Appium
Recipes

Shankar Garg

http://www.allitebooks.org

Appium Recipes

Shankar Garg

Apress-

M.al litebooks. cogl

http://www.allitebooks.org

Appium Recipes

Shankar Garg
Gurgoan, Haryana
India

ISBN-13 (pbk): 978-1-4842-2417-5 ISBN-13 (electronic): 978-1-4842-2418-2
DOI10.1007/978-1-4842-2418-2

Library of Congress Control Number: 2016959550
Copyright © 2016 by Shankar Garg

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: James Markham

Technical Reviewer: Unmesh Gundecha

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,
Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Sanchita Mandal

Copy Editor: Kim Wimpsett

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress. com. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code
at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

M.al litebooks. cogl

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

To my loving wife Shanu Garg.

M.al litebooks. cogl

http://www.allitebooks.org

Contents at a Glance

About the AUthorcciinnmeeemmmniinnss s annnnn ix
About the Technical ReVIeWerccuussemmmmmmmmmmssssssssnssnnnsmssssssssssnnnnn Xi
Introductionccccunieemnmnmsnennmnnssennnmnnsnssn s xiii
Chapter 1: Getting Started with Appium..........ccccciimmmnnissennnnnssnenn 1
Chapter 2: Finding Mobile Elements........c..ccccunemmnssmnmnssenmmssanssssans 19
Chapter 3: Automating Different ApPpPS.....cccensseeemmmmsssensmnssssenssssnns 49
Chapter 4: Automating Mobilityccccccmmninsemnmmmnsennmmnseanmnne. 77
Chapter 5: Creating Automation Frameworks Using Appium..... 101
Chapter 6: Integrating Appium with Selenium Grid............cccuuuus 129
Chapter 7: Executing Appium with Cloud Test Labsccccuunee 155
T 179
\%

M.al litebooks. cogl

http://www.allitebooks.org

Contents

About the AUthOFcccccemmsemmmssssnmssssmsssssmssssssssasss s snsssssnnsnssnnss ix
About the Technical REVIEWETcccsrsssmssssnsssssnsssssnsssssnsssssnsssssnnss xi
INtroductioncccucmmnemmssmmsemmnnnsss s ———— Xiii
Chapter 1: Getting Started with Appium.......ccccccmmmnrrnnssssssssssnnnnnns 1
1-1. Install Appium via NPM........ccoccrierirrr e see s sn e ssneenes 1
1-2. Run Appium via @ GUIAPP....cccceerrerrrcre s ses s 6
1-3. Understand Capabilities in Appium.........ccccvcrcrcrcrcscesces e 11
Chapter 2: Finding Mobile Elements.......cccccusseenmmssssnsnsssssssnssssssnns 19
2-1. Traverse with Appium INSPECLON........ccvveeeeercrcr e 19
2-2. Explore Ul Automator VIEWETccoceevverrerieenenieenerseessesssessesseesnes 25
2-3. Find Elements by Their Accessibility IDcccoveverercrcrseriennnns 30
2-4. Find Elements Using iOSUIAutomationccceeeeecvcercersencnninnns 33
2-5. Find Elements Using AndroidUIAutomatorcccceevvvvrvernenseninnns 35
2-6. Inspect i0S Mobile Web Elementsccoecvcerrinecnicnnscsesnnenns 38
2-7. Inspect Android Mobile Web Elements...........ccooevrvrcrcrcercencnnnnne 44
Chapter 3: Automating Different AppS....ccccusseersnsssssnnssssssnnssssssnns 49
3-1. NALIVE APPS..eeererrrrirser e sne e sr s n e sn s snssn s sr s snesnesn e nnnnnnnans 49
3-2. MODile WED APPS ..eecvereerereerirreesesssesesssesesssessssssesssesssssssssssssesnes 56
B 5 010 AT o 0SS 61
3-4. REal DBVICESccererererreirerresseses s sss s 69
vii

M.al litebooks. cogl

http://www.allitebooks.org

CONTENTS

Chapter 4: Automating Mobilityc.cccrusmmmmsnmmsssnsmsssnsssssnsssssnns 77
4-1. Tap Mobile Elements..........cccecvvrirircerinnscescesses s 78
4-2. Drag and Drop Elementscccccocevrirncrcssescee e 82
4-3. SWIPE and SCrOll.........cccerereeerererere e sn e 84
4-4. Manage Device Orientation............cccocrvrcrcrcnsensnsssessesses s 91
4-5, Install and Uninstall Native APpScccvceveerreereniesnerseessesseessesseesaes 93
4-6. Lock and Unlock DEVICESccurererermrmssesesesesssesssssesssssssesnens 96
4-7. Manage Device Network Settingsccccvvvvirrrnensnnenseenessennnes 98
Chapter 5: Creating Automation Frameworks Using Appium........ 101
5-1. Create an Automation Framework with Appium, Maven,
ANATESENG ... s 101
5-2. Create a BDD Framework with Appium, Cucumber, and the Page
0DbJECt MOEL ..ot 110
5-3. Conduct Continuous Automated Testing with Appium, Git,
AN JBNKINS. ...t 122
Chapter 6: Integrating Appium with Selenium Grid...........ccnnuees 129
6-1. Appium with Selenium Grid for Native App Automation..............ccc.... 129
6-2. Appium with Selenium Grid for Mobile Web Automation.............. 141
6-3. Appium with Selenium Grid for Two Android
Sessions on the Same Maching..........c.cccocvrierrricrrssese s 149
Chapter 7: Executing Appium with Cloud Test Labscccuruuie 155
7-1. Appium on the Sauce Labs Cloudccccvvevrrereenienescsesenenes 155
7-2. Appium on the Testdroid Cloudccceereervrcrsercrererereee 166
1T - 179
viii

M.al litebooks. cogl

http://www.allitebooks.org

About the Author

Shankar Garg is an Agile enthusiast with expertise in
automation testing. He started as a Java developer, but
his love for breaking things got him into testing. He has
worked on the automation of many projects using web,
mobile, and SOA technologies. Right now, he is in love
with Cucumber, Selenium, Appium, and Groovy.

He is a Certified Scrum Master (CSM), Certified
Tester (ISTQB), and Certified Programmer for Java
(SCJP 5.0) and Oracle 9i (OCA).

He is the author of Cucumber Cookbook
(https://www.packtpub.com/web-development/
cucumber -cookbook). You can find him online

athttps://shankargarg.wordpress.com/ and https://in.linkedin.com/in/

shnakeygarg.

ix

M.al litebooks. cogl

https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://shankargarg.wordpress.com/
https://in.linkedin.com/in/shnakeygarg
https://in.linkedin.com/in/shnakeygarg
http://www.allitebooks.org

About the Technical
Reviewer

Unmesh Gundecha has a master’s degree in software
engineering and more than 15 years of experience in
agile software development, test automation, and
technical QA. He is an agile, open source, and DevOps
evangelist with rich experience in a diverse set of tools
and technologies. Currently, he is working as an
automation architect for a multinational company in
Pune, India. Unmesh is the author of Selenium Testing
Tools Cookbook and Learning Selenium Testing Tools
with Python.

xi

M.al litebooks. cogl

http://www.allitebooks.org

Introduction

Appium is an amazing tool that offers a cutting-edge platform for implementing mobile
test automation. In fact, Appium’s ability to implement test automation for both Android
and iOS platforms has made it very popular.

The 30 recipes in this book take you on a learning journey. You will start with
basic concepts such as how to start the Appium server, then you will move to advanced
concepts such as using i0SUTAutomator locator strategies and integrating with Selenium
Grid and Jenkins, and finally you will learn to run Appium test cases on cloud labs.

Each chapter has multiple recipes with the first recipe introducing the concepts of that
chapter and the later recipes increasing in complexity as you progress with the chapter.

What You Need for This Book

Before starting with Appium, let’s make sure you have all the necessary software installed.
The prerequisites for Appium are as follows:

e Appium.dmg (Mac)/Appium.exe (Windows) (https://bitbucket.
org/appium/appium.app/downloads/)

e Node and NPM

e ForiOS (http://blog.teamtreehouse.com/install-node-
js-npm-mac)

e For Windows (www.qoncious.com/questions/install-and-
run-nodejs-windows)

e For Android:

e Android SDK AP], version 17 or newer (http://developer.
android.com/sdk/index.html)

¢ Genymotion Android Emulator (https://www.genymotion.
com/)

xiii

M.al litebooks. cogl

https://bitbucket.org/appium/appium.app/downloads/
https://bitbucket.org/appium/appium.app/downloads/
http://blog.teamtreehouse.com/install-node-js-npm-mac
http://blog.teamtreehouse.com/install-node-js-npm-mac
http://www.qoncious.com/questions/install-and-run-nodejs-windows
http://www.qoncious.com/questions/install-and-run-nodejs-windows
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
https://www.genymotion.com/
https://www.genymotion.com/
http://www.allitebooks.org

INTRODUCTION

e ForiOS:
e MacOS:10.10 or 10.11.1 recommended

e Xcode: 6.0 or 7.1.1 recommended (https://developer.
apple.com/xcode/download/)

e Apple Developer Tools (iPhone simulator SDK, command-
line tools) and the iOS simulator, version 9.0 or newer

e Java7 (www.oracle.com/technetwork/java/javase/downloads
/index.html)

e Eclipse version 4.4.2 or newer (www.eclipse.org/downloads/)
e Maven (https://maven.apache.org/download.cgi)

e The Eclipse-Maven plug-in (https://marketplace.eclipse.
org/content/maven-integration-eclipse-luna-and-newer)

e The Eclipse-TestNG plug-in (https://marketplace.eclipse.
org/content/testng-eclipse)

e Jenkins (https://jenkins-ci.org/)
e Git-scm (https://git-scm.com/downloads)

This book was written with the assumption that you already have some experience
with mobile testing and mobile automation using Appium. If you're new to mobile
automation, you should head over to my blog first to understand the landscape of mobile
testing and automation. Here are some pointers:

e Setup the Android software development kit (SDK) and Android
emulators.

e https://shankargarg.wordpress.com/2016/02/25/
setup-android-sdk-and-android-emulators/

e Setup the Genymotion Android emulators on Mac OS.

e https://shankargarg.wordpress.com/2016/02/25/
setup-genymotion-android-emulators-on-mac-os/

e Install Xcode, command-line tools, and iOS simulators on Mac.

e https://shankargarg.wordpress.com/2016/02/29/
how-to-install-xcode-command-1line-tools-and-ios-
simulators-on-mac/

e (Create an Appium project by integrating Appium, Eclipse, Maven,
and TestNG.

e https://shankargarg.wordpress.com/2016/02/25/
create-an-appium-project-by-integrating-appium-
eclipse-maven-testng/

Xiv

https://developer.apple.com/xcode/download/
https://developer.apple.com/xcode/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
https://maven.apache.org/download.cgi
https://marketplace.eclipse.org/content/maven-integration-eclipse-luna-and-newer
https://marketplace.eclipse.org/content/maven-integration-eclipse-luna-and-newer
https://marketplace.eclipse.org/content/testng-eclipse
https://marketplace.eclipse.org/content/testng-eclipse
https://jenkins-ci.org/
https://git-scm.com/downloads
https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-emulators-on-mac-os/
https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-emulators-on-mac-os/
https://shankargarg.wordpress.com/2016/02/29/how-to-install-xcode-command-line-tools-and-ios-simulators-on-mac/
https://shankargarg.wordpress.com/2016/02/29/how-to-install-xcode-command-line-tools-and-ios-simulators-on-mac/
https://shankargarg.wordpress.com/2016/02/29/how-to-install-xcode-command-line-tools-and-ios-simulators-on-mac/
https://shankargarg.wordpress.com/2016/02/25/create-an-appium-project-by-integrating-appium-eclipse-maven-testng/
https://shankargarg.wordpress.com/2016/02/25/create-an-appium-project-by-integrating-appium-eclipse-maven-testng/
https://shankargarg.wordpress.com/2016/02/25/create-an-appium-project-by-integrating-appium-eclipse-maven-testng/

INTRODUCTION

These blogs will help you set up your system for mobile automation and run a basic
Appium project.

Code Repository

All the code explained in this book is committed on GitHub at https://github.com/
ShankarGarg/AppiumBook.git

AppiumBookBlog: Project used in the blogs mentioned earlier to
get you started with Appium, Eclipse, TestNG, and Maven and in
Chapter 5

AppiumRecipesBook: Project used in Chapters 1 to 7 (except
Chapter 5)

AppiumCucumberPageObject: Project used in Chapter 5

What This Book Covers

This book covers the following topics:

Chapter 1, “Getting Started with Appium”: This chapter covers
the installation steps for Appium graphical user interface (GUI)
app and also Appium via NPM. You will also learn about the
important concept of desired capabilities for Appium.

Chapter 2, “Finding Mobile Elements”: This chapter illustrates
how to use UTAutomatorViewer and Appium Inspector for
finding elements for Android and iOS respectively. You will also
understand mobile platform native locator strategies such as
AndroidUIAutomator and i0SUIAutomator for Android and iOS,
respectively.

Chapter 3, “Automating Different Apps”: This chapter covers
how to run different types of apps such as native, mobile web
and hybrid apps on both Android and iOS. You will also learn to
execute Appium test cases on real devices for Android and iOS.

Chapter 4, “Automating Mobility”: This chapter focuses on
Appium’s core ability to automate mobile-specific functions such
as tapping, dragging and dropping, swiping, scrolling and so

on. You will also understand mobile-specific functions such as
locking and unlocking, managing network settings, and so on.

Chapter 5, “Creating Automation Frameworks Using Appium”:

This chapter covers how to integrate Appium with TestNG and
Cucumber to create robust test automation frameworks. You

will learn Appium integration with Jenkins and Git to implement
continuous integration (CI)/continuous deployment (CD) pipelines.

XV

https://github.com/ShankarGarg/AppiumBook.git
https://github.com/ShankarGarg/AppiumBook.git
http://dx.doi.org/10.1007/978-1-4842-2418-2_5
http://dx.doi.org/10.1007/978-1-4842-2418-2_1
http://dx.doi.org/10.1007/978-1-4842-2418-2_7
http://dx.doi.org/10.1007/978-1-4842-2418-2_5
https://github.com/ShankarGarg/AppiumBook/tree/master/AppiumCucumberPageObject#AppiumCucumberPageObject
http://dx.doi.org/10.1007/978-1-4842-2418-2_5
http://dx.doi.org/10.1007/978-1-4842-2418-2_1
http://dx.doi.org/10.1007/978-1-4842-2418-2_2
http://dx.doi.org/10.1007/978-1-4842-2418-2_3
http://dx.doi.org/10.1007/978-1-4842-2418-2_4
http://dx.doi.org/10.1007/978-1-4842-2418-2_5

INTRODUCTION

xvi

Chapter 6, “Integrating Appium with Selenium Grid”: This chapter
covers Appium integration with Selenium Grid to create an in-
premise test infrastructure. You will learn how to execute Appium
test cases on Selenium Grid for Android and iOS for single and
multiple sessions.

Chapter 7, “Executing Appium with Cloud Test Labs”: This chapter
covers Appium integration with the cloud test labs Sauce Labs
and Testdroid. You will learn how to execute Appium test cases on
cloud test labs that you don’t have to maintain.

http://dx.doi.org/10.1007/978-1-4842-2418-2_6
http://dx.doi.org/10.1007/978-1-4842-2418-2_7

CHAPTER 1

Getting Started with Appium

In this chapter, you will learn how to do the following:
e Install Appium via Node Package Manager (NPM)
e Run Appium via a graphical user interface (GUI) app
e Understand capabilities in Appium

A few years back, mobile automation was an enigma to everyone, but thanks to
Appium, that’s not the case anymore. Appium is capable of automating both Android
apps and iOS apps, so now there’s no need to learn two different tools for two different
platforms. Also, since Appium uses the same terminology as Selenium, the learning
curve is relatively small for anyone who has used Selenium for web automation. For
more information about the basics of Appium, please visit http://appium.io/slate/en/
master/?java#introduction-to-appium.

This chapter will cover the basics of installing and running an Appium session from
GUI and from the command line. Finally, you will create a sample project to run your first
Appium script.

1-1. Install Appium via NPM

Problem

The Appium team has been working on rewriting Appium in the latest version of
JavaScript, so the team is releasing updated versions of Appium more frequently than
before. You get Appium’s latest build faster via NPM compared to via the GUI app. So, you
need to understand how to run Appium via NPM.

Solution

You need the latest stable version of Node.js and NPM. Please check the introduction of
this book to get the URLs for downloading Node.js and NPM.

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2418-2_1) contains supplementary material, which is available to
authorized users.

© Shankar Garg 2016 1
S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2_1

http://appium.io/slate/en/master/?java#introduction-to-appium
http://appium.io/slate/en/master/?java#introduction-to-appium
http://dx.doi.org/10.1007/978-1-4842-0397-2_1

CHAPTER 1 * GETTING STARTED WITH APPIUM

Make sure you have not installed Node or Appium with sudo or you'll run into
problems. Let’s first check whether you have the latest versions of NPM and Node
installed.

1. Type the following command in a terminal to check the Node
version:

node -v

2. Type the following command in a terminal to check the NPM
version:

npm -version

Your terminal output should match Figure 1-1.

Shankars-MacBook-Pro:~ sgarg$|npm -Version
3.6.0

Shankars-MacBook-Pro:~ sgarg$
Shankars-MacBook-Pro:~ sgarg$
Shankars-MacBook-Pro:~ sgarg$

Shankars-MacBook-Pro:~ sga rg$

v5.7.0

Figure 1-1. Checking the versions of NPM and Node

3. Type the following command in a terminal to install the
Appium 1.5.0 release:

npm install -g appium@1.5.0
Note:

1. appium@1.5.0 is to specifically download a particular
version of Appium which is not the latest version.

2. ifyou know the latest release of Appium is stable then
you can use the command “npm install -g appium” to
directly install latest version.

4. Observe the output in the terminal; it should look like
Figures 1-2 through 1-4.

CHAPTER 1 * GETTING STARTED WITH APPIUM

<" sgarg — node — 103x33 |
Shankars-MacBook-Pro:~ sgarg$ npm install -g appiumgl.5.@

deprecated mobile-json-wire-protocol@l.3.2: This package has been migrated into the 'appium-ba
se-driver' package

ioadRequestedDeDS - fetch | | IEG—_— s

Figure 1-2. Appium download starting

o2 ® 4 sgarg — bash — 123x45
|shankars-MacBook-Pro:~ sgargs
Shankars-MacBook-Pro:~ sgarg$ npm install -g appiumg@l.5.@

deprecated mobile-json-wire-protocol@l.3.2: This package has been migrated into the 'appium-b driver'
fusr/local/bin/authorize-ios -> fusr/local/lib/node_modules/appium/node_modules/.binfauthorize-ios
fusrflocal/bin/appium -> fusr/local/lib/node_modules/appius/build/lib/main. js

> fsevents@l.@.12 install fusr/local/lib/node_sodules/appium/node_modules/fsevents
> node-pre-gyp install --fallback-to-build

[fsevents] Success: "fusr/local/lib/node_modules/appium/node_modules/fsevents/lib/binding/Release/node-va7-darwin-x64/fse.n
ode” is installed via remote

> appium-chromedriver@2.8.9 install fusr/local/lib/node_modules/appium/node_modules/appium-chromedriver
> node install-npm.js

info Chromedriver Install Installing Chromedriver version '2.21' for platform 'mac’ and architecture '32'
info Chromedriver Install Opening temp file to write chromedriver_mac32 to...

info Chromedriver Install Downloading http://chromedriver.storage.googleapis.com/2.21/chromedriver_mac32.zip..

info Chromedriver Install Writing binary content to /var/folders/n2/gp3xz20x5112ncbclnd33f_hmOyrgq/T/2016422- 1429? eifnlu/c
hromedriver_mac32.zip..
info Chromedriver Install Extracting /var/folders/n2/gp3xz28x5112ncbclnd33f_hefyrgq/T/2016422-14297-eifnlu/chromedriver_mac
32.21p to /fvar/folders/n2/gp3xz2@x5112ncbelnd33f_hadyrgq/T/2016422-14297-eifnlu/chromedriver_sac32

info Chromedriver Install Creating fusr/local/lib/node_medules/appium/node_modules/appium-chromedriver/chromedriver/mac...
info Chromedriver Install Copying unzipped binary, reading from /var/folders/n2/gp3xz20x5112ncbclnd33f_hmOyrgq/T/2016422-14
297-eifnlu/chrosedriver_mac32/chromedriver...
info Chromedriver Install Writing to fusr/local/lib/node_modules/appium/node_modules/appium-chromedriver/chromedriver/mac/c
hromedriver...

info Chromedriver Install fusr/local/lib/node_modules/appium/node_modules/appium-chromedriver/chromedriver/mac/chromedriver
successfully put in place

> appium-selendroid-driver@l.2.2 install fusr/local/lib/node_modules/appium/node_modules/appium-selendroid-driver
> node ./binfinstall.js

info SelendroidInstaller Ensuring /fusr/lecal/lib/node_modules/appium/node_modules/appium-selendroid-installer/selendroid/dof
wnload exists
info SelendroidInstaller Downloading Selendroid standalone server version 8.17.@ from https://github,.com/selendroid/selendr|
oid/releases/download/@.17.8/selendroid-standalone-0.17.8-with-dependencies. jar ——> /usr/local/lib/node_modules/appium/node)
_modules/appium-selendroid-installer/selendroid/download/selendroid-server.jar

info Selendroidinstaller Writing binary content to /usr/local/lib/node_modules/appium/node_modules/appium-selendroid-insta
ler/selendroid/download/selendroid-server. jar

info SelendroidInstaller Selendroid standalone server downloaded

info SelendroidInstaller Determining AndroidManifest location

info Selendroidinstaller Determining server apk location

info SelendroidInstaller Extracting manifest and apk to /usr/local/lib/node_modules/appius/node_modules/appium-selendroid- i}
nstaller/selendroid/download

Figure 1-3. Appium downloading packages

CHAPTER 1 * GETTING STARTED WITH APPIUM

[] [] 7 sgarg — bash — 123x45
/|nstaller/selendroid/download
flinfo SelendroidInstaller Copying manifest and apk to /fusr/lecal/lib/node_modules/appium/node_modules/appium-selendroid-inst

||atler/selendroid

ler Cleaning up temp files
Sele ler Fixing AndroidManifest icom bug

fusr/loca
| =

Figure 1-4. Appium downloaded packages list

5. Wait for NPM to download all the packages for Appium.

6. Type the following command in a terminal to check the
Appium version:

appium -v
7. Type the following command in a terminal to start the
Appium server, as shown in Figure 1-5:

appium

CHAPTER 1 * GETTING STARTED WITH APPIUM

[NN) " sgarg — node — 82x19
Shankars-MacBook-Pro:~ sgarg$ appium -v
1.5.9

Shankars-MacBook-Pro:~ sgarg$ appium
[Appium] Welcome to Appium v1.5.8 (REV e6f1500728e48f4be59bb4ca2b47619816559840)
[Appium] Appium REST http interface listener started on 0.0.0.0:4723

Figure 1-5. Appium server running

8. Ifyouwant to check whether all the dependencies for Appium
are met, then type the following command in a terminal,
which results in Figure 1-6:

appium-doctor

|j®® ® T sgarg — bash — 123x45

Shankars-MacBook-Pro:~ sgarg$ appium-doctor

AppiumDoctor ### Diagnostic starting ###

AppiumDoctor Xcode is installed at: /Applications/Xcode.app/Contents/Developer
AppiumbDoctor Xcode Command Line Tools are installed.

AppiumDoctor DevToolsSecurity is enabled.

AppiumbDoctor The Authorization DB is set up properly.

AppiumDoctor The Mode.js binary was found at: fusr/local/bin/node

AppiumDoctor HOME is set to: /fUsers/sgarg

AppiumDoctor ANDROID_HOME is set to: /Users/sgarg/Documents/Softwares/android
AppiumDoctor JAVA_HOME is set to: /Library/Jlava/lavaVirtualMachines/jdk1.8.8_51.jdk/Contents/Home
nfo AppiumDoctor adb exists at: /Users/sgarg/Documents/Softwares/android/platform-tools/adb
info AppiumDoctor android exists at: /Users/sgarg/Documents/Softwares/android/tools/android
info AppiumDoctor emulator exists at: /Users/sgarg/Documents/Softwares/android/tools/emulator
info AppiumDoctor ### Diagnostic completed, ne fix needed. ###

info AppiumDoctor

info AppiumDoctor Everything looks good, bye!

info AppiumDoctor

%

L T O A A Y

Figure 1-6. AppiumDoctor

How It Works

To start the Appium server, first you need to install Appium. NPM is the best package
manager for installing Appium. Using the -g option while installing means Appium will
be installed globally. The command to start the Appium server is appium. The Appium
server is now ready for your use.

You can use AppiumDoctor to check that Appium installed with the correct
configuration settings. Since Appium can be used for both platforms, the settings are
platform-specific, such as ANDROID_HOME for Android and Xcode for iOS. To check the
platform-specific dependencies, use appium-doctor --ios foriOS and appium-doctor
--android for Android (Figure 1-7).

CHAPTER 1 * GETTING STARTED WITH APPIUM

1® @ @ /> sgarg — bash — 93x30

Shankars-MacBook-Pro:~ sgarg$ appium-doctor --ios

info AppiumDoctor ### Diagnostic starting ###

info AppiumDoctor « Xcode is installed at: /Applications/Xcode.app/Contents/Developer

info AppiumDoctor Xcode Command Line Tools are installed.

info AppiumDoctor DevToolsSecurity is enabled.

info AppiumDoctor The Authorization DB is set up properly.

info AppiumDoctor The Node.js binary was found at: /usr/local/bin/node

info AppiumDoctor HOME is set to: /fUsers/sgarg

info AppiumDoctor ### Diagnostic completed, no fix needed. ###

info AppiumDoctor

info AppiumDoctor Everything looks good, bye!

info AppiumDoctor

Shankars-MacBook-Pro:~ sgarg$

Shankars-MacBook-Pro:~ sgargs$

Shankars-MacBook-Pro:~ sgarg$ appium-doctor --android

info AppiumDoctor ### Diagnostic starting ###

info AppiumDoctor « ANDROID_HOME is set to: /Users/sgarg/Documents/Softwares/android

info AppiumDoctor « JAVA_HOME is set to: /Library/Java/JavaVirtualMachines/jdk1.8.8_51.jdk/C
ontents/Home

info AppiumDoctor « adb exists at: /Users/sgarg/Documents/Softwares/android/platform-tools/a
db

info AppiumDoctor « android exists at: /Users/sgarg/Documents/Softwares/android/tools/androi
d

info AppiumDoctor « emulator exists at: /Users/sgarg/Documents/Softwares/android/tools/emula
tor

info AppiumDoctor ### Diagnostic completed, no fix needed. ###

info AppiumDoctor

info AppiumDoctor Everything looks good, bye!

info AppiumDoctor

Shankars-MacBook-Pro:~ sgarg$ I

L S Y

.

Figure 1-7. AppiumDoctor’s platform-specific output

1-2. Run Appium via a GUI App
Problem

You are not comfortable running Appium via terminal. Since the Appium team also
supports a GUI app that is available for both the Windows and Mac operating systems,
you want to use the GUI app to run the Appium server.

Solution

You need the latest release of the Appium GUI app, which can be downloaded from
https://bitbucket.org/appium/appium.app/downloads/. The latest release as of this
writing is 1.5.3. Once the app is downloaded, just follow the prompts to install the app. It's
a straightforward process.

https://bitbucket.org/appium/appium.app/downloads/

CHAPTER 1 * GETTING STARTED WITH APPIUM

1. Open the GUI app by clicking the app icon. The user interface
(UI) shown in Figure 1-8 appears.

Appium

=8 M=l R O\ 'i' " ﬂ' * ¢ Launch

L

Figure 1-8. Appium GUI app

CHAPTER 1 * GETTING STARTED WITH APPIUM

2. To start the Android server, click the Android icon in the top
menu and click Launch. The Appium server for Android will
start (Figure 1-9).

Appium

Py]
SRS w & /KX T swr
Launching Appium with command: '/Applications/Appium.app/Contents/Resources/node/
bin/node' lib/server/main.js —address "127.0.0.1" —command-timeout "7200" ——debug-

log-spacing ——automation-name "Appium" —platform-name "Android" —platform-version
"5.9" ——dont-stop-app-on-reset

info: Welcome to Appium v1.4.13 (REV c75d8adcb66a75818a542fe1891a34260c21f76a)

info: Appium REST http interface listener started on 127.0.0.1:4723

info: [debug] Non-default server args:

{"address":"127.0.0.1","platformName" : "Android" ,"platformVersion":"5.8","automationN
ame" :"Appium","defaultCommandTimeout":

7200, "dontStopAppOnReset":true,"debugLogSpacing": true}

info: Console LoglLevel: debug

info: ——> GET /wd/hub/status {}

info: [debug] Responding to client with success: {"status":®,"value":{"build":
{"version":"1.4.13","revision":"c75d8adcb66a75818a542fe1891a34260c21f76a"}}}

info: <— GET /wd/hub/status P 6.929 ms — 105 {"status":0,"value":{"build":
{"version":"1.4.13","revision":"c75d8adcb66a75818a542fe1891a34260c21f76a"}}}

info: ——> GET /wd/hub/status {}

info: [debug] Responding to client with success: {"status":0,"value":{"build":
{"version":"1.4.13","revision":"c75d8adcb66a75818a542fe1891a34260c21f76a"}}}

info: <— GET /wd/hub/status 200 2.797 ms - 105 {"status":0,"value":{"build":
{"version":"1.4.13","revision":"c75d8adcb66a75818a542fe1891a34260c21f76a"}}}

Figure 1-9. Appium GUI app, Android

CHAPTER 1 * GETTING STARTED WITH APPIUM

3. To start the iOS server, click the iOS icon in the top menu and
click Launch. The Appium server for iOS will start (Figure 1-10).

Appium
=& B % Q w & B KX T sty

Launching Appium with command: '/Applications/Appium.app/Contents/Resources/node/
bin/node’ lib/server/main.js —address "127.0.0.1" ——command-timeout "7200" —--debug-
log-spacing —-platform-version "9.8" --platform-name "i0S" —app "/Users/sgarg/
Documents/xebia/Docs/appium/appium-1.4.16/assets/TestApp.app" --device-name "iPhone
6“

info: Welcome to Appium v1.4.13 (REV c75d8adcb66a75818a542fe1891a34260c21f76a)

info: Appium REST http interface listener started on 127.0.0.1:4723

info: [debug] Non-default server args: {"app":"/Users/sgarg/Documents/xebia/Docs/
appium/appium-1.4.16/assets/TestApp.app","address":"127.0.0.1","deviceName":"iPhone
6","platformName":"i0S","platformVersion":"9.8","defaultCommandTimeout":

7200, "debugLogSpacing”: true}

info: Console LogLevel: debug

info: ——> GET /wd/hub/status {}

info: [debug] Responding to client with success: {"status":0,"value":{"build":
{"version":"1.4.13","revision":"c75d8adcb66a75818a542fe1891a34260c21f76a"}}}

info: =— GET /wd/hub/status 6.763 ms - 185 {“status":0,"value":{"build":
{"version":"1.4.13","revision":"c75dBadcb66a75818a542fe1891a34260c21f76a"}}}

Figure 1-10. Appium GUI app, iOS

CHAPTER 1 * GETTING STARTED WITH APPIUM

4. Ifyouwant to check whether all the dependencies for Appium
are met, then click the stethoscope icon in the top-left corner,
as shown in Figure 1-11.

