
www.allitebooks.com

http://www.allitebooks.org

App Inventor 2 Essentials

A step-by-step introductory guide to mobile app
development with App Inventor 2

Felicia Kamriani

Krishnendu Roy

BIRMINGHAM - MUMBAI

[FM-2]

App Inventor 2 Essentials

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1050416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-110-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Authors
Felicia Kamriani

Krishnendu Roy

Reviewer
Sergio Martínez-Losa del
Rincón

Commissioning Editor
Veena Pagare

Acquisition Editor
Reshma Raman

Content Development Editor
Anish Dhurat

Technical Editors
Chinmay Puranik

Parag Topre

Copy Editor
Akshata Lobo

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.packtpub.com

[FM-4]

About the Authors

Felicia Kamriani is passionate about global education, empowering people
with technology and closing the gender gap in STEM education. As Education and
Business Development Manager, she evangelized the MIT App Inventor Project
in the U.S. and abroad at the Google Rise Summit, the UNESCO YouthMobile
conference, Guangzhou Educational Information Center, Hong Kong Polytech
University, Guilin University, Samsung App Academy, MERLOT and MOSTEC. She
also lead a team of Master Trainers for the Verizon Innovative App Challenge and
spearheaded the inaugural MIT App Inventor Master Trainers Program for Mobile
Computing Education. Other global endeavors include MOOC research and course
development at HarvardX and with The Felittle Group, LLC, as Creative Director
(www.felittlepeople.com). She is an avid TEDx organizer and proud alum of
Harvard University, Stanford University and the University of California, Berkeley.

Krishnendu Roy is an associate professor of computer science at Valdosta State
University. Prior to joining VSU, Krishnendu completed his PhD. and M.S. in
computer engineering at Louisiana State University, Baton Rouge, LA in 2009 and
2005, respectively. As an MIT App Inventor Master Trainer, Krishnendu taught
computing using App Inventor in summer camps for middle and high school
students and in CS0 courses at his university. He has conducted in-person App
Inventor workshops for teachers, including Google CS4HS and the University of
Massachusetts at Boston's BATEC Summer Institute. He has also organized online
App Inventor workshops for teachers who were involved in AAUW's Tech Trek
camps and mentored national winning teams of Verizon's Innovative App Challenge.

www.allitebooks.com

www.felittlepeople.com
http://www.allitebooks.org

[FM-5]

About the Reviewer

Sergio Martínez-Losa del Rincón lives in Spain. He is a software engineer and
an entrepreneur.

He always likes to write technical documents as well as programming in several
languages. He is always learning new programming languages and facing new
challenges. Currently, he is creating applications and games for iPhone, Macintosh,
Android, GoogleGlass, Unity3D, and Cocos2D-X. He likes VR technologies and all
kinds of challenges. He also likes web programming and designing good APIs for
mobile applications.

So far, he has developed all kinds of applications in Java, C++, Objective-C, PHP,
and other languages. He is now developing products inside the IoT field using SaaS
technologies. He likes to explore cloud services to expand application possibilities.
He also likes machine learning technologies and natural language processing to
study new ways to use big data.

You can see part of his work here: http://goo.gl/k5tOSX.

http://goo.gl/k5tOSX

[FM-6]

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Unleashing Creativity with MIT App Inventor 2 1

What is MIT App Inventor 2? 2
Understanding your role as a mobile app developer 3
Brainstorming app ideas 4
The Design Thinking process 4

Empathize 5
Define 6
Ideate 6
Prototype 7
Test 7

Computational thinking 8
Best practices to design apps 8

MIT App Inventor – purpose and potential 9
Discovering the possibilities of MIT App Inventor 10
MIT App Inventor examples 11

Stopwatch and Timer 11
Yahtzee 12
BYJ3S 12
Loops 13
Quartet 14
Brain Reaction Accelerator 14

ConstHelp – Contractor Tools 15
UMATI 16
Ez School Bus Locator 17
Youth Radio 17
Rover 800 Remote 18

Summary 19

Table of Contents

[ii]

Chapter 2: Setting Up MIT App Inventor 2 21
The initial setup 22

System requirements 22
Signing up a Google account 23
Logging in to MIT App Inventor 23

Connectivity setup 27
Downloading the AI2 Companion app 27
Connecting your computer and Android device with WiFi 29
Connecting the emulator or connecting using a USB cable 31

Step 1 – installing the App Inventor setup software 31
Step 2 – launch aiStarter 41
Step 3 – opening a project and connecting to the emulator 41
Step 4 – setting up your device with a USB cable 43
Step 5 – connecting your computer and device (authenticating if necessary) 44
Step 6 – testing the connection 45

Summary 45
Chapter 3: Navigating the App Inventor Platform 47

The projects view 48
Creating a new project 48

The Designer 49
Palette 50
Viewer 50
Components 50
Properties 51
Media 51

Creating a game app 51
Creating the UI in designer 52
IDE 60

The Blocks editor 71
The Blocks drawer 72
Types of Blocks 73

Using Blocks to program Fling 73
Summary 92

Chapter 4: Fling App – Part 2 93
Adding a scoring feature 95

Coding scoring blocks 95
Updating the score label 98

Increasing difficulty 100
Changing the game's dynamic 101
Creating levels 103

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Updating the score label to display the level 108
Updating the Reset button 111
Updating the Play button 115
Summary 117

Chapter 5: Building an Event App 119
User Interface for an event app 120
Setting the background image 120
Adding an image component 124
Adding buttons 126
Adding the ActivityStarter 130
Adding screens 133
Programming the blocks 134

Navigating between screens and launching maps 134
Screen1 134

Sharing blocks between screens using the Backpack 135
Adding text to screens 138

Summary 139
Chapter 6: Introduction to Databases 141

Creating a database 142
Creating a Google Fusion Table 142

Designing the RSVP screen 149
Creating the GUI in the designer window 149

Setting up Google Authentication 153
Sharing the Fusion Table with the service account email 159
Connecting the app to the Google Fusion Table 161

Our goal 161
Pushing data to the Fusion Table 163
Ensuring empty rows are not inserted 166
Viewing the guest list 168
Coding the blocks – requesting data 169
Coding the blocks – receiving data 169
Sharing the Event App 171
Summary 172

Chapter 7: Learning About Loops with a Raffle App 173
Creating the project and building the GUI 174

Creating a new project 174
Creating the User Interface (UI) 175
Programming the behavior of the Digital Raffle app 179
Creating and initializing the variable and list 180

Table of Contents

[iv]

Receiving text messages from participants 182
Adding the phone numbers of all the participants to the list 185
Selecting a winner 187
Notifying the winner 189
Notifying everyone else 190
Using loops 193
Clearing out the list and variable 196

Summary 197
Chapter 8: Expanding Your Mobile App Development Skills 199

Design principles 199
User-centered design 200
Visual hierarchy 200
Responsive design 201
Research app markets 202
Design tools 203

App Inventor extras 203
Shortcuts 204
Help 204
Titles 206
Images 207
Virtual screens 207
Backups 214

Distributing your app 215
The App Inventor Gallery 215

Viewing the Gallery apps 215
Sharing your app in the Gallery 216
Creating an AIA file 217

Downloading and sharing 218
Creating an APK 218

QR code 219
Direct download (or side-loading) 220

The Google Play Store 220
Summary 222

Index 225

www.allitebooks.com

http://www.allitebooks.org

[v]

Preface
Almost everyone has had an idea for an app or perhaps declared, "I wish there were
an app for that!" But until recently, taking an idea and building it into a fully functional
app would have required hiring an expert software programmer and paying
thousands and thousands of dollars. The world of mobile app development had
been the domain of an elite group of people with highly specialized skills—proficient
coders. The App Inventor project sought to change this reality by democratizing
software development. App Inventor 2 is a free, blocks-based, drag-and-drop visual
programming language that makes it possible for anyone, even people with no prior
coding experience, to turn an idea into a fully functional Android app.

As educators, our passion for promoting global education and empowering people
to move from being users of technology to becoming creators of technology were
the inspirations for writing this book. With App Inventor, a 12-year-old, a speech
therapist, a baseball coach, or anyone else for that matter, can develop an app that is
personal, meaningful, and useful to them. People from all backgrounds and levels of
education can develop a digital solution to a problem they see in their community.
Any App Inventor app, such as an educational game, a music tutorial, or a garbage
recycling program can be published or sold in app markets, and thus, have a global
impact or spurn opportunities for entrepreneurship, collaboration, and community
building.

App Inventor offers an alternative entry point to Computer Science that is more user-
friendly and less intimidating than traditional cryptic white-text-on-a-black-screen
programming. The colorful blocks that snap together like puzzle pieces along with
a design tools enable users to learn both coding and user experience design skills.
Furthermore, with a wide gender gap in computer science—males dominating both
classes and jobs—we are also passionate about using App Inventor to introduce
more girls and women to mobile computing opportunities, such as app contests with
Technovation (www.technovationchallenge.org) and coding clubs with Girls Who
Code (www.girlswhocode.com).

www.technovationchallenge.org
www.girlswhocode.com

Preface

[vi]

Because you can take any idea and turn it into a mobile app, the opportunities for
imagination, creativity, and innovation are indeed endless. The purpose of this book
is to help spark such creativity while introducing you to basic computer science
principles, computational thinking, and programming. This book teaches you to
navigate the App Inventor platform and helps you become familiar with its features
through step-by-step tutorials on building three different mobile apps. Throughout
the book, we offer design tools and tips as a pathway to user experience design, since
the user interface is such an integral part of any mobile app. Ultimately, by the end
of this book, you will be equipped with enough skills to embark on developing your
own mobile app from scratch. We are excited to see the apps you are inspired to
create and hope that you will share them with us.

We are so excited to share our passion for mobile app development with you and
hope that this book awakens a creative spark to make technology that is personal,
meaningful, and useful to you. We are thankful to Hal Abelson, Mark Friedman,
and all of the original App Inventor developers and visionaries who created the
platform that has evolved into App Inventor 2. We are proud to be furthering the
App Inventor mission and encourage all of you budding software programmers to,
in turn, share App Inventor with other noncoders. Together we can empower others
to become part of a growing movement to connect and impact the world with
digital creativity.

"We look forward to hearing about the digital solutions you devise or your
evolution in the mobile computing space. Good luck and keep connecting!"

 – Felicia Kamriani and Krishsnendu Roy

What this book covers
Chapter 1, Unleashing Creativity with MIT App Inventor 2, introduces you to the
MIT App Inventor software and explores the multifaceted role of the mobile app
developer by examining design processes and techniques used to turn an app idea
into a prototype. By showing a variety of apps that people just like you have already
made, this chapter reveals the range of learning outcomes and skills developed by
using App Inventor.

www.allitebooks.com

http://www.allitebooks.org

Preface

[vii]

Chapter 2, Setting Up MIT App Inventor 2, walks you through setting up a Google
Account to log into App Inventor, downloading software, and connecting your
computer to your mobile device via Wi-Fi or USB with Mac, Windows, or GNU/
Linux. MIT App Inventor 2 is a free online application that runs in a web browser
on your computer and saves your projects in the cloud. The magical part of App
Inventor is live testing your app as you build it with the Integrated Development
Environment (IDE). If you don't have a mobile device, don't worry, there are
instructions on how to use App Inventor with the onscreen emulator. While we
provide a step-by-step guide to getting started, we acknowledge that sometimes
establishing connectivity can be a challenge. Therefore, we include plenty of
troubleshooting and help options.

Chapter 3, Navigating the App Inventor Platform, familiarizes you with the App
Inventor Projects View, Designer screen, and Blocks Editor. This chapter teaches
you how to build a game app called Fling. The step-by-step tutorial integrates
components and properties to design the user interface and colorful puzzle-like
blocks to code the behavior of the game. You learn how to create buttons that start
or reset play, move a ball, change the ball's direction by touching it, bounce the ball
off the edges of the screen, and end game play. During each step of the development
process, we show you how to view the changes on your mobile device. By the end
of the chapter, you will have built a functional app! However, we have just gotten
started on our app development journey.

Chapter 4, Fling App – Part 2, uses the basic app that we built in Chapter 3 as a
launching pad for further skill development: debugging and expanding the app with
more complex features. Since most games keep score and have increasing levels and
difficulty, we augment the Fling tutorial to make a more intermediate app. You learn
how to make a scoring mechanism, display the score, increase the speed of the ball,
create levels, increase the difficulty of play, and debug by updating the Play and
Reset buttons.

Chapter 5, Building an Event App, provides a tutorial for building a second app—
this time, an intermediate event-planning app. An app like this can be useful for
anyone who is gathering people together for meetings, parties, or events. It gathers
information from people who would like to attend, namely, their name, the number
of guests, and the pot-luck items to be brought. In return, the app displays to users
a guest list and the event information, such as the address and a map. The tutorial
teaches you how to include images and artwork, create a navigation menu, use the
Backpack tool, add multiple screens, expand your use of labels, and include a map
component. By the end of the chapter, you will have accomplished a great deal, but
will only be halfway through the Event App development.

Preface

[viii]

Chapter 6, Introduction to Databases, will cover databases that are an essential part
of app designing because they store persistent data, meaning that when the app
closes and reopens, the previously entered data will remain in the App. Without a
database, any data entered by the user when the app is running would be lost once
the app is closed. In order to collect user-inputted information for the Event app, this
chapter's tutorial demonstrates how to create an RSVP form, establish Google API
credentials, store and request information in a database using Google Fusion Tables,
and display a guest list.

Chapter 7, Learning About Loops with a Raffle App, will cover a third tutorial—this time,
for a Raffle App that includes the computer science principles of lists, loops, and
variables. The Raffle App (a digital version of a regular raffle) can be used at a party,
meeting break, or as an ice-breaker to involve participants in a short fun activity.
Participants text a specific message to the Raffle organizer's phone and the app
randomly selects a winner from the list of incoming numbers and then notifies the
winner he or she has won and texts the rest of the participants that they did not win.
Here, you will learn to code efficiently with variables and a loop, as the app repeats
the same behavior (texting a "Sorry you did not win!" message) for a list of many
people.

Chapter 8, Expanding Your Mobile App Development Skills, includes more design
principles and App Inventor tips to broaden your skill set for your transition from
app building with guided tutorials to creating mobile apps from scratch. Also
included are app sharing tools that enable you to contribute your creativity and learn
from other app developers. Since all the App Inventor apps can be uploaded, shared,
and even sold in app markets, the apps you develop can make a global social impact
or trigger your path as an entrepreneur. The world awaits your contribution!

What you need to build mobile apps
• A free Google Account
• An Android mobile device (phone or tablet)

 ° Android Operating System 2.3 ("Gingerbread") or higher

• A computer with one of the operating systems listed:
 ° Macintosh (with Intel processor): Mac OS X 10.5 or higher
 ° Windows: Windows XP, Windows Vista, Windows 7, 8, or 10
 ° GNU/Linux: Ubuntu 8 or higher, Debian 5 or higher

www.allitebooks.com

http://www.allitebooks.org

Preface

[ix]

• A web browser:
 ° Mozilla Firefox 3.6 or higher (Note: If you are using Firefox with the

NoScript extension, you'll need to turn the extension off. See the note
on the troubleshooting page.)

 ° Apple Safari 5.0 or higher
 ° Google Chrome 4.0 or higher
 ° Microsoft Internet Explorer is not supported. Windows users should

use Chrome or Firefox

Who this book is for
This book is for anyone wanting to learn how to create mobile apps for Android. No
prior coding experience is necessary.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The file is named appinventor2-setup_1.1.tar.gz and it is a GZIP compressed
TAR file."

Any command-line input or output is written as follows:

> /usr/google/appinventor/commands-for-Appinventor/aiStarter &

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "There are
five games to choose from, including Refocus, True Color, Quick Pick, Sum It Up,
and Expression Puzzle."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or found challenging. Reader feedback is important to us
as it helps us develop resources that you will find useful and educational.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

www.allitebooks.com

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

Preface

[xi]

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have an issue with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.allitebooks.org

[1]

Unleashing Creativity with
MIT App Inventor 2

Mobile applications are ubiquitous. There are apps for just about everything—
entertainment, socializing, dining, travel, philanthropy, shopping, education,
navigation, and so on. And just about everyone with a smartphone or tablet is
using them to make their lives easier or better. But you have decided to move from
just using mobile apps to creating mobile apps. Congratulations! Thanks to MIT
App Inventor 2, mobile app development is no longer exclusively the realm of
experienced software programmers. The software empowers anyone with an idea
to create mobile technology. This book offers people of all ages a step-by-step guide
to creating mobile apps with MIT App Inventer 2. While this visual programming
language is an ideal tool for people who have little or no coding experience, don't be
fooled into thinking that the software's capabilities are basic! The simple drag-and-
drop blocks format is actually a powerful programming language capable of creating
complex and sophisticated mobile apps.

The purpose of this chapter is to provide an overview of MIT App Inventor 2, and
of your new role as a mobile app developer. You are in for more skill development
than you ever imagined! Of course, you will learn to code mobile apps, but there
are countless other valuable skills weaved into the mobile app building process.
Most significantly, you will learn to think differently, discover the design-thinking
process, become a problem solver, and be resourceful. This chapter also offers tips on
design principles and brainstorming app ideas. Lastly, it reveals the potential of MIT
App Inventor 2 and showcases an array of mobile apps so that you, a budding app
designer, can begin thinking about the full spectrum of possibilities. These mobile
app examples not only display the capabilities and functionalities of MIT App
Inventor 2, but also serve to spark ideas, foster innovative thinking, and help create
visual goals as you embark on the mobile app-making process in the next chapters.

Unleashing Creativity with MIT App Inventor 2

[2]

This chapter covers the following topics:

• What is MIT App Inventor 2 and why you should learn to use it?
• Becoming a mobile app developer
• Discovering the possibilities of MIT App Inventor 2

What is MIT App Inventor 2?
MIT App Inventor 2 is a free, drag-and-drop, blocks-based visual programming
language that enables people, regardless of their coding experience, to create
mobile apps for Android devices. In 2008, iPhones and Android phones had just
hit the market. MIT professor Hal Abelson had the idea to create an easy-to-use
programming language to make mobile apps that would harness the power of the
emerging smartphone technology. Equipped with fast processors, large memory
storage, and sensors, smartphones were enabling people to monitor and interact with
their environment like never before. Abelson's goal was to democratize the mobile
app development process by making it easy for anyone to create mobile apps that
were meaningful and important to them. While on sabbatical at Google in Mountain
View, CA, Abelson worked with Engineer Mark Friedman and many of other
developers to create App Inventor (yes, it was originally called Google App Inventor).

In 2011, Abelson brought App Inventor to MIT and, together with the Media Lab and
the CSAIL (Computer Science and Artificial Intelligence Lab), created the Center for
Mobile Learning. In December 2013, Abelson and his team of developers launched
MIT App Inventor 2 (from here on referred to as MIT App Inventor), an even
easier to use web-based application version featuring an Integrated Development
Environment (IDE). IDE means that you as you build your mobile app online, you
can see it come to life on a connected mobile device. All you need is a computer
(Mac or PC), an Internet connection (or a USB connection), a Google account, and
an Android device (phone or tablet). But, if you don't have an Android device, don't
worry! You can still create apps with the onscreen emulator and utilize the live
development mode.

The MIT App Inventor (http://appinventor.mit.edu/) interface includes two
main screens, a Designer Screen, which is a graphical user interface (GUI) where you
can create the look and feel of the app (choosing the components you want the app
to include), and the Blocks Editor, where you can add behavior to the app by coding
it with colorful blocks. Users build apps by dragging components and blocks from
the menu bars onto a workspaces (called Viewers) and a connected Android device
(or emulator) displays the progress in real time. All the apps are saved on the MIT
server; once completed, they can be can be shared on the MIT App Inventor Gallery,
submitted to app contests (such as MIT App of the Month), or uploaded to the
Google Play Store (or other app marketplaces) for sharing or selling.

www.allitebooks.com

http://appinventor.mit.edu/
http://www.allitebooks.org

Chapter 1

[3]

To date, MIT App Inventor has empowered millions of people to become creators of
technology by learning to be mobile app developers. And now, you will become one
of them!

Understanding your role as a mobile app
developer
Since you are reading this book, it is safe to assume that not only do you regularly
use mobile apps, but on occasion, you have also had the thought, "I wish there were
an app for that!" Now, with the help of MIT App Inventor and this guidebook to
mobile app development, you will soon be able to say, "I can create an app for that!"

While embracing your new role as a mobile app developer, you will not just be
learning how to code; you will learn an array of other valuable skills. You will learn
to think differently. Every time you open an app, you will start looking at it from
the developer's perspective rather than just as a user. You will start noticing what
functions are logical and simple and which are complicated and unintuitive. You
will learn to get inspiration from your environment. What type of app could make
the attendance process at my club/class/meeting more streamlined or efficient?
What app idea could help solve the inaccurate inventory problem at the gym? You
will learn to become a data gatherer without even realizing it. When people make
comments about apps, your ears will perk up and you will take note. You will start
asking questions like, why do you prefer Waze over Google Maps?

You will learn to become a problem solver. You will learn to think logically so that
you can tell the computer in a step-by-step manner how to perform an operation.
Any software developer will confirm that programming is an iterative process.
It's a continual cycle of coding, troubleshooting, and debugging. Trial and error
will become second nature, as will taking a step back to figure out why something
that just worked a minute ago now seems broken. And, you will learn to assume
the role of a designer. It is no longer accurate to merely depict programmers holed
up by themselves at a computer, creating white text-based code on black screens.
Developers of mobile apps are also designers who think about and create attractive
and intuitive user interfaces (UIs). Much of the design work happens not at the
computer; it includes conversations with potential users, involves pens, paper,
and post-it notes, and uses storyboards or sketches. Only once you have your app
designed on paper do you sit down at the computer to begin coding. And then,
you will not find the traditional black and white interface, as the MIT App Inventor
platform is interactive and full of colorful blocks that snap together.

Unleashing Creativity with MIT App Inventor 2

[4]

Brainstorming app ideas
Chances are you already have an idea for a mobile app. If not, how can you think
of one? The best way to start brainstorming app ideas is by starting with what
you know. Which app do you wish existed? Which app would you and your
friends, coworkers, or family members use, need, or like? Which problem in your
community, network, or circle of friends could be solved with a digital solution?
Maybe, you loan out books to friends, but don't have a system to keep track of who
borrowed what. Maybe, you want to do a clothing swap with people who are your
size, so you want to post pictures of the items that you have available for trade and
you want to view othe listed items in your size. Maybe, you have a favorite app that
you use all the time, but you wish it had just one other feature. Maybe, when you
meet your friends in a public place, it's hard to know whether they're nearby without
a lot of texting back and forth, so you want to create an app that shows everyone's
location on one screen. The possibilities are endless!

The key to successful brainstorming is to write down all of your ideas no matter how
wild they are and then talk to people about them to get feedback. Input from others
is an essential part of the research needed to ensure that your app idea becomes a
successful app that people will want, use, and/or buy. On a recent business trip,
we had an idea for a travel app because we always seem to forget at least one
essential item. Over breakfast at the hotel, we discussed the app idea with a couple
of colleagues and received amazing insights that we hadn't thought of, such as a
reminder notification to fill any prescriptions well before the trip and a weather
component, so we could be sure to pack appropriate clothes for each destination.
The more people you talk to, the more market research you will conduct and the
more defined the overall app's concept will be.

The Design Thinking process
Design Thinking (more information about Design Thinking can be found at
http://dschool.stanford.edu) is a user-centered process for creative problem
solving. While not developed specifically for mobile app development, the Design
Thinking process is particularly effective when applied to mobile app development.
We recommend using the following design phases:

www.allitebooks.com

http://dschool.stanford.edu
http://www.allitebooks.org

Chapter 1

[5]

Most likely, you are not creating an app that you alone will use, so you must
discover what potential users need, want, or prefer in an app.

Empathize
Your first goal is to understand the people who would be using your app. Thus, this
phase is called, Empathize. You can easily conduct research through interviews by
asking an array of potential users what types of apps they currently use, what app
features they like or dislike, what apps they wish existed, and if they would use an
app like the one you plan on making. Interviews can provide valuable feedback and
be a source of inspiration for new ideas.

For example, if you plan to create a book club app that coordinates many people's
calendars so that you can schedule a book club discussion during a time when
everyone is available, ask book club members what features they would like to see
in the app. Will there be an RSVP or a cancel button? Will there be directions to the
location? What are the transportation or parking options? Will there be a link to
Amazon to buy or download the next month's book? How can the app help members
decide on which book to read next? Since the meetings are potlucks, is there an
option to include what food or drink each member will bring? What is a quick and
efficient way to contact all the members? Through this data gathering stage, you
may discover a wealth of new features for your app that you had not previously
thought of, or you may get a confirmation that you are indeed on the right track.
Understanding what potential users want is an essential part of the app building
process, from the very beginning of concept creation all the way until the final stage
of deployment.

Unleashing Creativity with MIT App Inventor 2

[6]

Define
Once you've gathered research data, what do you do with that information and
how do you fold it into your design? In the Define phase, you will synthesize the
data you've collected to create a clearer picture of what your app will do, how it will
function, and the purpose it will serve. You may have collected pages and pages of
ideas and comments from your interviews. What themes or patterns emerge when
reviewing them? What ideas seem the most salient? What app functions were people
most excited about? Reviewing user feedback will help you structure and streamline
your app concept so that it is clear and specific in purpose and function. This stage of
flushing out ideas so the best ones emerge will also help you create accurate visuals
in the next phase.

Ideate
Given all of the input you need and want from your potential users, what solutions
can your app offer? Now, it is time for the Ideate phase to create an experience
map or storyboard with pen, paper, and post-its to delineate all of the app's
functionalities. Each piece of paper will represent one screen and display the user
interface (UI) designated for that screen. This process usually requires a lot of
revisions and may produce numerous versions of the app, which you will want to
keep, as they may be helpful down the line when creating updates. We find it helpful
to put all of the drawings up on a wall so that you can visualize the whole app map
and its sequencing. This is also the time to include design features that you like or
find appealing. Remember, all of the apps you see in marketplaces started the exact
same way, with an idea. Inspiration for one can come at any time and from any
experience. We recommend dedicating a notebook exclusively for ideas, so you can
jot notes when you get inspired or see an app with a look and feel that you like. This
will be a valuable resource for you as you continue down the road of app making.
As with any design process, this Ideate stage takes time. This is a good thing because
you want time for your ideas to simmer and percolate. Taking a break and coming
back to your sketches with fresh eyes usually offers new perspectives , ideas
and clarity.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[7]

Prototype
Now that you've reached the Prototype phase, it is time to sit down at the computer
and build your app. This may be daunting at first because you are just learning how
to use MIT App Inventor, but the step-by-step guides in this book will walk you
through each stage of app development. The provided tutorials will teach you about
the various MIT App Inventor components, what they do, and how to add behavior
to them by snapping blocks together. Once you become familiar with component
functions and get the hang of coding with blocks, you will be able to transfer this
knowledge to create your own app. Since you will have already done all of the
phases of the the Design Thinking process in this chapter and laid the groundwork
for your app, you will be able to particularly concentrate on the components you will
need to build your app.

Test
When you get to the point where you think your app is done, think again! Test your
app with a small group of users before offering it to the world in an app marketplace.
These alpha and beta testers will help you discover bugs or if things are not working
as they should. Learning to troubleshoot is often a frustrating process; but by this
stage, you will have refined your skills as a problem solver, and you will have more
ideas on how to fix bugs. Also, Chapter 8, Expanding Your Mobile App Development
Skills, of is devoted to tools to expand your app development skills. And while
the Test phase seems like the final one, you will discover that it is really another
beginning! The Design Thinking process is really a cyclical one, as there is always
room for edits, refinement, and of course, version 2.

