Open

{) Web Starter Kit — Web Fundamentals
inspect focustab reload close

Android Developers
inspect focus lab reload close

g HTMLS Rocks - A resource for open web HTMLS developers
inspect focustab reload close

Figure 6-8. Device connected to Chrome

89

CHAPTER 6 © ' CONNECT ANDROID TARGET

You can also use the screencast option by clicking the Screencast icon in the upper-
right corner of your remote debugging DevTools window. See Figure 6-9.

Developer Tools - developers.google.com/web/starter-kit/ ~a
Q, | Elements | Network Sources Timeline Profiles Resources Audits Console = -ﬁ@

2 Styles | Computed Event Listeners »
v <html class=" js is-touch">

» <head>..</head> element.style { + i
¥ <body class="page——starter-kit" itemscope !}
itemtvpe="http://schema.ora/Article"> develnners.annale.rom/

Figure 6-9. Screencast option

90

CHAPTER 7

Deploy or Install
Android App

In Chapters 5 and 6, you learned that the output of the build is the . apk file and the target
where you want to install the . apk file has to be connected first. In this chapter, you will
learn how to deploy the Android app to the target device that is connected to the Mac.

Connect and Identify the Target

You can identify the emulators or devices that are connected to the machine using these
commands:

Anyones-mac-mini: pmacharl$ adb devices
List of devices attached
emulator-5554 device
emulator-5556 device
emulator-5558 device
00a219a2e09d05912 device
Each line after the List of devices attached line represents either an emulator

or a device. Emulator has the word emulator-xx prefixed and the device has a serial
number.

Direct Commands to Target

adb can direct commands to a specific target using this syntax:
adb -s <serial number> <command>

If there is only one device connected, use the -d switch. Similarly, if there is only one
emulator connected, use the -e switch.

© Pradeep Macharla 2017 91
P. Macharla, Android Continuous Integration, DOI 10.1007/978-1-4842-2796-1_7

http://dx.doi.org/10.1007/978-1-4842-2796-1_5
http://dx.doi.org/10.1007/978-1-4842-2796-1_6

CHAPTER 7 " DEPLOY OR INSTALL ANDROID APP

To be on the safe side, using the -s switch will ensure that there is only one matched
target.

Install on the Emulator

Install on emulator-5554:

adb -s emulator-5556 install myapp.apk

Install on Real Device

Install on device:

adb -s 00a219ae09d05912 install myapp.apk

Command-Line Demonstration

The commands are shown as follows.

adb -s <device_id> install app-debug.apk
adb kill-server

adb start-server

adb devices

Sometimes, if there is too much delay (more than 5 min), you might have to kill adb
and start over again. Most of the time, you don’t have to do that, except if you leave the
device running for a week or so. That should anyways be handled as part of your mobile
device lab set up, where you refresh/reset the adb connections at a certain interval.
Figure 7-1 shows the demo.

92

CHAPTER 7 " DEPLOY OR INSTALL ANDROID APP

Anyones-Mac-mini:apk pmacharl$ ls -1

total 52608

=rw=r=—r—=- 1 pmacharl staff 13465517 Dec 20 @9:16 app-debug-unaligned.apk
-rw—-r—r—— 1 pmacharl staff 13466417 Dec 28 ©9:16 app-debug.apk
Anyones-Mac-mini:apk pmacharl$ adb devices

List of devices attached

00a219ae89d05912 device

Anyones-Mac-mini:apk pmacharl$ adb -s 20a219ae09d@5912 install app-debug.apk
B

Anyones-Mac-mini:apk pmacharl$ adb -s 00a219a2e09d05912 install app-debug.apk
e

Anyones-Mac-mini:apk pmacharl$ adb kill-server

Anyones-Mac-mini:apk pmacharl$ adb start-server

* daemon not running. starting it now on port 5837 =

* daemon started successfully =

Anyones-Mac-mini:apk pmacharl$ adb devices

List of devices attached

80a219ae®9d05912 device

Anyones-Mac-mini:apk pmacharl$ adb -s 88a219ae@9d®5912 install app-debug.apk
3175 KB/s (13466422 bytes in 4.141s)
pkg: /data/local/tmp/app-debug.apk

Success
Anyones-Mac-mini:apk pmacharls [

Figure 7-1. adb commands demo

Android Studio Demonstration

If you decided to use Android Studio, click the Run button next to the app icon.
The dialog box shown in Figure 7-2 should appear.

93

CHAPTER 7 " DEPLOY OR INSTALL ANDROID APP

s L ¢ D Yi[wapp~- /P ¥ L @ FLEF ?
le

® © Choose Device
! () Choose a running device

Device Serial Number State Compati...

- S

Launch emulator

Android virtual device Nexus 4 AP| 23 SNE |

| Use same device for future launches

(? Cancel | | oK

L B]

Figure 7-2. Android Studio app installation

Click OK. You will be able to see the exact commands in the terminal, as shown in
Figure 7-3. Copy the .apk file to the /data/* folder in the device and then install the app.
Automatically attach the debugger to the running process and so on. The output should
look similar to Figure 7-3. You have plenty of information here to munge, like logcat tab,
adb log files, and so on.

L
ea

»
» Cuapp No files are open
b [buid
T T —— « Search Everywhere with Daube 0
Prgrace » Open a file by name with 0+%0
= buld.gradie » Open Recent Files with KE
i gradie. propertes
oadiow » Open Navigation Bar with 51
gradiew.bat = Drag and Orop filels) here from Finder
- L3
i hopster_android
+
Androk oL
& LGE Nexus 4 A, 4 APLIT) & com.inenar android. app
="/l Memory -+ g CRU =" Log leval Verbose © € Show only selected application
1563-2546/¢0m. inmar . android. age. I/dalvikve-heap : Grow hean (1rog casel to 1675448 for 1402906-byte allocotion
1583-2538/com. 1nmar. android. ape. D/dalvikvm. GC_FOR_ALLOC freed OK, 6% free 166220/17528K, paused 17ms, total 1ims
1563-2544/com, irmar. android. ape. O/dalvikm . GC_FOR_ALLOC froed <X, 5% free 17465K/1372%, pawsed 2685, Total Z6as
1563-2538/¢om. inmar . android. ape. D/dalvikvm . GC_FOR_ALLOC freed 127K, 5% free 19418X/28328K, paused 2oms, total 2oes

Figure 7-3. Installation console

At this point, you should be able to see activity on your mobile device and the app
should be launched with the home activity screen displayed.

94

CHAPTER 8

Working with Appium

This chapter covers more about the Appium tool/framework/ library and explains the
what, why and how, so that you will be ready to automate the testing in Chapter 9. For
detailed information, you can visit Appium's web site at http://appium.io/.

Why Appium?

This section explains the reasons behind why Appium is my choice for an automated
testing platform. You've looked at Appium a little in Chapter 2, and this chapter gets into
much more detail.

WebDriver JSON wire protocol: Appium is designed based on
the WebDriver protocol, which is set to become a W3C protocol
and aligns with the various frameworks that exist with Selenium.

Multiple programming languages: Since WebDriver is HTTP
over wire, a WebDriver compatible language can work with
Appium. Hence, much like Selenium, Appium client libraries exist
for Ruby, Java, Python, PHP, JavaScript, and so on. Even with a
newer programming language like Go, you have to implement the
contract as defined by WebDriver protocol and it works.

Release app vs. Debug app: While unit testing tests the paths
having access to source code, the end user experience has to be
tested with a release app build. Appium works on release app
builds, which means you'll have relatively greater confidence in
integration and end user test automation scenarios.

Open source: Since it is open source, there is a huge community
supporting and resolving issues. While some might consider

this tough initially, open source with crowd sourcing is the way
the software world is moving. It makes sense to invest in such
technologies that are flexible and put the decision power in the
hands of the developer.

© Pradeep Macharla 2017 95
P. Macharla, Android Continuous Integration, DOI 10.1007/978-1-4842-2796-1_8

http://dx.doi.org/10.1007/978-1-4842-2796-1_9
http://appium.io/
http://dx.doi.org/10.1007/978-1-4842-2796-1_2

CHAPTER 8 " WORKING WITH APPIUM

Appium Concepts

In the next few sections, you'll learn about the fundamental architectural paradigms

on which Appium is built. As you read these sections, you might not be surprised to

find a strong correlation between Selenium Web Driver Architecture and Appium (i.e.,
assuming that you are not just a user of Selenium library, but at some point had to dig
deep enough into the Selenium source code or its architecture). It is not a prerequisite
to understand this analogy, but it will help you when debugging intricate details. (For
example, try capturing the remote IP address of the node on which the test is executing.)

Client/Server Architecture

Appium is at its heart a web server that exposes a REST API. It receives connections

from a client, listens for commands, executes those commands on a mobile device, and
responds with an HTTP response representing the result of the command execution. The
fact that you have a client/server architecture leads to a lot of possibilities. You can write
your test code in any language that has a HTTP client API, but it is easier to use one of the
Appium client libraries. You can put the server on a different machine than your tests are
running on. You can write test code and rely on a cloud services like Sauce Labs to receive
and interpret the commands.

Session

Automation is always performed in the context of a session. Clients initiate a session with
a server in ways specific to each library, but they all end up sending a POST /session
request to the server, with a JSON object called the “desired capabilities” object. At this
point, the server will start the automation session and respond with a session ID, which is
used for sending additional commands.

