

Apache	Hive	Cookbook

Table	of	Contents

Apache	Hive	Cookbook
Credits
About	the	Authors
About	the	Reviewer
www.PacktPub.com

eBooks,	discount	offers,	and	more
Why	Subscribe?

Preface
What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Sections

Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	Developing	Hive
Introduction
Deploying	Hive	on	a	Hadoop	cluster

Getting	ready
How	to	do	it...
How	it	works…

Deploying	Hive	Metastore
Getting	ready
How	to	do	it…

Installing	Hive
Getting	ready
How	to	do	it…

Hive	with	an	embedded	metastore
Hive	with	a	local	metastore
Hive	with	a	remote	metastore

Configuring	HCatalog

Getting	ready
How	to	do	it...

Understanding	different	components	of	Hive
HiveServer

Hive	metastore
How	to	do	it...
HiveServer2
How	to	do	it...
Hive	clients

Hive	CLI
Getting	ready
How	to	do	it...

Beeline
Getting	ready
How	to	do	it...

Compiling	Hive	from	source
Getting	ready
How	to	do	it...

Hive	packages
Getting	ready
How	to	do	it...

Debugging	Hive
Getting	ready
How	to	do	it...

Running	Hive
Getting	ready
How	to	do	it...

Changing	configurations	at	runtime
How	to	do	it...

2.	Services	in	Hive
Introducing	HiveServer2

How	to	do	it…
How	it	works…
See	also

Understanding	HiveServer2	properties
How	to	do	it…
How	it	works…
See	also

Configuring	HiveServer2	high	availability
Getting	ready
How	to	do	it…
How	it	works…
See	also

Using	HiveServer2	clients
Getting	ready

How	to	do	it…
Beeline

Beeline	command	options
JDBC

JDBC	client	sample	code	using	Eclipse
Running	the	JDBC	sample	code	from	the	command-line
JDBC	datatypes

Other	clients
Introducing	the	Hive	metastore	service

How	to	do	it…
How	it	works…

Configuring	high	availability	of	metastore	service
How	to	do	it…

Introducing	Hue
Getting	ready
How	to	do	it…

Prepare	dependencies
Downloading	and	installing	Hue
Configuring	Hive	with	Hue
Starting	Hue
Accessing	Hive	with	Hue

3.	Understanding	the	Hive	Data	Model
Introduction

Introducing	data	types
Primitive	data	types
Complex	data	types

Using	numeric	data	types
How	to	do	it…

Using	string	data	types
How	to	do	it…
How	it	works…

Using	Date/Time	data	types
How	to	do	it…

Using	miscellaneous	data	types
How	to	do	it…

Using	complex	data	types
How	to	do	it…

Using	operators
Using	relational	operators
How	to	do	it…
Using	arithmetic	operators

How	to	do	it…
Using	logical	operators
How	to	do	it…
Using	complex	operators

How	to	do	it…
Partitioning

Getting	ready
How	to	do	it…

Partitioning	a	managed	table
How	to	do	it…

Adding	new	partitions
Renaming	partitions
Exchanging	partitions
Dropping	the	partitions
Loading	data	in	a	managed	partitioned	table

Partitioning	an	external	table
How	to	do	it…

Bucketing
Getting	ready
How	to	do	it…
How	it	works…

4.	Hive	Data	Definition	Language
Introduction
Creating	a	database	schema

Getting	ready
How	to	do	it…

Dropping	a	database	schema
Getting	ready
How	to	do	it…

Altering	a	database	schema
Getting	ready
How	to	do	it…

Using	a	database	schema
Getting	ready
How	to	do	it…

Showing	database	schemas
Getting	ready
How	to	do	it…

Describing	a	database	schema
Getting	ready
How	to	do	it…

Creating	tables
How	to	do	it…

Create	table	LIKE
How	it	works

Dropping	tables
Getting	ready
How	to	do	it…

Truncating	tables

Getting	ready
How	to	do	it…

Renaming	tables
Getting	ready
How	to	do	it…

Altering	table	properties
Getting	ready
How	to	do	it…

Creating	views
Getting	ready
How	to	do	it…

Dropping	views
Getting	ready
How	to	do	it…

Altering	the	view	properties
Getting	ready
How	to	do	it…

Altering	the	view	as	select
Getting	ready
How	to	do	it…

Showing	tables
Getting	ready
How	to	do	it…

Showing	partitions
Getting	ready
How	to	do	it…

Show	the	table	properties
Getting	ready
How	to	do	it…

Showing	create	table
Getting	ready
How	to	do	it…

HCatalog
Getting	ready
How	to	do	it…

HCatalog	DMLs
WebHCat

Getting	ready
How	to	do	it…
See	also…

5.	Hive	Data	Manipulation	Language
Introduction
Loading	files	into	tables

Getting	ready
How	to	do	it…

How	it	works…
Inserting	data	into	Hive	tables	from	queries

Getting	ready
How	to	do	it…
How	it	works…

Inserting	data	into	dynamic	partitions
Getting	ready
How	to	do	it...
How	it	works…
There's	more…

Writing	data	into	files	from	queries
Getting	ready
How	to	do	it…

Enabling	transactions	in	Hive
Getting	ready
How	to	do	it…

Inserting	values	into	tables	from	SQL
Getting	ready
How	to	do	it…
How	it	works…
There's	more…

Updating	data
Getting	ready
How	to	do	it...
How	it	works…
There's	more…

Deleting	data
Getting	ready
How	to	do	it...
How	it	works…

6.	Hive	Extensibility	Features
Introduction
Serialization	and	deserialization	formats	and	data	types

How	to	do	it…
LazySimpleSerDe
RegexSerDe
JSONSerDe
CSVSerDe

There's	more…
See	also

Exploring	views
How	to	do	it…
How	it	works…

Exploring	indexes
How	to	do	it…

Hive	partitioning
How	to	do	it…

Static	partitioning
Dynamic	partitioning

Creating	buckets	in	Hive
How	to	do	it…

Metastore	view	of	bucketing
Analytics	functions	in	Hive

How	to	do	it…
See	also

Windowing	in	Hive
How	to	do	it…

LEAD
LAG
FIRST_VALUE

LAST_VALUE
See	also

File	formats
How	to	do	it…

7.	Joins	and	Join	Optimization
Understanding	the	joins	concept

Getting	ready
How	to	do	it…
How	it	works…

Using	a	left/right/full	outer	join
How	to	do	it…
How	it	works…

Using	a	left	semi	join
How	to	do	it…
How	it	works…

Using	a	cross	join
How	to	do	it…
How	it	works…

Using	a	map-side	join
How	to	do	it…
How	it	works…

Using	a	bucket	map	join
Getting	ready
How	to	do	it…
How	it	works…

Using	a	bucket	sort	merge	map	join
Getting	ready
How	to	do	it…
How	it	works…

Using	a	skew	join

How	to	do	it…
How	it	works…

8.	Statistics	in	Hive
Bringing	statistics	in	to	Hive

How	to	do	it…
Table	and	partition	statistics	in	Hive

Getting	ready
How	to	do	it…

Statistics	for	a	partitioned	table
Column	statistics	in	Hive

How	to	do	it…
How	it	works…

Top	K	statistics	in	Hive
How	to	do	it…

9.	Functions	in	Hive
Using	built-in	functions

How	to	do	it…
Mathematical	functions
Collection	functions
Type	conversion	functions
Date	functions
String	functions

How	it	works…
Mathematical	functions
Collection	functions
Type	conversion	functions
Date	functions
String	functions

There's	more
Conditional	functions
Miscellaneous	functions

See	also
Using	the	built-in	User-defined	Aggregation	Function	(UDAF)

How	to	do	it…
How	it	works…
See	more

Using	the	built-in	User	Defined	Table	Function	(UDTF)
How	to	do	it…
How	it	works…

See	also
Creating	custom	User-Defined	Functions	(UDF)

How	to	do	it…
How	it	works…

10.	Hive	Tuning
Enabling	predicate	pushdown	optimizations	in	Hive

Getting	ready
How	to	do	it…
How	it	works…

Optimizations	to	reduce	the	number	of	map
Getting	ready
How	to	do	it…

Sampling
Getting	ready
Sampling	bucketed	table
Block	sampling
Length	literal
Row	count
How	to	do	it…
How	it	works…

11.	Hive	Security
Securing	Hadoop

How	to	do	it…
How	it	works…

Giving	read	and	write	access	to	user	mike
Revoking	the	access	of	the	user	mike

See	also
Authorizing	Hive

How	to	do	it…
Default	authorization–legacy	mode
Storage-based	authorization
SQL	standards-based	authorization

There's	more
Configuring	the	SQL	standards-based	authorization

Getting	Started
How	to	do	it…

To	list	out	all	existing	roles
creating	a	role
Deleting	a	role
Showing	list	of	current	roles
Setting	a	role
Granting	a	role
Revoking	a	role
Checking	roles	of	a	user/role
Checking	principles	of	a	role
Granting	privileges
Revoking	privileges
Checking	privileges	of	a	user	or	role

See	also
Authenticating	Hive

How	to	do	it…

Anonymous	with	SASL	(default	no	authentication)
Anonymous	without	SASL
Kerberos
Configuring	the	JDBC	client	for	Kerberos	authentication
Access	Hive	using	the	Beeline	client
Access	Hive	using	the	Hive	JDBC	client	in	Java
LDAP
Pluggable	Authentication	Modules
Custom

12.	Hive	Integration	with	Other	Frameworks
Working	with	Apache	Spark

Getting	ready
How	to	do	it…
How	it	works…

Working	with	Accumulo
Getting	ready
How	to	do	it…
How	it	works…

Working	with	HBase
Getting	ready
How	to	do	it…
How	it	works…

Working	with	Google	Drill
Getting	ready
How	to	do	it…
How	it	works…

Index

Apache	Hive	Cookbook

Apache	Hive	Cookbook
Copyright	©	2016	Packt	Publishing	All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in
a	retrieval	system,	or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for
any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot
guarantee	the	accuracy	of	this	information.

First	published:	April	2016

Production	reference:	1260416

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78216-108-0

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Hanish	Bansal

Saurabh	Chauhan

Shrey	Mehrotra

Reviewer

Aristides	Villarreal	Bravo

Commissioning	Editor

Wilson	D'souza

Acquisition	Editor

Tushar	Gupta

Content	Development	Editor

Anish	Dhurat

Technical	Editor

Vishal	K.	Mewada

Copy	Editor

Dipti	Mankame

Project	Coordinator

Bijal	Patel

Proofreader

Safis	Editing

Indexer

Priya	Sane

Graphics

Kirk	D'Penha

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Authors
Hanish	Bansal	is	a	software	engineer	with	over	4	years	of	experience	in	developing	big	data
applications.	He	loves	to	study	emerging	solutions	and	applications	mainly	related	to	big	data	processing,
NoSQL,	natural	language	processing,	and	neural	networks.	He	has	worked	on	various	technologies	such
as	Spring	Framework,	Hibernate,	Hadoop,	Hive,	Flume,	Kafka,	Storm,	and	NoSQL	databases,	which
include	HBase,	Cassandra,	MongoDB,	and	search	engines	such	as	Elasticsearch.

In	2012,	he	completed	his	graduation	in	Information	Technology	stream	from	Jaipur	Engineering	College
and	Research	Center,	Jaipur,	India.	He	was	also	the	technical	reviewer	of	the	book	Apache	Zookeeper
Essentials.	In	his	spare	time,	he	loves	to	travel	and	listen	to	music.

You	can	read	his	blog	at	http://hanishblogger.blogspot.in/	and	follow	him	on	Twitter	at
https://twitter.com/hanishbansal786.

	

I	would	like	to	thank	my	parents	for	their	love,	support,	encouragement	and	the	amazing	chances	they've
given	me	over	the	years.

Saurabh	Chauhan	is	a	module	lead	with	close	to	8	years	of	experience	in	data	warehousing	and	big	data
applications.	He	has	worked	on	multiple	Extract,	Transform	and	Load	tools,	such	as	Oracle	Data
Integrator	and	Informatica	as	well	as	on	big	data	technologies	such	as	Hadoop,	Hive,	Pig,	Sqoop,	and
Flume.

He	completed	his	bachelor	of	technology	in	2007	from	Vishveshwarya	Institute	of	Engineering	and
Technology.	In	his	spare	time,	he	loves	to	travel	and	discover	new	places.	He	also	has	a	keen	interest	in
sports.

	

I	would	like	to	thank	everyone	who	has	supported	me	throughout	my	life.

Shrey	Mehrotra	has	6	years	of	IT	experience	and,	since	the	past	4	years,	in	designing	and	architecting
cloud	and	big	data	solutions	for	the	governance	and	financial	domains.

Having	worked	with	big	data	R&D	Labs	and	Global	Data	and	Analytical	Capabilities,	he	has	gained
insights	into	Hadoop,	focusing	on	HDFS,	MapReduce,	and	YARN.	His	technical	strengths	also	include
Hive,	Pig,	Spark,	Elasticsearch,	Sqoop,	Flume,	Kafka,	and	Java.

He	likes	spending	time	performing	R&D	on	different	big	data	technologies.	He	is	the	co-author	of	the
book	Learning	YARN,	a	certified	Hadoop	developer,	and	has	also	written	various	technical	papers.	In	his
free	time,	he	listens	to	music,	watches	movies,	and	spending	time	with	friends.

	

http://hanishblogger.blogspot.in/
https://twitter.com/hanishbansal786

I	would	like	to	thank	my	mom	and	dad	for	giving	me	support	to	accomplish	anything	I	wanted.	Also,	I
would	like	to	thank	my	friends,	who	bear	with	me	while	I	am	busy	writing.

About	the	Reviewer
Aristides	Villarreal	Bravo	is	a	Java	developers,	a	member	of	the	NetBeans	Dream	Team,	and	a	Java
User	Groups	leader.

He	has	organized	and	participated	in	various	conferences	and	seminars	related	to	Java,	JavaEE,
NetBeans,	NetBeans	Platform,	free	software,	and	mobile	devices,	nationally	and	internationally.

He	has	written	tutorials	and	blogs	about	Java,	NetBeans,	and	web	development.	He	has	participated	in
several	interviews	on	sites	such	as	NetBeans,	NetBeans	Dzone,	and	JavaHispano.	He	has	developed
plugins	for	NetBeans.	He	has	been	a	technical	reviewer	for	the	book	PrimeFaces	Blueprints.

Aristides	is	the	CEO	of	Javscaz	Software	Developers.	He	lives	in	Panamá

	

To	my	mother,	father,	and	all	family	and	friends.

www.PacktPub.com
eBooks,	discount	offers,	and	more

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files
available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print	book	customer,
you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at
<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a	range	of
free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

	

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt's	online	digital	book	library.	Here,
you	can	search,	access,	and	read	Packt's	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
Hive	is	an	open	source	big	data	framework	in	the	Hadoop	ecosystem.	It	provides	an	SQL-like	interface	to
query	data	stored	in	HDFS.	Underlying	it	runs	MapReduce	programs	corresponding	to	the	SQL	query.
Hive	was	initially	developed	by	Facebook	and	later	added	to	the	Hadoop	ecosystem.

Hive	is	currently	the	most	preferred	framework	to	query	data	in	Hadoop.	Because	most	of	the	historical
data	is	stored	in	RDBMS	data	stores,	including	Oracle	and	Teradata.	It	is	convenient	for	the	developers
to	run	similar	SQL	statements	in	Hive	to	query	data.

Along	with	simple	SQL	statements,	Hive	supports	wide	variety	of	windowing	and	analytical	functions,
including	rank,	row	num,	dense	rank,	lead,	and	lag.

Hive	is	considered	as	de	facto	big	data	warehouse	solution.	It	provides	a	number	of	techniques	to
optimize	storage	and	processing	of	terabytes	or	petabytes	of	data	in	a	cost-effective	way.

Hive	could	be	easily	integrated	with	a	majority	of	other	frameworks,	including	Spark	and	HBase.	Hive
allows	developers	or	analysts	to	execute	SQL	on	it.	Hive	also	supports	querying	data	stored	in	different
formats	such	as	JSON.

What	this	book	covers
Chapter	1,	Developing	Hive,	helps	you	out	in	configuring	Hive	on	a	Hadoop	platform.	This	chapter
explains	a	different	mode	of	Hive	installations.	It	also	provides	pointers	for	debugging	Hive	and	brief
information	about	compiling	Hive	source	code	and	different	modules	in	the	Hive	source	code.

Chapter	2,	Services	in	Hive,	gives	a	detailed	description	about	the	configurations	and	usage	of	different
services	provided	by	Hive	such	as	HiveServer2.	This	chapter	also	explains	about	different	clients	of
Hive,	including	Hive	CLI	and	Beeline.

Chapter	3,	Understanding	the	Hive	Data	Model,	takes	you	through	the	details	of	different	data	types
provided	by	Hive	in	order	to	be	helpful	in	data	modeling.

Chapter	4,	Hive	Data	Definition	Language,	helps	you	understand	the	syntax	and	semantics	of	creating,
altering,	and	dropping	different	objects	in	Hive,	including	databases,	tables,	functions,	views,	indexes,
and	roles.

Chapter	5,	Hive	Data	Manipulation	Language,	gives	you	complete	understanding	of	Hive	interfaces	for
data	manipulation.	This	chapter	also	includes	some	of	the	latest	features	in	Hive	related	to	CRUD
operations	in	Hive.	It	explains	insert,	update,	and	delete	at	the	row	level	in	Hive	available	in	Hive	0.14
and	later	versions.

Chapter	6,	Hive	Extensibility	Features,	covers	a	majority	of	advance	concepts	in	Hive.	This	chapter
explain	some	concepts	such	as	SerDes,	Partitions,	Bucketing,	Windowing	and	Analytics,	and	File	Formats
in	Hive	with	the	detailed	examples.

Chapter	7,	Joins	and	Join	Optimization,	gives	you	a	detailed	explanation	of	types	of	Join	supported	by
Hive.	It	also	provides	detailed	information	about	different	types	of	Join	optimizations	available	in	Hive.

Chapter	8,	Statistics	in	Hive,	allows	you	to	capture	and	analyze	tables,	partitions,	and	column-level
statistics.	This	chapter	covers	the	configurations	and	commands	use	to	capture	these	statistics.

Chapter	9,	Functions	in	Hive,	gives	you	the	detailed	overview	of	the	extensive	set	of	inbuilt	functions
supported	by	Hive,	which	can	be	used	directly	in	queries.	This	chapter	also	covers	how	to	create	a
custom	User-Defined	Function	and	register	in	Hive.

Chapter	10,	Hive	Tuning,	helps	you	out	in	optimizing	the	complex	queries	to	reduce	the	throughput	time.	It
covers	different	optimization	techniques	using	predicate	pushdown,	by	reducing	number	of	maps,	and	by
sampling.

Chapter	11,	Hive	Security,	covers	concepts	to	secure	the	data	from	any	unauthorized	access.	It	explains
the	different	mechanisms	of	authentication	and	authorization	that	can	be	implement	in	Hive	for	security
purposes.	In	case	of	critical	or	sensitive	data,	security	is	the	first	thing	that	needs	to	be	considered.

Chapter	12,	Hive	Integration	with	Other	Frameworks,	takes	you	through	the	integration	mechanism	of
Hive	with	some	other	popular	frameworks	such	as	Spark,	HBase,	Accumulo,	and	Google	Drill.

What	you	need	for	this	book
To	practice	in	parallel	with	reading	the	book,	you	need	a	machine	or	set	of	machines	on	which	Hadoop	is
installed	in	either	pseudo	distributed	or	clustered	mode.

To	have	a	better	understanding	of	metastore	concept,	you	should	have	configured	Hive	with	local	or
remote	metastore	using	MySQL	at	the	backend.

You	also	need	a	sample	dataset	to	practice	different	windowing	and	analytical	functions	available	in	Hive
and	to	optimize	queries	using	concepts	such	as	partitions	and	bucketing.

Who	this	book	is	for
This	book	has	covered	almost	all	concepts	of	Hive.	So,	if	you	are	a	beginner	in	the	big	data	Hadoop
domain,	you	can	start	with	installing	Hive,	understanding	Hive	services	and	clients,	and	using	Hive	data
modeling	concepts	to	design	your	data	model.	If	you	have	basic	knowledge	of	Hive,	you	can	deep	dive
into	some	of	the	advance	concepts	covered	in	the	book	such	as	partitions,	bucketing,	file	formats,	security,
and	windowing	and	analytics.

In	a	nutshell,	this	book	is	helpful	for	both	a	Hadoop	developer	and	a	Hadoop	analyst	who	want	to	explore
Hive.

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,	How	to	do	it,	How	it
works,	There's	more,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as	follows:

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up	any	software	or	any
preliminary	settings	required	for	the	recipe.

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the	previous	section.

There's	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make	the	reader	more
knowledgeable	about	the	recipe.

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of	information.
Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,	dummy
URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	By	default,	this	location	is	set	to	the
/metastore_dbinconf/hive-default.xml	file.

A	block	of	code	is	set	as	follows:

<property>

				<name>hive.metastore.warehouse.dir</name>

				<value>/user/Hive/warehouse	</value>

				<description>The	directory	relative	to	fs.default.name	where	managed	tables	are	

stored.

				</description>

</property>

Any	command-line	input	or	output	is	written	as	follows:

hive	--service	metastore	&

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for	example,	in
menus	or	dialog	boxes,	appear	in	the	text	like	this:	Create	a	Maven	project	in	Eclipse	by	going	to	File	|
New	|	Project.

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book—what	you
liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles	that	you	will	really	get
the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the	book's	title	in
the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a
book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get	the	most
from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at	http://www.packtpub.com.	If
you	purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have
the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on	the	book's	webpage	at	the
Packt	Publishing	website.	This	page	can	be	accessed	by	entering	the	book's	name	in	the	Search	box.
Please	note	that	you	need	to	be	logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest	version
of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in	this	book.
The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You	can	download	this	file
from	http://www.packtpub.com/sites/default/files/downloads/ApacheHiveCookbook_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/ApacheHiveCookbook_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If	you	find
a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the	code—we	would	be	grateful	if	you
could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by	visiting
http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the	Errata	Submission	Form
link,	and	entering	the	details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be
accepted	and	the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support	and
enter	the	name	of	the	book	in	the	search	field.	The	required	information	will	appear	under	the	Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At	Packt,	we	take
the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal	copies	of	our
works	in	any	form	on	the	Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at	<questions@packtpub.com>,
and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Developing	Hive
In	this	chapter,	we	will	cover	the	following	recipes:

Deploying	Hive	on	a	Hadoop	cluster
Deploying	Hive	Metastore
Installing	Hive
Configuring	HCatalog
Understanding	different	components	of	Hive
Compiling	Hive	from	source
Hive	packages
Debugging	Hive
Running	Hive
Changing	configurations	at	runtime

Introduction
Hive,	an	Apache	Hadoop	ecosystem	component	is	developed	by	Facebook	to	query	the	data	stored	in
Hadoop	Distributed	File	System	(HDFS).	Here,	HDFS	is	the	data	storage	layer	of	Hadoop	that	at	very
high	level	divides	the	data	into	small	blocks	(default	128	MB)	and	stores	these	blocks	on	different	nodes.

Hive	provides	a	SQL-like	query	model	named	Hive	Query	Language	(HQL)	to	access	and	analyze	big
data.	It	is	also	termed	Data	Warehousing	framework	of	Hadoop	and	provides	various	analytical
features,	such	as	windowing	and	partitioning.

Deploying	Hive	on	a	Hadoop	cluster
Hive	is	supported	by	a	wide	variety	of	platforms.	GNU/Linux	and	Windows	are	commonly	used	as	the
production	environment,	whereas	Mac	OS	X	is	commonly	used	as	the	development	environment.

Getting	ready
In	this	book,	we	will	assume	a	GNU/Linux-based	installation	of	Apache	Hive	for	installation	and	other
instructions.

Before	installing	Hive,	the	first	step	is	to	make	sure	that	a	Java	SE	environment	is	installed	properly.
Hive	requires	version	6	or	later,	which	can	be	downloaded	from
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

How	to	do	it...
To	install	Hive,	just	download	it	from	http://Hive.apache.org/downloads.html	and	unpack	it.	Choose	the
latest	stable	version.

Note

At	the	time	of	writing	this	book,	Hive	1.2.1	was	the	latest	stable	version	available.

http://Hive.apache.org/downloads.html

How	it	works…
By	default,	Hive	is	configured	to	use	an	embedded	Derby	database	whose	disk	storage	location	is
determined	by	the	Hive	configuration	variable	named	javax.jdo.option.ConnectionURL.	By	default,
this	location	is	set	to	the	/metastore_dbinconf/hive-default.xml	file.	Hive	with	Derby	as	metastore
in	embedded	mode	allows	at	most	one	user	at	a	time.

The	other	modes	of	installation	are	Hive	with	local	metastore	and	Hive	with	remote	metastore,	which
will	be	discussed	later.

Deploying	Hive	Metastore
Apache	Hive	is	a	client-side	library	that	provides	a	table-like	abstraction	on	top	of	the	data	in	HDFS	for
data	processing.	Hive	jobs	are	converted	into	a	map	reduce	plan,	which	is	then	submitted	to	the	Hadoop
cluster.	Hadoop	cluster	is	the	set	of	nodes	or	machines	with	HDFS,	MapReduce,	and	YARN	deployed	on
these	machines.	MapReduce	works	on	the	distributed	data	stored	in	HDFS	and	processes	a	large	datasets
in	parallel,	as	compared	with	traditional	processing	engines	that	process	whole	task	on	a	single	machine
and	wait	for	hours	or	days	for	a	single	query.	Yet	Another	Resource	Negotiator	(YARN)	is	used	to
manage	RAM	the	and	CPU	cores	of	the	whole	cluster,	which	are	critical	for	running	any	process	on	a
node.

The	Hive	table	and	database	definitions	and	mapping	to	the	data	in	HDFS	is	stored	in	a	metastore.	A
metastore	is	a	central	repository	for	Hive	metadata.	A	metastore	consists	of	two	main	components,	which
are	really	important	for	working	on	Hive.	Let's	take	a	look	at	these	components:

Services	to	which	the	client	connects	and	queries	the	metastore
A	backing	database	to	store	the	metadata

Getting	ready
In	this	book,	we	will	assume	a	GNU/Linux-based	installation	of	Apache	Hive	for	installation	and	other
instructions.

Before	installing	Hive,	the	first	step	is	to	make	sure	that	a	Java	SE	environment	is	installed	properly.
Hive	requires	version	6	or	later,	which	can	be	downloaded	from
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

How	to	do	it…
In	Hive,	a	metastore	(service	and	RDBMS	database)	could	be	configured	in	one	of	the	following	ways:

An	embedded	metastore
A	local	metastore
A	remote	metastore

When	we	install	Hive	on	the	preinstalled	Hadoop	cluster,	Hive,	by	default,	gets	the	embedded	database.
This	means	that	we	need	not	configure	any	database	as	a	Hive	metastore.	Let's	check	out	what	these
configurations	are	and	why	we	call	them	the	embedded	and	remote	metastore.

By	default,	the	metastore	service	and	the	Hive	service	run	in	the	same	JVM.	Hive	needs	a	database	to
store	metadata.	In	default	mode,	it	uses	an	embedded	Derby	database	stored	on	the	local	file	system.	The
embedded	mode	of	Hive	has	the	limitation	that	only	one	session	can	be	opened	at	a	time	from	the	same
location	on	a	machine	as	only	one	embedded	Derby	database	can	get	lock	and	access	the	database	files	on
disk:

	

An	Embedded	Metastore	has	a	single	service	and	a	single	JVM	that	cannot	work	with	multiple	nodes	at
a	time.

To	solve	this	limitation,	a	separate	RDBMS	database	runs	on	same	node.	The	metastore	service	and	Hive
service	still	run	in	the	same	JVM.	This	configuration	mode	is	named	local	metastore.	Here,	local	means
the	same	environment	of	the	JVM	machine	as	well	as	the	service	in	the	same	node.

There	is	one	more	configuration	where	one	or	more	metastore	servers	run	in	a	separate	JVM	process	to
the	Hive	service	connecting	to	a	database	on	a	remote	machine.	This	configuration	is	named	remote
metastore.

The	Hive	service	is	configured	to	use	a	remote	metastore	by	setting	hive.metastore.uris	to	metastore
server	URIs,	separated	by	commas.	The	Hive	metastore	could	be	configured	using	properties	specified	in
the	following	sections.

In	the	following	diagram,	the	pictorial	representation	of	the	metastore	and	driver	is	given:

	
<property>

				<name>hive.metastore.warehouse.dir</name>

				<value>/user/Hive/warehouse	</value>

				<description>The	directory	relative	to	fs.default.name	where	managed	tables	are	

stored.

				</description>

</property>

<property>

				<name>	hive.metastore.uris</name>

				<value></value>

				<description>	The	URIs	specifying	the	remote	metastore	servers	to	connect	to.	

If	there	are	multiple	remote	servers,	clients	connect	in	a	round-robin	fashion

				</description>

</property>

<property>

				<name>javax.jdo.option.	ConnectionURL</name>

				<value>jdbc:derby:;databaseName=hivemetastore;create=true</value>

				<description>	The	JDBC	URL	of	database.

				</description>

</property>

<property>

				<name>	javax.jdo.option.ConnectionDriverName	</name>

				<value>	org.apache.derby.jdbc.EmbeddedDriver	</value>

				<description>	The	JDBC	driver	classname.

				</description>

</property>

<property>

				<name>javax.jdo.option.ConnectionUserName</name>

				<value>username</value>

				<description>metastore	username	to	connect	with

				</description>

</property>

<property>

				<name>	javax.jdo.option.ConnectionPassword	</name>

				<value>password</value>

				<description>metastore	password	to	connect	with

				</description>

</property>

Installing	Hive
We	will	now	take	a	look	at	installing	Hive	along	with	all	the	prerequisites.

Getting	ready
Let's	download	the	stable	version	from	one	of	the	mirrors:

$	wget	http://a.mbbsindia.com/hive/hive-1.2.1/apache-hive-1.2.1-bin.tar.gz

How	to	do	it…
This	can	be	achieved	in	three	ways.

Hive	with	an	embedded	metastore

Once	you	have	downloaded	the	Hive	tar-ball	file,	installing	and	setting	up	a	Hive	is	pretty	simple	and
straightforward.	Extract	the	compressed	tar:

$tar	–xzvf	apache-hive-1.2.1-bin.tar.gz

Export	the	location	where	Hive	is	extracted	as	the	environment	variable	HIVE_HOME:

$	cd		apache-hive-1.2.1-bin

$	export	HIVE_HOME={{pwd}}

Hive	has	all	its	installation	scripts	in	the	$HIVE_HOME/bin	directory.	Export	this	location	to	the	PATH
environment	variable	so	that	you	can	run	all	scripts	from	any	location	directly	from	a	command-line:

$	export	PATH=$HIVE_HOME/bin:$PATH

Alternatively,	if	you	want	to	set	the	Hive	path	permanently	for	the	user,	then	make	the	entry	of	Hive
environment	variables	in	the	.bashrc	or	.bash_profile	files	available	or	could	be	created	in	the	user's
home	folder:

1.	 Add	the	following	to	~/.bash_profile:

export	HIVE_HOME=/home/hduser/apache-hive-1.2.1-bin

export	PATH=$PATH:$HIVE_HOME/bin

2.	 Here,	hduser	is	the	name	of	user	with	which	you	have	logged	in	and	Hive-1.2.1	is	the	Hive
directory	extracted	from	the	tar	file.Run	Hive	 from	a	terminal:

hive

3.	 Make	sure	that	the	Hive	node	has	a	connection	to	Hadoop	cluster,	which	means	Hive	would	be
installed	on	any	of	the	Hadoop	nodes,	or	Hadoop	configurations	are	available	in	the	node's	class
path.

4.	 This	installation	uses	the	embedded	Derby	database	and	stores	the	data	on	the	local	filesystem.	Only
one	Hive	session	can	be	open	on	the	node.

5.	 If	different	users	try	to	run	the	Hive	shell,	the	second	would	get	the	Failed	to	start	database
'metastore_db'	error.

6.	 Run	Hive	queries	for	the	datastore	to	test	the	installation:

hive>	SHOW	TABLES;

hive>	CREATE	TABLE	sales(id	INT,	product	String,	age	INT)	ROW	FORMAT	DELIMITED	

FIELDS	TERMINATED	BY	'\t';

7.	 Logs	are	generated	per	user	bases	in	the	/tmp/<usrename>	folder.

Hive	with	a	local	metastore

Follow	these	steps	to	configure	Hive	with	the	local	metastore.	Here,	we	are	using	the	MySQL	database	as
a	metastore:

1.	 Add	following	to	~/.bash_profile:

export	HIVE_HOME=/home/hduser/apache-hive-1.2.1-bin

export	PATH=$PATH:$HIVE_HOME/bin

Here,	hduser	is	the	user	name,	and	apache-hive-1.2.1-bin	is	the	Hive	directory	extracted	from
the	tar	file.

2.	 Install	a	SQL	database	such	as	MySQL	on	the	same	machine	where	you	want	to	run	Hive.
3.	 For	the	Ubuntu,	MySQL	could	be	installed	by	running	the	following	command	on	the	node's	terminal:

sudo	apt-get	install	mysql-server

4.	 In	case	of	MySql,	Hive	needs	the	mysql-connector	jar.	Download	the	latest	mysql-connector	jar
from	http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.35.tar.gz	and	copy
it	to	the	lib	folder	of	your	Hive	home	directory.

5.	 Create	a	file,	hive-site.xml,	in	the	conf	folder	of	Hive	and	add	the	following	entries	to	it:

<configuration>

<property>

<name>javax.jdo.option.ConnectionURL</name>

<value>jdbc:mysql://localhost:3306/metastore_db?

createDatabaseIfNotExist=true</value>

<description>metadata	is	stored	in	a	MySQL	server</description>

</property>

<property>

<name>javax.jdo.option.ConnectionDriverName</name>

<value>com.mysql.jdbc.Driver</value>

<description>MySQL	JDBC	driver	class</description>

</property>

<property>

<name>javax.jdo.option.ConnectionUserName</name>

<value>hduser</value>

<description>user	name	for	connecting	to	mysql	server					

</description>

</property>

<property>

<name>javax.jdo.option.ConnectionPassword</name>

<value>passwd</value>

<description>password	for	connecting	to	mysql	server</description>

</property>

</configuration>

6.	 Run	Hive	from	the	terminal:

hive

Note

There	is	a	known	"JLine"	jar	conflict	issue	with	Hadoop	2.6.0	and	Hive	1.2.1.	If	you	are	getting	the	error
"unable	to	load	class	jline.terminal,"	you	need	to	remove	the	older	version	of	the	jline	jar	from	the
yarn	lib	folder	using	the	following	command:

http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.35.tar.gz

sudo	rm	-r	$HADOOP_PREFIX/share/hadoop/yarn/lib/jline-0.9.94.jar

Hive	with	a	remote	metastore

Follow	these	steps	to	configure	Hive	with	a	remote	metastore.

1.	 Download	the	latest	version	of	Hive	from	http://a.mbbsindia.com/hive/hive-1.2.1/apache-hive-
1.2.1-bin.tar.gz.

2.	 Extract	the	package:

tar	–xzvf	apache-hive-1.2.1-bin.tar.gz

3.	 Add	the	following	to	~/.bash_profile:

sudo	nano	~/.bash_profile

export	HIVE_HOME=/home/hduser/apache-hive-1.2.1-bin

export	PATH=$PATH:$HIVE_HOME/bin

Here,	hduser	is	the	user	name	and	apache-hive-1.2.1-bin	is	the	Hive	directory	extracted	from
the	tar	file.

4.	 Install	a	SQL	database	such	as	MySQL	on	a	remote	machine	to	be	used	for	the	metastore.
5.	 For	Ubuntu,	MySQL	can	be	installed	with	the	following	command:

sudo	apt-get	install	mysql-server

6.	 In	the	case	of	MySQL,	Hive	needs	the	mysql-connector	jar	file.	Download	the	latest	mysql-
connector	jar	from	http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-
5.1.35.tar.gz	and	copy	it	to	the	lib	folder	of	your	Hive	home	directory.

7.	 Add	the	following	entries	to	hive-site.xml:

<configuration>

<property>

<name>javax.jdo.option.ConnectionURL</name>

<value>jdbc:mysql://<ip_of_remote_host>:3306/metastore_db?

createDatabaseIfNotExist=true</value>

<description>metadata	is	stored	in	a	MySQL	server</description>

</property>

<property>

<name>javax.jdo.option.ConnectionDriverName</name>

<value>com.mysql.jdbc.Driver</value><description>MySQL	JDBC	driver	

class</description>

</property>

<property>

<name>javax.jdo.option.ConnectionUserName</name>

<value>hduser</value>

<description>user	name	for	connecting	to	mysql	server					

</description>

</property>

<property>

<name>javax.jdo.option.ConnectionPassword</name>

<value>passwd</value>

<description>password	for	connecting	to	mysql	server</description>

</property>

</configuration>

http://a.mbbsindia.com/hive/hive-1.2.1/apache-hive-1.2.1-bin.tar.gz
http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.35.tar.gz

8.	 Start	the	Hive	metastore	interface:

bin/hive	--service	metastore	&

9.	 Run	Hive	from	the	terminal:

hive

10.	 The	Hive	metastore	interface	by	default	listens	at	port	9083:

netstat	-an	|	grep	9083

11.	 Start	the	Hive	shell	and	make	sure	that	the	Hive	Data	Definition	Language	and	Data	Manipulation
Language	(DDL	or	DML)	operations	are	working	by	creating	tables	in	Hive.

Note

There	is	a	known	"JLine"	jar	conflict	issue	with	Hadoop	2.6.0	and	Hive	1.2.1.	If	you	are	getting	the	error
"unable	to	load	class	jline.terminal,"	you	need	to	remove	the	older	version	of	jline	jar	from	the	yarn	lib
folder	using	the	following	command:

sudo	rm	-r	$HADOOP_PREFIX/share/hadoop/yarn/lib/jline-0.9.94.jar

Configuring	HCatalog
Assuming	that	Hive	has	been	configured	in	the	remote	metastore,	let's	look	into	how	to	install	and
configure	HCatalog.

Getting	ready
The	HCatalog	CLI	supports	these	command-line	options:

Option Usage Description

-g hcat	-g	mygrp The	HCatalog	table,	which	needs	to	be	created,	must	have	the	group	"mygrp".

-p hcat	-p	rwxrwxr-x The	HCatalog	table,	which	needs	to	be	created,	must	have	permissions	"rwxrwxr-x".

-f hcat	-f	myscript.hcat Tells	HCatalog	that	myscript.hcat	is	a	file	containing	DDL	commands	to	execute.

-e hcat	-e	'create	table	mytable(a	int);' Treat	the	following	string	as	a	DDL	command	and	execute	it.

-D hcat	-Dkey=value Pass	the	key-value	pair	to	HCatalog	as	a	Java	System	Property.

Hcat Prints	a	usage	message.

How	to	do	it...
Hive	0.11.0	HCatalog	is	packaged	with	Hive	binaries.	Because	we	have	already	configured	Hive,	we
could	access	the	HCatalog	command-line	hcat	command	on	shell.	The	script	is	available	at	the
hcatalog/bin	directory.

Understanding	different	components	of	Hive
Besides	the	Hive	metastore,	Hive	components	could	be	broadly	classified	as	Hive	clients	and	Hive
servers.	Hive	servers	provide	interfaces	to	make	the	metastore	available	to	external	applications	and
check	for	user's	authorization	and	authentication,	and	Hive	clients	are	various	applications	used	to	access
and	execute	Hive	queries	on	the	Hadoop	cluster.

HiveServer
Let's	take	a	look	at	its	various	components.

Hive	metastore

Hive	metastore	URIs	start	a	metastore	service	on	the	specified	port.	Metastore	provides	APIs	to	query	the
database,	tables,	schema,	and	other	entities	stored	in	the	RDBMS	datastore.

How	to	do	it...
The	metastore	service	starts	as	a	Java	process	in	the	backend.	You	can	start	the	Hive	metastore	service
with	the	following	command:

hive	--service	metastore	&

HiveServer2
HiveServer2	is	an	interface	that	allows	clients	to	execute	Hive	queries	and	get	the	result.	It	is	based	on
Thrift	RPC	and	supports	multiple	clients	a	against	single	client	in	HiveServer.	It	also	provisioned	for	the
authentication	and	authorization	of	the	user.

How	to	do	it...
The	HiveServer2	service	also	starts	as	a	Java	process	in	the	backend.	You	can	start	HiveServer2	with	the
following	command:

hive	--service	hiveserver2	&

Hive	clients
The	following	are	the	different	clients	available	in	Hive	to	query	metastore	data	or	to	submit	Hive	queries
to	Hive	servers.

Hive	CLI

The	following	are	the	various	sections	included	in	Hive	CLI.

Getting	ready
Hive	Command-line	Interface	(CLI)	can	be	used	to	run	Hive	queries	in	either	interactive	or	batch	mode.

How	to	do	it...
To	run	Hive	CLI,	use	the	following	command:

$	HIVE_HOME/bin/hive

Queries	are	submitted	by	username	of	the	user	logged	in	to	the	UNIX	system.

Beeline

The	following	are	the	various	sections	included	in	Beeline.

Getting	ready
If	you	have	configured	HiveServer2,	then	a	Beeline	client	can	be	used	to	interact	with	Hive.

How	to	do	it...
To	run	Beeline,	use	the	following	command:

$	HIVE_HOME/bin/beeline

Using	beeline,	a	connection	could	be	made	to	any	HiveServer2	instance	with	any	username	and	password.

Compiling	Hive	from	source
In	this	recipe,	we	will	see	how	to	compile	Hive	from	source.

Getting	ready
Apache	Hive	is	an	open	source	framework	available	for	compilation	and	modification	by	any	user.	Hive
source	code	is	a	maven	project.	The	source	has	intermittent	scripts	executed	on	a	UNIX	platform	during
compilation.

The	following	prerequisites	need	to	be	installed:

UNIX	OS:	UNIX	is	preferable	for	Hive	source	compilation.	Although	the	source	could	also	be
compiled	on	Windows,	you	need	to	comment	out	the	intermittent	scripts	execution.
Maven:	The	following	are	the	steps	to	configure	maven:
1.	 Download	the	Apache	maven	binaries	for	Linux	(.tar.gz)	from

https://maven.apache.org/download.cgi.

wget	http://mirror.olnevhost.net/pub/apache/maven/maven-

3/3.3.3/binaries/apache-maven-3.3.3-bin.tar.gz

2.	 Extract	the	tar	file:

tar	-xzvf	apache-maven-3.3.3-bin.tar.gz

Create	a	folder	and	move	maven	binaries	to	that	folder:

sudo	mkdir	–p	/usr/lib/maven

mv	apache-maven-3.3.3-bin/usr/lib/maven/

Open	/etc/environment:

sudo	nano	/etc/profile

Add	the	following	variable	for	the	environment	PATH:

export	M2_HOME=/usr/lib/maven/apache-maven-3.3.3-bin

export	M2=$M2_HOME/bin

export	PATH=$M2:$PATH

Use	the	command	source	/etc/environment	to	add	variables	to	PATH	without	restart:

source	/etc/environment

Check	whether	maven	is	properly	installed	or	not:

mvn	–version

https://maven.apache.org/download.cgi

How	to	do	it...
Follow	these	steps	to	compile	Hive	on	a	Unix	OS:

1.	 Download	the	latest	version	of	the	Hive	source	tar	file:

sudo	wget	http://a.mbbsindia.com/hive/hive-1.2.1/apache-hive-1.2.1-src.tar.gz

Extract	the	source	folder:

tar	–xzvf	apache-hive-1.2.1-src.tar.gz

Move	to	the	Hive	directory:

cd	apache-hive-1.2.1-src

To	import	Hive	packages	in	eclipse,	run	the	following	command:

mvn	eclipse:eclipse

To	compile	Hive	with	Hadoop	2	binaries,	run	the	following	command:

mvn	clean	install	-Phadoop-2,dist

In	case	you	want	to	skip	tests	execution,	run	the	earlier	command	with	the	following	switch:

mvn	clean	install	–DskipTests	-Phadoop-2,dist

To	generate	a	tarball	file	from	the	source	code,	run	the	following	command:

mvn	clean	package	-DskipTests	-Phadoop-2	-Pdist

Hive	packages
The	following	are	the	various	sections	included	in	Hive	packages.

Getting	ready
Hive	source	consists	of	different	modules	categorized	by	the	features	they	provide	or	as	a	submodule	of
some	other	module.

How	to	do	it...
The	following	is	the	list	of	Hive	modules	and	their	usage	in	Hive:

accumulo-handler:	Apache	accumulo	is	a	distributed	key-value	datastore	based	on	Google	Big
Table.	This	package	includes	the	components	responsible	for	mapping	the	Hive	table	to	the
accumulo	table.	AccumuloStorageHandler	and	AccumuloPredicateHandler	are	the	main	classes
responsible	for	mapping	tables.	For	more	information,	refer	to	the	official	integration	documentation
available	at	https://cwiki.apache.org/confluence/display/Hive/AccumuloIntegration.
ant:	This	tool	is	used	to	build	earlier	versions	of	Hive	source.	Ant	is	also	needed	to	configure	the
Hive	Web	Interface	server.
beeline:	A	Hive	client	used	to	connect	with	HiveServer2	and	run	Hive	queries.
bin:	This	package	includes	scripts	to	start	Hive	clients	and	services.
cli:	This	is	a	Hive	Command-line	Interface	implementation.
common:	These	are	utility	classes	used	by	other	modules.
conf:	This	contains	default	configurations	and	uses	defined	configuration	objects.
contrib:	This	contains	Serdes,	generic	UDF,	and	fileformat	contributed	by	third	parties	to	Hive.
hbase-handler:	This	module	allows	Hive	SQL	statements	to	access	HBase	tables	for	SELECT	and
INSERT	commands.	It	also	provides	interfaces	to	access	HBase	and	Hive	tables	for	join	and	union
in	a	single	query.	More	information	is	available	at
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration.
hcatalog:	This	is	a	table	management	framework	that	helps	other	frameworks	such	as	Pig	or
MapReduce	to	access	the	Hive	metastore	and	table	schema.
hwi:	This	module	provides	an	implementation	of	a	web	interface	to	run	Hive	queries.	Also,	the
WebHCat	APIs	provide	REST	APIs	to	access	the	Hive	metastore.
Jdbc:	This	is	a	connector	that	accepts	JDBC	connections	and	calls	to	execute	Hive	queries	on	the
cluster.
Metastore:	This	is	the	API	that	provides	access	to	metastore	entities	including	database,	table,
schema,	and	serdes.
odbc:	This	module	implements	the	Open	Database	Connectivity	(ODBC)	API,	enabling	ODBC
applications	to	connect	and	execute	queries	over	Hive.
ql:	This	module	provides	an	interface	to	clients	that	checks	for	query	semantics	and	provides	an
implementation	for	driver,	parser,	and	query	planner.
Serde:	This	module	has	an	implementation	of	serializer	and	deserializer	used	by	Hive	to	read	and
write	data.	It	helps	in	validating	and	parsing	record	and	field	types.
shims:	This	is	the	module	that	transparently	intercepts	and	modifies	calls	to	the	Hive	API,	usually
for	compatibility	purposes.
spark-client:	This	module	provides	an	interface	to	execute	Hive	SQLs	on	a	Spark	framework.

https://cwiki.apache.org/confluence/display/Hive/AccumuloIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration

Debugging	Hive
Here,	we	will	take	a	quick	look	at	the	command-line	debugging	option	in	Hive.

Getting	ready
Hive	code	could	be	debugged	by	assigning	a	port	to	Hive	and	adding	socket	details	to	Hive	JVM.	To	add
debugging	configuration	to	Hive,	execute	the	following	properties	on	an	OS	terminal	or	add	it	to
bash_profile	of	the	user:

export	HIVE_DEBUG_PORT=8000

export	HIVE_DEBUG="-Xdebug	-

Xrunjdwp:transport=dt_socket,address=${HIVE_DEBUG_PORT},server=y,suspend=y"

How	to	do	it...
Once	a	debug	port	is	attached	to	Hive	and	Hive	server	suspension	is	enabled	at	startup,	the	following
steps	will	help	you	debug	Hive	queries:

1.	 After	defining	previously	mentioned	properties,	run	the	Hive	CLI	in	debug	mode:

hive	--debug

2.	 If	you	have	written	up	your	own	Test	class	and	want	to	execute	unit	test	cases	written	in	that	class,
then	you	need	to	execute	the	following	command	specifying	the	class	name	you	want	to	execute:

mvn	test	-Dtest=ClassName

Running	Hive
Let's	see	how	to	run	Hive	from	the	command-line.

Getting	ready
Once	you	have	the	binaries	of	Hive	either	compiled	or	downloaded,	you	need	to	configure	a	metastore	for
Hive	where	it	keeps	information	about	different	entities.	Once	that	is	configured,	start	Hive	metastore	and
HiveServer2	to	access	the	entities	from	different	clients.

How	to	do	it...
Follow	these	steps	to	start	different	components	of	Hive	on	a	node:

1.	 Run	Hive	CLI:

$HIVE_HOME/bin/hive

Run	HiveServer2	and	Beeline:

$HIVE_HOME/bin/hiveserver2

$HIVE_HOME/bin/beeline	-u	jdbc:Hive2://$HiveServer2_HOST:$HiveServer2_PORT

Run	HCatalog	and	start	up	the	HCatalog	server:

$HIVE_HOME/hcatalog/sbin/hcat_server.sh

Run	the	HCatalog	CLI:

$HIVE_HOME/hcatalog/bin/hcat

Run	WebHCat:

$HIVE_HOME/hcatalog/sbin/webhcat_server.sh

Changing	configurations	at	runtime
Let's	see	how	we	can	change	various	configuration	settings	at	runtime.

How	to	do	it...
Follow	these	steps	to	change	any	of	the	Hive	configuration	properties	at	runtime	for	a	particular	session
or	query:

1.	 Configuration	for	Hive	and	underlying	MapReduce	could	be	changed	at	runtime	through	beeline	or
the	CLI.	The	general	syntax	to	set	a	property	is	as	follows:

SET	key=value;

The	configuration	set	is	only	applicable	for	that	session.	If	you	want	to	set	it	permanently,	then	you	need
to	set	it	in	Hive-site.xml.	The	examples	are	as	follows:

beeline>	SET	mapred.job.tracker=example.host.com:50030;

Hive>	SET	Hive.exec.mode.local.auto=false;

Chapter	2.	Services	in	Hive
In	the	previous	chapter,	you	learned	how	we	could	install	Hive	with	different	metastore	configurations.
We	also	have	gone	through	Hive	clients	and	Hive	services	in	brief.

