
www.allitebooks.com

http://www.allitebooks.org

Beginning BBC
micro:bit

A Practical Introduction to
micro:bit Development

Pradeeka Seneviratne

Beginning BBC micro:bit: A Practical Introduction to micro:bit
Development

ISBN-13 (pbk): 978-1-4842-3359-7 ISBN-13 (electronic): 978-1-4842-3360-3
https://doi.org/10.1007/978-1-4842-3360-3

Library of Congress Control Number: 2018930256

Copyright © 2018 by Pradeeka Seneviratne

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Technical Reviewer: Michael Rimicans
Coordinating Editor: Jessica Vakili
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3359-7.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Pradeeka Seneviratne
Mulleriyawa, Sri Lanka

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Chapter 1: Getting Ready ��1

What Is the BBC micro:bit? ���1

What’s on the micro:bit?��3

Buying a micro:bit ���10

Buying a Starter Kit ���11

micro:bit Accessories ��15

Powering Your micro:bit ��18

Powering the micro:bit with Batteries ���19

Powering micro:bit with a USB ��21

Alternative Ways to Power the micro:bit ���24

Powered through the 3v Pin ��27

Creating Your First Program with Online Python Editor ���������������������������������������28

Coding with the Online Python Editor ��28

Coding with Mu ���33

Using REPL with Mu ��36

Summary���38

About the Author ���ix

About the Technical Reviewer ���xi

Foreword ���xiii

iv

Chapter 2: Working with Display and Images ������������������������������������39

The micro:bit Built-In LED Display ��39

Turning LEDs On and Off ��41

Setting and Getting the Brightness of an LED ���43

Clearing the Display���44

Turning the Display On and Off ��45

Using Built-in Images ��47

Creating Your Own Images ��50

Lists and Animations ���54

Custom Animation ���58

Summary���60

Chapter 3: Working with Buttons ���61

Built-in Buttons ���61

Handling User Input with Buttons ��62

Connecting External Buttons ���66

Momentary Pushbuttons ���66

Using External Buttons ��68

Connecting Buttons to GPIO ���70

Summary���73

Chapter 4: Using Inputs and Outputs ��75

Edge Connector ���75

Using an Edge Connector Breakout Board ���76

Experimenting with I/O Pins ��79

Touch ���82

Analog Input and Output ��85

Digital Input and Output ���87

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

I2C (Inter-Integrated Circuit) ��90

SPI (Serial Peripheral Interface) ��96

UART (Universal Asynchronous Receiver- Transmitter) ��������������������������������103

Summary���107

Chapter 5: Using the Accelerometer and Compass ��������������������������109

Accelerometer ���109

Reading Acceleration ���110

Building a Spirit Level ��114

Calculating Overall Acceleration ��115

Gesture Detection ���116

Detecting the Current Gesture ���118

Getting Gesture History ���121

Compass ���122

Calibrating the Compass ���123

Reading Compass Values ��124

Getting Compass Heading ���126

Summary���131

Chapter 6: Working with Music ��133

Connecting a Speaker ���133

Using Earphones ��141

Built-in Melodies ���143

Making Your Own Melodies ���146

Using Octave ��148

Beats ���150

Setting the Tempo ��151

Getting the Tempo��152

Table of ConTenTsTable of ConTenTs

vi

Resetting Attributes ���153

Playing a Pitch ���153

Summary���154

Chapter 7: Working with Speech ��155

Connecting a Speaker ���155

Timbre ���157

Example: Creating a Robotic Voice ��161

Punctuation ���162

Phonemes ��162

Stress Markers ��167

Singing with Phonemes ���168

Summary���169

Chapter 8: Storing and Manipulating Files ���������������������������������������171

Creating a File ���171

Reading a File ���172

Writing Multiple Lines in a File ��174

Appending Text to a File ��175

Creating Files with a �py Extension ���176

Creating Your Own Libraries ��178

File Manipulation ��179

Listing Files ���179

Deleting Files ���180

Getting the Size of a File ���181

File Transfer with MicroFS ��181

Installing MicroFS ��181

Upgrading MicroFS ��182

Summary���187

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vii

Chapter 9: Networks and Radios ��189

Building a Wired Network ���189

Buffering Incoming Data ��192

Using Radios ���193

Turning the Radio On and Off���193

Sending and Receiving Messages ���194

Configuring Radio ��195

Remotely Controlling an LED ���197

Building the Wireless Buggy ��200

Summary���206

Appendix A: Updating DAPLink Firmware and Using REPL with
Tera Term ��207

DAPLink Firmware ��207

Updating DAPLink Firmware ��208

Maintenance Mode ��209

Using REPL with Tera Term ���211

Downloading mbed Serial Port Windows Driver ��212

Downloading Tera Term ���212

Configuring Tera Term ��213

Writing MicroPython Code on Tera Term ��215

Appendix B: Using micro:bit and micro:bit Blue Apps on
Mobile Devices ���219

Using the micro:bit App ���219

Pairing with micro:bit ��220

Writing Code with micro:bit App ��228

Table of ConTenTsTable of ConTenTs

viii

Using the micro:bit Blue App ���240

 Installing micro:bit Blue ���240

Entering Pairing Mode ���241

Pairing Your micro:bit with Your Android Phone or Tablet ����������������������������241

Using the App ��244

 Index ���251

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

Pradeeka Seneviratne is a software engineer with over 10 years of

experience in computer programming and systems design. He is an

expert in the development of Arduino and Raspberry Pi-based embedded

systems and is currently a full-time embedded software engineer working

with embedded systems and highly scalable technologies. Previously,

Pradeeka worked as a software engineer for several IT infrastructure and

technology servicing companies.

He collaborated with the Outernet (free data, forever) project as a

volunteer hardware and software tester for Lighthouse and Raspberry

Pi-based DIY Outernet receivers based on Ku band satellite frequencies.

Pradeeka is the author of Building Arduino PLCs, Internet of Things with

Arduino Blueprints, IoT: Building Arduino- Based Projects, and Raspberry Pi

3 Projects for Java Programmers.

xi

About the Technical Reviewer

Michael Rimicans has been tinkering with the micro:bit since its release

and has enjoyed making cool things. He is also a STEM ambassador and

CodeClub volunteer. He can normally be found at @heeedt on Twitter.

www.allitebooks.com

http://www.allitebooks.org

xiii

Foreword
How can educators and education systems prepare children for an

uncertain future job market?

That’s the challenge that the BBC chose to take on, back in 2012.

In the UK the BBC not only produces great TV and radio content,

the BBC Learning department also plays an important role in providing

curricula linked educational content and support for UK school children

and learners of all ages. The introduction of the BBC micro computer in

the 80s had a profound and transformational impact on the IT sector in the

UK that is still felt to this day, and the BBC saw that an updated initiative

could have a similarly transformational impact for the current generation

of young learners.

A bold and ambitious plan was drawn up and the BBC micro:bit

project was born!

This project culminated in 2016 when the BBC and a partnership of

30 organisations (including ARM, Samsung and Microsoft) distributed 1

million BBC micro:bit mini computers into high schools in the UK. Then

in October 2016 the Micro:bit Educational Foundation was formed to take

on micro:bit and bring it to a global audience. The coding revolution had

begun!

The BBC micro:bit is a small programmable device. Its a mixture

between a very small computer and a programmable embedded board. It

is easy to program, very versatile, and designed with young learners in

mind. In particular it is designed to be easy to get started with for people

who have never programmed before.

xiv

The success of BBC micro:bit in the UK (and a fast growing number

of other countries around the world) is not just down to the innovative

hardware device though. It’s the micro:bit ecosystem that makes micro:bit

such a great tool for educators, children and anyone interested in using

tech in inventive and fun ways! Our ecosystem consists of the hardware, a

thriving market for peripherals and add ones, an ever growing library of

great books (including this one) and our great code editors. There is also

over 1000 amazing projects, lessons and fun ideas that are freely available

online as well as vibrant communities of enthusiasts. The Micro:bit

Educational Foundation is here to support and develop the ecosystem.

But the most important component of our ecosystem are the people

that use it.

So, thank you for picking up this book. We at the Micro:bit Educational

Foundation wish you good luck on your micro:bit journey!

Sincerely

—The Micro:bit Educational Foundation

Please note that this book is not an official or certified publication of the Micro:bit
Educational Foundation.

forewordforeword

www.allitebooks.com

http://www.allitebooks.org

1© Pradeeka Seneviratne 2018
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_1

CHAPTER 1

Getting Ready
Welcome to the exciting world of building projects with BBC micro:bit!

