
Appium
Recipes

—
Shankar Garg

www.allitebooks.com

http://www.allitebooks.org

 Appium Recipes

 Shankar Garg

www.allitebooks.com

http://www.allitebooks.org

Appium Recipes

Shankar Garg
Gurgoan, Haryana
India

ISBN-13 (pbk): 978-1-4842-2417-5 ISBN-13 (electronic): 978-1-4842-2418-2
DOI 10.1007/978-1-4842-2418-2

Library of Congress Control Number: 2016959550

Copyright © 2016 by Shankar Garg

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: James Markham
Technical Reviewer: Unmesh Gundecha
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Sanchita Mandal
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com . For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/ . Readers can also access source code
at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

 To my loving wife Shanu Garg.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author .. ix

About the Technical Reviewer .. xi

Introduction .. xiii

 ■Chapter 1: Getting Started with Appium ... 1

 ■Chapter 2: Finding Mobile Elements ... 19

 ■Chapter 3: Automating Different Apps .. 49

 ■Chapter 4: Automating Mobility ... 77

 ■Chapter 5: Creating Automation Frameworks Using Appium 101

 ■Chapter 6: Integrating Appium with Selenium Grid 129

 ■Chapter 7: Executing Appium with Cloud Test Labs 155

Index .. 179

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author .. ix

About the Technical Reviewer .. xi

Introduction .. xiii

 ■Chapter 1: Getting Started with Appium ... 1

1-1. Install Appium via NPM .. 1

1-2. Run Appium via a GUI App.. 6

1-3. Understand Capabilities in Appium .. 11

 ■Chapter 2: Finding Mobile Elements ... 19

2-1. Traverse with Appium Inspector... 19

2-2. Explore UI Automator Viewer ... 25

2-3. Find Elements by Their Accessibility ID ... 30

2-4. Find Elements Using iOSUIAutomation .. 33

2-5. Find Elements Using AndroidUIAutomator 35

2-6. Inspect iOS Mobile Web Elements ... 38

2-7. Inspect Android Mobile Web Elements ... 44

 ■Chapter 3: Automating Different Apps .. 49

3-1. Native Apps .. 49

3-2. Mobile Web Apps ... 56

3-3. Hybrid Apps .. 61

3-4. Real Devices .. 69

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

viii

 ■Chapter 4: Automating Mobility ... 77

4-1. Tap Mobile Elements .. 78

4-2. Drag and Drop Elements ... 82

4-3. Swipe and Scroll .. 84

4-4. Manage Device Orientation .. 91

4-5. Install and Uninstall Native Apps ... 93

4-6. Lock and Unlock Devices ... 96

4-7. Manage Device Network Settings ... 98

 ■Chapter 5: Creating Automation Frameworks Using Appium 101

5-1. Create an Automation Framework with Appium, Maven,
and TestNG .. 101

5-2. Create a BDD Framework with Appium, Cucumber, and the Page
Object Model ... 110

5-3. Conduct Continuous Automated Testing with Appium, Git,
and Jenkins ... 122

 ■Chapter 6: Integrating Appium with Selenium Grid 129

6-1. Appium with Selenium Grid for Native App Automation129

6-2. Appium with Selenium Grid for Mobile Web Automation 141

6-3. Appium with Selenium Grid for Two Android
Sessions on the Same Machine .. 149

 ■Chapter 7: Executing Appium with Cloud Test Labs 155

7-1. Appium on the Sauce Labs Cloud .. 155

7-2. Appium on the Testdroid Cloud .. 166

Index .. 179

www.allitebooks.com

http://www.allitebooks.org

ix

 About the Author

 Shankar Garg is an Agile enthusiast with expertise in
automation testing. He started as a Java developer, but
his love for breaking things got him into testing. He has
worked on the automation of many projects using web,
mobile, and SOA technologies. Right now, he is in love
with Cucumber, Selenium, Appium, and Groovy.

 He is a Certified Scrum Master (CSM), Certified
Tester (ISTQB), and Certified Programmer for Java
(SCJP 5.0) and Oracle 9 i (OCA).

 He is the author of Cucumber Cookbook
(https://www.packtpub.com/web-development/
cucumber-cookbook). You can find him online

at https://shankargarg.wordpress.com/ and https://in.linkedin.com/in/
shnakeygarg .

www.allitebooks.com

https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://shankargarg.wordpress.com/
https://in.linkedin.com/in/shnakeygarg
https://in.linkedin.com/in/shnakeygarg
http://www.allitebooks.org

xi

 About the Technical
Reviewer

 Unmesh Gundecha has a master’s degree in software
engineering and more than 15 years of experience in
agile software development, test automation, and
technical QA. He is an agile, open source, and DevOps
evangelist with rich experience in a diverse set of tools
and technologies. Currently, he is working as an
automation architect for a multinational company in
Pune, India. Unmesh is the author of Selenium Testing
Tools Cookbook and Learning Selenium Testing Tools
with Python .

www.allitebooks.com

http://www.allitebooks.org

xiii

 Introduction

 Appium is an amazing tool that offers a cutting-edge platform for implementing mobile
test automation. In fact, Appium’s ability to implement test automation for both Android
and iOS platforms has made it very popular.

 The 30 recipes in this book take you on a learning journey. You will start with
basic concepts such as how to start the Appium server, then you will move to advanced
concepts such as using iOSUIAutomator locator strategies and integrating with Selenium
Grid and Jenkins, and finally you will learn to run Appium test cases on cloud labs.

 Each chapter has multiple recipes with the first recipe introducing the concepts of that
chapter and the later recipes increasing in complexity as you progress with the chapter.

 What You Need for This Book
 Before starting with Appium, let’s make sure you have all the necessary software installed.

 The prerequisites for Appium are as follows:

• Appium.dmg (Mac)/ Appium.exe (Windows) (https://bitbucket.
org/appium/appium.app/downloads/)

• Node and NPM

• For iOS (http://blog.teamtreehouse.com/install-node-
js-npm-mac)

• For Windows (www.qoncious.com/questions/install-and-
run-nodejs-windows)

• For Android:

• Android SDK API, version 17 or newer (http://developer.
android.com/sdk/index.html)

• Genymotion Android Emulator (https://www.genymotion.
com/)

www.allitebooks.com

https://bitbucket.org/appium/appium.app/downloads/
https://bitbucket.org/appium/appium.app/downloads/
http://blog.teamtreehouse.com/install-node-js-npm-mac
http://blog.teamtreehouse.com/install-node-js-npm-mac
http://www.qoncious.com/questions/install-and-run-nodejs-windows
http://www.qoncious.com/questions/install-and-run-nodejs-windows
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
https://www.genymotion.com/
https://www.genymotion.com/
http://www.allitebooks.org

■ INTRODUCTION

xiv

• For iOS:

• MacOS: 10.10 or 10.11.1 recommended

• Xcode: 6.0 or 7.1.1 recommended (https://developer.
apple.com/xcode/download/)

• Apple Developer Tools (iPhone simulator SDK, command-
line tools) and the iOS simulator, version 9.0 or newer

• Java 7 (www.oracle.com/technetwork/java/javase/downloads
/index.html)

• Eclipse version 4.4.2 or newer (www.eclipse.org/downloads/)

• Maven (https://maven.apache.org/download.cgi)

• The Eclipse-Maven plug-in (https://marketplace.eclipse.
org/content/maven-integration-eclipse-luna-and-newer)

• The Eclipse-TestNG plug-in (https://marketplace.eclipse.
org/content/testng-eclipse)

• Jenkins (https://jenkins-ci.org/)

• Git-scm (https://git-scm.com/downloads)

 This book was written with the assumption that you already have some experience
with mobile testing and mobile automation using Appium. If you’re new to mobile
automation, you should head over to my blog first to understand the landscape of mobile
testing and automation. Here are some pointers:

• Set up the Android software development kit (SDK) and Android
emulators.

• https://shankargarg.wordpress.com/2016/02/25/
setup-android-sdk-and-android-emulators/

• Set up the Genymotion Android emulators on Mac OS.

• https://shankargarg.wordpress.com/2016/02/25/
setup-genymotion-android-emulators-on-mac-os/

• Install Xcode, command-line tools, and iOS simulators on Mac.

• https://shankargarg.wordpress.com/2016/02/29/
how-to-install-xcode-command-line-tools-and-ios-
simulators-on-mac/

• Create an Appium project by integrating Appium, Eclipse, Maven,
and TestNG.

• https://shankargarg.wordpress.com/2016/02/25/
create-an-appium-project-by-integrating-appium-
eclipse-maven-testng/

https://developer.apple.com/xcode/download/
https://developer.apple.com/xcode/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
https://maven.apache.org/download.cgi
https://marketplace.eclipse.org/content/maven-integration-eclipse-luna-and-newer
https://marketplace.eclipse.org/content/maven-integration-eclipse-luna-and-newer
https://marketplace.eclipse.org/content/testng-eclipse
https://marketplace.eclipse.org/content/testng-eclipse
https://jenkins-ci.org/
https://git-scm.com/downloads
https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-emulators-on-mac-os/
https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-emulators-on-mac-os/
https://shankargarg.wordpress.com/2016/02/29/how-to-install-xcode-command-line-tools-and-ios-simulators-on-mac/
https://shankargarg.wordpress.com/2016/02/29/how-to-install-xcode-command-line-tools-and-ios-simulators-on-mac/
https://shankargarg.wordpress.com/2016/02/29/how-to-install-xcode-command-line-tools-and-ios-simulators-on-mac/
https://shankargarg.wordpress.com/2016/02/25/create-an-appium-project-by-integrating-appium-eclipse-maven-testng/
https://shankargarg.wordpress.com/2016/02/25/create-an-appium-project-by-integrating-appium-eclipse-maven-testng/
https://shankargarg.wordpress.com/2016/02/25/create-an-appium-project-by-integrating-appium-eclipse-maven-testng/

■ INTRODUCTION

xv

 These blogs will help you set up your system for mobile automation and run a basic
Appium project.

 Code Repository
 All the code explained in this book is committed on GitHub at https://github.com/
ShankarGarg/AppiumBook.git

• AppiumBookBlog : Project used in the blogs mentioned earlier to
get you started with Appium, Eclipse, TestNG, and Maven and in
Chapter 5

• AppiumRecipesBook : Project used in Chapters 1 to 7 (except
Chapter 5)

• AppiumCucumberPageObject : Project used in Chapter 5

 What This Book Covers
 This book covers the following topics:

• Chapter 1 , “Getting Started with Appium” : This chapter covers
the installation steps for Appium graphical user interface (GUI)
app and also Appium via NPM. You will also learn about the
important concept of desired capabilities for Appium.

• Chapter 2 , “Finding Mobile Elements” : This chapter illustrates
how to use UIAutomatorViewer and Appium Inspector for
finding elements for Android and iOS respectively. You will also
understand mobile platform native locator strategies such as
 AndroidUIAutomator and iOSUIAutomator for Android and iOS,
respectively.

• Chapter 3 , “Automating Different Apps” : This chapter covers
how to run different types of apps such as native, mobile web
and hybrid apps on both Android and iOS. You will also learn to
execute Appium test cases on real devices for Android and iOS.

• Chapter 4 , “Automating Mobility” : This chapter focuses on
Appium’s core ability to automate mobile-specific functions such
as tapping, dragging and dropping, swiping, scrolling and so
on. You will also understand mobile-specific functions such as
locking and unlocking, managing network settings, and so on.

• Chapter 5 , “Creating Automation Frameworks Using Appium” :
This chapter covers how to integrate Appium with TestNG and
Cucumber to create robust test automation frameworks. You
will learn Appium integration with Jenkins and Git to implement
continuous integration (CI)/continuous deployment (CD) pipelines.

https://github.com/ShankarGarg/AppiumBook.git
https://github.com/ShankarGarg/AppiumBook.git
http://dx.doi.org/10.1007/978-1-4842-2418-2_5
http://dx.doi.org/10.1007/978-1-4842-2418-2_1
http://dx.doi.org/10.1007/978-1-4842-2418-2_7
http://dx.doi.org/10.1007/978-1-4842-2418-2_5
https://github.com/ShankarGarg/AppiumBook/tree/master/AppiumCucumberPageObject#AppiumCucumberPageObject
http://dx.doi.org/10.1007/978-1-4842-2418-2_5
http://dx.doi.org/10.1007/978-1-4842-2418-2_1
http://dx.doi.org/10.1007/978-1-4842-2418-2_2
http://dx.doi.org/10.1007/978-1-4842-2418-2_3
http://dx.doi.org/10.1007/978-1-4842-2418-2_4
http://dx.doi.org/10.1007/978-1-4842-2418-2_5

■ INTRODUCTION

xvi

• Chapter 6 , “Integrating Appium with Selenium Grid” : This chapter
covers Appium integration with Selenium Grid to create an in-
premise test infrastructure. You will learn how to execute Appium
test cases on Selenium Grid for Android and iOS for single and
multiple sessions.

• Chapter 7 , “Executing Appium with Cloud Test Labs” : This chapter
covers Appium integration with the cloud test labs Sauce Labs
and Testdroid. You will learn how to execute Appium test cases on
cloud test labs that you don’t have to maintain.

http://dx.doi.org/10.1007/978-1-4842-2418-2_6
http://dx.doi.org/10.1007/978-1-4842-2418-2_7

1© Shankar Garg 2016
S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2_1

 CHAPTER 1

 Getting Started with Appium

 In this chapter, you will learn how to do the following:

• Install Appium via Node Package Manager (NPM)

• Run Appium via a graphical user interface (GUI) app

• Understand capabilities in Appium

 A few years back, mobile automation was an enigma to everyone, but thanks to
Appium, that’s not the case anymore. Appium is capable of automating both Android
apps and iOS apps, so now there’s no need to learn two different tools for two different
platforms. Also, since Appium uses the same terminology as Selenium , the learning
curve is relatively small for anyone who has used Selenium for web automation. For
more information about the basics of Appium, please visit http://appium.io/slate/en/
master/?java#introduction-to-appium .

 This chapter will cover the basics of installing and running an Appium session from
GUI and from the command line. Finally, you will create a sample project to run your first
Appium script.

 1-1. Install Appium via NPM
 Problem
 The Appium team has been working on rewriting Appium in the latest version of
JavaScript, so the team is releasing updated versions of Appium more frequently than
before. You get Appium’s latest build faster via NPM compared to via the GUI app. So, you
need to understand how to run Appium via NPM.

 Solution
 You need the latest stable version of Node.js and NPM. Please check the introduction of
this book to get the URLs for downloading Node.js and NPM.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-2418-2_1) contains supplementary material, which is available to
authorized users.

http://appium.io/slate/en/master/?java#introduction-to-appium
http://appium.io/slate/en/master/?java#introduction-to-appium
http://dx.doi.org/10.1007/978-1-4842-0397-2_1

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

2

 Make sure you have not installed Node or Appium with sudo or you’ll run into
problems. Let’s first check whether you have the latest versions of NPM and Node
installed.

 1. Type the following command in a terminal to check the Node
version:

 node –v

 2. Type the following command in a terminal to check the NPM
version:

 npm –version

 Your terminal output should match Figure 1-1 .

 Figure 1-1. Checking the versions of NPM and Node

 3. Type the following command in a terminal to install the
Appium 1.5.0 release:

 npm install -g appium@1.5.0

 Note:

 1. appium@1.5.0 is to specifically download a particular
version of Appium which is not the latest version.

 2. if you know the latest release of Appium is stable then
you can use the command “npm install -g appium” to
directly install latest version.

 4. Observe the output in the terminal; it should look like
Figures 1-2 through 1-4 .

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

3

 Figure 1-2. Appium download starting

 Figure 1-3. Appium downloading packages

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

4

 5. Wait for NPM to download all the packages for Appium.

 6. Type the following command in a terminal to check the
Appium version:

 appium –v

 7. Type the following command in a terminal to start the
Appium server, as shown in Figure 1-5 :

 appium

 Figure 1-4. Appium downloaded packages list

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

5

 8. If you want to check whether all the dependencies for Appium
are met, then type the following command in a terminal,
which results in Figure 1-6 :

 appium-doctor

 Figure 1-5. Appium server running

 Figure 1-6. AppiumDoctor

 How It Works
 To start the Appium server, first you need to install Appium. NPM is the best package
manager for installing Appium. Using the -g option while installing means Appium will
be installed globally. The command to start the Appium server is appium . The Appium
server is now ready for your use.

 You can use AppiumDoctor to check that Appium installed with the correct
configuration settings. Since Appium can be used for both platforms, the settings are
platform-specific, such as ANDROID_HOME for Android and Xcode for iOS. To check the
platform-specific dependencies, use appium-doctor --ios for iOS and appium-doctor
--android for Android (Figure 1-7).

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

6

 1-2. Run Appium via a GUI App
 Problem
 You are not comfortable running Appium via terminal. Since the Appium team also
supports a GUI app that is available for both the Windows and Mac operating systems,
you want to use the GUI app to run the Appium server.

 Solution
 You need the latest release of the Appium GUI app, which can be downloaded from
 https://bitbucket.org/appium/appium.app/downloads/ . The latest release as of this
writing is 1.5.3. Once the app is downloaded, just follow the prompts to install the app. It’s
a straightforward process.

 Figure 1-7. AppiumDoctor’s platform-specific output

https://bitbucket.org/appium/appium.app/downloads/

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

7

 Figure 1-8. Appium GUI app

 1. Open the GUI app by clicking the app icon. The user interface
(UI) shown in Figure 1-8 appears.

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

8

 Figure 1-9. Appium GUI app, Android

 2. To start the Android server, click the Android icon in the top
menu and click Launch. The Appium server for Android will
start (Figure 1-9).

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

9

 Figure 1-10. Appium GUI app, iOS

 3. To start the iOS server , click the iOS icon in the top menu and
click Launch. The Appium server for iOS will start (Figure 1-10).

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

10

 Figure 1-11. Appium GUI app, checking whether all the dependencies for Appium are met

 4. If you want to check whether all the dependencies for Appium
are met, then click the stethoscope icon in the top-left corner,
as shown in Figure 1-11 .

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

11

 How It Works
 Once the Appium app is installed, you can run the Appium server. All you need to do is
select which platform you want to run the Appium server for and then click Launch. The
appropriate Appium server will be launched.

 The Appium GUI app also supports AppiumDoctor , which helps you check whether
all the dependencies for Appium are set. For this, just click the stethoscope icon in the
top-left menu, and AppiumDoctor will run all the checks and let you know the status in a
terminal window.

 1-3. Understand Capabilities in Appium
 Problem
 Appium is based on Selenium; in a way, it’s an extension of Selenium. Most of the
commands that you use in Selenium work with Appium also (provided those Selenium
commands make sense for mobile automation), so let’s talk about how Appium extends
Selenium.

 Appium works in a client-server architecture. The client (test case) requests features
that a session should support. The client and server use JavaScript Object Notation
(JSON) objects with predefined properties when describing the features that a test
case is asking a session to support. These JSON objects and their properties are called
 desired capabilities . (For more information, please go to http://appium.io/slate/en/
master/?java#about-appium)

 You want to see how to set the desired capabilities for mobile automation.

 Solution
 You can set the desired capabilities at the server level or at the client level . Capabilities at
the server level can be set using the command line or the Appium GUI app, and at client
level they will be set in the test case via code.

http://appium.io/slate/en/master/?java#about-appium
http://appium.io/slate/en/master/?java#about-appium

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

12

 Figure 1-12. Appium iOS capabilities

 Capabilities via a GUI App
 To use the GUI app for iOS, click the iOS icon and choose the capabilities you want, as
shown in Figure 1-12 .

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

13

 To use the GUI app for Android, click the Android icon and choose the capabilities
you want, in Figure 1-13 .

 Figure 1-13. Appium Android capabilities

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

14

 Capabilities via a Terminal
 To choose the capabilities via a terminal, follow these steps:

 1. Open a terminal and type the following command to check all
the capabilities available via a terminal (Figure 1-14):

 appium -help

 Figure 1-14. Appium help via terminal

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

15

 Figure 1-15. Appium Android server via a terminal

 2. Once you know which capabilities you need to set, type the
following command to run the Android server (Figure 1-15):

 appium --platform-name 'iOS' --platform-version
'9.0' --browser-name '' --device-name 'ANDROID'

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

16

 Capabilities via Code
 Review the blog at https://shankargarg.wordpress.com/2016/02/25/create-an-
appium-project-by-integrating-appium-eclipse-maven-testng/ to see how to create
a sample Appium project.

 Then follow these steps:

 1. Use the following code when initializing the Appium driver
object for the iOS capabilities:

 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("browserName", "");
 caps.setCapability("platformVersion", "9.0");
 caps.setCapability("platformName", "iOS");
 caps.setCapability("platform", "MAC");
 caps.setCapability("deviceName", "iPhone 6");

 // relative path to app/ipa file
 final File classpathRoot = new File(System.
getProperty("user.dir"));
 final File appDir = new File(classpathRoot, "src/test/
resources/apps/");

 3. Type the following command to run the iOS server via a
terminal (Figure 1-16):

 appium --platform-name 'iOS' --platform-version '9.0'
--browser-name '' --device-name 'iPhone 6'

 Figure 1-16. Appium iOS server via a command line

https://shankargarg.wordpress.com/2016/02/25/create-an-appium-project-by-integrating-appium-eclipse-maven-testng/
https://shankargarg.wordpress.com/2016/02/25/create-an-appium-project-by-integrating-appium-eclipse-maven-testng/

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

17

 final File app = new File(appDir, " TestApp.app");
 caps.setCapability("app", app.
getAbsolutePath());

 // initializing driver object
 driver = new IOSDriver(new URL("http://127.0.0.1:4723/
wd/hub"), caps);

 2. Use the following code when initializing the Appium driver
object for the Android capabilities :

 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("platform", "ANDROID");
 caps.setCapability("platformVersion", "5.0");
 caps.setCapability("deviceName", "ANDROID");
 caps.setCapability("browserName", "");

 // relative path to apk file
 final File classpathRoot = new File(System.
getProperty("user.dir"));
 final File appDir = new File(classpathRoot, "src/test/
resources/apps/");
 final File app = new File(appDir, "ApiDemos-debug.apk");
 caps.setCapability("app", app.getAbsolutePath());

 // initializing driver object
 driver = new AndroidDriver(new
URL("http://127.0.0.1:4723/wd/hub"), caps);

 How It Works
 Desired capabilities are a set of keys and values (that is, a map or hash) sent to the
Appium server to tell the server what kind of automation session you’re interested in.

 When initiating a Selenium driver, you need to mention the browser that you need to
invoke. Similarly, for Appium you need to mention the platform, such as Android or iOS,
and platform version, such as iOS 9.3 or Android 5.0.