= H Q? O\ 'ﬁ' " ﬁ' * ‘ic Launch

o000 1 sgarg — bash — 80x24

Last login: Mon May 30 23:43:58 on ttys@e@l

Shankars-MacBook-Pro:~ sgarg$ ‘/Applications/Appium.app/Contents/Resources/node/
bin/node' '/Applications/Appium.app/Contents/Resources/node_modules/appium/bin/a
ppium-doctor. js'

LSRN N O

Shankars-MacBook-Pro:~ sgargs$ ||

Figure 1-11. Appium GUI app, checking whether all the dependencies for Appium are met

10

CHAPTER 1 * GETTING STARTED WITH APPIUM

How It Works

Once the Appium app is installed, you can run the Appium server. All you need to do is
select which platform you want to run the Appium server for and then click Launch. The
appropriate Appium server will be launched.

The Appium GUI app also supports AppiumDoctor, which helps you check whether
all the dependencies for Appium are set. For this, just click the stethoscope icon in the
top-left menu, and AppiumDoctor will run all the checks and let you know the status in a
terminal window.

1-3. Understand Capabilities in Appium

Problem

Appium is based on Selenium; in a way, it’s an extension of Selenium. Most of the
commands that you use in Selenium work with Appium also (provided those Selenium
commands make sense for mobile automation), so let’s talk about how Appium extends
Selenium.

Appium works in a client-server architecture. The client (test case) requests features
that a session should support. The client and server use JavaScript Object Notation
(JSON) objects with predefined properties when describing the features that a test
case is asking a session to support. These JSON objects and their properties are called
desired capabilities. (For more information, please go to http://appium.io/slate/en/
master/?javattabout-appium)

You want to see how to set the desired capabilities for mobile automation.

Solution

You can set the desired capabilities at the server level or at the client level. Capabilities at
the server level can be set using the command line or the Appium GUI app, and at client
level they will be set in the test case via code.

11

http://appium.io/slate/en/master/?java#about-appium
http://appium.io/slate/en/master/?java#about-appium

CHAPTER 1 * GETTING STARTED WITH APPIUM

Capabilities via a GUI App

To use the GUI app for iOS, click the iOS icon and choose the capabilities you want, as
shown in Figure 1-12.

00 @ Appium

=g Bl Y% Q * C & _* f Launch

=L Advanced

I =

iphones g
0.0 KN | |
[Landscape [SON | on]

Figure 1-12. Appium iOS capabilities

12

CHAPTER 1 * GETTING STARTED WITH APPIUM

To use the GUI app for Android, click the Android icon and choose the capabilities
you want, in Figure 1-13.

o0 @ Appium

BB Q *‘H.ﬁ*fmunch

Basic
/Users/sgarg/Documents/xebia/tribune/apps/android/apps. . Choose

<

B v
android.intent.action./ |

010200000 ML

Figure 1-13. Appium Android capabilities

13

CHAPTER 1 * GETTING STARTED WITH APPIUM

Capabilities via a Terminal
To choose the capabilities via a terminal, follow these steps:

1. Open a terminal and type the following command to check all
the capabilities available via a terminal (Figure 1-14):

appium -help

(@ ® @ /" sgarg — bash — 97x26

Last login: Sun Jun 5 22:44:24 on ttys@ez2

Shankars-MacBook-Pro:~ sgarg$ appium -help

usage: appium [-h] [-v] [--shell] [--ipa IPA] [-a ADDRESS] [-p PORT]
[-ca CALLBACKADDRESS] [-cp CALLBACKPORT] [-bp BOOTSTRAPPORT]
[-r BACKENDRETRIES] [—session-override] [-1] [-g LOG]

bug: info,debug:warn,debug:error}]
[--log-timestamp] [-—local-timezone] [——log-no-colors]
[-G WEBHOOK] [—safari] [——default-device] [-—force-iphone]
[--force-ipad] [--tracetemplate AUTOMATIONTRACETEMPLATEPATH]
[—instruments INSTRUMENTSPATH] [--nodeconfig NODECONFIG]
[-ra ROBOTADDRESS] [-rp ROBOTPORT]
[--selendroid-port SELENDROIDPORT]
[-—chromedriver-port CHROMEDRIVERPORT]
[——chromedriver-executable CHROMEDRIVEREXECUTABLE]
[-—show-config] [-—no-perms—check]
[--command-timeout DEFAULTCOMMANDTIMEOUT] [--strict-caps]
[——isolate-sim-device] [-—tmp TMPDIR] [-——trace-dir TRACEDIR]
[--debug-log-spacing] [-—suppress-adb-kill-server]
[—async-trace] [—webkit-debug-proxy-port WEBKITDEBUGPROXYPORT]
[--default-capabilities DEFAULTCAPABILITIES] [-k]
[—platform-name PLATFORMNAME]
[-—platform-version PLATFORMVERSION]
[-—automation-name AUTOMATIONNAME] [--device-name DEVICENAME]
\ [—-browser-name BROWSERNAME] [-—app APP] [-1t LAUNCHTIMEOUT]

[--log-level {info,info:debug,info:info,info:warn,info:error,warn,warn:debug,warn:i
nfo,warn:warn,warn:error,error,error:debug,error: info,error:warn,error:error,debug,debug:debug, de

Figure 1-14. Appium help via terminal

14

CHAPTER 1 * GETTING STARTED WITH APPIUM

2. Once you know which capabilities you need to set, type the
following command to run the Android server (Figure 1-15):

appium --platform-name 'i0S' --platform-version
'9.0' --browser-name '' --device-name 'ANDROID'
® [] " sgarg — node — 97x26

Shankars-MacBook-Pro:~ sgarg$ appium —platform-name 'ANDROID' —-platform-version '5.8' —brows
er-name '' -—device-name ‘'ANDROID'

[Appium] Welcome to Appium v1.5.8 (REV e6f1500728e48f4be59bbdca2bd76198f6559840)

[Appium] Mon-default server args:

[Appium] platformhame: ‘'ANDROID'

[Appium] platformVersion: '5.0'

[Appium] deviceName: 'ANDROID'

[Appium] browserName: ''

[Appium] Deprecated server args:

[Appium] —platform-name => —default-capabilities '{"platformName":"ANDROID"}'

[Appium] —platform-version => --default-capabilities '{"platformVersion":"5.@"}'

[Appium] ——device-name => --default-capabilities '{"dewviceName":"ANDROID"}"

[Appium] —browser-name => ——default-capabilities '{"browserName":""}'

[Appium] Default capabilities, which will be added to each request unless overridden by desired c
apabilities:

[Appium] platformMame: 'ANDROID’

[Appium] platformVersion: '5.@'

[Appium] deviceName: 'ANDROID'

[Appium] browserName: ''

iAppiuml Appium REST http interface listener started on 0.0.0.0:4723

Figure 1-15. Appium Android server via a terminal

15

CHAPTER 1 * GETTING STARTED WITH APPIUM

3. Type the following command to run the iOS server via a
terminal (Figure 1-16):

appium --platform-name 'iOS' --platform-version '9.0'
--browser-name '' --device-name 'iPhone 6'

(® ® 7" sgarg — node — 100x41 N

Shankars-MacBook-Pro:~ sgarg$ appium —platform-name 'i0S' --platform-version '9.@' --browser-name
'' —device-name 'iPad 2'

[Appium] Welcome to Appium v1.5.@ (REV e6f150072Bed8f4be59bbdcazbd76198f6559848)

[Appium] Non-default server args:

[Appium] platformName: 'i0S’

[Appium] platformVersion: '9.0'

[Appium] deviceName: 'iPad 2'

[Appium] browserName: ''

[Appium] Deprecated server args:

[Appium] —platform—-name => —default-capabilities '{"platformName":"i0s"}"
[Appium] —platform-version => —default-capabilities '{"platformVersion":"9.0"}'
[Appium] —device-name => —default-capabilities '{"deviceName":"iPad 2"}'
[Appium] —browser-name => —default-capabilities '{"browserName":""}'

[Appium] Default capabilities, which will be added to each request unless overridden by desired capa
bilities:

[Appium] platformName: 'i0S'

[Appium] platformVersion: '9.@’

[Appium] deviceName: 'iPad 2'

[Appium] browserName: "'

[Appium] Appium REST http interface listener started on 0.0.0.08:4723

. vy

Figure 1-16. Appium iOS server via a command line

Capabilities via Code

Review the blog at https://shankargarg.wordpress.com/2016/02/25/create-an-
appium-project-by-integrating-appium-eclipse-maven-testng/ to see how to create
a sample Appium project.

Then follow these steps:

1. Use the following code when initializing the Appium driver
object for the iOS capabilities:

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("browserName", "");
caps.setCapability("platformversion”, "9.0");
caps.setCapability("platformName", "i0S");
caps.setCapability("platform", "MAC");
caps.setCapability("deviceName", "iPhone 6");

// relative path to app/ipa file

final File classpathRoot = new File(System.
getProperty("user.dir"));

final File appDir = new File(classpathRoot, "src/test/
resources/apps/");

16

https://shankargarg.wordpress.com/2016/02/25/create-an-appium-project-by-integrating-appium-eclipse-maven-testng/
https://shankargarg.wordpress.com/2016/02/25/create-an-appium-project-by-integrating-appium-eclipse-maven-testng/

CHAPTER 1 * GETTING STARTED WITH APPIUM

final File app = new File(appDir, " TestApp.app");
caps.setCapability("app", app.
getAbsolutePath());

// initializing driver object
driver = new IOSDriver(new URL("http://127.0.0.1:4723/
wd/hub"), caps);

Use the following code when initializing the Appium driver
object for the Android capabilities:

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("platform", "ANDROID");
caps.setCapability("platformVersion", "5.0");
caps.setCapability("deviceName", "ANDROID");
caps.setCapability("browserName", "");

// relative path to apk file

final File classpathRoot = new File(System.

getProperty("user.dir"));

final File appDir = new File(classpathRoot, "src/test/

resources/apps/");

final File app = new File(appDir, "ApiDemos-debug.apk");
caps.setCapability("app", app.getAbsolutePath());

// initializing driver object

driver = new AndroidDriver(new

URL("http://127.0.0.1:4723/wd/hub"), caps);

How It Works

Desired capabilities are a set of keys and values (that is, a map or hash) sent to the
Appium server to tell the server what kind of automation session you're interested in.
When initiating a Selenium driver, you need to mention the browser that you need to
invoke. Similarly, for Appium you need to mention the platform, such as Android or iOS,
and platform version, such as iOS 9.3 or Android 5.0.
Desired capabilities can be set at two levels:

Server level (GUI app or terminal): Capabilities mentioned while
starting the Appium server will be added to each request unless
they are overridden by the desired capabilities sent by the test
case. For example, if you specify iPhone 6 in the Appium server
and start a generic Appium client without any device, then the
test case will automatically run on iPhone 6.

Client level (test case): Capabilities mentioned while initiating the
Appium client will override the capabilities of the Appium server.
For example, if the Appium server has iPad 2 as the device but
you are sending iPhone 6 in the test case request, then the test
cases will run on iPhone 6.

17

M.al litebooks. cogl

http://www.allitebooks.org

CHAPTER 1

GETTING STARTED WITH APPIUM

Table 1-1 lists some of the desired capabilities that you will use most often.

Table 1-1. Common Desired Capabilities

Capability Description Values
platformName Which mobile OS platform to use. i0S, Android, or Firefox0S
platformVersion Mobile OS version. Examples: 9.0, 5.0
deviceName The kind of mobile device or Examples: ANDROID, iPhone 6
emulator to use.
app The absolute local path or remote Example: /abs/path/to/my.apk
HTTP URL to an .ipa or .apk file,
or a .zip containing one of these.
browserName The name of mobile web browser Safari foriOS
to automate. This should be an Chrome, Chromium, or Browser for
empty string if automating an app Android
instead.
platformName OS platform. i0S, Android
platformVersion OS version. 9.0,9.1, 8.4, and so on, foriOS
5.0,6.0, 4.4, and so on, for
Android
deviceName Mobile device ID. iPhone 6, iPad 2, and so on,

for iOS
ANDROID, and so on, for Android

For an exhaustive list of all capabilities, please refer to https://github.com/appium/
appium/blob/master/docs/en/writing-running-appium/caps.md.

18

https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/caps.md
https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/caps.md

CHAPTER 2

Finding Mobile Elements

In this chapter, you will learn how to do the following:

e Traverse with Appium Inspector

e Explore UI Automator Viewer

e Find elements by their accessibility ID

e Find elements using I0OSUTAutomation

e Find elements using AndroidUIAutomator
e InspectiOS mobile web elements

e Inspect Android mobile web elements

In the previous chapter, you learned how to set up and run Appium, but for mobile
automation, that’s not sufficient. You also need to know how to find mobile elements so
you can interact with those elements to perform desired actions.

Since Appium is an extension of Selenium, most of the principles of finding elements
in Selenium apply to finding elements in Appium. The only thing that changes is the
context: i.e. mobile. So, in this chapter, you'll understand how to find mobile elements.

Before going further, make sure to download the project from the book’s
GitHub repository: https://github.com/ShankarGarg/AppiumBook/tree/master/
AppiumRecipesBook.

2-1. Traverse with Appium Inspector
Problem

You want to inspect the user interface (UI) of an application to find the layout hierarchy
and view the properties associated with the elements.

© Shankar Garg 2016 19
S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2_2

https://github.com/ShankarGarg/AppiumBook/tree/master/AppiumRecipesBook
https://github.com/ShankarGarg/AppiumBook/tree/master/AppiumRecipesBook

CHAPTER 2 " FINDING MOBILE ELEMENTS

Solution

With the Appium graphical user interface (GUI) app, you can use a built-in utility Appium
Inspector to find elements for native iOS apps.

1. In Appium’s iOS Settings, provide the path of the iOS app
that you want to find elements for (Figure 2-1). A sample
i0S app is saved in the src/test/resources/apps/ folder
of the code that you have checked out for this chapter
(AppiumRecipesBook).

Appium .

B Q_, Q * 3 ﬂ- F § Launch

iPhone |
- =

] en I
gregorian [N | on_us &)

Figure 2-1. App path of the .app file for iOS

20

CHAPTER 2~ FINDING MOBILE ELEMENTS

2. In Appium’s General Settings, select the Prelaunch
Application check box, as shown in Figure 2-2.

Appium

L A w8 B Kk T Lann

/Users/sgarg/Documents/xebia/McKinsey/Mc
|

Figure 2-2. Selecting the Prelaunch Application check box

Note If Prelaunch Application is not selected, Appium will launch the app when you
click the Appium Inspector icon.

3. Click the Launch button to launch the Appium server. Wait for
the Appium server to start and wait for Appium to launch the
i0S simulator with the desired app opened.

4. Click the magnifying glass icon in the top-left corner in the
Appium GUI app (Figure 2-3). The Appium Inspector window
will open with the application’s current state captured.

21

CHAPTER 2 " FINDING MOBILE ELEMENTS

[BN] Appium Inspector
Filters
Show Disabled Show Invisible Record Refresh

1 lication] Test

[UIAWindow]

Application’s
Element

Getals

name: TestApp
type: UlAApplication
value:

label: TestApp
enabled: true
visible: false
valid: true
location: {0, 0}
size: {375, 667)
xpath: //
UlAApplication(1]

Selected Element’s
Properties

QUG Text Locator Misc

Tap Swipe Shake Action Available

on App Elements

Precise Tap Scroll To

Figure 2-3. Appium Inspector

Context
-

no context

Change

-

Carrier ¥ N PM

Compute Sum

e

show alert cont..talert locati_alert

Label...

—_— te..
Label...

Location

Test Gesture Crash

Application’s Current Screen

J

Copy XML [& 0°

5. Now you want to find the properties of the first text box
available onscreen. Double-click the element on the screen in

the right panel in the Appium Inspector window.

6. Once you select the element in the right panel, all the
properties of that element will be displayed in the middle
panel, and the hierarchy will be displayed in the left panel, as

shown in Figure 2-4.

22

CHAPTER 2 * FINDING MOBILE ELEMENTS

([UIAApplication] Test [UIAWindow] \ (Oetails A
[UIAApplication]... * [UIAWindow] » [UlATextField] In... »

[UIAWindow] > [UATextField] In... »| [|4 e |iATextField
[UIAButton] Co... value:
/ [UIAStaticText]... label: TextField1

name: TextField1

Element’s Hierarchy [UIAButton] sho... enabled: true
[UIAButton] con... visible: false
valid: true
[UIAButton] loc... location:
[UIAStaticText]... {119.53125,
[UIASlider] App... 45.21875}
[UlAStaticText]... size: {113.671875,
[UIAStaticText]... ig:gf}fﬁ
[UIAStaticText] UlAApplication[1)/
[UIAButton] Test... UIAWindow[2)/
[UIAButton] Crash UlATextField[1)/

UIATextField[1]
Elements Properties
\, Wl =

Figure 2-4. Element properties in iOS

7. For this particular text field, you can check the attributes such
as name, type, label, xpath, and so on, and you can use these
attributes in test scripts.

8. You can select elements in the hierarchy viewer, and they will
be selected in the right panel.

23

CHAPTER 2 " FINDING MOBILE ELEMENTS

9. Now ifyou select the third element from the bottom in the
[UIAwindow] area, then details of that element will be visible
in the middle panel, and that element will also be selected in
the right panel, as shown in Figure 2-5.

“Carrier = 111 PM -

Record Refresh
[UIAWindow] (Details)
[UlATextField] In... » et
[UIATextField] In... » | ¢ oe"\iastaticText
[UIAButton] Co... value: Compute Sum
[UlAStaticText]... label: .
[UIAButton] sho... enabled: true it

visible: false
[UIAButton] con... v‘alé:;l- tr:lel

= show alert cont...t alert locati...alert
[UIAButton] loc... location: {96.09375, N '
[UlAStaticText]... 449.515625) Label
[UIASIlider] App... size: {85.546875,
[UIAStaticText]... 24.609375}) - te...
IAStati : xpath: // Label..

UlAApplication[1)/

[UIAButton] Test el
e UlAStaticText[5] -
[UIAButton] Crash
Test Gesture Crash
A =7

Figure 2-5. Appium Inspector details

How It Works

You can access Appium Inspector by clicking the magnifying glass icon next to the
Launch button. The Appium server must be running with an app open or Appium
Inspector will not work. Once Appium Inspector is up, then you can select an element to
check its various attributes such as name, value, xpath, and so on.

Appium Inspector is used to accomplish the following:

e Identify and understand the element hierarchy
e Find attributes of the element/object

e Record your manual actions with the app

Note Appium Inspector is best suited for iOS native apps. For Android native apps, you
will use Ul Automator Viewer, which | will cover in the next recipe.

24

CHAPTER 2 * FINDING MOBILE ELEMENTS

2-2. Explore Ul Automator Viewer

Problem

Although Appium has a built-in utility Appium Inspector for identifying elements,
it does not work properly and efficiently for Android native apps. You want to use
UIAutomatorViewer to find elements in an Android native app.

Solution

To use UI Automator Viewer, the Android software development kit (SDK) must be
installed, and the path must be updated for the Android SDK.

Note For more information on this topic, please follow these instructions:

https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-
emulators/

https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-
emulators-on-mac-os/

For Android native apps, you can use Ul Automator Viewer by following these steps:

1. Open the Genymotion emulator and install the
ApiDemos-debug.apk app on it.

2. Gotothelocation where you downloaded the Android SDK,
go to the Tools folder, and double-click uiautomatorviewer.

Or, if the Android SDK path is set, go to a terminal, type
uiautomatorviewer, and press Enter.

25

https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-emulators-on-mac-os/
https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-emulators-on-mac-os/

CHAPTER 2 " FINDING MOBILE ELEMENTS

Your screen should match Figure 2-6.

Ul Automator Viewer

Node Detail

Figure 2-6. Ul Automator Viewer

26

CHAPTER 2 * FINDING MOBILE ELEMENTS

3. Clicking the devices icon on the left takes a snapshot of the
screen that’s open on the device/emulator, as shown in
Figure 2-7.

@ @ Ul Automator Viewer

Node Detail

Figure 2-7. UI Automator Viewer default screen

27

CHAPTER 2 " FINDING MOBILE ELEMENTS

4. Now you want to find properties of the Accessibility button
(the first option available on the screen). Double-click the
element on the screen in the left panel in the UI Automator

Viewer window.

5. Once you select the element in the left panel, all the
properties of that element will be displayed in the bottom-
right panel, and the hierarchy will be displayed in top-right

panel, as shown in Figure 2-8.

[NN Ul Automator Viewer

Figure 2-8. UI Automator Viewer details screen

28

Hierarchy Viewer

5 A A N -

View [0,0][768,1232]
0) FramelLayout [0,25][768,89]
¥ (0) View [0,25][768,89]
(0) TextView:API Demos [16,43][115,71]
1) FrameLayout [0,89][768,1232]
¥ (0) ListView [0,89][768,1232]
(1) TextView:Animation {Animation} [0,13
(2) TextView:App {App} [0,187][768,235]
(3) TextView:Content {Content} [0,236][7

1=
Node Detail
index 0
[Accessibility
resource-id android:id/text1
class android.widget. TextView
package io.appium.android.apis

content-desc Accessibility
checkable false

checked false Element’s
clickable false Property
enabled true
focusable false
focused false

scrollable false

_ lona-clickabla false

CHAPTER 2 * FINDING MOBILE ELEMENTS

6. For this particular field, you can check the attributes such as
text, resource-id, class, content-desc, and so on, and you
can use these attributes in test cases.

7. You can select elements in the hierarchy viewer also. They
will be selected in the left panel, and their properties will be
displayed in the bottom-right panel.

8. Now ifyou select the second TextView in the top-right
window (Figure 2-9), you will see details of that element in the
bottom-right panel; that element will also be selected in the
left panel.

00 Ul Automator Viewer

c@@d

ddae

API Demos & A A v =

fiew [0,0][768,1232]
)) FrameLayout [0,25][768,89]
¥ (0) View [0,25][768,89]
(0) TextView:API Demos [16,43][115,71]
1) FrameLayout [0,89][768,1232)]
¥ (0) ListView [0,89][768,1232]
(0) TextView:Accessibility {Accessibility}
(2) TextView:App {App} [0,187](768,235]
(3) TextView:Content {Content} [0,236][7¢

Node Detail
index 1
text Animation
resource-id android:id/text1
class android.widget. TextView
package io.appium.android.apis

content-desc Animation
checkable false

checked false
clickable false
enabled true
focusable false
focused false
scrollable false

lona-clickable false

Figure 2-9. UI Automator Viewer details screen

29

CHAPTER 2 " FINDING MOBILE ELEMENTS

How It Works

UI Automator Viewer is an inspector tool provided by Google that lets you inspect the
UI of an application to find the layout hierarchy and view the properties associated with
the controls. It will work only if an emulator/device is live and an app is opened in the
emulator. Once UI Automator Viewer is up, then a particular element can be selected to
check its various attributes such as resource-id, class, and so on.

2-3. Find Elements by Their Accessibility ID

Problem

To interact with elements to perform actions, you need to first find the elements. Since
Appium extends Selenium, all generic locator strategies such as name, id, xpath, and so
on, are available in Appium, and these can be used effectively in Appium. In this book,
you will focus on locator strategies specific to Appium.

Accessibility ID is one strategy that is available for both the Android and iOS
platforms and is very stable. Let’s understand to use accessibility ID to find elements.

Solution
Android

As explained in the previous recipe, you can use UI Automator Viewer for the API Demo
Android application.

1. Select any element in the left panel and observe the text and
content-desc properties in the bottom-right panel, as shown
in Figure 2-10.

30

CHAPTER 2 * FINDING MOBILE ELEMENTS

[BN] Ul Automator Viewer

c@E@d

[o o

AP| Demos + A N\ N = (597,8641)

V) b e (e[e §]

v (0) Llst\.l"aw [0,89][768,1232)

(1) TextView:Animation {Animation} [0, 138][?
(2) TextView:App {App} [0,187][768,235]

(3) TextView:Content {Content} [0,236](768,2
(4) TextView:Graphics {Graphics} [0,285][76€
(5) TextView:Media {Media} [0,334][768,382]
(6) TextView:NFC {NFC} [0,383][768,431]

(7) TextView:0S {OS} [0,432][768,480]

(8) TextView:Preference {Preference} [0,481]|
(9) TextView:Text {Text} [0,530][768,578]

(10) TextView:Views {Views} [0,579][768,627]

Node Detail
index 0
(text Accessibility)

resource-id android:id/textT
class andmld widget. Text\.r'lew

checked false
clickable false
enabled true
focusable false
focused false
scrollable false
long-clickable false
password false
selected false

Figure 2-10. Accessibility ID for Android

2. Inthe AppiumRecipesBook project, go to the
AppiumSampleTestCaseAndroid class and use the following
code to interact with the first menu option:

// click on Accessibility link
wait.until(ExpectedConditions.presenceOfElementLocated(
MobileBy.AccessibilityId("Accessibility")));
driver.findElement(MobileBy.AccessibilityId("Accessibil
ity")).click();

// click on 'Accessibility Node Querying' link
wait.until(ExpectedConditions.presenceOfElementLoc
ated(MobileBy.AccessibilityId("Accessibility Node
Querying")));
driver.findElement(MobileBy.AccessibilityId("Accessibil
ity Node Querying")).click();

31

CHAPTER 2

i0S

FINDING MOBILE ELEMENTS

As explained in the previous recipe, let’s use Appium Inspector for the TestApp iOS

application.
1. Select the first text box in the right panel and observe the name
properties in the middle panel, as shown in Figure 2-11.
Filters
Show Disabled Show Invisible Record Refresh ol Ll is
[UlAApplication] Tes! [UIAWIndow] Detalls S
[UlAApplication]... » [UIAWIndow] » [UlATextField] In... »
[UIAWindow] » [UlATextField] In... » m“uﬁ::";'ﬂ -
[UlIAButton] Co... value: Compute Sum
[UIAStaticText]... label: TextField1 .
[UlAButton] sho... enabled: true T
[UIAButton] con... visible: false
valid: true how alert cont..talert locati..alert
[UlAButton] loc... location: show alert cont..talert locati.ale
[UlAStaticText]... {119.53125, Label
[UIASTider] App... 45.21875)
[UIAStaticText]... size: {113.671875, _— te..
[UIAStaticText]... 3::;? 1‘?5? Label...
[UlAStaticText] UIMp‘p;ic.aticnh]!
[UlAButton] Test... UlAWindow[2)/ :
[UlAButton] Crash UlATextField[1)/ Location
UlATextField[1] TestGesture Crash
Text Locator Misc Sone
Figure 2-11. Accessibility ID for iOS

32

In the AppiumRecipesBook project, go to the
AppiumSampleTestCaseiOS class and use the following code to
interact with the two text boxes present in the app:

//enter data in first text box
wait.until(ExpectedConditions.presenceOfElementLocated
(MobileBy.AccessibilityId("TextField1")));
driver.findElement(MobileBy.AccessibilityId("TextFie
1d1")).sendKeys ("AppiumBook");

//enter data in second text box
wait.until(ExpectedConditions.presenceOfElementLocated
(MobileBy.AccessibilityId("TextField2")));
driver.findElement(MobileBy.AccessibilityId("TextFie
1d2")).sendKeys("First TC");

CHAPTER 2 * FINDING MOBILE ELEMENTS

How It Works

Accessibility identifiers are identifiers that app developers attach to important elements
so that people with disabilities can meaningfully interpret the UL So, you can expect that
most of the elements that are important to end users will have an accessibility identifier
defined, thus making it one of the best candidates of locator strategies.

The accessibility ID is generally the name or content-desc attribute of an element.
Since name and text remain the same for both the Android and iOS platforms, the same
accessibility ID can be used for both platforms, and therefore you can use one test case
for both platforms.

At the same time, you need to be cautious because the text/name field can change
a lot during the app life cycle, which will break both the Android and iOS test cases.
However, ideally one fix should fix both test cases.

Note Some developers have used the name locator strategy extensively in their
Appium tests, but it’s deprecated now and soon will be deleted. (See https://discuss.
appium.io/t/why-is-name-locator-strategy-being-depreciated/7106). Thus, it’s
advisable that you replace the name strategy with the accessibility ID.

2-4. Find Elements Using iOSUIAutomation
Problem

Using common strategies for both the Android and iOS platforms has its own advantages,
but accessibility IDs are limited to elements that a user really interacts with such as
buttons. What about elements that do not have any specific ID associated with them such
as search results or catalog options?

Using XPaths for such elements would be very slow for native apps. You want to use
an i0S-specific strategy called i0SUTAutomation, which is fast and reliable.

Solution

As explained in the previous recipe, let’s use Appium Inspector for the TestApp iOS
application.

1. Select the first text box in the right panel and observe the
properties in the middle panel, as shown in Figure 2-12.

33

https://discuss.appium.io/t/why-is-name-locator-strategy-being-depreciated/7106
https://discuss.appium.io/t/why-is-name-locator-strategy-being-depreciated/7106

CHAPTER 2 " FINDING MOBILE ELEMENTS

Filters
Cartior ¥ 1n:23PM
Show Disabled Show Invisible Record Refresh el
[UlAApplication] Tes! [UIAWIndow] Detalls S
[UIAApplication]... » [UIAWindow] » [UlATextField] In... » .
= , __name: TextField1
[UIAWiIndow] » [UlATextField] In... » type: UlATexiField
[UlIAButton] Co... value: Compute Sum
[UIAStaticText]... label: TextField1 .
[UIAButton] sho... enabled: true iRl
[UIAButton] con... “'“’!': false
[UIAButtpn] loc... 'In.cl:t‘Ilt;r‘ll:e show alert cont..talert locati..alert
[UlAStaticText]... {119.53125, Label
[UIASIider] App... 45.21875)
[UlAStaticText]... size: {113.671875, _ te...
[UIAStaticText]... ng‘ff 1‘?5’ Label...
[UlAStaticText] UlAApplication[1)/
[UIAButton] Test... UlAWindow[2)/ .
[UlAButton] Crash UlATextField[1)/ Location
UlATextField(1] Test Gesture Crash
Text Locator Misc Cone

Figure 2-12. iOSUIAutomation for iOS

2. Gotothe AppiumSampleTestCaseiOS class and use the
following code to interact with the first and second text boxes
present in the app:

// enter data in first text box
wait.until(ExpectedConditions.presenceOfElementLocated
(MobileBy.IosUIAutomation(".textFields()[0]")));
driver.findElement(MobileBy.IosUIAutomation(".
textFields()[0]")).sendKeys("1");

// enter data in second text box
wait.until(ExpectedConditions.presenceOfElementLocated
(MobileBy.IosUTAutomation(".textFields()[1]1")));
driver.findElement(MobileBy.IosUIAutomation(".
textFields()[1]")).sendKeys("2");

3. Use the following code to interact with the Compute Sum
button and then with the “???” label:

// click on compute Sum Button
driver.findElement(MobileBy.IosUIAutomation(".
buttons().firstWithPredicate(\"name=="ComputeSumButt
on'\")")).click();

// print value of €222’ label
System.out.println(driver.findElement(MobileBy.TosUIAut
omation(".staticTexts().firstWithPredicate(\"name=="Ans
wer'\")")).getText());

34

CHAPTER 2 * FINDING MOBILE ELEMENTS

How It Works

i10SUIAutomation is an element-finding strategy powered by Apple specifically for the

i0S platform. Since it is native to iOS, it’s much faster than XPath, and it’s much more
powerful and flexible because it knows more platform-specific elements as compared to a
generic XPath one.

i0SUTAutomation has predicates that allow you to select a specific element based on
whether a condition is true.