First, this chapter introduces the micro:bit and provides a shopping guide

for micro:bit and its accessories, including starter kits and inventor’s

kits. Then you will learn how to power the micro:bit board using various

powering options. The most interesting part of this chapter is when you

write your first code for the micro:bit with the online Python editor, and

the Mu editor. You will also learn how to flash a program to the micro:bit

and run it. The latter part of the chapter introduces working with REPL

(Read-Evaluate-Print-Loop) using the Mu editor to run code line-by-line

without flashing the complete program to the micro:bit.

 What Is the BBC micro:bit?
The micro:bit (see Figure 1-1) is a pocket-sized microcontroller board

designed by the BBC for use in computer education in the UK. It is part

of the BBC’s “Make It Digital” campaign (see http://www.bbc.co.uk/

makeitdigital) and is becoming increasingly popular with people around

the world.

2

It is the successor of the BBC micro (see Figure 1-2), which was

introduced in 1980s. You can read more about the BBC micro by visiting

https://en.wikipedia.org/wiki/BBC_Micro.

Figure 1-1. The BBC micro:bit in use (image courtesy of the micro:bit
Foundation)

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

3

 What’s on the micro:bit?
Before you start coding with the micro:bit, you should familiarize yourself

with the key features of the board.

Figure 1-3 shows the front of the micro:bit board. The board has one

of four color schemes, and you don’t know which color you will get when

purchasing a board.

Figure 1-2. BBC micro from the 1980s (source: https://
en.wikipedia.org/wiki/BBC_Micro)

Chapter 1 GettinG ready

4

The front of the micro:bit board is designed to interact with the user by

exposing the following components, as labeled on Figure 1-3:

 1. The buttons: There are two momentary pushbuttons

labeled A and B that allow you to directly interact

with your programs. You can configure them to

control a game or pause and skip songs on a playlist,

for example.

 2. Display: The display consists of 25 surface-mounted

red LEDs arranged as a 5x5 grid that allow you to

display text, images, and animations. The display

can be used as an ambient light sensor too.

Figure 1-3. Front view of the micro:bit board (image courtesy of Kitronik)

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

5

 3. Edge connector: The total of 25 pins on the edge

connector allow you to connect various sensors

and actuators, access I/O lines, and connect to

power and ground. They include an LED matrix,

two pushbuttons, an I2C bus, and a SPI. The 0, 1, 2,

3V, and GND pins are exposed as ring connectors,

which allow you to easily connect crocodile or

banana clips. The 0, 1, and 2 pins are specialized

for capacitive sensing. All the pins can be accessed

with the Kitronik edge connector breakout board

(see Figure 1-4) or the SparkFun micro:bit breakout

board (see Figure 1-5) .

Figure 1-4. Kitronik edge connector breakout board (image courtesy
of Kitronik: https://www.kitronik.co.uk/5601b-edge-connector-
breakout-board-for-bbc-microbit-pre-built.html)

Chapter 1 GettinG ready

6

Figure 1-5. SparkFun micro:bit breakout (image courtesy
of SparkFun Electronics: https://www.sparkfun.com/
products/13989)

Figure 1-6 shows the pinout of the micro:bit edge connector. You will

learn in detail about the micro:bit edge connector and how to work with it

in Chapter 4, “Using Inputs and Outputs”.

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

7

The back of the board (see Figure 1-7) consists of a host of electronic

components and hardware.

Figure 1-6. The micro:bit pinout (image courtesy of micro:bit
Foundation)

Chapter 1 GettinG ready

8

The following list explains the most important things that can be found

on the back of the board, as numbered in Figure 1-7:

 1. Processor (Nordic nRF51822): 16MHz 32-bit ARM

Cortex-M0 CPU, 256KB flash memory, 16KB Static

RAM (https://developer.arm.com/products/

processors/cortex-m/cortex-m0), with 2.4GHz

Bluetooth low energy wireless networking, which

allows you to pair the micro:bit with Bluetooth

enabled mobile devices running Android and iOS.

Figure 1-7. Back view of the micro:bit board (image courtesy of
Kitronik)

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

9

 2. Compass (NXP/Freescale MAG3110): Allows you to

measure magnetic field strength in each of three

axes.

 3. Accelerometer (NXP/Freescale MMA8652): Allows

you to measure the acceleration and movement

along three axes.

 4. USB controller (NXP/Freescale KL26Z): 48MHz ARM

Cortex-M0+ core microcontroller, which includes

a full-speed USB 2.0 On-The-Go (OTG) controller,

used as a communication interface between the

USB and the main Nordic microcontroller.

 5. Micro USB connector: Allows you to connect the

micro:bit board with a computer for flashing codes

or power it with 5V USB power.

 6. Bluetooth smart antenna: A printed antenna that

transmits Bluetooth signals in the 2.4GHz band.

 7. RESET button: Allows you to reset the micro:bit and

restart the currently running program or bring the

micro:bit into maintenance mode.

 8. Battery connector/socket: Allows you to power the

micro:bit board with 2 AAA batteries.

 9. System LED: The yellow color LED indicates USB

power (solid) and data transfer (flashing). It doesn’t

indicate the battery power.

 10. Edge connector: Includes 21 pins

Chapter 1 GettinG ready

10

 Buying a micro:bit
A single micro:bit board (see Figure 1-8) is more than enough to build

most of the applications that you can imagine, but if you’re planning to

build the peer-to-peer and radio networks that we will be discussing in this

book, you need at least two micro:bit boards.

You can buy micro:bit boards from various local and online sellers.

Table 1-1 shows a list of online sellers that typically stock the micro:bit

along with the product name and product page. These sellers usually

ship the micro:bit to any country in the world. However, contact the seller

before ordering to verify if there are any shipping restrictions to your

country.

Figure 1-8. micro:bit board only

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

11

Table 1-1. Where to Buy the micro:bit

Vendor Product Name Product Page

Kitronik BBC micro:bit (board

only)

https://www.kitronik.co.uk/5613-

bbc-microbit-board-only.html

BBC micro:bit (board

only), retail pack

https://www.kitronik.co.uk/5614-

bbc-microbit-board-only-retail-

pack.html

SparkFun

electronics

micro:bit board https://www.sparkfun.com/

products/14208

adafruit

industries

BBC micro:bit https://www.adafruit.com/

product/3530

pimoroni micro:bit only https://shop.pimoroni.com/

products/microbit

Seeed Studios micro:bit https://www.seeedstudio.com/

Micro%3ABit-p-2886.html

 Buying a Starter Kit
Starter kits usually provide everything you need to connect the micro:bit to

your computer and power it with batteries. A starter kit typically includes

following parts:

• The micro:bit

• A micro USB cable

• Battery holder

• Two AAA batteries (optional)

Table 1-2 shows a list of online sellers that offer starter kits at

competitive prices.

Chapter 1 GettinG ready

12

Figure 1-9 shows the BBC micro:bit starter kit by Kitronik

(https://www.kitronik.co.uk).

Figure 1-9. BBC micro:bit Starter Kit by Kitronik: (a) micro:bit
(b) micro USB cable (c) battery holder (d) two AAA batteries. Image
courtesy of Kitronik (https://www.kitronik.co.uk)

Table 1-2. Where to Buy the Starter Kits

Vendor Product Page

Kitronik https://www.kitronik.co.uk/5615-bbc- microbit-

starter-kit.html

pihut https://thepihut.com/products/micro-bit-starter-kit

pi Supply https://www.pi-supply.com/product/microbit-go/

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

13

 Buying an Inventor’s Kit

Inventor’s kits provide a host of things you need to start building most of

the basic to advanced projects in the micro:bit. Table 1-3 shows some of

the inventor’s kits that were available at the time of this writing.

Figure 1-10 shows the Kitronik inventor’s kit for the BBC micro:bit. The

kit includes the following components.

