
Audio Visualization
Using ThMAD

Realtime Graphics Rendering
for Ubuntu Linux
—
Peter Späth

www.allitebooks.com

http://www.allitebooks.org

Audio Visualization
Using ThMAD

Realtime Graphics Rendering for
Ubuntu Linux

Peter Späth

www.allitebooks.com

http://www.allitebooks.org

Audio Visualization Using ThMAD: Realtime Graphics Rendering for Ubuntu Linux

Peter Späth				
Leipzig, Germany			

ISBN-13 (pbk): 978-1-4842-3167-8		 ISBN-13 (electronic): 978-1-4842-3168-5
https://doi.org/10.1007/978-1-4842-3168-5

Library of Congress Control Number: 2017960214

Copyright © 2017 by Peter Späth

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Technical Reviewer: Massimo Nardone
Coordinating Editor: Jessica Vakili
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
978-1-4842-3167-8. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3168-5
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/
978-1-4842-3167-8
www.apress.com/
978-1-4842-3167-8
http://www.apress.com/source-code
http://www.apress.com/source-code
http://www.allitebooks.org

iii

Contents

About the Author��� xi

About the Technical Reviewer��� xiii

Introduction�� xv

■■Chapter 1: Sound Input�� 1

Preparing for Sound Input�� 1

Understanding Sound Structure��� 2

Time-Elongation Representation��� 3

Frequency-Power Representation��� 3

Input Data Taken from the Sound Card�� 4

Summary�� 5

■■Chapter 2: Visualization Basics��� 7

Toolchain�� 7

Installing ThMAD�� 7

Connect PulseAudio Sound to ThMAD��� 11

Recording a Video�� 15

Making a DVD from Your Recording��� 21

Basic Samples�� 21

Basic 2D Sample��� 21

Basic 3D Sample��� 29

Summary�� 35

www.allitebooks.com

http://www.allitebooks.org

■ Contents

iv

■■Chapter 3: Program Operation��� 37

ThMAD Artiste Operation�� 37

Starting and Using Different Modes�� 37

Stopping ThMAD Artiste��� 42

Starting with Errors�� 42

ThMAD Player Operation�� 43

Starting and Using Different Modes�� 43

Stopping ThMAD Player��� 47

Creating and Installing Faders��� 47

Summary�� 49

■■Chapter 4: 3D Concepts��� 51

Coordinate Systems��� 51

Space Mapping�� 54

Spatial Operations: Translation, Rotation, and Scaling��������������������������� 57

Exposure to Light��� 58

Eye and Camera��� 61

ThMAD Meshes�� 64

ThMAD Particle Systems�� 64

Summary�� 65

■■Chapter 5: Stories: Basic Level�� 67

More 3D Rendering Pipelines��� 67

Transformations��� 67

Wireframes�� 79

The Ocean Module��� 86

Texture Mapping��� 90

Automatic Texture Coordinates�� 92

Floating Textures I��� 99

Floating Textures II��� 106

www.allitebooks.com

http://www.allitebooks.org

■ Contents

v

Blobs, Blobs, Blobs��� 108

Basic Blobs�� 109

Perlin Noise Blobs��� 113

Summary�� 116

■■Chapter 6: Stories: Advanced Level��� 117

�Backfeeding Textures��� 117

�Blurring in Two Dimensions��� 117

�Self-Similarity�� 129

�Particle Systems�� 145

�Waterfall�� 146

�Image Bit Particles�� 154

�Center Clamped Particle Systems��� 159

�Ribbon Particles��� 161

�Glowing Objects��� 163

�Summary�� 169

■■Chapter 7: ThMAD GUI Reference�� 171

ThMAD Artiste GUI�� 171

Starting and Stopping the GUI��� 171

The ThMAD Desktop and Its Parts��� 171

Window Modes�� 174

Fullwindow Mode�� 175

Performance Mode�� 176

Fullscreen Mode�� 176

The Main Menu��� 177

Module Choosers�� 181

The Module List��� 181

The Graphical Module Chooser�� 183

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

The Assistant�� 184

The Object Inspector�� 186

Saving and Loading States��� 186

Modules�� 188

Module Types��� 188

Placing and Deleting Modules��� 189

Connecting Modules�� 190

Cloning Modules�� 190

Module Anchors: Parameters and Connectors��� 190

Drawing Connections Between Anchors�� 192

Enumeration Input as Module Parameter�� 194

Float Input as Module Parameter�� 194

Float3 Input as Module Parameter�� 195

Float4 Input as Module Parameter�� 197

Quaternion Input as Module Parameter��� 198

String Input as Module Parameter��� 198

Resource as Module Parameter�� 199

Sequence Input as Module Parameter�� 200

Exporting States�� 203

Macros��� 203

Notes�� 206

ThMAD Player��� 206

Starting and Stopping the GUI��� 206

Player GUI Operations�� 206

Summary�� 207

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

■■Chapter 8: ThMAD Module Reference�� 209

�Screen�� 211

�screen0�� 212

�Bitmaps�� 212

�Filters��� 212

Generators��� 219

Loaders�� 222

Modifiers�� 223

Dummies�� 223

Math Modules��� 225

Accumulators��� 225

Arithmetic�� 226

Array�� 232

Color�� 233

Converters��� 234

Dummies��� 236

Interpolation�� 237

Limiters�� 239

Oscillators�� 240

Mesh�� 247

Dummies��� 247

Generators��� 248

Importers��� 249

�Modifiers: Color��� 251

Modifiers: Converters�� 251

Modifiers: Deformers��� 252

Modifiers: Helpers��� 255

Modifiers: Pickers�� 255

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Modifiers: Transforms�� 256

Particles��� 258

Segmesh�� 259

Solid��� 259

Texture��� 265

Vertices�� 266

Xtra�� 269

Particlesystems�� 269

�Fractals�� 269

�Generators��� 271

�Modifier��� 275

�Renderers��� 278

�Basic�� 279

�Mesh�� 283

�OpenGL Modifiers�� 288

�Oscilloscopes��� 300

�Particlesystems��� 301

�Shaders��� 306

Text�� 308

�Xtra�� 309

�Selectors�� 310

Sound��� 319

�input_visualization_listener�� 319

�midi → aka_apc40_controller�� 321

�ogg_sample_*��� 321

�raw_sample_*��� 322

Strings�� 323

�System��� 323

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

�Texture�� 329

�Buffers��� 329

�Dummies��� 334

�Effects��� 334

�Loaders�� 335

�Modifiers�� 337

�OpenGL�� 341

�Particles��� 343

�Macros��� 344

�Summary�� 344

Index��� 345

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Dr. Peter Späth has worked as an IT consultant with heavy focus on Java related
development for over 15 years. Recently, Peter has decided to focus on his work as an
author and working in a self-paced manner on software.

xiii

About the Technical
Reviewer

Massimo Nardone has more than 22 years of
experience in security, web/mobile development, cloud
and IT architecture. His true IT passions are security
and Android.

He has been programming and teaching people
how to program with Android, Perl, PHP, Java, VB,
Python, C/C++, and MySQL for more than 20 years.

He holds a Master’s of Science degree in
computing science from the University of Salerno, Italy.

He has worked as a project manager, software
engineer, research engineer, chief security architect,
information security manager, PCI/SCADA auditor,
and senior lead IT security/cloud/SCADA architect for
many years.

His technical skills include security, Android, Cloud, Java, MySQL, Drupal, Cobol,
Perl, Web and Mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,
Python, Pro Rails, Django CMS, Jekyll, Scratch, and more.

He currently works as the Chief Information Security Office (CISO) for Cargotec Oyj.
He worked as a visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (in the PKI, SIP, SAML, and Proxy areas).

Massimo has reviewed more than 40 IT books for different publishing companies
and he is the coauthor of Pro Android Games (Apress, 2015).

This book is dedicated to Antti Jalonen and his family, who are always there when he
needs them.

xv

Introduction

Sound visualization is about capturing the sound coming from outside, using a
microphone or the line-in jack of your sound card, or coming from inside if a sound file
is played on your computer. The software suite ThMAD allows for graphically building a
sound pipeline, yielding real-time graphics to produce beautiful and interesting output
from that sound. The introductory chapter depicts such a system, describes the targeted
audience, and gives you some hints about text conventions and the preferred way of
reading this book.

About Sound Visualization and ThMAD
You can buy a CD or listen to a radio station, or listen to music provided by a stream or other
means. If you like the music it will give you an emotional and/or intellectual feeling, similar
to how a good movie makes you feel. Concerning movies, there is an obvious marriage of
musical sound and vision—movies have sound tracks and the combined pleasure is higher
the more the sound track matches the story on-screen. Making a movie usually means
you first have the scenes and speech assembled, and then you add the sound track. This is
of course a high art if you want to make a good movie and a good combination of the two
senses—sight and sound. If it is really good, one will amplify the other in either way.

As for audio visualization, you have a combination of visual and aural input to your
senses. But it happens to be done differently compared to movies. The order is different
and the coupling happens in an apparently more automated way. For audio visualization,
the sound comes first and, based on it, the visual part of the joint artwork is generated by
some program. As for the second assumption, I intentionally say apparently automated,
because once you have a rendering program, you can start the program and enjoy the
visualization of your music while you sit on a chair and do nothing. There is a third
difference: the soundtrack of a movie is based on the plot, and it is by no means possible
to change the plot but use the same soundtrack. For audio visualization the sound input
can be different for the same visualization and you still get an interesting net result.

In order to get to a nice visualization and to have it become really good, you have to
construct a rendering pipeline in some computer language, which could be an art itself.
This has to be done manually. The good thing about it is that you don’t need to be a
master artist, nor a master software developer, from the beginning, since getting into it is
not overly complicated and you’ll be able to get your feet wet using the right program.

The Thinking Machine Audio Dreams (ThMAD, pronounced Thee-Mad) software
suite is such a program. Once you learn the basics, you can start with some easy working
rendering setups, and if you have enough time to learn, experiment, and build up
sophisticated rendering pipelines, you will end up with magnificent audio visualizations.

■ Introduction

xvi

ThMAD basically consists of a program named Artiste for generating a rendering
pipeline, and a program named Player that you can use to run the pipeline in a
visualization performance. While working inside Artiste, you see the realtime result of
what you are doing, promptly and appropriately reacting to incoming sound according to
changes you made, which gives a tremendous boost to your productivity. ThMAD and the
surrounding system are depicted in Figure 1.

The ThMAD software is based on the open source GNU GPL licensed (https://www.
gnu.org/licenses/gpl-3.0.txt) software VSXu from Vovoid Media Technologies®. The
fork has been taken from version 0.5.0. A considerable amount of work has been done on
it since then, but some code has been introduced to allow for VSXu states to be loaded
and interpreted correctly.

Figure 1.  ThMAD and the surrounding system

https://www.gnu.org/licenses/gpl-3.0.txt
https://www.gnu.org/licenses/gpl-3.0.txt

■ Introduction

xvii

ThMAD is GNU GPL licensed, so the source is open to everyone. You cannot sell it
or use it for a product you sell according to the GNU GPL. But you can use it for private
or professional pleasure or work on it and give it or your own work away (only!) as a GNU
GPL licensed software itself. You can find the source here: https://sourceforge.net/
projects/thmad/.

■■ Note  VSXu is a registered or unregistered trademark of Vovoid Media Technologies AB,
Sweden. Dr. Peter Späth is independent of Vovoid Media.

ThMAD is for Linux, more precisely Ubuntu. You can however run Ubuntu inside
a virtual machine under Windows or whatever and use it there for development and
experiments. But don’t expect such a setup to give you high performance. For serious
applications, it is strongly suggested you get an Ubuntu box. It is not hard nowadays to
buy a PC or laptop with preinstalled Ubuntu, or install Ubuntu yourself. The latter might
be tricky sometimes and under certain circumstances, you should expect to read a lot
of documentation and blogs before you get it running smoothly. Of course, the Ubuntu
homepage will help, and you can start with a trial version running from a bootable CD.
Linux distributions other than Ubuntu will work as well, but you have to compile them
yourself from the source. As far as this book is concerned, ThMAD was tested only with
Ubuntu.

Under the hood the software OpenGL is used, and it’s a widely adopted industry
standard for sophisticated graphics rendering, including manufacturing and computer
games. You will be able to use a wide range of graphics cards to see ThMAD running. Be
cautious with cheap hardware though, especially for older graphics cards and older or
overly downsized systems. You cannot expect each and every rendering pipeline to run
smoothly, and some of the more advanced ones may even fail. Do yourself a favor and
spend some extra money on at least a medium-grade computer and decent graphics
hardware.

This book is based on ThMAD version 1.0.0. The associated OpenGL version as of
the time of writing is 3.0.

The Book’s Targeted Audience
This book is for artists with some IT background, or developers with artistic inclinations.
Development experience is not required, but is surely helpful for some advanced features
like shader programming. It is however not necessary to use ThMAD at all, and this
book helps you with samples you can use as a working basis if the shader source code is
involved.

This book is not a development guide, so hints about the actual implementation
are given rather infrequently and only as anchor points for people who might feel an
inclination to get into the development.

In order to fully understand ThMAD, and OpenGL based software in general, you
need to know basics about 2D and 3D graphics and coordinate systems. However, most
geometric concepts are explained to some fair extent.

https://sourceforge.net/projects/thmad/
https://sourceforge.net/projects/thmad/

■ Introduction

xviii

Installation
The installation process of ThMAD is discussed in Chapter 2, “Visualization Basics”.

Conventions Used in This Text
Working with ThMAD involves using its modules, which are organized in a tree-like
structure.

Modules are usually named maths → converters → 4float_to_float4. Or in short with
fixed width font, 4float_to_float4 if the module position inside the module tree is clear
from the context.

State is the common notion for a rendering pipeline while constructing it. Finished
states are also called visuals. References to sample states, including associated code
provided with the installation, as well as informational hints in general, are highlighted
like so:

■■ Note  This sample is as a source available under A-3.2.1_Visualization_basics_
basic_samples_basic_2d_sample inside the TheArtOfAudioVisualization folder.

With the “Note” label replaced with “Tip” for informational hints. By folder in this
context I mean a folder as showing up in the module lister or browser. Important notes
and pitfalls are marked as follows:

■■ Caution  Due to the backfeeding it might easily happen… …

… … …

Code and script snippets, as well as terminal input and output, usually show up in
monospace font like here:

apt-get install libc6 libfreetype6 libgcc1 libpulse0 libstdc++6 libglfw3

Very small code snippets appear directly inside the text. If a longer line does not fit
into a line, a trailing ┐ at each line of code signifies that while actually writing it, the ┐
must be removed and the subsequent line break must be discarded. For example,

echo "cmd [...] rectangle ┐
abc [...]"

should be entered as

echo "cmd [...] rectangle abc [...]"

http://dx.doi.org/10.1007/978-1-4842-3168-5_2

■ Introduction

xix

At many places, an asterisk * is used as a wildcard to denote any string. This
frequently happens to refer to all the files inside a folder, or to file name patterns. Upon
first startup, ThMAD Artiste creates a data folder for all your states and visualizations at

/home/[USER]/.local/share/thmad

and a symbolic link at

/home/[USER]/thmad

This points to the aforementioned If you are referring to the data folder inside this
book, the link location is used.

How to Read This Book
This book can be read sequentially. Chapters 1 to 4 serve as an introduction, with
Chapter 2, “Visualization Basics,” perhaps being the most important, since it describes
the basic system setup and two important simple visualization examples.

Chapters 5, “Stories—Basic Level” and 6, “Stories—Advanced Level” contain a
collection of independent stories or tutorials that you can work through in any order.

Chapters 7 and 8 are references that you can consult whenever you have doubts or
questions while working through the stories, and of course you can use them to deepen
your knowledge about modules and to get ideas for your own visualizations.

http://dx.doi.org/10.1007/978-1-4842-3168-5_1
http://dx.doi.org/10.1007/978-1-4842-3168-5_4
http://dx.doi.org/10.1007/978-1-4842-3168-5_2
http://dx.doi.org/10.1007/978-1-4842-3168-5_5
http://dx.doi.org/10.1007/978-1-4842-3168-5_7
http://dx.doi.org/10.1007/978-1-4842-3168-5_8

1© Peter Späth 2017
P. Späth, Audio Visualization Using ThMAD, https://doi.org/10.1007/978-1-4842-3168-5_1

CHAPTER 1

Sound Input

In this chapter, we deepen the knowledge of how the computer can be prepared to capture
incoming sound or produced sound, how the sound is represented internally, and how the
data arrives at ThMAD. We distinguish between the obvious air pressure elongation versus
time representation, and the power versus frequency representation, or spectrum.

Preparing for Sound Input
After you purchase a PC or laptop with Ubuntu Linux, or after you have Ubuntu Linux
installed on your PC, you have basically two options—you can use external audio sources
or you can let the sound play from the computer. As for the latter, you could use the CD
player of your PC, you could play some files from a USB stick or your hard disk, or you
could stream audio files via the Internet or some other means.

Note that other Linux distributions might work as well. Give it a try—chances are
good that you’ll find similar programs, tools, and settings to accomplish the same thing.

If you want to use external audio sources, you need a microphone or a sound card with
a line-in to connect to. Especially for laptops, the built-in microphones are not of the highest
quality, but they might be enough for your purposes. You actually don’t want to accurately
reproduce the sound, but react to it, and for this aim, having perfectly linear input curves is
not too important. On the other hand, if you don’t want to lose important impulses from the
basses, which can happen with cheap microphones, getting yourself a decent microphone
might help you avoid surprises. Also, bear in mind that audio visualizations might be brittle
to the structure of the incoming sound under certain circumstances.

Usually you want to avoid that and the overall outcome should be interesting for
any kind of music input. This is easy enough to check with different recordings. But if,
for example, the basses never make their way through the audio hardware to a suitable
extent, because your microphone misses the basses, your rendering pipeline might lack
reactiveness to an important part of the incoming sound. If instead for external sound
input you just connect some audio source to the line-in jack of your computer, you are
automatically on the safe side.

If you want to play CDs using your computer’s CD player, or play audio files or
streamed audio contents, e.g., using your browser, chances are good you don’t have
to do anything but start suitable programs or let the operating system do it for you
automatically. For larger sound file collections, a program for administering them might
be handy. RhythmBox, which is preinstalled on Ubuntu, is a good option.

https://doi.org/10.1007/978-1-4842-3168-5_1

Chapter 1 ■ Sound Input

2

The current version 1.0.0 of ThMAD primarily depends on PulseAudio, which is
an audio routing server that handles all sound streams inside your computer. It knows
everything that’s captured or recorded, and everything that’s played. Ubuntu Linux comes
with PulseAudio preinstalled and automatically started; for other Linux distributions you
may have to install it first.

ThMAD can also connect to ALSA, which is a low-level technology that talks to
the sound hardware, and it can connect to JACK, which is a sound server that music
professionals usually prefer. It is, however, considerably more difficult to use those
options compared to PulseAudio, so we will as a sort of standard case use PulseAudio in
the text.

For a graphical description of the standard PulseAudio sound chain, see Figure 1-1.

Understanding Sound Structure
Sound is about air pressure oscillations that are received by your ears. From a
mathematical or physical point of view, there are different representations for
sound—the time-elongation (or time-pressure) representation and the frequency-power
representation. Both of these are discussed in the following sections.

Figure 1-1.  The PulseAudio sound server inside Ubuntu

Chapter 1 ■ Sound Input

3

Time-Elongation Representation
On a diagram with the x-axis denoting the time and the y-axis denoting the pressure, the
time-elongation representation might, for a sine wave, look like Figure 1-2.

In computer systems, we need a digital representation for this sine wave. The idea
is as follows: we divide the time into small time steps, say 44,100 steps per second, and
for each time step, we write down the current air pressure, or y-value, and save it inside
an array. This is sometimes called analog-to-digital conversion (ADC). Note that 44,100
is a widely adopted industry standard, for example, it’s used with music CDs. Because
we have two ears and like stereo, we do that conversion twice, for the left ear and the
right ear. By that means, we end up with 88,200 numbers, which digitally represent
one second of stereo sound. For the pressure or y-value representation, we use integer
values (-32,768 up to 32,767), with the lower value representing a negative pressure
offset, so maybe 0.997 bars, and the higher value representing a positive pressure offset,
say 1.003 bars.

According to a scaling we can freely define, these could be mapped to 0.997 bars →
y=-1000 and 1.003 bars → y=+1000. All the other numbers are mean pressures between
these values. Of course we could use number ranges other than -32,768 … 32,767 , but the
range we chose here is internally represented by exactly two bytes of data, and computers
like that very much. It is also a trade-off: fewer different values means less resolution and
poorer quality, and more different values means higher storage need.

Of course, in reality music is stored in lots of different formats, including MP3, Ogg
Vorbis and others, mainly for reasons of saving space. The 88,200 numbers per second
add up quite rapidly. But in case of letting an application like ThMAD access PulseAudio
data, it will receive the data in an uncompressed and untransformed, raw format. This is
nice, since then ThMAD doesn’t need extra logic to handle different sound formats.

Frequency-Power Representation
A practically less obvious representation of sound consists of writing down the frequency
distribution at each instant of time.

Consider the time range [10s;10.1s] when listening to some music. Instead of
reporting the air pressure amplitudes at each instant, e.g., 10.000s, 10.001s, 10.002s,

Figure 1-2.  A sine wave

Chapter 1 ■ Sound Input

4

we report the frequency mixture of the tones that arrive in our ears during some time
range [10s;10.1s]. A ∙ 100Hz + b ∙ 200Hz + c ∙ 300Hz + …, where x Hz means a sine
oscillation frequency of x per second, and the a, b, c,… are weights or power coefficients.
The lower the number, the smaller the contribution and the higher, the larger the
contribution.

Doing this in a mathematically concise way is called Fourier Transformation, and
it turns out that it is a perfectly equivalent way of describing sound. In fact, if we have
sound in a pressure versus time representation, we can apply a Fourier Transformation
to transfer this into a power versus frequency representation without losing any
information. That means the process is reversible and we have something like an Inverse
Fourier Transformation to go back the other way. We don’t show the mathematical details
here; you can find a lot about that in other books and on the Internet.

Why we are mentioning Fourier Transformation here is that it turns out to be
important for our audio visualization aim. Because instead of letting our visualization
react on the elongation, which we could do but which bears the danger of losing things
since changes happen so fast, we could also react to the powers of frequencies. Just
think of reacting to bass beats in one way and reacting to the treble melody in a totally
different way. Because beats happen at a much less frequent rate, maybe twice a second
or something like that, the influence of the sound on the visualization is much more
perceptible compared to the fast sound pressure oscillations.

To use such a representation inside ThMAD, the input from PulseAudio undergoes
a Fourier Transformation and the frequency related powers we get from that can serve as
an input to the visualization setup. We’ll show you the details about that later.

Input Data Taken from the Sound Card
In any case, what the application will first receive from the sound driver, which is the
software counterpart of the sound card, is an array of size N of elongation data. For
example, if at an instant t0, we request 512x2 samples from the sound driver at 44,100 Hz,
with the “2” multiplier because we want to capture two-channel stereo data, this means
we have 512/44,100 = 0.0116 seconds of data from t0 -0.0116 to t0 . This implies that, if
we don’t want to lose any data, we need at least 0.0116 seconds before we ask for the next
chunk of data from the sound driver, and so on.

While for the first sound representation, pressure versus time, we are done by just
providing the input array acquired from the sound driver to the visualization pipeline,
for the power versus frequency representation we pass this array through the Fourier
Transformation. We get an array with powers for the frequencies 1 ∙ f

0
, 2 ∙ f

0
, 3 ∙ f

0
, … ,

where for the case of a 44,100 Hz sampling frequency and 512 ∙ 2 acquired samples, f0
calculates to f0 = 44,100 / 512 = 86.13 Hz. For some Fourier Transformation algorithm
intrinsics, the power for the highest frequency will not be for 44,100 Hz, but only half
of it—22,100 Hz. So, for an input of size 512, the Fourier Transformation will yield 256
power values.

Chapter 1 ■ Sound Input

5

Summary
You learned how sound data arrives at your system and how that sound is represented
internally. You learned that ThMAD primarily depends on Ubuntu’s internally running
standard sound server, called PulseAudio.

In the next chapter, you will investigate the toolchain necessary to construct audio
visualizations. You will also learn how to install ThMAD on your system and what needs
to be configured to have everything running smoothly. The chapter starts with two basic
examples to be run inside ThMAD.

7© Peter Späth 2017
P. Späth, Audio Visualization Using ThMAD, https://doi.org/10.1007/978-1-4842-3168-5_2

CHAPTER 2

Visualization Basics

This chapter is about the toolchain used for an audio visualization project and presents
two basic audio visualization samples using ThMAD.

If you want to become an artist, one of the first things you’ll have to do is learn how
to use the tools to accomplish an oeuvre. You don’t start with the most complicated
setups though, apart maybe from whetting your appetite, you begin with simple things.
Then you improve your proficiency step by step, maybe learn about a more and more
complicated example of other artists’ work, and in the end hopefully you can accomplish
your own ideas no matter how complicated they are. Well, some people prefer to mix
the stages and learn from the inside with more complicated setups. It is up to you. But
learning the tools is inevitable in any case.

Toolchain
The toolchain tells us which program is needed for the complete work and presentation
setup, starting from input, which is sound in this case, to output, which is graphics. The
latter might show up in the monitor, or in the beamer, or inside a video file if sound and
graphics are merged.

Actually, you don’t need too much. Ubuntu Linux provides you with quite a lot.
To play something or capture something from the outside, everything is already there.
And PulseAudio, the sound server running inside Ubuntu, already knows about it and
provides the sound data to programs that need it, like ThMAD.

What is left is a connection from PulseAudio to ThMAD, ThMAD itself, which is
providing the output to a monitor or beamer, and a program to record and produce a
video if you like.

Installing ThMAD
After you downloaded ThMAD from https://sourceforge.net/projects/thmad/ as a
Debian package that Ubuntu understands (Debian is the mother distribution of Ubuntu)
with suffix .deb, you have to make sure the dependencies are fulfilled.

https://doi.org/10.1007/978-1-4842-3168-5_2
https://sourceforge.net/projects/thmad/

Chapter 2 ■ Visualization Basics

8

A future version might do this automatically, but for now you do it manually. ThMAD
depends on the following packages, where entries marked with a ■ are most probably
already installed on your Ubuntu Linux system from the beginning:

•	 libglfw3 (≥ 3.1)

•	 ■libc6 (≥ 2.17)

•	 ■libfreetype6 (≥ 2.2.1)

•	 ■libgcc1 (≥ 1:4.1.1)

•	 ■libgl1-mesa-glx (≥ 11.2.0) (or libgl1)

•	 ■libglew1.13 (≥ 1.13.0)

•	 ■libglu1-mesa (≥ 9.0.0) (or libglu1)

•	 ■libjpeg8 (≥ 8c)

•	 ■libpng12-0 (≥ 1.2.13-4)

•	 ■libpulse0 (≥ 0.99.1)

•	 ■libstdc++6 (≥ 5.2)

To install these packages, log in as root inside a terminal. Press Ctrl+Alt+T and then
enter sudo su at the terminal. You’ll be asked to enter your password. Do so then enter
the following:

apt-get install libc6 \
libfreetype6 libgcc1 \
libgl1-mesa-glx libglew1.13 \
ibglu1-mesa libjpeg8 libpng12-0 \
libpulse0 libstdc++6 libglfw3

where the \ means the following newline (you press Enter or Return) gets ignored.
If you want to enter the command in a single line, just ignore the backslashes.

Don’t worry if the output says you already have ... installed; it will not hurt if you try
to install packages again, instead the command will simply ignore packages you already
have on your system.

To install ThMAD itself, say you have downloaded it via browser and it ended up in
folder Downloads in your home directory, you will install it, still as root, via

dpkg -i /home/[USER]/Downloads/thmad_1.0.0_amd64.deb

or any other version you get. [USER] should be replaced with your Linux username.
All files will end up in /opt/thmad. After that, log off as root by pressing Ctrl+D. This is
important for subsequent actions to not mess up your system.

Chapter 2 ■ Visualization Basics

9

For your convenience, launchers are available; you can place them via these
commands on your desktop:

cp /opt/thmad/share/applications/thmad-artiste*.desktop\
~/Desktop/
cp /opt/thmad/share/applications/thmad-player*.desktop\
~/Desktop/

To see whether everything works, use the launcher for Artiste, or on the terminal,
enter this:

/opt/thmad/thmad_artiste

A window should show up, as shown in Figure 2-1. Congratulations! ThMAD is now
running on your system.

While the main installation folder can be renamed, the launchers depend on the
installation residing in /opt/thmad. You could however edit the launchers appropriately,
if you think a different installation folder is a better option for you.

As a last preparation step before actually using ThMAD Artiste, you might consider
releasing the Alt key from the operating system. The default Ubuntu window manager,
Unity, uses the Alt key to start the Heads Up Display, HUD, but ThMAD uses it as well for
various GUI actions. To disable Ubuntu using the Alt key for HUD, or to change the key
binding, go to the Keyboard section of the preferences, go to the Shortcuts tab, then to the
Launchers menu. Select the Key to Show the HUD entry and press Backspace to disable it,
or choose a new key or key combination to change the binding. See Figure 2-2.

Figure 2-1.  The ThMAD Artiste startup window

Chapter 2 ■ Visualization Basics

10

As an internal detail, for those who are interested in it, ThMAD version 1.x.x depends
on OpenGL version 3.x.x. To find out which OpenGL version your system has, you can
install the package mesa-utils:

sudo apt-get install mesa-utils

and then enter:

glxinfo | grep 'version'

This will give you something like

server glx version string: 1.4
client glx version string: 1.4
GLX version: 1.4
 Max core profile version: 3.3
 Max compat profile version: 3.0
 Max GLES1 profile version: 1.1
 Max GLES[23] profile version: 3.0

Figure 2-2.  Releasing the Alt key in Ubuntu Unity

After clicking on Key to Show the HUD and pressing Backspace, it will be disabled. Or you
can enter a different key or key combination to change the binding.

Chapter 2 ■ Visualization Basics

11

OpenGL core profile version string: 3.3 (Core Profile) Mesa 12.0.6

OpenGL core profile shading language version string: 3.30

OpenGL version string: 3.0 Mesa 12.0.6

OpenGL shading language version string: 1.30

OpenGL ES profile version string: OpenGL ES 3.0 Mesa 12.0.6

OpenGL ES profile shading language version string: OpenGL ES GLSL ES 3.00

The OpenGL core profile version string line points you to the OpenGL version
in use.

Connect PulseAudio Sound to ThMAD
In order to connect ThMAD to Ubuntu’s sound server PulseAudio, a couple of things are
worth mentioning.

To see how PulseAudio connects things, the application pavucontrol comes in
handy. It needs to be installed and, in order to do that from a terminal, open a terminal
window via Ctrl+Alt+T and enter

sudo apt install pavucontrol

You will be prompted for your password. You can instead use the installer launcher

 and enter pavucontrol. After the installation, you can run it from the starter. Press

the Windows key, then enter pavucontrol and click on the launcher icon.
PulseAudio internally handles the following objects, reflected inside the

pavucontrol program:

•	 Playback. Applications sending sound data toward PulseAudio
are playback objects. Without running a music-playing
application, you still will have one entry, called System Sounds,
which belongs to the operating system. With a music-player at
work, say RhythmBox (it is installed with a standard Ubuntu
installation), it will look like Figure 2-3.

Chapter 2 ■ Visualization Basics

12

•	 Recording. Applications reading sound data will be listed here.
ThMAD will later show up here.

•	 Output Devices. The sound cards installed on your system show
up here, more precisely their playback channels. For me it lists,
among others, SB X-Fi Surround 5.1 Analog Stereo.

•	 Input Devices. The sound cards installed on your system shows up
here, more precisely their recording channels.

Input channels are microphones, but also monitors, and they plug to the soundcard’s
output, say speakers or earphones. For me it lists, among others, Monitor of SB X-Fi
Surround 5.1 Analog Stereo. See Figure 2-4. This is important, because that is where
ThMAD connects.

Figure 2-3.  PulseAudio playback objects

You can see RhythmBox is currently sending something to my sound card called SB X-Fi by
looking at the orange meter bar below it.

Chapter 2 ■ Visualization Basics

13

To actually do the connection, start ThMAD Artiste and drag the menu item input_
visualization_listener from the Sound section from inside the left modules menu to
the canvas. To make it appear, click on Sound inside the left menu to open the submenu.
The module input_visualization_listener will then appear and you can drag it to
the canvas. See Figure 2-5. You can use the mouse wheel to zoom the canvas in or out in
order to make the module symbols appear bigger.

Figure 2-4.  PulseAudio input device objects

You can see in Figure 2-4 that PulseAudio is currently providing sound data to the monitor
Monitor of SB X-Fi by looking at the orange meter bar below it.

Chapter 2 ■ Visualization Basics

14

Then open pavucontrol if it’s not already opened. Go to the Recording section and
connect thmad to a monitor of your audible sound card output channel, as shown in
Figure 2-6.

Figure 2-6.  Connecting ThMAD to a PulseAudio monitor

You can see its monitor called Monitor of SB X-Fi sends some sound data to ThMAD by
looking at the orange meter bar below it.

Figure 2-5.  Open the ThMAD sound module

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Visualization Basics

15

The connection will be saved automatically, so you don’t have to do all that again
later. Just play some music and start ThMAD, either Artiste or Player, and it will connect
automatically to the same sound source you provided in the configuration steps.

Recording a Video
Especially after you made an exceptionally beautiful visualization, you maybe want to
create a video file from that. It is currently not possible to directly create a video file from
ThMAD, but Ubuntu helps you with that. So the idea is to start ThMAD, play a music file,
and let Linux create a video.

To start, install the SimpleScreenRecorder program using the Ubuntu Software

Center . You can also start it from the terminal. (Remember, press Ctrl+Alt+T to

open a terminal and enter sudo su to become root.) Then use this command:

apt-get install \
simplescreenrecorder

Do not confuse the simple in the name with “poor”. Actually this tool is quite
powerful and dependable—it creates high-resolution video files and includes the sound
from PulseAudio or ALSA or JACK.

Start ThMAD, open your visualization, resize the window, maybe to the maximum
available size of your monitor, then switch to fullwindow mode via Ctrl+F. You can
possibly remove the status line via Alt+T. Then start the SimpleScreenRecorder program
by pressing the Windows key and then entering simplescreen. Its initial page is shown in
Figure 2-7.

Chapter 2 ■ Visualization Basics

16

Figure 2-7.  SimpleScreenRecorder page I

Chapter 2 ■ Visualization Basics

17

Click on Continue. The next page shows the input parameters for the part of the
screen to be captured; see Figure 2-8.

Figure 2-8.  SimpleScreenRecorder page II

Chapter 2 ■ Visualization Basics

18

Select Record a Fixed Rectangle, then click the Select Window… button and on
the Select Rectangle… button. Then click on the top-left position of the inner part of
the ThMAD window without releasing the mouse button, and drag to the bottom-right
position, releasing the mouse button. Clicking somewhere on the ThMAD window will
eventually record the title bar and borders of the window. If you want, you can also
choose the mode. Do not move or resize the ThMAD window after this step; otherwise,
the wrong part of the screen will be recorded. On the same page, the frame rate can be
specified. Usually the default value of 60 will do quite well, but you can change it to 100
for better quality or to 20 for a smaller video size.

Make sure the Record Audio checkbox is checked, select PulseAudio as the Backend,
and choose the appropriate sound monitor.

Click on Continue again. On the next page (see Figure 2-9), enter the file name
for the video file. All other values can be set to the value shown, but of course you can
experiment with other values:

•	 Change the Container type to a different video format.

Matroska will do well for Linux, for other operating systems
other values may work better. If you hover the mouse over the
box, more info is displayed.

•	 Change the Codec type to a different video compression type.
H.264 is a good choice here. Again, hovering the mouse over the
box shows more info.

•	 For the Audio Codec, select Vorbis, which is the recommended
value. For information about the other values, hover over the
box. The default rate, 128 Kbps, is a reasonable rate, but you can
choose a different value.

Chapter 2 ■ Visualization Basics

19

Click on Continue to show the last page, as shown in Figure 2-10. If you enable the
Recording hotkey as shown, you can start recording via some keyboard sequence. Shown
is Ctrl+R, but you can try others of course.

Figure 2-9.  SimpleScreenRecorder page III

Chapter 2 ■ Visualization Basics

20

Start the recording by clicking Start Recording or pressing the hotkey. Immediately
afterward, start your music player. The video is now being recorded. Make sure the FPS In
and FPS Out values are similar and close to the frame rate you specified. Otherwise, your
system might be too weak and you should be more conservative with the performance
related values chosen inside SimpleScreenRecorder. This especially comprises the
recorded window size and the frame rate.

When your performance has ended, click on Save Recording, and you are done.
If, as a final step, you want to make a DVD from that, the programs discussed in the

next subsection can help you do so.

Figure 2-10.  SimpleScreenRecorder page IV

Chapter 2 ■ Visualization Basics

21

Making a DVD from Your Recording
If you want to create a DVD from a sound file, you have several options. Open the Ubuntu

Software Center and enter dvd to get a list.

The one that worked well for me is called DeVeDe. If you want to try that, install it
and start it from the launcher by pressing the Windows key and entering devede. From
the startup screen, choose VideoDVD. Add the MKV file you generated in this chapter or
add several if you have more than one and want to put them all on one DVD. Then click
on the Forward button. There choose a folder where intermediate data will be written
to—what you enter there doesn’t matter, but it should not exist before. Click on OK. After
the intermediate files have been created, you have a chance to directly burn them on a
DVD. Needless to say, you need a DVD burner on your computer for that option.

The program allows for tailored menus as well. This is not described here in detail,
but you can click the Help button. The help shows up in the startup screen and gives you
a fairly good introduction into the advanced features of DeVeDe.

Another one is called DVD Styler. It has more options compared to DeVeDe if you
want a nice looking DVD menu. It also has a good introduction and a good manual
included in the Help menu.

Basic Samples
In this section, we present two basic samples, one in 2D and the other in for 3D.

Basic 2D Sample
As a first sample, we want to describe a setup with a rendering pipeline consisting of a
simple 2D rectangle reacting to some sound input from a music player.

■■ Note  This sample is as a source available under A-2.2.1_Visualization_basics_
basic_samples_basic_2d_sample inside the TheArtOfAudioVisualization folder. You
can load it via the Open… option if you right-click on an empty spot of the canvas.

First start ThMAD Artiste. If you installed it as described in this chapter, you can
double-click on the launcher icon on your desktop, or you can open a terminal via
Ctrl+Alt+T and enter /opt/thmad/thmad_artiste. In case you use the terminal, you’ll
see some diagnostic output especially showing the sound driver context. This might help
under certain circumstances.

The ThMAD Artiste canvas will now show up, and if you started it the first time and
without previous work, it will just show a very tiny module icon in the center. The size of
any GUI elements, including text fonts in ThMAD, is relative, so you might first want to
maximize the window to improve readability. Next you can zoom into the scene and pan

Chapter 2 ■ Visualization Basics

22

the view to move the viewport. For zooming, you can press W and R on the keyboard or
use the scroll wheel of your mouse. For panning, use the arrow keys or keys S, D, F and E,
or click into an empty part of the canvas and drag the mouse by clicking and moving it.
Your screen will now look like Figure 2-11.

In the bottom-right corner, the minimized assistant is shown. Press the Tab key to
cycle through different sizes. While the assistant shows some information about how
using the GUI, a more complete description of the GUI is found in Chapter 7 “Artiste
GUI Reference”. The assistant has different modes and shows different contents. You
can change mode or contents by right-clicking on the assistant and selecting one of the
entries that appears; see Figures 2-12 and 2-13.

Figure 2-11.  ThMAD Artiste start screen, zoomed in

http://dx.doi.org/10.1007/978-1-4842-3168-5_7

Chapter 2 ■ Visualization Basics

23

Figure 2-12.  Assistant modes

Figure 2-13.  The assistant

Chapter 2 ■ Visualization Basics

24

If you choose Automatic Mode, the assistant will afterwards show context related
information. Whenever you click on a module icon in the canvas, some information
about it will be shown inside the assistant. Clicking on Courses enables you to read one
of a couple of courses that help you improve your proficiency in using the GUI. A key and
mouse usage reference is shown when you choose Keys/Mouse Reference.

For the rest of this book, we have the assistant minimized. Remember, you can do
that by pressing the Tab key a couple of times.

Now we want to draw something. To accomplish that, click on Renderers in the
module menu to the left, and then click on Basic. From the items showing up then,
click on colored_rectangle and drag it to the canvas, next to the screen0 module.
See Figure 2-14.

Nothing happens yet. You first need to connect the output from colored_rectangle
to the input from screen0. See the anchors at the borders of the modules? As a general
rule, equally shaped and colored anchors can be connected, and this is what we will do
here. One anchor of colored_rectangle has the label “render_out” and one anchor of
screen0 has the label “screen” and they look alike. To connect them, click on either of
them and drag it to the other. The connection will then be shown on the canvas, and the
preview window in the top-left will show the rectangle. See Figure 2-15.

Figure 2-14.  Placing a rectangle on the canvas

In order to see something in the black preview window, the modules still need to be
connected.

Chapter 2 ■ Visualization Basics

25

You might wonder how the drawing size and position in ThMAD are determined.
With 3D sketches it is more complicated, but we will come back to that later. For our
current 2D sketch, the drawing canvas covers a coordinate area left bottom (- 1;-1) to
right top (+1;+1) inside the x-y plane, and the position of the rectangle is chosen such that
its center matches the center of the canvas (0;0). Also its size, when first placed on the
canvas, is 2.0 x 0.6. Different shapes follow different conventions, but usually the shape
center will by default be at (0;0).

The drawing output has been shown in a small window on the top-left corner of
the canvas, but you can change the view mode. Press Ctrl+F to maximize the preview
window, and afterwards press Alt+F to create an overlay if you like. This overlay fully
mixes graphical output and the modules canvas, including all GUI input functionalities.
This is an extremely powerful feature, which is why it is called performance mode.
Pressing either Alt+F or Ctrl+F again will change back to the previous view mode.

Next, we want use sound to dynamically change the orientation of this rectangle.
For this aim, we place the input_visualization_listener module on the canvas. You
find it in the Sound section of the left module. Click on Sound and you can see it. Or, you
can enter the name of the module in the search field of the window. Click onto the empty
space right under the title “Module List” and then enter input_visualization_listener
or a suitable part of it. You will realize that just the first three letters will already filter the
complete list to the one we are looking for. Clear the search line if you want to disable the
filter. Clearing can be done by using the usual Backspace or Delete keys, or by pressing
Ctrl+Del once. Or, as a third means to locate a module, double-click on an empty part of
the canvas to show the graphical module browser (see Figure 2-16). There you’ll find it as
well. Click at an empty point and drag the mouse to navigate in that browser. Hover over
an entry to read info about it, and click and drag on an entry to place it on the canvas.
Right-click on an empty point to close the browser.

Figure 2-15.  Connecting and drawing the rectangle

Chapter 2 ■ Visualization Basics

26

After you dragged the module input_visualization_listener on the canvas, you
want to connect the current sound volume to the drawing angle of the rectangle. See the
vu anchor on top right of the input_visualization_listener, and the spatial anchor
on the top-left of the colored_rectangle module? Both are so-called complex anchors,
depicted by a +. They have sub-anchors. You cannot connect complex anchors, only
non-complex anchors or sub-anchors. To unveil a module’s sub-anchors, click on them;
see Figure 2-17. Now connect either of the vu sub-anchors of the input_visualization_
listener module to the angle sub-anchor of the colored_rectangle module.

Figure 2-16.  The module browser

Chapter 2 ■ Visualization Basics

27

If sound is playing and everything is set up the correct way, you will see the rectangle
wobble around to the rhythm of your music; see Figure 2-18.

Figure 2-18.  Wobbling rectangle

Figure 2-17.  Sub-anchors opened

Chapter 2 ■ Visualization Basics

28

Congratulation, you just made your first audio visualization! To save it, just move to
the cursor to an empty place on the canvas and press Ctrl+S. The screen will flash shortly
to tell you the pipeline has been saved.

If you don’t see the rectangle wobbling around, check whether the PulseAudio sound
server is running and that it is sending data to ThMAD. If it is not running, you won’t hear
any music playing under PulseAudio anyway, but in addition to that, the sound icon of

the Ubuntu desktop should look like this: , i.e. not grayed out or crossed out like

that: .

To see whether PulseAudio sends data to ThMAD, cross-check with 1.2. As a last
check, start ThMAD Artiste from a terminal by pressing Ctrl+Alt+T. Then enter /opt/
thmad/thmad_artiste. Inside the terminal, you should see a diagnostic output like this:

rtaudio_record.h audioprobe()
Audio Type = Linux PulseAudio
Available APIs:
 Linux ALSA
 Linux PulseAudio

Current API: Linux PulseAudio

Found 1 device(s) ...

Device Name = PulseAudio
Probe Status = Successful
Output Channels = 2
Input Channels = 2
Duplex Channels = 2
This is the default output device.
This is the default input device.
Natively supported data formats:
 16-bit int
 32-bit int
 32-bit float
Supported sample rates = 8000 16000
22050 32000 44100 48000 96000

Especially important in that list are the following entries:

•	 Found 1 device(s) (or more than one). If this is zero, it means
ThMAD cannot attach to the sound server.

•	 Device Name = PulseAudio. This is the default sound server.
Expect to do more work to actually set up ThMAD for non-
PulseAudio drivers like ALSA and JACK. At the least you have to
add the -sound_type_alsa or -sound_type_jack option to use
ALSA or JACK. If you are not using the default device, you also
have to specify-snd_rtaudio_device=<NUMBER> where <NUMBER>
can be determined from the program output in the terminal.

Chapter 2 ■ Visualization Basics

29

•	 If 16-bit int is not a supported format, you are probably using a
very rare sound card, or the sound driver is broken. If 44,100 is
not in the list of supported sample rates, you can ask ThMAD
to use a different sample rate. This can only be done while
starting ThMAD from a terminal, and all you have to do is add
-snd_sample_rate=48000, for example.

Basic 3D Sample
ThMAD acts on top of OpenGL, which is a 3D rendering technology used in games and
industrial grade software projects and products. Given that information, we’d feel kind
of disappointed if ThMAD wasn’t capable of providing us with 3D rendering capabilities.
The good news is it is.

It is, however, worth telling, that some important aspects need to be taken into
account from the start in order to see anything at all in the 3D world of ThMAD:

•	 In many cases we need to define the surface material of the
object.

•	 We need to deal with object surface parts that are not visible
because they are hidden behind other objects.

•	 In many cases we need light.

•	 We need a camera to project the 3D scene onto a 2D monitor.

A lot more can be said about 3D rendering, and you can gain more insight by reading
Chapter 5 “3D Concepts,” but in order to point out the most basic and most important
aspects, we provide a very basic 3D rendering pipeline.

But before that, if you followed the path and constructed the 2D sample sketch,
you might have missed a word about naming the file. The sketch in ThMAD is more
commonly called state and it has to be saved inside. The reason is, when ThMAD starts
with it default configuration it will automatically load a state named _default, and
when you press Ctrl+S at any point, the current state will be saved again under the name
_default. Consider _default as a temporary working name for states. However, if you
want to save it properly for later, you should give it a decent name. To do so, start the
ThMAD Artiste if it’s not already running and showing the state you want to save, right-
click at some empty spot, and from the pop-up menu, choose Save As…. In the first line of
the pop-up that appears, enter a name for your state. Enter something at the other lines,
too; they are all mandatory. Then click the OK button.

■■ Note  This sample is available as a source available under A-2.2.2_Visualization_
basics_basic_samples_basic_3d_sample inside the TheArtOfAudioVisualization
folder.

http://dx.doi.org/10.1007/978-1-4842-3168-5_5

Chapter 2 ■ Visualization Basics

30

Now quit ThMAD Artiste and start it again. In the window title, you’ll again see that it
loaded the _default state. If the _default state is not empty, in order to commence with
an empty state, right-click at an empty spot of the canvas, navigate to New ➤ and click on
Empty Project. All modules except for the screen0 module should now be gone.

Note that this startup behavior of ThMAD, more precisely automatically and
unconditionally loading the _default state, can be tweaked in the configuration
accessible from the main pop-up menu. There, you can set it to load the last saved state
instead of the default. For the 3D pipeline, now commence as follows:

	 1.	 3D objects in OpenGL and ThMAD are defined by points
building a mesh, which in turn defines the surface of the
object. A cube mesh, for example, consists of six faces and
eight points. You start with such a cube mesh, which in
ThMAD is called mesh_box. Inside the module menu, you’ll
find it by choosing Mesh → Solid → mesh_box or under the
same coordinates in the module browser. Remember, double-
click on the canvas to open the graphical module browser.
Place mesh_box by dragging it on the canvas.

	 2.	 The mesh_box defines the 3D object, but it doesn’t render it.
An appropriate renderer is called mesh_basic_render and
you can get to it at Renderers → Mesh → mesh_basic_render.
Place it next to the mesh_box module and connect them—
anchor the “mesh” of the former to the “mesh_in” of the latter.

	 3.	 Next you need to tell ThMAD to take care of hidden surfaces.
Place the module Renderers → opengl_modifiers →
backface_culling on the canvas and connect it to the render_
out anchor of mesh_basic_render. Switch the status anchor of
backface_culling to ENABLED.

	 4.	 Now the 3D object needs surface properties: navigate to
Renderers → opengl_modifiers → material_param. Place this
on the canvas and connect it to backface_culling.

	 5.	 To free yourself from eternal darkness, you need light. In
ThMAD Artiste, choose Renderers → opengl_modifiers →
light_directional. Place the light next to backface_culling
and connect them. Open the Properties complex anchor
by clicking it, then switch the enabled anchor of light_
directional to YES.

	 6.	 You are almost done. To actually look at the 3D scene, we still
need a camera. There are several and we choose this one:
Renderers → opengl_modifiers → cameras → orbit_camera.
Place it next to the light and connect them.

	 7.	 Finally, connect the orbit_camera to screen0.

At last you can see something; see Figure 2-19. This result is a little boring because
we are looking straight toward the x-y-plane and thus only see one face of the cube.

Chapter 2 ■ Visualization Basics

31

To help with that, you first change the color of the light. Again inside the Properties
complex anchor of light_directional, right-click on the diffuse_color anchor and
choose the Color control from the pop-up menu. From the control—see Figure 2-20—
choose any color you like. Click and drag in the top left area to choose the Hue, and then
click in the big quadratic area to choose the Saturation and Value. You can drag there as
well to see the immediate changes in the preview window. Double-click on the top-right
area to quit the control.

You might have noticed that it does not properly look like a face of a cube, instead rather
like one face of a rectangular prism. That comes from your monitor most likely having an
aspect ratio other than 1:1. There is an easy way out of it: open the Camera complex anchor
of the orbit_camera module and switch the Perspective Correct anchor to YES.

Figure 2-19.  First 3D state

Figure 2-20.  Color chooser control

Chapter 2 ■ Visualization Basics

32

It still does not look very 3Dish. To unleash the power of the third dimension and
show it as a cube, you rotate the camera position and look at it from a different angle onto
the scene. To do so, open the complex anchor named “Camera of the module orbit_
camera. Inside you’ll find the anchor called Rotation. Right-click on it and choose Axes
View. A colored cross will show up; see Figure 2-21.