Desired Capabilities

Desired capabilities are a set of keys and values (i.e., a map or hash) sent to the Appium
server to tell it what kind of automation session you're interested in starting up. There are
also various capabilities that can modify the behavior of the server during automation.
For example, you might set the platformName capability to Android to tell Appium that
you want an Android session. Or you might set the chromeAllowPopups capability to

true in order to ensure that, during a Safari automation session, you're allowed to use
JavaScript to open new windows. See the capabilities document for the complete list of
capabilities available for Appium.

96

CHAPTER 8 © WORKING WITH APPIUM

Appium Server

Appium is a server written in Node.js. It can be built and installed from source or installed
directly from NPM.

Appium Clients

There are client libraries (in Java, Ruby, Python, PHP, JavaScript, and C#) that support
Appium’s extensions to the WebDriver protocol. When using Appium, you might want to
use these client libraries instead of your regular WebDriver client because the community
has already implemented most of the calls. You can view the full list of libraries at
https://github.com/appium/appium/blob/master/docs/en/about-appium/appium-
clients.md.

Appium.app and Appium.exe

These GUI wrappers around the Appium server can be downloaded. These come
bundled with everything required to run the Appium server, so you don’t need to worry
about Node. They also come with an Inspector, which enables you to check out the
hierarchy of your app. This can come in handy when writing tests.

Appium Design

Appium uses vendor-provided automation frameworks under the hood. That way, you
don’t need to compile any Appium-specific or third-party code or frameworks in your
app. This means you're testing the same app you’re shipping. The vendor-provided
frameworks are:

e i0S: Apple’s UIAutomation
e Android 4.2+: Google’s UiAutomator
e Android 2.3+: Google’s Instrumentation

Instrumentation support is provided by bundling a separate project, called
Selendroid. More information can be found at appium. io.

97

https://github.com/appium/appium/blob/master/docs/en/about-appium/appium-clients.md
https://github.com/appium/appium/blob/master/docs/en/about-appium/appium-clients.md

CHAPTER 8 * WORKING WITH APPIUM

The architecture diagram shown in Figure 8-1 depicts the control flow of the

automated test script actions.

Webdriver compatible

client library. Selenium, "\PP;“m Server
Appium etal

(ruby, python, java etc.)

e T
-u--a-—-uw-n-h JSON aver
i m
m_v—-—--— N"—/ e

nn--

Appium Architecture - Android

—| =

Appum

Andreid phone, tablet,
wearable etc.

Andreid Ul
Automater, adb et
al

Nadve Commands

B
W <

| s

B Gue

Figure 8-1. Appium Android architecture

98

The left side of the blue dotted line is the users’ concern.
The right side of the blue dotted line is abstracted by Appium.

The Appium server talks to the necessary native libraries
of Android (adb, UI Automator, etc.) and ensures that the
commands are passed to the target device/emulator.

adb is part of Android SDK and hence the adb server keeps
running inside the device and listens to the commands sent
by Appium server.

On the host machine that the target device is connected to,
adb-server communicates with adbd (adb daemon) on either
the emulator or on the real device.

CHAPTER 8 © WORKING WITH APPIUM

6. The Appium server communicates with the adb server
through the adb client that comes as part of the Android
SDK. (None of this is mentioned in the architecture owing to
granular details.)

7. The Appium server also talks to the UI Automator using its
internal bootstrap npm module. Prior to Android 4.2, Appium
used Selendroid to communicate with the UI Automator.
Hence, when you connect to an Android device that’s older
(i.e., older than the 4.2 SDK), you have to start the Appium
server by specifying --selendroid-port.

Appium Android

This chapter shows you how to work with a test automation framework that combines
Cucumber, Ruby, and Appium and helps you write automation test cases.

This chapter follows the ATDD (acceptance test driven development) methodology
and hence first writes features and scenarios and subsequently writes the code-behind.

Appium

On the client side, you will use the appium_lib client library and the exposed APIs. It is
also possible to use the Selenium WebDriver and create desired capabilities that specify
Appium as the WebDriver. Having a background on the WebDriver protocol will greatly
help you understand the Appium client library.

Installing the Appium Server

In this section, you install the Appium server and navigate some screens (the default
screens and Android-specific ones).

Download and Install the Appium Server

Follow the instructions on the Appium home page at http://appium.io/. (You can see
that it is a Node.js server, and hence you can start the server from the command line.
However, to keep it simple initially, I just download the .dmg file and double-click to
install and start. Eventually with CI alignment, you will want to go with the Node.js server,
though. Click the Launch button.

99

http://appium.io/

CHAPTER 8 * WORKING WITH APPIUM

GUI Start Android Mode

Figure 8-2 shows Appium Android mode.

B[Q % & H KX T stp

;b;g-_‘u;gzpaclnq —automation-name "Aphiul" —putfl':;;e_ “Android" —plal-:-i‘nm-

version “5.1" ——full-reset

/Users/pmacharl/.profile: line 2: usr/libexec/java_home: No such file or directory
info: Welcome to Appium v1.4.13 (REV 88e67ce987d78ced44de252219e87dc176a3511¢2)
info: Appium REST http interface listener started on 0.0.0.0:4723

info: [debug] Non-default server args:

{"fullReset" :true, "platformName":“Android","platformVersion":"5.1","automationName
“:"Appium","defaultCommandTimeout": 7200, “debuglogSpacing”: true}

info: Console Loglevel: debug

info: —> GET /wd/hub/status {}

info: [debug]l Responding to client with success: {“status":0,“value":{“build":
{"version”:"1.4.13", "revision":"“88e67ce987d78ce44de252219e07dc176a3511c2" }}}

info: <= GET /wd/hub/status 20@ 11.730 ms - 105 {"status":0,"value":{"build":
{"version":"1.4.13","revision":"88e67ce987d78ce44de252219e07dc176a3511¢2" }}}

info: —> GET /wd/hub/status {}

info: [debug]l Responding to client with success: {“status":0,"value":{"build":
{"version":"1.4.13","revision":"88e67ce987d78ce44de252219e07dc176a3511c2" }}}

info: <—— GET /wd/hub/status 200 3.580 ms - 105 {“status":0,"value":{"build":
{"version":"1.4.13","revision":"88e67ce987d78ce44de252219e07dc176a3511c2"}}}

Figure 8-2. Appium Android mode

100

CHAPTER 8 © WORKING WITH APPIUM

Some notes about the Appium server:

e The Appium server is started in Android mode (note that the
radio button for Android is checked).

e Bydefault, the Appium server listens on port :4723 on all network
interfaces (0.0.0.0).

e [tis assumed that you have completed the Android System setup
section in Chapter 1 (the Android SDK should be available in the
PATH, including its Android tools).

e The Appium server version, as you can see, is 1.4.13.

Appium Server Configuration

Now that you have installed the Appium server, it’s time to learn about the configuration
options that Appium provides. I do not go into all the options, but instead focus on the
ones that matter to the test automation scripts and the debugging context discussed in
this book.

Appium Doctor

The mobile environment set up is a little more complex than the web development
environment because of the dependencies on various SDKs, emulator/simulators,

and their versions. The permutations and combinations increase and there are often
questions that come up for an automation engineer in terms of application compatibility.
Such questions include:

e What version of Android SDK is running?
e What versions of emulators/simulators are running?
¢ What mobile devices are attached?

Asyou can see, setting up a build environment is dependent on how much clarity
you have on these questions. You also need to understand any “backward compatibility”
vs. “forward compatibility” issues. Unless you are clear about these issues, you are
not sure what you are testing. Sure, you can go ahead and test on the developer’s
environment. But that is not guaranteed to be the same on another developer’s machine.
Hence, certifying/validating and running the automation tests are heavily dependent on
understanding the environment.

101

http://dx.doi.org/10.1007/978-1-4842-2796-1_1

CHAPTER 8 * WORKING WITH APPIUM

For the Appium environment, these settings are necessary and the Appium server
can set most of those values. To be precise, it is always advisable to run the Appium
Doctor, which does basic checks on the availability of the Android environment. (Clicking
the stethoscope icon will run Appium Doctor from the UL) See Figure 8-3.

Last login: Wed Oct 7 22:51:24 on ttysee2 =]
IAnyones-Hac-mini:- pmacharls '/Applications/Appium.app/Contents/Resources/node/b
in/node' '/Applications/Appium.app/Contents/Resources/node_modules/appium/bin/ap
pium-doctor.js'

”

{ Anyones-Mac-mini:~ pmacharl$

e ——— » D T waansul

Figure 8-3. Appium Doctor

102

CHAPTER 8 © WORKING WITH APPIUM

Developer Mode

Because of the many incompatibilities between items in the tuple (such as OS, platform
SDKs, Appium server versions, etc.), you should get comfortable playing and installing
multiple Appium server versions. The developer mode enables you to use the Appium

source, as shown in Figure 8-4.

I!\ppi um

2|8 %[X L) ‘ 'u' F T Launch

Developer Seltings

" A 8 fust/local/bin/node

/Users/pmacharl/gitprojects/appum

Figure 8-4. Appium developer mode

_modules/applunsbinfa

S¢

v/

In this case, the Appium source was downloaded to /Users/pmacharl/gitprojects/

appium.

Server Command Line

While GUI is one way to start the Appium server, for CI, you need to be able to start

the server from the command line. cmd is also necessary so that you can code away the
process of starting the server. It’s also important to be able to programmatically (through

Bash or PowerShell scripts) kick off the server (such as through a Jenkins CI job).

103

CHAPTER 8 " WORKING WITH APPIUM
You can start the command line server by typing appium, as shown in Figure 8-5.