• Perspex mounting plate

• Potentiometer and finger adjust spindle

• Plastic spacers 10mm (2)

• Sticky fixer for battery pack

• Small prototype breadboard

Table 1-3. Where to Buy Inventor’s Kits

Vendor Product Name Product Page

Kitronik inventor’s kit for the BBC

micro:bit

https://www.kitronik.

co.uk/5603-inventors-kit-for-

the- bbc-microbit.html

BBC micro:bit with

inventor’s kit and

accessories

https://www.kitronik.

co.uk/5618-bbc-microbit-with-

inventors- kit-and-accessories.

html

SparkFun

electronics

SparkFun inventor’s kit

for micro:bit

https://www.sparkfun.com/

products/14300

Seeed Studio Grove inventor kit for

micro:bit

https://www.seeedstudio.

com/Grove-Inventor-Kit-for-

micro%3Abit-p-2891.html

Chapter 1 GettinG ready

14

• Terminal connector

• Push switches (4)

• Motor

• Transistor

• Red 5mm LEDs (2)

• Orange 5mm LEDs (2)

• Yellow 5mm LEDs (2)

• Green 5mm LEDs (2)

• RGB 5mm LED

• Fan blade

• 2.2KΩ resistors (5)

• 10KΩ resistors (5)

• 47Ω resistors (5)

• Edge connector breakout board for BBC micro:bit

• Miniature LDR

• Male to male jumper wires (10)

• Male to female jumper wires (10)

• Self-adhesive rubber feet (4)

• 470uF electrolytic capacitor

• Piezo element buzzer

• Pan head M3 machine screw (4)

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

15

 micro:bit Accessories
If you don’t have a micro:bit starter kit or an inventor’s kit, you should

prepare the following accessories and connect the micro:bit to a computer

and then use the micro:bit with battery power.

Figure 1-10. Kitronik inventor’s kit for the BBC micro:bit (image
courtesy of Kitronik)

Chapter 1 GettinG ready

16

 Batteries and Battery Holders

You need two Zinc Carbon or Alkaline batteries to power the micro:bit.

Kitronik stocks a good quality battery case for two AAA batteries.

The AAA battery cage with JST connector (see Figure 1-11) from

Kitronik has color-coded power leads and a JST connector. You can

purchase a battery holder by visiting https://www.kitronik.co.uk/2271-

2xaaa-battery-cage-with-jst-connector.html. If you are planning to

build the peer-to-peer and radio networks with micro:bit that we discuss in

Chapter 9, you should purchase two battery holders.

Figure 1-11. AAA battery cage with JST connector (image courtesy of
Kitronik)

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

17

Figure 1-12. Type-A to Micro-B USB cable (image courtesy of
Kitronik)

 USB Cable

You need a Type-A to Micro-B USB cable (see Figure 1-12) to connect

the micro:bit to a computer. This is the same cable usually bundled with

many mobile phones and some consumer products. You can purchase a

1m USB Type-A to Micro-B USB Noodle Cable at https://www.kitronik.

co.uk/4154-1m-usb-type-a-to-micro-b-usb-noodle-cable.html.

Chapter 1 GettinG ready

18

 Crocodile Clips

You will need a few crocodile clips (see Figure 1-13) to build prototypes

without soldering wires with ring connectors of the edge connector. It is

not wise to use crocodile clips with small connectors. The wire can be

secured with the two side notches located at the back of the clip.

Figure 1-13. A crocodile clip (image courtesy of Kitronik:
https://www.kitronik.co.uk/2470-28mm-crocodile-clips-
pack-of-50.html)

 Powering Your micro:bit
The micro:bit is powered by 3.3v. This can be provided by suitable batteries

connected via the battery connector or via the USB connector. The USB

controller chip will automatically convert the 5v to 3.3v. It can also be

powered via the 3v pad on the edge connector but this may not be suitable

for beginners.

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

19

Note the micro:bit can also be powered via the 3v pad on the edge
connector, but this may not be suitable for beginners.

 Powering the micro:bit with Batteries
Powering the micro:bit with two AAA batteries is the easiest way to get

started and to see how it works. You need the following components to

power the micro:bit with batteries:

• Two AAA Zinc Carbon or Alkaline batteries (use the

same types of batteries without mixing them)

• AAA battery case with a wire and clip

Follow these steps to power the micro:bit with batteries:

 1. First, insert the two batteries into the battery case

in the correct orientation. Then, connect the

JST connector of the battery case to the battery

connector of the micro:bit firmly without forcing

it (see Figure 1- 14). The JST connector will only

connect one way with the battery connector.

Chapter 1 GettinG ready

20

Figure 1-14. Connecting JST connector to battery connector

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

21

 2. When you power the micro:bit the very first time, a

pre-loaded demo program will automatically run

on the micro:bit. This program will show you how

to use the screen for displaying text and images,

use the two built-in buttons, interact with the

accelerometer, and play games.

Note When you flash a new program to the micro:bit, the demo
program is erased. however, you can flash it again by downloading
the demo program at https://support.microbit.org/
helpdesk/attachments/19002943122 or from the source code
archive of this book (visit source codes ➤ chapter1 ➤ BBC-MicroBit-
First-experience-1460979530935.hex).

 Powering micro:bit with a USB
You need one of the following components to power the micro:bit with

USB power:

• Computer

• USB battery pack

• USB power adapter

Follow these steps to power the micro:bit with USB power using a

computer:

 1. Connect the Micro-B connecter of the USB cable to

the Micro-B socket of the micro:bit (see Figure 1-15).

Chapter 1 GettinG ready

22

Figure 1-15. Connecting the Micro-B connector to the Micro-B
socket

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

23

 2. Then, connect the Type-A connector of the USB

cable to the USB port of your computer (see

Figure 1-16).

 3. The system LED (see Figure 1-17) on the back of the

micro:bit will light up in yellow. This indicates the

presence of USB power.

Figure 1-16. Connecting the Type-A connector to a USB port (image
courtesy of Micro:bit Foundation)

Chapter 1 GettinG ready

24

 Alternative Ways to Power the micro:bit
The micro:bit can be powered with some specially designed power sources

as well. For example, the MI:power board can supply 3V through the 3V

pin of the micro:bit board and the Seenov solar battery can supply 5V

through the micro USB port of the micro:bit board.

 MI:power Board

The MI:power board (see Figure 1-18) allows you to build compact

prototypes without using a bulky battery holder. This is great when you are

Figure 1-17. System LED indicates the presence of USB power (image
courtesy of Kitronik)

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

25

building wearable, portable, and handheld devices with micro:bit because

it uses the same footprint of the micro:bit, and it is lightweight of course.

It has a 3V coin cell, a power on/off switch, and an integrated buzzer

that helps you use it as an audio output. You can read more technical

information about the MI:power board by visiting https://www.kitronik.

co.uk/5610-mipower-board-for-the-bbc-microbit.html.

Figure 1-18. MI:power board (image courtesy of Kitronik)

 Seenov Solar Battery

The Seenov solar battery (see Figure 1-19) is an ideal solution to power

your micro:bit with solar power. Once you have completely charged the

solar battery with a solar panel or USB, it can power the micro:bit for five

Chapter 1 GettinG ready

26

days or more. The charger board can be purchased with or without the

solar panel of your choice. Here are the product links.

• Charger board only: https://www.seenov.com/

product/11/

• Charger board with solar panels: https://www.seenov.

com/product/solar-battery-bbc-microbit-wo-

solar-panel/

Figure 1-19. Seenov Solar Battery (image courtesy of Seenov)

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

27

 Powered through the 3v Pin
The micro:bit can be powered through the 3v pin on the edge connector.

You should apply a suitable protection, like a voltage regulator, to protect

the micro:bit.

For example, you can use a 3.7v LiPo battery to power the micro:bit

through a 3.3v voltage regulator. The MCP1702 can output regulated 3.3v

with an input voltage range from 2.7V to 13.2V. Here is a list of all the parts

needed to build the circuit.

• 3.7v LiPo battery (https://www.sparkfun.com/

products/13813)

• MCP1702-3302E/TO voltage regulator (http://

uk.farnell.com/microchip/mcp1702-3302e-to/ic-v-

reg-ldo-250ma-to-92-3/dp/1331485)

• 1uF ceramic capacitors (2)

Figure 1-20 shows the circuit and Figure 1-21 shows the wiring diagram

for the power supply.

Figure 1-20. 3.3v regulator circuit with MCP1702 voltage
regulator

Chapter 1 GettinG ready

28

 Creating Your First Program with Online
Python Editor
The version of Python that runs on the BBC micro:bit is called

MicroPython. It is designed to run on small microcontroller boards like

micro:bit.

 Coding with the Online Python Editor
You can use the online Python editor hosted at http://python.microbit.

org/editor.html to write MicroPython code for micro:bit and get the

binary file of the code for flashing. Here is what you will need to write to

execute the MicroPython program.

• A micro:bit

• USB Type-A to Micro-B cable

• Any modern computer with a USB port and an up to

date browser

• An Internet connection

Figure 1-21. Wiring diagram for MCP1702 3.3v voltage
regulator

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

29

The following steps guide you on how to write your first program for

micro:bit with the online Python editor.