If you get stuck at any time, there are many resources on the MIT App Inventor
websites at, http://appinventor.mit.edu/ and on http://www.appinventor.
org/ to help you. In addition to tutorials, there is an MIT App Inventor Gallery
where you can view apps along with the source codes that other people have created
and shared. If an app has features that you'd like to include in your app but you
don't know how to code yet, you can download the app, look at the blocks, and teach
yourself how to code them! Also, there is a community forum online where you can
ask questions and learn from more experienced users.

http://appinventor.mit.edu/
http://www.appinventor.org/
http://www.appinventor.org/

Unleashing Creativity with MIT App Inventor 2

[8]

Computational thinking
In becoming a mobile app developer, you will be learning many valuable roles:
brainstormer observer, researcher, data interpreter, synthesizer, design architect,
strategist, creative thinker, and last, but not least, coder. Part of becoming a mobile
app developer involves learning to think like a computer, that is, being able to tell
the computer what you want it to do so that it performs the specific operation.
Computers are not intuitive; they don't know what you mean or interpret what
you say. By programming or writing a code, you give the computer clear step-by-
step logical instructions to make it do something that you want it to do, such as
retrieve data, display information, or open another application. But sometimes, even
when you think you are being clear and logical, the computer does not respond as
you intended. As coding is an iterative process, there are a lot of rounds of trying
something to see if it works, and then when it doesn't, trying something else.
The more you fail, the closer you will get to finding a successful path. Learning
to troubleshoot, debug a program, or think of yet another solution comes with
the willingness to be open, think creatively, and try and try again. You will soon
discover that by becoming a coder, you are also honing your skills as a problem
solver.

Best practices to design apps
Since there is an abundance of Android apps that are available, you can easily
research design principles.

Pay attention to all the features of the UIs. For example, look at 10 different chess
game, solitaire, or weather apps. You will see a wide variety of UIs and start learning
how different developers approach the exact same app. Which ones are easy to
navigate and use? What distinguishes one as more appealing than another? Which
home screens provide the best overview of an app's set of features? How are menus
and drawers displayed? How easy is it to return to the previous screen? How do you
navigate to the home screen? How are text elements highlighted when in use? How
are screens mapped out? Where can you find instructions? Where do you find help?
Pay attention to cues, such as what colors, animations, or pop-up messaging occur, to
let you know that X is happening.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[9]

Great design is simple. Often, the tendency is to want your app to do it all. You've
received tons of feedback from your interviews and you want to incorporate all
of the brilliant ideas into your app. Since this is your first app-making experience
with MIT App Inventor, we recommend you to choose the core features that are
necessary, and make them clear and easy to use. If needed, you can always layer
more complex features in the future versions. Think about your own app usage.
Most of us use apps very quickly or intermittently (unless we are on a long subway
ride, playing a game on our phone or reading a digital book). Rarely do you use all
of the features of an app at any given time. Most often, you use an app for a specific
purpose and then you're done. Keep your app simple.

Iterate, iterate, and iterate. Designing, like coding, requires the ability to be open
to experimentation. And fortunately, App Inventor facilitates this process with
instant feedback through IDE. Try a component, add behavior (blocks), and see what
happens on your connected device. Add a different behavior; see what happens on
your connected device. Add colors, arrangements, and fonts; see what happens on
your connected device. Do you get the drill? Design involves a lot of trials, errors,
and failures, which is ultimately a good thing because it gets you going in a different
direction. You may have your heart set on a design idea only to discover that, once
you have tried it out, you don't like it that much. Don't be discouraged! This is the
time to investigate other options. Try this, that, and the other. Expand your creative
scope through several rounds of playing and then testing.

App designing, like any artistic endeavor, takes time. Try not to rush the creative
process. Indeed, MIT App Inventor makes it easy to make mobile apps, but to
craft a well-designed app that looks appealing and works seamlessly requires the
investment of time, passion, and creativity. Take breaks often, spend time outdoors,
play a game or engage your mind in another project so that when you return to your
app, you will approach it with fresh eyes, energy, thoughts, and inspiration.

MIT App Inventor – purpose and potential
While making apps with MIT App Inventor, there is much more going on than just
learning to code. The mission of MIT App Inventor is to democratize coding so that
everyone, regardless of age, schooling, or profession, has the opportunity to create
technology. Coaches, players, teachers, students, doctors, patients, conductors,
cellists, pilots, or passengers can all make mobile apps that are important to them
and that make their lives happier, better, or more productive.

Unleashing Creativity with MIT App Inventor 2

[10]

As a digital solution, your app may have originally been intended to solve a problem
that you observed or experienced. But once you share it in an app marketplace, it
could impact people you don't even know and may never meet. MIT App Inventor
makes it possible for you to expand your scope of influence from your immediate
local community to a worldwide scale. You can bring others joy and laughter with
a simple game, you can help college-bound seniors study for a standardized test, or
you can provide a tool that teaches travelers common phrases in other languages.
Contributing positively to society is one awesome way to use your new rockstar MIT
App Inventor skills.

As you begin creating apps and see the impact they have on others, you may
broaden the scope of what you think is possible for yourself. Have you thought
about becoming a social entrepreneur? Will people pay for the technology you
have created? Does your app have the growth potential to serve new and different
users? How can you expand your business acumen to learn how to build and market
successful mobile apps? Even though you will be starting off with small and simple
apps, always remember to dream big in what you do and who you are.

While MIT App Inventor offers an easy and approachable way to learn about coding
and software development, it may indeed also serve as an on-ramp for further
computer science education. Once you see the skill growth potential, such as how
creating technology can positively impact others or that you can sell your digital
solutions, you may indeed become interested in expanding your knowledge of
technology further by delving into other software languages or science learning
opportunities, such as maker-spaces or hackathons.

Discovering the possibilities of MIT App
Inventor
MIT App Inventor empowers anyone regardless of age or coding experience to
transform an app idea into a prototype and ultimately into a full-fledged mobile
application. What will your app do? As you begin your app-making journey, you
may wonder about what types of apps could you possibly create with App Inventor?
Since the apps you make will be shared or sold for use on an Android smartphone
or tablet, you can create apps that access the full functionality of those devices.
Your apps could do things such as speak, take photos (or selfies), make phone calls,
text, translate SMS messages, Tweet, play music or videos, use GPS (maps or other
websites), scan bar codes, set timers (alarms or reminders), control robots, launch
others apps, track your movement, and so on. Given the array of the abilities of
Android devices, the possibilities seem endless!

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[11]

MIT App Inventor examples
Before beginning to learn MIT App Inventor, we think it is helpful to review some
examples MIT App Inventor apps so that you have an idea ahead of time of a range
of possibilities. As you start learning MIT App Inventor, you can begin by making
simple apps; but in the back of your mind, remember this array of app examples,
as they can serve goals or be an inspiration to help you unlock your creativity and
designing skills. Think of it this way if you want to become a watercolor painter,
but have never painted before, you would look at many watercolor paintings made
by professionals or people with more experience than you to get inspired, to have a
visual of what is possible, and to learn how the paintings were created.

The following examples are a mix of beginning, intermediate, and advanced MIT
App Inventor apps. Some were created by individuals, who were inspired to make
a specific app, while others were created by groups of people for a project or as a
contest submission. One thing all of these apps have in common is that before the
app developers spent hours and hours perfecting their UIs and creating blocks
of code, they were just like you, starting out with little or no previous coding
experience. All of the skills you develop in this book through basic and intermediate
app-making will serve as a solid foundation for you to build upon to be able to create
more complex, sophisticated apps in the future. The introductory tutorials will teach
you the MIT App Inventor basics and equip you to tackle app creation from scratch.

Stopwatch and Timer
Jari Pohjasmäki from Finland developed the following useful and simple Stopwatch
and Timer app:

Components used: Button, Label, TextBox, Image, ListPicker, Arrangements, Clock, and Notifier

Unleashing Creativity with MIT App Inventor 2

[12]

Yahtzee
This app mimics the classic game of Yahtzee, where the object of the game is to
score points by rolling five dice. The dice can be rolled up to three times in a turn
and the game will consist of 13 rounds. Each player scores their roll in one of the 13
categories. Once a category has been used, it cannot be used again. Rolling a Yahtzee
is five-of-a-kind and scores 50 points; the highest of any category. Whoever scores
most points will win!

The following screenshots show the total gameplay points for different roles of
the dice:

Components used: Button, Label, Notifier, and Alignments

BYJ3S
Vicenta Albeldo and Jesus Gil created BYJS3, a digital pet game. This app allows you
to play with, feed, and bathe your very own virtual pet. The following screenshots
show the incorporated hand-drawn images that the developers have animated:

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[13]

Components used: Clock, TinyDB, Image, Alignments, Canvas, and Sound

Loops
Developed by Andrea Zaffardi from Italy, Loops won the MIT App of the Month
contest in June 2015. It is a puzzle game that requires the player to rotate the pipes
to form a closed loop before time runs out. There are 100 levels of gameplay. The
following screenshots show the game in the various stages:

Components used: Image, Player, Clock, Sounds, TinyDB, Button, Label, Slider, and Alignments

Unleashing Creativity with MIT App Inventor 2

[14]

Quartet
Dr. Arun Mehta from India created Quartet for his niece, who loves to dance, but
hates math. He wanted to show her how math can convert movement into things,
such as graphics and music. With a wave of the phone, the app plays music with as
many as four instruments (piano, pan flute, strings, and tin drums) while displaying
animated graphics. Music starts and stops with a simple screen touch. A button
displays a list of instruments for the user to choose among. If just one instrument
is selected, the app will play all of individual keys of that instrument. Moving the
phone in different patterns will create new music!

The following screenshots show visuals as the app plays music:

Components used: Accelerometer, Canvas, Ball, ImageSprite, Button, Label,
Sound, Player, Alignments, and Animation

Brain Reaction Accelerator
Created by Meghraj Singh of India, Brain Reaction Accelerator is a puzzle app that
provides brain teasers to be solved within a time frame. There are five games to
choose from, including Refocus, True Color, Quick Pick, Sum It Up, and Expression
Puzzle. Compete against your best score or among global users. The following
screenshots show a sequence from registering to choosing and playing a game:

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[15]

Components used: Button, Label, Alignments, ListPicker, TextField, Canvas, ImageSprite

ConstHelp – Contractor Tools
Created by Derek Drew from the United States, Construction Calculator is a tool
for people on building sites. It performs unit conversions, assists with project
management, provides a to-do list keeper, and measures distances. It has an
autodialing feature for calling customers or vendors, but includes autotexting for
safety while driving to or from a site. The following screenshots show the home
screen, a screen to calculate volume, and a location screen:

Components used: Button, Label, WebViewer, LocationSensor, Alignments,
SMS Messaging, ListPicker, and TextField

Unleashing Creativity with MIT App Inventor 2

[16]

UMATI
In the spring of 2015, MIT students Carolina Morgan, Fei Xu, Marcel Williams,
and Rida Qadri created the mobile app UMATI for the urban planning course
11.S938: Crowd Sourced City—Social Media, Technology, and Planning Processes. The
class enabled students to work with actual planning and advocacy organizations to
develop digital technology solutions for planning problems. Matatus bus routes in
Nairobi were not standardized. They were often created and changed by the whim of
private drivers or as a result of traffic conditions and it was difficult to know which
buses traveled which routes and where the buses stopped. The MIT Civic Design
Lab, the University of Nairobi, the Center for Sustainable Urban Development,
and GroupShot helped to create maps using GPS, but the challenge that the MIT
students tackled was keeping the maps accurate and current. Their solution used
the MIT App Inventor to create UMATI, a crowd-sourced app, to track riders' routes
and stops. They incentivize riders to collect data by offering them tokens (called
MaTokens) that give discounts at local businesses. The following screenshots show
the home screen and the Track Me screen:

Components used: Button, Clock, Notifier, Image, Label, Location Sensor,
ActivityStarter, FusiontablesControls, and Alignments

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[17]

Ez School Bus Locator
Created by Arjun Santhosh Kumar, an eighth grader from Chennai, India, Ez School
Bus Locator is a location-tracking app that allows schools, parents, and students to
monitor the location of school buses through voice activation or a key tap. Students
scan a QR code upon entering and exiting the bus, so parents can track their
children's routes to and from school. Automated SMS messaging keeps parents
informed. The following screenshots show the home screen and two views of a
location-tracking screen:

Components used: SMS messaging, GPS, map, QR Code, Button, Image, and Alignments

Youth Radio
This is an app that enables podcast listeners to rate radio shows and offer feedback.

Youth Radio is a non-profit organization based in Oakland, CA. Youth Radio
programs empower young people to create media content by teaching them
broadcast journalism and technology skills. Many of the podcasts that the students
create are aired on National Public Radio across the United States. In an effort to
interact with their listeners, develop relevant content, and get feedback, Youth Radio
students created a mobile app with MIT App Inventor 2, enabling listeners to rate a
radio show, add comments, and offer suggestions for future topics.

Unleashing Creativity with MIT App Inventor 2

[18]

The following screenshots show the different ways that listeners can interact with
Youth Radio:

Components used: Button, Clock, Notifier, Image, Camera, TinyDB, Player,
Sharing, Label, Location Sensor, FusiontablesControls, Alignments, and MediaStore

Rover 800 Remote
Rover 800 Remote app is an MIT App Inventor example of the Internet of Things.
Paul Clements from the UK built a Bluetooth controller for his car that, with the help
of microcontroller (sensor), can control the door locks, trunk release, fuel flap release,
horn, and lights. It also remembers the car's address (if available), so if the cell phone
housing the app is inadvertently locked in the car along with the keys, a text message
sent from another phone can unlock the car. This app could be modified for a wide
range of vehicles. The following screenshots show the home screen, the registration
screen, and the overview screen:

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[19]

Components used: Bluetooth, List Picker, Button, Label, Image, and Alignments

Summary
While the bulk of this book centers on learning to code with MIT App Inventor,
this particular chapter highlights the many other learning outcomes gained from
engaging in the mobile app development process. Taking an app concept and
building it out into an actual mobile app is both a concrete and a creative process.
Attention to detail and iteration is vital for both code and design to work effectively
and synergistically. Whether you're creating a game to play with your friend, an app
to promote philanthropy involvement on campus, or an app to kickstart a recycling
program in your neighborhood, the Design Thinking process is as much a part of
app development as coding. Skills such as brainstorming, researching, interviewing,
synthesizing, ideating, storyboarding, designing, troubleshooting, problem solving,
and testing are not only integral to app building, but are also transferrable to other
disciplines, helping to unlock creativity and flow in any endeavor.

Now that you've been introduced to MIT App Inventor and your new role as an
app designer and developer, the next step will be to learn how to set up MIT App
Inventor. Let's get rolling!

www.allitebooks.com

http://www.allitebooks.org

[21]

Setting Up MIT App
Inventor 2

Now that you have been introduced to MIT App Inventor 2 and you have learned
about your new role as an app developer and designer, let's get started with the
technical setup! MIT App Inventor is a free web-based application that runs on a
web browser and saves your projects on the cloud. The magical part about MIT
App Inventor is that you can live test your app during each stage of development.
In order to do this, you will need to set up connectivity that includes downloading
software to connect your computer to your Android mobile device or between the
onscreen emulator.

This chapter covers the following topics:

• System requirements
• Setting up a Google account
• Connecting your computer to your mobile device using wireless Internet (WiFi)
• Connecting your computer to your mobile device using a USB cable
• Connecting your computer to the onscreen emulator

Setting Up MIT App Inventor 2

[22]

The initial setup
To use MIT App Inventor, you will need a computer connected to the Internet, a web
browser, a Google account, an Android phone or tablet (but if you don't have one,
you can use the onscreen emulator), and a way to connect your computer to your
phone (either with WiFi or a USB cable). Setting up MIT App Inventor for the first
time can be a little daunting, but if you follow the steps based on your operating
system and how you will be connecting (via WiFi, a USB cable, or an emulator), it
can be a straightforward process. And remember, once you complete the technical
setup, you can start building mobile apps!

System requirements
In this section, we will cover the recommended software requirements that your
system (PC, browser, and Android device) must have in order to run MIT App
Inventor without any hassles.

Computer and operating system requirements:

• Macintosh (with an Intel processor): Mac OS X 10.5 or higher
• Windows: Windows XP, Windows Vista, Windows 7, Windows 8, or

Windows 10
• GNU/Linux: Ubuntu 8 or higher, or Debian 5 or higher (note: GNU/Linux

IDE is only supported for WiFi connections between computers and Android
devices)

Browser requirements:

• Mozilla Firefox 3.6 or higher (if you are using Firefox and have the NoScript
extension installed, you will have to disable it by turning the extension off)

• Apple Safari 5.0 or higher
• Google Chrome 4.0 or higher
• Note: Microsoft Internet Explorer is not supported

Android device (phone or tablet) requirements:

• Android Operating System 2.3 (Gingerbread) or higher

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[23]

Signing up a Google account
If you already have a Google Account (or a Google Gmail account), please skip to the
section: Logging into MIT App Inventor.

The login authentication and storage for MIT App Inventor projects are linked to
a Google account. Thus, you need to set one up. It is free! You will also need this
Google account when you are ready to upload your completed apps onto the Google
Play marketplace. There is an option to create an online profile, which you can make
public or private.

You can sign up for a Google account with or without creating a
Gmail e-mail account. For example, some school systems use Google
for Education with Google accounts, but students do not have Gmail
addresses.

The minimum age to set up a Google account in the Netherlands is 16, in Spain and
South Korea, it is 14, and in the US and all the other countries, it is 13.

Sign up for a Google account at https://accounts.google.com/signup. The form
asks you to create a username and password; you will need these to use MIT App
Inventor. While there is a field to enter a mobile phone number, it is not a required
field. However, you will need to enter an e-mail address to complete the setup. If
you don't have an e-mail ID, please ask a parent, guardian, or teacher to fill one in. It
is used for security purposes, for example, to help recover a forgotten password.

Logging in to MIT App Inventor
Once you have set up your Google account, you can log into MIT App Inventor for
the first time at http://ai2.appinventor.mit.edu/ (or by clicking the Create
Apps! button on the home page http://appinventor.mit.edu/). Either method
directs you to the Google Sign-in screen.

If you are not signed into your Google account, a login screen will appear, asking for
your username and password. If you are already signed into your Google account
from a previous session, you will see the following message:

The application MIT App Inventor Version 2 is requesting permission to access
your Google Account. Please select an account that you would like to use.

https://accounts.google.com/signup
http://ai2.appinventor.mit.edu/
http://appinventor.mit.edu/

Setting Up MIT App Inventor 2

[24]

Your Google account will appear with a radio button next to it. Click on the Allow
button or you can choose another account, if you have one. The choices will look as
follows:

Once signed in, you will be directed back to MIT App Inventor, where new users will
need to agree to the MIT App Inventor privacy policy and terms of use by clicking
on the button at the bottom of the page, which will look as follows:

Next, you will be taken to the projects page. A pop-up window will ask you to take
a short survey. The information you provide is confidential and it will assist with
research and help the MIT App Inventor team to improve its service for users around
the world. The survey is optional; click on one of the three options, as shown in the
following screenshot:

Then, you will see a pop-up window that looks similar to the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[25]

This type of information windows will appear regularly when logging into the MIT
App Inventor (unless you opt out by clicking on the Do Not Show Again checkbox)
to give you latest information from our developers about updates and releases. They
also provide links to help you get connected. Be sure to read these when they appear,
so you can get the relevant information on MIT App Inventor updates. Then, click on
the Continue button.

To create your first MIT App Inventor project, click on the Start new project button
in the upper-left corner of the screen, as shown in the following screenshot:

Setting Up MIT App Inventor 2

[26]

A pop-up window (as shown in the following screenshot) will ask you to name your
project. No spaces are allowed in project names:

Once you type a name, click on the OK button. The project you just named will exist
under both Projects and My Projects in the top menu bar (as shown in the following
screenshot):

Congratulations! You are now in the Designer window (as shown in the following
screenshot); it is the Graphical User Interface (GUI) where you will create the look
and feel of your app:

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[27]

You are now ready to establish connectivity!

If at any point during the connectivity setup process, you need additional help, click
on Guide in the upper-right corner of the top menu bar of the Designer window (as
shown in the following screenshot):

Connectivity setup
This first set of instructions is for all the users with an Android mobile device
regardless of how you will be connecting this device to your computer (WiFi or
USB cable) and regardless of your computer's operating system (Mac, Windows, or
GNU/Linux). If you will be using the onscreen emulator, skip to section: Connecting
the emulator or connecting using a USB Cable.

Now that you have completed the initial setup to create a project in MIT App
Inventor, you are almost ready to create apps. But first, you need to connect your
computer to your Android mobile device so that you can see your app take shape as
you build it. To do this, you will need the free AI2 Companion App.

Downloading the AI2 Companion app
There are two ways you can get the AI2 Companion app onto your Android
device: through the Google Play Store or through direct download. Following are
instructions for both methods:

• Google Play (recommended for automatic updates): If your device has a
QR code reader app installed, you can scan this QR code (see the following
image). It will take you to the Google Play Store where you can download the
AI2 Companion app to your device. (If you don't have a QR code reader, you
can find one for free by doing a search in the Google Play Store.)

Setting Up MIT App Inventor 2

[28]

Alternatively, you can access the Google Play Store to download the AI2
Companion app by typing the following URL in a web browser on your
device:
https://play.google.com/store/apps/details?id=edu.mit.
appinventor.aicompanion3

• Direct APK download (requires manual updates): If for some reason you
cannot access the Google Play Store, you can download the app directly on
your phone by scanning this QR code (see the following image):

Alternatively, you can download the app by typing the following URL in a
web browser on your device: http://appinv.us/companion.

Note that when downloading the app directly (also known as side-loading), you will
need to do as follows:

1. Change your device's settings to allow the installation of apps from unknown
sources. To find this setting on versions of Android prior to 4.0, go to
Settings | Applications and then check the box next to Unknown Sources.
For devices running Android 4.0 or later, go to Settings | Security or
Settings | Security & Screen Lock and then check the box next to Unknown
Sources and confirm your choice.

2. Manually update the MIT AI2 Companion app. Since you will not receive
automatic updates from the Google Play Store, whenever you log in to App
Inventor and see an information window popup indicating that the MIT AI2
Companion app has been upgraded, you will need to install the new version
by repeating the direct downloading (side-loading) steps. But first, you must
uninstall the previous version of the MIT AI2 Companion app. To uninstall,
locate the MIT AI2 Companion app's icon on your phone and tap and hold it
until you see a message with an uninstall option. Click on uninstall.

www.allitebooks.com

https://play.google.com/store/apps/details?id=edu.mit.appinventor.aicompanion3
https://play.google.com/store/apps/details?id=edu.mit.appinventor.aicompanion3
http://appinv.us/companion
http://www.allitebooks.org

Chapter 2

[29]

Connecting your computer and Android
device with WiFi
These instructions are for Android device users, who will be connecting to their
computer via wireless Internet (WiFi).

The fun part about building apps with the MIT App Inventor is live testing, that
is, seeing your progress appear on your mobile device in real time. For the IDE to
function properly and automatically update your app on your device; you must
ensure that your computer (running MIT App Inventor) and your Android device
(running the AI2 Companion app) are connected to the same WiFi network.
Please ensure that this is the case before you continue.

On your computer, in the Designer window, click on the top menu item, Connect,
and choose AI Companion from the drop-down list, as shown in the following
screenshot:

A pop-up window with a QR code and a six-character code will appear on your
computer screen.

Setting Up MIT App Inventor 2

[30]

On your mobile device, launch the AI2 Companion by clicking on the app's icon.
A screen will appear with the following options: type in the six-character code or
scan QR code:

• To connect with QR code: Click on the blue button on your mobile device
that says scan QR code. This will launch the QR code reader in the AI2
Companion app. Hold the mobile device up to the QR code on the computer
screen to automatically scan.

• To connect with six-character code: Simply type in the six-character code
shown on your computer screen into the white text box on your mobile
device that says Six Character Code (do not click return or enter on your
keyboard). Then, click on the orange button connect with code.

The following screenshot summarizes the connectivity steps:

The code on your computer and your mobile device

Within a few seconds, you will see Screen1 from the designer window appear on
your mobile device.

If not, try the following troubleshooting options:

• Your device may not be connected to WiFi. Make sure you see an IP address
at the bottom of the AI2 Companion app screen on your phone or tablet (see
the preceding screenshot).

• Your mobile device and computer may not be connected to the same WiFi
network.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[31]

Connecting the emulator or connecting using
a USB cable
These instructions (Steps1-4) are for emulator users or for those connecting a
computer to a mobile device via USB cable.

If you do not have a mobile device, don't worry; you can still test the apps you build
with MIT App Inventor by using the onscreen emulator. It simulates an Android
mobile device (although there are some functions that cannot be tested, such as the
accelerometer). You can use the emulator to share apps with others, even through the
Google Play Store. Many people build apps this way.

On the other hand, you may have an Android device, but your school or
organization may have firewalls preventing the use of WiFi. In this case, you can
still use live testing by connecting your computer to your mobile device using a USB
cable.

The same software and setup is needed whether you are connecting to the emulator
or connecting your mobile device via a USB cable.

Step 1 – installing the App Inventor setup software
Follow the instructions for your computer's operating system.

Setting Up MIT App Inventor 2

[32]

Installing the App Inventor setup software for Mac OS X
Use the following steps to install the App Inventor setup software on your Mac OS X:

1. Download the installer via http://appinv.us/aisetup_mac.
2. Double-click on the downloaded file (most probably located in the

Downloads folder) to start the installer AppInventor_Setup_v_X.X.dmg
(where X.X is the version number).

3. Depending on your settings, you may see a pop-up window informing you
that the file cannot be opened (as shown in the following screenshot):

4. If the MIT App Inventor setup software cannot be opened, go to System
Preferences | Security & Privacy | General and click on the Open Anyway
button, as shown in the following screenshot:

www.allitebooks.com

http://appinv.us/aisetup_mac
http://www.allitebooks.org

Chapter 2

[33]

5. If your settings are locked, you may have to enter your administrator
password in order to make changes.

6. You will see a welcome message, as shown in the following screenshot. Then,
click on the Continue button.

7. Read and accept the software license agreement (not shown).
On the Standard Install screen (as shown in the following screenshot),
click on Install:

Note: Don't change the install location.

Setting Up MIT App Inventor 2

[34]

8. Enter your computer's password to confirm that you want to install the
software (not shown). Click on Ok.

9. The installer confirms that the App Inventor Setup package was installed (as
shown in the following screenshot):

Depending on how you will be connecting your computer to your device, Mac users
can proceed to Step 3 – opening a project and connecting to the emulator or Step 4 - setting
up your device with a USB cable.

Installing the App Inventor setup software for Windows
This set of instructions consists of part A and part B.

Software installation – part A
1. Type the following URL in a web browser on your computer to download

the installer: http://appinv.us/aisetup_windows.
2. Locate the MIT_App_Inventor_Tools_2.3.0_win_setup.exe (~80 MB)

file in your Downloads folder or on your desktop. The location of the
downloaded file on your computer will depend on how your browser is
configured.

3. Open the file by double-clicking on it.

www.allitebooks.com

http://appinv.us/aisetup_windows
http://www.allitebooks.org

Chapter 2

[35]

4. You may be asked if you want to allow a program from an unknown
publisher to make changes to this computer (as shown in the following
screenshot). Then, click on the Run button.

5. You will see a Welcome to the MIT App Inventor Tools 2.3.0 Setup window
(as shown in the following screenshot). Then, click on the Next button.

Setting Up MIT App Inventor 2

[36]

6. Read and accept the software license agreement (as shown in the following
screenshot). Then, click on the I Agree button.

7. Choose among the installation options. You can select whether you want to
install the setup tools for all users or a single user. Note that you will need
administrative privileges if you choose all users (as shown in the following
screenshot). Then, click on the Next button.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[37]

8. Install Location is set to the default location depending on whether you are
running a 32-bit or 64-bit machine as a single user or for all users (as shown
in the following screenshot). Then, click on the Next button.

9. Choose installation components. By default the installer will install the
setup tools but gives you the option to add a desktop icon (as shown in the
following screenshot). Then, click on the Next button.

Setting Up MIT App Inventor 2

[38]

10. Choose a Start Menu folder. By default, it is set to MIT App Inventor Tools
(as shown in the following screenshot). Then, click on the Install button.

11. You will now see a progress bar that shows which files are being installed
along with the status (the percentage of completion) of the installation.
Wait for a few minutes for this process to finish.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[39]

12. After the MIT App Inventor Tools is installed, the last screen will by default
automatically launch the aiStarter program for you. Deselect this option
if you don't want it to be started at this point (as shown in the following
screenshot). Click on Finish.