Click and drag on it near its center and you’ll see the camera rotate about the center
of the scene, which happens to be the center of the cube as well. When you are satisfied,
you can close the control by double-clicking on it. Your result might look like Figure 2-22.

As a final step, you’ll add responsiveness to sound. Place the sound → input_
visualization_listener somewhere near the screen0 module. Do the same with the
module maths → converters → 4float_to_float4, which will help us to control the color.

Connect the output result_float4 anchor of 4float_to_float4 to the input anchor
clear_color of screen0. Also connect one of the vu_* subanchors of vu of the input_
visualization_listener to the third input anchor of 4float_to_f. See Figure 2-23.

Figure 2-21.  Axes view anchor control

Figure 2-22.  Elaborated 3D scene

Chapter 2 ■ Visualization Basics

33

The Multiplier input anchor of input_visualization_listener controls the
sensibility to the sound. To give a value to it other than its default of 1.0, double-click on it
and click and drag on the knob that appears. Then give it a new value, such as 0.3. Close
the knob by double-clicking on it.

The four input anchors of 4float_to_float4 demultiplex the screen clearing color,
so they represent the RED, GREEN, BLUE, and ALPHA channels of the background color.
Set the RED and GREEN anchors to 0.0, again by clicking on them and using the knobs to
change their values. Leave the ALPHA set to value to 1.0.

Start the sound input, and you should see the background flickering in blue to the
input of the sound. If you don’t see that, your sound volume may be too low and you
should assign a higher value to the input multiplier of input_visualization_listener.

Of course you could do the same for any color value in use, say a light color or
a material color. Go ahead and play with those at will. You also can draw several
connections from the vu/vu_* anchor of input_visualization_listener to different
input anchors of other modules. This is a powerful feature throughout ThMAD,
applicable to a lot of anchors of many modules. The other way around—connecting
several output anchors of different modules to one input anchor of a certain module—
applies as well depending on the module and anchor type. For example, several renderers
of several pipelines acting in parallel can connect to the sole screen0 input.

Go to an empty spot of the canvas and press Ctrl+S to save it as the _default state,
or right-click on an empty spot of the canvas and choose Save As… to give it a name.
Remember, the _default state is opened automatically when you start ThMAD Artiste the
next time. But to keep it for future reference, use Save As.. and give it a lasting name.

For the rest of the book, we will often use a tabular listing of anchor values to make
things as clear as possible. Note that default anchor values are explained only in cases
where this will noticeably help in understanding states. Also, anchors connected to other
modules will usually be described in the text body, only sometimes in the table.

The tabular presentation of anchor values for the current state is as shown in
Tables 2-1, 2-2, 2-3, 2-4 and 2-5.

Figure 2-23.  Sound input for the 3D sketch

Chapter 2 ■ Visualization Basics

34

Table 2-1. 

renderers → opengl_modifiers → backface_culling

status ENABLED Enable the module

Table 2-2. 

renderers → opengl_modifiers → light_directional

properties /light_id 0 You only have to change this if you have
more than one light.

properties /enabled YES Enable the module.

properties /position 0; 0; 1 This means the light is shining from
above the x-y plane.

properties /ambient_ color 0; 0; 0; 1 Non-directional light black = OFF.

properties /diffuse_ color 0.9; 0.6; 0.8;1 Directional light with diffuse reflectance.
Choose at will.

properties /specular_
color

0; 0; 0; 1 Directional light with exact reflectance.
Does not make too much sense with only
plane faces.

Table 2-3. 

renderers → opengl_modifiers → cameras → orbit_camera

camera / perspective_correct yes Fix aspect ratio according to your screen.

camera / rotation 0.71; 0.46;
0.53

For the orbit camera, the position of
the camera. It will be looking at the
destination.

camera / distance 2.0 The distance of the camera to the
destination.

camera / destination 0; 0; 0 Where the camera will be looking, or the
center of the 3D state.

Table 2-4. 

maths → converters → 4float_to_float4

The floatc anchor is connected to some other module.

floata 0.0 Will map to a RED color value

floatb 0.0 Will map to a GREEN color value

floatd 1.0 Will map to an ALPHA value

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Visualization Basics

35

Summary
In this chapter, we learned which tools are needed to run and use ThMAD, and how it is
installed and configured. We also saw how to create a DVD from a visualization, and we
introduced the first two basic visualization examples using ThMAD.

In the next chapter, we will look more thoroughly at the operational aspects of
ThMAD, including how its parts are started and which options can be used to achieve
specific needs.

Table 2-5. 

sound → input_visualization_listener

multiplier 0.3 Depends on the
sound level.

37© Peter Späth 2017
P. Späth, Audio Visualization Using ThMAD, https://doi.org/10.1007/978-1-4842-3168-5_3

CHAPTER 3

Program Operation

The ThMAD suite primarily consists of two programs—ThMAD Artiste and ThMAD
Player. We describe how these programs can be started and stopped, including all
possible options for controlling program operation. We furthermore describe faders,
which conduct the transitions between several visualizations inside Player.

ThMAD Artiste Operation
ThMAD Artiste is the program for creating visualization sketches, called states, and
viewing them in a preview mode.

Starting and Using Different Modes
If you followed the installation instructions in Chapter 2, “Visualization Basics,” you will
find two launchers on your desktop:

They are actually just links to the following.

 Start Artiste in windowed mode

 Start Artiste in fullscreen mode

Windowed mode:

/opt/thmad/thmad_artiste

Fullscreen mode:

/opt/thmad/thmad_artiste -f

which are going to be described in more detail in this chapter.
Starting from a terminal—you can open one via Ctrl+Alt+T—the synopsis is shown in

Table 3-1.

https://doi.org/10.1007/978-1-4842-3168-5_3
http://dx.doi.org/10.1007/978-1-4842-3168-5_2

Chapter 3 ■ Program Operation

38

Table 3-1.  ThMAD Artiste Options from the Terminal

/opt/thmad/thmad_artiste [option1 option2 ...]

Options

<none> Starts Artiste in windowed mode. Shows the canvas for
creating sketches, a small preview window, and a module
list.

-help Shows help and immediately quits the program.

-h Same as -help.

-sm Prints all detected monitors and immediately quits the
program. You can use the output to specify a monitor
number for the -m option.

-m mon Uses monitor number mon for the fullscreen mode. Has no
effect if not used with the -f option.

-f Starts Artiste in fullscreen mode. It is not possible to switch
to the fullscreen mode from inside the program. You can
exit this mode by pressing the Escape button. Can be used
in conjunction with the -ff and -fn options.

-ff Starts Artiste in fullwindow mode. The graphics output will
use the complete window space. You can later switch back
to the non-fullwindow standard mode by pressing Ctrl+F.

-fn If in fullwindow mode, suppresses the info text in the
header area.

-s 1024x860 Sets the window size in windowed mode. 1024x860 is just
an example; see output of the -sm option to list possible
values.

-p 200x100 Sets the window position; 200x100 is just an example.

-novsync Experimental. Disables using double buffering.

-gl_debug Experimental. Activates the special OpenGL debugging
feature.

-port 3267 Starts a TCP/IP port where commands to control ThMAD
from outside may be sent to. 3267 is just an example. The
details of the protocol are not part of this book.

-sound_type_alsa Directly use the ALSA API instead of PulseAudio.

-sound_type_jack Use a JACK sound server endpoint to connect.

-snd_rtaudio_ device=5 If using ALSA or JACK, specify the sound device to use.
Sound devices are listed upon startup, but the audio_
visualization_listener module must be present.

Chapter 3 ■ Program Operation

39

If you used the Artiste desktop launcher or entered /opt/thmad/thmad_artiste inside
a terminal to start Artiste, it will show up in a window, as shown in Figure 3-1. Within this
windowed mode, in the top-left corner you will find a small output sub-window where
the graphics will be painted. You can move this preview window around on the canvas by
clicking and dragging anywhere from inside it and you can change its size by clicking and
dragging from its borders or corners.

Figure 3-1.  ThMAD Artiste in windowed mode

Chapter 3 ■ Program Operation

40

For details about how to use the GUI, have a look at Chapter 7, which contains a
ThMAD GUI reference guide.

In Ubuntu, you can take a snapshot image of the window or parts of it by pressing
the Print key with or without the Shift key held down. From inside the window, you can
change to fullwindow mode by pressing the key combination Ctrl+F. The GUI elements
then vanish and the output will use the complete window space. See Figure 3-2.

By default, fullwindow mode shows some status information in the header area.
To disable or enable this status display, you can press Alt+T once or twice.

You can also start Artiste using the -fn option to disable the status information from
the beginning. To return from the fullwindow mode to the windowed mode, press Ctrl+F
again.

There is also a performance mode, which presents an overlay of the state creation
canvas and the graphics output, as shown in Figure 3-3.

Figure 3-2.  ThMAD Artiste in fullwindow mode

http://dx.doi.org/10.1007/978-1-4842-3168-5_7

Chapter 3 ■ Program Operation

41

To enable performance mode, start in fullwindow mode or switch to fullwindow
mode and then press Alt+F. The performance mode is fully functional speaking of
construction. The output of the sketch will in real-time be drawn all over the background
while you are editing the rendering pipeline. You exit performance mode by pressing
Alt+F again. Also inside the performance mode you can toggle the visibility of the header
info lines by pressing Alt+T once or twice.

Artiste can also be started in fullscreen mode; to do so, use the accordingly named
launcher on the desktop or start Artiste from a terminal via this command:

/opt/thmad/thmad_artiste -f

Include any other options you want to add. In fullscreen mode, all window shortcuts
are available.

To leave the program in any mode, press the Escape key, or, if available, click on the
close button of the window, or use the main pop-up window after you right-click on an
empty spot of the canvas.

There is currently no way to let ThMAD render graphics data directly to a video file,
but you can use other programs for that aim; see Chapter 2 for more information.

Figure 3-3.  ThMAD Artiste in performance mode

http://dx.doi.org/10.1007/978-1-4842-3168-5_2

Chapter 3 ■ Program Operation

42

Stopping ThMAD Artiste
ThMAD Artiste can be stopped via these methods:

•	 From the main pop-up menu you get by right-clicking an empty
spot of the canvas, click Exit. ThMAD detects if you have saved
changes and if this is the case will ask you whether you really want
to exit.

•	 By pressing the Escape key. Also here, ThMAD will tell you if there
are unsaved changes.

•	 There is a module inside the rendering pipeline called system →
shutdown and you can place it on the canvas and connect it to
the screen module screen0. As soon as the module’s input raises
above 1.0, the system will be shut down.

■■ Caution  The shutdown module shows no mercy—all unsaved data will be lost. If, by
whatever means, you manage its input to receive a number greater than 1.0 upon the next
state startup, you will never be able to open that state again unless you change the state
file manually by using a text editor. This is easy however—just remove the line component_
create system;shutdown ... from the state file.

Note that, referring to the shutdown module, a common feature of ThMAD is that
a module not connected to a sub-pipeline eventually reaching the screen0 module
will never run. That is why it has to be connected to, for example, the screen0 itself to
function correctly, even though it does not produce graphical data.

Starting with Errors
If an error message appears telling you that a module could not be loaded, the reason
for that might be that your state is from pre-ThMAD times. While considerable effort has
been spent on backward-compatibility toward the predecessor of ThMAD, certain old
modules may have leaked through, and Artiste will show an empty state in these cases.

There is still hope that you can repair it using system programs. Open the state with a
text editor from the following file

/home/[USER]/thmad/[VERSION]/data/states

and remove the corresponding line starting with

component_create [NAME]

Chapter 3 ■ Program Operation

43

After that, starting the Artiste GUI will yield all the rest of the state to appear. If
the module was important, try to find a substitute from the module list or the module
browser.

ThMAD Player Operation
Once you’re finished with your Artiste state, you can use Artist’s export functionality to
convert a state to a visual. This happens when you choose the Compile → Music Visual
command from the Artist’s main context pop-up menu after you right-click on an empty
spot of the canvas.

Starting and Using Different Modes
In default operation mode, the Player will recursively register all visuals it finds inside
the user data folder and play them one by one. If you are used to ThMAD’s predecessor
VSXu, where the Player by default looks in the installation folder, you have to know that
difference.

Also, contrary to Artiste’s operation, the Player knows about faders, which introduce
a transition between visuals when it comes to switching from one to another. They are
described later in this chapter; here we just mention that Players get created via Artiste
and exported via the Compile → Music Visual Fader menu command. They then end up
inside the faders folder.

The Player will not see your exports automatically, since data spaces for Player and
Artiste are kept separate. In order to make exported states available to ThMAD Player, you
either have to copy the visuals and faders from these folders:

/home/[USER]/thmad/[VERSION]/data/visuals

/home/[USER]/thmad/[VERSION]/data/faders

to these folders:

/home/[USER]/thmad/[VERSION]/data/player_visuals

/home/[USER]/thmad/[VERSION]/data/player_faders

Or you have to copy them to some other place and tell the Player via the startup
option where to find them; the -path flag is described shortly.

Chapter 3 ■ Program Operation

44

By default only a handful of visuals and faders are made available to the Player upon
installation. You can find a lot more visuals and some more faders inside these folders:

•	 /opt/thmad/share/thmad/player_visuals

•	 /opt/thmad/share/thmad/example_visuals

•	 /opt/thmad/share/thmad/player_faders

•	 /opt/thmad/share/thmad/example_faders

You can copy them into the player_visuals and player_faders folders. Note that
some of those show noticeable output only when there is actually sound input.

If you followed the installation instructions in Chapter 2, you will find two starter
icons on your desktop:

 Start Player in windowed mode

 Start Player in fullscreen mode

They are the links to the following commands.
Windowed mode:

/opt/thmad/thmad_player

Fullscreen mode:

/opt/thmad/thmad_player -f

You could also just invoke them from a terminal. If you choose to do so, the full list of
options, including the -f flag, can be seen in Table 3-2.

http://dx.doi.org/10.1007/978-1-4842-3168-5_2

Chapter 3 ■ Program Operation

45

Table 3-2.  ThMAD Player Options from the Terminal

/opt/thmad/thmad_player [option1 option2 ...]

Options

<none> /home/[USER]/thmad/ [VERSION]/data/ player_visuals
Uses all faders found inside /home/[USER]/thmad/
[VERSION]/data/ player_faders.
Visuals and faders are played in random order, each
running for 30 seconds. Note that /home/[USER]/thmad is a
symbolic
link to /home/[USER]/.local/ share/thmad.

-help Shows help and immediately quits the program.

-h Same as -help.

-path PATH Does not load the visuals from the local user data path.
See the <none> options. Instead, it loads all visuals from
the path PATH/player_visuals and uses all faders found
inside PATH/player_faders.

-dr Disables the randomizer. The Player will then not
automatically cycle through the available visuals. Still the
visual that’s chosen will be a random one.

-rb 20 If the randomizer is not disabled, at least 20 secs (or
you can choose any other number) will transpire before
changing to the next visual. If this option is not provided,
the value defaults to 30 seconds.

-rr 10 Randomizes the randomizer, if not disabled. Visual
runtime duration will be chosen randomly between the
base number from the -rb option and the -rb number
plus the -rr value. In this example, it’s between 20 and 30
seconds. If this option is not provided, the value defaults to
0 seconds.

-f Starts in fullscreen mode.

-sm Lists available monitors and monitor modes.

-m 2 If in fullscreen mode, uses monitor number 2
(choose at will).

-fm Lists available video modes for fullscreen mode. Depends
on the monitor chosen (see the -m option).

-p 300x200 If in windowed mode, sets the window position to
(300;200). Choose at will.

-s 640x480 If in windowed mode, specifies the window size. 640x480 is
only an example; choose any size you like.

(continued)

Chapter 3 ■ Program Operation

46

Table 3-2.  (continued)

/opt/thmad/thmad_player [option1 option2 ...]

If in fullscreen mode, this may be used to request the
resolution. ThMAD then tries to find the best possible
match. See the -fm option to see a list of the available video
modes. If this is not given and the fullscreen mode and
possibly some monitors are requested, the video mode will
automatically be chosen based on your current settings.
Letting the system choose is the preferable way.1

-no No splash screen and overlay. Means that it will start
immediately with the first visual and it will not print a
visual’s name at its beginning.

-lv List visuals seen by the Player. Depends on the -path
option if chosen.

-lf List faders seen by the Player. Depends on the -path option
if chosen.

-port 3267 Starts a TCP/IP port to which the commands to control
ThMAD from outside are sent. 3267 is just an example. The
details of the protocol are not part of this book.

-sound_type_ alsa Directly use the ALSA API instead of PulseAudio.

-sound_type_ jack Use a JACK sound server endpoint to connect.

-snd_rtaudio_device=5 If using ALSA or JACK, specify the sound device to use.
Sound devices get listed upon startup, but the audio_
visualization_listener module must be present.

1 If you request a certain resolution in fullscreen mode, it may cause ThMAD program
termination and show your desktop in that new resolution. You may have to manually
revert the resolution setting or restart your desktop if you want to switch back to the
resolution you are accustomed to.

Chapter 3 ■ Program Operation

47

Unlike ThMAD Artiste, in the Player, the visual will immediately cover the whole
window or screen, and there is nothing like a context menu for the Player. You can,
however, press F1 to get some basic on-screen help.

Stopping ThMAD Player
ThMAD can be stopped using one of these methods:

•	 By pressing the Escape key with the focus on the ThMAD Player
window. In fullscreen mode, no focus is needed.

•	 If while constructing the state, you placed the Module System →
Shutdown on the canvas and connected it to screen0, as soon as
the module’s input raises above 1.0, the system will be shut down.

Creating and Installing Faders
Faders are programs that create smooth transitions whenever the Player switches from
one visual to the next. They are created using Artiste and from there are exported as
special fader visuals and then ready for use by the Player.

The detailed procedure for constructing and then installing your own faders is as
follows:

	 1.	 Start ThMAD Artiste with a clean canvas containing only the
screen0 module.

	 2.	 From the main context menu, right-click an empty spot of the
canvas and then choose the New → Transition for ThMAD
Player menu entry.

	 3.	 A state is presented and started with the Module System →
visual_fader as its main module; see Figure 3-4. This one
is responsible for controlling the fading. Consider its two
texture type inputs as blind inputs—they will be served the
two transitioning states while the fader is running inside the
Player. Anything you might want to connect there will be
silently ignored. It is the two outputs which are interesting—
they present both transitioning states as textures for the
rendering process while the fader is running, eventually, as
usual in ThMAD, ending up in the screen0 module.

Chapter 3 ■ Program Operation

48

The other output anchor, called fade_pos_out, gives you
the state of the transition. It will read 0.0 when the transition
starts and 1.0 when the transition ends. Note that only while
constructing the fader in Artiste does the value seem to be
oscillating. This is for illustration purposes only—while it
is running inside the Player, the transition from 0.0 to 1.0
happens only between two visuals.

	 4.	 The transition_length input anchor specifies the number of
seconds used for the transition.

	 5.	 You must save the state the first time, if you want to work on
it later. Closing Artiste without saving will lead to data loss
in this case. The next time you load it, Artiste will handle it
like any other state, including the check for possible data loss
when closing it.

	 6.	 If you want to install the fader for use by the Player, export it
from the main context pop-up. Remember you have to right-
click an empty spot of the canvas and then choose Compile →
Music Visual Fader. You will then find the fader inside the
/home/[USER]/thmad/[VERSION]/data/faders folder.

Make the new visual fader accessible to the Player. Either copy
it to /opt/thmad/share/thmad/player_faders if you want
Player to use its default data path, or to this path:

/home/[USER]/thmad/
[VERSION]/data/player_faders

For the -path option at work, see the section entitled “Starting
and Using Different Modes,” earlier this chapter.

Figure 3-4.  A basic fader transition state

Chapter 3 ■ Program Operation

49

Summary
In this chapter, you learned how to invoke ThMAD Artiste and Player, and what options
you have when you use the starters from inside a terminal. You saw that Artiste can run
inside a window or cover the whole screen. It can also mix input and output on the same
screen.

In the next chapter, you will learn about 3D concepts used in ThMAD: coordinate
systems, space mapping, lighting, and 3D objects as seen by ThMAD.

51© Peter Späth 2017
P. Späth, Audio Visualization Using ThMAD, https://doi.org/10.1007/978-1-4842-3168-5_4

CHAPTER 4

3D Concepts

If you want an exhaustive reference to 3D computer graphics concepts, lots of materials are
available on the Internet and in bookstores. OpenGL, the technology behind ThMAD, is a
huge concept and complete coverage of all its topics exceed the scope of this book. Even
so, an introduction with our special view on audio visualization should be worthwhile. In
addition some of the peculiarities about how ThMAD handles some graphics sub-pipelines
and its own graphics concepts on top of OpenGL are described later in this chapter.

Coordinate Systems
Transformations in three dimensions are about spatial operations, like shifting, scaling,
and rotation. But before we start talking about spatial operations, we need to know how
3D objects are represented in a way that a computer program can understand, and this
immediately leads to thinking about coordinate systems.

To make things easy, we start with two dimensions. If you look at your computer screen,
we define the plane you see as the x-y-plane, with the x coordinate of a point on that plane
denoting the horizontal distance to a vertical line at the left border, and the y coordinate
denoting the vertical distance to a horizontal line at the bottom border. See Figure 4-1.

Figure 4-1.  X-Y coordinate system

https://doi.org/10.1007/978-1-4842-3168-5_4

Chapter 4 ■ 3D Concepts

52

The vertical line as the reference to the x-distance is also called the y-axis, and the
horizontal line as a reference to the y- distance is called the x-axis. We said that we use
the borders of the screen for the axes, but in fact this is an arbitrary decision; we could
have used any line parallel to them. Another common choice that’s also quite often used
in ThMAD is to use axes at the center of the screen, as shown in Figure 4-3. The crossing
point of the axes is called the origin O, and it has the coordinates O(0.0,0.0), since the
distances are zero for both coordinates.

What numbers will have been assigned to the coordinates of point P in Figure 4-3?
At the center it is easy; x=0 and y=0. We need another definition for points away from
O, and we could choose x to be 1.0 at the right edge, and y to be 1.0 at the top edge. As a
consequence of placing O in the middle of the screen, we then automatically have x=-1.0
at the left border and y=-1.0 at the bottom border. See Figure 4-2.

Figure 4-3.  X-Y coordinate system, centered at the middle of the screen

Figure 4-2.  X-Y coordinate system, scaled to -1 to +1 for both dimensions

P(x,y) lies at approximately x = 0.4 and y = 0.3, hence we can now write P(0.4, 0.3).

Chapter 4 ■ 3D Concepts

53

We are now equipped with all we need to talk about points in two dimensions. But
what about the third dimension and the z-axis? It must be perpendicular to the x-axis and
y-axis, so it either points from front-right onto the screen, or from the back.

OpenGL is a so-called right-handed system, meaning that if you let your right-hand
index finger follow the order x-axis to y-axis, then your thumb will point to the positive
z-direction. Sitting in front of the screen, look at the x-y plane from a positive z- position.
See Figure 4-4.

The scaling of the z-axis is not that obvious—there is no z-border on a two-
dimensional screen. To get things right, OpenGL does this:

	 1.	 Fixes the x-y aspect ratio. This scales the x-axis such that a
square as input: (-a,-a) → (a,-a) → (a,a) → (-a,a) will still
appear as a real square on the screen, with all sides having the
same length. This obviously changes the border coordinate
values. With the bottom and top border still at -1 and +1,
respectively, say for a 5/4 screen, the left and right borders are
now at -1.25 and +1.25.

	 2.	 Scales the z-axis in such a way that a cube as input after any
kind of rotation in space will still appear as a cube, with all
edges having the same length on the screen.

Having said that, an obvious choice for positioning objects is the cube for the
front face

(-1,-1,1) → (1,-1,1) → (1,1,1) → (-1,1,1)

and this for the back face

(-1,-1,-1) → (1,-1,-1) → (1,1,-1) → (-1,1,-1)

Figure 4-4.  X-Y-Z coordinate system

Chapter 4 ■ 3D Concepts

54

Of course, you can position objects as you wish and use any coordinates you like,
but somehow having that “double unit cube” in mind helps avoid surprises, like objects
unintentionally and miraculously disappearing out of sight. If you have other bounding
boxes for your 3D scene, that is boxes with the smallest possible dimension but still
containing all the objects in question, you can use translation and scaling to shift and
squeeze everything into the unit space, do anything you like there, and afterward scale
and shift it back. See the sections entitled “Space Mapping” and “Spatial Operations:
Translation, Rotation, and Scaling” in this chapter.

Space Mapping
Coordinate spaces of any kind, whether they are in two or three dimensions, can be
mapped into another space of the same kind in such a way that the inter- and intra-
relations of points comprising them are remained one or the other way.

The most important transformation of such a kind is called the linear transformation,
and it is represented by this calculation rule:

¢
¢
¢

= × + × + × +
= × + × + × +
= × +

x a x a y a z a

y a x a y a z a

z a x a

11 12 13 14

21 22 23 24

31 332 33 34× + × +y a z a

by which any point P(x,y,z) gets mapped to a point P¢(x¢,y¢,z¢,). Using so-called
homogeneous coordinates, mathematicians and we, if we want to be concise, extend this
concept by a translational part. We eventually use the following matrix notation:

¢
¢
¢

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

=

X

Y

Z

a a a t

a a a t

a a a t

1 0 0 0

11 12 13 1

21 22 23 2

31 32 33 3

11 1

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

×

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

X

Y

Z

where we replaced a
14

, a
24

, and a
34

 with t
1
, t

2
, and t

3
 to express their constant translational

nature. The figure in the middle, for brevity we call it (a
ij
, t

i
), is called the transformation

matrix; the others are called coordinate vectors. The dot represents a matrix
multiplication. The formalism for the multiplication is as follows:

¢ ¢= = × = ×() = ×åx x a x a x a xi ij j
j

ij j

where x
1
 = x, x

2
 = y, and x

3
 = z. The symbol Σ

j
 follows the usual mathematical rule

“sum over all j”. The nice thing about transformations represented by matrices is that
combined transformations—e.g., first scale, then rotate, then shift—can be represented
by multiplied matrices:

Combined a b c b c

a b c

ij jk kl

j
ij

k
jk kl

, , a() = × × = × ×

= × ×()æ

è
ç

ö

ø
÷å å

a b c

Chapter 4 ■ 3D Concepts

55

OpenGL (in the version 3.x used by Ubuntu while writing this book) internally uses
several distinct matrix stacks. More current versions of OpenGL somewhat lowered their
significance or even removed them in favor of shader language constructs, which are
also available in ThMAD. We do not present a shader language introduction in this book;
however, you can find some shader using examples in the stories in Chapters 5 and 6.

Within ThMAD you usually do not have direct contact with matrices. For all the
typical matrix operations, ThMAD has modules—translation, scaling, and rotation. You
can stack them graphically by connecting as many of them as you like. Internally ThMAD
of course combines all those operations in the aforementioned matrix multiplication
way. It’s important for you to know about the concept of transformation combination
operations, or stacked transformations because many states use such combined
transformations.

From the ThMAD point of view, which is not only practical but also necessary in
some use cases, are transformation combinations of the form:

t a t1-- ×× ××

This expresses: (1) First transform according to the matrix t, (2) then transform
according to a, (3) then transform according to the inverse of t, as designated by t-1.
Looks like theoretical mathematics, does it not? Well, it is practically important. Consider
an example.

Consider a box of size 0.1 x 0.1 x 0.1 centered at (0.5; 0.5; 0.5). You want to rotate it
around its center by some rotation.

transformation a. It sounds strange, but there is no module of ThMAD capable of
doing that! But there is a module for a rotation around (0;0;0). We cannot use that rotation
in this case, because in the end, the center of the box was moved away, and we wanted it
to stay at (0.5; 0.5; 0.5). What we can do now to perform the operation is:

	 1.	 First shift the box by a translation vector (-0.5; -0.5; -0.5) so
that its center is at (0;0;0).

	 2.	 Now perform the rotation around (0;0;0).

	 3.	 Then shift it back via the translation vector (0.5; 0.5; 0.5).

This exactly is what t-1 ∙a∙t expresses. Apart from the mathematical notation or
actually calculating coordinates manually, you should get used to the idea of embraced
transformations in a graphical sense; see Figure 4-5.

http://dx.doi.org/10.1007/978-1-4842-3168-5_5
http://dx.doi.org/10.1007/978-1-4842-3168-5_6

Chapter 4 ■ 3D Concepts

56

■■ Note  This sample is available as a source under A-4.2_Embracing_Transformation
inside the TheArtOfAudioVisualization folder.

For those who want to know what t looks like for the following sample (see the
section on how to construct translation matrices):

t =

-
-
-

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

1 0 0 0 5

0 1 0 0 5

0 0 1 0 5

0 0 0 1

.

.

.

Figure 4-5.  Embracing transformations

The top sub-pipeline produces a box away from the origin and paints it. The bottom
sub-pipeline just removes hidden surfaces, places a light and a camera, and sends it to the
screen. The interesting part is the middle sub-pipeline; it shifts the box back to the origin,
then rotates it around the origin, and shifts it back where it was before. The “translation”
anchor of the left module reads (-0.5; -0.5; -0.5) and the same anchor for the right module
is (0.5; 0.5; 0.5). The “angle” anchor, opened here, can now be used to rotate the box around
its center.

Chapter 4 ■ 3D Concepts

57

t - =

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

1

1 0 0 0 5

0 1 0 0 5

0 0 1 0 5

0 0 0 1

.

.

.

By the way, t-1 is called the inverse of t because the product gives the identity matrix:

t t× =

-
-
-

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

×-1

1 0 0 0 5

0 1 0 0 5

0 0 1 0 5

0 0 0 1

1 0 0 0 5

0 1 0 0 5

.

.

.

.

.

00 0 1 0 5

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

= =

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

I

The latter is called identity matrix because a ∙ I = I ∙ a = a for any matrix or vector a.

Spatial Operations: Translation, Rotation, and
Scaling
Now that you’re equipped with the notation from the previous section, you can express
translation and scaling easily.

Using the matrix presentation we introduced, we get the following for the translation
along vector (a,b,c):

t

a

b

c
=

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

1 0 0

0 1 0

0 0 1

0 0 0 1

And for the scaling with scaling factors (s
1
,s

2
,s

3
):

t

s

s

s
=

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0 1

where for uniform scaling with a single scaling factor s the components s
1
, s

2
, and s

3
 are all

the same: s
1
 = s

2
 = s

3
 = s.

Chapter 4 ■ 3D Concepts

58

Rotation is a little bit more complicated—we have to define how to rotate.
For example, we can rotate around an axis (u,v,w) from the origin, at some angle φ.
The formula in this case reads as follows:

U u

V v C D

W w S

= -
= - = () = - ()
= - = ()

1

1 1

1

2

2

2

cos , cos

sin

j j
j

t

u U C uv D w S uw D v S

uv D w S v V C vw D u S

uw D v S vw
=

+ × × - × × + ×
× + × + × × - ×
× - ×

2

2

0

0

×× + × + ×

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

D u S w W C2 0

0 0 0 1

Another possibility is to first rotate about the x-axis by some angle, then about the
y-axis by some angle, then about the z-axis by some angle. The transformation matrices
for that can easily be deduced from this formula by respectively setting (u,v,w) = (1,0,0) /
(0,1,0) / (0,0,1). ThMAD primarily uses the combined formula to make things concise.

A third possibility to describe rotations consists of using quaternions. While the
theory behind quaternions is not that easy to understand, it might be enough for the
purposes here to say that a quaternion is a number consisting of four parts:

q = (q1, q2, q3, w)

It is enough to describe a rotation in space, provided a bunch of special quaternion
calculation rules are given. That is just another way of saying that, for quaternions, we do
not need matrix operations and instead can use that new calculation ruleset, which was
introduced especially for them.

In order to learn how to perform transformations like these in ThMAD, have a look at
Chapter 5.

Exposure to Light
In the real world you can see things because they are reflecting light that shines on them.
So we need light sources to make objects appear. In OpenGL and ThMAD, it is the same,
with two exceptions. The first one is that some simple states do not need a light. However,
in many cases it does not hurt to add one, and it’s good practice to have a light. The
second exception is that in OpenGL and ThMAD, you actually never see a light directly,
you only see its reflections.

Strictly speaking, this is not a lot different from the real world—if you look at a lamp,
you see the light coming from there mostly because it is reflected from the parts of the
lamp. And only if you had something like a point light source could you see the light
without reflecting objects. This corner case is not embarrassing, and because of that
and for simplicity, directly visible light sources are not available in ThMAD or OpenGL.
Note that there still is a concept of a surface material emitting light by itself, but this is
conceptually connected to material properties, not light sources. Details follow shortly.

http://dx.doi.org/10.1007/978-1-4842-3168-5_5

Chapter 4 ■ 3D Concepts

59

In OpenGL and ThMAD, we thus have two kinds of objects that are involved in
lighting: lights or light sources and materials.

Lights as seen from the light source perspective come in four flavors, to allow for
realistic scenes:

•	 Ambient light. Think of this as non-directional light, which
is everywhere. If you are in a dull room with only a little light
sneaking through the gaps in the curtains, you still see some
kind of dim light which seems to light everything evenly in the
room and seems to come from everywhere and nowhere. Only
experience tells us that the light originates from the lighted
gaps. This is what ambient light is about, and the way ThMAD
and OpenGL handle it is to add some constant color value to all
surfaces. The truth is a little bit more complicated, however, since
material properties are involved into the calculation of ambient
color coming from surfaces

•	 Diffuse light. Consider a light source at some point. If the light
from there hits a material surface, and from there gets scattered
evenly into all possible directions, this is diffuse light. This kind
of diffuse reflectance is most commonly related to the material
nature of surfaces. Unless you need a surface that perfectly
mirrors 100% of any light shining on it, you will have a diffuse light
component in your scene. It is therefore found in almost all 3D
scenes.

•	 Specular light. If a light beam hits a material surface and is
reflected by the same angle away from the surface, we speak of
specular light. You want to have a specular light component to
make your scenes shinier and more interesting.

•	 The screen’s clear color. This will be applied to the whole scene
each frame before anything else is rendered. It will thus show up
as a background color and may shimmer through objects only if
they are fully or in part transparent.

For the different light modes, see Figure 4-6.

Figure 4-6.  Light reflection modes

Chapter 4 ■ 3D Concepts

60

The material parameters used for the reflected light calculation are:

•	 The ambient light defined by a light source has its counterpart in
an ambient reflection color. The overall ambient part of the final
pixel color will be the product of each of the RGB components
from the ambient color coming from the light and the ambient
color defined as a material parameter.

•	 As for diffusive light, the pixel color outcome of some material
point is calculated by multiplying each color component of the
incoming diffusive light with the matching material parameter’s
diffuse reflectance color component. While for the ambient
lighting, the position of lights and surfaces in space does not play
a role, for diffuse light the 3D nature of objects unveils.

•	 While diffuse light reflects in all directions when hitting a surface
point, specular light gets reflected as for a mirror, at precisely the
same angle on the other side of the normal; see Figure 4-6. The
calculation goes as for ambient or diffuse light: each material
parameter’s RGB component is multiplied by the corresponding
RGB component of the light module.

•	 Especially for specular reflectance, we additionally have the
concept of shininess, which describes the amount of fuzziness
regarding the viewer’s position and the reflected light beam.

•	 Emissive light. Materials can produce light without the help
of a dedicated light switched on. The emissive light is similar
to the ambient light contribution, but is not combined with a
corresponding light source parameter; it stands for itself and adds
to all the other light produced by materials and light sources. Also
it does not produce any reflections on other objects.

Sample objects can be seen in Figure 4-7. The way the light comes from the surface
parts of course not only depends on light and surface properties, but also on the angle we
look at it. This is internally handled by the projection transformation, which is covered in
the next section.

Chapter 4 ■ 3D Concepts

61

Eye and Camera
After we place some objects in a scene and add light and material properties, we need
something or someone who is actually looking at the scene. And since we have a flat
screen as a part of this process, and obviously the latest part the computer program has
an influence, this is the equivalent to a rule about projecting the 3D scene onto a flat
two-dimensional rectangle, the screen.

The usual OpenGL 3.x methodology for describing this process consists of comparing
it to a photography or camera setup. We start with arranging objects in 3D space and
compare this to placing objects in a room for to be photographed; see Figure 4-8.

Figure 4-7.  Objects with different light reflection modes

In Figure 4-7, the top left is ambient light, the top right is diffuse light, the bottom left is
diffuse and specular light, and the bottom right is emissive light showing a 3D sphere.

Figure 4-8.  Modelview transformation

Chapter 4 ■ 3D Concepts

62

This part of the process ends up with eye coordinates and is governed by the
modelview matrix stack. If you do OpenGL programming without using ThMAD, you
explicitly tell OpenGL to use the modelview matrix stack. With ThMAD, the program does
it for you transparently inside the modules.

Next, the camera is positioned and pointed toward the scene; see Figure 4-9.

This projection transformation inside OpenGL also allows for the specification of
near and far clipping planes, something that doesn’t exist in a real-world photography
process. Using them gives us the ability to remove objects or object parts that are closer
than the near clipping plane or farther away than the far clipping plane. They are part of
the projection matrix sub-process because it is easy to do for the hardware at this stage.

After this, the OpenGL system applies the so-called w-coordinates. These are
internal numbers and part of the matrix and vector operations. The details are out
of scope—it will be enough for our purposes when we say that the hereby used
homogeneous coordinates allow for using matrices for translation, which a 3x3 matrix of
3D objects is not capable of. The outcome is part of the two-dimensional screen world
and it is called normalized device coordinates. See Figure 4-10.

Figure 4-9.  Projection transformation

Figure 4-10.  Device-normalization

This is an internal sub-process that has no parameters, hence there is nothing like an
associated matrix step.

Chapter 4 ■ 3D Concepts

63

As a final step, a viewport is chosen and applied, which means we define the actual
region we want to see. See Figure 4-11. Also at this step, there are no object-related
parameters and hence there is no matrix stack associated with it.

Note that up to the clip coordinates and the normalized device coordinates, the z
coordinate of each vertex is available to the system, and it is needed for determining what
needs to be culled from further rendering because it is hidden by other objects. With the
camera analogy, physics does that trick for us, but inside OpenGL, those z coordinates,
called depth at this stage, are used to determine which vertex points can be ruled out
from the rest of the rendering process.

The way of hiding objects is an interesting topic anyway. Lots of energy has been put
in the design of graphics hardware, which effectively calculates what is to be taken out
of the rendering process because it cannot be seen by the viewer or the camera. To be
precise, there are actually two properties that define it:

•	 The aforementioned depth buffer. This is a buffer that traces
z-coordinates of pixel coordinates in the rendering step, which
actually renders the pixels on the screen. That is to say, the very
last rendering step. It works as follows: after the depth buffer is
cleared, which usually happens together with the color buffer
clearing, any new pixel drawn tells its z-coordinate to the depth
buffer, and this leads to one of the following:

•	 If the depth buffer is uninitialized at that point, it saves the
pixel’s z-coordinate in the depth buffer and renders the pixel.

•	 If the depth buffer at that point is defined and the
z-coordinate of the new point is greater than or equal to the
one in the depth buffer, it saves the pixel’s z-coordinate in the
depth buffer and renders the pixel.

•	 If the depth buffer at that point is defined and the
z-coordinate of the new point is less than the one in the
depth buffer, it discards the new pixel.

Figure 4-11.  Screen coordinates

Chapter 4 ■ 3D Concepts

64

•	 Since we know that greater z-coordinates means being closer to
the viewer, this effectively rules out points to be hidden.

•	 Backface culling. This is another way of ruling out pixels, because
they are on the back side of an object. Consider for example a
cube: each of the six sides consists of two triangles (this is the way
quads are handled internally). Each triangle has three vertices.
Now if we are careful and define them—if the three vertices
from an angular point of view describe a clockwise rotation, they
are defined to lie on the back side, otherwise on the front side.
Because this is just a yes/no decision for each surface part, the
graphics hardware can very effectively handle this.

A couple of things need to be taken into account to enable all that hiding magic, but
ThMAD together with OpenGL provide two modules tailored for that: a backface culling
module and a depth buffer module.

ThMAD Meshes
Meshes in ThMAD are an abstraction of point coordinate sets describing 3D objects.

To define a mesh, certain classes of objects need to be defined. Associated notions
are:

•	 Vertices. This is an array of three-dimensional position vectors of
the points building the mesh.

•	 Vertex normals. Describe the orientation of surface elements in
space. Needed to correctly light objects.

•	 Vertex colors. Vertices often have colors assigned to them.

•	 Vertex texture coordinates. They describe the mapping of vertices
onto texture coordinates.

•	 Faces. Precomputed atomic pieces of the surface defining the
mesh.

•	 Face normals. These have the same meaning as vertex normals
described previously, but associated with the faces. This feature is
not used very often.

•	 Vertex tangents. Used by some modules where vectors parallel to
surface elements are needed.

ThMAD Particle Systems
Particle systems are about hundreds, thousands, or maybe many more small 3D objects
entering a scene, obeying some generation, movement, interaction, and finally decaying
rules. You want to use them to simulate fog, waterfalls, candles, bursts, interesting
artificial effects, and things like that.

Chapter 4 ■ 3D Concepts

65

They came into being because of greatly improved graphic hardware capabilities
during the last decades. With modern state of the art (or also just medium grade graphics
and computation hardware), it is possible to have hundreds of thousands of particles
at work. There is no genuine particle system concept inside OpenGL, but of course
with so many 3D objects to be handled, the way OpenGL concepts are used is crucial to
acceptable performance.

Fortunately, OpenGL provides for some modules that deal with particle systems and
internally tune the way OpenGL gets used. The modules are about:

•	 Generating particles. Either given a single point or a set of points

•	 Modifying particles and their trajectories. Some randomization
of particle size, precisely controlling all particles sizes, applying
wind, letting them act like fluid particles, letting them follow
gravity, letting them bounce, and letting them rotate.

•	 Controlling particles’ life spans.

•	 Controlling the way particles are rendered.

Albeit experimenting with particle systems is interesting and a lot of fun, there is no
chapter dedicated to particle systems. But there is a section in Chapter 6 that provides
more insight and presents some examples.

Summary
In this chapter, you learned about 3D coordinate systems, transformation operations like
shifting, scaling, and rotating, and about lights and cameras. In addition, you learned
about meshes and particle systems inside ThMAD for 3D sketches.

The next chapter contains a series of tutorials or stories that cover a lot of what can
be done with ThMAD.

http://dx.doi.org/10.1007/978-1-4842-3168-5_6

67© Peter Späth 2017
P. Späth, Audio Visualization Using ThMAD, https://doi.org/10.1007/978-1-4842-3168-5_5

CHAPTER 5

Stories: Basic Level

In this chapter, we dive more into the art of audio visualization by looking at elaborated
walk-throughs covering various aspects. We can by no means describe all possible kinds
of sketches, but this chapter provides you with techniques that can help you realize your
own ideas. There is no particular order for these sections, so you can sequentially work
through them or read them per interest—whatever best suits you.

More 3D Rendering Pipelines
ThMAD is built on top of OpenGL, which is an industry standard for 3D graphics
rendering. OpenGL is a fundamental technology for your graphics programming needs
and you can achieve quite a lot with it. However, contrary to OpenGL, ThMAD operates at
the more abstract concepts of instantiating, configuring, and connecting modules. There
are advantages and disadvantages to this approach—one advantage is that you don’t have
to be a programming expert to use ThMAD. A disadvantage is you cannot do everything
with ThMAD you can do with OpenGL.

This chapter contains more examples that are explained in-depth. This chapter has
as an additional benefit that in the end, you’ll understand some parts of OpenGL, since
the same or at least similar concepts and names are used for objects and parameters.

Transformations
Transformations here involve translation, rotation, and scaling.

■■ Note  Samples from this subsection are available as source under A-5.1.1_* inside
the TheArtOfAudioVisualization folder.

https://doi.org/10.1007/978-1-4842-3168-5_5

Chapter 5 ■ Stories: Basic Level

68

The modules that can do transformations for vertex coordinates are listed in Table 5-1.

We start with a basic 3D setup. Using the menu on the left side, place the following
modules on the canvas:

•	 Renderers → opengl_modifiers → cameras → orbit_camera

•	 Renderers → opengl_modifiers → light_directional

•	 Renderers → opengl_modifiers → auto_normalize

•	 Renderers → opengl_modifiers → material_param

•	 Renderers → opengl_modifiers → backface_culling

•	 Renderers → opengl_modifiers → depth_buffer

•	 RENDERERS → mesh → mesh_basic_render

•	 Mesh → solid → mesh_box

Set the following anchor values, leaving unmentioned values at their defaults.
See Tables 5-2 to 5-8.

Table 5-1.  Transformation Modules

Module Access Point

Translate Renderers → opengl_modifiers → gl_translate

Rotate Renderers → opengl_modifiers → gl_rotate

Rotate Renderers → opengl_modifiers → gl_rotate_quat

Scale Renderers → opengl_modifiers → gl_scale

Scale (uniformly) Renderers → opengl_modifiers → gl_scale_one

Table 5-2. 

renderers → opengl_modifiers → cameras →orbit_camera

perspective_correct yes Make sure the computer screen’s aspect ratio is
being taken care of and a cube looks like a cube,
with all sides the same size on the screen.

Table 5-3. 

renderers → opengl_modifiers → light_directional

enabled YES Switch the light on.

Chapter 5 ■ Stories: Basic Level

69

Table 5-8. 

mesh →solid→ mesh_box

The object to be drawn: a cube.

Leave all values at their defaults.

Table 5-4. 

renderers → opengl_modifiers → material_param

specular_reflectance Any color Shining color; you usually use white or dim
white, or at least a bright color.

diffuse_reflectance Any color Usually the basic color of your object.

specular_exponent 30 Minimum 0, maximum 128. Specifies the
shininess, spottiness, or anti-fuzziness of
the specular reflectance effect.

Table 5-5. 

renderers → opengl_modifiers → backface_culling

Makes sure the backface is not rendered. See 4.5 for a description.

status ENABLED Switch backface culling on.

Table 5-7. 

renderers → mesh → mesh_basic_render

Leave all values at their defaults.

Table 5-6. 

renderers → opengl_modifiers → depth_buffer

Makes sure hidden surfaces are not rendered.

depth_test ENABLED

depth_mask ENABLED

Chapter 5 ■ Stories: Basic Level

70

Some notes on setting the anchor values:

•	 Some anchors, like for example the enabled anchor of light_
directional, are by default not seen in the module. Instead they
are part of the so-called complex anchors. Complex anchors can
be opened by clicking on them to unveil their children.

•	 For enumeration type values, just click on them and select the
appropriate value. The anchor enabled of light_directional is
an example for an enumeration value.

•	 For color values, double-click on them and select the color. Click
and drag on the top row of the color cube, as shown in Figure 5-1 to
select a HUE value, then click on a point inside the bigger bottom-
left square to choose SATURATION and VALUE.

This is the HSV color space used throughout ThMAD. Internally it is converted into
RED-GREEN- BLUE values, which OpenGL needs instead. Close it by double-clicking on
the top-right small square.

Figure 5-1.  The color cube for entering color values

Chapter 5 ■ Stories: Basic Level

71

Connect the modules as shown in Figure 5-2.

A note about order here: OpenGL under the hoods of ThMAD is a state machine and
order does not matter at all points. It however is important quite often, especially when
it comes to matrix operations. In the state just described, the orbit_camera and light_
directional modules have an orientation in space described by a matrix. The order is
crucial here: if we had the light after the camera, the light’s position would rotate with the
camera, as if the light and the camera were tied. But here we want to have the light being
fixed if the camera gets rotated, hence the light needs to be positioned before the camera
in the state.

The inconspicuous module called auto_normalize is new here. It fixes the normal
vectors after transformations and before applying lighting. Under certain circumstances,
especially with any kind of scaling transformations, forgetting it might give you strange
lighting issues and sleepless nights.

■■ Caution  In any 3D state where there’s the slightest chance of scaling happening, add
the module Renderers → opengl_modifiers → auto_normalize before the lighting.

Figure 5-2.  Basic transformation setup

Click and drag on an output anchor and release over the input anchor you want to connect to.

Chapter 5 ■ Stories: Basic Level

72

The outcome will be a front-facing view of a cube, as shown in Figure 5-3.

What we want to do now is add a swinging rotation, with the elongation modulated
by incoming sound basses, and add a scaling of the size, modulated by incoming sound
trebles. We start with the rotations. To proceed, add the Renderers → opengl_modifiers →
gl_rotate module twice and insert both between mesh_basic_render and depth_buffer.
To do so, right-click on the line between them, choose Disconnect, and then draw the
new connections shown in Figure 5-4.

Figure 5-3.  Basic state outcome

Chapter 5 ■ Stories: Basic Level

73

When adding several modules of one type, ThMAD automatically numbers them.
For example, for the gl_rotate we just added twice, the first will have the name gl_
rotate, the second gl_rotate_1. The next one would be called gl_rotate_2, and so on.
This is the external name that see on the canvas under the module as well as the internal
ID, which never changes until the module is deleted.

Figure 5-4.  Adding rotation modules

Chapter 5 ■ Stories: Basic Level

74

The rotation module by default has a rotation axis (0;0;1), which means parallel to
the z-axis, and an rotation angle of 0.0. The anchors are accordingly called axis and angle.
We now change the axis of the first rotation module to (1;0;1): double-click on the axis
anchor and move the x-slider. This is the first one, all the way up to 1.0. See Figure 5-5.

Close the triple slider by double-clicking anywhere on it. Leave the other rotation
module’s axis unchanged, so that one will rotate about its default, the z-axis. For the
steady rotation effect, we add two Maths → oscillators → oscillator modules and set their
anchors as shown in Tables 5-9 and 5-10.

Figure 5-5.  Rotation axis slider

Table 5-9. 

maths → oscillators →oscillator

First “rotator engine”

osc_type saw Explanation below.

freq 0.55 Can choose other values as well.

Chapter 5 ■ Stories: Basic Level

75

Now connect their outputs to the angle input anchors of the gl_rotate modules.
See Figure 5-6.

Setting the float type anchor values happens by double-clicking and then clicking

and dragging on the knob. After you click on a knob , you drag the mouse up and
down for coarse changing the value, or drag left and right for fine changing the value. Or
click on the digit and change a value using the keyboard, followed by Enter (use Ctrl+Del
to clear the string at any time).

Table 5-10. 

maths → oscillators → oscillator

Second “rotator engine”

osc_type saw For an explanation, see below.

freq 0.25 You can choose other values as well.

Figure 5-6.  Steady rotation

Chapter 5 ■ Stories: Basic Level

76

The reason we use a saw oscillator is its linear transition from 0.0 to 1.0 and then
abruptly going back to 0.0. On the other hand, angular input is modulus 1.0, which means
an angle of 1.0 represents a full rotation. That way, the saw oscillator provides for a steady
uniform rotation. Now for the translation, we add these modules:

•	 Renderers → opengl_modifiers → gl_translate

•	 Maths → converters → 3float_to_float3

Put the gl_translate module between the gl_rotate_1 and depth_buffer
modules and connect the 3float_to_float3 module to the translation anchor of the
gl_translate module, as shown in Figure 5-7.