Anyeass-Rac-aiALadk pRacharit appiaw
welcome to Adpive
Appium EEST MR
Ceasale Loglove

ST e AR 1)

leebug] Aesponcing t *8, *value” | ["Buile” s (“vers o™i " 1.4, 117, "revisien”™ 1" ScPEI11108050a 20101001 B4 f c fEaSaced fuced "))}

Figure 8-5. Command line start

You can also start the command line server from source code.
Navigate to ~/appium/bin and type ./appium. js, as shown in Figure 8-6.

Anyones-Mac-mini:bin pmacharl$ pwd

fUsers/pmacharl/gitprojects/appium/bin

Rnyones—Hac mini:bin pmacharls ./appium.js

Welcome to Appium v1.4.13 (REV BBeb7ce987d78cedd4de252219e07dc176a3511c2)
Appium REST http interface listener started on 9.9.0.0:4723

Console LogLevel: debug

Figure 8-6. Start Appium from the source code

Appium Android Settings

Appium server provides many settings for Android. It is beyond the scope of this book

to go into each field; however, I want to mention that you can set each of the field values
programmatically (which you will see during scripting). Try playing with different settings
to get comfortable. See Figure 8-7.

e b & Bk T

SEEE—— :l.n —sutomat lon-nane
E - —pqur.....rs! 2% Zull-reset
App Path Usars/ proachard gt proy ! o s
ssr/Libexecjava_hone: No such file or directory
Packags i
i ! cBY 9342a)
Wait for Peckage ~
X Istener started on 8.9.9.0:4723
Launch Activit - gs:
G C— \ndroid®, “platfornVarsion”:#5.1%, “automat iorNane
Wait for Activity - 17208, “debuglogSpacing": truel
Use Browoer # Full Roset | | Mo Roset) ~ iGtop 'on Roset
vhent CRlSEONENN ookl intent cates o with success: {“status”:9,"value™: {"ou;'lu':
1 22" }

rant Arguments
1.134 ns = 184 {"status™:0,"value®: {"build":
3342a" 11}

Launck Deves

Launcn AVD Doviza Agady Timsout . & s
Arguments | with seccess: {"status™:8,"valuc™: {"build":
y 22" 3}
Capabilltics ‘1?4 ms — 184 {"status":®,"value":{"build":
atform Nama Arcicid * Atomation Name - BRI
Platform Version 5.1 Lalipop (AP Level 22) »
Javice Nama W

Figure 8-7. Appium Android settings

104

CHAPTER 8 © WORKING WITH APPIUM

The app path can point to an . apk file, for example.

Similarly in Advanced settings, you can point the Android SDK to a specific location
instead of the default, which Appium server might look to. This way, you are sure to use only
one version of Android SDK and can make updates to that version only. See Figure 8-8.

lnflmldm /?’ﬁ*fbaum:h

Log-spscing

200" —debug- —autanot
—platform-version "5.1% —full-reset
5rflibexecsiava_home: No such file or directory
c81

Boostrap Part 0 Salendroid Pert D
- Path = tr-r started on 9.0.9.0:4723
Ad"* ") i 5.1, "
Kaysiorn Sottings
Uee Custom Sattings |
Keystore Path "UWWOF\&I}HMJ'MJ'OINGONQ_.HM s R val i (P s
Keystore Password 9bd8352d3ch2098 1 2500329491230d 193422 } 1}

1.1 ms = 104 rIMI-'K."!IWS{'hIl}rl
1 HH}

with success: {"status™:@, “value": {"bulld":
19bdB 352430520087 a5ah 324491 238d 93422} 1}

978 ms - 184 {"status”:0, "value" :{"build":

93422}

Figure 8-8. Appium Android Advanced settings

105

CHAPTER 8 * WORKING WITH APPIUM

Appium Server Settings

Finally, the Appium server itself has settings that can be changed, as shown in Figure 8-9.

Genoral Settings ﬁ * $° | Launch

Server Addresa: 0.0.0.0 Port: 2723 — ——
g-spacing —autonation-nane

Hon “5.1" —full-reset

oM Stct Capabikties | hone: Mo such file or directory

« I Processes Using Servar

ol Satora Launah

£2d981258b3244912300 193422a)

on 0.9.0.0:4713

t 7200 |8

roversion®:*5.1", "autonat ionName
pacing”itrue}

Loggin
o 'status":0,"value" 1 {*build":
Maximum Log Length | 200000 LogLevel colal ~ SR 414 R230dRE3 420))
7| Usa Cok Show Timestamns Uss Local Timezore “status”:0,"value": {"build":
a560324491730419342a" 1 1}

Log To WebHook
"status®:0,"value": {*build":
fa580324491230d1 93420 } 1)}

status”i@, "value":{"build“:
1a585324491230d19342a" }}}

Eiranment Varables

Figure 8-9. Appium server settings

Note All of these settings are also available as server arguments and you can access
them by typing appium -- help at the command line.

The information you've read at this point might seem overwhelming with respect
to the number of options available; however, it will become easier once you start coding
away all these complexities. That is one of benefits of CI—it helps automate away
mundane and repetitive tasks.

Inspecting an App

Much like how you identify elements of DOM for a web page using Selenium, you follow
a similar process for an app. That is, you need to first uniquely identify the locator for an
element, before performing an action on it. There are various strategies for that. To get a
refresher, check out http://www.seleniumframework.com/basic-tutorial/html-dom/.

106

http://www.seleniumframework.com/basic-tutorial/html-dom/

CHAPTER 8 © WORKING WITH APPIUM

Most of the UI automation tools and web scrapers have an element identification
strategy and knowing it helps you automate actions. It is a good idea to spend some
time inspecting your mobile app’s “view” as it gets rendered onto the screen. More
importantly, understanding the HTML representation and various attributes will help you
write automation scripts faster.

This is very similar to using Chrome’s dev tools (inspect element), Firefox Inspect
Element/Firepath/Firebug, or IE Developer tools. While writing web application
automation scripts using Selenium, it is essential that you use these developer tools.

Figure 8-10 is an illustration.

« c AW, S8leN UM framewari.com/basic-tutarial mimi-com/

9 Resaarch Triangie Park. Ralsigh, NC 27007 (=1 [(MT1406-7432 @ supporDsslenkumiramework com

TUTORIALS PRACTICE SELENIUM CUCUMBER FORUMS ABOUT

UNDERSTANDING HTML DOM

BASIC TUTORIAL
Pre-requisites:

Q) [| Elemencs | Nework Sources Timebne Profies Resources Audits Comsole

Yies | Comp

lass=" resu-Ller nenu-ilem-lype-Custon nemu-ilen-g

Figure 8-10. DOM (document object model)

Appium Ruby Console

The Appium Ruby console (ARC) is a handy tool for quickly looking at the screen HTML.
Follow these steps to start using it:

1. Install Ruby 2.0 or higher. Follow the instructions at
http://www.seleniumframework.com/basic-tutorial/
setup-ruby-and-components/ if you need help. It is a good
idea to have RubyMine IDE installed too, as you will use it in
the subsequent chapters.

2. Installarc gems.

Fresh installation

gem uninstall -aIx appium_lib ;\

gem uninstall -aIx appium_console ;\

gem install --no-rdoc --no-ri appium_console bond

107

http://www.seleniumframework.com/basic-tutorial/setup-ruby-and-components/
http://www.seleniumframework.com/basic-tutorial/setup-ruby-and-components/

CHAPTER 8 * WORKING WITH APPIUM

For troubleshooting instructions, follow this link at
https://github.com/appium/ruby console.

If you are upgrading, here is what you should expect:

Anyones-Mac-mini:~ pmacharl$ pwd

/Users/pmacharl

Anyones-Mac-mini:~ pmacharl$ mkdir arc_tests
Anyones-Mac-mini:~ pmacharl$ cd arc_tests/
Anyones-Mac-mini:arc_tests pmacharl$ arc upgrade
gem uninstall -aIx appium_lib; gem uninstall -aIx
appium_console; gem install --no

-rdoc --no-ri appium_console

Upgrade complete.

3. The ARC configuration file. ARC looks for an appium.txt
file, which has key/value pairs as defined by ARC. There are
certain key/value pairs expected for Android versus for iOS.
Here is an example of how you can get started quickly:

Anyones-Mac-mini:arc_tests pmacharl$ arc version
appium_console: v1.0.4

appium_lib: v8.0.1

Anyones-Mac-mini:arc_tests pmacharl$ arc setup android
Anyones-Mac-mini:arc_tests pmacharl$ 1s

appium.txt
Anyones-Mac-mini:arc_tests pmacharl$ cat appium.txt
[caps]

platformName = "android"

deviceName = "Nexus 7"

app = "./api.apk"

appPackage = "io.appium.android.apis”
appActivity = ".ApiDemos"
[appium_1lib]
sauce_username = ""
sauce_access_key =

e The sauce_username and sauce_access_key can be safely
ignored until you plan to use Sauce Labs infrastructure for
execution.

e Access the appPackage and appActivity values for Android
either by talking to the developer of the app or by using the
following commands.

108

https://github.com/appium/ruby_console

CHAPTER 8 © WORKING WITH APPIUM

Method1l

There are two ways to look at the app. The first method executes the following code on the
command line:

Returns the package's name, versionCode and so on
aapt dump badging app-debug.apk | grep package:\ name

Returns all launchable activities. Generally the main entry point to app
will be named as *.MainActivity (but that may change as per developer's
decision) aapt dump badging app-debug.apk | grep launchable-activity

Method?2

The package name and activity can also be read from the manifest file. You can see the
full content of the manifest file by executing the following command. This will output the
topology (the metadata and its hierarchy) of your app. The activity that doesn’t have any
ParentActivity will be the MainActivity in general. The rest of the activities will have
ParentActivity. (An activity is a single screen with the user interface.)

aapt 1 -a app-debug.apk

Note The aapt binary is located in the $ANDROID HOME/build-tools/x.y.z directory.