Driver installation – part B
If you choose to connect your Android device using a USB cable to a Windows
machine, then you will need to install special Windows driver software. Different
devices may require different drivers. Manufacturers often create and supply the
drivers. You may need to search the Web to find the appropriate driver for your
Android device.

More information and installation instructions can be found at http://
developer.android.com/sdk/win-usb.html and http://
appinventor.mit.edu/explore/content/windows-drivers.
html.

Windows users, proceed to Step 2- Launch aiStarter.

Installing the App Inventor setup software for GNU/Linux
You'll need sudo (super-user do) privileges to do the installation.

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/sdk/win-usb.html
http://appinventor.mit.edu/explore/content/windows-drivers.html
http://appinventor.mit.edu/explore/content/windows-drivers.html
http://appinventor.mit.edu/explore/content/windows-drivers.html

Setting Up MIT App Inventor 2

[40]

Note that the setup programs are 32-bit software. If you have a 64-bit system, you
may need to install libraries that let your machine run 32-bit software. One way to do
this is to run the following command:

> sudo apt-get install lib32z1

But, this might not work on all the GNU/Linux distributions, and you may need to
do some investigation on this topic for your particular system.

Instructions for systems that can install Debian packages (for
example Debian or Ubuntu)

1. Download the file by typing the following URL in a web browser on
your computer: http://commondatastorage.googleapis.com/
appinventordownloads/appinventor2-setup_1.1_all.deb. The
Debian file name is appinventor2-setup_1.1_all.deb. The location of
the downloaded file on your computer depends on how your browser is
configured. Typically, it will go into your Downloads folder.

2. If your system can install packages simply by clicking on the package file,
then do so.

3. If your system doesn't support clickable package installers, then navigate to
the directory where the file is located and run the following command:
> sudo dpkg --install appinventor2-setup_1.1_all.deb

4. With either method, you might need to ensure that the Debian file and the
directory it's located in are world-readable and world-executable. On some
systems, sudo does not have default privileges to read and execute all the
files. The software will be installed under /usr/google/appinventor.

5. You might also need to configure your system to detect your device. See the
Android developer instructions at the following link: http://developer.
android.com/guide/developing/device.html#setting-up. Find the
instructions under (#3) Set up your system to detect your device. Go to the
third bullet starting with If you're developing on Ubuntu Linux….

Instructions for other GNU/Linux systems
1. Download the file from the following link: http://commondatastorage.

googleapis.com/appinventordownloads/appinventor2-setup_1.1.tar.
gz. The file is named appinventor2-setup_1.1.tar.gz and it is a GZIP
compressed tar file. The location of the downloaded file on your computer
will depend on how your browser is configured. Typically, it will go into
your Downloads folder.

www.allitebooks.com

http://commondatastorage.googleapis.com/appinventordownloads/appinventor2-setup_1.1_all.deb
http://commondatastorage.googleapis.com/appinventordownloads/appinventor2-setup_1.1_all.deb
http://developer.android.com/guide/developing/device.html#setting-up
http://developer.android.com/guide/developing/device.html#setting-up
http://commondatastorage.googleapis.com/appinventordownloads/appinventor2-setup_1.1.tar.gz
http://commondatastorage.googleapis.com/appinventordownloads/appinventor2-setup_1.1.tar.gz
http://commondatastorage.googleapis.com/appinventordownloads/appinventor2-setup_1.1.tar.gz
http://www.allitebooks.org

Chapter 2

[41]

2. Install the files by first decompressing the file and then copying the
appinventor directory and its contents to the location /usr/google/
appinventor using a method appropriate for your operating system.

GNU/Linux users proceed to the next step.

Step 2 – launch aiStarter
This step is for Windows and GNU/Linux users connecting with the emulator or
with a USB cable. Mac users connecting with the emulator can skip to Step 3 – opening
a project and connecting to the emulator. Mac users connecting with a USB cable can
skip to Step 4 – setting up your device with a USB cable.

Starting aiStarter
The aiStarter program manages communication between the web browser and the
Android device (note that on the Mac platform, the aiStarter program automatically
starts at login). Whenever you log in to use MIT App Inventor with the emulator or a
USB cable on a GNU/Linux or Windows machine, you will need to start the aiStarter
program.

GNU/Linux users can do this with the following command:

> /usr/google/appinventor/commands-for-Appinventor/aiStarter &

Windows users can locate the aiStarter program from Start Menu or by double-
clicking on the aiStarter shortcut located on the desktop if you installed it during the
MIT App Inventor Setup tools installation process.

For convenience, you may want to arrange for this command to run automatically
whenever you log in or when the system starts. The precise way to do this depends
on which GNU/Linux distribution you are using. If this is unfamiliar to you, please
consult the documentation that comes with your distribution.

Proceed to the next step.

Step 3 – opening a project and connecting to the
emulator
This step is for all users connecting with the emulator regardless of the operating
system. All the users connecting with a USB can skip to Step 4 – setting up your device
with a USB cable.

Since you have already created your first project and named it, we now will connect
the emulator to display it.

Setting Up MIT App Inventor 2

[42]

On your computer, in the designer window, click on Connect located at the top
menu bar and choose Emulator from the drop-down list.

A popup will inform you that the emulator is connecting. This can take a few
minutes.

The emulator will initially appear with an empty black screen (#1). Wait until the
emulator is ready with a colored screen background (#2). After the background
appears, you should continue waiting until the emulator has finished preparing its
SD card; there will be a notice at the top of the phone screen while the card is being
prepared (#3). When connected, the emulator will launch and display the app you,
open in MIT App Inventor (#4 is empty, because for now, the new project is empty).

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[43]

Step 4 – setting up your device with a USB cable
This step is for all users connecting with a USB cable regardless of the operating
system.

On your Android device, go to Settings | Developer options, turn it on, and ensure
that USB debugging is turned on.

On most devices running Android 3.2 or older, you can find this option under
Settings | Applications | Development.

On Android 4.0 and newer, you can find it in Settings | Developer options.

On Android 4.2 and newer, Developer options is hidden by default. To
make it available, go to Settings | About phone | Build number and
tap on Build number seven times. Return to the previous screen, go to
Settings | Developer options | USB debugging and tap on it to enable
it (on some devices, it may be listed as Android debugging).

Setting Up MIT App Inventor 2

[44]

Step 5 – connecting your computer and device
(authenticating if necessary)
These instructions continue from Step 4 – setting up your device with a USB cable for all
users connecting with a USB cable regardless of the operating system.

Connect your Android device to the computer using a USB cable. Ensure that the
device connects as a mass storage device (not as a media device) and that it is not
mounted as a drive on your computer.

Note that if it is mounted, you can find it un-mount the device,
using the following instructions, but make sure your device is
connected to the computer via the USB cable.

There are three ways to un-mount any drive(s) that were mounted when you
connected your Android device by USB cable. They are as follows:

• Right-click to eject it
• Click on it and drag it to the trash
• Use Finder (on Mac) or My Computer (on Windows) and click on the arrow

next to the name

The first time you connect your Android device (4.2.2 and newer) to the computer,
a pop-up screen will appear on your device with the message: Allow USB
Debugging? Press OK. This will authenticate the computer to the device, allowing
the computer to communicate with it. You'll need to do this for each computer you
want to connect to the device, but only once per computer.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[45]

Step 6 – testing the connection
These instructions continue from Step 5 – connecting your computer and device
(authenticating if necessary) for all users connecting with a USB cable regardless of the
operating system.

With your mobile device still connected to your computer, go to http://
appinventor.mit.edu/test (this will open in a new tab on your browser) and see
whether you have gotten a confirmation that your computer can detect the device.
If the test fails, go to http://appinventor.mit.edu/explore/ai2/connection-
help.html and look at USB help for your computer (Windows or Mac). You won't
be able to use App Inventor with a USB cable until you resolve the connection issue.

Summary
As you may have discovered, establishing connectivity from the MIT App Inventor
web application on your computer to an Android mobile device or onscreen
emulator takes some time and patience. But we guarantee it is worth the effort.
As you start building an app and seeing its live development on your mobile device
(or emulator), it is not only exciting and satisfying, but necessary and helpful for
designing, troubleshooting, and testing. If you get stuck, you can always visit the
support pages on the MIT App Inventor website (http://appinventor.mit.edu/)
or ask for help in the community forum. Now that the technical setup is over, the fun
is about to begin! Let's learn how to make mobile apps with the MIT App Inventor!

http://appinventor.mit.edu/test
http://appinventor.mit.edu/test
http://appinventor.mit.edu/explore/ai2/connection-help.html
http://appinventor.mit.edu/explore/ai2/connection-help.html
http://appinventor.mit.edu/

www.allitebooks.com

http://www.allitebooks.org

[47]

Navigating the App Inventor
Platform

Now that you have created a new project and set up connectivity, you are ready to
begin learning how to make mobile apps! This chapter will provide a step-by-step
guide to navigate the App Inventor web application through the process of building
a game app called Fling. You will be using:

• The Projects View
• The Designer (a graphical user interface)

 ° Palette
 ° Viewer
 ° Components
 ° Properties

• The Blocks Editor (a visual programming language)
• The Integrated Development Environment (IDE)

Navigating the App Inventor Platform

[48]

The projects view
In Chapter 2, Setting Up MIT App Inventor 2, you logged into App Inventor for the first
time, created a new project, and named it, so at the moment, you only have one App
Inventor project. Once you start building more apps, all of the projects associated
with your Google Account will be listed under My Projects. Every time you log into
App Inventor, the platform will automatically open the most recent project that you
worked on. To pick a different project, click on My Projects in the top menu bar, or
to start a new project, click on Start new project in the upper left corner.

Creating a new project
We're going to build a game in this chapter. It will be similar to Pong, but instead of
a paddle, you will use your finger to fling the ball. Let's create a new project called
Fling. Note that project names containing no spaces must start with a letter. Use only
letters, underscores, and numbers. Click on Start new project in the upper-left corner
of the screen. A pop-up window will appear, as shown in the following screenshot.
Type in the word Fling. Once you click on OK, you will be taken into the Designer.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[49]

If you happen to have a previous project open in the Designer, you can still start a
new project in this view by clicking on Start new project listed under Projects in the
top menu bar, as shown in the following screenshot:

The Designer
When you open a project or start a new project, App Inventor will take you to the
Designer. This window is a graphical editor where you can create the look and feel
of your mobile app by choosing components (buttons, labels, images, and so on),
layouts (horizontal/vertical alignments), colors, fonts, and more. The next screenshot
is a layout of the Designer (with some helpful navigation hints):

Navigating the App Inventor Platform

[50]

The name of the open project is displayed in the upper-left corner. In the upper-right
corner, you will see toggle buttons for the Designer and Blocks Editor (the Designer
button is disabled at the moment, since we are currently in the Designer view). The
Designer consists of five panels, which are explained as follows.

Palette
The Palette (found in the left-hand column of the previous Designer image) contains
drawers that hold sets of tools called Components. Drawers group Components
by type such as User Interface, Layout, Media, Drawing and Animation, Sensors,
Social, Storage, Connectivity, and LEGO MINDSTORMS. It will take a little bit of
time to remember which drawer houses which Components and what functions they
have. More on Components later!

Viewer
The Viewer (found in the middle of the preceding Designer image) is the white
workspace in the middle of the Designer window. When you first create a project,
the default workspace name is Screen1. You cannot change the name of Screen1,
although you can change the title of the screen name. This can be done in the
Properties panel (as follows). The new screen name will be displayed in the Viewer
and be seen by app users. Later, you may want to add more screens to your app
and you can rename the subsequent screens. To build your app, you will drag
Components from the Palette drawers onto the Viewer. We will be using visual
components in our Fling app, so these will remain visible when dragged into the
Viewer. In the subsequent chapters, we will demonstrate the use of non-visible
components, which will not remain in the Viewer when added. Instead, they will be
housed underneath the Viewer.

Components
Components are the tools located in the Palette drawers on the left-hand side of
the Designer window (we will demonstrate what different components do once we
start building apps). Once Components are dragged into the Viewer, they will also
appear in the Components panel (found in the middle right of the Designer image).
The Components panel lists Components and organizes them by screens. You can
collapse and expand the screen Component contents for convenience. Components
are listed in columns so that it is easy to see whether they exist on their own or
within other Components.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[51]

To illustrate that some Components are inside other Components, the Components
panel will display them in a nested (indented) list. Note that when you click on
a Component in the Viewer, it will be highlighted in both the Viewer and the
Components panel and display editable options in the Properties panel (described
in the following section). And conversely, if you click on a Component in the
Components panel, it will also be highlighted in the Viewer. Once a Component
is clicked and it becomes active, you can either rename or delete it by clicking the
Rename or Delete button or you can view or edit its settings in the Properties panel.

Properties
The Properties panel (found in the right-hand side column of the preceding Designer
image) displays a set of configurable settings (such as size, color, and alignments)
for each Screen and Component added to the Viewer. In the subsequent chapters,
you will be adding more and more Components (and Screens), so make certain
that the correct item is highlighted before you change its settings. The name of the
active Component (or Screen) appears at the top of the Properties pane (in the earlier
Designer screenshot, the active Property is Screen1 as indicated at the top of the
Properties panel).

Media
The Media panel is located underneath the Components panel (see the Designer
screenshot). This feature enables you to upload images, sound files, or other media
files from your computer to your project. If you find a creative commons (freely
shared, uncopyrighted) photo online that you'd like to use in your app, you must
first download it and then click on the Upload File button in the media panel (you
cannot download an image from the Internet directly into the App Inventor). Once
the file is uploaded, it will be listed in both the Media panel and the Properties panel
(to delete media files, click on the media file name and a popup will appear to delete
the file). Note that even though the media files can also be added to the Properties
panel, they cannot be deleted from the Properties panel. How to use an image,
sound, or video file in your app will be explained in the future chapters.

Creating a game app
You've already logged into App Inventor with your Google Account, created a new
project, named it Fling, and learned how to navigate the Designer screen. It's time to
create your first mobile app!

Navigating the App Inventor Platform

[52]

Since this is a tutorial, we will explain the way to play our game. But, if
you were starting from scratch to create your own game, you would want
to make sure that you've put in the time, effort, and energy to figure out
what you want it to do and what you want it to look like. We outlined the
design process for mobile app creation in Chapter 1, Unleashing Creativity
with MIT App Inventor 2. This may be a good time to review it.

The object of the Fling game app is to fling a moving ball with your finger to prevent
it from hitting the bottom edge of the screen and ending the game. When the Play
button is clicked, the ball will start moving from top to bottom. If it hits the bottom
edge of the screen before the user flings it away, the game will stop and a Game
Over notice will appear on the screen. The Reset button resets the ball to the top of
the screen and the Play button starts another round. In this game, you will learn to
design the user interface using these Components: a ball, a canvas (the game board),
a horizontal layout, buttons, and a label. You will learn to program:

• An animated object (ball) that moves randomly
• Conditions where the ball will respond to a screen touch
• An end-game mechanism when the ball touches the bottom of the screen
• A game over display when the game ends
• A button that starts the game by moving the ball downward
• A button that resets the game by repositioning the ball at the top of the

screen and erases the "game over" display

As you build your app, you will see your progress unfold on your mobile device or
emulator in real time using the IDE (Integrated Development Environment). Let's
get started!

Creating the UI in designer
The first thing you will notice in a new project is that Screen1 automatically exists
in the Viewer. As shown in the following screenshot, the name Screen1 appears in
three places: in the Viewer, the Components panel, and the Properties panel. Note
that this is also true for any component added to the Viewer. When a component is
highlighted (as shown with a light green box) in the Components panel, you will see
the corresponding properties for it in the Properties panel. While the name Screen1 is
not editable, the properties associated with Screen1 are such as the title, although we
won't be changing the Screen1 Properties in Fling.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[53]

To create a game interface for the Fling app, we will:

1. Add the canvas Component to Screen1.
2. Click on the Palette drawer: Drawing and Animation. It will open to reveal

three components: Canvas, ImageSprite, and Ball.

Navigating the App Inventor Platform

[54]

3. Click on Canvas and drag it to the Viewer, as shown in the following
screenshot:

Your Designer window will look like the following screenshot. The Canvas
component will automatically be named Canvas1 in the Components panel. If you
were to add another Canvas, it would automatically be named Canvas2. It is possible
to rename Canvas1, although we are not going to for this tutorial, since it is aptly
named. You can see that it is active (as it is highlighted with a light green box) in
both the Viewer and the Components panel. Being active means that you are able to
see and edit its properties in the Properties panel.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[55]

The Canvas is going to hold our Ball component, so we need to make it fill the
whole screen not just a tiny part of the screen like it is now. To change the size of the
Canvas, go to the Properties panel and click on the white text box below the Height
element (currently filled with the word Automatic). A pop-up box will offer choices
with radio buttons, as shown in the following screenshot. Click on the radio button
next to Fill Parent. Click on the OK button.

Repeat these steps for the Width. You will see that the Canvas now fills the entire
Viewer. Next we will change the color. At the top of the Properties panel, click on
the word White underneath BackgroundColor. A drop-down list of colors will
appear (not shown); select Gray. The Designer window should now look like the
following screenshot with the gray canvas filling up the entire Viewer.

Navigating the App Inventor Platform

[56]

Next, we will add a ball. Go back to the Drawing and Animation Capitalize Palette
drawer, click on Ball, and drag it to the Canvas in the Viewer, as shown in the
following screenshot:

The Ball will end up on the Canvas wherever you drop it. It is named Ball1 in the
Components panel. Notice how Ball1 appears nested (indented) in the Components
panel list. This is because you placed it within another component, the Canvas1.

You can position the ball's starting location, size, and color in the Properties panel.
Since Ball1 is already active, you can begin editing the options in the Properties
panel. Change the settings to match those shown in the following screenshot. We will
actually end up changing the ball's starting position once we start programming, but
this is just to get you familiar with the features available in the Properties panel.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[57]

Next, you will create a menu bar at the bottom of the screen. Since we want the
buttons to be horizontal across the bottom of the screen, we will open the Layout
palette drawer. Drag HorizontalArrangement to the bottom of the Viewer so that
it sits underneath the Canvas and not inside the Canvas. It should look like the
following screenshot:

You will know you did this correctly by looking at the Components panel.
HorizontalArrangement should be listed in the same column under Canvas1 and
not be indented like Ball1. If it is indented, it means that the HorizontalArrangement
Component is inside the Canvas. We don't want that so, if it is, go to the Viewer and
drag the HorizontalArrangement component out of the Canvas and position it below
the Canvas. To shrink the size of HorizontalArrangement, edit the Height and Width
options in the Properties panel to match the ones below. There are two ways to check
whether you did this correctly. In the Viewer, HorizontalArrangement will create
white space below the gray Canvas, as shown in the preceding screenshot. And, in
the Components panel, HorizontalArrangement will align with Canvas1, as shown
in the following screenshot. If you accidentally did this incorrectly and dropped
HorizontalArrangement inside the Canvas, there would be no white space below the
gray Canvas in the Viewer and the HorizontalArrangement component would be
indented and aligned directly under Ball1.

Navigating the App Inventor Platform

[58]

To resize HorizontalArrangement, edit the Height and Width options in the
Properties panel to match the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[59]

Next, drag a Button from the User Interface palette drawer into the
HorizontalArrangement component at the bottom of Screen1. The button will say
Text for Button1, as shown in the following screenshot:

You can verify that you did this correctly by seeing whether your
screen matches the Viewer in the preceding screenshot. Also, in the
Components panel, you will see that Button1 will be nested underneath
HorizontalArrangement and will therefore be indented.

Navigating the App Inventor Platform

[60]

IDE
At any point during the app building process, you can see your progress live on
your mobile device or on the emulator. You'll want to use this feature while building
your app, so you can see updates as soon as you make changes in the Designer to
track your progress, and see how your app looks on your device. Since we've made
some changes, let's connect now, so you can get familiar with the process. As you've
already done the technical setup in Chapter 2, Setting Up MIT App Inventor 2, you can
easily start using the Integrated Development Environment (IDE).

For users with mobile devices: on your computer in the Designer window, go
to the top menu bar, click on Connect, and from the drop-down menu, select AI
Companion, as shown in the following screenshot:

A pop-up window will appear on your computer screen with a QR code and a six-
character code. Launch the AI2 Companion app on your mobile device and either
scan the QR code or type in the six-character code. Note that to scan the QR code,
you need to press the blue button on your mobile device that says scan QR code
and then hold the mobile device up to the computer screen to capture the image.
Scanning the QR code with your mobile device will automatically launch your Fling
app after a few moments. To connect with the code, type the six-character code
shown on your computer screen into the white text box on your mobile device and
then click on the orange button Connect with code to display the Fling app on your
mobile device.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[61]

For users without mobile devices: On your computer in the Designer window, go to
the top menu bar, click on Connect and, from the drop-down menu, select Emulator,
as shown in the following screenshot:

The emulator will take a few minutes to launch. You will see pop-up messages about
the progress and the status of the emulator (to review connecting with the emulator,
please see Chapter 2, Setting Up MIT App Inventor 2).

Note that at any point throughout the app building process, if you have trouble
connecting or if the modes of connection are grayed out, you may need to choose
Reset Connection from the drop-down menu, as shown in the next screenshot:

After clicking on Reset Connection, the choices for connecting will become clickable
again. Choose the method you previously used: AI Companion or Emulator
(remember, for WiFi connection to work, your computer and mobile device must be
on the same WiFi network). For connecting via USB, please review the instructions in
Chapter 2, Setting Up MIT App Inventor 2.

Navigating the App Inventor Platform

[62]

Wait a few seconds after connecting and you will see one of the following images
(the screenshot of a mobile device on the left-hand side and an emulator on the right-
hand side):

Now that you've connected your project to your mobile device or emulator, all the
changes you make on your computer will automatically be updated on your device
or emulator. This is particularly helpful because a component on your computer
screen could be displayed somewhat differently on your mobile device or emulator.
It is always a good idea to check periodically to see how your app is taking shape on
your mobile device or emulator.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[63]

Let's go back to the Designer. You can change the look and the text of Button1 by
editing the Properties. Change the options to reflect the following screenshot:

Navigating the App Inventor Platform

[64]

Notice how your mobile device or emulator also updates in real time and
displays the changes you just made to Button1, as shown in the following
images (the screenshot of a mobile device on the left-hand side and an emulator
on the right-hand side):

You are now going to add another Button to the HorizontalArrangement component.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[65]

When you drag the Button from the User Interface palette drawer, App Inventor will
name this button as Button2, as shown in the next screenshot:

Navigating the App Inventor Platform

[66]

Notice how your mobile device or emulator also updates in real time, as shown
in the next images (the screenshot of a mobile device on the left-hand side and an
emulator on the right-hand side):

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[67]

It is always a good practice to rename your components when you have more than one
of a kind, or to reflect what they will do. Soon your apps will have multiple buttons,
screens, and more. So, it's helpful to use specific names. Button1 is the Play button, so
let's rename it accordingly. Click on Button1, so it is highlighted in the Components
panel. Then, click on Rename at the bottom of the panel. A pop-up window will give
you the option to type in a new name, as shown in the next screenshot:

You will see the new name listed in the Components panel. Note that App Inventor
converted the space between the two words into an underscore.

Note that if we had changed the name of Button1 to Play_Button before adding the
second button, when you dragged out the second button, it would've been named as
Button1. This can be confusing, so it's always a good idea to rename your components
rather than keeping track of the order you added them, especially because in this case,
Button1 would not have been the first button you added, but the second one.

Navigating the App Inventor Platform

[68]

Repeat the steps listed earlier to rename Button2 to Reset button. Then, edit the
Properties of Reset_Button as shown in the following screenshot:

Note that while we changed the names of the Button components to
Play_Button and Reset_Button, the text on the buttons remains what
we typed in the text fields: Play and Reset, respectively.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[69]

Notice how your mobile device or emulator also updates in real time. Here is a good
example of why you would want to take advantage of the Integrated Development
Environment. As you can see in the previous screenshot, a space appears between
the two buttons in the designer, but on the mobile device (in this case, a tablet)
and on the emulator, there is no space, as shown in the following screenshot. By
continuously monitoring how your app looks (and later functions) on your device as
you build it, you are ensuring at each step of the way that your app will appear and
work as you intended.

Navigating the App Inventor Platform

[70]

Now, we are going to add a Label to display some text (and ultimately the
score). Go to the Palette User Interface drawer and drag out a Label onto
HorizontalArrangement. You can place it anywhere you want in the menu bar,
but for the purpose of this tutorial, we will drag it in between the Play and Replay
buttons. Adjust the label properties to reflect this in the next screenshot and rename
the Label Component to Score (note that underneath the Text property, we have
deleted Text for Label1, so it appears empty).

Congratulations! You have completed designing the UI of the Fling app! Notice how
nothing happens to the ball when either of the buttons is pushed. This is because we
haven't programmed the behavior of the Components yet. Next, we will switch to
the Blocks Editor to start coding.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[71]

The Blocks editor
To switch to the Blocks editor, click on the Blocks button in the upper-right corner of
the menu bar.

The Blocks window has a Blocks panel (left), a Viewer (the large white workspace),
and a Media panel (in the lower-left corner). The Media panel operates in the same
manner as the designer, although we won't be using it for this app.

All the tools you need to program your app are in the Blocks panel on the left-hand
side of the window. The first set of Blocks shown with small colored boxes is called
Built-in (you will learn about these as we build our app). Below the Built-in blocks
are the blocks relating to the Components you just added in the Designer. Below the
Component blocks is a list of Any Component blocks. We will not be using these in
this chapter.

Navigating the App Inventor Platform

[72]

Navigating the Blocks editor is similar to the Designer. When you click on a block in
the Blocks panel, a pop-up drawer will appear to reveal many colored puzzle-like
blocks. The block you click on will automatically appear in the white workspace
called the Viewer. To program your app, you need to drag one block into another,
and hear and see it snap into place.

Once you start filling up the Viewer with blocks, it can get crowded. There are two
ways to use more of the workspace: by using the bottom and side gray scroll bars or
by clicking and dragging on the white space itself. This will become evident once the
blocks are in place.

The Blocks drawer
When you click on any of the blocks' categories in the Blocks panel, a pop-up drawer
of available blocks will appear. The following screenshot shows some of the available
blocks for the Play_Button component (the gray scroll bar indicates that there are
more blocks than what is shown on the screen. You can see the rest of the blocks by
scrolling down):

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[73]

Types of Blocks
Component Blocks are made up of different kinds of blocks. For this app, we will be
using three kinds of blocks: event, setters, and getters.

• Event Blocks: They are gold, and if they exist for a certain component, they
will appear at the top of any pop-up Blocks drawer. They launch an event,
such as when Play_Button.Click. To program what happens when the Play
button is clicked, you can snap together other puzzle piece blocks called
setters and getters.

• Setters: They are dark green or orange puzzle piece blocks that say set
because they set a property's value. Notice that setters have an opening at the
end. Another type of block, a getter, fits into that space and so the setter can
get a value.

• Getters: They are colored puzzle piece blocks that fit at the end of the setters.
They give a property value to the setters.

Built-in blocks have a variety of different colors and purposes. We will explain them
as we use them.

Using Blocks to program Fling
We will now begin using blocks to code our app.

The Play button
Click on Play_Button in the Blocks panel to open its drawer. Then, click on the top
gold when Play_Button.Click event block as shown in the next screenshot. It will
now appear in the Viewer.

Navigating the App Inventor Platform

[74]

When a user clicks on the app's Play button, we want the game to begin and the ball
to start moving. So, we need to program these steps.

First of all, we are going to position the ball at the top of the screen and have it
move down toward the bottom of the screen. But we don't want to set it all the way
at the top of the screen because, in the next chapter, we are going to program our
app, so that, every time the ball hits the top edge, the user will score a point. To
avoid scoring points by merely pressing Play or Reset, we must position the ball
a little below the top edge. To do this, we need to set a pair of the (x, y) values for
the Canvas. The x value is where the ball will be horizontally on the screen and the
y value will be the ball's vertical position. The x value is defined as the number of
pixels from the left edge of the Canvas and y is defined as the number of pixels from
the top edge of the Canvas. We decided that we don't want y to be 0, as the ball
would be touching the edge, so we can set the y value to something close to 0, such
as 2. We can set the x value to any value along the width of the Canvas. To make the
game more unpredictable, we will program the app to pick a random value for x.
Then, each time the user hits Play or Reset, the ball will start at a different location
horizontally on the screen (although it will always start 2 pixels from the top, since
we are setting y = 2). To set the ball's starting location, we will select a block from the
Ball1 drawer.