 1. Connect the micro:bit to your computer using a USB

cable.

 2. Open your favorite web browser and access the

online Python editor at http://python.microbit.

org/editor.html# (see Figure 1-22).

 3. Delete the default program’s lines and type the

program into the editor, as shown in Listing 1-1.

Listing 1-1. Displaying and scrolling text

from microbit import *

display.scroll("Hello World!", delay=150, loop=True)

Figure 1-22. Online Python editor

Chapter 1 GettinG ready

30

 4. Figure 1-23 shows the code window.

 5. The first line loads all the code required to allow you

to program the micro:bit with MicroPython.

 6. The display.scroll() command tells MicroPython

to use the scroll part of the display command to

scroll the message provided on the LED display.

 7. The delay parameter controls how fast the text is

scrolling. delay=150 tells MicroPython to use 150

milliseconds (0.15 seconds) to control the speed of

scrolling. (Recall that 1000 milliseconds is 1 second.)

 8. loop=True tells MicroPython to repeat the

animation forever.

 9. Type the file name Listing 1-1 in the Filename box and

click the Save button to save the Python source code to

your computer as a .py file (see Figure 1-24). By default,

the source code file will download and save on your

computer’s Downloads folder. The editor will automatically

replace any spaces in the file name with underscores.

Therefore, you will get a file named Listing_1-1.py.

Figure 1-23. The ‘Hello World’ code on the code editor

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

31

 10. Click the Download button to download the

Listing_1-1.hex file of your code, which is a

binary file to your computer (see Figure 1-25).

For Windows and the Mac, the default download

location is the Downloads folder.

 11. When you connect the micro:bit to a Windows or

Mac, the computer recognizes the internal storage

of the micro:bit as a removable disk and it appears

as MICROBIT. If you are using Windows, the micro:bit

drive can be found under Devices and Drives and

for the Mac, it can be found under Devices.

Note notice that the capacity of the micro:bit drive is about 8MB
and the file system is Fat. as a best practice, eject the drive from the
operating system before unplugging it from the computer.

Figure 1-24. Saving the python source file (.py)

Figure 1-25. Downloading/saving the binary file (.hex)

Chapter 1 GettinG ready

32

 12. Drag and drop (or copy and paste) the downloaded

Listing_1-1.hex file from the Downloads folder to the

micro:bit drive (see Figure 1- 26). The LED on the

back of your micro:bit flashes during the transfer,

which only takes a few seconds. Once the flashing

stops, your code is uploaded.

Note it may also be worth noting that the browser may ask you
where to save the .hex file. if it does, save the file directly onto the
micro:bit.

Figure 1-26. Copying a .hex file to the micro:bit

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

33

Note Once your .hex file has been used to program the micro:bit, it
will be removed automatically from the drive.

 13. The program automatically starts once the copy

operation is completed. If your program doesn’t

start after flashing the .hex file, press the RESET

button to start it.

Note When the yellow Led stops flashing, the micro:bit will restart
and your code will run. if there is an error, you will see a helpful
message scroll across the device’s display.

 Coding with Mu
Mu is one of the easiest Python editors you can use to write MicroPython

programs for micro:bit. It is a cross-platform editor that works on

Windows, OSX, Linux, and Raspberry Pi. The main advantage of Mu is

that it includes REPL, which allows you to run codes line by line without

flashing the complete program to the micro:bit.

The Mu editor can be downloaded at https://codewith.mu/ for

Windows, OSX, Linux, and Raspberry Pi. For Windows, you get an

executable file that can run directly without being installed on the

operating system. At the time of this writing, the latest version of Mu

for Windows was 0.9.13. You can also directly download it from

https://github.com/mu-editor/mu/releases/download/v0.9.13/

mu-0.9.13.win.exe.

When you run the downloaded Mu executable file (mu-x.x.xx.win.exe),

you will get the Mu code editor shown in Figure 1-27.

Chapter 1 GettinG ready

34

 1. Write the MicroPython code shown in Listing 1-2

using the Mu editor.

Listing 1-2. Displaying and scrolling text

from microbit import *

display.scroll("Hello World!", delay=150, loop=True)

 2. Once you have done this, you can save the

MicroPython source code as a .py file to the

computer using the Save button in the toolbar

(see Figure 1-28).

Figure 1-27. Mu code editor

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

35

 3. You can also directly flash the binary (the .hex file)

to the micro:bit using the Flash button in the toolbar

(see Figure 1-29).

 4. The Check button can be used to check the code

for errors before flashing it to the micro:bit (see

Figure 1-30).

Figure 1-28. The Save button

Figure 1-29. The Flash button

Chapter 1 GettinG ready

36

 Using REPL with Mu
As mentioned, you can use Mu to run code line by line without flashing the

complete program to the micro:bit. This is known as REPL (Read-Evaluate-

Print-Loop).

For the REPL to work with Windows, you should install the mbed

Windows serial port driver. The driver can be downloaded from https://

developer.mbed.org/handbook/Windows-serial-configuration.

Run the code listed in Listing 1-3 with REPL.

Listing 1-3. Using REPL to execute code on micro:bit

from microbit import *

display.scroll(“Hello from Mu REPL”, delay=150, loop=True)

 1. Before using the REPL interface, an empty

MicroPython code must be flashed onto the

microbit. This can be done by first clicking the New

button followed by the Flash button on the toolbar.

 2. Then click the Repl button on the toolbar to open an

interactive shell (see Figure 1-31).

Figure 1-30. The Check button

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

37

 3. Type the first line of the program, from microbit

import *, and press Enter (see Figure 1-32).

 4. Then type the second line, display.scroll("Hello

from Mu REPL", delay=150, loop=True), and

press Enter again (see Figure 1-33).

Figure 1-31. The Repl button

Figure 1-32. Writing on the interactive shell

Chapter 1 GettinG ready

38

 5. The Hello from Mu REPL text will continually scroll

across the micro:bit LED screen.

 Summary
Now you know how to set up your development environment with

micro:bit and code your micro:bit with online Python editor and the

Mu Editor. You also learned how to use REPL with the Mu editor to run

MicroPython code line-by-line without flashing the complete program to

the micro:bit.

The next chapter introduces how to display images and build

animations on the micro:bit display.

Figure 1-33. Writing on the interactive shell

Chapter 1 GettinG ready

www.allitebooks.com

http://www.allitebooks.org

39© Pradeeka Seneviratne 2018
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_2

CHAPTER 2

Working with Display
and Images
By now, you should be fairly comfortable with the basics of micro:bit.

You’ve learned how to set up the development environment and write

simple code with the online Python editor and the Mu editor.

In this chapter, you learn about the micro:bit built-in LED screen.

You’ll see how to turn LEDs on and off in the micro:bit display and control

the brightness of the LEDs. Then you’ll learn how to turn the LED screen

on and off in order to use the GPIO pins associated with the LED screen.

After that, you learn how to display the built-in images and image lists and

create your own images and image lists. Finally, you’ll see how to create

animations with built-in image lists and your own image lists.

 The micro:bit Built-In LED Display
micro:bit is great for building things that need a visual output. You can do

this by using the built-in LED display on the front of the board. The built-in

display consists of 25 red LEDs arranged as a 5x5 grid. You can display text,

images, and animations with these 25 LEDs, thereby making your project

more interactive and providing a richer user experience.

40

You can use the x and y coordinates to specify the location of a LED in

the grid. Figure 2-1 shows the column and row numbers associated with

the LED grid. You can read the column numbers (0 to 5) along the x axis

and the row numbers (0 to 5) along the y axis.

Figure 2-1. Built-in LED display consists of columns and rows

Chapter 2 Working With Display anD images

www.allitebooks.com

http://www.allitebooks.org

41

The address of a LED can be written using the associated column and

row number. When creating code, you start your counts at 0, hence five

LEDs will be addressed as 0, 1, 2, 3, and 4. As an example, Figure 2-2 shows

an LED on the display located at the address (3, 2), where 3 is the column

number and 2 is the row number.

 Turning LEDs On and Off
This section starts with a simple example and shows you how to turn an

LED on and off in the LED screen. The code shown in Listing 2-1 blinks the

LED located in address (3,2).