In	this	chapter,	we	will	cover	the	following	recipes	in	detail:

Introducing	HiveServer2
Understanding	HiveServer2	properties
Configuring	HiveServer2	high	availability
Using	HiveServer2	clients
Introducing	the	Hive	metastore	service
Configuring	high	availability	of	metastore	service
Introducing	Hue

Introducing	HiveServer2
HiveServer2	is	an	enhancement	of	HiveServer	provided	in	earlier	versions	of	Hive.	The	major
limitations	of	HiveServer	related	to	concurrency	and	authentication	is	resolved	in	HiveServer2.
HiveServer2	is	based	on	Thrift	RPC.	It	supports	multiple	types	of	clients,	including	JDBC	and	ODBC.

How	to	do	it…
Assuming	that	you	have	installed	Hive	on	your	machine,	as	explained	in	Chapter	1,	Developing	Hive.
Before	starting	HiveServer2,	you	need	to	add	the	following	property	to	hive-site.xml:

<property>

				<name>hive.server2.thrift.port</name>

				<value>10000</value>

				<description>TCP	port	number	to	listen	on,	default	10000

				</description>

</property>

Starting	HiveServer2	is	easy.	All	you	need	to	do	is	run	the	following	command	on	the	terminal	of	your
machine,	as	shown	in	the	following	screenshots:

#	hive	--service	hiveserver2	&

	

	

How	it	works…
Let's	look	into	the	series	of	actions	that	starts	with	HiveServer2:

A	Java	service	is	started	on	default	port	10000
Minimum	worker	threads	are	initialized	with	5
Maximum	worker	threads	are	set	to	500
The	background	operation	thread	pool	size	is	initialized	with	100
The	background	operation	thread	wait	queue	size	is	initialized	with	100
The	background	operation	thread	keep	alive	time	is	set	to	10	seconds

See	also
For	more	information	about	HiveServer2	configuration,	refer	to	the	next	recipe,	Understanding
HiveServer2	properties.

Understanding	HiveServer2	properties
By	default,	HiveServer2	is	started	with	default	configurations.	The	configurations	are	mainly	related	to
the	port	and	host	on	which	the	server	is	going	to	start	and	number	of	threads	that	could	be	configured	for
client	and	background	operations.

How	to	do	it…
You	can	change	the	default	properties	for	HiveServer2	by	overriding	the	value	in	hive-site.xml	in	the
conf	folder	of	Hive	package.

Property Default	Value Description

hive.server2.thrift.port 10000 HiveServer2	thrift	interface

hive.server2.thrift.bind.host localhost HiveServer2	bind	host

hive.server2.thrift.min.worker.threads 5 Minimum	thrift	worker	threads

hive.server2.thrift.max.worker.threads 500 Maximum	thrift	worker	threads

hive.server2.authentication None None/LDAP/KERBEROS/PAM/NOSASL

hive.server2.authentication.kerberos.keytab "" A	keytab	file	for	kerberos	principal

hive.server2.authentication.kerberos.principal "" The	Kerberos	principal

hive.server2.enable.doAs true Execute	Hive	operations	as	the	user	making	the	calls

hive.server2.authentication.ldap.url "" LDAP	connection	URLs

hive.server2.authentication.ldap.baseDN "" LDAP	DN

hive.server2.authentication.ldap.Domain "" The	LDAP	domain

hive.server2.thrift.http.port 10001 Port	number	in	HTTP	mode

How	it	works…
When	you	override	the	configurations	in	hive-site.xml	and	restart	HiveServer2,	then	it	reads	the
updated	properties.	For	example,	you	can	define	HiveServer2	to	start	on	a	port	other	than	the	default
10000	by	defining	the	following	property:

<property>

				<name>hive.server2.thrift.port</name>

					<value>11111</value>

</property>

When	you	restart	HiveServer2,	it	starts	listening	on	the	new	port	11111.

See	also
For	more	configurations	about	HiveServer2	configuration,	you	can	refer	to	Hive	online	documentation
available	at
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-
HiveServer2.

https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-HiveServer2

Configuring	HiveServer2	high	availability
HiveServer2	for	a	cluster	of	thousands	of	nodes	could	be	a	single	point	of	failure	if	HiveServer2	is	not
configured	with	a	high	availability	concept.	If	HiveServer2	service	goes	down,	none	of	the	clients	would
be	able	to	access	metastore	or	submit	Hive	queries	to	cluster.	To	solve	this	limitation,	high	availability	of
HiveServer2	is	configured.	It	needs	a	ZooKeeper	quorum	running	on	a	set	of	nodes.

ZooKeeper	is	an	open	source	centralized	service	for	providing	coordination	between	distributed
applications.	It	is	also	used	to	store	some	common	configuration	and	metadata	to	provide	distributed
synchronization.	Hive	uses	ZooKeeper	to	store	configuration	information	to	provide	high	availability	of
HiveServer2.

Getting	ready
For	configuring	high	availability	of	HiveServer2,	you	will	need	a	ZooKeeper	quorum	running.

Tip

The	installation	of	ZooKeeper	is	not	in	the	scope	of	this	book.	You	can	refer	to	the	following	links	for	the
installation	of	ZooKeeper.

Refer	to	the	following	for	ZooKeeper's	installation	in	the	standalone	mode:
http://www.protechskills.com/big-data/hadoop-ecosystem/zookeeper/zookeeper-standalone-
installation.
Refer	to	the	following	for	ZooKeeper's	installation	in	the	distributed	mode:
http://www.protechskills.com/big-data/hadoop-ecosystem/zookeeper/zookeeper-clustered-mode-
installation.

http://www.protechskills.com/big-data/hadoop-ecosystem/zookeeper/zookeeper-standalone-installation
http://www.protechskills.com/big-data/hadoop-ecosystem/zookeeper/zookeeper-clustered-mode-installation

How	to	do	it…
For	enabling	HiveServer2	High	Availability	with	ZooKeeper,	you	need	to	set	the	following	properties	in
hive-site.xml:

<property>

				<name>hive.zookeeper.quorum</name>

				<value>Zookeeper	client's	session	timeout	in	milliseconds	 </value>

</property>

<property>

				<name>hive.zookeeper.session.timeout</name>

				<value>Comma	separated	list	of	zookeeper	quorum</value>

</property>

<property>

				<name>hive.server2.support.dynamic.service.discovery</name>

				<value>true</value>

</property>

<property>

				<name>hive.server2.zookeeper.namespace</name>

				<value>hiveserver2</value>

</property>

How	it	works…
If	more	than	one	HiveServer2	instance	is	registered	with	ZooKeeper	and	all	instances	fail	except	one,
ZooKeeper	passes	the	link	to	the	instance	that	is	running	so	that	client	can	connect	successfully	with
running	HiveServer2.

ZooKeeper	doesn't	control	autostart	of	services	of	failed	instances,	so	if	any	HiveServer2	instance	goes
down,	then	it	must	be	restarted	manually.

See	also
To	read	more	about	HiveServer2	High	Availability,	you	can	refer	to	Hortonwork's	blog	at
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_hadoop-ha/content/ha-hs2-service-
discovery.html.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_hadoop-ha/content/ha-hs2-service-discovery.html

Using	HiveServer2	clients
Once	we	started	HiveServer2,	we	could	connect	to	the	server	with	different	clients	as	per	our
requirements	and	run	Hive	Query	Language	(HiveQL).	The	different	client	includes	beeline,	JDBC,
ODBC,	and	so	on.	We	will	be	going	through	each	client	in	detail.

Getting	ready
This	recipe	requires	Hive	installed	as	described	in	the	Installing	Hive	recipe	of	Chapter	1,	Developing
Hive.	For	connecting	with	HiveServer2	using	a	client,	you	must	run	HiveServer2,	as	described	in	the
Introducing	HiveServer2	recipe	in	this	chapter.

How	to	do	it…
There	are	multiple	ways	of	connecting	with	HiveServer2,	as	described	in	the	following	sections.

Beeline

Beeline	is	a	shell	client	that	could	be	executed	from	the	terminal	by	running	the	following	command:

beeline

Once	you	enter	the	beeline	shell,	you	can	make	a	connection	to	the	HiveServer2	service	as	a	user	using
the	following	command:

!connect	jdbc:hive2://localhost:10000	scott	tiger	org.apache.hive.jdbc.HiveDriver

If	the	connection	is	successful,	then	further	SQL	queries	could	be	executed	in	the	same	way	as	on	Hive
shell,	as	shown	in	the	following	screenshot:

	

The	following	is	the	set	of	common	commands	you	can	execute	from	beeline:

Command Description

Reset This	changes	all	settings	to	default	values

set	<key>=<value> This	sets	a	value	for	a	particular	key

Set
This	displays	the	list	of	all	overridden
settings

set	–v
This	displays	all	Hive	and	Hadoop
configurations

add	FILE[S]	<filepath>	<filepath>*	add	JAR[S]	<filepath>	<filepath>*	add

ARCHIVE[S]	<filepath>	<filepath>*

This	adds	files	or	jars	in	the	distributed
cache	of	Hadoop

list	FILE[S]	list	JAR[S]	list	ARCHIVE[S]
This	lists	files	or	jars	available	in	the
distributed	cache

delete	FILE[S]	<filepath>*	delete	JAR[S]	<filepath>*	delete	ARCHIVE[S]

<filepath>*
This	deletes	files	or	jars	from	the
distributed	cache

dfs	<dfs	command> This	runs	HDFS	commands	from	beeline

<query	string> This	runs	Hive	queries

Beeline	command	options

While	running	the	beeline	command,	there	are	different	options	available	that	you	use	directly	with	the
beeline	CLI:

Command Description

-u	<database	URL> JDBC	URL.	For	example,	jdbc:mysql://localhost:3306/mydb

-n	<username> Username

-p	<password> User	password

-d	<driver	class> The	driver	class

-e	<query> The	query	to	be	in	double	quotes

-f	<file> The	script	file	to	be	executed

--showHeader=[true/false] Whether	to	show	columns	in	the	result

--delimiterForDSV=DELIMITER The	delimiter	for	queries	output	stream;	default	is	'|'.

These	are	the	commonly	used	options.	For	more	options,	type	beeline	--help	on	your	terminal.

The	following	is	the	example	of	beeline	command	option:

1.	 Running	Hive	queries:

beeline	-u	'jdbc:hive2://localhost:10000/default'	-n	root	-p	xxx	-d	

org.apache.hive.jdbc.HiveDriver	-e	"select	*	from	sales;"

	

Here,	"default"	is	the	database	name;	also	replace	localhost	with	the	IP	of	your	HiveServer2
node.

2.	 Running	Hive	scripts:

beeline	-u	'jdbc:hive2://localhost:10000/default'	-n	root	-p	xxx	-d	

org.apache.hive.jdbc.HiveDriver	-f		/opt/hivescript

	

JDBC

A	JDBC	client	allows	connection	to	HiveServer2	from	Java	code.	The	JDBC	connection	could	be	made
in	Remote,	Embedded,	or	HTTP	mode.	The	following	are	the	configurations	for	the	modes:

The	connection	URL	for	Remote	or	Embedded	mode:

For	a	Remote	server,	the	URL	format	is	jdbc:hive2://<host>:<port>/<database>	(default
port	for	HiveServer2	service	is	10000)
For	an	Embedded	server,	the	URL	format	is	jdbc:hive2://	(no	host	or	port)

The	connection	URL	when	HiveServer2	is	running	in	HTTP	mode.
The	JDBC	connection	URL	is:

jdbc:hive2://<host>:<port>/<db>?

hive.server2.transport.mode=http;hive.server2.thrift.http.path=

<http_endpoint>,

The	following	are	description	of	the	JDBC	connection	URL:
<http_endpoint>	is	the	corresponding	HTTP	endpoint	configured	in
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Configuration#AdminManualConfiguration-
ConfiguringHive.	The	default	value	is	cliservice.
The	default	port	for	HTTP	transport	mode	is	10001.

Once	the	connection	mode	is	set,	the	JDBC	connection	in	Java	code	could	be	made	with	the	following
steps:

1.	 Load	the	JDBC	drivers	class:

Class.forName("org.apache.hive.jdbc.HiveDriver");

2.	 Connect	to	the	database	by	creating	a	Connection	object	with	the	JDBC	driver:

Connection	conn		=	DriverManager.getConnection("jdbc:hive2://<host>:<port>",	"

<user>",	"<password>");

Here,	the	default	port	is	10000	and	the	password	is	ignored	if	HiveServer2	is	running	in	a	nonsecure
mode.

3.	 Execute	your	query	as	follows:

Statement	stmt	=	conn.createStatement();

ResultSet	rset	=	stmt.executeQuery("SELECT	fname	FROM	sales");

4.	 Process	the	result	as	returned	in	ResultSet.

JDBC	client	sample	code	using	Eclipse

The	following	are	the	steps	to	create	and	execute	the	Hive	JDBC	client	in	Eclipse:

1.	 Create	a	Maven	project	in	Eclipse	by	going	to	File	|	New	|	Project.

https://cwiki.apache.org/confluence/display/Hive/AdminManual+Configuration#AdminManualConfiguration-ConfiguringHive

	
2.	 Now	search	for	the	Maven	project	by	typing	maven	in	the	search	box,	as	shown	in	the	following

screenshot,	and	click	on	the	Maven	Project.	Now	click	on	the	Next	button	to	continue:

	
3.	 Provide	Group	Id	and	Artifact	Id	for	your	project,	then	select	0.0.1	SNAPSHOT	as	the	Version,	as

shown	in	the	following	screenshot:

	
4.	 Add	the	following	dependencies	in	pom.xml,	as	shown	in	the	following	screenshot:

<dependency>

				<groupId>org.apache.hive</groupId>

				<artifactId>hive-jdbc</artifactId>

				<version>1.2.1</version>

				</dependency>

				<dependency>

				<groupId>org.apache.hadoop</groupId>

				<artifactId>hadoop-common</artifactId>

				<version>2.6.0</version>

</dependency>

	
5.	 Create	the	class	HiveClient	by	following	these	steps:

1.	 Right-click	on	src/main/java	and	then	navigate	to	New	|	Class	to	create	a	new	class	named
HiveClient	in	your	maven	project:

	
2.	 In	the	Name	section,	type	HiveClient	and	click	on	Finish:

	
3.	 Add	the	following	code	to	the	class	HiveClient:

import	java.sql.Connection;

import	java.sql.DriverManager;

import	java.sql.ResultSet;

import	java.sql.SQLException;

import	java.sql.Statement;

public	class	HiveClient	{

				private	static	String	driverName	=	"org.apache.hive.jdbc.HiveDriver";

				public	static	void	main(String[]	args)	{

										try	{

										Class.forName(driverName);

								}	catch	(ClassNotFoundException	e)	{

										e.printStackTrace();

										System.exit(1);

								}

								//replace	"root"	here	with	the	name	of	the	user	the	queries	should	

run	as

								Connection	conn;

								try	{

								conn	=	

DriverManager.getConnection("jdbc:hive2://192.168.56.101:10000/default",	

"root",	"");

								

								Statement	stmt	=	conn.createStatement();

								String	table_name	=	"testtable";

								stmt.execute("drop	table	if	exists	"	+	table_name);

								stmt.execute("create	table	"	+	table_name	+	"	(id	int,	fname	

string,age	int)");

								

								//	1.	show	tables

								String	sqlQuery	=	"show	tables";

								System.out.println("Running	query:	"	+	sqlQuery);

								ResultSet	rst	=	stmt.executeQuery(sqlQuery);

								if	(rst.next())	{

										System.out.println(rst.getString(1));

								}

								

								//	2.	describe	table

								sqlQuery	=	"describe	"	+	table_name;

								System.out.println("Executing	query:	"	+	sqlQuery);

								rst	=	stmt.executeQuery(sqlQuery);

								while	(rst.next())	{

										System.out.println(rst.getString(1)	+	"\t"	+	rst.getString(2));

								}

					

								//	3.	load	data	into	table

									/**	filepath	is	local	to	Hive	server

									NOTE:	/opt/sample_10000.txt	is	a	'\t'	separated	file	with	ID	and	

First	Name	values.	*/

								String	filepath	=	"/opt/sample_10000.txt";

								sqlQuery	=	"load	data	local	inpath	'"	+	filepath	+	"'	into	table	"	

+	table_name;

								System.out.println("Executing	query:	"	+	sqlQuery);

								stmt.execute(sqlQuery);

					

								//	4.	select	*	query

								sqlQuery	=	"select	*	from	"	+	table_name;

								System.out.println("Executing	query:	"	+	sqlQuery);

								rst	=	stmt.executeQuery(sqlQuery);

								while	(rst.next())	{

										System.out.println(String.valueOf(rst.getInt(1))	+	"\t"	+	

rst.getString(2));

								}

					

								//	5.	regular	Hive	query

								sqlQuery	=	"select	count(*)	from	"	+	table_name;

								System.out.println("Running:	"	+	sqlQuery);

								rst	=	stmt.executeQuery(sqlQuery);

								while	(rst.next())	{

										System.out.println(rst.getString(1));

								}

						

				}	catch	(SQLException	e)	{

								e.printStackTrace();

				}

				}

}

Running	the	JDBC	sample	code	from	the	command-line

To	execute	the	client	on	a	Hadoop/Hive	cluster,	you	need	to	run	the	following	command:

java	-cp	$CLASSPATH	HiveClient

Here,	$CLASSPATH	is	the	path	to	the	Hadoop	and	Hive	home	directories.

JDBC	datatypes

The	following	table	lists	the	data	types	implemented	for	HiveServer2	JDBC:

Hive	Type Java	Type Specification

TINYINT byte A	signed	or	unsigned	1-byte	integer

SMALLINT short A	signed	2-byte	integer

INT int A	signed	4-byte	integer

BIGINT long A	signed	8-byte	integer

FLOAT double A	single-precision	number

DOUBLE double A	double-precision	number

DECIMAL java.math.BigDecimal A	fixed-precision	decimal	value

BOOLEAN boolean A	single	bit	(0	or	1)

STRING String A	character	string

TIMESTAMP java.sql.Timestamp The	date	and	time	value

BINARY String Binary	data

ARRAY String	--	json	encoded Values	of	one	data	type

MAP String	--	json	encoded Key-value	pairs

STRUCT String	--	json	encoded Structured	values

Other	clients

Languages	such	as	Python	or	Ruby	could	also	connect	to	HiveServer2	using	the	client	APIs:

Python:	A	Python	client	driver	is	available	on	GitHub	at	https://github.com/BradRuderman/pyhs2.
Ruby	Client:	A	Ruby	client	driver	is	available	on	GitHub	at	https://github.com/forward3d/rbhive.

https://github.com/BradRuderman/pyhs2
https://github.com/forward3d/rbhive

Introducing	the	Hive	metastore	service
In	Hive,	the	data	is	stored	in	HDFS	and	the	table,	database,	schema,	and	other	HQL	definitions	are	stored
in	a	metastore.	The	metastore	could	be	any	RDBMS	database,	such	as	MySQL	or	Oracle.	Hive	creates	a
database	and	a	set	of	tables	in	metastore	to	store	HiveQL	definitions.

There	are	three	modes	of	configuring	a	metastore:

Embedded
Local
Remote

The	detailed	description	and	configuration	steps	of	different	modes	are	available	in	Chapter	1,
Developing	Hive.

How	to	do	it…
The	Hive	metastore	could	be	made	available	as	a	service.	All	you	need	to	do	is	run	the	following
command	on	the	terminal	of	your	machine:

hive	--service	metastore

	

How	it	works…
In	the	case	of	a	remote	metastore	configuration,	all	clients	connect	to	the	metastore	service	to	query	the
underlying	datastore	(MySQL,	Oracle,	and	so	on).	The	communication	is	done	through	the	Thrift
protocol.	At	the	client's	side,	a	user	needs	to	add	the	following	configurations	to	make	the	client	connect
to	a	metastore	service:

Command Description

hive.metastore.uris It	is	used	to	specify	the	URI	of	a	metastore	server

hive.metastore.warehouse.dir It	is	used	to	specify	the	data	location	in	HDFS.	The	default	value	is	/user/hive/warehouse

If	MySQL	is	used	as	a	metastore,	then	the	user	needs	to	add	mysql	connector	jar	to	the	lib	folder	of
Hive.	Also	if	you	want	to	change	the	metastore	port,	you	need	to	start	the	metastore	with	the	following
command:

hive	--service	metastore	-p	<port_num>

If	you	want	to	run	the	metastore	as	a	backend	service,	append	&	at	the	end	of	service:

hive	--service	metastore	-p	<port_num>	&

You	can	verify	whether	the	metastore	service	is	running	or	not	using	the	jps	command.	It	will	run	as	the
RunJar	service,	as	shown	in	the	following	screenshot:

	

Configuring	high	availability	of	metastore
service
The	Hive	metastore	service	is	a	single	point	of	communication	between	different	clients	and	metastore
data.	If	the	metastore	service	is	down	or	unavailable,	then	clients	would	not	be	able	to	run	any	HiveQL	as
metastore	data	is	not	accessible.

How	to	do	it…
The	High	Availability	solution	is	designed	to	provide	the	failover	control	of	the	Hive	metastore	service.
To	configure	metastore	in	the	High	Availability	mode,	you	need	to	concurrently	start	the	metastore	service
on	multiple	machines.	Every	client	will	read	the	hive.metastore.uris	property	from	the	configuration
file.	The	property	could	have	a	comma-separated	list	of	machines	on	which	metastore	services	are
running:

<property>

				<name>hive.metastore.uris</name>

				<value>thrift://$Hive_Metastore_Server_Host_Machine_FQDN</value>

				<description>	A	comma	separated	list	of	metastore	uris	on	which	metastore	

service	is	running.</description>

</property>

Here,	$Hive_Metastore_Server_Host_Machine_FQDN	is	the	comma-separated,	fully	qualified	domain
name	of	machines	on	which	the	Hive	metastores	are	running.

Introducing	Hue
Hadoop	User	Experience	(Hue)	is	an	open	source	web	interface	for	analyzing	data	with	Hadoop	and	its
ecosystem	components.

Hue	brings	together	the	most	common	Apache	Hadoop	components	into	a	single	web	interface.	Its	main
goal	is	to	allow	the	users	to	use	Hadoop	without	worrying	about	underlying	complexity	or	using	a
command-line	interface.

Getting	ready
The	following	are	the	major	features	of	Hue:

The	file	browser	for	HDFS
The	job	browser	for	MapReduce	or	YARN
Query	editors	for	Apache	Hive
Query	editors	for	Apache	Pig
The	Apache	Sqoop2	editor
The	Apache	ZooKeeper	browser
The	Apache	HBase	browser

We	will	focus	on	the	Query	editors	for	Apache	Hive.

How	to	do	it…
To	run	Hue,	there	are	various	steps	that	need	to	be	followed.	The	installation	of	Hue	might	seem	a	little
complex,	but	once	Hue	is	set	up,	it	will	ease	up	the	running	Hive	queries	through	the	web	interface
without	using	terminal	screens.

Prepare	dependencies

If	you	are	installing	Hue	on	Ubuntu,	you	need	to	install	the	following	libraries:

sudo	apt-get	install	-y	ant

sudo	apt-get	install	-y	gcc	g++

sudo	apt-get	install	-y	libkrb5-dev	libmysqlclient-dev

sudo	apt-get	install	-y	libssl-dev	libsasl2-dev	libsasl2-modules-gssapi-mit

sudo	apt-get	install	-y	libsqlite3-dev

sudo	apt-get	install	-y	libtidy-0.99-0	libxml2-dev	libxslt-dev

sudo	apt-get	install	-y	maven

sudo	apt-get	install	-y	libldap2-dev

sudo	apt-get	install	-y	python-dev	python-simplejson	python-setuptools	python-ldap

sudo	apt-get	install		libgmp3-dev

If	you	are	installing	Hue	on	CentOS,	you	need	to	install	and	configure	the	following	libraries:

sudo	yum	install	-y	ant

sudo	yum	install	-y	gcc	g++

sudo	yum		install	python-devel.x86_64

sudo	yum	groupinstall	"Development	Tools"

sudo	yum	install	krb5-devel

sudo	yum	install	libxslt-devel	libxml2-devel

sudo	yum	install	mysql-devel.x86_64	

sudo	yum	install	ncurses-devel	zlib-devel	texinfo	gtk+-devel	gtk2-devel	qt-devel	

tcl-devel	tk-devel	kernel-headers	kernel-devel

sudo	yum	install	gmp-devel.x86_64

sudo	yum	intall	sqlite-devel.x86_64

sudo	yum	install	cyrus-sasl.x86_64

sudo	yum	install	postfix	system-switch-mail	cyrus-imapd	cyrus-plain	cyrus-md5	

cyrus-utils

sudo	yum	install	libevent	libevent-devel	

sudo	yum	install	memcached-devel.x86_64

sudo	yum	install	postfix

sudo	yum	install	cyrus-sasl

sudo	yum	install	cyrus-imapd

sudo	yum	install	openldap-devel

Note

Installing	the	latest	version	of	Maven	is	necessary.

Downloading	and	installing	Hue
1.	 Downloading	the	latest	version	of	Hue	is	important	(which	at	the	time	of	writing	was	3.9).	Run	the

following	command	on	the	machine	on	which	Hue	is	to	be	installed:

wget	https://dl.dropboxusercontent.com/u/730827/hue/releases/3.9.0/hue-

3.9.0.tgz

2.	 Extract	the	Hue	packages	using	the	following	command:

tar	-xzvf	hue-3.9.0.tgz

3.	 Installing	Hue	via	the	following	command:

sudo	make	install

By	default,	Hue	installs	to	/usr/local/hue	in	your	node's	local	filesystem.	Running	the	previous
command	will	give	logs,	as	shown	in	the	following	screenshot:

	
Note

Check	carefully	at	last	of	logs	that	there	is	no	error	message.

The	default	ownership	of	Hue	files	and	folders	is	set	to	the	root	user.

Let's	change	Hue	permissions	so	that	it	can	run	without	root	permissions:

sudo	chown	-R	hadoop:hadoop	/usr/local/hue

Here,	hadoop	is	the	user	name	and	group	name	too.

Configuring	Hive	with	Hue

Hue	contains	a	configuration	file	named	hue.ini	located	at	/usr/local/hue/desktop/conf/hue.ini:

[beeswax]

#	Host	where	HiveServer2	is	running	at:	hive_server_host=localhost

Note

Replace	localhost	by	the	hostname	to	point	to	Hive	running	on	the	other	machine.

Starting	Hue

We	start	the	Hue	server	using	the	supervisor	command	in	Hue's	bin:

cd	/usr/local/hue/build/env/bin

./supervisor

Note

Use	the	-d	switch	to	start	the	Hue	supervisor	in	the	daemon	mode	(as	background	process):

./supervisor	-d

Accessing	Hive	with	Hue

To	access	Hive	via	Hue,	the	URL	format	will	be	http:<HOST_NAME>:8888.	Here,	HOST_NAME	will	be	the
IP	address	or	URL	of	Hive;	for	example,	http://192.168.56.111:8888.

This	would	prompt	for	a	username	and	a	password.	You	can	give	any	username	and	password	of	your
choice.	Remember	the	username	and	password	for	future	reference.	For	example,	you	can	use	the
username	admin	and	the	password	admin	for	the	first	time.

After	successful	login	into	the	Hue	web	interface,	it	will	describe	the	configuration	of	various	supported
components.	For	accessing	Hive	through	the	Hue	web	interface,	HiveServer2	must	be	running.

As	shown	in	the	following	screenshot,	to	access	the	Hive	editor	on	Hue,	click	on	Hive	under	the	Query
Editors	tab:

	

The	left-hand	side	panel	will	show	the	list	of	databases	and	all	tables	of	the	selected	database	in	the
dropdown	icon.	In	the	right-hand	side	panel,	you	can	execute	any	Hive	query	and	retrieve	the	result.

There	is	one	table	named	sales	in	the	default	database.	Now	let's	execute	a	query	on	Hue	to	retrieve
the	result.

For	demonstration	purposes,	let's	retrieve	the	first	and	last	names	of	10	users	from	the	sales	table:

SELECT	fname,	lname	FROM	sales	LIMIT	10;

After	clicking	on	the	Execute	button,	get	the	10	users'	names	from	the	sales	table,	as	shown	in	the
following	screenshot:

	

As	shown	in	the	previous	screenshot,	after	executing	the	query,	it	will	show	the	result	on	the	same	page.
Similarly,	you	can	execute	any	Hive	query	through	this	web	interface	without	using	terminal	screens.

You	can	also	check	the	history	of	recently	executed	queries	through	Hue:

	

As	shown	in	the	preceding	screenshot,	in	the	right	panel,	there	is	a	Recent	queries	tab	where	you	can	see
all	commands	that	have	recently	been	executed.	You	can	also	check	the	results	of	particular	query	by
clicking	on	See	results.

Chapter	3.	Understanding	the	Hive	Data	Model
In	this	chapter,	we	will	cover	the	following	recipes:

Using	numeric	data	types
Using	string	data	types
Using	Date/Time	data	types
Using	miscellaneous	data	types
Using	complex	data	types
Using	operators
Partitioning
Partitioning	a	managed	table
Partitioning	an	external	table
Bucketing

Introduction
In	previous	chapters,	you	learned	the	installation	of	different	Hive	components	such	as	Hive	metastore,
HiveServer2,	and	working	with	different	services	in	Hive.

In	this	chapter,	we	will	cover	the	following	sub	topics:

Using	data	types
Using	operators
Partitioning
Bucketing

Introducing	data	types
Hive	supports	various	data	types	that	are	primarily	divided	into	two	parts:

Primitive	data	types
Complex	data	types

Hive	supports	many	primitive	data	types	that	are	similar	to	relational	databases,	such	as	INT,	SMALLINT,
TINYINT,	BIGINT,	BOOLEAN,	FLOAT,	and	DOUBLE.	In	addition	to	primitive	data	type,	Hive	also	supports
few	complex	data	types,	such	as	ARRAY,	MAP,	STRUCT,	and	UNION.

Primitive	data	types

Hive	supports	large	number	of	primitive	data	types,	which	are	divided	into	the	four	following	different
categories:

Numeric	data	types
String	data	types
Date/Time	data	type
Miscellaneous	data	types

All	these	primitive	data	types	are	similar	to	RDBMS	primitive	data	types.

Complex	data	types

The	following	are	the	three	complex	data	types	supported	by	Hive:

STRUCT
MAP
ARRAY

Using	numeric	data	types
Hive	supports	a	set	of	data	types	that	can	be	used	for	table	columns,	expression	values,	and	function
arguments,	and	return	values.

In	the	following	table,	primitive	numeric	data	types	are	listed	with	sizes	and	examples:

Data	Type Size Example

TINYINT 1-byte	signed	integer 50

SMALLINT 2-byte	signed	integer 20,000

INT 4-byte	signed	integer 1,000

BIGINT 8-byte	signed	integer 50,000

FLOAT 4-byte	single-precision	floating	point 400.50

DOUBLE 8-byte	double-precision	floating	point 20,000.50

DECIMAL 17-byte	precision	up	to	38	digits DECIMAL(20,2)

By	default,	all	integral	literals	are	treated	as	the	INT	values	until	they	cross	the	range	of	INT	values.	If
some	integral	literal	crosses	the	range	of	the	INT	value,	then	it	is	treated	as	the	BIGINT	value.	There	is	a
mechanism	of	postfix,	which	is	used	to	specify	an	integral	literal	as	TINYINT,	SMALLINT,	and	BIGINT.

To	specify	an	integral	literal	as	TINYINT,	the	postfix	Y	is	used.	For	example,	you	can	specify	50	as	50Y.

To	specify	an	integral	literal	as	SMALLINT,	the	postfix	S	is	used.	For	example,	you	can	specify	50	as	50S.

To	specify	an	integral	literal	as	BIGINT,	the	postfix	L	is	used.	For	example,	you	can	specify	50	as	50L.

The	DECIMAL	data	type	is	defined	using	the	fixed	precision	and	scale	value.	It	is	very	useful	for	financial
and	other	arithmetic	use	cases	where	Float	and	Double	don't	meet	all	requirements.	The	DECIMAL	data
type	is	defined	using	a	DECIMAL(precision,	scale)	syntax.	The	Default	value	of	scale	is	0,	which
means	no	fractional	digits,	and	the	default	value	of	precision	is	10,	which	means	10	digits.	Therefore,
the	default	DECIMAL	with	no	precision	or	scale	values	is	equivalent	to	DECIMAL(10,0).	The
precision	value	must	be	between	1	and	38.	For	example,	to	represent	integer	values	up	to	9999	and
floating	point	values	up	to	99.99,	both	require	a	precision	of	4.	The	maximum	integral	value	for	decimal
is	represented	by	DECIMAL(38,0),	that	is,	999	with	9	repeated	38	times.

How	to	do	it…
The	following	are	the	few	examples	for	using	primitive	data	types	in	Hive.

The	following	statement	creates	a	table	named	customer	with	id	as	the	BIGINT	data	type	and	age	as	the
TINYINT	data	type:

CREATE	TABLE	customer	(id	BIGINT,	age	TINYINT);

The	following	statement	creates	a	table	customer_order	table	with	id	as	the	BIGINT	data	type	and
price	as	the	DECIMAL	data	type:

CREATE	TABLE	customer_order	(id	BIGINT,	price	DECIMAL(10,2));

Using	string	data	types
Hive	supports	three	types	of	String	data	type,	STRING,	VARCHAR,	and	CHAR:

STRING:	It	is	a	sequence	of	characters	that	can	be	expressed	using	single	quotes	(')	as	well	as
double	quotes	(").
VARCHAR:	It	is	variable-length	character	type.	It	is	defined	using	a	length	specifier,	which
specifies	the	maximum	number	of	characters	allowed	in	the	character	string.	Its	syntax	is
VARCHAR(max_length).	The	value	of	the	varchar	data	type	gets	truncated	during	processing	if
necessary	to	fit	within	the	specified	length.	While	converting	the	string	value	to	the	varchar	value,	if
a	string	value	exceeds	the	length	specifier,	then	the	string	gets	silently	truncated.	The	maximum	length
of	varchar	type	is	65355.
CHAR:	It	is	fixed-length	character	type.	It	is	defined	in	the	same	way	as	the	varchar	type.	If	the
value	is	shorter	as	compared	with	the	specified	length,	then	the	value	is	padded	with	trailing	spaces
to	achieve	the	specified	length.	The	maximum	length	of	the	char	type	is	255.

Note

The	varchar	and	char	data	type	cannot	be	used	in	a	nongeneric	User-Defined	Function	(UDF)	or	User-
Defined	Aggregate	(UDA)	function.

How	to	do	it…
The	following	is	an	example	of	using	String	data	types	in	Hive:

CREATE	TABLE	customer	(id	BIGINT,	name	String,	sex	CHAR(6),	role	VARCHAR(64));

The	preceding	statement	creates	a	table,	customer,	with	id	as	the	BIGINT	data	type,	name	as	the	String
data	type,	sex	as	the	CHAR	data	type,	and	role	as	the	VARCHAR	data	type.

How	it	works…
If	you	declare	a	field	of	the	CHAR	(12)	data	type,	then	it	will	always	take	12	bytes	irrespective	of	size	of
data	you	store.	For	example,	whether	you	store	the	1	character	or	the	12	character	in	the	CHAR(12)	field,
it	will	take	12	bytes	in	both	the	cases.	Also,	because	the	field	is	declared	as	the	CHAR(12)	data	type,	we
can	store	a	maximum	of	12	characters	in	this	column.

On	the	other	hand,	VARCHAR	is	a	variable-length	data	type.	It	takes	storage	equal	to	the	actual	size	of	the
field.	For	example,	if	you	declare	a	field	of	the	VARCHAR	(12)	data	type,	it	will	take	the	number	of	bytes
equal	to	the	number	of	characters	stored	in	this	column.	For	example,	if	you	store	only	one	character	in
this	column,	then	it	will	take	only	1	byte	and	if	you	store	10	characters,	then	it	will	take	10	bytes.	Also	if	a
field	is	declared	as	the	VARCHAR(n)	data	type,	then	a	maximum	of	n	characters	can	be	stored	in	this
column.

Using	Date/Time	data	types
Hive	supports	two	data	types	for	Date/Time-related	fields—Timestamp	and	Date:

The	Timestamp	data	type	is	used	to	represent	a	particular	time	with	the	date	and	time	value.	It	supports
variable-length	encoding	of	the	traditional	UNIX	timestamp	with	an	optional	nanosecond	precision.

It	supports	different	conversions.	The	timestamp	value	provided	as	an	integer	numeric	type	is	interpreted
as	a	UNIX	timestamp	in	seconds;	a	timestamp	value	provided	as	a	floating	point	numeric	type	is
interpreted	as	a	UNIX	timestamp	in	seconds	with	decimal	precision;	the	timestamp	value	provided	as
string	is	interpreted	as	the	java.sql.Timestamp	format	YYYY-MM-DD	HH:MM:SS.fffffffff.

If	the	timestamp	value	is	in	another	format	than	yyyy-mm-dd	hh:mm:ss[.f...],	then	UDF	can	be	used	to
convert	them	to	the	timestamp	format.	The	Date	type	is	used	to	represent	only	the	date	part	of	timestamp,
that	is,	YYYY-MM-DD.	This	type	doesn't	represent	the	time	of	day	component.	The	Date	ranges	allowed	are
0000-01-01	to	9999-12-31.

The	Date	types	can	be	casted	in	the	Date,	Timestamp,	or	String	types	and	vice	versa.

How	to	do	it…
The	following	is	an	example	of	using	the	Date	and	Timestamp	data	types	in	Hive:

CREATE	TABLE	timestamp_example	(id	int,	created_at	DATE,	updated_at	TIMESTAMP);

Using	miscellaneous	data	types
Hive	supports	two	miscellaneous	data	types:	Boolean	and	Binary:	Boolean	accepts	true	or	false
values.

Binary	is	a	sequence	of	bytes.	It	is	similar	to	the	VARBINARY	data	type	found	in	many	relational
databases.	If	a	field	is	declared	as	the	binary	type,	then	it	is	stored	within	a	record,	not	separately	like
BLOBs.	The	binary	data	type	is	used	when	a	record	has	hundreds	of	columns,	and	the	user	is	just
interested	in	a	few	columns	and	doesn't	bother	about	an	exact	type	information	of	other	columns.	In	such
cases,	a	user	can	define	the	type	of	those	columns	as	binary,	so	Hive	will	not	try	to	interpret	those
columns.	It	is	used	to	include	the	arbitrary	types	in	record,	and	Hive	doesn't	attempt	to	parse	them	as
numbers,	strings,	and	so	on.

How	to	do	it…
The	following	is	the	example	in	order	to	use	the	Boolean	data	types	in	Hive:

CREATE	TABLE	example	(id	INT,	status	BOOLEAN,	description	STRING);

The	preceding	statement	creates	a	table,	example,	with	the	status	as	the	Boolean	data	type.

Using	complex	data	types
In	addition	to	primitive	data	types,	Hive	also	supports	a	few	complex	data	types:	Struct,	MAP,	and
Array.	Complex	data	types	are	also	known	as	collection	data	types.	Most	relational	databases	don't
support	such	data	types.

Complex	data	types	can	be	built	from	primitive	data	types:

STRUCT:	The	struct	data	type	in	Hive	is	analogous	to	the	STRUCT	in	C	programming	language.	It	is	a
record	type	that	holds	a	set	of	named	fields	that	can	be	of	any	primitive	data	types.	Fields	in	the
STRUCT	type	are	accessed	using	the	DOT	(.)	notation.

Syntax:	STRUCT<col_name	:	data_type	[COMMENT	col_comment],	...>

For	example,	if	a	column	address	is	of	the	type	STRUCT	{city	STRING;	state	STRING},	then	the
city	field	can	be	referenced	using	address.city.
MAP:	The	map	data	type	contains	key-value	pairs.	In	Map,	elements	are	accessed	using	the	keys.	For
example,	if	a	column	name	is	of	type	Map:	'firstname'	->	'john'	and	'lastname'	->	'roy',
then	the	last	name	can	be	accessed	using	the	name	['lastname'].
ARRAY:	This	is	an	ordered	sequence	of	similar	elements.	It	maintains	an	index	in	order	to	access	the
elements;	for	example,	an	array	day,	containing	a	list	of	elements	['Sunday',	'Monday',
'Tuesday',	'Wednesday'].	In	this,	the	first	element	Sunday	can	be	accessed	using	day[0],	and
similarly,	the	third	element	can	be	accessed	using	day[2].
UNIONTYPE:	This	data	type	enables	you	to	store	different	data	types	in	the	same	memory	location.	It
is	an	efficient	way	of	using	the	same	memory	location	for	multipurpose.	It	is	similar	to	Unions	in	the
C	programming	language.	You	can	define	a	union	type	with	many	data	types,	but	at	a	time,	only	one
data	type	can	be	hold	by	it.

Syntax:	UNIONTYPE<data_type,	data_type,	...>

How	to	do	it…
The	following	are	some	different	examples	of	how	to	use	complex	data	types:

1.	 To	create	a	customer	table	with	name	as	the	struct	data	type,	the	following	command	can	be	used:

CREATE	TABLE	customer(id	INT,	name	STRUCT<firstname:STRING,	lastname:STRING>);

Here,	the	column	name	is	of	the	type	STRUCT	with	two	fields—firstname	and	lastname—then	the
firstname	field	can	be	referenced	using	name.firstname.	Similarly,	the	lastname	field	can	be
referenced	using	name.lastname.

Let's	create	a	table	test	with	the	usage	of	different	data	types,	such	as	int,	double,	array,	and
struct	as	uniontype.

CREATE	TABLE	test(column1	UNIONTYPE<int,	double,	array<string>,	

struct<age:int,country:string>>);

When	we	retrieve	the	data,	it	will	return	the	result	with	index	of	data	type	and	value.	The	first	part	will
give	the	information	about	which	part	of	union	is	being	used.	In	the	following	example,	index	0	means
the	first	data_type	from	the	definition,	which	is	an	int,	and	index	1	means	the	second	data	type,	which
is	double,	and	so	on:

SELECT	column1	FROM	test;

{1:6.0}																										//	For	second	data	type	DOUBLE

{0:5}																												//	For	first	data	type	INT

{2:["sunday","monday"]}										//	For	third	data	type	ARRAY

{3:{"age":28,"country":"INDIA"}}	//	For	fourth	data	type	STRUCT

{2:["tuesday","wednesday"]}						//	For	third	data	type	ARRAY

{3:{"age":21,"country":"US"}}				//	For	fourth	data	type	STRUCT

{0:3}																												//	For	first	data	type	INT

{1:6.5}																										//	For	second	data	type	DOUBLE

Using	operators
Hive	supports	various	built-in	operators.	There	are	four	types	of	operator	in	Hive:

Relational	operators
Arithmetic	operators
Logical	operators
Complex	operators

Using	relational	operators
Relational	operators	are	used	to	compare	two	operands.	The	output	of	comparison	produces	TRUE	or
FALSE	depending	on	the	comparison	of	operands.

The	following	table	describes	relational	operators	available	in	Hive:

Operator Operand
Type Description

A	=	B
All	primitive
data	types This	returns	True	if	primitives	are	equal,	otherwise	False.

A	!=	B
All	primitive
data	types This	returns	True	if	primitive	A	is	not	equal	to	B,	False	otherwise.	It	would	return	Null	if	A	or	B	is	NULL.

A	<=>	B
All	primitive
data	types

This	returns	the	same	result	as	the	EQUAL	operator	for	non-null	primitives.	It	would	return	TRUE	if	both	A	and
B	are	NULL,	FALSE	if	one	of	the	primitives	among	A	and	B	is	NULL.

A	<>	B
All	primitive
data	types This	returns	the	same	result	as	the	NOT	EQUAL	(!=)	operator.

A	<	B
All	primitive
data	types

This	returns	NULL	if	either	primitive	A	or	B	is	NULL.

It	would	return	TRUE	if	the	expression	A	is	less	than	B.	Otherwise,	it	would	return	FALSE.

A	<=	B
All	primitive
data	types

This	returns	NULL	if	any	of	primitive	A	or	B	is	NULL.	It	would	return	TRUE	if	the	expression	A	is	less	than	or
equal	to	the	expression	B,	otherwise	FALSE.

A	>	B
All	primitive
data	types

This	returns	TRUE	if	the	expression	A	is	greater	than	the	expression	B,	otherwise	FALSE.

It	would	return	NULL	if	primitive	A	or	B	is	NULL.

A	>=	B
All	primitive
data	types

This	returns	TRUE	if	the	expression	A	is	greater	than	or	equal	to	the	expression	B,	otherwise	FALSE.

It	would	return	NULL	if	primitive	A	or	B	is	NULL.

A	BETWEEN	B

AND	C

All	primitive
data	types

This	returns	TRUE	if	the	value	of	A	lies	within	B	and	C,	otherwise	FALSE.

It	would	return	NULL	if	primitive	A,	B,	or	C	is	NULL.

A	NOT	BETWEEN

B	AND	C

All	primitive
data	types

This	returns	TRUE	if	A	doesn't	lie	between	B	and	C,	otherwise	FALSE.

It	would	return	NULL	if	primitive	A,	B,	or	C	is	NULL.

A	IS	NULL
All	primitive
data	types It	will	return	TRUE	if	the	expression	A	evaluates	to	NULL;	otherwise;	it	would	return	FALSE.

All	primitive It	will	return	FALSE	if	the	expression	A	evaluates	to	NULL;	otherwise,	it	would	return	TRUE.

A	IS	NOT	NULL data	types

A	LIKE	B String
This	returns	TRUE	if	the	string	A	matches	the	SQL	regular	expression	B;	otherwise,	it	would	return	FALSE.

It	would	return	NULL	if	primitive	A	or	B	is	NULL.

A	NOT	LIKE	B String
This	returns	TRUE	if	string	A	does	not	match	the	SQL	regular	expression	B,	otherwise	FALSE.

It	would	return	NULL	if	primitive	A	or	B	is	NULL.

A	RLIKE	B String

This	returns	TRUE	if	any	substring	(possibly	empty)	of	A	matches	the	specified	Java	regular	expression	B,
otherwise	FALSE.

It	would	return	NULL	if	primitive	A	or	B	is	NULL.

For	example,	'hivefunction'	RLIKE	'hive'	will	return	TRUE.

A	REGEXP	B String It	is	the	same	as	RLIKE.

How	to	do	it…
Let's	assume	that	the	customer	table	is	composed	of	fields	named	id,	name,	gender,	and	age,	as	shown
in	the	following	table.	Generate	a	query	to	retrieve	the	customer	details	whose	age	is	41:

id name gender Age

1 Kate Male 35

2 John Male 41

3 Mike Male 50

4 Dave Male 32

The	following	statement	will	get	the	job	done:

hive>	SELECT	*	FROM	customer	WHERE	age	=	41	AND	gender	=	'Male';

On	the	successful	execution	of	a	query,	you	will	get	the	following	response:

Id name gender age

2 John Male 41

In	the	following	SQL	statement,	we	are	trying	to	get	the	details	of	those	customers	whose	age	is	between
30	and	40:

hive>	SELECT	*	FROM	customer	WHERE	age	BETWEEN	30	AND	40;

On	the	successful	execution	of	a	query,	you	will	get	the	following	response:

id name gender age

1 Kate Male 35

4 Dave Male 32

The	following	statement	will	return	the	details	of	those	customers,	whose	names	start	with	k:

hive>	SELECT	*	FROM	customer	WHERE	name	LIKE	'k%';

On	the	successful	execution	of	a	query,	you	will	get	the	following	response:

id name gender age

1 Kate Male 35

Using	arithmetic	operators
Arithmetic	operators	are	used	to	perform	arithmetic	operations	on	operands	such	as	addition,	subtraction,
multiplication,	division,	and	so	on.	All	these	types	of	operators	return	numbers.

If	any	operand	is	NULL	while	performing	arithmetic	operations,	then	result	will	also	be	NULL.

The	following	table	describes	arithmetic	operators	available	in	Hive:

Operator Operand	Type Description

A	+	B Numeric	data	types It	gives	the	sum	(addition)	of	A	and	B

A	-	B Numeric	data	types It	gives	the	difference	between	(subtraction)	B	and	A

A	*	B Numeric	data	types It	gives	the	multiplication	of	A	and	B

A	/	B Numeric	data	types It	gives	the	division	of	A	by	B

A	%	B Numeric	data	types It	gives	the	remainder	value	resulting	from	the	division	of	A	by	B

A	&	B Numeric	data	types It	gives	the	result	of	a	bitwise	AND	operation	of	the	operands	A	and	B

A	|	B Numeric	data	types It	gives	the	result	of	a	bitwise	OR	operation	of	the	operands	A	and	B

A	^	B Numeric	data	types It	gives	the	result	of	a	bitwise	XOR	operation	of	the	operands	A	and	B

~A Numeric	data	types It	gives	the	result	of	a	bitwise	NOT	operation	of	the	operand	A

How	to	do	it…

The	following	are	a	few	simple	examples	to	use	arithmetic	operators	in	Hive:

1.	 To	add	two	numbers,	execute	the	following	command:

hive>	SELECT	10+10	ADD	FROM	test;

After	executing	this	query,	you	will	get	the	result	20.	Similarly,	you	can	give	two	or	more	column
names	to	get	the	sum	of	their	values.

2.	 To	multiply	two	numbers,	we	will	use	the	following	command:

hive>	SELECT	10*10	MULTIPLE	FROM	test;

After	executing	this	query,	you	will	get	the	result	100.	Similarly,	you	can	give	two	or	more	column
names	to	multiply	their	values.

Note

This	is	just	an	example,	To	get	output	of	this	command	table	must	have	at	least	one	row.	Valid	use	cases
for	arithmetic	operator	are	in	where	clauses	or	doing	some	complex	operations.

Using	logical	operators
Logical	operators	are	used	for	logical	operations	AND,	OR,	and	so	on.	All	these	types	of	operators	return
TRUE	or	FALSE.

If	any	operand	is	NULL	while	performing	logical	operations,	then	result	will	also	be	NULL.

The	following	table	describes	the	logical	operators	available	in	Hive:

Operator Operand	Type Description

A	AND	B Boolean It	will	return	TRUE	in	case	of	both	A	and	B	is	TRUE,	otherwise	FALSE.

A	&&	B Boolean Same	as	A	AND	B

A	OR	B Boolean It	will	return	TRUE	if	either	A	or	B	are	TRUE	or	both	are	TRUE,	otherwise	FALSE

A	||	B Boolean Same	as	A	OR	B

NOT	A Boolean
It	will	return	TRUE	if	A	is	FALSE.

It	will	return	NULL	if	A	is	NULL,	otherwise	FALSE.

!	A Boolean Same	as	NOT	A

A	IN	(value1,	value2,	…) Boolean It	will	return	TRUE	if	the	value	of	A	is	equal	to	any	of	the	given	values.

A	IN	(subquery) Boolean It	will	return	TRUE	if	A	is	equal	to	any	of	the	values	returned	by	subquery.

A	NOT	IN	(value1,	value2,	…) Boolean It	will	return	TRUE	if	the	value	of	A	is	not	equal	to	any	of	the	given	values.

A	NOT	IN	(subquery) Boolean It	will	return	TRUE	if	the	value	of	A	is	not	equal	to	any	of	the	values	returned	by	subquery.