Click on Ball1 in the Blocks panel. A drawer will open with all the available blocks
for Ball1. Use the gray scroll bar to the right of the pop-up drawer to scroll down
past the gold event blocks. Click on the purple procedure block: call Ball1.MoveTo
x, y, as shown in the next screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[75]

The purple procedure block will now appear next to the when Play_Button.Click
gold event block in the Viewer. Notice how the shape of this purple block fits inside
the gold block. Go ahead and place it into the gold block (by clicking on it with your
mouse and dragging it). The gold block will expand to accommodate the purple
block. You will hear and see it snap into place, as shown in the following screenshot
on the right-hand side:

We know that we want the value of y to be equal to 2, so we will find a block (a
getter) to get this value. Click on the Math block in the Built-in section. The Built-
in Math blocks have a little blue box next to it. A drawer will open up with the
available blue Math getter blocks. Click on the first one with the value of 0, as shown
in the next screenshot:

Navigating the App Inventor Platform

[76]

The 0 block will appear in the Viewer, and you can drag it and snap it to the y
value. Click on 0 to highlight it. You can type in the number 2 to change the value
to 2, as shown in the following screenshot. Next, we are going to set the x value to a
random integer. Go back to the Math blocks and click on the last block shown in the
preceding screenshot: random integer from 1 to 100. Drag this block to the x value,
as shown next:

Since users will have mobile devices with different screen sizes, we won't know
whether the width will be 100 pixels or 350 pixels. So, to enable the game to be
played on different size screens, we can remove the Math block with the value
of 100 and insert a getter block instead that will get the screen width of the mobile
device the user is using. To delete the blue 100 block, click on it to outline it in
yellow. A little hand icon will appear. This indicates that you can drag the block
out of the slot, as shown in the following screenshot:

Note that if you don't see the hand icon, it just means that you clicked on the actual
number instead of the block. This will be indicated by a cursor and a little bit of
white space to the right of the number. Click again on the actual blue part of the
number puzzle piece and you will see the hand icon, which will allow you to drag
the block out.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[77]

To delete this block (or any unwanted block), click on it (if it is not already
highlighted in yellow) and hit Delete on your computer's keyboard. Or, you can drag
the block to the lower-right corner of the Viewer to throw it in the trash. Hover the
block over the trash can and the lid will open. When you release the block, it will
disappear. You will see it fade away and hear a crumple sound.

To add the a block indicating the user's screen width block, click on Screen1 in
the Blocks palette and choose Screen1.Width from the drawer. It will be near the
bottom, so you can use the gray scroll bar to scroll down and find it.

Note that to drop this block inside another block (whether an equation or a single
block), align the little puzzle piece nib on the left-hand side of the block with the nib
space on the left-hand side of the block's opening and it will easily snap into place.
Your blocks should look as follows:

Navigating the App Inventor Platform

[78]

Every time a user presses Play, the ball will be positioned at a different place along
the width of the screen and 2 pixels from the top of the screen.

Now that we have positioned the ball, we will now program it to move.

Moving the ball
Since we've programmed the ball to start at the top of the screen, we want the ball to
move downward. Instead of it just dropping straight down or at the same angle each
time, we can set the degrees to be random. There are 360 degrees in a circle, but we
only want the ball to fall between certain degrees, those represented as downward
that fit between the width of the screen, but not along the edges of the screen. The
figure below shows that the right edge is 0 degrees and the left edge is 180 degrees.
The actual space that we are interested in is the lower half or the degrees between
180 and 360. Since we don't want the ball to just travel down the edges, we will
eliminate the two extremes when choosing some numbers. We decided to choose
degrees between 200 and 340. We will code the app so that the program will choose a
random number between those degrees for the angle at which the ball will move.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[79]

You already learned how to program a random integer from our previous blocks, so
let's repeat those steps. Go to the Math blocks and choose the blue random integer
from to block. You also know how to fill in these numbers. To review, choose the
topmost blue block in the Math blocks: the one with 0. You can enter 200 in it and
then copy and paste the block by clicking on it to highlight it (make sure it has
a yellow outline). If you don't want to copy and paste, you can always drag out
another Math 0 block. Click on the number in the copied block and type 340. Then,
place the 200 block into the from spot and the 340 block into the to spot.

Our random integer from to block needs to fit someplace, to which block will it be
giving this information? Another way to ask this question is: which block will be
getting this information? If you guessed Ball, you are correct! The ball will need this
information to know the angle at which it has to move. So, we need to find the ball
block that represents the ball's direction. This block is called Ball1.Heading, and it
represents the degrees the ball will move. Click on the Ball1 Blocks drawer to find
the dark green Ball1.Heading block (you will need to scroll down past the gold
and purple blocks to find it). Once this is on your Viewer, snap it together with the
blue random integer from to block that you just created. Then, take these connected
pieces and insert them at the bottom of the gold when Play_Button.Click. Your
blocks should now look like the following screenshot:

Navigating the App Inventor Platform

[80]

Now that we have the location of the ball and the direction it is heading in degrees,
we need to program it to actually move. To do this, we will first set the ball to
enabled. From the Ball1 blocks drawer, choose the dark green set Ball1.Enabled to
block. Then, from the Logic blocks drawer, choose the lime green true block at the
top, as shown in the next screenshot:

Insert the true block into the set Ball1.Enabled to block and add them to the bottom
of the when Play_Button.Click event, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[81]

Now that the ball is ready to move, we can actually move it by setting the speed
and the interval. Go back to the Ball1 Blocks drawer and select the dark green setter
block, set Ball1.Speed. Next, from the same drawer, select set Ball1.Interval.

The interval is the amount of time, in milliseconds (1000 milliseconds = 1 second),
the ball will travel, and the speed is the number of pixels the ball will move in that
timeframe. It's fun to play around with these numbers to see how fast or slow you
can make the ball move. We've decided to have the ball move 10 pixels every 50
milliseconds, so we will program our blocks to look as follows:

Insert these blocks at the bottom of the when Play_Button.Click event. Your blocks
will look like the following screenshot:

So far, this is what our app does: when the Play button is clicked, it will move the
ball to position it 2 pixels away from the top edge of the screen and to a random
number between 1 pixel from the left edge of the screen and the right edge of the
screen. It will set the ball rolling downward in a random direction (between the
degrees 200 to 340) at a speed of 10 pixels every 50 milliseconds!

Navigating the App Inventor Platform

[82]

Flinging the ball
The object of the game is to fling the downward moving ball away from the bottom
edge, because if the ball drops down to the bottom edge of the screen, the game will
end. Next, we need to code these events.

First, let's program the app to fling the ball.

How will the ball know when a finger touches it and how to move in another
direction (not downward)? We can program these events by using a block from the
Ball1 Blocks drawer called when Ball1.Flung. Click on this gold event block to add
it to the Viewer. You can make the ball move at any speed you like, but we are going
to keep it going at the same speed, just in a different direction. To do this, you can
copy and paste the set Ball1.Speed to and set Ball1.Interval to blocks from the when
Play_Button.Click event (note that when you click on the dark green set block and
copy and paste it, the blue getter block attached to it will also copy and paste). Add
these blocks to the when Ball1.Flung event to resemble the following screenshot:

Next, we will reposition the direction of the ball to go upward (when it is flung by a
finger). We could set the heading to a degree between 10 and 170 (see image #39) or
we could make the ball go in the upward direction with an equation. Let's practice
equations more. Copy and paste the set Ball1.Heading block from the when Play_
Button.Click event (remember the heading block determines the angle at which the
ball will move). Drag it to the bottom of the when Ball1.Flung event. We want the
ball to go in the opposite direction than the direction in which it was heading, not to
a random integer, so you can delete the attached blue block by highlighting it and
pressing delete on your keyboard or by clicking on the blue block and dragging
it to trash. To get the ball to go in the opposite direction, we are going to subtract
the current ball's heading (direction) from 360 degrees (the total number of degrees
possible). To code this, choose the minus block from the Math Blocks drawer. In
the first open space, add the number 360. Copy and paste the 50 blue block from the
when Ball1.Flung event and change the number to 360. Insert it into the open space
to the left of the minus sign.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[83]

Next, from the Ball1 Blocks drawer, select the light green getter block, Ball1.
Heading. Insert it in the open space to the right of the minus sign (line up the block
nib with the open nib). Here is what we have coded: when the ball is touched and
flung, the program will move the ball's direction (or heading) to 360 degrees minus
the old direction (or heading). Your blocks will look like the next screenshot:

Ending the game or bouncing the ball
Now that the Play Button starts the ball moving downward and the user can fling it
in a different direction, we want to program the following actions:

• Ending the game when the ball touches the bottom edge
• Bouncing the ball off the left, top, and right edges

We can program these actions with the if/then blocks. If the ball touches the bottom
edge, then the ball will stop and the game will end. If the ball touches the other
edges, then the ball will bounce back and the game will continue.

Let's first program the app to stop and end the game when the ball hits the bottom
edge. App Inventor makes this easy. Go to the Ball1 Blocks drawer and click on the
when Ball1.EdgeReached event. Once the event block is in the Viewer, hover (don't
click) on the light orange word edge on the left-hand side of the block and you will
get a popup, as shown in the next screenshot. Choose the top dark orange get edge
block. This is a variable. Set it aside; we will use it in a minute.

Navigating the App Inventor Platform

[84]

We will add an if then event to the inside of the when Ball1.EdgeReached event. But
first we will configure it. Go to the topmost Blocks drawer called Control and click
on the first gold if then block.

When the block first appears on your Viewer, it will look like Step 1 in the following
image. If you click on the blue color square in the upper-left corner, a popup will
appear. Move your cursor over the bottom else block on the left-hand side of the
popup, click on it, and drag it into the if opening on the right-hand side of the
popup, as shown in Step 2 and Step 3. Once the else block is in place, you will see the
original if then event block change into an if then else block. You will see that else is
now added to the bottom of the block, as shown in Step 3 and Step 4:

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[85]

Add this if then else block to the inside of the when Ball1.EdgeReached block, as
shown in the following screenshot:

Notice how the get edge block that we set aside has an exclamation
point with a triangle around it. This is an error message alerting you
that the block is unattached and is in need of a setter block.

To program, if the ball touches the bottom edge, then the ball will stop and the game
will end. We will use a math equals block. It is the second one from the top in the
Math Blocks drawer, as shown in the next screenshot:

Inside the first opening to the left of the equal sign, add the dark orange get edge
block that we had set aside. You will notice that the alert will remain on this block
until we snap the math block in place with the if block, which we will do shortly.

Navigating the App Inventor Platform

[86]

In the next image, you will see that each edge is represented by a number:

Since the bottom edge is equal to -1, add a number Math block to this equal block
and enter the number -1. Snap the blue math block into the if block, as shown below
(and you will see the alert disappear).

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[87]

When the bottom edge is reached, we want the ball to stop, the game to end, and
the app to display the text Game Over. We already know how to enable the ball to
move: we set the property enabled to true. So, now that we want the ball to stop or
not move, we must set the enabled property to false. In the Ball1 blocks drawer,
select set Ball1.Enabled to and then in the Logic blocks drawer select the false block.
Slide that set of blocks into the then space of the if then else block, as shown below.

Next, we will program the app to display some text indicating that the game is over.
We will use the Label that we named Score (in the next chapter, we will also use this
Label to display the score). Go to the Score blocks drawer and select the dark green
set Score.Text to block, as shown in the following screenshot:

Navigating the App Inventor Platform

[88]

This setter block needs to get some text, so we will add a getter text block. Go to the
pink Text block drawer and choose the first block, which is an empty space with
quotes around it, as shown in the next screenshot:

You will add this pink text block to the set Score.Text to block and insert it below the
set Ball1.Enabled to block in the then event. Click on the pink text block and type
the words Game Over, as follows:

We have programmed the app so that if the ball hits the bottom edge, it will stop
moving and the Label will display the text: Game Over.

The last step, the else block, is for when the ball hits an edge other than -1 (the bottom).
If the ball hits any of the other edges, we want the ball to bounce off them and the
gameplay to continue. To program this, we'll use the purple call Ball1.Bounce block.
We will attach the same orange get edge block we used previously, but this time, we
won't specify a certain edge. Any edge that the ball touches, other than the bottom
edge, will cause the ball to bounce. Copy and paste the get edge block, add it to the
purple call Ball1.Bounce block, and insert the blocks into the else slot, as follows:

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[89]

Think of else as meaning otherwise. If the ball hits an edge equal to -1, then execute the
then code, otherwise execute the else code. In other words, if the if option is not met
(if the ball doesn't hit the -1 edge), then the program will skip then and jump to else.

Following is a screenshot of our app when the ball hits the bottom edge, stops, and
displays Game Over.

Navigating the App Inventor Platform

[90]

The Reset button
The last thing we will do in this chapter is configure the Reset button. The Reset
button gets pressed after the game has ended due to the ball hitting the bottom edge.
It doesn't start the gameplay like the Play button does; it merely repositions the ball
back at the top of the screen and makes the Game Over text disappear from the
screen (Label).

Go into the Reset Button Blocks and choose the gold event when Reset_Button.
Click. We want to move the ball from the bottom of the screen to the top of the
screen. We already know how to do this because we did it for the Play Button. You
can copy and paste the call Ball1.MoveTo purple block (when you click on the
purple block and copy and paste it, it will automatically copy and paste the blue x, y,
getter blocks attached to it). Add your blocks to the when Reset_Button.Click event,
and your blocks will look like the following screenshot:

These blocks reposition the ball back up to the top of the screen (to a random x
location), but the Game Over text will still be displayed. To have the Reset Button
erase this, we will simply set the Score Text to blank text instead of Game Over.
Copy and paste the dark green set Score.Text to block from the when Ball1.
EdgeReached event block (copying and pasting the green Setter block will also copy
and paste the pink text block). Click on the Game Over text and press Delete, so the
text area is empty. Add this set of blocks to the bottom of the when Reset_Button.
Click event block, as follows:

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[91]

The following is a screenshot of our app after the Reset button is pressed. It shows
the ball up at the top of the screen and a blank area where the Game Over text
previously appeared.

Navigating the App Inventor Platform

[92]

Our first version of the Fling app is now complete! We have designed and coded
the Fling app, so when the Play Button is clicked, it will randomly position the ball
at the top of the screen and start the ball rolling downward. Flinging the ball with a
finger causes the ball to move in the opposite direction to than was going. The ball
bounces of all the edges, except for the bottom one. When the ball hits the bottom
edge, it stops and the app displays Game Over. The Reset button repositions the
ball to a random position at the top of the screen. At this point, you may or may not
have discovered that we have a bug! It has something to do with the Play and Reset
buttons. We will reveal and fix this bug in the next chapter.

Summary
Wow! You have learned a great deal about the App Inventor platform in this chapter
and you have built and programmed your first app! This is a huge accomplishment!
But, as you may have noticed, we have an issue to fix. We will demonstrate not
only how to debug your first bug, but also how to add more features. Really, this
is just the beginning of your mobile computing adventure. There is much more to
learn and create! Our Fling app is functional and simple, but I'm sure you can think
of countless more features to enhance it. In the next chapter, you will learn how to
expand the app's complexity by creating a scoring mechanism that is displayed when
the ball touches the top edge, by allowing the ball to be flung only from the lower
half of the screen, and by creating levels and increasing the speed of the ball

By learning how to add more functionality to an existing app, you will gain
experience developing multiple versions. This process of building an app with added
features is what developers regularly do. Ultimately, once you post your app in an
app market like Google Play, the new versions would be released as updates.

Let's take our game to the next level!

www.allitebooks.com

http://www.allitebooks.org

[93]

Fling App – Part 2
In Chapter 3, Navigating the App Inventor Platform, you learned to use the MIT App
Inventor Designer and Blocks Editor by creating your first fully functional mobile
app! In this chapter, we will show you how you can take the basic Fling app and
build it out by adding more complex features. We will demonstrate how to enable:

• A scoring mechanism that will display when the ball touches the top edge
• Code, so the ball can only be flung from the lower half of the screen
• The increasing levels of difficulty by increasing ball speed

We will also begin debugging. Debugging is a standard practice in app development
and should be viewed as part of the process, not as something negative.

Fling App – Part 2

[94]

Each time you add new components to your app, we encourage you to share your
app with others to get feedback. Not only will the feedback give you ideas about
the design, but it will also help you learn what users want from an app game. Such
information will prove invaluable once you begin designing apps from scratch. This
chapter will not only help you discover new ways to enhance a game app, it will
also trigger new paths of creativity! By the end of this chapter, your Fling app will
resemble the following image:

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[95]

Adding a scoring feature
Since most game apps include some sort of scoring feature, we will add this code
to our Fling app. The score will display in the same label that will also display the
Game Over text.

Coding scoring blocks
We left off in the last chapter with the ball bouncing off all the edges except the
bottom edge. Now, we want to program the app to increase the score by one point
every time the ball reaches the top edge. We will use another if/then block and
add it into the else portion of the existing if/then/else block within the when Ball1.
EdgeReached event, as shown in the following screenshot:

Can you guess what block will fit in the if opening? If the ball hits the top edge,
then the app will increase the score by 1. In Chapter 3, Navigating the App Inventor
Platform, you learned that the bottom edge is represented by -1 (and the top edge is
represented by 1). Since we've already created an if/then scenario for the ball hitting
the bottom edge, we can copy this set of blocks and adjust it for the ball hitting the
top edge.

Fling App – Part 2

[96]

Copy the blue block from the existing if block (note that by copying the blue block,
you will also automatically copy the embedded orange get edge block and the blue
-1 math block). Snap these pasted blocks into the new if block and change -1 to 1,
as shown in the following screenshot:

We have coded: if the top edge is reached, then what will happen? We want the app
to record a point. To code the score feature, we will first create a global variable. A
global variable is a value that can be used by any block, whereas a local variable is
one that can only be used by the specific block for which it was intended. Go to the
Variables block drawer and select the orange, initialize global name to block.

Click on name and change the text to score. Next, in the Math drawer, select the 0
blue Math block. Connect it to the initialize global score to block. Your blocks will
now look like the following screenshot. Note that this initialize global name block
does not fit into any other block; it stands alone with the attached Math 0 block.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[97]

By setting the global variable equal to 0, essentially, we have established the initial
score to be set to 0. Now, we can program the app to add 1 to this score. Go back into
the Variables block drawer and select the set to block. Click on the little arrow in the
middle of the block and select global score from the drop-down menu (this is now
available for us to select because we created the global variable). Insert the block into
the empty then slot, as shown in the following screenshot:

You will insert a Math block into the set global score to block because, every time
the top edge is reached, we will want to get the current score (in this case, 0) and
add 1 to it. Therefore, we will need the blue Math addition block, as shown in the
following screenshot:

Fling App – Part 2

[98]

The first blank will be filled with an orange get global score block, in the second
block after the plus sign, there will be a number block filled with 1, as shown in the
following screenshot. There are two ways to find the get global score block. One is
in the Variables drawer. Click on the get to block and then click on the downward
arrow to select global score from the drop down menu. Or, you can hover (not click)
over the initialize global score block and both a set and get global score block will
appear. Select the get global score block. The reason we are using the get global score
block and not the 0 block is because we want to add 1 to the most recent score. At
the beginning of the game, the score is 0, but as soon as the ball hits the top edge, the
new global score will be 0+1, then 1+1 (and so on):

So now, we have created the code to update the score each time the top edge is
reached. But we haven't yet created the code to display the score. Let's do this next.

Updating the score label
Take a look at the blocks in the first then section in the following screenshot and
notice the name change of our Score Label. Since the Score Label will be displaying
both the score and the level, we decided to make that clear in our label name. In
the Designer, we renamed the Label from Score to Score_Level_Label. This change
updates in the Blocks Editor as well. The block name initially was, set Score.Text to
is now, set Score_Level_Label.Text to. The blocks drawer is also updated. We show
you this edit in the middle of development because sometimes, no matter how well
thought out your app is, you may discover ways to improve it as you begin coding.
Changing the Label name is not necessarily integral to the functioning of our app,
but it helps us to be more clear in our design

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[99]

Since the Label will now display both the score and the level, we need to code that.
Copy the green set Score_Level_Label.Text to block, from the if/then/else block.
Since it will also copy the pink "Game Over" text block, you can merely delete this
block as we won't need it. Instead, go into the pink Text blocks and choose the join
block, as shown in the following screenshot:

Fling App – Part 2

[100]

We need this block to set the Label text to display pieces of information: the score
and the level. If you think about it, we can't just display two numbers because the
user won't know what they mean. We have to display: the word Score and the actual
score (whatever number it is) and the word "Level" and the actual level (whatever
number that is). To begin, we will just add two things, the word Score and the actual
score. You probably can guess that the first block to attach to the join block is another
blank Text block will. Type the word Score: with a space after the colon (so there will
be a space between the word and the score number). The second block is the orange
get global score block.

Increasing difficulty
If you stop and think about our app as it stands, it would be very easy to cheat! A
user could just keep the ball very near the top edge and fling it a short distance to
amass tons of points! If you'd like to make it harder for the user to score points,
we will show you one way to increase the difficulty. If, on the other hand, you are
making this app for a young user and want it to be easy for them to score points,
then you can skip this section.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[101]

Changing the game's dynamic
As the game stands, the ball is moving downward and whenever your finger touches
it, it will get flung in another direction (to be exact, 360 degrees minus the direction
it was heading). We can program the app so the ball only responds to a fling when
it is below the middle of the screen. Can you guess how we might program this? If
you guessed using an if/then block, you're on the right track! If the ball is below the
middle of the screen, then it can be flung.

Currently, our blocks look like the following screenshot:

We want to tell the app to first check and see whether the ball is below the middle of
the screen. We've coded something similar if you recall when we used the Screen1.
Width block. Since we won't know the screen size of every user, we cannot just input
a specific number and divide it by 2. But we can get the user's screen size with the
Screen1.Height block and divide this by 2. In Chapter 3, Navigating the App Inventor
Platform, you also learned that x is used to represent the width and y is used to
represent the height. The values of x and y start with 0, 0 in the top left corner of the
screen. So, we will use the y variable, which represents the height. We know that y gets
bigger from top to bottom. Thus, we want to enable the ball to be flung if y is bigger
than the screen size divided by 2. For example, suppose that the height of the screen is
100 (with the value of 0 at the top and the value of 100 at the bottom). If the ball is at y
= 51, it will be just below the halfway mark. Thus, it will be enabled to be flung.

Fling App – Part 2

[102]

To begin coding this scenario temporarily, remove set Ball1.Heading and its
accompanying blocks from the when Ball1.Flung event block. Add an if/then block
and a greater than Math block (select the equals Math block and then chose the
greater than symbol from the drop down menu by clicking on the downward arrow
in the center of the block) to the if opening, as shown in the following screenshot:

Next, hover over (don't click on) the light orange box with the variable y in the when
Ball1.Flung event block. This will produce a pop-up window. Select the top choice,
get y, as shown in the following screenshot:

Insert the get y block into the first opening before the greater than sign. Remember
we won't be adding a number into the second opening, but rather an equation of the
screen height divided by 2.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[103]

In the second opening, insert another Math block—this time, a division Math block
because we want the y to be greater than the screen height divided by 2. Get the
Screen1.Height block from the Screen1 block drawer and the number block from
the Math drawer, and change the value to 2. Insert the Screen1.Height block into
the first opening of the Math division block and insert the number 2 block into the
opening after the division sign.

Reinsert the set Ball1.Heading blocks you removed earlier into the then opening of
the if/then block, as shown in the following screenshot:

Now, our app checks to see if the ball's y height value is below the halfway point on
the screen. If it is, then the ball will be flung in a direction indicated by our formula,
360 - Ball1.Heading. If it is not, nothing will happen.

Creating levels
Computer games typically have multiple levels where the difficulty of playing the
game progressively increases. This is what makes a game fun, challenging, and even
somewhat addictive. We want to incorporate levels in our game as well.

One simple way to make the game play harder and harder is to increase the speed
of the ball as the player continues to score points. You can create whatever tiers
you like, but for the purpose of this tutorial, we will create a simple tier system:
whenever a player scores 5 points, the player has completed a level. Again, to keep it
simple, we will not pause game play (as is common in most computer games) when
a level is completed. The player will automatically move on to the next level, which
will also increase the speed of the ball.

Fling App – Part 2

[104]

To figure out whether a level change is needed or not, we will code the app to
constantly check the value of score. Each time the score is incremented, the app will
check to see whether it is a multiple of 5 (for example, score = 5, 10, 15, 20, and so on).
If the score is indeed a multiple of 5, it will mean that the player has scored another 5
points and a level change should occur. To change the level, we will simply increase
the speed a little bit.

As explained earlier in this chapter, the event, Ball1.EdgeReached, contains the code
that increments the score: the set global score to block. Whenever the score increases,
the label will update to display the new score (the previous score plus 1). As you can
see in the blocks shown in the following screenshot, the block immediately after the
score-increment block is the set Score_Level_Label.text to block to update the score
displayed.

Now, we will add an if/then block right after the set Score_Level_Label.text block.
Do you remember where to find the if/then block?

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[105]

Now, let's think about the condition that we want to insert in the empty socket next
to if. We want to check and see whether the score is a multiple of 5 (if it is a multiple
of 5, then the remainder will be 0). In order to do so, we need to complete the
following steps:

1. Get the current value of the score.
2. Divide its value by 5 and calculate the remainder.
3. See whether the remainder is equal to 0.

To achieve these three subtasks, we will first get the get global score block just like
we did when we used this block to increment the score. This block can be select from
the Variables blocks or can be copied from your current set of blocks. This completes
task 1.

Next, we will get the remainder of the block from under the Math blocks. This step
is not as obvious. When you go to the Math blocks, you will not see any remainder
block. Instead, select the modulo of block, as shown in the following screenshot:

Fling App – Part 2

[106]

Click on the downward-facing triangle to the right of modulo of and select
remainder of from the drop-down list. Modulo, remainder, and quotient are
different mathematical operations related to division. Hence, they all belong to the
same block. Place the get global score block within the first slot of the remainder of
block. Since we want to calculate the remainder of the score when divided by 5, place
number 5 in the second slot of the remainder of block (that is, insert a Math number
block and change the value from 0 to 5). This completes step 2.

Finally, we want to check whether this remainder is equal to 0. If it is equal to 0, then
it is time to increase the level (speed). If it is not, the level (speed) will remain the
same. To check for the equality of numbers, we will need an equal to block from the
Math blocks. Plug the remainder of block (and its accompanying get global score
/ 5 blocks) that we created in step 2 into the left side of the equal to block and the
number 0 into the right side. The following screenshot shows the completed steps
plugged to the if statement:

Blocks placed within the then part of an if/then statement are executed only when
the condition plugged to the if statement is true. In this case, when the score is a
multiple of 5 (that is, the whole remainder equals 0 and the if block evaluates to
be true), we would want to increase the speed. We need two blocks from the Ball1
drawer. The first block, Ball1.Speed, gives us the current value of Ball1's speed
property. The second one, set Ball1.Speed, lets us change the speed.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[107]

Since we want to increase the speed relative to the current speed, we will use both
these blocks by:

1. Using Ball1.Speed to get the current speed.
2. Increasing the Ball1.Speed value by a small amount.
3. Using the result to set the new speed.

To complete these steps, drag an add block from the Math blocks and attach it to the
set Ball1.Speed block. Insert the Ball1.Speed block into the opening on the left-hand
side of the plus sign and a number Math block set to 2 (the small amount that we are
increasing the speed by) in the opening on the right-hand side of the plus sign. This
completes tasks 1, 2, and 3. Finally, we will place the block within the then block, as
shown in the following screenshot:

Fling App – Part 2

[108]

To summarize, whenever the user scores a point, the new score will be calculated.
Then, the app will check to see whether the new score is a multiple of 5 or not. If it is
indeed a multiple of 5, the app will increase the speed by a little bit to make the game
harder. If the score is not a multiple of 5, nothing will change; the speed will remain
the same.