Figure 2-2. LED located at the address column 3 and row 2 (3, 2)

Chapter 2 Working With Display anD images

42

Listing 2-1. Turning an LED On and Off

from microbit import *

while True:

 display.set_pixel(3, 2, 9) # turn on the LED

 sleep(1000) # wait for 1 second

 display.set_pixel(3, 2, 0) # turn off the LED

 sleep(1000) # wait for 1 second

The while True statement helps you iterate the block of statements

underneath it as an infinite loop. The display.set_pixel() function

allows you to tell the MicroPython where the LED is located in the LED

screen, using x and y. The first parameter takes the column number and

the second parameter takes the row number. The third parameter is set

to 9 to turn on the LED and 0 to turn off the LED. You will learn about the

third parameter of the display.set_pixel() function in the next section.

The MicroPython code will turn on the LED for one second and turn off

the LED for one second. This sequence will continue and you can see a

blinking effect.

Note python uses indentation to mark blocks of code. you should
indent each line of the block by the same amount. you can use the
tab key on your keyboard to insert the same amount of indentation.

while True:

[TAB]display.set_pixel(3, 2, 9)

...

Chapter 2 Working With Display anD images

www.allitebooks.com

http://www.allitebooks.org

43

 Setting and Getting the Brightness of an LED
Controlling the brightness of an image is a key factor of graphics and

multimedia. In micro:bit, you can set or get the brightness level of any

LED in the grid. This is done through the third parameter of the display.

set_pixel() function.

 Setting Brightness

The third parameter of the display.set_pixel() function accepts a

brightness level for the LED between 0-9, where 0 indicates minimum

brightness (LED is off) and 9 indicates maximum brightness.

Listing 2-2 shows the code that sets the brightness level of the LED

located in column 3 and row 2 to 5.

Listing 2-2. Setting LED Brightness

from microbit import *

display.set_pixel(3,2,5) # set the brightness level to 5

 Getting Brightness

The display.get_pixel() function, on the other hand, returns the

brightness level of a given LED. Listing 2-3 shows the code that gets the

brightness level of the LED located in column 3 and row 2.

Listing 2-3. Getting LED Brightness

from microbit import *

display.set_pixel(3,2,5) # first set the brightness level to 5

pixel_brightness = display.get_pixel(3,2) # then get the

current brightness level

display.scroll("brightness is: "+str(pixel_brightness))

Chapter 2 Working With Display anD images

44

The micro:bit display will show the following output:

Brightness is: 5

 Clearing the Display
The display.clear() function allows you to set the brightness level of all

LEDs to 0. This is helpful when you want to turn off all the LEDs at once

and clear the display.

Listing 2-4 shows the code used to clear the display, wait a few

seconds, and then turn on the display to full brightness.

Listing 2-4. Clearing the LED Display

from microbit import *

display.show('X')

sleep(5000) #wait for 5 seconds

display.clear() # set the brightness level of all the LEDs to 0

sleep(2000) #wait for 2 seconds

for x in range(0, 5):

 for y in range(0, 5):

 sleep(100) # slow down the code long enough for the

user to see the LEDs turn on and off in sequence

 display.set_pixel(x,y,9) # then set the brightness

level of all the LEDs to 9 using for loop

The for command can be used to create a loop, which will then run

the required code n amount of times.

The first for command will create a loop and run the code five times.

The number of times can be defined with the range() function. The

second for command, which resides inside the first for command, will

create another loop and execute the display.set_pixel() function

Chapter 2 Working With Display anD images

www.allitebooks.com

http://www.allitebooks.org

45

five times to turn on the LEDs. Brightness level 9 is used to turn

on LEDs at full brightness. So, these two for loops will execute the

display.set_pixel() function 25 times for each LED.

Figure 2-3 shows the sequence of executing the two loops.

 Turning the Display On and Off
The display.off() function turns off the display and allows you to

use the GPIO pins (3, 4, 6, 7, 9, and 10) associated with the display for

other purposes. As you can see in Figure 2-4, some of the GPIO pins are

Figure 2-3. Execution of two for loops: x and y

Chapter 2 Working With Display anD images

46

connected to the LED display’s rows and/or columns, so if you want to use

them, you have to switch the display off. Otherwise, it will keep switching

the pins, and you will see unexpected display output, depending on what

the display shows.

You can turn on the display again by issuing the display.on()

function. This will bring the display back to the normal state. You can also

get the status of the display with the display.is_on() function. It returns

true if the display is on and false if the display is off.

Figure 2-4. GPIO pins 3, 4, 6, 7, 9, and 10 are connecting to the LED
screen

Chapter 2 Working With Display anD images

www.allitebooks.com

http://www.allitebooks.org

47

Listing 2-5 shows the code that turns off a display for a GPIO mode,

waits two seconds, and then turns it on again.

Listing 2-5. Turning the LED Display On and Off

from microbit import *

display.scroll("Turning display off")

sleep(100)

display.off() # turn off the display and goes to GPIO mode

sleep(5000)

display.on() # trun on the display

if display.is_on():

 display.scroll("Display back on")

 Using Built-in Images
The MicroPython Image class offers 63 built-in images that are ready to use

with your code. Listing 2-6 presents the full list of built-in images that you

can use with the micro:bit.

Listing 2-6. Built-In Images

Image.HEART

Image.HEART_SMALL

Image.HAPPY

Image.SMILE

Image.SAD

Image.CONFUSED

Image.ANGRY

Image.ASLEEP

Image.SURPRISED

Image.SILLY

Image.FABULOUS

Chapter 2 Working With Display anD images

48

Image.MEH

Image.YES

Image.NO

Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,

Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5, Image.

CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1

Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E, Image.ARROW_SE,

Image.ARROW_S, Image.ARROW_SW, Image.ARROW_W, Image.ARROW_NW

Image.TRIANGLE

Image.TRIANGLE_LEFT

Image.CHESSBOARD

Image.DIAMOND

Image.DIAMOND_SMALL

Image.SQUARE

Image.SQUARE_SMALL

Image.RABBIT

Image.COW

Image.MUSIC_CROTCHET

Image.MUSIC_QUAVER

Image.MUSIC_QUAVERS

Image.PITCHFORK

Image.XMAS

Image.PACMAN

Image.TARGET

Image.TSHIRT

Image.ROLLERSKATE

Image.DUCK

Image.HOUSE

Image.TORTOISE

Image.BUTTERFLY

Image.STICKFIGURE

Chapter 2 Working With Display anD images

www.allitebooks.com

http://www.allitebooks.org

49

Image.GHOST

Image.SWORD

Image.GIRAFFE

Image.SKULL

Image.UMBRELLA

Image.SNAKE

With MicroPython, any image can be displayed using the display.

show() function. The display.show() function takes an image as an input

and displays it on the LED screen.

Listing 2-7 shows the MicroPython code to display the built-in image

named BUTTERFLY on the micro:bit display.

Listing 2-7. Displaying the BUTTERFLY Built-In Image

from microbit import *

display.show(Image.BUTTERFLY)

Now, flash and run this code on micro:bit, and you should see a

butterfly image being displayed on the LED grid, as shown in Figure 2-5.

As an exercise, you can modify the code to display other built-in

images and see how they are displayed on the grid.

In the next section, you learn about creating custom images.

Figure 2-5. Butterfly image

Chapter 2 Working With Display anD images

50

 Creating Your Own Images
The Image class of the MicroPython allows you to build your own images.

The following steps guide you through how to create an image and convert

it to code.

 1. Start with a 5x5 grid and fill each square based on

how you would like it lit.

 2. To encode the image, read each square on each line

of the grid using the following rules:

• If the square is empty, it has the value of 0.

• If the square is filled, it has the value of the

brightness required from 1 to 9.

In this example, learn how to create a custom image to display a fish

on the micro:bit screen.

 1. Draw a 5x5 grid on paper and fill each square so that

it forms the shape of a fish (see Figure 2-6).

Figure 2-6. Creating the shape of a fish

Chapter 2 Working With Display anD images

www.allitebooks.com

http://www.allitebooks.org

51

 2. Encode each empty square with 0 (off) and each

filled square with 9 (the maximum brightness level),

as shown in Figure 2-7.

 3. Write the encoded values of each row as shown

here.

00900

09909

99999

09909

00900

 4. Place each encoded line into code format. Each entry

should end with a colon, except for the last line, and

be placed within double quotes, as shown here.

"00900:""09909:""99999:""09909:""00900"

Figure 2-7. Encoding squares

Chapter 2 Working With Display anD images

52

 5. Name the image (such as FISH) and assign the

encoded line:

FISH = Image ("00900:""09909:""99999:""09909:""00900")

 6. Display the image using the display.show()

function:

display.show(FISH)

Listing 2-8 shows the complete code to display the fish image with its

maximum brightness level, which is 9.