For full list of appium. txt capabilities (key/value pairs), see https://github.com/
appium/appium/blob/master/docs/en/writing-running-appium/caps.md.

Note On Android, the deviceName capability is currently ignored.

Inspecting Using ARC

Understanding the composition of the application from the UI helps you identify the
elements and the operations to be performed on them later. This section looks at the app
and identifies the HTML elements.

109

https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/caps.md
https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/caps.md

CHAPTER 8 * WORKING WITH APPIUM

Prerequisites

Before you start, you need to do the following:

1. Setup an AVD and name it Nexus_4 API 23.The base images

are already available with the SDK. See Figure 8-11.

AVD Name:
Davice:
Tanget:
CPU/ABI:
Keyboard:
Skin:

Front Camera:

Back Camera:

Memory Options:

Imernal Storage:

S0 Gara:

Emulnilan Pnttames

Nexus_4 APl 23
Nexus 4 (4.7°, T68 x 1280: xhdpi)
Google APls (Google Inc.) - API Level 23
Google APls Intel Atom (xB6)

+| Hardwars heyboard presant

Skin with dynamic hardware controls
None

None

RAM: 1836 VM Heap: 64

200

Size:

» File: | usarc/pmacharl/. androld/ave/Nexus _4_API_23.avd/sdeard img

Snanshnt « llze Host GPLI

Cancel

MiB

M

Browse...

o

Figure 8-11. Setup AVD

2. Notice that Use Host GPU is selected and Snapshot is not.
These two fields are mutually exclusive.

3. The Appium server should be running. If not, start it on the
default 4723 port.

110

CHAPTER 8 © WORKING WITH APPIUM

The Appium.txt File

Using the appium.txt configuration file, type arc in the folder that contains appium.txt:

appium.txt

[caps]

platformName = "Android"
deviceName = "Android"

avd = "Nexus_4 API 23"

app = ""

appPackage = "com.android.settings"
appActivity = ".Settings"

[appium 1ib]
sauce_username = ""
sauce_access_key = ""

As soon you type arc in the command line, you should see it processing and AVD
will be launched. (Patience is a virtue here and AVD's time to launch is based on your
machine configuration.)

In the command line, the control returns to ARC (pry), where you can now interact
with AVD through appium_lib-provided API calls. See Figure 8-12.

bash

Anyones-Mac-mini:arc_android pmacharl$ arc
1] pry(main)>

Settings

Wirsless & notworks

(0 Datausage

Display

Sound & notification

Storage & USB

Figure 8-12. Appium Ruby console (ARC) 11

CHAPTER 8 * WORKING WITH APPIUM

1. The full list of available commands is found at
https://github.com/appium/ruby console and is always
evolving.

2. page_class

Anyones-Mac-mini:arc_android pmacharl$ arc
[1] pry(main)> page class

22x android.widget.LinearLayout
10x android.widget.Framelayout
10x android.widget.TextView

6x android.view.View

6x android.widget.Relativelayout
6x android.widget.ImageView

4x android.view.ViewGroup

1x android.widget.ScrollView

1x hierarchy

3. Source:

[2] pry(main)> source

<?xml version="1.0" encoding="UTF-8"?>
<hierarchy rotation="0">
<android.widget.Framelayout index="0" text=""
class="android.widget.FramelLayout"
package="com.android.settings" content-desc=
checkable="false" checked="false" clickabl
e="false" enabled="true" focusable="false"
focused="false" scrollable="false"
long-clickable="false" password="false"
selected="false" bounds="[0,0][768,1184]"
resource-id="" instance="0">
<android.view.ViewGroup index="0" text=""
class="android.view.ViewGroup" package="
com.android.settings" content-desc=""
checkable="false" checked="false" clickable="false"

[3] pry(main)> id('android:id/decor content parent')
#<Selenium: :WebDriver: :Element:0x323fca632c4ee948 id="1">

[4] pry(main)> id('android:id/decor content
parent').methods

[

[o] '() Selenium::WebDriver::Element
(BasicObject)

[1] !'=(arg1l) Selenium::WebDriver::Element
(BasicObject)

112

https://github.com/appium/ruby_console

CHAPTER 8 " WORKING WITH APPIUM

[30] pry(main)> xpath('//android.widget.
FrameLayout').get page class

"15x android.widget.Framelayout\niix android.widget.
LinearLayout\n8x android.widget.

TextView\n6x android.view.View\n6x android.widget.
ImageView\nix android.widget.GridlLayout

\nix android.widget.ScrollView\nix android.view.
ViewGroup\nix android.widget.Relative

Layout\nix hierarchy"

[31] pry(main)> xpath('//android.widget.
FramelLayout').get android inspect
"\nandroid.widget.FrameLayout (1)\n id: com.android.
systemui:id/panel_holder\n\nandroid
.widget.FrameLayout (2)\n

Finally, if you prefer to use the driver object (the Selenium driver) directly instead of
using wrapped methods (like d()used previously), you can access the driver object directly.

driver.textfields
driver.find_element(:xpath, "//android.widget.FrameLayout")

The takeaway from this section is that the more practice and comfort you get with the
APIs exposed by Appium, the easier it will be to code the same during scripting.

Using uiautomatorviewer

In the chapter that covers uiautomatorviewer, I introduced the tool. Now let’s see how to
use it to look at an app.

1.

Type uiautomatorviewer in the command line to launch
the program ($ANDROID_HOME/platform-tools should be in
$PATH).

Click the Device Screenshot, uiautomator Dump icon.

Select the Android target (avd/device) that
uiautomatorviewer should take the XML screenshot from.

For AVD, it takes a little bit more time than a real device.

113

CHAPTER 8 * WORKING WITH APPIUM

5. After this, you can see the tree hierarchy and use the attributes
to further identify elements during automation script writing.
See Figure 8-13.

L-L -

Ige-nexus_4-00a219aedBd05812 =

Cance 0K

A

et
resounce-id
claas
package
content-desc
checkable
checked
chckable
enabled
focusable
focusaed
scrollable

Figure 8-13. Introspecting on the target device

114

M-

e TLAY VUL [P, e
+{0) ScroliView [0,01768,1184
(1) ViewGroup [0,0)(768,1120
¥(0) FramaLayout [16,588]]
(1) View [18,589][752 81

(2] Framelayoul [16,68

(2} AstativeLayout [0,0][768,4
1) GridLayout [0,249)[768, 524]
i) LinaarLayout [D,248)(768,
*(0) LinearLayout [0,486][7
(1) TextView:4 0011 (411

1

com.androld. systamul:id/not
android view. ViewGroup
com.android. systamui

false
false
falsa
true

true

falsa
false

long-dickable [alse

CHAPTER 8 © WORKING WITH APPIUM

In Figure 8-14, you can identify the element that displays the time in Appium using
any of the following locator(s):

+ & N NV = jaos

(0] TextView:For transterring photc
*(2) RelativeLayout [0,0][768,80]
(0) TextView:Andrald [32 0)[518,80]
» (1) LinearLayout (550,0)(604,80]
*(2) FramelLayout [684,0][762,80]
¥(2) GridLayout [0,249](768,524]
(0] LinearLayout [0.249][768,524]
»(0) LinearLayout [0, 486][768,524]
(1) TextView:4[F)15 {4[@)15] [200,240)[587 505)

. Nodae Detal

SanI_Ju_lf S!.)_t_.ald S 1

Fot transfar dont ‘EVJ
resource-id com.android. systemui:id/clock_view
claas android widget. TextView
package com.android. systemui
content-desc 46
checkable falsa
checked false
chckable false
enabled true
focusable false
focused false
scrollable false
long-clic kable false
password falae

Figure 8-14. Traversing the application DOM

id('com.android.systemui:id/clock_view")
tag('android.widget.TextView') # Observe that classname is tag in mobile app.

115

CHAPTER 9

Test Strategy and Execution

In the previous chapters, you learned how to build and deploy an app on an Android
device.

This chapter covers the details of executing automated tests (written in the
Cucumber Gherkin framework) against a target device. This is the final step in getting the
full feedback on changes introduced in the app.

Note We are talking about outside-in tests here. Inside-out, i.e. unit, tests involve
only a developer. The goal with Cl is to get the maximum value as perceived by the end
consumer. Hence, the tests mentioned here are integration/end-end tests.