We have completed coding the leveling part of our app! Can you think of what is
still missing? We need to display the new level in the label!

Updating the score label to display the
level
In our game, we have a label that displays the score or the words "Game Over". Now
that we have implemented levels as well, we also want to display the level within
that label.

As shown in the following screenshot, we used the join block to join two pieces of
information and display it in the label—the word Score: (there is a blank space after
the colon) and the value of the score. Now that we want to display the level, we will
add three more pieces of information to this join block. There is another blank space
after the score (value), followed by the word "Level: " (there is also a blank space
after the colon here), and finally the value of level.

To make room for these three new pieces of information, we need to add strings
to the existing join block. Click on the blue square in the top left corner of the join
block. This will open a pop-up window. Inside this popup, drag the string block
from the top left corner into the join block on the right-hand side. Do this three
times. Each time you add another string, you will see a new space appear in the join
block below the get global score block.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[109]

If you have done this correctly, there will be three empty slots, as shown in the following
screenshot. Now, click anywhere outside the popup to close the pop-up menu.

Fling App – Part 2

[110]

Now, we are ready to plug in the three new pieces of information related to the
levels. Plug in a blank text box in the first open slot (the blank text block is the first
block in Text block's drawer). Even though it seems like this contains a blank space,
we must make one. Click inside the blank text and press your keyboard's spacebar to
create a space. In the next empty slot, plug in another blank text block, and click and
type in the word Level: with a space after the colon.

As you might have correctly guessed, the last piece of text we will plug into the join
block is the level value. You might be wondering where this level value is going to
come from. We will actually calculate this from the current score value.

When we implemented the levels, we assumed that an increase in score by 5 will
trigger a level change. Hence, scores 0 to 4 correspond to level 0, scores 5 to 9
correspond to level 1, scores 10 to 14 correspond to level 2, and so on. We can use
some math to calculate the level from the score. As you might have guessed, the
math that we are going to use here is the quotient operation. More specifically, we
will divide the score by 5 and use the quotient part to determine our levels.

To use the quotient block, go back to Math Blocks drawer and drag a modulo block.
Then, click on the downward pointing triangle to change it to quotient. Copy a get
global score block and plug it into the first open socket of the quotient block. Insert
a Math number block into the second opening and change it to 5. The completed
blocks are shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[111]

This is an ideal time to reconnect your mobile device to your Fling app. Your Label
will now display both the score and the level, as shown in the following screenshot:

Updating the Reset button
Don't think that we have forgotten about our bug! Have you figured out what the
bug is?" In the last chapter, we programmed the Reset button to move the ball to the
top of the screen (y=2) and to a random x value. But, before the Play button starts the
ball moving, it also moves the ball to a random x location. And the problem is, it isn't
the same location that the Reset button previously set. So the ball moves once upon
Reset and again on Play. We can fix this problem!" START A NEW PARAGRAPH
Start it with "In addition to fixing the bug, we have some other updates to the Reset
and Play buttons. Now that we have added scoring and leveling to our game, we
need to edit the Reset button. There are several tasks related to resetting the game.
They are as follows:

1. Stopping the ball's motion and resetting the position of the ball.
2. Resetting the score variable.
3. Updating the label used to display the score.

Fling App – Part 2

[112]

Another point to note is that we can't assume that the only reason a user presses
Reset is because the ball hit the bottom edge and the game ended. We also have
to think of the scenario of the user pressing the Reset button to stop the game.

To reset the position of the ball, we will reuse the Ball1.MoveTo block that we
already coded in Chapter 3, Navigating the App Inventor Platform, when we created the
Play_Button.Click event. When the user presses Play button, the ball will move to a
random x coordinate between the value of 1 and the screen width.

You may also recall in Chapter 3, Navigating the App Inventor Platform, that we
programmed the Reset button to move the ball to a random integer between 1
and the screen width, as shown in the following screenshot:

As the app is currently programmed, the Reset button moves the ball to a random x
position at the top of the screen and the Play button also moves the ball to a random
x position at the top of the screen, but these two random positions are not the same.
Imagine a scenario in which the ball hits the bottom edge and ends the game. A user
presses Reset to move the ball back up to the top of the screen. It goes to a random x
location. Then, when the user presses Play, the ball is again reset to a new random x
location before it starts moving downward.

We first programmed the Play button to position the ball at the top of the screen,
because the first time the game is played, the user wouldn't press the Reset button,
but rather the Play button. However, after the game is played once, the user would
press Reset and thus the Play button would no longer need to reposition the ball,
since the Reset button will perform this function.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[113]

We want the Play button to let the ball start moving from the same location that the
Reset button previously randomly selected. To do this, we need to program our app
so that the Play button gets the ball's x location from the Reset button.

To make this Reset_Button and Play_Button communication happen, we will first
create a variable called randomX. This variable will initially be set to 0. Initializing a
variable to some value (even if that value is not used later on) is important. Select the
initialize global name to block from the Variables blocks drawer. Change the name
to randomX. Select a number Math block and attach it, as shown in the following
screenshot (note that this set of blocks stands on its own; it does not fit into the other
event blocks):

After initializing the global variable, randomX, we can now use it for both our Reset
and Play buttons. If you recall, when we programmed the Play_Button.Click event,
we enabled the ball to start moving. We set the value of the set Ball1.Enabled block to
true, as shown in the following screenshot:

So, for the Reset button, we want to disable the ball. And we do this by making the
value false.

First, copy and paste the set Ball1.Enabled block; it will also copy and paste the
attached true block. Simply click on the arrow to the right of the word true and you
will be able to select false. This block disables the ball's movement. This was one
of our goals, since the user will expect the game to stop when the Reset button is
pressed.

Fling App – Part 2

[114]

Next, select the set global randomX block from the Variables block (it will be
available as a choice in the blocks drawer, since we initialized the global variable,
randomX). We will generate a random integer for the x coordinate and store it in this
randomX variable. You know how to do this because we have already created the
blocks to move the ball to a random x integer. Copy and paste the random integer
from to blocks and add them to the set global randomX to block, as shown in the
following screenshot. Once we set the global randomX variable to a random integer,
we will use this variable in the Call Ball1.MoveTo block. The following screenshot
shows how to generate a random number, store it in the variable (set global
randomX), and then use this variable (get global randomX). This completes Task 1.

Tasks 2 and Task 3 are relatively easy. Since the Reset button also resets the score to
equal zero, we will also set the score variable to zero. To do this, we will copy and
paste the set global score block from the Ball1.EdgeReached event and modify the
right-hand side to simply be a Math number block of the value 0. For Task 3, we will
simply copy and paste the Score_Level_Label.Text block that we created previously
in this chapter. This block always updates the label using the latest value of the score
and the level. Since we are resetting the score to 0 right before we execute this block,
this block will correctly reset the label to show 0 for the score and the level.
(Note: blocks execute from top to bottom.)

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[115]

Updating the Play button
When we built the Play button, the blocks resembled the following screenshot:

But now, we want to redo the Play button blocks because we no longer want the Play
button to set the ball's x random location. Instead, we want the Play button to get the
location of the ball from the Reset button. This way, when the Play button is pressed,
the ball will just begin moving from where it already is, having just been reset to
the top of the screen by the Reset button between the very first time a user plays the
game, the Play button will set the random location of the ball using the blocks we
already programmed. Then the first time (and ensuing times) that the Reset button is
pressed and sets the location of the ball at the top of the screen, we want the ball to
start moving from that location when the Play button is pressed.

Fling App – Part 2

[116]

At this point, it might be obvious that we will use an if/then/else event block.
The reasoning, however, is a little counter-intuitive. The only time the Play button
determines the ball's x location is the very first time that the user plays the app. This
is when the global variable, randomX, has the value of 0. Instead of saying if the
global randomX is equal to 0, then do something, we are going to say if the global
randomX is not equal to 0, then do something. We are going to program the blocks
this way because there is only one time this won't happen. Every other time the app
checks this information, the global randomX will indeed be a value between 1 and
the screen width (as we coded in the Reset button). If the global randomX is not
equal to 0, then move the ball to the global randomX location set by the Reset button.
Otherwise (else), we will move the ball to a random integer between 1 and the screen
width (this code will only occur once—the first time the user plays the Fling app).

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[117]

Summary
We hope you found this chapter to be challenging yet rewarding. You have learned
how to take a simple app and make it more intermediate by adding more complex
features and code. Each feature, scoring, fling capability, and level requires a lot of
thought on how each would work and interact with each other. As you experienced,
enabling scoring and leveling mechanisms required us to alter code in a variety of
block locations. Similarly, we had to reexamine how our buttons functioned and
reprogram the buttons. You will discover that this is a typical process in coding.
Changing or adding one thing requires reevaluating how other things would work
and interact. Also, this chapter demonstrates how much thought needs to go into
planning an app. Earlier in this chapter we decided to update our Label from Score
to Score_Level_label to reflect that it would be displaying the Score, Level and Game
Over. If you don't take sufficient time to map out your app design on paper initially,
then you will most likely end up having to do more re-working than you may have
anticipated. Most programming efforts require coders to do some troubleshooting
along the way, so don't be discouraged if you find that your app building includes
many rewrites. But, you can avoid grand overhauls by really thinking through each
aspect of your app's features ahead of time.

In the next chapter, we will begin working on an intermediate app, an event app
to plan events, parties, or meetings.

www.allitebooks.com

http://www.allitebooks.org

[119]

Building an Event App
Now that we've successfully created a game app, let's try something new! In this
chapter, you will learn to use more components and blocks—this time, to create an
event app. This type of app is helpful to organize an event where you will gather a
group of people for a specific activity, such as a party, book club, outing, or meeting.
In building this type of app, you will learn how to do the following:

• Include images
• Create a navigation menu of buttons
• Add multiple screens
• Use multiple labels
• Set up a map feature

We are transitioning into a beginner-intermediate level of app-making, so you will
discover that some features in this app require multiple steps. For example, in this
chapter, we will be setting up the user interface for the RSVP form and the Guest List
display, but we will actually be creating the database and coding the blocks for these
in Chapter 6, Introduction to Databases.

As with any tutorial, this one will most probably spark creative ideas about other
ways you could use these components or more features you may want to add to the
app. Be sure to jot down your jolts of inspiration in a notebook when they occur.
We recommend saving your app building ideas and concepts in one place. You will
amass a valuable resource for when you finish the tutorials and embark out on your
own app development.

Building an Event App

[120]

User Interface for an event app
Sign into App Inventor by clicking on the Create Apps button on the App Inventor
home page (http://appinventor.mit.edu/explore/) and logging into your
Google account. Once you are in App Inventor, click on Start new project in the
upper-left corner of the screen (the location is the same whether you are in the
Projects view or in the Designer view). A pop-up window will appear (as shown in
the following screenshot); type EventApp for the project name:

Once you click on OK, you will be taken into the Designer view.

Setting the background image
In this chapter, you will gain experience in using the media tool to include images
in your app. All the apps include some sort of artwork (logos, icons, photos, and so
on), so learning to include image files will come in handy. We've decided to create
a pool party for our EventApp tutorial, and to keep with the theme, we will set
the background image for Screen1 to a water image. It is extremely important to
note that you cannot use just any image, logo, or artwork from the Internet in your
app. Artwork (this includes photography) is copyrighted, and if you use someone
else's artwork without permission (and without paying for it), you will be violating
copyright law. Thus, we are taking the time to explain how to find usable, free
artwork. Google makes it easy to find artwork that is free to reuse or remix.

1. Type in the topic you are looking for in the Google search bar. In this case,
we will type in pool. Press return on your keyboard or click on the blue
magnifying glass icon next to the search bar.

2. Google will display the results. Below the search bar, you will see a
horizontal list of options; click on Images.

www.allitebooks.com

http://appinventor.mit.edu/explore/
http://www.allitebooks.org

Chapter 5

[121]

3. To the far right of Images, click on Search Tools. This button will reveal a
pop-up window with more options. They include the following:

 ° Not filtered by license (do not use this option)
 ° Labeled for reuse with modification
 ° Labeled for reuse
 ° Labeled for noncommercial reuse with modification
 ° Labeled for noncommercial reuse

4. The following screenshot displays the Google search options for our pool
image search:

Selecting an option from the drop-down menu in this case, Labeled for reuse will
filter the displayed results to only include images with a license for that particular
category. Again, we cannot stress enough that it is good practice to pick images
labeled for reuse. This way, you can use them commercially in case you ever decide
to sell your app.

Here is a quick explanation of some helpful terms:

• Free to use or share: You are allowed to use or share the content if you do
not alter it

• Free to use, share, or modify: You are allowed to use, share, or change the
content

• Commercially: If you think you may ever want to sell an app that uses
artwork from the Internet, make sure you choose artwork that is available for
commercial use

Building an Event App

[122]

You can also search online for Creative Commons images that come with many
different licenses. Some photos require attribution, meaning that you are required
to give the photographer credit by including the text: photo by (and the name of
the photographer). You do not have to give attribution if the artwork is free to use
commercially or if it is considered in the public domain (free unrestricted use).

For more detailed information on license types, visit https://
creativecommons.org/licenses/. An especially interesting
side note: the Creative Commons organization was cofounded by Hal
Abelson, the creator of MIT App Inventor.

Once you find an image you like that is free to use, download it to your computer
(by right-clicking on the image on a Windows machine or by clicking and holding
down the Option key on a Mac). You will see a pop-up window. Click on Save
Image As.... This will launch another pop-up window where you can rename the
file to something that is descriptive or memorable and choose the location on your
computer where you would like to save the image.

Once the image is saved on your computer, there are two methods to upload a
photo: through the Media panel or through the Properties panel—steps for both are
exactly the same. Note that the only way to delete media files is via the Media panel.

Since we will be adding a pool water image as the background image to our app,
we will upload it to Screen1. When Screen1 is highlighted, there will be an option in
the Properties panel called BackgroundImage. Since our screen is empty, it will say
None. When you click on the text None, a drop-down menu will appear, enabling
you to upload an image, as shown in the following screenshot:

www.allitebooks.com

https://creativecommons.org/licenses/
https://creativecommons.org/licenses/
http://www.allitebooks.org

Chapter 5

[123]

When you click on the Upload File… button, a pop-up window will appear, enabling
you to choose an image from your computer. We named ours Pool Image.png:

Once you click on OK, the image name will appear on the drop-down menu in the
Properties and Media panels and the actual image will appear on Screen1 as the
background image, as shown in the following screenshot (note: we named the image
Pool Image.png; but when it was uploaded to App Inventor, it was assigned a new
name: PoolImage.png with no spaces). If your photo isn't centered, you can always
adjust the AlignHorizontal and AlignVertical properties by choosing Center from
the drop-down menus, as shown in the following screenshot:

Building an Event App

[124]

Adding an image component
Next, we will add another image to lay over the background image. We used
Illustrator and Photoshop to create some artwork and saved it as a .png file. If you
don't have these software programs, you can use free editors, such as Inkscape
(Windows/Linux), Affinity Designer (Mac), or Gimp (multi-platform) to create
artwork. You could make an image similar to ours or a new design, or find Creative
Commons image online.

In the far left column in the Designer, in the User Interface palette drawer, choose
the Image Component and drag it to the Viewer. You will notice that a small image
component icon sits in the upper-left corner of the Viewer. We want to center it.
There are two ways to do this:

• Click on Screen1 in the Components panel, and in the Properties panel, select
Center from both the AlignHorizontal and AlignVertical drop-down lists.

• Since we are going to be adding many components to our home
screen, we are going to walk you through a more complex method that
requires an extra component. Go to Layout drawer and drag out the
VerticalArrangement component onto the Viewer. Notice how it sits below
the Image Component icon. Click on the Image Component icon and
drag it into the VerticalArrangement box. In the Components panel, select
VerticalArrangement and go to the Properties panel. In both the Height
and Width options, select Fill Parent from the drop-down menu and click
on OK for each. You will see the VerticalArrangement component expand
to fill the screen. Still in the Properties panel, go to the AlignVertical and
AlignHorizonal options and select Center from each drop-down menu.
Notice how the Image component is now centered in the Viewer on Screen1.

Next we will change the name of the Image component. Go to the Components
panel and select Image1. Once it is highlighted, click on Rename at the bottom of
the panel to see a pop-up window where you can enter a new name, Pool Party
Message. Click on OK:

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[125]

Note that App Inventor replaces the spaces with underscores, so the Image
component name will now appear as Pool_Party_Message in the Components
panel. Now, we will upload the actual image for the Image component. With Pool_
Party_Message highlighted, go to the Properties panel and click on None under
Picture to open the Upload File dialogue. Choose the image you want to use (we
named our image in a similar way: PoolPartyMessage.png) and click on OK. Notice
that the image name appears in the Properties panel under Picture and in the Media
panel, and the actual image is displayed over our background image on Screen1 in
the Viewer, as shown in the following screenshot:

As a mobile apps user, you may have noticed that apps have some sort of navigation
bar. We will build ours across the bottom of the screen by adding five buttons:
Home, Info, RSVP, Guests, and Map.

Building an Event App

[126]

Adding buttons
We are going to place our buttons within a HorizontalArrangement component.
Drag it from the same place you found VerticalArrangement (the Layout drawer
drawer) and drop it underneath VerticalArrangment that currently exist on the
Viewer. You can double-check that HorizontalArrangement is indeed below and
not within VerticalArrangement by seeing that their names align in the Components
panel column, as shown in the following screenshot. The list of components
shows that Pool_Party_Message is indented so that it is indeed within the
VerticalArrangement1 component, but HorizontalArrangement1 is not. Next, set the
properties for HorizontalArrangement1 to match those indicated in the following
screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[127]

Go to the User Interface palette, drag out a Button, and place it inside
HorizontalArrangement in the Viewer. Repeat this step four more times. You
will now have five buttons at the bottom of the screen, as shown in the following
screenshot. Since we already set the height of HorizontalArrangement to 50 pixels,
you can set the Height property of all the buttons to Fill parent. This way, they will
stretch only to the height of 50 pixels. Do the same for the Width property and all the
buttons will automatically size evenly across the width of the screen:

Building an Event App

[128]

Click on Button1 in the Components panel and rename it to HomeButton. In
the Properties panel, change BackgroundColor to None, check Enabled and
FontBold, and set FontSize to 14. Under Text, type Home, and select Center for
TextAlignment and Black for TextColor, as shown in the following screenshot:

Repeat these steps for all of the other buttons, renaming the buttons and changing
the text on the buttons to reflect the names indicated in the following screenshot.
Set all of the buttons' TextColor to White. We are using different colors to aid
navigation. When the user is on the Home screen, he or she will see the Home
button's TextColor in black, while the other buttons will be white, as shown in
the next screenshot. When we build the next screen (Info), we will make the Info
button's text black, and change the Home text button to white, like the others:

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[129]

Here's an ideal example of why you would want to always take advantage of the
live development environment and monitor changes you make to your app on
your mobile device. The screenshot on the left-hand side is from the Viewer in the
Designer window. It shows the home screen (Screen1) with the background image,
the graphic, and the bottom menu bar we just built. If you relied only on this view
from your computer screen, you might attempt to respace the buttons because it
looks like the right button is cut off.

Building an Event App

[130]

But if you were to look at this same view on your mobile device, you would see the
screenshot on the right-hand side with all the buttons fitting evenly across the screen.

Adding the ActivityStarter
Our app will feature a map, because anytime you host an event, guests will need to
know the address and it is helpful to provide the location via GPS. For the EventApp
app to launch Google Maps when a user presses the Map button, we will use the
ActivityStarter Component. Go to the Designer, and in the Connectivity Palette,
drag ActivityStarter onto the Viewer and notice how it drops down below the
Viewer (see the following screenshot) unlike all of the other components we have
used so far. This is because ActivityStarter is a nonvisible component; the user won't
see it on the screen or even know that they have launched it:

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[131]

For the app to launch the correct map, you will need to input some instructions in
the Properties panel. Insert the following text into the blank text boxes beneath each
property heading Action, ActivityClass, ActivityPackage, and DataUri, as
follows:

• Action: android.intent.action.VIEW
• ActivityClass: com.google.android.maps.MapsActivity
• ActivityPackage: com.google.android.apps.maps
• DataUri: http://maps.google.com/mapsq=1600+Amphitheatre+Parkway+

Mountain+View+CA

http://maps.google.com/mapsq=1600+Amphitheatre+Parkway+Mountain+View+CA
http://maps.google.com/mapsq=1600+Amphitheatre+Parkway+Mountain+View+CA

Building an Event App

[132]

You might be wondering what all of these properties mean. The ActivityPackage
property tells ActivityStarter what package to launch (in the Android programming
jargon, the app files are called packages). Every Android app consists of one or more
activities. Think of these activities as main parts of the app. The ActivityClass property
mentions specifically which activity of the Maps app to start. The Action property
provides more details about the activity that is being launched. Finally, the DataUri
property specifies the web location that the map is pointing to. The first part of the
URL, http://maps.google.com/maps?q=, basically means that we are querying
Google Maps (the q stands for query) and the second part of the URL specifies the
exact location we are looking for. In URLs, blank spaces are not allowed, so the
conventional format is to replace all the black spaces with plus signs. Thus, when
we specify the address of our pool party (is fictionally at the Google headquarters in
Mountain View, CA), all the blank spaces between different words will be replaced by
plus signs, as shown in the previous list under the DataUri property heading.

When creating your own event app with a different location, you will use the same
information for Action, ActivityClass, and ActivityPackage, but for the DataUri
property, you will insert your address after the equals sign (http://maps.google.
com/maps?q=). Remember to replace all the spaces in your address with plus signs.

Following is a sample of what your screen should resemble. Because the text boxes
on your screen are small, it will not display the full information without scrolling the
cursor to the right using the arrow keys:

www.allitebooks.com

http://maps.google.com/maps?q=
http://maps.google.com/maps?q=
http://maps.google.com/maps?q=
http://www.allitebooks.org

Chapter 5

[133]

Adding screens
We currently have our home screen called Screen1 (because App Inventor does not
allow you to rename Screen1). We will now add three more screens; each one will be
associated with a button. Above the Viewer and below Projects in the top menu bar,
you will see a row of three buttons: Screen1 (our current screen), Add Screen..., and
Remove Screen, which is grayed out, as shown in the following screenshot:

Click on the Add Screen button and a pop-up window will ask you to input the new
screen name. Type Info_Screen as shown in the following screenshot. Click on OK:

Repeat the same procedure to add two more screens and name them RSVP_Screen
and GuestList_Screen. Now, all of your screens will appear in the drop-down menu
under the first menu button, and you can navigate between screens by selecting a
different one. The next screenshot shows the name Screen1 on the button to indicate
the name of the screen that is currently open:

.

Building an Event App

[134]

Once you have added the additional screens, you will need to recreate the user
interface for them. This means that, for each screen, you will add some of the
same elements you added to Screen1: the pool image as the background image, a
VerticalArrangement, a HorizontalArrangement, and five buttons. Note that it is
vital to rename the five buttons to the exact same names as on Screen1 because we
will be programming each button with the same name to do the same thing (to open
its appropriate screen) and if a button is misnamed on one of the screens, it won't
work (note that we are referring to the actual button names, not the text that appears
on the buttons). Also, remember to make the text of all the buttons white, except for
the button of the screen that you have open (that is, when GuestList_Screen is open,
the Guests button text should be black; when RSVP_Screen is open, the RSVP button
text should be black, and so on).

Programming the blocks
Now that we've designed most of the user interface of the Event app, we will switch
to the Blocks editor to program our app. Click on the Blocks button in the upper-right
corner of the Designer. You will find that throughout the building of this app (as with
any app), you will go back and forth between the Designer and Blocks editor.

Navigating between screens and launching
maps
In the Blocks editor, we will code the navigation buttons to launch the appropriate
screen. For example, when the user presses the Info button, we want the app to open
Info_Screen.

Screen1
In the Blocks Editor, make sure you are on Screen1 by verifying that Screen1 (and not
one of the other screens) displays on the menu button. In the Blocks palette under
HorizontalArrangement, you will see a list of the buttons that you just created in
the Designer. (Notice how the button names are indented underneath
HorizontalArrangement, this is a visual cue to remind you that they are contained
within the HorizontalArrangement Component.) If you don't see all of the buttons
displayed in the Palette, click on the plus sign to the left of HorizontalArrangement,
it will toggle to a minus sign and display those items (in this case, 5 buttons) within.

• Click on InfoButton to reveal the blocks drawer and choose the first gold
block when InfoButton.Click.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[135]

• Under the Built-in blocks, click on the gold Control blocks and scroll down
to the open another screen screenName block. Insert this block into the
when InfoButton.Click block.

• Add a blank pink Text block to it and type Info_Screen into the blank.
Connect it to the open another screen screenName block.

• Repeat these steps for RSVPButton and GuestsButton.

For MapButton, we won't be opening another screen; instead we will be launching
the ActivityStarter (that we have already set to open Google Maps), as follows:

• In the MapButton drawer, select the first block, when MapButton.Click.
• In the ActivityStarter1 blocks drawer, select the purple call ActivityStarter1.

StartActivity block. Connect the two blocks together.
• The following screenshot shows all of the previous steps:

Sharing blocks between screens using the
Backpack
If you think about it, all the buttons on all the screens will do the same thing. Instead
of rebuilding the exact same sets of blocks for all of the other screens, we can use the
Backpack tool. There is a little backpack icon in the upper-right corner of the blocks
Viewer, as shown in the earlier screenshot. This tool enables you to share blocks
between screens and projects (note that the Backpack empties when you sign out).

Building an Event App

[136]

There are two ways to add blocks to the Backpack. They are as follows:

• You can drag the blocks directly to the Backpack (the simplest method).
• Or, you can right-click on block you want to add (similar to copying or

pasting blocks, right-clicking to add blocks to the Backpack, will add all
attached blocks). For example, right-click on the when InfoButton.Click
block (or on a Mac, click on the control button on the keyboard while clicking
on the event block) and a drop-down list will appear, as shown in the
following screenshot. Select the fifth option, Add to Backpack; this will add
the three blocks in this set (if you have your computer's sound on, you will
hear an indicator sound).

The first time you do this the number in the parenthesis in the drop-down list will be
0 (as shown in the preceding screenshot). But after you add the first set of blocks to
the Backpack and repeat the step for the next set of blocks, the number will increase.
This number lets you know how many times you have added blocks to the Backpack.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[137]

Add the three other block sets to the Backpack, in the method you choose. After
adding the blocks, click on the Backpack to reveal the four block sets you have
added, as shown on the right-hand side of the following screenshot. Click on any
white space in the Viewer to close the Backpack:

Now we can switch screens and retrieve our Backpack blocks. Click on the Screen1
button above the Viewer to choose another screen from the drop-down list. Select
Info_Screen.

If you think about it, we only need three of the four sets of blocks we added to the
BackPack. We don't need the InfoButton blocks because we are currently on the
Info screen, so we don't want the InfoButton to do anything. To make a button not
active or not do anything, we simply don't create any blocks (code) for it.

Adding blocks from the Backpack works in exactly the same way as adding blocks
from a drawer. Click on Backpack to reveal the selection of blocks you've added and
click on the RSVPButton block. You will see that they those blocks appear on the
Viewer. Repeat the steps to add the GuestsButton and the MapButton blocks from
the Backpack.

Building an Event App

[138]

We didn't need to create the HomeButton blocks when we were on Screen1 because
that is essentially the Home screen. But, we do need to activate the Home Button on
other screens so users can navigate back to Screen1 (or Home). let's do that now that
we are on the "Info_Screen. Copy and paste any event block on the screen and then
click on the gold arrow to the right of the button name. It will reveal a drop-down
list of all the buttons; choose HomeButton. Change the text in the pink Text block
to Screen1. Your blocks for Info_Screen should look as like the following image.
Repeat the same steps to add the Home Button blocks to the RSVP_Screen and the
GuestList_Screen::

Adding text to screens
The purpose of Info_Screen is for the organizer (you) to provide guests with
information about the event. This screen would display static text, but it could easily
be updated. Let's switch back to the Designer.