EXISTS	(subquery) Boolean It	will	return	TRUE	if	the	the	subquery	returns	at	least	one	record.

NOT	EXISTS	(subquery) Boolean It	will	return	TRUE	if	the	subquery	returns	no	record.

How	to	do	it…
Let's	assume	that	the	customer	table	is	composed	of	fields	named	id,	name,	gender,	and	age.

The	following	are	some	examples	of	using	logical	operators:

Select	all	customers	of	age	21,	41,	and	60:

hive>	SELECT	*	FROM	customer	where	age	IN	(21,41,60);

On	the	successful	execution	of	query,	you	will	get	the	following	response:

Id Name Gender Age

2 John Male 41

Select	all	the	male	customers	of	age	more	than	40:

hive>	SELECT	*	FROM	customer	WHERE	gender	=	'Male'	AND	age	>	40;

On	the	successful	execution	of	a	query,	you	will	get	the	following	response:

Id name gender age

2 John Male 41

3 Mike Male 50

Using	complex	operators
Complex	operators	are	used	to	access	the	elements	of	complex	type.

The	following	table	describes	complex	operators	available	in	Hive:

Operator Operand	type Description

A[i]
A	is	an	array	object,	and	i	is	the	index	of	an	element	in	the
array. It	will	return	the	element	at	the	i	index	of	array.

M[key] M	is	the	map	object,	that	is,	key-value 	pair. It	will	return	the	value	corresponding	to	the	specified	key	in	the
map.

S.a S	is	the	Struct	object. Returns	the	a	field	of	S.

How	to	do	it…
Let's	first	create	a	table,	person,	with	different	complex	types:

CREATE	TABLE	person	(

				id	INT,

				phones	ARRAY<INT>,

				otherDetails	MAP<STRING,	STRING>,

				address	STRUCT<street:STRING,	city:STRING,	state:STRING>

);

Now	to	access	the	different	values	of	complex	type	attribute,	different	complex	operators	can	be	used.

To	access	an	alternative	phone	number	of	a	user,	execute	the	following	command:

hive>	SELECT	phones[1]	FROM	person;

Let's	assume	that	the	person	has	some	other	details	such	as	hometown='HG'	and
preference="homepage",	then	we	can	access	each	element	using	the	particular	key	of	the
otherDetails	field:

hive>	SELECT	otherDetails['	hometown']	FROM	person;

To	access	city	of	a	person	from	the	address	attribute,	execute	the	following	command:

hive>	SELECT	address.city	FROM	person;

Partitioning
Partitioning	in	Hive	is	used	to	increase	query	performance.	Hive	is	very	good	tool	to	perform	queries	on
large	datasets,	especially	datasets	that	require	a	scan	of	an	entire	table.	Generally,	users	are	aware	of
their	data	domain,	and	in	most	of	cases	they	want	to	search	for	a	particular	type	of	data.	For	such	cases,	a
simple	query	takes	large	time	to	return	the	result	because	it	requires	the	scan	of	the	entire	dataset.	The
concept	of	partitioning	can	be	used	to	reduce	the	cost	of	querying	the	data.	Partitions	are	like	horizontal
slices	of	data	that	allows	the	large	sets	of	data	as	more	manageable	chunks.

Table	partitioning	means	dividing	the	table	data	into	some	parts	based	on	the	unique	values	of	particular
columns	(for	example,	city	and	country)	and	segregating	the	input	data	records	into	different	files	or
directories.

Getting	ready
This	recipe	requires	Hive	installed	as	described	in	the	Installing	Hive	recipe	of	Chapter	1,	Developing
Hive.	You	will	also	need	Hive	CLI	or	the	Beeline	client	to	run	the	commands.

How	to	do	it…
Partitioning	in	Hive	is	done	using	the	PARTITIONED	BY	clause	in	the	create	table	statement	of	table.
Table	can	have	one	or	more	partitions.	A	table	can	be	partitioned	on	the	basis	of	one	or	more	columns.
The	columns	on	which	partitioning	is	done	cannot	be	included	in	the	data	of	table.	For	example,	you	have
the	four	fields	id,	name,	age,	and	city,	and	you	want	to	partition	the	data	on	the	basis	of	the	city	field,
then	the	city	field	will	not	be	included	in	the	columns	of	create	table	statement	and	will	only	be	used	in
the	PARTITIONED	BY	clause.	You	can	still	query	the	data	in	a	normal	way	using	where	city=xyz.	The
result	will	be	retrieved	from	the	respective	partition	because	data	is	stored	in	a	different	directory	with
the	city	name	for	each	city.

If	you	try	to	repeat	the	table	column	in	partitioning	columns,	then	Hive	will	throw	the	error,	FAILED:
Error	in	semantic	analysis:	Column	repeated	in	partitioning	columns:

CREATE	[EXTERNAL]	TABLE	[IF	NOT	EXISTS]	[database_name.]table_name

		[(column_name	data_type	[COMMENT	column_comment],	...)]

		[PARTITIONED	BY	(column_name	data_type	[COMMENT	column_comment],	...)];

There	are	two	main	types	of	table	in	Hive—Managed	tables	and	External	tables.	Both	tables	support
partitioning	mechanism.

Partitioning	a	managed	table
Managed	tables	can	be	partitioned	using	the	PARTITIONED	BY	clause.	In	a	managed	table,	if	you	delete	a
table,	then	the	data	of	that	table	will	also	get	deleted.	Similarly,	if	you	delete	a	partition,	then	the	data	of
that	partition	will	also	get	deleted.

How	to	do	it…
Let's	take	an	example	of	the	customer	table	data	and	imagine	that	we	have	the	data	of	different	customers
of	different	country.	Now	if	we	don't	enable	any	partitioning,	then	by	default,	all	data	will	go	into	one
directory.	Let's	assume	that	data	size	is	around	1	TB.	Now	if	we	query	for	customers	belonging	to	India,
then	this	query	will	be	executed	on	entire	data	of	1	TB	size	and	this	query	will	take	more	time.	By
enabling	partitioning	this	query,	execution	can	be	much	faster.	If	we	want	to	split	the	data	on	the	country
basis,	then	the	following	command	can	be	used	to	create	a	table	with	the	partitioned	column	country:

CREATE	TABLE	customer(id	STRING,	name	STRING,	gender	STRING,	state	STRING)	

PARTITIONED	BY	(country	STRING);

The	partitioning	of	tables	changes	the	structure	of	storing	the	data.	A	root-level	directory	structure
remains	the	same	as	a	normal	table;	for	example,	if	we	create	this	customer	table	in	the	xyz	database,
there	will	be	a	root-level	directory,	as	shown	here:

hdfs://hadoop_namenode_server/user/hive/warehouse/xyz.db/customer

However,	Hive	will	now	create	subdirectories	reflecting	the	partitioning	structure,	for	example:

.../customer/country=OI

.../customer/country=UK

.../customer/country=IN

...

These	subdirectories	have	the	data	of	respective	countries.	Now	if	a	query	is	executed	for	a	particular
country,	then	only	a	selected	partition	will	be	used	to	return	the	query	result.

One	more	interesting	thing	is	that	partitioning	can	also	be	done	on	the	basis	of	multiple	parameters.	In	the
preceding	example,	we	have	a	field,	state,	in	a	customer	record.	Now	if	we	want	to	keep	the	data	of
each	state	in	different	file	for	each	country,	then	we	can	partition	the	data	on	the	country	as	well	as
state	attributes.	The	following	command	can	be	used	for	this	purpose:

CREATE	TABLE	customer(id	STRING,	name	STRING,	gender	STRING)	PARTITIONED	BY	

(country	STRING,	state	STRING);

Note

We	have	not	included	the	country	and	state	columns	in	the	schema	of	table	as	these	columns	are
defined	as	the	partition	keys.	If	we	try	to	include	these	columns	in	schema	as	well,	then	we	will	get	the
following	error:	FAILED:	SemanticException	[Error	10035]:	Column	repeated	in
partitioning	columns.

Hive	will	now	create	subdirectories	for	state	as	well.	Consider	the	following	example:

.../customer/country=OI/state=AB

.../customer/country=OI/state=DC

.../customer/country=UK/state=JR

.../customer/country=IN/state=UP

.../customer/country=IN/state=DL

.../customer/country=IN/state=RJ

...

The	following	query	selects	all	the	customers	in	the	state	of	Delhi	from	the	country	India:

SELECT	*	FROM	customer	WHERE	country	=	'IN'	AND	state	=	'DL';

This	query	will	return	the	result	only	from	a	particular	partition.

Data	partitioning	is	mainly	done	for	the	fast	execution	of	queries.	In	the	case	of	very	large	datasets,	a
partitioning	mechanism	can	improve	query	performance	very	effectively.

Predicates	added	to	the	WHERE	clauses	that	filter	on	partition	values	are	named	partition	filters.

When	you	have	large	data	with	high	number	of	partitions,	executing	query	without	any	partition	filters
might	trigger	an	enormous	MapReduce	job.	To	avoid	such	cases,	there	is	the	map-reduce	mode
configuration	hive.mapred.mode,	which	prevents	running	risky	queries	on	Hive.	The	default	value	of
hive.mapred.mode	is	set	to	nonstrict.	This	mode	specifies	how	Hive	operations	are	being	performed.
By	setting	the	value	of	hive.mapred.mode	to	strict,	it	will	prevent	running	risky	queries.	For	example,	in
strict	mode,	you	cannot	run	a	full	table	scan	query:

hive>	set	hive.mapred.mode=strict;

hive>	SELECT	*	FROM	customer	c;

FAILED:	Error	in	semantic	analysis:	No	partition	predicate	found	for	Alias	"c"	

Table	"customer"

hive>	set	hive.mapred.mode=nonstrict;

hive>	SELECT	*	FROM	customer	c;

21	john	m	RJ	IN

...

Listing	partitions'	information	of	a	table:SHOW	PARTITIONS	command	can	be	used	to	list	all	partitions
of	a	table:

hive>	SHOW	PARTITIONS	customer

country=US/state=AB

country=US/state=DC

country=UK/state=JR

country=IN/state=UP

country=IN/state=DL

country=IN/state=RJ

...

When	you	have	a	lot	of	partitions	and	you	want	to	filter	out	the	partitions	with	a	specific	key	or	you	want
to	check	whether	partitions	have	been	created	for	a	specific	partition	key	then	you	can	further	restrict	the
command	with	an	optional	PARTITION	clause	that	specifies	one	or	more	partitions	with	specific	values:

hive>	SHOW	PARTITIONS	customer	PARTITION(country	=	'US')

country=US/state=AB

country=US/state=DC

...

hive>	SHOW	PARTITIONS	customer	PARTITION(country	=	'US',	state='DC')

country=US/state=DC

Note

If	the	table	is	not	a	partitioned	table,	then	the	SHOW	PARTITIONS	command	will	throw	the	error	FAILED:
Execution	Error,	return	code	1	from	org.apache.hadoop.hive.ql.exec.DDLTask.	The	table
sales	is	not	a	partitioned	table.

To	check	which	columns	are	defined	as	partitioning	columns,	the	DESCRIBE	<table-name>	command	can
be	used:

hive>	DESCRIBE	customer;

OK

id								string

name						string

gender				string

country			string

state					string

#	Partition	Information

#	col_name				data_type

country			string

state					string

Adding	new	partitions

The	following	command	can	be	used	to	add	new	partitions	to	a	table:

ALTER	TABLE	table_name	ADD	[IF	NOT	EXISTS]	PARTITION	partition_spec

				[LOCATION	'loc1']	partition_spec	[LOCATION	'loc2']	...;

partition_spec:

				:	(partition_column	=	partition_column_value,	partition_column	=	

partition_column_value,	...)

You	can	add	multiple	partitions	to	a	table	using	the	preceding	command.

Renaming	partitions

The	following	command	can	be	used	to	rename	a	partition:

ALTER	TABLE	table_name	PARTITION	partition_spec	RENAME	TO	PARTITION	partition_spec;

Exchanging	partitions

You	can	also	exchange	partitions	from	one	table	to	another	table:

ALTER	TABLE	table_name_1	EXCHANGE	PARTITION	(partition_spec)	WITH	TABLE	

table_name_2;

Using	the	preceding	statement,	the	data	is	moved	from	the	target	table	to	the	source	table.	Both	tables
should	have	the	same	schema.	The	source	table	should	not	have	existed	partition	specified	in	the
preceding	statement:

ALTER	TABLE	table1	EXCHANGE	PARTITION	(ct='1')	WITH	TABLE	table2;

This	command	moves	the	data	from	table2	to	table1@ct=1.	If	table@ct=1	is	already	exists	or	the
schema	of	table1	and	table2	is	different,	then	this	operation	will	be	failed.

Dropping	the	partitions

You	can	drop	the	partitions	using	the	following	command:

ALTER	TABLE	table_name	DROP	[IF	EXISTS]	PARTITION	partition_spec[,	PARTITION	

partition_spec,	...]	[IGNORE	PROTECTION]	[PURGE];

The	preceding	statement	deletes	the	actual	data	and	metadata	of	the	specified	partition.	If	trash	is
configured,	then	data	will	be	moved	to	the	.Trash/Current	directory.	If	the	PURGE	option	is	specified	in
the	preceding	command,	then	the	partition	data	will	not	go	to	the	.Trash/Current	directory.	This	means
that	data	cannot	be	retrieved	in	the	event	of	a	mistaken	drop.

Loading	data	in	a	managed	partitioned	table

There	are	two	ways	of	creating	partitions	in	a	table:

Static	Partitioning:	While	creating	static	partitions,	we	specify	for	which	value	a	partition	is	to	be
created:

The	LOAD	command	can	be	used	to	insert	the	data	from	a	file	to	a	Hive	table	in	specified	partitions.
If	there	are	more	than	one	partition	columns	in	table,	then	you	will	have	to	specify	values	for	all
partitioning	columns.

Consider	the	following	syntax:

LOAD	DATA	[LOCAL]	INPATH	'filepath'	[OVERWRITE]	INTO	TABLE	tablename	[PARTITION	

(partcolumn1=value1,	partcolumn2=value2	...)]

Here,	filepath	can	refer	to	a	single	file	or	directory	path	with	multiple	files.	The	INSERT
command	can	be	used	to	insert	the	data	from	a	query	result	of	an	other	Hive	table:

INSERT	OVERWRITE	TABLE	tablename1	[PARTITION	(partcolumn1=value1,	

partcolumn2=value2	...)]	select_statement1	FROM	from_statement;

INSERT	INTO	TABLE	tablename1	[PARTITION	(partcolumn1=value1,	partcolumn2=value2	

...)]	select_statement1	FROM	from_statement;

When	we	use	the	INSERT	OVERWRITE	statement	to	insert	the	data	into	a	partition,	it	will	overwrite
the	existing	data	of	that	partition.	If	we	use	the	INSERT	INTO	statement	to	insert	the	data	into	a
partition,	then	it	will	not	delete	any	existing	data	of	that	partition	and	will	append	the	new	data	to
that	partition.
Dynamic	partitioning:	In	dynamic	partitioning,	we	don't	have	to	specify	values	for	partition	columns

in	the	PARTITION	clause	while	inserting	the	data.	We	just	specify	the	name	of	partition	columns	in
the	PARTITION	clause,	and	the	partitions	are	created	on	the	basis	of	unique	values	of	that	partition
column.	If	a	partition	column	value	is	given,	it	is	named	static	partition.

To	insert	the	data,	the	dynamic	partition	columns	must	be	specified	in	last	among	the	columns	in	the
SELECT	statement	and	in	the	same	order	in	which	they	appear	in	the	PARTITION()	clause.

Dynamic	partitioning	is	disabled	by	default.	The	minimal	configuration	to	enable	dynamic
partitioning	is	as	follows:

SET	hive.exec.dynamic.partition	=	true;

SET	hive.exec.dynamic.partition.mode	=	nonstrict;

You	can	set	this	configuration	at	a	session	level	using	Hive	shell	or	at	the	global	level	using	the
Hive	configuration	file	hive-site.xml.	After	setting	up	these	two	properties,	you	can	create
dynamic	partitions.

The	syntax	is	as	follows:

INSERT	OVERWRITE	TABLE	tablename	PARTITION	(partcol1[=val1],	partcol2[=val2]	

...)	select_statement	FROM	from_statement;

INSERT	INTO	TABLE	tablename	PARTITION	(partcol1[=val1],	partcol2[=val2]	...)	

select_statement	FROM	from_statement;

There	are	some	other	important	configurations	used	for	dynamic	partition	inserts:

Property Default
Value Description

hive.exec.dynamic.partition false Needs	to	be	set	to	true	to	enable	dynamic	partition	inserts.

hive.exec.dynamic.partition.mode strict

In	the	strict	mode,	the	user	must	specify	at	least	one	static	partition	in
case	the	user	accidentally	overwrites	all	partitions.	In	the	nonstrict	mode,
all	partitions	are	allowed	to	be	dynamic.

hive.exec.max.dynamic.partitions.pernode 100 Maximum	number	of	dynamic	partitions	allowed	to	be	created	in	the	each
mapper/reducer	node.

hive.exec.max.dynamic.partitions 1000 Maximum	number	of	dynamic	partitions	allowed	to	be	created	in	total.

hive.exec.max.created.files 100000 Maximum	number	of	HDFS	files	created	by	all	mappers/reducers	in	a
MapReduce	job.

hive.error.on.empty.partition false
Whether	to	throw	an	exception	if	a	dynamic	partition	insert	generates	empty
results.

Partitioning	an	external	table
Partitioning	external	tables	works	in	the	same	way	as	in	managed	tables.	Except	this	in	the	external	table,
when	you	delete	a	partition,	the	data	file	doesn't	get	deleted.

How	to	do	it…
First	create	an	EXTERNAL	table	for	the	customer	data	using	the	following	command:

CREATE	EXTERNAL	TABLE	customer_external(id	STRING,	name	STRING,	gender	STRING,	

state	STRING)	PARTITIONED	BY	(country	STRING);

Now	a	partition	can	be	added	to	the	EXTERNAL	table,	using	the	ALTER	TABLE	ADD	PARTITION	command:

ALTER	TABLE	customer_external	ADD	PARTITION(country='UK')	LOCATION	

'/user/hive/warehouse/customer/country=UK'

Bucketing
Bucketing	is	a	technique	that	allows	you	to	decompose	your	data	into	more	manageable	parts,	that	is,	fix
the	number	of	buckets.	Usually,	partitioning	provides	a	way	of	segregating	the	data	of	a	Hive	table	into
multiple	files	or	directories.	Partitioning	is	used	to	increase	the	performance	of	queries,	but	the
partitioning	technique	is	efficient	only	if	there	is	a	limited	number	of	partitions.	Partitioning	doesn't
perform	well	if	there	is	a	large	number	of	partitions;	for	example,	we	are	doing	partitioning	on	a	column
that	has	large	number	of	unique	values,	then	there	will	be	a	large	number	of	partitions.

To	overcome	the	problem	of	partitioning,	Hive	provides	the	concept	of	bucketing.	In	bucketing,	we
specify	the	fixed	number	of	buckets	in	which	entire	data	is	to	be	decomposed.	Bucketing	concept	is	based
on	the	hashing	principle,	where	same	type	of	keys	are	always	sent	to	the	same	bucket.

In	bucketing,	records	with	the	same	bucketed	columns	will	always	go	to	the	same	bucket.	When	data	is
inserted	into	a	bucketed	table,	the	following	formula	is	used	to	derive	the	bucket	into	which	record	should
be	inserted:

Bucket	number	=	hash_function(bucketing_column)	mod	num_buckets

The	bucket	number	calculated	using	the	formula	depends	on	bucketing	columns.	The	hash	function	for
integer	columns	gives	the	same	value,	which	means	hash_int(i)	==	i.	For	example,	if	a	bucketing
column	is	of	the	data	type	INT	and	there	were	10	buckets,	we	would	expect	all	records	of	which
bucketing	column	end	in	0	to	be	in	bucket	1,	all	records	of	which	bucketing	column	end	in	1	to	be	in
bucket	2,	and	so	on.	For	another	data	types,	the	hash	function	behaves	differently.	If	the	bucketing	column
is	of	the	data	type	BIGINT,	then	the	value	of	hash	of	that	column	will	be	different	from	the	actual	value.	If
the	bucketing	column	is	of	the	data	type	STRING	or	any	other	complex	data	type,	then	the	value	of	hash	of
that	column	will	be	some	number	that	is	derived	from	the	value.

Generally,	in	bucketing,	data	is	evenly	distributed	among	all	buckets	based	on	the	hashing	principle.

Note

If	bucketing	column	data	type	is	different	during	the	insert	and	read	operations,	then	tables	may	not	be
populated	properly.

Getting	ready
In	Hive,	by	default,	bucketing	is	disabled.	You	will	have	to	set	the	value	of	property
hive.enforce.bucketing	to	true	for	enabling	bucketing:

set	hive.enforce.bucketing=true;

The	preceding	command	can	be	used	to	enable	bucketing	for	a	particular	session.

You	can	also	define	this	property	in	the	Hive	configuration	file	hive-site.xml	to	enable	bucketing
permanently.

How	to	do	it…
Once	bucketing	is	enabled,	you	can	create	a	bucketed	table	using	the	following	command:

CREATE	[EXTERNAL]	TABLE	[db_name.]table_name

				[(col_name	data_type	[COMMENT	col_comment],	...)]

				CLUSTERED	BY	(col_name	data_type	[COMMENT	col_comment],	...)

INTO	N	BUCKETS;

The	preceding	command	will	create	a	bucketed	table	based	on	the	columns	provided	in	the	CLUSTERED
BY	clause.	The	number	of	buckets	will	be	as	specified	in	the	CREATE	TABLE	statement.

The	following	is	the	example	of	bucketing	the	sales	data	of	the	sales_bucketed	table:

CREATE	TABLE	sales_bucketed	(id	INT,	fname	STRING,	lname	STRING,	address	

STRING,city	STRING,state	STRING,	zip	STRING,	IP	STRING,	prod_id	STRING,	date1	

STRING)	CLUSTERED	BY	(id)	INTO	10	BUCKETS;

You	can	use	the	simple	INSERT	statement	to	insert	the	data	into	a	bucketed	table.

Let's	put	the	data	from	another	table	sales	into	our	bucketed	table	sales_bucketed:

INSERT	INTO	sales_bucketed	SELECT	*	from	sales;

You	can	see	the	bucketing	structure	of	this	table	in	the	HDFS	web	browser:

	

How	it	works…
In	this	example,	we	have	defined	the	id	attribute	as	a	bucketing	column	and	the	number	of	buckets	is	equal
to	10.	As	shown	in	the	preceding	screenshot,	all	the	data	is	distributed	into	10	buckets	based	on	the
hashing	of	the	id	attribute.	Data	is	evenly	distributed	between	all	buckets	based	on	the	hashing	principle.

Now	when	a	query	is	executed	to	fetch	a	record	for	a	particular	id,	a	framework	will	use	the	hashing
algorithm	to	identify	the	bucket	number	for	that	record	and	will	return	the	result.	For	example:

SELECT	*	FROM	sales_bucketed	where	id	=	1000;

Rather	than	scanning	the	entire	table,	the	preceding	command	will	be	executed	on	a	particular	bucket,	the
ID	of	which	is	equal	to	1000.

In	bucketing	the	following	two	bullet	points	need	to	be	considered:

In	partitioning,	a	column	defined	as	a	partitioned	column	is	not	included	in	a	schema	columns	of	a
Hive	table.	But	in	bucketing,	a	column	defined	as	a	bucketed	column	is	included	in	the	schema
columns	of	the	Hive	table.
We	cannot	use	the	LOAD	DATA	statement	to	load	the	data	into	the	bucketed	table	as	we	do	in
partitioned	table.	Rather,	we	have	to	use	the	INSERT	statements	to	insert	data	by	selecting	data	from
some	other	table.

Chapter	4.	Hive	Data	Definition	Language
In	this	chapter,	you	will	learn:

Creating	a	database	schema
Dropping	a	database	schema
Altering	a	database	schema
Using	a	database	schema
Showing	database	schemas
Describing	a	database	schema
Creating	tables
Dropping	tables
Truncating	tables
Renaming	tables
Altering	table	properties
Creating	views
Dropping	views
Altering	the	view	properties
Altering	the	view	as	select
Showing	tables
Showing	partitions
Show	the	table	properties
Showing	create	table
HCatalog
WebHCat

Introduction
For	your	overall	understanding	of	the	Hive	language,	it	is	necessary	to	learn	about	the	Data	Definition
Language	(DDL)	commands	for	the	creation	of	a	database,	table,	view,	and	so	on.	This	chapter	provides
you	with	a	detailed	description	of	all	the	DDLs	with	examples.	There	are	two	types	of	DDLs	in	Hive:
database	level	and	table	level.

Creating	a	database	schema
In	this	recipe,	you	will	learn	how	to	create	a	database	in	Hive.

Getting	ready
The	Create	Database	statement	is	used	to	create	a	database	in	Hive.	By	default,	there	is	a	database	in
Hive	named	default.

The	general	format	of	creating	a	database	is	as	follows:

CREATE	(DATABASE|SCHEMA)	[IF	NOT	EXISTS]	database_name

		[COMMENT	database_comment]

		[LOCATION	hdfs_path]

		[WITH	DBPROPERTIES	(property_name=property_value,	...)];

Where:

DATABASE|SCHEMA:	These	are	the	same	thing.	These	words	can	be	used	interchangeably.
[IF	NOT	EXISTS]:	This	is	an	optional	clause.	If	not	used,	an	error	is	thrown	when	there	is	an
attempt	to	create	a	database	that	already	exists.
[COMMENT]:	This	is	an	optional	clause.	This	is	used	to	place	a	comment	for	the	database.	This
comment	clause	can	be	used	to	add	a	description	about	the	database.	The	comment	must	be	in	single
quotes.
[LOCATION]:	This	is	an	optional	clause.	This	is	used	to	override	the	default	location	with	the
preferred	one.
[WITH	DBPROPERTIES]:	This	is	an	optional	clause.	This	clause	is	used	to	set	properties	for	the
database.	These	properties	are	key-value	pairs	that	can	be	associated	with	the	database	to	attach
additional	information	with	the	database.

How	to	do	it…
Follow	these	steps	to	create	a	database	in	Hive:

1.	 The	following	statement	will	create	a	database	called	Hive_learning:

Create	database	Hive_learning;

2.	 The	preceding	statement	creates	a	database	with	the	name	Hive_learning.	There	is	no	comment	or
HDFS	path	used	here:

Create	database	if	not	exists	Hive_learning;

3.	 If	there	is	an	attempt	to	create	a	database	that	is	already	present	in	Hive,	an	error	is	thrown	as
follows:

FAILED:	Execution	Error,	return	code	1	from	

org.apache.hadoop.hive.ql.exec.DDLTask.	Database	<Database_name	>	already	

exists.

4.	 To	avoid	this	error,	place	the	If	Not	Exists	clause	in	the	statement:

Create	database	if	not	exists	Hive_learning

				Comment	'This	is	my	first	DB';

5.	 The	preceding	statement	creates	the	database	Hive_learning	with	the	comment:

							Create	database	if	not	exists	Hive_learning

				Comment	'This	is	my	first	DB'

				Location	'/my/directory';

6.	 Hive	creates	a	default	directory	for	each	database.	All	the	tables	in	that	database	will	be	stored	in
the	subdirectories	under	that	database	directory.	The	location	clause	in	the	create	database
statement	is	used	to	override	the	default	location	with	the	preferred	one.	The	location	of	the	database
can	be	seen	with	the	help	of	the	DESCRIBE	statement,	which	is	discussed	later	in	this	chapter:

								Create	database	if	not	exists	Hive_learning

				Comment	'This	is	my	first	DB'

				Location	'/my/directory'

				With	dbproperties	('Created	by'	=	'User',	'Created	on'	=	'1-Jan-2015');

7.	 The	preceding	statement	creates	a	database	with	the	dbproperties	'Created	by'	and	'Created
on'.	These	two	dbproperties	are	only	adding	extra	information	to	the	database.

Dropping	a	database	schema
In	this	recipe,	you	will	learn	how	to	drop	a	database	in	Hive.

Getting	ready
Drop	Database	statements	drop	the	database	and	the	objects	inside	that	database.	When	a	database	is
dropped,	its	directory	is	also	deleted.	The	general	format	of	dropping	a	database	is	as	follows:

DROP	(DATABASE|SCHEMA)	[IF	EXISTS]	database_name	[RESTRICT|CASCADE];

Where:

DATABASE|SCHEMA:	These	are	the	same	thing.	These	words	can	be	used	interchangeably.
[IF	EXISTS]:	This	is	an	optional	clause.	If	not	used,	an	error	is	thrown	when	there	is	an	attempt	to
drop	a	database	that	does	not	exist.
[RESTRICT|CASCADE]:	This	is	an	optional	clause.	RESTRICT	is	used	to	restrict	the	database	from
getting	dropped	if	there	are	one	or	more	tables	present	in	the	database.	RESTRICT	is	the	default
behavior	of	the	database.	CASCADE	is	used	to	drop	all	the	tables	present	in	the	database	before
dropping	the	database.

How	to	do	it…
Follow	these	steps	to	drop	a	database	in	Hive:

1.	 The	following	statement	drops	the	database	from	Hive.	The	database	needs	to	be	empty	(without	any
object),	otherwise	an	error	is	thrown:

Drop	database	Hive_learning;

If	there	is	an	attempt	to	drop	a	database	(without	the	IF	EXISTS	clause)	that	does	not	exist,	an	error	is
thrown	as	follows:

FAILED:	SemanticException	[Error	10072]:	Database	does	not	exist:	<database_name>

To	avoid	the	preceding	error,	place	the	If	Exists	clause	in	the	statement.

Drop	database	if	exists	Hive_learning;

If	you	want	to	restrict	the	database	from	getting	dropped	if	there	is	one	or	more	tables	present	in	the
database,	then	the	restrict	clause	is	used:

Drop	database	if	exists	Hive_learning	restrict;

If	there	is	an	attempt	to	drop	a	database	(without	the	cascade	clause,	which	is	equivalent	to	the
restrict	clause)	that	contains	tables,	an	error	is	thrown,	as	follows	next:

FAILED:	Execution	Error,	return	code	1	from	org.apache.hadoop.hive.ql.exec.DDLTask.	

InvalidOperationException(message:Database	<databasme_name>	is	not	empty.	One	or	

more	tables	exist.)

To	avoid	the	preceding	error,	use	the	cascade	clause	to	drop	all	the	tables	present	in	the	database
before	dropping	the	database:

Drop	database	if	exists	Hive_learning	cascade;

Altering	a	database	schema
In	this	recipe,	you	will	learn	how	to	alter	a	database	in	Hive.

Getting	ready
The	ALTER	DATABASE	command	in	Hive	is	used	to	alter	dbproperties	or	set	the	dbproperties	of	a
database.	Using	the	ALTER	DATABASE	command,	we	can	only	alter	dbproperties	and	nothing	else	(not
even	the	name	and	directory	location	of	a	database	can	be	altered).	No	other	metadata	about	the	database
can	be	changed.	The	general	format	for	altering	a	database	is	as	follows:

ALTER	(DATABASE|SCHEMA)	database_name	SET	DBPROPERTIES	

(property_name=property_value,	...);

Where:

DATABASE|SCHEMA:	These	are	the	same	thing.	These	words	can	be	used	interchangeably:

SET	DBPROPERTIES	(property_name=property_value,	...)

This	clause	is	used	to	set	the	properties	for	a	database.	These	properties	are	key-value	pairs	that	can	be
associated	with	the	database	to	attach	additional	information	about	the	database.

How	to	do	it…
Follow	these	steps	to	alter	a	database	in	Hive:

The	preceding	statement	alters	the	dbproperties	'Created	by'	as	well	as	'Created	on'	of	the
Hive_learning	database	in	Hive:

Alter	database	Hive_learning	set	dbproperties	('Created	by'	=	'User1',	'Created	on'	

=	'15-Jan-2015');

Using	a	database	schema
In	this	recipe,	you	will	learn	how	to	use	a	database	in	Hive.

Getting	ready
The	USE	DATABASE	command	is	used	to	switch	to	the	database,	or	it	sets	the	database	as	the	working
database.	It	is	analogous	to	the	one	used	in	the	other	RDBMS.	The	general	format	of	using	a	database	is	as
follows:

USE	(DATABASE|SCHEMA)	database_name;

Where:

DATABASE|SCHEMA:	These	are	the	same	thing.	These	words	can	be	used	interchangeably.

How	to	do	it…
The	following	command	sets	the	database	as	the	working	database:

Use	database	Hive_learning;

Showing	database	schemas
In	this	recipe,	you	will	learn	how	to	show	databases	in	Hive.

Getting	ready
The	SHOW	DATABASE	command	is	used	to	list	all	the	databases	in	the	Hive	metastore.	The	general	format
of	using	the	SHOW	DATABASE	command	is	as	follows:

SHOW	(DATABASES|SCHEMAS)	[LIKE	identifier_with_wildcards];

Where:

DATABASE|SCHEMA:	These	are	the	same	thing.	These	words	can	be	used	interchangeably.
[LIKE]:	Is	an	optional	clause.	This	clause	is	used	to	filter	the	databases	with	the	help	of	a	regular
expression.	There	can	only	be	two	wildcards	in	the	regular	expression,	which	are	*	for	any
character(s)	or	|	for	a	choice.

How	to	do	it…
Follow	these	steps	to	show	a	database	in	Hive:

The	following	command	lists	all	the	databases	in	Hive:

Show	databases;

This	command	lists	the	Hive_learning	database,	which	is	used	in	our	previous	examples:

Show	database	like	'Hive*';

Describing	a	database	schema
In	this	recipe,	you	will	learn	how	to	describe	databases	in	Hive.

Getting	ready
The	DESCRIBE	DATABASE	command	is	used	to	get	information	about	the	database,	such	as	the	name	of	the
database,	its	comment	(if	attached	during	the	creation	of	the	database),	its	location	on	the	filesystem,	and
its	dbproperties.	The	general	format	of	using	the	DESCRIBE	DATABASE	command	is	as	follows:

DESCRIBE	DATABASE	[EXTENDED]	db_name;

DESCRIBE	SCHEMA	[EXTENDED]	db_name;

Where:

DATABASE|SCHEMA:	These	are	the	same	thing.	These	words	can	be	used	interchangeably.
[EXTENDED]:	This	is	an	optional	clause.	This	clause	will	list	all	the	dbproperties	attached	to	a
particular	database	in	Hive.

How	to	do	it…
Follow	these	steps	to	describe	a	database	in	Hive:

The	following	example	lists	the	name	of	the	database,	the	comment	on	the	database,	and	the	directory
location	on	the	filesystem:

Describe	database	Hive_learning;

The	following	example	gives	the	same	result	as	previous	one:

Describe	schema	Hive_learning;

This	example	shows	extra	information	(dbproperties)	that	is	attached	to	the	database:

Describe	database	extended	Hive_learning;

Creating	tables
In	this	recipe,	you	will	learn	how	to	create	tables	in	Hive.

How	to	do	it…
The	CREATE	TABLE	statement	creates	metadata	in	the	database.	The	table	in	Hive	is	the	way	to	read	data
from	files	present	in	HDFS	in	the	table	or	a	structural	format.	The	general	format	of	using	the	CREATE
TABLE	command	is	as	follows:

CREATE	[TEMPORARY]	[EXTERNAL]	TABLE	[IF	NOT	EXISTS]

				[db_name.]	table_name

				[(col_name	data_type	[COMMENT	col_comment],	...)]

				[COMMENT	table_comment]

				[PARTITIONED	BY	(col_name	data_type	[COMMENT	col_comment],	...)]

				[CLUSTERED	BY	(col_name,	col_name,	...)	[SORTED	BY	(col_name	[ASC|DESC],	...)]	

INTO	num_buckets	BUCKETS]

				[SKEWED	BY	(col_name,	col_name,	...)

				ON	((col_value,	col_value,	...),	(col_value,	col_value,	...),	...)

				[STORED	AS	DIRECTORIES]

				[

				[ROW	FORMAT	row_format]

				[STORED	AS	file_format]

				|	STORED	BY	'storage.handler.class.name'	[WITH	SERDEPROPERTIES	(...)]

]

				[LOCATION	hdfs_path]

				[TBLPROPERTIES	(property_name=property_value,	...)]

				[AS	select_statement];

Create	table	LIKE

The	LIKE	clause	in	a	create	table	command	creates	a	copy	of	an	existing	table	with	a	different	name	and
without	the	data.	It	just	creates	a	structure	like	that	of	an	existing	table	without	copying	its	data.

How	it	works
Let	us	take	a	look	at	all	the	parameters	involved:

[TEMPORARY]:	This	is	an	optional	clause.	This	clause	is	used	to	create	temporary	tables.	These
tables	once	created	are	only	present	in	the	database	until	the	session	is	active.	Once	the	session
comes	to	an	end,	all	the	temporary	tables	are	deleted.	Once	a	temporary	table	is	created,	you	cannot
access	the	permanent	table	in	that	session	so	you	need	to	either	drop	or	rename	the	temporary	table
to	access	the	original	one.	You	cannot	create	a	partition	or	index	on	temporary	tables.
[EXTERNAL]:	This	is	an	optional	clause.	This	clause	is	used	to	create	external	tables	the	same	as	in
the	case	of	RDBMS.	The	external	table	works	as	a	window	for	the	data	present	in	the	file	format	in
HDFS.	For	an	external	table,	the	data	or	file	need	not	be	present	in	the	default	location	but	can	be
kept	anywhere	in	the	filesystem	and	can	be	referred	to	from	that	location.	Once	the	external	table	is
dropped,	data	is	not	lost	from	that	location.
[IF	NOT	EXISTS]:	This	is	an	optional	clause.	If	there	is	an	attempt	to	create	a	table	that	is	already
present	in	the	database,	an	error	is	thrown.	To	avoid	such	an	error,	the	IF	NOT	EXISTS	clause	is
used.	When	this	clause	is	used,	Hive	ignores	the	statement	if	the	table	already	exists.
[db_name]:	This	is	an	optional	clause.	This	clause	is	used	to	create	tables	in	the	specified	database.
[COMMENT	col_comment]:	This	is	an	optional	clause.	This	is	used	to	attach	comments	to	a
particular	column.	This	comment	clause	can	be	used	to	add	a	description	about	the	column.	The
comment	must	be	in	single	quotes.
[COMMENT	table_comment]:	This	is	an	optional	clause.	This	is	used	to	attach	comments	to	a	table.
This	comment	clause	can	be	used	to	add	a	description	about	the	table.	The	comment	must	be	in	single
quotes.
[PARTITIONED	BY]:	This	is	an	optional	clause.	This	clause	is	used	to	create	partitioned	tables.
There	can	be	more	than	one	partition	columns	in	a	table.	Partitions	in	Hive	work	in	the	same	way	as
in	any	RDBMS.	They	speed	up	the	query	performance	by	keeping	the	data	in	specific	partitions.
[CLUSTERED	BY]:	This	is	an	optional	clause.	This	clause	is	used	for	bucketing	purposes.	The	table
or	partitions	can	be	bucketed	using	CLUSTERED	BY	columns.	The	CLUSTERED	BY	creation	command
doesn't	have	any	impact	on	how	data	is	inserted	into	a	table;	it	impacts	only	during	read	operations.
Users	must	be	careful	to	insert	data	correctly	by	specifying	the	number	of	reducers	to	be	equal	to	the
number	of	buckets,	and	using	CLUSTER	BY	and	SORT	BY	commands	in	their	query.
[SKEWED	BY]:	This	option	is	used	to	improve	performance	for	tables	where	one	or	more	columns
have	skewed	values.	Tables	created	with	this	option	are	known	as	skewed	tables.	When	this	option
is	specified,	the	values	that	appear	very	often	(heavy	skew)	are	split	into	separate	files	and	the	rest
of	the	values	go	to	some	other	file.
[LOCATION	hdfs_path]:	This	option	is	used	while	creating	external	tables.	This	is	the	location
where	files	are	placed,	which	is	referred	to	by	the	external	table	for	the	data.
[TBLPROPERTIES]:	This	is	an	optional	clause.	This	clause	allows	you	to	attach	more	information
about	the	table	in	the	form	of	a	key-value	pair.
[AS	select_statement]:	Create	Table	As	Select,	popularly	known	as	CTAS,	is	used	to	create	a
table	based	on	the	output	of	the	other	table	or	existing	table.

Dropping	tables
In	this	recipe,	you	will	learn	how	to	drop	a	table	in	Hive.

Getting	ready
DROP	TABLE	command	removes	the	table	from	the	database,	including	the	data	from	the	table.	This	is
equivalent	to	the	SQL	DROP	command,	but	the	only	difference	is	that	the	data	is	moved	to	the	Trash	folder
in	the	home	directory	(if	Trash	is	configured).	If	Trash	is	not	configured,	data	is	removed	from	the
filesystem	as	well	and	is	lost	forever.

Note

In	the	case	of	an	external	table,	data	remains	in	the	filesystem	even	if	the	table	is	dropped	from	the
database.

The	general	format	of	using	the	DROP	TABLE	command	is	as	follows:

DROP	TABLE	[IF	EXISTS]	table_name	[PURGE];

Where:

[IF	EXISTS]:	Is	an	optional	clause.	If	not	used,	an	error	is	thrown	when	there	is	an	attempt	to	drop
a	table	that	does	not	exist	in	the	database.
[PURGE]:	Is	an	optional	clause.	If	specified,	the	data	is	not	saved	in	the	Trash	folder	under	the	home
directory	and	is	lost	forever.

How	to	do	it…
Follow	these	steps	to	drop	a	table	in	Hive:

The	following	command	drops	the	table	Hive_Test_Table1	from	the	database	and	the	data	is	saved
into	the	Trash	folder:

Drop	table	if	exists	Hive_Test_table1;

The	following	command	drops	the	table	Hive_Test_Table1	from	the	database	and	the	data	is	not
saved	into	the	Trash	folder;	that	is,	the	data	is	lost	forever:

Drop	table	if	exists	Hive_Test_table1	purge;

Truncating	tables
In	this	recipe,	you	will	learn	how	to	truncate	a	table	in	Hive.

Getting	ready
The	TRUNCATE	command	removes	all	rows	from	the	table	as	well	as	from	the	partition,	but	keeps	the	table
structure	as	it	is.	Truncating	a	table	in	Hive	is	indirectly	removing	the	files	from	the	HDFS	as	a	table	in
Hive	is	just	a	way	of	reading	the	data	from	the	HDFS	in	the	table	or	structural	format.	The	general	format
of	using	the	Truncate	table	command	is	as	follows:

TRUNCATE	TABLE	table_name	[PARTITION	partition_spec];

Where:

partition_spec:

(partition_column	=	partition_col_value,	partition_column	=	partition_col_value,

...)

How	to	do	it…
Follow	these	steps	to	truncate	a	table	in	Hive:

The	preceding	command	truncates	the	table	named	Sales:

Truncate	table	Sales;

Renaming	tables
In	this	recipe,	you	will	learn	how	to	rename	a	table	in	Hive.

Getting	ready
The	renaming	command	renames	the	old	table	name	with	a	new	table	name.	The	general	format	of	using
the	RENAME	table	command	is	as	follows:

ALTER	TABLE	table_name	RENAME	TO	new_table_name;

How	to	do	it…
Use	this	command	to	rename	a	table	in	Hive:

Alter	Table	Hive_Test_table1	RENAME	TO	Hive_Test_table;

Altering	table	properties
In	this	recipe,	you	will	learn	how	to	alter	table	properties	in	Hive.

Getting	ready
The	ALTER	TABLE	properties	command	alters	the	table	properties.	The	general	format	of	using	the	ALTER
TABLE	command	is	as	follows:

ALTER	TABLE	table_name	SET	TBLPROPERTIES	table_properties;

How	to	do	it…
Follow	these	steps	to	alter	a	table	in	Hive.	The	following	statement	changes	the	old	comment	to	a	new
one:

Alter	Table	Hive_Test_table	SET	TBLPROPERTIES	('comment'	=	'This	is	a	new	

comment');

Creating	views
In	this	recipe,	you	will	learn	how	to	create	a	view	in	Hive.

Getting	ready
A	view	is	a	virtual	table	that	acts	as	a	window	to	the	data	for	the	underlying	table	commonly	known	as	the
base	table.	It	consists	of	rows	and	columns	but	no	physical	data.	So	when	a	view	is	accessed,	the
underlying	base	table	is	queried	for	the	output.

Note

A	base	table	can	also	be	a	view	that	will	have	a	base	table	of	its	own.	So	if	the	first	view	is	accessed,
then	the	base	table	of	the	second	view	gives	the	output	for	the	query.

The	general	syntax	of	creating	a	view	is	as	follows:

CREATE	VIEW	[IF	NOT	EXISTS]	view_name	[(column_name	[COMMENT	column_comment],	...)]

				[COMMENT	view_comment]

				[TBLPROPERTIES	(property_name	=	property_value,	...)]

				AS	SELECT	...;

Where:

[IF	NOT	EXISTS]:	Is	an	optional	clause.	If	there	is	an	attempt	to	create	a	view	that	is	already
present	in	the	database,	then	an	error	is	thrown.	In	such	cases,	the	IF	NOT	EXISTS	clause	is	used,
which	will	ignore	the	entire	statement	and	no	error	is	thrown.
[COMMENT	col_comment]:	Is	an	optional	clause.	This	is	used	to	attach	comments	to	a	particular
column.	This	comment	clause	can	be	used	to	add	a	description	about	the	column.	The	comment	must
be	in	single	quotes.
[COMMENT	table_comment]:	Is	an	optional	clause.	This	is	used	to	attach	comments	to	a	view.	This
comment	clause	can	be	used	to	add	a	description	about	the	view.	The	comment	must	be	in	single
quotes.
[TBLPROPERTIES	(property_name	=	property_value,	...)]:	Is	an	optional	clause.	This
clause	allows	you	to	attach	more	information	about	the	table	in	the	form	of	a	key-value	pair.

How	to	do	it…
Follow	these	steps	to	create	a	view	in	Hive:

The	following	command	creates	a	view	named	Hive_view	in	the	database.	The	use	of	the	*	symbol
indicates	that	all	the	columns	from	the	table	are	present	in	the	view:

Create	view	Hive_view

As	select	*	from	Hive_learning;

The	following	command	creates	a	view	with	only	two	columns	(id	and	firstname).	Also,	you	can
specify	the	ORDER	BY	as	well	as	the	LIMIT	clause	while	creating	a	view:

Create	view	if	not	exists	Hive_view_2

As	select	id,	firstname	from	Hive_learningWhere	firstname	=	'John';

Dropping	views
In	this	recipe,	you	will	learn	how	to	drop	a	view	in	Hive.

Getting	ready
The	DROP	VIEW	command	removes	the	view	from	the	database.	It	removes	the	metadata,	but	the	base
table	remains	intact.	If	a	base	table	is	a	view	that	is	dropped,	then	the	dependent	view	remains	in	an
invalid	state,	which	is	either	dropped	or	recreated.	The	general	syntax	for	dropping	a	view	is	as	follows:

DROP	VIEW	[IF	EXISTS]	view_name;

Where:

[IF	EXISTS]:	Is	an	optional	clause.	If	there	is	an	attempt	to	drop	a	view	that	does	not	exist,	an	error	is
thrown.	To	prevent	this	error,	the	IF	EXISTS	clause	is	specified.

How	to	do	it…
The	following	statement	drops	a	view	in	Hive:

Drop	view	Hive_view;

Altering	the	view	properties
In	this	recipe,	you	will	learn	how	to	alter	the	view	properties	in	Hive.

Getting	ready
This	command	is	used	to	alter	the	view	properties,	the	same	as	in	the	case	of	tables.	The	general	syntax
for	altering	a	view	is	as	follows:

ALTER	VIEW	view_name	SET	TBLPROPERTIES	table_properties;

Where:

table_properties	is	defined	as	:	(property_name	=	property_value,	property_name	=
property_value,	...)

How	to	do	it…
Follow	these	steps	to	alter	the	view	properties	in	Hive.	The	following	statement	changes	the	old	comment
to	a	new	one:

Alter	View	Hive_view	SET	TBLPROPERTIES	('comment'	=	'This	is	a	new	comment');

Altering	the	view	as	select
In	this	recipe,	you	will	learn	how	to	alter	the	view	as	select	in	Hive.

Getting	ready
This	command	is	used	to	change	the	SELECT	query	for	the	view.	The	general	syntax	for	altering	a	view	is
as	follows:

ALTER	VIEW	view_name	AS	select_statement;

Where:

select_statement:	This	is	the	new	SELECT	statement	for	the	existing	view.

How	to	do	it…
Follow	these	steps	to	alter	the	view	as	select	in	Hive.	The	following	SELECT	statement	is	the	new
statement	for	the	existing	view,	Hive_view:

alter	view	hive_view	as	select	id,	firstname	from	sales;

Showing	tables
In	this	recipe,	you	will	learn	how	to	list	tables	in	Hive.

Getting	ready
This	command	lists	all	the	tables	and	views	in	a	database.	We	can	also	use	wildcards	for	listing	specific
tables.	The	general	syntax	for	showing	tables	is	as	follows:

SHOW	TABLES	[IN	database_name]	['identifier_with_wildcards'];

Where:

[IN	database_name]:	Is	an	optional	clause.	This	clause	is	used	to	list	all	the	tables	and	views
from	a	different	database	that	is	currently	not	in	use.
['identifier_with_wildcards']:	Is	an	optional	clause.	There	can	only	be	two	wildcards	used	in
this	command:	*	for	any	character(s)	or	|	for	a	choice.

How	to	do	it…
Use	the	following	commands	to	show	a	table	in	Hive:

The	following	command	will	list	all	the	tables	and	views	present	in	the	current	database:

Show	tables;

The	following	command	will	list	all	the	tables	and	views	from	the	Hive_learning	database:

Show	tables	in	Hive_learning;

The	following	command	will	list	all	the	tables	and	views	starting	with	Hive:

Show	tables	'Hive*';

Showing	partitions
In	this	recipe,	you	will	learn	how	to	list	all	the	partitions	in	Hive.

Getting	ready
This	command	lists	all	the	partitions	for	a	table.	The	general	syntax	for	showing	partitions	is	as	follows:

SHOW	PARTITIONS	[db_name.]table_name	[PARTITION(partition_spec)];

Where:

[db_name.]:	Is	an	optional	clause.	This	is	used	to	list	partitions	of	the	table	from	a	given	database.
[PARTITION(partition_spec)]:	Is	an	optional	clause.	This	is	used	to	list	a	specific	partition	of	a
table.

How	to	do	it…
Use	the	following	commands	to	show	partitions	in	Hive:

The	following	command	will	list	all	the	partitions	present	in	the	Sales	table:

Show	partitions	Sales;

The	following	command	will	list	a	specific	partition	of	the	Sales	table:

Show	partitions	Sales	partition(dop='2015-01-01');

The	following	command	will	list	a	specific	partition	of	the	Sales	table	from	the	Hive_learning
database:

Show	partitions	Hive_learning.	Sales	partition(dop='2015-01-01');

Show	the	table	properties
In	this	recipe,	you	will	learn	how	to	list	all	the	properties	of	a	table	in	Hive.