Continuous Test Automation with Cucumber

You can choose any testing framework you like. As an example, I chose Cucumber (with
Ruby), because it lets me describe the “what” piece (the features) first. Then I write the
“how” layer (the step definitions), i.e. the technical piece, later. In my experience, I feel
that this results in good collaboration between multiple roles. If you are a developer and
are working in a silo, choose whatever framework fits your needs (JUnit, rspec, testing,
et al.). The following links can help you understand the Cucumber basics:

e Why use Cucumber at http://www.seleniumframework.com/
cucumber-2/make-a-case/why-cucumber/

e Information about ATDD, BDD, and TDD at http://www.
seleniumframework.com/cucumber-2/make-a-case/atdd-tdd-bdd/

e Using continuous test automation at http://www.
seleniumframework.com/cucumber-2/make-a-case/continuous-
test-automation/

e Learn how Cucumber works at http://www.seleniumframework.
com/cucumber-2/make-a-case/how-cucumber-works-2/

© Pradeep Macharla 2017 117
P. Macharla, Android Continuous Integration, DOI 10.1007/978-1-4842-2796-1_9

http://www.seleniumframework.com/cucumber-2/make-a-case/why-cucumber/
http://www.seleniumframework.com/cucumber-2/make-a-case/why-cucumber/
http://www.seleniumframework.com/cucumber-2/make-a-case/atdd-tdd-bdd/
http://www.seleniumframework.com/cucumber-2/make-a-case/atdd-tdd-bdd/
http://www.seleniumframework.com/cucumber-2/make-a-case/continuous-test-automation/
http://www.seleniumframework.com/cucumber-2/make-a-case/continuous-test-automation/
http://www.seleniumframework.com/cucumber-2/make-a-case/continuous-test-automation/
http://www.seleniumframework.com/cucumber-2/make-a-case/how-cucumber-works-2/
http://www.seleniumframework.com/cucumber-2/make-a-case/how-cucumber-works-2/

CHAPTER 9

TEST STRATEGY AND EXECUTION
Installing Cucumber at http://www.seleniumframework.com/
cucumber-2/install-cucumber/

Learn Cucumber’s keywords at http://www.seleniumframework.
com/cucumber-2/cucumber-keywords/

Step definitions at http://www.seleniumframework.com/
cucumber-2/step-definitions/

The basic Ruby tutorial for the web at http://www.
seleniumframework.com/introduction/what-is-ruby/

I am not going to explain Cucumber and its fundamentals and will assume that you
have a basic understanding and have visited these links.

High-Level Mindmap

The high-level explanation of the code you are going to see in the next few sections is as

follows:

1.

o o A~ Db

Your Android build process puts the app-debug.apk in the
./features/support/resources folder.

Write the Cucumber features.

Complete the context code (env.rb and hooks.1b).
List your target devices in devices.yaml.

List your target emulators in emulators.yaml.

Define a module that returns the desired capabilities object
(representing the device/emulator) to talk to the Appium
server.

The default Cucumber profile writes HTML and JSON results.

Write tests and tag them so that appPackage and appActivity
are defined both for the app to be tested and for the generic
settings on the Android device. (The settings needn't be tested
in actuality, but we have this example to get started).

Test Framework

The test framework used here is based on Cucumber, Ruby, and the Appium_lib gem.
Hence, I describe the “what” in features/scenarios and the “how” in the code-behind
(step_definitions).

This aligns very well with ATDD (acceptance test-driven development).

118

http://www.seleniumframework.com/cucumber-2/install-cucumber/
http://www.seleniumframework.com/cucumber-2/install-cucumber/
http://www.seleniumframework.com/cucumber-2/cucumber-keywords/
http://www.seleniumframework.com/cucumber-2/cucumber-keywords/
http://www.seleniumframework.com/cucumber-2/step-definitions/
http://www.seleniumframework.com/cucumber-2/step-definitions/
http://www.seleniumframework.com/introduction/what-is-ruby/
http://www.seleniumframework.com/introduction/what-is-ruby/

CHAPTER 9 " TEST STRATEGY AND EXECUTION

Git Repo and Folder Structure

The git repository used for demonstrating test automation in this book can be found at
https://github.com/machzqcq/ci_android_acceptancetests.git.
Figure 9-1 shows the folder structure.

[Project -
o ci_androld_acceptancetests (~/cl_androld_acceptancetests)
v [Ofeatures
v step_definitions
T step_defs.rb
T steps.rb
L support
v resources
app-debug.apk
¥ env.rb
*| hooks.rb
! ci_android.feature
v lib
v config
devices.yam|
emulators.yam|
*| capabilities.rb
¥ screen_helper.rb
> scripts
& contact_screen.png
cucumber.yml
example.mp#4

[}

Gemfile

] Gemfile.lock

*| Rakefile
README.md

I8 reports.json

& results.html

b il External Libraries

Figure 9-1. The folder structure

e ci_android_acceptancetests is the Cucumber project root.
e The features folder contains features.

e The step_definitions folder contains the code-behind. In this
case, it has two Ruby files. There can be any number and can be
spread across files.

e The support folder is the standard Cucumber support folder, i.e.,
the code in this folder is executed when the Cucumber process
starts and the resources folder contains app-debug.apk, which is
the output of the build process.

e env.rbis usually the file where modules for the Cucumber project
and any other context must be loaded.

e hooks.rb contains the pre- and post-conditions for scenarios. You
can put this in env.rb instead, but by convention, I use hooks.

119

https://github.com/machzqcq/ci_android_acceptancetests.git

CHAPTER 9 ' TEST STRATEGY AND EXECUTION

e ci_android.feature contains the scenarios or tests.

e The lib folder is defined by this framework to store the code that
is mixed in. It also contains configuration definitions for devices
and emulators.

e devices.yaml contains device definitions.
e emulators.yaml contains emulator definitions.

e capabilities.rb contains the module that returns the desired
capabilities object.

e The screen_helper.rb module is for future use to apply page
object patterns.

e The scripts folder is to quickly test something before you
formalize it in features. It's not necessary, but it’s helpful for
writing quick snippets of code.

e contact_screen.png was a screenshot taken by one of the
scenarios.

e cucumber.yml is the configuration file for Cucumber.

e example.mp4 is the screen capture taken when executing the
scenario. (See the adb tutorial section on how to take a screen
recording).

e Gemfile contains the gems used in this project.
e Gemfile.lockis created when you run bundle install.

e Rakefileis not used at this point, although you can define
higher-level tasks.

e README.md contains the readme file for this project.
e reports.jsonis the JSON-formatted output of Cucumber.

e reports.html is the HTML-formatted output of Cucumber.

Writing the Tests

This section shows you how to write a couple of Cucumber scenarios. Since it is simple
English, the scenarios don't need extra explanation.

120

CHAPTER 9 " TEST STRATEGY AND EXECUTION

Cucumber Scenarios (ci_android.feature)

First consider the Cucumber scenario (see Figure 9-2).

B Project - €3 == | #%- 1= |3 ci_android.feature x
v

[ci_android_acceptancetests (~/ci_an Feature: CI Android
v [Clfeatures All screens should launch fine
v [Z1step_definitions enon—-ca ;
- def Scenario: Settings
o step_dels.ro Given I click about phone
[T steps.rb Then the Android version is a number
v [Csupport @ci_smoke
Scenario: Open ci app and navigate to login screen
v O
PenDUNCeY Given I open login screen on app

il app-debug.apk And I click add contact
[env.rb Then I verify contact screen is displayed
,, hooks.rb ;cﬁ ch co;d;v
] cenario: contact
-.;,_Jci_andron.feawre Given I open login screen on app
v Olib And I click add contact
v [Cconfig Then I successfully add a contact
davicasyam) And verify that it was added
- " | @ci_smoke
R Scenario: Take screenshots
[*| capabilities.rb Given I open login screen on app
¥l screen_helper.rb And I click add contact
» [scripts Then take screenshot of contact form

[8] contact_screen.png

Figure 9-2. Feature file location in the folder structure

Feature: CI Android
All screens should launch fine
@non-ci
Scenario: Settings
Given I click about phone
Then the Android version is a number
@ci_smoke
Scenario: Open ci app and navigate to login screen
Given I open login screen on app
And I click add contact
Then I verify contact screen is displayed
@ci_add contact
Scenario: Add contact
Given I open login screen on app
And I click add contact
Then I successfully add a contact
And verify that it was added
@ci_smoke
Scenario: Take screenshots
Given I open login screen on app
And I click add contact
Then take screenshot of contact form

121

CHAPTER 9 ' TEST STRATEGY AND EXECUTION

hooks.rb

The values for appActivity and appPackage were retrieved using the aapt command, as
described in Chapter 8.

require './lib/capabilities’

include DesiredCapabilities

Before('@ci_smoke') do

caps = local capabilities(app="app-debug.apk',appActivity="com.example.
android.conta

ctmanager.ContactManager',
appPackage="com.example.android.contactmanager")
@driver = Appium::Driver.new(caps)
Appium.promote_appium_methods AppiumWorld

puts "Execute anything before scenario/test case"
@driver.start_driver

end

Before('@ci_add contact') do

caps = local capabilities(app="app-debug.apk',appActivity="com.example.
android.conta

ctmanager.ContactManager',
appPackage="com.example.android.contactmanager")
@driver= Appium::Driver.new(caps)
Appium.promote_appium_methods AppiumWorld

puts "Execute anything before scenario/test case"
@driver.start_driver

end

Before('@non-ci') do

caps = local capabilities(app="",appActivity=".Settings',appPackage="com.
android.set

tings')

@driver = Appium::Driver.new(caps)
Appium.promote_appium methods AppiumWorld

puts "Execute anything before scenario/test case"”
@driver.start driver

end

After do |scenario]

if scenario.failed?
@driver.screenshot("#{scenario.name} failed.png")
end

@driver.driver quit

puts "Execute anything after scenario/test case"
end

122

http://dx.doi.org/10.1007/978-1-4842-2796-1_8

CHAPTER 9 " TEST STRATEGY AND EXECUTION

env.rb

As you can see, you create a custom World class, which is used in hooks . rb.

require 'rspec/expectations’

require 'appium_lib'

require 'cucumber/ast’

require 'yaml'

require 'active_support/core_ext/hash’

Create a custom World class so we don't pollute “Object™ with Appium
methods

class AppiumWorld

end

World do

AppiumWorld.new

end

$devices = YAML.load(File.open('./1ib/config/devices.yaml"))
$emulators = YAML.load(File.open('./1lib/config/emulators.yaml'))

Devices Lab

My device lab is shown in Figure 9-3. At this point, there are only three devices; however,
you can connect many more by purchasing an USB extension cord.