If you are comfortable with XPath expressions or if you just copy the XPath
expressions given by Appium Inspector, it’s easy to convert XPath expressions to
i0SUIAutomation. The rule of thumb for such a conversion is that the UTAElementArray
numbering begins at 0, unlike XPath expressions where the index counting starts at 1.
Take a look at these examples of simple expressions:

XPath: /UIATableView[2]/UIATableCell[@label = 'Olivia'][1]
iOS predicate: tableViews()[1].cells().firstWithPredicate("label == 'Olivia' ")

Note You can read more about iOS predicates at http://appium.io/slate/en/
master/?javaf#fios-predicate.

2-5. Find Elements Using AndroidUIAutomator

Problem

You learned how to use the 10SUIAutomation locator strategy for iOS. Similarly, Let’s
learn to use AndroidUIAutomator for Android native apps.

35

http://appium.io/slate/en/master/?java#ios-predicate
http://appium.io/slate/en/master/?java#ios-predicate

CHAPTER 2 " FINDING MOBILE ELEMENTS

Solution

As explained in previous recipes, you can use UI Automator Viewer for the API Demo
Android application.

1. Select any element in the left panel and observe the properties
in the bottom-right panel, as shown in Figure 2-13.

[BN] Ul Automator Viewer

c@E@d

[o o

API Demos = A N N/ = (597841)

V) b e (e[e §]

v (0) Llst\.l"aw [0,89][768,1232)

(1) TextView:Animation {Animation} [0, 138][?
(2) TextView:App {App} [0,187][768,235]

(3) TextView:Content {Content} [0,236](768,2
(4) TextView:Graphics {Graphics} [0,285][76€
(5) TextView:Media {Media} [0,334][768,382]
(6) TextView:NFC {NFC} [0,383][768,431]

(7) TextView:0S {OS} [0,432][768,480]

(8) TextView:Preference {Preference} [0,481]|
(9) TextView:Text {Text} [0,530][768,578]

(10) TextView:Views {Views} [0,579][768,627]

Node Detail
index 0
text Accessibility)
resource-id android:id/textT
class andmld widget. Text\.r'lew

checked false
clickable false
enabled true
focusable false
focused false
scrollable false
long-clickable false
password false
selected false

Figure 2-13. Android UI Automator for Android

36

CHAPTER 2 * FINDING MOBILE ELEMENTS

2. Asdescribed in Chapter 1, go to the
AppiumSampleTestCaseAndroid class and use the following
code to interact with the first menu option:

//using classname and index
driver.findElement(MobileBy.AndroidUIAutomator("classNa
me(\"android.widget.TextView\").index(2)")).click();

//using text filter
driver.findElement(MobileBy.AndroidUIAutomator("text(\"
Alarm\")")).click();

driver.navigate().back();
driver.navigate().back();

//using content-desc
driver.findElement(MobileBy.AndroidUIAutomator
("description(\"Accessibility\")")).click();

How It Works

UISelector specifies the elements in the layout hierarchy for native apps, filtered by
properties such as text value, content description, class name, and state information. You
can also target an element by its location in a layout hierarchy using index (), but this
should be considered as a last resort. If there is more than one matching widget, the first
widget in the tree is selected.

Note You can read more about Android Ul Automator and UISelector here: https://

developer.android.com/reference/android/support/test/uiautomator/UiSelector.
html

and here:

https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/
uiautomator uiselector.md

37

M.al litebooks. cogl

http://dx.doi.org/10.1007/978-1-4842-2418-2_1
https://developer.android.com/reference/android/support/test/uiautomator/UiSelector.html
https://developer.android.com/reference/android/support/test/uiautomator/UiSelector.html
https://developer.android.com/reference/android/support/test/uiautomator/UiSelector.html
https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/uiautomator_uiselector.md
https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/uiautomator_uiselector.md
http://www.allitebooks.org

CHAPTER 2 " FINDING MOBILE ELEMENTS

2-6. Inspect i0S Mobile Web Elements

Problem

You want to find element properties of native elements for mobile web sites.

Solution

The following steps show how you can use the Safari developer plug-in to find iOS mobile
web elements:

1. Inyour iOS simulator, go to Settings » Safari » Advanced and
turn on Web Inspector (Figure 2-14).

| i0S Simulator - iPhone 6 - iPhone 6 / iOS 8.3...
Carrier ¥ 12:16 AM -

£ safari Advanced

Website Data

JavaScript (/
O

! Web Inspector

To use the Web Inspector, use Safari and access iPhone
Simulator from the Develop menu. You can enable the
Develop menu in Safari's Advanced Preferences on your
computer.

Figure 2-14. Mobile Safari setting: Web Inspector

38

CHAPTER 2 * FINDING MOBILE ELEMENTS

2. In Safari on your computer, in the menu bar, click Safari »
Preferences » Advanced and select the “Show Develop menu
in menu bar” check box, as shown in Figure 2-15.

[©] Advanced

o=/ $ Qa0 & B E

General Tabs AutoFill Passwords Search Security Privacy Notifications Extensions Advanced

Smart Search Field: Show full website address
Accessibility: Never use font sizes smaller than ¥

Press Tab to highlight each item on a webpage
Option-Tab highlights each item.

Bonjour: Include Bonjour in the Bookmarks menu
Include Bonjour in the Favorites bar

Internet plug-ins: [Stop plug-ins to save power
Style sheet: None Selected B
Default encoding: Western (ISO Latin 1)

Proxies: Change Settings...

Show Develop menu in menu bar

Figure 2-15. Desktop Safari setting: Show Develop menu in menu bar

39

CHAPTER 2 " FINDING MOBILE ELEMENTS

3. Checkwhether you can see the Develop menu in the Safari
menu bar (Figure 2-16).

@ Safari File Edit View History Bookmarks Window Help

. Open Page With >
eve i} |
E User Agent >
BEl oo iOS Simulator >
Shankar's MacBook Pro >
» Yz Favorites

Show Snippet Editor
Show Extension Builder

Start Timeline Recording

Empty Caches N HE
Disable Caches

Disable Images

Disable Styles

Disable JavaScript

Disable Site-specific Hacks
Disable Local File Restrictions

Allow JavaScript from Smart Search Field

Figure 2-16. Safari: Develop menu

40

Tl

CHAPTER 2 * FINDING MOBILE ELEMENTS

4. Ifyou can see the Develop menu in the menu bar, check
whether you see your iOS simulator or iPhone in the Develop
menu (Figure 2-17).

@ Saferi File Edit View History Bookmarks Window Help

Tl

@0 @® m i Open Page With >
User Agent > =

Bl oo @ iOS Simulator >
Shankar's MacBook Pro >

» 3t Favorites

Show Snippet Editor
Show Extension Builder

Start Timeline

Empty Caches HE
Disable Caches

Disable Images

Disable Styles

Disable JavaScript

Disable Site-specific Hacks
Disable Local File Restrictions

Allow JavaScript from Smart Search Field

Figure 2-17. Safari: iOS Simulator option

41

CHAPTER 2 " FINDING MOBILE ELEMENTS

5. Open Safari in the simulator and then open Google.com
(Figure 2-18).

iOS Simulator - iPhone 6 - iPhone 6 / i0S 8.3...

Carrier = 12:28 AM -
& google.co.in ¢
= Web Images Sign in

Google
n |

Google.co.in offered in: English =

Figure 2-18. Google.com on mobile Safari

6. In Safari on your computer, select Develop » iOS Simulator »
www . google.com, as shown in (Figure 2-19).

@ Safari File Edit View History Bookmarks [[EETT Window Help

Open Page With
e0e M i
= User Agent

Simulato

0S8

Show Snippet Editor

Show Extension Builder Th
Start Timeline Recording T ‘évh
Empty Caches N HE Linkedin

Disable Caches ct
Disable Images B a :
Disable Styles []
Disable JavaScript

Disable Site-specific Hacks

Disable Local File Restrictions BN

Allow JavaScript from Smart Search Field

Figure 2-19. Select the web site opened in the simulator in Safari on your computer

42

http://www.google.com/

CHAPTER 2 * FINDING MOBILE ELEMENTS
Safari’s Web Inspector will open, and you can use it to find
elements.

7. Find the ID of an element using the Safari plug-in. Here is an
example of the Google search page:

a. Navigate to https://www.google.com on your mobile
Safari browser.

b. Open Web Inspector and click the Inspect button.

c. Open the simulator and in mobile Safari click the
element you want to find a locator for.

d. See that the locator of that element is highlighted in
Safari’s Web Inspector.

You can now use the highlighted element property (Figure 2-20) in the Appium code.

ane Wab Inapector — 5 Smutator — Satar — www googhe.co.in

Caras ¥ M AN -
= 5 |
som x e axen ™ mn. C
g wogacon [oow e - [Wrew [body [wsge-man | [we 08 » | H = b eg .

ioga_moie_wp highrem 3 5ng

o miogedn_380g

o e loga ey

o 2 aBa3IN0 pry ~ nal grtatic com
mitouste I.png — wl griatc com

Googecon offersd i Engish =
< P=ACTHOGFPRGT £¥odsh! s RN Dvar iy ngs

 Cookies — www googiacan
e T
Sewmian Strae - waw 0008 00

748, 3573, 4778, anpnc, sy 180,
ama | 0L T ESCRAGROGE, L]

SHbeS I THISINETIECISHIL. 47 aaynces

® Unikngwn - Ling preciss location

Figure 2-20. Safari inspector for Google.com

How It Works

The Develop menu option in the desktop version of Safari has an inspector for inspecting
web elements, and the mobile version of Safari has a Web Inspector setting. When you
use both of these settings in conjunction, you can use Web Inspector in the desktop
version of Safari to inspect whichever web site is opened in mobile Safari. Here Safari is
used as an example, but Safari’s Web Inspector usage and Ul are the same as the Firefox
and Chrome inspectors.

43

https://www.google.com/

CHAPTER 2 " FINDING MOBILE ELEMENTS

2-7. Inspect Android Mobile Web Elements

Problem

You want to use the Chrome ADB plug-in to find Android mobile web elements.

Solution

You need to enable USB Debugging on the Android device so that it can be connected to
a laptop.

1. Go to Settings » About Phone and tap “Build number” seven
times (Android 4.2 or above); then return to the previous
screen and find “Developer options” (Figure 2-21).

#

(# About phone
Regulatory information

el number

rmation

3uild number
21.12-L1.206

Figure 2-21. “Build number” item in “About phone” settings

44

CHAPTER 2 * FINDING MOBILE ELEMENTS

2. Tap “Developer options” and click On in the developer
settings. (You will get an alert to allow the developer settings;
just click the OK button.) Make sure the “USB debugging”
option is checked (Figure 2-22).

B © <.l = 3:06

(# Developer options ON

CHdUIE DIUELVULI AU SHUUP vy
all Bluetooth H(

Process stats

ut running pr

DEBUGGING

USB debugging

Debug mode

Figure 2-22. “Developer options” settings and “USB debugging” option

3. Connect your Android device to your computer (you
should have installed the USB driver for your device). After
connecting, you will get an alert on your device to allow USB
debugging; just tap OK.

4. Download and install the Chrome ADB plug-in from https://
chrome.google.com/webstore/detail/adb/dpngiggdglpdnj
doaefidgiigpemgage?hl=en-GB. Make sure you have installed
Chrome version 32 or newer.

45

https://chrome.google.com/webstore/detail/adb/dpngiggdglpdnjdoaefidgiigpemgage?hl=en-GB
https://chrome.google.com/webstore/detail/adb/dpngiggdglpdnjdoaefidgiigpemgage?hl=en-GB
https://chrome.google.com/webstore/detail/adb/dpngiggdglpdnjdoaefidgiigpemgage?hl=en-GB

CHAPTER 2 " FINDING MOBILE ELEMENTS

5. Open Chrome on your computer and click the ADB plug-
in icon, which is in the top-right corner, and click View
Inspection Targets (Figure 2-23).

- U

View Inspection Targets
- &
Chrome can now connect to
devices without ADB Plugin.
Please click View Inspection

Targets above and enable
Discover USB devices.

Help & Documentation
File a ticket

Figure 2-23. Inspection targets in the Chrome ADB plug-in

6. Open Chrome on your device and navigate to the desired URL
(Google.com).

7. Goto chrome://inspect/#devices. This page will display all
the connected devices along with open tabs and web views.
Make sure “Discover USB devices” is selected. Now click the
“inspect” link to open the developer tools (Figure 2-24).

= = C & [chromey//inspect/#devices

DevTools Devices

Devices |g= Discover USB devicesl Port forwarding... |

Pages
XT1052 sras4301v0x
Extensions
- Chrome (38.0.2125.102) | Open tab with url | Open |

. Kl Google http://www.google co.in/?gfe_rd=cr&ei=-bNMVNY QodXyB7_5gagl&gws_rd=ssl
Shared workers .ﬁ focus tab reload close

Service workers

Figure 2-24. Discovering USB devices

46

CHAPTER 2 * FINDING MOBILE ELEMENTS

8. You will get the screen shown in Figure 2-25. Now click the
screencast icon in the top-right corner to display your device
screen. You are all set to find elements with the Chrome ADB

plug-in.
€ D C wwwgooglecoin gle rdzcrbiei| O, |EBements| Network Sources Timeline Profles Rescurces Audits Conscle = #I]ﬁl
= Styles | Computed
— — - ".' el g element.style { + 0 -
¥ cbody onloads"if{document.images) new Image().src='/images/ !
- nav_logolss.
-_— giv] ne”
>
Googl "
0 8L /e

body user agent stylesheet

display: block;

mpegiard bows

Console | Search Emulation Rendening

Figure 2-25. Screencast icon in Chrome ADB plug-in

9. Here you will find the ID of an element using the Chrome ADB
plug-in remotely, with an example of the Google search page.

a. Navigate to https://www.google.com on your mobile
Chrome browser.

b. Click the Inspect link from the ADB plug-in of your
computer’s Chrome browser.

c. Click the inspect element icon and mouse over the
search box.

The property of that element will be highlighted and can be used for Appium tests
(Figure 2-26).

47

https://www.google.com/

CHAPTER 2 " FINDING MOBILE ELEMENTS

€ 3 Clww Tgfe rdzerdier] Q |Bements| Network Sources Timeline Profies Resources Audits Console = 8 _ﬁ‘
a.valuels'"" roles“searcn™s " al Styles | Computed =
—_— — r‘_;“l.!”_ = tlement . style { + B§ -
—I iv classe"msfo outline: > none;
B ‘ log: }
= >efe rdecrheie . T

Slst.lst-teb
~webkit-sppearance:

fe= fge="sb_ifc0" airs

cdiv classe"sb_chc® fde"sb_che@*sc/divs
cinput class="1st 1st-too™ I!u-'lﬂ-l.b' I
g 2048° nasme="g"

i i off orr
sutocorrect="off* title type="search”
value aria-haspopup="false™ roles

ard both™ dirs
=1tr" spellcheck="false™ style="outline:

lass="gsst_b" ide"gs_std" dire flex:el
padding-lefr: Bpx;
}

c/aivs w | lgfe rdscr

- W 3 Stmid v ftsfl egs o) esp fcd ISR UERREREE

Figure 2-26. ADB inspector for Google.com

How It Works

USB debugging should be enabled on the device so that it is recognized by a computer
as a connected device. The Chrome ADB plug-in allows you to view all the connected
devices and web views. Select the device/web view and click Inspect to view mobile web
elements and their properties.

48

CHAPTER 3

Automating Different Apps ¥,

In this chapter, you will learn to Automate:
e Native apps
e Mobile web apps
e Hybrid apps
e Realdevices

In previous chapters, you learned how to set up Appium and how to find an
element’s properties, to be used in test cases. Now you know enough to start automating
apps using Appium.

This chapter will cover different types of apps such as native, mobile web, and
hybrid. First you will learn how to run test cases on emulators/simulators, and later you
will learn to run them on real devices.

3-1. Native Apps
Problem

Native apps are perhaps the biggest reason why smartphones are so popular. Also, the
majority of organizations start their mobile strategy with native apps. If you want to
succeed in mobile automation, so you should know to automate a native app.

Note Appium’s team maintains a separate repository for all apps that are used for
sample test cases. You can download this repository from https://github.com/appium/
sample-code. Once you download it, go to the apps folder and select the appropriate app
for your test case. Apps for both Android and iOS are available. | have already included the
sample apps in the src/test/resources/apps folder of the project you will use for this
book (AppiumRecipesBook).

© Shankar Garg 2016 49
S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2_3

https://github.com/appium/sample-code
https://github.com/appium/sample-code

CHAPTER 3 ' AUTOMATING DIFFERENT APPS

Solution

You will automate a native app for both Android and iOS and perform some basic actions
such as clicking and typing. These apps are demo apps developed by Appium’s team and
are good candidates to learn mobile automation.

Android App: ApiDemos-debug
Follow these steps:

1. Inthe AppiumRecipesBook project, in the src/
test/java package, create a new class called
AppiumSampleTestCaseAndroid with amain() function.

2. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

WebDriver driver;
WebDriverWait wait;

// setting capabilities

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("platform"”, "ANDROID");
caps.setCapability("platformversion", "5.0");
caps.setCapability("deviceName", "ANDROID");
caps.setCapability("browserName", "");

// relative path to apk file

final File classpathRoot = new
File(System.getProperty("user.dir"));

final File appDir = new File(classpathRoot, "src/test/
resources/apps/");

final File app = new File(appDir, "ApiDemos-debug.
apk");

caps.setCapability("app", app.getAbsolutePath());

// initializing driver object
driver = new AndroidDriver(new
URL("http://127.0.0.1:4723/wd/hub"), caps);

// initializing waits
driver.manage().timeouts().implicitlyWait(1o0,

TimeUnit.SECONDS);
wait = new WebDriverWait(driver, 10);

50

CHAPTER 3 * AUTOMATING DIFFERENT APPS

3. With the following code, you are performing the following
actions on the Android app:

a. Click Accessibility.
b. Click Accessibility Node Querying.
c. Click Back.

// Test Steps

// click on Accessibility link
wait.until(ExpectedConditions.presenceOfElementLocated(
MobileBy.AccessibilityId("Accessibility")));
driver.findElement(MobileBy.AccessibilityId("Accessi
bility")).click();

// click on 'Accessibility Node Querying' link

wait.until(ExpectedConditions.presenceOfElementLoc
ated(MobileBy.AccessibilityId("Accessibility Node

Querying”)));
driver.findElement(MobileBy.AccessibilityId("Accessibility
Node Querying")).click();

// back
driver.navigate().back();

//close driver
driver.quit();

4, Run the Appium server on a terminal.

appium

5. Open the Genymotion console and run one Android
emulator.

Note If you need information regarding how to set up Genymotion or the Android
software development kit (SDK), please follow the instructions here:

https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-
emulators/

https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-
emulators-on-mac-os/

51

https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-emulators-on-mac-os/
https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-emulators-on-mac-os/

CHAPTER 3 ' AUTOMATING DIFFERENT APPS

6. Go to the program just written, right-click, and select Run as
» Java application.

The Appium server should receive the request, and the program should be executed
appropriately (Figure 3-1).

Genymation for personal use - Custom Phone - 5.0.0 - API 21 - T8

ALA ks

Figure 3-1. Android sample test case

i0S App: TestApp

Follow these steps:

1. Inthe AppiumRecipesBook project, in the src/test/java
package, create a new class called AppiumSampleTestCaseiOS
with amain() function.

52

CHAPTER 3 * AUTOMATING DIFFERENT APPS

Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

WebDriver driver;
WebDriverWait wait;

// setting capabilities

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("platform", "i0S");
caps.setCapability("platformVersion", "9.0");
caps.setCapability("deviceName", "iPhone 6");

// relative path to .app file

final File classpathRoot = new
File(System.getProperty("user.dir"));

final File appDir = new File(classpathRoot, "src/test/
resources/apps/");

final File app = new File(appDir, "TestApp.app");
caps.setCapability("app", app.getAbsolutePath());

// initializing driver object
driver = new IOSDriver(new URL("http://127.0.0.1:4723/
wd/hub"™), caps);

// initializing waits
driver.manage().timeouts().implicitlyWait(1o0,
TimeUnit.SECONDS);

wait = new WebDriverWait(driver, 10);

With the following code, you are performing the following
actions on an iOS app:

a. Type AppiumBook in the first text box.

b. Type First TC in the second text box

// Test Steps

//enter data in first text box
wait.until(ExpectedConditions.presenceOfElementLocated(
MobileBy.AccessibilityId("TextField1")));
driver.findElement(MobileBy.AccessibilityId("TextFie
1d1")).sendKeys ("AppiumBook");

53

CHAPTER 3 ' AUTOMATING DIFFERENT APPS

//enter data in second text box
wait.until(ExpectedConditions.presenceOfElementLocated(
MobileBy.AccessibilityId("TextField2")));
driver.findElement(MobileBy.AccessibilityId("TextFie
1d2")).sendKeys("First TC");

//close driver
driver.quit();

4. Run the Appium server on a terminal.

appium

Note If you need information regarding how to set up i0S, please follow the steps
mentioned here:

https://shankargarg.wordpress.com/2016/02/29/how-to-install-xcode-command-
line-tools-and-ios-simulators-on-mac/

5. Go to the program just written, right-click, and select Run as »
Java application.

The Appium server should receive the request, and the program should be executed
appropriately (Figure 3-2). Appium will open the i0S simulator.

54

https://shankargarg.wordpress.com/2016/02/29/how-to-install-xcode-command-line-tools-and-ios-simulators-on-mac/
https://shankargarg.wordpress.com/2016/02/29/how-to-install-xcode-command-line-tools-and-ios-simulators-on-mac/

CHAPTER 3 * AUTOMATING DIFFERENT APPS

Phone 6 - IPhone 6 7 105 9.0 (13A340)
Carrier ¥ 11:48 PM -

AppiumBook

First Tf

Compute Sum

77

show alert cont...t alert locati...alert

Label...

Figure 3-2. iOS sample test case

How It Works

Starting an Appium session for native apps depends on the capabilities set while starting
the session. Capabilities such as platform, platformversion, and deviceName will decide
the OS, but capabilities such as browserName and app will decide whether the session will
be a native one.

Note For native sessions, browserName should be left blank, and the app capability
should be the absolute local path or remote HTTP URL of the native app to be automated.

Once an Appium session is created for either Android or iOS, the same concepts
as in Selenium are applied. You need to initialize explicit and implicit wait to enable
Appium to wait for UI elements efficiently. Then you need to find elements with mobile
automation locator strategies so you can appropriately interact with the elements.

55

CHAPTER 3 ' AUTOMATING DIFFERENT APPS

3-2. Mobile Web Apps
Problem

Smartphones are the primary way most people connect to the Internet, and thus mobile
web apps have become common in all organizations. All web sites that work on desktop
browsers should work on mobile browsers as well. With the advent of development
frameworks that allow creation of web sites for all form factors (such as desktop and
mobile) with the same code, automating mobile web apps is a necessity that can’t be
overlooked.

Luckily, Appium automates the mobile web efficiently and without too much
change. You want to understand how you can use Appium to automate mobile web apps.

Solution

To understand how to install Chrome and other Google Play store apps, please visit
https://shankargarg.wordpress.com/2016/08/04/install-google-play-store-and-
chrome-on-genymotion-virtual-device/.

Android

You will automate https://github.com/ on Chrome on the Android emulator.

1. Inthe AppiumRecipesBook project, in the src/
test/java package, create a new class called
AppiumSampleTestCaseAndroidWeb with amain() function.

2. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

//Declaring WebDriver variables
WebDriver driver;
WebDriverWait wait;

// setting capabilities

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("platform"”, "ANDROID");
caps.setCapability("platformvVersion", "5.0");
caps.setCapability("deviceName", "ANDROID");
caps.setCapability("browserName", "chrome");

56

https://shankargarg.wordpress.com/2016/08/04/install-google-play-store-and-chrome-on-genymotion-virtual-device/
https://shankargarg.wordpress.com/2016/08/04/install-google-play-store-and-chrome-on-genymotion-virtual-device/
https://github.com/

CHAPTER 3 * AUTOMATING DIFFERENT APPS

// initializing driver object
driver = new AndroidDriver(new
URL("http://127.0.0.1:4723/wd/hub"), caps);

//initializing waits
driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);
wait = new WebDriverWait(driver, 10);

With the following code, you are performing the following
actions on https://github.com/

a. Openhttps://github.com/.
b. Click the Sign up for GitHub button.

c. Click Create Account.

// Test Steps
//open github URL
driver.get("https://github.com/");

//click Signup
wait.until(ExpectedConditions.presenceOfElementLocated(
By.linkText("Sign up for GitHub")));
driver.findElement(By.linkText("Sign up for GitHub")).
click();

//click Create Account
wait.until(ExpectedConditions.presenceOfElementLocated(
MobileBy.id("signup button")));
driver.findElement(MobileBy.id("signup_button")).
click();

//close driver

driver.quit();

Run the Appium server on a terminal.
appium

Go to the program just written, right-click, and select Run as
» Java application.

57

https://github.com/
https://github.com/

CHAPTER 3 ' AUTOMATING DIFFERENT APPS

The Appium server should receive the request, and the program should be executed
appropriately, as shown in Figure 3-3.

Genymotion for parsonal use - Google Neows 5 - 5.0.0 - APl 21
o LA KAk
Y nhttps:/github.com 1 [:
o =
Join GitHub
o lir OO0
<] @) O

Figure 3-3. Android test case on Chrome for https.//qithub.com/

i0S
Follow these steps:

1. Inthe AppiumRecipesBook project, in the src/
test/java package, create a new class called
AppiumSampleTestCaseiOSWeb with amain() function.

2. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

//Declaring WebDriver variables
WebDriver driver;
WebDriverWait wait;

58

CHAPTER 3 * AUTOMATING DIFFERENT APPS

// setting capabilities

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("platform”, "i0S");
caps.setCapability("platformVersion”, "9.0");
caps.setCapability("deviceName", "iPhone 6");
caps.setCapability("browserName", "safari");

// initializing driver object
driver = new IOSDriver(new URL("http://127.0.0.1:4723/wd/
hub"), caps);

// initializing waits
driver.manage().timeouts().implicitlyWait(1o0,
TimeUnit.SECONDS);

wait = new WebDriverWait(driver, 10);

3. With the following code, you are performing the following
actions on https://github.com/:

a. Openhttps://github.com/.
b. Click the Sign up for GitHub button.

c. Click Create Account.

// Test Steps

//open github URL

driver.get("https://github.com/");

// click Signup
wait.until(ExpectedConditions.presenceOfElementLocated(By.
linkText("Sign up for GitHub")));
driver.findElement(By.linkText("Sign up for GitHub")).click();

// click Create Account
wait.until(ExpectedConditions.presenceOfElementLocated(MobileBy.
id("signup_button")));

driver.findElement(MobileBy.id("signup button")).click();

// close driver
driver.quit();

59

https://github.com/
https://github.com/

CHAPTER 3 ' AUTOMATING DIFFERENT APPS

4. Run the Appium server on a terminal.
appium

5. Go to the program just written, right-click, and select Run as »
Java application.

The Appium server should receive the request, and the program should be executed
appropriately (Figure 3-4). Appium will open the i0S simulator.

iPhone 6 - iPhone 6 / i0S 9.0 (13A340)
Carrier ¥ 2:54 PM

Nl

& GitHub, Inc.

How people
build software

Millions of de: ise GitHub to

build personal proj their
businesses, and i sther on

m O

Figure 3-4. iOS test case on Safari for hitps.//github.com/

60

CHAPTER 3 * AUTOMATING DIFFERENT APPS

How It Works

For mobile web sessions, the app capability should not be set, and browserName should
be the name of the mobile web browser to automate. Valid values for browserName are
Safari for iOS and Chrome, Chromium, or Browser for Android. Using Chrome will open
Chrome, and using Browser will open the default web browser installed on an Android
device.

Note Here’s an example of the beauty of Appium: the code for automating web apps
is platform independent. The only difference in automating mobile web apps for i0S and
Android is in the session creation part. This is why Appium is one of the most popular tools
for mobile automation.

3-3. Hybrid Apps

Problem

A native app in which control passes from the native view to the web view is called a
hybrid app. Although most organizations want to create a pure native app to gain better
control and better access to user information, some parts of apps have to be mobile web
such as a payment gateway page in an e-commerce app. To automate a native app fully,
you want to learn how to automate hybrid apps.

Solution

You will automate a sample hybrid app for both Android and iOS, switch the context to
the web view, and perform some basic actions such as clicking and typing on a web view.

Android

The demo app (the Selendroid sample app) can be downloaded from http://
selendroid.io/setup.html. I've already added it to the src/test/resources/apps
package for you.

1. Inthe AppiumRecipesBook project, in the src/
test/java package, create a new class called
AppiumSampleTestCaseAndroidHybrid with amain()
function.

61

http://selendroid.io/setup.html
http://selendroid.io/setup.html

CHAPTER 3 ' AUTOMATING DIFFERENT APPS

62

Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

// Declaring WebDriver variables
AndroidDriver<WebElement> driver;
WebDriverWait wait;

// setting capabilities

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("platform", "ANDROID");
caps.setCapability("platformversion", "5.0");
caps.setCapability("deviceName", "ANDROID");
caps.setCapability("browserName", "");

// relative path to apk file

final File classpathRoot = new File(System.
getProperty("user.dir"));

final File appDir = new File(classpathRoot, "src/test/
resources/apps/");

final File app = new File(appDir, "selendroid-test-app.
apk");

caps.setCapability("app", app.getAbsolutePath());

// initializing driver object
driver = new AndroidDriver(new
URL("http://127.0.0.1:4723/wd/hub"), caps);

// initializing waits
driver.manage().timeouts().implicitlyWait(10, TimeUnit.
SECONDS);

wait = new WebDriverWait(driver, 10);

With the following code, you are performing the following
actions on the sample app:

a. Open the Selendroid sample app.

b. Click the Chrome web view button.

c. Switch to the web view.

d. Enter Appium in text field on the web page.

e. Click Submit.