Getting	ready
This	command	lists	the	properties	of	a	table.	The	general	syntax	for	showing	table	properties	is	as
follows:

SHOW	TBLPROPERTIES	tblname;

How	to	do	it…
Use	these	commands	to	show	table	properties	in	Hive:

This	command	will	list	all	the	properties	for	the	Sales	table:

Show	tblproperties	Sales;

The	preceding	command	will	list	only	the	property	for	numFiles	in	the	Sales	table:

Show	partitions	Sales	('numFiles');

Showing	create	table
In	this	recipe,	you	will	learn	how	to	see	the	create	statement	of	a	table	in	Hive.

Getting	ready
This	command	shows	the	CREATE	TABLE	statement	of	a	table.	The	general	syntax	for	showing	the	CREATE
TABLE	statement	is	as	follows:

SHOW	CREATE	TABLE	([db_name.]table_name|view_name);

Where:

[db_name.]:	Is	an	optional	clause.	This	is	used	when	you	want	to	see	the	CREATE	TABLE	statement	of	a
table	from	a	different	database.

How	to	do	it…
Use	the	following	commands	to	show	CREATE	TABLE	in	Hive:

This	command	will	show	the	CREATE	TABLE	statement	for	the	Sales	table:

Show	create	table	Sales;

This	command	will	show	the	CREATE	TABLE	statement	for	the	Sales	table	under	the	Hive_learning
database:

Show	create	table	Hive_learning.Sales;

HCatalog
In	this	recipe,	you	will	learn	how	you	can	define	tables	in	HCatalog.

Getting	ready
HCatalog	is	a	storage	management	tool	that	enables	frameworks	other	than	Hive	to	leverage	a	data	model
to	read	and	write	data.	HCatalog	tables	provide	an	abstraction	on	the	data	format	in	HDFS	and	allow
frameworks	such	as	PIG	and	MapReduce	to	use	the	data	without	being	concerned	about	the	data	format,
such	as	RC,	ORC,	and	text	files.

HCatInputFormat	and	HCatOutputFormat,	which	are	the	implementations	of	Hadoop	InputFormat	and
OutputFormat,	are	the	interfaces	provided	to	PIG	and	MapReduce.

How	to	do	it…
Data	is	defined	using	the	HCatalog	CLI.	Data	is	modeled	as	tables	and	tables	are	stored	in	databases.	The
table	could	be	partitioned	based	on	keys.

HCatalog	DMLs

The	following	are	the	metrics	of	DMLs	supported	by	HCatalog:

Command Support Description

CREATE	TABLE Yes Same	as	Hive,	but	if	created	with	the	CLUSTERED	BY	clause	then	write	to	table	with	PIG	and	MapReduce	is	not
available

DROP	TABLE Yes Same	as	Hive

ALTER	TABLE Yes Same	as	Hive,	except	REBUILD	and	CONCATENATE	options

CREATE	VIEW Yes Same	as	Hive

DROP	VIEW Yes Same	as	Hive

ALTER	VIEW Yes Same	as	Hive

SHOW	TABLES Yes Same	as	Hive

SHOW

PARTITIONS
No

SHOW	FUNCTIONS Yes Same	as	Hive

DESCRIBE Yes Same	as	Hive

Create	Index Yes Same	as	Hive

Drop	Index Yes Same	as	Hive

Create

Function
Yes Same	as	Hive

Drop	Function Yes Same	as	Hive

"dfs"	Command Yes Same	as	Hive

"set"	Command Yes Same	as	Hive

WebHCat
In	this	recipe,	you	will	learn	how	you	can	define	tables	using	WebHCat	APIs.

Getting	ready
WebHCat,	formerly	called	Templeton,	allows	access	to	the	HCatalog	service	using	REST	APIs.	Unlike
HCatalog,	which	executed	the	command	directly,	WebHCat	keeps	the	Hive,	PIG,	and	MapReduce	jobs	in
queues.	The	jobs	can	then	be	monitored	and	stopped	as	needed.	The	client	needs	to	specify	a	HDFS
location	where	the	output	of	the	job	is	stored.

How	to	do	it…
HCatlog	resources	can	be	accessed	by	REST	APIs	using	the	following	URI	format:

http://www.myserver.com/templeton/v1/resource.

In	the	preceding	URL,	www.myserver.com	is	the	URL	where	your	WebHCat	is	running	and	the	resource	is
the	HCatalog	resource	name.

The	following	is	a	CURL	command	to	get	all	databases	in	Hive:

curl	-s	'http://localhost:50111/templeton/v1/ddl/database?user.name=shrey'

See	also…
Refer	to	the	following	URL	for	more	information	on	WebHCat	APIs:

https://cwiki.apache.org/confluence/display/Hive/WebHCat+Reference.

https://cwiki.apache.org/confluence/display/Hive/WebHCat+Reference

Chapter	5.	Hive	Data	Manipulation	Language
In	this	chapter,	you	will	learn	about	the	following	recipes:

Loading	files	into	tables
Inserting	data	into	Hive	tables	from	queries
Inserting	data	into	dynamic	partitions
Writing	data	into	files	from	queries
Enabling	transactions	in	Hive
Inserting	values	into	tables	from	SQL
Updating	data
Deleting	data

Introduction
As	we	finished	with	the	Data	Definition	Language	in	Chapter	4,	Hive	Data	Definition	Language,	let's
discuss	the	Data	Manipulation	Language	(commonly	known	as	DML)	commands	in	Hive.	This	chapter
gives	a	detailed	description	of	DML	in	Hive	with	examples.

Loading	files	into	tables
Loading	data	into	a	Hive	table	is	one	of	the	variants	of	inserting	data	into	a	Hive	table.	In	this	method,	the
entire	file	is	copied/moved	to	a	directory	that	corresponds	to	Hive	tables.	If	the	table	is	partitioned,	then
data	is	loaded	into	partitions	one	at	a	time.	The	general	syntax	of	loading	the	data	into	a	table	is	as
follows:

LOAD	DATA	[LOCAL]	INPATH	'filepath'	[OVERWRITE]	INTO	TABLE	tablename	[PARTITION	

(partcol1=val1,	partcol2=val2	...)]

Where:

[LOCAL]:	This	is	an	optional	clause.	If	this	clause	is	specified,	the	preceding	command	will	look	for
the	file	in	the	local	filesystem.	The	command	will	follow	the	file	path	in	the	local	filesystem.
FILEPATH:	This	is	the	path	where	files	reside	either	in	the	local	filesystem	or	HDFS.
[OVERWRITE]:	Is	an	optional	clause.	If	this	clause	is	specified,	the	data	in	the	table	or	partition	is
deleted	and	new	data	is	loaded	based	on	the	file	path	in	the	statement.
tablename:	This	is	the	name	of	the	table.
[PARTITION	(partcol1=val1,	partcol2=val2	...)]:	This	is	an	optional	clause	for	partitioned
tables.

Getting	ready
This	recipe	requires	having	Hive	installed,	as	described	in	the	Installing	Hive	recipe	of	Chapter	1,
Developing	Hive.	You	will	also	need	the	Hive	CLI	or	Beeline	client	to	run	the	commands.

How	to	do	it…
Follow	these	steps	to	insert	data	into	a	table	in	Hive:

LOAD	DATA	LOCAL	INPATH	'/tmp/sales.txt'	INTO	TABLE	sales;

LOAD	DATA	INPATH	'/sales.txt'	INTO	TABLE	sales;

LOAD	DATA	INPATH	'	/sales.txt'	OVERWRITE	INTO	TABLE	sales;

How	it	works…
The	LOAD	DATA	command	is	used	to	load	data	from	files	to	Hive	tables.	Files	may	reside	either	in	the
local	filesystem	or	the	Hadoop	Distributed	File	System	(HDFS)	that	you	can	specify	in	a	command	using
the	LOCAL	keyword.	You	can	use	the	PARTITION	clause	if	the	table	is	partitioned	and	data	needs	to	be
inserted	in	the	partitioned	table	based	on	a	partitioned	key	one	at	a	time.

For	this,	we	have	truncated	the	sales	table,	the	output	of	which	is	shown	next:

	

The	first	command	listed	in	the	previous	section,	LOAD	DATA	LOCAL	INPATH	'/tmp/sales.txt'	INTO
TABLE	sales;,	loads	the	data	from	the	sales.txt	file	into	the	sales	table	in	Hive.	Since	the	LOCAL
keyword	is	specified	here,	the	file	will	be	picked	from	the	local	filesystem.	The	files	will	be	copied	from
the	local	filesystem	to	the	Hive	warehouse	or	Hive	filesystem:

	

Now,	once	the	first	statement	is	executed,	the	data	is	loaded	into	the	sales	table	as	shown	in	the
following	figure:

	

For	the	second	statement,	we	have	truncated	the	sales	table,	the	output	of	which	is	shown	next:

	

The	second	command,	LOAD	DATA	INPATH	'/sales.txt'	INTO	TABLE	sales;,	loads	the	data	from
the	sales.txt	file	into	the	sales	table	in	Hive.	Since	the	LOCAL	keyword	is	omitted	here,	the	file	will	be
picked	from	the	HDFS.	The	files	will	be	moved	from	the	HDFS	to	the	Hive	warehouse	or	Hive

filesystem:

	

Now,	once	the	first	statement	is	executed,	the	data	is	loaded	into	the	sales	table	as	shown	in	the
following	figure:

	

The	third	statement,	LOAD	DATA	INPATH	'/sales.txt'	OVERWRITE	INTO	TABLE	sales;,	will
overwrite	the	data	present	in	the	sales	table.	If	there	is	data	present	in	the	table,	then	first	the	data	will
be	deleted	and	new	data	will	be	inserted	as	per	the	file	path.	If	data	is	not	present	in	the	table,	then	data
will	be	inserted	like	a	normal	insert	statement:

	

Now,	once	the	first	statement	is	executed,	the	data	is	loaded	into	the	sales	table	as	shown	in	the
following	figure:

	

Inserting	data	into	Hive	tables	from	queries
In	this	recipe,	you	will	learn	how	to	insert	data	through	queries	into	a	table	in	Hive.

This	is	another	variant	of	inserting	data	into	a	Hive	table.	Data	can	be	appended	into	a	Hive	table	that
already	contains	data.	Data	can	also	be	overwritten	in	the	Hive	table.	Data	can	also	be	inserted	into
multiple	tables	through	a	single	statement	only.	The	general	format	of	inserting	data	into	a	table	from
queries	is	as	follows:

INSERT	OVERWRITE	TABLE	tablename	[PARTITION	(partcol1=val1,	partcol2=val2	...)	[IF	

NOT	EXISTS]]	select	select_statement	FROM	from_statement;

Where:

tablename:	This	is	the	name	of	the	table
OVERWRITE:	This	is	used	to	overwrite	existing	data	in	the	table
[PARTITION	(partcol1=val1]:	This	option	is	used	when	data	needs	to	be	inserted	into	a
partitioned	table
[IF	NOT	EXISTS]:	This	is	an	optional	clause

The	second	syntax	of	inserting	the	data	into	a	Hive	table	is	as	follows:

INSERT	INTO	TABLE	tablename	[PARTITION	(partcol1=val1,	partcol2=val2	...)]	select	

select_statement	FROM	from_statement;

Where:

tablename:	This	is	the	name	of	the	table.
INTO:	This	is	used	to	insert	data	into	the	Hive	table.	If	the	data	is	already	present,	new	data	will	be
appended.
[PARTITION	(partcol1=val1]:	This	option	is	used	when	data	needs	to	be	inserted	into	a
partitioned	table.

The	third	syntax	of	inserting	the	data	into	a	Hive	table	is	as	follows:

FROM	from_statement

INSERT	OVERWRITE	TABLE	tablename1	[PARTITION	(partcol1=val1,	partcol2=val2	...)	[IF	

NOT	EXISTS]]	select	select_statement1

[INSERT	OVERWRITE	TABLE	tablename2	[PARTITION	...	[IF	NOT	EXISTS]]	select	

select_statement2]

[INSERT	INTO	TABLE	tablename2	[PARTITION	...]	select	select_statement2]	...;

In	the	preceding	statement,	only	the	first	INSERT	OVERWRITE	statement	is	mandatory	and	the	rest	are
optional.	The	first	statement	overwrites	the	data	present	in	the	table	or	partition.	If	there	is	another
statement	that	inserts	data	into	the	same	table,	then	the	data	will	be	appended	into	the	table:

FROM	from_statement

INSERT	INTO	TABLE	tablename1	[PARTITION	(partcol1=val1,	partcol2=val2	...)]	select	

select_statement1

[INSERT	INTO	TABLE	tablename2	[PARTITION	...]	select	select_statement2]

[INSERT	OVERWRITE	TABLE	tablename2	[PARTITION	...	[IF	NOT	EXISTS]]	select	

select_statement2]	...;

In	the	preceding	statement,	only	the	first	INSERT	INTO	statement	is	mandatory	and	the	rest	are	optional.
The	first	statement	overwrites	the	data	present	in	the	table	or	partition.	If	there	is	another	statement	that
overwrites	data	from	the	same	table,	then	the	data	will	be	overwritten	from	the	table.

Getting	ready
This	recipe	requires	the	sales_rgn	table	to	be	created	first	before	proceeding	with	data	insertion	into	the
sales	table.

How	to	do	it…
Follow	these	steps	to	insert	data	into	tables	in	Hive:

INSERT	INTO	sales	SELECT	*	FROM	sales_rgn;

INSERT	INTO	sales	SELECT	*	FROM	sales_rgn	WHERE	state	=	'Maryland';

INSERT	OVERWRITE	TABLE	sales	SELECT	*	FROM	sales_rgn;

INSERT	OVERWRITE	TABLE	sales	SELECT	*	FROM	sales_rgn	WHERE	id	=	1;

How	it	works…
The	INSERT	INTO	statement	is	used	to	append	the	data	into	a	Hive	table	or	partition.	It	keeps	the	existing
data	as	it	is	and	adds	new	data	into	one	or	more	new	data	files.	The	INSERT	OVERWRITE	statement	is	used
to	overwrite	existing	data	with	the	new	data	source.

The	initial	count	of	the	sales	tables	is	2	as	shown	next:

	

The	total	values	present	in	sales_rgn	is	5000	as	shown	next:

	

The	preceding	first	command	listed,	INSERT	INTO	sales	SELECT	*	FROM	sales_rgn;,	inserts	the
data	into	the	sales	table	from	sales_rgn.	It	will	append	the	entire	data	of	the	sales_rgn	table	to	the
sales	table:

	

The	second	statement,	INSERT	INTO	sales	SELECT	*	FROM	sales_rgn	WHERE	state	=
'Maryland';,	is	the	same	as	the	first	statement.	The	only	difference	is	that	an	extra	WHERE	clause	is
inserted	into	the	statement	showing	that	we	can	also	insert	filtered	records	into	the	table:

	

The	third	statement,	INSERT	OVERWRITE	TABLE	sales	SELECT	*	FROM	sales_rgn;,	overwrites	the
existing	data	into	the	sales	table	from	the	data	present	in	sales_rgn.	Once	the	statement	is	executed,	the
total	count	is	5000,	as	shown	in	the	following	screenshot:

	

The	fourth	statement,	INSERT	OVERWRITE	TABLE	sales	SELECT	*	FROM	sales_rgn	WHERE	id	=	1;,
will	overwrite	the	data	present	in	the	sales	table	with	the	filtered	data	as	the	output	of	the	WHERE	clause
of	the	SELECT	statement.	If	there	is	only	one	record	found	after	the	WHERE	clause,	then	the	sales	table	will
have	only	one	record	after	the	execution	of	the	statement:

	

Inserting	data	into	dynamic	partitions
Until	now,	we	have	learned	how	to	insert	data	into	partitions	in	a	table	one	at	a	time.	For	that,	it	was
important	for	us	to	know	in	which	partition	we	need	to	insert	data.	Further,	only	one	partition	can	be
inserted	using	one	INSERT	statement.	Now,	we	will	learn	how	to	insert	data	into	multiple	partitions
through	a	single	statement.	The	general	syntax	of	inserting	data	into	multiple	partitions	is	as	follows:

FROM	tablename

INSERT	OVERWRITE	TABLE	tablename1	

PARTITION(root_partition_name='value',child_partition_name)

SELECT	select_statment;

Where:

tablename:	This	is	the	name	of	the	table	from	which	the	value	is	to	be	taken	by	the	select	statement
tablename1:	This	is	the	name	of	the	table	in	which	the	data	will	be	inserted
root_partition_name:	This	is	the	static	partition	column
child_partition_name:	This	is	the	dynamic	partition	column

Getting	ready
This	recipe	requires	having	Hive	installed	as	described	in	the	Installing	Hive	recipe	of	Chapter	1,
Developing	Hive.	You	will	also	need	the	Hive	CLI	or	Beeline	client	to	run	the	commands.

Dynamic	partitioning	is	disabled	by	default.	The	minimum	configuration	to	enable	dynamic	partitioning	is
as	follows:

SET	hive.exec.dynamic.partition	=	true;

SET	hive.exec.dynamic.partition.mode	=	nonstrict;

You	can	set	this	configuration	at	the	session	level	using	the	Hive	shell	or	at	the	global	level	using	the	Hive
configuration	file	/opt/hive-1.1.0/conf/hive-site.xml.	After	setting	up	these	two	properties,	you
can	create	dynamic	partitions.

How	to	do	it...
Execute	the	following	command	for	dynamic	partitioning	of	the	sales	table:

FROM	sales_region	slr

INSERT	OVERWRITE	TABLE	sales	PARTITION(dop='2015-10-20',	city)	SELECT	slr.id,	

slr.firstname,	slr.lastname,	slr.city;

How	it	works…
The	preceding	statement	will	insert/overwrite	data	into	the	sales	table	from	sales_region.	Here,	dop
is	the	root	partition	and	city	is	the	child	partition.	The	child	partition	has	to	be	the	last	column	in	the
PARTITION	clause	to	maintain	the	hierarchical	order.	Also,	the	city	column	is	added	to	the	SELECT
statement	as	the	last	column.	There	can	be	more	than	one	dynamic	partition	column	in	the	PARTITION
clause,	but	the	same	order	has	to	be	maintained	in	the	SELECT	statement	as	well.	If	the	dynamic	partition
column	is	not	supplied	in	the	SELECT	statement,	the	value	is	picked	from	the	column	that	is	present	as	the
last	column.	That	means	if	the	names	do	not	match,	then	the	value	will	be	picked	from	the	last	column/s	in
the	SELECT	clause,	indicating	that	values	are,	not	picked	on	the	basis	of	the	column	names	but	the	values.

There	is	no	need	to	specify	the	static	partition	column	in	the	table	as	its	value	is	already	specified	in	the
PARTITION	clause.

The	value	of	a	static	partition	must	always	be	provided	in	the	PARTITION	clause.	In	the	preceding
example,	we	cannot	specify	(dop,	city	=	'UK').

There's	more…
Apart	from	the	basic	configuration	of	dynamic	inserts,	there	are	some	other	parameters	that	can	be	tuned:

Configuration	property Default

hive.error.on.empty.partition false

hive.exec.dynamic.partition false

hive.exec.dynamic.partition.mode strict

hive.exec.max.created.files 100000

hive.exec.max.dynamic.partitions 1000

hive.exec.max.dynamic.partitions.pernode 100

The	following	are	the	configuration	properties:

hive.exec.max.dynamic.partitions.pernode	(default	value	=	100):	This	property	tells	us	the
maximum	number	of	dynamic	partitions	that	can	be	created	per	node	by	a	mapper	or	reducer,	beyond
which	an	error	will	be	thrown.
hive.exec.max.dynamic.partitions	(default	value	=	1000):	This	property	corresponds	to	the
maximum	number	of	partitions	that	can	be	created	irrespective	of	the	maximum	number	of	dynamic
partitions	per	node	does	not	exceed	the	limit	mentioned	in	the	preceding	property.
hive.exec.max.created.files	(default	value	=	100000):	This	property	tells	us	what	will	be	the
maximum	number	of	files	that	will	be	created	including	all	the	nodes.
hive.exec.dynamic.partition:	This	property	must	be	set	to	true	for	a	dynamic	partitions	insert.
The	default	value	is	false.
hive.exec.dynamic.partition.mode:	This	property	by	default	is	strict,	which	means	that	there
has	to	be	at	least	one	static	partition.

Writing	data	into	files	from	queries
In	this	recipe,	you	will	learn	how	to	write	data	into	a	file	from	a	query	in	Hive.

This	part	helps	you	insert	data	into	a	file	with	the	help	of	a	query;	that	is,	the	output	of	a	query	to	be	saved
into	a	file.	The	general	format	of	inserting	data	into	a	file	is	as	follows:

Standard	syntax:

INSERT	OVERWRITE	[LOCAL]	DIRECTORY	directory1	[ROW	FORMAT	row_format]	[STORED	AS	

file_format]SELECT	select_statment	FROM	from_statment.

Hive	extension	(multiple	inserts):

FROM	from_statement

INSERT	OVERWRITE	[LOCAL]	DIRECTORY	directory1	select_statement1

[INSERT	OVERWRITE	[LOCAL]	DIRECTORY	directory2	select_statement2]	...

Where:

[LOCAL]:	Is	an	optional	clause.	If	this	clause	is	specified,	the	preceding	command	will	look	for	the
file	in	the	local	filesystem.	The	command	will	follow	the	file	path	in	the	local	filesystem.
[ROW	FORMAT	row_format]:	Is	an	optional	clause.	With	the	help	of	this,	we	can	specify	the	row
format;	that	is,	the	delimiters	or	the	fields	terminated	by	any	character.
[STORED	AS	file_format]:	Is	an	optional	clause.	With	the	help	of	this	clause,	we	can	specify	the
file	format	in	which	we	want	to	save	the	data.
Select_statment:	This	is	the	column	in	the	clause	will	be	inserted	into	the	file.
from_statment:	This	part	contains	the	table	name	along	with	the	filter	condition,	if	any.

Getting	ready
This	recipe	requires	the	sales	directory	to	be	present	in	the	local	filesystem.

How	to	do	it…
Use	these	commands	to	insert	data	into	a	file	in	Hive:

INSERT	OVERWRITE	LOCAL	DIRECTORY	'/sales'

SELECT	sle.id,	sle.fname,	sle.lname,	sle.address

FROM	sales	sle;

The	preceding	statement	will	load	data	in	the	specified	directory	in	the	local	filesystem.

Enabling	transactions	in	Hive
In	this	recipe,	you	will	learn	how	to	configure	the	Hive	metastore	to	enable	Atomicity,	Consistency,
Isolation,	Durability	(ACID)	properties	for	a	Hive	table.	Insert,	Update	and	Delete	are	not	possible	in
Hive	until	the	ACID	properties	are	not	enabled.	Also	table	must	to	be	Bucketed	in	Hive	if	Insert,	Update
and	Delete	feature	are	to	be	used.

Transactions	including	inserts,	updates,	and	deletes	are	available	from	Hive	1.0.0	and	above.

Getting	ready
To	allow	the	user	to	execute	transactional	commands,	the	user	needs	to	configure	the	metastore	with
transactional	tables.	The	user	needs	to	set	the	following	properties	in	hive-site.xml:

<configuration>

				<property>

								<name>javax.jdo.option.ConnectionURL</name>

								<value>jdbc:mysql://localhost:3306/hivedb</value>

								<description>metadata	is	stored	in	a	MySQL	server</description>

				</property>

				<property>

								<name>javax.jdo.option.ConnectionDriverName</name>

								<value>com.mysql.jdbc.Driver</value>

								<description>MySQL	JDBC	driver	class</description>

				</property>

				<property>

										<name>javax.jdo.option.ConnectionUserName</name>

										<value>root</value>

										<description>user	name	for	connecting	to	mysql	server</description>

				</property>

				<property>

										<name>javax.jdo.option.ConnectionPassword</name>

										<value>root</value>

										<description>password	for	connecting	to	mysql	server</description>

					</property>

	<property>

										<name>hive.support.concurrency</name>

										<value>true</value>

					</property>

	<property>

										<name>hive.enforce.bucketing</name>

										<value>true</value>

					</property>

	<property>

										<name>hive.exec.dynamic.partition.mode</name>

										<value>nonstrict</value>

					</property>

	<property>

										<name>hive.txn.manager</name>

										<value>org.apache.hadoop.hive.ql.lockmgr.DbTxnManager</value>

					</property>

	<property>

										<name>hive.compactor.initiator.on</name>

										<value>true</value>

					</property>

	<property>

										<name>hive.compactor.worker.threads</name>

										<value>1</value>

					</property>

</configuration>

How	to	do	it…
Once	the	properties	are	configured	in	hive-site.xml,	the	user	needs	to	run	the	following	command	to
create	metastore	tables	in	RDBMS:

$HIVE_HOME/bin/schematool	-dbType	mysql	-initSchema

This	command	will	create	the	transactional	tables	in	the	hivedb	metastore,	along	with	other	schema
tables.

Note

Create	an	empty	database,	hivedb,	in	RDMS	before	executing	this	command.

Change–dbType	with	the	name	of	your	RDBMS	metastore.

Inserting	values	into	tables	from	SQL
In	this	recipe,	you	will	learn	how	to	insert	data	from	SQL	into	a	table	in	Hive.

Inserting	data	into	a	Hive	table	through	a	SQL	statement	is	the	third	variant	of	inserting	data.	This	is	the
traditional	way	of	inserting	data	into	a	table	in	any	RDBMS.	Inserting	in	a	table	through	SQL	statements
can	only	be	performed	if	the	table	supports	ACID.	The	general	format	of	inserting	data	into	a	table	is	as
follows:

INSERT	INTO	TABLE	table_name	[PARTITION	(partcol1[=val1],	partcol2[=val2]	...)]	

VALUES	values_row	[,	values_row	...]

Where:

tablename:	This	is	the	name	of	the	table
values_row:	This	is	the	value	that	is	to	be	inserted	into	the	table

Getting	ready
This	recipe	requires	having	Hive	installed	as	described	in	the	Installing	Hive	recipe	of	Chapter	1,
Developing	Hive.	You	will	also	need	the	Hive	CLI	or	Beeline	client	to	run	the	commands.

This	recipe	requires	transactions	to	be	enabled,	so	refer	to	Enabling	transactions	in	Hive	for	that
(https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions).

https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions

How	to	do	it…
Follow	these	steps	to	insert	data	into	a	table	in	Hive:

INSERT	INTO	sales	VALUES	(1,	'John',	'Terry',	'H-43	Sector-23',	'Delhi',	'India',	

'10.10.10.10',	'P_1',	'15-11-1985');

INSERT	INTO	sales	VALUES	(2,	'Terry',	'John',	'H-43	Sector-23',	'Delhi',	'India',	

'10.10.10.10',	'',	'');

INSERT	INTO	sales	VALUES	(2,	'Terry',	'John',	'H-43	Sector-23',	'Delhi',	'India',	

'10.10.10.10');

Create	table	employees	(name	string,	age	int,	job	string)	clustered	by	(age)	into	2	

buckets	stored	as	orc;

Insert	into	employees	values	('John',	30,	'IT'),	('Jerry',	35,	'Sales');

Create	table	department	(name	string,	age	int,	deptno	int)	Partitioned	by	

(datestamp	string;

INSERT	INTO	department	PARTITION	(datestamp	=	'2015-10-23')	VALUES	('Jason',	20,	

10),	('Nelson',	30,	20);

How	it	works…
The	first	statement	in	the	preceding	section	shows	us	how	to	insert	a	row	inside	the	table	named	sales.
Once	the	command	is	run,	we	can	verify	the	data	by	running	the	following	command:

SELECT	*	FROM	sales	WHERE	id	=	1;

The	output	of	the	preceding	SELECT	statement	is	shown	in	the	following	figure:

	

The	second	statement	inserts	the	values	into	the	table	named	sales,	but	only	seven	out	of	nine	columns
consists	of	values.	The	last	two	columns	are	inserted	as	null	values.	Once	the	command	is	run,	we	can
verify	the	data	by	running	the	following	command:

SELECT	*	FROM	sales	WHERE	id	=	2;

The	output	of	the	preceding	SELECT	statement	is	shown	in	the	following	figure:

	

The	third	query	fails	as	it	tries	to	insert	only	seven	columns	out	of	nine.	The	error	is	shown	next:

FAILED:	SemanticException	[Error	10044]:	Line	1:12	Cannot	insert	into	target	table	

because	column	number/types	are	different	'sales':	Table	insclause-0	has	9	columns,	

but	query	has	7	columns.

The	fourth	statement	inserts	rows	into	employee	tables	that	are	clustered	by	age	and	bucketed	into	two
buckets.	First,	we	will	create	an	employee	table,	the	output	of	which	is	shown	next:

	

Once	the	table	is	created,	we	will	insert	the	data	as	mentioned	in	the	fourth	statement.	Once	the	command
is	run,	we	can	verify	the	data	by	running	the	following	command:

SELECT	*	FROM	employees;

The	output	of	the	preceding	SELECT	statement	is	shown	in	the	following	figure:

	

The	fifth	row	inserts	data	into	partitions.	First,	we	will	create	a	partitioned	table	named	DEPARTMENT,	the
output	of	which	is	shown	next:

	

Once	the	table	is	created,	we	will	insert	the	data	as	mentioned	in	the	fourth	statement.	Once	the	command
is	run,	we	can	verify	the	data	by	running	the	following	command:

SELECT	*	FROM	department;

The	output	of	the	preceding	SELECT	statement	is	shown	in	the	following	screenshot:

	

There's	more…
In	Hive,	the	value	for	each	column	must	be	provided	in	the	INSERT	clause,	unlike	traditional	RDBMS
where	the	user	can	specify	values	for	specific	columns.	However,	if	the	user	does	not	wish	to	specify	all
the	columns,	he/she	can	specify	NULL	else	an	error	is	thrown	as	specified	in	the	preceding	example.

Insertion	is	not	possible	on	tables	that	are	created	using	the	SORTED	BY	clause.

Hive	does	not	support	complex	datatypes.

Dynamic	partitioning	is	supported	in	the	same	way	as	INSERT	SELECT.

Updating	data
In	this	recipe,	you	will	learn	how	to	update	data	in	a	table	in	Hive.

Updating	data	in	a	Hive	table	is	the	traditional	way	of	updating	data	in	a	table	in	any	RDBMS.	Updating
data	in	a	table	can	only	be	performed	if	the	table	supports	Atomicity,	Consistency,	Isolation,	Durability
(ACID)	properties.	The	general	format	of	updating	data	in	a	table	is	as	follows:

UPDATE	tablename	SET	column	=	value	[,	column	=	value	...]	[WHERE	expression]

Where:

tablename:	This	is	the	name	of	the	table
values_row:	This	is	the	value	that	is	to	be	inserted	into	the	table.
WHERE	expression:	This	is	an	optional	clause.	Only	rows	that	match	the	WHERE	clause	will	be
updated

Getting	ready
This	recipe	requires	having	Hive	installed	as	described	in	the	Installing	Hive	recipe	of	Chapter	1,
Developing	Hive.	You	will	also	need	the	Hive	CLI	or	Beeline	client	to	run	the	commands.

This	recipe	requires	transactions	enabled,	so	refer	to	Enabling	transactions	in	Hive	in	Hive	for	that.

How	to	do	it...
Follow	these	steps	to	update	data	in	a	table	in	Hive:

UPDATE	sales	SET	lname	=	'Thomas'	WHERE	id	=	1;

UPDATE	sales	SET	ip	=	'20.20.20.20'	WHERE	id	=	2;

How	it	works…
The	first	statement	will	update	the	lname	column	to	Thomas	in	the	Sales	table.

If	the	preceding	table	does	not	support	ACID	properties,	the	following	error	is	thrown:

FAILED:	SemanticException	[Error	10297]:	Attempt	to	do	update	or	delete	on	table	

default.sales	that	does	not	use	an	AcidOutputFormat	or	is	not	bucketed.

The	second	statement	updates	the	IP	from	10.10.10.10	to	20.20.20.20	in	the	Sales	table.

There's	more…
Rows	that	match	the	WHERE	clause/criteria	will	be	updated
Partitioning	columns	cannot	be	updated
Bucketing	columns	cannot	be	updated
Update	is	not	possible	on	tables	that	are	created	using	the	SORTED	BY	clause

Deleting	data
In	this	recipe,	you	will	learn	how	to	delete	data	from	a	table	in	Hive.

Deleting	data	from	a	Hive	table	is	the	traditional	way	of	deleting	data	in	a	table	in	any	RDBMS.	Deleting
data	in	a	table	can	only	be	performed	if	the	table	supports	ACID	properties.

Note

Deletion	is	not	possible	on	tables	that	are	created	using	the	SORTED	BY	clause.

The	general	format	of	deleting	data	in	a	table	is	as	follows:

DELETE	FROM	tablename	[WHERE	expression]

Where:

tablename:	This	is	the	name	of	the	table
WHERE	expression:	This	is	an	optional	clause.	Only	rows	that	match	the	WHERE	clause	will	be	deleted

Getting	ready
This	recipe	requires	having	Hive	installed	as	described	in	the	Installing	Hive	recipe	of	Chapter	1,
Developing	Hive.	You	will	also	need	the	Hive	CLI	or	Beeline	client	to	run	the	commands.

This	recipe	requires	transactions	enabled,	so	refer	to	Enabling	transactions	in	Hive	for	that.

How	to	do	it...
Follow	the	next	step	to	delete	data	in	a	table	in	Hive:

DELETE	FROM	sales	WHERE	id	=	1;

How	it	works…
The	preceding	statement	DELETE	FROM	sales	WHERE	id	=	1;,	will	delete	the	rows	where	id	equals	1.

If	the	preceding	table	does	not	support	ACID	properties,	the	following	error	is	thrown:

FAILED:	SemanticException	[Error	10297]:	Attempt	to	do	update	or	delete	on	table	

default.sales	that	does	not	use	an	AcidOutputFormat	or	is	not	bucketed.

Upon	successful	completion	of	this	operation,	the	changes	will	be	auto-committed.

Chapter	6.	Hive	Extensibility	Features
In	previous	chapters,	we	learned	about	different	ways	to	load	data	in	Hive	along	with	recently	added
updates	and	deletes	in	Hive.

In	this	chapter,	we	will	cover	the	following	recipes	in	detail:

Serialization	and	deserialization	formats	and	data	types
Exploring	views
Exploring	indexes
Hive	partitioning
Creating	buckets	in	Hive
Analytics	functions	in	Hive
Windowing	in	Hive
File	formats

Introduction
In	this	chapter,	we	are	going	to	cover	some	of	the	key	features	of	Hive	including	partitions,	bucketing,
windowing,	and	analytics	functions.	In	the	practical	demonstration,	we	have	used	the	following	sales	data
set:

Schema	:	id,	fname,	state,	zip,	ip,	pid

	

Serialization	and	deserialization	formats	and
data	types
Serialization	and	deserialization	formats	are	popularly	known	as	SerDes.	Hive	allows	the	framework	to
read	or	write	data	in	a	particular	format.	These	formats	parse	the	structured	or	unstructured	data	bytes
stored	in	HDFS	in	accordance	with	the	schema	definition	of	Hive	tables.	Hive	provides	a	set	of	in-built
SerDes	and	also	allows	the	user	to	create	custom	SerDes	based	on	their	data	definition.	These	are	as
follows:

LazySimpleSerDe

RegexSerDe

AvroSerDe

OrcSerde

ParquetHiveSerDe

JSONSerDe

CSVSerDe

How	to	do	it…
You	can	use	different	types	of	SerDes	for	reading	or	writing	the	data	in	a	particular	format.

LazySimpleSerDe

This	is	the	default	SerDes	format	of	Hive.	When	a	user	creates	a	table	in	Hive	without	any	explicit
SerDes	definition,	LazySimpleSerDe	gets	associated	with	the	table.	LazySimpleSerDe	takes	line	feed
(\n)	as	the	record	separator	and	tab	('\t')	as	the	attribute	(column)	delimiter.	It	parse	the	data	bytes	it
receives	from	HDFS	and	generates	the	record	and	columns	from	it.	The	columns	are	then	mapped	to	the
schema	definition	of	the	table	to	which	the	data	is	associated.

For	example,	let's	create	a	table	without	specifying	any	SerDes	definition:

hive>	CREATE	TABLE	sales	(id	INT,	fname	STRING,	lname	STRING,	address	STRING,	city	

STRING,	state	STRING,	zip	STRING,	ip	STRING,	pid	STRING,	dop	STRING)	ROW	FORMAT	

DELIMITED	FIELDS	TERMINATED	BY	'\t';

When	you	create	a	sales	table,	by	default	it	is	set	with	LazySimpleSerDe,	which	takes	a	new	line	as	the
record	delimiter	and	the	'\t'	tab	as	the	column	separator.	You	can	specify	the	columns	delimiter	other
than	tab	in	the	same	way;	for	example	ROW	FORMAT	DELIMITED	FIELDS	TERMINATED	BY	','	would
consider	a	comma	as	the	column	delimiter	while	parsing	HDFS	bytes.	It	is	important	to	note	that	only	1
byte	delimiters	are	allowed	in	this	SerDes	format.

If	we	check	in	the	metastore,	we	would	find	the	following	SerDes	entry	for	the	sales	table:

	

In	the	preceding	screenshot,	the	SD_ID	(in	this	example,	the	value	is	43)	column	specifies	the	ID	of
SerDes	that	is	used	for	this	table.	Now,	let's	check	the	corresponding	SerDes	information	in	the	metastore
table	SERDES.

	

The	preceding	image	is	showing	the	corresponding	SerDes	name	for	id=43,	which	is	LazySimpleSerde.

So	this	means	when	no	SerDes	is	defined	in	the	table	create	statement,	then	by	default	LazySimpleSerde
is	used.

RegexSerDe

RegexSerDe	is	included	as	part	of	the	Hive	package	distribution.	It	allows	Hive	to	query	data	based	on	a
particular	Regex	pattern.	The	records	in	HDFS	data	are	mapped	to	the	table	schema.	For	example,	let's
take	some	sample	log	data:

66.249.68.6	-	-	[14/Jan/2016:06:25:03	-0800]	"GET	/protechskills.com	HTTP/1.1"	200

23.145.12.1	-	-	[14/Jan/2016:06:26:05	-0600]	"POST	/protechskills.com	HTTP/1.1"	200

We	would	create	a	table	that	corresponds	to	the	log	data	in	HDFS	files	and	create	a	table	for	it	as
follows:

hive>CREATE	TABLE	web_logs(remote_ip	STRING,dt	STRING,httpmethod	STRING,request	

STRING,protocol	STRING)

ROW	FORMAT	SERDE	'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'

WITH	SERDEPROPERTIES("input.regex"	=	"([^]*)	([^]*)	([^]*)	(?:-|\[([^\]]*)\])	

([^	\"]*|\"[^\"]*\")	(-|[0-9]*)",

"output.format.string"	=	"%1$s	%2$s	%3$s	%4$s	%5$s"

);

Once	we	defined	a	Regex	for	the	data,	we	can	query	the	data	as	simple	Hive	SQL	queries.

hive>	SELECT	remote_ip,	protocol	FROM	web_logs	ORDER	BY	httpmethod;

JSONSerDe

If	the	underlying	data	in	HDFS	is	in	JSON	format,	it	could	be	queried	using	Hive	by	associating
JSONSerDe	with	the	table.	For	example,	if	the	data	in	HDFS	is	in	the	following	form:

{"id":1,"created_at":2016-02-22,"text":"hi","user_id":12,	"user_name":"shrey"}

{"id":2,"created_at":2016-02-23,"text":"hi","user_id":13,	"user_name":"hanish"}

{"id":3,"created_at":2016-02-24,"text":"hi","user_id":14,	"user_name":"saurabh"}

Note

Download	hive-json-serde-02.jar	from	https://storage.googleapis.com/google-code-archive-
downloads/v2/code.google.com/hive-json-serde/hive-json-serde-0.2.jar.

hive>	add	jar	/opt/hive-json-serde-0.2.jar

We	can	create	a	Hive	table	for	this	data	format	and	use	JSONSerDe	to	map	JSON	keys	to	the	Hive	table
schema	as	follows:

CREATE	EXTERNAL	TABLE	messages	(

msg_id	BIGINT,

tstamp	STRING,

text	STRING,

user_id	BIGINT,

user_name	STRING

)

https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/hive-json-serde/hive-json-serde-0.2.jar

ROW	FORMAT	SERDE	"org.apache.hadoop.hive.contrib.serde2.JsonSerde"

WITH	SERDEPROPERTIES	(

"msg_id"="$.id",

"tstamp"="$.created_at",

"text"="$.text",

"user_id"="$.user.id",

"user_name"="$.user.name"

)

LOCATION	'/data/messages';

In	the	preceding	example,	the	SerDes	properties	are	used	to	map	JSON	fields	in	the	document	to	columns
in	the	Hive	table.	The	$.user.id	field	searches	for	the	id	key	in	the	user	map	and	associates	the	key	to
user_id	in	the	Hive	table.

CSVSerDe

CSVSerDe	is	used	to	parse	the	CSV	data	stored	in	HDFS.	Before	Hive	0.14,	it	was	not	a	part	of	the	Hive
distribution,	thus	it	needed	to	be	added	as	an	external	dependency;	but	from	Hive	0.14	and	later,	this
SerDes	is	included	in	the	Hive	distribution.	The	following	is	an	example	of	CSVSerDe	usage	with	sample
data:

CREATE	TABLE	my_table(a	string,	b	string,	...)

ROW	FORMAT	SERDE	'org.apache.hadoop.hive.serde2.OpenCSVSerde'

WITH	SERDEPROPERTIES	(

				"separatorChar"	=	"\t",

				"quoteChar"					=	"'",

				"escapeChar"				=	"\\"

)

STORED	AS	TEXTFILE;

There's	more…
Apart	from	predefined	SerDes,	Hive	also	provisions	the	user	to	create	their	own	SerDes	based	on	how
data	should	be	deserialized	on	reads.

Note

More	on	Hive	SerDes	and	creating	a	custom	SerDes	is	available	at
https://cwiki.apache.org/confluence/display/Hive/SerDe.

https://cwiki.apache.org/confluence/display/Hive/SerDe

See	also
You	can	read	more	about	this	CSVSerDe	mode	at	https://github.com/ogrodnek/csv-serde.

https://github.com/ogrodnek/csv-serde

Exploring	views
Views	in	SQL	provide	abstraction	from	querying	a	table	directly.	A	view	could	be	a	combination	of
multiple	tables	joined	or	grouped	on	a	set	of	columns.	In	RDBMS,	views	could	be	broadly	categorized
into	two	types:

Materialized	views
Non-materialized	views

Hive	supports	only	non-materialized	views	and	as	it	does	not	support	materialized	data,	the	view	is
strictly	bound	to	the	tables	it	is	based	on.	In	other	words,	it	also	means	if	the	columns	of	the	tables	are
altered	or	dropped,	it	would	affect	the	view	or	even	fail	the	view.

How	to	do	it…
These	views	are	the	logical	constructs	that	do	not	store	data	with	them.	When	a	view	is	created	in	Hive,
the	underlying	query	is	stored	in	the	metastore.	When	the	view	is	queried,	the	view's	clauses	or	conditions
are	evaluated	before	the	underlying	query	clause.	For	example,	if	the	query	has	a	limit	of	200	and	the
view	has	a	limit	of	100	then	the	query	would	return	100	results.

An	example	of	a	view	definition	is	as	follows:

CREATE	VIEW	sales_view	AS	SELECT	*	FROM	SALES	WHERE	ip	=	'192.168.56.101'	or	

ip='192.168.56.106';

The	view	can	then	be	used	in	the	same	way	as	any	other	table	in	Hive.	An	example	of	this	is	as	follows:

SELECT	*	FROM	sales_view	WHERE	pid	=	'PI_02'	or	pid	=	'PI_03';

This	command	will	return	the	data	as	shown	in	the	following	screenshot:

	

How	it	works…
A	view	is	treated	as	a	table	in	Hive.	You	can	check	the	views	in	the	Hive	database	by	running	show
tables.

Now,	let's	see	how	the	metadata	for	views	is	stored	in	the	Hive	metastore.

In	the	metastore,	the	query	of	a	view	is	stored	in	a	table.	When	the	query	on	a	view	is	executed,	the	query
in	it	is	executed	first	and	then	the	view	filter	is	applied:

	

The	following	is	the	snippet	of	the	explain	plan	for	a	view:

EXPLAIN	SELECT	*	FROM	sales_view	WHERE	pid	=	'PI_02'	OR	pid	=	'PI_03'	;

	

Exploring	indexes
Indexes	are	useful	for	increasing	the	performance	of	frequent	queries	based	on	certain	columns.	But	Hive
has	limited	a	capability	to	index	data	as	indexing	large	datasets	requires	sufficient	additional	storage
space	and	processing	overheads.	Hive	can	index	the	columns	to	speed	up	some	operations.	It	stores	the
indexed	data	in	another	table.

How	to	do	it…
Indexes	could	be	created	on	the	tables	in	Hive.	Let	us	create	a	sales	table	in	Hive	on	which	we	are	going
to	create	indexes:

Create	table	sales(id	int,	fname	string,	state	string,	zip	string,	ip	string,	pid	

string)	Row	format	delimited	fields	terminated	by	'\t';

Let	us	create	an	index	on	the	state	column	of	this	table:

CREATE	INDEX	index_ip	ON	TABLE	sales(ip)	AS	

'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler'	WITH	DEFERRED	

REBUILD;

In	the	metastore,	it	is	stored	in	the	IDXS	table	as	shown	in	the	following	screenshot:

	

Hive	partitioning
Partitioning	in	Hive	can	be	best	explained	with	an	example.	Suppose	a	telecom	organization	generates	1
TB	of	data	every	day	and	different	regional	managers	query	this	data	based	on	their	own	state.	For	each
query	by	a	regional	manager,	Hive	scans	the	complete	data	in	HDFS	and	files	the	results	for	a	particular
state.

The	manager	runs	the	same	query	daily	for	his	own	state	analysis	and	the	query	gives	the	result	in	four
hours	on	a	1	TB	dataset.	For	analytics,	the	same	query	could	be	executed	daily	on	a	one-month	or	six-
month	dataset.	The	query	would	take	ten	hours	on	a	month's	data.

If	the	data	is	somehow	partitioned	based	on	state,	then	when	a	regional	manager	runs	the	same	query	for
his	state,	only	the	data	of	that	state	is	scanned	and	the	execution	time	could	be	reduced	significantly.

How	to	do	it…
Partitioning	can	be	done	in	one	of	the	following	two	ways:

Static	partitioning
Dynamic	partitioning

Static	partitioning

In	static	partitioning,	you	need	to	manually	insert	data	in	different	partitions	of	a	table.	Let's	use	a	table
partitioned	on	the	states	of	India.	For	each	state,	you	need	to	manually	insert	the	data	from	the	data	source
to	a	state	partition	in	the	partitioned	table.	So	for	29	states,	you	need	to	write	the	equivalent	number	of
Hive	queries	to	insert	data	in	each	partition.	Let's	understand	this	using	the	following	example.

First,	we	create	a	nonpartitioned	table,	sales,	which	is	the	source	of	data	for	our	partitioned	table,	and
load	data	into	it:

CREATE	TABLE	sales	(id	int,	fname	string,	state	string,	zip	string,	ip	string,	pid	

string)	row	format	delimited	fields	terminated	by	'\t';

LOAD	DATA	LOCAL	INPATH	'/opt/data/sample_10'	INTO	TABLE	sales;

If	we	query	the	table	sales	for	a	particular	state,	it	would	scan	the	entire	data	in	sales.

Now,	let's	create	a	partition	table	and	insert	data	from	sales	in	to	different	partitions:

CREATE	TABLE	sales_part(id	int,	fname	string,	state	string,	zip	string,	ip	string)	

partitioned	by	(pid	string)	row	format	delimited	fields	terminated	by	'\t';

In	static	partitioning,	you	need	to	insert	data	into	different	partitions	of	the	partitioned	table	as	follows:

Insert	into	sales_part	partition	(pid=	'PI_03')	select	id,fname,state,zip,ip	from	

sales	where	pid=	'PI_03';

Insert	into	sales_part	partition	(pid=	'PI_02')	select	id,fname,state,zip,ip	from	

sales	where	pid=	'PI_02';

Insert	into	sales_part	partition	(pid=	'PI_05')	select	id,fname,state,zip,ip	from	

sales	where	pid=	'PI_05';

If	we	check	for	the	partitions	in	HDFS,	we	would	find	the	directory	structure	as	follows:

	
Dynamic	partitioning

Let	us	look	at	a	scenario	where	we	have	50	product	IDs	and	we	need	to	partition	data	for	all	the	unique
product	IDs	available	in	the	dataset.	If	we	go	for	static	partitioning,	we	need	to	run	the	INSERT	INTO
command	for	all	50	distinct	product	IDs.	That	is	where	it	is	better	to	go	with	dynamic	partitioning.	In	this
type,	partitions	would	be	created	for	all	the	unique	values	in	the	dataset	for	a	given	partition	column.

By	default,	Hive	does	not	allow	dynamic	partitioning.	We	need	to	enable	it	by	setting	the	following
properties	on	the	CLI	or	in	hive-site.xml:

hive>	set	hive.exec.dynamic.partition	=	true;

hive>	set	hive.exec.dynamic.partition.mode	=	nonstrict;

Once	dynamic	partitioning	is	enabled,	we	can	create	partitions	for	all	unique	values	for	any	columns,	say
state	of	the	state	table,	as	follows:

hive>	create	table	sales_part_state	(id	int,	fname	string,	zip	string,	ip	string,	

pid	string)	partitioned	by	(state	string)	row	format	delimited	fields	terminated	by	

'\t';

hive>	Insert	into	sales_part_state	partition(state)	select	

id,fname,zip,ip,pid,state	from	sales;

It	will	create	partitions	for	all	unique	values	of	state	in	the	sales	table.	The	HDFS	structure	for	different
partitions	is	as	follows:

	

Now,	let's	see	how	things	are	stored	in	the	metastore:

	

Every	partition	created	for	static	and	dynamic	partitioning	is	stored	in	the	PARTITIONS	table	in	the
metastore	as	follows:

	

The	partition	keys	are	stored	separately	and	linked	to	the	PARTITIONS	table	with	the	TBL_ID	field	as
follows:

	

The	partition	values	are	stored	in	a	separate	table,	PARTITION_KEY_VALS,	and	linked	to	the	PARTITIONS
table	with	the	PART_ID	field	as	follows:

	

Creating	buckets	in	Hive
In	the	scenario	where	we	query	on	a	unique	values	column	of	a	dataset,	partitioning	is	not	a	good	fit.	If	we
go	with	a	partition	on	a	column	with	high	unique	values	like	ID,	it	would	create	a	large	number	of	small
datasets	in	HDFS	and	partition	entries	in	the	metastore,	thus	increasing	the	load	on	NameNode	and	the
metastore	service.