An easy way to add text to a screen is with a Label. (Alternatively, you could also
create the text on your computer using Photoshop or Gimp (or another design tool)
and save it as an image file (JPG or PNG) and upload it to App Inventor using the
Media tool). You will find the Label component in the User Interface drawer. We
are going to create eight lines of text, so drag a Label onto the Viewer and repeat
this seven more times. In the Properties panel, type your information in the text box
under Text. You can copy our formatting for font, color, and layout, as shown in the
following screenshot, or design your own:

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[139]

Summary
You have completed the first part of setting up an event app. In this chapter, you have
learned how to find usable images online and how to use one as a background image
on multiple screens. You also learned how to add artwork from a computer over a
background image. You created a button navigation bar, coded buttons to open other
screens, used the Backpack tool to copy blocks from one screen to another, entered
informational text using labels, and did the setup for launching Google Maps.

In the next chapter, we will concentrate mostly on creating a database for all of the
data we will be collecting—the guests' names, the number of attendees, and the
potluck items. To do this, we will teach you to use Google Fusion Tables and how to
create an RSVP form and a guest list display using ListView. We are halfway toward
completing a very practical app that you can use for multiple purposes. And, the skills
you are learning will prove instrumental for any and all future app-making endeavors.

www.allitebooks.com

http://www.allitebooks.org

[141]

Introduction to Databases
Now that we've successfully created the first part of the Event app, it is time to make
it more functional. In this chapter, we will build onto our Event app by adding code
that will enable guests to respond to the invitation by sending an RSVP (répondez s'il
vous plaît—please reply, in French). The app will aggregate all the data and display a
guest list so that both guests and party organizers can see who is attending.

In order for the app to collect all the RSVP data from individuals in a central
repository, we will have to use an online database. App Inventor has built-in support
for three online databases, TinyWebDB, and Google Fusion Tables (which we will use).

Both, TinyWebDB and Google Fusion Tables have their limitations in aggregating
data. TinyWebDB, while easy to use, is not secure. This means that anyone has
access to the database, could by mistake (or on purpose), delete or change the data
that is collected. On the other hand, Google Fusion Tables is secure, but is more
complicated to use. In order to integrate Fusion Tables into our app, while keeping
the design of the app relatively simple, we had to make some tradeoffs. The learning
objective is to introduce you to the process of building a database with a relatively
simple app. But, as you will discover, the resulting app is challenging to disseminate
to a broad public audience. At the time of publication for this book, another App
Inventor database alternative, FirebaseDB was under development. We will offer
updates about the adoption of FirebaseDB as it becomes available. You can check
the supplementary materials on both the Packt Publishing and MIT App Inventor
websites for new information about FirebaseDB.

In this chapter you will learn:

• How to create a Google Fusion Table
• How to establish Google API credentials
• How to set up an RSVP form
• How to push data from an App Inventor app into a Google Fusions Table

Introduction to Databases

[142]

• How to request and receive data from a Google Fusion Table into an App
Inventor app

• How to display a guest list

Creating a database
In this app, invitees will send an RSVP to let the party organizer (and other guests)
know whether or not they can attend an event. So, naturally, we will have to include
a mechanism to collate all of that distributed information into one central place.
To achieve this, we will create an online database using a Google Fusion Table. In
professional programming, this aspect is often referred to as creating the backend.

Creating a Google Fusion Table
To create a Google Fusion Table, go to the https://drive.google.com website
on your computer and click on the big red button on the top-left side of the screen
labeled NEW. Scroll down the list of options and select More and select Google
Fusion Tables:

www.allitebooks.com

https://drive.google.com
http://www.allitebooks.org

Chapter 6

[143]

If you have never used Google Fusion Tables before, chances are, when you click
on More, you will not see the Google Fusion Tables option listed. If this is the case,
select the last option with the plus sign, Connect more apps. A pop-up window will
appear with a lot of apps that you can connect to your Google Drive. You should
see a view similar to the following screenshot. At the top left of this pop-up window
you will see a button that by default shows the word All. This button lets you filter
the apps into various categories. Click on it and select the second option, By Google,
from the drop-down menu, as shown in the following screenshot:

Now, you will see a list of all Google-created apps as shown on the right-hand side
of the preceding screenshot. Find the Google Fusion Tables app in the list and click
on it. After doing so, the next time you click the red NEW button in https://drive.
google.com and select More, Google Fusion Tables will appear as an option.

https://drive.google.com
https://drive.google.com

Introduction to Databases

[144]

When you create a new Fusion Table, you will be given the option to create an empty
table (along with some other options). For our purpose, select Create empty table.

Next, we will make the format of the table suitable for our app. First, rename the
table to give it a meaningful name. Click on the current table name, which is New
Table, in the top left corner. This will open a Table information window. Give your
table a descriptive name such as EventApp Table and hit the Save button:

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[145]

We will need to make further modifications to the table before it is ready to be used
as the backend of our Event app. By default, a blank row is inserted in Fusion Tables.
We want our table to be completely empty. To clear out the table, select the Edit tab
on the top left corner of the screen, below the table name. You will see a Delete all
rows option; click on it and confirm that you want to delete all rows:

Now that we have a clean table, we need to decide what columns to use. For this
Event app, we want to know who is coming (the name of the guest), how many
people that person is bringing (the number of guests), and what items that guest is
bringing to the party (potluck). This information is going to be used by the organizer
to plan the party.

Each of these three pieces of information will be saved in a column on the Fusion
Table. Four columns are automatically included when a Fusion Table is created.
Since we only need three columns, we are going to delete one of the four default
columns and modify the other three.

Introduction to Databases

[146]

The Edit tab that you clicked to delete all the rows and clean up the table also
contains another option called Change columns. We will use that options several
times now to make all the changes to the columns. The default column names
are Text, Number, Location, and Date. We will change them to Guest Names,
NumGuests, and ItemsBringing.

To change the first column to Guest Names, click on the Edit tab and select the
Change columns option and you will see the following screenshot. The first column
is selected by default (the gray background on the left panel indicates it is active).
Change the Column name to Guest Names. This column is already configured to
save Text data (the Type option), hence we do not need to make any changes here:

Now that we have changed the first column, we will do the same to the second
column. Select the second column (currently called Number). Once you click on it,
the background will become gray. Now change the Column name to NumGuests.
Since, this column is already configured to store numbers, we do not need to make
any changes here:

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[147]

Next, we need to rename the third column (currently called Location). Just like the
previous examples, select that column and change the name to ItemsBringing. By
default this column is preconfigured to store Location data. We actually want to
store Text data (items that guests will bring). So we need to change the datatype.
When you click on Location (the Type option), a drop-down menu will appear as
shown in the following screenshot. Select the Text option.

Finally, since we need only three columns, we will delete the fourth column by
hovering over the fourth column to make it active (gray) and clicking on the x next
to it (as shown in the following screenshot) and confirming the deletion in the
pop-up box:

Introduction to Databases

[148]

Now that the table is ready to be used, click on the File tab in the upper left corner
and select About this table from the drop-down menu.

Another page will open with various details of the table. Note the information given
in the very last piece of information, the Id, as shown in the following screenshot.
Double-click on the alphanumeric string to highlight it, copy/paste it in another
place on your computer, such as a Notepad file or an empty document. (You may
have to use your browser's copy/paste feature to do this, as keyboard shortcuts may
not work. You can find copy/paste under the Edit menu heading at the top of your
browser window.) You will use this Id in the App Inventor app to push/pull data
to/from this table:

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[149]

We will make one small final change to the Fusion Table (to its Sharing settings) but,
we are not ready to do that just yet. So keep the Fusion Table window open and start
working with App Inventor in the separate browser window.

Designing the RSVP screen
For our app, we are asking the invited guests to provide their names, the total
number of guests, and the food or drink to share at the potluck. Once a guest presses
the Send RSVP button, something magical will happen. We will push all the data
from the app to the Fusion Table that we created.

Creating the GUI in the designer window
In Chapter 5, Building an Event App we created the RSVP_Screen and now we
will build the GUI (Graphical User Interface) that the guests will use. Navigate
to the RSVP screen in the Designer window. The screen is empty except for the
background pool image and the navigation buttons that we added along the bottom.

Introduction to Databases

[150]

Since you have already gained experience adding various components in the
previous chapters, we are pretty confident about your abilities. Of course, we will
help specify which components to use! The guest provides three pieces of data
here: the name, the number of guests, and the item to bring. We will place all the
components related to these three pieces of data within a VerticalArrangement for a
streamlined look. Hence, the first component to add is: VerticalArrangement. Drag it
to the Viewer and set its Height and Width properties to Fill parent.

To collect the first piece of data, the name, add a Label and below that a Textbox
by dragging them onto the Vertical Arrangement in the Viewer. Rename the Label
to NameLabel and change the BackgroundColor property to Dark Gray. Check the
FontBold property and change the Text property to Name.

Similarly, rename the Textbox to NameTextBox. Change the Width property to Fill
parent. Type Enter your first and last name for the Hint property.

For the second piece of data, the number of guests, add a Label and another
component called ListPicker (found just below the Label component in the
User Interface palette). Drag the Components onto the VerticalArrangement
underneath the Label and Textbox. Rename this Label to GuestsLabel. Change the
BackgroundColor property to Dark Gray, check the FontBold property and change
the Text property to Number of guests (including you).

We will use the ListPicker Component to track the number of people attending
when a guest submits an RSVP. The ListPicker is a button that, when clicked,
opens up a list of items from which a user can select. Rename the ListPicker to
NumGuestListPicker. We will make just two changes to the ListPicker properties.
Put 1,2,3,4,5,6,7 as the ElementsFromString property. These are the items what
we want displayed when the user clicks the NumGuestListPicker. We are assuming
the number of guests (including the person who is completing the RSVP) is in the
range 1-7. You can add more or fewer guest options as you wish.

Just remember that the comma-separated numbers that you specify are the options
that the users will be able to select from. Finally, make the Selection property 1. This
means that, if the user does not choose a number from the NumGuestListPicker, the
default value of 1 will be used to count the user who sent the RSVP.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[151]

Finally, we will add a Button and rename it to SendRSVPButton. The user will click
this button to send the RSVP after completing the form. Just as we did for the labels,
make the BackgroundColor dark gray, and insert Send RSVP as the Text property.

Introduction to Databases

[152]

Next, drag the FusiontablesControl component from the Storage Palette drawer to
the Viewer. (Notice how the FusiontablesControl1 component drops down below
the Viewer, because it is a non-visible component.) After you have added all the
components, the RSVP_Screen will resemble the following screenshot:

This completes the GUI for the RSVP_Screen. In professional programming lingo,
this is also called creating the frontend.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[153]

Setting up Google Authentication
Fusion Tables is software that Google has designed. For various security- and
privacy-related issues, Google only wants verified software to send/receive data to/
from Fusion Tables. Hence, we need to establish our identity before our Event App
can exchange data with Google Fusion Tables. In this section, we will describe how
to create Google service-level authentication to establish this credential.

To establish the service-level authentication credentials, follow these instructions:

1. Go to https://console.developers.google.com/ and log in with your
Google account if necessary. On the Getting started page, click on the Use
Google APIs button as shown in the following screenshot:

The acronym API stands for Application Programming Interface.
To describe it in a very simple manner, an API defines a way for computers
to interact with websites (essentially for software programs to interact).
Developers at companies like Twitter, Facebook, and Google create protocols
for their software to enable other programs to communicate with it. In this
case App Inventor will be communicating with the Google Fusion
Tables API.

https://console.developers.google.com/

Introduction to Databases

[154]

2. You will be prompted to create a new project that uses APIs. Name your
project Event App Project. Make the selections shown in the following
screenshot, and click on Create:

3. On the right-hand side, you will see a tab named Enabled APIs (7), as
follows. Click on that tab:

This will show you a list of APIs that are enabled by default. Since we will
not use these APIs, click on the Disable option next to each API and disable
each one of them.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[155]

After you have disabled all APIs, your screen will look like the following
screenshot:

4. Our next goal is to enable the one API that our app will use—the Fusion
Tables API. To do so, look for the Other popular APIs column. You will
find it to the bottom-right group of links (look for the blue hexagon icon), as
shown in the screenshot that follows:

Introduction to Databases

[156]

5. Click on the Fusion Tables API listed in this column. And then, in the
next screen, click on the blue Enable API button shown in the following
screenshot:

6. Now that we have enabled the Fusion Tables API, it is time to create
credentials (ways for software to verify the authenticity of other software).
Click on the Credentials option on the left vertical pane, as shown in the
following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[157]

This will result in a pop-up window with the blue Add credentials button,
as shown in the following screenshot. Click on that button and select the last
option—Service account.

In the next window, make the selections shown in the following screenshot
and click on Create:

Introduction to Databases

[158]

This will create the service account and download a special file onto your
computer. This file has a .p12 extension. Depending on your browser's
setting, you might see a window such as the following one. This window asks
you where to save the file. Save the file somewhere on your hard drive and
remember the location. We will upload this file in to App Inventor later on:

If you do not see the pop-up window like the one shown previously, in
all likelihood your browser is set to download everything to the default
Downloads folder. In that case, the .p12 file will automatically be saved in
that folder:

After this .p12 file has been downloaded to to your computer, you will see
a message resembling the one shown previously. Click the Close button to
dismiss the message.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[159]

7. Now that we have created the credentials we are going to use, Google will
automatically generate an e-mail address that goes with this credential. This
email address is something we will have to specify in App Inventor as well.
As shown in the following screenshot, a long and complicated email address
will be displayed under the Service accounts. Copy this email and paste it
into the document that you used to store the ID of the Fusion Table that you
created earlier. Just like the ID of the Fusion Table, you will need this email
address later on:

8. The Fusion Tables API is now enabled and the credentials are established.

Sharing the Fusion Table with the service
account email
When you created the Fusion Table in a previous section, you used your own Google
account to do so. So right now only you can access and change the Fusion Table.
However, for this app to work, you need all your guests to have the ability to insert
data into the Fusion Table and read from the Fusion Table.

The service account email that you created in the previous step will come in handy
to achieve just that. That email is associated with your app and not any individual.
Hence, anyone else using the app should be able to access the Fusion Table as long
as that email address has proper access to the Fusion Table.

Introduction to Databases

[160]

To enable the service level email access to the Fusion Table, go back to your Fusion
Table (left open in the separate browser window/tab) and click on the blue Share
button in the top-right corner. This will open the Sharing settings menu, as shown in
the following screenshot.

Copy and paste the service email address that you saved earlier into the Invite
people box. Make sure the button next to the box says Can edit, and click on Send.

This step ensures that any user of the app (not just you) is able to insert data into or
receive data from the Fusion Table.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[161]

Connecting the app to the Google Fusion
Table
So far, we have created a Fusion Table and the GUI for the RSVP_Screen,
and established our Google API credentials. Now it is time to create the code
for RSVP_Screen.

Our goal
When the user clicks the Send RSVP button:

1. The app takes the name from the NameTextBox, the selection from the
NumGuestListPicker, and the contents of the ItemsBringingTextBox and
inserts them as a single row in the appropriate column in the Fusion Table.

2. Then the app clears textboxes and reset the Listpicker selection to 1.

We created the service-level credentials (the .p12 file and the service-level email
address) so that our app is authorized to send or receive information from Google
Fusion Tables. Next, we need to provide the FusiontablesControl component
in our app with this information. We want to do this when a user opens the
RSVP_Screen.

Introduction to Databases

[162]

As shown in the following screenshot, once in the RSVP_Screen in the Designer,
select the FusionTablesControl1 component under the Components column. This
will display all the properties of FusiontablesControl1. Under the KeyFile property,
click currently shows None. Then click on the Upload File button:

This will open up another pop-up, which will let you select the file that you want
to upload. The following screenshot shows the pop-up. Select the .p12 file that you
earlier downloaded to your computer and click on the OK button:

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[163]

Next, copy the service-level email address that you have saved in a document and
paste it into the ServieAccountEmail property.

Finally, check the UserServiceAuthentication checkbox.

Pushing data to the Fusion Table
When using multiple screens, you want to keep your blocks organized according
to screen in the Blocks editor. Since we are getting ready to program blocks for the
RSVP_Screen, we need to make sure we are on the RSVP_Screen in the Blocks editor.

To check this, look at the first of three buttons in the green menu bar next to the
EventApp name. If you just finished working on the RSVP_Screen in the Designer
and switched over to the Blocks editor, you will be on RSVP_Screen. But if not, you
can easily navigate to RSVP_Screen by clicking the button that displays another
screen name (Screen1 as shown in the following screenshot) and choosing RSVP_
Screen from the drop-down menu:

Introduction to Databases

[164]

When the user clicks the Send RSVP button, we want to insert all three pieces of
data into the Fusion Table. The following screenshot shows the block to achieve just
this. This might look intimidating, but is actually quite simple:

Since we want our app to react to the Send RSVP button click, we will of course
need to get a SendRSVPButton.Click event. As you might have already guessed,
you will find this event block in the Blocks Palette in the SendRSVPButton
Blocks drawer.

The purple call FusiontablesControl1.InsertRow block enables an app to insert a
row into a Fusion Table. In the Fusiontables1 Blocks drawer, select and place the
FusiontablesControl1.InsertRow block within the SendRSVPButton.Click event.

As you can see, the InsertRow block has three empty sockets. The first socket is the
Id of the table that you want to use. Recall that we found the Id of our table during
the last step when creating the table. Copy and paste that Id here within an empty
Text block.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[165]

In the second socket of the InsertRow block, we will specify the column names.
When inserting a row with multiple pieces (columns) of data into a Fusion Table,
we need to specify which columns those pieces of data fit into. Recall that we named
our columns Guest Names, NumGuests, and ItemsBringing. In a blank Text block,
enter the column names within single-quotes, separated by commas, as shown in the
following screenshot (note there are no spaces):

The third and final piece of information that the InsertRow block needs is the actual
values to insert into the Fusion Table. Just like the column names, we will be entering
multiple pieces of data into a single row in the Fusion Table. As with the columns,
these three pieces of data must be entered within single quotes and separated by
commas but we will insert them a little differently. To create one single-quoted,
comma-separated text from three pieces of information that a guest will enters in the
three separate fields in the RSVP_Screen, we will use a join block, From the built-in
Text Block drawer, drag and connect the join block to the values socket of InsertRow.

We will need to join 11 things—three pieces of information, six single quotes (one
before and one after each piece of information), and two commas to separate the
three pieces of single-quoted information. By default, the join block joins two things.
So we need to make room for nine more items. Click on the blue button on the top
left corner of the join block, and drag the string block on the left of the pop-up into
the join block on the right of the pop-up, shown as follows. This will create more
sockets in the join block. Do this nine times:

Introduction to Databases

[166]

The first, third, fifth, seventh, ninth, and eleventh join sockets will contain a
single quote, entered into a Text box. The fourth and eight sockets will contain a
comma entered into a Text box. In the second socket, the app will get the first set
of information that a user enters: their first and last name. So, we need a block that
allows the user to enter a name. You will find it in the NameTextBox blocks. Select
and connect the light green NameTextBox.Text block into the second join socket.

The sixth socket will get the number of guests that the user selected from the
list picker. In the NumGuestListPicker blocks, select and connect the light-
green NumGuestListPicker.Selection block. And in the tenth socket, the
app will get the information about which food/drink item the user inputted.
In the ItemsBringingTextBox blocks, select and connect the light green
ItemsBringingTextBox.Text block.

Again, recall the first goal that we specified in this section: take the three pieces of
information that a guest provides and insert them in the Fusion Table. The three
pieces of data come from the NameTextBox text property, the NumGuestListPicker
selection property, and the ItemsBringingTextBox text property. This step was a
complicated one, but it is very important to get this set of blocks right because, if not,
no data will be inserted into the Fusion Table.

Now that we are done with the InsertRow block, all that is left is to clear out the
textboxes and revert the ListPicker selection to the default value of 1. Since blocks
are executed from top to bottom and we want to clear out the Textboxes and reset
the ListPicker after the app sends the information to the Fusion Table, insert the
next set of blocks after the InsertRow block. Find the set NameTextBox.Text to, set
ItemsBringingTextBox.Text to, and set NumGuestListPicker.Selection blocks and
insert them into the bottom of the when SendRSVPButton.Click block. The first two
blocks—set NameTextBox.Text to and set ItemsBringingTextBox.Text to—get blank
Text blocks. Setting the textboxes to empty strings will clear out the previous data.
Since we want the set NumGuestListPicker.Selection to reset the default selection
property of the NumGuestListPicker to 1, attach a Math 0 block and change the
number to 1. Lastly, we will call a procedure to make sure any keyboard that might
have popped-up when the guest was typing in information gets hidden. Find the call
NameTextBox.HideKeyboard block in the NameTextBox blocks. Connect it at the
very bottom of the blocks.

Ensuring empty rows are not inserted
Right now, the InsertRow does not have any way to tell if the data that it is inserting
is valid or not. For example, the user might click on the SendRSVPButton by
mistake and that will insert a blank row. We can fix this by checking to make sure
that the guest has typed in at least the name before we insert anything.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[167]

To achieve this, we can place all the blocks that we created within an if /then
statement. The condition that we will check for is whether the NameTextBox.
Text is empty or not. If the NameTextBox.Text is not empty, then that means the
guest must have typed something and we will allow the insertion to happen. "If the
NameTextBox.Text is empty, then the if statement is not true, and the then set of
blocks will not fire. As a result, nothing will happen. The following screenshot
shows the blocks for the if statement:

You can find the lime-green (unequal) block in the Build In Logic Block drawer. The
block will appear with an equals sign, as follows:

Click on the arrow and select the unequal option from the drop down menu. In the
first blank, insert the NameTextBox.Text block and, in the second blank, insert a
blank Text block. Now our code indicates that, if the name field is not blank, then it
should get the data and insert it into the Fusion Table.

Introduction to Databases

[168]

Viewing the guest list
Now that we have implemented the RSVP_Screen, we have a way for guests to send
RSVPs and aggregate all the RSVPs from different guests into the Fusion Table. In
any event organization app, it is helpful for others to be able to see a list of guests
who have already RSVP'ed.

The purpose of the GuestList_Screen is just that—enabling all attendees (and the
organizer) to see who else is coming to the event. To display information gathered
in the Fusion Table, we will use a Label. In the Designer window, navigate to the
GuestList_Screen. Just like in the RSVP_Screen, first drag a VerticalArragment
to the top portion of the GuestList_Screen, above the HorizontalArrangement,
which contains all the navigation buttons. Make the BackgroundColor property in
VerticalArrangement to None. Also set both the Height and Width properties to Fill
parent. Now drag a Label component into the VerticalArrangement. Rename the
Label GuestListLabel. Change the BackgroundColor property of GuestListLabel
to None. Change the FontSize property to 18 (you might have to try various values
for this property depending on your device's screen size and screen resolution).
Finally, change the TextColor property to White. Then add a FusiontablesControl
component just like you did in the RSVP_Screen. You can view the changes in the
following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[169]

Just like in the RSVP_Screen. We will change the three properties of the
FusiontablesConrol1 component. Since you already know how to change the
three FusiontablesControl1 properties—KeyFile, ServiceAccountEmail, and
UseServiceAuthentication—we will not go into the details here. Just follow the steps
that we completed in the Connecting the app to the Google Fusion Table section.

Whereas in the RSVP_Screen, the app sends information to the Fusion Table, in the
GuestList_Screen, the app is requests information from the Fusion Table, receives it
and then displays it. To program this, head to the Blocks editor.

Coding the blocks – requesting data
The first code that we need to program is to request data from the Fusion Table.
Click on GuestList_Screen in the Blocks drawer and drag the when GuestList_
Screen.Initialize event. This event is automatically triggered whenever a screen
is launched. We want to request data from the Fusion Table when the GuestList
screen is launched. Thus, we will add to this event is the call FusiontablesControl1.
GetRows block. This block will let us request data from the Fusion Table. You can
find this block in the FusiontablesControl1 blocks drawer. The GetRows block
needs two pieces of information to fetch rows from Fusion Tables: the ID of the
table and name of the column. We identified the table ID when we were creating the
Fusion Table. Paste that ID into the tableId socket of the GetRows block using a Text
block. Use another Text block to specify the column name, 'Guest Names'. Note the
single quotes; just like in the InsertRows block, the column names have to be single-
quoted here as well. The following screenshot shows the completed set of blocks:

Coding the blocks – receiving data
The previous blocks request in data from the Fusion Table, now we need to code
receiving the information from the Fusion Table. The when FusiontablesControl1.
GotResult block does this. You will find it in the FusiontablesControl1 blocks. As
we mentioned before, when data from Fusion Tables is received, this event gets
triggered. The data is placed in the result variable of this event.

Introduction to Databases

[170]

By default, the data we receive from the Fusion Table is a block of text with each row
placed on its own line. This data also includes the column header. So, let's say the
Guest Names column of our Fusion Table has three rows with the names Olivienne,
Dash, and Eva. Then the data that is placed in the result variable has four lines—
Guest Names, Olivienne, Dash, and Eva (the column header followed by the three
names).

Since we want the when FusiontablesControl1.GotResult event to automatically
display the guest names (and the header), select and connect the set GuestListLabel.
Text to block. What do we want it to display? The result variable. Hover your cursor
over the light orange result variable embedded in the gold event block. A pop-up
with two orange blocks will appear, as shown in the following screenshot. Select the
get result block and attach it to the open socket in the GuestListLabel.Text block:

That's it! Now your GuestList_Screen will display all the guests who have RSVP'ed.
The following screenshot shows the completed sets of blocks:

It is time to try your app! Fill out the RSVP form to see if it populates into your
Fusion Table. Does the app then clear the RSVP screen fields and display the names
in the Guest List screen?

If you recall, we set up our app to gather other data from the RSVP besides the list of
guest names. We created fields so guests could input the number of people they are
bringing and the food/drink item to share. You could also display this information
for other guests to see, but really that data is for the host, who can easily view it
along with the names in the Fusion Table columns we created.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[171]

Sharing the Event App
With the Event App, we wanted to introduce you to the process of collecting and
retrieving data. Now that you are approaching apps from more of a developer’s
perspective, you will probably be aware that every time you enter your email
address or other information into an app, that data is getting stored into a database.
But, as we mentioned at the beginning of this chapter, Fusion Tables as a database
has its limitations. If you were to share the Event App as it is with multiple event
organizers, who start using it on different devices, there will be a problem because
the app uses a single Fusion Table as the back end. If many people use the app for
their different events, all of the data from all the different devices will be aggregated
in to one single Fusion Table. Of course this will create mass confusion for the event
organizers (and guests) as all of the data for different parties will be all mixed up!

Before we outline a possible fix to this problem, lets discuss what we did in this
app. Since our app accesses and modifies the Fusion Table, we had to create Google
service level authentication. This step ensures that our app is authorized by Google
to access Fusion Tables. Then, we inserted the Fusion Table Id into our app to let the
app know which Fusion Table to access. Additionally, we created a service email
address for our app and shared the Fusion Table with this service email address.
These steps ensure that the Fusion Table allows our app to read/write data. So we
basically had three different entities interacting with each other - Google service level
authentication, our app, and the Fusion Table.

One way to address the problem of the single Fusion Table associated with the Event
App is for the developer to create different copies of the app that uses different
copies of a Fusion Table. This means that each copy of the app will have to be
updated with the Id of the new copy of the Fusion Table. Additionally, this also
means the Fusion Table will have to be re-shared with the app's service level email
(using the original service email address).

It is easier than it sounds. First, open the Fusion Table that you used previously, go
to the File menu and select, Make a copy. This will create a new copy of the original
Fusion Table with all of the changes we made to the columns and settings. If your
previous Fusion Table had any data in it, you will need to clear the data. Next, repeat
the Fusion Table Id identification step outlined in the last few paragraphs of Creating
a Google Fusion Table section. (Since you are creating a new Fusion Table, you will
have to use the Id of this new table.) You will also have to repeat the Sharing the
Fusion Table with the service account email section for this new Fusion Table (using
the original service email address).

Introduction to Databases

[172]

Lastly, in Blocks editor, paste the new Fusion Table Id into the Text box (attached to
the TableID slot of the call FusiontablesControl1.InsertRow block) to ensure that the
app uses the new Fusion Table.