 Desired capabilities can be set at two levels:

• Server level (GUI app or terminal) : Capabilities mentioned while
starting the Appium server will be added to each request unless
they are overridden by the desired capabilities sent by the test
case. For example, if you specify iPhone 6 in the Appium server
and start a generic Appium client without any device, then the
test case will automatically run on iPhone 6.

• Client level (test case) : Capabilities mentioned while initiating the
Appium client will override the capabilities of the Appium server.
For example, if the Appium server has iPad 2 as the device but
you are sending iPhone 6 in the test case request, then the test
cases will run on iPhone 6.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED WITH APPIUM

18

 For an exhaustive list of all capabilities , please refer to https://github.com/appium/
appium/blob/master/docs/en/writing-running-appium/caps.md .

 Table 1-1 lists some of the desired capabilities that you will use most often.

 Table 1-1. Common Desired Capabilities

 Capability Description Values

 platformName Which mobile OS platform to use. iOS , Android , or FirefoxOS

 platformVersion Mobile OS version. Examples: 9.0 , 5.0

 deviceName The kind of mobile device or
emulator to use.

 Examples: ANDROID , iPhone 6

 app The absolute local path or remote
HTTP URL to an .ipa or .apk file,
or a .zip containing one of these.

 Example: /abs/path/to/my.apk

 browserName The name of mobile web browser
to automate. This should be an
empty string if automating an app
instead.

 Safari for iOS
 Chrome , Chromium , or Browser for
Android

 platformName OS platform. iOS , Android

 platformVersion OS version. 9.0 , 9.1 , 8.4 , and so on, for iOS
 5.0 , 6.0 , 4.4 , and so on, for
Android

 deviceName Mobile device ID. iPhone 6 , iPad 2 , and so on,
for iOS
 ANDROID , and so on, for Android

https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/caps.md
https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/caps.md

19© Shankar Garg 2016
S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2_2

 CHAPTER 2

 Finding Mobile Elements

 In this chapter, you will learn how to do the following:

• Traverse with Appium Inspector

• Explore UI Automator Viewer

• Find elements by their accessibility ID

• Find elements using IOSUIAutomation

• Find elements using AndroidUIAutomator

• Inspect iOS mobile web elements

• Inspect Android mobile web elements

 In the previous chapter, you learned how to set up and run Appium, but for mobile
automation, that’s not sufficient. You also need to know how to find mobile elements so
you can interact with those elements to perform desired actions.

 Since Appium is an extension of Selenium, most of the principles of finding elements
in Selenium apply to finding elements in Appium. The only thing that changes is the
context: i.e. mobile. So, in this chapter, you’ll understand how to find mobile elements.

 Before going further, make sure to download the project from the book’s
 GitHub repository : https://github.com/ShankarGarg/AppiumBook/tree/master/
AppiumRecipesBook .

 2-1. Traverse with Appium Inspector
 Problem
 You want to inspect the user interface (UI) of an application to find the layout hierarchy
and view the properties associated with the elements.

https://github.com/ShankarGarg/AppiumBook/tree/master/AppiumRecipesBook
https://github.com/ShankarGarg/AppiumBook/tree/master/AppiumRecipesBook

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

20

 Solution
 With the Appium graphical user interface (GUI) app , you can use a built-in utility Appium
Inspector to find elements for native iOS apps.

 1. In Appium’s iOS Settings, provide the path of the iOS app
that you want to find elements for (Figure 2-1). A sample
iOS app is saved in the src/test/resources/apps/ folder
of the code that you have checked out for this chapter
(AppiumRecipesBook).

 Figure 2-1. App path of the .app file for iOS

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

21

 ■ Note If Prelaunch Application is not selected, Appium will launch the app when you
click the Appium Inspector icon.

 3. Click the Launch button to launch the Appium server. Wait for
the Appium server to start and wait for Appium to launch the
iOS simulator with the desired app opened.

 4. Click the magnifying glass icon in the top-left corner in the
Appium GUI app (Figure 2-3). The Appium Inspector window
will open with the application’s current state captured.

 Figure 2-2. Selecting the Prelaunch Application check box

 2. In Appium’s General Settings, select the Prelaunch
Application check box, as shown in Figure 2-2 .

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

22

 5. Now you want to find the properties of the first text box
available onscreen. Double-click the element on the screen in
the right panel in the Appium Inspector window.

 6. Once you select the element in the right panel, all the
properties of that element will be displayed in the middle
panel, and the hierarchy will be displayed in the left panel, as
shown in Figure 2-4 .

 Figure 2-3. Appium Inspector

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

23

 7. For this particular text field, you can check the attributes such
as name , type , label , xpath , and so on, and you can use these
attributes in test scripts.

 8. You can select elements in the hierarchy viewer , and they will
be selected in the right panel.

 Figure 2-4. Element properties in iOS

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

24

 9. Now if you select the third element from the bottom in the
 [UIAwindow] area, then details of that element will be visible
in the middle panel, and that element will also be selected in
the right panel, as shown in Figure 2-5 .

 Figure 2-5. Appium Inspector details

 How It Works
 You can access Appium Inspector by clicking the magnifying glass icon next to the
Launch button. The Appium server must be running with an app open or Appium
Inspector will not work. Once Appium Inspector is up, then you can select an element to
check its various attributes such as name , value , xpath , and so on.

 Appium Inspector is used to accomplish the following:

• Identify and understand the element hierarchy

• Find attributes of the element/object

• Record your manual actions with the app

 ■ Note Appium Inspector is best suited for iOS native apps. For Android native apps, you
will use UI Automator Viewer, which I will cover in the next recipe.

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

25

 2-2. Explore UI Automator Viewer
 Problem
 Although Appium has a built-in utility Appium Inspector for identifying elements ,
it does not work properly and efficiently for Android native apps. You want to use
UIAutomatorViewer to find elements in an Android native app.

 Solution
 To use UI Automator Viewer, the Android software development kit (SDK) must be
installed, and the path must be updated for the Android SDK.

 ■ Note For more information on this topic, please follow these instructions:

 https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-
emulators/

 https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-
emulators-on-mac-os/

 For Android native apps, you can use UI Automator Viewer by following these steps :

 1. Open the Genymotion emulator and install the
 ApiDemos-debug.apk app on it.

 2. Go to the location where you downloaded the Android SDK,
go to the Tools folder, and double-click uiautomatorviewer .

 Or, if the Android SDK path is set, go to a terminal, type
 uiautomatorviewer , and press Enter.

https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-emulators-on-mac-os/
https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-emulators-on-mac-os/

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

26

 Figure 2-6. UI Automator Viewer

 Your screen should match Figure 2-6 .

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

27

 3. Clicking the devices icon on the left takes a snapshot of the
screen that’s open on the device/emulator, as shown in
Figure 2-7 .

 Figure 2-7. UI Automator Viewer default screen

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

28

 4. Now you want to find properties of the Accessibility button
(the first option available on the screen). Double-click the
element on the screen in the left panel in the UI Automator
Viewer window.

 5. Once you select the element in the left panel, all the
properties of that element will be displayed in the bottom-
right panel, and the hierarchy will be displayed in top-right
panel, as shown in Figure 2-8 .

 Figure 2-8. UI Automator Viewer details screen

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

29

 6. For this particular field, you can check the attributes such as
 text , resource-id , class , content-desc , and so on, and you
can use these attributes in test cases.

 7. You can select elements in the hierarchy viewer also. They
will be selected in the left panel, and their properties will be
displayed in the bottom-right panel.

 8. Now if you select the second TextView in the top-right
window (Figure 2-9), you will see details of that element in the
bottom-right panel; that element will also be selected in the
left panel.

 Figure 2-9. UI Automator Viewer details screen

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

30

 How It Works
 UI Automator Viewer is an inspector tool provided by Google that lets you inspect the
UI of an application to find the layout hierarchy and view the properties associated with
the controls. It will work only if an emulator/device is live and an app is opened in the
 emulator . Once UI Automator Viewer is up, then a particular element can be selected to
check its various attributes such as resource-id , class , and so on.

 2-3. Find Elements by Their Accessibility ID
 Problem
 To interact with elements to perform actions, you need to first find the elements. Since
Appium extends Selenium, all generic locator strategies such as name , id , xpath , and so
on, are available in Appium, and these can be used effectively in Appium. In this book,
you will focus on locator strategies specific to Appium.

 Accessibility ID is one strategy that is available for both the Android and iOS
platforms and is very stable. Let’s understand to use accessibility ID to find elements.

 Solution

 Android
 As explained in the previous recipe, you can use UI Automator Viewer for the API Demo
Android application.

 1. Select any element in the left panel and observe the t ext and
c ontent-desc properties in the bottom-right panel, as shown
in Figure 2-10 .

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

31

 Figure 2-10. Accessibility ID for Android

 2. In the AppiumRecipesBook project, go to the
 AppiumSampleTestCaseAndroid class and use the following
code to interact with the first menu option :

 // click on Accessibility link
 wait.until(ExpectedConditions. presenceOfElementLocated (
MobileBy. AccessibilityId ("Accessibility")));
 driver.findElement(MobileBy. AccessibilityId ("Accessibil
ity")).click();

 // click on 'Accessibility Node Querying' link
 wait.until(ExpectedConditions. presenceOfElementLoc
ated (MobileBy. AccessibilityId ("Accessibility Node
Querying")));
 driver.findElement(MobileBy. AccessibilityId ("Accessibil
ity Node Querying")).click();

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

32

 iOS
 As explained in the previous recipe, let’s use Appium Inspector for the TestApp iOS
application.

 1. Select the first text box in the right panel and observe the name
properties in the middle panel, as shown in Figure 2-11 .

 Figure 2-11. Accessibility ID for iOS

 2. In the AppiumRecipesBook project, go to the
 AppiumSampleTestCaseiOS class and use the following code to
interact with the two text boxes present in the app:

 //enter data in first text box
 wait.until(ExpectedConditions. presenceOfElementLocated
(MobileBy. AccessibilityId ("TextField1")));
 driver.findElement(MobileBy. AccessibilityId ("TextFie
ld1")).sendKeys("AppiumBook");

 //enter data in second text box
 wait.until(ExpectedConditions. presenceOfElementLocated
(MobileBy. AccessibilityId ("TextField2")));
 driver.findElement(MobileBy. AccessibilityId ("TextFie
ld2")).sendKeys("First TC");

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

33

 How It Works
 Accessibility identifiers are identifiers that app developers attach to important elements
so that people with disabilities can meaningfully interpret the UI. So, you can expect that
most of the elements that are important to end users will have an accessibility identifier
defined, thus making it one of the best candidates of locator strategies.

 The accessibility ID is generally the name or content-desc attribute of an element.
Since name and t ext remain the same for both the Android and iOS platforms, the same
accessibility ID can be used for both platforms, and therefore you can use one test case
for both platforms.

 At the same time, you need to be cautious because the text / name field can change
a lot during the app life cycle, which will break both the Android and iOS test cases.
However, ideally one fix should fix both test cases.

 ■ Note Some developers have used the name locator strategy extensively in their
Appium tests, but it’s deprecated now and soon will be deleted. (See https://discuss.
appium.io/t/why-is-name-locator-strategy-being-depreciated/7106). Thus, it’s
advisable that you replace the name strategy with the accessibility ID.

 2-4. Find Elements Using iOSUIAutomation
 Problem
 Using common strategies for both the Android and iOS platforms has its own advantages,
but accessibility IDs are limited to elements that a user really interacts with such as
buttons. What about elements that do not have any specific ID associated with them such
as search results or catalog options?

 Using XPaths for such elements would be very slow for native apps. You want to use
an iOS-specific strategy called iOSUIAutomation , which is fast and reliable.

 Solution
 As explained in the previous recipe, let’s use Appium Inspector for the TestApp iOS
application.

 1. Select the first text box in the right panel and observe the
properties in the middle panel, as shown in Figure 2-12 .

https://discuss.appium.io/t/why-is-name-locator-strategy-being-depreciated/7106
https://discuss.appium.io/t/why-is-name-locator-strategy-being-depreciated/7106

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

34

 2. Go to the AppiumSampleTestCaseiOS class and use the
following code to interact with the first and second text boxes
present in the app:

 // enter data in first text box
 wait.until(ExpectedConditions. presenceOfElementLocated
(MobileBy. IosUIAutomation (".textFields()[0]")));
 driver.findElement(MobileBy. IosUIAutomation (".
textFields()[0]")).sendKeys("1");

 // enter data in second text box
 wait.until(ExpectedConditions. presenceOfElementLocated
(MobileBy. IosUIAutomation (".textFields()[1]")));
 driver.findElement(MobileBy. IosUIAutomation (".
textFields()[1]")).sendKeys("2");

 3. Use the following code to interact with the Compute Sum
button and then with the “???” label:

 // click on compute Sum Button
 driver.findElement(MobileBy. IosUIAutomation (".
buttons().firstWithPredicate(\"name=='ComputeSumButt
on'\")")).click();
 // print value of ‘???’ label
 System. out .println(driver.findElement(MobileBy. IosUIAut
omation (".staticTexts().firstWithPredicate(\"name=='Ans
wer'\")")).getText());

 Figure 2-12. iOSUIAutomation for iOS

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

35

 How It Works
 iOSUIAutomation is an element-finding strategy powered by Apple specifically for the
iOS platform. Since it is native to iOS, it’s much faster than XPath, and it’s much more
powerful and flexible because it knows more platform-specific elements as compared to a
generic XPath one.

 iOSUIAutomation has predicates that allow you to select a specific element based on
whether a condition is true.

 If you are comfortable with XPath expressions or if you just copy the XPath
expressions given by Appium Inspector, it’s easy to convert XPath expressions to
 iOSUIAutomation . The rule of thumb for such a conversion is that the UIAElementArray
numbering begins at 0, unlike XPath expressions where the index counting starts at 1.
Take a look at these examples of simple expressions:

 XPath : /UIATableView[2]/UIATableCell[@label = 'Olivia'][1]
 iOS predicate : tableViews()[1].cells().firstWithPredicate("label == 'Olivia' ")

 ■ Note You can read more about iOS predicates at http://appium.io/slate/en/
master/?java#ios-predicate .

 2-5. Find Elements Using AndroidUIAutomator
 Problem
 You learned how to use the iOSUIAutomation locator strategy for iOS. Similarly, Let’s
learn to use AndroidUIAutomator for Android native apps.

http://appium.io/slate/en/master/?java#ios-predicate
http://appium.io/slate/en/master/?java#ios-predicate

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

36

 Solution
 As explained in previous recipes, you can use UI Automator Viewer for the API Demo
Android application .

 1. Select any element in the left panel and observe the properties
in the bottom-right panel, as shown in Figure 2-13 .

 Figure 2-13. Android UI Automator for Android

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

37

 2. As described in Chapter 1 , go to the
 AppiumSampleTestCaseAndroid class and use the following
code to interact with the first menu option:

 //using classname and index
 driver.findElement(MobileBy. AndroidUIAutomator ("classNa
me(\"android.widget.TextView\").index(2)")).click();

 //using text filter
 driver.findElement(MobileBy. AndroidUIAutomator ("text(\"
Alarm\")")).click();

 driver.navigate().back();
 driver.navigate().back();

 //using content-desc
 driver.findElement(MobileBy. AndroidUIAutomator
("description(\"Accessibility\")")).click();

 How It Works
 UISelector specifies the elements in the layout hierarchy for native apps, filtered by
properties such as text value, content description, class name, and state information. You
can also target an element by its location in a layout hierarchy using index() , but this
should be considered as a last resort. If there is more than one matching widget, the first
widget in the tree is selected.

 ■ Note You can read more about Android UI Automator and UISelector here: https://
developer.android.com/reference/android/support/test/uiautomator/UiSelector.

html

 and here:

 https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/
uiautomator_uiselector.md

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2418-2_1
https://developer.android.com/reference/android/support/test/uiautomator/UiSelector.html
https://developer.android.com/reference/android/support/test/uiautomator/UiSelector.html
https://developer.android.com/reference/android/support/test/uiautomator/UiSelector.html
https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/uiautomator_uiselector.md
https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/uiautomator_uiselector.md
http://www.allitebooks.org

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

38

 2-6. Inspect iOS Mobile Web Elements
 Problem
 You want to find element properties of native elements for mobile web sites.

 Solution
 The following steps show how you can use the Safari developer plug-in to find iOS mobile
web elements:

 1. In your iOS simulator, go to Settings ➤ Safari ➤ Advanced and
turn on Web Inspector (Figure 2-14).

 Figure 2-14. Mobile Safari setting: Web Inspector

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

39

 2. In Safari on your computer, in the menu bar, click Safari ➤
Preferences ➤ Advanced and select the “Show Develop menu
in menu bar” check box, as shown in Figure 2-15 .

 Figure 2-15. Desktop Safari setting: Show Develop menu in menu bar

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

40

 3. Check whether you can see the Develop menu in the Safari
menu bar (Figure 2-16).

 Figure 2-16. Safari: Develop menu

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

41

 4. If you can see the Develop menu in the menu bar, check
whether you see your iOS simulator or iPhone in the Develop
menu (Figure 2-17).

 Figure 2-17. Safari: iOS Simulator option

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

42

 5. Open Safari in the simulator and then open Google.com
(Figure 2-18).

 6. In Safari on your computer, select Develop ➤ iOS Simulator ➤
 www.google.com , as shown in (Figure 2-19).

 Figure 2-19. Select the web site opened in the simulator in Safari on your computer

 Figure 2-18. Google.com on mobile Safari

http://www.google.com/

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

43

 Safari’s Web Inspector will open, and you can use it to find
elements.

 7. Find the ID of an element using the Safari plug-in. Here is an
example of the Google search page :

 a. Navigate to https://www.google.com on your mobile
Safari browser.

 b. Open Web Inspector and click the Inspect button.

 c. Open the simulator and in mobile Safari click the
element you want to find a locator for.

 d. See that the locator of that element is highlighted in
Safari’s Web Inspector.

 You can now use the highlighted element property (Figure 2-20) in the Appium code.

 Figure 2-20. Safari inspector for Google.com

 How It Works
 The Develop menu option in the desktop version of Safari has an inspector for inspecting
web elements, and the mobile version of Safari has a Web Inspector setting. When you
use both of these settings in conjunction, you can use Web Inspector in the desktop
version of Safari to inspect whichever web site is opened in mobile Safari. Here Safari is
used as an example, but Safari’s Web Inspector usage and UI are the same as the Firefox
and Chrome inspectors.

https://www.google.com/

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

44

 Figure 2-21. “Build number” item in “About phone” settings

 2-7. Inspect Android Mobile Web Elements
 Problem
 You want to use the Chrome ADB plug-in to find Android mobile web elements.

 Solution
 You need to enable USB Debugging on the Android device so that it can be connected to
a laptop.

 1. Go to Settings ➤ About Phone and tap “Build number” seven
times (Android 4.2 or above); then return to the previous
screen and find “Developer options” (Figure 2-21).

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

45

 2. Tap “Developer options” and click On in the developer
settings. (You will get an alert to allow the developer settings;
just click the OK button.) Make sure the “USB debugging”
option is checked (Figure 2-22).

 Figure 2-22. “Developer options” settings and “USB debugging” option

 3. Connect your Android device to your computer (you
should have installed the USB driver for your device). After
connecting, you will get an alert on your device to allow USB
debugging; just tap OK.

 4. Download and install the Chrome ADB plug-in from https://
chrome.google.com/webstore/detail/adb/dpngiggdglpdnj
doaefidgiigpemgage?hl=en-GB . Make sure you have installed
Chrome version 32 or newer.

https://chrome.google.com/webstore/detail/adb/dpngiggdglpdnjdoaefidgiigpemgage?hl=en-GB
https://chrome.google.com/webstore/detail/adb/dpngiggdglpdnjdoaefidgiigpemgage?hl=en-GB
https://chrome.google.com/webstore/detail/adb/dpngiggdglpdnjdoaefidgiigpemgage?hl=en-GB

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

46

 5. Open Chrome on your computer and click the ADB plug-
in icon, which is in the top-right corner, and click View
Inspection Targets (Figure 2-23).

 Figure 2-23. Inspection targets in the Chrome ADB plug-in

 Figure 2-24. Discovering USB devices

 6. Open Chrome on your device and navigate to the desired URL
(Google.com).

 7. Go to chrome://inspect/#devices . This page will display all
the connected devices along with open tabs and web views.
Make sure “Discover USB devices” is selected. Now click the
“inspect” link to open the developer tools (Figure 2-24).

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

47

 8. You will get the screen shown in Figure 2-25 . Now click the
screencast icon in the top-right corner to display your device
screen. You are all set to find elements with the Chrome ADB
plug-in.

 Figure 2-25. Screencast icon in Chrome ADB plug- in

 9. Here you will find the ID of an element using the Chrome ADB
plug-in remotely, with an example of the Google search page.

 a. Navigate to https://www.google.com on your mobile
Chrome browser.

 b. Click the Inspect link from the ADB plug-in of your
computer’s Chrome browser.

 c. Click the inspect element icon and mouse over the
search box.

 The property of that element will be highlighted and can be used for Appium tests
(Figure 2-26).

https://www.google.com/

CHAPTER 2 ■ FINDING MOBILE ELEMENTS

48

 How It Works
 USB debugging should be enabled on the device so that it is recognized by a computer
as a connected device. The Chrome ADB plug-in allows you to view all the connected
devices and web views. Select the device/web view and click Inspect to view mobile web
elements and their properties.

 Figure 2-26. ADB inspector for Google. com

49© Shankar Garg 2016
S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2_3

 CHAPTER 3

 Automating Different Apps

 In this chapter, you will learn to Automate:

• Native apps

• Mobile web apps

• Hybrid apps

• Real devices

 In previous chapters, you learned how to set up Appium and how to find an
element’s properties, to be used in test cases. Now you know enough to start automating
apps using Appium.

 This chapter will cover different types of apps such as native, mobile web, and
hybrid. First you will learn how to run test cases on emulators/simulators, and later you
will learn to run them on real devices.

 3-1. Native Apps
 Problem
 Native apps are perhaps the biggest reason why smartphones are so popular. Also, the
majority of organizations start their mobile strategy with native apps. If you want to
succeed in mobile automation , so you should know to automate a native app.

 ■ Note Appium’s team maintains a separate repository for all apps that are used for
sample test cases. You can download this repository from https://github.com/appium/
sample-code . Once you download it, go to the apps folder and select the appropriate app
for your test case. Apps for both Android and iOS are available. I have already included the
sample apps in the src/test/resources/apps folder of the project you will use for this
book (AppiumRecipesBook).

https://github.com/appium/sample-code
https://github.com/appium/sample-code

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

50

 Solution
 You will automate a native app for both Android and iOS and perform some basic actions
such as clicking and typing. These apps are demo apps developed by Appium’s team and
are good candidates to learn mobile automation .