Listing 2-8. Custom Image Called FISH

from microbit import *

FISH = Image("00900:"

 "09909:"

 "99999:"

 "09909:"

 "00900")

display.show(FISH)

You can vary the brightness of each LED to create different shades

on the image. Figure 2-8 shows the same example marked with different

brightness levels.

Chapter 2 Working With Display anD images

www.allitebooks.com

http://www.allitebooks.org

53

The image uses brightness level 9 for the body, 7 for the fins, and

5 for the tail to create different shades. Brightness level 0 is used to

create the background by turning off other LEDs. Listing 2-9 shows the

modified code.

Listing 2-9. Applying Different Brightness Levels

from microbit import *

FISH = Image("00700:"

 "09905:"

 "99955:"

 "09905:"

 "00700")

display.show(FISH)

Figure 2-8. Applying different brightness levels

Chapter 2 Working With Display anD images

54

 Lists and Animations
The MicroPython image library has two pre-built image lists—ALL_ CLOCKS

and ALL_ARROWS. Listings 2-10 and 2-11 present a list of images included

with each of the pre-built image lists.

Listing 2-10. ALL_ CLOCKS

Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,

Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5, Image.

CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1

Listing 2-11. ALL_ARROWS

Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E, Image.ARROW_SE,

Image.ARROW_S, Image.ARROW_SW, Image.ARROW_W, Image.ARROW_NW

The display.show() command can display all the images in the list in

sequence. Listing 2-12 shows the complete code to display and animate

the built-in image list, ALL_CLOCKS.

Listing 2-12. Displaying a Clock Using the Built-In Image List

from microbit import *

display.show(Image.ALL_CLOCKS, loop=True, delay=100)

The ALL_CLOCKS image list consists of 12 images that can be used

to display each hour from 1 to 12. The loop = true runs the animation

forever and the delay=100 will slow down the speed of the animation.

If you want, you can display a selected image from the image list, as

all image lists are based on a 0 index. As an example, the 12 images in the

ALL_CLOCKS list are indexed from 0 to 11, as shown here.

Chapter 2 Working With Display anD images

www.allitebooks.com

http://www.allitebooks.org

55

CLOCK12: index 0

CLOCK1: index 1

CLOCK2: index 2

CLOCK3: index 3

CLOCK4: index 4

CLOCK5: index 5

CLOCK6: index 6

CLOCK7: index 7

CLOCK8: index 8

CLOCK9: index 9

CLOCK10: index 10

CLOCK11: index 11

Listing 2-13 shows the code that displays the CLOCK6 image, which is

located at index 6 in the ALL_CLOCKS list.

Listing 2-13. Displaying CLOCK6 Image

from microbit import *

display.show(Image.ALL_CLOCKS[6]) # index 6 for CLOCK6

Listing 2-14 shows the code to animate a clock using image indexes

/indices.

Listing 2-14. Animate Images Using Image Indexes

from microbit import *

for x in range(0,12):

 display.show(Image.ALL_CLOCKS[x])

 sleep(100)

Chapter 2 Working With Display anD images

56

The code in Listing 2-14 will show each CLOCK image, starting from 12

hours to 11 hours (12, 1, 2 , .., 10, 11). You can press the RESET button to start

the animation from the beginning or add a while True statement to the code.

You can create custom image lists with the pre-built images. For

example, the list named SPOOKY has three pre-built images—GHOST, SWORD,

and SKULL.

spooky = [Image.GHOST, Image.SWORD, Image.SKULL]

You can simply create an animation with this list, as shown in Listing 2- 15.

The animation will run forever and display each image for one second.

Listing 2-15. Displaying a Spooky Image List

from microbit import *

spooky = [Image.GHOST, Image.SWORD, Image.SKULL]

display.show(spooky, loop=True, delay=1000)

You can arrange the sequence of images to make an animation by

adding a delay between them. Listing 2-16 shows the code that displays a

simple animation on micro:bit with two heart images.

Listing 2-16. Display a Beating Heart

from microbit import *

while True:

 display.show(Image.HEART)

 sleep(500)

 display.show(Image.HEART_SMALL)

 sleep(500)

First, the HEART image will appear on the screen for 500 milliseconds.

Then the HEART_SMALL image will appear on the screen for 500

milliseconds. The while True statement will continually repeat these two

images on the screen. This will create a blinking effect.

Chapter 2 Working With Display anD images

www.allitebooks.com

http://www.allitebooks.org

57

Listing 2-17 shows the code that displays an animated clock with 12

individual CLOCK images.

Listing 2-17. Displaying a Clock with Individual Images

from microbit import *

while True:

 display.show(Image.CLOCK12)

 sleep(100)

 display.show(Image.CLOCK1)

 sleep(100)

 display.show(Image.CLOCK2)

 sleep(100)

 display.show(Image.CLOCK3)

 sleep(100)

 display.show(Image.CLOCK4)

 sleep(100)

 display.show(Image.CLOCK5)

 sleep(100)

 display.show(Image.CLOCK6)

 sleep(100)

 display.show(Image.CLOCK7)

 sleep(100)

 display.show(Image.CLOCK8)

 sleep(100)

 display.show(Image.CLOCK9)

 sleep(100)

 display.show(Image.CLOCK10)

 sleep(100)

 display.show(Image.CLOCK11)

 sleep(100)

 display.show(Image.CLOCK12)

Chapter 2 Working With Display anD images

58

In this code, the display.show() function is used to display each clock

image in the list for 100 milliseconds using the sleep() function. The

while True statement creates a continuous loop and animates the hour

hand of the clock to move clock-wise.

 Custom Animation
If you have a series of custom built images, you can display them in a loop

and generate a simple animation based on the custom image, FISH. Let’s

create a series of images to move the fish from right to left on the LED

display. Figure 2-9 shows the image sequence to move the fish to the left

from its initial position, which will simulate the swimming effect.

Figure 2-9. Image frames for animating the FISH

Chapter 2 Working With Display anD images

www.allitebooks.com

http://www.allitebooks.org

59

Listing 2-18 shows the complete code needed to create the animation.

Listing 2-18. Creating a Set of Custom Images and Animating Them

from microbit import *

FISH_1 = Image("00700:"

 "09905:"

 "99955:"

 "09905:"

 "00700")

FISH_2 = Image("07000:"

 "99050:"

 "99550:"

 "99050:"

 "07000")

FISH_3 = Image("70000:"

 "90500:"

 "95500:"

 "90500:"

 "70000")

FISH_4 = Image("00000:"

 "05000:"

 "55000:"

 "05000:"

 "00000")

FISH_5 = Image("00000:"

 "50000:"

 "50000:"

 "50000:"

 "00000")

Chapter 2 Working With Display anD images

60

FISH_6 = Image("00000:"

 "00000:"

 "00000:"

 "00000:"

 "00000")

ALL_FISH = [FISH_1, FISH_2, FISH_3, FISH_4, FISH_5, FISH_6]

display.show(ALL_FISH, loop=True, delay=250)

The ALL_FISH list holds six image frames that can be used to emulate

the swimming effect. The delay is set to 250 milliseconds to slow down the

speed of the animation. The loop=True statement causes the animation to

run forever.

 Summary
In this chapter, you learned how to work with images and with the LED

display. You displayed built-in images and custom images on the micro:bit

LED display. Then you created animations based on the pre-built image

lists and custom image lists. Finally, you controlled the LED display with a

set of core display functions.

The next chapter explains how to work with buttons to get user inputs

and control the execution flow of a program.

Chapter 2 Working With Display anD images

www.allitebooks.com

http://www.allitebooks.org

61© Pradeeka Seneviratne 2018
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_3

CHAPTER 3

Working with Buttons
By now, you should be fairly comfortable with micro:bit LED display,

images, and animations.

In this chapter, you learn how to use the two built-in buttons on

the front of the micro:bit board. You also learn how to connect external

buttons to handle user inputs and control the execution flow of a program

according to the button events.

 Built-in Buttons
The micro:bit board has two built-in momentary pushbuttons soldered

on the front of the board, labeled A and B. Button A is internally coupled

to digital pin 5 and button B is internally coupled to digital pin 11. You will

learn about input/output (I/O) pins in Chapter 4. Figure 3-1 shows the two

pushbuttons.