CHAPTER 3 * AUTOMATING DIFFERENT APPS

// Test Steps

// click on Chrome icon to start web view
wait.until(ExpectedConditions.presenceOfElement
Located(MobileBy.id("io.selendroid.testapp:id/
buttonStartWebview")));
driver.findElement(MobileBy.id("io.selendroid.
testapp:id/buttonStartWebview")).click();

//Get all Contexts
Set<String> contexts = driver.getContextHandles();
for (String context : contexts) {

//print Context name

System.out.println(context);

//switch to context containing web its name

if (context.contains("WEB")) {
driver.context(context);

}

}

final WebElement inputField = driver.
findElement(By.id("name_input"));
inputField.sendKeys("Appium");
inputField.submit();

// close driver
driver.quit();

4. Run the Appium server on a terminal.
appium

5. Go to the program just written, right-click, and select Run as »
Java application.

The Appium server should receive the request, and the program should be executed
appropriately, as shown in Figure 3-5.

63

CHAPTER 3 ' AUTOMATING DIFFERENT APPS

Genymotion for personal use - Google Nexus 5 - 5.0.0 - API 21.

| Hello, can you please tell me your name?

|
Enter your name here!

Prefered Car:
Volvo v

Send me your name!

Figure 3-5. Android test case for hybrid app

i0S
The demo app (the iOS sample app WebViewApp) has already been added to the src/
test/resources/apps package.

1. Inthe AppiumRecipesBook project, in the src/
test/java package, create a new class called
AppiumSampleTestCaseiOSHybrid with a main() function.

2. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

//Declaring WebDriver variables
WebDriver driver;
WebDriverWait wait;

// setting capabilities

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("platform", "i0S");
caps.setCapability("platformversion”, "9.0");
caps.setCapability("deviceName", "iPhone 6");

64

CHAPTER 3 * AUTOMATING DIFFERENT APPS

// relative path to .app file

final File classpathRoot = new
File(System.getProperty("user.dir"));

final File appDir = new File(classpathRoot, "src/test/
resources/apps/");

final File app = new File(appDir, "WebViewApp.app");
caps.setCapability("app", app.getAbsolutePath());

// initializing driver object
driver = new IOSDriver(new URL("http://127.0.0.1:4723/
wd/hub"™), caps);

// initializing waits
driver.manage().timeouts().implicitlyWait(1o0,
TimeUnit.SECONDS);

wait = new WebDriverWait(driver, 10);

3. With the following code, you are performing the following
actions on a sample hybrid app:

a. Open the sample app.

b. Enter the URL to open the web view.
c. Switch to the web view.

d. Click the Signup button.

e. Click Create Account.

//Enter URL to open WebView
driver.findElement(By.className
("UIATextField")).clear();
driver.findElement(By.className("UIATextField")).
sendKeys("https://github.com/");
driver.findElement(MobileBy.AccessibilityId("Go")).
click();

//switch context:
final Set<String> contextNames = ((AppiumDriver) driver).
getContextHandles();
for (final String contextName : contextNames) {
System.out.println(contextName);
if (contextName.contains("WEB")) {
((AppiumDriver) driver).context(contextName);

65

CHAPTER 3 ' AUTOMATING DIFFERENT APPS

System.out.println("context switched to
webview");
}
}

// click Signup
wait.until(ExpectedConditions.presenceOfElementLocated(By
.linkText("Sign up for GitHub")));
driver.findElement(By.linkText("Sign up for GitHub")).
click();

// click Create Account
wait.until(ExpectedConditions.presenceOfElementLocated(Mo
bileBy.id("signup_button")));
driver.findElement(MobileBy.id("signup button")).click();

// close driver
driver.quit();
4. Run the Appium server on a terminal.
appium

5. Go to the program just written, right-click, and Run as » Java
application.

The Appium server should receive the request, and the program should be executed
appropriately (Figures 3-6 and 3-7). Appium will open the iOS simulator.

66

CHAPTER 3 * AUTOMATING DIFFERENT APPS

iPhone 6 - iPhone 6 / I0S 9.0 (13A340)
Carrier = 4:06 PM L]

https://github.cd Go

QIWIE|R|T]YJUL I JO}P

L VS VRS S RS WS WS WL WSS NSRS

Figure 3-6. iOS sample app to launch web view

67

CHAPTER 3 ' AUTOMATING DIFFERENT APPS

iPhone 6 - iPhone 6 / i0S 9.0 (13A340)
Carrier ¥ 2:54 PM

1

& GitHub, Inc.

How people
build software

Millions of d

Figure 3-7. iOS test case for hybrid app

How It Works

For hybrid apps, the Appium session will be launched as a native app session only. So,
there is no change in the capabilities while starting an Appium session. Once you reach
a point when you need to interact with web view elements, then you need to switch the
context to a web view context.

The context specifies how Appium interprets commands and which commands are
available to the user. There are two types of contexts available in Appium.

e Native: This refers to native applications and to those parts of
hybrid apps that are running native views. Commands in the
native context execute against the device vendor’s automation
application programming interface (API) and interact directly
with the device.

68

CHAPTER 3 * AUTOMATING DIFFERENT APPS

e Web view: This is part of a hybrid application that is inside a
UIAWebView (for iOS) or android.webkit.WebView (for Android).
In this context, the commands are used as standard WebDriver
commands, giving access to elements through CSS selectors and
other web-specific locators such as link text, and so on.

You use the context name as a string to switch between contexts. The native context
will have the name NATIVE_APP, while the available web view contexts will have a name
like WEBVIEW_1 (for iOS) or WEBVIEW_io.appium.android.apis (for Android).

//Switch to specific web view
driver.context("contextName");

Once in the web view context, you can use Selenium commands to interact with a
web application such as driver.findElement(By.linkText("Sign up for GitHub")).
click();.

When you want to return to the native context, you use the same command as you
used to get into the web view, but you ask to switch to the native context.

Note To identify elements in a hybrid view, refer to Chapter 2 to learn how to inspect
Android mobile web elements and inspect Android mobile web elements.

3-4. Real Devices

Problem

Up to now you have learned how to automate native, web, and hybrid apps in an
emulator for Android and in a simulator for i0S. Although emulators and simulators are
almost as good as real devices, sometimes you want to test on an actual device.

Solution

Unlike traditional mobile automation tools, with Appium you don’t need to make any
substantial changes to your test cases to run them on real devices. You will automate
native apps for both the Android and iOS platforms and run them on real Android and
iOS devices, respectively.

Android

To run Android apps, Android devices should have developer mode enabled and
should be connected to a computer and Android test case. You also need to enable USB
debugging on the Android device for it to be used as a device for test case execution.

69

http://dx.doi.org/10.1007/978-1-4842-2418-2_2

CHAPTER 3 ' AUTOMATING DIFFERENT APPS

Follow these steps:

1. Go to Settings » About Phone and tap “Build number” seven
times, as shown in Figure 3-8.

< About phone

Phone number, signal, etc
Legal information

Model number
Google Nexus 5-5.0.0 - API 21 - 1080x1920

Android version
5.0

Baseband version
Unknown

Kernel version
3.10.0-genymotion-g08e528d
genymotion-build@genymobile.com #2
Mon Nov 2 11:22:19 UTC 2015

Build number

vbox86p-userdebug 5.0 LRX21M eng.buildbot.
20151117.231731 test-keys

oo o

Figure 3-8. “Build number” setting on Android

Note Tapping seven times is for the Google Nexus device. The number of times you
need to tap will change from manufacturer to manufacturer, so do an Internet search for the
number for your device if you're not sure.

70

CHAPTER 3 * AUTOMATING DIFFERENT APPS

2. Youwill get a success message that you're a developer.

3. Gobackand select “Developer options” (Figure 3-9).

Settings

@ Language &input
€© Backup & reset

System

@ Date & time
T Accessibility
Printing

{} Developer options

o o o

Figure 3-9. “Developer options” setting on Android

71

CHAPTER 3 ' AUTOMATING DIFFERENT APPS

4. Enable “USB debugging” (Figure 3-10).

n R

< Developer options

On

Capture all bluetooth HCI packets in a file

Process Stats
Geeky stats about running processes

Debugging

USB debugging

Debug mode when USB is connected

Bug report shortcut
Show a button in the power menu for taking O
a bug report

Allow mock locations O
Allow mock locations

Enable view attribute inspection O

oo o

Figure 3-10. “USB debugging” setting enabled on Android

Now your device is ready to be connected to a computer that
has the Android SDK installed. Let’s enable your machine to
connect to an Android device.

Note To know how to install the Android SDK on a computer, please refer to my blog at
https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-
emulators/.

5. Install a USB driver on your machine. There are many options
available for this, but I prefer using PdaNet (http://pdanet.co/).

6. Please refer to the steps at http://pdanet.co/help/mac.
php to install PdaNet. The steps are the same for Mac and
Windows; only the downloaded file is different.

72

https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
http://pdanet.co/)
http://pdanet.co/help/mac.php
http://pdanet.co/help/mac.php

CHAPTER 3 * AUTOMATING DIFFERENT APPS

Once you have successfully installed PdaNet and enabled
“USB debugging,” let’s check if the device is connected right to
the computer.

7. Connect the device and run the following command on a
terminal:

adb devices

The output of the previous command should look like
Figure 3-11.

'L UK) % sgarg — bash — 80x24

shankars-mbp:~ sgarg$ adb devices
List of devices attached
42005a35d8606300 device

Figure 3-11. Android real device as shown in a terminal

8. Ifthe previous command does not work or if the device is
listed as inactive, you can stop the Android Debug Bridge
(adb) server by using the command adb kill-server and
then restart it by using the command adb start-server.
Reconnect your device and execute adb devices again. Your
device should be listed.

9. Run the Appium server on a terminal.
appium
10. Before running this test case, make sure that no Android

emulator is running and that only one Android device is
connected to the machine.

11. You are ready to execute the test case on a real device. Open
the AppiumSampleTestCaseAndroid class, right-click, and
select Run as » Java application.

Note The device should be either unlocked or locked with a simple swipe lock. The
Appium unlock app can’t unlock four- or six-digit locks or pattern locks and will result in a
test case failure.

12. Observe the Appium output and also the device screen. In a
few seconds you should see the API-Demos app running.

73

CHAPTER 3 ' AUTOMATING DIFFERENT APPS

i0S
To run a native app on a real iOS device, you need to sign the app for that device, connect
the device to a computer, and add a device ID (UDID) to the test case to run it.

You need to create an Apple account so that you can create provisioning profiles to
be used in installing apps on real devices.

1. Register athttps://developer.apple.com/programs/ and
remember the credentials.

2. Gotohttps://developer.apple.com/library/ios/
documentation/IDEs/Conceptual/AppDistributionGuide/
MaintainingProfiles/MaintainingProfiles.html#//
apple_ref/doc/uid/TP40012582-CH30-SW24 and refer to
the section “Creating Development Provisioning Profiles.”
Perform all the steps mentioned there.

3. Goto the section “Verifying and Removing Provisioning
Profiles on Devices” to install the provisional profile created
in the previous step on the real device (which will be used for
test case execution).

4. Now you need to know the UDID of the real device.
Using a USB cable, connect iOS to your Mac.
b. Open Xcode and select Window » Devices.
c. Select “Connected device.”

d. Under Device Information, you will see an identifier like
46ba868066b970c7c6fe86bfe9d97c63abfeb565. Now
your device is ready to be used for the test case execution.

5. IntheAppiumRecipesBook project, in the src/
test/java package, create a new class called
AppiumSampleTestCaseiOSRD with amain() function.

6. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

//Declaring WebDriver variables
WebDriver driver;
WebDriverWait wait;

// setting capabilities

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("platform", "i0S");
caps.setCapability("platformVersion", "9.3.4");
caps.setCapability("deviceName", "iPhone 6");

74

https://developer.apple.com/programs/
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//apple_ref/doc/uid/TP40012582-CH30-SW24
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//apple_ref/doc/uid/TP40012582-CH30-SW24
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//apple_ref/doc/uid/TP40012582-CH30-SW24
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//apple_ref/doc/uid/TP40012582-CH30-SW24

CHAPTER 3 * AUTOMATING DIFFERENT APPS

caps.setCapability("udid",
"46ba868066b970c7c6fe86bfe9d97c63abfeb363");

// relative path to .app file

final File classpathRoot = new
File(System.getProperty("user.dir"));

final File appDir = new File(classpathRoot, "src/test/
resources/apps/");

final File app = new File(appDir, "TestApp.app");
caps.setCapability("app", app.getAbsolutePath());

// initializing driver object

driver = new I0SDriver(new URL("http://127.0.0.1:4723/wd/
hub"), caps);

// initializing waits
driver.manage().timeouts().implicitlyWait(1o0,
TimeUnit.SECONDS);

wait = new WebDriverWait(driver, 10);

Note Make sure to match the platform version exactly to the device connected.

7. With the following code, you are performing the following
actions on the iOS app:

a. Type AppiumBook in the first text box.

b. Type First TC in the second text box.

// Test Steps

//enter data in first text box
wait.until(ExpectedConditions.presenceOftlementLocated
(MobileBy.AccessibilityId("TextField1")));
driver.findElement(MobileBy.AccessibilityId("TextField1")).
sendKeys ("AppiumBook");

//enter data in second text box
wait.until(ExpectedConditions.presenceOftlementLocated
(MobileBy.AccessibilityId("TextField2")));
driver.findElement(MobileBy.AccessibilityId("TextField2")).
sendKeys("First TC");

//close driver
driver.quit();

8. Runthe Appium server on a terminal.

appium

75

CHAPTER 3 ' AUTOMATING DIFFERENT APPS

9. Go to the program just written, right-click, and select Run as »
Java application.

The Appium server should receive the request, and the program should be executed
appropriately (Figure 3-12) on the connected device.

Phone 6 - IPhone 6 7 105 9.0 (13A340)
Carrier ¥ 11:48 PM -

AppiumBook

First Tf

Compute Sum

77

show alert cont...t alert locati...alert

Label...

Figure 3-12. iOS sample test case on a real device

How It Works

The awesome thing about Appium is that you don’t need to change a single line of code
for real Android devices; you only need to add the UDID for real iOS devices.

All the other steps mentioned here are mostly to connect your device to a computer
and are not related to Appium. So, once you have performed the steps and your device is
connected, you are all set and never have to perform these steps again on the same device.

76

CHAPTER 4

Automating Mobility

In this chapter, you will learn to automate the following:
e Tap mobile elements
e Dragand drop elements
e Swipe and scroll
e Manage device orientation
e Install and uninstall native apps
¢ Lock and unlock devices
e Manage device network settings

In previous chapters, you learned to use Appium to automate different types of apps
on different devices. To automate mobile apps, automating gestures (such as tapping,
scrolling, swiping, and so on) is of utmost importance.

In earlier versions of Appium, you had to combine some generic functions to
perform these complex functions, but in the latest versions, specific functions such as
zooming, pinching, and so on, are available. These functions have their own syntaxes,
which you’ll learn in this chapter.

Some of the functions are available to only one platform, Android or iOS, and for
others, their syntax will change depending on the underlying platform.

Note When functions have the same syntax and implementation for both Android and
i0S, the recipes explain the concepts using the Android platform. Since Android can be
executed on both Windows and Mac machines, it is useful for a larger audience. You can
execute the same functions on i0S to gain better understanding.

© Shankar Garg 2016 7
S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2_4

CHAPTER 4 * AUTOMATING MOBILITY

4-1. Tap Mobile Elements
Problem

For people familiar with web automation, clicking is a common and simple action, but in
the mobile landscape, fapping is the action that replaces clicking. You want to know how
to tap elements using Appium.

Solution

For this recipe, you will automate the process of tapping various menu options and
buttons of an Android native app.

Note Tapping works the same for Android and i0S. To avoid redundancy, only an
Android example is provided here.

Android

Follow these steps:

1. Inthe AppiumRecipesBook project, in the src/test/java
package, create a new class called AppiumAndroidMobility
with the following functions.

2. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

public class AppiumAndroidMobility {

// Declaring WebDriver variables
static AndroidDriver<AndroidElement> driver;
static WebDriverWait wait;

static DesiredCapabilities caps = new
DesiredCapabilities();

public static void main(String[] args) throws
InterruptedException, IOException {

new AppiumAndroidMobility().
settingCapsAndDriver();

new AppiumAndroidMobility().closeDriver();

}

78

CHAPTER 4 © AUTOMATING MOBILITY

public void settingCapsAndDriver() throws
MalformedURLException {

}

// setting capabilities
caps.setCapability("platform”, "ANDROID");
caps.setCapability("platformVersion", "5.0");
caps.setCapability("deviceName", "ANDROID");
caps.setCapability("browserName", "");

// relative path to apk file

final File classpathRoot = new File(System.
getProperty("user.dir"));

final File appDir = new File(classpathRoot,
"src/test/resources/apps/");

final File app = new File(appDir, "ApiDemos-
debug.apk");

caps.setCapability("app", app.
getAbsolutePath());

// initializing driver object
driver = new AndroidDriver<AndroidElement>(new
URL("http://127.0.0.1:4723/wd/hub"), caps);

// initializing waits
driver.manage().timeouts().implicitlyWait(10,
TimeUnit.SECONDS);

wait = new WebDriverWait(driver, 10);

public void closeDriver() {

}

// close driver
driver.quit();

3. With the following code, you are performing the following
actions on an Android app:

a
b.

C.

Click the Views option.
Click the Buttons option.

Tap the OFF button.

Print the text of the OFF button that has changed to
ON now.

79

CHAPTER 4 * AUTOMATING MOBILITY

public void taponElement() {
// Start - Ch.4-R.1
// Tap
driver.findElement(MobileBy.
AccessibilityId("Views")).click();
driver.findElement(MobileBy.
AccessibilityId("Buttons")).click();

Point point = driver.findElementById("io.appium.
android.apis:id/button_toggle").getLocation();
driver.tap(1, point.x + 20, point.y + 30, 1000);
System.out.println(driver.findElementById
("io.appium.android.apis:id/button_toggle").
getText());

// End - Ch.4-R.1

}

4. Call the function created in the previous step in the main
function using the following code:

new AppiumAndroidMobility().taponElement();

5. Runthe Appium server on a terminal, run an Android
emulator, and execute the program as explained in the
previous chapters.

The Appium server should receive the request, and the program should be executed

appropriately (Figure 4-1).

80

CHAPTER 4 © AUTOMATING MOBILITY

L L Genymotion for personal use - Google Nexus 5 - 5.0.0 - AP

GQHOHONOEENONIN 99, 21003

Views/Buttons
NORMAL
SMALL

ON

Figure4-1. Tap function for Android app

How It Works

Tapping is a method in the TouchAction class and is used to perform click operations on
mobile elements. The tap method can be used with two different options.

e tap(fingers, element, duration):Here the first argument,
finger, is how many fingers you want to use for tapping, such
as 1 or 2. The second argument, element, is the mobile element
on which to tap (this is the result of a statement like driver.
findElement()). The third argument, duration, is the time to
perform a tap; for instance, 1000 or 2000 ms means 1 or 2 seconds.

e tap(fingers, x, y, duration):Here the first argument,
finger, is how many fingers you want to use for tapping, such
as 1 or 2. The second and third arguments, x and y, are absolute
coordinates at which the tap will be performed. The fourth
argument, duration, is the time to perform a tap. For instance,
1000 or 2000 ms means 1 or 2 seconds.

81

CHAPTER 4 * AUTOMATING MOBILITY

4-2. Drag and Drop Elements

Problem

You want to select an element, drag it from its original position, and drop it on some other
position/element. (This is a common task in gaming apps.)

Solution

For this recipe, you will automate dragging an element from its original location and
dropping it on a target location.

Note Dragging and dropping works the same for Android and iOS. To avoid redundancy,
only an Android example is provided here.

Android

Follow these steps:

1. Inthe AppiumAndroidMobility class, comment the code
written for calling the tap function.

2. With the following code, you are performing the following
actions on an Android app:

a. Click the Views option.

b. Click the Drag and Drop option.

c. Hold and drag Dot 1.

d. Drop Dot 1 on Dot 3.

e. Print the text that has changed after dragging and
dropping.

public void dragDrop() {
// Start - Ch.4-R.2
// Drag and Drop
// Open an activity directly
driver.startActivity("io.appium.android.
apis", ".view.DragAndDropDemo");

WebElement dragDotl = driver.findElement(By.
id("io.appium.android.apis:id/drag dot 1"));
WebElement dragDot3 = driver.findElement(By.
id("io.appium.android.apis:id/drag dot 3"));

82

CHAPTER 4 © AUTOMATING MOBILITY

// this text should be empty before Drag-Drop
WebElement dragText = driver.findElement(By.
id("io.appium.android.apis:id/drag_text"));
System.out.println(dragText.getText());

// perform Drag and Drop

TouchAction dragNDrop = new
TouchAction(driver).longPress(dragDot1).
moveTo(dragDot3).release().perform();

// Text representing Drag-Drop is successful
System.out.println((dragText.getText()));
// End - Ch.4-R.2

3. Call the function created in the previous step in the main
function using the following code:

new AppiumAndroidMobility().dragDrop();
4. Run the Appium server on a terminal, run an Android

emulator, and execute the program as explained in the
previous chapters.

The Appium server should receive the request, and the program should be executed
appropriately (Figure 4-2).

Views/Drag and Drop

Figure 4-2. Dragging and dropping on an Android app
83

CHAPTER 4 * AUTOMATING MOBILITY

How It Works

Dragging and dropping are complex actions performed by combining various simple
methods available in the TouchAction class. These methods include the following:

e longPress() is to tap an element for a long duration.
e moveTo is to move the tapped element to another location.

e release() and perform() are part of a concept called chaining
of actions where simple elements are chained one after another.
release() chains the methods only locally, and nothing is sent
to the Appium server to execute. Once the perform() method is
executed, then only all chained methods are sent to the Appium
server to be executed.

Note Using the concept of chaining simple actions, more complex actions can be
automated easily, such as multitouch actions.

4-3. Swipe and Scroll

Problem

Swiping and scrolling are probably the most widely used mobility features, and this has
made mobile usage very user friendly. You want to learn how to automate swiping and
scrolling in mobile apps.

Solution

For this recipe, you will automate swiping on the screen (vertical and horizontal) on an
Android app and also scrolling on a web element such as Scroller in an iOS app.

Android

Follow these steps:

1. Inthe AppiumAndroidMobility class, comment the code
written for calling the drag-and-drop function.

2. With the following code, you are performing the following
actions on an Android app:

a. Click the Views option.

b. Scroll up on the screen.

84

CHAPTER 4 © AUTOMATING MOBILITY

c. Print the text for the first element with accessibility ID
android:id/text1

d. Scroll down on the screen.

e. Print the text for the first element with accessibility ID
android:id/text1.

public void swipeVertical() {

}

// Start - Ch.4-R.3

// vertical swipe
driver.findElementByAccessibilityId("Vie
ws").click();

AndroidElement listView = driver.
findElementByClassName("android.widget.
ListView");

MobileElement textView = driver.
findElementById("android:id/text1");

String originalText = textView.getText();

listView.swipe(SwipeElementDirection.UP, 20,
15, 1000);
System.out.println(textView.getText());

listView.swipe(SwipeElementDirection.DOWN,
20, 15, 1000);
System.out.println(textView.getText());

// End - Ch.4-R.3

Call the function created in the previous step in the main
function using the following code:

new AppiumAndroidMobility().swipeVertical();

Run the Appium server on a terminal, run an Android
emulator, and execute the program as explained in the
previous chapters.

The Appium server should receive the request, and the
program should be executed appropriately.

Comment the code written in step 2.

85

CHAPTER 4 * AUTOMATING MOBILITY

86

With the following code, you are performing the following
actions on the Android app:

a.
b.

C.

Click the Views option.
Click the Gallery option.
Click the Photo option.
Scroll left on the screen.
Scroll right on the screen.

public void swipeHorizontal() {
// Start - Ch.4-R.3
// horizontal swipe
driver.findElementByAccessibilityId("Views").
click();
driver.findElementByAccessibilityId
("Gallery").click();
driver.findElementByAccessibilityId("1.
Photos").click();

AndroidElement gallery = driver.
findElementById("io.appium.android.apis:id/
gallery");

int originalImageCount = gallery.findElements
ByClassName("android.widget.ImageView").size();

gallery.swipe(SwipeElementDirection.LEFT, 5,
5, 2000);
System.out.println(gallery.findElementsBy
ClassName("android.widget.ImageView").size());

gallery.swipe(SwipeElementDirection.RIGHT,
5, 5, 2000);
System.out.println(gallery.findElementsByClass
Name("android.widget.ImageView").size());

// End - Ch.4-R.3

CHAPTER 4 © AUTOMATING MOBILITY

7. Call the function created in the previous step in the main
function using the following code:

new AppiumAndroidMobility().swipeHorizontal();
8. Run the Appium server on a terminal, run an Android

emulator, and execute the program as explained in the
previous chapters.

The Appium server should receive the request, and the program should be executed
appropriately (Figure 4-3).

Views/Gallery/1. Photos

Figure 4-3. Horizontal swiping on Android app

i0S
Follow these steps:

1. Inthe AppiumRecipesBook project, in the src/test/java
package, create a new class called AppiumIOSMobility with
the following functions.

87

M.al litebooks. cogl

http://www.allitebooks.org

CHAPTER 4 * AUTOMATING MOBILITY

2. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

public class AppiumIOSMobility {
// Declaring WebDriver variables
static I0SDriver<IOSElement> driver;
static WebDriverWait wait;

static DesiredCapabilities caps = new
DesiredCapabilities();

public static void main(String[] args) throws
InterruptedException, IOException {

new AppiumIOSMobility().settingCapsAndDriver();
new AppiumIOSMobility().closeDriver();

}

public void settingCapsAndDriver() throws
MalformedURLException {
// setting capabilities
caps.setCapability("platform", "i0S");
caps.setCapability("platformVersion", "9.2");
caps.setCapability("deviceName", "iPhone 6");

// relative path to .app file

final File classpathRoot = new File(System.
getProperty("user.dir"));

final File appDir = new File(classpathRoot,
"src/test/resources/apps/");

final File app = new File(appDir, "TestApp.
app");

caps.setCapability("app", app.
getAbsolutePath());

// initializing driver object

driver = new IOSDriver<IOSElement>(new
URL("http://127.0.0.1:4723/wd/hub"), caps);
// initializing waits
driver.manage().timeouts().implicitlyWait(20,
TimeUnit.SECONDS);

wait = new WebDriverWait(driver, 20);

}

public void closeDriver() {
// close driver
driver.quit();

}

88

CHAPTER 4 © AUTOMATING MOBILITY

3. With the following code, you are performing the following
actions on the iOS app:

a. Swipe the slider to the leftmost position.

b. Swipe the slider to the rightmost position.

public void swipeiOS() {
// Start - Ch.4-R.3
// Horizontal Swipe
MobileElement slider = driver.findElementByC
lassName("UIASlider");

// Scroll left
slider.swipe(SwipeElementDirection.LEFT,
slider.getSize().getWidth() / 2, 0, 3000);
System.out.println(slider.
getAttribute("value"));

// Scroll Right
slider.swipe(SwipeElementDirection.RIGHT, 2,
0, 3000);

System.out.println(slider.
getAttribute("value"));

// End - Ch.4-R.3

4, Call the function created in the previous step in the main
function using the following code:

new AppiumIOSMobility().swipeiOS();
5. Run the Appium server on a terminal and execute the
program as explained in the previous chapters.

The Appium server should receive the request, and the program should be executed
appropriately (Figure 4-4).

89

CHAPTER 4 * AUTOMATING MOBILITY

one 6 - IPhone B /1
Carrier & 12:37 AM L

Compute Sum

7”7

show alert cont...t alert locati...alert

Label...
te...
Label...
disabled button
Location
Test Gesture Crash

Figure 4-4. Slider scrolled to the rightmost position

Note The remaining recipes of the chapter will use AppiumIOSMobility. Each time,
we will comment out the code previously written and write new functions. This way, at the
end of this chapter you will have a class that has all the functions discussed in this chapter
that is compact and useful.

How It Works

The Swipe() function is used for both horizontal and vertical swiping. The syntax for this
function is as follows:

mobileElement.swipe(direction, offsetFromStartBorder, offsetFromEndBorder,
duration)

90

CHAPTER 4 © AUTOMATING MOBILITY

The following are the attributes in this function:

e mobileElement is the element on which the swipe will be
performed, provided swiping is possible on this element.

e directionisan ENUM, which takes values such as LEFT, RIGHT, UP,
and DOWN to set the direction of swipe.

e offsetFromStartBorder and offsetFromEndBorder are the
offsets from the border of the element used for swiping. These will
set the scope of the swipe.

e durationisthe time in miliseconds to be taken for swiping.

If the element is across multiple screens, then swiping can be used for swiping across
screens. For instance, in Android, if an element is small like a slider, swiping can be used
to set the location of that slider like in the iOS example.

4-4. Manage Device Orientation
Problem

One convenience of using smartphones and tablets is that when you hold the device
either horizontally or vertically, the mobile app will adjust to the new viewport size. In the
beginning of the mobile app development era, most defects were discovered because of
an orientation change, so it is important to run test cases on orientation change to make
sure that the app works fine when users change the orientation. You want to know how to
change the orientation using Appium.

Solution

For this recipe, you will automate an orientation change from portrait to landscape, and
vice versa.

Note Orientation works the same for Android and i0S. To avoid redundancy, only an
Android example is provided here.

91

CHAPTER 4 * AUTOMATING MOBILITY

Android

Follow these steps:

1. Inthe AppiumAndroidMobility class, comment the code
written for calling the Swipe() function.

2. With the following code, you are performing the following
actions on the Android app:

Printing the current orientation, which is portrait
b. Changing the orientation to landscape
c. Printing the current orientation, which is landscape
d. Changing the orientation back to portrait

public void changeOrientation() {
// Start - Ch.4-R.4
// Orientation
// print current orientation
System.out.println(driver.getOrientation());
// change orientation to LANDSCAPE
driver.rotate(ScreenOrientation.LANDSCAPE);

// print current orientation
System.out.println(driver.getOrientation());
// change orientation to PORTRAIT
driver.rotate(ScreenOrientation.PORTRAIT);
// End - Ch.4-R.4

3. Call the function created in the previous step in the main
function using the following code:

new AppiumAndroidMobility().changeOrientation();
4. Run the Appium server on a terminal, run an Android

emulator, and execute the program as explained in the
previous chapters.

The Appium server should receive the request, and the program should be executed
appropriately (Figure 4-5).

92

CHAPTER 4 © AUTOMATING MOBILITY

Media

Figure 4-5. Android app in landscape mode

How It Works

The Rotate() function is used to change the existing orientation of a device, be it Android
or iOS. The syntax for Rotate() is as follows:

driver.rotate(ScreenOrientation. 'ORIENTATION")

Here 'ORIENTATION' can be LANDSCAPE or PORTRAIT depending on the orientation
you want. The driver.getOrientation() function is used to get the existing orientation
of the device.