To	optimize	queries	on	such	a	dataset,	we	group	the	data	into	a	particular	number	of	buckets	and	the	data
is	divided	into	the	maximum	number	of	buckets.

How	to	do	it…
Using	the	same	sales	dataset,	if	we	need	to	optimize	queries	on	a	column	with	high	unique	column	values
such	as	ID,	we	create	buckets	on	that	column	as	follows:

create	table	sales_buck	(id	int,	fname	string,	state	string,	zip	string,	ip	string,	

pid	string)	clustered	by	(id)	into	50	buckets	row	format	delimited	fields	

terminated	by	'\t';

Here,	we	have	defined	50	buckets	for	this	table,	which	means	that	the	complete	dataset	is	divided	and
stored	in	50	buckets	based	on	the	ID	column	value.

By	default,	bucketing	is	disabled	in	Hive.	You	need	to	enable	bucketing	before	loading	data	in	a	bucketed
table	by	setting	the	following	property:

set	hive.enforce.bucketing=true;

Assuming	you	already	have	the	sales	table	that	we	created	in	the	Hive	partitioning	recipe,	we	would
now	load	the	data	in	sales_buck	from	the	table	sales	as	follows:

insert	into	table	sales_buck	select	*	from	sales;

If	you	closely	monitor	the	execution	of	MapReduce	jobs	running	for	this	insert	statement,	you	would	see
that	50	reducers	produce	50	output	files	as	buckets	for	this	table,	partitioned	on	ID:

	

If	you	have	access	to	HDFS,	you	can	check	that	50	files	are	created	in	the	warehouse	directory	of	the
sales_buck	table,	which	would	be	by	default	/user/hive/warehouse/sales_buck/.	If	the	location	of
the	table	is	not	known,	you	can	check	for	the	location	by	executing	the	describe	formatted
sales_buck;	command	on	the	Hive	CLI.

	

Now,	when	the	user	queries	the	sales_buck	table	for	an	ID	or	a	range	of	IDs,	Hive	knows	which	bucket
to	look	in	for	a	particular	ID.	The	query	engine	would	only	scan	that	bucket	and	return	the	resultset.

Metastore	view	of	bucketing

In	the	following	screenshot	after	executing	the	select	*	from	BUCKETING_COLS;	we	will	be	presented
with	the	following	result:

	

Analytics	functions	in	Hive
Hive	provides	the	following	set	of	analytical	functions:

RANK

DENSE_RANK

ROW_NUMBER

PERCENT_RANK

CUME_DIST

NTILE

Common	and	useful	sets	of	analytical	functions	are	ranking	functions	where	rows	from	resultset	are
ranked	according	to	a	scheme.

How	to	do	it…
Let's	analyze	each	function	in	detail.	We	will	be	using	the	same	sales	dataset	and	applying	analytical
functions	to	it:

ROW_NUMBER:	This	function	will	provide	a	unique	number	to	each	row	in	resultset	based	on	the
ORDER	BY	clause	within	the	PARTITION.	For	example,	if	we	want	to	assign	row_number	to	each
fname,	which	is	also	partitioned	by	IP	address	in	the	sales	dataset,	the	query	would	be:

hive>	select	fname,ip,ROW_NUMBER()	OVER	(ORDER	BY	ip)	as	rownum	from	sales;

RANK:	It	is	similar	to	ROW_NUMBER,	but	the	equal	rows	are	ranked	with	the	same	number.	For
example,	if	we	use	RANK	in	the	previous	query	instead	of	ROW_NUM:

hive>	select	fname,ip,RANK()	OVER	(ORDER	BY	ip)	as	ranknum,	RANK()	OVER	

(PARTITION	BY	ip	order	by	fname)	from	sales	;

DENSE_RANK:	In	a	normal	RANK	function,	we	see	a	gap	between	the	numbers	in	rows.	DENSE_RANK	is
a	function	with	no	gap.	For	example,	the	output	of	the	preceding	query	with	DENSE_RANK	is	as
follows:

select	fname,ip,DENSE_RANK()	OVER	(ORDER	BY	ip)	as	densenum,	DENSE_RANK()	OVER	

(PARTITION	BY	ip	order	by	fname)	from	sales	;

For	comparison,	if	we	put	all	three	together	then	the	output	would	be:

select	fname,ip,ROW_NUMBER()	OVER	(ORDER	BY	ip),	RANK()	OVER	(ORDER	BY	ip),	

DENSE_RANK()	OVER	(ORDER	BY	ip)	from	sales;

Use	cases:	Analytical	ranking	functions	are	useful	for	solving	complex	problems	in	datasets
including	removing	duplicates	in	data,	splitting	a	string,	and	so	on.
CUME_DIST:	CUME_DIST	is	shorthand	for	cumulative	distribution.	It	is	also	a	less	well-known
analytical	function	in	Hive.	It	computes	the	relative	position	of	a	column	value	in	a	group.	For	a	row,
r,	the	cumulative	distribution	of	r	is	calculated	as:

Cum_dist(r)	=	Num	of	rows	with	value	lower	than	or	equals	to	r	/	total	rows	in	

resultset	or	partition

For	example,	the	output	of	the	query	with	CUME_DIST	is:

SELECT	fname,	ip,	CUME_DIST()	OVER	(PARTITION	BY	ip	ORDER	BY	fname)	AS	

cume_dist	FROM	sales;

NTILE:	NTILE	distributes	the	number	of	rows	in	a	partition	into	a	certain	number	of	groups.	When	the
row	is	fetched,	NTILE	returns	the	group	number	associated	with	it.	The	groups	are	numerically

tagged,	starting	with	one.	Here	is	an	example:

SELECT	fname,	id,	NTILE(4)	OVER	(ORDER	BY	id	DESC)	AS	quartile	FROM	sales	WHERE	

ip	=	'192.168.56.101';

The	output	of	the	preceding	statement	is	shown	in	the	following	screenshot:

Here,	if	there	are	n	rows	with	the	ip='192.168.56.101'	quartile	in	four	buckets,	then	IDs	are
equally	divided	into	buckets	and	the	n%4	bucket	has	more	rows	than	other	buckets:

SELECT	fname,	id,	NTILE(2)	OVER	(ORDER	BY	id	DESC)	AS	quartile	FROM	sales	WHERE	

ip	=	'192.168.56.101';

The	output	of	the	preceding	statement	is	shown	in	the	following	screenshot:

PERCENT_RANK:	It	is	very	similar	to	the	CUME_DIST	function.	It	returns	a	value	from	0	to	1	inclusive.
The	first	row	in	any	dataset	has	percent_rank	0	and	the	return	value	is	of	the	double	type.

SELECT	ip,	fname,	PERCENT_RANK()	OVER	(PARTITION	BY	ip	ORDER	BY	fname)	AS	

percent_rank	FROM	sales;

See	also
You	can	learn	more	about	analytics	functions	in	Hive	here:
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/language_manual/ptf-
window.html#WindowingandAnalytics-EnhancementstoHiveQL.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/language_manual/ptf-window.html#WindowingandAnalytics-EnhancementstoHiveQL

Windowing	in	Hive
Windowing	in	Hive	allows	an	analyst	to	create	a	window	of	data	to	operate	aggregation	and	other
analytical	functions,	such	as	LEAD	and	LAG.

The	windowing	specification	in	HiveQL	comprises:

Partition
Order	by
Window	frame
Source	name	for	window	definition

Let's	look	into	each	of	these	specifications	in	detail:

Partition	specification:	It	includes	a	column	reference	from	the	table.	It	could	not	be	any
aggregation	or	other	window	specification.
Order	specification:	It	comprises	a	combination	of	one	or	more	columns.	The	ordering	could	be
ASC	or	DESC,	which	by	default	is	ASC.

Handling	NULLs:	There	is	no	support	for	Nulls	first	or	last	specification.	In	Hive,	Nulls	are
returned	first.
Window	frame:	A	frame	has	a	start	boundary	and	an	optional	end	boundary:

Frame	type:	Window	frames	could	be	any	of	the	following	types:
ROW
RANGE

Frame	boundary:	A	frame	is	associated	with	a	direction	or	an	amount.	A	direction	value	could	be
PRECEDING	or	FOLLOWING	and	the	amount	could	be	an	integer	value	or	keyword	UNBOUNDED.
Effective	window	frames:

BETWEEN	<start	boundary>	AND	CURRENT	ROW:	When	only	the	start	boundary	of	a	frame	is
specified.
RANGE	BETWEEN	UNBOUNDED	PRECEDING	AND	CURRENT	ROW:	When	only	the	order	is
specified	but	no	window	frame	is	specified.
ROW	BETWEEN	UNBOUNDED	PRECEDING	AND	UNBOUNDED	FOLLOWING:	When	no	order	and	no
window	frame	are	specified.

Source	name	for	window	definition:	A	row	R	in	the	input	table	belongs	to	a	partition	as	defined	in
the	partition	specification.	If	no	partition	is	specified,	all	rows	belong	to	a	single	partition.	The
order	of	a	row	R	in	a	partition	is	based	on	the	order	specification.	Hive	supports	windowing
functions	explained	in	the	following	section.

How	to	do	it…
Let's	look	into	the	implementation	and	working	of	different	windowing	functions	as	follows:

LEAD

LAG

FIRST_VALUE

LAST_VALUE

OVER	clause
OVER	with	Aggregates
COUNT

MIN

MAX

AVG

OVER	with	PARTITION	BY
OVER	with	PARTITION	BY	and	ORDER	BY

The	following	are	some	examples	for	the	preceding	functions:

PARTITION	BY	with	one	partitioning	column,	no	ORDER	BY,	and	no	window	specification:

SELECT	fname,ip,	COUNT(pid)	OVER	(PARTITION	BY	ip)	FROM	sales;

PARTITION	BY	with	two	partitioning	columns,	no	ORDER	BY,	and	no	window	specification:

SELECT	fname,ip,zip,pid,	COUNT(pid)	OVER	(PARTITION	BY	ip,	zip)	FROM	sales;

PARTITION	BY	with	one	partitioning	column,	one	ORDER	BY	column,	and	no	window
specification:

SELECT	fname,pid,	COUNT(pid)	OVER	(PARTITION	BY	ip	ORDER	BY	fname)	FROM	sales;

PARTITION	BY	with	two	partitioning	columns,	one	ORDER	BY	column,	and	no	window
specification:

SELECT	fname,ip,pid,	COUNT(pid)	OVER	(PARTITION	BY	ip,	pid	ORDER	BY	fname)	FROM	

sales;

PARTITION	BY	with	partitioning,	ORDER	BY,	and	a	window	specification:

SELECT	fname,	ip,	COUNT(pid)	OVER	(PARTITION	BY	ip	ORDER	BY	fname	ROWS	BETWEEN	

UNBOUNDED	PRECEDING	AND	CURRENT	ROW)	FROM	sales;

SELECT	fname,	ip,	COUNT(pid)	OVER	(PARTITION	BY	ip	ORDER	BY	fname	ROWS	BETWEEN	

2	PRECEDING	AND	CURRENT	ROW)	FROM	sales;

SELECT	fname,	ip	,COUNT(pid)	OVER	(PARTITION	BY	ip	ORDER	BY	fname	ROWS	BETWEEN	

2	PRECEDING	AND	2	FOLLOWING)	FROM	sales;

SELECT	fname,	ip,	COUNT(pid)	OVER	(PARTITION	BY	ip	ORDER	BY	fname	ROWS	BETWEEN	

CURRENT	ROW	AND	UNBOUNDED	FOLLOWING)FROM	sales;

There	can	be	multiple	OVER	clauses	in	a	single	query.	A	single	OVER	clause	only	applies	to	the
immediately	preceding	function	call	for	example:

SELECT	fname,ip,zip,	COUNT(pid)	OVER	(PARTITION	BY	ip),	COUNT(ip)	OVER	

(PARTITION	BY	zip)	FROM	sales;

LEAD

The	LEAD	function	is	used	to	return	the	data	from	the	next	set	of	rows.	If	the	number	of	rows	is	not
specified,	the	default	lead	is	of	one	row.	Hive	would	return	NULL	if	the	lead	exceeds	the	current	window:

SELECT	fname,pid,	LEAD(pid)	OVER	(PARTITION	BY	ip	ORDER	BY	ip)

FROM	sales;

LAG

The	LAG	function	is	used	to	return	the	data	from	the	previous	set	of	rows.	If	the	number	of	rows	is	not
specified,	the	default	lag	is	of	one	row.	Hive	would	return	NULL	if	the	lag	for	the	current	row	is	exceeds
before	the	beginning	of	the	window:

SELECT	fname,pid,	LAG(pid)	OVER	(PARTITION	BY	ip	ORDER	BY	ip)

FROM	sales;

Note

Contrary	to	the	definition	of	LEAD	and	LAG	provided	in	the	Hive	wiki,	LEAD	and	LAG	do	not	work	with	the
windowing	clause.

FIRST_VALUE

This	function	returns	the	value	from	the	first	row	in	the	window:

select	fname,	ip,	first_value(pid)	over	(partition	by	ip	order	by	fname)	as	pid	

from	sales;

LAST_VALUE

This	function	returns	the	value	from	the	last	row	in	the	window.	The	value	is	then	applied	to	every	row	in
that	group.	It	would	return	NULL	if	the	input	expression	is	NULL:

select	fname,	ip,	last_value(pid)	over	(partition	by	ip	order	by	fname)	as	pid	from	

sales;

See	also
You	can	read	more	about	this	at	http://www.cloudera.com/documentation/archive/impala/2-x/2-0-
x/topics/impala_analytic_functions.html#last_value_unique_1.

http://www.cloudera.com/documentation/archive/impala/2-x/2-0-x/topics/impala_analytic_functions.html#last_value_unique_1

File	formats
In	most	of	our	examples,	we	have	used	files	in	plain	text	format,	but	Hive	provides	a	set	of	file	formats
that	provides	optimization	at	the	storage	or	processing	level,	or	both	in	some	cases.	Different	types	of	file
format	supported	by	Hive	are	as	follows:

TEXTFILE

SEQUENCEFILE

RCFILE

ORC

PARQUET

AVRO

Each	of	these	formats	have	a	specified	structure	to	store	data	on	the	disk.	You	can	also	define	your	own
file	format	and	get	the	data	stored	in	that	format	by	using	the	INPUTFORMAT	class	specification	provided
by	Hadoop/Hive.

How	to	do	it…
In	all	file	formats	other	than	text,	the	table	only	accepts	data	in	that	particular	format,	such	as	Row
Columnar	or	Optimized	Row	Columnar	(RC	or	ORC).	If	the	source	data	is	in	that	format,	it	could	be
easily	loaded	to	the	Hive	table	using	the	LOAD	command.	But	if	the	source	data	is	in	some	other	format,
say	TEXT	stored	in	another	table	in	Hive,	then	the	data	could	be	inserted	using	the	INSERT	INTO	command
as	follows:

INSERT	INTO	sales_orc	select	*	from	sales;

TEXTFILE:	This	is	the	default	format	specification	in	Hive.	When	you	create	a	table	and	do	not
specify	any	other	value	for	STORED	AS	in	DDL,	it	would	assume	that	you	are	going	to	associate	a	file
in	the	TEXT	format	to	this	table.	The	following	are	the	two	examples	of	reading	and	storing	the	data
in	plain	text:

First	example	without	using	STORED	AS:

create	table	sales	(id	int,	fname	string,	lname	string,	address	string,	

city	string,	state	string,	zip	string,	ip	string,	pid	string,	dop	string)	

row	format	delimited	fields	terminated	by	'\t';

Second	example	using	STORED	AS:

create	table	sales	(id	int,	fname	string,	lname	string,	address	string,	

city	string,	state	string,	zip	string,	ip	string,	pid	string,	dop	string)	

row	format	delimited	fields	terminated	by	'\t	STORED	AS	TEXTFILE';

Note

You	can	also	specify	the	default	file	format	for	your	Hive	client	by	specifying
hive.default.fileformat	in	hive-site.xml.

SEQUENCEFILE:	When	you	want	to	save	disk	storage	while	keeping	large	datasets,	it's	better	to	store
the	file	in	the	SEQUENCEFILE	format.	The	details	of	compression	are	available	at
https://cwiki.apache.org/confluence/display/Hive/CompressedStorage.	Use	the	following	command
to	create	a	table	with	the	SEQUENCEFILE	format:

create	table	sales	(id	int,	fname	string,	lname	string,	address	string,	city	

string,	state	string,	zip	string,	ip	string,	pid	string,	dop	string)	row	format	

delimited	fields	terminated	by	'\t'	STORED	AS	SEQUENCEFILE;

RCFILE:	RCFILE,	also	known	as	Record	Columnar	File,	stores	data	in	a	compressed	format	on	the
disk.	It	provides	the	following	features	of	storage	and	processing	optimization:

Fast	storage	of	data
Optimized	storage	utilization
Better	query	processing

The	RCFILE	format	flattens	the	data	in	terms	of	both	rows	and	columns.	Thus,	if	you	need	a	certain
column	for	analytics,	it	would	not	scan	the	complete	data;	instead,	it	would	return	the	required
columns.

Use	the	following	command	to	create	a	table	with	the	RCFILE	format:

https://cwiki.apache.org/confluence/display/Hive/CompressedStorage

create	table	sales	(id	int,	fname	string,	lname	string,	address	string,	city	

string,	state	string,	zip	string,	ip	string,	pid	string,	dop	string)	row	format	

delimited	fields	terminated	by	'\t'	STORED	AS	RCFILE;

Benchmarking	statistics	show	that	it	could	reduce	the	data	size	up	to	14	percent	of	the	original	text
size	as	shown	in	this	link	http://datametica.com/rcorc-file-format/.
Optimized	Row	Columnar	(ORC):	This	is	a	highly	efficient	way	of	storing	and	processing	data	in
Hive.	Data	stored	in	the	ORC	format	improves	performance	in	reading,	writing,	and	processing	data
with	Hive.
File	structure:	The	ORC	file	contains	stripes,	which	is	a	set	of	rows,	along	with	other	information
in	the	file	footer.	At	the	end	of	the	file,	there	is	a	postscript	that	holds	compression	parameters	and
the	size	of	the	compressed	footer.	The	default	size	of	a	stripe	is	250	MB.

Source:	https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC.

	

Use	the	following	command	to	create	a	table	with	the	ORC	format:

create	table	sales	(id	int,	fname	string,	lname	string,	address	string,	city	

string,	state	string,	zip	string,	ip	string,	pid	string,	dop	string)	row	format	

delimited	fields	terminated	by	'\t'	STORED	AS	ORC;

http://datametica.com/rcorc-file-format/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

PARQUET:	This	is	a	column-oriented	storage	format	that	is	efficient	at	querying	particular	columns	in
the	table.	Use	the	following	command	to	create	a	table	with	the	ORC	format:

create	table	sales	(id	int,	fname	string,	lname	string,	address	string,	city	

string,	state	string,	zip	string,	ip	string,	pid	string,	dop	string)	row	format	

delimited	fields	terminated	by	'\t'	STORED	AS	PARQUETFILE;

Chapter	7.	Joins	and	Join	Optimization
In	this	chapter,	you	will	learn:

Understanding	the	joins	concept
Using	a	left/right/full	outer	join
Using	a	left	semi	join
Using	a	cross	join
Using	a	map-side	join
Using	a	bucket	map	join
Using	a	bucket	sort	merge	map	join
Using	a	skew	join

Understanding	the	joins	concept
A	join	in	Hive	is	used	for	the	same	purpose	as	in	a	traditional	RDBMS.	A	join	is	used	to	fetch	meaningful
data	from	two	or	more	tables	based	on	a	common	value	or	field.	In	other	words,	a	join	is	used	to	combine
data	from	multiple	tables.	A	join	is	performed	whenever	multiple	tables	are	specified	inside	the	FROM
clause.

As	of	now,	joins	based	on	equality	conditions	only	are	supported	in	Hive.	It	does	not	support	any	join
condition	that	is	based	on	non-equality	conditions.

The	general	syntax	of	defining	a	join	is	as	follows:

join_table:

				table_reference	JOIN	table_factor	[join_condition]

		|	table_reference	{LEFT|RIGHT|FULL}	[OUTER]	JOIN	table_reference				

join_condition

		|	table_reference	LEFT	SEMI	JOIN	table_reference	join_condition

		|	table_reference	CROSS	JOIN	table_reference	[join_condition]	

table_reference:

				table_factor

		|	join_table

		table_factor:

				tbl_name	[alias]

		|	table_subquery	alias

		|	(table_references)

join_condition:

				ON	equality_expression

In	the	following	list	a	few	functions	of	joins	are	illustrated:

table_reference:	Is	the	table	name	or	the	joining	table	that	is	used	in	the	join	query.
table_reference	can	also	be	a	query	alias.
table_factor:	It	is	the	same	as	table_reference.	It	is	a	table	name	used	in	a	join	query.	It	can
also	be	a	sub-query	alias.
join_condition:	join_condition:	Is	the	join	clause	that	will	join	two	or	more	tables	based	on
an	equality	condition.	The	AND	keyword	is	used	in	case	a	join	is	required	on	more	than	two	tables.

Getting	ready
This	recipe	requires	having	Hive	installed	as	described	in	the	Installing	Hive	recipe	of	Chapter	1,
Developing	Hive.	You	will	also	need	the	Hive	CLI	or	Beeline	client	to	run	the	commands.

How	to	do	it…
Follow	these	steps	to	create	a	join	in	Hive:

SELECT	a.*	FROM	Sales	a	JOIN	Sales_orc	b	ON	a.id	=	b.id;

SELECT	a.*	FROM	Sales	a	JOIN	Sales_orc	b	ON	a.id	<>	b.id;

SELECT	a.*	FROM	Sales	a,	Sales_orc	b	where	a.id	=	b.id;

SELECT	a.*,	b.*	FROM	Sales	a	JOIN	Sales_orc	b	ON	a.id	=	b.id;

SELECT	a.fname,	b.lname	FROM	Sales	a	JOIN	Sales_orc	b	ON	a.id	=	b.id;

SELECT	a.*	FROM	Sales	a	JOIN	Sales_orc	b	ON	a.id	=	b.id	and	a.fname	=	b.fname;

SELECT	a.fname,	b.lname,	c.address	FROM	Sales	a	JOIN	Sales_orc	b	ON	a.id	=	b.id	

join	Sales_info	c	ON	c.id	=	b.id;

SELECT	a.fname,	b.lname,	c.address	FROM	Sales	a	JOIN	Sales_orc	b	ON	a.id	=	b.id	

join	Sales_info	c	ON	c.address	=	b.address;

How	it	works…
First,	let	us	see	the	count	of	records	in	all	the	three	tables:	Sales,	Sales_orc,	and	Sales_info	used	in
the	preceding	examples	as	shown	in	the	following	screenshots:

The	first	statement	is	a	simple	join	statement	that	joins	two	tables:	Sales	and	Sales_orc.	This	works	in
the	same	manner	as	in	a	traditional	RDBMS.	The	output	is	shown	in	the	following	screenshot:

The	second	statement	throws	an	error	as	Hive	supports	only	equality	join	conditions	and	not	non-equality
conditions.	The	output	is	as	shown	next:

The	third	statement	works	in	the	same	manner	as	the	first	statement.	This	is	the	SQL-89	way	of	writing	a
JOIN	statement	just	like	in	a	traditional	RDBMS	as	compared	to	the	first	statement,	which	is	SQL-92,	and
used	most	commonly	now.	The	output	is	as	shown	next:

The	fourth	statement	displays	all	the	columns	from	both	the	tables	Sales	and	Sales_orc.	The	output	is	as
shown	next:

The	fifth	statement	displays	the	first	name	from	the	Sales	table	and	the	last	name	from	the	Sales_orc
table.	This	is	in	comparison	to	the	earlier	statement,	which	displays	all	the	columns	from	both	the	tables.
The	output	is	as	shown	next:

The	sixth	statement	shows	that	we	can	have	multiple	join	conditions	in	a	single	join	statement	separated
by	an	AND	clause	just	like	in	a	traditional	RDBMS.	The	output	is	as	shown	next:

The	seventh	statement	joins	three	tables:	Sales,	Sales_orc,	and	Sales_info.	For	this	statement,	only	a
single	map/reduce	job	is	run	because	as	per	Hive	if	joining	clauses	contain	the	same	columns	from	tables,
then	only	one	map/reduce	job	is	run.	As	per	this	example,	Sales_orc	uses	the	id	column	in	both	the
joining	clauses	so	only	one	map/reduce	job	is	created.	The	output	is	as	shown	next:

The	last	statement	joins	three	multiple	tables,	but	this	time	the	map/reduce	jobs	are	two	in	place	on	one.
The	result	of	the	Sales	and	Sales_orc	tables	is	the	first	of	the	two	map/reduce	jobs,	which	is	joined	to

the	Sales_info	table,	the	second	map/reduce	job.	The	output	is	as	shown	next:

Using	a	left/right/full	outer	join
In	this	recipe,	you	will	learn	how	to	use	left,	right	and	full	outer	joins	in	Hive.

In	Hive,	left/right/full	outer	joins	behave	in	the	same	manner	as	in	relation	to	RDBMS.	For	a	left	outer
join,	all	the	rows	from	the	table	on	the	left	are	displayed	and	the	matching	rows	from	the	right.	All	the
unmatched	rows	from	the	table	on	the	right	will	be	dropped	and	Null	will	be	displayed.	A	right	outer	join
is	just	the	reverse	of	a	left	outer	join.

The	left	outer	join	is	as	follows:

Left	join	in	Hive

	

A	right	outer	join	behaves	the	opposite	to	a	left	outer	join.	In	this	join,	all	the	rows	from	the	right	table
and	the	matching	rows	from	the	left	table	are	displayed.	All	the	unmatched	rows	from	the	table	on	the	left
will	be	dropped	and	Null	will	be	displayed.

A	right	outer	join	is	as	follows:

Right	join	in	Hive

	

In	a	full	outer	join,	all	the	rows	will	be	displayed	from	both	the	tables.	A	full	outer	join	combines	the
result	of	the	left	outer	join	and	the	right	outer	join.

A	full	outer	join	is	as	follows:

Full	join	in	Hive

	

The	general	syntax	for	the	left/right/full	outer	join	is	as	follows:

SELECT	[alias1].column_name(s),	[alias2].column_name(s)

FROM	table_name	[alias1]

LEFT/RIGHT/FULL	OUTER	JOIN	table_name2	[alias2]

ON	[alias1].column_name	=	[alias2].column_name;

Following	are	some	functions	explained,	that	are	used	in	the	full	outer	join	syntax:

[alias1]:	Is	an	optional	clause.	The	table	name	can	also	be	used	instead	of	the	alias	name
[alias2]:	Is	an	optional	clause.	The	table	name	can	also	be	used	instead	of	the	alias	name

How	to	do	it…
Follow	these	steps	to	create	a	left/right/full	outer	join	in	Hive:

SELECT	*	FROM	Sales	a	LEFT	OUTER	JOIN	Sales_orc	b	ON	a.id	=	b.id;

SELECT	*	FROM	Sales	a	RIGHT	OUTER	JOIN	Sales_orc	b	ON	a.id	=	b.id;

SELECT	*	FROM	Sales	a	FULL	OUTER	JOIN	Sales_orc	b	ON	a.id	=	b.id;

SELECT	*	FROM	Sales	a	LEFT	OUTER	JOIN	Sales_orc	b	ON	a.id	=	b.id	WHERE	a.fname	=	

'John';

SELECT	*	FROM	Sales	a	RIGHT	OUTER	JOIN	Sales_orc	b	ON	a.id	=	b.id	WHERE	a.fname	=	

'John';

How	it	works…
The	first	statement	is	an	example	of	a	left	outer	join.	In	this	example,	all	the	rows	from	the	Sales	table
and	the	matching	rows	from	the	Sales_orc	table	are	displayed.	The	non-matching	rows	will	be	dropped
and	NULL	will	be	displayed.	The	output	is	as	shown	next:

	

The	second	statement	is	an	example	of	a	right	outer	join.	In	this	example,	all	the	rows	from	the	Sales_orc
table	and	the	matching	rows	from	the	Sales	table	are	displayed.	The	non-matching	rows	will	be	dropped
and	NULL	will	be	displayed.	The	output	is	as	shown	next:

	

The	third	statement	is	an	example	of	a	full	outer	join.	In	this	example,	all	the	rows	from	the	Sales_orc
table	and	the	Sales	table	are	displayed.	Null	is	displayed	where	the	joining	condition	is	not	met.	The
output	is	as	shown	next:

	

The	fourth	statement	first	joins	the	two	tables	based	on	the	left	outer	join	and	then	filters	out	the	rows
based	on	the	WHERE	clause.	The	output	is	as	shown	next:

	

The	sixth	statement	first	joins	the	two	tables	based	on	the	right	outer	join	and	then	filters	out	the	rows
based	on	the	WHERE	clause.	The	output	is	as	shown	next:

	

Using	a	left	semi	join
In	this	recipe,	you	will	learn	how	to	use	a	left	semi	join	in	Hive.

The	left	semi	join	is	used	in	place	of	the	IN/EXISTS	sub-query	in	Hive.	In	a	traditional	RDBMS,	the	IN
and	EXISTS	clauses	are	widely	used	whereas	in	Hive,	the	left	semi	join	is	used	as	a	replacement	of	the
same.

In	the	left	semi	join,	the	right-hand	side	table	can	only	be	used	in	the	join	clause	but	not	in	the	WHERE	or
the	SELECT	clause.

The	general	syntax	of	the	left	semi	join	is	as	follows:

join_condition

		|	table_reference	LEFT	SEMI	JOIN	table_reference	join_condition

Where:

table_reference:	Is	the	table	name	or	the	joining	table	that	is	used	in	the	join	query.
table_reference	can	also	be	a	query	alias.
join_condition:	join_condition:	Is	the	join	clause	that	will	join	two	or	more	tables	based	on	an
equality	condition.	The	AND	keyword	is	used	in	case	a	join	is	required	on	more	than	two	tables.

How	to	do	it…
Run	the	following	commands	to	create	a	left	semi	join	in	Hive:

SELECT	a.*	FROM	Sales	a	LEFT	SEMI	JOIN	Sales_orc	b	ON	a.id	=	b.id;

SELECT	a.*,	b.*	FROM	Sales	a	LEFT	SEMI	JOIN	Sales_orc	b	ON	a.id	=	b.id;

SELECT	a.*	FROM	Sales	a	LEFT	SEMI	JOIN	Sales_orc	b	ON	a.id	=	b.id	WHERE	b.id	=	1;

How	it	works…
The	first	statement	returns	all	the	rows	from	the	Sales	tables.	This	statement	works	exactly	the	same	as
mentioned	next:

SELECT	a.*	FROM	Sales	a	WHERE	a.id	IN	(SELECT	b.id	FROM	Sales_orc	b);

The	output	of	both	the	queries	is	shown	next:

	

	

The	second	statement	throws	an	error	as	FAILED:	SemanticException	[Error	10009]:	Line	1:12
Invalid	table	alias	'b'.	As	mentioned	earlier,	in	a	left	semi	join,	the	right-hand	side	table	cannot	be
used	in	a	SELECT	clause.	The	output	of	the	query	is	shown	next:

	

The	third	statement	will	also	throw	an	error	as	FAILED:	SemanticException	[Error	10009]:	Line
1:12	Invalid	table	alias	'b'.	As	mentioned	earlier,	in	a	left	semi	join,	the	right-hand	side	table
cannot	be	used	in	a	WHERE	clause.	The	output	of	the	query	is	shown	next:

	

Using	a	cross	join
In	this	recipe,	you	will	learn	how	to	use	a	cross	join	in	Hive.

Cross	join,	also	known	as	Cartesian	product,	is	a	way	of	joining	multiple	tables	in	which	all	the	rows	or
tuples	from	one	table	are	paired	with	the	rows	and	tuples	from	another	table.	For	example,	if	the	left-hand
side	table	has	10	rows	and	the	right-hand	side	table	has	13	rows	then	the	result	set	after	joining	the	two
tables	will	be	130	rows.	That	means	all	the	rows	from	the	left-hand	side	table	(having	10	rows)	are
paired	with	all	the	tables	from	the	right-hand	side	table	(having	13	rows).

If	there	is	a	WHERE	clause	in	the	SQL	statement	that	includes	a	cross	join,	then	first	the	cross	join	takes
place	and	then	the	result	set	is	filtered	out	with	the	help	of	the	WHERE	clause.	This	means	cross	joins	are
not	an	efficient	and	optimized	way	of	joining	the	tables.

The	general	syntax	of	a	cross	join	is	as	follows:

join_condition

		|	table_reference	[CROSS]	JOIN	table_reference	join_condition

Where:

table_reference:	Is	the	table	name	or	the	joining	table	that	is	used	in	the	join	query.
table_reference	can	also	be	a	query	alias.
join_condition:	join_condition:	Is	the	join	clause	that	will	join	two	or	more	tables	based	on
an	equality	condition.	The	AND	keyword	is	used	in	case	a	join	is	required	on	more	than	two	tables.

How	to	do	it…
Cross	joins	can	be	implemented	using	the	JOIN	keyword	or	CROSS	JOIN	keyword.	If	the	CROSS	keyword
is	not	specified	then	by	default	a	cross	join	is	applied.

The	following	are	examples	to	use	cross	joins	in	tables:

SELECT	*	FROM	Sales	JOIN	Sales_orc;

SELECT	*	FROM	Sales	JOIN	Sales_orc	WHERE	Sales.id	=	1;

SELECT	*	FROM	Sales	CROSS	JOIN	Sales_orc;

SELECT	*	FROM	Sales	a	CROSS	JOIN	Sales_orc	b	JOIN	Location	c	on	a.id	=	c.id;

How	it	works…
The	first	statement	pairs	all	rows	from	one	table	with	the	rows	of	another	table.	The	output	of	the	query	is
shown	next:

	

The	second	statement	takes	as	much	time	in	execution	as	the	one	in	the	first	example,	even	though	the
result	set	is	filtered	out	with	the	help	of	the	WHERE	clause.	This	means	that	the	cross	join	is	processed
first,	then	the	WHERE	clause.	The	output	of	the	query	is	shown	next:

	

We	can	also	use	the	CROSS	keyword	for	CROSS	joins.	The	third	statement	gives	the	same	result	as	the	one
in	the	first	example.	The	output	of	the	query	is	shown	next:

	

We	can	also	club	multiple	join	clauses	into	a	single	statement	as	shown	in	the	fourth	statement.	In	this
example,	first	the	cross	join	is	performed	between	the	Sales	and	Sales_orc	table	and	the	result	set	is
then	joined	with	the	Location	table.	The	output	of	the	query	is	shown	next:

	

Using	a	map-side	join
In	this	recipe,	you	will	learn	how	to	use	a	map-side	joins	in	Hive.

While	joining	multiple	tables	in	Hive,	there	comes	a	scenario	where	one	of	the	tables	is	small	in	terms	of
rows	while	another	is	large.	In	order	to	produce	the	result	in	an	efficient	manner,	Hive	uses	map-side
joins.	In	map-side	joins,	the	smaller	table	is	cached	in	the	memory	while	the	large	table	is	streamed
through	mappers.	By	doing	so,	Hive	completes	the	joining	at	the	mapper	side	only,	thereby	removing	the
reducer	job.	By	doing	so,	performance	is	improved	tremendously.

How	to	do	it…
There	are	two	ways	of	using	map-side	joins	in	Hive.

One	is	to	use	the	/*+	MAPJOIN(<table_name>)*/	hint	just	after	the	select	keyword.	table_name	has	to
be	the	table	that	is	smaller	in	size.	This	is	the	old	way	of	using	map-side	joins.

The	other	way	of	using	a	map-side	join	is	to	set	the	following	property	to	true	and	then	run	a	join
query:

set	hive.auto.convert.join=true;

Follow	these	steps	to	use	a	map-side	join	in	Hive:

SELECT	/*+	MAPJOIN(Sales_orc)*/	a.fname,	b.lname	FROM	Sales	a	JOIN	Sales_orc	b	ON	

a.id	=	b.id;

SELECT	a.*	FROM	Sales	a	JOIN	Sales_orc	b	ON	a.id	=	b.id	and	a.fname	=	b.fname;

How	it	works…
Let	us	first	run	the	set	hive.auto.convert.join=true;	command	on	the	Hive	shell.	The	output	of	this
command	is	shown	next:

	

The	first	statement	uses	the	MAPJOIN	hint	to	optimize	the	execution	time	of	the	query.	In	this	example,	the
Sales_orc	table	is	smaller	compared	to	the	Sales	table.	The	output	of	the	first	statement	is	shown	in	the
following	screenshot.	The	highlighted	statement	shows	that	there	are	no	reducers	used	while	processing
this	query.	The	total	time	taken	by	this	query	is	40	seconds:

	

The	second	statement	does	not	use	the	MAPJOIN	hint.	In	this	case,	the	property	hive.auto.convert.join
is	set	to	true.	In	this,	all	the	queries	will	be	treated	as	MAPJOIN	queries	whereas	the	hint	is	used	for	a
specific	query:

	

Now,	let	us	run	the	set	hive.auto.convert.join=false;	command	on	the	Hive	shell	and	run	the
second	statement.	The	output	of	the	second	command	is	shown	next:

	

There	are	a	few	restrictions	while	using	a	map-side	join.	The	following	are	not	supported:

Union	followed	by	a	MapJoin
Lateral	view	followed	by	a	MapJoin
Reduce	sink	(group	by/join/sort	by/cluster	by/distribute	by)	followed	by	MapJoin
MapJoin	followed	by	union
MapJoin	followed	by	join
MapJoin	followed	by	MapJoin

Note

Also,	the	MAPJOIN	hint	should	only	be	used	when	either	the	data	is	sorted	or	the	table	is	bucketed.	In	this
case,	the	join	is	automatically	converted	into	a	bucket	map	join	or	a	bucket	sort	merge	map	join,	which	is
discussed	in	the	later	part	of	this	chapter.	So	use	the	set	hive.auto.convert.join=true;	instead	of	hint
in	the	statement.

Using	a	bucket	map	join
In	this	recipe,	you	will	learn	how	to	use	a	bucket	map	join	in	Hive.

A	bucket	map	join	is	used	when	the	tables	are	large	and	all	the	tables	used	in	the	join	are	bucketed	on	the
join	columns.	In	this	type	of	join,	one	table	should	have	buckets	in	multiples	of	the	number	of	buckets	in
another	table.	For	example,	if	one	table	has	2	buckets	then	the	other	table	must	have	either	2	buckets	or	a
multiple	of	2	buckets	(2,	4,	6,	and	so	on).	If	the	preceding	condition	is	satisfied	then	the	joining	can	be
done	at	the	mapper	side	only,	otherwise	a	normal	inner	join	is	performed.	This	means	that	only	the
required	buckets	are	fetched	on	the	mapper	side	and	not	the	complete	table.	That	is,	only	the	matching
buckets	of	all	small	tables	are	replicated	onto	each	mapper.	Doing	this,	the	efficiency	of	the	query	is
improved	drastically.	In	a	bucket	map	join,	data	is	not	sorted.

Hive	does	not	support	a	bucket	map	join	by	default.	The	following	property	needs	to	be	set	to	true	for	the
query	to	work	as	a	bucket	map	join:

set	hive.optimize.bucketmapjoin	=	true

In	this	type	of	join,	not	only	tables	need	to	be	bucketed	but	also	data	needs	to	be	bucketed	while	inserting.
For	this,	the	following	property	needs	to	be	set	before	inserting	the	data:

set	hive.enforce.bucketing	=	true

The	general	syntax	for	a	bucket	map	join	is	as	follows:

SELECT	/*+	MAPJOIN(table2)	*/	column1,	column2,	column3

FROM	table1	[alias_name1]	JOIN	table2	[alias_name2]

ON	table1	[alias_name1].key	=	table2	[alias_name2].key

Where:

table1:	Is	the	bigger	or	larger	table
table2:	Is	the	smaller	table
[alias_name1]:	Is	the	alias	name	for	table1
[alias_name2]:	Is	the	alias	name	for	table2

Getting	ready
This	recipe	requires	having	Hive	installed	as	described	in	the	Installing	Hive	recipe	of	Chapter	1,
Developing	Hive.	You	will	also	need	the	Hive	CLI	or	Beeline	client	to	run	the	commands.

How	to	do	it…
Follow	these	steps	to	use	a	bucket	map	join	in	Hive:

SELECT	/*+	MAPJOIN(Sales_orc)	*/	a.*,	b.*	FROM	Sales	a	JOIN	Sales_orc	b	ON	a.id

=	b.id;

SELECT	/*+	MAPJOIN(Sales_orc,	Location)	*/	a.*,	b.*,	c.*	FROM	Sales	a	JOIN

Sales_orc	b	ON	a.id	=	b.id	JOIN	Location	ON	a.id	=	c.id;

How	it	works…
In	the	first	statement,	Sales_orc	has	less	data	compared	to	the	Sales	table.	The	Sales	table	is	having	the
buckets	in	multiples	of	the	buckets	for	Sales_orc.	Only	the	matching	buckets	are	replicated	onto	each
mapper.

The	second	statement	works	in	the	same	manner	as	the	first	one.	The	only	difference	is	that	in	the
preceding	statement	there	is	a	join	on	more	than	two	tables.	The	Sales_orc	buckets	and	Location
buckets	are	fetched	or	replicated	onto	the	mapper	of	the	Sales	table,	performing	the	joins	at	the	mapper
side	only.

Using	a	bucket	sort	merge	map	join
In	this	recipe,	you	will	learn	how	to	use	a	bucket	sort	merge	map	join	in	Hive.

A	bucket	sort	merge	map	join	is	an	advanced	version	of	a	bucket	map	join.	If	the	data	in	the	tables	is
sorted	and	bucketed	on	the	join	columns	at	the	same	time	then	a	bucket	sort	merge	map	join	comes	into	the
picture.	In	this	type	of	join,	all	the	tables	must	have	an	equal	number	of	buckets	as	each	mapper	will	read
a	bucket	from	each	table	and	will	perform	a	bucket	sort	merge	map	join.

It	is	mandatory	for	the	data	to	be	sorted	in	this	join	condition.	The	following	parameter	needs	to	be	set	to
true	for	sorting	the	data	or	data	can	be	sorted	manually:

Set	hive.enforce.sorting	=	true;

Note

If	data	in	the	buckets	is	not	sorted	then	there	is	a	possibility	that	a	wrong	result	or	output	is	generated	as
Hive	does	not	check	whether	the	buckets	are	sorted	or	not.

The	following	parameters	need	to	be	set	for:

set	hive.input.format	=	org.apache.hadoop.hive.ql.io.BucketizedHiveInputFormat;

set	hive.optimize.bucketmapjoin	=	true;

set	hive.optimize.bucketmapjoin.sortedmerge	=	true;

The	general	syntax	for	a	bucket	map	join	is	as	follows:

SELECT	/*+	MAPJOIN(table2)	*/	column1,	column2,	column3…

FROM	table1	[alias_name1]	JOIN	table2	[alias_name2]	

ON	table1	[alias_name1].key	=	table2	[alias_name2].key

Where:

table1:	Is	the	bigger	or	larger	table
table2:	Is	the	smaller	table
[alias_name1]:	Is	the	alias	name	for	table1
[alias_name2]:	Is	the	alias	name	for	table2

Getting	ready
This	recipe	requires	having	Hive	installed	as	described	in	the	Installing	Hive	recipe	of	Chapter	1,
Developing	Hive.	You	will	also	need	the	Hive	CLI	or	Beeline	client	to	run	the	commands.

How	to	do	it…
Follow	these	steps	to	use	a	bucket	sort	merge	map	join	in	Hive:

SELECT	/*+	MAPJOIN(Sales_orc)	*/	a.*,	b.*	FROM	Sales	a	JOIN	Sales_orc	b	ON	a.id

=	b.id;

SELECT	/*+	MAPJOIN(Sales_orc,	Location)	*/	a.*,	b.*,	c.*	FROM	Sales	a	JOIN

Sales_orc	b	ON	a.id	=	b.id	JOIN	Location	ON	a.id	=	c.id;

How	it	works…
In	the	first	statement,	Sales_orc	is	having	the	same	number	of	buckets	as	in	the	Sales	table.	The	Sales
table	is	having	the	buckets	in	multiples	of	the	buckets	for	Sales_orc.	Each	mapper	will	read	a	bucket
from	the	Sales	table	and	the	corresponding	bucket	from	the	Sales_orc	table	and	will	perform	a	bucket
sort	merge	map	join.

The	second	statement	works	in	the	same	manner	as	the	first	one.	The	only	difference	is	that	in	the
preceding	statement	there	is	a	join	on	more	than	two	tables.

Using	a	skew	join
In	this	recipe,	you	will	learn	how	to	use	a	skew	join	in	Hive.

A	skew	join	is	used	when	there	is	a	table	with	skew	data	in	the	joining	column.	A	skew	table	is	a	table
that	is	having	values	that	are	present	in	large	numbers	in	the	table	compared	to	other	data.	Skew	data	is
stored	in	a	separate	file	while	the	rest	of	the	data	is	stored	in	a	separate	file.

If	there	is	a	need	to	perform	a	join	on	a	column	of	a	table	that	is	appearing	quite	often	in	the	table,	the	data
for	that	particular	column	will	go	to	a	single	reducer,	which	will	become	a	bottleneck	while	performing
the	join.	To	reduce	this,	a	skew	join	is	used.

The	following	parameter	needs	to	be	set	for	a	skew	join:

set	

hive.optimize.skewjoin=true;

set	hive.skewjoin.key=100000;

How	to	do	it…
Run	the	following	command	to	use	a	bucket	sort	merge	map	join	in	Hive:

SELECT	a.*	FROM	Sales	a	JOIN	Sales_orc	b	ON	a.id	=	b.id;

How	it	works…
Let	us	suppose	that	there	are	two	tables,	Sales	and	Sales_orc,	as	shown	next:

The	Sales	table

	

The	Sales_orc	table

	

There	is	a	join	that	needs	to	be	performed	on	the	ID	column	that	is	present	in	both	tables.	The	Sales	table
is	having	a	column	ID,	which	is	highly	skewed	on	10.	That	is,	the	value	10	for	the	ID	column	is	appearing
in	large	numbers	compared	to	other	values	for	the	same	column.	The	Sales_orc	table	also	having	the
value	10	for	the	ID	column	but	not	as	much	compared	to	the	Sales	table.	Now,	considering	this,	first	the
Sales_orc	table	is	read	and	the	rows	with	ID=10	are	stored	in	the	in-memory	hash	table.	Once	it	is
done,	the	set	of	mappers	read	the	Sales	table	having	ID=10	and	the	value	from	the	Sales_orc	table	is
compared	and	the	partial	output	is	computed	at	the	mapper	itself	and	no	data	needs	to	go	to	the	reducer,
improving	performance	drastically.

This	way,	we	end	up	reading	only	Sales_orc	twice.	The	skewed	keys	in	Sales	are	only	read	and
processed	by	the	Mapper,	and	not	sent	to	the	reducer.	The	rest	of	the	keys	in	Sales	go	through	only	a
single	Map/Reduce.	The	assumption	is	that	Sales_orc	has	few	rows	with	keys	that	are	skewed	in	A.	So
these	rows	can	be	loaded	into	the	memory.

Chapter	8.	Statistics	in	Hive
In	previous	chapters,	you	learned	different	types	of	joins	in	Hive	and	optimizations	available	in	Hive
joins.

In	this	chapter,	we	will	cover	the	following	recipes	in	detail:

Bringing	statistics	in	to	Hive
Table	and	partition	statistics	in	Hive
Column	statistics	in	Hive
Top	K	statistics	in	Hive

Bringing	statistics	in	to	Hive
Statistics	in	terms	of	the	number	of	records	in	a	table	or	partitions	or	histograms	of	a	column	is	important.
Also,	it	could	help	in	query	optimization.	Statistical	data	is	required	as	an	input	to	many	functions	so	that
it	can	compare	different	plans.	Statistics	also	help	users	by	storing	answers	to	some	of	the	most	frequently
queried	data	and	prevent	long-running	execution	plans	each	time	a	query	is	executed.	Common	examples
include	unique	visitors	to	the	site,	top	10	stories	read	by	the	visitors,	and	so	on.

How	to	do	it…
There	are	the	following	different	levels	at	which	statistics	can	be	derived:

Statistics	at	table	level—These	statistics	can	be	used	to	derive	the	number	of	rows	and	files,	size,
and	so	on	in	a	table.
Statistics	at	partition	level—These	statistics	can	be	used	to	derive	the	number	of	rows	and	files,
size,	and	so	on	in	all	partitions	or	specified	partitions	of	a	table.
Statistics	at	column	level—These	statistics	can	be	used	to	derive	the	number	of	distinct	values	and
NULL	values,	average	size,	and	other	parameters	of	all	columns	or	specified	columns	of	a	table	or
partition.

Table	and	partition	statistics	in	Hive
The	first	development	in	statistical	computation	is	to	support	tables	and	partition-level	statistics.	With
other	metadata,	the	table	and	partition	statistics	are	also	stored	in	a	configured	metastore.	The	statistics
are	supported	for	both	existing	and	new	tables.	The	following	are	the	statistics	currently	supported	for
tables	and	partitions:

The	number	of	rows
The	number	of	files
Size	in	bytes
Max,	min,	and	average	row	sizes
Max,	min,	and	average	file	sizes
The	number	of	partitions	(in	the	case	of	tables)

Getting	ready
This	recipe	requires	Hive	installed	as	described	in	the	Installing	Hive	recipe	of	Chapter	1,	Developing
Hive.	You	will	also	need	Hive	CLI	or	the	beeline	client	to	run	the	commands.

How	to	do	it…
For	newly	created	table	or	partitions	using	the	INSERT	OVERWRITE	command,	statistics	are	computed
automatically	at	table	level.	If	you	want	to	disable	statistics	calculations	for	a	table,	you	need	to	set
hive.stats.autogather	to	false	either	for	the	session	or	permanently	in	hive-site.xml.