Figure 9-3. Mini device lab

123

CHAPTER 9 ' TEST STRATEGY AND EXECUTION

You need to start the Appium server(s) on the available network ports to talk to each
of these devices. For this example, I execute on only one device.

devices.yaml

You define the devices configuration in a YAML file, as shown in the following code. If you
have a new device to be connected, copy and paste the block and then replace the values
(serial, name, and port) as needed.

Ensure that you provide a different port for each device.

Note This port should be the same value that the Appium server starts on (the default
Appium server port is 4723).

devices:
huawei-nexus_6p-84B5T15A17000142:
caps:

platformName : Android

deviceName : huawei-nexus_6p-84B5T15A17000142
app: app-debug.apk

appActivity : .Settings
appPackage : com.android.settings
appium_lib:

sauce_username:

sauce_access_key:

port: 4768
motorola-google-ZX1B222F(CD:
caps:

platformName : Android

deviceName : motorola-google-ZX1B222FCD
app: app-debug.apk

appActivity : .Settings

appPackage : com.android.settings
appium_lib:

sauce_username:

sauce_access_key:

port: 4778

124

CHAPTER 9 " TEST STRATEGY AND EXECUTION

emulators.yaml

Similar to the devices, you must also define the emulators’ configuration. You should
have already defined the AVDs by this time. See the AVD Manager to learn how to add

AVDs.

emulators:
Nexus_5 API 23 x86:
caps:

platformName : Android
deviceName : IGNORED

avd : Nexus_5_API 23 x86
app: app-debug.apk
appActivity : .Settings
appPackage : com.android.settings
appium_lib:
sauce_username:
sauce_access_key:
Nexus_4 API 23 x86:
caps:

platformName : Android
deviceName : IGNORED
avd: Nexus_4_API_23

app: app.debug.apk
appActivity : .Settings
appPackage : com.android.settings
appium_lib:
sauce_username:
sauce_access_key:

Capabilities.rb

This file returns the desired capabilities object and is mixed in hooks . rb:

module DesiredCapabilities

def local capabilities(app={},appActivity={},appPackage={})
if ENV['DEVICE'].nil? and ENV['EMULATOR'].nil?

puts "One of the targets DEVICE or EMULATOR has to be set"
puts "Allowed devices: #{$devices['devices'].keys}"

puts "Allowed emulators: #{$emulators['emulators'].keys}"
exit

end

if ENV['DEVICE'].nil? || ENV['DEVICE'].empty?

puts "Did not specify device target. Assuming emulator is set
caps = $emulators['emulators']["#{ENV['EMULATOR']}"]

if app.nil? || app.empty?

caps['caps'] = caps['caps'].except('app")

125

CHAPTER 9 ' TEST STRATEGY AND EXECUTION

else

caps['caps']['app'] = File.join(Dir.pwd,"features/support/resources", app)
end

caps['caps']["appActivity'] = appActivity

caps['caps']["appPackage'] = appPackage

end

if ENV['EMULATOR'].nil? || ENV['EMULATOR'].empty?

puts "Did not specify emulator target. Assuming device is set”

caps = $devices['devices']["#{ENV['DEVICE']}"]

if app.nil? || app.empty?

caps['caps'] = caps['caps'].except('app")

else

caps['caps']['app'] = File.join(Dir.pwd,"features/support/resources", app)
end

caps['caps']["appActivity'] = appActivity

caps['caps']["appPackage'] = appPackage

end

caps

end

end

ScreenHelper.rb (Not Used)

Page object framework enthusiasts can use this module to define page objects using
page-factory.

module ScreenHelper

def visit(page class, &block)

on page_class, true, &block

end

def on(page_class, visit=false, &block)

page class = class from string(page class) if page class.is a? String
page = page_class.new @browser, visit

block.call page if block

page

end

def wait_for_ajax(timeout = 10)

timeout.times do

return true if browser.execute script('return jQuery.active').to i == 0
sleep(1)

end

raise Watir::Wait::TimeoutError, "Timeout of #{timeout} seconds exceeded on
wait

ing for Ajax."

end

private

def class from string(str)

126

CHAPTER 9 " TEST STRATEGY AND EXECUTION

str.split('::").inject(Object) do |mod, class name|
mod.const_get(class_name)

end

end

end

Step Definitions

Here are the step definitions:

Given /"I click about phone$/ do

scroll to('About phone').click

end

Given /"the Android version is a number$/ do
android_version = 'Android version'

scroll _to android_version

view = 'android.widget.TextView'

version = xpath(%Q(//#{view}[preceding-sibling: :#{view}[@text="#{android
version}"]]

)).text

if lversion.match(/\w/).nil? || !version.match(/\d/).nil?
puts "Version: #{version} pass”

else

puts "Version: #{version} is NOT a word or number"

valid = !version.match(/\d/).nil?

end

expect(valid).to eq(true)

end

Now step_defs.rb:

Given(/~I open login screen on app$/) do

add_contact = id('com.example.android.contactmanager:id/addContactButton")
exists(post_check=30) { add contact.text == 'Add Contact' } ? puts('Add
Contact exists') : puts('App failed to open')

end

And(/~I click add contact$/) do
id('com.example.android.contactmanager:id/addContactButton').click

end

Then(/~I verify contact screen is displayed$/) do
expect(id('android:id/text1"').text).to eql("seleniumfrmwrkguest@gmail.com")
end

Then(/*I successfully add a contact$/) do
id('com.example.android.contactmanager:id/contactNameEditText').type "blah"
id('com.example.android.contactmanager:id/contactPhoneEditText").type "123-
456-7890"

127

CHAPTER 9 ' TEST STRATEGY AND EXECUTION

id('com.example.android.contactmanager:id/contactPhoneTypeSpinner').click
tags('android.widget.CheckedTextView')[2].click
id('com.example.android.contactmanager:id/contactEmailEditText").type
"pradeep@seleniumframework.com"
id('com.example.android.contactmanager:id/contactSaveButton').click

end

And(/*verify that it was added$/) do
expect(id('com.example.android.contactmanager:id/contactEntryText"').text).
to eql('blah")

end

Then(/"take screenshot of contact form$/) do
@driver.screenshot("contact_screen.png")

end

Explanation of Key Concepts
This section explains the key concepts.

e Thelocators are retrieved through uiautomator or arc or by
printing the source. See the section entitled “Introspecting App”
to learn about retrieving locators.

¢ Inthe step definitions, you must identify the elements, then
retrieve the text and assert it against the expected text.

¢ You also need to perform actions like clicking and setting text
by filling in the contact form and verifying that the contact was
saved,

e [Itis also possible to take a screenshot at any point by calling the
method on the driver object.

Executing the Test from the Local Lab

Now that you have written your tests, you can execute them. These examples assume that
you connected your devices through USB or WiFi.

128

CHAPTER 9 " TEST STRATEGY AND EXECUTION

Start the Appium Server
To start the Appium server, follow these steps:

1. Identify the device using adb devices. (You should have
connected the device either through USB or WiFi).

2. Start the Appium server on the port (the same port that was
defined for the device in the devices.yaml file) and specify
the bootstrap port (must be at least 10 ports apart).

Anyones-Mac-mini:~ pmacharl$ adb devices

List of devices attached

ZX1B222FCD device

Anyones-Mac-mini:~ pmacharl$ appium -p 4778 -bp 4789 -U ZX1B222F(CD

info: Welcome to Appium vi.4.11 (REV
8cf8311f00e59a2b10fde1834fcf6d5ace6fbcdo)

info: Appium REST http interface listener started on 0.0.0.0:4778

info: [debug] Non-default server args: {"udid":"ZX1B222FCD","port":4778,
"bootstrapPort":4789}

info: Console Loglevel: debug

Execute the Test

The DEVICE or EMULATOR parameters are mandatory since a target is required to run the
test. If none is specified, a validation error is raised. The permissible values are the keys
inside the devices.yaml/emulators.yaml file.

e Example 1: DEVICE=motorola-google-ZX1B222FCD
e Example 2: EMULATOR=Nexus_4 API 23 x86

Execute settings scenario on a device:

bundle exec cucumber features/ci_android.feature:5 DEVICE=motorola-google-
ZX1B222FCD

Execute open login screen:

bundle exec cucumber features/ci_android.feature:9 DEVICE=motorola-google-
ZX1B222FCD

Add contact scenario:

bundle exec cucumber features/ci_android.feature:15 DEVICE=motorola-google-
ZX1B222FCD

129

CHAPTER 9 ' TEST STRATEGY AND EXECUTION

Take screenshot scenario:

bundle exec cucumber features/ci_android.feature:21 DEVICE=motorola-google-
ZX1B222FCD

Figure 9-4 shows the execution alongside the code.

asture: CI Andraid
ALl screens shauld Launch fine

i6: Add esatact

1 scenario | 1
3 sveps |]

Baze. 7308 ONLINE 124x576 (2.0 Mb) 432 ms (4.6 Mb /%)

Figure 9-4. Execution alongside code

To see a full video of the execution, visit https://www.youtube.com/
watch?v=In9sCFrv-Do&feature=youtu.be.

The device screen is exported and you can see the server and target execution in
one screen. That is one of the challenges in demonstrating the automation value on the
mobile side. For the web, since the browser launches on the machine itself, it is relatively
easier.

Executing the Test from Sauce Labs

As you continue executing tests and attempt to increase the coverage on various devices,
form factors become a critical issue. Sure, you can keep buying devices; however, there
is not much economy of scale in doing so. Wouldn't it be nice to have that non-core
competency of maintaining the devices offloaded to a service provider?