4-3. Install and Uninstall Native Apps

Problem

Installing, upgrading, and deleting applications can be tricky because these tasks require
a lot of changes to the memory and cache on a device. So, testing scenarios related to
these steps are important for covering edge scenarios in your test strategy.

Another important step is closing the app in between the test case and launching the
app again. You want to know how to automate all these steps.

Solution

For this recipe, you will automate launching, closing, installing, and removing an app
from an Android device.

Note At the time of this writing, for i0S functions LaunchApp() and closeApp()
work fine, and the syntax is the same as Android, but functions such as installApp() and
removeApp() are yet to be implemented for iOS in java-client 4.0.0.

93

CHAPTER 4 * AUTOMATING MOBILITY

Android

Follow these steps:

94

1.

In the AppiumAndroidMobility class, comment the code
written for calling the orientation change.

With the following code, you are performing the following
actions on an Android app:

a.

b.

b

= @

Checking whether the app is launched
Closing the app

Launching the app again

Checking whether the app is launched
Checking whether app is installed
Removing the app from the device
Installing the app again

Checking whether the app is installed

public void applaunchClose() {
// Start - Ch.4-R.5
// App launch and Close

// confirm if app is launched: - activity
name should be from app
System.out.println("Current Activity before
Close: " + driver.currentActivity());

// close the app
driver.closeApp();

// launch the app again
driver.launchApp();

// confirm if app is launched again: -
activity name should be from app
System.out.println("Current Activity after
launch: " + driver.currentActivity());

// App Installation
// check if app is installed
System.out.println("app installed before

remove: " + driver.isAppInstalled
("io.appium.android.apis"));

CHAPTER 4 © AUTOMATING MOBILITY

// remove app
driver.removeApp("io.appium.android.apis");
// check app is not installed now
System.out.println("app installed after remove:
" + driver.isAppInstalled("io.appium.android.
apis”));

// install app again

// relative path to apk file

final File classpathRoot = new File(System.
getProperty("user.dir"));

final File appDir = new File(classpathRoot,
"src/test/resources/apps/");

final File app = new File(appDir, "ApiDemos-
debug.apk");
driver.installApp(app.getAbsolutePath());

// check if app is installed back
System.out.println("app installed after install:
" + driver.isAppInstalled("io.appium.android.
apis”));

// End - Ch.4-R.5

3. Call the function created in the previous step in the main
function using the following code:

new AppiumAndroidMobility().applLaunchClose();
4. Run the Appium server on a terminal, run an Android

emulator, and execute the program as explained in the
previous chapters.

The Appium server should receive the request. The program should be executed
appropriately, and the output should look like Figure 4-6.

95

CHAPTER 4 * AUTOMATING MOBILITY

I*! Problems @ Javadoc [, Declaration 4’ Search &) Console %

<terminated> AppiumAndroidMobility [Java Application] /Library/lava/JavaVirt
Current Activity before Close: .ApiDemos

Current Activity after launch: .ApiDemos

app installed before remove: true

app installed after remove: false

app installed after install: true

Figure 4-6. Android test case execution result for app launch, close, install, and remove

How It Works

The function used to close the launched app is driver.closeApp(), and the function
used to launch the app that is already installed is driver.launchApp().

The function used to delete the installed app is driver.removeapp(), and the
function used to install the app is driver.installApp().

These functions are used extensively in scenarios such as deleting the existing
version of app, upgrading the app, and then verifying the behavior.

4-6. Lock and Unlock Devices
Problem

You want to lock and unlock a device when testing an app’s behavior, as well as in
between the test cases.

Solution

For this recipe, you will automate locking and unlocking an Android device.

Note At the time of this writing, the lock and unlock functions work only with Android
and not for i0S.

96

CHAPTER 4 © AUTOMATING MOBILITY

Android

Follow these steps:

1. Inthe AppiumAndroidMobility class, comment the code
written for calling the app installation.

2. With the following code, you are performing the following
actions on the sample app:

a. Locking the device

b. Checking the lock status
c. Unlocking the device

d. Checking the lock status

public void lockUnlock() {
// Start - Ch.4-R.6
// lock device:
driver.lockDevice();
System.out.println("After lock is device locked:
" + driver.islocked());

driver.unlockDevice();
System.out.println("After unlock is device
locked: " + driver.islLocked());

// End - Ch.4-R.6

3. Call the function created in the previous step in the main
function using the following code:

new AppiumAndroidMobility().lockUnlock();
4. Run the Appium server on a terminal, run an Android

emulator, and execute the program as explained in the
previous chapters.

The Appium server should receive the request, the program should be executed
appropriately, and the output should look like Figure 4-7.

97

CHAPTER 4 * AUTOMATING MOBILITY

*! Problems @ Javadoc (&, Declaration 4’ Search [Console X

<terminated> AppiumAndroidMobility [Jlava Application] /Library/Java/javaVirt
After lock is device locked: true
After unlock is device locked: false

Figure 4-7. Android test case execution result for device lock and unlock

How It Works

driver.lockDevice() is used to lock the device, and driver.unlockDevice() is for
unlocking the device. driver.isLocked() is used to check the status of the lock. Appium
uses the unlock Android app to perform this operation.

4-7. Manage Device Network Settings

Problem

You want to test an app in different network settings such as no data mode or airplane
mode to make sure that the app does not crash and that, when you switch back to Wi-Fi
or data, the app resumes where it left off.

Solution

For this recipe, you will automate changing the network settings to data, Wi-Fi, airplane
mode, and no data on an Android device.

Note At the time of this writing, the setConnection functions work only with Android
and not for i0S.

98

Android

CHAPTER 4 © AUTOMATING MOBILITY

Follow these steps:

1. Inthe AppiumAndroidMobility class, comment the code
written for calling the lock device.

2. With the following code, you are performing the following
actions on the sample app:

a.
b.

C.

Set the network to ALL.
Set the network to AIRPLANE.
Set the network to NONE.

Set the network to WIFI.
public void NetworkSettings() {

// Start - Ch.4-R.7

// Network
driver.setConnection(Connection.ALL);
System.out.println(driver.getConnection());

driver.setConnection(Connection.AIRPLANE);
System.out.println(driver.getConnection());

driver.setConnection(Connection.NONE);
System.out.println(driver.getConnection());

driver.setConnection(Connection.WIFI);
System.out.println(driver.getConnection());
// End - Ch.4-R.7

3. Call the function created in the previous step in the main
function using the following code:

new AppiumAndroidMobility().NetworkSettings();

4, Run the Appium server on a terminal, run an Android
emulator, and execute the program as explained in the
previous chapters.

The Appium server should receive the request, the program should be executed
appropriately, and the output should look like Figure 4-8.

99

CHAPTER 4 * AUTOMATING MOBILITY

* Problems @ Javadoc [Declaration < Search B Console &3

<terminated> AppiumAndroidMobility [Java Application] /Library/Java/JavaVirt
ALL

AIRPLANE

DATA

ALL

Figure 4-8. Android test case execution result for network setting

How It Works

driver.SetConnection() is used to set different network settings for Android devices.
The syntax is as follows: driver.setConnection(Connection. 'NetworkSetting").

Here NetworkSetting is an ENUM, which could have values such as ALL for both
cellular and Wi-Fi, AIRPLANE for airplane mode, WIFI for only Wi-Fi, and NONE for no
network at all.

100

CHAPTER 5

Creating Automation
Frameworks Using Appium N

In this chapter, you will learn following:

e (Create an automation framework with Appium, Maven, and
TestNG

e (Create a behavior-driven development (BDD) framework with
Appium, Cucumber, and the page object model

¢ Conduct continuous automated testing with Appium, Git, and
Jenkins

In previous chapters, you learned to use Appium to automate different apps and
automate mobile-specific functions such as tapping, scrolling, swiping, and so on.

Appium’s one and only functionality is to automate mobile platforms and mobile-
specific functions. But for automation testing this is not sufficient. An automation
framework should have different types of reporting, should integrate with continuous
integration (CI)/continuous development (CD) tools, and should do much more.

That’s why you need to integrate Appium with other tools to create robust automation
frameworks.

The following are some expectations of automation frameworks: integration with test
runner and reporting tools such as TestNG and JUnit, BDD integration with Cucumber,
and integration with CICD tools such as Jenkins. In this chapter, you'll understand how to
integrate Appium with each of these tools.

5-1. Create an Automation Framework with
Appium, Maven, and TestNG

Problem

For a robust automation framework, you need to integrate Appium with Maven for its
dependency and life-cycle management capabilities and with TestNG for its capability
to tag functions as test cases, to create HTML reports, to manage test cases, and so on. In
this recipe, you want to know how to integrate Appium with Maven and TestNG.

© Shankar Garg 2016 101
S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2_5

CHAPTER 5 ' CREATING AUTOMATION FRAMEWORKS USING APPIUM

Solution

You will create an automation framework with Appium, Maven, and TestNG and write
one sample test case for an Android app.

1. Install the Eclipse-TestNG plug-in by following the steps
athttps://shankargarg.wordpress.com/2016/09/01/
integrate-eclipse-and-testng/.

2. Install the Eclipse-Maven plug-in by following the steps
athttps://shankargarg.wordpress.com/2016/09/01/
integrate-eclipse-and-maven/.

3. Create a new project in Eclipse by following these steps: click
New » Other » Maven » Maven Project » Next (Figure 5-1).

@New | nl 2y X

Select a wizard —
Create a Maven Project [

Wizards:
| type filter text

b (& General
b (& Android
b & C/C++
b & Git
(= Java

*
ud, Checkout Maven Projects from SCM

;g Maven Project
b (= Plug-in Development
b (= TestNG I
b = XML -

| »

® < Back _ Finish . Cancel

Figure 5-1. Creating a new Maven project

102

https://shankargarg.wordpress.com/2016/09/01/integrate-eclipse-and-testng/
https://shankargarg.wordpress.com/2016/09/01/integrate-eclipse-and-testng/
https://shankargarg.wordpress.com/2016/09/01/integrate-eclipse-and-maven/
https://shankargarg.wordpress.com/2016/09/01/integrate-eclipse-and-maven/

CHAPTER 5 * CREATING AUTOMATION FRAMEWORKS USING APPIUM

4. Select a simple project and keep the default workspace

location (Figure 5-2).

@ New Maven Project

New Maven project
Select project name and location

™

Create a simple project (skip archetype selection)

I Use default Workspace location

[Add project(s) to working set

Working set:

» Advanced

Location: 'C:\Users\user\Documents\Xebia\Docs\cucumber\Book\Project\CucumberBook vl

- More... I

@

Figure 5-2. Maven project creation wizard

103

CHAPTER 5 ' CREATING AUTOMATION FRAMEWORKS USING APPIUM

5. Provide details such as the artifact ID, group ID, name, and
description. Then click Finish (Figure 5-3).

[JON New Maven Project
New Maven project

Configure project

Artifact

Group Id: AppiumRecipeBook

Artifact Id: AppiumBookBlog

Version: 0.0.1-SNAPSHOT |

Packaging: jar

Name: AppiumBookBlog

Description: AppiumBookBlog|

Parent Project

Group Id:

Artifact Id:

Version:] Browse...
» Advanced

@ < Back Next Cancel

*

2

oo

Figure 5-3. Maven project creation wizard, project details

104

CHAPTER 5 * CREATING AUTOMATION FRAMEWORKS USING APPIUM

This will create a basic Maven project. Update the pom.
xm1 file with the following code to add Appium and TestNG
dependencies:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>AppiumRecipeBook</groupId>
<artifactId>AppiumBookBlog</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>AppiumBookBlog</name>
<description>AppiumBookBlog</description>

<properties>
<appium.version>3.3.0</appium.version>
<testng.version>6.9.10</testng.version>
<selenium.version>2.47.1</selenium.
version>
</properties>
<dependencies>
<!-- Appium -->
<dependency>
<groupId>io.appium</groupld>
<artifactId>java-client
</artifactId>
<version>${appium.version}
</version>
<scope>test</scope>
</dependency>

<!-- testng -->

<dependency>
<groupld>org.testng</groupld>
<artifactId>testng</artifactId>
<version>${testng.version}
</version>
<scope>test</scope>

</dependency>

</dependencies>
</project>

105

CHAPTER 5 ' CREATING AUTOMATION FRAMEWORKS USING APPIUM

7. To keep the code and files in logical grouping, you need
to create some packages in the default project. Refer to
Figure 5-4 and create the appium package in the src/test/
java package and create the apps folder in the src/test/
resources package (Figure 5-4).

| VW

v & AppiumBookBlog
(% src/main/java
(8 src/main/resources

¥ (# src/test/java
£ appium

\AF
(= apps

» =i\, JRE System Library [J2SE-1.5]

» = src
= target

[m] pom.xml

Figure 5-4. Project structure of the sample project

106

8. You will see an Android example for this project, so add the
Android ApiDemos-debug. apk file to the apps folder.

9. Create a new class called AppiumDriverBase in the appium
package. Add the following code to this class:

package appium;

import

import
import
import
import

import
import
import
import
import

public

io.appium.java_client.android.AndroidDriver;

java.io.File;
java.net.MalformedURLException;
java.net.URL;

java.util.concurrent.TimeUnit;

org.openga.selenium.WebDriver;
org.openqga.selenium.remote.DesiredCapabilities;
org.openga.selenium.support.ui.WebDriverWait;
org.testng.annotations.AfterTest;
org.testng.annotations.BeforeTest;

class AppiumDriverBase {

protected WebDriver driver;
protected WebDriverWait wait;

CHAPTER 5 * CREATING AUTOMATION FRAMEWORKS USING APPIUM

// before Test Annotation makes a java function to
run every time before a TestNG test case
@BeforeTest

protected void createAppiumDriver() throws
MalformedURLException, InterruptedException {

// setting up desired capability
DesiredCapabilities caps = new
DesiredCapabilities();
caps.setCapability("platform”, "ANDROID");
caps.setCapability("platformVersion", "5.0");
caps.setCapability("deviceName", "ANDROID");
caps.setCapability("browserName", "");

// relative path to apk file

final File classpathRoot = new File(System.
getProperty("user.dir"));

final File appDir = new File(classpathRoot,
"src/test/resources/apps/");

final File app = new File(appDir, "ApiDemos-
debug.apk");

caps.setCapability("app", app.
getAbsolutePath());

// initializing driver object
driver = new AndroidDriver(new
URL("http://127.0.0.1:4723/wd/hub"), caps);
// initializing explicit wait object
driver.manage().timeouts().implicitlyWait(10,
TimeUnit.SECONDS);
wait = new WebDriverWait(driver, 10);
}
// After Test Annotation makes a java function to
run every time after a TestNG test case
@AfterTest
public void afterTest() {

// quit the driver
driver.quit();

}

107

CHAPTER 5 ' CREATING AUTOMATION FRAMEWORKS USING APPIUM

108

10.

11.

Add the test case class called SampleTestCase by creating one
more class in the Appium package. Add the following code to
this class:

package appium;
import io.appium.java_client.MobileBy;

import org.openga.selenium.By;
import org.openga.selenium.support.
ui.ExpectedConditions;

import org.testng.annotations.Test;

public class SampleTestCase extends AppiumDriverBase{

//Test Annotation changes any java function to

TestNG test case

@Test

public void sampeTest(){
//click on Accessibility link
wait.until(ExpectedConditions.presenceOfElement
Located(MobileBy.AccessibilityId
("Accessibility")));
driver.findElement(MobileBy.AccessibilityId
("Accessibility")).click();
//click on 'Accessibility Node Querying' link
wait.until(ExpectedConditions.presenceOfElement
Located(MobileBy.AccessibilityId("Accessibility
Node Querying")));
driver.findElement(MobileBy.
AccessibilityId("Accessibility Node Querying")).
click();
//back
driver.navigate().back();
//back
driver.navigate().back();

The first test case is ready. Run the Appium server on a
terminal, run an Android emulator, and execute the program
by right-clicking the file and selecting SampleTestCase

» Run As » TestNG Test.

CHAPTER 5 * CREATING AUTOMATION FRAMEWORKS USING APPIUM

The Appium server should receive the request, and the
program should be executed appropriately (Figure 5-5).

@ O @ o Genymotion for personal use - Custom Phone - 5.0.0 - API 21 - 78

Figure 5-5. Sample Android test case executed

12. Now open a terminal and cd to the project root directory.
Type the following command to execute all the methods
tagged with the @Test annotation.

mvn test

The test case should execute successfully.

Note The only difference for iOS would be the initiation of the driver object in the
@BeforeTest method; everything else remains the same for i0S and TestNG integration.

109

CHAPTER 5 ' CREATING AUTOMATION FRAMEWORKS USING APPIUM

How It Works

Maven and TestNG are a popular combination for Appium. They make up the base of the
test automation framework. The following are some reasons for integrating Maven and
TestNG:

e Maven is a build tool that helps integrate all the required Java
libraries mentioned in the pom. xml file as dependencies. The
benefit is that in the case of any updates, you just need to update
the dependency version, and Maven takes care of the rest.

e The Maven life cycle helps ease the execution part. Functions
mentioned with the @Test tag in the test package can be easily
executed with mvn test from a terminal.

e TestNG helps tag methods as test cases and also helps with the
before and after methods. You just need to add as many methods
as you need and tag them with an appropriate tag such as @Test
or @BeforeSuite, @BeforeTest, and so on.

e TestNG creates a consolidated HTML report of the test results
automatically without needing you to do anything. This
complements one of the biggest shortcomings of Selenium-based
tools.

Note Integrating Appium with JUnit is similar to integrating Appium with TestNG. The
first difference is in pom.xm1; you would add a dependency of JUnit instead of TestNG. That’s
all you need to do differently to start using the @BeforeClass, @AfterClass, and @Test tags
of JUnit in Java.

5-2. Create a BDD Framework with Appium,
Cucumber, and the Page Object Model

Problem

Behavior-driven development is gaining lot of popularity, and Cucumber is the best tool
to implement BDD, so you want to understand how to integrate Cucumber and Appium.

The framework that you create should be easy to maintain and extend, so the
industry best practice of the page object model should also be integrated in the
framework. You want to learn how to do this.

110

CHAPTER 5 * CREATING AUTOMATION FRAMEWORKS USING APPIUM

Solution

You will create a behavior-driven development framework with Appium, Cucumber, and
JUnit and write one sample test case for an iOS app.

1. Install the Eclipse-TestNG plug-in by following the steps at
https://shankargarg.wordpress.com/2015/04/26/how-to-
integrate-eclipse-with-cucumber-plugin/.

2. Create a simple Maven project using the Eclipse-Maven plug-
in. Follow the steps until step 3 in recipe 5-1. Name the project
AppiumCucumberPageObject.

3. For a simple Maven project, this is what the pom.xml file looks
like:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupld>AppiumRecipeBook</groupld>
<artifactId>AppiumCucumberPageObject</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>AppiumCucumberPageObject</name>
<description>AppiumCucumberPageObject</description>

</project>

4. Now, you need to update the pom.xml file for the
dependencies of Cucumber and Appium. First, add the
properties tag and define properties for the Cucumber and
Appium versions. This is done to make sure that when you
need to update the dependency version, you do it in only one
place in the properties.

<properties>
<appium.version>4.0.0</appium.version>
<cucumber.version>1.2.4</cucumber.version>
</properties>

Note Please use the Maven central repository at http://search.maven.org/ to check
the latest dependency versions of Cucumber and Appium.

111

https://shankargarg.wordpress.com/2015/04/26/how-to-integrate-eclipse-with-cucumber-plugin/
https://shankargarg.wordpress.com/2015/04/26/how-to-integrate-eclipse-with-cucumber-plugin/
http://search.maven.org/

CHAPTER 5 ' CREATING AUTOMATION FRAMEWORKS USING APPIUM

5. Add dependencies for cucumber-java and cucumber-junit
for BDD and for java-client for mobile automation by using
the following code:

<dependencies>

<!-- cucumber -->

<dependency>
<groupId>info.cukes</groupld>
<artifactId>cucumber-java</artifactId>
<version>${cucumber.version}</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>info.cukes</groupIld>
<artifactId>cucumber-junit</artifactId>
<version>${cucumber.version}</version>

<scope>test</scope>
</dependency>
<!-- Appium -->
<dependency>

<groupId>io.appium</groupId>
<artifactId>java-client</artifactId>
<version>${appium.version}</version>
</dependency>
</dependencies>

112

CHAPTER 5 * CREATING AUTOMATION FRAMEWORKS USING APPIUM

6. To keep the logical files in the same place, you will
create some packages in the default project, such as the
stepdefinition package to keep all the Cucumber step
definitions and the pages package to keep all the page object
files. Follow the setup in Figure 5-6 and create the packages as
mentioned.

v Q > AppiumCucumberPageObject [AppiumBook ma:t
> (#src/main/java
» (8 src/main/resources
¥ (> src/test/java
v Eﬁ‘, > com.cucumber.automation
¥ > cucumberoptions
» 44> RunCukeTest.java
v i features
; iOSTestApp.feature
v 3 > pages
f£3.> android
v #iios
» [J} HomePage.java
v £ > stepdefinition
» 4> Hooks.java
> |4 > iOSTestAppSD.java
v {3 utils
» [J} AppiumBase.java
> (#f src/test/resources
P = JRE System Library [J2SE-1.5]
» =, Maven Dependencies
| 4 [Z“) src
b (= target
Eﬂ pom.xml

L readme.md

Figure 5-6. Structure for AppiumCucumberPageObject project

113

CHAPTER 5 ' CREATING AUTOMATION FRAMEWORKS USING APPIUM

7. For a Cucumber project, the RunCukeTest. java file specifies
the configuration such as the location of feature files, the
location of step definitions, the output location, and so on.
Add the RunCukeTest class to the cucumberoptions package
with the following code:

package com.cucumber.automation.cucumberoptions;
import org.junit.runner.RunWith;

import cucumber.api.CucumberOptions;
import cucumber.api.junit.Cucumber;

@RunWith(Cucumber.class)
@CucumberOptions(

features = "src/test/java/com/cucumber/
automation/features",
glue = "com.cucumber.automation.
stepdefinition”,
plugin = {
"pretty”,
"html:target/cucumber",

}

public class RunCukeTest {

8. Requirements are set in feature files. Since you are using
the iOS Test App for this demonstration, you will add the
i0STestApp.feature file to the package features. This is how
the feature file will look:

Feature: iOS Test App
In order to test sample ios app
As a product owner
I want to specify generic scenarios

Scenario: Calculate Sum
Given user is on Application Home Page
When user enters "4" in first field
And user enters "5" in second field
And clicks on Compute Sum
Then user sees computed sum as "9"

114

CHAPTER 5 * CREATING AUTOMATION FRAMEWORKS USING APPIUM

9. The feature file has to be converted to StepDefinition for
Cucumber to understand this file. The simplest way is to use
the suggestions given by Cucumber. In i0STestApp.feature,
right-click and select Run As à Cucumber Feature.
Now copy the suggestions given by Cucumber in the console
output shown in Figure 5-7.

You can implement missing steps with the snippets below:

@Given("Auser is on Application Home Page$")

public void user_is_on_Application_Home_Page() throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@hen("Auser enters \"([A\"]*)\" in first field$™)

public void user_enters_in_first_field(String argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@hen("Auser enters \"([A\"]*)\" in second field$")

public void user_enters_in_second_field(String argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@¥hen("Aclicks on Compute Sum$")

public void clicks_on_Compute_Sum() throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@Then("Auser sees computed sum as \"([A\"]*)\"$")

public void user_sees_computed_sum_as(String argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

Figure 5-7. Cucumber’s suggestion for step definitions

115

CHAPTER 5 ' CREATING AUTOMATION FRAMEWORKS USING APPIUM

10. Add afile called 10STestAppSD. java to the stepdefinition
package with the following code:

package com.cucumber.automation.stepdefinition;

import cucumber.api.java.en.Given;
import cucumber.api.java.en.Then;
import cucumber.api.java.en.When;

public class i0STestAppSD {

@Given(""user is on Application Home Page$")
public void user is on_ Application Home Page() {

}

@When("*user enters \"([*\"]*)\" in first field$")
public void user_enters_in first field(String argl) {

}

@When("*user enters \"([*\"]*)\" in second field$")
public void user enters in second field(String argi) {

}

@When("~clicks on Compute Sum$")

public void clicks on Compute Sum() {

}

@Then("*user sees computed sum as \"([*\"]*)\"$")
public void user sees computed sum as(String argl) {

}

11. You need to specify and add the test apps to be used for the
test case execution. Add the .apk/.app files in the apps folder
in the src/test/resources package.

12. Add the Appium functions that can be used to invoke the
Android app and close the app once the execution finishes.
(I am keeping this file basic for simplicity purposes.) Create
the AppiumBase.java class in the utils package with the
following code:

package com.cucumber.automation.utils;
import io.appium.java_client.ios.IOSDriver;

import java.io.File;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.concurrent.TimeUnit;

116

CHAPTER 5 * CREATING AUTOMATION FRAMEWORKS USING APPIUM

import org.openga.selenium.WebDriver;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.openga.selenium.support.ui.WebDriverWait;

public class AppiumBase {

public static WebDriver driver;
public static WebDriverWait waitVar;

public void createDriver() throws
MalformedURLException, InterruptedException {

}

// setting capabilities

DesiredCapabilities caps = new
DesiredCapabilities();
caps.setCapability("platform", "i0S");
caps.setCapability("platformversion”, "9.2");
caps.setCapability("deviceName", "iPhone 6");

// relative path to .app file

final File classpathRoot = new File(System.
getProperty("user.dir"));

final File appDir = new File(classpathRoot,
"src/test/resources/apps/");

final File app = new File(appDir, "TestApp.
app");

caps.setCapability("app", app.
getAbsolutePath());

// initializing driver object
driver = new IOSDriver(new
URL("http://127.0.0.1:4723/wd/hub"), caps);

// initializing waits
driver.manage().timeouts().implicitlyWait(20,

TimeUnit.SECONDS);
waitVar = new WebDriverWait(driver, 10);

public void teardown() {

}

// close the app
driver.quit();

117

CHAPTER 5 ' CREATING AUTOMATION FRAMEWORKS USING APPIUM

13. You need to add a hooks file so that Cucumber can call
functions placed in the AppiumBase file. Create the Hooks.
java class in the stepdefinition package with the following
code:

package com.cucumber.automation.stepdefinition;
import java.net.MalformedURLException;
import com.cucumber.automation.utils.AppiumBase;

import cucumber.api.java.After;
import cucumber.api.java.Before;

public class Hooks {
AppiumBase appiumBase = new AppiumBase();

@Before

public void beforeHookfunction() throws

MalformedURLException, InterruptedException{
appiumBase.createDriver();

}

@After
public void afterHookfunction() {
appiumBase.teardown();

14. Let'’s start implementing the page object model (POM). I am
keeping the POM simple, but you are free to extend it as per
your requirements. For this iOS app, since there is only one
screen, you will add only one page called HomePage. java in
the pages . i0S package with the following code:

package com.cucumber.automation.pages.iOS;
import io.appium.java_client.MobileBy;

import org.openga.selenium.By;
import org.openga.selenium.support.
ui.ExpectedConditions;

import com.cucumber.automation.utils.AppiumBase;
public class HomePage extends AppiumBase{

// All the locators for Home page will be defined
here

By textField1l = MobileBy.AccessibilityId("TextFie
1d1");

118

CHAPTER 5 * CREATING AUTOMATION FRAMEWORKS USING APPIUM

By textField2 = MobileBy.AccessibilityId("TextFie
1d2");

By computeSum = MobileBy.AccessibilityId("Compute
SumButton");

By result = MobileBy.AccessibilityId("Answer");

// All the behavior of home page will be defined

here in functions

public boolean isHomePage(){
waitVar.until(ExpectedConditions.presenceOfEle
mentLocated(computeSum));
return driver.findElement(computeSum).
isDisplayed();

}

public void typeTextField1(String text){
waitVar.until(ExpectedConditions.presenceOfEle
mentLocated(textField1));
driver.findElement(textField1).sendKeys(text);
}

public void typeTextField2(String text){
waitVar.until(ExpectedConditions.presenceOfEle
mentLocated(textField2));
driver.findElement(textField2).sendKeys(text);
}

public void clickComputeSum(){
waitVar.until(ExpectedConditions.presenceOfEle
mentLocated(computeSum));
driver.findElement(computeSum).click();

}

public String returnResult(){
waitVar.until(ExpectedConditions.presenceOfEle
mentLocated(result));
return driver.findElement(result).getText();

119

CHAPTER 5 ' CREATING AUTOMATION FRAMEWORKS USING APPIUM

120

15.

You will have to update the step definition files for the Appium
functions that you have just written. After adding all the
functions, the code should look like this:

package com.cucumber.automation.stepdefinition;

import

import
import
import
import
import

public

com. cucumber.automation.pages.i0S.HomePage;

cucumber.api.java.en.Given;
cucumber.api.java.en.Then;
cucumber.api.java.en.When;

static org.junit.Assert.assertTrue;
static org.junit.Assert.assertEquals;

class i0STestAppSD {

HomePage homePage = new HomePage();

@Given(""user is on Application Home Page$")
public void user is on_ Application Home Page() {

}

assertTrue(homePage.isHomePage());

@When("*user enters \"([*\"]*)\" in first field$")
public void user_enters_in first field(String argl)

homePage. typeTextField1(argl);

@When("~user enters \"([*\"]*)\" in second field$")
public void user enters in second field(String

argl) {

homePage. typeTextField2(argl);

@When("~clicks on Compute Sum$")
public void clicks_on_Compute_Sum() {

homePage . clickComputeSum();

@Then("*user sees computed sum as \"([*\"]*)\"$")
public void user sees computed sum as(String argl)

{
}
}
}
{
}
}

assertEquals(argl, homePage.returnResult());

CHAPTER 5 * CREATING AUTOMATION FRAMEWORKS USING APPIUM

16. The framework is ready. Run the Appium server on a terminal
and execute the program by going to i0STestApp.feature.
Then right-click Run As and select Cucumber Feature.

The Appium server should receive the request, and the
program should be executed appropriately (Figure 5-8).

Feature: i0S Test App

In order to test sample ios app

As a product owner

I want to specify generic scenarios
1
2

Scenario: Calculate Sum # /Users/sgarg/Documents/xebia/Docs/appium/AppiumCookBook/code/A
Given user is on Application Home Page # 10STestAppSD.user_is_on_Application_Home_Page()
When user enters "4" in first field # 105TestAppSD.user_enters_in_first_field(String)
And user enters "5" in second field # 105TestAppSD.user_enters_in_second_field(String)
And clicks on Compute Sum # 10STestAppSD.clicks_on_Compute_Sum()

Then user sees computed sum as "9" # 10STestAppSD.user_sees_computed_sum_as(String)

1 Scenarios (1 passed)
5 Steps (5 passed)
1m1@.94@s

Figure 5-8. Console output for the Appium Cucumber project

17. You can open a terminal and cd to the project root directory,
typing the following command to execute all the scenarios in
all the feature files:

mvn test

The scenarios should execute fine.

Note The only difference for Android would be to initiate the driver object in the
@Before method; everything else remains the same for integrating Android with Cucumber.