The 3float_to_float3 allows for multiplexing the translation vector—each of the
x, y, and z components of the translation can be addressed independently that way.
For the movement motor, we add another oscillator:

Maths → oscillators → oscillator

Figure 5-7.  Translation added

Chapter 5 ■ Stories: Basic Level

77

We connect it to the first input anchor of 3float_to_float3 and set its anchors as
shown in Table 5-11.

As a last transformation module, we add add a module that blows up or shrinks the
box, the _one in the name means uniform scaling in all three dimensions:

Renderers → opengl_modifiers → gl_scale_one
Put it between gl_translate and depth_buffer. See Figure 5-8.

Figure 5-8.  Scaling added

Table 5-11. 

maths → oscillators → oscillator

The second oscillator, oscillator_2

osc_type sin

ofs 0.0 Let it oscillate around 0.0.

Chapter 5 ■ Stories: Basic Level

78

As a last step, we add sensitivity to sound. To do so, place the Sound → input_
visualization_listener module on the canvas, and twice maths → arithmetics → ternary
→ float → mult_add. Connect the octaves_l_0 output anchor of the visualization
listener module to the float_in anchor of the first mult_add module, and the
octaves_l_4 anchor similarly to the second mult_add module. See Figure 5-9. The
octaves_l_0 is for bass tones and the octaves_l_4 is for treble tones. The other input
anchor values are for sound volume scaling and setting a base value. More precisely, see
Tables 5-12 and 5-13.

Figure 5-9.  Sound input added

Table 5-12. 

maths → arithmetics → ternary → float → mult_add

The one connected to the bass tones and the translation module

first_mult 3.0 Volume scaling

then_add 0.1 Some movement even with no sound

Chapter 5 ■ Stories: Basic Level

79

Finally, connect the bass mult_add's output to the amp anchor of oscillator_2,
and the treble mult_add’s output to the scale anchor of the gl_scale_one module.

Play some music and you can see the box moving and inflating to the incoming
sound, as shown in Figure 5-10.

If the effect shows up too reluctantly, change the amplification input anchor
multiplier of the visualization listener.

The movement and inflation of the box is a little edgy, since incoming sound is
reacted on very fast. You can smooth that if you Insert maths → interpolation → float_
smoother modules after the mult_add modules. This is left as an exercise for you.

Wireframes
Wireframe models reduce the complexity of rendering 3D objects by simply not drawing
any areas and instead only drawing the edges of objects. It was introduced for debugging
purposes, since not drawing inside area points improves speed quite noticeably. But
wireframe models also may show their own aesthetics.

Figure 5-10.  Outcome of the sound input added

Table 5-13. 

maths → arithmetics → ternary → float → mult_add

The one connected to the treble tones and the scaling module

first_mult 10.0 Volume scaling

then_add 0.5 Some size even with no

sound

Chapter 5 ■ Stories: Basic Level

80

■■ Note  Samples from this subsection are available as source under A-5.1.2_* inside
the TheArtOfAudioVisualization folder.

As a starting point, we paint three types of spheres and compare their wireframes.
To do so, let’s first build the basic 3D setup.

Insert the module Renderers → opengl_modifiers → blend_mode between
mesh_basic_render and depth_buffer. This module is a good way to express that you
want to combine several sub- rendering pipelines. There you can also specify what
happens to the pixel color when several objects overlap. We want to present objects side-
by-side, so do not expect an overlap here, but using the blend_mode as a combiner is a
good means to structure your state. Remember you can insert a module into an existing
connection by first deleting that connection. You do so by right-clicking the connection
and choosing Disconnect, then reconnecting everything as desired.

Insert these modules between mesh_basic_render and blend_mode:

•	 Renderers → opengl_modifiers → gl_scale_one

•	 Renderers → opengl_modifiers → gl_translate

See Figure 5-11.

Change the scale anchor of gl_scale_one to 0.75, as shown in Table 5-14.

Change the x-coordinate of the translation anchor of module gl_translate to -1.8,
as shown in Table 5-15.

Figure 5-11.  Preparing the wireframed views

Table 5-14. 

renderers → opengl_modifiers → gl_scale_one

scale 0.75

Chapter 5 ■ Stories: Basic Level

81

To do so, double-click on the translation anchor and use the left knobs and the left
slider to adjust the x-value, as shown in Figure 5-12.

The upper knob specifies the range available to the slider, and the lower knob the
offset. To change a knob’s value, click and drag it. A vertical mouse movement is for
coarse changes and a horizontal mouse movement is for fine changes. So, if you change
the lower knob to something like -2.0 and leave the upper knob at its default value 1.0,
you can use the slider to achieve the desired -1.8. To move the slider, also click and drag
on it. Close the triple controller by double-clicking anywhere on it.

Delete the box module you had from following the instructions earlier. Click on it,
then press Del on your keyboard. Or use the context menu you get after right-clicking
to delete it. Now place the module mesh → solid → mesh_sphere next to mesh_basic_
render and connect the sphere to the mesh_basic_render module’s mesh_in anchor.
Change the sphere’s anchors as shown in Table 5-16.

After changing the camera’s settings a little, I use 2.8 as a distance and 65.0 as a fov to
diminish the perspective effect a little. You can see this in Figure 5-13.

Table 5-15. 

renderers → opengl_modifiers → gl_translate

translation (-1.8; 0; 0)

Figure 5-12.  Triple value slider

Table 5-16. 

mesh → solid → mesh_sphere

num_sectors 30

num_stacks 10

Chapter 5 ■ Stories: Basic Level

82

For the other two sphere types, we clone the mesh_basic_render, gl_scale_one,
and gl_translate modules. Cloning is a copy with all of the actual values, and it helps
you quite often to simplify state generation. To perform a cloning, press and hold Ctrl and
Alt, then click and drag the module in question.

For the cloned modules, connect them similarly to the original, connect them to
blend_mode, and this time, add the Mesh → solid → mesh_sphere_icosahedron module
as input. Change the x-translation of the cloned gl_translate to read 0.0. Make another
clone the very same way, but use a x-translation value of +1.8 this time and add Mesh →
solid → mesh_sphere_octahedron.

As for the spheres’ parameters, set the values as shown in Tables 5-17 and 5-18.

Table 5-17. 

mesh → solid → mesh_sphere_icosahedron

subdivision_level 4.0

max_normalization_level 10

Table 5-18. 

mesh → solid → mesh_sphere_octahedron

subdivision_level 4.0

max_normalization_level 10

Figure 5-13.  A basic sphere

Chapter 5 ■ Stories: Basic Level

83

The generator part of the state will look like Figure 5-14, and the output like Figure 5-15.
Now actually switching to the wireframe mode view is easy. Between the camera module
and the screen module, insert a module Renderers → opengl_modifiers → rendering_mode.

Figure 5-14.  Three spheres: state (part)

Figure 5-15.  Three spheres of different kinds

Chapter 5 ■ Stories: Basic Level

84

Change its anchors as shown in Table 5-19.

The final output can be seen in Figure 5-16. You can press Ctrl+F to switch to
fullwindow mode and investigate the details.

If you want to use this as a basis for something more dynamic and more rich, this can
be achieved as follows. Remove the octahedron and icosahedron part of the generation
and then move the remaining sphere back to (0; 0; 0) by accordingly changing the
x-coordinate of the translation anchor of gl_translate.

Then add the module Particlesystems → generators → basic_spray_emitter and set
its anchors as shown in Table 5-20.

Table 5-19. 

renderers → opengl_modifiers → rendering_mode

back_facing lines

front_facing lines

Figure 5-16.  Three spheres of different kinds, in wireframe mode

Chapter 5 ■ Stories: Basic Level

85

What this particlesystem spray emitter does is steadily produces, moves, and after
some time, kills wireframe cubes. Connect the basic_spray_emitter to the particles
input anchor of mesh_basic_render to start the dynamics. The output will look like
Figure 5-17.

There is a lot more to say about particle systems and we will meet them again at
various places throughout the text.

Responsiveness to sound can be added, as shown earlier in this chapter. You just
connect sound to any input anchor. The speed, the number, the base size, and/or the size
randomization are all suitable candidates.

Table 5-20. 

particlesystems → generators → basic_spray_emitter

num_particles 100

particles_per_second -1 Because of -1, “num_particles” rules

spatial / size /
speed / speed_x

9.0

spatial / size /
particle_size_base

1.0

spatial / size /
particle_size_random_weight

3.2

appearance / time /
particle_lifetime_base

4.0

appearance / time /
particle_lifetime_random_weight

1.0

Figure 5-17.  Massive and dynamic wireframes

Chapter 5 ■ Stories: Basic Level

86

The Ocean Module
ThMAD has a quite appealing ocean module, explained in this section.

Start with the basic setup described earlier in the chapter until mesh_box. You do not
need that one here. Instead add the Mesh → generators → ocean module and connect
it to mesh_basic_render. As for the anchor values, start with setting the sky color in the
screen module, as shown in Table 5-21.

Note that double-clicking on an anchor selects its default input method. For colors,
this is usually the color controller you already know, but not for the screen module. This
decision is made by each module separately. In this case, the quadruple slider combo
shows up, as shown in Figure 5-18.

Here, you can set each color channel value using the slider, with the range of each
slider given by the knob in the first row, and the lowest value or offset given by the knob
underneath it. Those limits have default values, and the range = 1.0 and offset = 0.0
makes total sense here for color values naturally ranging from 0.0 to 1.0. You don’t have to
change the limit knobs here. Or, you can click on the textual slider value right above the
slider to enter a value using the keyboard (use Ctrl+Del to first clear the field).

Table 5-21. 

screen0

clear_color 0.19; 0.40; 1.0; 1.0 The sky

Figure 5-18.  The quadruple slider combo

Chapter 5 ■ Stories: Basic Level

87

Or, you can force the color picker to show up by right-clicking on the anchor and
choosing Color, as shown in Figure 5-19.

Figure 5-19.  Accessing the graphical color chooser

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ Stories: Basic Level

88

Or, you can choose the direct entry mode using the same context pop-up, as shown
in Figure 5-20.

You can then click on each value and change it by using the keyboard and pressing
Enter afterward. Also here, you use Ctrl+Del to clear a value. The first three values stand
for RGB, each component lies inside [0.0;1.0], and the last for the ALPHA value. As usual,
close any of the controllers by double-clicking on it. The other module anchor values for
the ocean are shown in Tables 5-22 to 5-28.

Table 5-22. 

renderers → opengl_modifiers → cameras → orbit_camera

rotation 0.0; -0.82; 0.12 We need a suitable camera view, since the ocean
plate in ThMAD is limited, but we want the
impression of an endless horizon.

distance 20.0

fov 66.0

Figure 5-20.  Direct color entry process

Table 5-23. 

renderers → opengl_modifiers → light_directional

position -0.19; 0.71; 1.0

ambient_color 0.16; 0.22; 0.23;
0.42

Turquoise ambient color

diffuse_color 0.94; 0.92; 1.0; 1.0 Ocean blue diffuse color

specular_color 0.95; 0.94; 0.81;
1.0

A little yellowish bright specular

Chapter 5 ■ Stories: Basic Level

89

Table 5-24. 

renderers → opengl_modifiers → material_param

ambient_ 0.21; 0.19; 0.06; Dark yellow ambient

reflectance 0.98 reflectance

diffuse_ 0.03; 0.13; 0.83; Blue diffuse reflectance

reflectance 1.0

specular_ 0.92; 0.91; 0.68; Light yellow specular

reflectance 1.0 reflectance

specular_ exponent 20.0

Table 5-25. 

renderers → opengl_modifiers → backface_culling

status DISABLED Needs to be disabled because of an internal bug

Table 5-26. 

renderers → opengl_modifiers → depth_buffer

depth_test ENABLED

depth_mask ENABLED

Table 5-27. 

renderers → mesh → mesh_basic_render

vertex_colors no Let the material_param module define the color

use_display_list no

use_vertex_colors no

particles_size_center no

particles_size_from_color no

ignore_uvs_in_vbo_updates no

Chapter 5 ■ Stories: Basic Level

90

■■ Note  The source is available under A-5.1.3_Ocean inside the
TheArtOfAudioVisualization folder.

The result is shown in Figure 5-21.

Texture Mapping
A texture, more precisely a texture map, is a way to efficiently describe the surface
characteristics of each part of a 3D object using 2D images that were preloaded on the
graphic hardware.

There is a technical reason for doing this. Consider a real-world moving 3D object.
In order to represent it realistically, we must describe it by looking at millions of
microscopic colored points. Each of these points is moving and needs to be calculated
several dozens of times each second. If all that happened in the CPU of a computer, way
too much data would have to be shifted to the graphics hardware each second. Instead,
as a quite clever way out of this dilemma, we describe each 3D object by a much smaller

Table 5-28. 

mesh → generators ocean

time_speed 3.2 Time multiplier for the wave movement

wind_speed_x 5-0

wind_speed_y 12.0

lambda 1.12 Wave speed

normals_only no

Figure 5-21.  Ocean output

Chapter 5 ■ Stories: Basic Level

91

number of points or vertices building a mesh spanned over the surface, and map a
suitable part of a 2D preloaded image over each face of the mesh. This effectively reduces
the amount of data to be transferred per second to the graphics hardware by magnitudes.

The primary mathematical description of this texture mapping consists of assigning
two coordinate sets to each vertex building up the shape. For example, if you draw a quad
face made of these coordinates

(x1,y1,z1) → (x2,y2,z2) → (x3,y3,z3) → (x4,y4,z4) → (x1,y1,z1)

and you want to map a part of a 2D texture on it, more precisely a quad:

(u1,v1) → (u2,v2) → (u3,v3) → (u4,v4) → (u1,v1)

then this double set of coordinates is exactly what you have to provide inside a
program to describe a texture map:

(x1,y1,z1, u1,v1) → (x2,y2,z2, u2,v2) →

(x3,y3,z3, u3,v3) → (x4,y4,z4, u4,v4) →

(x1,y1,z1, u1,v1)

Graphically, this is depicted in Figure 5-22. Note that there is a lot more to say about
textures. Textures also come in 1D, 3D, or even 4D flavors, stacked storage types for
different resolutions, and more. In this book, we only describe a part of all these features,
but the material you can read on the Internet or other books can be overwhelming, so feel
free to extend your research using other sources if you like.

Figure 5-22.  Basic texture mapping

Chapter 5 ■ Stories: Basic Level

92

First, in ThMAD there is no generic way to describe such a point-wise texture
mapping in any way that the structure of the objects to be textured and the textures
require. That is because you usually don’t enter point coordinates, but shapes of one or
the other form, and there is no reliable way to guess where each texture point needs to
be mapped. But there are workarounds covering some interesting cases, using automatic
texture coordinates generation, and also a feature in OpenGL called shaders. Both give
intriguing effects and are important for your visualization ideas.

Automatic Texture Coordinates
OpenGL has a function called glTexGen(). It describes an old legacy technique to let
the rendering engine automatically generate a texture mapping. It is now superseded by
shading, which is not covered in this book. It has some shortcomings in expressiveness.

■■ Note  This source is available under A-5.2.1_Automatic_texture_coordinates
inside the TheArtOfAudioVisualization folder.

Nevertheless, you can use it for your sketches, since there is a module in ThMAD
covering it. The name of this module is Texture → opengl → texture_coord_gen. In order
to use it, you also need a basic 3D pipeline, a mesh, and a texture. As walk-through
examples, the following sections describe the mapping of a texture onto a sphere and on
one side of a cube. Start with these modules:

•	 orbit_camera

•	 light_directional

•	 material_param

•	 backface_culling

Connect the camera to the screen module screen0. This is the backend of the
pipeline. From the other side, choose the left side of the canvas if you like. We start with a
chain and connect them all:

•	 Texture → loaders → png_tex_load

•	 Texture → modifiers → scale

•	 Texture → modifiers → tex_parameters

•	 Texture → modifiers → translate

•	 Renderers → mesh → mesh_basic_render

•	 Texture → opengl → texture_coord_gen

Also connect the render_out anchor of the texture_coord_gen module to the
render_in anchor of the material_param module. As a last module, we add Mesh → solid
→ mesh_sphere_octahedron and connect its output to the mesh_in anchor of the mesh_-
basic_render module. See Figure 5-23.

Chapter 5 ■ Stories: Basic Level

93

To prepare for these anchor parameters, place a PNG image inside this folder:

[HOME]/thmad/[VERSION]/data/resources

Figure 5-23.  Automatic texture coordinates

Chapter 5 ■ Stories: Basic Level

94

Make sure it has a size of 128x128 or 256x256, and let its background be transparent.
Having the size of textures be the same in both dimensions and a power of two is
generally a good idea. The little frog that I’m going to use is already there inside the
TheArtOfAudioVisualization folder; it’s called frosch2.png. The anchor parameters are
shown in Tables 5-29 to 5-34.

Table 5-29. 

texture → loaders → png_tex_load

filename PNG image from resources Selection via resource browser;
double-click on your choice.

Table 5-30. 

texture → modifiers → scale

scale_vector 1; 1; 1 The mapped size of the texture; you
can later play with those values.

Table 5-31. 

texture → modifiers → translate

translation_vector 0; 0; 0 The mapped position of the texture – you can
later play with those values.

Table 5-32. 

texture → modifiers → tex_parameter

parameters /
wrap_s

repeat You can later change the repetition mode to show only
one single mapped texture, or a row, or a column of
repeating textures.parameters /

wrap_t
repeat

Chapter 5 ■ Stories: Basic Level

95

In your backend, make sure the anchor status of backface_culling is switched to
ENABLED, the light is switched on at properties/enabled, and the perspective correction
is switched on in the camera module. Also, you can set the camera rotation parameter to
(0.0; 0.0; 1.0). The result will look something like Figures 5-24 and 5-25.

Figure 5-24.  Automatic texture coordinates, take 1

Table 5-34. 

texture → opengl → texture_coord_gen

gen_s OBJECT_LINEAR Note that texture coordinates in OpenGL are
regularly denoted by S, T, and R. This is not a
typo, the strange order is due to historic reasons.

gen_t OBJECT_LINEAR

gen_r <any> Ignored, since we have 2D textures.

Table 5-33. 

mesh → solid → mesh_sphere_octahedron

max_normalization_level 10.0 Smoothness; change this one prior
to the subdivision_level!

subdivision_level 6.0 Smoothness

Chapter 5 ■ Stories: Basic Level

96

At first sight this seems to be a correct mapping of the picture on to the sphere. But
in fact, the formula used is not realistic. Due to the OBJECT LINEAR mode of the module,
each of the (u,v) coordinates is mapped to a linear combination of the (x,y,z) space: u = a ∙
x + b ∙ y + c ∙ z and v = d ∙ x + e ∙ y + f ∙ z. This is only realistic near the center of the sphere’s
face, and only if looking straight on the x,y-plane. Playing around with scaling, shifting,
and camera position, the picture might look like Figure 5-25, unveiling the deficiencies of
this automatic texture mapping.

The other modes of the module texture_coord_gen act differently. With the
EYE_LINEAR mode used, the a, b, c, d, e, f values, which you can change in the
parameter_s and parameter_t anchors of the module, are projected according to the
camera or eye position. Even then, the projection is not correct at the edges of the sphere,
as shown in Figure 5-26.

The NORMAL MAP mode at first sight seems to do the correct thing, as shown in
Figure 5-27. It uses the normal vectors of each mesh fragment to span the corresponding
part of the texture. The map is glued to the camera position though, i.e., it is not fixed to
the object. In fact you’ll see the lighting seemingly rotate, which comes from the sphere
being rotation invariant.

Figure 5-25.  Automatic texture coordinates, take 2

Figure 5-26.  Automatic texture coordinates, take 3

Chapter 5 ■ Stories: Basic Level

97

The SPHERE_MAP and REFLECTION_MAP modes are corner cases we do not cover here.
Of course, you still can play around with them. If you want to know more about those,
look at the OpenGL specification, which describes the glTexGen function in detail.

You can also project the texture on the surface of a cube. Just replace the mesh_
sphere_octahedron module with the mesh_box module in the same module folder. You
might guess that the deficiencies we faced in the case of a sphere with an unnatural
distortion at the edge for the OBJECT_LINEAR mode might disappear, and that is true.
But only if we will be looking at a single one of the six faces, and will not be allowing the
mapping to reach the edges. Why is that? Well, at the edges the mapping formula stops
advancing and the adjacent faces will be filled with the pixels from the edge, as shown in
Figure 5-28.

But if you change the repetition mode inside tex_- parameters to “clamp” for both
coordinates, and then scale and shift the texture appropriately, you might end up with a
realistic texture mapping on one face of a cube, as shown in Figure 5-29.

Figure 5-28.  Automatic texture coordinates on a cube

Figure 5-27.  Automatic texture coordinates, take 4

Chapter 5 ■ Stories: Basic Level

98

Having said all that, the texture_coord_gen module may work well with flat
surfaces, but it shows a lack in physical correctness for bend surfaces. In any case, it can
still be of help for effects you have in mind.

Figure 5-29.  Automatic texture coordinates on a cube, take 2

For illustration purposes, a wireframe has been added to show the cube’s orientation.

Chapter 5 ■ Stories: Basic Level

99

Floating Textures I
Another technique, which I call floating textures, uses a plane mesh generator. There are two:

•	 Mesh → solid → mesh_planes

•	 Mesh → solid → mesh_grid

The first is used to generate an arbitrary number of stacked slides filled with a
texture. This could give impressive effects, but you can also set the number to just one
and thus get a single slide hovering in 3D space. This hovering or floating in 3D space is
where the name floating texture comes from. The second generator, mesh_grid, does not
have the capability of stacking, so it will always be a single one. However, contrary to the
mesh_planes, it consists of a grid of vertices evenly mapped to texture coordinates.

■■ Note  The source is available under A-5.2.2_Floating_texture inside the
TheArtOfAudioVisualization folder.

We first describe the mesh_planes component. To use it, place the usual 3D chain on
the canvas—orbit_camera, light_directional, material_param, backface_culling—
and connect the camera to the screen module. Add these modules:

•	 Texture → loaders → png_tex_load

•	 Texture → modifiers → scale

•	 Texture → modifiers → tex_parameters

•	 Texture → modifiers → translate

•	 Renderers → mesh → mesh_basic_render

•	 Mesh → solid → mesh_planes

Connect them all, as shown in Figure 5-30. To prepare for the anchor parameters,
place a PNG image inside the [HOME]/thmad/[VERSION]/data/resources folder.

Chapter 5 ■ Stories: Basic Level

100

Figure 5-30.  Floating textures modules connected

Note that backface_culling is connected to the render_out anchor of mesh_basic_render.

Chapter 5 ■ Stories: Basic Level

101

Make sure it has a size 128x128 or 256x256, and let its background be transparent.
Having the texture size the same in both dimensions and a power of two is
generally a good idea. The little frog that I’m going to use is already there inside the
TheArtOfAudioVisualization folder; it’s called frosch2.png.

The anchor parameters are shown in Tables 5-35 to 5-39.

Table 5-35. 

texture → loaders → png_tex_load

filename PNG image from resources Selection via resource browser;
double-click on your choice.

Table 5-36. 

texture → modifiers → scale

scale_vector 1; 1; 1 The mapped size of the texture—you can later
play with those values.

Table 5-37. 

texture → modifiers → translate

translation_vector 0; 0; 0 The mapped position of the texture—you
can later play with those values.

Table 5-38. 

texture → modifiers → tex_parameter

parameters /
wrap_s

clamp Do not repeat texture while mapping it.

parameters /
wrap_t

clamp

Chapter 5 ■ Stories: Basic Level

102

In your backend, make sure the anchor status of backface_culling is switched
to ENABLED, the light is switched on at properties / enabled, and the perspective
correction is switched on in the camera module. Also, you can set the camera rotation
parameter to (0.0; 0.0; 1.0). The result so far will look like Figure 5-31.

What we have now is a size 2x2 slide in the x-y-plane going through z=0. If you want
to have a different size, you can change the diameter anchor inside mesh_plane. In order
to move the slide to another place or rotate it, you can easily achieve that via the two
additional modifiers:

•	 Renderers → opengl_modifiers → gl_translate

•	 Renderers → opengl_modifiers → gl_rotate

Between mesh_basic_render and backface_culling.
If you look at the rendering pipeline so far, you might notice that there is an

identifiable sub-pipeline, which could be reused for different texture files and different
sizes, locations, and orientation. See Figure 5-32.

Table 5-39. 

mesh → solid → mesh_planes

num_planes 1.0 Smoothness, change this one prior to the subdivision_
level!

normals 0; 0; 1.0 Does not affect the slide position or rotation, but helps
correctly render the slide, depending on context like
lighting or correspondence with other objects.

diameter 1.0 The size. You can later play around with it.

Figure 5-31.  Floating texture output

Chapter 5 ■ Stories: Basic Level

103

For reusable sub-pipelines, there exists a technique inside ThMAD, called macros. To
make a macro, right-click somewhere at an empty spot of the canvas and choose Create
Macro from the pop-up menu. Then open the macro. Right-click it and select Open from
the pop-up menu. Now select all the modules from the sub-pipeline shown in Figure 5-32.

Click on all these modules while holding down the Ctrl key while clicking. Or make
sure all other modules are farther away from them, and then use the mouse to draw a
selection rectangle over them, again while holding down the Ctrl key.1

Now press the Shift and the Ctrl keys, click on any of the selected modules, keep the
mouse clicked and drag into the macro. The result will look like Figure 5-33.

Figure 5-33.  Moving modules to a macro

Figure 5-32.  Floating texture sub-pipeline

1Press and hold down the Ctrl key. Click on the left upper corner of a rectangle containing the
sub-pipeline modules, hold down the mouse key, and move the cursor to a suitable bottom-right
point. Then release the mouse and the Ctrl keys.

Chapter 5 ■ Stories: Basic Level

104

Give the new macro a suitable name. Click on it, and in the pop-up menu
that appears on the top-right of the ThMAD window, enter a new name, such as
FloatingTexture. See Figure 5-34.

After clicking on the Rename button, the new name will immediately appear under
the macro module.

Because there are connections from or to outside modules, the macro automatically
got one ingoing and one outgoing anchor assigned. The macro however would be of
limited use if we couldn’t establish more anchors, more precisely the size, position, and
rotation. To accomplish that, from mesh_planes, drag the diameter anchor to an empty
spot of the macro. Click on the anchor, and while holding the mouse button down, move
it to an empty spot of the macro. A new anchor on the left side of the macro will appear,
and it is connected to the diameter anchor of mesh_planes. Repeat the same process for
the axis and angle anchors of gl_rotate, and the translation anchor of gl_translate.
In the end you will have a macro with five input anchors, as shown in Figure 5-35.

Figure 5-34.  Naming the macro

Chapter 5 ■ Stories: Basic Level

105

Right-clicking on the macro, using an empty spot, and choosing Close from the
pop-up menu, will not remove the macro, but will minimize it. You can then treat it as
kind of a black box. See Figure 5-36.

Macros can be saved independently from the state. Right-click on a macro and
choose Save Macro. Enter a suitable name, such as FloatingTexture. The macro is
now saved and can be used in other states, or multiple times in any state, including the
current one. To use it immediately a second time in your current state, save it via Ctrl+S
after moving the mouse to an empty spot of the canvas, then restart ThMAD. Open
the Macro section from the module menu. The restart is necessary, since the current
implementation of the module list browser is not reacting dynamically to structure
changes.

Figure 5-35.  Macro with all input anchorsYou can rename the new anchors, if you like.
Click on any of them and use the pop-up to rename it.

Figure 5-36.  New state with a minimized macro

Chapter 5 ■ Stories: Basic Level

106

Floating Textures II
For the other floating texture capable module, Mesh → solid → mesh_grid, use whatever
method works for you in and replace the mesh_planes module with mesh_grid.

■■ Note  Samples in this subsection are available under A-5.2.3_Floating_texture*
inside the TheArtOfAudioVisualization folder.

Use the values shown in Table 5-40 as parameters.

Everything else that worked earlier will work with that change as well. There is an
important difference, though: the mesh_grid module uses a single planar grid of n ∙ n
vertices inside the quad (-0.5, -0.5, 0) – (0.5, 0.5, 0) and linearly maps a given texture to
all the vertices. Up to now, this does not make a difference, because all the grid’s pieces
are correctly mapped to the corresponding pieces of the texture. But we can mess around
with the texture coordinates for a distortion effect. To see an example of that, delete the
connector between the mesh_grid and the mesh_basic_render module, place a Mesh
→ texture → mesh_tex_sequ_distort between them, and connect all three, as shown in
Figure 5-37.

Table 5-40. 

mesh → solid → mesh_grid

power_of_two_size 5.0 Subdivision of grid coordinate space (0,0) – (1,1)
into 25 ∙ 25 = 32x32 = 1024 pieces.

plane XY Otherwise The camera looking at the x-y plane will
not work. Z will be automatically 0.0

Figure 5-37.  Mesh texture distortion

Chapter 5 ■ Stories: Basic Level

107

The mesh_tex_sequ_distort has a spatial complex anchor with scale_u, scale_v,
translate_u, and translate_v sub-anchors. Set the values to read, as shown in Table 5-41.

You can later play with all these values to fine-tune the texture mapping. Note that
inside the distortion module, the translation happens after the scaling.

The other complex anchor, distortion, contains two sequences for the distortions
along the x-axis and along the y-axis. By default theses sequences map the range 0→1
linearly to 0→1, meaning there is no distortion aside from the scaling and translation.
In order to change this, see the detailed description in Chapter 6. After you have made
something like Figure 5-38, the output might look like Figure 5-39.

Table 5-41. 

mesh → texture → mesh_tex_sequ_distort

spatial /
scale_u

1.3 A scaling to apply to the
texture coordinates.

spatial /
scale_v

1.5

spatial /
translate_u

0 A translation to apply to the texture coordinates.

spatial /
translate_v

0

distortion /
u_shape

See below Shapes the distortion curve, for details see later
in this chapter.

distortion /
v_shape

See below

Figure 5-38.  Distortion sequences

Left for the u-axis, and right for the v-axis.

http://dx.doi.org/10.1007/978-1-4842-3168-5_6

Chapter 5 ■ Stories: Basic Level

108

The distortions shown in Figure 5-38 have a positive slope everywhere; you can also
have parts with a negative slope which is like going back in the texture while rendering,
and you can also simulate a mirror that way, as shown in Figures 5-40 and 5-41.

Blobs, Blobs, Blobs
Blobs are the workhorses of ThMAD—you can use them wherever something simple
needs to be drawn. And don’t be mislead by the word “simple”—with all those features
that ThMAD offers, you can get really interesting sketches done by just using blobs.

Figure 5-39.  Floating texture with distortion

On the left of the undistorted image.

Figure 5-40.  Texture distortion (u-axis) with negative slope

Figure 5-41.  Texture distortion (u-axis) simulating a mirror

Chapter 5 ■ Stories: Basic Level

109

Blobs can be round, stars, or leaves, depending on the parameters. Technical details
can be found in the reference at Bitmaps → Generators → Blob for for generating blob
bitmaps and at Texture → Particles → Blob for generating blob textures that go directly to
the graphics hardware for faster processing.

In this section, we describe different usage scenarios. The possibilities are endless, so
go ahead and try your own ideas as well.

Basic Blobs
Basic blobs are single figures sent to a bitmap or a texture. This subsection is about bitmaps.

■■ Note  The samples of this section are available under A-5.3.1_* inside the
TheArtOfAudioVisualization folder.

Start with an empty canvas. Right-click on any empty spot and choose New → Empty
Project. Place these modules on the canvas and connect them all and the textured_-
rectangle to the screen module:

•	 Bitmaps → generators → blob

•	 Texture → loaders → bitmap2texture

•	 Renderers → basic → textured_rectangle

Set the parameters as shown in Table 5-42.

We could use the other blob module texture → particles → blob as well, but first
having it as a bitmap allows for more variations from the bitmap modifying modules.
More about that later.

Now, playing with the arms, attenuation, and star_flower anchors gives you
different blob shapes, as shown in Figure 5-42. The corresponding state is shown in
Figure 5-43.

Table 5-42. 

bitmaps → generators → blob

color 1.0; 1.0; 1.0;
1.0

White

alpha yes If set to yes, the shape of the blob is defined by each
pixel’s ALPHA value set appropriately. Otherwise, the
ALPHA is set to 1.0 and the shape is defined by calculated
color values on a per-pixel basis.

size 512x512

Chapter 5 ■ Stories: Basic Level

110

Figure 5-42.  Blobs in different variations

Figure 5-43.  Blobs in different variations state

Chapter 5 ■ Stories: Basic Level

111

The distinct parameters for each sub-pipeline of this state are shown in Tables 5-43
to 5-46.

Table 5-43. 

bitmaps → generators → blob

color, alpha, size See above

arms 0

attenuation 1.9

star_flower 0.12

Table 5-45. 

bitmaps → generators → blob

color, alpha, size See above

arms 5.0

attenuation 2.14

star_flower 0.5

Table 5-44. 

bitmaps → generators → blob

color, alpha, size See above

arms 3.0

attenuation 2.14

star_flower 0.5

Chapter 5 ■ Stories: Basic Level

112

Because blobs are optimized for performance, they are good candidates for particle
systems, where many small objects are needed. Particle systems are covered in Chapter 6.

The basic building blocks for the good performance blobs consist of storing and
handling them inside graphics hardware. This is why there is nothing like a direct blob
renderer, but instead it’s called a blob texture generator. For the same reason, you do not
usually add sound responsiveness directly to blobs. Rather what you do is add sound
responsiveness at places in your states where you deal with textures, such as texture
transformation, texture mapping, or later when it comes to composing textures.

Nevertheless, having that in mind, you are not forbidden to add sound input to blob
parameters. Just have in mind that your mileage may vary depending on the power of
your system.

Try the following. Using the previous system, remove all but the first blob branch,
then add these modules and connect them as shown in Figure 5-44:

•	 Maths → arithmetics → ternary → float → mult_add, twice

•	 Sound → input_visualization_listener

The parameters use the values shown in Tables 5-47 and 5-48.

Table 5-47. 

maths → arithmetics → ternary → float → mult_add

The one connected to module textured_rectangle

first_mult 1.0

then_add 5.0

Table 5-46. 

bitmaps → generators → blob

color, alpha, size See above

arms 3.0

attenuation 2.0

star_flower 3.9

http://dx.doi.org/10.1007/978-1-4842-3168-5_6

Chapter 5 ■ Stories: Basic Level

113

Start the sound input and you will see the blob changing its size and shape.

Perlin Noise Blobs
Perlin noise is an algorithm that greatly improves the natural look of 2D or 3D scenes
with undulating parts, like surface structures, water waves, fog, or fire. Apart from using it
inside scenes, ThMAD enables you to add Perlin noise to blobs. You will see here how this
can be accomplished.

■■ Note  The samples of this section are available under A-5.3.2_* inside the
TheArtOfAudioVisualization folder.

Figure 5-44.  Blobs with sound awareness, state

The upper mult_add is connected to the spatial / size anchor of textured_- rectangle,
and to the vu / vu_l anchor of input_visualization_listener. The lower mult_add
is connected to the arms anchor of module blob, and to the octaves / left /octaves_
left_0 anchor of the input_visualization_listener.

Table 5-48. 

maths → arithmetics → ternary → float → mult_add

The one connected to module blob

first_mult 20.0

then_add 0.0

Chapter 5 ■ Stories: Basic Level

114

Create an empty state by right-clicking an empty spot and then choose New →
Empty Project.

Then place the following modules on the canvas:

•	 Renderers → basic → textured_rectangle

•	 Texture → loaders → bitmap2texture

•	 Bitmaps → generators → perlin_noise

•	 Maths → oscillators → oscillator

Connect them all, as shown in Figure 5-45. Set the parameters as shown in Tables 5-49
to 5-51.

Table 5-49. 

screen0

clear_color 0.08; 0.15; 0.31; 1.0

Figure 5-45.  Perlin noise blobs state

The oscillator is connected to blob_settings/angle.

Chapter 5 ■ Stories: Basic Level

115

■■ Caution  Usually for performance reasons you do not add dynamics to a bitmap that
is then going to be transported as a texture to graphics hardware. For illustration purposes,
you can of course do that, or also if you know what you are doing.

Table 5-50. 

bitmaps → generators → perlin_noise

perlin_options /
rand_seed

4.0 Change to alter the shape of the noise.

perlin_options /
perlin_strength

1.0 Amount of noise – 0 means no noise
(= plain blob)

perlin_options /
octave

7 Noise grain level, 1 = very coarse, 16 = very
detailed calculation

perlin_options /
frequency

4 Noise scale

blob_settings /
enable_blob

yes

blob_settings /
arms

3.0

blob_settings /
attenuation

1.0

blob_settings /
star_flower

0.0

blob_settings /
angle

- Connected to oscillator

Table 5-51. 

maths → oscillators → oscillator

osc /
osc_type

saw

osc /
freq

1.0

osc /
amp

3.1415

Chapter 5 ■ Stories: Basic Level

116

The output is shown in Figure 5-46.

Summary
This chapter contained a collection of tutorials (or stories) covering many aspects of
ThMAD and showing its capabilities. You learned several 3D techniques, including
transformation, special graphics rendering modes, and a very special module named
ocean. The chapter also introduced textures and blobs.

While this chapter more or less focused on basic concepts and techniques, Chapter 6
is a collection of more advanced stories.

Figure 5-46.  Perlin noise blobs

http://dx.doi.org/10.1007/978-1-4842-3168-5_6

117© Peter Späth 2017
P. Späth, Audio Visualization Using ThMAD, https://doi.org/10.1007/978-1-4842-3168-5_6

CHAPTER 6

Stories: Advanced Level

In this chapter, we dive more into the art of audio visualization with more elaborated
walk-throughs covering various aspects. We will by no means be able to describe all
possible kinds of sketches, but it is the aim of this chapter to provide you with techniques,
which eventually will be apt to make you realize your own ideas. There is no particular
order for the sections, so you can sequentially work through them or cross-read
them—whatever best suits you.

�Backfeeding Textures
Textures can be described as 2D ordered sets of colors stored on the graphics hardware.
They can be scissored freely and stretched, rotated, translated, or otherwise transformed
and in a final step rendered to a collection of freely shaped polygons of the output screen.

You can even go further and misuse the texture colors for anything you might think
of, because inside shader programs, which run on the graphics hardware themselves,
we can do quite a lot with these four-color values at each texture coordinate. With that in
mind, clever people readily realized that the usage scenarios of textures cover more than
just the spanning of pictures over 3D objects.

ThMAD provides for an extremely powerful and versatile capability of backfeeding
rendering data into an earlier stage of the rendering pipeline. This is possible, because
image data can be copied to a texture and this texture can be used for modules that
need a texture as an input. The module that allows for this backfeeding is called Texture →
Buffers → render_surface_single. For a technical description of this module, see Chapter 8.

�Blurring in Two Dimensions
Blurring makes visualizations appear fancier and makes them more interesting. The
objective here is not to make objects unsharp, but to introduce some shininess to them,
or to create special effects.

■■ Note  Various states shown here are as sources available under A-6.1.1_Blurring_*
inside the TheArtOfAudioVisualization folder.

https://doi.org/10.1007/978-1-4842-3168-5_6
http://dx.doi.org/10.1007/978-1-4842-3168-5_8

Chapter 6 ■ Stories: Advanced Level

118

For now, we stick to seeing the texture color values as colors, and we want to use this
backfeeding technique for a blurring effect.

A note of caution: Backfeeding happens at frame rate, which means 60 times a second.
This makes states using backfeeding extremely sensitive to the parameters. A minuscule
change of some of them might show tremendous effects, or it might lead to a boring or
black or white screen and you being a disappointed user needing hours of readjusting to
make anything meaningful appear again. For that reason, I try to be careful with explaining
everything needed, to help you in achieving a satisfactory if not a good or very good
experience. Of course, experimenting with changes to the parameters will in the end give
you a feeling about that brittleness, but as a rule of thumb, you can make such changes
happen on a scale at least ten times smaller than what you might be used to with respect to
what you have seen in ThMAD before.

We start by rendering a rotating rectangle on the screen. To do so, open a clean canvas.
If not already empty by chance, right-click on an empty spot, then choose New → Empty
Project. Then choose Save As.... The latter is to ensure you do not unintentionally overwrite
previous work. Then choose Renderers → Basic → colored_rectangle on the screen. For the
parameters, see Table 6-1.

Table 6-1. 

renderers → basic → colored_rectangle

spatial/ size 0.77, 0.11, 0.0

color 0.2, 0.4, 0.9, 1 The fourth value is the ALPHA value, or
the opacity. Here, it’s 1.0. With ALPHA
less then 1.0 some of the other values
needed to be adjusted to achieve a
noticeable blurring effect. Other than
that choose at will.

Table 6-2. 

maths → oscillators → oscillator

osc/ freq 0.10

Place a module by choosing Renderers → opengl_modifiers → gl_rotate next to it.
Connect it to the colored_rectangle module.

Place a module by choosing Maths → oscillators → oscillator next to it. Connect the
oscillator’s float anchor with the angle anchor of gl_rotate. For the correct parameters,
see Table 6-2.

Chapter 6 ■ Stories: Advanced Level

119

The oscillator and the blend-mode modules are new at this point of the book.
While you can find the technical details in Chapter 8, it is worthwhile to mention a few
things here. The oscillator spends an oscillating float value, which we use here to change
the angle of the rectangle drawn. This is important here to actually see the blurring
effect fully at work. While blurring works for static objects, too, the effect will be much
more noticeable for moving objects. Even more important, however, is the blending
mode module. We need it for mixing, or blending, the original pixel data coming from
the rectangle module, with the backfeeding from the blurring sub-pipeline, which we
describe and add soon. If you choose the wrong blending modes, you will see the wrong
thing or maybe just nothing at all. Why we choose SRC_ALPHA and ONE as just said, will be
explained a little later. For now, we continue with the state description.

Connect the blend_mode module with the screen module. Now you should see the
rotating rectangle, as shown in Figure 6-1.

Table 6-3. 

renderers → opengl_modifiers → blend_mode

source_blend SRC_ALPHA

dest_blend ONE

Place a module Renderers → opengl_modifiers → blend_mode next to it. Connect
the blend_mode module with the gl_rotate module. For parameters, see Table 6-3.

Figure 6-1.  Blurring rectangle part I

Next we commence with the backfeeding renderer. To do so, place the module
Mesh → solid → mesh_grid on the canvas. This will later allow you to project the
backfeeding texture onto a planar rectangular grid. Why we use a grid here instead of a
simple rectangle stems from the fact that a grid will provide more interesting distortion
effects. More about that later. For the parameters, see Table 6-4.

http://dx.doi.org/10.1007/978-1-4842-3168-5_8

Chapter 6 ■ Stories: Advanced Level

120

	 1.	 Next to it, place the module Mesh → texture → mesh_tex_
sequ_distort and connect them. This will later allow us to add
distortion. For now, leave the parameters as they are.

	 2.	 Next to it, place the module Renderers → mesh → mesh_
basic_render and connect the output anchor from mesh_tex_
sequ_- distort to its input anchor mesh_in. This module
signs responsible for rendering the mesh_grid mesh. Leave all
its parameters at their default.

	 3.	 Next to it, place the module Renderers → opengl_modifiers
→ gl_scale_one and connect it to the output of mesh_basic_
render. This introduces a zooming, or scaling, which is
actually quite important. For blurring it is necessary to have
a close match of the sizes of the rendered graphics’ size and
the backfed graphics’ size. Here we need a scaling of 2.0, to
be set at the scale anchor. See Table 6-5. The factor of two
comes from the difference between the colored_- rectangle
module, which paints into a 2 x 2 size rectangle, and the
texture coordinate space extent, which reads 1 x 1.

Table 6-4. 

mesh → solid → mesh_grid

plane xy

Table 6-5. 

renderers → opengl_modifiers → gl_scale_one

scale 2.0

Chapter 6 ■ Stories: Advanced Level

121

	 5.	 This is the point where we introduce the backfeeding module.
It is called texture → buffers → render_surface_single and will
allow for sending the graphical data to a texture instead of a
screen output. Internally two textures are getting used to copy
the double buffering behavior of OpenGL. The latter means
OpenGL rendering happens into a hidden pixel data buffer
and only after everything has been rendered a fast copy to the
physical screen will occur. This is to avoid flickering. Place the
module somewhere near the blend_mode and draw a second
connection from the blend_mode module’s output to the
render_- surface_single module’s render_in input anchor.

	 6.	 Quite some modules allow for their output being
multiplexed—in this case, we render the output from
blend_mode to both the screen and the texture buffer. Make
sure the support_feedback sub-anchor of the options
complex anchor is set to “yes”. See Table 6-6.

Figure 6-2.  Blurring rectangle part II

	 4.	 Connect the output anchor of gl_scale_one to the input
anchor render_in of the blend_mode module. See Figure 6-2.

Chapter 6 ■ Stories: Advanced Level

122

	 7.	 After the render_surface_single place the module texture →
effects → highblur and connect them both. Set anchors of
highblur, as seen in Table 6-7.

Table 6-6. 

texture → buffers → render_surface_single

options / support_feedback yes

options / texture_size VIEWPORT_ SIZE

options / support_feedback yes Important for the
backfeeding to work.

options / clear_color 0, 0, 0, 0 If not all zero, background
will not stay black

Table 6-7. 

texture → effects → highblur

translation 0.43, -0.65, 0 Introduced a translational
blurring, like wind

blowup_center 0.5, 0.5, 0 The point from where to blow
apart

blowup_rate 80.0 The blow apart rate

attenuation 200.0 Tells about the rate at which the
blurring decays

texture_size VIEWPORT_ SIZE

More details about this module can be found in Chapter 8.

Draw a connection from the texture_out anchor of highblur to the tex_a input
anchor of mesh_basic_- render. The backfeeding is actually complete at this stage,
but there is one important thing worth mentioning: it is the order of incoming data into
module blend_mode. It is absolutely necessary that the rendered rectangle’s data arrive
first at the blend mode module, and the backfeeding data second. Otherwise, no blurring
effect will happen. To make sure the order is correct, double-click on the input anchor of
blend_mode and in case the order is wrong, so change it via clicking and dragging one of
the anchors. See Figure 6-3.

http://dx.doi.org/10.1007/978-1-4842-3168-5_8

Chapter 6 ■ Stories: Advanced Level

123

■■ Caution  Input order when several incoming connections to a graphical (renderer) exist
can be critical, since the order is only visible after double-clicking on the anchor. So have
this in mind when your pipeline does not work as intended.

If everything is set up correctly, the rotating rectangle will be blurred, as shown in
Figure 6-4. The complete state is shown in Figure 6-5.

Figure 6-3.  Blurring rectangle part III

Checking and fixing the blend order. The gl_rotate comes from the rectangle’s renderer,
the gl_scale_one from the backfeed renderer. The input anchor of blend_mode has been
opened via double-click and the order of the connections can be changed via clicking and
dragging on one of the anchors.

Figure 6-4.  Blurring rectangle part IV. Final output

Chapter 6 ■ Stories: Advanced Level

124

I told you the blending mode set in module blend_mode is important. A concise
description of this module including all anchors is given inside the reference in
Chapter 8, but an explanation is given already here. The dest_blend anchor tells about
what is currently seen in the pixel buffer, and since the primary renderer of the rectangle
is the first by input input order, dest_blend describes the incoming solid and unblurred
rectangle. The value ONE set here just means it goes unchanged into the blending. The
second one, source_blend, is connected to what is drawn over what is already there and
we set it here to ONE, meaning we just overlay them. Since the source by that definition
comes from the blurring sub-pipeline, we will draw the unblurred data first and overlay
the blurred data over it. Note that under circumstances both the involved color values
and the blend mode, including ordering, are subject to change depending on your
actual sketch.

To show the blurring effect for maybe something more interesting compared to a
rectangle, and also to see how it can be tweaked via texture distortion, proceed as follows:

	 1.	 Cut the connection from colored_rectangle: right-click on
the connection line and choose Disconnect. Or delete the
colored_rectangle, select it via right-click, then press the
DEL key on your keyboard.

	 2.	 Add the module Texture → particles → blob and set its
parameters listed in Table 6-8.

Figure 6-5.  Blurring rectangle complete state

http://dx.doi.org/10.1007/978-1-4842-3168-5_8

Chapter 6 ■ Stories: Advanced Level

125

	 3.	 Add the module Renderers → basic → textured_rectangle and
connect it to the blob. For its parameters, see Table 6-9.

Table 6-8. 

texture → particles → blob

settings / arms 5

settings / 7.0

attenuation

settings / star_flower 0.4

settings / color 0.4, 0.7, 0.1, 1.0 Any color you like,
but not too bright to
avoid over-saturation

size VIEWPORT_SIZE

Table 6-9. 

renderers → basic → textured_rectangle

spatial / size 0.6

color / global_alpha 0.95

Figure 6-6.  Blurring star part I

	 4.	 Connect the textured_rectangle to the input of blend_mode.
Again make sure the gl_rotate module’s connection to it is
above the gl_scale_one module’s connection; see Figure 6-3.

The output will now look like Figure 6-6. Let’s make that even
more interesting via some dynamics to the blurring direction.
To accomplish that, follow these steps:

Chapter 6 ■ Stories: Advanced Level

126

	 5.	 Place the module Maths → converters → 3float_to_float3 close
to highblur. Connect its output to the anchor translation.

	 6.	 Place another Maths → oscillators → oscillator next to it.
Remember, we already have one for the rotation module.
Inside the second oscillator, set the parameters as shown in
Table 6-10.

Table 6-10. 

maths → oscillators → oscillator

osc / freq 1.0

osc / amp 0.25

Figure 6-7.  Blurring star part II

Connect it to both the floata and floatb input anchors of
3float_to_float3.

You should now have the blurring periodically changing its
direction, as shown in Figure 6-7. As a last step, we add a
distortion to the blurring:

	 7.	 Change the osc_type sub-anchor of the oscillator near gl_
rotate to “SAW”. Because of the oscillator internal time value
going from 0.0 to 1.0 an the “angle” input anchor of gl_rotate
being interpreted to map 1.0 to a full rotation, the saw shape
effectively appears to create a never-ending rotation. See
Table 6-11.

Chapter 6 ■ Stories: Advanced Level

127

	 8.	 Change the arms input anchor of blob to 6.0 to improve
symmetrization. See Table 6-12.

Table 6-11. 

maths → oscillators → oscillator

Near gl_rotate

osc / freq 0.10

osc / type SAW

Table 6-12. 

texture → particles → blob

settings / arms 6

settings / 7.0

attenuation

settings / star_flower 0.4

settings / color 0.4, 0.7, 0.1, 1.0 Any color you like, but
not too bright to avoid
over- saturation

size VIEWPORT_ SIZE

	 9.	 Open the “distortion” complex anchor of module
mesh_sequ_distort. Open both sub-anchors u_shape and
v_shape via double-click and add some value anchors inside
the sequence editors: Shift-click on the line and afterward
click and drag the value anchors, such as shown in Figure 6-8.
See also Chapter 7.

Figure 6-8.  Blurring star part III. Blurring distortion

http://dx.doi.org/10.1007/978-1-4842-3168-5_7

Chapter 6 ■ Stories: Advanced Level

128

The result of all that might look like Figure 6-9. A lot of other interesting effects
may be produced altering anchor values of the module. The possibilities are essentially
endless, so go ahead and play with the values at will. And of course you can easily add
sound input to all of that as well. Just instantiate input_visualization_listener and use
its output anchors to control anything you might think of.