For	tables	already	present	in	Hive,	you	can	use	the	ANALYZE	command	to	gather	statistics	and	store	them
in	the	Hive	metastore.	The	commands	could	be	used	as	follows:

ANALYZE	TABLE	[db_name.]tablename	[PARTITION(partcol1[=val1],	partcol2[=val2],	

...)]	COMPUTE	STATISTICS	[FOR	COLUMNS][NOSCAN];

For	example,	let's	create	a	table	named	sales	with	a	sample	dataset	as	mentioned	in	the	following
screenshot:

	

The	following	SQL	code	will	create	a	table	named	sales:

CREATE	TABLE	sales	(id	INT,	fname	STRING,	lname	STRING,	address	STRING,	city	

STRING,	state	STRING,	ip	STRING,	pid	STRING)	ROW	FORMAT	DELIMITED	FIELDS	TERMINATED	

BY	'\t';

Now	load	some	sample	data	into	the	table	mentioned	earlier:

LOAD	DATA	LOCAL	inpath	'/opt/products_sales_data.txt'	into	table	product_sales;

When	you	execute	the	command	desc	formatted	on	this	table,	it	will	list	all	the	details	about	the	table
as	follows:

	

For	gathering	the	statistics	about	this	table,	let's	analyze	this	table	with	the	following	command:

ANALYZE	TABLE	sales	COMPUTE	STATISTICS;

This	command	would	run	map-reduce	on	the	table	to	compute	the	statistics,	and	after	successful
completion	of	this	map-reduce	job,	if	we	again	describe	the	table,	we	find	the	following	statistics:

	
Statistics	for	a	partitioned	table

Let's	create	a	partitioned	table	with	product	ID	(field	named	pid)	as	a	partition	column	for	the	same
sales	dataset:

CREATE	TABLE	sales_part	(id	INT,	fname	STRING,	lname	STRING,	address	STRING,	city	

STRING,	state	STRING,	ip	STRING)	PARTITIONED	BY	(pid	STRING)	ROW	FORMAT	DELIMITED	

FIELDS	TERMINATED	BY	'\t';

For	dynamic	partitioning,	let's	first	enable	dynamic	partitioning	using	the	following	commands:

set	hive.exec.dynamic.partition=true;

set	hive.exec.dynamic.partition.mode=nonstrict;

Now	let's	put	the	data	in	a	partitioned	table	as	follows:

INSERT	INTO	sales_part	PARTITION(pid)	SELECT	id,	fname,	lname,	address,	city,	

state,	ip,	pid	FROM	sales;

We	would	then	analyze	all	partitions	or	a	set	of	partitions	for	the	table	sales_part.

To	derive	the	statistics	of	a	particular	partition,	you	can	specify	the	partition	name	in	the	ANALYZE
command,	as	shown	here:

ANALYZE	TABLE	sales_part	PARTITION(pid=	'PI_09')	COMPUTE	STATISTICS;

The	previously	mentioned	command	will	run	a	map-reduce	job	to	derive	statistics	of	a	specified

partition	with	a	product	ID	equal	to	PI_09.	Here,	the	specified	partition	name	is	pid=	'PI_09'.

Run	the	DESCRIBE	FORMATTED	command	to	check	the	statistics:

DESCRIBE	FORMATTED	sales_part	PARTITION(pid='PI_09');

	

To	derive	the	statistics	of	all	partitions,	you	can	specify	only	the	partitioned	column	name	without
specifying	any	value	in	the	ANALYZE	command,	as	shown	here:

ANALYZE	TABLE	sales_part	PARTITION(pid)	COMPUTE	STATISTICS;

The	previously	mentioned	command	will	derive	statistics	of	all	partitions	of	the	table.	The	following	is	a
snippet	of	the	MapReduce	job	for	analyzing	all	partitions	of	the	sales_part	table:

	

To	check	for	statistics	of	a	partition,	use	the	following	command:

DESCRIBE	FORMATTED	sales_part	PARTITION(pid='PI_09');

The	following	are	some	of	the	important	properties	of	table	and	partition	statistics	that	could	be
configured	at	the	session	level	in	the	CLI	or	beeline	client	and	permanently	in	the	configuration	file	hive-
site.xml:

hive.stats.dbclass:	The	datastore	to	store	the	statistics:
Default	Value:	jdbc:derby	(Hive	0.7	to	0.12)	or	fs	(Hive	0.13	and	later)
Valid	Values:	jdbc:derby,	jdbc:mysql,	fs,	and	hbase

hive.stats.autogather:	Whether	to	calculate	statistics	of	a	table	or	partition:
Default	Value:	true
Works	with	the	INSERT	OVERWRITE	command

hive.stats.jdbcdriver:	The	Java	Database	Connectivity	(JDBC)	driver	of	the	database	that	is
used	as	default	to	store	temporary	Hive	statistics:

Default	Value:	org.apache.derby.jdbc.EmbeddedDriver
hive.stats.dbconnectionstring:	The	connection	string	of	the	database	that	is	used	as	default	to
store	temporary	Hive	statistics:

Default	Value:	jdbc:derby:;databaseName=TempStatsStore;create=true

Column	statistics	in	Hive
Similar	to	table	and	partition	statistics,	Hive	also	supports	the	analysis	of	column	statistics.	The
following	are	the	statistics	captured	by	Hive	when	a	column	or	set	of	columns	are	analyzed:

The	number	of	distinct	values
The	number	of	NULL	values
Minimum	or	maximum	K	values	where	K	could	be	given	by	a	user
Histogram:	frequency	and	height	balanced
Average	size	of	the	column
Average	or	sum	of	all	values	in	the	column	if	their	type	is	numerical
Percentiles	of	the	value

How	to	do	it…
As	discussed	in	the	previous	recipe,	Hive	provides	the	analyze	command	to	compute	table	or	partition
statistics.	The	same	command	could	be	used	to	compute	statistics	for	one	or	more	column	of	a	Hive	table
or	partition.	The	HiveQL	in	order	to	compute	column	statistics	is	as	follows:

hive>	ANALYZE	TABLE	t1	[PARTITION	p1]	COMPUTE	STATISTICS	FOR	[COLUMNS	c1,	c2..]

Note

An	analyze	command	does	not	support	table	or	column	aliases.

In	the	following	example,	the	use	of	the	analyze	command	is	illustrated:

1.	 Compute	statistics	for	a	table:	Let's	compute	the	column	statistics	for	the	sales	table:

ANALYZE	TABLE	sales	COMPUTE	STATISTICS	FOR	COLUMNS	ip,	pid;

2.	 Compute	statistics	for	a	partitioned	table:	Let's	compute	the	column	statistics	for	the	sales_part
table:

ANALYZE	TABLE	sales_part	PARTITION(pid='PI_09')	COMPUTE	STATISTICS	FOR	COLUMNS	

fname,	ip;

How	it	works…
When	column	statistics	are	derived	using	the	ANALYZE	command,	all	information	retrieved	using	this
command	is	stored	in	the	Hive	metastore.

The	following	tables	are	created	to	store	column-level	statistics	in	the	Hive	metastore:

TAB_COL_STATS:	Column	statistics	derived	from	a	table	are	stored	in	the	metastore	table
TAB_COL_STATS.
For	example,	when	we	run	the	query	mentioned	later	to	calculate	pid	and	ip	columns	stats	of	the
sales	table,	the	stats	are	stored	in	the	metastore	table	TAB_COL_STATS	with	all	the	information:

ANALYZE	TABLE	sales	COMPUTE	STATISTICS	FOR	COLUMNS	ip,pid;

Now,	let's	check	the	statistics	that	are	stored	in	the	metastore	table:

	
PART_COL_STATS:	Column	statistics	derived	from	a	particular	partition	of	a	table	are	stored	in	the
metastore	table	PART_COL_STATS.
For	example,	when	we	run	the	query	mentioned	later	to	calculate	the	fname	and	ip	columns	statistics
of	specified	partition	of	the	sales	table,	the	statistics	are	stored	in	the	metastore	table
PART_COL_STATS	with	all	the	information:

ANALYZE	TABLE	sales_part	PARTITION(pid='PI_09')	COMPUTE	STATISTICS	FOR	COLUMNS	

fname,	ip;

Now,	let's	check	the	statistics	that	are	stored	in	the	metastore	table:

	

This	screenshot	is	showing	the	column	statistics	stored	in	the	Hive	metastore	(in	our	case,	MySQL).

Top	K	statistics	in	Hive
It	is	the	mechanism	of	collecting	the	top	K	column	values	of	a	Hive	table.	In	this,	the	top	K	values	of	the
most	skewed	column	are	stored	in	the	partition.	This	is	applicable	for	both	existing	and	newly	created
tables.

How	to	do	it…
Top	K	statistics	computation	is	disabled	by	default.	The	following	are	some	of	the	properties	that	could
be	set	to	compute	and	store	top	K	statistics:

hive.stats.topk.collect

This	would	enable	computing	top	K	and	putting	it	into	skewed	information:
Default	Value:	false
Valid	Values:	true,	false

hive.stats.topk.num

Using	this	property,	you	can	specify	K	value	for	your	top	K	result
hive.stats.topk.minpercent

It	is	the	minimal	percentage	of	a	row	value	to	be	in	top	K	result
It	could	be	any	float	value	between	0.0	and	100

Let's	set	the	following	properties	for	top	K	statistics:

hive>	set	hive.stats.topk.collect=true;

hive>	set	hive.stats.topk.num=4;

hive>	set	hive.stats.topk.minpercent=0;

hive>	set	hive.stats.topk.poolsize=100;

First,	let's	create	a	partitioned	table	using	the	following	command:

hive>	CREATE	TABLE	sales_topk	(fname	STRING,	ip	STRING)	PARTITIONED	BY	(pid	

STRING);

Now	insert	some	data,	as	shown	in	the	following	command:

hive>	INSERT	OVERWRITE	TABLE	sales_topk	PARTITION	(pid='PI_09')	SELECT	fname,	ip	

FROM	sales;

While	executing	the	previous	command,	Hive	will	derive	the	top	K	statistics.	To	check	the	top	K	statistics
run	the	following	command:

hive>	DESCRIBE	FORMATTED	sales_topk	partition	(pid='PI_09');

The	expected	output	once	the	feature	is	available	in	Hive	is:

Skewed	Columns:	[ip]
Skewed	Values:	[[192.168.56.101],	[192.168.56.106]]

Tip

This	is	currently	in	progress;	all	steps	and	documentation	is	taken	from	the	Hive	Wiki
https://cwiki.apache.org/confluence/display/Hive/Top+K+Stats.

https://cwiki.apache.org/confluence/display/Hive/Top+K+Stats

Chapter	9.	Functions	in	Hive
Hive	provides	an	extensive	set	of	functions	that	we	will	be	covering	in	this	chapter;	they	are	as	follows:

Using	built-in	functions
Using	the	built-in	User	defined	Aggregation	Function	(UDAF)
Using	the	built-in	User	Defined	Table	Function	(UDTF)
Creating	custom	User-Defined	Functions	(UDF)

Using	built-in	functions
There	are	various	built-in	functions	available	in	Hive	that	can	be	used	in	queries	for	executing	various
operations.	These	functions	are	used	to	extract	or	manipulate	data	in	Hive	tables.

Built-in	functions	are	divided	into	the	following	categories:

Mathematical	functions
Collection	functions
Type	conversion	functions
Date	functions
String	functions
Conditional	functions
Miscellaneous	functions

How	to	do	it…
In	the	following	sections,	a	few	built-in	functions	are	explained.

Mathematical	functions

Hive	supports	various	functions	to	run	some	mathematical	operations	on	field	values.	There	are	a	large
number	of	mathematical	functions	available	in	Hive	that	can	be	used	in	queries.	Most	of	the	mathematical
functions	are	the	same	as	supported	in	RDBMS:

Function	Name Return
Type Description

abs(DOUBLE	x) DOUBLE It	will	return	an	absolute	value	of	x.

acos(DOUBLE	x),
acos(DECIMAL	x)

DOUBLE It	will	return	an	arc	cosine	value	of	x	if	the	value	of	x	is	equal	to	or	between	-1	and	1.	Otherwise,	it
will	return	NULL.

asin(DOUBLE	x),
asin(DECIMAL	x)

DOUBLE It	will	return	an	arc	sin	value	of	x	if	the	value	of	x	is	equal	to	or	between	-1	and	1.	Otherwise	it	will
return	NULL.

atan(DOUBLE	x),
atan(DECIMAL	x)

DOUBLE It	will	return	an	arc	tangent	value	of	x.

bin(BIGINT	x) STRING It	will	return	the	binary	value	of	the	number	"x"	in	string	format.

cbrt(DOUBLE	x) DOUBLE It	will	return	the	cube	root	value	of	x.

ceil(DOUBLE	x) BIGINT It	will	return	the	ceil	value	of	x	that	is	the	minimum	number	greater	than	or	equal	to	x.

ceiling(DOUBLE	x) BIGINT It	is	the	same	as	the	ceil	function.

conv(BIGINT	x,	INT
from_base,	INT

to_base)

STRING It	is	used	to	convert	the	number	x	from	one	base	to	another	base.	The	value	returned	will	be	in	string
format.

conv(STRING	x,	INT

from_base,	INT

to_base)
STRING It	is	used	to	convert	the	string	x	from	one	base	to	another	base.	The	value	returned	will	be	in	String

format.

cos(DOUBLE|DECIMAL	x) DOUBLE It	is	used	derive	a	cosine	value	of	x,	where	x	is	in	radians.

degrees(DOUBLE|DECIMAL

x)
DOUBLE It	is	used	to	convert	x	from	radians	to	degree	format,	where	the	x	parameter	is	in	double	or	decimal

format.

e() DOUBLE It	will	return	the	value	of	exponential	e.

exp(DOUBLE|DECIMAL	x) DOUBLE It	will	return	the	exponential	value	of	x,	where	e	is	the	base	of	the	natural	algorithm.

factorial(INT	x) BIGINT It	will	return	the	factorial	value	of	the	number	x.

floor(DOUBLE	x) BIGINT It	will	return	the	floor	value	of	x	that	is	the	maximum	number	less	than	or	equal	to	x.

greatest(T	v1,	T	v2,

and	T	Vn)
T It	will	return	the	maximum	value	from	the	list	of	values	specified.	The	data	type	can	be	any	but	must

be	the	same	for	all	values	passed	to	this	function.	If	any	argument	is	NULL	then	it	will	return	NULL.

hex(BIGINT|

STRING|BINARY	x)
STRING

It	is	used	to	get	a	hexadecimal	value	of	the	number	x	of	the	bigint,	string,	or	binary	data	type.	In	the
case	of	string,	it	will	convert	each	character	into	its	hexadecimal	format	and	will	return	the	resulting
string.

least(T	v1,	T	v2,	and

so	on)
T It	will	return	the	lowest	value	from	the	list	of	values	specified.	The	data	type	can	be	any	but	must	be

the	same	for	all	values	passed	to	this	function.	If	any	argument	is	NULL	then	it	will	return	NULL.

negative(INT	x) INT It	will	return	a	negative	value	of	x.

negative(DOUBLE	x) DOUBLE It	will	return	a	negative	value	of	x.

pi() DOUBLE It	will	return	a	value	of	pi.

pmod(INT	x,	INT	y) INT It	will	return	a	positive	value	of	x	modulus	y,	that	is,	x	mod	y.

pmod(DOUBLE	x,	DOUBLE

y)
DOUBLE It	will	return	a	positive	value	of	x	modulus	y,	that	is,	x	mod	y.

positive(INT	a) INT It	will	return	a	positive	value	of	x.

positive(DOUBLE	a) DOUBLE It	will	return	a	positive	value	of	x.

pow(DOUBLE	x,	DOUBLE

n)
DOUBLE It	is	used	to	derive	the	power	n	of	the	number	x,	that	is,	xn.

power(DOUBLE	x,	DOUBLE

n)
DOUBLE It	is	the	same	as	the	pow	function.

radians(DOUBLE|

DECIMAL	x)
DOUBLE It	is	used	to	convert	x	from	degree	to	radian	format,	where	the	x	parameter	is	in	double	or	decimal

format.

rand() DOUBLE It	will	return	any	random	number.

rand(INT	x) DOUBLE It	will	return	any	random	number	with	seed	value	x.

round(DOUBLE	x) DOUBLE It	will	round	off	the	value	of	x.

round(DOUBLE	x,	INT	n) DOUBLE It	will	round	off	the	value	of	x	to	n	decimal	places.

sign(DOUBLE	x) DOUBLE It	will	return	sign	of	the	number.	If	x	is	positive	then	it	will	return	'1.0'	and	if	x	is	negative	then	it
will	return	'-1.0',	otherwise	it	will	return	'0.0'.

sign(DECIMAL	x) DECIMAL It	is	the	same	as	just	described	but	for	decimal	numbers.

sin(DOUBLE	x) DOUBLE It	is	used	to	derive	the	sine	value	of	x,	where	x	is	in	radians	of	the	double	data	type.

sin(DECIMAL	x) DOUBLE It	is	used	to	derive	the	sine	value	of	x,	where	x	is	in	radians	of	the	decimal	data	type.

sqrt(DOUBLE	x) DOUBLE It	will	return	the	square	root	value	of	x,	where	x	is	of	the	double	data	type.

sqrt(DECIMAL	x) DOUBLE It	will	return	the	square	root	value	of	x,	where	x	is	of	the	decimal	data	type.

tan(DOUBLE|DECIMAL	x) DOUBLE It	is	used	derive	the	tangent	value	of	x,	where	x	is	in	radians	of	the	double	or	decimal	data	type.

unhex(STRING	x) BINARY It	will	return	a	byte	conversion	of	the	number	x.

Collection	functions

Hive	also	supports	some	functions	that	can	be	executed	on	Hive	complex	data	types,	such	as	array	and
map:

Function	Name Return	Type Description

array_contains(ARRAY<T>,	value) BOOLEAN It	is	used	to	check	whether	a	value	exists	in	an	array	or	not.

map_keys(Map<K,V>) ARRAY<K> It	will	return	all	the	keys	of	a	map	in	an	unordered	array.

map_values(Map<K,V>) ARRAY<V> It	will	return	all	the	values	of	a	map	in	an	unordered	array.

size(Array<T>) INT It	will	return	the	number	of	elements	in	an	array.

size(Map<K,V>) INT It	will	return	the	number	of	elements	in	a	map.

sort_array(Array<T>) ARRAY<T> It	will	return	the	sorted	array	in	ascending	order.

Type	conversion	functions

Hive	supports	the	following	type	conversion	functions:

Function	Name Return	Type Description

binary(string|binary) BINARY It	is	used	to	cast	the	field	value	into	binary	format.

cast(expr	as	T) T It	is	used	to	cast	the	result	of	an	expression	to	a	specific	data	type.

Date	functions

Hive	supports	the	following	built-in	functions	for	date	and	time	operations:

Function	Name Return	Type Description

add_months(string	startDate,	int

n)
STRING It	is	used	to	add	n	of	months	to	a	specified	date.

current_date() DATE It	will	return	the	current	date.	Only	the	date	part	is	returned	as	a	result.

current_timestamp() TIMESTAMP It	will	return	the	current	timestamp.

date_add(string	startDate,	int	n) STRING It	is	used	to	add	n	number	of	days	to	a	specified	date.

date_format(date/timestamp/string

ts,	string	fmt)
STRING It	is	used	to	format	the	date	to	any	specified	format.

date_sub(string	startDate,	int	n) STRING It	is	used	to	subtract	n	of	days	from	a	specified	date.

datediff(string	endDate,	string

startDate)
INT It	will	return	the	number	of	days	between	a	specified	date	range.

day(string	date) INT It	is	used	to	extract	the	day	part	from	a	date.

dayofmonth(date) INT It	is	the	same	as	the	day	function.

from_unixtime(bigint	unixtime[,

string	format])
STRING It	is	used	to	convert	UNIX	epoch	time	to	timestamp	in	the	system	time	zone	format.

from_utc_timestamp(timestamp,

string	timezone)
TIMESTAMP It	is	used	to	convert	UTC	time	to	a	specified	time	zone	format.

hour(string	date) INT It	is	used	to	extract	the	hour	part	from	a	timestamp.

last_day(string	date) STRING It	will	return	the	timestamp	of	the	last	day	of	the	month	of	which	the	specified	date
belongs	to.

minute(string	date) INT It	is	used	to	extract	the	minute	part	from	a	timestamp.

month(string	date) INT It	is	used	to	extract	the	month	part	from	a	timestamp.

months_between(date1,	date2) DOUBLE It	will	return	number	of	months	between	a	specific	date	range.

next_day(string	startDate,	string STRING

It	will	return	the	date	of	the	day	that	is	after	the	start	date	and	matches	the	specified
dayOfWeek.	There	are	three	type	of	values	supported	in	the	second	argument
dayOfWeek:	(a)	2	letters	day	of	week;	example	MO,	TU	(b)	3	letters	day	of	week;

dayOfWeek) example	MON,	TUE,	and	(c)	full	name	day	of	week;	example	MONDAY,
TUESDAY.

second(string	date) INT It	is	used	to	extract	the	second	part	from	a	timestamp.

to_date(string	timestamp) STRING It	will	return	the	date	part	of	a	specified	timestamp	value.

to_utc_timestamp(timestamp,

string	timezone)
TIMESTAMP It	is	used	to	convert	the	timestamp	of	any	time	zone	to	UTC	format.

trunc(string	date,	string	format) STRING It	will	truncate	the	date	as	per	the	specified	format.	Formats	supported	are
YEAR/YYYY/YY,	MONTH/MON/MM.

unix_timestamp() BIGINT It	will	return	the	current	UNIX	timestamp	in	seconds.

unix_timestamp(string	date) BIGINT It	will	convert	the	date	to	UNIX	timestamp	in	seconds.

unix_timestamp(string	date,

string	pattern)
BIGINT It	will	convert	the	date	of	the	specified	pattern	to	UNIX	timestamp	in	seconds.

weekofyear(string	date) INT It	will	return	the	week	number	for	a	year	of	the	specified	date.

year(string	date) INT It	is	used	to	extract	the	year	part	from	a	timestamp.

String	functions

Hive	supports	the	following	built-in	functions	for	operations	on	string	objects:

Function	Name Return	Type Description

ascii(STRING	x) INT It	will	return	the	numeric	(ASCII)	value	of	the	first	character	of	a	string.

base64(BINARY	x) STRING It	is	used	to	convert	the	binary	value	to	base-64	string	format.

concat(STRING	x,	STRING

y...)
STRING It	is	used	to	concatenate	two	or	more	strings.

concat(BINARY	x,	BINARY

y...)
BINARY It	is	used	to	concatenate	two	or	more	binary	values.

concat_ws(STRING	sep,

STRING	x,	STRING	y...)
STRING Similar	to	the	concat	function,	it	is	used	to	concatenate	two	or	more

strings	but	with	custom	separator	'sep'.

concat_ws(STRING	SEP,

ARRAY<STRING>	arr)
STRING

It	is	the	same	as	the	preceding	function.	It	takes	the	array	of	a	string	as
an	argument	and	is	used	to	concatenate	all	strings	of	the	array	with	the
specified	separator.

decode(BINARY	x,	STRING

charset)
STRING It	is	used	to	decode	the	binary	value	into	a	string	using	the	specified

charset.	Supported	values	for	the	charset	are:	UTF-8,	UTF-16,	UTF-16LE,
UTF-16BE,	US-ASCII,	and	ISO-8859-1.

encode(STRING	x,	STRING

charset)
BINARY

It	is	used	to	encode	the	string	value	into	a	binary	using	the	specified
charset.	Supported	values	for	the	charset	are:	UTF-8,	UTF-16,	UTF-16LE,
UTF-16BE,	US-ASCII,	and	ISO-8859-1.

find_in_set(STRING	element,

STRING	elementList)
INT

It	is	used	to	find	an	element	in	a	comma	separated	list	of	elements.	This
function	returns	the	index/position	of	a	string	element	in	elementList,
where	element	is	a	comma	separated	string	of	different	elements.

If	the	first	argument	contains	a	comma	then	it	will	return	0.

format_number(NUMBER	x,	INT

d)
STRING It	is	used	to	format	a	number	into	the	format	'#,###,###.##'	rounded	to

d	decimal	places.

get_json_object(STRING

json_string,	STRING	path)
STRING

It	is	used	to	get	a	JSON	object	from	the	JSON	path	specified.

In	the	JSON	path,	uppercase	characters	and	special	characters	are	not
allowed.	Also	in	JSON,	keys	should	not	start	with	any	number.

in_file(STRING	str,	STRING

filename)
BOOLEAN It	is	used	to	check	if	a	particular	string	exists	as	a	line	in	a	file.

initcap(STRING	x) STRING It	will	return	the	string	with	the	first	letter	of	each	word	in	uppercase	and
all	other	letters	in	the	same	case.

instr(STRING	x,	STRING

substr)
INT It	will	return	the	index/position	of	the	first	occurrence	of	substr	in	string

'X'.	Index	starts	from	1	so	the	first	character	will	return	1.

length(STRING	x) INT It	will	return	the	length	of	string	x.

levenshtein(STRING	x,

STRING	y)
INT

It	is	used	to	calculate	the	levenshtein	distance	between	two	string
arguments.	The	levenshtein	distance	between	two	words	is	the
minimum	number	of	changes	of	characters	that	are	required	to	convert
one	word	to	another	word.

locate(STRING	substr,

STRING	x,	INT	n)
INT It	will	return	the	position	of	the	first	occurrence	of	the	substring	substr

in	string	x	after	index	n.

lower(string	A) STRING It	will	return	the	string	in	lowercase.

lcase(string	A) STRING It	is	the	same	as	the	lower	function	and	is	used	to	return	the	string	in
lowercase.

lpad(STRING	str,	INT	n,

STRING	pad)
STRING It	is	used	to	return	the	string	str	with	left	padded	with	the	specified	pad

to	length	n.

ltrim(STRING	x) STRING
It	trims	the	whitespaces	from	the	left	side	of	the	string	and	returns	the
resulting	string.

ngrams(ARRAY<ARRAY<STRING>>

x,	INT	n,	INT	k,	INT	pf)
ARRAY<STRUCT<STRING,DOUBLE>>

It	will	return	k	most	frequent	ngrams	from	an	array	of	different	tokenized
sentences.

repeat(STRING	x,	int	n) STRING It	will	repeat	string	x	n	times,	and	will	return	the	resulting	string.

reverse(string	x) STRING It	will	return	the	reverse	of	a	string.

rpad(STRING	str,	INT	n,

STRING	pad)
STRING It	is	used	to	return	the	string	str	with	right	padded	with	the	specified	pad

to	length	n.

rtrim(string	A) STRING It	trims	the	whitespaces	from	the	right	side	of	the	string	and	return	the
resulting	string.

sentences(STRING	x	[,

STRING	lang,	STRING

locale])

ARRAY<ARRAY<STRING>>

It	is	used	to	tokenize	the	string	into	different	sentences,	where	each
sentence	is	an	array	of	words.	This	function	takes	lang	and	locale	as
optional	arguments.

soundex(STRING	x) STRING It	will	return	the	soundex	code	of	string	x.

space(INT	n) STRING It	will	return	a	blank	string	with	n	whitespaces.

split(STRING	x,	STRING

regex)
ARRAY<STRING> It	will	split	the	string	as	per	the	specified	regular	expression.

str_to_map(STRING	str) MAP<STRING,STRING>
It	will	split	the	string	into	a	key-value	pair	using	the	delimiter	","	between
each	key-value	pair	and	the	delimiter	"="	between	key	and	value.

str_to_map(STRING	str,

STRING	delimiter1,	STRING

delimiter2)

MAP<STRING,STRING>

It	will	split	the	string	into	a	key-value	pair	using	specified	delimiters.
delimiter1	splits	the	text	into	K-V	pairs,	and	delimiter2	splits	each	K-V
pair	into	key	and	value.

substr(STRING|BINARY	x,	INT

start)
STRING|BINARY

It	will	return	the	substring	of	the	string	or	binary	value	starting	from	the
specified	position.

substring(STRING|BINARY	x,

INT	start)
STRING|BINARY It	is	the	same	as	the	substr	function.

trim(STRING	x) STRING It	trims	the	whitespaces	from	both	sides	of	the	string	and	returns	the
resulting	string.

unbase64(STRING	x) BINARY It	will	convert	the	string	x	from	base64	to	binary.

upper(STRING	x) STRING It	will	return	the	string	in	uppercase.

ucase(STRING	x) STRING
It	is	the	same	as	the	upper	function	and	is	used	to	return	the	string	in
uppercase.

How	it	works…
Let's	see	how	these	functions	can	be	used	in	real-time	environments.

Mathematical	functions

The	following	are	a	few	examples	of	different	mathematical	functions.

ABS:	This	function	returns	the	absolute	value	of	a	number:

hive>	SELECT	abs(-20.0);

20.0

ACOS:	This	function	returns	the	arc	cosine	value	of	a	number:

hive>	SELECT	acos(0.5);

1.0471975511965979

hive>	SELECT	acos(1);

0.0

ASIN:	This	function	returns	the	arc	sine	value	of	a	number:

hive>	SELECT	asin(0.5);

0.5235987755982989

hive>	SELECT	asin(1);

1.5707963267948966

BIN:	This	function	returns	the	binary	value	of	a	number:

hive>	SELECT	bin(14);

1110

hive>	SELECT	bin(15);

1111

CBRT:	This	function	returns	the	cube-root	value	of	a	given	number:

hive>	SELECT	cbrt(27.0);

3.0

RAND:	This	function	is	used	to	generate	any	random	number:

hive>	SELECT	rand();

0.5654304130197764

hive>	SELECT	rand();

0.3892359489373104

Collection	functions

The	following	are	a	few	examples	of	different	collection	functions.

For	using	array	functions,	let's	create	a	table	with	the	array	data	type:

CREATE	TABLE	table_with_array_datatype	(city	STRING,	pins	ARRAY<INT>)	ROW	FORMAT	

DELIMITED	FIELDS	TERMINATED	BY	'\t'	collection	items	terminated	by	',';

Now,	load	some	sample	data,	as	shown	in	the	following	table:

City Pins

Noida [201301,201303,201307]

Delhi [110001,110002,110003]

ARRAY_CONTAINS:	This	function	can	be	used	to	check	if	a	particular	element	in	an	array	exists	or	not.
For	example,	we	have	to	check	in	which	cities	the	110001	pin	lies:

hive>	SELECT	city,	array_contains(pins,110001)	FROM	table_with_array_datatype;

Noida			false

Delhi			true

	
SIZE:	It	is	used	to	check	the	number	of	elements	in	a	collection,	that	is,	an	array	or	map.	Run	the
following	command	to	get	the	count	of	pin	codes	in	each	city:

hive>	SELECT	city,	size(pins)	FROM	table_with_array_datatype;

Noida			3

Delhi			3

Time	taken:	0.108	seconds,	Fetched:	2	row(s)

Type	conversion	functions

The	following	are	a	few	examples	of	type	conversion	functions:

CAST:	The	next	example	will	cast	a	string	object	with	the	value	100	to	the	integer	object:

hive>	SELECT	cast('1000'	as	INT);

1000

To	cast	an	object	from	one	data	type	to	another	data	type,	data	must	be	appropriate.	If	data	is	invalid
and	cannot	be	cast	as	the	specified	data	type,	then	this	function	will	return	NULL:

hive>	SELECT	cast('Hi	John'	as	INT);

NULL

The	following	image	is	showing	examples	of	the	cast	function:

	
Date	functions

The	following	are	a	few	examples	of	date	functions.

ADD_MONTHS:	Run	the	following	command	to	add	three	months	to	the	date	'2016-01-30':

hive>	SELECT	add_months('2016-01-30',3);

2016-04-30

CURRENT_DATE:	This	function	return	the	current	date	of	the	system:

hive>	SELECT	current_date();

2016-01-23

CURRENT_TIMESTAMP:	This	function	return	the	current	timestamp	of	the	system:

hive>	SELECT	current_timestamp();

2016-01-23	15:51:04.616

DATE_ADD:	Run	the	following	command	to	add	five	days	to	the	date	'2016-01-30':

hive>	SELECT	date_add('2016-01-30',5);

2016-02-04

DATE_FORMAT:	Using	this	function,	you	can	format	the	date	from	one	format	to	another	format.	Run
the	following	command	to	convert	the	specified	date	into	the	format	'yyyy_MM_dd':

hive>	SELECT	date_format('2016-01-30','yyyy_MM_dd');

2016_01_30

DATE_SUB:

hive>	SELECT	date_sub('2016-01-30',3);

2016-01-27

DATEDIFF:

hive>	SELECT	datediff('2016-01-30',	'2016-01-25');

DAY,	MONTH,	YEAR:	These	functions	are	used	to	extract	different	parts	of	the	date:
Day:

hive>	SELECT	day('2016-01-30');

30

Month:

hive>	SELECT	month('2016-01-30');

1

Year:

hive>	SELECT	year('2016-01-30');

2016

UNIX_TIMESTAMP:	It	will	return	the	current	UNIX	timestamp	in	seconds:

hive>	SELECT	unix_timestamp();

1453548270

String	functions

Let's	see	how	string	functions	work	in	Hive:

ASCII:	This	function	returns	the	ASCII	value	of	the	first	character	of	string.	The	following	example
will	return	the	ASCII	value	of	the	character	'a'.

hive>	SELECT	ascii('abcd');

97

CONCAT:

hive>	SELECT	concat('value1','value2','value3');

value1value2value3

CONCAT_WS:

hive>	SELECT	concat_ws('_','value1','value2','value3');

value1_value2_value3

FIND_IN_SET:

hive>	SELECT	find_in_set('india',	'us,uk,india,pakistan');

3

LOWER,	LCASE,	UPPER,	UCASE:
LOWER:

hive>	SELECT	lower('heLLo	woRlD');

hello	world

LCASE:

hive>	SELECT	lcase('heLLo	woRlD');

hello	world

UPPER:

hive>	SELECT	upper('heLLo	woRlD');

HELLO	WORLD

UCASE:

hive>	SELECT	ucase('heLLo	woRlD');

HELLO	WORLD

INITCAP:

hive>	SELECT	initcap('heLLo	woRlD');

Hello	World

There's	more
Apart	from	the	various	functions	(of	different	categories,	such	as	mathematical,	collection,	type
conversion,	date,	and	string)	described	previously,	there	are	also	some	more	functions	that	can	be	used	in
Hive.

Conditional	functions

These	are	the	functions	that	are	used	for	conditional	statements.

Function	Name Return
Type Description

CASE	a	WHEN	b	THEN	c	[WHEN	d	THEN	e]*

[ELSE	f]	END
T When	a	=	b	then	it	will	return	c.	When	a	=	d	then	it	will	return	e.	Otherwise,

it	will	return	f.

CASE	WHEN	a	THEN	b	[WHEN	c	THEN	d]*

[ELSE	e]	END
T When	a	=	true	then	it	will	return	b.	When	c	=	true	then	it	will	return	d.

Otherwise,	it	will	return	e.

COALESCE(T	v1,	T	v2,	T	vn) T It	will	return	the	first	argument	that	is	not	NULL.	If	all	arguments	are	NULL	then
it	will	return	NULL.

if(BOOLEAN	testCondition,	T	x,	T	y) T If	testCondition	is	true	then	it	will	return	x,	otherwise	it	will	return	y.

isnotnull(a) BOOLEAN It	will	return	TRUE	if	a	is	not	NULL,	otherwise	it	will	return	FALSE.

isnull(a) BOOLEAN It	will	return	TRUE	if	a	is	NULL,	otherwise	it	will	return	FALSE.

nvl(T	x,	T	defaultValue) T It	will	return	x	if	x	is	not	NULL,	otherwise	it	will	return	the	specified
defaultValue.

Miscellaneous	functions

There	are	some	other	functions	that	are	used	for	different	purposes,	such	as	encryption,	decryption,
hashing,	and	so	on:

Function	Name Return
Type Description

current_user() STRING It	will	return	the	name	of	the	current	user	who	is	connected	to	Hive	in	that	session.

hash(a1[,	a2...]) INT It	will	return	the	hash	value	of	specified	arguments.

java_method(class,	method[,

arg1[,	arg2..]])
varies It	is	used	to	invoke	static	Java	methods	within	Hive	queries.	The	same	functionality	can	be

achieved	using	the	reflect	function.

reflect(class,	method[,	arg1[,

arg2..]])
varies It	is	used	to	invoke	static	Java	methods	within	Hive	queries.

See	also
You	can	read	more	about	Hive	mathematical	functions	at
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-
MathematicalFunctions.
Hive	supports	all	the	standards	date	formats.	You	can	check	the	various	date	formats	at
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html.
You	can	read	more	about	Hive	string	functions	at
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-
StringFunctions.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-MathematicalFunctions
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-StringFunctions

Using	the	built-in	User-defined	Aggregation
Function	(UDAF)
Hive	provides	a	set	of	functions	to	do	aggregation	on	a	dataset.	These	functions	operate	on	a	range	of	data
(rows)	and	provide	the	cumulative	or	relative	result.

How	to	do	it…
The	built-in	functions	could	be	used	directly	in	the	query.	The	following	are	some	of	the	examples	of
aggregated	functions	available	in	Hive:

Function	Name Return
Type Description

avg(col) DOUBLE It	is	used	to	calculate	the	average	of	all	values	of	a	particular	column.

avg(DISTINCT	col) DOUBLE It	is	used	to	calculate	the	average	of	unique	values	of	a	particular	column.

collect_list(col) ARRAY It	will	return	a	list	of	all	values	of	a	particular	column	in	an	array.

collect_set(col) ARRAY It	will	return	a	list	of	unique	values	of	a	particular	column	in	an	array.	Duplicate	values	are
eliminated.

corr(col1,	col2) DOUBLE It	is	used	to	calculate	the	Pearson	coefficient	of	correlation	between	two	columns.

count(*) BIGINT It	will	return	the	total	number	of	rows	of	a	table.

count(expr) BIGINT It	will	return	the	total	number	of	rows	where	the	specified	expr	is	not	NULL.

count(DISTINCT	expr[,

expr...])
BIGINT It	will	return	the	total	count	of	rows	for	unique	values	of	the	specified	expr.

covar_pop(col1,	col2) DOUBLE It	is	used	to	calculate	population	covariance	between	two	columns.

covar_samp(col1,	col2) DOUBLE It	is	used	to	calculate	sample	covariance	between	two	columns.

max(col) DOUBLE It	will	return	the	maximum	value	of	the	specified	column	of	a	table.

min(col) DOUBLE It	will	return	the	minimum	value	of	the	specified	column	of	a	table.

stddev_pop(col) DOUBLE It	is	used	to	calculate	the	population	standard	deviation	of	all	values	of	a	column.

stddev_samp(col) DOUBLE It	is	used	to	calculate	the	sample	standard	deviation	of	all	values	of	a	column.

sum(col) DOUBLE It	is	used	to	calculate	the	sum	of	all	values	of	a	column.

sum(DISTINCT	col) DOUBLE It	is	used	to	calculate	the	sum	of	the	unique	values	of	a	column.

var_samp(col) DOUBLE It	is	used	to	calculate	the	unbiased	sample	variance	of	all	values	of	a	column.

variance(col) DOUBLE It	is	used	to	calculate	the	variance	(population)	of	all	values	of	a	column.

var_pop(col) DOUBLE It	is	the	same	as	the	variance	function.

How	it	works…
For	all	set	of	rows	in	a	Hive	dataset,	these	functions	calculate	the	aggregated	or	cumulative	output.

Let's	create	a	sample	table	item,	with	four	columns:	id,	name,	brand,	and	price.

CREATE	TABLE	item(id	int,	name	STRING,	brand	String,	price	DOUBLE)	ROW	FORMAT	

DELIMITED	FIELDS	TERMINATED	BY	'\t';

Now	load	some	sample	data	as	shown	next:

Id Name Brand Price

1 U41-Laptop Lenovo 38999.50

2 Vostro-1015 Dell 32000.90

3 H21-U123 Lenovo 22000.00

4 IP-213 HP 35000.00

5 Insipiron Dell 41000.00

AVG:	This	function	is	used	to	calculate	the	average	of	values	for	a	particular	column:
The	following	command	will	give	the	average	of	all	values	of	a	price	field	from	the	item	table:

hive>	SELECT	avg(price)	from	item;

33800.08

The	following	command	will	give	the	average	of	the	unique	values	of	a	price	field	from	the
item	table:

hive>	SELECT	avg(DISTINCT	price)	from	item;

33800.08

COLLECT_LIST:	The	following	command	will	give	the	list	of	all	values	of	the	brand	field	from	the
item	table:

hive>	SELECT	collect_list(brand)	from	item;

["Lenovo","Dell","Lenovo","HP","Dell"]

COLLECT_SET:	As	described	previously,	the	COLLECT_LIST	function	is	used	to	give	a	list	of	all
values,	including	duplicates	of	a	column.	To	avoid	duplicates	and	get	a	list	of	the	unique	values	of	a
column,	the	COLLECT_SET	function	is	used:

The	following	command	will	give	a	list	of	the	unique	values	of	the	brand	field	from	the	item
table:

hive>	SELECT	collect_set(brand)	from	item;

["Lenovo","Dell","HP"]

COUNT:
In	the	following	command	count(*)	will	return	all	the	results	from	the	item	table:

hive>	SELECT	count(*)	from	item;

5

In	the	following	command	count(DISTINCT	brand)	will	return	all	the	distinct	results	from	the
item	table:

hive>	SELECT	count(DISTINCT	brand)	from	item;

3

MAX,	MIN:	These	functions	are	used	to	get	the	maximum	and	minimum	value	of	a	column	respectively:
MAX:

hive>	SELECT	max(price)	from	item;

41000.0

MIN

hive>	SELECT	min(price)	from	item;

22000.0

STDDEV_POP:	The	following	command	will	calculate	the	population	standard	deviation	of	all	values
of	a	price	field:

hive>	SELECT	stddev_pop(price)	from	item;

6675.201285774084

STDDEV_SAMP:	The	following	command	will	calculate	the	sample	standard	deviation	of	all	values	of
a	price	field:

hive>	SELECT	stddev_samp(price)	from	item;

7463.101919242426

SUM:
The	following	command	will	give	the	sum	of	all	values	of	a	price	field:

hive>	SELECT	sum(price)	from	item;

169000.4

The	following	command	will	give	the	sum	of	only	the	unique	values	of	a	price	field.

hive>	SELECT	sum(DISTINCT	price)	from	item;

169000.4

VARIANCE:	The	following	command	will	give	the	variance	of	all	values	of	a	price	field:

hive>	SELECT	variance(price)	from	item;

4.4558312205599986E7

See	more
You	can	read	more	about	Hive's	built-in	aggregate	functions	at
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-
inAggregateFunctions%28UDAF%29.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-inAggregateFunctions%28UDAF%29

Using	the	built-in	User	Defined	Table	Function
(UDTF)
Normal	functions	take	one	row	as	input	and	provide	one	row	as	transformed	output.	On	the	other	side,
built-in	table-generating	functions	take	one	row	as	input	and	produce	multiple	output	rows.

How	to	do	it…
The	built-in	table-generating	functions	could	be	used	directly	in	the	query.	The	following	are	some
examples	of	the	table-generating	functions	available	in	Hive:

Function	Name Return
Type Description

explode(ARRAY) N	rows It	will	return	n	of	rows	where	n	is	the	size	of	an	array.	This	function	represents	each	element
of	an	array	as	a	row.

explode(MAP) N	rows
It	will	return	n	number	of	rows	where	n	is	the	size	of	a	map.	This	function	represents	each
key-value	element	of	the	map	as	a	row	containing	two	columns:	one	for	key	and	another	for
value.

inline(ARRAY<STRUCT[,STRUCT]>) It	is	used	to	explode	an	array	of	struct	elements	into	a	table.

json_tuple(jsonStr,	k1,	k2,

...)
tuple It	is	used	to	extract	a	set	of	keys	from	a	JSON	string.	This	function	is	more	efficient	than

get_json_object	to	retrieve	more	than	one	keys	from	a	JSON	string	using	a	single	function.

parse_url_tuple(url,	p1,	p2,

...)
tuple

It	is	used	to	extract	multiple	parts	of	a	URL	at	once.	Supported	values	for	url	parts	are
AUTHORITY,	FILE,	HOST,	PATH,	PROTOCOL,	QUERY,	REF,	and	USERINFO.

The	value	of	a	particular	key	in	QUERY	can	be	extracted	by	specifying	QUERY:<KEY-NAME>.

posexplode(ARRAY) N	rows This	function	is	similar	to	the	explode	function	but	it	also	includes	elements	position	in	output.

stack(INT	n,	v_1,	v_2,	...,

v_k)
N	rows This	function	breaks	up	the	specified	k	values	into	n	rows,	where	k	is	the	number	of	values

passed	to	this	function.	Each	row	will	contain	k/n	columns.

How	it	works…
The	following	are	the	UDTF	functions:

EXPLODE:	This	function	takes	an	array	or	map	as	input	and	generates	the	output	with	n	rows:
1.	 To	understand	the	behavior	of	the	explode	function,	let's	create	a	table	with	two	columns:	one

is	city	with	the	data	type	STRING	and	the	other	is	pins	with	the	data	type	ARRAY<INT>.

CREATE	TABLE	table_with_array_datatype	(city	STRING,	pins	ARRAY<INT>)	ROW	

FORMAT	DELIMITED	FIELDS	TERMINATED	BY	'\t'	collection	items	terminated	by	

',';

Now,	load	some	sample	data	into	a	table.	The	data	in	the	table	will	look	as	follows:

City Pins

Noida [201301,201303,201307]

Delhi [110001,110002,110003]

Now,	run	the	following	query	to	explode	the	data	of	array	elements:

SELECT	explode(pins)	AS	pin_code	FROM	table_with_array_datatype;

It	will	return	the	following	response:

pin_code

201301

201303

201307

110001

110002

110003

Now,	let's	see	the	behavior	of	the	explode	function	with	the	map	data	type:

SELECT	explode(map_field)	AS	(mapKey,	mapValue)	FROM	sampleTable;

POSEXPLODE:	This	function	is	the	same	as	the	explode	function	but	instead	of	returning	just	elements
it	will	return	the	element	as	well	as	their	position	in	the	array:

Let's	use	the	same	data	used	in	the	explode	example,	that	is,	table_with_array_datatype
with	two	columns:	city	and	pins:

SELECT	posexplode(pins)	AS	position,	pin_code	FROM	

table_with_array_datatype;

The	preceding	command	will	return	the	following:

position pin_code

1 201301

2 201303

3 201307

1 110001

2 110002

3 110003

See	also

In	Hive,	you	can	also	create	your	own	custom	UDTF.	To	write	custom	UDTF	refer
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide+UDTF.

https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide+UDTF

Creating	custom	User-Defined	Functions	(UDF)
Built-in	functions	in	Hive	sometimes	do	not	fit	the	requirements	of	a	business	use	case	or	when	data
analytics	required	some	custom	manipulation	of	data	based	on	certain	conditions.	For	such	cases,	the	user
needs	to	define	custom	logic	as	a	UDF	and	run	it	over	the	data.

How	to	do	it…
For	writing	a	custom	function	in	Hive,	you	will	have	to	extend	a	Hive	class:
org.apache.hadoop.hive.ql.exec.UDF.

Let's	understand	the	concept	of	creating	a	custom	UDF	with	the	example	of	creating	a	function	to	reverse	a
string.

The	following	are	the	steps	to	create	a	custom	UDF:

1.	 Create	a	new	Java	project	using	any	IDE,	such	as	Eclipse.	Give	this	any	name;	let's	say	"HiveUDF".
2.	 When	writing	a	custom	UDF,	there	should	be	two	libraries	in	the	classpath	of	the	project.	To	do

so:
1.	 Create	a	folder	"lib"	under	the	project.
2.	 Add	the	following	two	JAR	files	to	the	lib	folder:

hadoop-common-2.6.0

hive-exec-1.2.1

3.	 Add	these	JAR	files	to	the	classpath	of	the	project.	Right-click	on	Project	|	Build	Path	|
Configure	Build	Path	|	Add	Jars.

3.	 Now,	create	a	new	class	extending	the	Hive	UDF	class:

package	com.examples.hive;

import	org.apache.hadoop.hive.ql.exec.UDF;

import	org.apache.hadoop.io.Text;

public	class	ReverseString	extends	UDF	{

				public	Text	evaluate(final	Text	text)	{

								//	return	NULL	if	value	of	input	is	NULL.

								if	(text	==	null)	{

												return	null;

								}

								//	Convert	Hadoop	Text	object	to	StringBuilder

								StringBuilder	stringBuilder	=	new	StringBuilder(text.toString());

								//	Derive	reverse	of	string	using	inbuilt	api	of	StringBuilder

								String	reverse	=	stringBuilder.reverse().toString();

								//	Convert	String	to	Hadoop	Text	object	and	return	that.

								return	new	Text(reverse);

				}

}

4.	 Compile	your	project	and	export	the	project	as	a	JAR	file,	say	"myudf.jar".
5.	 Copy	this	JAR	to	the	Linux	machine	where	Hive	is	running.
6.	 When	using	a	custom	UDF,	first	you	have	to	register	your	JAR	with	Hive:

hive>	ADD	JAR	/opt/myudf.jar;

Added	[/opt/myudf.jar]	to	class	path

7.	 After	running	the	preceding	command,	your	JAR	file	for	a	custom	function	will	be	added	to	the
classpath	of	Hive.	You	can	register	JAR	files	in	that	session	using	the	following	command:

hive>	LIST	JARS;

/opt/myudf.jar

8.	 The	last	step	is	to	create	a	function	with	any	name	for	your	custom	logic	build	into	JAR:

hive>	CREATE	FUNCTION	string_reverse	AS	'com.examples.hive.ReverseString';

9.	 In	the	preceding	command	string_reverse	is	the	name	given	to	the	function	and
'com.examples.hive.ReverseString'	is	the	fully	qualified	name	of	the	class.

How	it	works…
After	successful	registration	of	your	custom	function	in	Hive,	you	can	directly	use	that	function	in	Hive
queries.	In	the	preceding	section,	we	created	a	function	to	reverse	a	string:

hive>	select	string_reverse('abcde');

edcba

hive>	select	string_reverse(firstname)	from	sales;	

The	preceding	command	will	return	all	values	of	firstname	in	reverse	format	from	the	sales	table.

In	this	chapter,	we	learned	various	types	of	functions	supported	in	Hive.	We	also	learned	how	we	can
create	our	custom	user-defined	function	and	use	that	in	Hive	queries.

Chapter	10.	Hive	Tuning
In	this	chapter,	you	will	learn	the	following:

Enabling	predicate	pushdown	optimizations	in	Hive
Optimizations	to	reduce	the	number	of	map
Sampling

Enabling	predicate	pushdown	optimizations	in
Hive
In	this	recipe,	you	will	learn	how	to	use	predicate	pushdown	in	Hive.