How It Works

You have integrated Cucumber, Appium, Maven, Java, and page objects to design
your mobile automation frameworks. Cucumber is for implementing BDD so that
nontechnical people can also directly contribute to development, Appium is for web
automation, Java is a programming language, and Maven is a build tool.

121

CHAPTER 5 ' CREATING AUTOMATION FRAMEWORKS USING APPIUM

The page object model is a framework design approach for maintaining and
accessing components and controls spread across test scenarios. The page object model
creates a domain-specific language (DSL) for your tests so that if something changes
on the page, you don’t need to change the test; you just need to update the object that
represents the page.

5-3. Conduct Continuous Automated Testing with
Appium, Git, and Jenkins
Problem

A test automation framework should integrate with version control and continuous
integration tools so that the latest test code can always be executed either on-demand or
at a scheduled time. You want to know how to integrate the Appium framework with a
version control management system and a continuous integration tool.

Solution

Git is the most famous version control management system. GitHub is most popular
version of it and is available for free for a certain number of users. So, for version control
in this recipe, you are going to use GitHub.

Jenkins is most popular tool available for automated build and continuous
integration. Jenkins has lot of advantages as it is open source, free, and easy to use, and it
can schedule a run at a scheduled time or trigger builds after an event.

Installing Jenkins and GitHub is beyond the scope of this book, and thus I am
assuming that you have Jenkins and Git already installed and set up.

e Ifyouneed any help regarding Jenkins setup, please follow the
steps here:
https://wiki.jenkins-ci.org/display/JENKINS/
Installing+Jenkins

e Youneed to upload the project on GitHub. If you need any help in
Git or with the GitHub repo setup, then follow these instructions:
https://help.github.com/articles/set-up-git/

e You can download the projects that will be used in this recipe
from the following GitHub URL:
https://github.com/ShankarGarg/AppiumBook.git

To get started, you will run Jenkins locally and execute the AppiumBookBlog project
created in recipe 5-1 by taking the latest code from the GitHub repository.

122

https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins
https://help.github.com/articles/set-up-git/
https://github.com/ShankarGarg/AppiumBook.git

CHAPTER 5 * CREATING AUTOMATION FRAMEWORKS USING APPIUM

1. Usethehttp://0.0.0.0:8080/ URL to open Jenkins in any
browser (replace 0.0.0.0 or localhost with the machine
IP address if Jenkins is not running locally).

2. Go to the Jenkins dashboard and click New Item (Figure 5-9).

< C 0.0.0.0:8080
s Apps 5 Bill Pay E5PF 5 Study Material £5 Xebia 5 cucumber ES Personal |

Jenkins

[L' New Item]
& People

“~ Build History

All AppiumBook
S w Name |
Y
Figure 5-9. New Item on Jenkins dashboard

3. Enter the Jenkins job name that you want to create, select the
“Maven project” option, and click OK (Figure 5-10).

Jenkins All

= New ltem Item name AppiumBookProject

‘i People Freestyle project

= Build History ;rgg:r?ﬁ;ﬁtral feature of Jenkin
. Project Relationship © Maven project

- . Build a maven project. Jenkins take
&= Check File Fingerprint 2 van proy :
External Job
. Manage Jenkins This type of job allows you to recon
) dashboard of your existing automalt
4. Credentials
Multi-configuration project
Suitable for projects that need a lar
Bulld Queus = Copy existing ltem

No builds in the queue. Copy from

Build Executor Status =

1 Idle OK
2 Idie

Figure 5-10. Project name for the Jenkins job

123

http://0.0.0.0:8080/

CHAPTER 5 ' CREATING AUTOMATION FRAMEWORKS USING APPIUM

4. Enter a description of the project (Figure 5-11).

e Jenkins

Jenkins AppiumBookProject configuration
4 Back to Dashboard Maven project name oy meookProject
\ Status Description . : . . . 1
This project s for Appium Recipe Book, integration of Appium with Git and Jenkins|
> Changes
@ workspace
@ Build Now [Plain text] Praview o
@ Delate Maven project Discard Old Builds
#. Configure This build is parameterized
Disable Build (No new builds will be executed until the project is re-enabled.|
Modules ! ks)

Execute concurrent builds if necessary

Figure 5-11. Project description

5. In Source Code Management section, select Git, fill in the
Repository URL field as https://github.com/ShankarGarg/
AppiumBook.git, and fill in your GitHub credentials
(Figure 5-12). Keep the others options in this section set to
their defaults.

Source Code Management
MNone
Cvs
CVS Projectset
O Git
Pl Repository URL

[

o Add
Advanced...
Add Repasitory Delete Repositary
Branches to build Branch Specifier (blank for ‘any) w oo)
Add Branch Delete Branch

Repository browser (Autn) s

Figure 5-12. GitHub repository and credentials

124

https://github.com/ShankarGarg/AppiumBook.git
https://github.com/ShankarGarg/AppiumBook.git

CHAPTER 5 * CREATING AUTOMATION FRAMEWORKS USING APPIUM

6. In the Build section, since this is a Maven project, the root
pom.xml file is automatically mentioned, but since the
repository has multiple projects, you need to refer to the exact
pom.xml file that you want to run in this project. Also, you
need to mention the goal test that you want to run in this

project (Figure 5-13).

Build
Root POM

AppiumBookBlog/pom.xml ‘

Goals and options oot |

Advanced...

Figure 5-13. pom.xml and Maven goal

7. Keep all other options set to their defaults and click Save.
You will be redirected to the dashboard of the newly created

Jenkins project.

8. On this page, click Build Now to run the project (Figure 5-14).

Jenkins AppiumBookProject

Back to Dashboard
,, Status
“» Changes
@ Workspace
{2) Build Now
T Delete Maven project

. Configure

Modules

Bulld History trend =

£ BSS for all £ RSS for failures

Figure 5-14. Building the project

Maven project AppiumBookProject

This project is for Appium Recipe Book, integration of Appium with Git and Jenkins

‘WWG_MDM
et

éﬂ Hecent Changes
[—

Permalinks

125

CHAPTER 5 ' CREATING AUTOMATION FRAMEWORKS USING APPIUM

9. Onceyou click Build Now, a build is triggered immediately. You
can see the build number and the timestamp (Figure 5-15).

Jenkins AppiumBookProject

4 Back to Dashboard B a .
Maven project AppiumBookProject

L, Status
“= Changes This project is for Appium Recipe Book, integration of Appium with Git and Jenkins
& Workspace
{2) Build Now
@ Delete Maven project h Workspace
. Configure .

Modules |£ Becent Changes

Build History trend = Permalinks
Fal Sep 5. 2016 951 AM g

£ 5SS for all £ ASS for failures

Figure 5-15. Build number and timestamp

10. Click the timestamp on the build. And then click Console
Output to see the console output of the project (Figure 5-16).

Back 1o Project
- Console Output

4, Status

= Changes
Started by user anenymeus

B console Output Building in workspace /Users/sgarg/.jenkina/jobs ject

> git P inmids k-troe # ti o
View as plain text Petching changes from the remote Git repository

> git config i url httpei/sgi £ i git # ti o

= Edit Buid Information Fetching upstream changes from httpsi//github,g: it

= = git --veraion # timpouts10

o G Build Data using .gitcredestials to set credestials
> git config --local credential.usernase ShankarGargXebia # timecat=10

& NoTags > git config --local credential.helper store --
file=/var/folders/n2/qgpixz20x5112ncbelnd33f_hm9yrgq/T/git623249483658624952) .credentials # timeout=10
> git -¢ core.askpassstrue fetch --tags --p hbEEA: //githul, con/s ait +refs

B Monitor Maven Process > git config —-local —-rescve-section credential # tiseout=10

P > git rev-parse refs/remctes/origin/master”{commit} # timecut=10

(¥ Build Graph > git rev-parse refs/remctesforigin/origin/master”{commit) # timecut=10
Checking out Revision 7%el 7 (refs/remotes/origin/master)

4 Previous Build > git cenfig core.sparsecheckout # timecut=10

> git checkout -f 79el5bPa67diab277{fcBc5dccalfos2al fd29ba

Figure 5-16. Console output for the Appium project

126

CHAPTER 5 * CREATING AUTOMATION FRAMEWORKS USING APPIUM

How It Works

You have already integrated Appium with Maven, so integrating Appium with Jenkins just
meant running the Appium Maven project via Jenkins. Jenkins comes with a Maven plug-
in by default; when you selected the item type of building a Maven project, most of the
settings were taken care of then. The Build section was prepopulated with pom.xml, and
you just had to select the appropriate pom.xml file and set the goal to test.

Jenkins is also prepopulated with the GitHub plug-in, so you just had to set the
GitHub URL and credentials. Now every time the project is built, Jenkins takes the latest
code from Git and then runs the test cases.

Note To explore more, you can go to the Build Triggers section in the Jenkins job and
try to schedule the job with various configurations.

127

CHAPTER 6

Integrating Appium with
Selenium Grid

In this chapter, you will learn to Integrate:
e Appium with Selenium Grid for native app automation
e Appium with Selenium Grid for mobile web automation

e Appium with Selenium Grid for two Android sessions on the
same machine

In previous chapters, you learned to create a test automation framework using
Appium and integrate it with GitHub and Jenkins to schedule the test execution at desired
times.

The last piece of the puzzle for an effective test strategy is to optimize the test
infrastructure. Either you can execute mobile test cases on simulators and real devices on
the local infrastructure managed by your company/client or you can use simulators and
real devices on cloud test labs provided by vendors such as Sauce Labs and Testdroid.

The decision to use the local infrastructure versus a cloud lab depends on a lot
of factors such as cost and the effort required to set up and maintain a mobile test
infrastructure. This decision is beyond the scope of this book. In this chapter, you will
learn what it takes technically to run Appium test cases on the local infrastructure.

6-1. Appium with Selenium Grid for Native
App Automation

Problem

You have most of your test cases ready, so you want to execute them on multiple devices,
and you want to create a test infrastructure that redirects the test cases to the appropriate
device based on the desired capabilities in the test case.

© Shankar Garg 2016 129
S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2_6

CHAPTER 6 ' INTEGRATING APPIUM WITH SELENIUM GRID

Solution

In this recipe, you will set up Selenium Grid to redirect the test cases to the appropriate
device based on the desired capabilities in the test case. The scope of this recipe is for
native app automation for both the Android and iOS platforms.

1. Download the Selenium server JAR from http://selenium-
release.storage.googleapis.com/index.html. I have used
version 2.53.1 for this book. It has been saved in the src/
test/resources/drivers folder of the AppiumRecipeBook
project.

2. Openaterminal, cd to the AppiumRecipesBook/src/test/
resources/drivers folder, and run the following command to
start the Selenium server:

java -Djava.net.preferIPv4Stack=false -jar selenium-
server-standalone-2.53.1.jar -role hub

Note 2.53.1is a stable version, but the version will vary as per updates in the
Selenium release.

-Djava.net.preferIPv4Stack=false is to set my machine’s Java to accept connections
properly. Try using the previous command without this property, and if it works fine for you,
then there’s no need to use it.

3. The Selenium Grid terminal output should look like Figure 6-1.
Open http://192.168.56.1:4444/grid/console in a browser
to check the grid configurations and nodes (Figure 6-2).

|| Shankars—MacBook-Pro:drivers sgarg$ java -Djava.net.preferIPv45tack=false -jar selenium-server-standalone-2.53.1.jar -rol
e hub

112:19:55.898 INFO - Launching Selenium Grid hub

2016-99-11 12:19:55.722:INFO: :main: Logging initialized @B66ms

112:19:55.733 INFO - Will listen on 4444

12:19:55.781 INFO - Will listen on 4444

| 2016-89-11 12:19:55.783: INFO:osjs.Server:main: jetty-9.2.z-SNAPSHOT

| 2016-89-11 12:19:55.812: INFO:05]jsh.ContextHandler:main: Started o.s.j.s.ServietContextHandler@2B8ac3dc3{/,null, AVATLABLE}
| 2016-99-11 12:19:55.842: INFO:05]s.5erverConnector:main: Started ServerConnector@25bbf683{HTTP/1.1}{@.0.0.0:4444}
2016-09-11 12:19:55.842: INFO:osjs.Server:main: Started @387ms

112:19:55.843 INFO - Nodes should register to http://192.168.56.1:4444/grid/register/

'i2:19:55.343 INFO - Selenium Grid hub is wp and running

Figure 6-1. Terminal output for Selenium Grid

130

http://selenium-release.storage.googleapis.com/index.html
http://selenium-release.storage.googleapis.com/index.html
http://192.168.56.1:4444/grid/console

CHAPTER 6 '~ INTEGRATING APPIUM WITH SELENIUM GRID

C ® 192.168.56.1:4444/grid/console

' [.
-2

Se Grid Console v.2.53.1

view config

Figure 6-2. Grid console for Selenium Grid

4. Now Selenium Grid is ready to listen to requests at
http://192.168.56.1:4444/wd/hub from Appium instances.

Note 192.168.56.1 is the IP address of my machine; you can also use localhost for
simplicity. If Selenium Grid is running remotely on another machine, then you need to use
the IP address of that machine.

Android

Now you need to create an Appium instance that will act as a slave/node to the Selenium
server setup in the previous steps. You will create a node configuration file called
AppiumNodeConfigAndroidNative. json that will contain all the properties that this node
session will have.

1. Create a file called AppiumNodeConfigAndroidNative.json
in the src/test/resources/AppiumConfig package in the
AppiumRecipesBook project with the following content to
create an Android native instance:

{
"capabilities":
[
{

"maxInstances": 1,
"browsexName": "",
"platform":"android”,
"version":"5.1"
}
I,

"configuration":

{

"cleanUpCycle":2000,

131

http://192.168.56.1:4444/wd/hub

CHAPTER 6 ' INTEGRATING APPIUM WITH SELENIUM GRID

"timeout":30000,

"proxy": "org.openqga.grid.selenium.proxy.
DefaultRemoteProxy",

"hub": "http://192.168.56.1:4444/grid/register",
"url":"http://127.0.0.1:4723/wd/hub",
"host": "127.0.0.1",

"port": 4723,

"maxSession": 1,

"register": true,

"registerCycle": 5000,

"hubPort": 4444,

"hubHost": "192.168.56.1",

"role": "node",
"throwOnCapabilityNotPresent":"false"

2. To start the Appium node session, open a new terminal,
cd to the /src/test/resources/AppiumConfig folder in
the AppiumRecipesBook project, and start Appium with the
following command:

appium --nodeconfig AppiumNodeConfigAndroidNative.json

The console output of the previous command should look like
Figure 6-3.

Shankars-MacBook-Pro:AppiumConfig sgarg$ appium --nodeconfig &pp:unﬂude(onh.gﬁndmx:ﬂauue json
[Appium] Welcome to Appium v1.5.8 (REV e6f1508728edBfdt : 559848
[Appium] Non-default server args:

[Appivm] nodeconfig: ‘AppiumNodeConfigAndroidiative. json'

[debug] [Appium] Starting auto register thread for grid. Will try to register every 5008 ms.
[Appium] Appium REST http interface listener started on 9.8.0.8:4723

Tdebug] TAppium] Appium successfully registered with the grid on 192.168.56,1:4444

[HTTP]

[MIS0RWFT Calling AppiumDriver.getStatus() with args: []

[MISONWP] Responding to client with driver.getStatus{) result: {"build":{"version":"1.5.8","revision":"e6f1508728e4814be50bbdcaZbdT61981
6559848"}}

[HTTR] 200 15 ms - 121

[HTTP]

[MISONWP] Calling AppiumDriver.getStatus() with args: []
[MISONWP] Responding to client with driver.getStatus{) result: {"build":{"version":"1.5.8","revision":"e6f1508728e48f4be50bbdcazbaTa1981
6559848"}}
[HTTR]

208 9 ms - 121

[MTTP]

Figure 6-3. Console output for Appium Android native node registration

3. The Selenium Grid terminal output should look like Figure 6-4,
and the Selenium console at http://192.168.56.1:4444/
grid/consoleif should show the newly registered node with
its configurations (Figure 6-5).

132

http://192.168.56.1:4444/grid/console
http://192.168.56.1:4444/grid/console

CHAPTER 6 '~ INTEGRATING APPIUM WITH SELENIUM GRID

Shankars-MacBook-Pro:drivers sgarg$ java -Djava.net.preferIPvdStack=false -jar selenium-server-standalone-2,53.1.jar -rol
e hub
12:19:55.808 INFO - Launching Selenium Grid hub
2016-89-11 12:19:55.722:INFO: :main: Logging initialized @B66ms
12:19:55.733 INFO - Will listen on 4444
12:19:55.781 INFO - Will listen on 4444
2016-89-11 12:19:55.783:INFQ:0sjs.5erver:main: jetty-9.2.z-SNAPSHOT
2016-89-11 12:19:55.812: INFO:osjsh.ContextHandler:main: Started o.s.j.s.ServlietContextHandler@28ac3de3{/,null, AVAILABLE}
2016-09-11 12 55.842:INFO:05]j5.5erverConnector:main: Started ServerConnector@25bbf683{HTTP/1.1}{0.0.0.0:4444}
2016-89-11 12:19:55.842: INFO:0sjs.5erver:main: Started @387ms

:19:55.843 INFO - Nodes should register to http://192.168.56.1:4444/grid/register/
:55.843 INFO - Selenium Grid hub is up and running
:04.586 INFO - Registered a node http://127.9.9.1:4723

Figure 6-4. Selenium Grid terminal output for Selenium Grid registering a new node

C' (@ 192.168.56.1:4444/grid/console#

-
-2
S€eé Grid Console v.2.53.1

DefaultRemoteProxy (version :
id : http://127.0.0.1

Configuration

role:node
remoteHost:http://127.0.0.1:4723
hubHost:192.168.56.1

hubPort:4444

prioritizer:null

timeout:30000
throwOnCapabilityNotPresent:false
nodePolling:5000
url:http://127.0.0.1:4723/wd/hub
newSessionWaitTimeout:-1
proxy:org.openga.grid.selenium. proxy.DefaultRemoteProxy
cleanUpCycle: 2000
hub:http://192.168.56.1:4444/grid/register
port:4723

browserTimeout:0

host:127.0.0.1

serviets:[]

maxSession:1

registerCycle:5000
capabilityMatcher:org.openga.grid.internal.utils.DefaultCapabilityMatcher
jettyMaxThreads:-1

register:true

view config
Figure 6-5. Selenium Grid console: node details

The server and node are ready, and now you need to make
changes in your test case to redirect the test cases to Selenium
Grid, instead of just going to the Appium server.

133

CHAPTER 6 ' INTEGRATING APPIUM WITH SELENIUM GRID

4. You will use your test case created in earlier chapters,
AppiumSampleTestCaseAndroid, and make the necessary
changes to execute it using the Selenium Grid setup. Replace
the line where you create the driver object with the following
suggestion:

//Line to be replaced:
driver = new AndroidDriver(new
URL("http://127.0.0.1:4723/wd/hub"), caps);

//New Line to be added - Driver object with Grid
address

driver = new AndroidDriver(new
URL("http://192.168.56.1:4444/wd/hub"), caps);

Note To dynamically switch between local and Selenium Grid execution, you can pass a
command-line argument to specify executing on local or on Selenium Grid.

5. Execute the program as explained in the previous chapters.
Selenium Grid should receive the request, create a new
session, and redirect the request appropriately (Figure 6-6).

13:05:14.675 INFO - Got a request to create a new session: Capabilities [{app=/Users/sgarg/Documents/xebia/Docs/appium/Ap
piumCookBook/gitCode/AppiumBook/AppiumRec ipesBook/src/test/resources/apps/ApiDesos-debug. apk, platformVersion=5.0, browse
ifName=, platfor Android, devic ID, platform=ANDROID}]

13:05:14.675 INFO - Available nodes: [http://127.0.0.1:4723)

13:05:14.675 INFO - Trying to create a new session on node http://127.0.0.1:4723

13:05:14.676 INFO - Trying to create a new session on test slot {browserName=, maxInstances=1, version=5.1, platform=ANDR]
DID}

Figure 6-6. Selenium Grid response to a new session for Android native apps

134

CHAPTER 6 '~ INTEGRATING APPIUM WITH SELENIUM GRID

The Appium node should receive the request (Figure 6-7), and the program should

be executed appropriately (Figure 6-8).

1] Creating new AndroidDriver session
| Capabilities:

app: '/Users/sgarg/Documents/xebia/Docs/appium/AppiunCookBook,/gitC Book,/ AppiumRec i

fiDemos—debug. apk’

] platformversion: '5.0'
browserbame: '*
platformName: "Android’
deviceName: 'ANDROID®
platform: ‘ANDROID'
The following capabilities were provided, but are not recognized by appium: platform,
Session created with session id: 5ecb4bB6-5867-4485-9241-e13aafdd1584
river] Getting Java wversion
ava version is: 1.8.8_51
Checking whether adb is present

[debug]

Using adb from /fUsers/sgarg/Documents/Softwares/android/platform-tools/adb
D

[A

Retrieving device list

[debug] rying to find a connected android device
[debug] Getting connected devices...

[debug] device(s) connected

[debug] ould not find devices, restarting adb server...
[debug] Restarting adb

[debug] Getting connected devices...

[HTTP]
[MISOMWP] Calling AppiumDriver.getStatus() with args: []
[debug] [ADE] 1 device(s) connected

src/test/resources,/apps/Ap

Figure 6-7. Appium node console output for a new session

Genymation for personal use - Custom Phone - 5.0.0 - AP| 21 - T8

Figure 6-8. Android test case execution on an Android emulator

135

CHAPTER 6 ' INTEGRATING APPIUM WITH SELENIUM GRID

i0S
Now you need to create an Appium instance that will act as an iOS node to Selenium
Grid. You will create a node configuration file called AppiumNodeConfigIOSNative.json

that will contain all the properties for this session.
You will use same grid setup as explained in steps 1-3 of the previous steps.

1. Create afile called AppiumNodeConfigIOSNative. jsonin
the src/test/resources/AppiumConfig package in the
AppiumRecipesBook project with the following content to
create an Android iOS instance:

{
"capabilities":
[
{

"maxInstances": 1,
"browsexrName": "",
"version": "9.2",
"platformName": "i0S",
"app": "/Users/sgarg/
Documents/xebia/Docs/appium/AppiumCookBook/
gitCode/AppiumBook/AppiumRecipesBook/src/test/
resources/apps/TestApp.app",
"newCommandTimeout":999
}
1,
"configuration":
{
"cleanUpCycle":2000,
"timeout":30000,
"proxy": "org.openqa.grid.selenium.proxy.
DefaultRemoteProxy",
"hub": "http://192.168.56.1:4444/grid/register",
"url":"http://127.0.0.1:4723/wd/hub",
"host": "127.0.0.1",
"port": 4723,
"maxSession": 1,
"register": true,
"registerCycle": 5000,
"hubPort": 4444,
"hubHost": "192.168.56.1",
"role": "node",
"throwOnCapabilityNotPresent":"false"

136

CHAPTER 6 '~ INTEGRATING APPIUM WITH SELENIUM GRID

Note In app here, | am specifying the absolute path of the application under test; you
should specify the path of your respective local folder structure.

2. To start the Appium node session, open a new terminal,
cdto the /src/test/resources/AppiumConfig folder in
the AppiumRecipesBook project, and start Appium with the
following command:

appium --nodeconfig AppiumNodeConfigIOSNative.json

The console output of the previous command should look like
Figure 6-9.

Shankars-MacBook-Pro:AppiumConfig sgarg$ appium —nodeconfig AppiumNodeConfigIOSNative.json
[Appium] Welcome to Appium v1.5.8 (REV e6f15808728e48f4be59bbdcazbd7619876559848)

[Appium] Non-default server args:

[Appium] nodeconfig: 'AppiumNodeConfigIOSNative.json’

[debug] TAppiuml Starting auto register thread for grid., Will try to register every 5800 ms.
(Appium| Appium REST http interface listener started on 8.8.0.8:4723

[debug] [Appium] Appium successfully registered with the grid on 192.168,56.1:4444

THTTR]

[MIS0MWP] Calling AppiumDriver.getStatus() with args: []

[MIs0MwWF] Responding to client with driver.getStatus{) result: {"build":{"version":"1.5.8","revision":"e61500728e4814be59bb4
ca2b47619816559848" }}

[HTTP] 200 16 ms - 121

Figure 6-9. Console output for Appium node registration

3. The Selenium Grid console output should look like Figure 6-4,
and the Selenium console at http://192.168.56.1:4444/
grid/console#f should show the newly registered node with
its configurations (Figure 6-10).

13:55:33.091 WARN - Cleaning up stale test sessions on the unregistered node http://127.8.9.1:4723
13:56:57.538 INFO - Registered a node http://127.9.0.1:4723

Figure 6-10. Selenium Grid terminal output for Selenium Grid registering a new node

137

http://192.168.56.1:4444/grid/console
http://192.168.56.1:4444/grid/console

CHAPTER 6 ' INTEGRATING APPIUM WITH SELENIUM GRID

C ® 192.168.56.1:4444/grid/console#

[=
-2
S€" Grid Console v.2.53.1

DefaultRemoteProxy (version : 1.5.0)

Configuration

role:node

remoteHost: http://127.0.0.1:4723
hubHost:192.168.56.1

hubPort:4444

prioritizer:null

timeout:30000
throwOnCapabilityNotPresent:false
nodePolling: 5000
url:http://127.0.0.1:4723/wd/hub
newSessionWaitTimeout:-1
proxy:org.openga.grid.selenium.proxy.DefaultRemoteProxy
cleanUpCycle:2000
hub:http://192.168.56.1:4444/grid/register
port:4723

browserTimeout:0

host:127.0.0.1

serviets:[]

maxSession:1

registerCycle:5000
capabilityMatcher:org.openga.grid.internal.utils.DefaultCapabilityMatcher
jettyMaxThreads:-1

register:true

view config

Figure 6-11. Selenium Grid console: node details

The server and node are ready, and now you need to make
changes in your test case to redirect the test cases to Selenium
Grid, instead of just going to the Appium server.

4. You will use the test case created in earlier chapters,
AppiumSampleTestCaseIOS, and make the necessary changes
to execute the test case using the Grid Selenium setup.
Replace the line where you create the driver object with this
suggestion:

//Line to be replaced:
driver = new I0SDriver(new URL("http://127.0.0.1:4723/wd/hub"), caps);

//New Line to be added - Driver object with Grid address
driver = new IOSDriver(new URL("http://192.168.56.1:4444/wd/hub™), caps);

138

CHAPTER 6 '~ INTEGRATING APPIUM WITH SELENIUM GRID

5. Execute the program as explained in the previous chapters.
Selenium Grid should receive the request, create a new
session, and redirect the request appropriately (Figure 6-12).

13:56:57.538 INFO - Registered a node hitp://127.9.8.1:4723

14:82:37.187 INFO - Got a request 1o create a new session: Capabilities [{app=/Users/sgarg/Documents/xebia/Docs/appium/Apg
piumCookBook/gitC fsroftest/resources/apps/Testapp.app, platformVersion=9.2, platformiames
105, deviceName=iPhone 6, platform=i05}]

Figure 6-12. Selenium Grid response to a new session

The Appium node should receive the request, and the program should be executed
appropriately (Figure 6-13).

one 6 - ne i
Carrier ¥ 11:48 PM -

AppiumBook

First Tf

Compute Sum

77?

show alert cont...t alert locati...alert

Label...

Figure 6-13. iOS test case execution

139

CHAPTER 6 ' INTEGRATING APPIUM WITH SELENIUM GRID

How It Works

When a test case is executed, Selenium Grid receives a request with certain desired
capabilities, and then it redirects that request to an Appium instance/node session with
the matching capabilities. So, in this recipe, those sessions would be either for Android
native apps or for iOS native apps. Figure 6-14 shows the Appium grid architecture.

Test Case
Selenium Grid
A‘(’mmﬂm 1 Appium Instance 2 Appium Instance 3 Appium Instance 4
P (Android Web 6.1) (10S Web 9.1) (108 Native 9.3)

Android Device Android Device I0S Device I0S Device

Figure 6-14. Appium grid architecture

Selenium Grid is for managing the redirects to the appropriate device based on the
desired capabilities in the test case. You need to know the hubPort and hubHost settings
to connect with Grid. In this case, these details are as follows:

e hubPort: 4444
° hubHost: 192.168.56.1

Appium instances/servers are for acting as the node, which receives the request from
Selenium Grid, and then for interacting with the device for the test case execution. These
communications are in the JSON wire protocol.

The file config. json is used to specify all the properties of the instance/session. One
part of this file is to match the desired capabilities for an Appium session as follows:

"capabilities":
[
{
"browserName": "",
"platform":"android",
"version":"5.1"
}

140

CHAPTER 6 '~ INTEGRATING APPIUM WITH SELENIUM GRID

Here, all the rules and knowledge for the desired capabilities will be applicable. The
other part of the config file is the configuration, as shown here:

"configuration":
{

"cleanUpCycle":2000,
"timeout":30000,
"proxy": "org.openqa.grid.selenium.proxy.DefaultRemoteProxy",
"hub": "http://192.168.56.1:4444/grid/register",
"url":"http://127.0.0.1:4723/wd/hub",
"host": "127.0.0.1",
"port": 4723,
"maxSession": 1,
"register": true,
"registerCycle": 5000,
"hubPort": 4444,
"hubHost": "192.168.56.1",
"role": "node",
"throwOnCapabilityNotPresent":"false"

This specifies important configurations such as role as node, hubHost and hubPort
for Selenium Grid, URL for the Appium server, timeout, cleanup, registercycle time
limits, and so on.

When you start the Appium session, you need to specify that the current Appium
session will use the properties from the config JSON file instead of the default values. You
use the -nodeconfig parameter to provide the absolute path to the config. json file.

You need to redirect the test case to Selenium Grid, and that’s why you change the
URL of the driver object to the Selenium Grid URL: http://192.168.56.1:4444/wd/hub.

6-2. Appium with Selenium Grid for
Mobile Web Automation

Problem

In the previous recipe, you learned to set up native app sessions with Selenium Grid. Now
you want to set up mobile web sessions with Selenium Grid.

Solution

In this recipe, you will set up Selenium Grid for mobile web sessions on Android and
iOS (in other words, Chrome on Android and Safari on iOS). For the Android and iOS
solutions presented here, you will use same grid setup as steps 1-3 in recipe 6-1.

141

http://192.168.56.1:4444/wd/hub

CHAPTER 6 ' INTEGRATING APPIUM WITH SELENIUM GRID

Android

You need to create an Appium instance for Chrome on Android that will act as
a slave/node to Selenium Grid. You will create a node configuration file called
AppiumNodeConfigAndroidWeb.json that will contain all the properties for this session.