 Android App: ApiDemos-debug
 Follow these steps:

 1. In the AppiumRecipesBook project, in the src/
test/java package, create a new class called
 AppiumSampleTestCaseAndroid with a main() function.

 2. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

 WebDriver driver;
 WebDriverWait wait;

 // setting capabilities
 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("platform", "ANDROID");
 caps.setCapability("platformVersion", "5.0");
 caps.setCapability("deviceName", "ANDROID");
 caps.setCapability("browserName", "");

 // relative path to apk file
 final File classpathRoot = new
File(System. getProperty ("user.dir"));
 final File appDir = new File(classpathRoot, "src/test/
resources/apps/");
 final File app = new File(appDir, "ApiDemos-debug.
apk");
 caps.setCapability("app", app.getAbsolutePath());

 // initializing driver object
 driver = new AndroidDriver(new
URL("http://127.0.0.1:4723/wd/hub"), caps);

 // initializing waits
 driver.manage().timeouts().implicitlyWait(10,
TimeUnit.SECONDS);
 wait = new WebDriverWait(driver, 10);

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

51

 3. With the following code, you are performing the following
actions on the Android app:

 a. Click Accessibility.

 b. Click Accessibility Node Querying .

 c. Click Back.

 // Test Steps
 // click on Accessibility link
 wait.until(ExpectedConditions. presenceOfElementLocated (
MobileBy. AccessibilityId ("Accessibility")));
 driver.findElement(MobileBy. AccessibilityId ("Accessi
bility")).click();

 // click on 'Accessibility Node Querying' link
 wait.until(ExpectedConditions. presenceOfElementLoc
ated (MobileBy. AccessibilityId ("Accessibility Node
Querying")));
 driver.findElement(MobileBy. AccessibilityId ("Accessibility
Node Querying")).click();

 // back
 driver.navigate().back();

 //close driver
 driver.quit();

 4. Run the Appium server on a terminal.

 appium

 5. Open the Genymotion console and run one Android
emulator.

 ■ Note If you need information regarding how to set up Genymotion or the Android
software development kit (SDK), please follow the instructions here:

 https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-
emulators/

 https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-
emulators-on-mac-os/

https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-emulators-on-mac-os/
https://shankargarg.wordpress.com/2016/02/25/setup-genymotion-android-emulators-on-mac-os/

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

52

 6. Go to the program just written, right-click, and select Run as
➤ Java application.

 The Appium server should receive the request , and the program should be executed
appropriately (Figure 3-1).

 Figure 3-1. Android sample test case

 iOS App: TestApp
 Follow these steps:

 1. In the AppiumRecipesBook project, in the src/test/java
package, create a new class called AppiumSampleTestCaseiOS
with a main() function.

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

53

 2. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

 WebDriver driver;
 WebDriverWait wait;

 // setting capabilities
 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("platform", "iOS");
 caps.setCapability("platformVersion", "9.0");
 caps.setCapability("deviceName", "iPhone 6");

 // relative path to .app file
 final File classpathRoot = new
File(System. getProperty ("user.dir"));
 final File appDir = new File(classpathRoot, "src/test/
resources/apps/");
 final File app = new File(appDir, "TestApp.app");
 caps.setCapability("app", app.getAbsolutePath());

 // initializing driver object
 driver = new IOSDriver(new URL("http://127.0.0.1:4723/
wd/hub"), caps);

 // initializing waits
 driver.manage().timeouts().implicitlyWait(10,
TimeUnit. SECONDS);
 wait = new WebDriverWait(driver, 10);

 3. With the following code, you are performing the following
 actions on an iOS app:

 a. Type AppiumBook in the first text box.

 b. Type First TC in the second text box.

 // Test Steps
 //enter data in first text box
 wait.until(ExpectedConditions. presenceOfElementLocated (
MobileBy. AccessibilityId ("TextField1")));
 driver.findElement(MobileBy. AccessibilityId ("TextFie
ld1")).sendKeys("AppiumBook");

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

54

 //enter data in second text box
 wait.until(ExpectedConditions. presenceOfElementLocated (
MobileBy. AccessibilityId ("TextField2")));
 driver.findElement(MobileBy. AccessibilityId ("TextFie
ld2")).sendKeys("First TC");

 //close driver
 driver.quit();

 4. Run the Appium server on a terminal.

 appium

 ■ Note If you need information regarding how to set up iOS, please follow the steps
mentioned here:

 https://shankargarg.wordpress.com/2016/02/29/how-to-install-xcode-command-
line-tools-and-ios-simulators-on-mac/

 5. Go to the program just written, right-click, and select Run as ➤
Java application.

 The Appium server should receive the request , and the program should be executed
appropriately (Figure 3-2). Appium will open the iOS simulator.

https://shankargarg.wordpress.com/2016/02/29/how-to-install-xcode-command-line-tools-and-ios-simulators-on-mac/
https://shankargarg.wordpress.com/2016/02/29/how-to-install-xcode-command-line-tools-and-ios-simulators-on-mac/

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

55

 How It Works
 Starting an Appium session for native apps depends on the capabilities set while starting
the session. Capabilities such as platform , platformversion , and deviceName will decide
the OS, but capabilities such as browserName and app will decide whether the session will
be a native one.

 ■ Note For native sessions, browserName should be left blank, and the app capability
should be the absolute local path or remote HTTP URL of the native app to be automated.

 Once an Appium session is created for either Android or iOS, the same concepts
as in Selenium are applied. You need to initialize explicit and implicit wait to enable
Appium to wait for UI elements efficiently. Then you need to find elements with mobile
automation locator strategies so you can appropriately interact with the elements.

 Figure 3-2. iOS sample test case

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

56

 3-2. Mobile Web Apps
 Problem
 Smartphones are the primary way most people connect to the Internet, and thus mobile
web apps have become common in all organizations. All web sites that work on desktop
browsers should work on mobile browsers as well. With the advent of development
frameworks that allow creation of web sites for all form factors (such as desktop and
mobile) with the same code, automating mobile web apps is a necessity that can’t be
overlooked.

 Luckily, Appium automates the mobile web efficiently and without too much
change. You want to understand how you can use Appium to automate mobile web apps.

 Solution
 To understand how to install Chrome and other Google Play store apps , please visit
 https://shankargarg.wordpress.com/2016/08/04/install-google-play-store-and-
chrome-on-genymotion-virtual-device/ .

 Android
 You will automate https://github.com/ on Chrome on the Android emulator.

 1. In the AppiumRecipesBook project, in the src/
test/java package, create a new class called
 AppiumSampleTestCaseAndroidWeb with a main() function.

 2. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

 //Declaring WebDriver variables
 WebDriver driver;
 WebDriverWait wait;

 // setting capabilities
 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("platform", "ANDROID");
 caps.setCapability("platformVersion", "5.0");
 caps.setCapability("deviceName", "ANDROID");
 caps.setCapability("browserName", "chrome");

https://shankargarg.wordpress.com/2016/08/04/install-google-play-store-and-chrome-on-genymotion-virtual-device/
https://shankargarg.wordpress.com/2016/08/04/install-google-play-store-and-chrome-on-genymotion-virtual-device/
https://github.com/

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

57

 // initializing driver object
 driver = new AndroidDriver(new

URL("http://127.0.0.1:4723/wd/hub"), caps);

 //initializing waits
 driver.manage().timeouts().implicitlyWait(10, TimeUnit. SECONDS);
 wait = new WebDriverWait(driver, 10);

 3. With the following code, you are performing the following
actions on https://github.com/ :

 a. Open https://github.com/ .

 b. Click the Sign up for GitHub button.

 c. Click Create Account.

 // Test Steps
 //open github URL
 driver.get("https://github.com/");

 //click Signup
 wait.until(ExpectedConditions. presenceOfElementLocated (
By. linkText ("Sign up for GitHub")));
 driver.findElement(By. linkText ("Sign up for GitHub")).
click();

 //click Create Account
 wait.until(ExpectedConditions. presenceOfElementLocated (
MobileBy. id ("signup_button")));
 driver.findElement(MobileBy. id ("signup_button")).
click();
 //close driver
 driver.quit();

 4. Run the Appium server on a terminal .

 appium

 5. Go to the program just written, right-click, and select Run as
➤ Java application.

https://github.com/
https://github.com/

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

58

 The Appium server should receive the request, and the program should be executed
appropriately, as shown in Figure 3-3 .

 Figure 3-3. Android test case on Chrome for https.//github.com/

 iOS
 Follow these steps:

 1. In the AppiumRecipesBook project, in the src/
test/java package, create a new class called
 AppiumSampleTestCaseiOSWeb with a main() function.

 2. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

 //Declaring WebDriver variables
 WebDriver driver;
 WebDriverWait wait;

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

59

 // setting capabilities
 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("platform", "iOS");
 caps.setCapability("platformVersion", "9.0");
 caps.setCapability("deviceName", "iPhone 6");
 caps.setCapability("browserName", "safari");

 // initializing driver object
 driver = new IOSDriver(new URL("http://127.0.0.1:4723/wd/

hub"), caps);

 // initializing waits
 driver.manage().timeouts().implicitlyWait(10,

TimeUnit. SECONDS);
 wait = new WebDriverWait(driver, 10);

 3. With the following code, you are performing the following
actions on https://github.com/ :

 a. Open https://github.com/ .

 b. Click the Sign up for GitHub button.

 c. Click Create Account.

 // Test Steps
 //open github URL
 driver.get("https://github.com/");
 // click Signup
 wait.until(ExpectedConditions.presenceOfElementLocated(By.
linkText("Sign up for GitHub")));
 driver.findElement(By.linkText("Sign up for GitHub")).click();

 // click Create Account
 wait.until(ExpectedConditions.presenceOfElementLocated(MobileBy.
id("signup_button")));
 driver.findElement(MobileBy.id("signup_button")).click();

 // close driver
 driver.quit();

https://github.com/
https://github.com/

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

60

 4. Run the Appium server on a terminal.

 appium

 5. Go to the program just written, right-click, and select Run as ➤
Java application.

 The Appium server should receive the request, and the program should be executed
appropriately (Figure 3-4). Appium will open the iOS simulator.

 Figure 3-4. iOS test case on Safari for https.//github.com/

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

61

 How It Works
 For mobile web sessions, the app capability should not be set, and browserName should
be the name of the mobile web browser to automate. Valid values for browserName are
 Safari for iOS and Chrome , Chromium , or Browser for Android. Using Chrome will open
Chrome, and using Browser will open the default web browser installed on an Android
device.

 ■ Note Here’s an example of the beauty of Appium: the code for automating web apps
is platform independent. The only difference in automating mobile web apps for iOS and
Android is in the session creation part. This is why Appium is one of the most popular tools
for mobile automation.

 3-3. Hybrid Apps
 Problem
 A native app in which control passes from the native view to the web view is called a
 hybrid app . Although most organizations want to create a pure native app to gain better
control and better access to user information, some parts of apps have to be mobile web
such as a payment gateway page in an e-commerce app . To automate a native app fully,
you want to learn how to automate hybrid apps.

 Solution
 You will automate a sample hybrid app for both Android and iOS, switch the context to
the web view, and perform some basic actions such as clicking and typing on a web view.

 Android
 The demo app (the Selendroid sample app) can be downloaded from http://
selendroid.io/setup.html . I’ve already added it to the src/test/resources/apps
package for you.

 1. In the AppiumRecipesBook project, in the src/
test/java package, create a new class called
 AppiumSampleTestCaseAndroidHybrid with a main()
function.

http://selendroid.io/setup.html
http://selendroid.io/setup.html

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

62

 2. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

 // Declaring WebDriver variables
 AndroidDriver<WebElement> driver;
 WebDriverWait wait;

 // setting capabilities
 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("platform", "ANDROID");
 caps.setCapability("platformVersion", "5.0");
 caps.setCapability("deviceName", "ANDROID");
 caps.setCapability("browserName", "");

 // relative path to apk file
 final File classpathRoot = new File(System.

getProperty("user.dir"));
 final File appDir = new File(classpathRoot, "src/test/

resources/apps/");
 final File app = new File(appDir, "selendroid-test-app.

apk");
 caps.setCapability("app", app.getAbsolutePath());

 // initializing driver object
 driver = new AndroidDriver(new

URL("http://127.0.0.1:4723/wd/hub"), caps);

 // initializing waits
 driver.manage().timeouts().implicitlyWait(10, TimeUnit.

SECONDS);
 wait = new WebDriverWait(driver, 10);

 3. With the following code, you are performing the following
 actions on the sample app:

 a. Open the Selendroid sample app.

 b. Click the Chrome web view button.

 c. Switch to the web view.

 d. Enter Appium in text field on the web page.

 e. Click Submit.

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

63

 // Test Steps
 // click on Chrome icon to start web view
 wait.until(ExpectedConditions. presenceOfElement
Located (MobileBy. id ("io.selendroid.testapp:id/
buttonStartWebview")));
 driver.findElement(MobileBy. id ("io.selendroid.
testapp:id/buttonStartWebview")).click();

 //Get all Contexts
 Set<String> contexts = driver.getContextHandles();
 for (String context : contexts) {

 //print Context name
 System. out .println(context);
 //switch to context containing web its name
 if (context.contains("WEB")) {
 driver.context(context);
 }
 }

 final WebElement inputField = driver.
findElement(By. id ("name_input"));
 inputField.sendKeys("Appium");
 inputField.submit();

 // close driver
 driver.quit();

 4. Run the Appium server on a terminal .

 appium

 5. Go to the program just written, right-click, and select Run as ➤
Java application.

 The Appium server should receive the request, and the program should be executed
appropriately, as shown in Figure 3-5 .

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

64

 iOS
 The demo app (the iOS sample app WebViewApp) has already been added to the src/
test/resources/apps package.

 1. In the AppiumRecipesBook project, in the src/
test/java package, create a new class called
 AppiumSampleTestCaseiOSHybrid with a main() function.

 2. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

 //Declaring WebDriver variables
 WebDriver driver;
 WebDriverWait wait;

 // setting capabilities
 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("platform", "iOS");
 caps.setCapability("platformVersion", "9.0");
 caps.setCapability("deviceName", "iPhone 6");

 Figure 3-5. Android test case for hybrid app

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

65

 // relative path to .app file
 final File classpathRoot = new
File(System. getProperty ("user.dir"));
 final File appDir = new File(classpathRoot, "src/test/
resources/apps/");
 final File app = new File(appDir, "WebViewApp.app");
 caps.setCapability("app", app.getAbsolutePath());

 // initializing driver object
 driver = new IOSDriver(new URL("http://127.0.0.1:4723/
wd/hub"), caps);

 // initializing waits
 driver.manage().timeouts().implicitlyWait(10,
TimeUnit.SECONDS);
 wait = new WebDriverWait(driver, 10);

 3. With the following code, you are performing the following
actions on a sample hybrid app:

 a. Open the sample app.

 b. Enter the URL to open the web view.

 c. Switch to the web view.

 d. Click the Signup button.

 e. Click Create Account.

 //Enter URL to open WebView
 driver.findElement(By. className

("UIATextField")).clear();
 driver.findElement(By. className ("UIATextField")).

sendKeys("https://github.com/");
 driver.findElement(MobileBy. AccessibilityId ("Go")).

click();

 //switch context:
 final Set<String> contextNames = ((AppiumDriver) driver).

getContextHandles();
 for (final String contextName : contextNames) {
 System. out .println(contextName);
 if (contextName.contains("WEB")) {
 ((AppiumDriver) driver).context(contextName);

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

66

 System. out .println("context switched to
webview");

 }
 }

 // click Signup
 wait.until(ExpectedConditions. presenceOfElementLocated (By

. linkText ("Sign up for GitHub")));
 driver.findElement(By. linkText ("Sign up for GitHub")).

click();

 // click Create Account
 wait.until(ExpectedConditions. presenceOfElementLocated (Mo

bileBy. id ("signup_button")));
 driver.findElement(MobileBy. id ("signup_button")).click();

 // close driver
 driver.quit();

 4. Run the Appium server on a terminal.

 appium

 5. Go to the program just written, right-click, and Run as ➤ Java
application.

 The Appium server should receive the request, and the program should be executed
appropriately (Figures 3-6 and 3-7). Appium will open the iOS simulator.

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

67

 Figure 3-6. iOS sample app to launch web view

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

68

 How It Works
 For hybrid apps, the Appium session will be launched as a native app session only. So,
there is no change in the capabilities while starting an Appium session. Once you reach
a point when you need to interact with web view elements, then you need to switch the
context to a web view context.

 The context specifies how Appium interprets commands and which commands are
available to the user. There are two types of contexts available in Appium.

• Native : This refers to native applications and to those parts of
hybrid apps that are running native views. Commands in the
native context execute against the device vendor’s automation
 application programming interface (API) and interact directly
with the device.

 Figure 3-7. iOS test case for hybrid app

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

69

• Web view : This is part of a hybrid application that is inside a
 UIAWebView (for iOS) or android.webkit.WebView (for Android).
In this context, the commands are used as standard WebDriver
commands, giving access to elements through CSS selectors and
other web-specific locators such as link text, and so on.

 You use the context name as a string to switch between contexts. The native context
will have the name NATIVE_APP , while the available web view contexts will have a name
like WEBVIEW_1 (for iOS) or WEBVIEW_io.appium.android.apis (for Android).

 //Switch to specific web view
 driver.context("contextName");

 Once in the web view context, you can use Selenium commands to interact with a
web application such as driver.findElement(By.linkText("Sign up for GitHub")).
click(); .

 When you want to return to the native context, you use the same command as you
used to get into the web view, but you ask to switch to the native context.

 ■ Note To identify elements in a hybrid view, refer to Chapter 2 to learn how to inspect
Android mobile web elements and inspect Android mobile web elements.

 3-4. Real Devices
 Problem
 Up to now you have learned how to automate native, web, and hybrid apps in an
emulator for Android and in a simulator for iOS. Although emulators and simulators are
almost as good as real devices, sometimes you want to test on an actual device.

 Solution
 Unlike traditional mobile automation tools , with Appium you don’t need to make any
substantial changes to your test cases to run them on real devices. You will automate
native apps for both the Android and iOS platforms and run them on real Android and
iOS devices, respectively.

 Android
 To run Android apps, Android devices should have developer mode enabled and
should be connected to a computer and Android test case. You also need to enable USB
debugging on the Android device for it to be used as a device for test case execution.

http://dx.doi.org/10.1007/978-1-4842-2418-2_2

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

70

 ■ Note Tapping seven times is for the Google Nexus device. The number of times you
need to tap will change from manufacturer to manufacturer, so do an Internet search for the
number for your device if you’re not sure.

 Follow these steps:

 1. Go to Settings ➤ About Phone and tap “Build number” seven
times, as shown in Figure 3-8 .

 Figure 3-8. “Build number” setting on Android

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

71

 Figure 3-9. “Developer options” setting on Android

 2. You will get a success message that you’re a developer.

 3. Go back and select “Developer options” (Figure 3-9).

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

72

 4. Enable “USB debugging” (Figure 3-10).

 Now your device is ready to be connected to a computer that
has the Android SDK installed. Let’s enable your machine to
connect to an Android device.

 ■ Note To know how to install the Android SDK on a computer, please refer to my blog at
 https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-
emulators/ .

 5. Install a USB driver on your machine. There are many options
available for this, but I prefer using PdaNet (http://pdanet.co/) .

 6. Please refer to the steps at http://pdanet.co/help/mac.
php to install PdaNet. The steps are the same for Mac and
Windows; only the downloaded file is different.

 Figure 3-10. “USB debugging” setting enabled on Android

https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
https://shankargarg.wordpress.com/2016/02/25/setup-android-sdk-and-android-emulators/
http://pdanet.co/)
http://pdanet.co/help/mac.php
http://pdanet.co/help/mac.php

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

73

 Figure 3-11. Android real device as shown in a terminal

 Once you have successfully installed PdaNet and enabled
“USB debugging,” let’s check if the device is connected right to
the computer.

 7. Connect the device and run the following command on a
terminal:

 adb devices

 The output of the previous command should look like
Figure 3-11 .

 8. If the previous command does not work or if the device is
listed as inactive, you can stop the Android Debug Bridge
(adb) server by using the command adb kill-server and
then restart it by using the command adb start-server .
Reconnect your device and execute adb devices again. Your
device should be listed.

 9. Run the Appium server on a terminal.

 appium

 10. Before running this test case, make sure that no Android
emulator is running and that only one Android device is
connected to the machine.

 11. You are ready to execute the test case on a real device. Open
the AppiumSampleTestCaseAndroid class , right-click, and
select Run as ➤ Java application.

 ■ Note The device should be either unlocked or locked with a simple swipe lock. The
Appium unlock app can’t unlock four- or six-digit locks or pattern locks and will result in a
test case failure.

 12. Observe the Appium output and also the device screen. In a
few seconds you should see the API-Demos app running .

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

74

 iOS
 To run a native app on a real iOS device, you need to sign the app for that device, connect
the device to a computer, and add a device ID (UDID) to the test case to run it.

 You need to create an Apple account so that you can create provisioning profiles to
be used in installing apps on real devices.

 1. Register at https://developer.apple.com/programs/ and
remember the credentials.

 2. Go to https://developer.apple.com/library/ios/
documentation/IDEs/Conceptual/AppDistributionGuide/
MaintainingProfiles/MaintainingProfiles.html#//
apple_ref/doc/uid/TP40012582-CH30-SW24 and refer to
the section “Creating Development Provisioning Profiles.”
Perform all the steps mentioned there.

 3. Go to the section “Verifying and Removing Provisioning
Profiles on Devices” to install the provisional profile created
in the previous step on the real device (which will be used for
test case execution).

 4. Now you need to know the UDID of the real device.

 a. Using a USB cable, connect iOS to your Mac.

 b. Open Xcode and select Window ➤ Devices.

 c. Select “Connected device.”

 d. Under Device Information, you will see an identifier like
 46ba868066b970c7c6fe86bfe9d97c63abfeb565 . Now
your device is ready to be used for the test case execution.

 5. In the AppiumRecipesBook project , in the src/
test/java package, create a new class called
 AppiumSampleTestCaseiOSRD with a main() function.