Sure enough, there are many providers out there that do just that, including Sauce
Labs, Perfecto Mobile, and ExperiTest. This chapter provides an example of Sauce Labs,
because they are aligned with Appium.

130

https://www.youtube.com/watch?v=In9sCFrv-D0&feature=youtu.be
https://www.youtube.com/watch?v=In9sCFrv-D0&feature=youtu.be

CHAPTER 9 " TEST STRATEGY AND EXECUTION

What Is Sauce Labs?

Sauce Labs provides both infrastructure and platform cloud services.

e Infrastructure: Over 700 combinations of browsers and OS
platforms. Includes mobile emulators and simulators, as well as
real devices.

e Platform: Selenium Grid platform, so that automation tests
that talk in the WebDriver protocol can execute tests against the
underlying infrastructure.

e User Interface: A nice GUI for manual testing and on-demand
availability of browsers, emulators, simulators, and real mobile
devices. Sauce Labs’ features cannot be summed up here, but I
encourage you to read more about it online.

Running Against Sauce Labs

You can run Sauce Labs on real devices or emulators.

Running on Real Devices

Upload your app to the Sauce storage. Replace the values with your Sauce credentials:
$ curl -u $SAUCE_USERNAME: $SAUCE_ACCESS_KEY -X POST "http://saucelabs.com/
rest/v1l/stor age/$SAUCE_USERNAME/my app.zip?overwrite=true" -H "Content-
Type: application/octet-str eam" -data-binary @my_app.zip

Now add the real device configuration in devices.yaml. An example is shown in
Figure 9-5.

131

CHAPTER 9 ' TEST STRATEGY AND EXECUTION

@

[BE N - T & 1] devices.yaml x
gitprojects/ci_a deviceName i MOtorola-google-ZX1B222FCD
app: app-debug.apk
appActivity : .Settings
appPackage : com.android.settings
appium_lib:
sauce_username:
sauce_access_key:
pocts 4778
saucelabs_samsung_galaxy_s5:
caps:
platformName : Android
platformVersion : '4.4'
deviceName : 'Samsung Galaxy S5 Device'
app: http://saucelabs.com/example_files/app-debug.apk
appActivity : .ContactManager
appPackage : com.example.android.contactmanager
appium-version : "1.4.16"
appium_lib:

sauce_username: <replace_with_username>
sauce_access_key: 8956cda2-f696-4ffb-adb@-abldf54a3e59
saucelabs_samsung_galaxy_sd4:
caps:

platformName : Android

platformVersion : '4.4'

deviceName : 'Samsung Galaxy S4 Device'

app: http://saucelabs.com/example_files/app-debug.apk

appActivity : .ContactManager
appPackage : com.example.android. contactmanager
appium-version : "1.4.16"

appium_Llib:

sauce_username: <replace_with_username>
sauce_access_key: 8956c4a2-f696-4ffb-adb@-abldf54a3es9

Figure 9-5. Sauce Labs configuration in devices.yaml

Feature Files (ci_android.feature)

Here is the feature file:

@ci_add_contact_sauce

Scenario: Contact on sauce
Given I open login screen on app
And I click add contact
Then I successfully add a contact

132

CHAPTER 9 " TEST STRATEGY AND EXECUTION

Hooks.rb File

Here is the Hooks . rb file:
Before('@ci_add contact sauce') do

caps = sauce_capabilities(app="http://saucelabs.com/example_files/app-
debug.apk',app
Activity="'com.example.android.contactmanager.ContactManager',
appPackage="com.example.android.contactmanager")

@driver= Appium::Driver.new(caps)
Appium.promote_appium methods AppiumWorld
puts "Execute anything before scenario/test case"”
@driver.start_driver

end

Execute the File

Now run it:

bundle exec cucumber features/ci_android.feature:26 DEVICE=saucelabs_
samsung_galaxy s4

Feedback

Once you kick off the execution, you should instantly see a row on the Sauce dashboard
that represents the execution session. See Figure 9-6.

e LS [e Y mac Bsax Son G ratly B ratp L

c NEIES/saucelabs. COM/Bocaur

tancetests pmazharlf bundle exe
eature:26 DEVIEEsavcelabs_samiu

Account

Session n T
T
a
i
T
s
A Rl e 1o downloa mo
a0
& 101

...... A [Tr—

Figure 9-6. The Sauce Labs console

133

CHAPTER 9 ' TEST STRATEGY AND EXECUTION

When the execution is complete, the results should look like Figure 9-7.

Tt Paxs rac S Saie 5 ety Bl it LT
@ L Ly) Ll - # an o_sceeptancetests paacharls bundle exe
o.Teature26 DEVICEssaucelabs_sasmsu

€ C hitpaciaauceians. com/account

Ysauce

[
Account
)
Seasion En. T B Results 1
A d_scecprancetests pascharl$
ar
A
A
A
ar 2l Fiec 1o cowniosd mal
10
- . 5ot . w &10
Fiara” M at wei. A S e rermimated

Figure 9-7. Sauce Labs execution results

Clicking the execution session row, you can find information that will help you
analyze the results (including videos, Appium logs, screenshots, and detailed logs).
Figure 9-8 shows the Sauce Labs execution video.

C S a U C e Join the Beta Upgrade Resources Docs Platforms:

Commands

Figure 9-8. Sauce Labs execution video

134

CHAPTER 9 " TEST STRATEGY AND EXECUTION

The results can also be found in the results.html file in the root folder

(see Figure 9-9), since the example outputs the HTML results as specified in the
cucumber.yaml configuration file.

C [localhoat 81342/ci_android_ascceplancatestsinsslts Mml
1 scenario
Cucumber Features

Feature: Cl Android

Al sereens should lewnch fing

[|_chent ooen agin sereen on spp

2 st dgmeify a0 EgeL. Astuming Sevice s 16t
Eancute anything Sefore scrmara/test cave
Add Centact awasi

|| et click i comtact

| hent sucoenstitty acd a contact

Figure 9-9. Cucumber results

Running on Emulators

Since Sauce Labs provides emulators, the difference is the way you construct the desired
capabilities object, and therefore replace the values in emulators.yaml. The values can
be read from their documentation, found at https://wiki.saucelabs.com/display/
DOCS/Platform+Configurator#/.

Parallel Devices Automation

This section contains a brief description on how to execute tests in parallel across devices.

Executing automated tests in parallel is dependent on any of the following
(see Figure 9-10):

e App support of parallel sessions
e Whether the test automation framework can initiate parallel tests

e Whether there are multiple Appium servers, one for each device,
with dedicated ports

135

https://wiki.saucelabs.com/display/DOCS/Platform+Configurator#/
https://wiki.saucelabs.com/display/DOCS/Platform+Configurator#/

CHAPTER 9 ' TEST STRATEGY AND EXECUTION

™ appium—

AY

Appium - android

Instance

(@l

Mappi

°
c
E]
|

—
|
L

Instance

Test Run ne_f

AY

3
|’@
r
4

Instance Applum - android

®appium—

|
§

uﬂ.u‘l!-.\.r | [: .i

AY

webDriver Controller ——
~
|
e/

0
E

Appium - android

T

Figure 9-10. Parallel devices execution architecture

Parallel execution also might result in race conditions, so understanding the
application domain and call path is extremely important before you can certify
parallel tests.

Start Appium Servers on Different Ports

Here is the command to start multiple Appium servers. Be sure to open a new shell for
each of these Appium servers.

appium -p 4724 -bp 4726 -U EGXXXXXXXXX
appium -p 4734 -bp 4736 -U EGXXXXXXXXX

If your target device/emulator has an SDK less than 4.2 or an API level less than 16,
Appium uses selendroid. In that case, you have to append --selendroid-port to the

previous command (generally stay 10 ports apart, because Appium uses +1 port of -p):

appium -p 4724 -bp 4726 --selendroid-port 4737 -U EGXXXXXXXXX
appium -p 4734 -bp 4736 --selendroid-port 4747 -U EGXXXXXXXXX

If you are running Appium from the Appium.exe path, then use:

node appium --nodeconfig path\to\nodeconfig.json -p 4724 -bp 5724

136

CHAPTER 9 " TEST STRATEGY AND EXECUTION

Or if you're using cmd, use this command:

appium --nodeconfig path\to\nodeconfigi.json -p 4724 -bp 5724

Client Side

This refers to the test automation framework code that can connect to the Appium servers.
You must write logic to instantiate the driver session based on the available pool of
devices/emulators. In this case, you have to parse the devices.yaml or emulators.yaml
file and create a $driver session by connecting to the corresponding port.