Getting	ready
Predicate	pushdown	is	a	traditional	RDBMS	term,	whereas	in	Hive,	it	works	as	predicate	pushup.	In	this,
the	focus	is	on	to	execute	all	the	expressions	such	as	filters	as	early	as	possible	to	optimize	the
performance	of	a	query.	For	example,	let's	look	at	the	query	mentioned	later,	which	includes	a	join
condition	as	well	as	a	filter	condition:

SELECT	a.*,	b.*	FROM	Sales	a	JOIN	Sales_orc	b	ON	a.id	=	b.id

WHERE	a.id	>	100	AND	b.id	>	300;

In	the	preceding	query,	a	JOIN	is	performed	at	the	ID	column	of	both	the	tables	and	then	the	result	set	is
filtered	out	with	the	help	of	the	filter	condition.	The	drawback	here	is	that	the	join	condition	is	executed
first	followed	by	the	filter	condition.	Now	suppose	if	most	of	the	rows	are	filtered	out	by	the	filter
expression,	then	in	this	case,	executing	the	filter	condition	after	the	JOIN	clause	is	of	no	use.	There	has
to	be	a	mechanism	with	the	help	of	which	these	predicates	are	performed	first	filtering	most	of	the	rows
followed	by	the	JOIN	clause.	For	such	scenarios,	predicate	pushdown	is	used,	which	performs	the
expressions	first	resulting	in	a	better	performance	of	the	query.	Predicate	pushdown	is	enabled	by	setting
the	following	property	to	True:

hive.optimize.ppd=true;

How	to	do	it…
If	there	are	multiple	predicates	in	the	query,	the	predicate	pushdown	functionality	implements	a	special
function	and	breaks	the	WHERE	clause	into	two	parts,	as	shown	in	the	following	figure:

	

Now	suppose	that	there	is	a	query	that	contains	two	predicates	or	expressions.	The	first	one	is	a	filter
condition	(id	>100),	and	the	second	one	is	a	normal	expression	(x/100)=0.	Now	when	these	predicates
are	split	into	two	parts,	one	is	sent	to	the	database	where	it	filters	out	most	of	the	rows.	Another	one	is
executed	by	Hive.	In	the	preceding	figure,	id	>	100	is	evaluated	at	the	database	side,	whereas
floor(x/100)	expression	is	evaluated	by	Hive.

How	it	works…
To	determine	the	execution	plan	of	a	query,	the	EXPLAIN	keyword	is	used.	The	output	of	the	explain
command	has	three	outputs:

The	Abstract	Syntax	Tree	for	the	query
The	dependencies	between	the	different	stages	of	the	plan
The	description	of	each	of	the	stages

Now,	let's	see	what	happens	when	hive.optimize.ppd	is	set	to	false.	Once	this	property	or	parameter
is	set	to	false,	we	will	analyze	the	execution	plan	of	a	query	(join	a	query,	as	shown	in	the	following
screenshot):

Stage	dependencies

	

In	the	preceding	figure,	Stage-4	is	a	root	stage.	Stage-3	is	executed	after	Stage-4	is	done,	and	Stage-0
is	executed	after	Stage-2	is	done:

Plan	for	Stage-4

	

The	preceding	figure	explains	the	plan	for	Stage-4.	Because	we	have	set	the	value	for
hive.optimize.ppd	to	false,	the	predicate	in	the	figure	does	not	show	any	expression	(id	>	100),

which	is	there	in	the	JOIN	statement.	In	the	preceding	screenshot,	the	table	having	alias	b	is	scanned:

	

The	following	screenshot	explains	the	plan	for	Stage-0.	This	is	the	outermost	stage	and	is	executed	once
all	the	stages	are	completed:

	

Now,	let's	see	what	happens	when	hive.optimize.ppd	is	set	to	true.	Once	this	property	or	parameter
is	set	to	true,	we	will	analyze	the	execution	plan	of	a	query	(join	a	query,	as	shown	in	the	following
screenshot):

	

In	the	preceding	screenshot,	Stage-4	is	a	root	stage.	Stage-3	is	executed	after	Stage-4	is	done,	and
Stage-0	is	executed	after	Stage-2	is	done:

	

The	preceding	screenshot	explains	the	plan	for	Stage-4.	Because	we	have	set	the	value	for
hive.optimize.ppd	to	true,	the	predicate	in	the	screenshot	shows	an	expression	(id	>	100),	which	is
there	in	the	JOIN	statement.	In	the	preceding	screenshot,	the	table	having	alias	as	b	is	scanned	and	24
rows	comes	out	as	the	output:

	

The	preceding	screenshot	explains	the	plan	for	Stage-3.	Because	we	have	set	the	value	for
hive.optimize.ppd	to	true,	the	predicate	in	the	screenshot	shows	an	expression	(id	>	100),	which	is
there	in	the	JOIN	statement.	In	the	preceding	screenshot,	the	table	having	alias	as	a	is	scanned	and	10001
rows	comes	out	as	the	output.	After	the	predicate	is	executed,	the	output	is	3333.	This	shows	that	WHERE
clause	is	executed	first	and	then	the	JOIN	clause	is	executed	on	the	result	set	of	the	WHERE	condition:

	

The	preceding	screenshot	explains	the	plan	for	Stage-0.	This	is	the	outermost	stage	and	is	executed	once
all	the	stages	are	completed.

Optimizations	to	reduce	the	number	of	map
In	this	recipe,	you	will	learn	how	to	reduce	the	number	of	mappers	in	Hive.

Getting	ready
The	number	of	mappers	that	is	used	in	a	map	reduce	job	depends	heavily	on	the	input	split.	The	number	of
mappers	is	directly	proportional	to	the	number	of	HDFS	blocks,	that	is,	the	total	number	of	blocks	for	the
input	files.	Input	split	is	a	logical	concept	that	is	used	to	control	the	number	of	mappers.	If	there	is	no	size
defined	for	an	input	split	in	map	reduce	job,	then	the	number	of	mappers	will	be	equal	to	the	number	of
HDFS	blocks.

However,	if	you	have	defined	a	particular	size	for	an	input	split,	then	the	number	of	mappers	will	be
equal	to	the	number	of	input	splits	in	the	MapReduce	job	and	not	to	the	number	of	HDFS	blocks	for	that
MapReduce	job.

Let's	suppose	that	there	is	a	file	of	150	MB,	and	it	is	broken	down	into	two	parts.	One	part	is	equal	to	128
MB,	and	the	other	part	is	equal	to	22	MB.	Now	consider	that	the	block	configuration	of	HDFS	block	by
default	is	128	MB.	So	the	number	of	blocks	occupied	by	this	file	is	going	to	be	2.	In	this	case,	the	number
of	mappers	is	going	to	be	equal	to	the	number	of	blocks,	which	is	2	if	there	is	no	split	size	defined	for	the
map	reduce	job	to	process	this	file.

Now	suppose	that	you	have	specified	the	input	split	size	to	be	150	MB.	Now	the	number	of	splits	is	going
to	be	1,	whereas	number	of	blocks	will	be	2.	In	this	case,	the	number	of	mappers	is	going	to	be	1	as	the
number	of	mappers	is	directly	proportional	to	the	number	of	splits	defined	for	the	map	reduce	job.	Split
size	can	be	defined	by	the	user	and	altered	according	to	the	business	requirement.

Now	suppose	that	you	have	further	modified	the	input	split	size	to	50	MB.	Now	for	a	file	of	150	MB,	the
number	of	mappers	is	going	to	be	3,	which	is	equivalent	to	the	number	of	splits	for	that	file.

How	to	do	it…
The	number	of	mappers	used	in	a	query	plays	a	very	important	role	in	the	performance	of	the	query.	You
can	increase	or	decrease	the	number	of	mappers	required	for	a	particular	Hive	query.	The	following	two
parameters	can	increase	or	decrease	the	number	of	mappers	to	some	extent:

mapreduce.input.fileinputformat.split.maxsize

mapreduce.input.fileinputformat.split.minsize

The	preceding	two	parameters	are	for	the	newer	version	of	Hive.	Their	equivalent	names	in	the	earlier
versions	are	as	follows:

mapred.max.split.size

mapred.min.split.size

Suppose	that	there	is	a	text	file	of	size	10,000	bytes.	If	you	want	to	limit	the	number	of	mappers,	then	you
can	set	the	earlier-mentioned	parameters,	as	follows:

Limiting	mappers	to	One

	

There	is	going	to	be	one	mapper	for	the	MapReduce	job	if	the	parameter	size	is	set	to	10,000,	as	in	the
preceding	screenshot.

However,	there	are	going	to	be	two	mappers	if	the	properties	are	set	as	shown	in	the	following
screenshot:

Limiting	mappers	to	Two

	

The	following	parameters	can	be	set	to	reduce	number	of	mappers	for	a	MapReduce	job:

set	hive.merge.mapfiles=true;

The	property	hive.merge.mapfiles	if	set	to	true,	will	merge	all	the	small	files	once	the	map	job	is
completed:

set	hive.input.format=	org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

set	mapreduce.job.maps	=	XX;

There	is	one	more	property,	hive.input.format,	that	can	be	used	to	reduce	the	number	of	mappers	as
well.	If	this	property	is	set	to	org.apache.hadoop.hive.ql.io.CombineHiveInputFormat,	which	is

the	default	value	as	well,	then	Hive	will	combine	all	files	that	are	smaller	in	size	than	the	limit	specified
in	the	parameter	mapreduce.input.fileinputformat.split.minsize	to	a	single	file	reducing	the
number	of	mappers.	However,	there	is	also	one	limitation	in	this	technique.	If	the	small-sized	files	are
present	at	a	different	node	on	a	different	machine,	Hive	will	not	be	able	to	combine	all	those	files	into	a
single	file.	Hence,	the	number	of	mappers	will	not	be	reduced.

In	the	earlier	version	of	Hive,	the	hive.input.format	was	set	to
org.apache.hadoop.hive.ql.io.HiveInputFormat,	which	has	been	deprecated	now.	With	the	newer
version	of	Hive,	the	following	the	value	should	be	set:

hive.input.format	=	org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

The	third	parameter	shows	that	you	can	manually	set	the	number	of	mappers	for	a	particular	Hive	query.
However,	this	parameter	is	ignored	if	the	value	of	mapreduce.jobtracker.address	is	set	to	local.
This	means	that	all	the	jobs	will	run	in-process	as	a	single	MapReduce	task.

Sampling
In	this	recipe,	you	will	learn	how	to	sample	data	in	Hive.

Getting	ready
Sampling	in	Hive	is	a	way	to	write	queries	on	a	small	chunk	of	data	instead	of	the	entire	table.	This	is
required	when	you	have	a	large	dataset	and	you	want	to	work	on	a	small	piece	of	that	dataset.	Sampling
queries	are	most	efficient	when	they	are	performed	on	bucketed	column.	Sampling	is	required	when	you
just	need	to	run	queries	on	a	smaller	set	of	data	instead	of	accuracy	of	the	result	set	of	the	entire	data.	That
is,	it	is	mostly	required	for	testing	purposes.	Sampling	is	most	efficient	when	it	is	used	for	auditing
purposes.	In	auditing,	sampling	can	be	used	to	pick	a	random	set	of	rows	or	data	with	respect	to	the	entire
data	that	is	huge	in	number.

Another	use	case	is	where	you	need	to	perform	some	aggregation-like	average	on	a	sample	of	data	or
smaller	set	of	data,	keeping	aside	the	accuracy	of	the	data.

To	use	this	sampling	feature	in	Hive,	you	need	to	use	the	TABLESAMPLE	clause,	which	helps	in	writing
queries	on	a	sample	of	data	instead	of	the	entire	table	that	contains	huge	amount	of	data.

There	are	multiple	ways	of	sampling	in	Hive:

Sampling	bucketed	table
Block	sampling
Length	literal
Row	count

Sampling	bucketed	table
The	sampling	bucketed	table	method	is	used	when	we	need	to	sample	a	particular	out	of	a	group	of
buckets	or	the	total	number	of	buckets.	In	this	technique,	sampling	can	be	performed	either	on	a	column	or
by	using	a	rand()	function,	indicating	sampling	on	the	entire	row	instead	of	an	individual	column.

The	general	syntax	for	sampling	bucketed	table	is	as	follows:

table_sample:	TABLESAMPLE	(BUCKET	x	OUT	OF	y	[ON	colname])

Here,	TABLESAMPLE	is	the	clause	that	samples	data	instead	of	the	entire	table:

BUCKET:	This	is	the	clause	used	to	specify	the	exact	number	of	buckets	to	be	used	in	the	query.
X:	This	is	is	the	number	of	buckets	to	be	used	in	the	query.
Y:	This	is	the	total	number	of	buckets	or	group	of	buckets	on	the	table	out	of	which	X	bucket	needs	to
be	used.
colname:	This	is	the	column	on	which	sampling	has	to	be	performed	on	each	row	of	the	table.	It	can
be	a	nonpartitioned	column	in	the	table.

Block	sampling
Block	sampling	is	another	kind	of	sampling	that	deals	in	percentages.	In	this,	we	provide	the	percentage
of	data	that	need	to	be	sampled.	The	percentage	here	indicates	the	data	size	and	not	number	of	rows.	In
this	sampling	technique,	the	granularity	is	a	single	HDFS	block.

The	general	syntax	for	Block	Sampling	is	as	follows:

block_sample:	TABLESAMPLE	(n	PERCENT)	s

Here,	TABLESAMPLE	is	the	clause	that	samples	data	instead	of	the	entire	table:

(n	PERCENT)	is	the	n%	data	size
S	is	the	table	alias

Length	literal
Length	literal	is	another	way	of	sampling	data	or	rows	from	a	large	set	of	data.	In	this	technique,	the	user
specifies	the	size	of	the	input	data	or	the	length	of	the	input	data.

The	general	syntax	for	length	literal	sampling	is	as	follows:

block_sample:	TABLESAMPLE	(ByteLengthLiteral)

ByteLengthLiteral	:	(Digit)+	('b'	|	'B'	|	'k'	|	'K'	|	'm'	|	'M'	|	'g'	|	'G')

Here,	ByteLengthLiteral	is	the	size	that	you	need	to	provide	for	the	data:

(Digit)	is	the	numeric	number	that	you	need	to	provide
('b'|	'B'	|	'k'	|	'K'	|	'm'	|	'M'	|	'g'	|	'G')	is	the	literal	indicating	the	size	of	the
sample	data	to	be	read.	Here,	'b'	stands	for	bits,	and	'B'	stands	for	bytes,	and	so	on

Row	count
Row	count	is	another	type	of	sampling	technique	where	you	provide	the	number	of	rows	instead	of
ByteLengthLiteral.	In	this	case,	sampling	is	done	on	the	basis	of	rows	or	by	providing	the	number	of
rows	as	the	input.	In	this	type	of	sampling,	the	row	count	provided	by	the	user	is	applied	to	each	input
split.

The	general	syntax	for	block	sampling	is	as	follows:

block_sample:	TABLESAMPLE	(n	ROWS)

Here,	(n	ROWS)	is	the	number	of	rows	to	be	provided	as	an	input	for	sampling	the	data.

How	to	do	it…
Follow	these	steps	to	use	sampling	in	Hive:

SELECT	*	FROM	Sales_orc	TABLESAMPLE(BUCKET	1	OUT	OF	10	ON	id);

SELECT	*	FROM	Sales_orc	TABLESAMPLE(BUCKET	3	OUT	OF	5	ON	id);

SELECT	*	FROM	Sales_orc	TABLESAMPLE(BUCKET	3	OUT	OF	100	ON	id);

SELECT	*	FROM	Sales_orc	TABLESAMPLE(BUCKET	3	OUT	OF	1000	ON	id);

SELECT	*	FROM	Sales_orc	TABLESAMPLE(BUCKET	1	OUT	OF	10	ON	fname);

SELECT	count(*)	FROM	Sales_orc	TABLESAMPLE(BUCKET	4	OUT	OF	10	ON	rand());

SELECT	count(*)	FROM	Sales_orc	TABLESAMPLE(BUCKET	5	OUT	OF	10	ON	rand());

SELECT	count(*)	FROM	Sales_orc	TABLESAMPLE(BUCKET	4	OUT	OF	10	ON	rand());

SELECT	count(*)	FROM	Sales_orc	TABLESAMPLE(BUCKET	5	OUT	OF	10	ON	rand());

SELECT	*	FROM	Sales_orc	TABLESAMPLE(10	PERCENT);

SELECT	*	FROM	Sales_orc	TABLESAMPLE(10%);

SELECT	*	FROM	Sales_orc	TABLESAMPLE(10M);

SELECT	*	FROM	Sales_orc	TABLESAMPLE(0.1M);

SELECT	*	FROM	Sales_orc	TABLESAMPLE(10	ROWS);

SELECT	*	FROM	Sales_orc	TABLESAMPLE(100	ROWS);

How	it	works…
Let's	assume	that	the	Sales_orc	table	used	in	the	earlier-mentioned	example	is	having	10	buckets	and
10,000	rows	as	total	number	of	records	in	the	table:

The	first	statement	is	an	example	of	a	Sampling	Bucketed	table.	In	this	example,	all	the	records	from
the	Sales_orc	table	are	fetched	from	the	first	bucket	of	total	number	of	10	buckets.	The	id	column
is	the	column	on	which	the	Sales_orc	table	was	created	with	CLUSTERED	BY	id	INTO	32
BUCKETS.	The	total	number	of	records	for	this	query	came	out	to	be	1,000	rows:

Limiting	mappers	to	one

In	the	second	example,	the	numbers	of	buckets	specified	are	5	even	though	the	total	numbers	of
buckets	in	the	Sales_orc	table	are	10.	This	is	known	as	Input	Pruning.	When	a	table	is	created
using	a	CLUSTERED	BY	(column_name)	into	BUCKET	clause,	Hive,	with	the	help	of	HASH	function,
buckets	the	data	into	the	10	buckets	(in	the	Sales_orc	table	as	an	example).	In	this	example,	Hive
divides	the	10	buckets	into	groups	of	5	buckets,	that	is,	2	groups	of	5	buckets.	Once	this	is	done,	the
third	bucket	is	picked	from	each	group	thereby	picking	the	third	and	eighth	bucket.	The	total	number
of	records	for	this	query	came	out	to	be	2,000	rows:

The	third	example	is	somewhat	similar	to	the	second	example.	The	only	difference	is	that	the	total
number	of	groups	in	this	case	is	'one-tenth'	of	the	total	number	of	buckets.	The	total	number	of
records	for	this	query	came	out	to	be	100	rows:

The	fourth	example	is	somewhat	similar	to	the	third	example.	The	only	difference	is	that	the	total
number	of	groups	in	this	case	is	'one-hundredth'	of	the	total	number	of	buckets.	The	total	number	of
records	for	this	query	came	out	to	be	10	rows:

The	fifth	example	uses	the	column	named	fname	from	the	Sales_orc	table.	The	fname	column	is	the
nonclustered	column,	but	still	Hive	uses	it	to	sample	the	data.	Take	a	look	at	the	following
screenshot:

The	sixth	example	shows	the	use	of	the	rand()	function	in	sampling.	Until	now,	we	were	using	the
id	column	in	the	query	that	always	gives	the	same	result	set,	which	cannot	be	used	if	you	require
random	data	for	your	business	purposes	such	as	auditing.	For	this	purpose,	you	require	the	rand	()
function,	which	gives	different	results	every	time	you	run	the	query.	The	output	of	the	sixth	query
comes	out	to	be	968	rows,	as	follows:

The	seventh	query	is	the	same	as	the	sixth	query.	The	only	difference	is	that	in	this	query,	the	count
for	the	fifth	bucket	is	determined,	whereas	in	the	sixth	query,	the	count	for	the	fourth	bucket	was
determined.	The	output	of	the	seventh	query	comes	out	to	be	983	rows,	as	follows:

The	eighth	query	is	exactly	the	same	as	the	sixth	query.	It	shows	a	different	count	than	that	of	the	sixth
query.	The	output	of	the	eighth	query	comes	out	to	be	988	rows,	as	follows:

The	ninth	query	is	exactly	same	as	the	seventh	query.	It	shows	a	different	count	than	that	of	the
seventh	query.	The	output	of	the	ninth	query	comes	out	to	be	1015	rows,	as	follows:

The	tenth	example	is	all	about	the	block	sampling.	In	this	example,	10	percent	means	that	Hive	will
read	approximately	10	percent	of	the	blocks.	We	have	the	following	screenshot:

The	eleventh	example	is	similar	to	the	tenth	one,	except	the	difference	of	the	percent	keyword.	The
'%'	symbol	is	used,	which	throws	an	error	as	shown	in	the	following	screenshot:

In	the	twelfth	example,	the	third	sampling	technique,	Length	literal	is	shown.	In	this	example,	a
value	of	10	M	or	more	is	used	in	the	query.	See	the	following	screenshot:

The	thirteenth	example	throws	an	error	as	you	cannot	pass	a	floating	point	number	as	the	input.	The
following	error	is	encountered	if	a	floating	point	number	passes	as	a	parameter:

The	fourteenth	example	samples	the	number	of	rows	on	the	basis	of	rows	provided	as	input.	In	this
type	of	sampling,	the	row	count	provided	by	the	user	is	applied	to	each	input	split:

The	fifteenth	example	samples	the	number	of	rows	on	the	basis	of	the	rows	provided	as	the	input.	In
this	type	of	sampling,	the	row	count	provided	by	the	user	is	applied	to	each	input	split.	This	example
is	similar	to	the	previous	example,	but	the	only	difference	is	that	the	input	in	this	example	is	100
rows	as	compared	with	10	rows	in	the	previous	example:

Chapter	11.	Hive	Security
In	this	chapter,	we	will	cover	the	following	recipes:

Securing	Hadoop
Authorizing	Hive
Configuring	the	SQL	standards-based	authorization
Authenticating	Hive

Security	is	a	major	concern	in	all	big	data	frameworks.	It	is	little	complex	to	implement	security	in
distributed	systems	because	components	of	different	machines	need	to	communicate	with	each	other.	It	is
very	important	to	enable	security	on	the	data.

Securing	Hadoop
In	today's	era	of	big	data,	most	of	the	organizations	are	concentrating	to	use	Hadoop	as	a	centralized	data
store.	Data	size	is	growing	day	by	day,	and	organizations	want	to	derive	some	insights	and	make
decisions	using	the	important	information.	While	everyone	is	focusing	on	collecting	the	data,	but	having
all	the	data	at	a	centralized	place	increases	the	risk	of	data	security.	Securing	the	data	access	of	Hadoop
Distributed	File	System	(HDFS)	is	very	important.	Hadoop	security	means	restricting	the	access	of	data
to	only	authorized	users	and	groups.	Furthermore,	when	we	talk	about	security,	there	are	two	major	things
—Authentication	and	Authorization.

HDFS	supports	a	permission	model	for	files	and	directories	that	is	much	equivalent	to	the	standard
POSIX	model.	Similar	to	UNIX	permissions,	each	file	and	directory	in	HDFS	is	associated	with	an
owner,	group,	and	another	users.	There	are	three	types	of	permissions	in	HDFS—read,	write,	and
execute.

In	contrast	to	the	UNIX	permission	model,	there	is	no	concept	of	executable	files.	Therefore,	in	case	of
files,	the	read	(r)	permission	is	required	to	read	a	file	and	the	write	(w)	permission	is	required	to	write
or	append	to	a	file.	In	case	of	directories,	the	read	(r)	permission	is	required	to	list	the	contents	of
directory,	the	write	(w)	permission	is	required	to	create	or	delete	the	files	or	subdirectories,	and	the
execute	(x)	permission	is	required	to	access	the	child	objects	(files/subdirectories)	of	that	directory.

The	default	HDFS	permission	model

	

As	shown	in	the	previous	image,	by	default,	the	permission	set	for	owner	of	files	or	directories	is	rwx
(7),	which	means	that	the	owner	of	a	file	or	directory	is	having	full	permissions—read,	write,	and
execute.	For	the	members	of	a	group,	the	permission	set	is	r-x.	This	means	that	group	members	can	only
read	and	execute	the	files/directories,	and	they	cannot	write	or	update	anything	in	the	files/directories.
For	other	members,	a	permission	set	is	the	same	as	a	group,	that	is,	other	members	can	only	read	and
execute	the	files/directories,	and	they	cannot	write	or	update	anything	in	the	files/directories.

Although	this	basic	permission	model	is	sufficient	to	handle	a	large	number	of	security	requirements	at	a
block	level,	but	using	this	model,	you	cannot	define	finer	level	security	to	specific	named	users	or	groups.

HDFS	also	has	a	feature	to	configure	an	Access	Control	List	(ACL),	which	can	be	used	to	define	fine-
grained	permissions	at	the	file	level	as	well	as	the	directory	level	for	specific	named	users	or	groups.	For
example,	you	want	to	give	read	access	to	users—John,	Mike,	and	Kate.	Then,	HDFS	ACLs	can	be	used	to
define	such	kind	of	permissions.

HDFS	ACLs	are	designed	on	the	base	concept	of	POSIX	ACLs	of	UNIX	systems.

How	to	do	it…
First	of	all,	you	will	need	to	enable	ACLs	in	Hadoop.	To	enable	ACL	permissions,	configure	the
following	property	in	the	Hadoop	configure	file	hdfs-site.xml	located	at
<HADOOP_HOME>/etc/hadoop/hdfs-site.xml:

<property>

<name>dfs.namenode.acls.enabled</name>

<value>true</value>

</property>

There	are	two	main	commands	that	are	used	to	configure	ACLs:	setfacl	and	getfacl.	The	command
setfacl	is	used	to	set	Finer	Access	Control	Lists	(FACL)	for	files	or	directories,	and	getfacl	is	used
to	retrieve	FACL	for	files	or	directories.

Let's	see	how	to	use	these	commands:

hdfs	dfs	-setfacl	[-R]	[-b	|-k	-m	|-x	<acl_specification>	<path>]	|[--set	

<acl_specification>	<path>]

Same	command	can	be	run	using	hadoop	fs	also.	For	example:

hadoop	fs	-setfacl	[-R]	[-b	|-k	-m	|-x	<acl_specification>	<path>]	|[--set	

<acl_specification>	<path>]

Here:

-R:	This	is	used	to	apply	operation	recursively	for	all	files	and	subdirectories	under	a	directory
-b:	This	is	used	to	remove	all	ACLs	except	the	base	ACLs
-k:	This	is	used	to	remove	the	default	ACLs
-m:	This	is	used	to	modify	ACLs.	Using	this	option,	new	entries	are	added	to	the	existing	set	of
ACLs
-x:	This	is	used	to	remove	specific	ACLs
acl_specification:	It	is	comma-separated	list	of	ACLs
path:	This	is	the	path	of	file	or	directory	for	which	ACL	has	to	be	applied
--set:	This	is	used	to	set	new	ACLs.	It	removes	all	existing	ACLs	and	set	the	new	ACLs	only

Now,	let's	see	other	command	that	is	used	to	retrieve	the	ACLs:

hdfs	dfs	-getfacl	[-R]	<path>

This	command	can	also	be	run	using	hadoop	fs.	For	example:

hadoop	fs	-getfacl	[-R]	<path>

Here:

-R:	This	is	used	to	retrieve	ACLs	recursively	for	all	files	and	subdirectories	under	a	directory
path:	This	is	the	path	of	file/directory	of	which	ACL	is	to	be	retrieved

The	command	getfacl	will	list	all	default	ACLs	as	well	as	new	ACLs	defined	for	specified
files/directories.

How	it	works…
If	ACLs	are	defined	for	a	file	or	directory,	then	while	accessing	that	file/directory,	access	is	validated	as
the	following	algorithm:

If	the	user	name	is	the	same	as	the	owner	name	of	a	file,	then	owner	permissions	are	enforced
If	the	user	name	matches	with	one	of	the	named	user	ACL	entry,	then	those	permissions	are	enforced
If	a	user's	group	name	matches	with	one	of	the	named	group	ACL	entry,	then	those	permissions	are
enforced
In	case,	multiple	ACLs	entries	are	found	for	a	user,	then	union	of	all	those	permissions	are	enforced
If	no	ACL	entry	is	found	for	a	user,	then	other	permissions	are	enforced

Let's	assume	that	we	have	a	file	named	stock-data	containing	stock	market	data.

To	retrieve	all	ACLs	of	this	file,	run	the	following	command:

$	hadoop	fs	-getfacl	/stock-data

	

Because	we	have	not	defined	any	custom	ACL	for	this	file	as	shown	in	the	previous	image,	the	command
will	return	ACLs	for	this	file.

You	can	check	the	permissions	of	a	file	or	a	directory	using	the	ls	command	also.	As	shown	in	the
previous	image,	the	permission	set	for	the	stock-data	file	is	-rw-r-r,	which	means	read	and	write	access
for	an	owner	as	well	as	read	access	for	group	members	and	others.

Giving	read	and	write	access	to	user	mike

In	the	following	command	we	are	giving	read	and	write	access	to	user	mike:

$	hadoop	fs	-setfacl	-m	user:mike:rw-	/stock-data

	

As	shown	in	the	previous	image,	first,	we	defined	the	ACLs	for	the	user	mike	mike	using	the	setfacl
command,	then	we	retrieved	the	ACLs	using	the	getfacl	command.

The	output	of	the	getfacl	command	will	list	out	all	default	permissions	as	well	as	all	ACLs.	Because	we
defined	ACLs	for	the	user	mike,	so	in	output,	there	is	an	extra	row	user:mike:rw-.

There	is	an	extra	row	in	the	output	mask::rw-,	which	defines	the	special	mask	ACLs	entry.	Mask	is	a
special	type	of	ACLs,	which	filter	out	the	access	for	all	named	users,	all	named	groups	as	well	as	all
unnamed	groups.	If	you	have	not	defined	mask	ACL,	then	its	value	is	calculated	using	the	union	of	all
permissions.

In	addition	to	this,	the	output	of	the	ls	command	is	also	changed	after	defining	ACLs.	There	is	an	extra
plus	(+)	sign	in	the	permissions	list	that	indicates	that	there	are	additional	ACLs	defined	for	this	file	or
directory.

Revoking	the	access	of	the	user	mike

To	remove	a	specific	ACL	-x	option	is	used	with	the	setfacl	command.

$	hadoop	fs	-setfacl	-x	user:mike	/stock-data

	

In	the	previous	screenshot	after	revoking	the	access	of	the	user	mike,	ACLs	are	updated	and	there	is	no
entry	for	the	mike	user	now.

See	also
You	can	read	more	about	the	permission	model	in	Hadoop	at
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html.

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html

Authorizing	Hive
Hive	authorization	is	about	verifying	that	a	user	is	authorized	to	perform	a	particular	action.
Authentication	is	about	verifying	the	identity	of	a	user,	which	is	different	from	the	authorization	concept.

Hive	can	be	used	in	the	following	different	ways:

HCatalog	API:	Hive's	HCatalog	API	is	used	to	access	Hive	by	many	other	frameworks,	such	as
Apache	Pig,	MapReduce,	Facebook	Presto,	Spark	SQL,	and	Cloudera	Impala.	Using	Hcatalog	API,
the	users	have	direct	access	to	HDFS	data	and	Hive	metadata.	Hive	metadata	is	directly	accessible
using	the	metastore	server	API.
Hive	Command	Line	Interface	(CLI):	Using	Hive	CLI	also,	users	have	direct	access	to	HDFS	data
and	Hive	metadata.	Hive	CLI	directly	interacts	with	the	Hive	metastore	server.	Currently,	Hive	CLI
don't	support	rich	authorization.	In	next	versions	of	Hive,	Hive	CLI's	implementation	will	be
changed	to	provide	better	security,	and	also	Hive	CLI	will	interact	with	HiveSerer2	rather	than
directly	interacting	with	the	metastore	server.
ODBC/JDBC	and	other	HiveServer2	clients	such	as	Beeline:	These	clients	don't	have	direct
access	to	HDFS	data	and	metadata.	All	access	is	done	through	HiveServer2.	For	security	purpose,
this	is	the	best	way	to	access	Hive.

How	to	do	it…
There	are	various	ways	of	authorization	in	Hive.

Default	authorization–legacy	mode

The	legacy	authorization	mode	was	available	in	earlier	versions	of	Hive.	This	authorization	scheme
prevents	the	users	from	doing	some	unwanted	actions.	This	scheme	doesn't	prevent	malicious	users	from
doing	activities.

It	manages	the	access	control	using	grant	and	revoke	statements.	This	mode	supports	Hive	CLI.	In	case
of	Hive	CLI,	users	have	direct	access	to	HDFS	files	and	directories	so	they	can	easily	break	the	security
checks.	Also,	in	this	model,	to	grant	privileges,	the	permissions	needed	for	a	user	are	not	defined,	which
means	that	any	user	can	grant	the	access	to	themselves,	so	it	is	not	secure	to	use	this	model.

Storage-based	authorization

As	a	storage	perspective,	both	HDFS	data	as	well	as	Hive	metadata	must	be	accessed	only	to	authorized
users.	If	users	use	HCatalog	API	or	Hive	CLI,	then	they	have	direct	access	to	data.	To	protect	the	data,
HDFS	ACLs	are	being	enabled.	In	this	mode,	HDFS	permissions	work	as	a	single	source	of	truth	to
protect	data.

Generally	in	Hive	metastore,	database	credentials	are	configured	in	the	Hive	configuration	file	hive-
site.xml.	Malicious	users	can	easily	read	the	metastore	credentials	and	then	could	cause	serious	damage
to	data	as	well	as	metadata,	so	the	Hive	metastore	server	also	be	secured.

In	this	authorization,	you	can	also	enable	security	at	a	metastore	level.	After	enabling	metastore	security,
it	will	restrict	the	access	on	metadata	objects	by	verifying	that	the	users	have	respective	system
permissions	corresponding	to	different	files	and	directories	of	metadata	objects.

To	configure	storage-based	authorization,	set	the	following	properties	in	the	hive-site.xml	file:

Property Value

hive.metastore.pre.event.listeners org.apache.hadoop.hive.ql.security.authorization.AuthorizationPreEventListener

hive.security.metastore.authorization.manager org.apache.hadoop.hive.ql.security.authorization.StorageBasedAuthorizationProvider

hive.security.metastore.authenticator.manager org.apache.hadoop.hive.ql.security.HadoopDefaultMetastoreAuthenticator

hive.security.metastore.authorization.auth.reads true

After	setting	all	these	configuration,	the	Hive	configuration	file	hive-site.xml	will	look	as	follows:

<configuration>

		<property>

				<name>hive.metastore.pre.event.listeners</name>

				

<value>org.apache.hadoop.hive.ql.security.authorization.AuthorizationPreEventListen

er</value>

		</property>

		<property>

				<name>hive.security.metastore.authorization.manager</name>

				

<value>org.apache.hadoop.hive.ql.security.authorization.StorageBasedAuthorizationPr

ovider</value>

		</property>

		<property>

				<name>hive.security.metastore.authenticator.manager</name>

				

<value>org.apache.hadoop.hive.ql.security.HadoopDefaultMetastoreAuthenticator</valu

e>

		</property>

		<property>

				<name>hive.security.metastore.authorization.auth.reads</name>

				<value>true</value>

		</property>

</configuration>

hive.metastore.pre.event.listeners:	This	property	is	used	to	define	pre-event	listener	class
which	is	loaded	on	metastore	side.	APIs	of	this	class	are	executed	before	occurring	of	any	event	like
creating	a	database/table/partition,	altering	a	database/table/partition	or	dropping	a
database/table/partition	and	so	on.	Configuring	this	property	turns	on	security	at	metastore	level.

Set	the	value	of	this	property	to
org.apache.hadoop.hive.ql.security.authorization.AuthorizationPreEventListener.
hive.security.metastore.authorization.manager:	This	property	is	used	to	define	the
authorization	provider	class	for	metastore	security.	The	default	value	of	this	property	is
DefaultHiveMetastoreAuthorizationProvider,	which	provides	default	legacy	authorization
described	earlier.	To	enable	storage-based	authorization	based	on	Hadoop,	ACLs	set	the	value	of
this	property	to
org.apache.hadoop.hive.ql.security.authorization.StorageBasedAuthorizationProvider

You	can	also	write	your	own	custom	class	to	manage	authorization	and	configure	this	property	to
enable	custom	authorization	manager.	The	custom	authorization	manager	class	must	implement	an
interface
org.apache.hadoop.hive.ql.security.authorization.HiveMetastoreAuthorizationProvider

hive.security.metastore.authenticator.manager:	This	property	is	used	to	define	the
authentication	manager	class.	Set	the	value	of	this	property	to
org.apache.hadoop.hive.ql.security.HadoopDefaultMetastoreAuthenticator.

You	can	also	write	your	custom	class	to	manage	authentication	and	configure	to	this	property.	A
custom	authentication	manager	class	must	implement	an	interface
org.apache.hadoop.hive.ql.security.HiveAuthenticationProvider.
hive.security.metastore.authorization.auth.reads:	This	property	is	used	to	define
whether	metastore	authorization	should	check	for	read	access	or	not.	The	default	value	of	this
property	is	true.

SQL	standards-based	authorization

SQL	standards-based	authorization	is	the	third	way	of	authorizing	Hive.	Although	previous	methodology
storage-based	authorization	also	provides	access	control	at	level	of	partitions,	tables,	and	databases,	but
that	methodology	does	not	provide	access	control	at	more	granular	level	such	as	columns	and	rows.	This
is	because	storage-based	authorization	depends	on	the	access	control	provided	by	HDFS	using	ACL	that
controls	the	access	on	the	level	of	files	and	directories.

SQL	Standards-based	authorization	can	be	used	to	enforce	fine-grained	security.	It	is	recommended	to	use
as	it	is	fully	SQL-compliant	in	its	authorization	model.

There's	more
There	are	many	things	that	you	can	do	with	SQL-standards	based	authorization.	Refer	to	the	next	recipe
Configuring	the	SQL	standards	based	authorization	for	more	details.

Configuring	the	SQL	standards-based
authorization
SQL	standards-based	authorization	is	the	best	way	of	authorizing	Hive.	This	approach	is	widely	used	to
restrict	the	access	of	data	to	only	authorized	users	so	that	no	malicious	user	can	destroy	anything	by
accessing	the	data.	This	authorization	model	is	fully	compliant	with	SQL	authorization	model.	The	grant
and	revoke	statements	are	used	to	provide	or	remove	the	access	to	particular	resources	to	users.

In	order	to	implement	the	security	using	this	model,	all	the	queries	must	be	served	through	HiveServer2
only.	To	interact	with	HiveServer2,	any	HiveServer2	clients	(described	in	the	Using	HiveServer2	clients
recipe	of	Chapter	2,	Services	in	Hive)	can	be	used.	Beeline	is	a	client	that	is	commonly	used	to	interact
with	HiveServer2	in	place	of	HiveCLI.	For	a	highly	secure	environment,	it	is	very	important	to	restrict
the	direct	access	of	users	to	HDFS	commands,	Hive	CLI,	and	Pig	commands.

There	are	five	primary	types	of	privileges:

Privilege	Name Description

SELECT It	is	used	to	give	read/select	access	on	a	Hive	resource

INSERT It	is	used	to	give	write/insert	access	on	the	Hive	resource	so	that	the	user	can	add	the	data	to	a	Hive	table

UPDATE It	is	used	to	give	update	access	on	the	Hive	resource	so	that	the	user	can	run	update	queries	on	data

DELETE It	is	used	to	give	delete	access	on	the	Hive	resource	so	that	the	user	can	delete	the	data	from	the	Hive	table

ALL It	is	used	to	give	all	privileges:	select,	insert,	update,	and	delete

Note

All	the	previously	mentioned	privileges	can	be	granted	or	revoked	on	Hive	tables	and	views.	These
privileges	don't	work	on	the	database	level.

There	are	two	types	of	entities	to	which	privileges	can	be	granted	or	revoked—user	and	role:

A	role	is	logical	grouping	of	multiple	users
One	user	could	be	associated	with	more	than	one	roles
User	names	are	case-sensitive	in	Hive,	but	role	names	are	not	case-sensitive

In	Hive,	privileges	can	be	granted	to	users	as	well	as	roles.	Granting	of	privileges	to	roles	is	widely	used
in	organization	because	it	is	very	easy	to	manage	authorization	at	role	level	rather	than	individual	users.	If
you	grant	a	privilege	to	a	role,	then	the	privilege	is	applied	to	all	users	associated	with	that	role.

There	are	two	special	roles	in	Hive:	one	is	public,	and	another	is	admin.

By	default,	all	users	belong	to	the	public	role.	This	role	is	used	when	you	want	to	give	or	remove
permission	on	a	table	or	view	at	a	global	level	(all	users).

An	admin	role	is	used	for	all	users	who	would	be	acting	as	administrators.	Users	of	the	admin	role	will
have	all	type	of	access	to	all	Hive	objects	such	as	tables	or	views.	In	addition	to	this,	the	new	role
creation	or	deletion	of	existing	role	can	be	performed	only	by	users	having	the	admin	role.	The	users	who
belong	to	the	admin	role,	need	to	run	the	set	role	command	to	get	admin	privileges.

Getting	Started
Before	Configuring	the	SQL	standards-based	authorization,	first,	you	will	have	to	configure	this
authorization	mode	in	Hive.

Set	the	following	configuration	parameters	in	the	Hive	server	configuration	file	located	at
$HIVE_HOME/conf/hiveserver2-site.xml:

Property Value

hive.server2.enable.doAs True

hive.users.in.admin.role <list	of	users	to	be	admin>

hive.security.metastore.authorization.manager org.apache.hadoop.hive.ql.security.authorization.MetaStoreAuthzAPIAuthorizerEmbedOnly

hive.security.authorization.enabled True

hive.security.authorization.manager org.apache.hadoop.hive.ql.security.authorization.plugin.sqlstd.SQLStdHiveAuthorizerFactory

hive.security.authenticator.manager org.apache.hadoop.hive.ql.security.SessionStateUserAuthenticator

hive.metastore.uris

hive.server2.enable.doAs:	This	property	is	used	to	define	whether	a	query	should	be	run	as	an
end	user	or	not.	If	value	of	this	is	set	to	true,	then	the	query	is	run	as	the	user	who	executes	the
query.	If	value	of	this	property	is	set	to	false,	then	all	queries	are	run	as	user	who	started	the
HiveServer2	process.	The	default	value	of	this	property	is	true.
hive.users.in.admin.role:	This	property	is	used	to	define	some	of	users	as	administrators.
Value	of	this	property	is	the	comma-separated	list	of	users	who	need	to	be	added	to	the	admin	role.

By	default,	the	admin	role	is	not	in	current	roles	of	any	user	so	users	defined	in	this	list	will	have	to
run	the	set	role	command	to	get	the	privileges	of	the	admin	role.
hive.security.metastore.authorization.manager:	This	property	is	used	to	deny	calls	to
authorization	APIS	by	Hive	CLI	or	another	remote	metastore	user.	Set	the	value	of	this	property	to
org.apache.hadoop.hive.ql.security.authorization.MetaStoreAuthzAPIAuthorizerEmbedOnly

hive.security.authorization.enabled:	This	property	is	used	to	define	whether	authorization	is
to	be	enabled	or	not.
hive.security.authorization.manager:	This	property	is	used	to	define	a	class	that	will	be
used	to	manage	authorization.	Set	the	value	of	this	property	to
org.apache.hadoop.hive.ql.security.authorization.plugin.sqlstd.SQLStdHiveAuthorizerFactory

hive.security.authenticator.manager:	This	property	is	used	to	define	a	class	that	will	be
used	to	manage	authentication.	Set	the	value	of	this	property	to
org.apache.hadoop.hive.ql.security.SessionStateUserAuthenticator.
hive.metastore.uris:	This	property	is	used	to	define	a	comma-separated	list	of	metastore	URIs.

As	described	earlier	in	SQL	standards-based	authorization,	it	is	required	that	all	queries	should	be
served	through	HiveServer2,	so	direct	access	of	metastore	has	to	be	disabled.	To	disable	the	direct
access	of	metastore	from	any	remote	client,	set	the	value	of	this	property	to	blank	('').

Tip

These	configurations	can	also	be	defined	in	hive-site.xml,	but	it	is	recommended	to	specify	the
previous	configuration	in	the	hiveserver2-site.xml	configuration	file.

HiveServer2	reads	both	configuration	files	hive-site.xml	as	well	as	hiveserver2-site.xml.	If	there
is	any	property	defined	in	both	configuration	files,	then	HiveServer2	gives	property	defined	in	the
hiveserver2-site.xml	configuration	file.

After	configuring	all	the	earlier-mentioned	properties,	the	hiveserver2-site.xml	file	will	look	as
follows:

<configuration>

		<property>

				<name>hive.server2.enable.doAs</name>

				<value>true</value>

		</property>

		<property>

				<name>hive.users.in.admin.role</name>

				<value>root</value>

		</property>

		<property>

					<name>hive.security.metastore.authorization.manager</name>

				

<value>org.apache.hadoop.hive.ql.security.authorization.MetaStoreAuthzAPIAuthorizer

EmbedOnly</value>

		</property>

		<property>

				<name>hive.security.authorization.enabled</name>

				<value>true</value>

		</property>

		<property>

				<name>hive.security.authorization.manager</name>

<value>org.apache.hadoop.hive.ql.security.authorization.plugin.sqlstd.SQLStdHiveAut

horizerFactory</value>

		</property>

		<property>

				<name>hive.security.authenticator.manager</name>

<value>org.apache.hadoop.hive.ql.security.SessionStateUserAuthenticator</value>

		</property>

		<property>

				<name>hive.metastore.uris</name>

				<value></value>

		</property>

</configuration>

Now	if	your	Hive	services	are	already	running,	then	restart	metastore	and	HiveServer2	processes
otherwise	start	metastore	and	HiveServer2	processes	using	the	following	commands:

$HIVE_HOME/	bin/hive	--service	metastore	&

$HIVE_HOME/	bin/hive	--service	hiveserver2	&

Run	the	jps	command	to	verify	that	both	services	are	running:

$	jps

	

How	to	do	it…
Once	this	authorization	mode	is	configured	properly,	then	you	can	use	it	to	allow	or	restrict	the	access
on	Hive	tables	or	views	to	particular	users.	There	are	different	actions	that	can	be	done	as	a	part	of
authorization	process	using	the	commands	as	mentioned	in	the	following	sections.

To	list	out	all	existing	roles

This	command	can	be	run	only	by	the	users	of	the	admin	role.	It	will	give	list	of	all	existing	roles.

SHOW	ROLES;

creating	a	role

This	command	can	be	run	only	by	the	users	of	the	admin	role.	The	following	command	can	be	used	to
create	a	new	role:

CREATE	ROLE	rolename;

Deleting	a	role

This	command	also	can	be	run	only	by	the	users	of	an	admin	role.	The	following	command	can	be	used	to
drop	an	existing	role:

DROP	ROLE	rolename;

Showing	list	of	current	roles

This	command	can	be	run	by	any	user	to	see	his/her	all	current	roles.	By	default,	the	output	of	this
command	doesn't	list	the	admin	role	even	if	the	user	belongs	to	the	admin	role	because	the	admin	user
will	have	to	run	the	set	role	command	to	get	admin	privileges:

SHOW	CURRENT	ROLES;

Setting	a	role

If	a	user	is	having	multiple	roles,	then	using	following	command,	the	specified	role	will	become	the
current	role	of	a	user:

SET	ROLE	rolename;

The	following	command	will	refresh	the	list	of	current	roles	of	a	user	and	will	set	a	default	list	as	current
roles:

SET	ROLE	ALL;

The	following	command	will	remove	all	current	roles	of	a	user.

DROP	ROLE	ALL;

Granting	a	role
GRANT	rolename1	[,	rolename2,	...]	TO	principal_spec1	[,principal_spec2,	.	.	.][

WITH	ADMIN	OPTION];

Here,	principal_spec	is	either	a	username	or	a	rolename.

This	command	can	be	used	to	assign	one	or	more	roles	to	specified	list	of	users	or	roles.	If	you	specify
the	WITH	ADMIN	OPTION	in	command,	then	a	user	or	a	role	will	get	admin	privileges	so	they	can	further
grant	the	roles	to	others.

Revoking	a	role
REVOKE	[ADMIN	OPTION	FOR]	rolename1	[,	rolename2,	...]	FROM	principal_spec1	

[,principal_spec2,	.	.	.];

Here,	principal_spec	is	either	a	username	or	a	rolename.

This	command	can	be	used	to	remove	one	or	more	roles	from	the	specified	list	of	users	or	roles.	If	you
specify	the	ADMIN	OPTION	FOR	in	command,	then	admin	rights	of	user	or	role	will	also	be	removed.

Checking	roles	of	a	user/role
SHOW	ROLE	GRANT	USER|ROLE	name;

This	command	can	be	used	to	list	out	the	roles	that	have	been	granted	to	a	specified	user	or	a	role.

Checking	principles	of	a	role
SHOW	PRINCIPALS	rolename;

This	command	can	be	run	only	by	the	users	of	an	admin	role.	This	command	is	used	to	list	all	roles	or
users	who	are	associated	with	the	specified	role.

Granting	privileges
GRANT	privilege_type	[,	privilege_type,	...]	ON	table_or_view_name	TO	

principal_spec	[,	principal_spec,	...][WITH	GRANT	OPTION];

Here,	principal_spec	is	either	a	username	or	a	rolename.

This	command	is	used	to	give	privileges	to	users	or	roles.	If	you	specify	the	WITH	GRANT	OPTION	in
command,	then	specified	users	or	roles	can	further	grant	or	revoke	the	privileges	to	other	users	or	roles.

Revoking	privileges
REVOKE	[GRANT	OPTION	FOR]	privilege_type	[,	privilege_type,	...]	ON	

table_or_view_name	FROM	principal_spec	[,	principal_spec,	...];

Here,	principal_spec	is	either	a	username	or	a	rolename.

This	command	is	used	to	remove	privileges	from	users	or	roles.

Checking	privileges	of	a	user	or	role
SHOW	GRANT	USER|ROLE	name	ON	ALL|table_or_view_name

This	command	can	be	used	to	see	all	privileges	of	a	user	or	role	on	the	specified	table	or	view.

See	also
You	can	read	more	about	this	authorization	mode	at
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization.

https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization

Authenticating	Hive
Authentication	is	a	process	of	verifying	the	identity	of	a	user.	There	are	different	ways	of	authentication
for	different	Hive	clients.	Hive	CLI	is	currently	not	recommended	to	use	as	it	is	not	safer	for	data	security
purposes,	but	still	you	can	enable	Kerberos	authentication	in	Hive.

HiveServer2	is	a	server	interface	that	is	used	to	run	queries	against	Hive	and	retrieve	the	result.	It	is
recommended	to	always	use	HiveServer2.	Most	of	the	organizations	are	widely	using	HiveServer2	with
its	various	security	features.

How	to	do	it…
HiveServer2	supports	the	following	authentication	options:

Anonymous	with	SASL
Anonymous	without	SASL
Kerberos	(GSSAPI)
LDAP
PAM
Custom

Authentication	can	be	configured	using	the	property	hive.server2.authentication.	This	property
defines	the	authentication	mode	to	be	used	for	HiveServer2.	The	default	value	of	this	property	is	NONE	so
no	authentication	is	enabled,	and	it	uses	plain	Simple	Authentication	and	Security	Layer	(SASL).

Anonymous	with	SASL	(default	no	authentication)

This	is	the	default	mode	of	HiveServer2	in	which	no	authentication	is	enabled.	If	you	want	to	explicitly
specify	this	mode,	then	you	can	configure	authentication	property	in	the	Hive	configuration	file	as:

<property>

		<name>hive.server2.authentication</name>

		<value>NONE</value>

</property>

Anonymous	without	SASL

Authentication	without	SASL	can	be	configured	by	setting	the	following	property	in	the	Hive
configuration	file:

<property>

		<name>hive.server2.authentication</name>

		<value>NOSASL</value>

</property>

Kerberos

In	HiveServer2,	you	can	also	configure	Kerberos	authentication,	which	works	on	basis	of	tickets	to	allow
communication	between	different	nodes	on	nonsecure	network	to	verify	the	identity	to	one	another	in	the
secure	manner.