If you want to share your Event App with 7 people, you will need to
repeat these steps 7 times, so that each person has a unique version of
the app with a unique Fusion Table.

Summary
In this chapter we explored a lot of App Inventor advanced features, namely a
database. Google Fusion Tables makes it possible for us to store data in the backend.
We learned how to create a new Fusion Table and how to establish Google API
credentials so that our app is authorized to access Google Fusion Tables. Finally we
learned how to insert, retrieve, and display data from the Fusion Tables.

You are amassing quite a programming toolkit! And in the next chapter, you will
learn yet another tool to help expand your coding skills. A loop is a structure or
sequence of instructions that enables you to iterate or repeat steps until certain
conditions are met. This is handy because, instead of copying and pasting blocks to
perform the same function for each item in a long list, we can program one set of
blocks to execute repeatedly.

www.allitebooks.com

http://www.allitebooks.org

[173]

Learning About Loops
with a Raffle App

In the previous chapters, you used the if-then-else control block several times.
The if then else block enables apps to make decisions. It is one of the fundamental
computing concepts that is present in any programming language. There is a second
fundamental programming concept—the loop, which we will explore in this chapter.
A loop allows a program to repeat code. More specifically, in App Inventor, a loop
will let us execute a stack of blocks multiple times.

To illustrate the concept of a loop, we will create a digital raffle App in this chapter.
In case you aren't familiar with a regular (nondigital) raffle, we will explain. A raffle
organizer gives participants a ticket with a number on it and puts a duplicate of
that ticket in a bowl. When all the tickets have been given out (and put in the bowl),
the raffle organizer then randomly picks a ticket out of the bowl (often times with
a blindfold on) and announces the winning ticket number. The participant with the
matching ticket number then claims a prize.

Creating a digital raffle app using App Inventor is not a new idea. Others have
created similar apps before. For example, http://www.appinventor.org/content/
howDoYou/RecordingInfo/phone shows how to create a very simple digital raffle
app. We will extend this idea and create a more versatile digital raffle app. For our
digital Raffle App, participants send a text message with a specific code to the raffle
organizer. The raffle organizer runs the app on his or her phone, which keeps track
of all the participants' incoming text messages and phone numbers and selects a
random winner. Then, the app notifies the winner that she or he has won and notifies
the rest of the participants that they did not win. This is a fun participatory game for
a party, event, or a meeting break.

http://www.appinventor.org/content/howDoYou/RecordingInfo/phone
http://www.appinventor.org/content/howDoYou/RecordingInfo/phone

Learning About Loops with a Raffle App

[174]

In this chapter, you will learn how to do the following:

• Create a user interface for the Raffle App
• Create and initialize a list and a variable
• Use a texting component to send/receive text messages
• Add items to a list
• Select a random winner
• Notify the winner that he or she has won
• Use a loop to send the same notification e-mail to all the participants

who did not win
• Clear out the list and the variable

Creating the project and building the GUI
In preparation of using the Raffle App, the raffle organizer will give two pieces of
information to everyone who wishes to participate in the raffle: the organizer's phone
number and a code. The raffle organizer can distribute this information by either
sharing them verbally or writing then down for everyone to see. The participants
will then send a text message to the raffle organizer's phone number with the
code typed in the body of the text message. When the app (running on the raffle
organizer's phone) receives all of the text messages containing the code, it will save
the all the senders' phone numbers in a list. Then, the raffle organizer will click on
a button to randomly select a winner from the list of phone numbers. The winning
phone number will be displayed on the raffle organizer's phone screen, and the app
will also send a text message notification to the winner's phone indicating that he or
she has won. Meanwhile, the app will notify the rest of the participants that they did
not win.

Creating a new project
You will start by creating a new project. At this point, this step will probably be very
familiar to you as you have already done this several times in the previous chapters.
As shown in the following screenshot, click on the Start new project button after
logging into App Inventor. Then, in the following pop-up message box, give an
appropriate name for this app. We will use the name Digital_Raffle.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[175]

Creating the User Interface (UI)
Now that we have created a new project, it is time to add the first component that
we will use, a Label. The raffle organizer will create a code to share with all the
participants. Since the raffle organizer may conduct several raffles, we will use a
label to display the code on the organizer's phone. For this app, we chose the code:
I want to win. We will program the app to compare this code, I want to win, to any
text message that the raffle organizer's phone receives. If it is a match, the app will
save the associated phone number into a list. As shown in the following screenshot,
drag a Label from the User Interface Palette drawer onto the Viewer:

At this time, we would like to reiterate the importance of naming components
appropriately. Proper naming helps programmers when they are creating behavior
in the Blocks editor. Additionally, appropriate names make it easier to understand
the logic of the code. Lastly, should you decide to extend this app six months after
first creating it, aptly named components will help you remember the purpose of
each component.

Learning About Loops with a Raffle App

[176]

Given that, rename Label1 as CodeLabel. To rename Label1, select Label1 in the
Components column. Recall that selecting a component will make its background
green on the screen, which indicates that it is active. Then, click on the Rename
button at the bottom of the panel. In the pop-up window, enter the new name.

We will use this label to display the code (text) I want to win. Enter I want to win
(without the quotes) in the Text property box. To make the code easily visible, we
make the FontSize property 45. Finally, set Width of this label to Fill parent.

Next, we will add a button right below CodeLabel. This is the button that the raffle
organizer will click on to select a winner. Drag a Button from the User Interface
palette onto the Viewer, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[177]

Rename Button1 to WinnerButton. By default, the Text property of the button shows
Text for Button1. Change the Text property to something more informative by
clicking in the text box and typing Pick Winner. Also, change the Width property to
Fill parent so that the button is of the same width as the label above it.

After adding CodeLabel and WinnerButton, add a third component, another label,
to display the phone number of the winner. Just like the CodeLabel, Drag another
Label below WinnerButton and rename it, WinnerLabel. Since we will only use this
label after a winner is selected, thus delete everything under the Text property, so
that WinnerLabel does not show anything. To have a consistent look, set the Width
property to Fill parent.

Learning About Loops with a Raffle App

[178]

Finally, set the FontSize property to 35 so that the winner's phone number
when displayed is not too small. The following screenshot shows the app after
WinnerLabel is added and configured:

Since the Raffle app might be used many times, we need to have a mechanism to
reset the app. For this purpose, add one more button below WinnerLabel. Rename
it ClearButton, change the Width property of the button to Fill parent, and finally,
change the Text property to Clear, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[179]

Next, we need some way for the app to send and receive text messages. For this, use
the Texting component. You will find the Texting component in the Social Palette
drawer. Drag the Texting Component onto the Viewer. As shown in the following
image, the Texting component is a Non-visible component and is housed below the
Viewer. We do not need to set any properties for this component.

This completes the GUI of the Raffle app. In the next section, we will program
the behavior of the app in Blocks editor.

Programming the behavior of the Digital
Raffle app
To summarize, when the app receives text messages from participants, if a text
message contains the indicated code (in this case, I want to win) in the body of
the message, then the sender's phone number is added to a list. When the raffle
organizer clicks the WinnerButton, the app will randomly select a winner from
that list of phone numbers. Then, the app will send the winner a text message
notifying him or her of the win. The app will also send text messages to all the other
participants letting them know that they did not win.

Learning About Loops with a Raffle App

[180]

We will achieve all of this by completing the following substeps:

• Create and initialize a list and a variable
• Receive text messages, and if the code matches, add the sender's number to

the list
• Select a random item from the list (winner)
• Send a winner notification
• Send other participants a notification letting them know that they did not

win

Creating and initializing the variable and list
For this app, we will need a list to store all the participant's phone numbers. And
we will also use a variable to temporarily store the winning number. To create the
list and the variable, go to the Variables blocks panel and drag the topmost block
initialize global name to as shown in the following screenshot. Do this twice.

Double-click on "name" inside both the blocks and type in new names,
ListOfNumbers for the list and WinningNumber for the variable, as shown in the
following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[181]

Whenever you (as a programmer) create a list or variable, you need to initialize
it with an initial value. For our list, we want to start out with an empty list. App
Inventor makes this easy. In the Lists blocks, select the create empty list block,
as shown in the following screenshot, and connect it to the initialize global
ListOfNumbers to block:

For the WinningNumber variable, we will initialize it to be 0. In the Math blocks,
select the 0 block (shown in the following screenshot) and connect it to the initialize
global WinningNumber to block:

After completing these steps, the initialization blocks for the list and the variable will
look like the following screenshot:

Learning About Loops with a Raffle App

[182]

Receiving text messages from participants
In this section, you will learn how to receive text messages from participants and
store their numbers in a list.

We added the nonvisible Texting1 component in the Designer tab when we created
the UI. We will use this component to send and receive text messages. As shown
in the following screenshot, this component has a single gold event block, when
Texting1.MessageReceived. Whenever the raffle organizer's device receives any
text message, this event will get triggered.

Click on the when Texting1.MessageReceived event block to add it to the Viewer.
As shown in the following screenshot, this event has two associated variables—
number and messageText. Whenever a text message is received and this event
is triggered, the number variable contains the sender's phone number and
messageText contains the content of the message.

When you want to store some data, you can create global variables. In
previous steps, we explicitly created our own global variables called
ListOfNumbers and WinningNumber and initialized them. Once you
create a global variable, any block in your app can use that variable.
On the other hand, when an app is running, various events might
also need to temporarily store data and hence, may need a variable.
These variables, which are built into blocks, are called local variables.
They appear in a block and can be accessed by hovering over them
with a mouse. Their existence is limited to a particular event. Other
blocks of the app cannot use them. In fact, if you try to use a variable
outside the event block that they are a part of, you will get an error
message. Examples of local variables are number and messageText;
they are associated specifically with the block, when Texting1.
MessageReceived.

Thus, the number and messageText variables store important data related to the
when Texting1.MessageReceived event block. Whenever a text message is received,
this event is triggered and the information related to the text message (the sender's
number and the message text) is placed into these two variables and can be used by
the blocks within that event.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[183]

Since the raffle organizer's phone can receive text messages unrelated to the raffle
at the same time that it receives raffle text messages, we want to filter out the raffle
related text messages. This is the main reason we include the code (I want to win) in
our design, to filter out raffle related text messages.

Recall that the messageText variable associated with the when Texting1.
MessageReceived event contains the text of the message. So, once a text message
is received, we want the app to check whether the messageText variable matches I
want to win or not. Can you think of what type of block we would use to determine
whether or not the code matches?

If you thought of an if then block, you are right! Do you recall where to find it?
Select an if then block and connect it to the when Texting1.MessageReceived event.
As you already know, we need to plug in a condition block into the if socket. In this
case, we want to match two texts. App Inventor makes this easy. As shown in the
following screenshot, in the Text blocks, select and connect the compare texts block
to the empty if socket:

Learning About Loops with a Raffle App

[184]

Since we want to check whether the two texts match, click on the downward
pointing triangle next to the less-than sign and select the equals sign, as shown in the
following screenshot:

Hover the mouse pointer over the light orange messageText variable in the event
block. This will trigger a pop-up window, as shown in the following screenshot.
Select the getMessageText block and place it within the first opening in the compare
texts block to the left of the equals sign. This block will get the text from the
incoming text message (any text message):

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[185]

For the second opening, we want to input the code we created so we can compare
it to the text message received. If you recall, in the Designer property, we set the
Text property of Codelabel to our code, I want to win. So, under Screen1, go to the
CodeLabel blocks and select the CodeLabel.Text block.

Insert the CodeLabel.Text block into the opening to the right of the equals sign in the
compare texts block, as shown in the following screenshot. We have now programmed
the app to check to see whether the text message (messageText) matches the Text
property of the CodeLabel (the code, I want to win).

Adding the phone numbers of all the
participants to the list
If the text message indeed contains the correct code, we know that the text message
came from a raffle participant. Thus, we want the app to add the sender's phone
number to the list that we created earlier. To do this, go to the List blocks and select
the add items to list block, as shown in the following screenshot. Add it to the then
opening of the if/then block.

Learning About Loops with a Raffle App

[186]

The add items to list block needs two pieces of information, which we will attach to
the empty sockets—the name of the list to add items to and the item to be added. To
specify the list, go to the Variables block and select the get block and connect it to
the list socket of the add items to list block.

Then, click on the downward pointing triangle of the get block and select global
ListOfNumbers from the drop-down menu as shown in the following screenshot.
When we initialize a global variable, like we did for ListOfNumbers, it is then
available for us to use throughout the app. This is why the name appears in the drop-
down menu as an option.

As we mentioned before, the number variable associated with this Texting1.
MessageReceived block contains the sender's phone number. You can use the get
number block to access this number. Hover your mouse over number variable to
view the pop-up window, as shown in the following image. Select the get number
block and connect it to the item socket of the add items to list block.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[187]

The following screenshot shows the completed set of blocks for receiving text messages:

Thus far, we have programmed the app to do the following: receive text messages,
verify that the message texts contains the I want to win code, and if so, add the
sender's phone number to the list that we created (ListOfNumbers). If the text
message does not match the CodeLabel Text, then nothing happens (the phone
number does not get added to the list.)

Selecting a winner
When designing the UI, we added a WinnerButton that the raffle organizer will click
to randomly select a winner. App Inventor also makes this easy. We will use the pick
a random item block to select a winner from ListOfNumbers. You can find the pick
a random item block under the Lists Blocks, as shown in the following screenshot:

Learning About Loops with a Raffle App

[188]

Since the raffle organizer will click a button to pick a winner select the
WinnerButton.Click event (found in the WinnerButton blocks). Next, go to the
Variables blocks, select a set to block, and place it within the WinnerButton.Click
event. In the set to block, click on the downward pointing triangle and select global
WinningNumber. Connect to this block with the pick a random item block that
we selected earlier. The pick a random item block has an open socket indicating a
list. Can you figure out which block would connect to it? Since we want the random
item (phone number) to be selected from our list of numbers, copy and paste the
get global ListOfNumbers block from the add items to list block (in the previous
section) and connect it to the pick a random item block. The following screenshot
shows the completed set of blocks up to this point:

What exactly are we coding here? We are programming the app to select a random
item (phone number) from the list (of all the phone numbers) and store it in the
WinningNumber variable (set global WinningNumber to block). You might be
wondering why do we need to do this. As it will be evident later in this chapter, we
will reuse this winning number several times. Hence, we need to temporarily store it
somewhere.

Once we get the winning number, we want the app to display the winning number
on the organizer's phone. To do this, we will set the Text property of WinnerLabel
to WinningNumber. As shown in the following screenshot, select set WinnerLabel.
Text to (under the WinnerLabel blocks) and connect it to the get global
WinningNumber block (which you will find in the Variables block drawer). It will
be listed just as an orange get block, and you will need to click on the downward
pointing triangle to select global WinningNumber from the drop-down list. Your
blocks should resemble those in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[189]

Let's recap. We have programmed the app to randomly select a winner (phone
number) from all the participant phone numbers (global ListOfNumbers), we will
have saved the winning phone number into the Variable Global WinningNumber
variable and displayed the winning number in WinnerLabel. The next step is
notifying the winner by sending a text message to the winning number.

Notifying the winner
The non-visible Texting1 component that we used before to receive the text messages
from participants will be used here again. To send a text message to the winner,
we will set both the Texting1.Message property and the Texting1.PhoneNumber
property. Find the set blocks under the Texting1 blocks. Select and place them
inside the WinnerButton.Click event, as shown in the following screenshot. For the
Texting1.Message property, connect a blank Text block and type in the message
"Congratulations!! You won". For the Texting1.PhoneNumber property, copy and
paste the global WinningNumber block and connect it to the empty socket.

The Texting1 component has a purple block called call Texting1.SendMessage.
This is the block that actually sends a text message. The PhoneNumber property
of the Texting1 component is used for the recipient's number and the Message
property is used for the body of the text. Hence, it is important to set these two
properties correctly before actually sending the text with the call Texting1.
SendMessage block. As shown in the following screenshot, go to the Texting1
blocks again, and drag the purple call Texting1.SendMessage block and place it
at the bottom of all the blocks:

We have now coded the Raffle app to send a congratulatory notification to the winner.

Learning About Loops with a Raffle App

[190]

Notifying everyone else
Usually, the winner is excited to have won, and announces aloud that she or he has
won. But in case this doesn't happen, we want to send a notification message to
all the participants who did not win to ensure that no one is left wondering about
the raffle outcome. It seems logical to send a "Sorry, You did not win" notification
to all the items in ListOfNumbers, since it is storing all of the participants' phone
numbers. However, there is a flaw to this logic. Can you guess what the problem is?
Currently, ListOfNumbers contains all of numbers, including the winning number.
So, before we use the ListOfNumbers as the source for the "Sorry" notification, we
need to remove the winning number from this list.

As shown in the following screenshot, we will use the remove list item block to
remove the winning number. You can find remove list item in the List blocks. This
block needs two pieces of information (hence, the two empty sockets): the name of
the list and the position (index) of the item to be removed. Specifying the name of the
list is easy. Just copy and paste and connect the global ListOfNumbers block.

Finding the position of the winning number is a little more involved. We will need to
add another List block, that is, the index in list block to figure out this position. As
shown in the following screenshot, connect the index in list block to the empty index
socket in the remove list item block:

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[191]

Index is the position of an item in a list.
The remove list item block can remove an item from a certain position.
First, we need to figure out the position of the winning number (the
thing) in the list. Then, we will use this position to remove the winning
number.

The index in list block finds the position of the item specified in the thing socket
from the list specified in the list socket. So, we will copy and paste, connect the
get global WinningNumber block to the thing socket, and add another get global
ListOfNumbers block to the list socket. Your code will look as follows:

Learning About Loops with a Raffle App

[192]

Let's recap. We have identified the position of the winning number in the list and
have removed the item at that position, thereby removing the winning number from
the list. Now, we are ready to use this list to send a notification to the participants
who did not win.

Just like the notification message we created for the winner previously, we will reuse
the Texting1 component to send out notifications to all the participants who did not
win. Copy and paste the set Texting1. Message to block (that will copy the attached
text block). Change the text in the Text block from "Congratulations !! You won" to
"Sorry, You did not win". Feel free to change this message and personalize it to your
liking.

Note that blocks execution is always top down. So effectively,
the winning number is removed from ListOfNumbers before the
notification is sent to the losing participants. And, Texting1.Message set
to the block message "Sorry, You did not win." overwrites the previous
text message "Congratulations!! You won".

An important difference between sending the notification to the winner and
this notification is that this notification will be sent to all the numbers in the list
ListOfNumbers, except the winning number. Essentially, this means that we need
to repeat the set Texting1.PhoneNumber to block, followed by the callTexting1.
SendMessage block—once for each item in ListOfNumbers. And this brings us to
the concept of loops!

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[193]

Using loops
A basic programming concept present in any programming language, including
App Inventor, is called loop. Loops let us repeat code and thus we will use a loop
here. We will place two blocks in the loop: set Texting1.PhoneNumber to and call
Texting1.SendMessage.

Loops are available in the Control blocks drawer. There are different types of loops.
We will use the for each item in list loop, as shown in the following screenshot.
Select the for each item in list loop and place it at the bottom of the when
WinnerButton.Click event. This loop requires us to specify a list that will be used in
conjunction with the loop. The loop lets us repeat whatever block we place within
the loop once for each item in the associated list. While the loop is running, during
any iteration, the corresponding item from the list will be placed in the item variable
as well. When the loop executes for the first time, the first item of ListOfNumbers
will be available in the item variable associated with the loop. Similarly, when the
loop executes for the second time, the second item will be available in the item
variable and so on:

Learning About Loops with a Raffle App

[194]

This loop will execute as many times as the number of number of phone numbers in
ListOfNumbers. To specify the list, just copy and paste and connect the
get global ListOfNumbers block to the empty list socket in the loop.

Now that the outline of the loop is ready, we need specify the body of the loop.
First, drag the set Texting1.PhoneNumber to block into the do part of the loop,
as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[195]

Next, hover your mouse over the item variable in the for each item in list block,
and drag the get item block and connect it to the empty socket in the set Texting1.
PhoneNumber to block, as shown in the following screenshot:

Next, copy and paste and place the purple call Texting1.SendMessage block into the
do part of the loop at the very bottom, as shown in the following screenshot:

Learning About Loops with a Raffle App

[196]

This loop accesses each item on the list one at a time, sets it as Texting1.
PhoneNumbers, and sends out a text message to that phone number. So, this loop is
allowing us to repeat the set Texting1.PhoneNumber to block, followed by the call
Texting1.SendMessage block multiple times (for each item in ListofNumbers).

The digital raffle is now complete. The winner has been notified of the win and the
rest of the participants have been notified that they did not win (note that a prize of
some sort is usually given to the winner).

Clearing out the list and variable
After using the Raffle app, if you want to conduct another raffle with a different
group of participants, you will need to clear out the list ListOfNumbers the variable
WinningNumber, two things that were expressly created by us (the programmers).
The other variables used in the app were local variables (number and messageText
from the Texting1.MessageReceived event). These were not created by us, but
rather generated by the blocks themselves; thus, these are used and cleared out
automatically by the program.

There are two ways to clear out the list and variable to reset the app. The first way
doesn't require programming. You can simply close the application and reopen it.
This will reset the list to empty and the WinningNumber to 0. Can you guess the
second way to reset the app? If you recall, we created a ClearButton feature for the
UI in the Designer. We can program this ClearButton to clear out the app.

In the ClearButton blocks, select the ClearButton.Click event. This block will help
us clear out the list that stored the participants' phone numbers and the variable that
stored the WinningNumber. Recall when we started coding the app, we initialized
our global variables. We set list to be empty and the variable to be 0. So now, in the
when ClearButton.Click event, add blocks to do the same thing. You've already
programmed this once before in this app, so we imagine that you will be a pro at
configuring these blocks again. But, just in case you need a review, select the set
global ListOfNumbers block and connect it to the create empty list block, and select
the set global WinningNumber block and set it to 0. Your final set of blocks will
resemble the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[197]

Summary
In this chapter, we created a useful and fun app that you can use to conduct a
digital raffle. We explored global and local variables along with many facets of the
Texting Component to send and receive text messages. We also learned about some
advanced blocks related to lists—selecting random list items, searching for an item
on a list, and removing an item. Finally, we explored an important fundamental
concept of programming—loops. We saw how loops enabled us to repeat behaviors
(a stack of blocks) multiple times.

In the next chapter, we will provide some tips on expanding your mobile app
development skills with designing hints and sharing options.

www.allitebooks.com

http://www.allitebooks.org

[199]

Expanding Your Mobile App
Development Skills

Throughout the tutorials in this book you have been increasing your app
development skills. No doubt you are eager to build on this knowledge to embark
on creating apps from scratch. Thus, we wanted to offer you a variety of tips for
expanding your skill set. In this chapter you will learn about:

• Designing principles
• Designing tools
• Research app markets
• App Inventor extras
• Sharing your apps

Design principles
In addition to learning to code with blocks, there are many things to keep in mind
when developing mobile apps. One important aspect is design. What do we mean by
design? The word design seems to imply look and feel, but it also includes function.
An app that is designed well is not only visually appealing, it is also easy to navigate
and intuitive. When first building mobile apps, the tendency is to want your app to
do it all and have lots of bells and whistles. But really, you want your app to be clear
and straightforward in its function and purpose. Let's say you're building a book
review app that shows user inputted reviews of books. You will not want it to also
include music reviews. Just because your app is set up to easily add more categories
doesn't mean you should add more content or features. When starting out, it is
better to have a clear, precise purpose and scope for your app. And, because of the
relatively small real estate of the mobile device screen, it is vitally important to have
a clean, simple, and easy-to-navigate interface.

Expanding Your Mobile App Development Skills

[200]

User-centered design
Think about the times you yourself have used a mobile app. Are you spending
hours on just one app? Not likely. Most people use apps intermittently with a lot of
interruptions. Rumor has it that people use mobile apps when they are busy, lost,
or bored. The first two of these include the need for quick information, but the third
does not necessarily imply extended usage. Someone bored could easily just need a
quick fix to distract or entertain himself or herself for a few minutes. The best way
to learn about design principles is to view Android apps through a developer's lens.
Study how, when, and for how long people use mobile apps. Monitor your own
app's behavior and ask others when they most often use apps. Is it when you're
waiting in line? While traveling via public transport? Going to meet someone?
How much time do you spend on one app before you move on to something else?
Next, look analytically at apps—the ones you regularly use along with new ones.
Examine everything—the fonts, the colors, and the placement of buttons or the
navigation tools to see how they function and are displayed. Keep notes to track
your discoveries, jotting down elements you expect to see and those that you find
unexpected.

Keep in mind that mobile phone users will be navigating your app with their
thumbs, so it is essential to make buttons big enough for easy navigation. If you
make interactive elements too small and difficult to trigger, users could get frustrated
and avoid using your app. Bottom navigation bars also make it easy for thumbs to
control an app, which is why you will find this standard on many apps. Also, keep in
mind that not all users have perfect vision. Create apps with high contrast colors and
text that is easily viewed by people of all ages. It's a great idea to get a wide variety
of people to view your app to give you feedback on things, such as colors, contrast,
readability, and navigation ease.

Visual hierarchy
The way you display elements in terms of weight or importance is called visual
hierarchy. You can create visual importance through the use of font size, colors,
position, contrast, shape, or consistency. There are some Android elements that are
familiar to users, such as an action bar that houses buttons to easily move about
the app. Users will expect to find consistency on each screen along with ease in
navigation. For example, it should be simple to stop, play, or quit at any point during
a game app. In the Event App, we showed one way to make it apparent for the user
to know which screen he or she is on by changing the text color of a button. You can
also use other visual cues, such as highlighting a particular navigation button or
creating a contrasting background color. Some of these recommendations may seem
obvious, but you will be surprised to see how many people forget the obvious once
they start creating apps from scratch.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[201]

Responsive design
Responsive design can refer to many things. Is your app responsive to users? Does it
do what users think it will do? Does the app respond to user interaction as intended?
Note that responsiveness and speed are not the same thing. It's OK if your app takes
time to load something as long as the app is responding to user input and the user is
aware that the app is responding. Responsive design also means that an app adjusts
to a user's screen size. When creating apps, you don't know whether a user will
have a mobile phone or tablet. What looks good on one screen size won't necessarily
display properly on another, unless you ensure that it does. Responsive designing
is creating layout and content for optimal viewing on any screen size. App Inventor
makes it easy to do this. In the Properties panel of Screen1, there is a property called
Sizing, as shown in the following screenshot. The default option is Fixed; but if you
click on the word, a second option will be displayed: Responsive.

Expanding Your Mobile App Development Skills

[202]

Upon choosing Responsive, a previously grayed out option in the Viewer will
become visible. Immediately, above the Viewer window, you will now be able to
click on the checkbox next to Check to see Preview on Tablet size. Once you do, the
text will change to "un-check" and the Viewer will display a tablet preview of your
app, as shown in the following screenshot with EventApp:

This is particularly helpful to view if you don't have a tablet and want to test how
your app will look on one.

Research app markets
If you have the desire to make mobile apps from your own ideas, it is vital to
understand the app market. How do you do this? You can do so by conducting
research on mobile apps. Start looking at Google Play or other Android app markets
and see what apps are new and popular. And most importantly, use those apps, jot
down your reactions, what you liked and didn't like, and read reviews. Discover why
certain apps in a category are more popular than others, what app features appeal to
you, and also which types of apps are trending. Studying apps from the perspective
of a developer will help you see themes in content, design, and user experience. Read
descriptions of the apps to see how, for example, one chess game summary brands
itself differently than other chess games. As we have recommended throughout this
book, record your observations, reactions, and top picks, because like with any market,
changes occur over time. It will be helpful for you to read what you noticed in the
market 6 months ago and compare it to what your research revealed last week.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[203]

If you don't have a budget to buy apps, don't worry; you can still do valuable
research on free apps or the ones that lead to in-app purchases. Notice what features
are free and which ones are considered more valuable that they require a fee. When
you get to the point of an in-app purchase, do you want to make one? Why or why
not? Do the free apps have advertisements? If so, which apps? Which ads? If you do
upgrade an app, what are the differences between the freemium and the paid versions
of the same app?