Figure 6-9.  Blurring star part IV. Blurred distortion output

Figure 6-10.  Blurring distortion by bitmap, state changes

A nice variation of the distortion just shown consists of replacing the mesh_
tex_sequ_distort module by Mesh → texture → mesh_tex_bitmap_distort with the
additional module Bitmaps → loaders → png_bitm_load loading any PNG file from the
[HOME]/thmad/[VERSION]/data/resources folder. See Figures 6-10 and 6-11. You can
also let sound input control the rate of distortion.

Chapter 6 ■ Stories: Advanced Level

129

■■ Note  A-6.1.1_Blurring_Star_E inside the TheArtOfAudioVisualization folder.

�Self-Similarity
Self-similarity is an extremely important feature in both nature and arts. As for nature,
chemical and biological processes are influenced by it, and in arts you will find it
everywhere—in painting, architecture, music, poetry, photography, and design.

What exactly does self-similarity mean? It is the emerging of structures of the
same or similar kind and shape appearing at different levels of analysis. Look at a
tree, for example. Seeing from a far distance, you can see the trunk and an undefined
head. Coming a little closer, or looking at a level deeper, we can see the major branches
branching out of the trunk. Even closer and one more level deeper, we can see the
smaller branches branching out of the major branches. Continuing that procedure, we
can eventually see the leaves branching out of the smallest branches. So a tree inherently
shows self-similarity; see also Figure 6-12. Or watch a snowflake, with branching at
different levels just as well.

Figure 6-11.  Blurring distortion by bitmap, output

Figure 6-12.  Self-similarity in trees

Chapter 6 ■ Stories: Advanced Level

130

Both of them have artificial counterparts. Trees have a long history and Pythagoras
constructed a fractal tree from a simple construction rule by just adding two smaller
quads at a fixed angle to a given quad, and repeating that all over; see Figure 6-13.

Figure 6-13.  A Pythagoras tree

Each segment spreads into two segments of 75% the size of the basis segment, each at 50
degrees.

Figure 6-14.  The KOCH curve, an artificial snowflake

An artificial snowflake is given by the KOCH curve, which simply cuts a line into
three equal pieces and replaces the middle piece with two sides of a triangle. This is
perpetually repeated for the resulting lines. See Figure 6-14.

Chapter 6 ■ Stories: Advanced Level

131

As for ThMAD, we have two options for applying the concept of self-similarity.
First we can take the contents of the frame buffer, i.e., what is shown on the screen, and
backfeed it to some earlier stage of the rendering pipeline. Second, we can let some
renderer use a fractal algorithm to do its work. As a correct follow-up, where we were
backfeeding to achieve a blurring effect, we will for now concentrate on backfeeding for
generating self-similarity. The other one, algorithmic self-similarity, will not be covered in
this book.

We start with a basic self-similarity pipeline and from there continue making it
fancier. After any previous work has been saved, clean the canvas by right-clicking and
choosing New → Empty Project. Then immediately save it under a new name to make
sure it will not mess up your saved files. Now place the following modules on the canvas:

•	 Bitmaps → generators → blob

•	 Texture → loaders → bitmap2texture

•	 Renderers → basic → textured_rectangle

•	 Renderers → opengl_modifiers → blend_mode

Connect them all and the blend_mode to the screen. See Figure 6-15. Inside the
modules, set parameters as described in Tables 6-13 to 6-16.

Figure 6-15.  Self-similarity main generator pipeline, blender and output

Table 6-13. 

bitmap → generators → blob

settings / arms 5

settings / attenuation 2.0

settings / alpha yes

size 512x512

Chapter 6 ■ Stories: Advanced Level

132

You should now see a single star in the upper-left part of the output screen; see
Figure 6-16. Now for the backfeeding sub-pipeline, place the modules on the canvas and
draw the connections between them; see Figure 6-17.

•	 Mesh → solid → mesh_grid

•	 Renderers → mesh → mesh_basic_render

•	 Texture → buffers → render_surface_single

Table 6-16. 

output → screens → screen0

clear_color 0, 0, 0, 0 Avoid any clearing

Table 6-14. 

renderers → basic → textured_rectangle

spatial / position -0.4; 0.27; 0.0 If you are not yet used to the
scrollbar controller, setting negative
numbers seems to be tricky at first.
The solution is to lower the

knob value in the second row of
knobs, and then change the slider.
The first knob is the range, the
second knob the offset.

spatial / size 0.6

Table 6-15. 

renderers → opengl_modifiers → blend_mode

source_blend SRC_ALPHA Incoming pixels appear
according to their ALPHA
value

dest_blend ONE_MINUS_ SRC_ALPHA Existing pixels are getting
diminished by (1-ALPHA)
of incoming pixels

Chapter 6 ■ Stories: Advanced Level

133

Set the parameters as shown in Tables 6-17 and 6-18.

Figure 6-16.  Self-Similarity main generator pipeline, output

Figure 6-17.  Self-Similarity backfeeding pipeline

Table 6-17. 

mesh → solid → mesh_grid

plane xy We need “xy” for 2D states.

Chapter 6 ■ Stories: Advanced Level

134

To combine the two sub-pipelines draw a connection from the output of blend_mode
to the render_in anchor of render_surface_single, and another one from the output of
mesh_basic_render to the render_in anchor of blend_mode. Double-click on the latter
anchor and make sure the generator pipeline is on top of the backfeeding pipeline. If this
is not the case, drag any of them vertically to the correct position. See Figure 6-18.

Table 6-18. 

texture → buffers → render_surface_single

options / texture_size 512x512

options / support_feedback yes Without “yes” backfeeding
would not work.

options / alpha_channel yes

options / clear_color 0, 0, 0, 1 Fat black. Makes the backfed
texture visible, for clearness.
Later we can change ALPHA
to 0 to mystify the output, see
below.

Figure 6-18.  Combining main rendering and backfeeding pipeline

Chapter 6 ■ Stories: Advanced Level

135

You should now see the output shown in Figure 6-19. This result obviously shows
self-similarity: zooming into the picture using a factor ½, ½ ∙ ½, ½ ∙ ½ ∙ ½, and so on,
reproduces the original picture. Let me explain you what happens in detail. The main
rendering pipeline constructs a star and places it on the top-left corner of the screen. Its
position and size are determined by the settings of the textured_rectangle module.
The blend_mode module blends it together with the outcome of the backfeeding sub-
pipeline, which is empty yet, and sends the overall output to both the screen and the
render_- surface_single module. The latter stores the screen inside a texture storage
on the graphics hardware. In the next frame, the mesh_basic_render module projects
this stored texture onto the flat grid defined by the mesh_grid module, which this time
provides a second input to the blend_mode. Because the mesh_grid module defines a grid
at coordinates ranging from (- 0.5;-0.5) to (+0.5;+0.5) while the screen output is ranging
from (- 1;-1) to (+1;+1) the backfeeding picture has half the size of the incoming picture.
The blend_mode has now two non-nil inputs and outputs the original image overlayed by
the backfeeding image. The next frame this procedure will produce another clone of size
1/4th and the frame after that one more at size 1/16th and so on.

Figure 6-19.  Self-Similarity basic state output

If you want to dismiss the black rectangle around the star, we left it here to make things
clearer; just set the ALPHA value of the clear_color anchor of render_surface_single
module to 0.0; see Table 6-19.

Table 6-19. 

texture → buffers → render_surface_single

options / clear_color 0, 0, 0, 0

Remember, in ThMAD the ALPHA value is always the fourth color value. Zeroing this
will effectively prevent the module from clearing its area each time before drawing the
contents of the internal texture buffer.

Chapter 6 ■ Stories: Advanced Level

136

In order to change this scaling factor and also to allow for translation of the
backfeeding image, we add two more modules Mesh → modifiers → transformers →
mesh_scale Mesh → modifiers → transformers → mesh_translate between the mesh_grid
and the mesh_basic_render modules. We can use them later to change the overall
characteristics of the self-similar stage.

The state we have so far is shown in Figure 6-20. Save it as your own state, because
you can use it as a basis for lots of different experiments.

Figure 6-20.  Self-similarity basic state

■■ Note  The backfeeding basic state is also available under A-6.1.2_Backfeeding_
Basic inside the TheArtOfAudioVisualization folder.

Now to make things a little bit more interesting, we will construct a state using an
algorithm similar to the KOCH curve; see Figure 6-14. It uses the same principles as the
backfeeding just presented, but with some differences that allow for more clarity if we
start from scratch. We will have three sub-pipelines in the end, and we start with the first.

■■ Note  The following state is also available under A-6.1.2_Backfeeding inside the
TheArtOfAudioVisualization folder.

Chapter 6 ■ Stories: Advanced Level

137

For the first sub-pipeline, place the following modules on an empty canvas:

•	 Mesh → generators → ribbon

•	 Renderers → mesh → mesh_basic_render

•	 Renderers → opengl_modifiers → gl_color

•	 Renderers → opengl_modifiers → blend_mode

•	 Renderers → opengl_modifiers → gl_translate

Connect them all in that order, and the gl_translate to the screen; see Figure 6-21.
Note that mesh_basic_render has two mesh input anchors—use the one with the name
mesh_in.

Figure 6-21.  Fancy Koch curve, pipeline I

Table 6-20. 

mesh → generators → ribbon

spatial / start_point -0.7, -0.5, 0

spatial / end_point 0.7, -0.5, 0

spatial / up_vector 0.8, 0.8, 0.9

shape / width 0.1

shape / skew_amp 4.0

shape / time_amp 1.5

shape / segm_count 60

We use the ribbon module as a basis for the drawing, since it introduces some shape
sugar and also moves with the time. The parameters are shown in Tables 6-20 to 6-24.

Chapter 6 ■ Stories: Advanced Level

138

Table 6-24. 

renderers → opengl_modifiers → gl_translate

translation 0, 0.3, 0.0 Just move the blended output into
the center of the screen.

Table 6-21. 

renderers → mesh → mesh_basic_render

options / vertex_colors no We provide our own
colors, so this is set “no”
here

options / use_display_list no

options / use_vertex_colors no We provide our own
colors, so this is set “no”
here

options / particles_size_center no

options / particles_size_from_color no

options / ignore_uvs_in_vbo_updates no

Table 6-22. 

renderers → opengl_modifiers → gl_color

color any Any color you like.

Table 6-23. 

renderers → opengl_modifiers → blend_mode

source_blend SRC_ALPHA

dest_blend ONE

Chapter 6 ■ Stories: Advanced Level

139

This should produce the basic fluttering ribbon; see Figure 6-22.

Figure 6-22.  Fancy Koch curve, pipeline I output

Figure 6-23.  Fancy Koch curve, pipeline II

The gl_color module defines the color of the ribbon. The ribbon module does not
do it anyways, and we told the mesh_basic_render to not do it as well.

The sub-pipeline number two consists of the modules:

•	 Texture → buffers → render_surface_single

•	 Texture → modifiers → scale_one

•	 Texture → modifiers → rotate

•	 Renderers → basic → textured_rectangle

The render_surface_single is as in the state before the basis for the backfeeding.
For the connections, see Figure 6-23.

Chapter 6 ■ Stories: Advanced Level

140

Table 6-28. 

renderers → basic → textured_rectangle

Keep all anchors at their default values

The parameters of those modules are shown in Tables 6-25 to 6-28.

Table 6-25. 

texture → buffers → render_surface_single

options / texture_size 1024x1024

options / support_feedback yes Mandatory for
backfeeding to work

options / alpha_channel yes

options / clear_color 0, 0, 0, 0

Table 6-26. 

texture → modifiers → scale_one

scale 3.0 Scaling down by 1/3rd as for the
original KOCH curve.

center / use_scale_center yes Using the center below

center / scale_center 0.5, 0.25, 0 Scale at the center of the ribbon

Table 6-27. 

texture → modifiers → rotate

rotation_angle 0.15 Roundabout 1/6th of a full
rotation, thus 60°

rotation_axis 0, 0, 1 Rotate on the x-y plane

center / use_rotate_center yes Using the center below

center / rotate_center 0.66, 0.25, 0 Makes for the figure

Chapter 6 ■ Stories: Advanced Level

141

As for sub-pipeline number three, clone all modules from pipeline number two—for
each module click and drag while pressing Ctrl+Alt. Connect the modules of the sub-
pipeline III the same way you did for sub-pipeline II. See Figure 6-24.

Figure 6-24.  Fancy Koch curve, pipeline II + III

Table 6-29. 

texture → modifiers → rotate

rotation_angle 0.15 Roundabout 1/6th of a full
rotation, thus 60°. Note the
difference of the sign compared
to pipeline II

rotation_axis 0, 0, 1 Rotate on the x-y plane

center / use_rotate_center yes Using the center below

center / rotate_center 0.33, 0.25, 0 Makes for the figure

Change just the rotation module of pipeline III to read, as shown in Table 6-29.

Chapter 6 ■ Stories: Advanced Level

142

Connect the output from the blend_mode to the render_- surface_single modules
of both pipelines II and III. Connect both pipelines II and III output anchors of modules
textured_- rectangle. Change the order of the input connections to blend_mode so that
pipeline I comes first; see Figure 6-25.

Figure 6-26.  Fancy Koch curve, output

The skew_amp of module ribbon is temporarily reduced to 0.0 to make things clearer.

Figure 6-25.  Fancy Koch curve, blend_mode input order

The output should now look like Figure 6-26. This is a correct Koch curve with the
original mapping algorithm, just for ribbons instead of lines. This does not yet look
overwhelmingly interesting, but we can easily make it appear more compelling. Just
change anchor values shown in Tables 6-30 to 6-33.

Chapter 6 ■ Stories: Advanced Level

143

Table 6-30. 

texture → modifiers → scale_one

Pipeline II

scale 2.2 Make it bigger

Table 6-33. 

texture → modifiers → rotate

Pipeline III

rotation_angle -0.12 Changing angle a little

center / rotate_center 0.37, 0.25, 0 Changing a little

Table 6-31. 

texture → modifiers → rotate

Pipeline II

No need to change, but you can play with it.

Table 6-32. 

texture → modifiers → scale_one

Pipeline III

scale 1.2 Make it bigger.

The output of the altered state now looks much more fancy; see Figure 6-27. The
complete state from a bird view perspective is depicted in Figure 6-28.

Chapter 6 ■ Stories: Advanced Level

144

Feel free to play around with anchor values and to connect one or the other with
sound input.

■■ Caution  Due to the backfeeding, it might easily happen that the output screen completely
fills with white. This usually does not happen when the backfed image data scales down, but if
it happens to you while playing with the values, it might be necessary to revert changes, save
the state, and restart ThMAD to get some meaningful output again. Or temporarily change the
blend modes to ZERO/ZERO inside the blend_mode module and then revert.

Figure 6-28.  Fancy Koch curve, complete state

Figure 6-27.  Altered fancy Koch curve, output

Just a snapshot; all the ribbons are fluttering.

Chapter 6 ■ Stories: Advanced Level

145

�Particle Systems
Particle systems are about two things:

•	 Multiplicity of objects

•	 Physics movement laws and collision rules

Since ThMAD does not allow for something like a loop construct, the multiplicity
property of particle systems is the only way of generating object many times.
Furthermore, particle systems may obey physics rule like gravity, wind, or the bouncing at
rigid walls. ThMAD allows for particle systems with these properties via the methodology
shown in Figure 6-29.

An EMITTER continuously creates particles—we have the following emitter types:

Figure 6-29.  Particle system methodology

•	 A spray emitter. Continuously creates particles at some single
point in space.

•	 A bitmap emitter. Converts each pixel of a bitmap, no matter
whether defined foreground or background, to a single particle
with the same color as the bitmap pixel.

•	 A mesh emitter. Like spray emitter, but uses each vertex of a mesh
as a possible source point.

A MODIFIER applies rules to existing particles. This covers the following actions:

•	 Apply gravity.

•	 Apply wind.

•	 Place a wall where particles will stop their movement or bounce back.

•	 Apply fluid like interactions between particles.

•	 Apply particle resizing.

Chapter 6 ■ Stories: Advanced Level

146

A RENDERER converts a particle system into renderable objects. Only after the
renderer, the particles are graphical objects—prior to that point they are just collections
of numbers. ThMAD renders in one of the following ways:

•	 Simple rendering. Converts the particles into graphical objects
using a texture. Augments the possibilities we have inside the
modification step by defining: how size evolves during the
lifespan of each particle, how color evolves during the lifespan
of each particle. Despite the simple in its name, it is actually
quite powerful and you can use shader programs to control the
rendering operations.

•	 Center rendering. This is a special effects variant where one side of
the blob is clamped to a center point.

•	 Ribbon rendering. Another special effects variant where the
particles are converted to ribbons moving in 3D.

•	 Extended renderer. A renderer using textures, a size and color
lifespan definition, and if you want to have custom shader
language control.

•	 Spark renderer. Allows for the interaction of particles with
particles approaching each other, creating a spark.

In the rest of this section, we create a couple of particle system samples.

�Waterfall
A waterfall is a good candidate for particle system. A lot of objects fall down, obeying the
physics of gravity and wind, and eventually end up on the ground of the waterfall.

■■ Note  The samples of this subsection are as sources available under A-6.2.1_
Particlesystems_Waterfall* inside the TheArtOfAudioVisualization folder.

For simulating a waterfall, we place the following modules on an empty canvas. To
create one, right-click and then choose New → Empty Project:

•	 Renderers → opengl_modifiers → cameras → orbit_camera

•	 Renderers → opengl_modifiers → light_directional

•	 Renderers → opengl_modifiers → material_param

•	 Renderers → opengl_modifiers → depth_buffer

•	 Renderers → opengl_modifiers → backface_culling

•	 Renderers → opengl_modifiers → blend_mode

Chapter 6 ■ Stories: Advanced Level

147

Connect them all and also the camera to the screen module; see Figure 6-30. Adjust
the following parameters for those modules. See Tables 6-34 to 6-37.

Table 6-35. 

renderers → opengl_modifiers → material_param

ambient_reflectance 0.2; 0.2; 0.2; 1.0

diffuse_reflectance 0; 0; 1; 1

specular_reflectance 0.96; 0.82; 0.82; 1.0

emission_intensity 0; 0; 0; 1

specular_exponent 5.0

Figure 6-30.  Waterfall, basic 3D setup

Table 6-34. 

renderers → opengl_modifiers → light_directional

enabled YES

position 0.29; 0.29; 0.12

ambient_color 0; 0; 0; 1

diffuse_color 0.67; 0.69; 0.95; 1.0

specular_color 0.16; 0.79; 0.92; 1.0

Table 6-36. 

renderers → opengl_modifiers → depth_buffer

depth_test ENABLED

depth_mask ENABLED

Chapter 6 ■ Stories: Advanced Level

148

Table 6-37. 

renderers → opengl_modifiers → backface_culling

status ENABLED

The two modules depth_test and backface_culling are not too important here,
since we deal with small particles only. For special effects or playing around later, we add
them anyway.

Now for the particle system sub-pipeline, add the following modules:

•	 Texture → particles → blob

•	 Renderers → particlesystems → simple

•	 Particlesystems → modifiers → floor

•	 Particlesystems → modifiers → basic_wind_deformer

•	 Particlesystems → modifiers → size_mult

•	 Particlesystems → modifiers → basic_gravity

•	 Particlesystems → generators → basic_spray_emitter

Connect them as shown in Figure 6-31.

Figure 6-31.  Waterfall, particle system sub-pipeline

Chapter 6 ■ Stories: Advanced Level

149

For those parameters, adjust them as shown in Tables 6-38 to 6-42.

Table 6-38. 

particlesystems → modifiers → floor

axis / y / y_floor yes Enable a x-z-plane floor

axis / y / y_
bounce

yes Let particles bounce on the floor

axis / y / y_loss 85.0 Percentage of particles lost before
bouncing. If we make this number too
small, the particles behave more like
rubber balls instead of water.

axis / refraction yes Water does not behave like rigid balls,
instead upon hitting the floor it spreads
into all directions

axis / refraction_
amount

100; 10; 0 The amount of refraction—water mainly
spreads parallel to the floor

floor 0; -0.97; 0 Position of the floor

Table 6-40. 

particlesystems → modifiers → size_mult

strength 0.71 Make the particles a little smaller

Table 6-39. 

particlesystems → modifiers → basic_wind_deformer

wind 0.22; 0.0; 0.0 Some wind blowing to +x

Table 6-41. 

particlesystems → modifiers → basic_gravity

basic_parameters / center 0; -1.5; 0 Center of gravity

basic_parameters / amount 0; 0.079; 0 Gravity only along y-axis

basic_parameters / friction 0.6; 0.6; 1.8 If this is non-null, particles
will not accelerate endlessly
but be suspect to friction.

Chapter 6 ■ Stories: Advanced Level

150

Table 6-42. 

particlesystems → generators → basic_spray_emitter

num_particles 10000 The number of particles to use. Stays
constant, even if a modifier or
renderer says a particle must die. In
this case, it just gets reinitialized.

particles_per_second 2000 Later being controlled by sound.
Limits the number of particles
being initialized or reinitialized per
second. If small enough, some dead
particles will stay un- reinitialized for
some time.
Set to -1 to disable that limit.

spatial / emitter_position 0; 1; 0 Where particles get born or
reinitialized.

spatial / speed / speed_x 1.0 Later controlled by sound input. The
x-spread of particle velocities when
born or reinitialized.

spatial / speed / 0.45

speed_y

spatial / speed / speed_z 0.07

spatial / speed_type random_
balanced

How to distribute speed. The value
here chooses a random number from
[-speed_x;
+speed_x] for the x-value. Similar for
the other axes.

spatial / size / particle_size_
base

0.03 Base size of a particle

spatial / size / particle_size_
random_ weight

0.01 Amount of size randomization

appearance / color 1;1;1;1 Unused

appearance / time / particle_
lifetime_base

3.48 Base lifetime of a particle in seconds.
If exceeded, a particle remains in
undefined state until reinitialized.

appearance / time / particle_
lifetime_ random_weight

1.0 Amount of lifetime randomization

Connect this sub-pipeline to the basic 3D rendering pipeline: use anchors
render_out from the simple module and render_in from the module blend_mode. This
will produce a waterfall; see Figure 6-32.

Chapter 6 ■ Stories: Advanced Level

151

Figure 6-32.  Waterfall, no sound control

Figure 6-33.  Waterfall, sound control

The lower mult_add is connected to the speed_x anchor of the basic_spray_emitter. Both
mult_add modules are connected to any of the vu sub-anchors of sound_visualization_
listener.

We want to have some sound control added. To that aim, add these modules:

•	 Maths → limiters → float_clamp

•	 Maths → arithmetics → ternary → float → mult_add, twice

•	 Sound → input_visualization_listener

Connect them as shown in Figure 6-33. Apply parameters as shown in
Tables 6-43 to 6-45.

Chapter 6 ■ Stories: Advanced Level

152

Table 6-44. 

maths mult_add → arithmetics → ternary → float →

The one connected to float_clamp.

first_mult 1000

then_add 1000

Table 6-43. 

maths → limiters → float_clamp

Make sure we generate / re-initialize between 1000 and 5000 particles per second

low 1000

high 5000

Table 6-45. 

maths → arithmetics → ternary → float → mult_add

The other one, connected to anchor “x_speed” of basic_spray_emitter.

first_mult 0.4

then_add 0.13

Add sound input and the result will then be a waterfall with more mass and more
width according to the sound volume. See Figure 6-34.

Figure 6-34.  Waterfall, sound controlled, output

Chapter 6 ■ Stories: Advanced Level

153

As of now, the waterfall looks like it might consist of grains instead of water. To
improve the similarity to natural water, as a variation to what we just generated, we add a
blurring effect.

Blurring is about mixing newer and older instances of a rendered picture. We already
learned how to do that in two dimensions earlier in the chapter. For a simpler approach
compared to the one we used there, the module Texture→effects → blur gets chosen here.
We use blurring only after the camera did its work, which feels like blurring in 3D. This
is because real blurring in 3D is not an option, since our textures can handle only two
dimensions. But after the camera, we internally have a two-dimensional projection, so we
can then utilize two-dimensional blurring. We need three modules for the blurring:

•	 Renderers → basic → textured_rectangle

•	 Texture → effects → blur

•	 Texture → buffers → render_surface_single

Insert them between the camera and the screen, as shown in Figure 6-35. Apply
parameters as shown in Tables 6-46 to 6-48.

Figure 6-35.  Waterfall, blurred

Table 6-46. 

renderers → basic → textured_rectangle

Leave all parameters at their default value

Chapter 6 ■ Stories: Advanced Level

154

Table 6-48. 

texture → buffers → render_surface_single

texture_size 1024x1024 You can use smaller sizes to
enhance the blurring effect

The blurred waterfall will look like Figure 6-36.

Figure 6-36.  Waterfall, blurred, output

Table 6-47. 

texture → effects → blur

start_value 2.2 A shift, applied to texture coordinates
while mixing original and older picture

attenuation 1.22 Mixing intensity

texture_size 1024x1024 You can use smaller sizes to enhance the
blurring effect

passes TWO Intensify the blurring effect compared to
“ONE”

As a side effect, this blurred waterfall looks somewhat more massive without
increasing the number of particles used.

�Image Bit Particles
ThMAD contains a module Particlesystem → generators → bitmap2particlesystem, which
you can use to let a particle system be generated by the color pixels of a bitmap. We will
provide a sample here.

Chapter 6 ■ Stories: Advanced Level

155

■■ Note  The samples of this subsection are as sources available under A-6.2.2_* inside
the TheArtOfAudioVisualization folder.

Start with an empty state, as usual, you can create one by right-clicking, the New →
Empty Project. Start with placing the same basic 3D modules as described in the beginning
of this chapter, as shown in Figure 6-30, but use parameters as shown in Tables 6-49 to 6-54.

Table 6-49. 

renderers → opengl_modifiers →cameras → orbit_camera

rotation -0.03; 0.99; -0.11

distance 0.72

perspective_correct yes

Table 6-50. 

renderers → opengl_modifiers → light_directional

Values do not matter here, coloring is done by shader code, see below

Table 6-51. 

renderers → opengl_modifiers → material_param

Values do not matter here, coloring is done by shader code, see below

Table 6-52. 

renderers → opengl_modifiers → depth_buffer

depth_test ENABLED

depth_mask ENABLED

Table 6-53. 

renderers → opengl_modifiers → backface_culling

status ENABLED

Table 6-54. 

renderers → opengl_modifiers → blend_mode

source_blend ONE

dest_blend ONE_MINUS_SRC_ALPHA

Chapter 6 ■ Stories: Advanced Level

156

Now for the particle system sub-pipeline add following modules:

•	 Renderers → particlesystems → render_particle_shader

•	 Texture → particles → blob

•	 Particlesystems → modifiers → basic_wind_deformer

•	 Particlesystems → generators → bitmap_to_particlesystem

•	 Bitmaps → loaders → png_bitm_load

Connect them as shown in Figure 6-37. This will create particles from the bitmap
pixels, then apply wind to it. Set a parameters the values from Tables 6-55 to 6-59.

Figure 6-37.  Bitmap particle system

Table 6-55. 

renderers → particlesystems → render_particle_shader

You can make extremely interesting things by writing custom shader programs. For our
current purpose we just use the texture programs provided as defaults.

shader_params /
vertex_program

Leave the
default

The vertex shader part of the shader
pipeline. The default program will take
care of spatial positioning and fetching
the particle color.

shader_params /
fragment_program

Leave the
default

The fragment shader part of the shader
pipeline. The default program will use
the particle color mixed with the texture
ALPHA, and discard the texture color.

Chapter 6 ■ Stories: Advanced Level

157

Table 6-56. 

texture → particles →

blob

settings / alpha yes

size 8x8 Since particles are small, we can use small textures

Table 6-57. 

particlesystems → modifiers → basic_wind_deformer

wind 0; 0; 0 We will later connect this to the sound
input, see below

Table 6-58. 

particlesystems → generators → bitmap_to_particlesystem

particles_per_second 10000 The number of particles per second
which may be born from the bitmap

spatial / bitmap_size 1.0

spatial / bitmap_normal 0; 1; 0 Defines the orientation in space. Here we
define the bitmap to live in an x-z plane.

spatial / bitmap_upvector 1; 0; 0 Defines the angle with the normal
vector as the axis.

spatial / bitmap_position 0; 0; -0.25 Where the bitmap lies in space.

spatial / speed / speed_x 0 We let the particles rest immediately
after creation. Only the wind module
will thus move them.

spatial / speed / speed_y 0

spatial / speed / speed_z 0

spatial / size / 0.1 The particles’ size.

particle_size_base

spatial / size / particle_
size_random_ weight

0.01 A random contribution to the
particles’ size.

appearance / time /
particle_lifetime_base

1.16 Number of seconds a particle lives
before it dies and/or needs to be
reinitialize.

appearance / time
/ particle_lifetime_
random_weight

1.0 A random contribution to the particle
lifetime.

Chapter 6 ■ Stories: Advanced Level

158

Table 6-59. 

bitmaps → loaders → → png_bitm_load

filename any Choose a PNG file with dimensions not bigger than
256x256, to not overburden the hardware.

The PNG file must reside in /home/[USER]/thmad/ [VERSION]/data/resources.
You can now already see the particle system—since particles are not moving yet,

your image seems to blurringly waft around. This comes from the creation and dying
mechanism, and automatic size changes between that. See Figure 6-39 .

To introduce sound control, place the following additional modules on the canvas:

•	 Maths → converters → 3float_to_float3

•	 Maths → interpolation → float_smoother

•	 Audio → input_visualization_listener

Connect them as seen in Figure 6-38. Apply the following parameters, as shown in
Tables 6-60 to 6-62.

Figure 6-38.  Bitmap particle system, sound control

The float_smoother is connected to the vu / vu_l anchor of the listener.

Table 6-60. 

maths → converters → 3float_to_float3

floata 0 The x-amount of the wind

floatb 0 The y-amount of the wind

floatc - Connected to the sound listener

Chapter 6 ■ Stories: Advanced Level

159

Play some music and you will see the bitmap particles blowing away, as shown in
Figure 6-39.

Figure 6-39.  Bitmap particle system, output without sound input

Table 6-61. 

maths → interpolation → float_smoother

value_in - Connected to the sound listener

speed 5.0 Lower values mean more smoothing

Table 6-62. 

sound → input_visualization_listener

multiplier 0.38 Sound volume multiplier, change according to
your needs.

vu / vu_l - As output connected to the smoother above

�Center Clamped Particle Systems
A somewhat unrealistic but impressing result that delivers a variant of the particle systems
gives us using the Module renderers → particlesystems → render_particle_center.

What it basically does is clamp two of the points a texture defined to a center point.
We will provide an example here, but in contrast to explaining it step by step, I ask you
to refer to the sources provided with the installation. This section just explains it from a
bird’s eye view and point out important settings.

■■ Note  The samples of this subsection are as sources available under A-6.2.3_
Particlesystems_Center* inside the TheArtOfAudioVisualization folder.

Chapter 6 ■ Stories: Advanced Level

160

Load the A-5.5.3_Particlesystems_Center_Blur state into Artiste, and you will see
what is shown in Figure 6-40.

Figure 6-40.  Centered particle system, full state

The part labeled with (1) is the usual 3D rendering pipeline. However, both
backface_culling and depth_buffer are disabled; otherwise, the texture backgrounds
will overlap other textures that we do not want here. The light is switched on and all
white, and the material parameters are all white as well, with the addition that the ALPHA
channel is connected to sound input, so that the picture will get more intense with
increased volume.

The part (2) designates one set of the objects we will see. The source is concentric
circles, and in this case we add a rotation around the y-axis controlled by the sound input.

Part (3) is another set of concentric clamped circles in a different color, and this time
we control their speed using sound input.

Part (4) takes care of a blurring effect. If we did not use blurring, the fact that
particles get clamped to the origin and have a limited lifetime would introduce some
unwanted nervousness. The effect gets achieved by the highblur module, which used
backfeeding and gets introduced in another story in this chapter as well. You can play
around with the parameters of this sub-pipeline, and one very important parameter is the
blending mode chosen. The chosen value set here is ONE/ONE, which means that images,
the original image, and the backfed image are painted over another. For this to yield the
expected result, the anchor color/global_alpha, here 0.89, is crucial, and tiny changes
to this value yields vast changes in the outcome.

The result is shown in Figure 6-41, with the violet set of rays rotating according to the
sound basses, and the yellow set changing its contribution with more sound volume.

Chapter 6 ■ Stories: Advanced Level

161

�Ribbon Particles
The module Renderers → particlesystems → render_particle_ribbon sends particles
along a ribbon moving in space and driven by movement laws similar to gravity.

It can be used for interesting visuals, and we want to provide a sample here. Instead
of presenting a step-by-step instruction manual we will be looking at the final state
present after installation of ThMAD and explain important building blocks.

■■ Note T he state of this subsection is as a source available under A-6.2.4_
Particlesystems_Ribbon inside the TheArtOfAudioVisualization folder.

The state is shown in Figure 6-42 together with the main parts highlighted.

•	 Part (1) is the typical 3D sub-pipeline; however, with the
depth_buffer module disabled. You can try what happens when
the backface_culling is disabled as well. Both light and material
have all three light components: ambient light, diffuse light and
specular light. The light will be rotated around the scene by part (4)
and as for its ambient light intensity will be controlled by sound
input.

•	 Part (2) defines the particle system and its renderer. The renderer
itself does not have the capability to have a texture assigned to the
rendering process, but by adding the module Texture → opengl
→ texture_bind, we can achieve that nevertheless. Here we assign
a blob module, which will lead to the ribbon resembling a tube.
Some sound input has been connected to the ribbon width here.

Figure 6-41.  Centered particle system, output

Chapter 6 ■ Stories: Advanced Level

162

•	 Part (3) defines a constant main rotation, which will give depth to
the scene. The oscillator is set to “saw” mode, which is what we
use quite often when we want rotations with a constant angular
velocity.

•	 Part (4) controls the rotation of the light source. It does so by
combining two rotation quaternions using the quat_mul module.
A quaternion internally consists of four numbers completely
defining a rotation axis and a rotation angle, and by quaternion
multiplication we have the exact counterpart of two subsequent
rotations around two different axes with two different angles.
The light position needs a vector (x, y, z) and if we use the
module float3_rotate_by_quat, starting from any position like
(0,0,1) and using the aforementioned combined quaternion,
the outcome will be a rotated variant of (0,0,1). Using the two
oscillators in “saw” and “sine” mode, but with some sound input
added to the angle of one of them, we will have a steady rotation
plus some modulation with a small reactiveness to sound input.
The latter is done by additively accumulating sound volume and
the result to the phase anchor of one of the quaternion rotation
oscillators.

Figure 6-42.  Particle system rendered along a ribbon

Chapter 6 ■ Stories: Advanced Level

163

The output will be a rotating splattered tube world, as shown in Figure 6-43.

Figure 6-43.  Particle system rendered along a ribbon, output

�Glowing Objects
Objects can get a shiny glow by superimposing a blurred version over the original.
As a sample, place the following modules on the canvas and connect them a shown in
Figure 6-44.

•	 Renderers → opengl_modifiers → blend_mode

•	 Renderers → opengl_modifiers → cameras → orbit_camera

•	 Renderers → opengl_modifiers → light_directional

•	 Renderers → opengl_modifiers → depth_buffer

•	 Renderers → opengl_modifiers → backface_culling

•	 Renderers → opengl_modifiers → material_param

•	 Renderers → mesh → mesh_basic_render

•	 Mesh → solid → mesh_box

Chapter 6 ■ Stories: Advanced Level

164

■■ Note  The states of this subsection are as sources available under A-6.3_Glowing_
Objects* inside the TheArtOfAudioVisualization folder.

Set the parameters in Tables 6-63 to 6-68.

Figure 6-44.  Objects with glow, basic state

Table 6-63. 

renderers → opengl_modifiers → cameras → orbit_camera

rotation 0.52; 0.05; 0.85

distance 3.5

fov 30.0

perspective_correct yes

Chapter 6 ■ Stories: Advanced Level

165

Table 6-68. 

renderers → mesh → mesh_basic_render

Leave all values at their default

Table 6-65. 

renderers → opengl_modifiers → depth_buffer

depth_test ENABLED

depth_mask ENABLED

Table 6-67. 

renderers → opengl_modifiers → material_param

ambient_reflectance 0.2; 0.2; 0.2; 1.0

diffuse_reflectance 0.95; 0.76; 0.35; 1.0

specular_reflectance 0.95; 0.87; 0.87; 1.0

emission_intensity 0; 0; 0; 1

specular_exponent 13.0

Table 6-66. 

renderers → opengl_modifiers → backface_culling

status ENABLED

Table 6-64. 

renderers → opengl_modifiers → light_directional

A white light

enabled YES

position 0.57; 0.25; 0.78

ambient_color 0; 0; 0; 1

diffuse_color 1; 1; 1; 1

specular_color 1; 1; 1; 1

Chapter 6 ■ Stories: Advanced Level

166

The output will be a box as shown in Figure 6-45. Now add the following modules to
the scene:

•	 Renderers → basic → textured_rectangle

•	 Texture → effects → blur

•	 Texture → buffers → render_surface_single

Figure 6-45.  Objects with glow, basic state, output

Figure 6-46.  Objects with glow, glowing addition

Connect and insert them as shown in Figure 6-46. Note that the order at the input
anchor of blend_mode is important. You usually cannot see it, but to check and fix it,
double-click on the anchor and drop it on of the small sub-anchors to change the order;
see Figure 6-47.

Chapter 6 ■ Stories: Advanced Level

167

Figure 6-47.  Objects with glow, blend input order

Set the added module parameters as shown in see Tables 6-69 to 6-71.

Table 6-69. 

renderers → basic → textured_rectangle

size 1.007 1.0 will do as well, adding a small amount will increase
the glow effect

Chapter 6 ■ Stories: Advanced Level

168

Table 6-71. 

texture → buffers → render_surface_single

texture_size VIEWPORT_SIZE This is important, since position and
size of the original and blurred objects
must match.

Table 6-70. 

texture → effects → blur

start_value 12 Controls the size of the glow. Play with it
and change it to

20 or 30 and see what happens.

attenuation 1.15 Controls the decay rate of the glow.
Play with it and change start_value
to 30 and this value to 2.0 to see what
happens. Using high values will yield a
comic-like effect.

texture_size VIEWPORT_SIZ E This is important, since position and
size of the original and blurred objects
must match.

passes TWO Using TWO instead of ONE will increase
the glow effect.

The output of the glow effect can be seen in Figure 6-48. With an exaggeration of the
glowing parameters, as explained in the parameter tables, the output will look like seen in
Figure 6-49.

Figure 6-48.  Objects with glow, output

The left image shows the original output without the glow.

Chapter 6 ■ Stories: Advanced Level

169

�Summary
This chapter contained a collection of advanced tutorials, or stories covering, more
aspects of ThMAD and showing its capabilities. Chapters 7 and 8 contain a GUI reference
for the ThMAD Artiste and ThMAD Player.

Figure 6-49.  Objects with glow, output for a different set of parameters

The parameter start_value of glow is set to 20.0 and the anchor attenuation is set to 1.6.

http://dx.doi.org/10.1007/978-1-4842-3168-5_7
http://dx.doi.org/10.1007/978-1-4842-3168-5_8

171© Peter Späth 2017
P. Späth, Audio Visualization Using ThMAD, https://doi.org/10.1007/978-1-4842-3168-5_7

CHAPTER 7

ThMAD GUI Reference

The chapter is an exhaustive manual of ThMAD GUI operations. All frontend elements
of Artiste are described, including the main menu, module choosers, some helper
widgets, namely the Assistant and the Inspector, as well as different operation modes
and keyboard shortcuts. This is followed by the concepts of saving and loading of states,
which describe a visualization pipeline. We talk about what modules are, what types of
modules we have, how they can be controlled, and how they can be connected to other
modules. The export of states for the purpose of using them later from inside ThMAD
Player, the description of macros for defining sub-pipelines, and the introduction of note
widgets complete the Artiste section.

ThMAD Player is the part of the ThMAD program suite responsible for presenting
finished states, which inside the Player’s nomenclature are called Visualizations. Inside
the Player section, we describe all GUI operation options, more precisely the keyboard
shortcuts that can be used to control ThMAD Player.

ThMAD Artiste GUI
Starting and Stopping the GUI
Starting and stopping ThMAD Artiste was described in Chapter 3, “Program Operation”.
The rest of this chapter assumes that Artiste is running.

The ThMAD Desktop and Its Parts
An empty state will look like Figure 7-1.

https://doi.org/10.1007/978-1-4842-3168-5_7
http://dx.doi.org/10.1007/978-1-4842-3168-5_3

Chapter 7 ■ ThMAD GUI Reference

172

It has a big, plain area where you can drop modules. This area is frequently called the
canvas. You can see one module at the center—it is the screen0 module and it is always
there. It represents the screen output and cannot be deleted.

At the top-left, the output or preview window is shown; it is black since the state is
empty. Underneath the output window, you find the module list. You will use this or the
graphical module chooser to select modules for placement on the canvas. At the bottom-
right of the Artiste window you can see the minimized assistant. It will help you explore
modules or attend courses, described later in this chapter.

To control the view, make sure the canvas has the input focus. If will gain the focus
whenever you move the mouse to an empty spot of the canvas. Take this literally—with
some user interface actions, the canvas might not have the focus until you move the
mouse at least a little bit. If the canvas has the focus, it will appear a bit brighter compared
to when it does not have the focus.

Once the canvas has the focus, you can use the keyboard shortcuts listed in Table 7-1.

Figure 7-1.  Empty state

Chapter 7 ■ ThMAD GUI Reference

173

With the mouse you can do the actions listed in Table 7-2.

Table 7-1.  Keyboard shortcuts

S or ← Pan left

F or → Pan right

E or ↑ Pan up

D or ↓ Pan down

W or Page ↓ Zoom out

R or Page ↑ Zoom in

Ctrl+S Save current state

Ctrl+F Toggle fullwindow mode

Ctrl+U Save current state in memory as an undo point. Many GUI activities
lead to an automatic undo point setting and you do not need Ctrl+U.
Some activities, namely setting module parameters, do not. If you
want to allow for them to be undoable as well, press this key before
you perform the action.
The list of auto-undo actions is given in the “Menu” section.

Ctrl+Z Do undo, if anything is in the undo buffer.

Ctrl+C Close all open controllers.

Ctrl+D Close all open complex anchors.

Ctrl+O Enable or disable the object inspector.

Tab Change assistant’s size.

Escape Leave the program. If ThMAD detects unsaved changes, you will have
to confirm an alert message first.

Table 7-2.  Mouse actions

Just move the mouse If you’re moving to a resize handler position of the preview
window, i.e., an edge or a corner, highlight it. This is for
simplifying resizing actions.
If you’re moving over the module list, let the module list
get the focus.
If you’re moving the mouse over the empty canvas, let this
one gain input focus.

Left-click If there is a module at that spot, select it and let the module
get the focus.
If there is no module, remove the focus from the canvas. If
the object inspector is enabled, close it if shown.

(continued)

Chapter 7 ■ ThMAD GUI Reference

174

Window Modes
ThMAD has a couple of different window modes:

•	 Standard desktop mode. This is the mode you see when ThMAD
Artiste is started without any special flags. You get the canvas with
preview window and module list, as shown in Figure 7-1.

•	 Fullwindow mode. The canvas is abandoned and the preview
window takes the complete window area.

•	 Performance mode. This is a special variant of the desktop mode,
where the preview window is closed and instead its contents are
used as the canvas background. You can consider it as a mixing of
standard and fullwindow mode.

Click and drag If you’re on a module, move the module. If you’re on an
empty spot of the canvas, pan the view.
If you’re on the head bar of either the preview window or
the module list window or a note, move that one.
If you’re on the edge or corner of either the preview window
or the module list window or a note, resize that one.

Right-click If there is a module, module anchor, or connection at that
spot, show the corresponding context pop-up menu.
Otherwise, show the main menu.

Mouse scroll wheel down Zoom out.

Mouse scroll wheel up Zoom in.

Left-click on window Leave the program. If ThMAD detects

closer unsaved changes, you will have to confirm an alert
message first.

Ctrl+Alt + click and drag If you're on a module, clone it. Release the mouse key once
outside the original module.
Cloned modules will inherit all the parameters of the
original modules, which can be quite helpful.

Ctrl + click and drag Draw a multi-selection rectangle. All the modules inside
get the focus and can be moved or deleted simultaneously.

Double-click If you’re at an empty spot, open the graphical module
chooser.

Ctrl+double-click Open the graphical module chooser to load a new state. If
the current state has unsaved changes, the user must first
confirm an alert message.

Table 7-2.  (continued)

Chapter 7 ■ ThMAD GUI Reference

175

•	 Fullscreen mode. Instead of presenting ThMAD inside an
operating system desktop manager’s window, ThMAD is forced to
cover the complete screen. This mode is entered only if you use
special flags when starting ThMAD.

The non-standard modes are described in the following subsections.

Fullwindow Mode
You can switch to the fullwindow mode by entering Ctrl+F. To switch back, press Ctrl+F
again. See Figure 7-2.

If in fullwindow mode, some special keys can be used, as shown in Table 7-3.

Figure 7-2.  Standard and fullwindow mode

Table 7-3.  Fullwindow key controls

Alt+T Toggle header info visibility. This circulates through three states:
hidden/small font/big font.

Ctrl+T Reset info aggregation state.

Ctrl+F Exit fullwindow mode.

Ctrl+Alt+P Take a screenshot. You can then find it in the /home/[USER]/thmad/
[VERSION]/ data/screenshots folder.

Alt+F Toggle performance mode when inside fullwindow mode.

Ctrl+Alt+F Switch between standard mode and performance mode. Same as
pressing Ctrl+F and then Alt+F,

Escape If there are no unsaved changes, quit ThMAD. Otherwise, the
fullwindow mode is left and the user asked for a confirmation.

Chapter 7 ■ ThMAD GUI Reference

176

Performance Mode
After you entered the performance mode from inside the fullwindow mode by pressing
Alt+F, or from standard mode by pressing Ctrl+Alt+F, you will see something like
Figure 7-3.

You have full control over the state, as in standard mode. To quit the performance
mode, press Alt+F or Ctrl+Alt+F again, or leave the fullwindow mode by pressing Ctrl+F.

Fullscreen Mode
Following the description in Chapter 3 and, starting ThMAD in fullscreen mode, you have
complete control over the state, as in standard mode. See Figure 7-4.

Figure 7-3.  Performance mode

http://dx.doi.org/10.1007/978-1-4842-3168-5_3

Chapter 7 ■ ThMAD GUI Reference

177

Of course, you can switch to fullwindow or performance mode there as well using
the same keys. The only difference in fullscreen mode compared to the windowed mode
and apart from the presentation, is the absent window closer. You have to use the menu
or the Escape key to quit ThMAD.

The Main Menu
Right-clicking anywhere on an empty spot of the canvas will show the main menu; see
Figure 7-5.

Figure 7-4.  Fullscreen mode

Note the absence of operating system window controls.

Chapter 7 ■ ThMAD GUI Reference

178

The main menu functions are listed in Table 7-4.

Table 7-4.  Main Menu Functions

Undo Undo the last change. The latest from an automatic undo point setting
or an explicit undo point setting.
Automatic undo points are set by:

− Loading a new state
− Drawing a connection between modules
− Deleting a connection between modules
− �Changing connection order if an anchor has several incoming

connections
− Creating a macro
− Creating a component
− Assigning a component to a macro
− Deleting a component
− Clearing the state (menu: New ➤ Empty Project)
− Loading a template (menu: New ➤ …)

Set Undo Point Set an undo point such that by undoing the state can

be reverted to this point. This is only needed if no automatic undo
point has been set.

Figure 7-5.  The main menu

(continued)

Chapter 7 ■ ThMAD GUI Reference

179

New ➤ Empty project Start with an empty state. If the current state has
unsaved changes, the user is asked for confirmation.

Visualization Start with a visualization project. Places some basic
modules and notes on the canvas. If the current
state has unsaved changes, the user is asked for
confirmation.

Translation for
ThMAD Player

This is for starting with a basic fader. If the current
state has unsaved changes, the user is asked for
confirmation.

Open … Open a new state or visual from the file system. Will look only inside the

/home/[USER]/thmad/[VERSION]/data/

folder and present a graphical chooser. If the current state has unsaved
changes, the user is asked for confirmation first. Inside the graphical
chooser, click and drag to navigate, double-click to select, and right-
click to cancel.

Merge … Merge a state. Presents the same graphical chooser as in Open …, but
instead of replacing the current state, all the components from the
merged state are added to the current state. Works only for states, not
for visuals.

Save Save the current state under its current name.

Save As … Save the current state under a new name. Meta information can be
given that will be saved along with the state. You can only save as a
state here; to save as a visual use the Compile functions.

Compile ➤ Music visual (…)
As…

Export the current state as a visual into the
/home/[USER]/thmad/ [VERSION]/ data/visuals/
folder. The file name will have a .vsx suffix, no
matter whether or not you provide one in the dialog.
You can add meta information

along with the file, if you wish.
If a file with the same name already exists, it will be
backed up with a time stamp added.

Music Visual
Fader (…) As…

Export the current state as a fader into the

/home/[USER]/thmad/
[VERSION]/
data/faders/

folder. The file name will have a .vsx suffix, no
matter whether or not you provide one in the dialog.
You can add meta information, which will be saved
along with the file, if you wish.
If a file with the same name already exists, it will be
backed up with a time stamp added.

Table 7-4.  (continued)

(continued)

Chapter 7 ■ ThMAD GUI Reference

180

General Package
(…) As…

Export the current state as a visual into the

/home/[USER]/thmad/
[VERSION]/
data/prods/

folder. The file name will have a .vsx suffix, no
matter whether or not you provide one in the dialog.
You can add meta information, which will be saved
along with the file, if you wish.
If a file with the same name already exists, it will be
backed up with a time stamp added.

Module
Browser…

Opens the graphical module browser. You can navigate inside by click
and dragging the mouse, close it by right-clicking, or select a module
by clicking and dragging the mouse over a module.

Module List… If for whatever reason you closed the window with the module list on
the left side of the canvas, you can reopen it by using this menu entry.

Resource
Viewer…

Investigate the resources inside the

/home/[USER]/thmad/ [VERSION]/data/resources/

folder. If you’re clicking on a JPG or PNG file, a preview window will be
shown. Right-click to close it.

Refresh File
Lists

Tell ThMAD to refresh its state, visuals, and resources list. Use this if
you changed or added files from the outside. Especially useful after you
added or changed resources.

Create Macro Create an empty macro.

Create Note Create an empty note. Enter any text you like, place it anywhere you
like by clicking and dragging its title bar, close it by clicking on the
closer, and resize it by clicking and dragging any edge or corner.

Time ➤ Rewind Rewinds the sequencing timer to 0.0, then stops it.

Play Starts the sequencing timer if not running.

Stop Stops the sequencing timer if not running.

Configuration ➤ Change configuration entries.

Exit Exit ThMAD Artiste. If the current state has unsaved changes, the user
is asked for confirmation.