 6. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization :

 //Declaring WebDriver variables
 WebDriver driver;
 WebDriverWait wait;

 // setting capabilities
 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("platform", "iOS");
 caps.setCapability("platformVersion", "9.3.4");
 caps.setCapability("deviceName", "iPhone 6");

https://developer.apple.com/programs/
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//apple_ref/doc/uid/TP40012582-CH30-SW24
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//apple_ref/doc/uid/TP40012582-CH30-SW24
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//apple_ref/doc/uid/TP40012582-CH30-SW24
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//apple_ref/doc/uid/TP40012582-CH30-SW24

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

75

 caps.setCapability("udid",
"46ba868066b970c7c6fe86bfe9d97c63abfeb363");

 // relative path to .app file
 final File classpathRoot = new

File(System. getProperty ("user.dir"));
 final File appDir = new File(classpathRoot, "src/test/

resources/apps/");
 final File app = new File(appDir, "TestApp.app");
 caps.setCapability("app", app.getAbsolutePath());

 // initializing driver object
 driver = new IOSDriver(new URL("http://127.0.0.1:4723/wd/

hub"), caps);

 // initializing waits
 driver.manage().timeouts().implicitlyWait(10,

TimeUnit. SECONDS);
 wait = new WebDriverWait(driver, 10);

 ■ Note Make sure to match the platform version exactly to the device connected.

 7. With the following code, you are performing the following
actions on the iOS app :

 a. Type AppiumBook in the first text box.

 b. Type First TC in the second text box.

 // Test Steps
 //enter data in first text box
 wait.until(ExpectedConditions. presenceOfElementLocated
(MobileBy. AccessibilityId ("TextField1")));
 driver.findElement(MobileBy. AccessibilityId ("TextField1")).
sendKeys("AppiumBook");

 //enter data in second text box
 wait.until(ExpectedConditions. presenceOfElementLocated
(MobileBy. AccessibilityId ("TextField2")));
 driver.findElement(MobileBy. AccessibilityId ("TextField2")).
sendKeys("First TC");

 //close driver
 driver.quit();

 8. Run the Appium server on a terminal.

 appium

CHAPTER 3 ■ AUTOMATING DIFFERENT APPS

76

 9. Go to the program just written, right-click, and select Run as ➤
Java application.

 The Appium server should receive the request, and the program should be executed
appropriately (Figure 3-12) on the connected device.

 Figure 3-12. iOS sample test case on a real device

 How It Works
 The awesome thing about Appium is that you don’t need to change a single line of code
for real Android devices; you only need to add the UDID for real iOS devices.

 All the other steps mentioned here are mostly to connect your device to a computer
and are not related to Appium. So, once you have performed the steps and your device is
connected, you are all set and never have to perform these steps again on the same device.

77© Shankar Garg 2016
S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2_4

 CHAPTER 4

 Automating Mobility

 In this chapter, you will learn to automate the following:

• Tap mobile elements

• Drag and drop elements

• Swipe and scroll

• Manage device orientation

• Install and uninstall native apps

• Lock and unlock devices

• Manage device network settings

 In previous chapters, you learned to use Appium to automate different types of apps
on different devices. To automate mobile apps, automating gestures (such as tapping,
scrolling, swiping, and so on) is of utmost importance.

 In earlier versions of Appium, you had to combine some generic functions to
perform these complex functions, but in the latest versions, specific functions such as
zooming, pinching, and so on, are available. These functions have their own syntaxes,
which you’ll learn in this chapter.

 Some of the functions are available to only one platform, Android or iOS, and for
others, their syntax will change depending on the underlying platform.

 ■ Note When functions have the same syntax and implementation for both Android and
iOS, the recipes explain the concepts using the Android platform. Since Android can be
executed on both Windows and Mac machines, it is useful for a larger audience. You can
execute the same functions on iOS to gain better understanding.

CHAPTER 4 ■ AUTOMATING MOBILITY

78

 4-1. Tap Mobile Elements
 Problem
 For people familiar with web automation , clicking is a common and simple action, but in
the mobile landscape, tapping is the action that replaces clicking. You want to know how
to tap elements using Appium .

 Solution
 For this recipe, you will automate the process of tapping various menu options and
buttons of an Android native app.

 ■ Note Tapping works the same for Android and iOS. To avoid redundancy, only an
Android example is provided here.

 Android
 Follow these steps:

 1. In the AppiumRecipesBook project, in the src/test/java
package, create a new class called AppiumAndroidMobility
with the following functions.

 2. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

 public class AppiumAndroidMobility {

 // Declaring WebDriver variables
 static AndroidDriver<AndroidElement> driver;
 static WebDriverWait wait;

 static DesiredCapabilities caps = new
DesiredCapabilities();

 public static void main(String[] args) throws
InterruptedException, IOException {

 new AppiumAndroidMobility().
settingCapsAndDriver();

 new AppiumAndroidMobility().closeDriver();

 }

CHAPTER 4 ■ AUTOMATING MOBILITY

79

 public void settingCapsAndDriver() throws
MalformedURLException {
 // setting capabilities
 caps.setCapability("platform", "ANDROID");
 caps.setCapability("platformVersion", "5.0");
 caps.setCapability("deviceName", "ANDROID");
 caps.setCapability("browserName", "");

 // relative path to apk file
 final File classpathRoot = new File(System.

getProperty("user.dir"));
 final File appDir = new File(classpathRoot,

"src/test/resources/apps/");
 final File app = new File(appDir, "ApiDemos-

debug.apk");
 caps.setCapability("app", app.

getAbsolutePath());

 // initializing driver object
 driver = new AndroidDriver<AndroidElement>(new

URL("http://127.0.0.1:4723/wd/hub"), caps);

 // initializing waits
 driver.manage().timeouts().implicitlyWait(10,

TimeUnit.SECONDS);
 wait = new WebDriverWait(driver, 10);
 }

 public void closeDriver() {
 // close driver
 driver.quit();
 }
 }

 3. With the following code, you are performing the following
actions on an Android app:

 a. Click the Views option.

 b. Click the Buttons option.

 c. Tap the OFF button.

 d. Print the text of the OFF button that has changed to
ON now.

CHAPTER 4 ■ AUTOMATING MOBILITY

80

 public void taponElement() {
 // Start - Ch.4-R.1
 // Tap
 driver.findElement(MobileBy.

AccessibilityId("Views")).click();
 driver.findElement(MobileBy.

AccessibilityId("Buttons")).click();

 Point point = driver.findElementById("io.appium.
android.apis:id/button_toggle").getLocation();

 driver.tap(1, point.x + 20, point.y + 30, 1000);
 System.out.println(driver.findElementById

("io.appium.android.apis:id/button_toggle").
getText());

 // End - Ch.4-R.1

 }

 4. Call the function created in the previous step in the main
function using the following code:

 new AppiumAndroidMobility().taponElement();

 5. Run the Appium server on a terminal , run an Android
emulator, and execute the program as explained in the
previous chapters.

 The Appium server should receive the request, and the program should be executed
appropriately (Figure 4-1).

CHAPTER 4 ■ AUTOMATING MOBILITY

81

 How It Works
 Tapping is a method in the TouchAction class and is used to perform click operations on
mobile elements. The tap method can be used with two different options.

• tap(fingers, element, duration) : Here the first argument,
 finger , is how many fingers you want to use for tapping, such
as 1 or 2. The second argument, element , is the mobile element
on which to tap (this is the result of a statement like driver.
findElement()). The third argument, duration , is the time to
perform a tap; for instance, 1000 or 2000 ms means 1 or 2 seconds.

• tap(fingers, x, y, duration) : Here the first argument,
 finger , is how many fingers you want to use for tapping, such
as 1 or 2. The second and third arguments, x and y , are absolute
coordinates at which the tap will be performed. The fourth
argument, duration , is the time to perform a tap. For instance,
1000 or 2000 ms means 1 or 2 seconds.

 Figure 4-1. Tap function for Android app

CHAPTER 4 ■ AUTOMATING MOBILITY

82

 4-2. Drag and Drop Elements
 Problem
 You want to select an element, drag it from its original position, and drop it on some other
position/element. (This is a common task in gaming apps .)

 Solution
 For this recipe, you will automate dragging an element from its original location and
dropping it on a target location.

 ■ Note Dragging and dropping works the same for Android and iOS. To avoid redundancy,
only an Android example is provided here.

 Android
 Follow these steps:

 1. In the AppiumAndroidMobility class, comment the code
written for calling the tap function.

 2. With the following code, you are performing the following
actions on an Android app:

 a. Click the Views option.

 b. Click the Drag and Drop option.

 c. Hold and drag Dot 1.

 d. Drop Dot 1 on Dot 3.

 e. Print the text that has changed after dragging and
 dropping .

 public void dragDrop() {
 // Start - Ch.4-R.2
 // Drag and Drop
 // Open an activity directly
 driver.startActivity("io.appium.android.

apis", ".view.DragAndDropDemo");

 WebElement dragDot1 = driver.findElement(By.
id("io.appium.android.apis:id/drag_dot_1"));

 WebElement dragDot3 = driver.findElement(By.
id("io.appium.android.apis:id/drag_dot_3"));

CHAPTER 4 ■ AUTOMATING MOBILITY

83

 // this text should be empty before Drag-Drop
 WebElement dragText = driver.findElement(By.

id("io.appium.android.apis:id/drag_text"));
 System.out.println(dragText.getText());

 // perform Drag and Drop
 TouchAction dragNDrop = new

TouchAction(driver).longPress(dragDot1).
moveTo(dragDot3).release().perform();

 // Text representing Drag-Drop is successful
 System.out.println((dragText.getText()));
 // End - Ch.4-R.2

 }

 3. Call the function created in the previous step in the main
function using the following code:

 new AppiumAndroidMobility().dragDrop();

 4. Run the Appium server on a terminal, run an Android
emulator, and execute the program as explained in the
previous chapters.

 The Appium server should receive the request, and the program should be executed
appropriately (Figure 4-2).

 Figure 4-2. Dragging and dropping on an Android app

CHAPTER 4 ■ AUTOMATING MOBILITY

84

 How It Works
 Dragging and dropping are complex actions performed by combining various simple
methods available in the TouchAction class. These methods include the following:

• longPress() is to tap an element for a long duration.

• moveTo is to move the tapped element to another location.

• release() and perform() are part of a concept called chaining
of actions where simple elements are chained one after another.
 release() chains the methods only locally, and nothing is sent
to the Appium server to execute. Once the perform() method is
executed, then only all chained methods are sent to the Appium
server to be executed.

 ■ Note Using the concept of chaining simple actions, more complex actions can be
automated easily, such as multitouch actions.

 4-3. Swipe and Scroll
 Problem
 Swiping and scrolling are probably the most widely used mobility features, and this has
made mobile usage very user friendly. You want to learn how to automate swiping and
scrolling in mobile apps.

 Solution
 For this recipe, you will automate swiping on the screen (vertical and horizontal) on an
Android app and also scrolling on a web element such as Scroller in an iOS app.

 Android
 Follow these steps:

 1. In the AppiumAndroidMobility class, comment the code
written for calling the drag-and-drop function.

 2. With the following code, you are performing the following
actions on an Android app:

 a. Click the Views option.

 b. Scroll up on the screen.

CHAPTER 4 ■ AUTOMATING MOBILITY

85

 c. Print the text for the first element with accessibility ID
 android:id/text1 .

 d. Scroll down on the screen.

 e. Print the text for the first element with accessibility ID
 android:id/text1 .

 public void swipeVertical() {
 // Start - Ch.4-R.3
 // vertical swipe
 driver.findElementByAccessibilityId("Vie

ws").click();
 AndroidElement listView = driver.

findElementByClassName("android.widget.
ListView");

 MobileElement textView = driver.
findElementById("android:id/text1");

 String originalText = textView.getText();

 listView.swipe(SwipeElementDirection.UP, 20,
15, 1000);

 System.out.println(textView.getText());

 listView.swipe(SwipeElementDirection.DOWN,
20, 15, 1000);

 System.out.println(textView.getText());
 // End - Ch.4-R.3

 }

 3. Call the function created in the previous step in the main
function using the following code :

 new AppiumAndroidMobility().swipeVertical();

 4. Run the Appium server on a terminal, run an Android
emulator, and execute the program as explained in the
previous chapters.

 The Appium server should receive the request, and the
program should be executed appropriately.

 5. Comment the code written in step 2.

CHAPTER 4 ■ AUTOMATING MOBILITY

86

 6. With the following code, you are performing the following
actions on the Android app:

 a. Click the Views option.

 b. Click the Gallery option.

 c. Click the Photo option.

 d. Scroll left on the screen.

 e. Scroll right on the screen.

 public void swipeHorizontal() {
 // Start - Ch.4-R.3
 // horizontal swipe
 driver.findElementByAccessibilityId("Views").

click();
 driver.findElementByAccessibilityId

("Gallery").click();
 driver.findElementByAccessibilityId("1.

Photos").click();

 AndroidElement gallery = driver.
findElementById("io.appium.android.apis:id/
gallery");

 int originalImageCount = gallery.findElements
ByClassName("android.widget.ImageView").size();

 gallery.swipe(SwipeElementDirection.LEFT, 5,
5, 2000);

 System.out.println(gallery.findElementsBy
ClassName("android.widget.ImageView").size());

 gallery.swipe(SwipeElementDirection.RIGHT,
5, 5, 2000);

 System.out.println(gallery.findElementsByClass
Name("android.widget.ImageView").size());

 // End - Ch.4-R.3

 }

CHAPTER 4 ■ AUTOMATING MOBILITY

87

 7. Call the function created in the previous step in the main
function using the following code:

 new AppiumAndroidMobility().swipeHorizontal();

 8. Run the Appium server on a terminal, run an Android
emulator, and execute the program as explained in the
previous chapters.

 The Appium server should receive the request, and the program should be executed
appropriately (Figure 4-3).

 Figure 4-3. Horizontal swiping on Android app

 iOS
 Follow these steps:

 1. In the AppiumRecipesBook project, in the src/test/java
package, create a new class called AppiumIOSMobility with
the following functions.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ AUTOMATING MOBILITY

88

 2. Add the following code in this class for the driver initialization
and also for the implicit and explicit wait initialization:

 public class AppiumIOSMobility {
 // Declaring WebDriver variables
 static IOSDriver<IOSElement> driver;
 static WebDriverWait wait;

 static DesiredCapabilities caps = new
DesiredCapabilities();

 public static void main(String[] args) throws
InterruptedException, IOException {

 new AppiumIOSMobility().settingCapsAndDriver();

 new AppiumIOSMobility().closeDriver();

 }

 public void settingCapsAndDriver() throws
MalformedURLException {
 // setting capabilities
 caps.setCapability("platform", "iOS");
 caps.setCapability("platformVersion", "9.2");
 caps.setCapability("deviceName", "iPhone 6");

 // relative path to .app file
 final File classpathRoot = new File(System.

getProperty("user.dir"));
 final File appDir = new File(classpathRoot,

"src/test/resources/apps/");
 final File app = new File(appDir, "TestApp.

app");
 caps.setCapability("app", app.

getAbsolutePath());

 // initializing driver object
 driver = new IOSDriver<IOSElement>(new

URL("http://127.0.0.1:4723/wd/hub"), caps);

 // initializing waits
 driver.manage().timeouts().implicitlyWait(20,

TimeUnit.SECONDS);
 wait = new WebDriverWait(driver, 20);
 }

 public void closeDriver() {
 // close driver
 driver.quit();
 }
 }

CHAPTER 4 ■ AUTOMATING MOBILITY

89

 3. With the following code , you are performing the following
actions on the iOS app:

 a. Swipe the slider to the leftmost position.

 b. Swipe the slider to the rightmost position.

 public void swipeiOS() {
 // Start - Ch.4-R.3
 // Horizontal Swipe
 MobileElement slider = driver.findElementByC

lassName("UIASlider");

 // Scroll left
 slider.swipe(SwipeElementDirection.LEFT,

slider.getSize().getWidth() / 2, 0, 3000);
 System.out.println(slider.

getAttribute("value"));

 // Scroll Right
 slider.swipe(SwipeElementDirection.RIGHT, 2,

0, 3000);
 System.out.println(slider.

getAttribute("value"));
 // End - Ch.4-R.3
 }

 4. Call the function created in the previous step in the main
function using the following code :

 new AppiumIOSMobility().swipeiOS();

 5. Run the Appium server on a terminal and execute the
program as explained in the previous chapters.

 The Appium server should receive the request, and the program should be executed
appropriately (Figure 4-4).

CHAPTER 4 ■ AUTOMATING MOBILITY

90

 ■ Note The remaining recipes of the chapter will use AppiumIOSMobility . Each time,
we will comment out the code previously written and write new functions. This way, at the
end of this chapter you will have a class that has all the functions discussed in this chapter
that is compact and useful.

 How It Works
 The Swipe() function is used for both horizontal and vertical swiping. The syntax for this
function is as follows :

 mobileElement.swipe(direction, offsetFromStartBorder, offsetFromEndBorder,
duration)

 Figure 4-4. Slider scrolled to the rightmost position

CHAPTER 4 ■ AUTOMATING MOBILITY

91

 The following are the attributes in this function :

• mobileElement is the element on which the swipe will be
performed, provided swiping is possible on this element.

• direction is an ENUM , which takes values such as LEFT , RIGHT , UP ,
and DOWN to set the direction of swipe.

• offsetFromStartBorder and offsetFromEndBorder are the
offsets from the border of the element used for swiping. These will
set the scope of the swipe.

• duration is the time in miliseconds to be taken for swiping.

 If the element is across multiple screens, then swiping can be used for swiping across
screens. For instance, in Android, if an element is small like a slider, swiping can be used
to set the location of that slider like in the iOS example.

 4-4. Manage Device Orientation
 Problem
 One convenience of using smartphones and tablets is that when you hold the device
either horizontally or vertically, the mobile app will adjust to the new viewport size. In the
beginning of the mobile app development era, most defects were discovered because of
an orientation change, so it is important to run test cases on orientation change to make
sure that the app works fine when users change the orientation. You want to know how to
change the orientation using Appium.

 Solution
 For this recipe, you will automate an orientation change from portrait to landscape, and
vice versa.

 ■ Note Orientation works the same for Android and iOS. To avoid redundancy, only an
Android example is provided here.

CHAPTER 4 ■ AUTOMATING MOBILITY

92

 Android
 Follow these steps:

 1. In the AppiumAndroidMobility class, comment the code
written for calling the Swipe() function.

 2. With the following code, you are performing the following
actions on the Android app:

 a. Printing the current orientation, which is portrait

 b. Changing the orientation to landscape

 c. Printing the current orientation, which is landscape

 d. Changing the orientation back to portrait

 public void changeOrientation() {
 // Start - Ch.4-R.4
 // Orientation
 // print current orientation
 System.out.println(driver.getOrientation());
 // change orientation to LANDSCAPE
 driver.rotate(ScreenOrientation.LANDSCAPE);

 // print current orientation
 System.out.println(driver.getOrientation());
 // change orientation to PORTRAIT
 driver.rotate(ScreenOrientation.PORTRAIT);
 // End - Ch.4-R.4
 }

 3. Call the function created in the previous step in the main
function using the following code:

 new AppiumAndroidMobility().changeOrientation();

 4. Run the Appium server on a terminal, run an Android
emulator, and execute the program as explained in the
previous chapters.

 The Appium server should receive the request, and the program should be executed
appropriately (Figure 4-5).

CHAPTER 4 ■ AUTOMATING MOBILITY

93

 How It Works
 The Rotate() function is used to change the existing orientation of a device, be it Android
or iOS. The syntax for Rotate() is as follows:

 driver.rotate(ScreenOrientation.'ORIENTATION')

 Here 'ORIENTATION' can be LANDSCAPE or PORTRAIT depending on the orientation
you want. The driver.getOrientation() function is used to get the existing orientation
of the device.

 4-5. Install and Uninstall Native Apps
 Problem
 Installing, upgrading, and deleting applications can be tricky because these tasks require
a lot of changes to the memory and cache on a device. So, testing scenarios related to
these steps are important for covering edge scenarios in your test strategy.

 Another important step is closing the app in between the test case and launching the
app again. You want to know how to automate all these steps.

 Solution
 For this recipe, you will automate launching, closing, installing, and removing an app
from an Android device.

 ■ Note At the time of this writing, for iOS functions launchApp() and closeApp()
work fine, and the syntax is the same as Android, but functions such as installApp() and
 removeApp() are yet to be implemented for iOS in java-client 4.0.0 .

 Figure 4-5. Android app in landscape mode

CHAPTER 4 ■ AUTOMATING MOBILITY

94

 Android
 Follow these steps:

 1. In the AppiumAndroidMobility class, comment the code
written for calling the orientation change.

 2. With the following code, you are performing the following
actions on an Android app:

 a. Checking whether the app is launched

 b. Closing the app

 c. Launching the app again

 d. Checking whether the app is launched

 e. Checking whether app is installed

 f. Removing the app from the device

 g. Installing the app again

 h. Checking whether the app is installed

 public void appLaunchClose() {
 // Start - Ch.4-R.5
 // App launch and Close

 // confirm if app is launched: - activity
name should be from app

 System.out.println("Current Activity before
Close: " + driver.currentActivity());

 // close the app
 driver.closeApp();

 // launch the app again
 driver.launchApp();
 // confirm if app is launched again: -

activity name should be from app
 System.out.println("Current Activity after

launch: " + driver.currentActivity());

 // App Installation
 // check if app is installed
 System.out.println("app installed before

remove: " + driver.isAppInstalled
("io.appium.android.apis"));

CHAPTER 4 ■ AUTOMATING MOBILITY

95

 // remove app
 driver.removeApp("io.appium.android.apis");
 // check app is not installed now
 System.out.println("app installed after remove:

" + driver.isAppInstalled("io.appium.android.
apis"));

 // install app again
 // relative path to apk file
 final File classpathRoot = new File(System.

getProperty("user.dir"));
 final File appDir = new File(classpathRoot,

"src/test/resources/apps/");
 final File app = new File(appDir, "ApiDemos-

debug.apk");
 driver.installApp(app.getAbsolutePath());

 // check if app is installed back
 System.out.println("app installed after install:

" + driver.isAppInstalled("io.appium.android.
apis"));

 // End - Ch.4-R.5
 }

 3. Call the function created in the previous step in the main
function using the following code:

 new AppiumAndroidMobility().appLaunchClose();

 4. Run the Appium server on a terminal, run an Android
emulator, and execute the program as explained in the
previous chapters.

 The Appium server should receive the request. The program should be executed
appropriately, and the output should look like Figure 4-6 .

CHAPTER 4 ■ AUTOMATING MOBILITY

96

 How It Works
 The function used to close the launched app is driver.closeApp() , and the function
used to launch the app that is already installed is driver.launchApp() .

 The function used to delete the installed app is driver.removeapp() , and the
function used to install the app is driver.installApp() .

 These functions are used extensively in scenarios such as deleting the existing
version of app, upgrading the app, and then verifying the behavior.