62

 Handling User Input with Buttons
Buttons can be used to access user input while running the code and make

decisions accordingly. The MicroPython library provides some useful

methods to interact with the two built-in buttons. Here is the list of these

methods:

• button_a.is_pressed()

• button_a.was_pressed()

• button_a.get_presses()

Figure 3-1. Built-in buttons, A and B

Chapter 3 Working With Buttons

www.allitebooks.com

http://www.allitebooks.org

63

• button_b.is_pressed()

• button_b.was_pressed()

• button_b.get_presses()

 Button Is Pressed

First, you’ll learn how to check whether a button is being pressed by the

user using the is_pressed() method. This method will return true if the

button is pressed, and false otherwise. This event is only raised when the

button is being pressed and held.

Listing 3-1 shows the code used to detect whether button A is pressed.

When you press and hold button A, the LED display will show a HAPPY face;

otherwise, the LED display will show a SAD face.

Listing 3-1. Check whether a button is pressed

from microbit import *

while True:

 if button_a.is_pressed():

 display.show(Image.HAPPY)

 else:

 display.show(Image.SAD)

The while True statement creates an infinite loop that helps you

detect the button’s situation. The is_pressed() method returns true if the

button is pressed and returns false otherwise.

Listing 3-2 shows you how to exit from an infinite loop with the break

statement.

Chapter 3 Working With Buttons

64

Listing 3-2. Check whether a button is pressed and exit from the

while True loop

from microbit import *

while True:

 if button_a.is_pressed():

 display.show(Image.HAPPY)

 elif button_b.is_pressed():

 break

 else:

 display.show(Image.SAD)

display.clear()

With this code, when you press button B, the execution flow of the

program will exit from the while True loop and execute the display.

clear() method. You can then press the RESET button to start the

program from the beginning.

Listing 3-3 presents the code that detects whether buttons A and B are

being pressed at the same time. The logical and statement can be used to

check whether both conditions are true.

Listing 3-3. Check whether two buttons are being pressed at the

same time

from microbit import *

while True:

 if button_a.is_pressed() and button_b.is_pressed():

 display.scroll("AB")

 elif button_a.is_pressed():

 display.scroll("A")

 elif button_b.is_pressed():

 display.scroll("B")

 sleep(100)

Chapter 3 Working With Buttons

www.allitebooks.com

http://www.allitebooks.org

65

 Button Was Pressed

The was_pressed() method returns true after pressing a button. The code

shown in Listing 3-4 detects the release event of button A.

Listing 3-4. Check whether a button was pressed

from microbit import *

while True:

 if button_a.was_pressed():

 display.show(Image.HAPPY)

 else:

 display.show(Image.SAD)

 sleep(3000)

When you run this code on the micro:bit, initially the LED display will

show a SAD face. If you press button A, the HAPPY image will display on the

LED screen for three seconds, a duration defined by the sleep method.

Otherwise, it will display a SAD image until you press button A again. If you

press button A while the program is sleeping, it will not immediately be

detected by the program, but it will be detected in the next iteration of the

program.

 Button Presses

The get_presses() method returns the number of times a button has

been pressed. The code shown in Listing 3-5 can be used to count the

number of times button A has been pressed.

Chapter 3 Working With Buttons

66

Listing 3-5. Counts the number of times a button has been pressed

from microbit import *

while True:

 sleep(10000)

 display.scroll(str(button_a.get_presses()))

The sleep function is used to pause the program. During that time,

the program counts the number of times the user pressed button A. You

can increase the delay time to get more button presses. Finally, the

get_presses() method returns the number of times button A has been

pressed. The str() function converts the numeric value from button_a.

get_presses() to a string to scroll on the display.

 Connecting External Buttons
micro:bit has two built-in pushbuttons called momentary pushbuttons.

You can use external buttons to replace them or increase the number of

buttons to handle more user inputs.

 Momentary Pushbuttons
Typically, a momentary pushbutton has four pins, as shown in the

Figure 3-2.

Chapter 3 Working With Buttons

www.allitebooks.com

http://www.allitebooks.org

67

The internal connection between the four pins is shown in the

Figure 3-3.

These switches are normally in the OPEN state and you must be

pushed to complete or close the circuit. The circuit can be completed

through AB, CD, AC, or BD.

Figure 3-2. Pinout of the momentary pushbutton

Figure 3-3. Internal connection between pins

Chapter 3 Working With Buttons

68

 Using External Buttons
You can replace the two built-in buttons with external momentary

pushbuttons. Button A is internally connected to pin 5 and button B is

internally connected to the pin 11. Pins 5 and 11 have pull-up resistors,

which means that by default they use a voltage of 3V.

Figure 3-4 shows how to connect external momentary pushbuttons to

the micro:bit to use the functions of built-in buttons A and B. You do not

need to use extra pull-up resistors because pins 5 and 11 have built-in pull-

up resistors. You can easily access the micro:bit’s pins 5 and 11 by plugging

the micro:bit in to an edge connector breakout (see Chapter 4 for more

information).

Chapter 3 Working With Buttons

www.allitebooks.com

http://www.allitebooks.org

69

Figure 3-4. Connecting external buttons for built-in buttons A
and B

Chapter 3 Working With Buttons

70

Listing 3-6 shows the MicroPython code that you can use to test the

behavior of the new external buttons. The same code can be found in

Listing 3-3.

Listing 3-6. Using external buttons

from microbit import *

while True:

 if button_a.is_pressed() and button_b.is_pressed():

 display.scroll("AB")

 break

 elif button_a.is_pressed():

 display.scroll("A")

 elif button_b.is_pressed():

 display.scroll("B")

 sleep(100)

 Connecting Buttons to GPIO
You can connect external buttons to the GPIO pins 0 to 16. The wiring

diagram in Figure 3-5 shows how to connect a momentary pushbutton

with GPIO pin 0 to a pull-up resistor of about 1 kiloohm.

Chapter 3 Working With Buttons

www.allitebooks.com

http://www.allitebooks.org

71

Figure 3-5. Connecting an external pushbutton with GPIO 0 (wiring
diagram)

Chapter 3 Working With Buttons

72

The schematic for the wiring diagram in Figure 3-5 is shown in

Figure 3-6.

Listing 3-7 shows the code used to test the button press event of the

new pushbutton.

Listing 3-7. Testing button press event by connecting an external

button with a GPIO pin

from microbit import *

while True:

 if pin0.read_digital():

 display.show(Image.HAPPY)

 else:

 display.show(Image.SAD)

Figure 3-6. Connecting an external pushbutton with GPIO 0
(schematic)

Chapter 3 Working With Buttons

www.allitebooks.com

http://www.allitebooks.org

73

The read_digital() method returns 1 (true for 3V) or 0 (false for 0V),

depending on the voltage level of pin 0. When you press and hold the

pushbutton, the voltage level of pin 0 becomes 3V and the HAPPY image

appears on the LED screen. When you release the pushbutton, the voltage

level of pin 0 becomes 0V and the SAD image appears.

You can use crocodile clips to connect external components to the

large pads (GPIOs 0, 1, and 2) of the micro:bit edge connector. If you want

to connect wires to small pads of the edge connector to access other GPIO

pins, the easiest way is to use an edge connector breakout. You will learn

how to use an edge connector breakout with micro:bit in Chapter 4, “Using

Inputs and Outputs”.

 Summary
In this chapter, you learned about the micro:bit built-in buttons, button

events, and the use of external buttons.

The next chapter explains how to use inputs and outputs with a

micro:bit edge connector and connect devices with communication

protocols such as SPI, UART, and I2C.

Chapter 3 Working With Buttons

75© Pradeeka Seneviratne 2018
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_4

CHAPTER 4

Using Inputs
and Outputs
In this chapter, you learn how to handle inputs and outputs with micro:bit

through the edge connector. The 21 I/O pins can be used to work with

analog, digital, I2C, SPI, and UART. Some I/O pins are also specialized to

build touch-sensitive applications. The micro:bit only exposes three I/O

pins through the edge connector for basic users. If you want to access the

full set of I/O pins, you can use the edge connector breakout board.

 Edge Connector
micro:bit exposes its I/O pins through the edge connector, as shown in

Figure 4-1. The edge connector consists of large and small connection

pads. The large connection pads expose GPIO pins 0, 1, and 2 only.

www.allitebooks.com

http://www.allitebooks.org

76

 Using an Edge Connector Breakout Board
For practical use, the small pads in the edge connector are difficult to

access with crocodile clips. As a solution, you can use an edge connector

breakout board to access all 21 I/O pins. The micro:bit pins are broken

into a row of pin headers. You can use male-to-female jumper wires to

Figure 4-1. Edge connector with large and small pads (image source:
micro:bit Foundation)

Chapter 4 Using inpUts and OUtpUts

77

connect the pin headers. The I2C pin (pins 19 and 20) are separated from

the pin header and exposed as solderable pads. Figure 4-2 shows the edge

connector breakout board.