Table 7-4.  (continued)

Chapter 7 ■ ThMAD GUI Reference

181

Module Choosers
Modules are the building blocks of ThMAD—if you want to achieve anything, you need to
collect modules and assemble them via connectors. ThMAD has to module choosers—a
list with hierarchical structure, present when ThMAD Artiste starts, and a graphical
module chooser available on demand.

The Module List
ThMAD Artiste by default shows the module list; see Figure 7-6.

The modules themselves are described throughout this book, and you can find a
reference in Chapter 8. Here we talk about usage patterns.

The list window will show up to the left whenever ThMAD Artist starts. To move it,
click somewhere near the middle of the Module List title bar, keep the mouse button
pressed, and move the mouse to a suitable place. This is what we call dragging. To resize
it, find a position near any edge or corner and drag it. Unfortunately in version 1.0 of
ThMAD there is no graphical feedback for finding the right position where to start the
dragging—you just have to try. The inner contents can be shifted around by dragging
one of the two white scrollbars to the right or at the bottom. Sliding up and down can be
achieved by using the mouse scroll wheel.

Figure 7-6.  Module list

http://dx.doi.org/10.1007/978-1-4842-3168-5_8

Chapter 7 ■ ThMAD GUI Reference

182

The modules are presented in a hierarchical structure; in Figure 7-6 you see just the
top level. To dive deeper into the structure, just click on any label. To fold a structure,
click on the label again. Once you’re deep enough, you can see the modules, and with the
mouse hovering over any of them, an information tooltip will pop up. See Figure 7-7.

Once you find a module you need, you can place it by dragging the label onto the
canvas, as shown in Figure 7-8.

Between the title bar and the thicker black bar, you see the filter in Figure 7-8. Click
on it and enter some characters, e.g. rect. The complete hierarchy is filtered to show only
items with rect in the label; see Figure 7-9.

Figure 7-7.  Module list unfolded and the mouse hovering over a module label

Figure 7-8.  Module list, choosing a module

Chapter 7 ■ ThMAD GUI Reference

183

You can disable the filter to switch back to the complete view by removing the rect
using Backspace or Del, or all at once by pressing Ctrl+Del.

The module list can be closed by clicking on the symbol at the right edge of the title.
To reopen it, use the Module List… menu.

The Graphical Module Chooser
The graphical module chooser presents the module hierarchy in a hyperbolic tree. It can
be started by double-clicking on an empty spot of the canvas. See Figure 7-10.

Figure 7-10.  Graphical module chooser

Figure 7-9.  Module list, filtering

Chapter 7 ■ ThMAD GUI Reference

184

You can navigate inside the module chooser by clicking and dragging it. If you hover
over a module, the module description will show up in a tooltip; see Figure 7-11.

Once you found a module you need, drag it to an empty spot of the canvas. In most
cases, clicking on a module, holding the mouse key, moving the mouse a little bit and
then releasing the mouse key will do.

If you’re doing this with the module chooser, leave it by right-clicking it.

The Assistant
The Assistant helps in understanding what a module does, and it presents a couple of
small introductory courses and an overview of mouse and keyboard actions you can use.

The most important thing to know about the Assistant is that you can cycle through
different sizes by pressing the Tab key.

Once in the size you like, right-click it to choose the operating mode; see Figure 7-12.

Figure 7-11.  Graphical module chooser, tooltip pop-up

Chapter 7 ■ ThMAD GUI Reference

185

See Table 7-5 for details.

If the Assistant shows more than one page in any mode, you can click on any of the
page controls at its bottom: , or you can click anywhere

inside the Assistant to page forward.
The Assistant cannot be disabled; if you do not need it, just press Tab a couple of

times to make it appear in its smallest size.

Figure 7-12.  The Assistant’s operating modes

Table 7-5.  Assistant modes

Automatic Mode Click on any module or module anchor to see information
about it inside the Assistant.

Courses Choose one of:
− �Introduction course: A basic manual on how to use

ThMAD
− �Performance mode: A few words about the

performance mode
− Macros: Information about macros

Keys/Mouse Reference Presents a concise list of most of the keyboard and mouse
commands.

Chapter 7 ■ ThMAD GUI Reference

186

The Object Inspector
The Object Inspector gives a more technical view of modules and anchors, and it allows
you to rename module aliases to improve state readability; see Figure 7-13.

You can toggle the Object Inspector’s visibility by pressing Ctrl+O, and you can by
default enable it inside the configuration. For the latter, choose the configuration menu.

To rename something, enter a unique name in the editor field and press the Rename
button.

Saving and Loading States
Unless you changed the configuration, upon startup ThMAD Artiste will load a state
named _default, but you can change that to have the last saved state loaded inside the
configuration menu.

Once inside Artiste, you can load any state, visual, or fader by Ctrl+double-clicking
on an empty spot of the canvas, or by using the Open… menu after you open the main
menu (right-click on an empty spot of the canvas).

The graphical file chooser will show up, and there you can choose a file by double-
clicking it. To navigate, click and drag inside it, and, to cancel the operation, right-click.
See Figure 7-14.

Figure 7-13.  The Object Inspector

Chapter 7 ■ ThMAD GUI Reference

187

Loading a state from inside the States folder will give you the full control over it.
Loading a compiled visual is different—once you loaded one you will get the message that
ThMAD continues to operate in Detached mode. Just looking at it will be fine, but if you
change it, you should save it as a state with Save As… to not risk losing changes.

To save a state under its current name, press Ctrl+S or use the Save menu. To save a
new state or save the current state under a different name, use the Save As menu.

After you click Save As, the dialog shown in Figure 7-15 will appear. There you must
at least enter a file name; all other entries will be saved along with the state and are
mandatory. Note that states in ThMAD are considered to be internal and hence usually
do not have a file suffix.

Figure 7-15.  The Save As dialog

Figure 7-14.  The file chooser

Chapter 7 ■ ThMAD GUI Reference

188

To save a state as a visual instead, use the Compile > menu.

Modules
Modules tell ThMAD what to show, how to show it, and how it gets controlled.

Module Types
ThMAD has the modules types listed in Table 7-6.

Table 7-6.  ThMAD Module Types

This represents the physical screen. There is always exactly one instance
of this module type and it cannot be deleted.

A renderer type module. Any module that produces renderable output,
that means produces image data and could be connected to the screen,
will be of this type.

A string type module. String manipulation—you will not use it too often.

An audio related module.

Modules related to textures. Textures are image data living on the
graphics hardware. This makes them powerful and fast.

A system type module. Includes time control, sub-pipeline control, file
system access, joystick control, and programmatic shutdown.

Modules related to particle systems use this symbol.

(continued)

Chapter 7 ■ ThMAD GUI Reference

189

Maths and parameter control modules use this icon.

Mesh related modules. Includes mesh generators and modifiers.

A macro. Used for grouping modules.

Signifies a bitmap related module.

Table 7-6.  (continued)

Modules have anchors where parameters can be specified or other modules can be
connected. Anchors are described later in this chapter.

Placing and Deleting Modules
Working with Artiste means placing, or instantiating, modules, deleting them, and
connecting them.

To place modules on the canvas, use the module list on the left of ThMAD’s window
or the graphical module chooser, which opens after Ctrl+double-clicking an empty spot
of the canvas. Or you can use the Module List or Module Browser menu entries.

Modules can be shifted freely around on the canvas, but of course it makes sense to
place modules that belong to a logical grouping or need to be connected to each other
nearby. To shift a module, click and drag on it. To shift several modules at once, proceed
as follows: with Ctrl pressed, click at the top-left corner of a rectangle containing the
module to displace, then move the mouse to the bottom-right corner. Release the click
and the keyboard keys, then click and drag any of the modules to choose a new position
for the module group.

To delete a module, click on it and then press the Del key. Or right-click on it and
select the Delete menu item. To delete several modules at once, you can draw a rectangle
around them. With Ctrl pressed, click at the top-left corner of a rectangle containing
the module to delete, then keep them pressed and move the mouse to the bottom-right
corner. Release the keys, then press Del to delete them all.

Chapter 7 ■ ThMAD GUI Reference

190

Connecting Modules
Modules need to be connected one or the other way to allow for data moving between
them. The connectors or anchors themselves are described later in this chapter, but if they
are seen from a state composition point of view, ThMAD imposes two simple rules—only
anchors of the same type can have connections between them, and incoming connections
are always at the left side of the module, outgoing connections at the right side.

This makes composing states easier. Look for example at Figure 7-16: the screen
module has three inputs of three different types. The upper one is of type renderer and it
must be connected to a module that has an output of type renderer.

The same principle holds for the other anchors. In this case, they can be connected
to other module’s output anchors of the same type, but it is not necessary to connect
them to other modules.

Cloning Modules
Modules can be cloned, i.e. copied with their properties, by holding the Ctrl+Alt keys and
dragging the module to an empty space of the canvas.

Module Anchors: Parameters and Connectors
Module anchors are the eyes, ears, and the voice of modules. In order for modules to talk
to other modules, anchors need to be connected to other anchors. But they also serve as
parameter knobs to control the functioning of modules. It is one of the main principles of
ThMAD that many anchors can do both, depending on whether they are connected.

Look for example at the middle input anchor of the screen module in Figure 7-16. It
is called gamma_correction, and if it’s used as a parameter, it will allow you to configure
exactly that property of the screen, the gamma correction. However, you can also connect
it to an output anchor of the same type of another module, then you allow another
module to control the gamma correction of the screen. As for the screen module, it is
unimportant if this control happens dynamically, i.e., it changes over time, or statically
and does not change.

Figure 7-16.  Connecting modules

Chapter 7 ■ ThMAD GUI Reference

191

ThMAD’s modules have anchors of the types shown in Table 7-7.

Table 7-7.  Anchor types

A complex anchor. This is a container holding other anchors as children. It
is an exception to what was said previously, for it can never be connected
to other anchors directly nor serve as a module parameter holder by itself.
To see or hide the child anchors, click on them. Of course the child anchors
then can be controlled or connected to other anchors, unless they are
complex anchors themselves.

A bitmap anchor. Used for exchanging bitmap data between modules.

An enumeration anchor. Used to control enumeration entries like, for
example, “yes” and “no”. As of ThMAD 1.0 cannot be connected to other
modules.

Type float; a float number like 0.0 or 3.14 or -0.0002.

Type float3; a group of three float numbers, used very often for point or
vector coordinates in three dimensions.

An array of float or float3 values.

Type float4; a group of four float numbers used very often in conjunction
with color values: RED, GREEN, BLUE, and ALPHA.

An integer value. ThMAD mostly everywhere uses float numbers, so you will
not encounter this type.

An array of float values.

A mesh describing 3D objects.

A particle system.

A quaternion describing rotations in space.

(continued)

Chapter 7 ■ ThMAD GUI Reference

192

All complex anchors can be folded at once by using the Ctrl+D key; all open
controllers can be closed by pressing Ctrl+C key with the mouse over an empty spot of the
canvas.

Drawing Connections Between Anchors
To connect an anchor of one module to an anchor of the same type of another module,
just click on either of the anchors, move the mouse to the other partner, and then release
the mouse button when over it.

When you connected a child of a complex anchor and folded it, it will look as if you
drew a connection to the complex anchor; see Figure 7-17.

Table 7-7.  (continued)

Signifies rendering data. You will find this very often, as it is the backbone of
rendering pipelines.

Describes a resource, like a file. Mostly used for image files like PNG or JPEG
files, but also for fonts.

A segmesh. This is considered a highly special feature in ThMAD. You find
some modules using it, but it is not subject of this book.

A sequence of numbers. There are currently no outputs of this type so this is
an anchor of parameter controller type only.

A string. Used for drawing text, but also for providing shader programs and
alike.

A texture; represents bitmap data on the graphics hardware.

Chapter 7 ■ ThMAD GUI Reference

193

However, this is not the case, complex anchors cannot be connected directly.
To see where the connection really goes, you have to unfold the complex anchor by
clicking on it.

To delete a connection, move the mouse close to the line, then right-click and select
the Disconnect pop-up menu. See Figure 7-18.

Figure 7-17.  Anchor connections with complex anchors

Figure 7-18.  Removing an anchor connection

Chapter 7 ■ ThMAD GUI Reference

194

■■ Caution  To delete a connection going to an anchor inside a complex anchor, you have
to unfold the complex anchor first by clicking on it.

Enumeration Input as Module Parameter

If not connected to another module, an enumeration type input anchor can have

its value set by clicking on it and selecting the appropriate entry in the pop-up menu.
Some enumerations are misused as actions to reset something or do something else

once. Setting them to the Action value will then automatically be reverted once the action
has been performed. It is up to the module whether it uses such enumerations; details are
included in the module reference in Chapter 8.

Float Input as Module Parameter

If not connected to another module, a float type input anchor can have its value set

by double-clicking on it and then using the controller.
Float anchors are assigned a default controller, which is usually but not necessarily a

single knob. To see the available controllers and choose an appropriate one, right-click on
the anchor and select one of the options listed in Table 7-8.

Table 7-8.  Float number input

Knob A knob controller. To use the mouse for adjusting the
value, click somewhere near the center and drag (move the
mouse while holding down the mouse button) up/down
for coarse adjustments and left/right for fine adjustments.
Additionally press the Shift key to snap values at multiples
of 0.1.
To change the value directly, click on the ciphers and use
the keyboard to enter a value.
Clear the field by pressing Ctrl+Del. Press Enter/Return
when done.
To move the knob on the canvas, click and drag on the
black area.
To close the knob, double-click on it.

(continued)

http://dx.doi.org/10.1007/978-1-4842-3168-5_8

Chapter 7 ■ ThMAD GUI Reference

195

Slider A slider controller. Use this to define a slider operating
inside a range of float values.
The upper knob defines the extent of float values, the lower
knob is the lowest value. Each knob can be controlled
exactly in the way as described for the single knob
controller.
The slider value can be adjusted by dragging the slider
handle. Or you can enter the value using the keyboard by
clicking on the ciphers above the scale and entering values
as described for the single knob controller.
To move the slider on the canvas, click and drag on one
of the black areas. Double-click anywhere on the slider to
close it.

Direct Direct value input using the keyboard. Click on the ciphers
and use the keyboard to enter a new value and then
confirm by pressing Enter or Return. Enter Ctrl+Del to clear
the field first.
Move it by dragging the black area. Close it by double-
clicking on it.

Table 7-8.  (continued)

Float3 Input as Module Parameter

If not connected to another module, a float3 type input anchor usually denoting a

coordinate set in 3D can be adjusted by double-clicking on it. A couple of controllers are
available, but they usually show up as a default controller.

All controller types available after right-clicking are listed in Table 7-9.

Chapter 7 ■ ThMAD GUI Reference

196

Table 7-9.  Float3 input

Sliders A triple slider. If the anchor is used for coordinate setting,
the three sliders are for the x, y, and z coordinates,
respectively.
Each of the upper knobs defines the extent of float values,
the corresponding lower knob is the lowest value. Each
knob can be controlled exactly in the way a single knob
controller is controlled.
The slider value can be adjusted by dragging the slider
handle. Or you can enter the value using the keyboard by
clicking on the ciphers above the scale and entering values.
To move the slider on the canvas, click and drag on one
of the black areas. Double-click anywhere on the slider to
close it.

Axes View A graphical representation of a rotation, seen as a point on
the unit sphere. The x-axis is white, the y-axis violet, the
z-axis green, and positive directions thicker.
This control is extremely powerful for defining orientations
where the norm of the vector is supposed to be 1.0, but it
can be dangerous in other cases. Of course, you can try it to
find out whether it makes sense to use this control.
To adjust the orientation, click and drag anywhere near the
center and move the mouse in any direction.
Move it on the canvas by dragging the black area near the
corners, and close it by double-clicking on it.

Color This is of limited use here, since the fourth color value,
the ALPHA, cannot be set here and hence usually float3
anchors do not correspond to a color value. You can use it
nevertheless if you want to control the three values of the
float3 type inside the range [0;1.0].
To close it, double-click the box in the top-right corner.

Pad Using the pad you can only control the first two values
of the float3 type; the third one will always be set to 0.0.
Use the knobs to define the limits (set them like any other
knob). Click with the mouse at any point to set the two
coordinates.
Move it on the canvas by dragging the black area; close it
by double-clicking on it.

Direct Use this if you want to enter all three values directly. Click
on each of the numbers and use the keyboard to enter
a new value, confirm by pressing Enter or Return. Enter
Ctrl+Del to clear the field first.
Move it by dragging the black area. Close it by double-
clicking on it.

Chapter 7 ■ ThMAD GUI Reference

197

Float4 Input as Module Parameter
Float4 parameters usually define color values. Unless connected to another module, a

float4 type input anchor can be adjusted after double-clicking on it. A couple of

controllers are available, but the color slider will typically show up as the default
controller.

Right-clicking will allow you to use any of the options in Table 7-10.

Table 7-10.  Float4 input

Sliders A triple slider. If the anchor is used for coordinate setting,
the three sliders are for the x, y and z coordinates,
respectively.
Each of the upper knobs defines the extent of float values;
the corresponding lower knob is the lowest value. Each
knob can be controlled the same way as the single knob
controller.
The slider value can be adjusted by dragging the slider
handle. Or you can enter the value using the keyboard by
clicking on the ciphers right the scale and entering values.
To move the slider on the canvas, click and drag on one
of the black areas. Double-click anywhere on the slider to
close it.

Color Very useful for entering color values and most of the time
the default controller for float4 values. Any of the four
values is constrained to lie inside the range [0;1.0].
To set a value, first click and drag inside the top HUE
chooser, then click anywhere inside the big SATURATION/
VALUE box underneath it to finish choosing RGB (or HUE-
SATURATION-VALUE). To choose the ALPHA value, click
and drag inside the bottom-right rectangle. Highest means
an ALPHA of 1.0; lowest an ALPHA of 0.0.
Any drag operation is fully smooth, meaning you see
immediate changes in the output while moving the mouse.
To move the control on the canvas, click and drag on the
top-right box. Double-click on the top-right box to close it.

Direct Use this if you want to enter all four values directly. Click on
each of the numbers and use the keyboard to enter a new
value. Confirm by pressing Enter or Return. Enter Ctrl+Del
to clear the field first.
Move it by dragging the black area. Close it by double-
clicking on it.

Chapter 7 ■ ThMAD GUI Reference

198

Quaternion Input as Module Parameter

Unless connected to another module, a quaternion type input anchor can be

adjusted after double-clicking on it. A couple of controllers are available, but the
quadruple slider will typically show up as the default controller.

Right-clicking will show any the options in Table 7-11.

Table 7-11.  Quaternion input

Sliders A quadruple slider. Represents the x, y, z, w values.
Each of the upper knobs defines the extent of float
values, the corresponding lower knob is the lowest
value. Each knob can be controlled exactly in the way
as the single knob controller is.
The slider value can be adjusted by dragging the slider
handle. Or you can enter the value using the keyboard
by clicking on the ciphers above the scale and entering
values.
To move the slider on the canvas, click and drag on
one of the black areas. Double-click anywhere on the
slider to close it.

axes view Quaternions inside ThMAD usually represent
rotations. So does the axes view control.
The component order is: white, violet, green. To adjust
the rotation or quaternion representing the rotation,
click and drag anywhere near the center and move the
mouse in any direction.
Move it on the canvas by dragging the black area near
a corner, and close it by double-clicking on it.

direct Use this if you want to enter all four values x, y,

z, and w, directly. Click on each of the numbers and
use the keyboard to enter a new value. Confirm by
pressing Enter or Return. Enter Ctrl+Del to clear the
field first.
Move it by dragging the black area. Close it by double-
clicking on it.

String Input as Module Parameter

If not connected to another module, a string type input anchor can be adjusted by

double-clicking on it.
A text editor appears; see Figure 7-19.

Chapter 7 ■ ThMAD GUI Reference

199

You can enter any text there; however, the editing capabilities are limited. You cannot
enter Tabs and select text ranges for cut and paste or copy and paste. The To Clipboard
and From Clipboard buttons at least allow you to copy the text from your favorite editor
back and forth.

When done you must use the Save button to make changes permanent, then click
Close to close the editor. Clicking only on Close instead will discard any changes, so be
careful with that.

Resource as Module Parameter

A resource type input can be set by double-clicking on it.

The resource viewer will show up, as shown in Figure 7-20.

Figure 7-19.  String input text editor

Chapter 7 ■ ThMAD GUI Reference

200

Navigate inside the resource viewer by click and dragging starting at any spot away
from the colored boxes. Choose a file by double-clicking on it, or cancel the selection
operation by right-clicking.

Note that if you changed resources from outside ThMAD, you need to tell ThMAD to
refresh its file lists. You do so by choosing Refresh File Lists from the main menu.

Sequence Input as Module Parameter
This control is used by modules that need an x-y-sequence, say float value versus time or
similar. A sample is the input parameter float_sequence module, Maths ➤ oscillators ➤
float_sequencer, where the sequence of this oscillator’s output values is defined.

Once the corresponding parameter editor is opened, either by double-clicking on
the anchor or by right-clicking the context menu, the image in Figure 7-21 appears.

Figure 7-20.  Resource selector

Chapter 7 ■ ThMAD GUI Reference

201

This is a sequence with all values equaling 1.0. The anchors of the sequence are the
small rectangles at the start and middle of the line. At the beginning we just have two
anchors. You can freely move anchors by left-clicking on them and then dragging.

To add new anchors, just click anywhere on the line and hold down the Shift key.
To remove an anchor, right-click it with the Shift key pressed. The result might look like
Figure 7-22.

Figure 7-21.  Sequence editor

Figure 7-22.  Sequence editor with anchors shifted and added

Chapter 7 ■ ThMAD GUI Reference

202

At each point, the interpolation type determines how it is connected to the neighbor
point to the right. The default is no interpolation, meaning an anchor will abruptly force
a change to its value exactly at its position, not earlier. This can be seen at the second
anchor in Figure 7-22. Because we up to now added anchors via Shift+click, those
anchors will show a linear interpolation to their right neighbor, which means the values
change linearly from one point to the next. You can change the interpolation type by
right-clicking on an anchor and choosing what you want.

Interpolation types are:

•	 No interpolation: The value stays constant until the x coordinate
of the next point is reached and then abruptly changes its value.
See Figure 7-23.

Figure 7-23.  Different sequence editor anchor interpolations

Linear, none, cosine, and Bezier. The Bezier anchors at the end of the line extension have been
chosen to make the segment match smoothly.

Chapter 7 ■ ThMAD GUI Reference

203

•	 Linear interpolation: The default. Linearly changes from one
point to the next. See Figure 7-23.

•	 Cosine interpolation: A smooth line with a cosine for function
arguments 0 or π, up to π or 2π, depending on whether the value
decreases or increases. Note that the slope at the segment starts
and ends at zero. See Figure 7-23.

•	 Bezier interpolation: A Bezier curve, allowing for smooth inter-
segment connections. Once chosen the Bezier segment will have
two more anchors added for the Bezier parameters, which you
can select and click and drag. Those extra handles are small, so
make sure you zoom in to see them. See Figure 7-23.

Internally, for performance reasons, all points of a sequence are stored in an array of
8192 x-y pairs.

Exporting States
Once you are finished with a state, you can save it into an unmodifiable file unit called a
visual. If state files live inside this folder:

/home/[USER]/thmad/[VERSION]/
data/states/

The visuals as for ThMAD Artist’s matters live in one of these folders:

•	 /home/[USER]/thmad/[VERSION]/data/visuals/

•	 /home/[USER]/thmad/[VERSION]/data/prods/

•	 /home/[USER]/thmad/[VERSION]/data/faders/

Between the visuals/ and the prods/ folder, there is just a logical distinction; into
visuals/ you export files that you later want to use for ThMAD Player, while prods/ is
more a general purpose export folder. The faders/ folder is for special fader state exports
you are going to use for transitions inside the ThMAD Player. The internal file structure is
the same.

The procedure to perform the export is described in the “Main Menu” section under
Compile ➤.

Macros
Macros are containers for grouping modules. Unless expanded, they appear as a single
symbol on the canvas and you thus can use them to hide details in your state, improving
readability. In addition, macros can be saved separately from the state and you can reuse
them in other states.

To create a macro, use the main menu that pops up after right-click an empty spot of
the canvas. Click on the Create Macro item.

Chapter 7 ■ ThMAD GUI Reference

204

Activities are listed in Table 7-12.

Table 7-12.  Macro actions

Open the macro Right-click on the macro, then choose Open/Close from the pop-
up menu.

Close the macro Same as open the macro.

Move the macro If the macro is closed, simply click and drag it, like any other
module. If the macro is open, clicking an empty spot of the
macro.

Delete a macro Click the macro, then press the Del key. Or right-click the macro
and select the Delete [del] item.

Rename a macro Make sure the Object Inspector is enabled (you can toggle
visibility by pressing Ctrl+O while over an empty spot of
the canvas). Click on the macro and then use the Rename
functionality in the Object Inspector.

Clone a macro Just as for modules, press and hold Ctrl+Alt and drag the macro
to an empty space of the canvas. Cloning a macro will clone all its
constituent modules as well!

Resize a macro Right-click and choose Double Size or Half Size from the menu
that appears. This only applies to an opened macro (you can
resize with the macro closed, but the symbol for the closed macro
will not change the size).

Modify/control
modules inside the
macro

Open the macro, then do the same as you’d do if the component
was outside the macro.

Move a single
module to the
macro

Click Ctrl+Shift on the keyboard, then drag the module using the
left mouse button to the opened macro (will not work for closed
macros!).
Once inside the macro, a module can only be removed from the
macro by deleting it. You cannot move it outside (pressing Ctrl+Z
for Undo will work though).

Move several
modules at once to
the macro

Select several modules. Either click while holding the Ctrl key
at the same time, or draw a rectangle around the modules while
pressing the Ctrl key (press Ctrl, then click and hold the left-top
corner, move to the bottom-right corner, then release the mouse
button, then release Ctrl).
Once selected, press Ctrl+Shift and drag one of the selected
modules to the opened macro (will not work for closed macros!).
Once inside the macro, modules can only be removed from the
macro by deleting them; you cannot move them outside (pressing
Ctrl+Z for Undo will work though).

Chapter 7 ■ ThMAD GUI Reference

205

No matter whether you moved a single module to the macro, or several modules at
once, incoming and outgoing connections will show up as artificial anchors at the edge of
the macro. See Figure 7-24.

Further actions are listed in Table 7-13.

Figure 7-24.  Macro anchors

Table 7-13.  Extended macro actions

Expose an anchor from
a module inside to the
external world

To expose internal anchors (e.g., you have a module inside
with input anchor xyz and you want to control it from outside
the macro), drag the anchor to an empty spot inside the
macro.

Remove macro anchors Right-click on a macro anchor, then select Unalias from
the menu.

Save a macro Macros can be saved for later reuse by right-clicking on the
macro, then selecting Save Macro… from the pop-up menu.
The saved macro will appear in the module lister after the
next ThMAD restart.

Insert a saved macro
into the current state

Drag from the Macros section of the module lister as you’d do
for normal components.

Chapter 7 ■ ThMAD GUI Reference

206

Saved macros can only be deleted from outside ThMAD. Navigate to the following
folder and remove the appropriate files here:

/home/[USER]/thmad/
[VERSION]/data/macros/

Notes
Notes help to document your states or parts of them. To create a note, click mouse-right
at an empty spot of the canvas, and in the pop-up menu, select Create Note. Add any text
there. See Figure 7-25.

To move a note, drag its title bar. To remove a note, click on its close box in the
top-right corner. To change its size, click and drag any edge or corner. (Unfortunately, there
is no user interface feedback for finding the right mouse position; you just have to try.)

Note that you cannot add notes to macros, and that notes do note take part in a
multi-select (Ctrl-click to draw a rectangle). Also, nodes cannot be cloned like modules.

ThMAD Player
Starting and Stopping the GUI
For information on starting and stopping the ThMAD Player, see Chapter 3. The rest of
this chapter assumes you have the ThMAD Player running.

Player GUI Operations
The Player does not react to mouse movements, but you can use a couple of keys on your
keyboard to control it.

Figure 7-25.  A note

http://dx.doi.org/10.1007/978-1-4842-3168-5_3

Chapter 7 ■ ThMAD GUI Reference

207

The keyboard operations listed in Table 7-14 are available while the Player is
running.

Summary
In this chapter, you learned about all GUI functionalities of ThMAD Artiste and ThMAD
Player. You saw how to use the keyboard to control everything, how to identify, place, and
connect elements, and how to use the parameter controls, which can be used to adjust
module parameters of different types. You also investigated different window modes and
helper widgets inside Artiste. You learned about the file handling, and how Artiste and
Player cooperate.

The next chapter provides a complete reference of all modules available for creating
visualizations.

Table 7-14.  ThMAD Player Controls

O Toggle text overlay’s visibility. If enabled, an info is printed
shortly when visuals switch. The default is on, unless disabled by
program invocation.

F1 Show help. Automatically enables text overlay; press O later to
disable it.

F Show status information. Automatically enables text overlay;
press O later to disable it.

Cursor left/right Back to previous or forward to next visual in the list.

Cursor up/down Increase or decrease sensitivity to sound input.

Page up/down Make faster/slower. Controls time-scaling factor.

R Enable/disable randomization. If disabled, stay at one visual. If
enabled, randomly switch between the visuals after random time
intervals.

Ctrl+R Randomly choose another visual from the list.

Escape Quit the Player.

209© Peter Späth 2017
P. Späth, Audio Visualization Using ThMAD, https://doi.org/10.1007/978-1-4842-3168-5_8

CHAPTER 8

ThMAD Module Reference

In ThMAD, the modules are the building blocks for visualizations. In this chapter, we
provide a complete module reference, with a description of what each module does
and which parameters it has. By its structure it also describes what you can do using the
software. Scanning over the chapter and reading it thoroughly will help you to get some
impressions and new ideas. The module category names and the module names closely
relate to the GUI and the implementation code, with an emphasis on the GUI so you can
easily make your own experiments using the GUI.

All modules have zero or more output anchors representing data of various types,
and zero or more input anchors representing data of various types. Some modules have
side effects, i.e., they store something or do something that is not reflected in the output
data. Data types are:

•	 int: An integer number.

•	 float: A floating point number.

•	 double: A double precision float. All floating point numbers in
ThMAD are of type single precision float, so this double type,
although defined, is not used.

•	 float3: A vector of three floating point numbers. For example, 3D
coordinates.

•	 float4: A vector of four floating point numbers. For example, the
RED, GREEN, BLUE, ALPHA color values.

•	 quaternion: Also a vector of four floating point numbers, but with
quaternion calculation rules. Quaternions represent a 3D rotation
operation accurately.

•	 string: A string of characters.

•	 matrix: a 4x4 matrix of floats. Matrices are used to describe spatial
operations like rotation, scaling, and translation.

•	 float_array: An array of a variable number of float values.

•	 float3_array: An array of a variable number of float3 vectors.

https://doi.org/10.1007/978-1-4842-3168-5_8

Chapter 8 ■ ThMAD Module Reference

210

•	 quaternion_array: An array of a variable number of quaternion
data.

•	 resource: Points to a resource file, maybe a picture or some text
file a module can read from or write to.

•	 enum: An enumeration. Used at places, where a string value from
a fixed collection has to be chosen. Enums also are used for
one-time actions like resetting or triggering something.

•	 sequence: An array of 8192 float values. Used by modules that
need to have some development of a float value specified, usually
in the time domain. Differs from a float_array by having a
special graphical editor in the ThMAD Artiste GUI.

•	 render: An internal queue that represents drawable items.

•	 texture: Represents a bitmap of colored points inside the
graphics hardware.

•	 mesh: A collection of points defining the surface of a 3D object.
May represent faces, i.e., two dimensional surface atoms with
connected edges, but this is not necessarily the case.

•	 bitmap: A number of colored points under custody of the CPU,
which means not directly handled by the graphics hardware. Only
by a suitable renderer module sent to the graphics hardware.

•	 particlesystem: A possibly large number of equal or similar 3D
objects. Handled internally and only via some renderer sent to the
graphics hardware.

•	 segment_mesh: A special form of a mesh with unconnected edges.
Usually converted to a mesh before handled further.

In the module reference tables of this chapter, all nodule control anchor
specifications will be written as:

Parameter-Name : Parameter-Type

Where the parameter names do not contain spaces or hyphens. Longer
names inside the tables will break at an underscore, so if you see something like
gamma_ correction:float. What is actually meant is gamma_correction:float.

Each module belongs to a category, which will be reflected by the position of each
module inside the module lister and module browser. The module categories are as
follows:

•	 Screen: The output to the graphics hardware.

•	 Bitmaps: Colored pixel stores residing in the main memory and
handled by the CPU.

Chapter 8 ■ ThMAD Module Reference

211

•	 Dummies: Modules usually passing through values unaltered.
Used for example if you want to control one float value connected
to several input anchors at once. This category actually only
contains aliases to various other categories’ dummies.

•	 Maths: Mathematical operations like operators, with all input and
output types the same, and functions with different input and
output types. Here you’ll also find the oscillators.

•	 Mesh: Comprise a collection of points defining surfaces or surface
parts of 3D objects, whether connected or unconnected.

•	 Particlesystems: A possibly large number of equal or similar 3D
objects. Used for rain, fog, and a lot of special effects.

•	 Renderers: Convert different kinds of input to an output anchor
that may directly connect to the screen. Also contain modules that
alter other modules’ renderer output.

•	 Selectors: Used to fetch a single element or a subrange of
elements from a collection of some data type.

•	 Sound: Handles sound input.

•	 String: Handles strings.

•	 System: A collection of system relevant modules like time, system
status, or file chooser related modules.

•	 Texture: Handles bitmaps that reside on the graphics hardware.
Using textures instead of bitmaps yields a huge performance
boost. Textures are also important for back propagating pixel
data, i.e., feeding a sub-pipeline output back to one of its input
constituents.

•	 Macros: Reusable sub-pipelines.

�Screen
This actually contains a single built-in module screen0, obligatory for graphics output.
Any module must somehow eventually be connected to the screen; otherwise, it will not
be active. So it is the last module in the pipeline or set of pipelines of a visualization setup
and responsible for the visual output on the monitor.

Chapter 8 ■ ThMAD Module Reference

212

�screen0
Output to graphics hardware, graphics card, and monitor. See Table 8-1.

�Bitmaps
Bitmaps are images living inside ThMAD, not inside the graphics hardware, so it is
possible to perform operations on them before they are uploaded to the graphics
hardware.

�Filters
The bitmap filters all involve two bitmaps and all have the same structure. The path is
Bitmaps → Filters, then see Table 8-2.

Table 8-1.  The screen0 module

screen0 The screen

In screen:render Here any visualization pipeline must be
connected to. Nothing can ever be seen if this
is unconnected. If several pipelines connect
to this anchor, the rendering order may be
quite important. To change the order in the
ThMAD Artiste GUI, double-click on the
anchor and drag the anchor connectors.

gamma_correction:float Gamma correction. Defaults to 1.0. The
gamma correction stems from the fact that
human perception of visual brightness is
nonlinear, and from old cathode ray tubes
that show nonlinear behavior by themselves.
Usually a gamma greater than 1 makes
shadows appear darker and a gamma less
than 1 makes shadows appear lighter.

Out None Will render to the graphics hardware.

Chapter 8 ■ ThMAD Module Reference

213

All available blending modes are listed in Table 8-3. If sample images are given, we use

 transparent), and as bitmap B1 (the white parts at
the edge as bitmap B2 (an ALPHA channel is added, but reads 1.0 everywhere).

Table 8-2.  Bitmap filter modules

Name Dynamically Assigned

In bmp1:complex The first bitmap

in1:bitmap Bitmap anchor; needs to connect to a bitmap
producer

bitm1_ofs: float3 This is an offset to the bitmap pixel
coordinates applied before the blending
happens. The third coordinate is ignored

bmp2:complex The second bitmap

in2:bitmap Bitmap anchor; needs to connect to a bitmap
producer

bitm2_ofs: float3 This is an offset to the bitmap pixel
coordinates applied before the blending
happens. The third coordinate is ignored

bitm2_ opacity: float Defines a mixing factor, values are from [0;1].
With 0, the output will be B1. With 1, the
output will be the blending result. All other
values interpolate linearly.

target_size: float3 The output bitmap size. The third coordinate
is ignored.

set_target_ size:enum Use this to set the size to a square like one of:
8x8, 16x16, 32x32, 64x64, 128x128, 256x256,
512x512, 1024x1024, and 2048x2048.

blend_type: enum The blending type—determines the formula
to be applied when doing the blending. The
available modes are listed in this chapter.
Note that all the different bitmap filters will
just use different settings at this anchor.

bitmap_type: enum One of integer or float. Unused.

Out bitmap:bitmap The output bitmap. You can add more filters
here or send this to any module that needs a
bitmap as input.

Chapter 8 ■ ThMAD Module Reference

214

Table 8-3.  Bitmap filter blending modes

Name of the Filter
Module

Corresponding “blend_type”
Anchor setting

Description

bitm_blend_add BLEND_ADD For each RGBA value, add B1 and B2.

Clamp to max. 1.0. Blending the
images will yield the image shown
here. The white color on top-left
comes from the ALPHA there not
applied before doing the blending!
So even though ALPHA is 0 there, the
hidden RGB values (white here) will
be taken into account!

bitm_blend_
average

BLEND_ AVERAGE For each RGBA value, take the
average (B1+B2) / 2.

bitm_blend_
color_burn

BLEND_ COLOR_ BURN For each RGBA value, divide

inverted B1 by B2, invert the result,
and clamp to [0.0;1.0]. Burns in
the color of B2 to B1. The result for
the sample images is shown here; the
darker B1, the more its color is used.

bitm_blend_
color_dodge

BLEND_ COLOR_ DODGE For each RGBA value, divides B1 by

inverted B2. The brighter B2, the
more it affects the color of the result.
No part of B1 will be darkened in the
result.

(continued)

Chapter 8 ■ ThMAD Module Reference

215

Name of the Filter
Module

Corresponding “blend_type”
Anchor setting

Description

bitm_blend_
darken

BLEND_ DARKEN For each RGBA value, take the
smaller of B1, B2.

bitm_blend_
difference

BLEND_ DIFFERENCE For each RGBA value, take the

absolute difference | B1 – B2 |. In
our example, we will only get ALPHA
values where B1 has an ALPHA ≠ 1.0,
i.e., in its surroundings. With B2’s
ALPHA not 1.0 everywhere, you get
more interesting results.

bitm_blend_
exclusion

BLEND_ EXCLUSION The formula for each of the RGBA
values is:
B1 + B2 - 2∙B1∙B2

bitm_blend_
glow

BLEND_ GLOW For each of the RGBA values, take
the square of B2 and divide
by the inverse of B1. The square will
emphasize lighter parts of B2, but for
darker parts the light parts of B1 gain
influence.

bitm_blend_
hard_light

BLEND_ HARD_LIGHT Same as BLEND_OVERLAY, but with
B1 and B2 exchanged.

Table 8-3.  (continued)

(continued)

Chapter 8 ■ ThMAD Module Reference

216

Name of the Filter
Module

Corresponding “blend_type”
Anchor setting

Description

bitm_blend_
hard_mix

BLEND_ HARD_MIX For each RGBA value, where B1
is darker than B2 is lighter, set 0.
Otherwise, set 1.

bitm_blend_
lighten

BLEND_ LIGHTEN For each RGBA channel, take the
bigger of B1, B2.

bitm_blend_
linear_burn

BLEND_ LINEAR_ BURN Same as BLEND_SUBTRACT.

bitm_blend_
linear_dodge

BLEND_ LINEAR_ DODGE Same as BLEND_ADD.

bitm_blend_
linear_light

BLEND_ LINEAR_ LIGHT For each RGBA value, if B1 < 0.5,
do a linear burn with 2 ∙ B1 and B2;
otherwise, a linear dodge with
2 ∙ (1.0 – B1) and B2.

bitm_blend_
multiply

BLEND_ MULTIPLY For each RGBA value, take B1 ∙ B2.

Because of the multiplication, where
parts of both B1 and B2 are dark, the
result will be even darker.

bitm_blend_
negation

BLEND_ NEGATION For each RGBA value, take the
inverse of: the absolute value of:
(1.0 – B1) – B2

Table 8-3.  (continued)

(continued)

Chapter 8 ■ ThMAD Module Reference

217

Name of the Filter
Module

Corresponding “blend_type”
Anchor setting

Description

bitm_blend_
normal

BLEND_ NORMAL For each RGBA value, mix B2 to B1
according to the bitm2_opacity
anchor value. Following 0.0, 0.5 and
1.0:

bitm_blend_
overlay

BLEND_ OVERLAY For each RGBA value, where B2 < 0.5,
 take twice the multiplied value,
2∙B1∙B2. Otherwise, take the inverse
of twice the inverse multiplied value,
1.0 – 2∙(1.0 – B1)∙(1.0 - B2).

bitm_blend_
phoenix

BLEND_ PHOENIX For each RGBA value, take the lower
of B1, B2, and add the inverse of the
higher of B1, B2.

bitm_blend_
pin_light

BLEND_ PIN_LIGHT For each RGBA value, if a < 0.5,
do a blend darken of 2∙B1 and B2;
otherwise, do a blend lighten of
2 ∙ (1.0 – B1) and B2

bitm_blend_
reflect

BLEND_ REFLECT Same as BLEND_GLOW, but with B1 and
B2 exchanged. The sample shows
some artifacts because of the division.

Table 8-3.  (continued)

(continued)

Chapter 8 ■ ThMAD Module Reference

218

Both images are PNGs with WHITE as the assigned background color. Note that all
blend filters treat the color components RED, GREEN, BLUE, and ALPHA independently,
and that they all act pixel by pixel without mixing different pixels.

The resulting bitmap will be sent to the graphics hardware as a texture acting on a
quad with vertex colors all white.

Note that you can use the same bitmap for B1 and B2 to blend an image with itself.

Name of the Filter
Module

Corresponding “blend_type”
Anchor setting

Description

bitm_blend_
screen

BLEND_ SCREEN Same as blend multiply, but take the
inverses of B1 and B2, and from the
result take the inverse again. Where
a normal multiply intensifies dark
regions in both bitmaps, this mode
intensifies light regions in both
bitmaps.

bitm_blend_
soft_light

BLEND_ SOFT_LIGHT A softened version of BLEND_HARD_
LIGHT.

bitm_blend_
subtract

BLEND_ SUBTRACT Like addition, but lets RGBA values
refer to 0.5 as a zero point.
You can thus achieve a subtraction
if values are below 0.5. Clamps the
result to min. 0.0.

bitm_blend_
vivid_light

BLEND_ VIVID_LIGHT For each RGBA value, if B1 < 0.5,
take a color burn of 2 ∙ B1 and B2;
otherwise take a color dodge of 2 ∙
(1.0 – B1) and B2.

Table 8-3.  (continued)

Chapter 8 ■ ThMAD Module Reference

219

Table 8-4.  The blob module

blob Generates a blob

In settings

arms:float If you want to make a star or flower, set a value > 0.
The value 0 means: no arms.

attenuation: float Controls the sharpness of the shape. The less, the
blurrier.

star_flower: float Controls the density of the center part. If > 0, makes
arms thinner near the center (as for a flower).

angle:float Use this to rotate the shape (makes sense only if it has
arms).

color:float4 Defines the color of the blob.

alpha:enum Set to yes or no. If yes, use the ALPHA channel for the
density transition; otherwise apply ALPHA already
here. In the latter case the bitmap will have ALPHA = 1.0
everywhere.

size:enum One of 8x8, 16x16, 32x32, 64x64, 128x128, 256x256,
512x512, 1024x1024, or 2048x2048.
Defines the pixel size of the bitmap.

Out bitmap:bitmap The resulting bitmap.

Generators
Bitmap generators serve as a source for generating bitmaps without loading external
image files. The path is Bitmaps → Generators, then see Tables 8-4 to 8-9.

Table 8-5.  The concentric_circles module

concentric_circles Creates concentric circles

In settings

frequency: float Controls the density of circles to generate

attenuation: float Controls the sharpness of the shape. The less, the
blurrier

color:float4 Defines the color

alpha:enum Set to yes or no. If yes, use the ALPHA channel for the
density transition; otherwise apply ALPHA already
here. In the latter case, the bitmap will have
ALPHA = 1.0 everywhere.

Chapter 8 ■ ThMAD Module Reference

220

Table 8-6.  The perlin_noise module

perlin_noise A perlin noise bitmap

In perlin_options

rand_seed: float With the integer part changing, create noise of
another shape.

perlin_ strength:float The intensity of the noise.

size:enum One of 8x8, 16x16, 32x32, 64x64, 128x128, 256x256,
512x512, 1024x1024, or 2048x2048.
Defines the pixel size of the bitmap.

octave:enum The blurriness of the noise. The higher, the less
blurry. Values range from 1 to 16.

frequency: enum Defines the grain. Values range from 1 to 8-.

bitmap_type: enum One of integer or float. Unused.

blob_settings

enable_blob: enum Set to yes or no, whether to blend into a blob.

arms:float If you want to make a star or flower, set a value > 0.

attenuation: float Controls the sharpness of the shape. The less, the
blurrier.

star_flower: float Controls the density of the center part. If > 0, makes
arms thinner near the center (as for a flower).

angle: float Use this to rotate the shape (makes sense only if it
has arms).

color:float4 The color of the noise.

alpha:enum Set to yes or no” If yes” use the ALPHA channel for
the density transition; otherwise apply ALPHA already
here. In the latter case, the bitmap will have ALPHA =
1.0 everywhere.

Out bitmap:bitmap The resulting bitmap.

Chapter 8 ■ ThMAD Module Reference

221

Table 8-7.  The plasma module

plasma Generates a deterministic, non-random regular plasma.
Color values are calculated VIA Linear function of:

sin(linear function of x) ∙ sin(linear function of y)

In settings

col_amp: float4 Color-component-wise multiplier of the outer linear
function

col_ofs:float4 Color-component-wise additive of the outer linear
function

period: complex Contains color-component-wise float3 anchors for the
multiplier of the linear functions inside the sin() terms
(the third component of each float3 is unused, since we
need only x and y coordinates)

ofs:complex Contains color-component-wise float3 anchors for the
additives of the linear functions inside the sin() terms
(the third component of each float3 is unused, since
we need only x and y coordinates)

size:enum Bitmap size, one of: 8x8, 16x16, 32x32, 64x64, 128x128,
256x256, 512x512, or 1024x1024.

Out bitmap:bitmap The result bitmap

Table 8-8.  The solid module

solid Generate a monochrome bitmap with the same color
for every pixel. You can use this for filters for colorizing
bitmaps

In color:float4 The color

size:enum Bitmap size one of: 8x8, 16x16, 32x32, 64x64, 128x128,
256x256, 512x512, 1024x1024,
or 2048x2048

Out bitmap:bitmap The result bitmap

Chapter 8 ■ ThMAD Module Reference

222

Table 8-9.  The subplasma module

subplasma Generates a random plasma. Much less artificial compared
to the plasma module

In rand_seed:float With the integer part changing, create a subplasma of
another shape

size:enum Bitmap size, one of: 8x8, 16x16, 32x32, 64x64, 128x128,
256x256, 512x512, or 1024x1024

amplitude: enum Defines the grain of the subplasma. the higher, the finer.
Available values are 2, 4, 8, 16, 32, 64, 128, 256, and 512

color:float4 The color of the subplasma

Out bitmap:bitmap The result bitmap

Loaders
Loads bitmaps from files. The path is Bitmaps → Loaders. Then see Tables 8-10 to 8-12.

Table 8-10.  The jpeg_bitm_load module

jpeg_bitm_load Load a JPG file as bitmap. The file must be inside
the /home/[USER]/thmad/ [VERSION]/data/
resources folder

In filename: resource Points to the file inside the resources folder.

Out bitmap:bitmap Output bitmap.

texture:texture Directly sends a texture to the graphics hardware
after loaded.

Table 8-11.  The jpeg_bitm_load_alpha module

jpeg_bitm_load_alpha Loads two JPG files. The second one defines the
ALPHA channel. Both files must be inside the
/home/[USER]/thmad/ [VERSION]/data/
resources folder

In filename_rgb: resource The RGB data

filename_ alpha:resource The ALPHA data; use a gray-value bitmap to
specify the ALPHA value

Out bitmap:bitmap Output bitmap

texture:texture Directly send as texture to the graphics hardware
after loaded

Chapter 8 ■ ThMAD Module Reference

223

Table 8-12.  The png_bitm_load module

png_bitm_load Load a PNG file as bitmap. The file must be inside
the /home/[USER]/thmad/ [VERSION]/data/
resources folder.

In Filename: resource Points to the file inside the resources folder.

reload:enum An action enum. Click on yes to tell ThMAD to
reload the file.

Out bitmap:bitmap Output bitmap

texture:texture Send as texture to the graphics hardware after
loaded

Modifiers
Modification of bitmaps. The path is Bitmaps → Modifiers → add_noise. See Table 8-13.

Table 8-13.  The add_noise module

add_noise Add noise to a bitmap. Note that this is an expensive
operation, because the bitmap needs to be
recalculated often

In bitmap_in:bitmap Input bitmap

time_rate:float Time interval in milliseconds for applying noise.

noise_amount: float How much noise to add: 1.0 maximum amount, 0.0
nothing

Out bitmap:bitmap Output bitmap

Dummies
Dummies either do nothing or pass through values without changing them. They are
used for technical reasons or for multiplexing controllers. For example, modules A and B
need a float input, and you want the corresponding anchors to be subject only to manual
changes, i.e., using the GUI, and in addition synchronized. They should always receive
the same controller value. Without dummies, you’d have to change them one after the
other. To avoid this monotonous work, you can use a dummy and connect it to A and B;
see Figure 8-1.

Chapter 8 ■ ThMAD Module Reference

224

Dummies are situated at various places in the module hierarchy—the Dummies
module section provides aliases for dummies from different other module sections; see
Table 8-14.

Figure 8-1.  Using dummies to simplify manual controlling

On the left side of the figure, you need to adjust two controllers if you want to synchronize
the input. Using the dummy shown on the right allows you to do it in one step.

Table 8-14.  Dummy module aliases

Name Description Is An Alias To

float_dummy Multiplexes a float value Maths → Dummies → float_
dummy

float3_dummy Multiplexes a float3 vector Maths → Dummies → float3_
dummy

float4_dummy Multiplexes a float4 vector,
mostly color values

Maths → Dummies → float4_
dummy

quaternion_dummy Multiplexes a quaternion Maths → Dummies → quaternion_
dummy

mesh_dummy Multiplexes a mesh input Mesh → Dummies → mesh_
dummy

texture_dummy Multiplexes a texture input Texture → Dummies → texture_
dummy

Chapter 8 ■ ThMAD Module Reference

225

Math Modules
Math modules are important for controlling other modules. They do not produce any
graphical output.

Accumulators
Accumulators accumulate input values, i.e., they hold an internal value that is updated
each frame by means of an input value provided. The initial value of each is the neutral
element of the operation, for addition 0.0 or an array with 0.0 valued elements, for a
quaternion multiplication (0.0; 0.0; 0.0; 1.0).

If a reset:enum input anchor is used, this means that setting its value to ok will reset
the accumulator once to its initial state. This anchor will be deactivated automatically the
next frame, so you have to set it to ok again if you want to repeat the action.

The path is Maths → Arithmetic → Accumulators, then see Table 8-15.