 4-6. Lock and Unlock Devices
 Problem
 You want to lock and unlock a device when testing an app’s behavior, as well as in
between the test cases.

 Solution
 For this recipe, you will automate locking and unlocking an Android device.

 ■ Note At the time of this writing, the lock and unlock functions work only with Android
and not for iOS.

 Figure 4-6. Android test case execution result for app launch, close, install, and remove

CHAPTER 4 ■ AUTOMATING MOBILITY

97

 Android
 Follow these steps:

 1. In the AppiumAndroidMobility class, comment the code
written for calling the app installation.

 2. With the following code, you are performing the following
actions on the sample app:

 a. Locking the device

 b. Checking the lock status

 c. Unlocking the device

 d. Checking the lock status

 public void lockUnlock() {
 // Start - Ch.4-R.6
 // lock device:
 driver.lockDevice();
 System.out.println("After lock is device locked:

" + driver.isLocked());

 driver.unlockDevice();
 System.out.println("After unlock is device

locked: " + driver.isLocked());
 // End - Ch.4-R.6
 }

 3. Call the function created in the previous step in the main
function using the following code:

 new AppiumAndroidMobility().lockUnlock();

 4. Run the Appium server on a terminal, run an Android
emulator, and execute the program as explained in the
previous chapters.

 The Appium server should receive the request, the program should be executed
appropriately, and the output should look like Figure 4-7 .

CHAPTER 4 ■ AUTOMATING MOBILITY

98

 How It Works
 driver.lockDevice() is used to lock the device, and driver.unlockDevice() is for
unlocking the device. driver.isLocked() is used to check the status of the lock. Appium
uses the unlock Android app to perform this operation.

 4-7. Manage Device Network Settings
 Problem
 You want to test an app in different network settings such as no data mode or airplane
 mode to make sure that the app does not crash and that, when you switch back to Wi-Fi
or data, the app resumes where it left off.

 Solution
 For this recipe, you will automate changing the network settings to data, Wi-Fi, airplane
mode, and no data on an Android device.

 ■ Note At the time of this writing, the setConnection functions work only with Android
and not for iOS.

 Figure 4-7. Android test case execution result for device lock and unlock

CHAPTER 4 ■ AUTOMATING MOBILITY

99

 Android
 Follow these steps:

 1. In the AppiumAndroidMobility class, comment the code
written for calling the lock device.

 2. With the following code, you are performing the following
actions on the sample app:

 a. Set the network to ALL .

 b. Set the network to AIRPLANE .

 c. Set the network to NONE .

 d. Set the network to WIFI .

 public void NetworkSettings() {

 // Start - Ch.4-R.7
 // Network
 driver.setConnection(Connection.ALL);
 System.out.println(driver.getConnection());

 driver.setConnection(Connection.AIRPLANE);
 System.out.println(driver.getConnection());

 driver.setConnection(Connection.NONE);
 System.out.println(driver.getConnection());

 driver.setConnection(Connection.WIFI);
 System.out.println(driver.getConnection());
 // End - Ch.4-R.7
 }

 3. Call the function created in the previous step in the main
function using the following code:

 new AppiumAndroidMobility().NetworkSettings();

 4. Run the Appium server on a terminal, run an Android
emulator, and execute the program as explained in the
previous chapters.

 The Appium server should receive the request, the program should be executed
appropriately, and the output should look like Figure 4-8 .

CHAPTER 4 ■ AUTOMATING MOBILITY

100

 How It Works
 driver.SetConnection() is used to set different network settings for Android devices.
The syntax is as follows: driver.setConnection(Connection.'NetworkSetting') .

 Here NetworkSetting is an ENUM , which could have values such as ALL for both
cellular and Wi-Fi, AIRPLANE for airplane mode, WIFI for only Wi-Fi, and NONE for no
network at all.

 Figure 4-8. Android test case execution result for network setting

101© Shankar Garg 2016
S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2_5

 CHAPTER 5

 Creating Automation
Frameworks Using Appium

 In this chapter, you will learn following:

• Create an automation framework with Appium, Maven, and
TestNG

• Create a behavior-driven development (BDD) framework with
Appium, Cucumber, and the page object model

• Conduct continuous automated testing with Appium, Git, and
Jenkins

 In previous chapters, you learned to use Appium to automate different apps and
automate mobile-specific functions such as tapping, scrolling, swiping, and so on.

 Appium’s one and only functionality is to automate mobile platforms and mobile-
specific functions. But for automation testing this is not sufficient. An automation
framework should have different types of reporting, should integrate with continuous
integration (CI) / continuous development (CD) tools, and should do much more.
That’s why you need to integrate Appium with other tools to create robust automation
frameworks.

 The following are some expectations of automation frameworks: integration with test
runner and reporting tools such as TestNG and JUnit, BDD integration with Cucumber,
and integration with CICD tools such as Jenkins. In this chapter, you’ll understand how to
integrate Appium with each of these tools.

 5-1. Create an Automation Framework with
Appium, Maven, and TestNG
 Problem
 For a robust automation framework, you need to integrate Appium with Maven for its
dependency and life-cycle management capabilities and with TestNG for its capability
to tag functions as test cases, to create HTML reports, to manage test cases, and so on. In
this recipe, you want to know how to integrate Appium with Maven and TestNG .

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

102

 Solution
 You will create an automation framework with Appium, Maven, and TestNG and write
one sample test case for an Android app.

 1. Install the Eclipse-TestNG plug-in by following the steps
at https://shankargarg.wordpress.com/2016/09/01/
integrate-eclipse-and-testng/ .

 2. Install the Eclipse-Maven plug-in by following the steps
at https://shankargarg.wordpress.com/2016/09/01/
integrate-eclipse-and-maven/ .

 3. Create a new project in Eclipse by following these steps: click
New ➤ Other ➤ Maven ➤ Maven Project ➤ Next (Figure 5-1).

 Figure 5-1. Creating a new Maven project

https://shankargarg.wordpress.com/2016/09/01/integrate-eclipse-and-testng/
https://shankargarg.wordpress.com/2016/09/01/integrate-eclipse-and-testng/
https://shankargarg.wordpress.com/2016/09/01/integrate-eclipse-and-maven/
https://shankargarg.wordpress.com/2016/09/01/integrate-eclipse-and-maven/

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

103

 4. Select a simple project and keep the default workspace
location (Figure 5-2).

 Figure 5-2. Maven project creation wizard

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

104

 5. Provide details such as the artifact ID, group ID, name, and
description. Then click Finish (Figure 5-3).

 Figure 5-3. Maven project creation wizard, project details

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

105

 6. This will create a basic Maven project. Update the pom.
xml file with the following code to add Appium and TestNG
dependencies:

 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>AppiumRecipeBook</groupId>
 <artifactId>AppiumBookBlog</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>AppiumBookBlog</name>
 <description>AppiumBookBlog</description>

 <properties>
 <appium.version>3.3.0</appium.version>
 <testng.version>6.9.10</testng.version>
 <selenium.version>2.47.1</selenium.

version>
 </properties>
 <dependencies>
 <!-- Appium -->
 <dependency>
 <groupId>io.appium</groupId>
 <artifactId>java-client

</artifactId>
 <version>${appium.version}

</version>
 <scope>test</scope>
 </dependency>

 <!-- testng -->
 <dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>${testng.version}

</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 </project>

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

106

 7. To keep the code and files in logical grouping, you need
to create some packages in the default project. Refer to
Figure 5-4 and create the appium package in the src/test/
java package and create the apps folder in the src/test/
resources package (Figure 5-4).

 8. You will see an Android example for this project, so add the
Android ApiDemos-debug.apk file to the apps folder.

 9. Create a new class called AppiumDriverBase in the appium
package. Add the following code to this class:

 package appium;

 import io.appium.java_client.android.AndroidDriver;

 import java.io.File;
 import java.net.MalformedURLException;
 import java.net.URL;
 import java.util.concurrent.TimeUnit;

 import org.openqa.selenium.WebDriver;
 import org.openqa.selenium.remote.DesiredCapabilities;
 import org.openqa.selenium.support.ui.WebDriverWait;
 import org.testng.annotations.AfterTest;
 import org.testng.annotations.BeforeTest;

 public class AppiumDriverBase {

 protected WebDriver driver;
 protected WebDriverWait wait;

 Figure 5-4. Project structure of the sample project

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

107

 // before Test Annotation makes a java function to
run every time before a TestNG test case

 @BeforeTest
 protected void createAppiumDriver() throws

MalformedURLException, InterruptedException {

 // setting up desired capability
 DesiredCapabilities caps = new

DesiredCapabilities();
 caps.setCapability("platform", "ANDROID");
 caps.setCapability("platformVersion", "5.0");
 caps.setCapability("deviceName", "ANDROID");
 caps.setCapability("browserName", "");

 // relative path to apk file
 final File classpathRoot = new File(System.

getProperty("user.dir"));
 final File appDir = new File(classpathRoot,

"src/test/resources/apps/");
 final File app = new File(appDir, "ApiDemos-

debug.apk");
 caps.setCapability("app", app.

getAbsolutePath());

 // initializing driver object
 driver = new AndroidDriver(new

URL("http://127.0.0.1:4723/wd/hub"), caps);
 // initializing explicit wait object
 driver.manage().timeouts().implicitlyWait(10,

TimeUnit.SECONDS);
 wait = new WebDriverWait(driver, 10);
 }
 // After Test Annotation makes a java function to

run every time after a TestNG test case
 @AfterTest
 public void afterTest() {

 // quit the driver
 driver.quit();
 }

 }

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

108

 10. Add the test case class called SampleTestCase by creating one
more class in the Appium package. Add the following code to
this class:

 package appium;

 import io.appium.java_client.MobileBy;

 import org.openqa.selenium.By;
 import org.openqa.selenium.support.
ui.ExpectedConditions;
 import org.testng.annotations.Test;

 public class SampleTestCase extends AppiumDriverBase{

 //Test Annotation changes any java function to
TestNG test case

 @Test
 public void sampeTest(){
 //click on Accessibility link
 wait.until(ExpectedConditions.presenceOfElement

Located(MobileBy.AccessibilityId
("Accessibility")));

 driver.findElement(MobileBy.AccessibilityId
("Accessibility")).click();

 //click on 'Accessibility Node Querying' link
 wait.until(ExpectedConditions.presenceOfElement

Located(MobileBy.AccessibilityId("Accessibility
Node Querying")));

 driver.findElement(MobileBy.
AccessibilityId("Accessibility Node Querying")).
click();

 //back
 driver.navigate().back();
 //back
 driver.navigate().back();
 }
 }

 11. The first test case is ready. Run the Appium server on a
terminal, run an Android emulator, and execute the program
by right-clicking the file and selecting SampleTestCase
➤ Run As ➤ TestNG Test.

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

109

 The Appium server should receive the request, and the
program should be executed appropriately (Figure 5-5).

 Figure 5-5. Sample Android test case executed

 12. Now open a terminal and cd to the project root directory.
Type the following command to execute all the methods
tagged with the @Test annotation.

 mvn test

 The test case should execute successfully.

 ■ Note The only difference for iOS would be the initiation of the driver object in the
 @BeforeTest method; everything else remains the same for iOS and TestNG integration.

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

110

 How It Works
 Maven and TestNG are a popular combination for Appium. They make up the base of the
test automation framework. The following are some reasons for integrating Maven and
TestNG:

• Maven is a build tool that helps integrate all the required Java
libraries mentioned in the pom.xml file as dependencies. The
benefit is that in the case of any updates, you just need to update
the dependency version, and Maven takes care of the rest.

• The Maven life cycle helps ease the execution part. Functions
mentioned with the @Test tag in the test package can be easily
executed with mvn test from a terminal.

• TestNG helps tag methods as test cases and also helps with the
before and after methods. You just need to add as many methods
as you need and tag them with an appropriate tag such as @Test
or @BeforeSuite , @BeforeTest , and so on.

• TestNG creates a consolidated HTML report of the test results
automatically without needing you to do anything. This
complements one of the biggest shortcomings of Selenium-based
tools.

 ■ Note Integrating Appium with JUnit is similar to integrating Appium with TestNG. The
first difference is in pom.xml ; you would add a dependency of JUnit instead of TestNG. That’s
all you need to do differently to start using the @BeforeClass , @AfterClass , and @Test tags
of JUnit in Java.

 5-2. Create a BDD Framework with Appium,
Cucumber, and the Page Object Model
 Problem
 Behavior-driven development is gaining lot of popularity, and Cucumber is the best tool
to implement BDD, so you want to understand how to integrate Cucumber and Appium.

 The framework that you create should be easy to maintain and extend, so the
industry best practice of the page object model should also be integrated in the
framework. You want to learn how to do this.

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

111

 Solution
 You will create a behavior-driven development framework with Appium, Cucumber, and
JUnit and write one sample test case for an iOS app .

 1. Install the Eclipse-TestNG plug-in by following the steps at
 https://shankargarg.wordpress.com/2015/04/26/how-to-
integrate-eclipse-with-cucumber-plugin/ .

 2. Create a simple Maven project using the Eclipse-Maven plug-
in. Follow the steps until step 3 in recipe 5-1. Name the project
 AppiumCucumberPageObject .

 3. For a simple Maven project, this is what the pom.xml file looks
like:

 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>AppiumRecipeBook</groupId>
 <artifactId>AppiumCucumberPageObject</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>AppiumCucumberPageObject</name>
 <description>AppiumCucumberPageObject</description>

 </project>

 4. Now, you need to update the pom.xml file for the
dependencies of Cucumber and Appium. First, add the
properties tag and define properties for the Cucumber and
Appium versions. This is done to make sure that when you
need to update the dependency version, you do it in only one
place in the properties.

 <properties>
 <appium.version>4.0.0</appium.version>
 <cucumber.version>1.2.4</cucumber.version>
 </properties>

 ■ Note Please use the Maven central repository at http://search.maven.org/ to check
the latest dependency versions of Cucumber and Appium.

https://shankargarg.wordpress.com/2015/04/26/how-to-integrate-eclipse-with-cucumber-plugin/
https://shankargarg.wordpress.com/2015/04/26/how-to-integrate-eclipse-with-cucumber-plugin/
http://search.maven.org/

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

112

 5. Add dependencies for cucumber-java and cucumber-junit
for BDD and for java-client for mobile automation by using
the following code:

 <dependencies>
 <!-- cucumber -->
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-java</artifactId>
 <version>${cucumber.version}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-junit</artifactId>
 <version>${cucumber.version}</version>
 <scope>test</scope>
 </dependency>

 <!-- Appium -->
 <dependency>
 <groupId>io.appium</groupId>
 <artifactId>java-client</artifactId>
 <version>${appium.version}</version>
 </dependency>
 </dependencies>

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

113

 Figure 5-6. Structure for AppiumCucumberPageObject project

 6. To keep the logical files in the same place, you will
create some packages in the default project, such as the
 stepdefinition package to keep all the Cucumber step
definitions and the pages package to keep all the page object
files. Follow the setup in Figure 5-6 and create the packages as
mentioned.

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

114

 7. For a Cucumber project, the RunCukeTest.java file specifies
the configuration such as the location of feature files, the
location of step definitions, the output location, and so on.
Add the RunCukeTest class to the cucumberoptions package
with the following code:

 package com.cucumber.automation.cucumberoptions;

 import org.junit.runner.RunWith;

 import cucumber.api.CucumberOptions;
 import cucumber.api.junit.Cucumber;

 @RunWith(Cucumber.class)
 @CucumberOptions(

 features = "src/test/java/com/cucumber/
automation/features",

 glue = "com.cucumber.automation.
stepdefinition",

 plugin = {
 "pretty",
 "html:target/cucumber",
 }
)
 public class RunCukeTest {
 }

 8. Requirements are set in feature files. Since you are using
the iOS Test App for this demonstration, you will add the
 iOSTestApp.feature file to the package features . This is how
the feature file will look:

 Feature: iOS Test App
 In order to test sample ios app
 As a product owner
 I want to specify generic scenarios

 Scenario: Calculate Sum
 Given user is on Application Home Page
 When user enters "4" in first field
 And user enters "5" in second field
 And clicks on Compute Sum
 Then user sees computed sum as "9"

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

115

 9. The feature file has to be converted to StepDefinition for
Cucumber to understand this file. The simplest way is to use
the suggestions given by Cucumber. In iOSTestApp.feature ,
right-click and select Run As à Cucumber Feature.
Now copy the suggestions given by Cucumber in the console
output shown in Figure 5-7 .

 Figure 5-7. Cucumber’s suggestion for step definitions

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

116

 10. Add a file called iOSTestAppSD.java to the stepdefinition
package with the following code:

 package com.cucumber.automation.stepdefinition;

 import cucumber.api.java.en.Given;
 import cucumber.api.java.en.Then;
 import cucumber.api.java.en.When;

 public class iOSTestAppSD {

 @Given("^user is on Application Home Page$")
 public void user_is_on_Application_Home_Page() {
 }

 @When("^user enters \"([^\"]*)\" in first field$")
 public void user_enters_in_first_field(String arg1) {
 }

 @When("^user enters \"([^\"]*)\" in second field$")
 public void user_enters_in_second_field(String arg1) {
 }

 @When("^clicks on Compute Sum$")
 public void clicks_on_Compute_Sum() {
 }
 @Then("^user sees computed sum as \"([^\"]*)\"$")
 public void user_sees_computed_sum_as(String arg1) {
 }
 }

 11. You need to specify and add the test apps to be used for the
test case execution. Add the .apk / .app files in the apps folder
in the src/test/resources package .

 12. Add the Appium functions that can be used to invoke the
Android app and close the app once the execution finishes.
(I am keeping this file basic for simplicity purposes.) Create
the AppiumBase.java class in the utils package with the
following code:

 package com.cucumber.automation.utils;

 import io.appium.java_client.ios.IOSDriver;

 import java.io.File;
 import java.net.MalformedURLException;
 import java.net.URL;
 import java.util.concurrent.TimeUnit;

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

117

 import org.openqa.selenium.WebDriver;
 import org.openqa.selenium.remote.DesiredCapabilities;
 import org.openqa.selenium.support.ui.WebDriverWait;

 public class AppiumBase {

 public static WebDriver driver;
 public static WebDriverWait waitVar;

 public void createDriver() throws
MalformedURLException, InterruptedException {

 // setting capabilities
 DesiredCapabilities caps = new

DesiredCapabilities();
 caps.setCapability("platform", "iOS");
 caps.setCapability("platformVersion", "9.2");
 caps.setCapability("deviceName", "iPhone 6");

 // relative path to .app file
 final File classpathRoot = new File(System.

getProperty("user.dir"));
 final File appDir = new File(classpathRoot,

"src/test/resources/apps/");
 final File app = new File(appDir, "TestApp.

app");
 caps.setCapability("app", app.

getAbsolutePath());

 // initializing driver object
 driver = new IOSDriver(new

URL("http://127.0.0.1:4723/wd/hub"), caps);

 // initializing waits
 driver.manage().timeouts().implicitlyWait(10,

TimeUnit.SECONDS);
 waitVar = new WebDriverWait(driver, 10);
 }

 public void teardown() {
 // close the app
 driver.quit();
 }
 }

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

118

 13. You need to add a hooks file so that Cucumber can call
functions placed in the AppiumBase file . Create the Hooks.
java class in the stepdefinition package with the following
code:

 package com.cucumber.automation.stepdefinition;

 import java.net.MalformedURLException;

 import com.cucumber.automation.utils.AppiumBase;

 import cucumber.api.java.After;
 import cucumber.api.java.Before;

 public class Hooks {

 AppiumBase appiumBase = new AppiumBase();

 @Before
 public void beforeHookfunction() throws

MalformedURLException, InterruptedException{
 appiumBase.createDriver();
 }

 @After
 public void afterHookfunction() {
 appiumBase.teardown();
 }

 }

 14. Let’s start implementing the page object model (POM) . I am
keeping the POM simple, but you are free to extend it as per
your requirements. For this iOS app, since there is only one
screen, you will add only one page called HomePage.java in
the pages.iOS package with the following code:

 package com.cucumber.automation.pages.iOS;

 import io.appium.java_client.MobileBy;

 import org.openqa.selenium.By;
 import org.openqa.selenium.support.
ui.ExpectedConditions;

 import com.cucumber.automation.utils.AppiumBase;

 public class HomePage extends AppiumBase{

 // All the locators for Home page will be defined
here

 By textField1 = MobileBy. AccessibilityId ("TextFie
ld1");

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

119

 By textField2 = MobileBy. AccessibilityId ("TextFie
ld2");

 By computeSum = MobileBy. AccessibilityId ("Compute
SumButton");

 By result = MobileBy. AccessibilityId ("Answer");

 // All the behavior of home page will be defined
here in functions

 public boolean isHomePage(){
 waitVar .until(ExpectedConditions. presenceOfEle

mentLocated (computeSum));
 return driver .findElement(computeSum).

isDisplayed();
 }

 public void typeTextField1(String text){
 waitVar .until(ExpectedConditions. presenceOfEle

mentLocated (textField1));
 driver .findElement(textField1).sendKeys(text);
 }

 public void typeTextField2(String text){
 waitVar .until(ExpectedConditions. presenceOfEle

mentLocated (textField2));
 driver .findElement(textField2).sendKeys(text);
 }

 public void clickComputeSum(){
 waitVar .until(ExpectedConditions. presenceOfEle

mentLocated (computeSum));
 driver .findElement(computeSum).click();
 }

 public String returnResult(){
 waitVar .until(ExpectedConditions. presenceOfEle

mentLocated (result));
 return driver .findElement(result).getText();
 }
 }

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

120

 15. You will have to update the step definition files for the Appium
functions that you have just written. After adding all the
functions, the code should look like this:

 package com.cucumber.automation.stepdefinition;

 import com.cucumber.automation.pages.iOS.HomePage;

 import cucumber.api.java.en.Given;
 import cucumber.api.java.en.Then;
 import cucumber.api.java.en.When;

 import static org.junit.Assert. assertTrue ;
 import static org.junit.Assert. assertEquals ;

 public class iOSTestAppSD {

 HomePage homePage = new HomePage();

 @Given("^user is on Application Home Page$")
 public void user_is_on_Application_Home_Page() {
 assertTrue (homePage.isHomePage());
 }

 @When("^user enters \"([^\"]*)\" in first field$")
 public void user_enters_in_first_field(String arg1)
{
 homePage.typeTextField1(arg1);
 }

 @When("^user enters \"([^\"]*)\" in second field$")
 public void user_enters_in_second_field(String

arg1) {
 homePage.typeTextField2(arg1);
 }

 @When("^clicks on Compute Sum$")
 public void clicks_on_Compute_Sum() {
 homePage.clickComputeSum();
 }

 @Then("^user sees computed sum as \"([^\"]*)\"$")
 public void user_sees_computed_sum_as(String arg1)
{
 assertEquals (arg1, homePage.returnResult());
 }

 }

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

121

 16. The framework is ready. Run the Appium server on a terminal
and execute the program by going to iOSTestApp.feature .
Then right-click Run As and select Cucumber Feature.