1. Create afile called AppiumNodeConfigAndroidieb. json
in the src/test/resources/AppiumConfig package in the
AppiumRecipesBook project with the following content:

"capabilities":
[
{

"maxInstances": 1,
"browsexrName": "chrome",
II.II

"platfoxm":"android”,
"version":"5.1"
}
1,
"configuration":
{
"cleanUpCycle":2000,
"timeout":30000,
"proxy": "org.openqa.grid.selenium.proxy.
DefaultRemoteProxy",
"hub": "http://192.168.56.1:4444/grid/register",
"url":"http://127.0.0.1:4723/wd/hub",
"host": "127.0.0.1",
"port": 4723,
"maxSession": 1,
"register": true,
"registerCycle": 5000,
"hubPort": 4444,
"hubHost": "192.168.56.1",
"role": "node",
"throwOnCapabilityNotPresent":"false"

142

CHAPTER 6 '~ INTEGRATING APPIUM WITH SELENIUM GRID

2. To start an Appium node session, open a new terminal, cd
to the /src/test/resources/AppiumConfig folder in the
AppiumRecipesBook project, and start Appium with the
following command:

appium --nodeconfig AppiumNodeConfigAndroidWeb.json

The console output of the previous command should look like
Figure 6-15.

Ehanhors*lcm-l’ru Awnd:onhq sgarql lpon.- —-nodecun'l loolmc(m'lglmmlm Json
] Welcome to Appium v1.5.0 (REV e671500728e4814be59bb4aca2ba7619816559840)

m| Non-default server args:

nodeconfig: 'AppiusNodeCont igAndroidweb. json’

[debug] [Appium] Starting auto register thread for grid. Will try to register every 5000 ms.

App Lum .Ioo\ul REST http interface listener started on 0.0.0.8:4723
[debug] piun] Appium successfully registered with the grid on 192.168.56.1:4444

MISONWP] Calling AppiusDriver.getStatus() with args: [)
Responding to client with driver.getStatus() result: {"build":{"version™:"1.5.8","revision™:"e6f1500728e48f4be59bb4ca2ba76198

M SONWF
B559840"}}

Figure 6-15. Console output for Appium Android node registration

3. The Selenium Grid console output should look like Figure 6-16,
and the Selenium console at http://192.168.56.1:4444/
grid/console#f should show the newly registered node with
its configurations (Figure 6-17).

22:48:25.789 INFO - Launching Selenium Grid hub
2016-99-11 22:48:26.528:INFO::main: Logging initialized @1887ms
22:48:26.548 INFO - Will listen on 4444
22:48:26.590 INFO - Will listen on 4444
2016-89-11 22:48:26.593:INFO:0sjs.Server:main: jetty-9.2.2z-SNAPSHOT
2016-89-11 22:48:26.623:INFO:0sjsh.ContextHandler:main: Started o.s.j.s.ServietContextHandler@2Bac3dc3{/,null, AVAILABLE}
2016-89-11 22:48:26,653: INFO:0s]js.ServerConnector:main: Started ServerConnector@25bbfe83{HTTP/1.1}{0.0.0.0:4444}
2016-99-11 22:48:26.654: INFO:05js.Server:main: Started @1212ms
.654 INF des should register to http://192.168.56.1:4444/grid/register/
.655 INFO - Selenium Grid hub is up and running
2,529 INFO - Registered a node http://127.0.0.1:4723

Figure 6-16. Selenium Grid terminal output for Selenium Grid registering a new node

C ® 192.168.56.1:4444/grid/console#

»_i
3

Seé Grid Console v.2.53.1

DefaultRemoteProxy (ver

Browsers LU

WebDriver
v:5,1€

view config

Figure 6-17. Selenium Grid Console: node details

143

http://192.168.56.1:4444/grid/console
http://192.168.56.1:4444/grid/console

CHAPTER 6 ' INTEGRATING APPIUM WITH SELENIUM GRID

4. The server and node are ready, so now you need to make
changes in your test case to redirect the test cases to Selenium
Grid, instead of just going to the Appium server.

5. Youwill use the test case created in earlier chapters,
AppiumSampleTestCaseAndroidWeb, and make the necessary
changes to execute it using the Selenium Grid setup. Replace
the line where you create the driver object with this new
suggestion:

//Line to be replaced:
driver = new AndroidDriver(new
URL("http://127.0.0.1:4723/wd/hub"), caps);

//New Line to be added - Driver object with Grid
address

driver = new AndroidDriver(new
URL("http://192.168.56.1:4444/wd/hub"), caps);

6. Execute the program as explained in the previous chapters.
Selenium Grid should receive the request, create a new
session, and redirect the request appropriately (Figure 6-18).

[23:91:34.050 INFO - Trying to create a new session on node http://127.0.0.1:4723
23:01:34.058 INFO - Trying to create a new session on test slot {browserName=chrome, maxInstances=1, version=5.1, platfo

m=ANDROID}
1

Figure 6-18. Selenium Grid response to a new session

The Appium node should receive the request (Figure 6-19), and the program should
be executed appropriately (Figure 6-20).

[MIS0NWP] Calling AppiumDriver.createSession() with args: [{"platformVersion”:"5.8","browsertame”:"chrome”,"platformName" :"Android"”,"dev|
1cdﬂa-e" "ANDROID" , “platform": “ANDROID"}, null, null, null]
| ium] Creating new AndroidDriver session
Capabilities:

platformVersion: °5.8"

browserName: ‘chrome'

platforsame: 'Android’

deviceName: 'ANDROID'
N platform: 'ANDROID'
iver] The following capabilities were provided, but are not recognized by appium: platform.
Bdchr ver| Session created with session id: 7492BbeS-Baff-493a-928c-1fb@670864cd
ldebug] [AndroidDriver] Getting Java version

AndroidOriver] Java version is: 1.8.8.51

"] We're going to run a Chrome-based session

roidDriver] Chrome-type package and activity are com.android.chrome and com.google.android.apps.chrome.Main
D8] Checking whether adb is present

D8] Using adb from fUsers/sgarg/Documents/Soft oid/platf
[AndroidOriver] Retrieving device list

1s/adb

Figure 6-19. Appium node console output for a new session

144

CHAPTER 6 '~ INTEGRATING APPIUM WITH SELENIUM GRID

Genymaotion for personal use - Google Nexus 5 - 5.0.0 - API 21..

& W, Msis 4

7Y hitps://github.com I [
(3]
Join GitHub
B o
<] O]

Figure 6-20. Android test case execution on an Android emulator

i0S
Now you need to create an Appium instance that will act as the iOS Safari

node to the Selenium server. You will create a node configuration file called
AppiumNodeConfigIOSWeb.json that will contain all the properties for this session.

1. Create afile called AppiumNodeConfigIOSWeb. json in
the src/test/resources/AppiumConfig package in the
AppiumRecipesBook project with the following content to
create an Android iOS Safari instance:

{
"capabilities": [
{
"maxInstances": 1,
"browserName": "safari",
"version": "9.2",
"orientation": "LANDSCAPE",
"platfoxrmName": "i0S",

145

CHAPTER 6 ' INTEGRATING APPIUM WITH SELENIUM GRID

"platform": "MAC",
"safarilgnoreFraudilarning”: "true",
"newCommandTimeout" :999

}

1,

"configuration":
{
"cleanUpCycle": 2000,
"timeout": 300000,
"browserTimeout": 60000,
"hub": "http://192.168.56.1:4444/grid/
register”,

"url":"http://127.0.0.1:4723/wd/hub",
"host": "127.0.0.1",
"port": 4723,
"maxSession": 1,
"register": true,
"registerCycle": 5000,
"hubPort": 4444,
"hubHost": "192.168.56.1",
"role": "node",
"throwOnCapabilityNotPresent":"false"

2. To start an Appium node session, open a new terminal, cd
to the /src/test/resources/AppiumConfig folder in the
AppiumRecipesBook project, and start Appium with the
following command:

appium --nodeconfig AppiumNodeConfigIOSWeb.json

The console output of the previous command should look like
Figure 6-21.

Shankars-MacBook-Pro:AppiumConfig sgarg$ appium --nodeconfig AppiumNodeConfigIOSWeb. json
[Appium] Welcome to Appium v1.5.8 (REV e6f1500728e48f4be59bb4ca2b47619816559840)

[Appium] Non-default server args:

[Appium] nodeconfig: 'AppiumNodeConfigI0OSwWeb.json’

[debug] [Appium] Starting auto register thread for grid. Will try to register every 5000 ms.
[Appium] Appium REST http interface listener started on 0.0.0.0:4723

[debug] [Appium] Appium successfully registered with the grid on 192.168.56.1:4444

Figure 6-21. Console output for Appium iOS node registration

146

CHAPTER 6 '~ INTEGRATING APPIUM WITH SELENIUM GRID

3. The Selenium Grid console output should look like Figure 6-22,
and the Selenium console at http://192.168.56.1:4444/
grid/consolef#f should show the newly registered node with
its configurations (Figure 6-23).

23:09:36.040 INFO - Launching Selenium Grid hub
2016-09-11 23:09:36.555: INFO: :main: Logging initialized @634ms
23:09:36.563 INFO - Will listen on 4444

23:09:36.593 INFO - Will listen on 4444
2016-09-11 23:09:36.595:INFO:05)s.5erver:main: jetty-9.2.z-SNAPSHOT

2016-09-11 23:09:36.615: INFO:05jsh.ContextHandler:main: Started o.s.j.s.ServietContextHandler@2B8ac3dc3{/,null, AVAILABLE}
2016-09-11 23:09:36.633: INFO:0s)s.ServerConnector:main: Started ServerConnector@25bbf683{HTTP/1.1}{0.0.0.0:4444)

2016-09-11 23:09:36.633:INFO:0sjs.Server:main: Started @713ms

23:09:36.634 INFO - Nodes should register to http://192.168.56.1:4444/grid/register/
23:09:36.634 INFO - Selenium Grid hub is up and running

23:09:51.327 INFO - Registered a node http://127.0.0.1:4723

Figure 6-22. Selenium Grid registering a new iOS node

C © 192.168.56.1:4444/grid/console#

S€ Grid Console v.2.53.1

BaseRemoteProxy (version : 1.5.0)
id : http://127.0.0.1:4723, 0S : MAC

Browsers [00Tl

WebDriver
v:9.28

view config

Figure 6-23. Selenium Grid registering a new node

4. The server and node are ready, so now you need to make
changes in your test case to redirect the test cases to
Selenium Grid, instead of just going to the Appium server.

5. You will use the test case created in earlier chapters,
AppiumSampleTestCaseIOSWeb, and make the necessary
changes to execute it using the Selenium Grid setup. Replace
the line where you create the driver object with this new
suggestion:

//Line to be replaced:

driver = new IOSDriver(new URL("http://127.0.0.1:4723/
wd/hub"™), caps);

//New Line to be added - Driver object with Grid
address

driver = new IOSDriver(new
URL("http://192.168.56.1:4444/wd/hub™), caps);

http://192.168.56.1:4444/grid/console
http://192.168.56.1:4444/grid/console

CHAPTER 6 ' INTEGRATING APPIUM WITH SELENIUM GRID

6. Execute the program as explained in the previous chapters.
Selenium Grid should receive the request, create a new
session, and redirect the request appropriately (Figure 6-24).

25:)i:17.58j’ INFO - Go! a r;qu—cs!. to create a.N.-u session: Capa;xilhcs [{plall‘;m‘\.‘;:rswn:é.?, nr:‘ms:mane:saiarl, pla!!o;
rmName=105, deviceName=iPhone 6, platform=105}]

Figure 6-24. Selenium Grid response to a new session

The Appium node should receive the request, and the program should be executed
appropriately (Figure 6-25).

iPhone 6 - iPhone 6 / i0S 9.0 (13A340)
Carrier ¥ 2:54 PM

¢

& GitHub, Inc.

How people
build software

Figure 6-25. iOS test case execution

148

CHAPTER 6 '~ INTEGRATING APPIUM WITH SELENIUM GRID

How It Works

Selenium Grid and the Appium node setting remain the same. The only difference is in
the capabilities, which will set the browser to safari in the case of iOS and to chrome in
the case of Android.

When a test case is executed, the Selenium server receives a request with certain
desired capabilities, and then the server redirects that request to an Appium node session
with the matching capabilities. So, in this recipe, those sessions would be for either
Android Chrome or iOS Safari.

6-3. Appium with Selenium Grid for Two Android
Sessions on the Same Machine

Problem

To reduce your infrastructure costs, you want to run multiple Android emulators on the
same machine using Genymotion and use them as Appium nodes. For example, you want
to run one Google Nexus 5 and one Google Nexus 10 on the same machine and use Nexus
5 only for mobile test cases and Nexus 10 only for tablet test cases.

Solution

In this recipe, you will set up Selenium Grid with two Android sessions, one on Nexus 5
and other on Nexus 10, and then execute the test case on the desired device.

For the Android solution presented here, you will use same grid setup as steps 1-3 in
recipe 6-1.

1. Before you start with the Appium setup, knowing the device
ID of both emulators is important (Figure 6-26). For this, run
the following adb command on a terminal:

adb devices

Here 192.168.56.101:5555 is Nexus 5, and 192.168.56.102:5555
is Nexus 10.

Shankars-MacBook-Pro:AppiumConfig sgarg$ adb devices
List of devices attached

192.168.56.102:5555 device

192.168.56.101:5555 device

Figure 6-26. List of Android devices

149

CHAPTER 6 ' INTEGRATING APPIUM WITH SELENIUM GRID

2. Create the first config file called
AppiumNodeConfigAndroidNexus5. json in the src/test/
resources/AppiumConfig package in the AppiumRecipesBook
project with the following content:

{
"capabilities":
[
{
"maxInstances": 2,
"browserName": ""
"platform":"android",
"version":"5.1",
"deviceName": "192.168.56.101:5555"
}
1,
"configuration":
{

"cleanUpCycle":2000,

"timeout":30000,

"proxy": "org.openqa.grid.selenium.proxy.
DefaultRemoteProxy",

"url":"http://192.168.56.1:4723/ud/hub",

"host": "192.168.56.1",

"port": 4723,

"maxSession": 1,

"register": true,

"registerCycle": 5000,

"hubPort": 4444,

"hubHost": "192.168.56.1"

3. Create a second config file called
AppiumNodeConfigAndroidNexus10.json in the src/test/
resources/AppiumConfig package in the AppiumRecipesBook
project with this content:

{
"capabilities":
[
{

"maxInstances": 2,
"browserName": ""
"platform":"android"”,
"version":"5.1",

"deviceName": "192.168.56.102:5555"

150

CHAPTER 6 '~ INTEGRATING APPIUM WITH SELENIUM GRID

}
1,

"configuration":
{

"cleanUpCycle":2000,

"timeout":30000,

"proxy": "org.openqa.grid.selenium.proxy.
DefaultRemoteProxy",
"url":"http://192.168.56.1:4724/wd/hub",
"host": "192.168.56.1",

"port": 4724,

"maxSession": 1,

"register": true,

"registerCycle": 5000,

"hubPort": 4444,

"hubHost": "192.168.56.1"

4, To start an Appium node session for Nexus 5, open a new
terminal, cd to the /src/test/resources/AppiumConfig
folder in the AppiumRecipesBook project, and start Appium
with the following command:

appium --nodeconfig AppiumNodeConfigAndroidNexus5.json
-p 4723

5. To start an Appium node session for Nexus 10, open a new
terminal, cd to the /src/test/resources/AppiumConfig
folder in the AppiumRecipesBook project, and start Appium
with the following command:

appium --nodeconfig AppiumNodeConfigAndroidNexus10.json
-p 4724

Note Here the argument -p is important; -p is to specify the port number that a
particular Appium session will use for its communication. Otherwise, both Appium sessions
would want to use the same port and cause an error. This port number is the same as used
for the port property in the . json file.

151

CHAPTER 6 ' INTEGRATING APPIUM WITH SELENIUM GRID

6. The Selenium console athttp://192.168.56.1:4444/grid/
console# should show the newly registered nodes (Figure 6-27).

p: _168.56.1:. 2 0 'H 168
O . i avion srowsers [N
WebDriver WebDriver
vis.1 viS.1

yiew config

Figure 6-27. Selenium Grid with two Android Appium sessions

7. Make two copies of test case
AppiumSampleTestCaseAndroidNative as
AppiumTestCaseNexus5 and AppiumTestCaseNexus10.

8. InAppiumTestCaseNexus5, use the following code for the
Appium capability and keep everything else untouched:

// setting capabilities

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("platform"”, "ANDROID");
caps.setCapability("platformversion”, "5.0");
caps.setCapability("deviceName", "ANDROID");
caps.setCapability("browserName", "");
caps.setCapability("deviceName",
"192.168.56.101:5555") ;

9. InAppiumTestCaseNexus10, use the following code for the
Appium capability and keep everything else untouched:

// setting capabilities

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("platform"”, "ANDROID");
caps.setCapability("platformversion”, "5.0");
caps.setCapability("deviceName", "ANDROID");
caps.setCapability("browserName", "");
caps.setCapability("deviceName",
"192.168.56.102:5555");

152

http://192.168.56.1:4444/grid/console
http://192.168.56.1:4444/grid/console

CHAPTER 6 '~ INTEGRATING APPIUM WITH SELENIUM GRID

Note Here the deviceName capability is important because this will make sure that
when you run one particular test case, the request that goes to Selenium Grid is for that
particular device.

10. Execute the program AppiumTestCaseNexus5 as explained
in the previous chapters. Selenium Grid should receive the
request, create a new session, and redirect the request to the
Nexus 5 device only.

11. Execute the program AppiumTestCaseNexus10 as explained
in the previous chapters. Selenium Grid should receive the
request, create a new session, and redirect the request to the
Nexus 10 device only.

How It Works

When running multiple Android devices on the same machine and wanting to run
specific test cases on specific devices, you need to bind the port number and device name
together in the Appium config file as well as the test case.

In a config file, you specify to start an Appium session on device 1 on port 1, and in
another config file, you specify to start an Appium session on device 2 on port 2. Then you
specify one test case to run on device 1 and the second test case to run on device 2. When
the test case is actually executed, Selenium Grid will send the request to the Appium
session with the matching device name.

Note As of now, only one i0S session per machine can be started, so this scenario is
not applicable to i0S.

153

CHAPTER 7

Executing Appium with
Cloud Test Labs

In this chapter, you will learn to Execute:
e Appium on the Sauce Labs cloud
e Appium on the Testdroid cloud

In previous chapters, you learned to integrate Appium with Selenium Grid to execute
test cases on an on-premise setup. In this chapter, you will learn to execute test cases on
cloud test labs such as Sauce Labs and Testdroid.

Cloud test labs are subscription based (monthly, annual, and so on), which allows
users to use a set of devices based on the subscription plan. The advantage of cloud test
labs is that you don’t need to maintain the devices and operating systems. You also don’t
need to worry about buying the latest versions in the market.

Although there are multiple cloud test labs available, this chapter will cover
Sauce Labs and Testdroid. Sauce Labs provides emulators and simulators, but its real
devices are expensive; Testdroid provides only real devices, and the costs are better
comparatively. Both labs support Appium for the Android and iOS platforms.

7-1. Appium on the Sauce Labs Cloud
Problem

If you're familiar with web automation using Selenium, you are probably familiar with
Sauce Labs. It’s the official sponsor of both Selenium and Appium, so its integration with
both these tools is obvious.

Test strategies that involve testing applications on various combinations of OS
versions and devices like i0S 9.3.5 on iPhone 5s and iOS 9.1 on iPhone 6, and so on,
will be best suited for Sauce Labs. You want to learn how to use Sauce Labs to execute
Appium.

© Shankar Garg 2016 155
S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2_7

CHAPTER 7 * EXECUTING APPIUM WITH CLOUD TEST LABS

Solution

In this recipe, you will register a new user for Sauce Labs and execute a native test case
each for the Android and iOS native apps on the Sauce Labs cloud.

1. Firstyou need to register at Sauce Labs to create an account.
Goto https://saucelabs.com/signup/trial to create a free
account.

2. After registration, you will get a verification e-mail. Verify the
account and log in to Sauce Labs. You will be redirected to a
dashboard (Figure 7-1). The left panel is the menu dashboard,
and the right panel is the execution dashboard. For this
recipe, you will use the Automated Tests dashboard.

@ SA UCE LABS ‘Welcome to Sauce Labs! Thanks for verifying your email,

Dashboard
. Automated Builds Automated Tests Manual Tests
& Tunnels
B Archives
Sauce Runner
@ Docs J
—\—;—b —
™
T3 Mew Manual Test |
0 QOrganizing by builds is a snap
concurrent sessions
Simply provide the bulld key with the value of your build's unique identifier
Hours Remaining .
Learn more about annotating tests *

Figure 7-1. Sauce Labs dashboard
3. Now you need to write down the access key for your account.
This access key acts as an identifier for your account.

a. Scroll down in the left panel, click your name, and choose
My Account from submenu (Figure 7-2).

b. Go to the access key in the right panel. Click Show and
write down the access key.

156

https://saucelabs.com/signup/trial

CHAPTER 7 © EXECUTING APPIUM WITH CLOUD TEST LABS

1 3 - 7 9 11 13 15 17 1 21 23 35 7 B 1 3 5 7 9

& Team Management
S, My Account Access KQY
F User Settings
_ B G =3
(7} Support
[Sgnout
0 Active Tunnels

@ ShankarGarg v

Figure 7-2. Access key in the Sauce Labs dashboard

4. Sauce Labs needs a reference to an application under test. There
are two ways to do this; one is to upload the app to the cloud
platform, which can be accessed publically by Sauce Labs, or
you can upload the app to the Sauce Labs temporary storage.
For this recipe, you will use the Sauce Labs temporary storage,
so refer to https://wiki.saucelabs.com/display/DOCS/
Temporary+Storage+Methods for all the required information.

Android

Follow these steps:

1. The command for uploading an app to Sauce Labs temporary
storage is as follows:

curl -u <<YOUR_USERNAME>>:<<YOUR_ACCESS_KEY>> \
-X POST \
-H "Content-Type: application/octet-stream" \
https://saucelabs.com/rest/v1/storage/<<YOUR_
USERNAME>»> /<<TEST_FILE_NAME>»?overwrite=true \
--data-binary @<<PATH_TO_TEST_FILE>>

Here’s what this code means:
YOUR_USERNAME: This is your Sauce Labs username.

YOUR_ACCESS_KEY: This is your Sauce Labs access key, noted
in step 3.

TEST_FILE_NAME: This is the file name with which the file can
be accessed on the Sauce Labs temporary storage.

PATH_TO_TEST_FILE: This is the absolute location of the file
that you want to upload.

157

https://wiki.saucelabs.com/display/DOCS/Temporary+Storage+Methods
https://wiki.saucelabs.com/display/DOCS/Temporary+Storage+Methods

CHAPTER 7 * EXECUTING APPIUM WITH CLOUD TEST LABS

The file upload should return a message, as shown in

Figure 7-3.
Shankars—abpiapps 5gargh curl —u shankargarglase:)
- T\
=H “Content=-Type: application/octet-streas™ \
https://saucelabs. com/rest/vl/storage/shankargarg1986/Ap iDemos -debug . apk Toverwr itestrue \
> ~~ata-binary BApiDemos-debug. apk
{“Username™: “shankargargi96", “size”: 3084877, “mdS": “cB517IcHSTGIII0GCICHAITACIBNCATE", “Tilename™: “ApiDencs-gebug. apk- | shankars-sbp:apps sgargl

Figure 7-3. Terminal output for Sauce Labs file upload

Note The file extension for the iOS app is .zip (.app and . ipa files won’t work).

Temporary storage is valid for only seven days; you will need to upload the app again after
seven days.

Now you need to create an Appium test case that executes
Android’s ApiDemos-debug. apk file on Sauce Labs.

2. Create afile called AppiumSaucelabsAndroid in the src/test/
java/appium package in the AppiumRecipesBook project with
the following content:

package appium;

import io.appium.java_client.MobileBy;
import io.appium.java_client.android.AndroidDriver;

import java.net.MalformedURLException;
import java.net.URL;
import java.util.concurrent.TimeUnit;

import org.openga.selenium.remote.DesiredCapabilities;
import org.openga.selenium.support.
ui.ExpectedConditions;

import org.openga.selenium.support.ui.WebDriverWait;

public class AppiumSaucelabsAndroid {

public static void main(String[] args) throws
MalformedURLException, InterruptedException {
//Declaring WebDriver variables
AndroidDriver driver;

WebDriverWait wait;

// setting capabilities

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("platformName", "ANDROID");
caps.setCapability("platformversion"”, "4.4");

158

CHAPTER 7 © EXECUTING APPIUM WITH CLOUD TEST LABS

caps.setCapability("deviceName", "Samsung Galaxy Nexus
Emulator");

caps.setCapability("browserName", "");
caps.setCapability("appiumVersion", "1.5.3");

caps.setCapability("app", "sauce-storage:ApiDemos-debug.
apk™);

// initializing driver object - Sauce Labs

// Replace credentials with yours

driver = new AndroidDriver(new URL("http://<<SauceLabs_
UserNames» : <<SaucelLabs_accessID»>@ondemand.saucelabs.
com:80/wd/hub"), caps);

//initializing waits
driver.manage().timeouts().implicitlyWait(10, TimeUnit.
SECONDS);

wait = new WebDriverWait(driver, 10);

// click on 'Accessibility' link
wait.until(ExpectedConditions.presenceOfElementLocated(
MobileBy.AccessibilityId("Accessibility")));
driver.findElement(MobileBy.AccessibilityId("Accessibil
ity")).click();

// click on 'Accessibility Node Querying' link
wait.until(ExpectedConditions.presenceOfElementLoc
ated(MobileBy.AccessibilityId("Accessibility Node
Querying")));

driver.findElement(MobileBy.
AccessibilityId("Accessibility Node Querying")).
click();

driver.navigate().back();

driver.navigate().back();

//using content-desc
driver.findElement(MobileBy.AndroidUTIAutomator("descrip
tion(\"Accessibility\")")).click();

//close driver

driver.quit();

}

159

CHAPTER 7 * EXECUTING APPIUM WITH CLOUD TEST LABS
3. Execute the program by right-clicking and selecting Run
As » Java Program.

4. Go to the Sauce Labs dashboard called Automated Tests. You
should see one test case execution, as shown in Figure 7-4.

Automated Builds Automated Tests Manual Tests
t.) L Jjob eB04e: 3b! 1105939 O .4
started a few seconds ago by @shankargarg1986

Figure 7-4. Test case execution in the Sauce Labs dashboard

5. Click the test case name in the dashboard to see the test case
details (Figure 7-5).

Q) TestRunning .. © #as © s Team

&) Android Emulator

W Android 4.4

0 ApiDemos-debug

Watch

The video below shows your test executing In real-time
The command list and video controls will be available once the test has completed

Tip: Click on the video to take manual control of the browser.

Loading live video...

Figure 7-5. Test case details while test case is executing

6. Once the test case execution finishes, a video will be loaded,
and you can view the video of the test case (Figure 7-6).

160

CHAPTER 7 © EXECUTING APPIUM WITH CLOUD TEST LABS

? Test Complete © W#aas

Watch Commands Logs Metadata

Take out Trash

Do Laundry

Conquer World

Figure 7-6. Test case details while test case is executing

i0S
Follow these steps:

1. The file upload for the iOS app should return a message like
the one shown in Figure 7-7.

[shankars-sbp:apps sgargs curl —u garg 1 -X POST -H "¢ Type: applicati ean’ http:
|://soucelabs. con/rest/vl/storage/shankargarg1986/TestApp. zipPoverwritest rue ——data-binary @TestApp.zip
|{"username™: “shenkargargi9Bs”, "size”: 36533, “nd5": "191AbBAcTcIIbAIBIRBCABIIAZABCIDT", 11lenane": “Testhpp. zip Fshankars-sbp:spps 5gargs |

Figure 7-7. Terminal output for Sauce Labs file upload

161

CHAPTER 7 * EXECUTING APPIUM WITH CLOUD TEST LABS

Note The file extension for the i0S app is .zip (.app and . ipa files won’t work).

Now you need to create an Appium test case that executes
iOS’s TestApp.zip file on Sauce Labs.

2. Create afile called AppiumSaucelabsIOS in the src/test/
java/appium package in the AppiumRecipesBook project with
the following content:

package appium;

import io.appium.java_client.MobileBy;
import io.appium.java_client.ios.IOSDriver;

import java.net.MalformedURLException;
import java.net.URL;
import java.util.concurrent.TimeUnit;

import org.openga.selenium.remote.DesiredCapabilities;
import org.openga.selenium.support.
ui.ExpectedConditions;

import org.openga.selenium.support.ui.WebDriverhait;

public class AppiumSaucelabsiOS {

public static void main(String[] args) throws
MalformedURLException, InterruptedException {
//Declaring WebDriver variables

I0SDriver driver;

WebDriverWait wait;

// setting capabilities

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("appiumVersion", "1.5.3");
caps.setCapability("deviceName","iPhone 6");
caps.setCapability("platformversion","9.2");
caps.setCapability("platformName"”, "i0S");
caps.setCapability("browserName", "");

caps.setCapability("app", "sauce-storage:TestApp.zip");

// initializing driver object - Sauce Labs

// Replace credentials with yours

driver = new I0SDriver(new URL("http://<<SauceLabs_
UsexName»» : <<SaucelLabs_accessID»>@ondemand.saucelabs.
com:80/wd/hub"), caps);

// initializing waits
driver.manage().timeouts().implicitlyWait(10, TimeUnit.
SECONDS);

wait = new WebDriverWait(driver, 10);

162

CHAPTER 7 © EXECUTING APPIUM WITH CLOUD TEST LABS

//enter data in first text box
wait.until(ExpectedConditions.presenceOfElementLocated(
MobileBy.IosUIAutomation(".textFields()[0]")));
driver.findElement(MobileBy.IosUTAutomation(".
textFields()[0]")).sendKeys("1");

// enter data in second text box
wait.until(ExpectedConditions.presenceOfElementLocated(
MobileBy.IosUIAutomation(".textFields()[1]")));
driver.findElement(MobileBy.IosUIAutomation(".
textFields()[1]")).sendKeys("2");

// click on compute Sum Button driver.
findElement(MobileBy.IosUIAutomation(".buttons().firstwW
ithPredicate(\"name=="ComputeSumButton'\")")).click();
// print value of '2?2?' label
System.out.println(driver.findElement(MobileBy.
TosUIAutomation(".staticTexts().firstWithPredicate(\"na
me=="Answer'\")")).getText());

// close driver
driver.quit();

}
}

3. Execute the program by right-clicking and selecting Run As »
Java Program.

4. Goto the Sauce Labs dashboard called Automated Tests. You
should see one test case execution, as shown in Figure 7-8.

Automated Builds Automated Tests Manual Tests

Figure 7-8. Test case execution in the Sauce Labs dashboard

163

CHAPTER 7 * EXECUTING APPIUM WITH CLOUD TEST LABS

5. Click the test case name in the dashboard to see the test case
details (Figure 7-9).

Automated Builds Automated Tests Manual Tests

™ Unnamed jobs O &92 Running...
started a few seconds ago by Sshankargargi986

Figure 7-9. Test case details while test case is executing

6. Once the test case execution finishes, a video will be loaded
and you can view the video of the test case (Figure 7-10).

Test Complete © @92 more..