Table 8-15.  Accumulator modules

Name Type Parameter Names Description

float_
accumulator

float → float float_in → result_float Adds the input value to
the accumulator each
frame.

float_
accumulator_
limits

float → float float_in, limit_lower,
limit_upper → result_float

Adds the input value
to the accumulator
each frame. If the
accumulator value ever
is beyond one of the
limits, it is clamped to
the corresponding limit.

float3_
accumulator

float3 → float3 float3_in → result_float3 Adds the input float3
value component-wise
to the accumulator each
frame.

float4_
accumulator

float4 → float4 float4_in → result_float4 Adds the input float4
value component-wise
to the accumulator each
frame.

(continued)

Chapter 8 ■ ThMAD Module Reference

226

Arithmetic
This category is about basic arithmetical operations.

Unary Operators
An operation in → out with all types the same.

In case of Boolean operators, input and output are mapped floats. An input inside
[-0.5;0.5] means FALSE, an input less than -0.5 or greater than +0.5 means TRUE, an output
of 1.0 means TRUE and an output of 0.0 means FALSE. The path is Maths → Arithmetic →
Unary. Then Table 8-16 gives an overview.

Name Type Parameter Names Description

quat_
rotation_
accum_2d

float x float →
quate rnion

param_x, param_y →
result_quat

In ThMAD quaternions
are represented by (x, y,
z; w), meaning its special
real part sits at the end of
the array.
The param_x and
param_y build multiplier
quaternions (0,x,0; 1)
resp. (0,0,y; 1) for
the first and second
multiplication or
rotation to be applied
each frame:

accum = accum ∙
(0,x,0; 1)
accum = accum ∙
(0,0,y; 1)

Because of the
special properties
of quaternions a
multiplication of this
form can describe any
rotation.

Table 8-15.  (continued)

Chapter 8 ■ ThMAD Module Reference

227

Table 8-16.  Unary operators

Name Type Parameter Names Description

cos float float_in→ result_float Cosine function out = cos(in)

sin float float_in→ result_float Sine function out = sin(in)

tan float float_in→ result_float Tangent function out = tan(in)

acos float float_in→ result_float Arcus cosine function out =
arccos(in)

atan float float_in→ result_float Arcus tangent function out =
arctan(in)

abs float float_in→ result_float Absolute value, removes the sign
out = abs(in)

not float a → result_float Boolean NOT out = not(in)

derivative float float_in→ result_float Derivative function out = in - last_in
Since the module will be called
each 1/60 second, that means this is
an approximate derivative in time,
1/60 ∙ d / dt

ifinside float float_in→ result_float
parameters:
low, high val_inside,
val_outside

Checks whether the input lies
inside the range [low;high], and if
so, outputs val_inside. Otherwise
outputs val_outside.

vector_
normalize

float3 param1 → result_float3 Normalizes a float3 vector, i.e.
changes its length to 1.0 while
keeping the direction:
v → v / || v ||

Binary Operators
An operation in1 ○ in2 → out with all types the same. The path is Maths → Arithmetic →
Binary → * → *.

Table 8-17 gives a list; note that in case of Booleans, input and output are mapped
floats: an input inside [-0.5;0.5] means FALSE, an input less than -0.5 or greater than +0.5
means TRUE, an output of 1.0 means TRUE and an output of 0.0 means FALSE.

Chapter 8 ■ ThMAD Module Reference

228

Table 8-17.  Binary operators

Name Type Parameter Names Description

mod float param1 param2 → mod Modulus of division
out = in1 - int(in1 / in2) ∙ in2 where
int() removes the fractional part

add float param1 param2 → sum Addition
out = in1 + in2

sub float param1 param2 → diff Subtraction
out = in1 - in2

mult float param1 param2 → mult Multiplication out = in1 ∙ in2

div float param1 param2 → div Division
out = in1 / in2

max float param1 param2 → max Maximum
out = in1 > in2 ? in1 :else: in2

min float param1 param2 → min Minimum
out = in1 < in2 ? in1 :else: in2

pow float param1 param2 → pow Power
out = in1 ^ in2

round float param1 param2 → round Rounds
out = round0(in1 / in2) ∙ in2 where
round0() gives the closest integer
(half up for positives, half down for
negatives)
Example: in1 = 25.6382,
in2 = 100 → 25.64
Example: in1 = 25.635,
in2 = 100 → 25.64
Example: in1 = -25.635,
in2 = 100 → -25.64

floor float param1 param2 → floor Gives the scaled floor
out = floor0(in1 / in2) ∙ in2 where
floor0() gives the next lower integer
Example: in1 = 25.6382,
in2 = 100 → 25.63

ceil float param1 param2 → ceil Gives the scaled ceil
out = ceil0(in1 / in2) ∙ in2 where
ceil0() gives the next
upper integer
Example: in1 = 25.6312,
in2 = 100 → 25.64

(continued)

Chapter 8 ■ ThMAD Module Reference

229

Name Type Parameter Names Description

and float
(boolean)

param1 param2 → and Boolean AND
out = in1 && in2
0,0 → 0	 1,0 → 0	 0,1 → 0
1,1 → 1

or float
(boolean)

param1 param2 → or Boolean OR
out = in1 || in2
0,0 → 0	 1,0 → 1	 0,1 → 1
1,1 → 1

nand float
(boolean)

param1 param2 → nand Boolean NAND
out = not(in1 && in2)
0,0 → 1	 1,0 → 1	 0,1 → 1
1,1 → 0

xor float
(boolean)

param1 param2 → xor Boolean XOR
out = (in1 || in2) &&
not(in1 && in2)
0,0 → 0	 1,0 → 1	 0,1 → 1
1,1 → 1

nor float
(boolean)

param1 param2 → nor Boolean NOR
out = not(in1 || in2)
0,0 → 1	 1,0 → 0	 0,1 → 0
1,1 → 0

float4_
add

float4 param1 param2 → result Component-wise addition of two
float4 values
out

i
 = in1

i
 + in2

i

quat_
mul

quaternion param1 param2 → result Quaternion multiplication out =
in1  in2
If seen as a rotation in space, the
multiplication represents two
subsequent rotations.

vector_
add

float3 param1 param2
→ result_float3

Vector addition out
i
 = in1

i
 + in2

i

vector_
cross_
product

float3 param1 param2
→ result_float3

Vector cross product out = in1 x in2

vector_
from_
points

float3 param1 param2
→ result_float3

Vector from point A to point b,
essentially a subtraction of their
position vectors
out

i
 = in2

i
 - in1

i

Table 8-17.  (continued)

Chapter 8 ■ ThMAD Module Reference

230

Ternary Operators
An operation in1 ○ in2 ○ in3 → out with all types the same. The path is Maths →
Arithmetic → Ternary → Float → mult_add. There is just one, as shown in Table 8-18.

Table 8-18.  Ternary Operators

Name Type Parameter Names Description

mult_add float float_in first_mult then_
add → result_float

First multiply, then add
out = (float_in ∙ first_mult) + then_add

Functions
Functions have one or more input values of one or more types, and one or more output
values of possibly different types. The path is Maths → Arithmetic → Functions. See
Tables 8-19 to 8-26.

Table 8-19. 

compare Compares two values, fuzzily if checked for equality

In float_a:float First float.

float_b:float Second float.

operator:enum One of equals, larger_than or smaller_than.

Out result:float For equals: Will return 1.0 if abs(a-b) < 0.00001, else 0.0
For larger_than: Will return 1.0 if a > b, else 0.0
For smaller_than: Will return 1.0 if a < b, else 0.0

Table 8-20. 

float4_mul_float Multiplies all components of a float4 with a
given other float

In param1:float4 float4 value

param2:float float multiplicand

Out result_float4: float4 The new float4 value: (param1
i
∙ param2)

Chapter 8 ■ ThMAD Module Reference

231

Table 8-21. 

quaternion_to_axis_angle Converts a rotation representing quaternion to an
axis and angle value describing the same rotation

In source_ quaternion:
quaternion

The input quaternion

Out result_axis: float3 The output axis

result_angle: float Rotation angle around the output axis

Table 8-22. 

axis_angle_to_quaternion Converts a rotation around an axis by an angle to a
quaternion representation

In axis:float3 The axis

angle:float The rotation angle around the axis

Out Result: quaternion The quaternion representing the same operation

Table 8-23. 

vector_add_float Adds one float to each vector component outi =
in1i + in2

In param1:float3 Vector

param2:float Single scalar to add to each component

Out result_float3:float3 The result vector

Table 8-24. 

vector_dot_product Vector dot product out = Σi in1i ∙ in2i

In param1:float3 First vector

param2:float3 Second vector

Out result_float: float Dot product

Chapter 8 ■ ThMAD Module Reference

232

Table 8-26. 

float3_rotate_by_quat Lets a point vector rotate around a center point
with a rotation defined by a quaternion

In point:float3 The (position) vector we want to rotate

center:float3 Rotate around this center point

Out result_float3: float3 The result of the rotation

Array
Array related functions. The path is Maths → Array. See Tables 8-27 to 8-29.

Table 8-27. 

float_array_memory_
buffer

A buffer of variable size. Adds the input value according
to the mode

In float_in:float The next value to be added the next frame.

size:enum The size of the buffer. One of 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048, or 4096.

mode:enum If rewind, starts adding at the left array boundary, then
increases the position by one each step. When the
maximum is exceeded, starts at the left boundary again.
If shift, starts adding left, and when the maximum is
exceeded, shifts the complete array left and henceforth
only adds at the right boundary.
If insert_right, always shifts left and always adds at the
right array boundary.

ema:float Can be used for a smoothing of input values.
0.0 means no smoothing, 0.9 means normal, 0.99 means
slow smoothing. You do not want to let that value be ≥ 1.0.

Out result_array:
float_array

The current buffer.

cur_index:float The index of the next float that will be added.

Table 8-25. 

vector_mul_float Multiplies a vector by a scalar outi = in1i ∙ in2

In param1:float3 The vector to scale

param2:float The scalar multiplier

Out result_float3: float3 The result of the multiplication

Chapter 8 ■ ThMAD Module Reference

233

Table 8-28. 

float_array_pick Picks a single value from a float_array

In float_in: float_array The array to get the value from

which:float The index. If the index is out of bounds, the last
value returned will be returned again.

Out result_float: float The value picked.

Table 8-29. 

float_array_average Calculates the average of the array given

In float_in: float_array The array

start:float The start index inside the array

end:float The end index inside the array

Out result_float: float The average. If start and/or en index are
fractional, at the edges a weighted value of the
adjacent members will be taken into account

Color
A color is a four dimensional value, or float4, comprising the following:

•	 RED

•	 GREEN

•	 BLUE

•	 ALPHA, opacity or inverse transparency

with all values being inside [0.0;1.0].
The path is Maths → Color. Functions useful especially for colors are shown in

Tables 8-30 and 8-31.

Chapter 8 ■ ThMAD Module Reference

234

Table 8-31. 

converters → f4_hsl_to_f4_rgb Converts a HSL+A color from the HSL color
space to a RGBA float4

In hsl:float4 HUE, SATURATION, LIGHTNESS, Alpha

Out result_float4: float4 The RGBA color

Table 8-30. 

converters → 4f_hsv_to_f4_rgb Converts a HSV+A color from the HSV space
to an RGBA float4

In h:float HUE

s:float SATURATION

v:float VALUE

a:float Alpha

Out result_float4: float4 The RGBA color

Converters
Various converters from one data type to another. Converters for color types are not here;
find them later in this chapter. The path is Maths → Converters. See Tables 8-32 to 8-39.

Table 8-32. 

float_to_float3 Multiplexes a single input float to all components
of a float3

In param1:float The input

Out result_float3: float3 A float3 (param1;param1;param1)

Table 8-33. 

3float_to_float3 Constructs a float3 given its constituents

In floata:float First float

floatb:float Second float

floatc:float Third float

Out result_float3: float3 The float3 output (floata; floatb; floatc)

Chapter 8 ■ ThMAD Module Reference

235

Table 8-34. 

4float_to_float4 Constructs a float4 given its constituents

In floata:float First float

floatb:float Second float

floatc:float Third float

floatd:float Fourth float

Out result_float4: float4 The float4 output (floata; floatb; floatc;
floatd)

Table 8-35. 

float3_to_float Inflates a float3 value

In float3_in:float3 Input float3

Out a:float First float

b:float Second float

c:float Third float

Table 8-36. 

float4_to_4float Inflates a float4 value

In in_float4:float4 Input float4

Out param1:float First float

param2:float Second float

param3:float Third float

param4:float Fourth float

Table 8-37. 

quaternion_to_4float Inflates a quaternion

In in_quat: quaternion Input quaternion

Out param1:float i value = x in ThMAD

param2:float j value = y in ThMAD

param3:float k value = z in ThMAD

param4:float Real part = w in ThMAD

Chapter 8 ■ ThMAD Module Reference

236

Table 8-38. 

4float_to_quaternion Constructs a quaternion given its constituents

In param1:float i value = x in ThMAD

param2:float j value = y in ThMAD

param3:float k value = z in ThMAD

param4:float Real part = w in ThMAD

Out result_quat: quaternion The output quaternion

Table 8-39. 

matrix_to_quaternion Converts a suitable matrix to a corresponding
quaternion

In source_matrix: matrix The 4x4 matrix

Out result_quat: quaternion The output quaternion

Dummies
Because of modules being able to provide more then one outgoing data flow per anchor,
it might be helpful to multiplex values in such a way that one controller controls several
components at the same time, providing the same value to all of them. That is what
dummies are for. The path is Maths → Dummies. See Tables 8-40 to 8-43.

Table 8-40. 

float_dummy Multiplexes a single input float

In float_in:float The input

Out result_float: float The input copied to the output. Several other
modules can connect to.

Table 8-41. 

float3_dummy Multiplexes a single input float3

In float3_in:float3 The input

Out out_float3: float3 The input copied to the output. Several other
modules can connect to.

Chapter 8 ■ ThMAD Module Reference

237

Table 8-42. 

float4_dummy Multiplexes a single input float4

In float4_in:float4 The input

Out out_float4: float4 The input copied to the output. Here several other
modules can connect to.

Table 8-43. 

quaternion_dummy Multiplexes a single input quaternion

In quat_in: quaternion The input

Out out_quat: quaternion The input copied to the output. Here several
other modules can connect to.

Interpolation
Interpolation between values of different types. The path is Maths → Interpolation. See
Tables 8-44 to 8-49.

Table 8-44. 

float_interpolate Linearly interpolates between two anchor values

In float_in_a:float The first value

float_in_b:float The second value

pos:float The position, range is [0.0;1.0]

Out result_float: float The interpolation:
float_in_a + pos ∙ (float_in_b - float_in_a)

Table 8-45. 

float3_interpolate Linearly interpolates between two anchor
values.

In float3_in_a: float3 The first value

float3_in_b: float3 The second value

pos:float The position, range is [0.0;1.0]

Out result_float3: float3 The interpolation:
float3_in_a + pos ∙ (float3_in_b -
float3_in_a)

Chapter 8 ■ ThMAD Module Reference

238

Table 8-46. 

float4_interpolate Linearly interpolates between two anchor
values

In float4_in_a: float4 The first value

float4_in_b: float4 The second value

pos:float The position, range is [0.0;1.0]

Out result_float4: float4 The interpolation:
float3_in_a + pos ∙ (float3_in_b -
float3_in_a)

Table 8-47. 

float_smoother Gradually in time changes from an internally
stored value to a given end value. Say the internal
value reads 5.0, and the end value 1.0, then
smoothly changes the internal value from 5.0 with
decreasing steps to 1.0

In value_in:float The end value to change to

speed:float The speed

Out result_float: float The current developing internal value

Table 8-48. 

quat_slerp_2p Linearly interpolates between two quaternions.
You use this for a smooth rotation

In quat_a: quaternion The first value

quat_b: quaternion The second value

pos:float The position, range is [0.0;1.0]

Out result_quat: quaternion The interpolation:
quat_a + pos ∙ (quat_b - quat_a)

Chapter 8 ■ ThMAD Module Reference

239

Table 8-49. 

quat_slerp_3p Linearly interpolates between three quaternions,
either from first to second or from second to
third, depending on whether the pos parameter
is less than or greater than 0.5

In quat_a: quaternion The first value

quat_b: quaternion The second value

quat_c: quaternion The third value

pos:float The position, range is [0.0;1.0]

Out result_quat: quaternion The interpolation:
pos < 0.5: quat_a + 2 ∙ pos ∙
(quat_b - quat_a)
pos ≥ 0.5: quat_b + 2 ∙ (pos-0.5) ∙
(quat_c - quat_b)

Limiters
Limiters for float values. The path is Maths → Limiters. See Tables 8-50 and 8-51.

Table 8-50. 

float_limiter Limits either to a max or a min value

In value_in:float The input float

limit_value: float Where to set the limit

type:enum One of: max, min. Whether to set an upper or a
lower limit.

Out result_float: float The limited value:
type = max → result = min(value, limit)
type = min → result = max(value, limit)

Chapter 8 ■ ThMAD Module Reference

240

Oscillators
Oscillators produce a periodically reoccurring float value, given some frequency f. More
formally, function(t + n ∙ 1/f) = function(t), n = 0, +/- 1, +/- 2, …

float_sequencer
The float_sequencer allows for repeatedly producing float numbers from a given
sequence. The path is Maths → Oscillators → float_sequencer.

The sequence is defined from inside the Artiste GUI using a graphical
float_sequence controller. The values are repeated unconditionally or triggered,
depending on the chosen type; see Table 8-52.

Table 8-52.  Sequencer types

Type Description

oscillating Repeats unconditionally and endlessly.

trigger Only starts and runs once when the trigger changes from:
trigger < 0 → trigger > 0
At the end of the sequence, stops with emitting the last value.
Starts again when the same trigger
trigger < 0 → trigger > 0
got fired again.

trigger_pingpong Same as trigger, but alternately runs the sequence in forward
and reverse order when the trigger got fired again and again.

trigger_sync Same as trigger_pingpong, but the forward sequence runs when
triggering
trigger < 0 → trigger > 0
and the reverse sequence runs when trigger > 0 → trigger < 0

The anchors are shown in Table 8-53.

Table 8-51. 

float_clamp Limits value to stay inside a range

In value:float The input float

low:float The lower limit

high:float The upper limit

Out result_float: float The clamped value:
low ≤ value ≤ max → value value < low → low
value > high → high

Chapter 8 ■ ThMAD Module Reference

241

Table 8-53. 

float_sequencer A float sequencer

In float_sequence:
sequence

The float sequence.

length:float The number of seconds one sequence run will take.

options:complex

behavior: enum The oscillator behavior, one of oscillating, trigger,
trigger_pingpong, trigger_sync.

time_source: enum Time (hidden input parameter) source. One of:

−	� operating_system: Will use the operating
system’s timer

−	� sequence: Will use the sequence timer, i.e., may
disregard sequencing gaps

trigger:float The trigger value. Unused for behavior = oscillating.

drive_type: enum Time (hidden input parameter) mode. One of:

−	� time_internal_relative: Pass the time that
elapsed for rendering work since the engine
started.

−	 external: Use the drive parameter.

drive:float Time parameter if external was used as drive_type.
So you can use your own idea of time.

Out float:float The oscillator value, one of the sequence

inside_range
The path is Maths → Oscillators → inside_range See Table 8-54.

Table 8-54. 

inside_range Tells whether or not a number lies inside a certain range

In sound_in:float The input float

range_low:float Lower limit

range_high:float Upper limit

randomness: float Specifies the randomness for the random_beat anchor. 0
means never fire, 100 means always fire.

Out every_beat:float Fires a one-frame pulse of 1.0 once the range is entered

random_beat: float Same as every_beat, but fire only with a certain
probability

in_range:float 1.0 when we are inside the range. Otherwise 0.0.

Chapter 8 ■ ThMAD Module Reference

242

This is not an oscillator in the strictest sense, but an aggregator of input data. With
input data showing periodic components, such as with music, it will look like an oscillator
to components connected to its output, so it is in the oscillator section.

This pseudo-oscillator is useful for sound beat detection. It will even out
unimportant side-beats to some extend. More in detail, it will act as follows: given an
input of numbers a

1
, a

2
, a

3
, a

4
, … and a range [r

1
,r

2
], the module’s in_range output anchor

will be 1.0 for all numbers inside the range: a
i
 ∈ [r

1
,r

2
] , and 0.0 for all others. As an

example, see Figure 8-2.

Figure 8-2.  In-range pseudo-oscillator, in-range output

The white line denotes the input signal, green is the range, and the violet line is the
in_range output.

In addition, the output anchor every_beat fires a single pulse every time the
in_range output changes from 0.0 to 1.0. And as a variation to the latter, the output
anchor random_beat will fire single pulses on a random basis when the in_range output
changes from 0.0 to 1.0. The “randomness” input parameter describes the rate: only
when some random number between 0 and 100 lies inside [0;randomness], that pulse
will be fired. So the probability of such random pulses will be “randomness” percent. An
example for the every_beat output is shown in Figure 8-3.

Chapter 8 ■ ThMAD Module Reference

243

oscillator
This depends on the type: a noise, sine, saw, square, triangle, or quadratic oscillator.
The path is Maths → Oscillators → Oscillator.

In detail, if freq is the frequency f, amp is the amplitude, and ofs is the offset; see
Table 8-55.

Figure 8-3.  In-range pseudo-oscillator, beat output

The white line denotes the input signal, green is the range, and the violet line is the
every_beat output.

Table 8-55.  The oscillator module’s types

Name Type Description

noise Noise Will create a random value from inside [-1;+1] ∙ amp + ofs
each per frequency seconds

sin Sine For f = 1:

ofs will add to the values. NOTE: this is not mathematically
sin(t), but sin(t ∙2π), so we have a full cycle each t → t + 1

saw Saw For f = 1:

ofs will add to the values

(continued)

Chapter 8 ■ ThMAD Module Reference

244

In addition, a parameter phase will add to the time, meaning shifting the curves
horizontally. This is not used very often and left to its default value 0 you don’t have to
care about it if you don’t need it. For all parameters, see Table 8-56.

Name Type Description

square Square For f = 1:

ofs will add to the values

triangle Triangle For f = 1:

ofs will add to the values

quadratic Half a
parabolic
curve
repeated

For f = 1:

ofs will add to the values

Table 8-55.  (continued)

Table 8-56. 

oscillator An oscillator

In osc:complex

osc_type: enum The oscillator type; one of noise, sin, saw, square,
triangle, or quadratic.

freq:float Frequency in 1/s

amp:float Amplitude; the oscillator will be inside [-amp; +amp] + ofs

ofs:float Offset; the oscillator will be inside [-amp; +amp] + ofs

phase.float Adds a value to the time parameter

(continued)

Chapter 8 ■ ThMAD Module Reference

245

Table 8-56.  (continued)

oscillator An oscillator

options:complex

time_source:
enum

Time source (hidden input parameter). One of:

−	� operating_system: Will use the operating system’s
timer

−	� sequence: Will use the sequence timer, i.e. may
subtract sequencing gaps

drive_type:
enum

Time mode (hidden input parameter). One of:

−	� time_internal_absolute: Pass the absolute time
since the engine started

−	� time_internal_relative: Pass the time which
elapsed for rendering work since the engine
started.

−	 external: Use the drive parameter.

drive:float Time parameter if external was used as drive_type. So
you can have your own idea of time.

Out float:float The oscillator value, always inside [-amp; +amp] + ofs

pulse_oscillator
Repeatedly provides pulses of adjustable shape and length. Note that it only will start
producing output when the trigger is activated. The path is Maths → Oscillators → pulse_
oscillator. Possible shapes are shown in Table 8-57.

Chapter 8 ■ ThMAD Module Reference

246

For the parameters, see Table 8-58.

Table 8-58. 

pulse_oscillator

In in_signal:float Defaults to 1.0 You can use this to let the pulse
envelope an input signal, see Figure 8-4.

trigger:float Defaults to 0.0 The pulse oscillator will run only when
trigger > 0.

osc:complex

freq:float Frequency of the pulse, in 1/sec.

pulse_type: enum The pulse type. One of: triangle, square, cosine,
or gauss.

Table 8-57.  Pulse types

Triangle

Square

Cosine

Gauss

(continued)

Chapter 8 ■ ThMAD Module Reference

247

pulse_oscillator

pulse_width: float The width of the pulse in seconds. For triangle, square
and cosine shapes the width is obvious. For the gauss
type, the width is -3σ up to 3σ (search for “Normal
Distribution” in your favorite search engine).

time_source: enum Time (hidden input parameter) source. One of:

−	� operating_system: Will use the operating
system’s timer

−	� sequence: Will use the sequence timer, i.e., may
subtract sequencing gaps

Out result1float The oscillator value, always inside [0;in_signal]

Table 8-58.  (continued)

Figure 8-4.  Pulse oscillator of type “triangle” with enveloped input signal

Mesh
Meshes are collections of points that define surfaces, or faces, of objects in 3D.

Dummies
Dummies just forward their mesh input to the output. This is useful if you need a mesh
to communicate to the interior of a macro and you have several consumers. The path is
Mesh → Dummies → mesh_dummy. See Table 8-59.

Chapter 8 ■ ThMAD Module Reference

248

Table 8-59. 

mesh_dummy Just pass its mesh input to the output

In mesh_in:mesh Input mesh

Out mesh_out:mesh Output mesh

Generators
Generators produce pixel data. The path is Mesh → Generators. See Tables 8-60 to 8-63.

Table 8-60. 

ocean An ocean in the x-z plane (y=0)

In time_speed: float A time scaling for the surface motion

lambda:float Controls the wave speed

wind_speed_x: float Simulated wind speed x-coordinate

wind_speed_y: float Simulated wind speed y-coordinate

normals_only: enum Set to yes or no. If yes, use a slightly different
algorithm where x-z-distortions are ignored.

Out mesh:mesh Output mesh

Table 8-61. 

ocean_tunnel Category special effects. Uses the ocean simulation
from module ocean, but maps calculated coordinates
onto a tube

In time_spec:float Time scaling factor for the movement

Out mesh:mesh Output mesh

Chapter 8 ■ ThMAD Module Reference

249

Table 8-62. 

ribbon A twisted 3D ribbon, changes when time goes by

In spatial

start_point: float3 Where the ribbon starts

end_point: float3 Where the ribbon ends

up_vector: float3 Up-vector for the skew

shape

width:float Ribbon width

skew_amp: float Skew amplitude

time_amp: float Shape change amplitude

time_source: enum One of sequence or real. If sequence, take
sequenced time (needs to be started manually).
If real, take real time since ThMAD start.

segm_count: float Number of segments to draw the ribbon

Out mesh:mesh Output mesh

Table 8-63. 

xtra → kaleido_mesh A mesh like a hyperbolic bowl

In Hemispheric: float The shape of the bowl. 0.0 is flat, 1.0 is like a
half ball, more than 1.0 will squeeze further

Out mesh_out: mesh Output mesh

Importers
Imports Cal3D or Blender files. The path is Mesh → Importers. See Tables 8-64 and 8-65.

Chapter 8 ■ ThMAD Module Reference

250

Table 8-64. 

cal3d_importer Imports a cal3d project. An example is the
state in the examples folder at examples/
dolphin

In filename:resource Points to a Cal3D *.cfg file

use_thread:enum Set to yes or no. Whether to do the mesh
generation in background

transforms: complex

pre_rotation: quaternion Describes a pre-rotation while loading.

pre_rotation_ center:float The center of the pre-rotation

rotation: A rotation after import

quaternion

rotation_center: float3 The center for the rotation

post_rot_ translate:float3 Translation after import

bones:complex Allows for adapting various parameters of
the Cal3D model

Out mesh:mesh Output mesh

bones_bounding_ box:mesh The bones bounding box

absolutes:complex The output counterpart of the “bones”
input anchor

Table 8-65. 

obj_importer Imports a Blender *.obj file (Blender is an
industrial grade 3D authoring program)

In filename:resource The *.obj file to import. The examples/
meshes resource folder contains some
examples

preserve_uv_ coords:enum Set to NO or YES, whether or not to also read
the texture uv-coordinates from the file

center_object: enum Set to NO or YES, whether to center the
object at the origin (uses center of mass
algorithm)

Out mesh:mesh The output mesh

Chapter 8 ■ ThMAD Module Reference

251

�Modifiers: Color
Mesh vertices color related modules. The path is Mesh → Modifiers → Color. See Table 8-66.

Table 8-66. 

mesh_colorfield Sets colors of vertices according to a color field. Given
a vector A→B, all vertices get projected onto that
vector, and the position there describes the position
in the interpolated RGBA color gradient. If off limits, a
modulus (repetition) will apply

In mesh_in: mesh The input mesh

start_pos:float3 A start position for the color field

color_from:float4 Color at the start position

end_pos:float3 An end position for the color field

color_to:float4 Color at the end position

Out mesh_out:mesh The output mesh

Modifiers: Converters
Converts mesh data. The path is mesh → modifiers → converters → mesh_to_float3_
arrays. See Table 8-67.

Table 8-67. 

mesh_to_float3_arrays Converts a mesh to corresponding float3
arrays.

Since no modules have a float3_array
input, this module is currently not of
much use

In mesh_in: mesh Input mesh

Out vertices: float3_array The vertices of the mesh

vertex_normals: float3_array The vertex normal

face_normals: float3_array The face normals

face_centers: float3_arrays The face centers

Chapter 8 ■ ThMAD Module Reference

252

Modifiers: Deformers
Modules for altering mesh coordinates. The path is Mesh → Modifiers → Deformers.
See Tables 8-68 to 8-74.

Table 8-68. 

mesh_explode Explodes a mesh. Breaks mesh constituents
boundaries and lets them blow apart

In mesh_in:mesh Input mesh

start:float An explosion trigger. Once set to a value > 0,
explosion starts. The value of this parameter controls
the exploding particle speed. The higher, the faster.
Once set to < 0, start all over with the unexploded
mesh

explosion_
factor:float

A factor multiplied to the explosion speed (you can
set start to 1.0 and let only this parameter control
the speed)

velocity_
deceleration:float

Controls the amount the exploding particles get
slower after exploding.

use_weights: enum Set to no or yes. If yes, each particle’s weight after the
explosion is calculated from its spatial extent, and
the weight will influence the speed the particles blow
apart.

weight_power:float Controls the influence of the weight if enabled. If
higher than one, small particle’s weight differences
do not count that much.

Out mesh_out:mesh The output mesh.

Table 8-69. 

mesh_inflate This module is currently under construction and not
functional

Table 8-70. 

mesh_noise Adds noise to vertex coordinates. Normals, texture
coordinates and face assignments stay untouched

In mesh_in:mesh The input mesh

noise:amount: float3 The noise amount in each direction

Out mesh_out: mesh The output mesh

Chapter 8 ■ ThMAD Module Reference

253

Table 8-71. 

mesh_normal_ randistort Randomly distorts vertex coordinates and/or
vertex normals. If just distorting normals, you
can add interesting light effects, since the
normals control the light reflection

In mesh_in_mesh Input mesh

distortion_ factor:float3 The random distortion factor in x, y and z
dimension

distort_ normals:enum Set to no or yes, whether to distort the
normals (heavily affecting light reflectivity)

distort_ vertices:enum Set to no or yes, whether to distort vertex
coordinates.

vertex_ distortion_
factor:float

If both normals and vertices are distorted,
use this to control the relative amount of
vertex distortion

Out mesh_out: mesh The output mesh

Table 8-72. 

mesh_rain_down Simulates a raining down or falling down of
particles

In mesh_in:mesh The input mesh.

start:float Controls both the onset of the effect (start > 0)
and the magnitude of the effect (explosion and
raining speed) .

floor_level:float Where raining stops on the y-axis.

explosion_ factor:float Explosion of the particles (decoupled parts of
the input mesh) on the x-z plane. Default is 1.0
(no explosion), and higher values increase the
explosion magnitude.

landing_ Landing, that is the final stage of the movement

fluffiness: along the y-axis, can be tuned according to this

float input parameter. Default is 0.0, which means

off, and higher values lower the floor_level

parameter on a per-particle basis, weighted by

the size of each particle.

Out mesh_out: mesh The output mesh

Chapter 8 ■ ThMAD Module Reference

254

Table 8-73. 

mesh_vertex_move This module is currently under construction and not
functional

Table 8-74. 

mesh_vortex This module is currently under construction and not
functional

As for the mesh_rain_down module, given an input mesh, this deformer will decouple
all the parts of it and start exploding and moving them down the y-axis, all the way down
to to some floor level. It thus mimics rain when coming out of a cloud.

If you need a movement in a different direction, you can use the rotation module
at Mesh → Modifiers → Transforms → mesh_rotate_quat before input, and a rotation
back using another mesh_rotate_quat after output. The module mesh_rotate_quat
uses a quaternion to specify the rotation. If you prefer the axis-angle-rotation notation,
you can use the converter module Maths → Arithmetic → Quaternion → axis_angle_to_
quaternion. For an example, see Figure 8-5.

Figure 8-5.  The mesh_rain_down module with rotation transformation

Chapter 8 ■ ThMAD Module Reference

255

Modifiers: Helpers
Helper modules for meshes. The path is Mesh → Modifiers → Helpers. See Tables 8-75
and 8-76.

Table 8-75. 

mesh_compute_tangents This module is currently under construction and not
functional

Table 8-76. 

mesh_compute_tangents_
vertex_color_array

Computes tangents of vertices and stores them in a
color array. Can be used in shaders

In mesh_in:mesh Input mesh

Out mesh_out:mesh Output mesh

Modifiers: Pickers
Used to extract values from a mesh. The path is Mesh → Modifiers → Pickers. See
Tables 8-77 and 8-78.

Table 8-77. 

mesh_attach_picker Given two vertex IDs, returns the coordinates
of ID1 and a rotation quaternion describing the
rotation necessary to look along the normal of ID1
and with ID2-ID1 horizontal

In mesh_in:mesh The input mesh

id_a:float The integer part points to vertex A (0, 1, 2, …)

id_b:float The integer part points to vertex B (0, 1, 2, …)

Out position:float3 The coordinates of vertex A

rotation: quaternion The rotation vector defined by the normal at A,
and the vector from A to B

Chapter 8 ■ ThMAD Module Reference

256

Table 8-79. 

mesh_mirror Mirrors a mesh

In mesh_in:mesh The input mesh

axis:enum Which axis to mirror, one of x, y, or z.

Out mesh_out: mesh The output mesh

Table 8-78. 

mesh_vertex_picker Obtains complete data for a certain mesh
vertex

In mesh_in:mesh Input mesh

id:float The integer part denotes the mesh vertex ID
(0, 1, 2, …)

Out vertex:float3 The vertex coordinates

normal:float3 The normal vector at that vertex

color:float4 The color at that vertex

texcoords:float3 The texture coordinates at that vertex

passthru:mesh Output mesh. Note that you have to
connect this to a result bearing rendering
sub-pipeline for the module to work. Just
put it between the mesh producer and the
intended mesh consumer (like renderer)

sizes:complex Mesh array sizes

vertices_size: float Number of vertices

normals_size: float Number of vertex normals

colors_size: float Number of vertex colors

faces_size: float Number of faces

Both the mesh_attach_picker and the mesh_vertex_picker modules can be used
to let a visualization scan through the vertices of a mesh and do things based on the
coordinates it gets. Note that using mesh_attach_picker you do not have to specify the
second vertex ID if you are not going to use the rotation quaternion.

Modifiers: Transforms
Used to modify vertex data. The path is Mesh → Modifiers → Transforms.
See Tables 8-79 to 8-85.

Chapter 8 ■ ThMAD Module Reference

257

Table 8-80. 

mesh_norm_scale Scales and moves a mesh such that all its vertices lie
inside [0;1]. Size relations are maintained (the biggest
span will be [0;1])

In mesh_in:mesh The input mesh

Out mesh_out: mesh The output mesh

Table 8-81. 

mesh_rotate_quat Rotates a mesh by a rotation quaternion

In mesh_in:mesh The input mesh

quat_in: quaternion The rotation quaternion (if you need to control
this with an axis-angle rotation, use module
Maths → Arithmetic → Functions → axis_angle_
to_quaternion)

invert_rotation: enum Set to no or yes, whether to invert the rotation

Out mesh_out:out The output mesh

Table 8-82. 

mesh_rotate_quat_
around_vertex

Rotates a mesh around one of its vertices.
Additionally translate afterwards

In mesh_in:mesh The input mesh

quat_in: quaternion The quaternion describing the rotation

vertex_rot_id: float The integer part points to the vertex around
which the rotation will be performed. Values
are 0, 1, 2, …

offset_pos: float3 An additional translation after the rotation

Out out_mesh: mesh The output mesh

Table 8-83. 

mesh_scale Performs a scaling

In mesh_in:mesh The input mesh

scale:float3 A scaling factor for each dimension

Out mesh_out: mesh The output mesh

Chapter 8 ■ ThMAD Module Reference

258

Table 8-84. 

mesh_translate Translates the mesh

In mesh_in:mesh The input mesh

translation: float3 The translation vector

Out out_mesh: mesh The output mesh

Table 8-85. 

mesh_translate_ edge_wraparound Does a translation of vertices, but wraps
around at some limiting coordinate values

In mesh_in:mesh The input mesh

translation: float3 The translation

edge_min: float3 Defines the x, y, and z values at which a
coordinate-wise wrap-around occurs if edge
coordinates will be less than

edge_max: float3 Defines the x, y, and z values at which a
coordinate-wise wrap-around occurs if edge
coordinates will be greater than

Out mesh_out: mesh The output mesh

Particles
Particle system related simple meshes in two dimensions. The path is Mesh → Particles.
See Tables 8-86 to 8-88.

Table 8-86. 

mesh_disc A disc or a ring. If used with the basic mesh renderer,
be aware that the texture is spread over the complete
perimeter. You could try to use the use_tex_center
parameter if you do not want that

In num_segments: float The number of segments to generate along the perimeter

diameter:float The hole’s diameter. Make this zero if you want to have a
disc instead of a ring

border_width: float The ring’s width. If the diameter is zero, the disc’s radius.

use_tex_center: enum Set to no or yes. If yes, do not spread the texture over the
whole perimeter, instead use only the center part, which
makes this texture used effectively one-dimensional.

Out mesh:mesh The output mesh

Chapter 8 ■ ThMAD Module Reference

259

Table 8-87. 

mesh_rays Random fan triangles starting at (0,0,0) and
up to some size limit

In num_rays:float The number of rays

center_color: float4 The center color to assign

options / limit_ray_size If < 0, make the maximum ray size 1.0.
Otherwise use the limit given here.

Out mesh:mesh The output mesh

Table 8-88. 

mesh_star This module is currently under construction and not
functional

Segmesh
Segmesh modules under mesh → segmesh are currently under construction and not
functional.

Solid
Generate solid 3D bodies using meshes. The path is Mesh → Solid. See Tables 8-89 to 8-102.

Table 8-89. 

mesh_arrow An arrow

In start:float3 Start position

end:float3 End position

radius:float The radius of the body

segments:float The number of segments

head_size:float The ratio the head takes of the complete
length

Out mesh:mesh The output mesh

Chapter 8 ■ ThMAD Module Reference

260

Table 8-91. 

mesh_cone A cone

In base:float3 The center of the cone’s base

peak:float3 The cone’s peak

radius:float The radius at the base

segments:float The number of segments

Out mesh:mesh The output mesh

Table 8-92. 

mesh_cylinder A cylinder

In start:float3 The center of the base

end:float3 The center of the top

radius:float The radius

segments:float The number of segments

Out mesh:mesh The output mesh

Table 8-93. 

mesh_grid A quadratic grid made of small quads. The center will be
at (0;0;0) and the size of the grid will be 1x1

In power_of_two_
size:float

The power of two of this is the number of quads along
each side. So if this is 4, we have 2^4 = 16 each side, and
16x16 = 256 in total.

plane:enum One of xy, xz and yz. The orientation of the grid.

Out mesh:mesh The output mesh

Table 8-90. 

mesh_box A box made of six quadratic faces. Linear dimensions
are always [-0.5;0.5]

Out mesh:mesh The output mesh

Chapter 8 ■ ThMAD Module Reference

261

Table 8-94. 

mesh_planes A number of parallel planes

In num_planes:float Number of planes

space_between: float Distance between adjacent planes

diameter:float Dimension of a plane will be 2 x diameter times
2 x diameter

normals:float3 Specifies the orientation in space of each plane.
“normals” is perpendicular to a plane

colors:complex

color_a:float4 Each planes color at vertex 1

color_b:float4 Each planes color at vertex 2

color_c:float4 Each planes color at vertex 3

color_d:float4 Each planes color at vertex 4

Out mesh:mesh The output mesh

Table 8-95. 

mesh_solid_supershape A complex shape by combining power and sine
functions

In x:complex X and y dimension for the algorithm currently all
handled here

x_num_ segments:float Number of segments to generate. The total
number of vertices generated is the square of this

x_start:float An angle for the algorithm

x_stop:float An angle for the algorithm

y_start:float An angle for the algorithm

y_stop:float An angle for the algorithm

x_a:float A scaling factor

x_b:float A scaling factor

x_n1:float A power argument

x_n2:float A power argument

x_n3:float A power argument

x_m:float A factor for an angle inside the algorithm

Out mesh:mesh The output mesh

Chapter 8 ■ ThMAD Module Reference

262

Table 8-96. 

mesh_sphere A sphere. Uses the very basic straightforward
subdividing algorithm which is used for the earth globe

In num_sectors:float The number of longitude parts

num_stacks:float The number of latitude parts

Out mesh:mesh The output mesh

Table 8-97. 

mesh_sphere_ icosahedron A sphere with a more regular subdivision. Start
from an icosahedron (20 faces of type triangle), and
subdivide each of its parts (making four triangles
out of one) iteratively, projecting each of the new
points onto the sphere (just stretch it to the desired
cube’s radius)

In subdivision_level:
float

Number of iterations for the subdivision. Be careful
not to make this to big, otherwise ThMAD will
break. The default is 6 and this will do in many
cases. Values greater than 7 will be ignored and get
clamped to 7.

max_ normalization_
level: float

Normals recalculation can be configured to stop at
a certain level, which makes the surface bumpier if
light shines on it.

initial_ico_scale:
float

Scale the original icosahedron before starting the
subdivision. Those points will not be projected onto
the sphere. Currently a little buggy since it shows
artifacts.

Out mesh:mesh The output mesh

Chapter 8 ■ ThMAD Module Reference

263

Table 8-98. 

mesh_sphere_ octahedron A sphere with a more regular subdivision. Start from
an octahedron (8 faces of type triangle), and subdivide
each of its parts (making four triangles out of one)
iteratively, projecting each of the new points onto the
sphere (just stretch it to the desired cube’s radius)

In subdivision_level:
float

Number of iterations for the subdivision. Be careful not
to make this to big, otherwise ThMAD will break. Values
greater than 9 will be ignored and get clamped to 9.

max_ normalization_
level: float

Normals recalculation can be configured to stop at
a certain level, which makes the surface a little more
bumpy if light shines on it.

Out mesh:mesh Output mesh

Table 8-99. 

mesh_super_banana A flexible, possibly banana-shaped mesh. Note
that you have to set the shapes first before you
can see anything

In num_sectors:float Number of sectors perimeter-wise

num_stacks:float Number of stacks along its length dimension

shape:complex

x_shape: The sequence along one radial dimension

sequence

x_shape_ multiplier:float A multiplier for the x-shape

y_shape: sequence The sequence along the other radial dimension

y_shape_ multiplier:float A multiplier for the y-shape

z_shape: sequence The sequence along the length dimension

z_shape_ multiplier:float A multiplier for the z-shape

size:complex

size_shape_x: sequence The size shape of one radius along the length
dimension

size_shape_x_
multiplier:float

A multiplier for the size shape of one radius
along the length dimension

size_shape_y: sequence The size shape of the other radius along the
length dimension

size_shape_y_
multiplier:float

A multiplier for the size shape of the other
radius along the length dimension

Out mesh:mesh The output mesh

Chapter 8 ■ ThMAD Module Reference

264

Table 8-100. 

mesh_torus_knot A torus knot. This is a knot which lies
on the surface of a torus, with possibly
many windings

In num_sectors:float Number of sectors perimeter-wise

num_stacks:float Number of segments along its length

p:float P parameterization

q:float Q parameterization

phi_offset:float Angular offset

size

size_shape_x: sequence The size of the first radial component
along the length

size_shape_x_ multiplier:float A factor applied to the size_shape_x
sequence

size_shape_y: sequence The size of the second radial
component along the length

size_shape_y_ multiplier:float A factor applied to the size_shape_y
sequence

Out mesh:mesh The output mesh

Table 8-101. 

metaballs Shows metaballs. This is a physics simulation of an
equipotential surface. Functional, but currently buggy,
shows some artifacts

In grid_size:float The resolution

Out mesh:mesh The output mesh

Chapter 8 ■ ThMAD Module Reference

265

Table 8-102. 

plane_uv_distort An x-y plane with dimensions [-1;-1] → [1;1]
at z=0 with a texture coordinates distortion by
sequence controllers

In x_res:float The integer part of this figure is the resolution
in x-direction

y_res:float The integer part of this figure is the resolution
in y-direction

distortion: complex

x_shape: sequence Describes the distortion along the x axis. If you
set all values to 0.5 inside the sequence, no
distortion will happen. Numbers below 0.5 mean a
negative distortion, above 0.5 a positive distortion

x_shape_ multiplier:float A multiplier applied to the x distortion values

z_shape: sequence Describes the distortion along the y axis (don’t
be confused by the name; it is wrong but left
like that for backward compatibility)

z_shape_ multiplier:float A multiplier applied to the y distortion values

Out mesh:mesh The output mesh

Texture
These modules are for texture coordinates manipulation of meshes. The path is
Mesh → Texture. See Tables 8-103 and 8-104.

Table 8-103. 

mesh_tex_bitmap_
distort

Uses a bitmap to describe a texture
coordinate distortion

In mesh_in:mesh The input mesh

bitmap:bitmap The bitmap. Only RED and GREEN are used. Red
describes the U-distortion of the texture, Green the
V-distortion. A value of 0.5 means no distortion

intensity:float Controls the overall intensity of the effect

spatial:complex Additional distortion parameters

u_off:float Texture u coordinate offset

v_off:float Texture v coordinate offset

u_scale:float Texture u coordinate scaling factor

v_scale:float Texture v coordinate scaling factor

Out mesh_out: mesh The output mesh

Chapter 8 ■ ThMAD Module Reference

266

Table 8-104. 

mesh_tex_sequ_distort Uses sequences to describe a texture
coordinate distortion

In mesh_in:mesh The input mesh

spatial:complex

scale_u:float An additional texture u coordinate scaling
factor

scale_v:float An additional texture v coordinate scaling
factor

translate_u: float An additional texture u coordinate
translation

translate_v: float An additional texture v coordinate
translation

distortion: complex

u_shape: sequence Describes the texture u coordinate
distortion

v_shape: sequence Describes the texture v coordinate
distortion

Out mesh_out: mesh The output mesh

Vertices
Define meshes by algorithms. The path is Mesh → Vertices. See Tables 8-105 to 8-109.

Table 8-105. 

bspline_vertices Takes the input mesh’s vertices and uses them to feed
a B-spline pipeline. Note that the output mesh does not
contain any normals or faces, so the mesh_basic_render
module cannot handle it

In source:mesh The input mesh

density:float The density: the number of points generated for each
vertex pair

Out mesh:mesh The output mesh

Chapter 8 ■ ThMAD Module Reference

267

Table 8-106. 

lightning_vertices Plasma ball effect

In rand_seed:float Some random seed. Change this value for different
shapes. Usually you want to send this to a mesh_dot_
render module for rendering, since no normals or
faces are generated by this module.

lifetime:float Increase this value if you want the simulation to be
less nervous

length:float The length of the lightning strikes

mesh_a:mesh An input mesh. Vertices from here are used for the
lightning start points. Normals here are used for the
primary direction of the strikes

num_points: float The number of lightning vertices

scaling:float3 Use this to control the dimensions of the effect

sub_divide:float Generate that many points for each part of a
lightning strike. If you use the dot renderer,
increasing this value makes sense

Out mesh:mesh The output mesh

Table 8-107. 

modifiers → mesh_vertex_
distance_sort

From the input mesh, fetches the vertices and
sorts them according to the distance to a given
point (farthest away first). The output contains
no color or faces; no texture coordinates! So the
mesh_basic_render module cannot handle it

In mesh_in:mesh The input mesh. Will not be changed.

distance_to: float3 The point from which to measure the distance

Out mesh_out: mesh The output mesh. No colors or normals or faces;
only vertices.

original_ids: float_array The IDs of the input mesh after the sort.

Chapter 8 ■ ThMAD Module Reference

268

Table 8-108. 

random_vertices Generates random vertices

In rand_seed:float Random seed. Change if you need different
distributions

num_points: float Number of points

scaling:float3 A scaling

distrib:enum Distribution:

box: Uniformly inside a box

sphere: Uniformly on the surface of a
sphere

bowl: Uniformly inside a sphere

gauss: Gauss in 3D

gauss2d: Gauss in 2D, z = 0

Out mesh:mesh The output mesh

Table 8-109. 

ribbon_vertices A twisted ribbon. Changes as time goes by. Similar
to mesh → generators → ribbon, but won’t create
faces, so the mesh_basic_render module cannot
handle it

In start_point:float3 The starting point

end_point:float3 The ending point

up_vector:float3 The up-vector, defines how it moves

num_segments: float The number of segments

particle_scale: float Influences the coloring. Coloring is from black to
white, or gray if you change this to a value less
than 1.0

width:float Controls the width of the ribbon

skew_amp:float The skew amplitude

time_amp:float The time scale for the twisting

Out mesh:mesh The output mesh

Chapter 8 ■ ThMAD Module Reference

269

Xtra
Some special mesh generators and modifiers. The path is Mesh → Xtra.
See Tables 8-110 to 8-112.

Table 8-110. 

cloud_plane A colored cloud plane

Out mesh_out:mesh The output mesh

Table 8-111. 

planeworld Used in conjunction with the mesh → vertices →
random_vertices as input, creates a complex knot
with full mesh properties: vertices, colors, texture
coordinates, faces

In bspline_vertices_
mesh:mesh

The input mesh. You do not have to use the output
from the bspline_vertices module here! The
b-splines are calculated internally.

Out mesh_result:mesh The output mesh

Table 8-112. 

thorn Generates a colored thorn

Out mesh_result:mesh The output mesh

Particlesystems
Particlesystems deal with many objects of small size each. They somehow compensate for
the missing of a loop construct inside states.

�Fractals
Fractals are geometric objects or object collections with some special, fractal related,
mathematical properties. The one module here uses an iterated function system
algorithm to produce fractals. The path is Particlesystems → Fractals. See Table 8-113.