The	Kerberos	authentication	mode	supports	authentication	between	the	thrift	client	and	HiveServer2,	and
between	HiveServer2	and	secure	Hadoop	Distributed	File	System.

In	the	Kerberos	authentication	mode,	HiveServer2	acquires	a	valid	ticket	for	authentication	during	startup
process.	While	configuring	Kerberos	authentication,	you	need	to	mention	principal	details	of	Kerberos
server	and	a	keytab	file	detail	in	the	Hive	configuration	file.

Kerberos	authentication	can	be	configured	by	setting	the	following	properties	in	the	Hive	configuration
file	hive-site.xml:

<property>

		<name>hive.server2.authentication</name>

		<value>KERBEROS</value>

</property>

<property>

		<name>hive.server2.authentication.kerberos.principal</name>

		<value>	<<Kerberos	principle	for	HiveServer2>>	</value>

</property>

<property>

		<name>hive.server2.authentication.kerberos.keytab</name>

		<value>	<<Keytab	for	server	principal>>	</value>

</property>

All	client	applications	will	need	a	valid	Kerberos	ticket	to	make	connection	with	HiveServer2.	If	client
is	not	having	a	valid	ticket,	then	connection	with	HiveServer2	will	be	failed.

Configuring	the	JDBC	client	for	Kerberos	authentication

If	Kerberos	authentication	is	enabled,	then	the	JDBC	client	must	specify	the	principal	name	in	connection
string	to	make	connection	with	HiveServer2.	Clients	will	need	valid	Kerberos	ticket	to	make	connection
with	HiveServer2.

The	URL	format	for	connection	string	is	jdbc:hive2://<hostname>:
<port>/<database>;principal=<Kerberos_Server_Principal_of_HiveServer2>.

Note

If	you	don't	specify	the	backslash	character	(/)	after	a	port	number,	then	JDBC	driver	doesn't	consider	the
host	name	and	run	HiveServer2	in	the	embedded	mode.	It's	mandatory	to	specify	the	backslash	character
(/)	after	a	port	number	if	you	are	specifying	the	host	name.

Consider	the	following	example:
jdbc:hive2://hiveserver_hostname:10000/default;principal=hive/hiveserver_hostname@YOUR-

REALM.COM.

Here,	hiveserver_hostname	is	the	host	where	HiveServer2	is	running.

Access	Hive	using	the	Beeline	client
[centos_user@host	~]	$HIVE_HOME/bin/beeline

beeline>	!connect	jdbc:hive2://hiveserver_hostname:10000/default;principal=hive/	

hiveserver_hostname@YOUR-REALM.COM	org.apache.hive.jdbc.HiveDriver

Access	Hive	using	the	Hive	JDBC	client	in	Java
String	url	=	"	jdbc:hive2://hiveserver_hostname:10000/default;principal=hive/	

hiveserver_hostname@YOUR-REALM.COM"

Connection	con	=	DriverManager.getConnection(url);

LDAP

HiveServer2	can	also	be	configured	to	provide	authentication	with	the	users	and	groups	of	the	Active
Directory	and	OpenLDAP.

Lightweight	Directory	Access	Protocol	(LDAP)	is	like	an	Active	Directory,	which	is	used	to	maintain
contact	information	and	other	important	details.	Most	of	the	organizations	use	LDAP	to	maintain	users'
details,	groups'	detail,	and	different	permission	set	for	users	or	groups.	When	HiveServer2	is	configured
with	LDAP	authentication	mode,	then	authenticity	of	a	user	is	validated	using	the	user	and	password
details	stored	in	LDAP.	While	making	connection	with	Hive,	a	client	sends	username	and	password	that	is
validated	using	an	external	LDAP	service.

Authentication	with	OpenLDAP	or	Active	Directory	can	be	configured	by	setting	the	following	properties
in	the	Hive	configuration	file	hive-site.xml:

<property>

		<name>hive.server2.authentication</name>

		<value>LDAP</value>

</property>

<property>

		<name>hive.server2.authentication.ldap.url</name>

		<value>LDAP_URL</value>

</property>

<property>

		<name>hive.server2.authentication.ldap.baseDN</name>

		<value>LDAP_BaseDN</value>

</property>

<property>

		<name>hive.server2.authentication.ldap.Domain</name>

		<value>LDAP_Domain</value>

</property>

hive.server2.authentication.ldap.url:	Is	the	connection	URL	of	LDAP.	If	multiple	LDAP
servers	are	used	for	High	Availability	purpose,	then	comma-separated	URLs	can	be	specified	as	a
value	of	this	property.	In	case	of	the	comma-separated	list	of	URLs,	HiveServer2	will	try	to	make
the	connection	with	the	first	LDAP	server.	If	the	first	server	is	not	available,	then	it	will	try	to	make
connection	with	the	second	server,	and	so	on.
hive.server2.authentication.ldap.baseDN:	is	the	value	of	the	base	Distinguished	Name
(DN)	of	LDAP	server.	In	case	of	an	Active	Directory,	this	property	is	not	defined.
hive.server2.authentication.ldap.Domain:	Is	the	value	of	domain	details	of	the	LDAP	server.

While	accessing	Hive	using	the	JDBC	client,	the	username	and	password	are	required	to	mention	in	a
connection	string.	URL	Format	for	connection	string	is:

jdbc:hive2://<HOSTNAME>:<PORT>/<DATABASE>;user=<USER_NAME>;password=<PASSWORD>

Pluggable	Authentication	Modules

Pluggable	Authentication	Modules	(PAM)	allow	to	add	any	existing	authentication	mechanism	to	Hive.
In	this	mode,	underlying	modules	take	care	of	entire	authentication	process	such	as	users	or	groups
management,	password	validation,	and	session	management.

There	might	be	some	cases	where	organizations	don't	use	Kerberos	authentication	or	LDAP	authentication
due	to	integration	complexity	with	the	third-party	software.	A	quick	solution	in	these	cases	is	to	use	PAM
authentication,	which	allows	you	to	enable	authentication	using	system	operating	system's	user	and
password	credentials.

PAM	is	also	a	standard	mechanism	on	most	of	the	UNIX/LINUX	distributions.

Follow	these	steps	to	configure	PAM	authentication:

1.	 Download	the	Java	Pluggable	Authentication	Modules	(JPAM)	native	library	from
http://sourceforge.net/projects/jpam/files/jpam/jpam-1.1/.

2.	 Extract	the	JPAM	tar	file	on	machine	where	HiveServer2	is	running:

$	tar	-xzvf	JPam-Linux_i386-1.1.tgz

3.	 An	extracted	directory	will	contain	a	JPAM	library	file	libjpam.so,	which	must	be	in	library	path
of	Hive.	So,	add	the	extracted	directory	to	environment	variable	LD_LIBRARY_PATH:

export	LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<path	to	libjmap-directory>

4.	 The	*NIX	files	'/etc/shadow'and	'/etc/login.defs'	files	should	be	readable	by	user
running	the	HiveServer2	process:

$	sudo	chmod	555	/etc/shadow

$	sudo	chmod	555	/etc/login.defs

5.	 Now	set	the	following	configurations	in	the	Hive	configuration	file	hive-site.xml:

<property>

		<name>hive.server2.authentication</name>

		<value>PAM</value>

</property>

<property>

		<name>hive.server2.authentication.pam.services</name>

		<value>COMMA	SEPARATED	LIST	OF	PAM	SERVICES</value>

</property>

The	property	hive.server2.authentication.pam.services	defines	the	comma-separated	list	of
PAM	services	to	be	used.	Files	with	the	same	name	as	PAM	services	must	exist	in	the	directory
/etc/pam.d/.

Note

If	you	want	to	use	system	credentials	(user	name	and	password	details)	as	authentication	mechanism	to
make	Hive	connection,	then	you	can	define	the	value	of
hive.server2.authentication.pam.services	to	login,	sshd.

Restart	HiveServer2	and	verify	the	authentication	using	the	beeline	client.

Custom

This	mode	is	used	to	apply	a	custom	authentication	mechanism	while	making	connection	to	HiveServer2.
You	can	write	a	custom	class	for	the	own	authentication	mechanism	that	must	implements	the
org.apache.hive.service.auth.PasswdAuthenticationProvider	interface.

To	use	custom	mode,	set	the	following	configurations	in	the	Hive	configuration	file	hive-site.xml:

http://sourceforge.net/projects/jpam/files/jpam/jpam-1.1/

<property>

		<name>hive.server2.authentication</name>

		<value>CUSTOM</value>

</property>

<property>

		<name>hive.server2.custom.authentication.class</name>

		<value>CLASS_NAME</value>

</property>

Here,	hive.server2.custom.authentication.class	will	define	the	class	name	to	be	used	to	the
authentication	mechanism.

This	is	how	you	can	enable	different	modes	of	authentications	using	these	mechanisms.	Authentication
using	Kerberos	and	LDAP	is	the	preferred	mechanism	in	most	of	the	organizations.

Chapter	12.	Hive	Integration	with	Other
Frameworks
In	this	chapter,	you	will	learn	the	following	topics:

Working	with	Apache	Spark
Working	with	Accumulo
Working	with	HBase
Working	with	Google	Drill

Working	with	Apache	Spark
In	this	recipe,	you	will	learn	how	to	integrate	Hive	with	Apache	Spark.	Apache	Spark	is	an	open	source
cluster	computing	framework.	It	is	used	as	a	replacement	of	the	MapReduce	framework.

Getting	ready
In	this	topic,	we	will	cover	the	use	of	Hive	and	Apache	Spark.	You	must	have	Apache	Spark	installed	on
your	system	before	going	further	in	the	topic.

1.	 Once	the	Spark	is	installed,	start	the	Spark	master	server	by	executing	the	following	command:

./sbin/start-master.sh

2.	 Check	whether	the	Spark	master	server	has	been	started	or	not	by	issuing	the	URL	mentioned	later	on
the	web	browser:

http://<ip_address>:<port_number>

3.	 The	exact	URL	is	present	at	the	following	path:

/spark-1.6.0-bin-hadoop2.6/logs/spark-hadoop-

org.apache.spark.deploy.master.Master-1-node1.out

4.	 The	following	screenshot	shows	the	result	of	the	URL:

5.	 Once	the	master	server	is	started,	start	the	slave	service	by	executing	the	following	command:

./sbin/start-slave.sh	<master-spark-URL>

6.	 Refresh	the	URL	and	find	the	following	changes	in	the	page:

7.	 You	will	see	the	Worker	Id	under	the	worker's	column	with	the	status	as	ALIVE.	Once	the	master
and	slave	are	started,	set	environment	variable	for	Spark	home:

export	SPARK_HOME=<location	of	Spark	installation>

8.	 After	the	earlier	command	is	executed,	log	in	to	the	Hive	shell.	You	will	find	Spark	libraries	being
added	to	Hive	path:

9.	 Set	the	Hive	execution	engine	to	Spark.	This	is	achieved	by	issuing	the	following	command	on	the
Hive	shell:

hive>	set	hive.execution.engine=spark;

10.	 Now	configure	the	Spark	application	configuration	for	Hive.	Execute	the	following	commands	on	the
Hive	shell:

hive>	set	spark.master=<Spark	Master	URL>

hive>	set	spark.eventLog.enabled=true;

hive>	set	spark.eventLog.dir=<Spark	event	log	folder	(must	exist)>

hive>	set	spark.executor.memory=512m;

hive>	set	spark.serializer=org.apache.spark.serializer.KryoSerializer;

How	to	do	it…
Follow	these	steps	to	access	Hive	table	on	the	Spark	engine:

SELECT	*	FROM	Sales;

How	it	works…
The	SELECT	statement	in	the	previous	section	is	the	same	as	shown	in	the	earlier	chapters	of	this	book.
The	only	difference	this	time	around	is	that	it	will	be	executed	on	the	Spark	engine	instead	of	the	Hadoop
MapReduce	engine.	The	following	screenshot	shows	the	output:

Working	with	Accumulo
In	this	recipe,	you	will	learn	how	to	integrate	Hive	with	Apache	Accumulo.

Apache	Accumulo	is	a	sparse,	distributed,	sorted,	and	multidimensional	map	of	key-value	pairs.	It	is
modeled	after	Google's	Bigtable	design.	It's	a	key-value	store	and	handles	structured,	semi-structured,	and
unstructured	data.	Also,	it	is	extremely	fast	in	accessing	data	to	and	fro	tables	containing	large	volumes	of
data.

Getting	ready
In	this	topic,	we	will	cover	the	use	of	Hive	and	Accumulo.	You	must	have	Apache	Accumulo	installed	on
your	system	before	going	further	in	the	topic.

For	Apache	integration	with	Hive,	there	are	two	main	components	as	follows:

AccumuloStorageHandler:	The	main	job	of	this	class	is	to	map	the	Hive	table	to	the	Accumulo
tables.	Also,	it	configures	the	Hive	queries.
AccumuloPredicateHandler:	The	main	job	of	this	class	is	to	work	on	filter	operations	for	the
reduction	of	data.	It	pushes	filters	to	Accumulo	for	the	reduction	of	data.	The	following	four
properties	must	be	provided	by	Hive	to	access	the	Accumulo	tables:

Connection	parameters

accumulo.instance.name

accumulo.zookeepers

accumulo.user.name

accumulo.user.pass

The	previously	mentioned	four	parameters	or	properties	are	actually	used	as	connection	parameters	used
by	Hive	to	connect	the	Accumulo	tables.	These	parameters	are	provided	using	the	following	command	on
Hive:

hive	-hiveconf	accumulo.instance.name=<instancename>

-hiveconf	accumulo.zookeepers=<hostname>

-hiveconf	accumulo.user.name=<username>

-hiveconf	accumulo.user.pass=<password>

How	to	do	it…
Follow	these	steps	to	access	the	Accumulo	table	from	Hive:

CREATE	TABLE	Sales_Accumulo(

		'rowid'	string,

		'id'	int,

		'fname'	string,

		'lname'	string,

		'address'	string,

		'city'	string,

		'state'	string,

		'ip'	string,

		'p_id'	string,

		'dop'	string)STORED	BY	'org.apache.hadoop.hive.accumulo.AccumuloStorageHandler'

WITH	SERDEPROPERTIES('accumulo.columns.mapping'	=	

':rowid,Sales:id,Sales:fname,Sales:lname,Sales:address,Sales:city,Sales:state,Sales

:ip,Sales:p_id,Sales:dop');

SELECT	*	FROM	Sales_	Accumulo;

How	it	works…
The	first	statement	creates	a	Hive	table	that	is	tied	to	the	Accumulo	table.	While	creating	the	Hive	table,
the	STORED	BY	clause	must	be	provided.	While	creating	the	Hive	table,	if	the	EXTERNAL	keyword	is	not
provided,	then	on	the	deletion	of	Hive	table,	the	Accumulo	table	is	automatically	deleted,	which	is	the
default	behavior	as	well.	If	the	EXTERNAL	keyword	is	provided,	the	Accumulo	table	remains	intact	even	if
the	Hive	table	is	deleted.

In	the	first	statement,	apart	from	the	normal	column	names,	the	AccumuloStorageHandler	class	name	is
provided	to	inform	that	this	Hive	table	is	coupled	with	the	Accumulo	table.	There	is	also	one	more
property	named	accumulo.columns.mapping;	it	is	provided	to	map	Accumulo	columns	with	Hive
columns.

Once	the	table	is	created,	the	table	is	accessed	as	shown	in	the	second	statement.

Working	with	HBase
In	this	recipe,	you	will	learn	how	to	integrate	HBase	with	Google	Drill.

HBase	is	a	distributed	database	used	to	store	large	volume	of	data.	It	is	written	in	Java	and	runs	on	top	of
HDFS.	Therefore,	it	is	a	fast	way	of	reading	and	writing	large	volumes	of	data	with	high	throughput.

Getting	ready
For	integrating	Hive	with	HBase,	there	are	a	few	prerequisites	that	must	be	met.	In	this	topic,	we	will
cover	the	use	of	Hive	and	HBase.	You	must	have	HBase	installed	on	your	system	before	going	further	in
the	topic.

Once	HBase	is	installed,	configure	the	HBase	as	shown	in	the	following	steps:

Add	the	following	properties	to	the	hbase-site.xml	file:

<property>

		<name>hbase.cluster.distributed</name>

		<value>true</value>

</property>

<property>

		<name>hbase.rootdir</name>

		<value>hdfs://localhost:8020/hbase</value>

</property>

Note

Change	the	value	of	the	property	hbase.rootdir	if	Hadoop	namenode	is	running	on	different	node	and
port.

Set	or	change	JAVA_HOME	in	the	hbase-env.sh	file:

export	JAVA_HOME=<java_home_path>

Configure	an	external	Zookeeper:	By	default,	HBase	starts	its	own	Zookeeper	instance.	If	you	are	using	an
external	Zookeeper,	then	you	can	configure	using	the	following	options:

HBase	whether	it	should	manage	its	own	instance	of	Zookeeper	or	not.	For	doing	this,	configure	the
following	property	in	the	$HBASE_HOME/conf/hbase-env.sh	file.

export	HBASE_MANAGES_ZK=false

Add	the	following	properties	in	the	hbase-site.xml	file:

<property>

		<name>hbase.zookeeper.property.clientPort</name>

		<value>2181</value>

		<description>Property	from	ZooKeeper's	config	zoo.cfg.The	port	at	which	the	

clients	will	connect.	</description>

</property>

<property>

		<name>hbase.zookeeper.quorum</name>

		<value>localhost</value>

		<description>It	takes	comma	separated	list	of	all	zookeeper	servers.	For	example,	

"host1,host2,host3".	By	default	value	of	his	property	is	set	to	localhost	for	local	

and	pseudo-distributed	modes	of	operation.	For	a	fully-distributed	setup,	this	

should	be	set	to	a	full	list	of	ZooKeeper	quorum	servers.

		</description>

</property>

Run	the	following	command	in	the	hbase	home	directory	to	start	HBase:

bin/start-hbase.sh

If	your	system	is	configured	correctly,	the	jps	command	should	show	the	HMaster	and	HRegionServer
processes	running,	as	shown	in	the	following	screenshot:

	

Open	HMaster	UI:	By	default,	HBase	Master	runs	its	web	interface	on	the	16010	port.	You	can	open	the
HBase	Master	web	interface	using	http://HOST_NAME/16010.	For	example:

http://192.168.56.101:16010

	

Connect	to	HBase:	For	connecting	HBase	using	shell,	run	the	following	command	in	the	HBase	home
directory:

$./bin/hbase	shell

hbase(main):001:0>

How	to	do	it…
Follow	these	steps	to	access	the	HBase	table	through	Hive:

create	'users',	'cf'

put	'users',	'row1',	'cf:name',	'john'

put	'users',	'row2',	'cf:name',	'mike'

put	'users',	'row3',	'cf:name',	'honey'

scan	"users"

CREATE	EXTERNAL	TABLE	hbase_table_users(key	string,	name	string)

STORED	BY	'org.apache.hadoop.hive.hbase.HBaseStorageHandler'

WITH	SERDEPROPERTIES	("hbase.columns.mapping"	=	"cf:name")

TBLPROPERTIES("hbase.table.name"	=	"users",	"hbase.mapred.output.outputtable"	=	

"users");

SELECT	*	FROM	hbase_table_users;

How	it	works…
The	first	statement	in	the	previous	section	is	used	to	create	a	table	named	users	in	HBase.	The	output	of
the	first	command	is	shown	in	the	following	screenshot:

	

The	second	statement	is	used	to	insert	data	in	the	HBase	table.	Here,	users	is	the	table	name,	and	row1
row2,	and	row3	are	the	number	of	rows	that	are	going	to	get	inserted,	cf	specifies	the	column	family	name
also	called	as	column	name.	Here,	the	column	name	is	users.	The	fourth	string	specifies	the	value	of	the
column.	The	output	of	the	second	command	is	shown	in	the	following	figure:

	

The	third	statement	acts	like	the	normal	SELECT	clause	in	Hive.	In	HBase,	the	list	keyword	is	used	for
the	same	purpose.	The	output	of	the	third	command	is	shown	in	the	following	screenshot:

	
The	fourth	statement	in	the	previous	section	is	used	to	create	a	Hive	table	named
hbase_table_users.	The	External	keyword	indicates	that	the	reference	table	is	already	created	in
HBase	and	is	going	to	be	used	in	Hive.
In	this	example,	there	are	two	columns	key	and	name.	These	two	columns	nothing	but	correspond	to
the	row	and	name	column	of	the	HBase	table.
While	creating	the	Hive	table,	the	STORED	BY	clause	must	be	provided	on	the	CREATE	table	clause.
The	STORED	BY	clause	contains	one	class	HBaseStorageHandler,	which	is	one	of	the	main
components	in	integration	of	HBase	with	Hive.	The	main	job	of	this	class	is	to	map	the	Hive	table	to

the	HBase	table.	Also,	it	configures	Hive	queries.
The	second	important	clause	is	the	SERDEPROPERTIES	clause	in	the	Hive	table	creation.	In	this
clause,	the	hbase.columns.mapping	property	maps	the	Hive	column	to	that	of	the	HBase	column.
The	number	of	column	mapped	must	be	equal	to	the	number	of	columns	in	the	Hive	table.	There
should	not	be	any	whitespaces	while	mapping	these	column	names	as	it	is	taken	as	a	string	in	the
column	name.
TBLPROPERTIES	is	the	clause	that	indicates	which	HBase	table	is	going	to	be	referenced	in	the	Hive
table.	This	tells	that	the	data	of	the	named	HBase	table	is	going	to	be	fetched	in	Hive.
The	output	of	the	fourth	command	in	the	previous	section	is	shown	in	the	following	screenshot:

	
The	fifth	statement	shows	how	to	access	the	data	from	Hive,	as	shown	in	the	following	screenshot:

	

Working	with	Google	Drill
In	this	recipe,	you	will	learn	how	to	integrate	Hive	with	Google	Drill.

Getting	ready
Google	Drill	is	an	open	source	SQL	query	engine	by	Apache.	Google	Drill	is	designed	in	such	a	manner
that	it	works	on	semi-structured	data	giving	quality	performance	on	rapidly	immerging	data	using	almost
same	syntax	used	in	ANSI	SQL.	For	integrating	Hive	with	Google	Drill,	there	are	few	prerequisites	that
must	be	met.	In	this	topic,	we	will	cover	the	use	of	Hive	and	Drill.	You	must	have	Google	Drill	installed
on	your	system	before	going	further	in	the	topic.

How	to	do	it…
Follow	these	steps	to	access	the	Hive	table	from	Google	Drill:

1.	 Create	the	table	Sales_Drill	through	the	Hive	shell:

CREATE	TABLE	'Sales_drill'(

		'id'	int,

		'fname'	string,

		'lname'	string,

		'address'	string,

		'city'	string,

		'state'	string,

		'ip'	string,

		'p_id'	string,

		'dop'	string)

row	format	delimited	fields	terminated	by	'\t'	stored	as	textfile;

2.	 Once	the	table	is	created,	load	the	data	into	the	Sales_Drill	table	using	the	following	command:

LOAD	DATA	LOCAL	INPATH	'/opt/data/sales_drill.txt'	INTO	TABLE	Sales_drill;

3.	 After	loading	the	data,	exit	the	Hive	shell	and	start	the	Drill	shell.	For	starting	the	Drill	shell,
navigate	to	the	Drill	installation	directory	and	issue	the	following	command:

bin/drill-embedded

4.	 Once	the	Drill	shell	is	started,	issue	the	following	command	to	query	the	Hive	table	from	the	Drill
shell:

SELECT	id,	fname,	lname	FROM	Sales_drill	WHERE	id	<=	10;

How	it	works…
The	first	statement	mentioned	previously	creates	a	table	named	Sales_drill.	This	table	is	created	on	the
Hive	shell.	The	output	of	the	first	command	in	the	previous	section	is	shown	in	the	following	figure:

	

The	second	statement	in	the	previous	section	loads	the	data	from	the	local	directory	into	the	Hive	tables
Sales_drill.	The	data	is	loaded	from	a	sample	file,	Sales_drill.txt,	into	the	tables.	The	output	of
the	second	command	in	previous	section	is	shown	in	the	following	screenshot:

	

The	third	statement	in	the	previous	section	opens	the	Drill	shell.	The	output	of	the	third	command	in	the
previous	section	is	underlined	in	red	in	the	following	screenshot:

	

The	fourth	statement	in	the	previous	section	queries	the	Hive	table	Sales_Drill	from	the	Drill	shell.	The
output	of	the	fourth	command	in	the	previous	section	is	shown	in	the	following	figure:

	

Index
A

Access	Control	List	(ACL)
about	/	Securing	Hadoop

Accumulo
working	with	/	Working	with	Accumulo,	Getting	ready,	How	it	works…

analytical	functions
defining	/	How	to	do	it…

apache	maven	binaries,	for	Linux
URL	/	Getting	ready

Apache	Spark
working	with	/	Working	with	Apache	Spark,	Getting	ready

Atomicity,	Consistency,	Isolation,	Durability	(ACID)
about	/	Updating	data

authorization	mode
URL	/	See	also
references	/	See	also

B
Beeline

about	/	Beeline
command	options	/	Beeline	command	options

bucketing
defining	/	Bucketing,	How	to	do	it…,	How	it	works…

bucket	map	join
using	/	Using	a	bucket	map	join,	Getting	ready

buckets
creating,	in	Hive	/	Creating	buckets	in	Hive,	How	to	do	it…

bucket	sort	merge	map	join
using	/	Using	a	bucket	sort	merge	map	join,	How	it	works…

built-in	functions
using	/	Using	built-in	functions
mathematical	functions	/	Mathematical	functions
collection	functions	/	Collection	functions
type	conversion	functions	/	Type	conversion	functions
date	functions	/	Date	functions
string	functions	/	String	functions

built-in	User	defined	Aggregation	Function	(UDAF)
using	/	Using	the	built-in	User-defined	Aggregation	Function	(UDAF),	How	to	do	it…,	How	it
works…

built-in	User	Defined	Table	Function	(UDTF)
using	/	Using	the	built-in	User	Defined	Table	Function	(UDTF),	How	to	do	it…,	How	it
works…

C
Cartesian	product

about	/	Using	a	cross	join
collection	data	types

about	/	Using	complex	data	types
defining	/	Using	complex	data	types

collection	functions
defining	/	Collection	functions,	Collection	functions

column	statistics,	in	Hive
defining	/	Column	statistics	in	Hive,	How	to	do	it…,	How	it	works…

Command-line	Interface	(CLI)
about	/	Getting	ready

complex	data	types
using	/	Using	complex	data	types

conditional	functions
defining	/	Conditional	functions

configurations
changing,	at	runtime	/	Changing	configurations	at	runtime

create	table
displaying	/	Showing	create	table,	How	to	do	it…

Create	Table	As	Select	(CTAS)
about	/	How	it	works

cross	join
using	/	Using	a	cross	join,	How	to	do	it…,	How	it	works…

CSVSerDe
defining	/	CSVSerDe,	There's	more…
URL	/	See	also

custom	User-Defined	Functions	(UDF)
creating	/	Creating	custom	User-Defined	Functions	(UDF),	How	to	do	it…,	How	it	works…

D
data

inserting,	into	dynamic	partitions	/	Inserting	data	into	dynamic	partitions,	How	it	works…,
There's	more…
writing,	into	files	from	queries	/	Writing	data	into	files	from	queries,	Getting	ready
updating	/	Updating	data,	How	to	do	it...
deleting	/	Deleting	data,	Getting	ready

database	schema
creating	/	Creating	a	database	schema,	How	to	do	it…
dropping	/	Dropping	a	database	schema,	How	to	do	it…
altering	/	Altering	a	database	schema
using	/	Using	a	database	schema
displaying	/	Showing	database	schemas,	How	to	do	it…
defining	/	Describing	a	database	schema

Data	Definition	Language	(DDL)
about	/	Introduction,	Introduction

Data	Manipulation	Language	(DDL	or	DML)
about	/	Hive	with	a	remote	metastore

Data	Manipulation	Language	(DML)
about	/	Introduction

data	sampling
defining	/	Sampling
sampling	bucketed	table	/	Sampling	bucketed	table
block	sampling	/	Block	sampling
length	literal	/	Length	literal
row	count	/	Row	count,	How	it	works…

data	types
defining	/	Introducing	data	types
primitive	data	types	/	Primitive	data	types
complex	data	types	/	Complex	data	types
about	/	Serialization	and	deserialization	formats	and	data	types

Date/Time	data	type
using	/	Using	Date/Time	data	types

date	formats,	Hive
URL	/	See	also

date	functions
defining	/	Date	functions,	Date	functions

Distinguished	Name	(DN)
about	/	LDAP

dynamic	partitioning
about	/	Loading	data	in	a	managed	partitioned	table
properties	/	Loading	data	in	a	managed	partitioned	table

/	Dynamic	partitioning
dynamic	partitions

data,	inserting	into	/	Inserting	data	into	dynamic	partitions,	How	it	works…,	There's	more…

E
external	table

partitioning	/	Partitioning	an	external	table

F
file	formats

defining	/	File	formats,	How	to	do	it…
types	/	File	formats

files
loading,	into	tables	/	Loading	files	into	tables,	How	it	works…

Finer	Access	Control	Lists	(FACL)
about	/	How	to	do	it…

FIRST_VALUE	function
about	/	FIRST_VALUE

G
Google	Drill

working	with	/	Working	with	Google	Drill,	How	it	works…

H
Hadoop

securing	/	Securing	Hadoop,	How	to	do	it…,	How	it	works…
read	and	write	access,	giving	/	Giving	read	and	write	access	to	user	mike
user	access,	revoking	/	Revoking	the	access	of	the	user	mike
URL	/	See	also

Hadoop	cluster
Hive,	deploying	on	/	Deploying	Hive	on	a	Hadoop	cluster,	Deploying	Hive	Metastore,	Getting
ready,	How	to	do	it…

Hadoop	Distributed	File	System	(HDFS)
about	/	Introduction,	How	it	works…,	Securing	Hadoop

HBase
working	with	/	Working	with	HBase,	Getting	ready,	How	to	do	it…,	How	it	works…

HCatalog
configuring	/	Configuring	HCatalog
command-line	options	/	Getting	ready
defining	/	HCatalog
DMLs	/	HCatalog	DMLs

high	availability
configuring,	of	metastore	service	/	Configuring	high	availability	of	metastore	service

Hive
deploying,	on	Hadoop	cluster	/	Deploying	Hive	on	a	Hadoop	cluster,	Deploying	Hive
Metastore,	Getting	ready,	How	to	do	it…
references	/	Getting	ready,	How	to	do	it...,	Hive	with	a	remote	metastore,	How	to	do	it...,	See
also
installing	/	Installing	Hive,	Hive	with	an	embedded	metastore,	Hive	with	a	local	metastore,
Hive	with	a	remote	metastore
with	embedded	metastore	/	Hive	with	an	embedded	metastore
with	local	metastore	/	Hive	with	a	local	metastore
with	remote	metastore	/	Hive	with	a	remote	metastore
compiling,	from	source	/	Compiling	Hive	from	source,	How	to	do	it...
prerequisites,	installing	/	Getting	ready
debugging	/	Debugging	Hive,	How	to	do	it...
running	/	Running	Hive
configuring,	with	Hue	/	Configuring	Hive	with	Hue
accessing,	with	Hue	/	Accessing	Hive	with	Hue
database,	creating	/	How	to	do	it…
transactions,	enabling	/	Enabling	transactions	in	Hive,	How	to	do	it…
buckets,	creating	/	Creating	buckets	in	Hive,	How	to	do	it…
metastore	view,	of	bucketing	/	Metastore	view	of	bucketing
analytics	functions	/	Analytics	functions	in	Hive,	How	to	do	it…,	See	also
specifications,	defining	/	How	to	do	it…
table	and	partition	statistics	/	Table	and	partition	statistics	in	Hive,	How	to	do	it…
predicate	pushdown	optimizations,	enabling	/	Enabling	predicate	pushdown	optimizations	in

Hive,	How	to	do	it…,	How	it	works…
sampling	ways	/	Getting	ready
authorizing	/	Authorizing	Hive,	How	to	do	it…
HCatalog	API	/	Authorizing	Hive
Command	Line	Interface	(CLI)	/	Authorizing	Hive
ODBC/JDBC	/	Authorizing	Hive
legacy	mode	/	Default	authorization–legacy	mode
storage-based	authorization	/	Storage-based	authorization
SQL	standards-based	authorization	/	SQL	standards-based	authorization
authenticating	/	Authenticating	Hive
anonymous,	with	SASL	/	Anonymous	with	SASL	(default	no	authentication)
anonymous,	without	SASL	/	Anonymous	without	SASL
Kerberos	/	Kerberos
JDBC	client,	configuring	for	Kerberos	authentication	/	Configuring	the	JDBC	client	for
Kerberos	authentication
accessing	/	Configuring	the	JDBC	client	for	Kerberos	authentication
LDAP,	defining	/	LDAP
Pluggable	Authentication	Modules	(PAM)	/	Pluggable	Authentication	Modules
custom	mode,	using	/	Custom

hive-json-serde-02.jar
URL	/	JSONSerDe

Hive	built-in	aggregate	functions
URL	/	See	more

Hive	clients
about	/	Hive	clients
Hive	CLI	/	Hive	CLI
Beeline	/	Getting	ready

Hive	components
defining	/	Understanding	different	components	of	Hive
HiveServer	/	HiveServer
HiveServer2	/	HiveServer2
Hive	clients	/	Hive	clients

Hive	Data	Definition	Language
about	/	Hive	with	a	remote	metastore

Hive	mathematical	functions
URL	/	See	also

Hive	metastore	service
defining	/	Introducing	the	Hive	metastore	service,	How	it	works…

Hive	modules
using	/	How	to	do	it...

Hive	packages
defining	/	Hive	packages,	How	to	do	it...

Hive	partitioning
about	/	Hive	partitioning
static	partitioning	/	Static	partitioning

dynamic	partitioning	/	Dynamic	partitioning
Hive	Query	Language	(HQL)

about	/	Introduction
Hive	roles

public	/	Configuring	the	SQL	standards-based	authorization
admin	/	Configuring	the	SQL	standards-based	authorization

HiveServer
about	/	HiveServer
Hive	metastore	/	Hive	metastore

HiveServer2
about	/	HiveServer2,	Authenticating	Hive
defining	/	Introducing	HiveServer2,	How	to	do	it…,	See	also
authentication	options	/	How	to	do	it…

HiveServer2	Clients
using	/	Using	HiveServer2	clients
Beeline	/	Beeline
JDBC	/	JDBC
other	clients	/	Other	clients

HiveServer2	high	availability
configuring	/	Configuring	HiveServer2	high	availability,	How	to	do	it…

HiveServer2	properties
defining	/	Understanding	HiveServer2	properties,	How	it	works…

Hive	string	functions
URL	/	See	also

Hive	tables
data	inserting,	from	queries	/	Inserting	data	into	Hive	tables	from	queries,	Getting	ready,	How	it
works…

Hive	transactions
URL	/	Getting	ready

Hive	Wiki
URL	/	How	to	do	it…

Hue
defining	/	Introducing	Hue
prepare	dependencies	/	Prepare	dependencies
downloading	/	Downloading	and	installing	Hue
installing	/	Downloading	and	installing	Hue
Hive,	configuring	with	/	Configuring	Hive	with	Hue
starting	/	Starting	Hue
Hive,	accessing	with	/	Accessing	Hive	with	Hue

I
in-built	SerDes

defining	/	Serialization	and	deserialization	formats	and	data	types
indexes

defining	/	Exploring	indexes
Input	Pruning

about	/	How	it	works…

J
Java	Database	Connectivity	(JDBC)

about	/	Statistics	for	a	partitioned	table
Java	Pluggable	Authentication	Modules	(JPAM)

about	/	Pluggable	Authentication	Modules
URL	/	Pluggable	Authentication	Modules

Java	SE	environment
URL	/	Getting	ready

Java	System	Property
about	/	Getting	ready

JDBC
about	/	JDBC
client	sample	code,	eclipse	used	/	JDBC	client	sample	code	using	Eclipse

JDBC	datatypes
defining	/	JDBC	datatypes

JDBC	sample	code
running,	from	command	line	/	Running	the	JDBC	sample	code	from	the	command-line

join
defining	/	Understanding	the	joins	concept,	How	it	works…

JSONSerDe
defining	/	JSONSerDe

L
LAG	function

about	/	LAG
LAST_VALUE	function

about	/	LAST_VALUE
URL	/	See	also

LazySimpleSerDe
defining	/	LazySimpleSerDe

LEAD	function
about	/	LEAD

left/right/full	outer	join
using	/	Using	a	left/right/full	outer	join,	How	it	works…

left	semi	join
using	/	Using	a	left	semi	join,	How	to	do	it…,	How	it	works…

Lightweight	Directory	Access	Protocol	(LDAP)
about	/	LDAP

local	metastore
about	/	How	to	do	it…

M
managed	table

partitioning	/	Partitioning	a	managed	table,	How	to	do	it…
map-side	join

using	/	Using	a	map-side	join,	How	it	works…
mathematical	functions

defining	/	Mathematical	functions,	Mathematical	functions
miscellaneous	data	types

using	/	Using	miscellaneous	data	types
miscellaneous	functions

defining	/	Miscellaneous	functions
mysql-connector	jar

URL	/	Hive	with	a	local	metastore,	Hive	with	a	remote	metastore

N
numeric	data	types

using	/	Using	numeric	data	types,	How	to	do	it…

O
Open	Database	Connectivity	(ODBC)

about	/	How	to	do	it...
operators

using	/	Using	operators
relational	operators,	using	/	Using	relational	operators,	How	to	do	it…
arithmetic	operators,	using	/	Using	arithmetic	operators,	How	to	do	it…
logical	operators,	using	/	Using	logical	operators,	How	to	do	it…
complex	operators,	using	/	Using	complex	operators,	How	to	do	it…

optimizations
used,	for	reducing	map	number	/	Optimizations	to	reduce	the	number	of	map,	How	to	do	it…

Optimized	Row	Columnar	(ORC)
about	/	How	to	do	it…

P
PAM	authentication

configuring	/	Pluggable	Authentication	Modules
partition	filters

about	/	How	to	do	it…
partitioning

about	/	Introduction
defining	/	Partitioning,	How	to	do	it…

partitions
adding	/	Adding	new	partitions
renaming	/	Renaming	partitions
exchanging	/	Exchanging	partitions
dropping	/	Dropping	the	partitions
data,	loading	in	managed	partitioned	table	/	Loading	data	in	a	managed	partitioned	table
displaying	/	Showing	partitions

Pluggable	Authentication	Modules	(PAM)
about	/	Pluggable	Authentication	Modules

POSIX	model
about	/	Securing	Hadoop

privilege	types
defining	/	Configuring	the	SQL	standards-based	authorization

Python
URL	/	Other	clients

Q
queries

data	writing,	into	files	from	/	Writing	data	into	files	from	queries,	Getting	ready

R
Record	Columnar	File

about	/	How	to	do	it…
references	/	How	to	do	it…

RegexSerDe
defining	/	RegexSerDe

remote	metastore
about	/	How	to	do	it…

Row	Columnar	(RC)
about	/	How	to	do	it…

Ruby	Client
URL	/	Other	clients

S
SerDes

about	/	Serialization	and	deserialization	formats	and	data	types
URL	/	There's	more…

Simple	Authentication	and	Security	Layer	(SASL)
about	/	How	to	do	it…

skew	join
using	/	Using	a	skew	join,	How	it	works…

SQL
values	inserting,	into	tables	from	/	Inserting	values	into	tables	from	SQL,	How	it	works…,
There's	more…

SQL	standards-based	authorization
configuring	/	Configuring	the	SQL	standards-based	authorization,	Getting	Started,	How	to	do
it…
existing	roles,	listing	out	/	To	list	out	all	existing	roles
role,	creating	/	creating	a	role
role,	deleting	/	Deleting	a	role
list	of	current	roles,	displaying	/	Showing	list	of	current	roles
role,	setting	/	Setting	a	role
role,	granting	/	Granting	a	role
role,	revoking	/	Revoking	a	role
roles,	checking	/	Checking	roles	of	a	user/role
principles	of	role,	checking	/	Checking	principles	of	a	role
privileges,	granting	/	Granting	privileges
privileges,	revoking	/	Revoking	privileges
privileges,	checking	/	Checking	privileges	of	a	user	or	role

static	partitioning
about	/	Loading	data	in	a	managed	partitioned	table

/	Static	partitioning
statistics,	in	Hive

bringing	/	Bringing	statistics	in	to	Hive,	How	to	do	it…
for	partitioned	table	/	Statistics	for	a	partitioned	table

storage-based	authorization
properties	/	Storage-based	authorization

string	data	types
using	/	Using	string	data	types,	How	it	works…

string	functions
defining	/	String	functions,	String	functions,	There's	more

T
table-generating	functions

examples	/	How	to	do	it…
table	properties

altering	/	Altering	table	properties
displaying	/	Show	the	table	properties

tables
creating	/	Creating	tables,	How	it	works
table	LIKE,	creating	/	Create	table	LIKE
dropping	/	Dropping	tables,	How	to	do	it…
truncating	/	Truncating	tables
renaming	/	Renaming	tables,	How	to	do	it…
displaying	/	Showing	tables,	How	to	do	it…
files,	loading	into	/	Loading	files	into	tables,	How	it	works…

Templeton
about	/	Getting	ready

timestamp	data	type
about	/	Using	Date/Time	data	types

top	K	statistics,	in	Hive
defining	/	Top	K	statistics	in	Hive,	How	to	do	it…

transactions
enabling,	in	Hive	/	Enabling	transactions	in	Hive,	How	to	do	it…

type	conversion	functions
defining	/	Type	conversion	functions,	Type	conversion	functions

U
User-Defined	Aggregate	(UDA)

about	/	Using	string	data	types
User-Defined	Function	(UDF)

about	/	Using	string	data	types

V
values

inserting	into	tables,	from	SQL	/	Inserting	values	into	tables	from	SQL,	How	it	works…,
There's	more…

view
creating	/	Creating	views,	Getting	ready
altering,	as	select	/	Altering	the	view	as	select

view	properties
altering	/	Altering	the	view	properties

views
dropping	/	Dropping	views,	Getting	ready
defining	/	Exploring	views,	How	it	works…

W
WebHCat

defining	/	WebHCat
URL	/	See	also…

windowing
about	/	Introduction
in	Hive	/	Windowing	in	Hive,	How	to	do	it…
in	Hive,	specifications	/	Windowing	in	Hive

windowing	functions
implementing	/	How	to	do	it…

Y
Yet	Another	Resource	Negotiator	(YARN)

about	/	Deploying	Hive	Metastore

	Apache Hive Cookbook
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why Subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Developing Hive
	Introduction
	Deploying Hive on a Hadoop cluster
	Getting ready
	How to do it...
	How it works…
	Deploying Hive Metastore
	Getting ready
	How to do it…
	Installing Hive
	Getting ready
	How to do it…
	Hive with an embedded metastore
	Hive with a local metastore
	Hive with a remote metastore
	Configuring HCatalog
	Getting ready
	How to do it...
	Understanding different components of Hive
	HiveServer
	Hive metastore
	How to do it...
	HiveServer2
	How to do it...
	Hive clients
	Hive CLI
	Getting ready
	How to do it...
	Beeline
	Getting ready
	How to do it...
	Compiling Hive from source
	Getting ready
	How to do it...
	Hive packages
	Getting ready
	How to do it...
	Debugging Hive
	Getting ready
	How to do it...
	Running Hive
	Getting ready
	How to do it...
	Changing configurations at runtime
	How to do it...
	2. Services in Hive
	Introducing HiveServer2
	How to do it…
	How it works…
	See also
	Understanding HiveServer2 properties
	How to do it…
	How it works…
	See also
	Configuring HiveServer2 high availability
	Getting ready
	How to do it…
	How it works…
	See also
	Using HiveServer2 clients
	Getting ready
	How to do it…
	Beeline
	Beeline command options
	JDBC
	JDBC client sample code using Eclipse
	Running the JDBC sample code from the command-line
	JDBC datatypes
	Other clients
	Introducing the Hive metastore service
	How to do it…
	How it works…
	Configuring high availability of metastore service
	How to do it…
	Introducing Hue
	Getting ready
	How to do it…
	Prepare dependencies
	Downloading and installing Hue
	Configuring Hive with Hue
	Starting Hue
	Accessing Hive with Hue
	3. Understanding the Hive Data Model
	Introduction
	Introducing data types
	Primitive data types
	Complex data types
	Using numeric data types
	How to do it…
	Using string data types
	How to do it…
	How it works…
	Using Date/Time data types
	How to do it…
	Using miscellaneous data types
	How to do it…
	Using complex data types
	How to do it…
	Using operators
	Using relational operators
	How to do it…
	Using arithmetic operators
	How to do it…
	Using logical operators
	How to do it…
	Using complex operators
	How to do it…
	Partitioning
	Getting ready
	How to do it…
	Partitioning a managed table
	How to do it…
	Adding new partitions
	Renaming partitions
	Exchanging partitions
	Dropping the partitions
	Loading data in a managed partitioned table
	Partitioning an external table
	How to do it…
	Bucketing
	Getting ready
	How to do it…
	How it works…
	4. Hive Data Definition Language
	Introduction
	Creating a database schema
	Getting ready
	How to do it…
	Dropping a database schema
	Getting ready
	How to do it…
	Altering a database schema
	Getting ready
	How to do it…
	Using a database schema
	Getting ready
	How to do it…
	Showing database schemas
	Getting ready
	How to do it…
	Describing a database schema
	Getting ready
	How to do it…
	Creating tables
	How to do it…
	Create table LIKE
	How it works
	Dropping tables
	Getting ready
	How to do it…
	Truncating tables
	Getting ready
	How to do it…
	Renaming tables
	Getting ready
	How to do it…
	Altering table properties
	Getting ready
	How to do it…
	Creating views
	Getting ready
	How to do it…
	Dropping views
	Getting ready
	How to do it…
	Altering the view properties
	Getting ready
	How to do it…
	Altering the view as select
	Getting ready
	How to do it…
	Showing tables
	Getting ready
	How to do it…
	Showing partitions
	Getting ready
	How to do it…
	Show the table properties
	Getting ready
	How to do it…
	Showing create table
	Getting ready
	How to do it…
	HCatalog
	Getting ready
	How to do it…
	HCatalog DMLs
	WebHCat
	Getting ready
	How to do it…
	See also…
	5. Hive Data Manipulation Language
	Introduction
	Loading files into tables
	Getting ready
	How to do it…
	How it works…
	Inserting data into Hive tables from queries
	Getting ready
	How to do it…
	How it works…
	Inserting data into dynamic partitions
	Getting ready
	How to do it...
	How it works…
	There's more…
	Writing data into files from queries
	Getting ready
	How to do it…
	Enabling transactions in Hive
	Getting ready
	How to do it…
	Inserting values into tables from SQL
	Getting ready
	How to do it…
	How it works…
	There's more…
	Updating data
	Getting ready
	How to do it...
	How it works…
	There's more…
	Deleting data
	Getting ready
	How to do it...
	How it works…
	6. Hive Extensibility Features
	Introduction
	Serialization and deserialization formats and data types
	How to do it…
	LazySimpleSerDe
	RegexSerDe
	JSONSerDe
	CSVSerDe
	There's more…
	See also
	Exploring views
	How to do it…
	How it works…
	Exploring indexes
	How to do it…
	Hive partitioning
	How to do it…
	Static partitioning
	Dynamic partitioning
	Creating buckets in Hive
	How to do it…
	Metastore view of bucketing
	Analytics functions in Hive
	How to do it…
	See also
	Windowing in Hive
	How to do it…
	LEAD
	LAG
	FIRST_VALUE
	LAST_VALUE
	See also
	File formats
	How to do it…
	7. Joins and Join Optimization
	Understanding the joins concept
	Getting ready
	How to do it…
	How it works…
	Using a left/right/full outer join
	How to do it…
	How it works…
	Using a left semi join
	How to do it…
	How it works…
	Using a cross join
	How to do it…
	How it works…
	Using a map-side join
	How to do it…
	How it works…
	Using a bucket map join
	Getting ready
	How to do it…
	How it works…
	Using a bucket sort merge map join
	Getting ready
	How to do it…
	How it works…
	Using a skew join
	How to do it…
	How it works…
	8. Statistics in Hive
	Bringing statistics in to Hive
	How to do it…
	Table and partition statistics in Hive
	Getting ready
	How to do it…
	Statistics for a partitioned table
	Column statistics in Hive
	How to do it…
	How it works…
	Top K statistics in Hive
	How to do it…
	9. Functions in Hive
	Using built-in functions
	How to do it…
	Mathematical functions
	Collection functions
	Type conversion functions
	Date functions
	String functions
	How it works…
	Mathematical functions
	Collection functions
	Type conversion functions
	Date functions
	String functions
	There's more
	Conditional functions
	Miscellaneous functions
	See also
	Using the built-in User-defined Aggregation Function (UDAF)
	How to do it…
	How it works…
	See more
	Using the built-in User Defined Table Function (UDTF)
	How to do it…
	How it works…
	See also
	Creating custom User-Defined Functions (UDF)
	How to do it…
	How it works…
	10. Hive Tuning
	Enabling predicate pushdown optimizations in Hive
	Getting ready
	How to do it…
	How it works…
	Optimizations to reduce the number of map
	Getting ready
	How to do it…
	Sampling
	Getting ready
	Sampling bucketed table
	Block sampling
	Length literal
	Row count
	How to do it…
	How it works…
	11. Hive Security
	Securing Hadoop
	How to do it…
	How it works…
	Giving read and write access to user mike
	Revoking the access of the user mike
	See also
	Authorizing Hive
	How to do it…
	Default authorization–legacy mode
	Storage-based authorization
	SQL standards-based authorization
	There's more
	Configuring the SQL standards-based authorization
	Getting Started
	How to do it…
	To list out all existing roles
	creating a role
	Deleting a role
	Showing list of current roles
	Setting a role
	Granting a role
	Revoking a role
	Checking roles of a user/role
	Checking principles of a role
	Granting privileges
	Revoking privileges
	Checking privileges of a user or role
	See also
	Authenticating Hive
	How to do it…
	Anonymous with SASL (default no authentication)
	Anonymous without SASL
	Kerberos
	Configuring the JDBC client for Kerberos authentication
	Access Hive using the Beeline client
	Access Hive using the Hive JDBC client in Java
	LDAP
	Pluggable Authentication Modules
	Custom
	12. Hive Integration with Other Frameworks
	Working with Apache Spark
	Getting ready
	How to do it…
	How it works…
	Working with Accumulo
	Getting ready
	How to do it…
	How it works…
	Working with HBase
	Getting ready
	How to do it…
	How it works…
	Working with Google Drill
	Getting ready
	How to do it…
	How it works…
	Index