 The Appium server should receive the request, and the
program should be executed appropriately (Figure 5-8).

 Figure 5-8. Console output for the Appium Cucumber project

 17. You can open a terminal and cd to the project root directory,
typing the following command to execute all the scenarios in
all the feature files:

 mvn test

 The scenarios should execute fine.

 ■ Note The only difference for Android would be to initiate the driver object in the
 @Before method; everything else remains the same for integrating Android with Cucumber.

 How It Works
 You have integrated Cucumber, Appium, Maven, Java, and page objects to design
your mobile automation frameworks. Cucumber is for implementing BDD so that
nontechnical people can also directly contribute to development, Appium is for web
automation, Java is a programming language, and Maven is a build tool.

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

122

 The page object model is a framework design approach for maintaining and
accessing components and controls spread across test scenarios. The page object model
creates a domain-specific language (DSL) for your tests so that if something changes
on the page, you don’t need to change the test; you just need to update the object that
represents the page.

 5-3. Conduct Continuous Automated Testing with
Appium, Git, and Jenkins
 Problem
 A test automation framework should integrate with version control and continuous
integration tools so that the latest test code can always be executed either on-demand or
at a scheduled time. You want to know how to integrate the Appium framework with a
version control management system and a continuous integration tool.

 Solution
 Git is the most famous version control management system. GitHub is most popular
version of it and is available for free for a certain number of users. So, for version control
in this recipe, you are going to use GitHub.

 Jenkins is most popular tool available for automated build and continuous
integration. Jenkins has lot of advantages as it is open source, free, and easy to use, and it
can schedule a run at a scheduled time or trigger builds after an event.

 Installing Jenkins and GitHub is beyond the scope of this book, and thus I am
assuming that you have Jenkins and Git already installed and set up.

• If you need any help regarding Jenkins setup, please follow the
steps here:
 https://wiki.jenkins-ci.org/display/JENKINS/
Installing+Jenkins

• You need to upload the project on GitHub. If you need any help in
Git or with the GitHub repo setup, then follow these instructions:
 https://help.github.com/articles/set-up-git/

• You can download the projects that will be used in this recipe
from the following GitHub URL:
 https://github.com/ShankarGarg/AppiumBook.git

 To get started, you will run Jenkins locally and execute the AppiumBookBlog project
created in recipe 5-1 by taking the latest code from the GitHub repository.

https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins
https://help.github.com/articles/set-up-git/
https://github.com/ShankarGarg/AppiumBook.git

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

123

 1. Use the http://0.0.0.0:8080/ URL to open Jenkins in any
browser (replace 0.0.0.0 or localhost with the machine
IP address if Jenkins is not running locally).

 2. Go to the Jenkins dashboard and click New Item (Figure 5-9).

 Figure 5-9. New Item on Jenkins dashboard

 Figure 5-10. Project name for the Jenkins job

 3. Enter the Jenkins job name that you want to create, select the
“Maven project” option, and click OK (Figure 5-10).

http://0.0.0.0:8080/

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

124

 4. Enter a description of the project (Figure 5-11).

 Figure 5-12. GitHub repository and credentials

 Figure 5-11. Project description

 5. In Source Code Management section, select Git, fill in the
Repository URL field as https://github.com/ShankarGarg/
AppiumBook.git , and fill in your GitHub credentials
(Figure 5-12). Keep the others options in this section set to
their defaults.

https://github.com/ShankarGarg/AppiumBook.git
https://github.com/ShankarGarg/AppiumBook.git

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

125

 Figure 5-13. pom.xml and Maven goal

 6. In the Build section, since this is a Maven project, the root
 pom.xml file is automatically mentioned, but since the
repository has multiple projects, you need to refer to the exact
 pom.xml file that you want to run in this project. Also, you
need to mention the goal test that you want to run in this
project (Figure 5-13).

 7. Keep all other options set to their defaults and click Save.
You will be redirected to the dashboard of the newly created
Jenkins project.

 8. On this page, click Build Now to run the project (Figure 5-14).

 Figure 5-14. Building the project

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

126

 9. Once you click Build Now, a build is triggered immediately. You
can see the build number and the timestamp (Figure 5-15).

 Figure 5-15. Build number and timestamp

 Figure 5-16. Console output for the Appium project

 10. Click the timestamp on the build. And then click Console
 Output to see the console output of the project (Figure 5-16).

CHAPTER 5 ■ CREATING AUTOMATION FRAMEWORKS USING APPIUM

127

 How It Works
 You have already integrated Appium with Maven, so integrating Appium with Jenkins just
meant running the Appium Maven project via Jenkins. Jenkins comes with a Maven plug-
in by default; when you selected the item type of building a Maven project, most of the
settings were taken care of then. The Build section was prepopulated with pom.xml , and
you just had to select the appropriate pom.xml file and set the goal to test .

 Jenkins is also prepopulated with the GitHub plug-in, so you just had to set the
GitHub URL and credentials. Now every time the project is built, Jenkins takes the latest
code from Git and then runs the test cases.

 ■ Note To explore more, you can go to the Build Triggers section in the Jenkins job and
try to schedule the job with various configurations.

129© Shankar Garg 2016
S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2_6

 CHAPTER 6

 Integrating Appium with
Selenium Grid

 In this chapter, you will learn to Integrate:

• Appium with Selenium Grid for native app automation

• Appium with Selenium Grid for mobile web automation

• Appium with Selenium Grid for two Android sessions on the
same machine

 In previous chapters, you learned to create a test automation framework using
Appium and integrate it with GitHub and Jenkins to schedule the test execution at desired
times.

 The last piece of the puzzle for an effective test strategy is to optimize the test
infrastructure. Either you can execute mobile test cases on simulators and real devices on
the local infrastructure managed by your company/client or you can use simulators and
real devices on cloud test labs provided by vendors such as Sauce Labs and Testdroid .

 The decision to use the local infrastructure versus a cloud lab depends on a lot
of factors such as cost and the effort required to set up and maintain a mobile test
infrastructure. This decision is beyond the scope of this book. In this chapter, you will
learn what it takes technically to run Appium test cases on the local infrastructure.

 6-1. Appium with Selenium Grid for Native
App Automation
 Problem
 You have most of your test cases ready, so you want to execute them on multiple devices,
and you want to create a test infrastructure that redirects the test cases to the appropriate
device based on the desired capabilities in the test case.

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

130

 Solution
 In this recipe, you will set up Selenium Grid to redirect the test cases to the appropriate
device based on the desired capabilities in the test case. The scope of this recipe is for
native app automation for both the Android and iOS platforms .

 1. Download the Selenium server JAR from http://selenium-
release.storage.googleapis.com/index.html . I have used
version 2.53.1 for this book. It has been saved in the src/
test/resources/drivers folder of the AppiumRecipeBook
project.

 2. Open a terminal, cd to the AppiumRecipesBook/src/test/
resources/drivers folder, and run the following command to
start the Selenium server:

 java -Djava.net.preferIPv4Stack=false -jar selenium-
server-standalone-2.53.1.jar -role hub

 ■ Note 2.53.1 is a stable version, but the version will vary as per updates in the
Selenium release.

 -Djava.net.preferIPv4Stack=false is to set my machine’s Java to accept connections
properly. Try using the previous command without this property, and if it works fine for you,
then there’s no need to use it.

 3. The Selenium Grid terminal output should look like Figure 6-1 .
Open http://192.168.56.1:4444/grid/console in a browser
to check the grid configurations and nodes (Figure 6-2).

 Figure 6-1. Terminal output for Selenium Grid

http://selenium-release.storage.googleapis.com/index.html
http://selenium-release.storage.googleapis.com/index.html
http://192.168.56.1:4444/grid/console

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

131

 4. Now Selenium Grid is ready to listen to requests at
 http://192.168.56.1:4444/wd/hub from Appium instances.

 ■ Note 192.168.56.1 is the IP address of my machine; you can also use localhost for
simplicity. If Selenium Grid is running remotely on another machine, then you need to use
the IP address of that machine.

 Android
 Now you need to create an Appium instance that will act as a slave/node to the Selenium
server setup in the previous steps. You will create a node configuration file called
 AppiumNodeConfigAndroidNative.json that will contain all the properties that this node
session will have.

 1. Create a file called AppiumNodeConfigAndroidNative.json
in the src/test/resources/AppiumConfig package in the
 AppiumRecipesBook project with the following content to
create an Android native instance:

 {
 "capabilities":
 [
 {
 "maxInstances": 1,
 "browserName": "",
 "platform":"android",
 "version":"5.1"
 }
],
 "configuration":
 {
 "cleanUpCycle":2000,

 Figure 6-2. Grid console for Selenium Grid

http://192.168.56.1:4444/wd/hub

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

132

 "timeout":30000,
 " proxy": "org.openqa.grid.selenium.proxy.

DefaultRemoteProxy",
 "hub": "http://192.168.56.1:4444/grid/register",
 "url":"http://127.0.0.1:4723/wd/hub",
 "host": "127.0.0.1",
 "port": 4723,
 "maxSession": 1,
 "register": true,
 "registerCycle": 5000,
 "hubPort": 4444,
 "hubHost": "192.168.56.1",
 "role": "node",
 "throwOnCapabilityNotPresent":"false"
 }
 }

 2. To start the Appium node session , open a new terminal,
 cd to the /src/test/resources/AppiumConfig folder in
the AppiumRecipesBook project, and start Appium with the
following command:

 appium --nodeconfig AppiumNodeConfigAndroidNative.json

 The console output of the previous command should look like
Figure 6-3 .

 Figure 6-3. Console output for Appium Android native node registration

 3. The Selenium Grid terminal output should look like Figure 6-4 ,
and the Selenium console at http://192.168.56.1:4444/
grid/console # should show the newly registered node with
its configurations (Figure 6-5).

http://192.168.56.1:4444/grid/console
http://192.168.56.1:4444/grid/console

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

133

 Figure 6-4. Selenium Grid terminal output for Selenium Grid registering a new node

 Figure 6-5. Selenium Grid console: node details

 The server and node are ready, and now you need to make
changes in your test case to redirect the test cases to Selenium
Grid, instead of just going to the Appium server.

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

134

 4. You will use your test case created in earlier chapters,
 AppiumSampleTestCaseAndroid , and make the necessary
changes to execute it using the Selenium Grid setup. Replace
the line where you create the driver object with the following
suggestion:

 //Line to be replaced:
 driver = new AndroidDriver(new
URL("http://127.0.0.1:4723/wd/hub"), caps);

 //New Line to be added - Driver object with Grid
address
 driver = new AndroidDriver(new
URL("http://192.168.56.1:4444/wd/hub"), caps);

 ■ Note To dynamically switch between local and Selenium Grid execution, you can pass a
command-line argument to specify executing on local or on Selenium Grid.

 5. Execute the program as explained in the previous chapters.
Selenium Grid should receive the request, create a new
session, and redirect the request appropriately (Figure 6-6).

 Figure 6-6. Selenium Grid response to a new session for Android native apps

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

135

 Figure 6-7. Appium node console output for a new session

 Figure 6-8. Android test case execution on an Android emulator

 The Appium node should receive the request (Figure 6-7), and the program should
be executed appropriately (Figure 6-8).

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

136

 iOS
 Now you need to create an Appium instance that will act as an iOS node to Selenium
Grid. You will create a node configuration file called AppiumNodeConfigIOSNative.json
that will contain all the properties for this session.

 You will use same grid setup as explained in steps 1–3 of the previous steps.

 1. Create a file called AppiumNodeConfigIOSNative.json in
the src/test/resources/AppiumConfig package in the
 AppiumRecipesBook project with the following content to
create an Android iOS instance:

 {
 "capabilities":
 [
 {
 "maxInstances": 1,
 "browserName": "",
 "version": "9.2",
 "platformName": "iOS",
 " app ": "/Users/ sgarg /

Documents/xebia / Docs / appium /AppiumCookBook/
gitCode/AppiumBook/AppiumRecipesBook/ src /test/
resources/ apps /TestApp.app",

 "newCommandTimeout":999
 }
],
 "configuration":
 {
 "cleanUpCycle":2000,
 "timeout":30000,
 "proxy": "org.openqa.grid.selenium.proxy.

DefaultRemoteProxy",
 "hub": "http://192.168.56.1:4444/grid/register",
 "url":"http://127.0.0.1:4723/wd/hub",
 "host": "127.0.0.1",
 "port": 4723,
 "maxSession": 1,
 "register": true,
 "registerCycle": 5000,
 "hubPort": 4444,
 "hubHost": "192.168.56.1",
 "role": "node",
 "throwOnCapabilityNotPresent":"false"
 }
 }

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

137

 ■ Note In app here, I am specifying the absolute path of the application under test; you
should specify the path of your respective local folder structure.

 2. To start the Appium node session, open a new terminal,
 cd to the /src/test/resources/AppiumConfig folder in
the AppiumRecipesBook project, and start Appium with the
following command:

 appium --nodeconfig AppiumNodeConfigIOSNative.json

 The console output of the previous command should look like
Figure 6-9 .

 Figure 6-9. Console output for Appium node registration

 3. The Selenium Grid console output should look like Figure 6-4 ,
and the Selenium console at http://192.168.56.1:4444/
grid/console # should show the newly registered node with
its configurations (Figure 6-10).

 Figure 6-10. Selenium Grid terminal output for Selenium Grid registering a new node

http://192.168.56.1:4444/grid/console
http://192.168.56.1:4444/grid/console

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

138

 The server and node are ready, and now you need to make
changes in your test case to redirect the test cases to Selenium
Grid, instead of just going to the Appium server.

 4. You will use the test case created in earlier chapters,
 AppiumSampleTestCaseIOS , and make the necessary changes
to execute the test case using the Grid Selenium setup.
Replace the line where you create the driver object with this
suggestion:

 //Line to be replaced:
 driver = new IOSDriver(new URL("http://127.0.0.1:4723/wd/hub"), caps);

 //New Line to be added - Driver object with Grid address
 driver = new IOSDriver(new URL("http://192.168.56.1:4444/wd/hub"), caps);

 Figure 6-11. Selenium Grid console: node details

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

139

 5. Execute the program as explained in the previous chapters.
Selenium Grid should receive the request, create a new
 session , and redirect the request appropriately (Figure 6-12).

 Figure 6-12. Selenium Grid response to a new session

 Figure 6-13. iOS test case execution

 The Appium node should receive the request, and the program should be executed
appropriately (Figure 6-13).

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

140

 How It Works
 When a test case is executed, Selenium Grid receives a request with certain desired
capabilities, and then it redirects that request to an Appium instance/node session with
the matching capabilities. So, in this recipe, those sessions would be either for Android
native apps or for iOS native apps. Figure 6-14 shows the Appium grid architecture.

 Figure 6-14. Appium grid architecture

 Selenium Grid is for managing the redirects to the appropriate device based on the
desired capabilities in the test case. You need to know the hubPort and hubHost settings
to connect with Grid. In this case, these details are as follows:

• hubPort : 4444

• hubHost : 192.168.56.1

 Appium instances/servers are for acting as the node, which receives the request from
Selenium Grid, and then for interacting with the device for the test case execution. These
communications are in the JSON wire protocol.

 The file config.json is used to specify all the properties of the instance/session. One
part of this file is to match the desired capabilities for an Appium session as follows:

 "capabilities":
 [
 {
 "browserName": "",
 "platform":"android",
 "version":"5.1"
 }
]

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

141

 Here, all the rules and knowledge for the desired capabilities will be applicable. The
other part of the config file is the configuration , as shown here:

 "configuration":
 {
 "cleanUpCycle":2000,
 "timeout":30000,
 "proxy": "org.openqa.grid.selenium.proxy.DefaultRemoteProxy",
 "hub": "http://192.168.56.1:4444/grid/register",
 "url":"http://127.0.0.1:4723/wd/hub",
 "host": "127.0.0.1",
 "port": 4723,
 "maxSession": 1,
 "register": true,
 "registerCycle": 5000,
 "hubPort": 4444,
 "hubHost": "192.168.56.1",
 "role": "node",
 "throwOnCapabilityNotPresent":"false"
 }

 This specifies important configurations such as role as node , hubHost and hubPort
for Selenium Grid, URL for the Appium server, timeout , cleanup, registercycle time
limits, and so on.

 When you start the Appium session, you need to specify that the current Appium
session will use the properties from the config JSON file instead of the default values. You
use the –nodeconfig parameter to provide the absolute path to the config.json file.

 You need to redirect the test case to Selenium Grid, and that’s why you change the
URL of the driver object to the Selenium Grid URL: http://192.168.56.1:4444/wd/hub .

 6-2. Appium with Selenium Grid for
Mobile Web Automation
 Problem
 In the previous recipe, you learned to set up native app sessions with Selenium Grid. Now
you want to set up mobile web sessions with Selenium Grid.

 Solution
 In this recipe, you will set up Selenium Grid for mobile web sessions on Android and
iOS (in other words, Chrome on Android and Safari on iOS). For the Android and iOS
solutions presented here, you will use same grid setup as steps 1–3 in recipe 6-1.

http://192.168.56.1:4444/wd/hub

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

142

 Android
 You need to create an Appium instance for Chrome on Android that will act as
a slave/node to Selenium Grid. You will create a node configuration file called
 AppiumNodeConfigAndroidWeb.json that will contain all the properties for this session.

 1. Create a file called AppiumNodeConfigAndroidWeb.json
in the src/test/resources/AppiumConfig package in the
 AppiumRecipesBook project with the following content:

 {
 "capabilities":
 [
 {
 "maxInstances": 1,
 "browserName": " chrome ",
 "platform":"android",
 "version":"5.1"
 }
],
 "configuration":
 {
 "cleanUpCycle":2000,
 "timeout":30000,
 " proxy": "org.openqa.grid.selenium.proxy.

DefaultRemoteProxy",
 "hub": "http://192.168.56.1:4444/grid/register",
 "url":"http://127.0.0.1:4723/wd/hub",
 "host": "127.0.0.1",
 "port": 4723,
 "maxSession": 1,
 "register": true,
 "registerCycle": 5000,
 "hubPort": 4444,
 "hubHost": "192.168.56.1",
 "role": "node",
 "throwOnCapabilityNotPresent":"false"
 }
 }

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

143

 2. To start an Appium node session , open a new terminal, cd
to the /src/test/resources/AppiumConfig folder in the
 AppiumRecipesBook project, and start Appium with the
following command:

 appium --nodeconfig AppiumNodeConfigAndroidWeb.json

 The console output of the previous command should look like
Figure 6-15 .

 Figure 6-15. Console output for Appium Android node registration

 3. The Selenium Grid console output should look like Figure 6-16 ,
 and the Selenium console at http://192.168.56.1:4444/
grid/console # should show the newly registered node with
its configurations (Figure 6-17).

 Figure 6-16. Selenium Grid terminal output for Selenium Grid registering a new node

 Figure 6-17. Selenium Grid Console : node details

http://192.168.56.1:4444/grid/console
http://192.168.56.1:4444/grid/console

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

144

 4. The server and node are ready, so now you need to make
changes in your test case to redirect the test cases to Selenium
Grid, instead of just going to the Appium server.

 5. You will use the test case created in earlier chapters,
 AppiumSampleTestCaseAndroidWeb , and make the necessary
changes to execute it using the Selenium Grid setup. Replace
the line where you create the driver object with this new
suggestion:

 //Line to be replaced:
 driver = new AndroidDriver(new
URL("http://127.0.0.1:4723/wd/hub"), caps);

 //New Line to be added - Driver object with Grid
address
 driver = new AndroidDriver(new
URL("http://192.168.56.1:4444/wd/hub"), caps);

 6. Execute the program as explained in the previous chapters.
Selenium Grid should receive the request, create a new
session, and redirect the request appropriately (Figure 6-18).

 Figure 6-18. Selenium Grid response to a new session

 Figure 6-19. Appium node console output for a new session

 The Appium node should receive the request (Figure 6-19), and the program should
be executed appropriately (Figure 6-20).

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

145

 iOS
 Now you need to create an Appium instance that will act as the iOS Safari
node to the Selenium server. You will create a node configuration file called
 AppiumNodeConfigIOSWeb.json that will contain all the properties for this session.

 1. Create a file called AppiumNodeConfigIOSWeb.json in
the src/test/resources/AppiumConfig package in the
 AppiumRecipesBook project with the following content to
create an Android iOS Safari instance:

 {
 "capabilities": [
 {
 "maxInstances": 1,
 "browserName": " safari ",
 "version": "9.2",
 "orientation": "LANDSCAPE",
 "platformName": "iOS",

 Figure 6-20. Android test case execution on an Android emulator

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

146

 "platform": "MAC",
 "safariIgnoreFraudWarning": "true",
 "newCommandTimeout":999
 }
],
 "configuration":
 {
 "cleanUpCycle": 2000,
 "timeout": 300000,
 "browserTimeout": 60000,
 " hub": "http://192.168.56.1:4444/grid/

register",
 "url":"http://127.0.0.1:4723/wd/hub",
 "host": "127.0.0.1",
 "port": 4723,
 "maxSession": 1,
 "register": true,
 "registerCycle": 5000,
 "hubPort": 4444,
 "hubHost": "192.168.56.1",
 "role": "node",
 "throwOnCapabilityNotPresent":"false"
 }
 }

 2. To start an Appium node session, open a new terminal, cd
to the /src/test/resources/AppiumConfig folder in the
 AppiumRecipesBook project, and start Appium with the
following command:

 appium --nodeconfig AppiumNodeConfigIOSWeb.json

 The console output of the previous command should look like
Figure 6-21 .

 Figure 6-21. Console output for Appium iOS node registration

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

147

 3. The Selenium Grid console output should look like Figure 6-22 ,
and the Selenium console at http://192.168.56.1:4444/
grid/console # should show the newly registered node with
its configurations (Figure 6-23).

 Figure 6-22. Selenium Grid registering a new iOS node

 4. The server and node are ready, so now you need to make
changes in your test case to redirect the test cases to
Selenium Grid, instead of just going to the Appium server.