This type of research will prove valuable when you complete this book and need
help deciding what type of app to create on your own. The easiest way to find
success creating apps is by giving users what they want. You can discover what
users want by studying what apps are selling and popular. Many budding app
developers fail to research app markets and instead just concentrate on coming up
with an idea that they like and turning that concept into a prototype, hoping people
will find the app, download it, use it, and like it. By paying attention to what users
are already downloading and what they are willing to pay for, you can create an
app with an understanding of what already appeals to users. Then, you can decide
whether to follow this trend or disrupt it. Research can help ensure that your app
is more successful once you upload it into app marketplaces. And the more people
that use your apps, the more valuable feedback you will get. Ratings and comments
can serve to help you improve subsequent versions or guide you in future app
development.

Design tools
You can sketch out your app screens on index cards, notebook paper, poster size
paper, or a whiteboard, or you can use some digital tools. There are a lot of free
resources available to help you create paper or digital prototypes. Do a Google
search for paper prototyping for mobile apps, or if you prefer the digital route, search
for wire framing for mobile apps (note that we add the words mobile apps to our search
because there are also a lot of resources for designing web pages). We even found
a hybrid option (https://popapp.in/) that enables you to take pictures of your
hand-drawn sketches and incorporate them into the app.

App Inventor extras
We'd like to introduce you to some App Inventor features that you may not
know about.

https://popapp.in/

Expanding Your Mobile App Development Skills

[204]

Shortcuts
In this book, we showed you how to find and select blocks in the Blocks Editor. But,
if you already know the block you want, there is a quick way to get it. All you have
to do is click anywhere on the white space of the Viewer window and start typing.
For example, if you want the When GuestsButton.Click event block, begin typing
the word when and a drop-down list will appear, allowing you to choose the block
you want among other blocks beginning with wh. Once you select the block, it will
appear in the Viewer.

We didn't give you this shortcut initially because we wanted you to become familiar
with where blocks were housed and how they were grouped (not because we
wanted to make you work harder).

Help
There are a variety of ways to get help while you are using App Inventor. In the
Designer, you may or may not have noticed little questions marks on the right-hand
side of the Components Palette, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[205]

Clicking on a question mark launches a popup with information about a Component,
as shown in the following screenshot:

At the bottom of the window, you will see a More information link that will further
direct you to documentation about that Component.

In the Blocks editor, you can easily find information about the blocks by hovering
your cursor over a block. As shown in the following screenshots, hovering over
different blocks launches a message revealing the block's purpose or type:

Expanding Your Mobile App Development Skills

[206]

Another way to get help with App Inventor is to click on Guide in the top menu bar,
as shown in the following screenshot:

The Guide button will direct you to the App Inventor library of documentation.
You can also access this website through http://appinventor.mit.edu/explore/
library.

If you can't find an answer to a question or feel stuck, the App Inventor Forum is a
way to interact with other users who have a wealth of experience with the platform.
The link to the forum is found in the Guide documentation under Support and
Troubleshooting.

Titles
While you can't change the name of Screen1, you can change the title of Screen1
(or any screen for that matter) so that a different name will appear to the user.
By default, Title is the name of Screen1 (or if you are on a different screen, it will
populate the screen name that you chose when creating the screen). Make sure
you are on Screen1 (if you have multiple screens) and select Screen1 from the
Components panel so that it is highlighted. Then, scroll to the very bottom of the
Properties panel, as shown in the following screenshot. You will see the option of
Title. Click on "Screen1" in the text box below; it will highlight the name and allow
you to rename it. You will see the changes reflected at the top of the Viewer and also
when you view the app on your device. You can retitle any screen with this method.

www.allitebooks.com

http://appinventor.mit.edu/explore/library
http://appinventor.mit.edu/explore/library
http://www.allitebooks.org

Chapter 8

[207]

Images
Currently, App Inventor has a 5 MB limit for the size of apps. This will not affect
many of you at this point; but as you move farther along in your app development
and create more complex apps, you may push up against this size limit. One
thing that can help is reducing the size of any images. Be mindful to not use high-
resolution images when creating your apps, as they take up a lot of space.

Virtual screens
In Chapter 5, Building an Event App, and Chapter 6, Introduction to Databases, we
created the Event App that used four different screens. While being able to organize
all your components in different screens is great for creating the visual hierarchy that
any well-built app has, increasing the number of screens will ultimately increase the
app's memory footprint, thereby reducing the performance. A small number (five
or six) screens in an app is just fine. But as you keep on increasing the number of
screens, you will get to a point where the app will start running a bit slow.

There is a workaround to have just one screen, but still have the visual hierarchy and
the separation of components that you get by using multiple screens. The trick is to
show or hide different components at different times to give the app user an illusion
of multiple screens.

Let's say we are designing a simple form in our app. This form has two screens.
In the first screen, the user types his/her name in a textbox and presses a button so
that the name gets added to some sort of data storage (list, TinyDB, Fusion Table,
and so on). When the user presses the button, the second screen opens up and
shows a confirmation message. The second screen also has a button to go back to
the first screen.

Expanding Your Mobile App Development Skills

[208]

Instead of creating two separate screens, we can create this behavior using a virtual
single screen. The following screenshot shows all the components and how they are
placed:

The interesting thing that you might notice is that we have placed all the components
within two different vertical arrangements. We have placed all the components
that we want on Screen1 in VerticalArrangement1 and all the components that
we want on Screen2 in VerticalArrangement2. When the app starts, we will keep
VerticalArragnement1 visible and hide VerticalArrangement2 (hiding, or making
it invisible, automatically makes all the components inside a vertical arrangement
invisible too). Then, whenever the user presses the button to enter a name, we will
hide VerticalArrangement1 and show VerticalArrangement2. Subsequently, when
the user presses the button to go back, we will show VerticalArrangement1 and hide
VerticalArrangement2.

In other words, we will toggle between showing one of the vertical arrangements
and hiding the other. This will give the user an illusion of multiple screens even
though the app has a single screen.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[209]

Let's explore all the details of this. Here are the steps that you need to implement in
the Designer:

1. Go to the Properties panel of Screen1, and change the Title property from
Screen1 to something else. As shown in the following screenshot, we have
changed it to Virtual screen demo:

2. Next, add two vertical arrangements. Make the Height and the Width
properties of both the vertical arrangements Fill parent. This will make both
of them span the entire width of Screen1 and make each one's height half of
Screen1, as shown in the following screenshot:

Expanding Your Mobile App Development Skills

[210]

3. Now, in VerticalArrangement 1, add a Label, a Textbox, and a Button.
Change the Text property of Label1 to Enter your name:. Delete the Hint
property of TextBox1. Finally, change the Text property of Button1 to Enter.
The following screenshot shows the result of completing this step:

4. In VerticalArrangement 2, add a label and a button. App Inventor will
automatically name them Label2 and Button2. Delete the Text property of
Label2 and keep it empty. Change the Text property of Button2 to Go Back.
Your Viewer will look as follows:

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[211]

5. Finally, uncheck the Visible property of VerticalArrangement2. This will
hide VerticalArrangement2 and all the components in it. When you do this,
your designer will look as follows:

Expanding Your Mobile App Development Skills

[212]

Switch to the Blocks Editor to create the behavior—toggling between showing
and hiding the two vertical arrangements to create the illusion of multiple screens.
Follow these steps:

1. When the user clicks on Button1 (the button that says Enter), you will need
to perform the following steps:

1. Hide VerticalArrangement1 by setting the VerticalArrangement1.
Visible property to false.

2. Show VerticalArrangement2 by setting the VerticalArrangement2.
Visible property to true.

3. Get the text from TextBox1 by using the TextBox1.Text getter block,
join this text with a blank Text block filled with "You Entered: ". Set
Label2 by setting Label2.Text to the result of the join block.

4. Clear TextBox1 by setting the TextBox1.Text property to an empty
string.

The following screenshot shows the blocks that achieve steps a to d:

2. When a user clicks on Button2 (the button that says Go Back), you will do
the reverse of steps 1a and 1b, that is:

1. Show VerticalArrangement1 by setting the VerticalArrangement1.
Visible property to true.

2. Hide VerticalArrangement2 by setting the VerticalArrangement2.
Visible property to false.

The following screenshot shows the blocks that achieve steps 2a and 2b:

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[213]

When you test this app or when the app first launches, you will see
VerticalArrangement1 and all its components, as shown in the following screenshot:

When you enter a name in TextBox1 and click on the button that says Enter, you will
see the following screenshot:

Expanding Your Mobile App Development Skills

[214]

Finally, when you click on the button that says Go Back, you will see what you
saw first when the app launched. This is how you create an illusion of multiple
screens while actually only having a single screen, thereby reducing the memory
requirements of the app and making the app more efficient.

Backups
App Inventor automatically saves your app as you are creating it. Even though you
will see a Save project option under the Projects menu, rest assured that your app
is regularly saved by the platform. However, as you build apps, saving a copy of
your progress is extremely important in case you want to revert to an earlier version
or, for example, you wish to examine your code before you encounter a bug to
determine what went wrong. One option in the drop-down list under the Projects
menu is Save project as… (as shown in the following screenshot on the left-hand
side). This option lets you create a second copy of your project with a new name.
Then, the new copy will become your current working project.

On the other hand, using the Checkpoint option regularly throughout development
provides a way to create backups in a systematic manner while continuing to work
on the same version of the app. When you choose Checkpoint (as shown in the
following screenshot on the right-hand side) under the Projects menu, App Inventor
will seamlessly create backups behind the scenes. For instance, our Event App
versions would be saved as EventApp_Checkpoint1, EventApp_Checkpoint2,
and so on. This way, you can open any version of the Event App at varying stages
throughout development. Once you finish your app and create your final version,
you can delete the Checkpoint versions, as you will no longer need them.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[215]

Distributing your app
We are sure you've noticed, either in an app store or on your device, that all the apps
have icons. This small image enables users to easily recognize one app from another.
Before sharing your app, you will want to upload an icon. This could be some
artwork that you used in your app or a logo if you have created one. You can easily
upload this image in the Properties panel for Screen1 under the option Icon. You
will find it midway down the panel of options.

The App Inventor Gallery
Whether you've made an app with the help of a tutorial or from scratch, you have
the privilege of sharing your app with others. There are many ways to do this. The
easiest way is from within App Inventor itself with the Gallery.

Viewing the Gallery apps
You may have noticed a menu item called Gallery, as shown in the next screenshot:

If you click on the Gallery button, you can peruse many remarkable apps that other
people have shared. Not only can you view apps to get inspiration, but you can use
the Gallery as a learning tool because you can view the source codes of any of the
apps in it. Click on an app icon that looks interesting or the one that you would like
to learn how to build and it will launch a window with a button OPEN THE APP.

Expanding Your Mobile App Development Skills

[216]

Click on the button and a pop-up box will appear to save the app or rename it, as
shown in the following screenshot:

This method saves the app to your Projects list, and you can open the file and
examine the UI in the Designer and the code in the Blocks Editor to see how the app
was made. You can remix the app by adding or changing blocks to create your own
version of the app, or you can copy some of the existing blocks into the Backpack
and load them into another project that you are working on (Blocks saved in the
Backpack can be accessed by any of your projects and remain there until you quit
App Inventor). This is a great way to learn new code, discover ways that other
people built apps and learn the art of remixing projects.

Sharing your app in the Gallery
Since the Gallery is an open resource tool for learning and collaborating, keep in
mind you have to be okay with the practice of sharing your own code with others.
To share your app with others in the Gallery, click on the My Projects button in the
top menu bar and select the app you would like to share by clicking on the checkbox
next to the app name. When you do this, two buttons that were once grayed out
become active (the Delete Project button and the Publish to Gallery button), as
shown in the following screenshots:

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[217]

When you publish to the Gallery, you can opt to receive e-mails that notify you
when your app has been downloaded and liked. You can also obtain a link to share,
which will direct others to your app. Getting feedback on your app before publishing
it on the Google Play Store is a great way to test the market.

Creating an AIA file
An .aia file is the file type you will need to create when sharing an app in the
Gallery or with someone else. This file type allows you to load an app into your
project's list and examine the UI and source code. It is also useful when you are
collaborating on a project with someone else or if you want a specific person to
take a look at your code. Within App Inventor, it is easy to make an .aia file to
share with someone else.

Click on the Projects button in the menu bar and select the eighth option from the
drop-down menu, Export selected project (.aia) to my computer, as shown in the
following screenshot:

Expanding Your Mobile App Development Skills

[218]

This action will place the file in your Downloads folder (or in another location that
you designate). You can send the .aia file to a collaborator by attaching the file in
an e-mail. The recipient will first download the file to his or her computer (into the
Downloads folder) and then easily upload the file to his or her App Inventor project
list by selecting the third option in the previous image, Import project (.aia) from
my computer.

When publishing an app to the Google Play Store, it is highly recommended that you
save an extra copy of your own source code and store it in a safe place. You will most
likely create new versions and updates of your app, so it is recommended to keep
copies of your app files in the unlikely event that anything were to happen to the
copy on App Inventor. Follow the previous steps to Export selected project (.aia) to
my computer and then copy the .aia file to a flash drive or hard drive.

Downloading and sharing
So far with our app development, we have been working inside of App Inventor—
both when building and live testing our app and now while sharing it in the Gallery.
But, when you create your own app from scratch, it makes sense to download your
app and test it on as many devices as possible before you widely distribute it. To
download your app to your device or to make it available for others to download,
you have a few options.

Regardless of which option you decide to use, to ensure that your device allows file
downloads other than those from the Google Play Store, you may have to adjust
your mobile device settings. You may recall that we explained the step of side-
loading in Chapter 2, Setting Up MIT App Inventor 2, when we provided instructions
for directly downloading the AI2 Companion App. We suggest that you follow
these steps to ensure that your device can install apps from unknown sources.
For devices with Honeycomb or earlier, go to Settings | Applications and enable
Unknown Sources by checking the box. For Ice Cream Sandwich and later versions,
go to Settings | Security or Settings | Security & Screen Lock to check the box for
Unknown Sources.

Creating an APK

When distributing your app in an app market like the Google Play
Store, you will not be sharing your source code, so you need a file type
other than an .aia file. In this case, you will build out your app into an
.apk file. This is easily done in App Inventor.

There are two options for creating an .apk file: using a QR code or side-loading.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[219]

QR code
Click on the Build button in the top menu bar and choose the first option from
the drop-down menu: App (provide QR code for .apk), as shown in the following
screenshot:

This will launch the build process, and after a few moments, a QR code will appear
on your computer screen. Do not scan this with the AI2 Companion app, as it will not
work. You will need to scan the code with a QR code reader on your mobile device.
Many free QR code reader apps are available on the Google Play Store; you can find
one by doing a search. The QR code is only available for a certain time period, so be
mindful of the time limit noted, as in the following screenshot:

Once you have scanned the QR code with your mobile device, click on Open to begin
the download process. You will next see an installation screen asking Do you want
to install this application? If so, it will get access to:. And you will see a list of items
on the device that the app needs to access. This list is determined by the components
in the app. Since you created this app, you can easily agree to the permissions. Click
on Install. Once the installation is complete, your app will be stored on your device;
you can locate it in the same location as the other apps on your device.

Expanding Your Mobile App Development Skills

[220]

Direct download (or side-loading)
To download an .apk file directly to your computer, click on the Build menu option
and choose the second option, App (save .apk to my computer).

The file will take a moment to build and will either save to your Downloads folder
or to a location that you designate. You can easily locate your file in a search because
the name will end with the extension .apk. To get your app to your mobile device,
you have a few options. You can do the following:

• Connect your Android mobile device to your computer via USB and drag the
file to the phone or tablet icon to copy it.

• Send the file to yourself by attaching it to an e-mail and then opening the
e-mail on your mobile device and downloading the file to your device.

• Upload the file to a shared web storage location, such as Google Drive, (since
it is connected to your Google account) and then access the file through your
device. To do this, you would need to either have the Google Drive app
on your device or sign into your account on your phone by using the web
address: http://drive.google.com. Once you open Google Drive on your
device, locate your .apk file and open it.

Regardless of which method you use, once you click on the file to open it, you will
be shown the (aforementioned) installation screen asking Do you want to install
this application? If so, it will get access to:. Click on Install. Once the installation
is complete, your app will be stored on your device; you can locate it in the same
location as the other apps on your device.

The Google Play Store
There are a few things in App Inventor that you may have not noticed previously
that you need to be mindful of at the stage when you are considering publishing
to the Google Play Store. Apps published in Google Play need both VersionCode
and VersionName. Both of these can be found in the Designer window of App
Inventor at the bottom of the Properties panel for Screen1, as shown in the following
screenshot:

www.allitebooks.com

http://drive.google.com
http://www.allitebooks.org

Chapter 8

[221]

These properties are needed by both Google Play and Android to keep track of
updates to ensure that the user has the most recent version of an app. Every time you
submit a new version of an app, VersionCode must be a greater whole number than
the previous version. VersionName does not have to be numerical, but it should be
consistent among versions because the user will see this information. To begin the
Google Play Store publishing process, go into your App Inventor projects, select the
app you would like to distribute on Google Play, build the .apk file, and download it
to your computer.

Expanding Your Mobile App Development Skills

[222]

Next, make sure you're logged into your Google account and visit http://play.
google.com/apps/publish. This link will take you to the Google Play Developer
Console, and the first thing you will need to do is sign up for a Developer Account,
which costs a fee. Since Google makes changes to the process occasionally, we
are going to recommend that you visit the App Inventor website documentation
http://appinventor.mit.edu/explore/ai2/google-play.html to get the most
up-to-date steps on how to publish to Google Play.

One thing to note, Google Play gives you three options for publishing: Alpha or
Beta testing or Production. Once you have a finished app, we are certain you will
be anxious to share your app with the world; but even if you have done a fair share
of testing on your own, we recommend taking yet another opportunity to continue
testing. Alpha testing is a small group that you can designate, Beta testing is testing
with a bigger but limited audience, and of course, Production shares the app with
the public. Each time you make a new version, we recommend testing it out on your
Alpha and Beta testers before you send it out to production.

Summary
This book has provided you with ideas, tools, tutorials, and guidance to become
a mobile app developer with MIT App Inventor. You've learned how to do the
following:

• Perform a technical setup for App Inventor
• Brainstorm app ideas using the Design Thinking process
• Conduct app research during both the idea generating stage and in the

prototype phase
• Navigate the App Inventor platform
• Create a user interface keeping design principles in mind
• Build a user-touch game, an event app, and a raffle app, and expand upon

them with more complex features
• Code blocks using sequences, if/then statements, multiple screens, virtual

screens, images, databases, and loops
• Research the app marketplace
• Share your apps with others

www.allitebooks.com

http://play.google.com/apps/publish
http://play.google.com/apps/publish
http://appinventor.mit.edu/explore/ai2/google-play.html
http://www.allitebooks.org

Chapter 8

[223]

As you have experienced, a lot of time, effort, iteration, dedication, and creativity
goes into making mobile applications. We are certain that the content shared in
this book has sparked more than just a casual interest in mobile app development.
You have learned skills in coding and design, both of which will help you embark
on your new role as an app developer. No doubt you are hooked on making apps
and intend to expand your skills even further. The possibilities for creating social
impactful apps are indeed endless and we hope that the coding, design, research,
and entrepreneurial skills you learned in this book launch you into becoming a
lifelong technology creator!

[225]

Index
A
ActivityStarter, event app

adding 130-132
AI2 companion app

downloading 27, 28
AIA file

creating 217, 218
aiStarter

starting 41
alpha testing 222
Android developer instructions

URL 40
APK, creating options

direct download (or side-loading) 220
QR code 219

App Inventor, features
about 203
backups 214
help 204-206
images 207
shortcuts 204
titles 206
URL 222
virtual screens 207-214

apps, distributing
about 215
AIA file, creating 217, 218
APK, creating 218
app, sharing in Gallery 217
downloading and sharing 218
Gallery 215
Gallery apps, viewing 215, 216
Google Play Store 220-222

B
background image, event app

setting 120-123
Backpack tool 135
beta testing 222
Blocks editor

about 71, 72
Blocks drawer 72

blocks, event app
programming 134
screen 1 134
screens and launching maps,

navigating between 134
sharing between screens,

Backpack used 135-137
text, adding to screens 138

blocks, types
about 73
event blocks 73
getters 73
setters 73

blocks, used for program Fling
ball, bouncing 83-89
ball, flinging 82
ball, moving 78-81
game, encoding 83-89
Play button 73-78
Reset button 90, 92

Brain Reaction Accelerator 14
buttons, event app

adding 126-130
BYJ3S 12

www.allitebooks.com

http://www.allitebooks.org

[226]

C
connectivity setup, MIT App Inventor 2

about 27
AI2 companion app, downloading 27, 28
aiStarter, starting 41
App Inventor setup software, installing 31
App Inventor setup software, installing

for GNU/Linux 39
App Inventor setup software, installing

for Mac OS X 32-34
App Inventor setup software, installing

for Windows 34-39
computer and Android device, connecting

with WiFi 29, 30
computer and device, connecting 44
Debian package , installing instructions 40
device, setting up for USB cable 43
emulator, connecting 31
emulator, project connecting to 41, 42
GNU/Linux systems , installing

instructions 40
project, opening 41, 42
testing 45
USB cable, used for connection 31

Construction Calculator 15
CSAIL (Computer Science and Artificial

Intelligence Lab) 2

D
data

pushing, to Fusion Table 164, 165
receiving 169, 170
requesting 169, 170

database
creating 142
Google Fusion Table, creating 142-145

designer
about 49
components 50
media 51
palette 50
properties 51
viewer 50

design principles, mobile app
about 199
design tools 203

research 202, 203
responsive design 201, 202
user centered design 200
visual hierarchy 200

Design Thinking process
about 4, 5
define 6
ideate 6
prototype 7
test 7

E
event app

ActivityStarter, adding 130-132
background Image, setting 120-123
blocks, programming 134
buttons, adding 126-130
image component, adding 124, 125
screens, adding 133
sharing 171, 172
user interface 120

Ez School Bus Locator 17

F
Fling app

about 93
difficulty, increasing 100
dynamic, changing 101-103
levels, creating 103-107
Play button, updating 115
Reset button, updating 111-114
score label updating, to display

labels 108-110
scoring feature, adding 95

Fusion Table
app, connecting to 161, 162
blocks, creating 169
creating 142-149
data, pushing 164-166
data, receiving 169, 170
data, requesting 169
empty rows 166, 167
guest list, viewing 168
sharing, with service account

email 159, 160

[227]

G
Gallery apps

viewing 215, 216
game

dynamic, changing 101-103
game app

creating 51, 52
Integrated Development Environment

(IDE) 60-70
UI in designer, creating 52-59

Google Authentication
setting up 153-159

Google Fusion Table. See Fusion Table
Google Play Store 220-222
Graphical User Interface (GUI) 26
guest list

viewing 168

I
image component, event app

adding 124, 125
Integrated Development Environment

(IDE) 52, 60-70

L
levels

creating 103-108
library

URL 206
license types

URL 122
Loops 13

M
MIT App Inventor

Brain Reaction Accelerator 14
BYJ3S 12
ConstHelp 15
examples 11
Ez School Bus Locator 17
Loops 13
possibilities, discovering 10
potential 9, 10
purpose 9, 10

Quartet 14
Rover 800 Remote 18
Stopwatch and Timer 11
Umati 16
Yahtzee 12
Youth Radio 17

MIT App Inventor 2
about 1, 2
app designing, best practices 8, 9
app ideas, brainstorming 4
computational thinking 8
connectivity setup 27
Design Thinking process 4
Google account, signing up 23
initial setup 22
logging into 23-27
mobile app developer role 3
system, requisites 22
URL 2, 7, 23

mobile app
design principles 199

P
Play button

updating 115
project view

about 48
new project, creating 48

Q
QR code 219
Quartet 14

R
Raffle app

digital Raffle app, behavior
programming 179

everyone else, notifying 190-192
GUI, building 174
list and variable, clearing out 196
loops, using 193-196
new project, creating 174
phone numbers of all participants,

adding to list 185, 186
project, creating 174

www.allitebooks.com

http://www.allitebooks.org

[228]

text messages, receiving from
participants 182-184

User Interface (UI), creating 175-178
winner, notifying 189
winner, selecting 187, 188

Reset button
updating 111-114

Rover 800 Remote 18
RSVP screen

designing 149
GUI, creating in designer window 149-152

S
score label

updating, to display level 108-110
scoring feature

adding 95
score label, updating 98
scoring blocks, coding 95-98

service account email
Fusion Table, sharing 159, 160

sizing property 201
Stopwatch and Timer 11

U
Umati 16

V
visual hierarchy 200

Y
Yahtzee 12
Youth Radio 17

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Unleashing Creativity with MIT App Inventor 2
	What is MIT App Inventor 2?
	Understanding your role as a mobile app developer
	Brainstorming app ideas
	The Design Thinking process
	Empathize
	Define
	Ideate
	Prototype
	Test

	Computational thinking
	Best practices to design apps

	MIT App Inventor – purpose and potential
	Discovering the possibilities of MIT App Inventor
	MIT App Inventor examples
	Stopwatch and Timer
	Yahtzee
	BYJ3S
	Loops
	Quartet
	Brain Reaction Accelerator

	ConstHelp – Contractor Tools
	UMATI
	Ez School Bus Locator
	Youth Radio
	Rover 800 Remote

	Summary

	Chapter 2: Setting Up MIT App
Inventor 2
	The initial setup
	System requirements
	Signing up a Google account
	Logging in to MIT App Inventor

	Connectivity setup
	Downloading the AI2 Companion app
	Connecting your computer and Android device with WiFi
	Connecting the emulator or connecting using a USB cable
	Step 1 – installing the App Inventor setup software
	Step 2 – launch aiStarter
	Step 3 – opening a project and connecting to the emulator
	Step 4 – setting up your device with a USB cable
	Step 5 – connecting your computer and device (authenticating if necessary)
	Step 6 – testing the connection

	Summary

	Chapter 3: Navigating the App Inventor Platform
	The projects view
	Creating a new project

	The Designer
	Palette
	Viewer
	Components
	Properties
	Media

	Creating a game app
	Creating the UI in designer
	IDE

	The Blocks editor
	The Blocks drawer
	Types of Blocks
	Using Blocks to program Fling

	Summary

	Chapter 4: Fling App – Part 2
	Adding a scoring feature
	Coding scoring blocks
	Updating the score label

	Increasing difficulty
	Changing the game's dynamic
	Creating levels
	Updating the score label to display the level
	Updating the Reset button
	Updating the Play button
	Summary

	Chapter 5: Building an Event App
	User Interface for an event app
	Setting the background image
	Adding an image component
	Adding buttons
	Adding the ActivityStarter
	Adding screens
	Programming the blocks
	Navigating between screens and launching maps
	Screen1
	Sharing blocks between screens using the Backpack
	Adding text to screens

	Summary

	Chapter 6: Introduction to Databases
	Creating a database
	Creating a Google Fusion Table

	Designing the RSVP screen
	Creating the GUI in the designer window

	Setting up Google Authentication
	Sharing the Fusion Table with the service account email
	Connecting the app to the Google Fusion Table
	Our goal

	Pushing data to the Fusion Table
	Ensuring empty rows are not inserted
	Viewing the guest list
	Coding the blocks – requesting data
	Coding the blocks – receiving data
	Sharing the Event App
	Summary

	Chapter 7: Learning About Loops
with a Raffle App
	Creating the project and building the GUI
	Creating a new project
	Creating the User Interface (UI)
	Programming the behavior of the Digital
Raffle app
	Creating and initializing the variable and list
	Receiving text messages from participants
	Adding the phone numbers of all the participants to the list
	Selecting a winner
	Notifying the winner
	Notifying everyone else
	Using loops
	Clearing out the list and variable

	Summary

	Chapter 8: Expanding Your Mobile App Development Skills
	Design principles
	User-centered design
	Visual hierarchy
	Responsive design
	Research app markets
	Design tools

	App Inventor extras
	Shortcuts
	Help
	Titles
	Images
	Virtual screens
	Backups

	Distributing your app
	The App Inventor Gallery
	Viewing the Gallery apps
	Sharing your app in the Gallery
	Creating an AIA file

	Downloading and sharing
	Creating an APK
	QR code
	Direct download (or side-loading)

	The Google Play Store

	Summary

	Index