Chapter 8 ■ ThMAD Module Reference

270

Table 8-113. 

ifs_modifier Continuously change particles’ coordinates according
to an iterated function system (IFS). This is x → f(x)
→ f(f(x)) → f(f(f(x))) and so on. The function f here is a
random mixture of two affine mappings

In in_particlesystem:
particlesystem

The input particle system

change_probab: float Set this to a value less than 1.0 if you want to
change only a certain part of the particles each frame
(1/60 sec.)

change_random: enum This is a trigger. Choose go and a random IFS
parameter set will be generated and used. Note that
only a fraction of the randomly generated sets will
yield usable results

save_params: enum A trigger saving the current parameter set to a file
inside

/home/[USER]/thmad/ [VERSION]/data/resources/ifs

So it can be used in future states.

load_params:
resource

Load a previously saved parameter set. The value of
this anchor is not persisted, so it is a one-time setting
action. The parameters gained here will be persisted,
of course.

ifs:complex Current parameter set: two affine transformations.
The algorithm switches randomly between them, with
equal probabilities

sys1:complex First system.

a a a at

a a a at

a a a at

11 12 13 1

21 22 23 2

31 32 33 3

0 0 0 1

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

sys2:complex

Second system

b b b bt

b b b bt

b b b bt

11 12 13 1

21 22 23 2

31 32 33 3

0 0 0 1

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

Out

particlesystem:
particlesystem

The output particle system

Chapter 8 ■ ThMAD Module Reference

271

�Generators
Generators produce particles. The path is Particlesystems → Generators.
See Tables 8-114 to 8-116.

Table 8-114. 

basic_spray_emitter Creates particles at a given point in space.
The number of particles will not change
later – particles that are considered dead still
remain in memory and possibly later start to
live again at this point

In num_particles: float The total number of particles

particles_per_ second:float If not set to -1, this number specifies the
maximum number of particles per second
that will be resurrected when dead.

spatial:complex

emitter_ position:float3 The position in space where particles start
to live.

speed:complex This specifies the speed the particles start
their movement when emittedspeed_x:float

speed_y:float

speed_z:float

speed_type: enum The way the speed parameter is applied.
If random_balanced, the speed-x for
example will be chosen randomly from [-
speed_x/2;speed_x/2]. If directional, the
speed will be taken as specified

size:complex The size calculation for each particle:
size = size_base +
rnd[-0.5;0.5]∙random_weight
Where rnd[a-;b] specifies a random
number between a and b.

particle_size_
base:float

particle_size_
random_ weight:float

time_source: enum Where to take the time from. One of real or
sequencer

particle_ rotation_dir:
quaternion

If particle rotation is enabled, use this to
specify the rotation.

enable_rotation: enum Whether or not to enable rotation: one of
true or false

(continued)

Chapter 8 ■ ThMAD Module Reference

272

Table 8-115. 

bitmap_to_particlesystem A particlesystem using the pixels of a
bitmap for movement origin and color

In bitmap_in:bitmap Input bitmap

particles_per_ second:float If not set to -1, this number specifies the
maximum number of particles per second
that will be resurrected when dead.

spatial:complex

bitmap_size:float Size of the bitmap, from a coordinate origin
point of view

bitmap_normal: float3 The normal, specifying the bitmap’s
orientation in space

bitmap_ upvector:float3 Rotation of the bitmap around the normal
vector

bitmap_position: float3 Position of the bitmap’s center

speed:complex This specifies the speed the particles start
their movement when emittedspeed_x:float

speed_y:float

speed_z:float

basic_spray_emitter Creates particles at a given point in space.
The number of particles will not change
later – particles that are considered dead still
remain in memory and possibly later start to
live again at this point

appearance: complex

color:float4 The color

time:complex Each particle’s lifetime:
lifetime = lifetime_base +
rnd[-0.5;0.5]∙random_weight
Where rnd[a;b] specifies a random number

particle_ lifetime_
base: float

particle_ lifetime_
random_ weight:
float

between a and b.

Out particlesystem: particlesystem The output particle system

Table 8-114.  (continued)

(continued)

Chapter 8 ■ ThMAD Module Reference

273

bitmap_to_particlesystem A particlesystem using the pixels of a
bitmap for movement origin and color

speed_type: enum The way the speed parameter is applied.
If random_balanced, the speed-x for
example will be chosen randomly from
[- speed_x/2;speed_x/2]. If directional,
the speed will be taken as specified

size:complex The size calculation for each particle:
size = size_base +
rnd[-0.5;0.5]∙random_weight

particle_size_
base:float

particle_size_
random_ weight:float

Where rnd[a-;b] specifies a random
number between a and b.

time_source: enum Where to take the time from. One of real
or sequencer. For simple states, use real.

particle_ rotation_dir:
quaternion

If particle rotation is enabled, use this to
specify the rotation.

enable_rotation Whether or not to enable rotation: one of
true or false

appearance: complex

color:float4 The color

time:complex Each particle’s lifetime:
lifetime = lifetime_base + rnd[-
0.5;0.5]∙random_weight
Where rnd[a;b] specifies a random
number between a and b.

particle_ lifetime_
base: float

particle_ lifetime_
random_ weight:
float

Out particlesystem:
particlesystem

The output particle system

Table 8-115.  (continued)

Chapter 8 ■ ThMAD Module Reference

274

Table 8-116. 

particles_mesh_spray Similar to basic_spray_emitter, but uses
a mesh for the particles’ movement origin

In num_particles:float The total number of particles

particles_per_ second:float If not set to -1, this number specifies the
maximum number of particles per second
that will be resurrected when dead.

mesh_properties: complex Mesh properties apply only while a particle
is born or resurrected

pick_type:enum One of sequential or random. How to

choose vertices from the mesh as particle
movement origins.

center:float3 A translation vector common to all particles

spread:fload3 A multiplier applied to the input vertex
position coordinates while adding to the
particles’ final positions

random_ deviation:float3 Specifies the amount of randomness when
calculating the particle’s position

spatial:complex

speed_type: enum How to calculate the speed: one of:

−	� random_balanced: for each
coordinate, speed will be from inside

rnd[-0.5;0.5] ∙ speed_* ∙ speed_
mult

−	 directional: take

speed_mult ∙ speed_*

−	 mesh_beam: take

speed_mult

origin_to_vertex + add_vector
Where rnd[a;b] specifies a random number
between a and b, and origin_to_vertex is
the normalized vector from the origin to the
vertex point.

speed_multiplier: float Speed multiplier (speed_mult)

speed_random_ value:float A multiplier for a random value [-0.5;0.5]
added to speed_mult

(continued)

Chapter 8 ■ ThMAD Module Reference

275

particles_mesh_spray Similar to basic_spray_emitter, but uses
a mesh for the particles’ movement origin

speed:complex This specifies the speed the particles start
their movement when emitted. The way it
is interpreted is specified by speed_type,
speed_multiplier and speed_random_value

speed_x:float

speed_y:float

speed_z:float

add_vector: float3 The add_vector only applies to speed_type
= mesh_beam

size:complex The size calculation for each particle:
size = size_base +
rnd[-0.5;0.5]∙random_weight

particle_size_
base:float

particle_size_
random_ weight:float

Where rnd[a;b] specifies a random number
between a and b.

appearance: complex

color:float4 Particles color

time:complex Each particle’s lifetime:
lifetime = lifetime_base + rnd[-
0.5;0.5]∙random_weight
Where rnd[a;b] specifies a random number
between a and b.

particle_ lifetime_
base: float

particle_ lifetime_
random_ weight:float

time_source: enum Where to take the time from. One of real or
sequencer. For simple states, use real

Out particlesystem:
particlesystem

The output particle system

Table 8-116.  (continued)

�Modifier
The modifiers tell how particles behave after they were emitted, apart from the speed that
was assigned to them at the emitter point. The path is Particlesystems → Modifiers. See
Tables 8-117 to 8-122.

Chapter 8 ■ ThMAD Module Reference

276

Table 8-117. 

basic_gravity Adds gravitational force and friction

In in_particlesystem:
particlesystem

The input particle system

basic_parameters: complex

center:float3 Center of gravity

amount:float3 A multiplier for each coordinate of the
gravity. Setting one or two to zero lets
you simulate s.th. like a radial or a planar
center of gravity

friction:float3 The friction, will limit the end velocity like
particles in air

time_source: enum Where to take the time from, one of
sequencer or real

mass_calculations: complex

mass_type: enum One of:

−	� individual: take each particle’s size
as its mass

−	� uniform: instead use the uniform_
mass parameter

uniform_mass: float If mass_type = uniform, this will be each
particle’s mass

Out particlesystem: particlesystem The output particle system

Table 8-118. 

basic_wind_deformer Applies wind

In in_particlesystem:
particlesystem

The input particle system

wind:float3 Wind speed

Out particlesystem:
particlesystem

The output particle system

Chapter 8 ■ ThMAD Module Reference

277

Table 8-119. 

floor Simulates a floor, where particles stop
their movement or bounce off

In in_particlesystem: particlesystem The input particle system

axis:complex

x:complex

x_floor:enum One of no or yes. Whether to enable a
floor at x = floor-x

x_bounce: enum One of no or yes. Whether to enable
bouncing once the floor is hit.

x_loss:float Only if bouncing, the loss in velocity
experienced at the bounce

y:complex

y_floor:enum One of no or yes. Whether to enable a
floor at y = floor-y

y_bounce: enum One of no or yes. Whether to enable
bouncing once the floor is hit.

y_loss:float Only if bouncing, the loss in velocity
experienced at the bounce

z:complex

z_floor:enum One of no or yes. Whether to enable a
floor at z = floor-z

z_bounce: enum One of no or yes. Whether to enable
bouncing once the floor is hit.

z_loss:float Only if bouncing, the loss in velocity
experienced at the bounce

refraction:enum One of no or yes. If yes, and also
bouncing is enabled, enable refraction,
which means that particles will bounce
off in more or less random directions

refraction_ amount:float3 If refraction is enabled, the amount
refraction will happen in each
dimension

floor:float3 The floor-x, floor-y and floor-z values

Out particlesystem: particlesystem The output particle system

Chapter 8 ■ ThMAD Module Reference

278

Table 8-122. 

size_noise Changes the particles’ size
randomly, adds or multiplies a
number

In in_particlesystem: particlesystem The input particle system

strength:float Amount of change

size_type:enum One of multiply or add

Out particlesystem: particlesystem The output particle system

Table 8-121. 

size_mult Changes the particles’ size, adds or
multiplies a number

In in_particlesystem: particlesystem The input particle system

strength:float Amount of change

size_type:enum One of multiply or add

Out particlesystem: particlesystem The output particle system

Table 8-120. 

particle_fluid_deformer This module is currently under construction and not
functional

�Renderers
Once the data stream reaches a renderer in a pipeline, we arrive in the OpenGL world of
objects. That means after the rendering step we will have points, lines, polygons, quads,
and other graphics primitives that will eventually produce output on the screen.

The modification steps to render data, such as orientation, rendering modes, and
the like are described in this section. That is, modules that have a renderer input and a
renderer output anchor are explained here as well.

Renderers are divided into sections according to what they render or what they do to
rendered objects.

Chapter 8 ■ ThMAD Module Reference

279

Table 8-123. 

colored_rectangle Draws a colored rectangle

In spatial:complex

position:float3 The center of the rectangle

angle:float Rotation angle

rotation_axis: float3 The rotation axis

size:float A size multiplier. If this reads 1.0, the size
will be 2x2

border:complex

border_enabled: enum One of no or yes.

border_width: float The border width, if enabled

border_color: float4 The border color, if enabled

color:float4 The area color

Out render_out:render The renderer output

Table 8-124. 

points A very simple renderer drawing the four
corner points of a rectangle on the screen.
Consider this kind of a “hello world”
program

In spatial:complex

position:float3 The center of the rectangle

angle:float Rotation angle

rotation_axis: float3 The rotation axis

size:float A size multiplier. If this reads 1.0, the size
will be 2x2

Out render_out:render The renderer output

�Basic
Basic renderers. The path is Renderers → Basic. See Tables 8-123 to 8-127.

Chapter 8 ■ ThMAD Module Reference

280

Table 8-126. 

textured_rectangle Important renderer;. draws a rectangle
with a texture on the screen

In spatial:complex

position:float3 The position of the rectangle’s center.

size:float A size multiplier. If this is 1.0, the size will
be 2x2 since coordinates are inside [-1;- 1]
x[1;1]

angle:float Rotation angle about the z-axis

x_aspect_ratio: float If you want to apply an aspect ratio, put
something unequal 1.0 here

tex_coord_a: float3 The texture coordinate of the lower-left
corner. The third coordinate here is
unused

tex_coord_b: float3 The texture coordinate of the upper-
right corner. The third coordinate here is
unused

facing_camera: enum One of no or yes. If yes, use a special
feature of OpenGL where the rotation is
ignored and the rectangle is drawn right
face to the camera.

Table 8-125. 

render_line Draws a line on the screen

In spatial:complex

point_a:float3 Start point

point_b:float3 End point

color_a:float4 Start color

color_b:float4 End color. Colors in between are interpolated
linearly in a RGBA color space.

width:float Width. Note that depending on your hardware an
upper limit might apply

Out render_out:render The renderer output

(continued)

Chapter 8 ■ ThMAD Module Reference

281

textured_rectangle Important renderer;. draws a rectangle
with a texture on the screen

color:complex

global_alpha: float An alpha multiplier. Just applied to the
ALPHA component of the color multiplier,
and as such exists only for convenience.

color_multiplier: float4 As a multiplier applied to all the colors.
As stated, its ALPHA component first is
multiplied by global_alpha

color_center: float4 The center color

color_a:float4 Color bottom-left corner

color_b:float4 Color top-left corner

color_c:float4 Color top-right corner

color_d:float4 Color bottom-right corner

texture_in:texture The input texture

Out render_out:render The renderer output

Table 8-126.  (continued)

Table 8-127. 

textured_triangle A textured triangle

In spatial:complex

position_a:float3 Position corner A

position_b:float3 Position corner B

position_c:float3 Position corner C

tex_coord_a: float3 Texture coordinate corner A

tex_coord_b: float3 Texture coordinate corner B

tex_coord_c: float3 Texture coordinate corner C

(continued)

Chapter 8 ■ ThMAD Module Reference

282

Table 8-127.  (continued)

textured_triangle A textured triangle

color:complex

global_alpha: float An alpha multiplier. Just applied to the
ALPHA component of the color multiplier,
and as such exists only for convenience.

color_multiplier: float4 As a multiplier applied to all the colors.
As stated, its ALPHA component first is
multiplied by global_alpha

color_a:float4 Color corner A

color_b:float4 Color corner B

color_c:float4 Color corner C

texture_in:texture The input texture

Out render_out:render The renderer output

For the textured rectangle and textured triangle we have two competing color concepts:
first the color as given by the vertex colors, second the color as given by the texture. It is left to
the rest of the rendering pipeline and the internal state of OpenGL which one wins, or how
they get blended. The standard blending mode in ThMAD is MODULATE, which means color
values just get multiplied. Unfortunately, we cannot easily change this on a module basis,
since OpenGL follows the notion of a texture unit and only for each texture unit the way
textures are combined can be set by using standard API functions. But there is another way
of controlling this on a module basis, and it is even more powerful.

Using shaders instead of functions in fact gives you tremendous power to define
the blending. You can specify a shading program by adding the Renderers → Shaders →
glsl_loader module behind the renderer; see Figure 8-6.

Figure 8-6.  Using shaders to control the color blending

Chapter 8 ■ ThMAD Module Reference

283

For example, the following code will allow you to add color values instead of
multiplying them:

Vertex shader:

1 varying vec4 vColor;
2 void main(void) {
3 vColor = gl_Color;
4 gl_TexCoord[0] = gl_MultiTexCoord0;
5 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
6 }

Fragment shader:

 1 varying vec4 vColor;
 2 uniform sampler2D sampler;
 3 void main(void) {
 4 vec4 tex = texture2D (sampler,
 5 gl_TexCoord[0].st);
 6 gl_FragColor = vec4(vColor.r + tex.r,
 7 vColor.g + tex.g,
 8 vColor.b + tex.b,
 9 vColor.a + tex.a);
10 }

The blending algorithm is shown in lines 6-9 of the fragment shader code.

�Mesh
Mesh related renderers. The path is Renderers → Mesh. See Tables 8-128 to 8-134.

Table 8-128. 

mesh_basic_render Basic renderer for meshes

In tex_a:texture A texture for the surface described by the mesh.
This anchor is mandatory, if unconnected the
vertex colors will be used if defined and anchors
options / vertex_colors and options / use_
vertex_colors are set to yes

mesh_in:mesh The main mesh input. Defines vertices, normals,
tangents, faces and texture coordinates.

particles: particlesystem Connect a particle system to this anchor if you
want to have the mesh multiplied. Mandatory.

particle_cloud: mesh Connect another mesh B here if you want to
multiply the mesh. Compared to the particles
anchor this is more for static systems. Mandatory.

(continued)

Chapter 8 ■ ThMAD Module Reference

284

mesh_basic_render Basic renderer for meshes

options:complex

vertex_colors: enum One of no or yes. Whether to make a call to
glEnable(GL_COLOR_MATERIAL)
If yes, the color of the vertices themselves will be
taken into account

use_display_ list:enum One of no or yes. If yes, use a static drawing
mode, which performs better but is less flexible.

use_vertex_ colors:enum One of no or yes. Whether to send vertex colors
as an array to the graphics hardware. If you want
to have a coloring based on the vertex colors, set
this to yes

particles_size_
center:enum

One of no or yes. If yes, and only if also the
particles input anchor is connected, make
particles bigger when farther away from their
birth position.

particles_size_ from_
color: enum

One of no or yes. If yes, and only if also the
particles input anchor is connected, misuse the
vertex color R, G, B values to define a scaling of
the particles x, y, and z sizes.

ignore_uvs_in_ vbo_
updates: enum

One of no or yes. If yes, and only in dynamic
mode (use_display_list = false), upload
vertex texture coordinates to the graphics
hardware only at the beginning. This is a
performance optimization.

Out render_out: render The renderer output

Table 8-128.  (continued)

Chapter 8 ■ ThMAD Module Reference

285

Table 8-129. 

mesh_dot_billboards Renders dots at the mesh positions. It
is called “billboard”, because the dots
all have the same size on the screen, no
matter how far away from the eye/camera
position.

In mesh_in:mesh The input mesh

base_color:float4 One possibility for the dot color is to use
this value. The coloring is done by shader
code, so this may or may not be the case.

dot_size:float The dot size. May or may not be used,
depending on the shader code.

use_display_list: enum One of no or yes. Whether to use display
lists. If yes, improves performance.

shader_params: complex

vertex_ program:string The vertex program. Will receive dot_size
as a uniform float. You can usually leave it
as it is. If you want to use the shader to set
the dot size, write s.th. like gl_PointSize
= 7.0;

fragment_ program:string The fragment program. Here you can
say whether to use the vertex color (“gl_
FragColor = vColor;") or the base_color
(“gl_FragColor = base_color;").

uniforms: complex Automatic uniforms. These are mirrors of
base_color and dot_size. Use either them
or the originals to control the module.

attributes: complex Automatic attributes. Unused.

Out render_out: render The renderer output.

Chapter 8 ■ ThMAD Module Reference

286

Table 8-130. 

mesh_dot_render This is the little brother of the module mesh_dot_
billboards. Draws points at each vertex, but
doesn’t use shader code

In mesh_in:mesh The input mesh

base_color:float4 Unless use_vertex_color is set to true, this is
the point color.

dot_size:float The dot size

use_vertex_ color:enum One of no or yes. Whether to use colors set at the
vertices themselves.

Out render_out: render The renderer output.

Table 8-131. 

mesh_line_render Draws lines between vertices. This will
usually not create beauty, but it shows
you the sequence of vertices. If you
want a real wireframe, use Renderers →
opengl_modifiers → rendering_mode
instead

In mesh_in:mesh The input mesh

base_options: complex

line_width:float The line width. Usually your graphics
hardware will impose an upper limit on
that.

override_ base_color: enum One of no or yes. If yes, the base_color
will be used. Otherwise the vertices’
colors.

base_color: float4 The color used for the line. Applies only
if override_base_color is set to true

base_color_ add:float4 Just added to base_color

center_options: complex

each_to_ center:enum One of no or yes. If yes, draw a line from
each vertex to the origin (0,0,0) instead

center_color: float4 The color used at the center

center_color_ add:float4 Just added to center_color

Out render_out: render The renderer output

Chapter 8 ■ ThMAD Module Reference

287

Table 8-134. 

render_mesh_ribbon This module is under development and currently
experimental (there are performance issues)

Table 8-132. 

mesh_transparency_ render Renders a mesh in distance order to eye/camera.
Since while blending transparent textures the order
matters, first sorting the order gives more realistic
effects

In tex_a:texture The texture to map on the surface of the mesh

mesh_in:mesh The input mesh

vertex_colors: enum One of no or yes. Whether to use the colors adjoint
to the vertices. If yes, a MODULATE type blending
with the texture colors will happen (color values get
multiplied).

Out render_out: render The renderer output.

Table 8-133. 

mesh_vertex_id_render Renders the vertex IDs (diagnosis tool)

In mesh_in:mesh The input mesh

base_color:float4 The color of the drawn IDs

font_size:float A scaling for the font size

min_box:float3 A lower limit for vertex coordinates. If any of x, y, z
is below the appropriate value of this parameter, the
vertex will be ignored

max_box:float3 An upper limit for vertex coordinates. If any of x, y, z
is above the appropriate value of this parameter, the
vertex will be ignored

max_id:float The maximum vertex ID to render. Corresponds to
the maximum number of vertices shown. If set to
s.th. less than 0.0, no limit will apply

Out render_out: render The renderer output

Chapter 8 ■ ThMAD Module Reference

288

Table 8-135. 

auto_normalize Use this before applying lighting to any scene
where scalings may happen. Allows for an
automatic recalculation of the normal vectors
which are necessary for correct lighting
calculations. This module has no effect when
shaders are at work

In render_in: render The renderer input

Out render_out: render The renderer output

backface_culling If faces are defined (areas, at the smallest scale
defined by three vertices), uses the rotation
defined by the vertices sorting (left or right) to find
out whether we are looking at it from front or from
behind. If enabled, parts at the back of the view
simply get discarded

In render_in: render The renderer input

status:enum One of ENABLED or DISABLED. Whether to enable
backface culling

Out render_out: render The renderer output

�OpenGL Modifiers
The modules of this subsection are closely related to OpenGL settings and functions.
They thus can be considered more low-level compared to the other ThMAD modules.
Nevertheless some of them are vital for your states. The path is Renderers → opengl_
modifiers. See Tables 8-135 to 8-158.

Chapter 8 ■ ThMAD Module Reference

289

Table 8-137. 

buffer_clear Clears the output at this stage in the pipeline

In render_in: render The renderer input

color_buffer: enum One of no or yes. Whether you want to clear the
color buffer

clear_color: float4 If the color buffer is cleared by this module, use
this color for the clearing

depth_buffer: enum One of no or yes. Whether to clear the depth
buffer

Out render_out: render The renderer output

Table 8-136. 

blend_mode Determines what happens when something is
painted over something already there

In render_in: render The renderer input

source_blend: enum What happens with the pixels that newly arrive. For
details, look at the OpenGL specification (or search
for gl_blend in your favorite search engine).
The default setting is SRC_ALPHA and it paints newly
arriving pixels at the intensity defined by by their
ALPHA, but lets existing pixels shine through by an
intensity of 1 – ALPHA.

dest_blend: enum What happens with the pixels that are already there.
The default setting is ONE_MINUS_SRC_- ALPHA,
which means they get faded out at an
intensity defined by 1 – ALPHA of the incoming
pixels

blend_color: enum An external blend color, if one is needed depending
on the rules chosen by the previous anchors

Out render_out: render The renderer output

Chapter 8 ■ ThMAD Module Reference

290

Table 8-138. 

cameras → freelook_camera A camera at a certain position, rotated
in a certain way and with a certain
up-vector

In render_in:render The renderer output

camera:complex

position:float3 Position in space

rotation:float3 The rotation

upvector:float3 The upvector

fov:float The angle of the camera field of view

near_clipping: float Anything nearer than this distance
will be discarded

far_clipping: float Anything farther than this distance
will be discarded

perspective_ correct:enum One of no or yes. If yes, take the
display’s aspect ratio into account

ortho:complex

enable_ortho: enum One of no or yes. If yes, use an
orthographic projection (no
perspective) instead of a perspective
projection. The fov and near_
clipping and far_clipping anchors
will play no role then

ortho_left:float If ortho enabled, the left edge

ortho_right: float If ortho enabled, the right edge

ortho_bottom: float If ortho enabled, the bottom edge

ortho_top:float If ortho enabled, the top edge

ortho_near: float If ortho enabled, the near clipping
plane

ortho_far:float If ortho enabled, the far clipping plane

Out render_out:render The renderer output

Chapter 8 ■ ThMAD Module Reference

291

Table 8-139. 

camera → orbit_
camera

A camera that looks at a point, and you can define a position in
an orbit to observe that point from any angle

In render_
in:render

The renderer output

camera:complex

rotation:float3 The rotation, that is where on the
orbit we are

distance:float The distance of the orbit from the
point we are looking at

destination:float3 The point we are looking at

upvector:float3 The upvector

fov:float The angle of the camera field of
view

near_clipping:float Anything nearer than this distance
will be discarded

far_clipping:float Anything farther than this distance
will be discarded

perspective_
correct:enum

One of no or yes. If yes, Take the
display’s aspect ratio into account

ortho:complex

enable_ortho:enum One of no or yes. If yes, use
an orthographic projection
(no perspective) instead of a
perspective projection. The fov and
near_clipping and far_clipping
anchors will play no role then

ortho_left:float If ortho enabled, the left edge

ortho_right:float If ortho enabled, the right edge

ortho_bottom:float If ortho enabled, the bottom edge

ortho_top:float If ortho enabled, the top edge

ortho_near:float If ortho enabled, the near clipping
plane

ortho_far:float If ortho enabled, the far clipping
plane

Out render_
out:render

The renderer output

Chapter 8 ■ ThMAD Module Reference

292

Table 8-140. 

camera → target_camera A camera looking from one point to
another. Useful if you want to follow
objects or points

In render_in:render The renderer input

camera:complex

position:float3 Position in space

destination:float3 The point we are looking at

upvector:float3 The upvector

fov:float The angle of the camera field of view

near_clipping:float Anything nearer than this distance will
be discarded

far_clipping:float Anything farther than this distance will
be discarded

perspective_ correct:enum One of no or yes. If yes, take the
display’s aspect ratio into account

ortho:complex

enable_ortho:enum One of no or yes. If yes, use an
orthographic projection (no
perspective) instead of a perspective
projection. The “fov” and “near_
clipping” and “far_clipping” anchors
will play no role then

ortho_left:float If ortho enabled, the left edge

ortho_right:float If ortho enabled, the right edge

ortho_bottom:float If ortho enabled, the bottom edge

ortho_top:float If ortho enabled, the top edge

ortho_near:float If ortho enabled, the near clipping
plane

ortho_far:float If ortho enabled, the far clipping plane

Out render_out:render The renderer output

Chapter 8 ■ ThMAD Module Reference

293

Table 8-141. 

depth_buffer Unless we need transparent surfaces, pixels that
are behind other pixels do not need to be drawn.
OpenGL can save this depth of pixels and allows for
a check of this relation

In render_in:render The renderer input

depth_test:enum One of ENABLED or DISABLED.
Enable it to have the depth check performed

depth_mask:enum One of ENABLED or DISABLED.
Enable it to have a buffer stored the depth
information

Out render_out:render The renderer output

Table 8-142. 

depth_buffer_clear Clear the depth buffer at this place in the pipeline

In render_in:render The renderer input

Out render_out:render The renderer output

Table 8-143. 

depth_function If depth test is enabled, see module depth_buffer,
which specifies the test function

In render_in:render The renderer input

depth_func:enum One of:

−	� NEVER: Test always fails (last pixel per position
always wins)

−	� LESS: The default – nearer or same depth pixels
(z-axis in view direction) win

−	 EQUAL: Same depths will not be drawn

−	 LESS_OR_EQUAL: nearer pixels win

−	� GREATER: pixels at the same depth or farther
away win

−	� NOT_EQUAL: Newer pixels will only show if at
the same depth

−	 GREATER_OR_EQUAL: pixels farther away win

−	� ALWAYS: Test always passes (first pixel per
position always wins)

Out render_out:render The renderer output

Chapter 8 ■ ThMAD Module Reference

294

Table 8-144. 

gl_color Sets the vertex color for modules that do not do it
themselves. This will not override module colors

In render_in:render The renderer input

color:float4 The color

Out render_out:render The renderer output

Table 8-145. 

gl_fog OpenGL’s built-in fog alters colors on a pixel basis.
This module allows for setting some fog parameter for
the linear mode: Calculate some factor

f = (end-c) / (end-start)

where c is the distance from the camera to the origin.
The blending function is then

C" = f ∙ color + (1-f) ∙ fog_color

Fog does not affect the ALPHA channel!

In render_in:render The renderer input

status:enum One of ENABLED or DISABLED

fog_color:float4 The fog color

fog_start:float Start parameter

fog_end: End parameter

Out render_out:render The renderer output

Table 8-146. 

gl_frustum Applies perspective to the current PROJECTION
matrix

In render_in:render The renderer input

left:float The left edge of the clipping plane

right:float The right edge of the clipping plane

bottom:float The bottom of the clipping plane

top:float The top of the clipping plane

near:float The near distance

far:float The far distance

Out render_out:render The renderer output

Chapter 8 ■ ThMAD Module Reference

295

Table 8-147. 

gl_get_camera_orientation Gets the camera orientation, this is the
MODELVIEW matrix multiplied by (0,0,1). Sounds
strange, but do not place this module after a
camera module in a sub-pipeline

In render_in:render The renderer input

Out render_out:render The renderer output

direction_out:float3 The orientation

Table 8-148. 

gl_line_width Sets the line width if modules are using lines and
don’t set the width themselves. Will not override
settings if done by the modules

In render_in:render The renderer input

width:float The width

Out render_out:render The renderer output

Table 8-149. 

gl_matrix_get Gets the MODELVIEW, PROJECTION, or TEXTURE
matrix

In render_in:render The renderer input

matrix_target:enum One of MODELVIEW, PROJECTION, or TEXTURE

Out render_out:render The renderer output

matrix_out:matrix The 4x4 matrix selected

Chapter 8 ■ ThMAD Module Reference

296

Table 8-151. 

gl_rotate_quat Rotates as described by a quaternion

In render_in:render The renderer input

rotation:quaternion The rotation quaternion

matrix_target:enum One of MODELVIEW, PROJECTION, or TEXTURE. In
which matrix stack the rotation is supposed to
occur

invert_rotation:enum One of no or yes. If yes, invert the rotation

Out render_out:render The renderer output

Table 8-152. 

gl_scale Does a scaling

In render_in:render The renderer input

scale:float3 The scaling factor in each dimension

matrix:enum One of MODELVIEW, PROJECTION, or TEXTURE.
In which matrix stack the scaling is supposed
to occur.

Out render_out:render The renderer output

Table 8-150. 

gl_matrix_multiply Multiplies one of MODELVIEW, PROJECTION, or
TEXTURE matrix with the matrix given

In render_in:render The renderer input

matrix_in:matrix The 4x4 matrix used for the multiplication

matrix_target:enum One of MODELVIEW, PROJECTION, TEXTURE

Out render_out:render The renderer output

gl_rotate Rotates about an axis

In render_in:render The renderer input

axis:float3 The rotation axis

angle:float The rotation angle

Out render_out:render The renderer output

Chapter 8 ■ ThMAD Module Reference

297

Table 8-153. 

gl_scale_one Does a scaling, the factor for each dimension the same

In render_in:render The renderer input

scale:float The scaling factor far all dimensions

matrix:enum One of MODELVIEW, PROJECTION, or TEXTURE. In which
matrix stack the scaling is supposed to occur.

Out render_out:render The renderer output

Table 8-154. 

gl_translate Translates all objects

In render_in:render The renderer input

translation:float3 The translation vector

Out render_out:render The renderer output

Table 8-155. 

light_directional A directional light. “Directional” means
the lighting is calculated as if all light
beams come in in a parallel fashion

In render_in:render The renderer input

properties:complex

light_id:enum The light ID. If you have more than one
light, all lights must have different IDs

enabled:enum One of no or yes. Switch the light on or
off.

position:float3 Where the light comes from. Defines the
light beams direction

ambient_color: float4 An ambient color. Will shine on all
surfaces and independent of the light’s
position

diffuse_color: float4 A diffuse color. Will refract into all
directions when surfaces are hit

specular_color: float4 A specular color. Will be reflected at a
(more or less) precise angle once surfaces
are hit

Out render_out:render The renderer output

Chapter 8 ■ ThMAD Module Reference

298

Table 8-156. 

light_model The light model to use

In render_in:render The renderer input

properties:complex

ambient_color: float4 An ambient color to use independent of
any light. Ambient colors will shine on any
surface, no matter how positioned

color_control: enum One of:

−	� SINGLE_COLOR: Standard color
calculation for all types of light

−	 SEPARATE_SPECULAR_COLOR: Use a
special variable for the specular color.

local_viewer:enum One of:

−	� Z-AXIS: Use a point on the z-axis for
calculating the final color value

−	� EYE_COORDS: Use the camera’s
position for calculating the final
color value.

num_sides:enum One of ONE or TWO. If TWO, let light shine on
the backside of surfaces as well (ThMAD
however cannot handle that)

Out render_out:render The renderer output

Chapter 8 ■ ThMAD Module Reference

299

Table 8-158. 

rendering_mode The rendering mode specifies what happens with the
lines and areas between vertices

In render_in:render The renderer input

back_facing:enum One of:

−	� points: Render only points at the vertices

−	� lines: Render lines between adjacent
vertices, but do not paint the faces

−	� solid: Paint the area between adjacent
vertices

front_facing:enum Same values as back_facing

smooth_edges:enum One of no or yes. Whether to draw smooth edges.

Out render_out:render The renderer output

Table 8-157. 

material_param Material color related parameters

In render_in:render The renderer input

faces_affected:enum One of front_facing, back_facing,
or front_and_back

properties:complex

ambient_ reflectance:float4 The color used for ambient
reflectance. Naturally you would use
something dark here

diffuse_ reflectance:float4 The color used for diffuse reflectance.
Usually you put the natural surface’s
color here

specular_ reflectance:foat4 The color used for specular
reflectance. Usually you put
something bright or very bright here

emission_intensity: float4 Some color that is emitted no matter
what light shines on the surface

specular_exponent: float Defines the fuzziness of specular
reflectance. The greater, the more
spotted the specular reflectance will
appear.

Out render_out:render The renderer output

Chapter 8 ■ ThMAD Module Reference

300

�Oscilloscopes
Oscilloscopes serve diagnostic purposes for seeing what controller modules do in the
course of time. The path is Renderers → Oscilloscopes. See Tables 8-159 and 8-160.

Table 8-159. 

simple_colorline Draws a line with segments colored
according to the values inside an
input array

In spatial:complex

position:float3 The position of the surrounding
(invisible) box in space

angle:float The angle around the rotation axis

rotation_axis: float3 The rotation axis

size:float The size of the surrounding box

color_a:float4 Color for array-values zero

color_b:float4 Color for array values 1.0 – colors in
between will be linearly interpolated

line_width:float The line width. Note that your graphics
hardware might impose an upper limit
on that

Out render_out:render The renderer output

Chapter 8 ■ ThMAD Module Reference

301

Table 8-160. 

simple_oscilloscope An oscilloscope drawing elongations
designated by floats from an incoming
float array

In data_in:float_ array Incoming data

spatial:complex

position:float3 The position of the surrounding (invisible)
clipping box in space

angle:float The angle around the rotation axis

rotation_axis: float3 The rotation axis

size:float The size of the surrounding box

color:float4 The painting color

line_width:float The line width. Note that your graphics
hardware might impose an upper limit on that

axes:complex

paint_y_zero: enum One of no or yes. Whether to paint a val=0
line

axes_color: float4 The color used for the axes

Out render_out: render The renderer output

While the oscilloscope is more a diagnostic tool, you might need to ensure its
usability by prepending a Maths → Array → float_array_memory_buffer module for
collecting floats, the simple_colorline can be used to produce visualizations. While a
line by itself is a little boring, using a blurring effect might greatly improve the number of
usage scenarios.

�Particlesystems
Particlesystem related renderers. The path is Renderers → particlesystems.
See Tables 8-161 to 8-166.

Chapter 8 ■ ThMAD Module Reference

302

Table 8-162. 

render_particle_ribbon Renders particles along a moving
gravitational ribbon in 3D

In particlesystem: particlesystem The particle system to render

params:complex

ribbon_width: float The width of the ribbon

length:float The length of the ribbon

friction:float A frictional parameter (the particles may
change their speed while moving along
the ribbon trajectory)

step_length: float A factor for the movement speed of the
particles along the ribbon trajectory

color0:float4 A color for the particles, will have a
decreasing ALPHA during the lifetime of
each particle

color1:float Another static color parameter.

Out render_out:render The renderer output

Table 8-161. 

render_particle_center A special effects particlesystem renderer
disobeying physics laws by clamping
some coordinates to a center point

In particlesystem: particlesystem The particle system to render

texture:texture The texture used for drawing each particle

position:float3 A base position used for rendering the
particle system

alpha:float An artificial additional ALPHA value; all
colors from the particles just have their
RGB values (not the ALPHA!) multiplied
by that number

size:float A size to apply for each particle

Out render_out:render The renderer output

Chapter 8 ■ ThMAD Module Reference

303

Table 8-163. 

render_particle_shader A more advanced particle system
renderer which lets you define lifetime
behavior and lets you use shader code
for maximum rendering flexibility

In particlesystem: particlesystem The particle system to render

texture:texture A texture used to render the particles

options:complex

size_lifespan_ type:enum How the size during the lifetime is
calculated:

−	� normal: increase linearly during
lifetime

−	� sequence: as specified by the
sequence

size_lifespan_ sequence:
sequence

The size sequence if size_lifespan_
type is set to sequence.

alpha_lifespan_ sequence:
sequence

How the ALPHA of the particles develop
during their lifetime

color_lifespan_ type:enum How the colors during the lifetime are
calculated:

−	� normal: just take the specified
particle colors

−	� sequence: as specified by the
sequences

r_lifespan_ sequence:
sequence

The RED sequence if color_lifespan_
type is set to sequence

g_lifespan_ sequence:
sequence

The GREEN sequence if color_
lifespan_type is set to sequence

b_lifespan_ sequence:
sequence

The BLUE sequence if color_
lifespan_type is set to sequence

ignore_particles_ att_
center:enum

One of no or yes. Whether to draw
particles which are at or very close to
the center

shader_params: complex

vertex_program: string The vertex program. Use this to tweak
positions

fragment_ program:string The fragment program. Use this to
tweak the coloring

Out render_out:render The renderer output

Chapter 8 ■ ThMAD Module Reference

304

Table 8-164. 

render_particlesystem_ext The little brother of the module
render_particle_shader. Just
always uses sequences for all the
lifetime parameters size, alpha, color
channels

In particlesystem: The particle system to render

particlesystem

texture:texture A texture used to render the particles

options:complex

size_lifespan_ sequence:
sequence

The size sequence if size_lifespan_
type is set to sequence.

alpha_lifespan_ sequence:
sequence

How the ALPHA of the particles develop
during their lifetime

r_lifespan_ sequence:
sequence

The RED sequence if color_lifespan_
type is set to sequence

g_lifespan_ sequence:
sequence

The GREEN sequence if color_
lifespan_type is set to sequence

b_lifespan_ sequence:
sequence

The BLUE sequence if color_
lifespan_type is set to sequence

Ignore_ particles_att_
center:enum

One of no or yes. Whether to draw
particles which are at or very close to
the center

vertex_program: string The vertex program. Use this to tweak
positions

fragment_program: string The fragment program. Use this to
tweak the coloring

Out render_out:render The renderer output

Chapter 8 ■ ThMAD Module Reference

305

Table 8-165. 

simple The basic particle system renderer. Similar to
the render_particle_shader module, but
allows for choosing between texture rendering
(no shader code used) and point sprite
rendering (with shader code used)

In particlesystem:
particlesystem

The particle system to render

texture:texture A texture used to render the particles

options:complex

render_type:enum One of quads or point_sprites

size_lifespan_type:
enum

How the size during the lifetime gets
calculated:
normal: increase linearly during lifetime
sequence: as specified by the sequence

size_lifespan_
sequence:sequence

The size sequence if size_lifespan_type is set
to sequence.

alpha_lifespan_
sequence:sequence

How the ALPHA of the particles develop during
their lifetime

color_lifespan_type:
enum

How the colors during the lifetime gets
calculated:

−	� normal: just take the specified particle
colors

−	 sequence: as specified by the sequences

r_lifespan_
sequence:sequence

The RED sequence if color_lifespan_type is
set to sequence

g_lifespan_
sequence:sequence

The GREEN sequence if color_lifespan_type
is set to sequence

b_lifespan_
sequence:sequence

The BLUE sequence if color_lifespan_type is
set to sequence

Ignore_particles_
att_center:enum

One of no or yes. Whether to draw particles
which are at or very close to the center

shader_params: complex

vertex_program:
string

The vertex program. Use this to tweak positions

fragment_program:
string

The fragment program. Use this to tweak the
coloring

Out render_out:render The renderer output

Chapter 8 ■ ThMAD Module Reference

306

Table 8-166. 

sparks Draws sparks between particles which approach
each other too closely

In particlesystem:
particlesystem

The particle system to render. Should not be too
big, because proximity calculations are expensive

float_array_in: float_
array

An array that modulates the proximity distance
when sparks emerge. Use for example some array
you get from sound input

proximity_level: float The proximity level when sparks emerge

color:float4 The spark color

Out render_out:render The renderer output

�Shaders
The shaders in this subsection are special modules; they all use the same code basis but
have arbitrary shader code at work. The latter is initialized with some code, but can be
adjusted freely once the module is instantiated on the canvas.

One noticeable difference with all the other modules is that defaults for the
parameters don’t apply. So in most cases you have to carefully set all adjustable
parameters before the shaders can work as expected.

The basis code leads to following parameters; see Table 8-167.

Table 8-167.  Shader Parameters

<Name given by shader code> Shader basis code

In render_in:render The renderer input

vertex_program:string The vertex shader code

fragment_program: string The fragment shader code

uniforms:complex Automatically generated anchors. ThMAD
parses the shader code and exposes all
uniforms it finds there

attributes:complex Automatically generated anchors for attributes.
Attributes get assigned on a per- vertex basis,
which makes them somewhat hard to handle
in ThMAD

Out render_out:render The renderer output

Chapter 8 ■ ThMAD Module Reference

307

The following shaders exist; see Table 8-168.

Shaders are a powerful concept. Although this book cannot give a thorough
introduction, you can start diving into that matter using the examples.

Table 8-168.  Built-in Shaders

Name Description

glsl_loader This is the basic shader. It describes a basic shader
code for grounds-up developing your own shaders.
For the default shader code open the anchor of a
freshly instantiated module

blend_modes / shader_blend_
color_ dodge

A dodge blend shader. For the default shader
code open the anchor of a freshly instantiated
module.

blend_modes / shader_blend_
overlay

An overlay blend shader. For the default shader
code open the anchor of a freshly instantiated
module.

blend_modes / shader_blend_
satadd

A saturated addition blend shader. For the
default shader code open the anchor of a freshly
instantiated module.

blend_modes / shader_blend_
screen

A screen blend shader. For the default shader
code open the anchor of a freshly instantiated
module.

lighting_models / normal_map A normal mapping lighting. For the default
shader code open the anchor of a freshly
instantiated module.

lighting_models / normal_map2 Another normal mapping lighting. For the
default shader code open the anchor of a freshly
instantiated module.

lighting_models / shader_2l_
diffmap_ specmap

A diffmap/specmap lighting. For the default
shader code open the anchor of a freshly
instantiated module.

lighting_models / shader_
smooth_ lighting_tex

A lighting of a texture. For the default shader code
open the anchor of a freshly instantiated module.

materials / chromatic_
dispersion

A chromatic refraction shader. For the default
shader code open the anchor of a freshly
instantiated module.

texture_filters / blur_shader A blurring shader. Takes a texture and applies a
Gaussian blur. You need to set the texOffset to
a value unequal (0,0) to see an effect (try small
values like 0.02). For the default shader code
open the anchor of a freshly instantiated module.

Chapter 8 ■ ThMAD Module Reference

308

Text
Text related renderers. The path is Renderers → Text. See Table 8-169.

Table 8-169. 

text_s Writes a string on a plane

In text_in:string The text

font_in:resource The TTF font (appendix *.ttf) to use

render_type:enum If BITMAP, render text as bitmap, if POLYGON,
create polygons to render the text. Usually using
bitmaps looks better.

align:enum How to align multi-line text horizontally. One of
LEFT, CENTER, or RIGHT.

limits / limit_align: float If greater than 0.0, the integer part will pick a
line from multi-line text (0 is the first line).

appearance:complex

glyph_size:float The glyph size. Will look inside the font data to
find the best matching glyph set.

size:float The size of the surrounding box. The text will
scale automatically when you change this.

leading:float The distance between lines of text

position:float3 Position of the surrounding box

angle:float Rotation angle of the surrounding box

rotation_axis: float3 Rotation axis of the surrounding box

text_alpha:float ALPHA of the text

outline_alpha:float If in POLYGON mode, an ALPHA channel
multiplier for an outlining

outline_color: float4 If in POLYGON mode, the color for an outlining

outline_thickness:
float

If in POLYGON mode, the line thickness used
for an outlining

color:complex Color of the text

red:float Red

green:float Green

blue:float Blue

Out render_out:render The renderer output

Chapter 8 ■ ThMAD Module Reference

309

�Xtra
Some extra renderers. The path is Renderers → Xtra. See Tables 8-170 to 8-172.

Table 8-170. 

gravity_lines Lets 40 masses revolve around a center point.
Applies a non-Newton law of gravity: F = -q ∙
(pos - center). Note that the algorithm will collapse
towards the gravitational center, so the latter (the pos
anchor) should be changing during the visualization.
Renders the masses’ trajectories as lines

In pos:float3 Gravitational center

params:complex

friction:float A friction to apply to the movements

step_length: float The advection per frame. The masses will be faster
once you increase this parameter

color0:float4 The starting color

color1:float4 The finishing color

Out render_out:rend er The renderer output

Table 8-171. 

gravity_ribbon Lets a ribbon revolve around a center point. Applies
a non-Newton law of gravity: F = -q ∙ (pos - center).
Note that the algorithm will collapse towards the
gravitational center, so the latter (the pos anchor)
should be changing during the visualization

The Mesh → Generators → Ribbon gives usually better
results than this module

In pos:float3 Gravitational center

params:complex

length:float The length of the ribbon

ribbon_width: float The width of the ribbon

friction:float A friction to apply to the movements

step_length: float The advection per frame. The ribbon will be faster once
you increase this parameter

color0:float4 The starting color

color1:float4 The finishing color

Out render_out: render The renderer output

Chapter 8 ■ ThMAD Module Reference

310

Table 8-172. 

skybox A special module tailored for a skybox. Will
produce six bitmaps from a single input
bitmap for mapping on a cube. You probably
need to connect it to a Texture → opengl →
bitmcubemap module and afterwards apply
shader code and connect the texture to a
samplerCube type shader variable. See the
state in Examples → skybox_chromatic

In bitmap:bitmap Input bitmap

Out render_out:render A renderer output. You don’t have to use this

bitmaps:complex The six bitmaps for the mapping on a cube

positive_x: bitmap

negative_x: bitmap

positive_y: bitmap

negative_y: bitmap

positive_z: bitmap

negative_z: bitmap

�Selectors
Selectors allow for the programmatic selection of values from a range of values given an
index. The path is Selectors, then see Tables 8-173 to 8-178.

Table 8-173. 

float3_selector Selects from the float3 vectors given by the
anchors float3_*

In index:float Which of the float3 values to select

inputs:enum How many float3 values will be provided. One of
0, 1, 2, …, 16

float3_x:complex Inside this complex anchor the input float3
values will have to be specified

float3_0:float3 First value

float3_1:float3 Second value

... More values

(continued)

Chapter 8 ■ ThMAD Module Reference

311

float3_selector Selects from the float3 vectors given by the
anchors float3_*

options:complex

wrap:enum What to do if the index is out of bounds:

−	� Wrap: Wrap around the index. If for
example “inputs” = 3 and no interpolation,
the values chosen are:

-1 → val3, 0 → val1, 1 → val2, 2 → val3,
3 → val0, …

−	� None_zero: no warp, set off-bound indices
to 0.0

−	� None_freeze: no wrap, set to closest valid
value

interpolation: enum One of:

−	� None: no interpolation. The mapping from
input “index” to the selected index is:
Round(inp)

−	� Linear: The mapping from input “index” to
the selected index is: Floor(inp).

Fractional parts get interpolated linearly

−	� Sequence: Same as linear, but uses the
sequence given for interpolating

sequence: sequence Only if interpolation is set to sequence , use
this to interpolate the fractional part of the input
index.

reverse:enum Only if interpolation is set to sequence:

−	 Off: No reversal

−	� On: Interpret sequence from right to left
instead.

−	� Auto_Normal: Automatically reverse the
sequence when values are decreasing

−	� Auto_Inverted: Like Auto_Normal, but
reversed once more.

reset_seq_to_
default:enum

A trigger. If ok is chosen, reset the sequence to its
default cosine shape.

Out result:float3 The chosen and possibly interpolated value

Table 8-173.  (continued)

Chapter 8 ■ ThMAD Module Reference

312

Table 8-174. 

float4_selector Selects from the float4 vectors given by the anchors
from inside float4_x

In index:float Which of the float4 values to select.

inputs:enum How many float4 values will be provided. One of 0, 1,
2, …, 16

float3_x:complex Inside this complex anchor the input float4 values
will have to be specified

float4_0:float4 First value

float4_1:float4 Second value

... More values

options:complex

wrap:enum What to do if the index is out of bounds:

−	� Wrap: Wrap around the index. If for example
“inputs” = 3 and no interpolation, the values
chosen are: -1 → val3, 0 → val1, 1 → val2, 2 →
val3, 3 → val0, …

−	 None_zero: no warp, set off-bound indices to 0.0

−	 None_freeze: no wrap, set to closest valid value

interpolation:
enum

One of:

−	� None: no interpolation. The mapping from input
index to the selected index is: Round(inp)

−	� Linear: The mapping from input index to the
selected index is Floor(inp). Fractional parts
get interpolated linearly

−	� Sequence: Same as linear, but uses the
sequence given for interpolating

sequence:sequence Only if interpolation is set to sequence, use this to
interpolate the fractional part of the input index.

reverse:enum Only if interpolation is set to sequence:

−	 Off: No reversal

−	� On: Interpret sequence from right to left instead.

−	� Auto_Normal: Automatically reverse the
sequence when values are decreasing

−	� Auto_Inverted: Like Auto_Normal, but
reversed once more.

reset_seq_to_
default:enum

A trigger. If ok is chosen, reset the sequence to its
default cosine shape.

Out result:float4 The chosen and possibly calculated value

Chapter 8 ■ ThMAD Module Reference

313

Table 8-175. 

float_selector Selects from the float values given by the anchors
float_*

In index:float Which of the float values to select.

inputs:enum How many float values will be provided. One of 0,
1, 2, …, 16

float3_x:complex Inside this complex anchor the input float values
will have to be specified

float_0:float First value

float_1:float Second value

... More values

options:complex

wrap:enum What to do if the index is out of bounds:

−	� Wrap: Wrap around the index. If
for example “inputs” = 3 and no
interpolation, the values chosen are:
-1 → val3, 0 → val1, 1 → val2, 2 → val3,
3 → val0, …

−	� None_zero: no warp, set off-bound indices
to 0.0

−	� None_freeze: no wrap, set to closest valid
value

interpolation: enum One of:

−	� None: no interpolation. The mapping from
input “index” to the selected index is:
Round(inp)

−	� Linear: The mapping from input “index”
to the selected index is: Floor(inp).
Fractional parts get interpolated linearly

−	� Sequence: Same as linear, but uses the
sequence given for interpolating

sequence:sequence Only if interpolation is set to sequence, use
this to interpolate the fractional part of the input
index.