Watch Commands Logs Metadata

@ Simulator File Edit Hardware Debug Window Help

@ ' iPhone 6 - iPhone 6 / iOS 9.2 (13C75)
Carrier ¥ 11:51 PM 0

Compute Sum

7?7

show alert cont...t alert locati...alert

Label...

— te..

Figure 7-10. Test case details while test case is executing

164

CHAPTER 7 © EXECUTING APPIUM WITH CLOUD TEST LABS

How It Works

To execute test cases on Sauce Labs, the whole setup can be divided into two parts.

e Sauce Labs setup: You need to register and create an account.
Once you have created an account, you need to note the access
key (an identifier for your account), and you need to upload the
app that can be accessed by Sauce Labs. That’s it.

e Test case changes: The beauty of Appium is that you don’t need to
make any changes in the test case, only in the desired capabilities.

Here’s an example:

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("platformName", "ANDROID");
caps.setCapability("platformVersion", "4.4");
caps.setCapability("deviceName", "Samsung Galaxy Nexus
Emulator");

caps.setCapability("browserName", "");
caps.setCapability("appiumVersion", "1.5.3");

caps.setCapability("app", "sauce-storage:ApiDemos-debug.apk");

For executing test cases on Sauce Labs, the main capabilities are as follows:
e platformName: Specify either 10S or Android.

e platformVersion: This is a specific version of the platform (for
example, for i0S specify 8.0 or 9. 3; for Android, specify 5.0 or
6.0).

e deviceName: Specify which device to use (for example, for iOS
specify iPhone 6; or specify an actual device name such as
Samsung Galaxy S3 for Android).

e app: If you are executing a native app, then specify the location
of the Sauce Labs temporary storage or the URL of the app
somewhere on the Internet.

e browserName: If you are testing mobile web apps (for example, for
i0S Safari or for Android Chrome), the browser name and app are
mutually exclusive.

e appiumVersion: Specify which version of Appium to use for a
particular execution; for example, 1.5.3 is the latest as of writing
this book.

Here is how you define the Appium driver object:
driver = new IOSDriver(new URL("http://<<Saucelabs_

UserName> > : <<SauceLabs_accessID»>@ondemand. saucelabs.com:80/wd/
hub"), caps);

165

CHAPTER 7 * EXECUTING APPIUM WITH CLOUD TEST LABS

Here you are redirecting the Appium execution to Sauce Labs instead of the local
Appium instance.

You can find the entire list of desired capabilities for Sauce Labs here: https://wiki.
saucelabs.com/display/DOCS/Test+Configuration+Options.

You can find the sample list of desired capabilities for Appium and Sauce Labs here:
https://wiki.saucelabs.com/display/DOCS/Examples+of+Test+Configuration+Optio
ns+for+Mobile+Native+Application+Tests.

7-2. Appium on the Testdroid Cloud

Problem

Besides Sauce Labs, Testdroid is another cloud test lab. It provides real devices only, and
you want to execute your test cases on real devices.

Solution

In this recipe, you will register a new user for Testdroid and will execute a native test case
for Android native apps on the Testdroid cloud.

1. First you need to register at Testdroid to create an account. Go
to http://bitbar.com/testing/try-for-free/ to create a
free account.

2. After registering, you will get a verification e-mail. Verify
the account and log in to Testdroid. You will be redirected
to a dashboard (Figure 7-11). The left panel is the menu
dashboard, and the right panel is the execution dashboard.

L ™ BUY NOW X
Propects
mmm‘ e Create time & Tests Device execution status
= el e X EE— ——
| e = .

Figure 7-11. Testdroid dashboard

166

https://wiki.saucelabs.com/display/DOCS/Test+Configuration+Options
https://wiki.saucelabs.com/display/DOCS/Test+Configuration+Options
https://wiki.saucelabs.com/display/DOCS/Examples+of+Test+Configuration+Options+for+Mobile+Native+Application+Tests
https://wiki.saucelabs.com/display/DOCS/Examples+of+Test+Configuration+Options+for+Mobile+Native+Application+Tests
http://bitbar.com/testing/try-for-free/

CHAPTER 7 © EXECUTING APPIUM WITH CLOUD TEST LABS

3. Goto Account Settings and check the subscription plan
(Figure 7-12).

ishboard Projects Reports Device Groups Manual Testing AppCrawler

Subscriptions
You are on Free plan.
You can execute one test run at a time, on free Android and 05 devices

Contact sales@bitbar.com for advanced options

* Changes to subscriptions take some time to activate. If you have made changes that are not yet visible, please refresh the view after a few minutes.

Figure 7-12. Subscription plan

4. Gotohttps://cloud.testdroid.com/#service/
devicegroups and check the devices available for a trial
subscription (Figures 7-13 and 7-14). Check the devices in the
free Android category and the free iOS category and note the
names. These will be used in the test case.

Device Groups

Figure 7-13. Devices for trial plan

167

https://cloud.testdroid.com/#service/devicegroups
https://cloud.testdroid.com/#service/devicegroups

CHAPTER 7 * EXECUTING APPIUM WITH CLOUD TEST LABS

Free Android devices

LG Google Nexus 5 6.0 -EU

ANDROID 6.0
ARMVT

LG Google Nexus 5 6.0.1 -US
ANDROID 6.0.1

LG Google Nexus 5 DB20 5.0

ANDROID 5.0
ARMVT

Figure 7-14. Free Android devices

5. Now you need to write down the access key for your account.
This access key acts as an identifier for your account.

a. Inthe Testdroid dashboard, mouse over your name and
click “Account information.”

b. Go to the API key in the right panel. Write down the
access key (Figure 7-15).

168

CHAPTER 7 © EXECUTING APPIUM WITH CLOUD TEST LABS

Personal info

Something about you
Let us better know each other

Name * Shankar

E-mail shnakey.garg@gmail.com

Notifications m Never On failure

Phone * 9873842038

Time zone :
Password Change password

Default view | projects v
JIRA Connect to JIRA

API key [oeissruanie ety S e s s Reset AP| key

* required information

Figure 7-15. API key in the Testdroid dashboard

6.

Go to the Testdroid dashboard, and in the left panel, create
two projects (Figure 7-16).

a.

b.

Create Appiumbook with a type of Appium Android.

Create AppiumBookios with a type of Appium iOS.

169

CHAPTER 7 * EXECUTING APPIUM WITH CLOUD TEST LABS

ihboard Projects Reports Device Groups

Projects

i\lew project name

Demo Project o

Android

Figure 7-16. Project in the Testdroid dashboard

7. Testdroid needs a reference to the application under test. You
are going to use the Testdroid temporary storage, so please
refer to http://testdroid.com/news/appium-testdroid-
cloud-2 for all the required information.

Android

Follow these steps:

1. The command for uploading the app to Testdroid temporary
storage is as follows:

curl -s --user <<testdroid UserName>>:<<testdroid_
password>> -F myAppFile=@"<<absolute_File_path>>"
"http://appium.testdroid.com/upload"

Here’s what this code means:
TESTDROID_USERNAME: This is the Testdroid username.
TESTDROID_PASSWORD: This is the Testdroid password.

ABSOLUTE_FILE_PATH: This is the absolute location of the file
that you want to upload.

Note Down myappfile from upload response.

170

http://testdroid.com/news/appium-testdroid-cloud-2
http://testdroid.com/news/appium-testdroid-cloud-2

CHAPTER 7 © EXECUTING APPIUM WITH CLOUD TEST LABS

The file upload should return a message like Figure 7-17.

shankars—sbp: apps SQargh Curl -5 —user shnakey.garg@gmall.conswilestl —F myAppF | le=g" Ap iDemos-debug. apk” “http://appium. testdrold. com/uplosd”
("status”:0,"sessionld”: "af9del10f -cddf—dcae-ad94-4cB6a53e7552", “va lue”: {"message” :"wploads successful”,“uploadCount”:1,"rejectCount”:0, "expiresin
~11800,"uploads™ ! {“myAppF ile” : "ar9de101-C00T ~4Cae-a494-4cB6253¢ 7552 /Ap 1Demos ~dedug . apk™ } , " rejects”: {}} }shankars-sbp: apps sgargs ||

Figure 7-17. Terminal output for Testdroid file upload

Now you need to create an Appium test case that executes
Android’s ApiDemos -debug. apk file on Testdroid.

2. Create afile called AppiumTestDroidAndroid in the src/test/
java/appium package in the AppiumRecipesBook project with
the following content:

package appium;

import io.appium.java_client.AppiumDriver;
import io.appium.java_client.MobileBy;
import io.appium.java_client.android.AndroidDriver;

import java.net.MalformedURLException;
import java.net.URL;
import java.util.concurrent.TimeUnit;

import org.openga.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.support.
ui.ExpectedConditions;

import org.openqa.selenium.support.ui.WebDriverWait;

public class AppiumTestDroidAndroid {

public static void main(String[] args) throws
MalformedURLException, InterruptedException {
//Declaring WebDriver variables

AppiumDriver driver;

WebDriverWait wait;

// setting capabilities
DesiredCapabilities capabilities = new
DesiredCapabilities();

capabilities.setCapability("deviceName",
"AndroidDevice");
capabilities.setCapability("testdroid target",
"Android");
capabilities.setCapability("testdroid apiKey",
"<<API_Key>>");
capabilities.setCapability("testdroid_project”,
"AppiumBook™);

171

CHAPTER 7 * EXECUTING APPIUM WITH CLOUD TEST LABS

172

capabilities.setCapability("testdroid_testrun”,
"Android Run 1");

capabilities.setCapability("testdroid_device", "LG
Google Nexus 5 6.0.1 -US");
capabilities.setCapability("testdroid_app", "af9de1of-
cddf-4cae-a494-4c86a53e7552/ApiDemos-debug.apk");

// initializing driver object - TestDroid

driver = new AndroidDriver(new URL("http://appium.
testdroid.com/wd/hub"), capabilities);

//initializing waits
driver.manage().timeouts().implicitlyWait(10, TimeUnit.
SECONDS) ;

wait = new WebDriverWait(driver, 10);

// click on 'Accessibility' link

wait.until(ExpectedConditions.presenceOfElementLocated(

MobileBy.AccessibilityId("Accessibility")));
driver.findElement(MobileBy.AccessibilityId("Acc
essibility")).click();

// click on 'Accessibility Node Querying' link
wait.until(ExpectedConditions.presenceOfElementLoc
ated(MobileBy.AccessibilityId("Accessibility Node
Querying")));

driver.findElement(MobileBy.
AccessibilityId("Accessibility Node Querying")).
click();

driver.navigate().back();
driver.navigate().back();

//close driver

driver.quit();

}

Execute the program by right-clicking and selecting Run As »
Java Program.

Go to the Testdroid dashboard and select the project
AppiumBook. You should see one test case execution with the
name Android Run 1, as shown in Figure 7-18.

CHAPTER 7 © EXECUTING APPIUM WITH CLOUD TEST LABS

AppiumBook (10) Q X KN
Name Create time + Tests Device execution status
Android Run 1
) . s ==
o ApiDemos-debug,apk £.09.2016 13:25:09 o 11 Hiitia
& Applum
—

Figure 7-18. Test case execution in the Testdroid dashboard

5. Click the blue bar in the dashboard to see the test case details
(Figure 7-19).

VL TN
Android Run 1 © Device statuses (1)
Cresnd vy Sharas & Device & Tests Timebar Devi.
Propect \DUTBO0R AP
o & o \GGooge Nexus 5 6 - e —
foviusns Ao (g ! 0 =™ v VT =
Drvce gros ot gesistie
Language Ingesn ten)
St e 10007016 123500 Lagend m--

Figure 7-19. Test case details while test case is executing

6. Once the test case execution finishes, you will see the data
shown in Figure 7-20.

Device statuses (1)

& Device 4 Tests Timebar Dei.,

o UBGoogNens SE01US 0 -\ g, Sucesded =
Start i 18.09 2016 132500 [l ossttng | Launching] 2ucin |

Figure 7-20. Test case details after test case has finished

173

CHAPTER 7 * EXECUTING APPIUM WITH CLOUD TEST LABS

7. You can click the blue card yet again to see the execution
logs, such as the Appium logs, device logs, and performance
dashboards (Figure 7-21).

Figure 7-21. Test case details and various logss

i0S
Since Testdroid uses real devices for execution, the iOS app needs to be signed to be
executed on real devices. For more information, visit http://docs.testdroid.com/

appium/environment/ and go to the iOS App Requirements section.
For this recipe, you will execute mobile web apps for iOS.

1. Create a file called AppiumTestDroidIOSWeb in the src/test/
java/appium package in the AppiumRecipesBook project with
the following content:

package appium;

import io.appium.java_client.AppiumDriver;
import io.appium.java_client.MobileBy;
import io.appium.java client.ios.IOSDriver;

import java.net.MalformedURLException;
import java.net.URL;
import java.util.concurrent.TimeUnit;

import org.openga.selenium.By;

import org.openga.selenium.remote.DesiredCapabilities;
import org.openga.selenium.support.
ui.ExpectedConditions;

import org.openga.selenium.support.ui.WebDriverhait;

public class AppiumTestDroidIOSWeb {

174

http://docs.testdroid.com/appium/environment/
http://docs.testdroid.com/appium/environment/

CHAPTER 7 © EXECUTING APPIUM WITH CLOUD TEST LABS

public static void main(String[] args) throws
MalformedURLException, InterruptedException {
// Declaring WebDriver variables
AppiumDriver driver;

WebDriverWait wait;

// setting capabilities
DesiredCapabilities capabilities = new
DesiredCapabilities();

capabilities.setCapability("deviceName", "i0S Phone");
capabilities.setCapability("testdroid target",
"safari");
capabilities.setCapability("testdroid_apiKey",
"¢<api_Key>>");
capabilities.setCapability("testdroid_project”,
“AppiumBookI0S");
capabilities.setCapability("testdroid_testrun",
"Appium Run 3");

capabilities.setCapability("testdroid_device",
"iPhone 5c 7.0.4 A1532");
capabilities.setCapability("browserName", "safari");

// initializing driver object - TestDroid
driver = new IOSDriver(new URL("http://appium.
testdroid.com/wd/hub"), capabilities);

// initializing waits
driver.manage().timeouts().implicitlyWait(10, TimeUnit.
SECONDS) ;

wait = new WebDriverWait(driver, 10);

// open github URL
driver.get("https://github.com/");

// click Signup

wait.until(ExpectedConditions.
presenceOfElementLocated(By.linkText("Sign up for
GitHub")));

driver.findElement(By.linkText("Sign up for GitHub")).
click();

// click Create Account
wait.until(ExpectedConditions.presenceOfElementLocated(
MobileBy.id("signup button")));
driver.findElement(MobileBy.id("signup button")).click();

// close driver
driver.quit();

}

175

CHAPTER 7 * EXECUTING APPIUM WITH CLOUD TEST LABS

Execute the program by right-clicking and selecting Run As »

Java Program.

Go to the Testdroid dashboard and select the project

AppiumBookios. You should see one test case execution, as
shown in Figure 7-22.

Name

A Applum

AppiumBooklOS (5)

o BitbanOSSample.ipa

Create time « Tests Device execution status

18.09.2016 13:45:05 " e s

°

Figure 7-22. Test case execution in the Testdroid dashboard

4. Click the test case name in the dashboard and you will see

data like in Figure 7-23.
i Tppium Fun ¥
Appium Run 3 ° Device statuses (1)
Comity Saskar & Device * Tests Time bar Devi
o oo
e ssarasopate - - b D "= s (B
Dncepoe Moot ‘
Lnpage g o

Start eme.

NI 1 RasDS

s |2 T DD

Figure 7-23. Test case details while test case is executing

5. Click the test case name in the dashboard and you will see
data like Figure 7-24.
ppUMBookIOs + Appium Run 3
Appium Run 3 Device statuses (1)

Created by
Project
Applcation
Tests

Device group.
Language
Start time

Shankar

BehariOSSampl_ &

Appium)
Not available
Englsh fen}
18092016 1304505

& Device + Tests Timebar Devi...

. Apple iPhone 5 A14299.2.1 pud

(PRI e] e .o |

Figure 7-24. Test case details while test case has finished

6.

176

You can click the blue card yet again to see the execution
logs, such as the Appium logs, device logs, and performance
dashboards (Figure 7-25).

CHAPTER 7 © EXECUTING APPIUM WITH CLOUD TEST LABS

Wk b Bk 0 -
EIBATIBITE *®

b g s sl

Figure 7-25. Test case details and various logs

How It Works

To execute test cases on Testdroid, the whole setup can be divided into two parts.

Testdroid setup: You need to register and create an account. Once
you have created an account, you need to note the API key (an
identifier for your account), and you need to upload the app to be
accessed by Testdroid.

Test case changes: The beauty of Appium is that you don’t need to
make any changes in the test case, only in the desired capabilities.

Here’s an example:

DesiredCapabilities capabilities = new
DesiredCapabilities();
capabilities.setCapability("deviceName", "i0OS Phone");
capabilities.setCapability("testdroid target",
"safari");
capabilities.setCapability("testdroid_apikKey", "<<api_
Key>>");
capabilities.setCapability("testdroid project",
"AppiumBookIOS");
capabilities.setCapability("testdroid testrun", "Appium
Run 3");
capabilities.setCapability("testdroid device", "iPhone
5c 7.0.4 A1532");
capabilities.setCapability("browserName", "safari");

177

CHAPTER 7 * EXECUTING APPIUM WITH CLOUD TEST LABS

For executing test cases on Testdroid, apart from the generic Appium capabilities,
the following changes need to be made in the test case:

deviceName: Use either AndroidDevice or i0S Phone.

testdroid_target: Specify either 10S, Android, safari, or
chrome.

testdroid_device: Specify which device to use and get device
names from https://cloud.testdroid.com/#service/
devicegroups.

testdroid_app: If you are executing a native app, then specify the
location of the Testdroid temporary storage or specify the browser
in the browserName capability.

testdroid_apiKey: This is the API key for the Testdroid account.

testdroid_project: This is the Testdroid project created for a
particular platform.

testdroid_testrun: This is the Testdroid test run to group
different executions in an Appium project.

Here is how to define the Appium driver object:

driver = new I0SDriver(new URL("http://appium.testdroid.com/wd/hub"),
capabilities);

Here you specify to redirect the Appium execution to Testdroid instead of local

execution.

You can find the list of desired capabilities for Testdroid here: http://help.
testdroid.com/customer/portal/articles/1507074-testdroid -desired-
capabilities.

178

https://cloud.testdroid.com/#service/devicegroups
https://cloud.testdroid.com/#service/devicegroups
http://help.testdroid.com/customer/portal/articles/1507074-testdroid_-desired-capabilities
http://help.testdroid.com/customer/portal/articles/1507074-testdroid_-desired-capabilities
http://help.testdroid.com/customer/portal/articles/1507074-testdroid_-desired-capabilities

Index

A

Accessibility ID
Android, 30-31
elements, 33
end users, 33
generic locator strategies, 30
i0S, 32
name/content-desc attribute, 33
Android
AppiumAndroid native node
registration, 132
Appium node session, 132, 135
emulator, 135
file Creation, 131
native apps, 134
node details, 133
replacing, 134
terminal output, 133
test case execution, 135
Android mobile web elements
ADB inspector, Google.com, 48
build number item, about phone
settings, 44
Chrome ADB plug-in, 44-46, 48
Developer options settings and USB
debugging option, 45
Discovering USB devices, 46
screencast icon, 47
USB debugging, 44
AndroidUIAutomator
Android, 36
API Demo Android application, 36
problem, 35
UlSelector, 37
API Demo Android application, 30, 36
ApiDemos-debug.apk file, 158

© Shankar Garg 2016

Appium
capabilities
Android, 13
client level (test case), 17
coding, 16-17
desired capabilities, 18
GUI app, 12-13
i0oS, 12
problem, 11
server/client level, 11
server level (GUI app/terminal), 17
terminal, 14-15
GUI (see Graphical user interface
(GuD)
mobile automation, 1
NPM (see Node Package Manager
(NPM))
AppiumBase file, 118
AppiumBase.java class, 116-117
AppiumDoctor, 5-6
AppiumDriverBase, 106-107
Appium Inspector, 22, 24
attributes, 23-24
GUI, 20
hierarchy viewer, 23
iOs, 20, 23
Prelaunch Application check box, 21
problem, 19
properties, 22
AppiumNodeConfigAndroid
Native.json, 131
AppiumNodeConfigAndroid
Web.json, 142
AppiumNodeConfiglOSNative.json, 136
AppiumNodeConfiglOSWeb.json, 145
AppiumRecipesBook project, 131, 136
AppiumSampleTestCaseAndroid, 134

179

S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2

INDEX

AppiumSampleTestCaseAndroidWeb, 144
AppiumSampleTestCaselOS, 138
AppiumSampleTestCaselOSWeb, 147
AppiumSauceLabsAndroid, 158-159
AppiumSauceLabsIOS, 162
AppiumTestDroidAndroid, 171-172
AppiumTestDroidIOSWeb, 174
Application programming
interface (API), 68
Automation frameworks, Appium
Android test case execution, 109
AppiumDriverBase, 106-107
CICD tools, 101
creation wizard, project
details, 103-104
integration, 110
Maven, and TestNG,
Android app, 101-102
mvn test, 109
pom.xml file, 105
project structure, 106
SampleTestCase, 108

B

@BeforeSuite, @BeforeTest, 110
Behavior-driven development (BDD), 101
AppiumBase file, 118
AppiumBase.java class, 117
AppiumCucumberPageObject
project, 113
console output, Appium Cucumber
project, 121
cucumber-java and
cucumber-junit, 112
Hooks.java class, 118
iOS app, 111
iOSTestApp.feature file, 114
pom.xml file, 111
problem, 110
RunCukeTest.java file, 114
src/test/resources package, 116
stepdefinition package, 113, 116
updation, 120

C

Chaining of actions, 84
Cloud test labs

Sauce Labs and Testdroid, 155
Continuous development (CD), 101

180

Continuous integration (CI) tool, 101
build number and timestamp, 126
console output, Appium project, 126
GitHub repository and

credentials, 122, 124
Jenkins dashboard, 123
pom.xml and Maven goal, 125
project building, 125
project description, 124
Source Code Management, 124
Cucumberoptions package, 114

D,E,F

Desired capabilities, 11, 18
Device network settings
Android, 99-100
data/airplane and Wi-Fi mode, 98
driver.SetConnection(), 100
Device orientation
Android, 92-93
LANDSCAPE/PORTRAIT, 93
mobile app development, 91
Rotate() function, 93
Domain-specific language (DSL), 122
Drag and drop elements
Android, 82-83
gaming apps, 82
methods, 84

G

GitHub, 122

Graphical user interface (GUI)
Android, 8
AppiumDoctor, 11
i0S, 9
problem, 6

H

Hooks.java class, 118
hubHost, 140
hubPort, 140
Hybrid apps
Android, 61-63
contexts types
native, 68
web view, 69
e-commerce, 61
i0S, 64-66

i0OS mobile web elements
properties, 38
Safari
Develop menu, 40
Google.com, 42-43
iOS simulator option, 41
plug-in, 43
Show Develop menu in
menu bar, 39
Web Inspector, 38
web site opened in the
simulator, 42
Web Inspector, 43
iOS node
Appium grid architecture, 140
AppiumNodeConfigIOS
Native.json, 136
Appium node registration, 137
AppiumSampleTest
CaselOS, 138
config.json, 140
configuration, 141
creation, new session, 139
grid setup, 136
node details, 138
Selenium Grid registering, 137

/src/test/resources/AppiumConfig

folder, 137
test case execution, 139
iOSTestApp.feature file, 114
i0OSTestAppSD.java, 116
iOSUTAutomation
Appium Inspector, 33

AppiumSampleTestCaseiOS class, 34

compute Sum button, 34
element-finding strategy, 35
i0S, 34

XPath expressions, 33, 35

J, K

JavaScript Object Notation (JSON), 11

L

Lock and unlock devices
Android, 97-98
driver.lockDevice(), 98
driver.unlockDevice(), 98
problem, 96

INDEX

Mobile elements

GitHub repository, 19
principles, 19

Mobile web apps

Android, 56-57

browserName, 61

Chrome and Google Play store
apps, 56

i0S, 58-60

smartphones, 56

web sites, 56

Mobile web automation

Android
Android test case execution, 145
Appium Android node
registration, 143
Appium node console output, 144
Appium node session, 143
AppiumSampleTestCase
AndroidWeb, 144
creation, 142
peplacing, 144
Selenium Grid response, 143-144
Selenium Grid terminal
output, 143
ioS
AppiumSampleTestCaseIOSWeb,
147
console output, 146
creation, 145-146
iOS test case execution, 148
Selenium Grid registering, 147-148
problem, 141

Mobility

automating gestures, 77
functions, 77

mvn test, 110

N, O

Native apps
Android, 94-95

ApiDemos-debug, 50-52
sample test case, 52
capabilities, 55

driver.closeApp(), 96
driver.installApp(), 96
driver.removeapp(), 96

installing, upgrading and deleting

applications, 93

181

INDEX

Native apps (cont.)
i0S
sample test case, 55
TestApp, 52-54
launch, close, install and remove, 96
mobile automation, 49-50
Ul elements, 55
nodeconfig AppiumNodeConfigAndroid
Nexusl10.json, 151
Node Package Manager (NPM)
and node, 2
Appium server, 5
downloaded packages list, 3-4
problem, 1
server running, 5

PQ

Page object model (POM), 118-119
pom.xml file, 110

R

Real devices
Android
API-Demos, 73

AppiumSampleTestCaseAndroid

class, 73
build number setting, 70
Developer options setting, 71
PdaNet, 72
terminal, 73
USB debugging setting, 69, 72
emulators and simulators, 69
i0S
AppiumRecipesBook project, 74
coding, 75
implicit and explicit wait
initialization, 74
provisioning profiles, 74
sample test case, 76
UDID, 74, 76
traditional mobile automation
tools, 69
RunCukeTest.java file, 114

S

SampleTestCase, 108
Sauce Labs, 129
access key, 157

182

Android
AppiumSauceLabsAndroid,
158-159
file upload, 158
Java Program., 160
temporary storage, 157
test case execution, 160-161
Appium driver object, 165
Appium execution, 166
dashboard, 156
ios, 161-164
problem, 155
register, 156
setup, 165
temporary storage, 157
test case changes, 165
Selenium grid, 1
Android Appium sessions, 152
android devices, 149
Appium node session, 151
AppiumTestCaseNexus 5, 153
AppiumTestCaseNexus10, 152-153
creation, config file, 150-151
local infrastructure vs. cloud lab, 129
native app automation
Android and iOS platforms, 130
grid console, 131
problem, 129
terminal output, 130
problem, 149
Sauce Labs and Testdroid, 129
Software development kit (SDK), 25
/src/test/resources/AppiumConfig
folder, 137
src/test/resources package, 106, 116
stepdefinition package, 113
Swiping and scrolling
Android, 84-85, 87
i0S, 87-90
mobility, 84
Swipe() function
attributes, 91
syntax, 90
web element, 84

-

Tap mobile elements
Android, 78-81
Appium, 78
tap(fingers, element, duration), 81

tap(fingers, x, y, duration), 81
TouchAction class, 81
web automation, 78
TestApp.zip file, 162
Testdroid cloud
account information, 168
Android
file upload, 171
temporary storage, 170
test case details, 173-174
API key, 168-169
Appiumbook, 169
AppiumBookios, 169
Appium driver object, 178
dashboard, 166
devices, trial plan, 167
free Android devices, 167-168
i0S, 174-176
problem, 166

INDEX

register, 166
subscription plan, 167
Test case changes, 177
Testdroid setup, 177

UVWXY,Z

UI Automator Viewer, 26

Appium

Inspector, 25
attributes, 29-30
default screen, 27
emulator, 30
problem, 25
properties, 28
steps, 25

User interface (UI), 7

built-in utility, 20
utils package, 116-117

183

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Getting Started with Appium
	1-1. Install Appium via NPM
	Problem
	Solution
	How It Works

	1-2. Run Appium via a GUI App
	Problem
	Solution
	How It Works

	1-3. Understand Capabilities in Appium
	Problem
	Solution
	Capabilities via a GUI App
	Capabilities via a Terminal
	Capabilities via Code

	How It Works

	Chapter 2: Finding Mobile Elements
	2-1. Traverse with Appium Inspector
	Problem
	Solution
	How It Works

	2-2. Explore UI Automator Viewer
	Problem
	Solution
	How It Works

	2-3. Find Elements by Their Accessibility ID
	Problem
	Solution
	Android
	iOS

	How It Works

	2-4. Find Elements Using iOSUIAutomation
	Problem
	Solution
	How It Works

	2-5. Find Elements Using AndroidUIAutomator
	Problem
	Solution
	How It Works

	2-6. Inspect iOS Mobile Web Elements
	Problem
	Solution
	How It Works

	2-7. Inspect Android Mobile Web Elements
	Problem
	Solution
	How It Works

	Chapter 3: Automating Different Apps
	3-1. Native Apps
	Problem
	Solution
	Android App: ApiDemos-debug
	iOS App: TestApp

	How It Works

	3-2. Mobile Web Apps
	Problem
	Solution
	Android
	iOS

	How It Works

	3-3. Hybrid Apps
	Problem
	Solution
	Android
	iOS

	How It Works

	3-4. Real Devices
	Problem
	Solution
	Android
	iOS

	How It Works

	Chapter 4: Automating Mobility
	4-1. Tap Mobile Elements
	Problem
	Solution
	Android

	How It Works

	4-2. Drag and Drop Elements
	Problem
	Solution
	Android

	How It Works

	4-3. Swipe and Scroll
	Problem
	Solution
	Android
	iOS

	How It Works

	4-4. Manage Device Orientation
	Problem
	Solution
	Android

	How It Works

	4-5. Install and Uninstall Native Apps
	Problem
	Solution
	Android

	How It Works

	4-6. Lock and Unlock Devices
	Problem
	Solution
	Android

	How It Works

	4-7. Manage Device Network Settings
	Problem
	Solution
	Android

	How It Works

	Chapter 5: Creating Automation Frameworks Using Appium
	5-1. Create an Automation Framework with Appium, Maven, and TestNG
	Problem
	Solution
	How It Works

	5-2. Create a BDD Framework with Appium, Cucumber, and the Page Object Model
	Problem
	Solution
	How It Works

	5-3. Conduct Continuous Automated Testing with Appium, Git, and Jenkins
	Problem
	Solution
	How It Works

	Chapter 6: Integrating Appium with Selenium Grid
	6-1. Appium with Selenium Grid for Native App Automation
	Problem
	Solution
	Android
	iOS

	How It Works

	6-2. Appium with Selenium Grid for Mobile Web Automation
	Problem
	Solution
	Android
	iOS

	How It Works

	6-3. Appium with Selenium Grid for Two Android Sessions on the Same Machine
	Problem
	Solution
	How It Works

	Chapter 7: Executing Appium with Cloud Test Labs
	7-1. Appium on the Sauce Labs Cloud
	Problem
	Solution
	Android
	iOS

	How It Works

	7-2. Appium on the Testdroid Cloud
	Problem
	Solution
	Android
	iOS

	How It Works

	Index