 5. You will use the test case created in earlier chapters,
 AppiumSampleTestCaseIOSWeb , and make the necessary
changes to execute it using the Selenium Grid setup. Replace
the line where you create the driver object with this new
suggestion:

 //Line to be replaced:
 driver = new IOSDriver(new URL("http://127.0.0.1:4723/
wd/hub"), caps);
 //New Line to be added - Driver object with Grid
address
 driver = new IOSDriver(new
URL("http://192.168.56.1:4444/wd/hub"), caps);

 Figure 6-23. Selenium Grid registering a new node

http://192.168.56.1:4444/grid/console
http://192.168.56.1:4444/grid/console

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

148

 6. Execute the program as explained in the previous chapters.
Selenium Grid should receive the request, create a new
session, and redirect the request appropriately (Figure 6-24).

 The Appium node should receive the request, and the program should be executed
appropriately (Figure 6-25).

 Figure 6-24. Selenium Grid response to a new session

 Figure 6-25. iOS test case execution

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

149

 How It Works
 Selenium Grid and the Appium node setting remain the same. The only difference is in
the capabilities, which will set the browser to safari in the case of iOS and to chrome in
the case of Android.

 When a test case is executed, the Selenium server receives a request with certain
desired capabilities, and then the server redirects that request to an Appium node session
with the matching capabilities. So, in this recipe, those sessions would be for either
Android Chrome or iOS Safari.

 6-3. Appium with Selenium Grid for Two Android
Sessions on the Same Machine
 Problem
 To reduce your infrastructure costs, you want to run multiple Android emulators on the
same machine using Genymotion and use them as Appium nodes. For example, you want
to run one Google Nexus 5 and one Google Nexus 10 on the same machine and use Nexus
5 only for mobile test cases and Nexus 10 only for tablet test cases.

 Solution
 In this recipe, you will set up Selenium Grid with two Android sessions, one on Nexus 5
and other on Nexus 10, and then execute the test case on the desired device.

 For the Android solution presented here, you will use same grid setup as steps 1-3 in
recipe 6-1.

 1. Before you start with the Appium setup, knowing the device
ID of both emulators is important (Figure 6-26). For this, run
the following adb command on a terminal:

 adb devices

 Here 192.168.56.101:5555 is Nexus 5, and 192.168.56.102:5555
is Nexus 10.

 Figure 6-26. List of Android devices

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

150

 2. Create the first config file called
 AppiumNodeConfigAndroidNexus5.json in the src/test/
resources/AppiumConfig package in the AppiumRecipesBook
project with the following content:

 {
 "capabilities":
 [
 {
 "maxInstances": 2,
 "browserName": "",
 "platform":"android",
 "version":"5.1",
 "deviceName": "192.168.56.101:5555"
 }
],
 "configuration":
 {
 "cleanUpCycle":2000,
 "timeout":30000,
 "proxy": "org.openqa.grid.selenium.proxy.
DefaultRemoteProxy",
 " url ":"http://192.168.56.1:4723/wd/hub",
 "host": "192.168.56.1",
 "port": 4723,
 "maxSession": 1,
 "register": true,
 "registerCycle": 5000,
 "hubPort": 4444,
 "hubHost": "192.168.56.1"
 }
 }

 3. Create a second config file called
 AppiumNodeConfigAndroidNexus10.json in the src/test/
resources/AppiumConfig package in the AppiumRecipesBook
project with this content:

 {
 "capabilities":
 [
 {
 "maxInstances": 2,
 "browserName": "",
 "platform":"android",
 "version":"5.1",
 "deviceName": "192.168.56.102:5555"

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

151

 }
],
 "configuration":
 {
 "cleanUpCycle":2000,
 "timeout":30000,
 "proxy": "org.openqa.grid.selenium.proxy.

DefaultRemoteProxy",
 " url ":"http://192.168.56.1:4724/wd/hub",
 "host": "192.168.56.1",
 "port": 4724,
 "maxSession": 1,
 "register": true,
 "registerCycle": 5000,
 "hubPort": 4444,
 "hubHost": "192.168.56.1"
 }
 }

 4. To start an Appium node session for Nexus 5, open a new
terminal, cd to the /src/test/resources/AppiumConfig
folder in the AppiumRecipesBook project, and start Appium
with the following command:

 appium --nodeconfig AppiumNodeConfigAndroidNexus5.json
 -p 4723

 5. To start an Appium node session for Nexus 10, open a new
terminal, cd to the /src/test/resources/AppiumConfig
folder in the AppiumRecipesBook project, and start Appium
with the following command:

 appium -- nodeconfig AppiumNodeConfigAndroidNexus10.json
 -p 4724

 ■ Note Here the argument –p is important; –p is to specify the port number that a
particular Appium session will use for its communication. Otherwise, both Appium sessions
would want to use the same port and cause an error. This port number is the same as used
for the port property in the .json file.

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

152

 6. The Selenium console at http://192.168.56.1:4444/grid/
console # should show the newly registered nodes (Figure 6-27).

 7. Make two copies of test case
 AppiumSampleTestCaseAndroidNative as
 AppiumTestCaseNexus5 and AppiumTestCaseNexus10 .

 8. In AppiumTestCaseNexus5 , use the following code for the
Appium capability and keep everything else untouched:

 // setting capabilities
 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("platform", "ANDROID");
 caps.setCapability("platformVersion", "5.0");
 caps.setCapability("deviceName", "ANDROID");
 caps.setCapability("browserName", "");
 caps.setCapability("deviceName",
"192.168.56.101:5555");

 9. In AppiumTestCaseNexus10 , use the following code for the
Appium capability and keep everything else untouched:

 // setting capabilities
 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("platform", "ANDROID");
 caps.setCapability("platformVersion", "5.0");
 caps.setCapability("deviceName", "ANDROID");
 caps.setCapability("browserName", "");
 caps.setCapability("deviceName",
"192.168.56.102:5555");

 Figure 6-27. Selenium Grid with two Android Appium sessions

http://192.168.56.1:4444/grid/console
http://192.168.56.1:4444/grid/console

CHAPTER 6 ■ INTEGRATING APPIUM WITH SELENIUM GRID

153

 ■ Note Here the deviceName capability is important because this will make sure that
when you run one particular test case, the request that goes to Selenium Grid is for that
particular device.

 10. Execute the program AppiumTestCaseNexus5 as explained
in the previous chapters. Selenium Grid should receive the
request, create a new session, and redirect the request to the
Nexus 5 device only.

 11. Execute the program AppiumTestCaseNexus10 as explained
in the previous chapters. Selenium Grid should receive the
request, create a new session, and redirect the request to the
Nexus 10 device only.

 How It Works
 When running multiple Android devices on the same machine and wanting to run
specific test cases on specific devices, you need to bind the port number and device name
together in the Appium config file as well as the test case.

 In a config file, you specify to start an Appium session on device 1 on port 1, and in
another config file, you specify to start an Appium session on device 2 on port 2. Then you
specify one test case to run on device 1 and the second test case to run on device 2. When
the test case is actually executed, Selenium Grid will send the request to the Appium
session with the matching device name.

 ■ Note As of now, only one iOS session per machine can be started, so this scenario is
not applicable to iOS.

155© Shankar Garg 2016
S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2_7

 CHAPTER 7

 Executing Appium with
Cloud Test Labs

 In this chapter, you will learn to Execute:

• Appium on the Sauce Labs cloud

• Appium on the Testdroid cloud

 In previous chapters, you learned to integrate Appium with Selenium Grid to execute
test cases on an on-premise setup. In this chapter, you will learn to execute test cases on
cloud test labs such as Sauce Labs and Testdroid .

 Cloud test labs are subscription based (monthly, annual, and so on), which allows
users to use a set of devices based on the subscription plan. The advantage of cloud test
labs is that you don’t need to maintain the devices and operating systems. You also don’t
need to worry about buying the latest versions in the market.

 Although there are multiple cloud test labs available, this chapter will cover
Sauce Labs and Testdroid. Sauce Labs provides emulators and simulators, but its real
devices are expensive; Testdroid provides only real devices, and the costs are better
comparatively. Both labs support Appium for the Android and iOS platforms.

 7-1. Appium on the Sauce Labs Cloud
 Problem
 If you’re familiar with web automation using Selenium, you are probably familiar with
Sauce Labs. It’s the official sponsor of both Selenium and Appium, so its integration with
both these tools is obvious.

 Test strategies that involve testing applications on various combinations of OS
versions and devices like iOS 9.3.5 on iPhone 5s and iOS 9.1 on iPhone 6, and so on,
will be best suited for Sauce Labs. You want to learn how to use Sauce Labs to execute
Appium.

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

156

 Solution
 In this recipe, you will register a new user for Sauce Labs and execute a native test case
each for the Android and iOS native apps on the Sauce Labs cloud.

 1. First you need to register at Sauce Labs to create an account.
Go to https://saucelabs.com/signup/trial to create a free
account.

 2. After registration, you will get a verification e-mail. Verify the
account and log in to Sauce Labs. You will be redirected to a
dashboard (Figure 7-1) . The left panel is the menu dashboard,
and the right panel is the execution dashboard. For this
recipe, you will use the Automated Tests dashboard.

 Figure 7-1. Sauce Labs dashboard

 3. Now you need to write down the access key for your account.
This access key acts as an identifier for your account.

 a. Scroll down in the left panel, click your name, and choose
My Account from submenu (Figure 7-2).

 b. Go to the access key in the right panel. Click Show and
write down the access key.

https://saucelabs.com/signup/trial

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

157

 4. Sauce Labs needs a reference to an application under test. There
are two ways to do this; one is to upload the app to the cloud
platform, which can be accessed publically by Sauce Labs, or
you can upload the app to the Sauce Labs temporary storage.
For this recipe, you will use the Sauce Labs temporary storage ,
so refer to https://wiki.saucelabs.com/display/DOCS/
Temporary+Storage+Methods for all the required information.

 Android
 Follow these steps:

 1. The command for uploading an app to Sauce Labs temporary
storage is as follows:

 curl -u << YOUR_USERNAME>>:<<YOUR_ACCESS_KEY>> \
 -X POST \
 -H "Content-Type: application/octet-stream" \
 https://saucelabs.com/rest/v1/storage/ <<YOUR_

USERNAME>> / <<TEST_FILE_NAME>> ?overwrite=true \
 --data-binary @<<PATH_TO_TEST_FILE>>

 Here’s what this code means:

 YOUR_USERNAME : This is your Sauce Labs username.

 YOUR_ACCESS_KEY : This is your Sauce Labs access key, noted
in step 3.

 TEST_FILE_NAME : This is the file name with which the file can
be accessed on the Sauce Labs temporary storage.

 PATH_TO_TEST_FILE : This is the absolute location of the file
that you want to upload.

 Figure 7-2. Access key in the Sauce Labs dashboard

https://wiki.saucelabs.com/display/DOCS/Temporary+Storage+Methods
https://wiki.saucelabs.com/display/DOCS/Temporary+Storage+Methods

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

158

 ■ Note The file extension for the iOS app is .zip (.app and .ipa files won’t work).

 Temporary storage is valid for only seven days; you will need to upload the app again after
seven days.

 Now you need to create an Appium test case that executes
Android’s ApiDemos-debug.apk file on Sauce Labs.

 2. Create a file called AppiumSauceLabsAndroid in the src/test/
java/appium package in the AppiumRecipesBook project with
the following content:

 package appium;

 import io.appium.java_client.MobileBy;
 import io.appium.java_client.android.AndroidDriver;

 import java.net.MalformedURLException;
 import java.net.URL;
 import java.util.concurrent.TimeUnit;

 import org.openqa.selenium.remote.DesiredCapabilities;
 import org.openqa.selenium.support.
ui.ExpectedConditions;
 import org.openqa.selenium.support.ui.WebDriverWait;

 public class AppiumSauceLabsAndroid {

 public static void main(String[] args) throws
MalformedURLException, InterruptedException {
 //Declaring WebDriver variables
 AndroidDriver driver;
 WebDriverWait wait;

 // setting capabilities
 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("platformName", "ANDROID");
 caps.setCapability("platformVersion", "4.4");

 Figure 7-3. Terminal output for Sauce Labs file upload

 The file upload should return a message, as shown in
Figure 7-3 .

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

159

 caps.setCapability("deviceName", "Samsung Galaxy Nexus
Emulator");
 caps.setCapability("browserName", "");
 caps.setCapability("appiumVersion", "1.5.3");
 caps.setCapability("app","sauce-storage:ApiDemos-debug.
apk");

 // initializing driver object - Sauce Labs
 // Replace credentials with yours
 driver = new AndroidDriver(new URL("http:// <<SauceLabs_
UserName>>:<<SauceLabs_accessID>> @ondemand.saucelabs.
com:80/wd/hub"), caps);

 //initializing waits
 driver.manage().timeouts().implicitlyWait(10, TimeUnit.
SECONDS);
 wait = new WebDriverWait(driver, 10);

 // click on 'Accessibility' link
 wait.until(ExpectedConditions.presenceOfElementLocated(
MobileBy.AccessibilityId("Accessibility")));
 driver.findElement(MobileBy.AccessibilityId("Accessibil
ity")).click();
 // click on 'Accessibility Node Querying' link
 wait.until(ExpectedConditions.presenceOfElementLoc
ated(MobileBy.AccessibilityId("Accessibility Node
Querying")));
 driver.findElement(MobileBy.
AccessibilityId("Accessibility Node Querying")).
click();
 driver.navigate().back();
 driver.navigate().back();

 //using content-desc
 driver.findElement(MobileBy.AndroidUIAutomator("descrip
tion(\"Accessibility\")")).click();
 //close driver
 driver.quit();

 }
 }

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

160

 3. Execute the program by right-clicking and selecting Run
As ➤ Java Program.

 4. Go to the Sauce Labs dashboard called Automated Tests. You
should see one test case execution, as shown in Figure 7-4 .

 Figure 7-4. Test case execution in the Sauce Labs dashboard

 Figure 7-5. Test case details while test case is executing

 5. Click the test case name in the dashboard to see the test case
details (Figure 7-5).

 6. Once the test case execution finishes, a video will be loaded,
and you can view the video of the test case (Figure 7-6).

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

161

 iOS
 Follow these steps:

 1. The file upload for the iOS app should return a message like
the one shown in Figure 7-7 .

 Figure 7-6. Test case details while test case is executing

 Figure 7-7. Terminal output for Sauce Labs file upload

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

162

 ■ Note The file extension for the iOS app is .zip (.app and .ipa files won’t work).

 Now you need to create an Appium test case that executes
iOS’s TestApp.zip file on Sauce Labs.

 2. Create a file called AppiumSauceLabsIOS in the src/test/
java/appium package in the AppiumRecipesBook project with
the following content:

 package appium;

 import io.appium.java_client.MobileBy;
 import io.appium.java_client.ios.IOSDriver;

 import java.net.MalformedURLException;
 import java.net.URL;
 import java.util.concurrent.TimeUnit;

 import org.openqa.selenium.remote.DesiredCapabilities;
 import org.openqa.selenium.support.
ui.ExpectedConditions;
 import org.openqa.selenium.support.ui.WebDriverWait;

 public class AppiumSauceLabsiOS {

 public static void main(String[] args) throws
MalformedURLException, InterruptedException {
 //Declaring WebDriver variables
 IOSDriver driver;
 WebDriverWait wait;

 // setting capabilities
 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("appiumVersion", "1.5.3");
 caps.setCapability("deviceName","iPhone 6");
 caps.setCapability("platformVersion","9.2");
 caps.setCapability("platformName", "iOS");
 caps.setCapability("browserName", "");
 caps.setCapability("app","sauce-storage:TestApp.zip");

 // initializing driver object - Sauce Labs
 // Replace credentials with yours
 driver = new IOSDriver(new URL("http:// <<SauceLabs_
UserName>>:<<SauceLabs_accessID>> @ondemand.saucelabs.
com:80/wd/hub"), caps);

 // initializing waits
 driver.manage().timeouts().implicitlyWait(10, TimeUnit.
SECONDS);
 wait = new WebDriverWait(driver, 10);

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

163

 //enter data in first text box
 wait.until(ExpectedConditions.presenceOfElementLocated(
MobileBy.IosUIAutomation(".textFields()[0]")));
 driver.findElement(MobileBy.IosUIAutomation(".
textFields()[0]")).sendKeys("1");

 // enter data in second text box
 wait.until(ExpectedConditions.presenceOfElementLocated(
MobileBy.IosUIAutomation(".textFields()[1]")));
 driver.findElement(MobileBy.IosUIAutomation(".
textFields()[1]")).sendKeys("2");
 // click on compute Sum Button driver.
findElement(MobileBy.IosUIAutomation(".buttons().firstW
ithPredicate(\"name=='ComputeSumButton'\")")).click();
 // print value of '???' label
 System.out.println(driver.findElement(MobileBy.
IosUIAutomation(".staticTexts().firstWithPredicate(\"na
me=='Answer'\")")).getText());

 // close driver
 driver.quit();

 }
 }

 3. Execute the program by right-clicking and selecting Run As ➤
Java Program.

 4. Go to the Sauce Labs dashboard called Automated Tests. You
should see one test case execution, as shown in Figure 7-8 .

 Figure 7-8. Test case execution in the Sauce Labs dashboard

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

164

 5. Click the test case name in the dashboard to see the test case
details (Figure 7-9).

 Figure 7-9. Test case details while test case is executing

 Figure 7-10. Test case details while test case is executing

 6. Once the test case execution finishes, a video will be loaded
and you can view the video of the test case (Figure 7-10).

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

165

 How It Works
 To execute test cases on Sauce Labs, the whole setup can be divided into two parts.

• Sauce Labs setup : You need to register and create an account.
Once you have created an account, you need to note the access
key (an identifier for your account), and you need to upload the
app that can be accessed by Sauce Labs. That’s it.

• Test case changes : The beauty of Appium is that you don’t need to
make any changes in the test case, only in the desired capabilities.

 Here’s an example:

 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("platformName", "ANDROID");
 caps.setCapability("platformVersion", "4.4");
 caps.setCapability("deviceName", "Samsung Galaxy Nexus
Emulator");
 caps.setCapability("browserName", "");
 caps.setCapability("appiumVersion", "1.5.3");
 caps.setCapability("app","sauce-storage:ApiDemos-debug.apk");

 For executing test cases on Sauce Labs, the main capabilities are as follows:

• platformName : Specify either iOS or Android .

• platformVersion : This is a specific version of the platform (for
example, for iOS specify 8.0 or 9.3 ; for Android, specify 5.0 or
 6.0).

• deviceName : Specify which device to use (for example, for iOS
specify iPhone 6 ; or specify an actual device name such as
 Samsung Galaxy S3 for Android).

• app : If you are executing a native app, then specify the location
of the Sauce Labs temporary storage or the URL of the app
somewhere on the Internet.

• browserName : If you are testing mobile web apps (for example, for
iOS Safari or for Android Chrome), the browser name and app are
mutually exclusive.

• appiumVersion : Specify which version of Appium to use for a
particular execution; for example, 1.5.3 is the latest as of writing
this book.

 Here is how you define the Appium driver object :

 driver = new IOSDriver(new URL("http:// <<SauceLabs_
UserName>>:<<SauceLabs_accessID>> @ondemand.saucelabs.com:80/wd/
hub"), caps);

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

166

 Here you are redirecting the Appium execution to Sauce Labs instead of the local
Appium instance.

 You can find the entire list of desired capabilities for Sauce Labs here: https://wiki.
saucelabs.com/display/DOCS/Test+Configuration+Options .

 You can find the sample list of desired capabilities for Appium and Sauce Labs here:
 https://wiki.saucelabs.com/display/DOCS/Examples+of+Test+Configuration+Optio
ns+for+Mobile+Native+Application+Tests .

 7-2. Appium on the Testdroid Cloud
 Problem
 Besides Sauce Labs, Testdroid is another cloud test lab. It provides real devices only, and
you want to execute your test cases on real devices.

 Solution
 In this recipe, you will register a new user for Testdroid and will execute a native test case
for Android native apps on the Testdroid cloud.

 1. First you need to register at Testdroid to create an account. Go
to http://bitbar.com/testing/try-for-free/ to create a
free account.

 2. After registering, you will get a verification e-mail. Verify
the account and log in to Testdroid. You will be redirected
to a dashboard (Figure 7-11). The left panel is the menu
dashboard, and the right panel is the execution dashboard.

 Figure 7-11. Testdroid dashboard

https://wiki.saucelabs.com/display/DOCS/Test+Configuration+Options
https://wiki.saucelabs.com/display/DOCS/Test+Configuration+Options
https://wiki.saucelabs.com/display/DOCS/Examples+of+Test+Configuration+Options+for+Mobile+Native+Application+Tests
https://wiki.saucelabs.com/display/DOCS/Examples+of+Test+Configuration+Options+for+Mobile+Native+Application+Tests
http://bitbar.com/testing/try-for-free/

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

167

 3. Go to Account Settings and check the subscription plan
 (Figure 7-12).

 4. Go to https://cloud.testdroid.com/#service/
devicegroups and check the devices available for a trial
subscription (Figures 7-13 and 7-14). Check the devices in the
free Android category and the free iOS category and note the
names. These will be used in the test case.

 Figure 7-12. Subscription plan

 Figure 7-13. Devices for trial plan

https://cloud.testdroid.com/#service/devicegroups
https://cloud.testdroid.com/#service/devicegroups

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

168

 5. Now you need to write down the access key for your account.
This access key acts as an identifier for your account.

 a. In the Testdroid dashboard, mouse over your name and
click “ Account information .”

 b. Go to the API key in the right panel. Write down the
access key (Figure 7-15).

 Figure 7-14. Free Android devices

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

169

 6. Go to the Testdroid dashboard, and in the left panel, create
two projects (Figure 7-16).

 a. Create Appiumbook with a type of Appium Android.

 b. Create AppiumBookios with a type of Appium iOS.

 Figure 7-15. API key in the Testdroid dashboard

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

170

 Figure 7-16. Project in the Testdroid dashboard

 7. Testdroid needs a reference to the application under test. You
are going to use the Testdroid temporary storage, so please
refer to http://testdroid.com/news/appium-testdroid-
cloud-2 for all the required information.

 Android
 Follow these steps:

 1. The command for uploading the app to Testdroid temporary
storage is as follows:

 curl -s --user << testdroid_UserName >>:<< testdroid_
password >> -F myAppFile=@"<< absolute_File_path >>"
"http://appium.testdroid.com/upload"

 Here’s what this code means:

 TESTDROID_USERNAME : This is the Testdroid username.

 TESTDROID_PASSWORD : This is the Testdroid password.

 ABSOLUTE_FILE_PATH : This is the absolute location of the file
that you want to upload.

 ■ Note Down myappfile from upload response.

http://testdroid.com/news/appium-testdroid-cloud-2
http://testdroid.com/news/appium-testdroid-cloud-2

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

171

 Now you need to create an Appium test case that executes
Android’s ApiDemos-debug.apk file on Testdroid.