(continued)

Chapter 8 ■ ThMAD Module Reference

314

float_selector Selects from the float values given by the anchors
float_*

reverse:enum Only if interpolation is set to sequence:

−	� Off: No reversal

−	� On: Interpret sequence from right to left
instead.

−	� Auto_Normal: Automatically reverse the
sequence when values are decreasing

−	� Auto_Inverted: Like Auto_Normal, but
reversed once more.

reset_seq_to_
default:enum

A trigger. If ok is chosen, reset the sequence to its
default cosine shape.

Out result:float The chosen and possibly interpolated value

Table 8-175.  (continued)

Table 8-176. 

quaternion_selector Selects from the quaternion values given by the
anchors from inside quaternion_x

In index:float Which of the quaternion values to select

inputs:enum How many quaternion values will be provided.
One of 0, 1, 2, …, 16

quaternion_x: complex Inside this complex anchor the input quaternion
values will have to be specified

quaternion_0:
quaternion

First value

quaternion_1:
quaternion

Second value

... More values

(continued)

Chapter 8 ■ ThMAD Module Reference

315

quaternion_selector Selects from the quaternion values given by the
anchors from inside quaternion_x

options:complex

wrap:enum What to do if the index is out of bounds:

−	� Wrap: Wrap around the index. If for
example “inputs” = 3 and no interpolation,
the values chosen are: -1 → val3, 0 → val1,
1 → val2,
2 → val3, 3 → val0, …

−	� None_zero: no warp, set off-bound indices
to 0.0

−	� None_freeze: no wrap, set to closest valid
value

interpolation: enum One of:

−	� None: no interpolation. The mapping
from input index to the selected index is
Round(inp)

−	� Linear: The mapping from input index to
the selected index is Floor(inp). Fractional
parts get interpolated linearly

−	� Sequence: Same as linear, but uses the
sequence given for interpolating

sequence: sequence Only if interpolation is set to sequence, use this
to interpolate the fractional part of the input index.

reverse:enum Only if interpolation is set to sequence :

−	 Off: No reversal

−	� On: Interpret sequence from right to left
instead.

−	� Auto_Normal: Automatically reverse the
sequence when values are decreasing

−	� Auto_Inverted: Like Auto_Normal, but
reversed once more.

reset_seq_to_
default:enum

A trigger. If ok is chosen, reset the sequence to its
default cosine shape.

Out result:quaternion The chosen and possibly interpolated value

Table 8-176.  (continued)

Chapter 8 ■ ThMAD Module Reference

316

Table 8-177. 

string_selector Selects from the string values given by the
anchors from inside string_x

In index:float Which of the string values to select.

inputs:enum How many string values will be provided. One
of 0, 1, 2, …, 16

string_x:complex Inside this complex anchor the input string
values will have to be specified

string_0:string First value

string_1:string Second value

... More values

wrap:enum What to do if the index is out of bounds:

−	� Wrap: Wrap around the index. If
for example “inputs” = 3 and no
interpolation, the values chosen are:
-1 → val3, 0 → val1, 1 → val2, 2 → val3,
3 → val0, …

−	� None_zero: no warp, set off-bound
indices to “0.0”

−	� None_freeze: no wrap, set to closest
valid value

Out result:string The chosen value

Table 8-178. 

texture_selector Selects from the textures given by the
anchors from inside texture_x

In index:float Which of the textures to select.

inputs:enum How many textures will be provided.
One of 0, 1, 2, …, 16

texture_x:complex Inside this complex anchor the input
textures will have to be specified

texture_0:texture First texture

texture_1:texture Second texture

… More textures

(continued)

Chapter 8 ■ ThMAD Module Reference

317

texture_selector Selects from the textures given by the
anchors from inside texture_x

options:complex

wrap:enum What to do if the index is out of bounds:

−	� Wrap: Wrap around the index.
If for example “inputs” = 3 and
no interpolation, the textures
chosen are: -1 → val3, 0 → val1,
1 → val2, 2 → val3, 3 → val0, …

−	� None_zero: no warp, set off-
bound indices to empty

−	� None_freeze: no wrap, set to
closest valid value

blend_type:enum One of:

−	� Snap: switch abruptly between
textures when the index
changes

−	� Linear: Blend linearly between
adjacent textures when the
index changes.

−	� Sequence: Blend according to
the sequence anchor

blend_options: complex

blend_size: enum While blending an own texture is
created. This is its size. One of 8x8,
16x16, 32x32, 64x64, 128x128, 256x256,
512x512, 1024x1024, or 2048x2048

A_crossfade: complex Defines cross-fade options for texture A
(floor of index)

A_sequence:
sequence

The sequence for the texture A while
blending, modulates the sequence
parameter.

A_reverse: enum Off or on, whether to reverse that
sequence

A_reset_seq_ to_
default:

Trigger. If ok, reset that A cross-fade
sequence to linear mode.

(continued)

Table 8-178.  (continued)

Chapter 8 ■ ThMAD Module Reference

318

texture_selector Selects from the textures given by the
anchors from inside texture_x

enum

B_cross-fade: complex

B_sequence:
sequence

The sequence for the texture B while
blending, modulates the sequence
parameter.

B_reverse: enum Off or on, whether to reverse that
sequence.

B_reset_seq_ to_
default: enum

Trigger. If ok, reset that B cross-fade
sequence to linear mode.

sequence: sequence Only if blend_type is set to sequence,
blend while the index changes from
one to the next sequence. May further
be modulated by the sequences inside
blend_options.

reverse:enum Off or on. If On, and only if blend_type
is set to sequence, reverse the sequence.

reset_seq_to_ default:enum A trigger, if set to ok, reset the sequence
to its default = linearly.

shaders:complex For further fine-tuning the blending
between textures

vertex_program: string The vertex shader

fragment_program: string The fragment shader

shad_param1:float Shader params (uniforms)

shad_param2:float

shad_param3:float

shad_param4:float

shad_param5:float

shad_param6:float

shad_param7:float

shad_param8:float

Out result:texture The chosen and possibly interpolated
texture

Table 8-178.  (continued)

Chapter 8 ■ ThMAD Module Reference

319

Sound
Sound modules build the interfacing to incoming sound.

�input_visualization_listener
Listens to incoming sound and provide numerical output for other modules. This is
the main input module if you want to react on audio input and you’d usually place
this module graphically on the very left if using the GUI. The path is Sound → input_
visualization_listener.

Technically it will be using a fast Fourier transformation (FFT) algorithm to
transform the time-based input delivered by the system’s sound device into the frequency
domain, so you will be able to tell the frequency distribution and the volume of each part
of the frequency spectrum. See Table 8-179.

Table 8-179. 

input_ visualization_ listener Listens to incoming sound

In multiplier:float Multiplies what comes from the system’s audio
device by some number. Default is 1.0

Out vu:complex The current overall amplitude, determined
by summing up the coefficients of the FFT
outcome. A complex of two numbers, left and
right stereo channel.

vu_l:float Left stereo channel. A float number between
0.0 and 1.0

vu_r:float Right stereo channel. A float number between
0.0 and 1.0. Note that vu_l and vu_r are currently
the same, because the FFT only runs over the left
channel and the value from the left channel just
gets copied over to the right channel.

octaves:complex Amplitudes on a coarse octave based
frequency spectrum.

left:complex Left stereo channel.

octaves_l_0 Lowest octave, approximately from F to f (midi
tones 41 until 53)

octaves_l_1 This is where the middle c (c' midi tone 60)
will be inside. Approximately from f to f' (midi
tones 53 until 65)

octaves_l_2 Approximately from f' to f'' (midi tones 65
until 77)

(continued)

Chapter 8 ■ ThMAD Module Reference

320

input_ visualization_ listener Listens to incoming sound

octaves_l_3 Approximately from f'' to f''' (midi tones
77 until 89)

octaves_l_4 Approximately from f''' to f'''' (midi tones
89 until 101)

octaves_l_5 Approximately from f'''' to f''''' (midi tones
101 until 113)

octaves_l_6 Approximately from f(5) to f(6) (midi tones
113 until 125)

octaves_l_7 Highest octave from f(6) to f(7)

right:complex Right stereo channel. Note that the right
channel and left channel show the same
numbers, since the FFT runs only over the left
channel and its values are just copied to the
right channel array.

octaves_r_0 Lowest octave, see description for octaves_l_0

octaves_r_1 See description for octaves_l_1

octaves_r_2 See description for octaves_l_2

octaves_r_3 See description for octaves_l_3

octaves_r_4 See description for octaves_l_4

octaves_r_5 See description for octaves_l_5

octaves_r_6 See description for octaves_l_6

octaves_r_7 Highest octave, see description for octaves_l_7

wave:float_array The audio sample itself. An array of size 512
containing the sample data for the left channel.
The right channel is neglected.

spectrum: float_array The spectrum. An array of size 512 containing
the amplitudes in the frequency space. Originally
each value’s index (i=0..511) from the FFT
outcome corresponds to a frequency i / 256 *
44100 / 2, but we want to have equal tune ranges
and thus re-index accordingly. The lowest value
thus goes for 86 Hz (= F, midi 41) and the highest
for f(7) (off MIDI range). This is eight octaves or
96 half tones, thus each value in this array is for a
96 / 512 = 0.1875 half tones or 18.75 cents. Note
that the lower frequencies are quite coarse due to
the nature of the FFT algorithm.

Table 8-179.  (continued)

Chapter 8 ■ ThMAD Module Reference

321

You might ask why we don’t have lower octaves as well. This is intrinsic to the
algorithm; for lower octaves we’d need a larger audio calculation buffer, more time for a
sample slowing the reactiveness, and more CPU power.

�midi → aka_apc40_controller
This is a certain kind of hardware controller for professionally using ThMAD in realtime
performances. The path is Sound ath:is → aka_apc40_controller. See Table 8-180.

Table 8-180. 

midi → aka_apc40_controller Connects to an Akai APC40 midi controller

Consult the controller manual for parameters. Anchors are named accordingly.

�ogg_sample_*
Ogg Vorbis sound file format players. The path is Sound → ogg_sample_.
See Tables 8-181 and 8-182.

Table 8-181. 

ogg_sample_play Plays an audio file in Ogg Vorbis format. You
should be able to hear it, and also data goes to the
input_visualization_listener. Start immediate
playback when configured or ThMAD starts. If you
need a triggered playback, use the module
ogg_sample_trigger

In filename: resource The OGG Vorbis file to play

format:enum Mono or stereo

Table 8-182. 

ogg_sample_trigger Plays an audio file in Ogg Vorbis format. There is a
trigger, and you can apply a gain and a pitch modifier

In filename: resource The OGG Vorbis file to play

trigger:float Start play when 1.0 or above. Stop playing when 0.0 or
below. While playing, defines the speed (>1 is faster,
<1 slower)

pitch:float Another way to change playing speed (and pitch). Set
0 to keep unchanged (still “trigger” ≠ 1 will change the
speed and pitch)

gain:float A volume gain control

Chapter 8 ■ ThMAD Module Reference

322

�raw_sample_*
Raw means a header-less sound file, i.e., all bytes are uncompressed PCM sound data.
The format needed is signed int 16-bit little endian.

You can create RAW files for example with the software ffmpeg. As an example, if you
have a WAV file, you can convert it to a suitable RAW file by entering this in the terminal:

ffmpeg -i a.wav -f s16le -acodec
pcm_s16le a.raw

The path is Sound → raw_sample_. See Tables 8-183 and 8-184.

Table 8-183. 

raw_sample_play Plays an audio file in raw format. You should be
able to hear it, and also data goes to the input_
visualization_listener.
Start immediate playback when configured or
ThMAD starts. If you need a triggered playback, use
the module raw_sample_trigger.

In filename:resource The RAW file to play

format:enum Mono or stereo

Table 8-184. 

raw_sample_trigger Plays an audio file in raw format. There is a trigger,
and you can apply a gain and a pitch modifier

In filename:resource The RAW file to play.

trigger:float Start play when 1.0 or above. Stop playing when 0.0
or below. While playing, defines the speed
(>1 is faster, <1 slower)

pitch:float Another way to change playing speed (and pitch).
Set 0 to keep unchanged (still “trigger” ≠ 1 will
change the speed and pitch)

gain:float A volume gain control

Chapter 8 ■ ThMAD Module Reference

323

Strings
String related modules. The path is String, then see Tables 8-185 and 8-186.

Table 8-185. 

float_to_string Converts a float to a string

In float_in:float Float input

precision:float The number of digits to show after the decimal
separator

Out string_out:string The string representation

Table 8-186. 

res_to_str Use this to get the path from a resource. Will
output something like resources/my.png

In resource_in:resource The resource

Out string_out:string The resource path

�System
System level modules. The path is System, then see Tables 8-187 to 8-198.

Table 8-187. 

blocker Use this to conditionally prevent a rendering
sub-pipeline from being run

In render_in: render The renderer input

block:float If this is less than 0.5, block the sub-pipeline. If
equal or greater than 0.5, let it run

Out render_out: render The renderer output

Chapter 8 ■ ThMAD Module Reference

324

Table 8-188. 

blocker_loading Renders a sub-pipeline only when ThMAD is
loading

In render_in: render The renderer input

fadeout_time: float Do not block for that many seconds after ThMAD’s
loading started. Then block.

Out render_out: render The renderer output

fadeout_out: float Will linearly decrease from 1.0 to 0.0. When
0.0 is reach, start the blocking.

Table 8-189. 

clock Allows access to the system clock

Out clock:complex

year:float Year minus 1900

month:float Month, 0 = January

dayofweek: Day of week, 0 to 6, 0 = Sunday

float

day:float Day in month, 1, …, 31

hour:float Hour of day, integer part = 0, …, 23. Contains
fraction of hour!

hour12:float Hour of day, integer part = 0, …, 11. Contains
fraction of hour!

minute:float Minute of hour. Contains fraction of minute!

second:float Second of minute. Contains fraction of
second!

millisecond: float Millisecond of second. Contains fraction of
millisecond!

Chapter 8 ■ ThMAD Module Reference

325

Table 8-190. 

filesystem → file_chooser Allows a dynamic selection of resources given
a path

In directory_path: string Which directory to choose inside
/home/[USER]/thmad/ [VERSION]/data
All files including those in sub folders inside
will be taken into account!

file_id:float Which file to choose from all the files found

Out filename_result: resource The chosen resource

filename_count: float The number of files actually found

Table 8-191. 

joystick Accesses joystick input from system
devices /dev/js*

Out joystick_0: complex First joystick (only if connected,
otherwise the anchor doesn’t exist)

j_0_name: string The name of the joystick if the system
can determine it

axes:complex

j_0_axis0: float First axis

j_0_axis1: float Second axis (if it exists)

… Possibly more axes

buttons: complex

j_0_button0: float First button state

j_0_button1: float Second button state (if it exists)

… Possibly more buttons

joystick_1: complex Second joystick (only if connected,
otherwise the anchor doesn’t exist).
Sub-anchors similar to the ones for
joystick_0

… More joysticks (dynamically detected)

Chapter 8 ■ ThMAD Module Reference

326

Table 8-192. 

shutdown Programatically shuts down ThMAD if the input goes above
1.0. Note that it does not take care of unsaved changes in
your state if used inside Artiste

In shutdown:float Performs an unconditional shutdown of ThMAD (either
Artist or Player) when this value reaches or raises above 1.0

Table 8-193. 

state_loader Loads a *.vsx file into the current state

In filename: resource The *.vsx file. If using state_loader, ThMAD considers
the file a resource, so it must lie inside the
/home/[USER]/thmad/ [VERSION]/data/resources
folder.

Out render_out: render The output from this loaded state.

Table 8-194. 

system_sequencer_ control Controls the sequencing time, which is an
alternative timing concept to the system clock.
Inside the GUI, place it anywhere to use it. The
module has no output, but controls the internal
state of the engine

In trig_play:float If not already playing, changing its value from 0.0 or
below to a positive value triggers a PLAY event.
If already playing, do nothing.
If event triggered, starts the sequencing timer
(i.e., one second in the real world will show up as a
second in the sequencing timer).
If event triggered, and trig_set_time is 0 or
smaller, the sequencing timer will start at its last
value. Otherwise, it starts with the value given by
trig_set_time.

trig_stop:float If not already stopped, changing its value from 0.0
or below to a positive value triggers a STOP event.
The sequencing time stops at its latest value and
doesn’t advance any longer. It can be restarted later
by using the trig_play trigger.

(continued)

Chapter 8 ■ ThMAD Module Reference

327

system_sequencer_ control Controls the sequencing time, which is an
alternative timing concept to the system clock.
Inside the GUI, place it anywhere to use it. The
module has no output, but controls the internal
state of the engine

trig_rewind:float If currently running, changing its value from 0.0
or below to a positive value triggers a REWIND
event. If trig_set_time is 0 or smaller, change the
sequence timer to 0.0. If trig_set_time is greater
than zero, change the sequence timer to trig_
set_time. In both cases stops the engine (no more
sequencing time advancement)

trig_set_time: float Controls the value when rewinding or restarting the
engine.

Table 8-194.  (continued)

Table 8-195. 

time Tells the operating system time and the
sequencing time

Out normal:complex Sequencing timer.

time:float The sequencing time

dtime:float The time difference between this and the previous
frame, using the sequencing timer.

real:complex Operating system timer

r_time:float The operating system time

r_dtime:float The time difference between this and the previous
frame, using the operating system timer.

Chapter 8 ■ ThMAD Module Reference

328

Table 8-196. 

to_console Write values periodically to the console. Only
applies if Artiste or Player was started from
a console

In out_id:string If set, prepend this string to the console
output

enabled:enum One of no or yes

show_each:float Output frequency in seconds. If set to 1.0,
output each frame which will slow down
ThMAD. Maybe set to 60 or something like
that

params:complex

show_float: enum One of no or yes. Whether to print the value

in_float:float Input float

show_float3: enum One of no or yes. Whether to print the value

in_float3:float3 Input float3

show_float4: enum One of no or yes. Whether to print the value

in_float4:float4 Input float4

show_ quaternion: enum One of no or yes. Whether to print the value

in_quaternion: quaternion Input quaternion

Table 8-197. 

viewport_size Use this to determine the actual graphical output size
in pixels. You don’t normally use that, because most
coordinates are relative

Out vx:float Width in pixels

vy:float Height in pixels

Chapter 8 ■ ThMAD Module Reference

329

Table 8-198. 

visual_fader A fader module exclusively used for
visuals transition inside the Player. Use
New → Transition For ThMAD Player to
see how it is used

In texture_a_in: texture Do not use

texture_b_in: texture Do not use

fade_pos_in: float Do not use

options:complex

transition_ length:float How many seconds the transition will
take

Out texture_a_out: texture The faded-out texture, i.e., the faded-out
visual

texture_b_out: texture The faded-in texture, i.e., the faded-in
visual

fade_pos_out: float Inside [0.0;1.0], where in the transition
phase we are

�Texture
Textures are images living in your graphics hardware. They are very important for
realtime graphics processing.

�Buffers
Texture buffers allow for sending rendered pixel data to a buffer on the graphics hardware
for fast rendering. The path is Texture → Buffers. See Tables 8-199 to 8-202.

Chapter 8 ■ ThMAD Module Reference

330

Table 8-199. 

render_buffer Represents a texture. Renders its input sub- pipeline
and stores the result in a texture. The data will
be kept there, even when the rendering input is
deactivated or even removed.
The texture doesn’t use mipmaps, uses “nearest”
filtering for both magnification and minification
(texture pixel bigger or smaller then color buffer
pixel) and clamps both coordinates to the edge for
wrapping

In render_in:render The graphics data we want to save as a texture on the
graphics hardware

options:complex

texture_size: enum The size. One of:

−	� 4x4, 8x8, 16x16, 32x32, 64x64, 128x128,
256x256, 512x512, 1024x1024, or 2048x2048

−	 VIEWPORT_SIZE: the viewport’s size

−	 VIEWPORT_SIZE_DIV_2: half the viewport’s size

−	� VIEWPORT_SIZE_DIV_4: fourth of the viewport’s
size

−	 VIEWPORT_SIZE_x2: twice the viewport’s size

−	 VIEWPORT_SIZE_x4: four times viewport’s size

−	� CUSTOM_SIZE: Size as given by the “size_x” and
“size_y” anchors below

size_x:float Only if texture_size is set to CUSTOM_SIZE, use this
sizesize_y:float

float_texture:
enum

One of no or yes. If yes, use float textures instead.
Especially interesting for shader code.

alpha_channel:
enum

One of no or yes. If yes, enable the ALPHA channel
inside the texture.

multisample: enum One of no or yes. If yes, enable multisampling,
improving the smoothness of pixel color transitions
at edges and corners.

Out texture_out:texture The output texture, i.e., the pointer to a data buffer on
the graphics hardware

Chapter 8 ■ ThMAD Module Reference

331

Table 8-200. 

render_surface_color_ buffer A color buffer, similar to module render_
buffer but without depth buffer

In render_in:render The graphics data we want to save as a texture
on the graphics hardware

options:complex

texture_size: enum The size. One of:

−	� 4x4, 8x8, 16x16, 32x32, 64x64, 128x128,
256x256, 512x512, 1024x1024, or
2048x2048

−	 VIEWPORT_SIZE: the viewport’s size

−	� VIEWPORT_SIZE_DIV_2: half the
viewport’s size

−	� VIEWPORT_SIZE_DIV_4: fourth of the
viewport’s size

−	� VIEWPORT_SIZE_x2: twice the
viewport’s size

−	� VIEWPORT_SIZE_x4: four times
viewport’s size

−	� CUSTOM_SIZE: Size as given by the
size_x and size_y anchors

size_x:float Only if texture_size is set to

CUSTOM_SIZE, use this size

size_y:float

float_texture: enum One of no or yes. If yes, use float textures
instead. Especially interesting for shader
code.

alpha_channel: enum One of no or yes. If yes, enable the ALPHA
channel inside the texture.

Out color_buffer: texture The output texture, i.e., the pointer to a data
buffer on the graphics hardware

Chapter 8 ■ ThMAD Module Reference

332

Table 8-201. 

render_surface_color_ depth_
buffer

A buffer that can use a separate shared depth
depth buffer and also outputs the depth buffer
separately

In render_in:render The graphics data we want to save as a texture on
the graphics hardware

depth_buffer: texture If connected, the depth buffer to use. Must have
the same size as specified by the size parameter
in this module

options:complex

texture_size: enum The size. One of:

−	� 4x4, 8x8, 16x16, 32x32, 64x64, 128x128,
256x256, 512x512, 1024x1024, or
2048x2048

−	 VIEWPORT_SIZE: The viewport’s size

−	� VIEWPORT_SIZE_DIV_2: Half the viewport’s
size

−	� VIEWPORT_SIZE_DIV_4: Fourth of the
viewport’s size

−	� VIEWPORT_SIZE_x2: Twice the viewport’s
size

−	� VIEWPORT_SIZE_x4: Four times the
viewport’s size

−	� CUSTOM_SIZE: Size as given by the size_x
and size_y anchors

size_x:float Only if texture_size is set to CUSTOM_SIZE, use
this size

size_y:float

float_texture: enum One of no or yes. If yes, use float textures instead.
Especially interesting for shader code.

alpha_channel: enum One of no or yes. If yes, enable the ALPHA channel
inside the texture.

Out color_buffer: texture The output texture, color buffer only

depth_buffer: texture The output depth buffer. Can be shared with
other render_surface_color_depth_buffer
modules.

Chapter 8 ■ ThMAD Module Reference

333

Table 8-202. 

render_surface_single A buffer with color and depth data. Allows for
backfeeding, i.e., rendering later in the sub-
pipeline may be fed back to the input of this
module.
The texture doesn’t use mipmaps, uses “linear”
filtering for both magnification and minification
(texture pixel bigger or smaller then color buffer
pixel) and clamps both coordinates to the edge for
wrapping

In render_in:render The graphics data we want to save as a texture on
the graphics hardware

options:complex

texture_size: enum The size. One of:

−	� 4x4, 8x8, 16x16, 32x32, 64x64, 128x128,
256x256, 512x512, 1024x1024, or 2048x2048

−	 VIEWPORT_SIZE: the viewport’s size

−	� VIEWPORT_SIZE_DIV_2: half the viewport’s
size

−	� VIEWPORT_SIZE_DIV_4: Fourth of the
viewport’s size

−	� VIEWPORT_SIZE_x2: Twice the viewport’s
size

−	� VIEWPORT_SIZE_x4: Four times viewport’s
size

−	� CUSTOM_SIZE: Size as given by the size_x
and size_y anchors

size_x:float Only if texture_size is set to CUSTOM_SIZE, use
this sizesize_y:float

support_feedback:
enum

One of no or yes. Only if enabled, feedback is
possible.

float_texture:enum One of no or yes. If yes, use float textures instead.
Especially interesting for shader code.

alpha_channel: enum One of no or yes. If yes, enable the ALPHA channel
inside the texture.

clear_color:float4 A clearing color used

Out texture_out:texture The output texture, i.e., the pointer to a data
buffer on the graphics hardware

Chapter 8 ■ ThMAD Module Reference

334

�Dummies
Dummy modules. The path is Texture → Dummies. See Table 8-203.

Table 8-203. 

texture_dummy A dummy; just passes the texture through. Useful
for example inside macros

In texture_in: texture Input texture

Out texture_out: texture Output texture

�Effects
Texture effects. The path is Texture → Effects. See Tables 8-204 and 8-205.

Table 8-204. 

blur A blurring. Uses an internal shader to blur the
input texture. If you want to achieve a glow, you
might want to blend an unblurred and a blurred
version of the same image

In glow_source: texture Input texture.

start_value:float The intensity of the effect. The higher, the more
blurring.

attenuation:float An attenuation factor applied just before the
output happens.

texture_size: enum The size. One of:

−	� 4x4, 8x8, 16x16, 32x32, 64x64, 128x128,
256x256, 512x512, 1024x1024, or 2048x2048

−	 VIEWPORT_SIZE: The viewport’s size

−	� VIEWPORT_SIZE_DIV_2: Half the viewport’s
size

−	� VIEWPORT_SIZE_DIV_4: Fourth of the
viewport’s size

−	� VIEWPORT_SIZE_x2: Twice the viewport’s
size

passes:enum One of ONE or TWO. Applying two passes greatly
enhances the effect.

Out texture_out: texture Output texture

Chapter 8 ■ ThMAD Module Reference

335

Table 8-205. 

highblur An elaborated blurring effect. Uses shading
code and only works if used inside a backfeeding
sub-pipeline

In texture_in: texture The input texture to be blurred

translation:float Translational part of the effect

blowup_center: float3 The center for the scaling (blowup) part of the
effect

blowup_rate: float The intensity of the scaling (blowup) part of the
effect. The higher, the less the effect.

texture_size: enum The size. One of:

−	� 4x4, 8x8, 16x16, 32x32, 64x64, 128x128,
256x256, 512x512, 1024x1024, or 2048x2048

−	� VIEWPORT_SIZE: The viewport’s size

−	� VIEWPORT_SIZE_DIV_2: Half the viewport’s
size

−	� VIEWPORT_SIZE_DIV_4: Fourth of the
viewport’s size

−	� VIEWPORT_SIZE_x2: Twice the viewport’s
size

Out texture_out: texture The output texture

�Loaders
Receiving and sending texture data. The path is Texture → Loaders.
See Tables 8-206 to 8-211.

Table 8-206. 

bitmap2texture Converts a bitmap to a texture. Implies the bitmap is
uploaded to the graphics hardware as a texture

In bitmap:bitmap The input bitmap.

mipmaps:enum One of no or yes. Whether to use mipmaps, meaning
the hardware will maintain downsized versions of
the texture data for faster rendering in case height
resolutions are unnecessary.

Out texture:texture Output texture

Chapter 8 ■ ThMAD Module Reference

336

Table 8-209. 

png_cubemap_load Under development and currently not functional.

Table 8-208. 

jpeg_tex_load_alpha JPEGs don’t have an ALPHA channel. But you
can use this module and provide a second
JPEG of the same size, with the gray value of it
mapped to the ALPHA of the output image

In filename_rgb: resource The RGB data

filename_alpha: resource The ALPHA data

Out texture:texture The pointer to the texture

bitmap:bitmap In case you need it, the module also provides
the image as a bitmap

Table 8-207. 

jpeg_tex_load Loads a JPEG and send pixel data to the graphics
hardware as a texture

In filename: resource The JPEG file to load. Note that JPEGs don’t have
an ALPHA channel

Out texture:texture The pointer to the texture

bitmap:bitmap In case you need it, the module also provides the
image as a bitmap

Table 8-210. 

png_tex_load Loads a PNG file and sends it as a texture to the
graphics hardware

In filename:resource The PNG file. Must lie inside inside the
/home/[USER]/thmad/ [VERSION]/data/resources
folder

reload:enum A trigger. If yes is selected, once reload the data from
the file

Out texture:texture The pointer to the texture

bitmap:bitmap If you need also the bitmap, it is here

Chapter 8 ■ ThMAD Module Reference

337

Table 8-211. 

texture2bitmap Loads a texture from the graphics hardware and
provides access to the data as a bitmap

In texture_in: texture The input texture

Out bitmap:bitmap The bitmap

�Modifiers
These operations happen directly on the graphics hardware, hence they are fast
operations. The path is Texture → modifiers. See Tables 8-212 to 8-216.

Table 8-212. 

rotate Rotates a texture.

In texture_in: texture The input texture

rotation_angle: float The rotation angle

rotation_axis: float3 The rotation axis

center:complex

use_rotate_ center:enum yes or no, whether a rotation center
is specified (otherwise the rotation
happens around (0;0) in texture
coordinates, which is

probably not what you want).

rotate_center: float3 The rotation center. The point (0.5;0.5)
for example lies in the middle. The third
coordinate is ignored.

Out texture_rotate_ out:texture The rotated texture

Chapter 8 ■ ThMAD Module Reference

338

Table 8-214. 

scale_one Same as scale, but uses one scaling factor
for both texture coordinates

In texture_in:texture The input texture

scale_vector:float3 The scaling for the coordinates. The third
coordinate is ignored.

center:complex

use_scale_center:
enum

yes or no, whether a scaling center is
specified (otherwise the scaling happens
against (0;0) in texture coordinates, which is

probably not what you want).

scale_center: float3 The scaling center. The point (0.5;0.5)
for example lies in the middle. The third
coordinate is ignored.

Out texture_scale_out: texture The scaled texture

Table 8-213. 

scale Scales a texture

In texture_in: texture The input texture

scale_vector: float3 The scaling for all coordinates. The third
coordinate is ignored.

center:complex

use_scale_ center:enum yes or no, whether a scaling center is
specified (otherwise the scaling happens
against (0;0) in texture coordinates, which is
probably not what you want).

scale_center: float3 The scaling center. The point (0.5;0.5)
for example lies in the middle. The third
coordinate is ignored.

Out texture_scale_ out:texture The scaled texture

Chapter 8 ■ ThMAD Module Reference

339

Table 8-215. 

tex_parameters Texture parameters

In texture_in:texture Input texture

parameters: complex

wrap_s:enum Wrap mode for first texture coordinate
if off-bounds:

−	 repeat: Repeat texture

−	� clamp: Use the last pixel of the
texture; may show artifacts
because of interpolation

−	� clamp_to_edge: Clamps texture
coordinate to [0+t/2;1-t/2]
where t is a texel width/height
(texture pixel)

−	� clamp_to_border: Clamps
texture coordinate to
[0-t/2;1+t/2] where t is a texel
width/height (texture pixel)

−	� mirrored_repeat: Repeating,
i.e., taking only the fractional
part of texture coordinates, but
alternate switching [0;1] to [1;0]

wrap_t:enum Wrap mode for first texture coordinate
if off- bounds, values the same as for
wrap_s

border_color: float4 Specifying a border color

anisotropic_ filtering:enum One of no or yes. Whether to use
anisotropic filtering. If yes, improve
quality of interpolation, but costs
performance

(continued)

Chapter 8 ■ ThMAD Module Reference

340

tex_parameters Texture parameters

min_filter:enum What to do if a texel (texture pixel) is
smaller than the area it is mapped to.
One of:

−	� nearest: use the value of
the nearest texture element,
measured from the center of
pixel which is being textured

−	� linear: apply a linear
interpolation between adjacent
texture pixels

−	� nearest_mipmap_nearest:
first choose a mipmap which most
closely matches the pixel size, then
proceed as with “nearest”

−	� linear_mipmap_nearest:
linearly interpolate between the
two closest matching mipmaps,
then proceed as with “nearest”.

−	� nearest_mipmap_linear: first
choose a mipmap which most
closely matches the pixel size,
then proceed as with “linear”

−	� linear_mipmap_linear: linearly
interpolate between the two
closest matching mipmaps,
then proceed as with “nearest”.

mag_filter: enum What to do if a texel (texture pixel) is
bigger than the area it is mapped to.
One of:

−	� nearest: use the value of
the texture element which is
nearest (Manhattan distance) to
the center of the textured pixel.

−	� linear: linearly interpolate
between the four adjacent
texture pixels.

Out texture_out: texture Output texture

Table 8-215.  (continued)

Chapter 8 ■ ThMAD Module Reference

341

Table 8-216. 

translate Translates a texture

In texture_in:texture The input texture

translation_vector: float3 The translation vector. The third
coordinate is ignored.

Out texture_translate_ out:texture The output texture

�OpenGL
Operations close to the OpenGL standard functionalities. The path is Texture → OpenGL.
See Tables 8-217 to 8-219.

Table 8-217. 

6bitm2cubemap A cubemap maps six faces on the surface of
a cube. You could for example connect the
output of Renderers → xtra → skybox module
to this module and later in the pipeline use a
shader to do the rendering

In bitmaps:complex The bitmaps

positive_x:bitmap

negative_x:bitmap

positive_y:bitmap

negative_y:bitmap

positive_z:bitmap

negative_z:bitmap

Out texture_out:texture The output texture

Chapter 8 ■ ThMAD Module Reference

342

Table 8-219. 

texture_coord_gen Lets OpenGL provide texture coordinates
(for texture mapping) for objects.

In render_in:render The renderer input

gen_s:enum How to generate the first texture coordinate

gen_t:enum How to generate the second texture coordinate

gen_r:enum How to generate the third texture coordinate.
Probably unused, since ThMAD doesn’t support
3D textures

parameter_s: float3 A parameter to the first coordinate mapping, if
applicable

parameter_t: float3 A parameter to the second coordinate mapping, if
applicable

parameter_r: float3 A parameter to the third coordinate mapping, if
applicable

Out render_out: render The renderer output

Table 8-218. 

texture_bind Provides a texture to objects that do not provide their
own textures. Note that it depends on the modules
earlier in the pipeline if the texture coordinates are set
correctly. So binding a texture to modules providing
their own texture may lead to an undefined behavior if
you use this module

In render_in: render The renderer input

tex_in:texture The texture to bind

Out render_out: render The renderer output

The following mechanisms apply, according to the input parameters:

•	 Enumeration gen_* = OFF: no generation

•	 Enumeration gen_* = OBJECT_LINEAR:

They apply this function:

g = p
1
 ∙ x

0
 + p

2
 ∙ y

0
 + p

3
 ∙ z

0
 + p

4
 ∙ w

0

where the (x
0
, y

0
, z

0
, w

0
) are the object coordinates and p

i
 the parameters supplied in

the corresponding parameter_* anchor. The g is then the texture coordinate value. This
mathematically describes a projection onto the vector provided in the parameter anchor
and measuring the distance to the origin.

Chapter 8 ■ ThMAD Module Reference

343

•	 Enumeration gen_* = EYE_LINEAR: Similar to OBJECT_LINEAR,
but p first is multiplied by the inverse of the MODELVIEW matrix.
This means the calculation will follow the camera’s position

•	 Enumeration gen_* = SPHERE_MAP: Texture coordinates are
generated in such a way that the object seems to be reflecting the
texture pixel data.

•	 Enumeration gen_* = NORMAL_MAP or REFLECTION_MAP: Refers
to cube maps, where the texture represents the six faces of a
cube. The way the normals are being calculated depends on
the interpretation of the texture data, which is different for a
NORMAL_MAP compared to a REFLECTION_MAP. The details are rather
complex, so the reader is asked to consult OpenGL tutorials or
documentation which can be find in the net for that purpose.

�Particles
A couple of artificial textures, which can be used for particle systems, but also for other
purposes. The path is Texture → Particles. See Tables 8-220 and 8-221.

Table 8-220. 

blob A blob, star, or leaf, depending on the settings

In settings:complex

arms:float Number of arms if you want a star or leaves

attenuation: float Increase this number to decrease blurriness

star_flower: float Increase this number to make the center parts
thinner, as for flower leaves

angle:float Specify a rotation angle here

color:float4 The color to use

alpha:enum One of no or yes. If yes, use the ALPHA to create
the transparency in the shape. Otherwise
pre- multiply color values with the ALPHA given
in color, and let the output ALPHA = 1.0
everywhere

size:enum One of: 8x8, 16x16, 32x32, 64x64, 128x128,
256x256, 512x512, 1024x1024, or 2048x2048

Out texture:texture A pointer to the texture on the graphics
hardware

Chapter 8 ■ ThMAD Module Reference

344

Table 8-221. 

concentric_circles Generates a texture with concentric circles

In settings:complex

frequency:float Controls the spacing between the circles

attenuation:float Controls the sharpness of the circles

color:float4 The color to use

alpha:enum One of no or yes. If yes, use the ALPHA to create
the transparency in the shape. Otherwise
pre-multiply color values with the ALPHA
given in color, and let the output ALPHA = 1.0
everywhere

size:enum One of: 8x8, 16x16, 32x32, 64x64, 128x128,
256x256, 512x512, 1024x1024, or 2048x2048

Out texture:texture A pointer to the texture on the graphics
hardware

�Macros
Macros are generated using the Artist GUI. They are containers for sub-pipelines and
behave like modules with input and output anchors.

Once you save the macros, they will appear in the module lister menu the next time
you start Artiste. In the operating system file structure, macros will end up here:

/home/[USER]/thmad/[VERSION]/data/macros/

ThMAD in the current version cannot build the menu dynamically, which is why you
have to restart it after you make changes to the module structure.

�Summary
This chapter listed all modules available in ThMAD and described all their parameters.

345© Peter Späth 2017
P. Späth, Audio Visualization Using ThMAD, https://doi.org/10.1007/978-1-4842-3168-5

�       � A
Accumulators, 225–226
Analog-to-digital conversion (ADC), 3
Arithmetical operations, 226
Array, 232–233
Artiste operation, ThMAD

fullscreen mode, 41
fullwindow mode, 40
options, 38
performance mode, 41
stopping method, 42
windowed mode, 37–39

�       � B
Binary operators, 227–229
Blobs, 108

basic, 109, 113
bitmap, 109
in different variations, 110
Perlin noise, 113–114, 116
sub-pipeline, parameters, 111–112
transformation, 112

�       � C
Coordinate systems, 51–54

�       � D
3D concepts

coordinate systems, 51–54
lights

ambient, 59
diffuse, 59
material parameters, 60

reflection modes, 59, 61
screen’s clear color, 59
specular, 59

space mapping (see Space mapping)
ThMAD meshes, 64
ThMAD particle systems, 64–65
translation, rotation, and

scaling, 57–58
DVD Styler, 21

�       � E
Eye and camera

aforementioned depth buffer, 63
backface culling, 64
device-normalization, 62
modelview transformation, 61
projection transformation, 62
screen coordinates, 63

�       � F
Fast Fourier transformation (FFT), 319
Float anchors, 194
Fourier transformation, 4

�       � G, H
Graphical module chooser, 184
GUI functionalities, ThMAD Artiste

assistant, 184–185
desktop

empty state, 172
keyboard shortcuts, 172–173
mouse shortcuts, 173–174

fullscreen mode, 176–177
main menu functions, 178–180

Index

https://doi.org/10.1007/978-1-4842-3168-5

■ INDEX

346

module choosers (see Module choosers)
modules (see Modules)
notes, 206
object inspector, 186
performance mode, 176
saving and loading states, 186–187
standard and fullwindow mode, 175
starting and stopping, 171
window modes, 174

�       � I, J, K
Inverse Fourier transformation, 4

�       � L
Light reflection modes, 59
Linear transformation, 54

�       � M, N
Macro anchors, 205
Main menu functions, 178–180
Meshes, 64
Module choosers

graphical, 183–184
module list, 181–182

Modules
anchors

connections, 192–193
types, 190–191

cloning, 190
connectors, 190
enumeration type input anchor, 194
float type input anchor, 194–195
float3 type input anchor, 195–196
float4 type input anchor, 197
macros, 203–206
placing and deleting, 189
quaternion type input anchor, 198
resource selector, 200
sequence editor anchor

interpolations, 202
sequence input, module parameter

float_sequence module, 200
interpolation type, 202
sequence editor, 201

string type input anchor, 198–199
types, 188–189
visuals, 203

�       � O
Object inspector, 186
Ocean module, 86

anchor modules, 88–90
direct color entry process, 88
graphical color chooser, 87
output, 90
quadruple slider combo, 86
sky color, setting, 86

Oscillators
float_sequencer, 240–241
inside_range, 241–243
pulse_oscillator, 245, 247

Oscilloscopes, 300–301

�       � P, Q
Particle systems, 64–65
Perlin noise blobs, 113–114, 116
Player operation, ThMAD

faders
installation, 47–48
smooth transitions, 47
transition state, 48

options, 45–46
starting, modes, 43–44
stopping method, 47

PulseAudio, 2, 5, 7
input device objects, 13
playback objects, 12
to ThMAD, 11–15

�       � R
Rotation, 58

�       � S
Sound card, 4
Sound input, 1
Sound modules

input_visualization_listener,
319–320

midi → aka_apc40_controller, 321
ogg_sample_*, 321
raw_sample_*, 322

Sound structure
frequency-power representation, 3–4
sound card, 4
time-elongation representation, 3

GUI functionalities, ThMAD Artiste (cont.)

■ INDEX

347

Space mapping
embracing transformations, 56
homogeneous coordinates, 54
identity matrix, 57
linear transformation, 54
transformation combinations, 55
transformation matrix, 54

String modules, system level
modules, 323–328

System sounds, 11

�       � T
Ternary operators, 230
Texture mapping, 90, 92

automatic texture coordinates,
93, 95

anchor parameters, 94–95
camera module, 95
on cube, 97–98
glTexGen() function, 92
NORMAL MAP mode, 96
OBJECT_LINEAR mode, 96, 97
onto sphere, 92, 96
SPHERE_MAP and

REFLECTION_MAP modes, 97
basic, 91
floating textures

anchor parameters, 101–102
distortions, 106–108
macro, 103–105
mesh_grid module, 106
modifiers, 102
output, 102
plane mesh generator, 99
reusable sub-pipelines, 103

shaders, 92
Texture modules

buffers, 329–330, 332–333
dummy modules, 334
effects, 334–335
loaders, 335–337
macros, 344
modifiers, 337–340
OpenGL, 341–343
particle systems, 343–344

Textures
blurring effect

blend_mode modules,
119, 121, 122

blurring distortion, 127–129

colored_-rectangle module, 120
dest_blend anchor, 124
grid, 119
highblur, 122
Maths → oscillators →

oscillator, 126
mesh_basic_render, 120
mesh_sequ_distort module, 127
module texture → particles →

blob, 124
OpenGL behavior, 121
oscillator, 119
parameters, 118
renderers → basic → textured_

rectangle, 125
texture_out, 122
tremendous effects, 118

description, 117
objects, 163–169
particle systems

center clamped particle
systems, 159–161

emitter types, 145
image bit particles, 154–159
methodology, 145
MODIFIER conversion, 145
RENDERER conversion, 146
ribbon particles, 161–162
ThMAD, 145
waterfall, 146–148, 150–154

self-similarity
ALPHA value, 135
backfeeding pipeline,

132–133
fancy Koch curve, 137,

139, 141
gl_color module, 139
Koch curve, 130, 136, 142, 144
mesh_basic_render modules, 136
parameters, 133–134
pythagoras tree, 130
rendering and backfeeding

pipeline, 134
render_-surface_single

modules, 135, 139, 142
ribbon module, 137–138
rotation module, 141
set parameters, 131–132
ThMAD, 131
trees, 129

ThMAD, 117

■ INDEX

348

ThMAD
Artiste startup window, 9
blobs (see Blobs)
connecting PulseAudio sound to,

11–15
3D rendering pipelines, 67

advantages and disadvantages, 67
anchor values, 68–69
complex anchors, 70
ocean module, 86–88, 90
scaling, 77–79
transformations, 67–68, 70–75,

77–79
translation, 76
wireframes, 79–85

2D sample, 21
Artiste, 21–22
assistant modes, 23–24
automatic mode, 24
complex anchors, 26–27
module browser, 26
performance mode, 25
rectangle on canvas, 24–25
sampling rate, 28–29
Ubuntu desktop, 28
wobbling rectangle, 27–28

3D sample, 29
anchor values, 33–35
complex anchors, 31
elaborated 3D scene, 32
input anchors, 33
mesh_box, 30
orbit_camera, 30
sound input, 33
surface material, 29
surface properties, 30

installing, 8–11
ThMAD modules

bitmap filters, 212–218
bitmap generators, 219–220, 222
categories, 210
data types, 209–210
dummies, 223–224
loads bitmaps, 222
math modules

accumulators, 225–226
arithmetical operations, 226
array, 232–233
binary operators, 227–229
color, 233–234
converters, 234–236

dummies, 236–237
functions, 230–231
interpolation, 237–239
limiters, 239–240
ternary operators, 230
unary operators, 226–227

mesh
dummies, 247
generators, 248–249
importers, 249–250
particle system, 258–259
segmesh modules, 259
solid, 259–263, 265
texture, 265–266
vertices, 266–268
Xtra, 269

modification of bitmaps, 223
modifiers

color, 251
converts, 251
deformers, 252–254
helpers, 255
pickers, 255–256
transforms, 256–258

particlesystems
fractals, 269–270
generators, 271–275
modifiers, 275–278

renderers
basic, 279–283
mesh, 283, 285–287
OpenGL modifiers, 288–297, 299
oscilloscopes, 300–301
particlesystem, 301–306
shaders, 306–307
text, 308
Xtra, 309–310

screen, 211
selectors, 310, 312–313, 315–318

ThMAD Player
GUI operations, 206
keyboard operations, 207
starting and stopping, GUI, 206

Time-elongation representation, 3
Toolchain, 7

making DVD from recording, 21
recording video, 15, 17–18, 20
ThMAD

connecting PulseAudio sound
to, 11–15

installing, 8–11

■ INDEX

349

Transformation matrix, 54
Translation, 57

�       � U, V
Ubuntu Linux system, 7–8
Unary Operators, 226–227

�       � W, X, Y, Z
Wireframe models, 79

massive and dynamic, 85
scale anchor, 80
sphere anchors, 81–84
translation anchor, 80
triple value slider, 81

	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Sound Input
	Preparing for Sound Input
	Understanding Sound Structure
	Time-Elongation Representation
	Frequency-Power Representation
	Input Data Taken from the Sound Card

	Summary

	Chapter 2: Visualization Basics
	Toolchain
	Installing ThMAD
	Connect PulseAudio Sound to ThMAD
	Recording a Video
	Making a DVD from Your Recording

	Basic Samples
	Basic 2D Sample
	Basic 3D Sample

	Summary

	Chapter 3: Program Operation
	ThMAD Artiste Operation
	Starting and Using Different Modes
	Stopping ThMAD Artiste

	Starting with Errors
	ThMAD Player Operation
	Starting and Using Different Modes
	Stopping ThMAD Player
	Creating and Installing Faders

	Summary

	Chapter 4: 3D Concepts
	Coordinate Systems
	Space Mapping
	Spatial Operations: Translation, Rotation, and Scaling
	Exposure to Light
	Eye and Camera
	ThMAD Meshes
	ThMAD Particle Systems
	Summary

	Chapter 5: Stories: Basic Level
	More 3D Rendering Pipelines
	Transformations
	Wireframes
	The Ocean Module

	Texture Mapping
	Automatic Texture Coordinates
	Floating Textures I
	Floating Textures II

	Blobs, Blobs, Blobs
	Basic Blobs
	Perlin Noise Blobs

	Summary

	Chapter 6: Stories: Advanced Level
	 Backfeeding Textures
	 Blurring in Two Dimensions
	 Self-Similarity

	 Particle Systems
	 Waterfall
	 Image Bit Particles
	 Center Clamped Particle Systems
	 Ribbon Particles

	 Glowing Objects
	 Summary

	Chapter 7: ThMAD GUI Reference
	ThMAD Artiste GUI
	Starting and Stopping the GUI
	The ThMAD Desktop and Its Parts
	Window Modes
	Fullwindow Mode
	Performance Mode
	Fullscreen Mode

	The Main Menu
	Module Choosers
	The Module List
	The Graphical Module Chooser

	The Assistant
	The Object Inspector
	Saving and Loading States
	Modules
	Module Types
	Placing and Deleting Modules
	Connecting Modules
	Cloning Modules
	Module Anchors: Parameters and Connectors
	Drawing Connections Between Anchors
	Enumeration Input as Module Parameter
	Float Input as Module Parameter
	Float3 Input as Module Parameter
	Float4 Input as Module Parameter
	Quaternion Input as Module Parameter
	String Input as Module Parameter
	Resource as Module Parameter
	Sequence Input as Module Parameter
	Exporting States
	Macros

	Notes
	ThMAD Player
	Starting and Stopping the GUI
	Player GUI Operations

	Summary

	Chapter 8: ThMAD Module Reference
	 Screen
	 screen0

	 Bitmaps
	 Filters
	Generators
	Loaders
	Modifiers

	Dummies
	Math Modules
	Accumulators
	Arithmetic
	Unary Operators
	Binary Operators
	Ternary Operators
	Functions

	Array
	Color
	Converters
	Dummies
	Interpolation
	Limiters
	Oscillators
	float_sequencer
	inside_range
	oscillator
	pulse_oscillator

	Mesh
	Dummies
	Generators
	Importers
	 Modifiers: Color
	Modifiers: Converters
	Modifiers: Deformers
	Modifiers: Helpers
	Modifiers: Pickers
	Modifiers: Transforms
	Particles
	Segmesh
	Solid
	Texture
	Vertices
	Xtra

	Particlesystems
	Fractals
	 Generators
	 Modifier

	 Renderers
	Basic
	 Mesh
	 OpenGL Modifiers
	 Oscilloscopes
	 Particlesystems
	 Shaders
	Text
	 Xtra

	 Selectors
	Sound
	input_visualization_listener
	 midi → aka_apc40_controller
	 ogg_sample_*
	 raw_sample_*

	Strings
	System

	 Texture
	Buffers
	 Dummies
	 Effects
	 Loaders
	 Modifiers
	 OpenGL
	 Particles

	 Macros
	 Summary

	Index