137

Index

A B

Acceptance test driven development
(ATDD), 99
Amazon Device Lab, 22
Android app
deploying/installing, 9
installation process, 5
CI tool stack, 8
Jenkins, 5-6
Nexus, 6-7
SonarQube, 7
Mac environment, 4
mobile devices, 4
network, 4
platform, 5
testing (automating), 9-10
Windows vs. Mac, 3
Android app build process, 9, 67
Android Studio, 72
importing the project, 72-73
project view, 74-75
views, 73-74
command line, 69
.apk file in debug mode, 71
.apk file in release mode, 71
Gradle clean assembleDebug
task, 70
Gradle tasks, 69
output, 68
overview, 67
perspective on, 68
sample app, 75
app-debug apk, 77
clone and build, 76
environment, 76
source code, 75

© Pradeep Macharla 2017

Android Debug Bridge (ADB), 60, 82-83
Android device, 82
ADB, 82-83
connecting the device, 84
enable USB debug, 83-84
troubleshooting tips, 84-85
Android Emulator, 80
creating new AVD, 80-81
hardware acceleration, 80
learning curve, 82
sample AVDs, 82
Android Espresso, 17
Android SDK, 49
quick checks, 51-52
standalone SDK, 50-51
tools, 59
ADB, 60
Android Device Monitor, 65
AVD Manager, 62-63
record video, 60
SDK Manager, 63-64
uiautomatorviewer, 61-62
Android Studio, 52
associate system SDK, 54-55
basics, 53-54
demonstration, 93-94
with Gradle, 57-58
Android virtual device (AVD)
Manager, 79
Appium, 17, 95
app, inspecting, 106-107
ARC, 107-109
ARC, inspecting using, 109-113
concepts, 96
Android, 99
Appium.app and
Appium.exe, 97

139

P. Macharla, Android Continuous Integration, DOI 10.1007/978-1-4842-2796-1

INDEX

Appium (cont.)
clients, 97
client/server architecture, 96
design, 97-98
desired capabilities, 96
server, 97
session, 96
WebDriver, 99
server, 99
download and install, 99
GUI start Android
mode, 100-101
server configuration, 101
Android settings, 104-105
Appium Doctor, 101-102
command line, 103-104
developer mode, 103
server settings, 106
uiautomatorviewer, using, 113-115
WebDriver JSON wire protocol, 95
Appium Ruby console (ARC), 107-109
inspecting using, 109
appium.txt file, 111-113
appium.txt file, 112
prerequisites, 110

C

Chrome, remote debug, 88-90

CI tool stack, 8

Command-line demonstration, 92-93

Continuous delivery, 23

Continuous deployment, 23

Continuous integration (CI), 1, 23
architecture, 1-2

D

Debug app, 95

E

Emulators or devices
connecting and identifying the
target, 91
direct commands, 91
installing on emulator, 92
installing on real device, 92
vs. real devices, 79

140

F

Feedback loops, Jenkins, 23
build, 24
configuration, 25-28, 30

feedback (execution results), 31-33

code quality analysis, 34
Sonar, 35-39
test, 40
acceptance tests, 40-41, 43-44

feedback (execution results), 45-46

G

Google Device Lab, 22

Gradle, 55
Android Studio with, 57-58
building app, 59
download and install, 56
quick commands, 58
shell variables, 57
tasks, 58-59

H, |

Hybrid apps, 12

J, K, L

Java, 47

JDK on Mac, 48-49
JRE vs. JDK vs. SE, 47

Java Development Kit (JDK), 47

Java Runtime Environment (JRE), 47
Jenkins, 5-6

Jenkins tool, feedback loops, 23

build, 24-28, 30-33
code quality analysis, 34-39
test, 40-41, 43-46

Minimum viable product (MVP), 1
Mobile apps, 11

comparing, 12

hybrid apps, 12

native apps, 11

web apps/HTMLS5 apps, 12

Mobile devices, 4

Mobile technologies, 10
consumers need, 10
ecosystems, 10
hardware, 11
platforms/OS, 11

Mobile test automation
libraries, 17
purpose, 17-18
WebDriver protocol, 13

mobile automation, 16
protocols, 14

scaling, 15-16
working, 14-15

Mobile test environment, 21
local Android Emulator, 22
local Android real device, 21
manual testing in cloud, 22
real devices vs. emulators/simulators, 21

Mobile test strategy, 18
cost, 19
manual testing vs. automation, 18
scaling, 19
speed of testing, 19
testing pyramid, 19-20

N,O

Native apps, 11
Nexus, 6-7

PQ

Parallel devices automation, 135
Appium servers on different ports, 136
client side, 137

Perfecto mobile, 22

Programming language, 5

R

Release app, 95
Remote debug Chrome, 88-90

S

Sauce Labs, 22
SonarQube, 7
Standard Edition (SE), 47

INDEX

LUV

Test strategy and execution
continuous test automation with
Cucumber, 117-118
high-level mindmap, 118
local lab, 128
Appium server, 129
execute the test, 129-130
parallel devices automation, 135
Appium servers on different
ports, 136
client side, 137
Sauce labs, 130
infrastructure and platform
cloud services, 131
running against, 131
running on emulators, 135
running on real
devices, 131-134
test framework, 118
gitrepo and folder
structure, 119-120
writing the tests, 120
capabilities.rb, 125-126
Cucumber scenario
(ci_android.feature), 121
device lab, 123-124
devices.yaml, 124
emulators.yaml, 125
env.rb, 123
hooks.rb, 122
key concepts, explanation, 128
ScreenHelper.rb (not used), 126
step definitions, 127-128

W XY,Z

Web apps, 12

WebDriver protocol, 13
mobile automation, 16
protocols, 14
scaling, 15-16
working, 14-15

WiFi, debugging, 85
ADB commands, 85-86
connect over, 86-87

141

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction
	Architecture
	Prerequisites
	Windows vs. Mac
	The Mac Environment
	Mobile Devices
	Network
	Platform

	Programming Language
	Installation Processes
	Installing Jenkins
	Installing Nexus
	Installing SonarQube
	Installing the CI Tool Stack

	Building the Android App
	Deploying/Installing the Android App
	Testing (Automating) the Android App
	Mobile Technologies
	What Do Consumers Want?
	Ecosystems
	Hardware
	Platforms/OS

	Types of Mobile Apps

	Chapter 2: Mobile Test Automation
	The WebDriver Protocol
	Why Are We Talking About These Protocols?
	How Does It Work?
	How Does It Scale?
	How Does It Relate to Mobile Automation?

	Test Automation Libraries
	Why Automate?
	Mobile Test Strategy
	Manual Testing vs. Automation
	Speed of Testing
	Scaling
	Cost
	Testing Pyramid

	Mobile Test Environment
	Real Devices vs. Emulators/Simulators
	Initial Manual Testing on a Local Android Real Device
	Initial Manual Testing on a Local Android Emulator
	Further Manual Testing in the Cloud

	Chapter 3: CI Pattern with Jenkins and Android
	What Is Continuous Integration?
	Feedback Loops
	Feedback Loop 1: Build
	Jenkins Job1 Configuration
	Feedback (Execution Results)

	Feedback Loop 2: Code Quality Analysis
	Jenkins Job 2: Sonar

	Feedback Loop 3: Test
	Jenkins Job 3: Acceptance Tests
	Feedback (Execution Results)

	Chapter 4: Android System Setup
	Installing Java
	JRE vs. JDK vs. SE
	JDK on Mac

	Installing Android SDK
	Standalone SDK
	Quick Checks

	Installing Android Studio
	Android Studio Basics
	Associate the System SDK with Android Studio

	Installing Gradle
	Download and Install
	Set Gradle Shell Variables
	Android Studio with Gradle
	Gradle Quick Commands
	Gradle Tasks
	Build the App

	Tools to Know
	ADB
	Record Video
	uiautomatorviewer
	AVD Manager
	SDK Manager
	Android Device Monitor

	Chapter 5: Build the Android App
	The Android Build Process
	Overview
	Another Perspective on the Build Process
	Output of the Build Process

	Building from the Command Line
	Gradle Tasks
	The Gradle Clean AssembleDebug Task
	The .apk File in Debug Mode
	The .apk File in Release Mode

	Building from Android Studio
	Import the Project
	Android Studio Views
	Project View

	Building the Sample App
	Source Code
	Environment
	Clone and Build
	Sample App: app-debug apk

	Chapter 6: Connect Android Target
	Testing with Emulators versus Real Devices
	Using the Android Emulator
	Hardware Acceleration
	Create a New AVD
	Sample AVDs
	Learning Curve

	Connecting the Android Device
	ADB Is Your Friend
	Enable USB Debug
	Connect the Device
	Troubleshooting Tips

	Debugging the WiFi
	ADB Commands
	Connect Over WiFi

	Remote Debug Chrome

	Chapter 7: Deploy or Install Android App
	Connect and Identify the Target
	Direct Commands to Target
	Install on the Emulator
	Install on Real Device

	Command-Line Demonstration
	Android Studio Demonstration

	Chapter 8: Working with Appium
	Why Appium?
	Appium Concepts
	Client/Server Architecture
	Session
	Desired Capabilities
	Appium Server
	Appium Clients
	Appium.app and Appium.exe
	Appium Design
	Appium Android
	Appium

	Installing the Appium Server
	Download and Install the Appium Server
	GUI Start Android Mode

	Appium Server Configuration
	Appium Doctor
	Developer Mode
	Server Command Line
	Appium Android Settings
	Appium Server Settings

	Inspecting an App
	Appium Ruby Console
	Method1
	Method2

	Inspecting Using ARC
	Prerequisites
	The Appium.txt File

	Using uiautomatorviewer

	Chapter 9: Test Strategy and Execution
	Continuous Test Automation with Cucumber
	High-Level Mindmap
	Test Framework
	Git Repo and Folder Structure

	Writing the Tests
	Cucumber Scenarios (ci_android.feature)
	hooks.rb
	env.rb
	Devices Lab
	devices.yaml
	emulators.yaml
	Capabilities.rb
	ScreenHelper.rb (Not Used)
	Step Definitions
	Explanation of Key Concepts

	Executing the Test from the Local Lab
	Start the Appium Server
	Execute the Test

	Executing the Test from Sauce Labs
	What Is Sauce Labs?
	Running Against Sauce Labs
	Running on Real Devices
	Feature Files (ci_android.feature)
	Hooks.rb File
	Execute the File
	Feedback

	Running on Emulators

	Parallel Devices Automation
	Start Appium Servers on Different Ports
	Client Side

	Index