 2. Create a file called AppiumTestDroidAndroid in the src/test/
java/appium package in the AppiumRecipesBook project with
the following content:

 package appium;

 import io.appium.java_client.AppiumDriver;
 import io.appium.java_client.MobileBy;
 import io.appium.java_client.android.AndroidDriver;

 import java.net.MalformedURLException;
 import java.net.URL;
 import java.util.concurrent.TimeUnit;

 import org.openqa.selenium.remote.DesiredCapabilities;
 import org.openqa.selenium.support.
ui.ExpectedConditions;
 import org.openqa.selenium.support.ui.WebDriverWait;

 public class AppiumTestDroidAndroid {

 public static void main(String[] args) throws
MalformedURLException, InterruptedException {
 //Declaring WebDriver variables
 AppiumDriver driver;
 WebDriverWait wait;

 // setting capabilities
 DesiredCapabilities capabilities = new
DesiredCapabilities();

 capabilities.setCapability("deviceName",
"AndroidDevice");
 capabilities.setCapability("testdroid_target",
"Android");
 capabilities.setCapability("testdroid_apiKey",
"<< API_Key >>");
 capabilities.setCapability("testdroid_project",
"AppiumBook");

 Figure 7-17. Terminal output for Testdroid file upload

 The file upload should return a message like Figure 7-17 .

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

172

 capabilities.setCapability("testdroid_testrun",
"Android Run 1");

 capabilities.setCapability("testdroid_device", "LG
Google Nexus 5 6.0.1 -US");
 capabilities.setCapability("testdroid_app", "af9de10f-
cddf-4cae-a494-4c86a53e7552/ApiDemos-debug.apk");
 // initializing driver object - TestDroid
 driver = new AndroidDriver(new URL(" http://appium.
testdroid.com/wd/hub "), capabilities);

 //initializing waits
 driver.manage().timeouts().implicitlyWait(10, TimeUnit.
SECONDS);
 wait = new WebDriverWait(driver, 10);

 // click on 'Accessibility' link
 wait.until(ExpectedConditions.presenceOfElementLocated(
MobileBy.AccessibilityId("Accessibility")));
 driver.findElement(MobileBy.AccessibilityId("Acc

essibility")).click();

 // click on 'Accessibility Node Querying' link
 wait.until(ExpectedConditions.presenceOfElementLoc
ated(MobileBy.AccessibilityId("Accessibility Node
Querying")));
 driver.findElement(MobileBy.
AccessibilityId("Accessibility Node Querying")).
click();
 driver.navigate().back();
 driver.navigate().back();
 //close driver
 driver.quit();

 }
 }

 3. Execute the program by right-clicking and selecting Run As ➤
Java Program.

 4. Go to the Testdroid dashboard and select the project
 AppiumBook . You should see one test case execution with the
name Android Run 1, as shown in Figure 7-18 .

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

173

 5. Click the blue bar in the dashboard to see the test case details
(Figure 7-19).

 6. Once the test case execution finishes, you will see the data
shown in Figure 7-20 .

 Figure 7-18. Test case execution in the Testdroid dashboard

 Figure 7-19. Test case details while test case is executing

 Figure 7-20. Test case details after test case has finished

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

174

 7. You can click the blue card yet again to see the execution
logs, such as the Appium logs, device logs, and performance
dashboards (Figure 7-21).

 Figure 7-21. Test case details and various logss

 iOS
 Since Testdroid uses real devices for execution, the iOS app needs to be signed to be
executed on real devices. For more information, visit http://docs.testdroid.com/
appium/environment/ and go to the iOS App Requirements section.

 For this recipe, you will execute mobile web apps for iOS.

 1. Create a file called AppiumTestDroidIOSWeb in the src/test/
java/appium package in the AppiumRecipesBook project with
the following content:

 package appium;

 import io.appium.java_client.AppiumDriver;
 import io.appium.java_client.MobileBy;
 import io.appium.java_client.ios.IOSDriver;

 import java.net.MalformedURLException;
 import java.net.URL;
 import java.util.concurrent.TimeUnit;

 import org.openqa.selenium.By;
 import org.openqa.selenium.remote.DesiredCapabilities;
 import org.openqa.selenium.support.
ui.ExpectedConditions;
 import org.openqa.selenium.support.ui.WebDriverWait;

 public class AppiumTestDroidIOSWeb {

http://docs.testdroid.com/appium/environment/
http://docs.testdroid.com/appium/environment/

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

175

 public static void main(String[] args) throws
MalformedURLException, InterruptedException {
 // Declaring WebDriver variables
 AppiumDriver driver;
 WebDriverWait wait;

 // setting capabilities
 DesiredCapabilities capabilities = new
DesiredCapabilities();

 capabilities.setCapability("deviceName", "iOS Phone");
 capabilities.setCapability("testdroid_target",
"safari");
 capabilities.setCapability("testdroid_apiKey",
"<<api_Key>>");
 capabilities.setCapability("testdroid_project",
“AppiumBookIOS");
 capabilities.setCapability("testdroid_testrun",
"Appium Run 3");

 capabilities.setCapability("testdroid_device",
"iPhone 5c 7.0.4 A1532");
 capabilities.setCapability("browserName", "safari");

 // initializing driver object - TestDroid
 driver = new IOSDriver(new URL("http://appium.
testdroid.com/wd/hub"), capabilities);

 // initializing waits
 driver.manage().timeouts().implicitlyWait(10, TimeUnit.
SECONDS);
 wait = new WebDriverWait(driver, 10);

 // open github URL
 driver.get("https://github.com/");

 // click Signup
 wait.until(ExpectedConditions.
presenceOfElementLocated(By.linkText("Sign up for
GitHub")));
 driver.findElement(By.linkText("Sign up for GitHub")).
click();

 // click Create Account
 wait.until(ExpectedConditions.presenceOfElementLocated(
MobileBy.id("signup_button")));
 driver.findElement(MobileBy.id("signup_button")).click();

 // close driver
 driver.quit();

 }
 }

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

176

 2. Execute the program by right-clicking and selecting Run As ➤
Java Program.

 3. Go to the Testdroid dashboard and select the project
 AppiumBookios . You should see one test case execution, as
shown in Figure 7-22 .

 Figure 7-23. Test case details while test case is executing

 Figure 7-24. Test case details while test case has finished

 Figure 7-22. Test case execution in the Testdroid dashboard

 4. Click the test case name in the dashboard and you will see
data like in Figure 7-23 .

 5. Click the test case name in the dashboard and you will see
data like Figure 7-24 .

 6. You can click the blue card yet again to see the execution
logs, such as the Appium logs, device logs, and performance
dashboards (Figure 7-25).

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

177

 How It Works
 To execute test cases on Testdroid, the whole setup can be divided into two parts.

• Testdroid setup : You need to register and create an account. Once
you have created an account, you need to note the API key (an
identifier for your account), and you need to upload the app to be
accessed by Testdroid.

• Test case changes : The beauty of Appium is that you don’t need to
make any changes in the test case, only in the desired capabilities.

 Here’s an example:

 DesiredCapabilities capabilities = new
DesiredCapabilities();
 capabilities.setCapability("deviceName", "iOS Phone");
 capabilities.setCapability("testdroid_target",
"safari");
 capabilities.setCapability("testdroid_apiKey", "<<api_
Key>>");
 capabilities.setCapability("testdroid_project",
"AppiumBookIOS");
 capabilities.setCapability("testdroid_testrun", "Appium
Run 3");
 capabilities.setCapability("testdroid_device", "iPhone
5c 7.0.4 A1532");
 capabilities.setCapability("browserName", "safari");

 Figure 7-25. Test case details and various logs

CHAPTER 7 ■ EXECUTING APPIUM WITH CLOUD TEST LABS

178

 For executing test cases on Testdroid, apart from the generic Appium capabilities,
the following changes need to be made in the test case:

• deviceName : Use either AndroidDevice or iOS Phone .

• testdroid_target : Specify either iOS , Android , safari , or
 chrome .

• testdroid_device : Specify which device to use and get device
names from https://cloud.testdroid.com/#service/
devicegroups .

• testdroid_app : If you are executing a native app, then specify the
location of the Testdroid temporary storage or specify the browser
in the browserName capability.

• testdroid_apiKey : This is the API key for the Testdroid account.

• testdroid_project : This is the Testdroid project created for a
particular platform.

• testdroid_testrun : This is the Testdroid test run to group
different executions in an Appium project.

 Here is how to define the Appium driver object :

 driver = new IOSDriver(new URL(" http://appium.testdroid.com/wd/hub "),
capabilities);

 Here you specify to redirect the Appium execution to Testdroid instead of local
execution.

 You can find the list of desired capabilities for Testdroid here: http://help.
testdroid.com/customer/portal/articles/1507074-testdroid_-desired-
capabilities .

https://cloud.testdroid.com/#service/devicegroups
https://cloud.testdroid.com/#service/devicegroups
http://help.testdroid.com/customer/portal/articles/1507074-testdroid_-desired-capabilities
http://help.testdroid.com/customer/portal/articles/1507074-testdroid_-desired-capabilities
http://help.testdroid.com/customer/portal/articles/1507074-testdroid_-desired-capabilities

179

 A
 Accessibility ID

 Android , 30–31
 elements , 33
 end users , 33
 generic locator strategies , 30
 iOS , 32
 name/content-desc attribute , 33

 Android
 AppiumAndroid native node

registration , 132
 Appium node session , 132, 135
 emulator , 135
 fi le Creation , 131
 native apps , 134
 node details , 133
 replacing , 134
 terminal output , 133
 test case execution , 135

 Android mobile web elements
 ADB inspector, Google.com , 48
 build number item, about phone

settings , 44
 Chrome ADB plug-in , 44–46, 48
 Developer options settings and USB

debugging option , 45
 Discovering USB devices , 46
 screencast icon , 47
 USB debugging , 44

 AndroidUIAutomator
 Android , 36
 API Demo Android application , 36
 problem , 35
 UISelector , 37

 API Demo Android application , 30, 36
 ApiDemos-debug.apk fi le , 158

 Appium
 capabilities

 Android , 13
 client level (test case) , 17
 coding , 16–17
 desired capabilities , 18
 GUI app , 12–13
 iOS , 12
 problem , 11
 server/client level , 11
 server level (GUI app/terminal) , 17
 terminal , 14–15

 GUI (see Graphical user interface
(GUI))

 mobile automation , 1
 NPM (see Node Package Manager

(NPM))
 AppiumBase fi le , 118
 AppiumBase.java class , 116–117
 AppiumDoctor , 5–6
 AppiumDriverBase , 106–107
 Appium Inspector , 22, 24

 attributes , 23–24
 GUI , 20
 hierarchy viewer , 23
 iOS , 20, 23
 Prelaunch Application check box , 21
 problem , 19
 properties , 22

 AppiumNodeConfi gAndroid
Native.json , 131

 AppiumNodeConfi gAndroid
Web.json , 142

 AppiumNodeConfi gIOSNative.json , 136
 AppiumNodeConfi gIOSWeb.json , 145
 AppiumRecipesBook project , 131, 136
 AppiumSampleTestCaseAndroid , 134

 Index

© Shankar Garg 2016
S. Garg, Appium Recipes, DOI 10.1007/978-1-4842-2418-2

■ INDEX

180

 AppiumSampleTestCaseAndroidWeb , 144
 AppiumSampleTestCaseIOS , 138
 AppiumSampleTestCaseIOSWeb , 147
 AppiumSauceLabsAndroid , 158–159
 AppiumSauceLabsIOS , 162
 AppiumTestDroidAndroid , 171–172
 AppiumTestDroidIOSWeb , 174
 Application programming

interface (API) , 68
 Automation frameworks, Appium

 Android test case execution , 109
 AppiumDriverBase , 106–107
 CICD tools , 101
 creation wizard, project

details , 103–104
 integration , 110
 Maven, and TestNG,

Android app , 101–102
 mvn test , 109
 pom.xml fi le , 105
 project structure , 106
 SampleTestCase , 108

 B
 @BeforeSuite, @BeforeTest , 110
 Behavior-driven development (BDD) , 101

 AppiumBase fi le , 118
 AppiumBase.java class , 117
 AppiumCucumberPageObject

project , 113
 console output, Appium Cucumber

project , 121
 cucumber-java and

cucumber-junit , 112
 Hooks.java class , 118
 iOS app , 111
 iOSTestApp.feature fi le , 114
 pom.xml fi le , 111
 problem , 110
 RunCukeTest.java fi le , 114
 src/test/resources package , 116
 stepdefi nition package , 113, 116
 updation , 120

 C
 Chaining of actions , 84
 Cloud test labs

 Sauce Labs and Testdroid , 155
 Continuous development (CD) , 101

 Continuous integration (CI) tool , 101
 build number and timestamp , 126
 console output, Appium project , 126
 GitHub repository and

credentials , 122, 124
 Jenkins dashboard , 123
 pom.xml and Maven goal , 125
 project building , 125
 project description , 124
 Source Code Management , 124

 Cucumberoptions package , 114

 D, E, F
 Desired capabilities , 11, 18
 Device network settings

 Android , 99–100
 data/airplane and Wi-Fi mode , 98
 driver.SetConnection() , 100

 Device orientation
 Android , 92–93
 LANDSCAPE/PORTRAIT , 93
 mobile app development , 91
 Rotate() function , 93

 Domain-specifi c language (DSL) , 122
 Drag and drop elements

 Android , 82–83
 gaming apps , 82
 methods , 84

 G
 GitHub , 122
 Graphical user interface (GUI)

 Android , 8
 AppiumDoctor , 11
 iOS , 9
 problem , 6

 H
 Hooks.java class , 118
 hubHost , 140
 hubPort , 140
 Hybrid apps

 Android , 61–63
 contexts types

 native , 68
 web view , 69

 e-commerce , 61
 iOS , 64–66

■ INDEX

181

 I
 iOS mobile web elements

 properties , 38
 Safari

 Develop menu , 40
 Google.com , 42–43
 iOS simulator option , 41
 plug-in , 43
 Show Develop menu in

menu bar , 39
 Web Inspector , 38
 web site opened in the

simulator , 42
 Web Inspector , 43

 iOS node
 Appium grid architecture , 140
 AppiumNodeConfi gIOS

Native.json , 136
 Appium node registration , 137
 AppiumSampleTest

CaseIOS , 138
 confi g.json , 140
 confi guration , 141
 creation, new session , 139
 grid setup , 136
 node details , 138
 Selenium Grid registering , 137
 /src/test/resources/AppiumConfi g

folder , 137
 test case execution , 139

 iOSTestApp.feature fi le , 114
 iOSTestAppSD.java , 116
 iOSUIAutomation

 Appium Inspector , 33
 AppiumSampleTestCaseiOS class , 34
 compute Sum button , 34
 element-fi nding strategy , 35
 iOS , 34
 XPath expressions , 33, 35

 J, K
 JavaScript Object Notation (JSON) , 11

 L
 Lock and unlock devices

 Android , 97–98
 driver.lockDevice() , 98
 driver.unlockDevice() , 98
 problem , 96

 M
 Mobile elements

 GitHub repository , 19
 principles , 19

 Mobile web apps
 Android , 56–57
 browserName , 61
 Chrome and Google Play store

apps , 56
 iOS , 58–60
 smartphones , 56
 web sites , 56

 Mobile web automation
 Android

 Android test case execution , 145
 Appium Android node

registration , 143
 Appium node console output , 144
 Appium node session , 143
 AppiumSampleTestCase

AndroidWeb , 144
 creation , 142
 peplacing , 144
 Selenium Grid response , 143–144
 Selenium Grid terminal

output , 143
 iOS

 AppiumSampleTestCaseIOSWeb ,
147

 console output , 146
 creation , 145–146
 iOS test case execution , 148
 Selenium Grid registering , 147–148

 problem , 141
 Mobility

 automating gestures , 77
 functions , 77

 mvn test , 110

 N, O
 Native apps

 Android , 94–95
 ApiDemos-debug , 50–52
 sample test case , 52

 capabilities , 55
 driver.closeApp() , 96
 driver.installApp() , 96
 driver.removeapp() , 96
 installing, upgrading and deleting

applications , 93

■ INDEX

182

 iOS
 sample test case , 55
 TestApp , 52–54

 launch, close, install and remove , 96
 mobile automation , 49–50
 UI elements , 55

 nodeconfi g AppiumNodeConfi gAndroid
Nexus10.json , 151

 Node Package Manager (NPM)
 and node , 2
 Appium server , 5
 downloaded packages list , 3–4
 problem , 1
 server running , 5

 P, Q
 Page object model (POM) , 118–119
 pom.xml fi le , 110

 R
 Real devices

 Android
 API-Demos , 73
 AppiumSampleTestCaseAndroid

class , 73
 build number setting , 70
 Developer options setting , 71
 PdaNet , 72
 terminal , 73
 USB debugging setting , 69, 72

 emulators and simulators , 69
 iOS

 AppiumRecipesBook project , 74
 coding , 75
 implicit and explicit wait

initialization , 74
 provisioning profi les , 74
 sample test case , 76
 UDID , 74, 76

 traditional mobile automation
tools , 69

 RunCukeTest.java fi le , 114

 S
 SampleTestCase , 108
 Sauce Labs , 129

 access key , 157

 Android
 AppiumSauceLabsAndroid ,

158–159
 fi le upload , 158
 Java Program. , 160
 temporary storage , 157
 test case execution , 160–161

 Appium driver object , 165
 Appium execution , 166
 dashboard , 156
 ios , 161–164
 problem , 155
 register , 156
 setup , 165
 temporary storage , 157
 test case changes , 165

 Selenium grid , 1
 Android Appium sessions , 152
 android devices , 149
 Appium node session , 151
 AppiumTestCaseNexus 5 , 153
 AppiumTestCaseNexus10 , 152–153
 creation, confi g fi le , 150–151
 local infrastructure vs . cloud lab , 129
 native app automation

 Android and iOS platforms , 130
 grid console , 131
 problem , 129
 terminal output , 130

 problem , 149
 Sauce Labs and Testdroid , 129

 Software development kit (SDK) , 25
 /src/test/resources/AppiumConfi g

folder , 137
 src/test/resources package , 106, 116
 stepdefi nition package , 113
 Swiping and scrolling

 Android , 84–85, 87
 iOS , 87–90
 mobility , 84
 Swipe() function

 attributes , 91
 syntax , 90

 web element , 84

 T
 Tap mobile elements

 Android , 78–81
 Appium , 78
 tap(fi ngers, element, duration) , 81

Native apps (cont.)

■ INDEX

183

 tap(fi ngers, x, y, duration) , 81
 TouchAction class , 81
 web automation , 78

 TestApp.zip fi le , 162
 Testdroid cloud

 account information , 168
 Android

 fi le upload , 171
 temporary storage , 170
 test case details , 173–174

 API key , 168–169
 Appiumbook , 169
 AppiumBookios , 169
 Appium driver object , 178
 dashboard , 166
 devices, trial plan , 167
 free Android devices , 167–168
 iOS , 174–176
 problem , 166

 register , 166
 subscription plan , 167
 Test case changes , 177
 Testdroid setup , 177

 U, V, W, X, Y, Z
 UI Automator Viewer , 26

 Appium
Inspector , 25

 attributes , 29–30
 default screen , 27
 emulator , 30
 problem , 25
 properties , 28
 steps , 25

 User interface (UI) , 7
 built-in utility , 20
 utils package , 116–117

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Getting Started with Appium
	1-1. Install Appium via NPM
	Problem
	Solution
	How It Works

	1-2. Run Appium via a GUI App
	Problem
	Solution
	How It Works

	1-3. Understand Capabilities in Appium
	Problem
	Solution
	Capabilities via a GUI App
	Capabilities via a Terminal
	Capabilities via Code

	How It Works

	Chapter 2: Finding Mobile Elements
	2-1. Traverse with Appium Inspector
	Problem
	Solution
	How It Works

	2-2. Explore UI Automator Viewer
	Problem
	Solution
	How It Works

	2-3. Find Elements by Their Accessibility ID
	Problem
	Solution
	Android
	iOS

	How It Works

	2-4. Find Elements Using iOSUIAutomation
	Problem
	Solution
	How It Works

	2-5. Find Elements Using AndroidUIAutomator
	Problem
	Solution
	How It Works

	2-6. Inspect iOS Mobile Web Elements
	Problem
	Solution
	How It Works

	2-7. Inspect Android Mobile Web Elements
	Problem
	Solution
	How It Works

	Chapter 3: Automating Different Apps
	3-1. Native Apps
	Problem
	Solution
	Android App: ApiDemos-debug
	iOS App: TestApp

	How It Works

	3-2. Mobile Web Apps
	Problem
	Solution
	Android
	iOS

	How It Works

	3-3. Hybrid Apps
	Problem
	Solution
	Android
	iOS

	How It Works

	3-4. Real Devices
	Problem
	Solution
	Android
	iOS

	How It Works

	Chapter 4: Automating Mobility
	4-1. Tap Mobile Elements
	Problem
	Solution
	Android

	How It Works

	4-2. Drag and Drop Elements
	Problem
	Solution
	Android

	How It Works

	4-3. Swipe and Scroll
	Problem
	Solution
	Android
	iOS

	How It Works

	4-4. Manage Device Orientation
	Problem
	Solution
	Android

	How It Works

	4-5. Install and Uninstall Native Apps
	Problem
	Solution
	Android

	How It Works

	4-6. Lock and Unlock Devices
	Problem
	Solution
	Android

	How It Works

	4-7. Manage Device Network Settings
	Problem
	Solution
	Android

	How It Works

	Chapter 5: Creating Automation Frameworks Using Appium
	5-1. Create an Automation Framework with Appium, Maven, and TestNG
	Problem
	Solution
	How It Works

	5-2. Create a BDD Framework with Appium, Cucumber, and the Page Object Model
	Problem
	Solution
	How It Works

	5-3. Conduct Continuous Automated Testing with Appium, Git, and Jenkins
	Problem
	Solution
	How It Works

	Chapter 6: Integrating Appium with Selenium Grid
	6-1. Appium with Selenium Grid for Native App Automation
	Problem
	Solution
	Android
	iOS

	How It Works

	6-2. Appium with Selenium Grid for Mobile Web Automation
	Problem
	Solution
	Android
	iOS

	How It Works

	6-3. Appium with Selenium Grid for Two Android Sessions on the Same Machine
	Problem
	Solution
	How It Works

	Chapter 7: Executing Appium with Cloud Test Labs
	7-1. Appium on the Sauce Labs Cloud
	Problem
	Solution
	Android
	iOS

	How It Works

	7-2. Appium on the Testdroid Cloud
	Problem
	Solution
	Android
	iOS

	How It Works

	Index