There are four major areas in the edge connector breakout board, as

shown in Figure 4-3.

• BBC micro:bit compatible connector: This is the slot

where you insert the edge connector side of the

micro:bit board.

• I2C pins: Solder pads connected to the micro:bit I2C

pins 19 and 20.

Figure 4-2. Edge connector breakout board (image courtesy of
Kitronik: https://www.kitronik.co.uk/)

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

78

• Pin headers: The 20x2 row of pin headers connected

through the micro:bit pin numbers, as indicated.

You can connect IDC cable or jumper wires to make

connections.

• Prototyping area: Allows you to prototype simple

circuits in this area with switches, sensors, and any

pull-up or pull-down resistors. The area consists of 3V

and 0V rows, and three additional connecting sections.

Figure 4-4 shows how to insert the micro:bit board into the edge

connector breakout board. Make sure to insert it firmly into the slot; the

side of the LED matrix should be face up.

Figure 4-3. Major areas of the edge connector breakout board (image
courtesy of Kitronik: https://www.kitronik.co.uk/)

Chapter 4 Using inpUts and OUtpUts

79

 Experimenting with I/O Pins
The 21 I/O pins can be categorized in to three types: touch, analog, and

digital. Furthermore, some digital pins are specialized to use with serial

communication protocols such as I2C, SPI, and UART. Figure 4-5 shows

the type of pins and usage.

Figure 4-4. Inserting micro:bit into the edge connector breakout
board (image courtesy of Kitronik: https://www.kitronik.co.uk/)

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

80

Table 4-1 shows the type and function of each pin.

Figure 4-5. Type of pins and usage (image courtesy of micro:bit
Foundation: http://microbit.org/)

Chapter 4 Using inpUts and OUtpUts

81

Table 4-1. Type and Function of micro:bit I/O Pins

Pin Name Description

22 0V 0V/gnd

0V 0V 0V/gnd

21 0V 0V/gnd

20 sda serial data pin connected to the magnetometer and accelerometer

connected through i2C bus

19 sCL serial clock pin connected to the magnetometer and accelerometer

through i2C bus

18 3V 3V/positive supply

3V 3V 3V/positive supply

17 3V 3V/positive supply

16 diO general purpose digital i/O

15 MOsi serial connection: master output/slave input

14 MisO serial connection: master input/slave output

13 sCK serial connection clock

2 pad2 general purpose digital/analog i/O

12 diO general purpose digital i/O

11 Btn_B Button B: normally high, goes low on pressing

10 COL3 Column 3 on the Led matrix

9 COL7 Column 7 on the Led matrix

8 diO general purpose digital i/O

1 pad1 general purpose digital/analog i/O

7 COL8 Column 8 on the Led matrix

(continued)

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

82

 Touch
Micro:bit board has three specialized pins with large connector pads,

known as touch pins. Figure 4-6 shows the touch pins that you can use

to build touch-sensitive applications based on the analog input. They

are pins 0, 1, and 2. The large connector pads allow you to touch them

with your fingertips to change the capacitance. To apply the electrical

capacitance of your body on a touch pin, first touch and hold the GND pin

followed by the touch pin associated with your application.

Table 4-1. (continued)

Pin Name Description

6 COL9 Column 9 on the Led matrix

5 Btn_a Button a: normally high, goes low on pressing

4 COL2 Column 2 on the Led matrix

0 pad0 general purpose digital/analog i/O

3 COL1 Column 1 on the Led matrix

Source: Kitronik at https://www.kitronik.co.uk/

Chapter 4 Using inpUts and OUtpUts

83

Figure 4-6. Touch pins

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

84

Figure 4-7 shows how to touch and hold the GND pin and pin 0.

Listing 4-1 presents simple MicroPython code that can be used to

sense the electrical capacitance of the human body by touching pin 0. If

you touch the ground pin with pin 0, the LED screen will show a HAPPY

image; otherwise, it will show a SAD image.

Listing 4-1. Detecting human touch

from microbit import *

while True:

 if pin0.is_touched():

 display.show(Image.HAPPY)

 else:

 display.show(Image.SAD)

The micro:bit TouchPin class provides the is_touched() method,

which returns True if the pin is being touched with a finger, and returns

False otherwise. The show() method of the display class is used to

display images on the LED screen.

Figure 4-7. First hold the GND pad (left); then touch the pin 0 pad
(right)

Chapter 4 Using inpUts and OUtpUts

85

When you touch a touch pad, the capacitance on the pad will increase.

You can determine the capacitance on a touch pad using the read_analog()

method. It will return a value between 0-1023.

Listing 4-2 shows the MicroPython code that reads the capacitance

on pin 0.

Listing 4-2. Reading capacitance on pin 0

from microbit import *

while True:

 display.scroll(str(pin0.read_analog()))

 sleep(100)

 Analog Input and Output
You can use the same large touch pads to build circuits with analog input

and output. First, prepare with following components to build the circuit.

• A 10kiloohm potentiometer

• Three wires with crocodile clips attached to both sides

• A 3mm LED

Figure 4-8 shows the wiring diagram for the circuit.

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

86

Follow these steps to wire the circuit.

 1. Connect the positive lead of the LED to micro:bit pin 1.

 2. Connect the negative lead of the LED to the

micro:bit GND pin.

 3. Connect the middle pin of the potentiometer to

micro:bit pin 0.

 4. Connect one of the outer pins of the potentiometer

to micro:bit 3V.

 5. Connect another outer pin of the potentiometer to

the micro:bit GND pin.

Listing 4-3 show code that controls the brightness of a LED using a

potentiometer.

Figure 4-8. Wiring diagram for the analog read/write circuit

Chapter 4 Using inpUts and OUtpUts

87

Listing 4-3. Controlling brightness of a LED

from microbit import *

while True:

 pin1.write_analog(pin0.read_analog())

 sleep(100)

When you turn the shaft of the potentiometer, the voltage at the center

pin will change. The same effect will happen at the micro:bit pin 0. You can

read the voltage at the center pin with read_analog() method and write

the same value at pin 1 to change the brightness of the LED.

The read_analog() returns an integer between 0-1023. The same

value can be passed to the write_analog() method to control the voltage

at pin 1, which controls the brightness of the attached LED.

The following steps show you how to calculate voltage on pin 1 for an

analog value 500 on pin 0.

First, calculate the voltage for the analog read value 1 by dividing the

maximum voltage, 3V, by 1023:

3.0 / 1023 = 0.002932551v

Then multiply this result by 500:

0.002932551 x 500 = 1.46

So a value of 500 will send 1.46 volts in to pin 1.

 Digital Input and Output
Digital signal or data can be expressed as a series of 0 and 1 digits.

Figure 4- 9 shows a digital signal with two states over time. The voltage

level of HIGH takes 3.3V and LOW takes 0V.

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

88

You can also use the large touch pads in the edge connector to work

with digital signals. By now, you have learned that the large connection

pads (pins 0, 1, and 2) support with touch, analog, and digital processing.

First, you learn how to read a button state using digital read and show

the button status using an LED. Figure 4-10 shows the wiring diagram.

Figure 4-9. Digital 3.3V signal over time

Figure 4-10. Wiring diagram for a digital read/write circuit

Chapter 4 Using inpUts and OUtpUts

89

Follow these steps to make the connections between components.

 1. Connect the pushbutton to micro:bit between pin 0

and GND.

 2. Connect the positive pin of the LED to micro:bit pin 1.

 3. Connect the negative pin of the LED to micro:bit GND.

Listing 4-4 presents the MicroPython code that detects the button state

and controls the LED.

Listing 4-4. Detecting button state

from microbit import *

while True:

 if pin0.read_digital():

 pin1.write_digital(1)

 else:

 pin1.write_digital(0)

When you press and hold the pushbutton, the read_digital()

method returns 1. The if statement is used to compare the return value at

pin 0.

Alternatively, you can write the if pin0.read_digital():statement

as if pin0.read_digital()== 1:. The write_digital() method will

change the voltage at pin 1 by writing the value 1 or 0, depending on the

button status. In the previous example, the LED will turn on if the button is

pressed, and will turn off otherwise.

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

90

 I2C (Inter-Integrated Circuit)
The micro:bit supports the I2C (inter-integrated circuit) communication

protocol that allows you to connect devices through the I2C bus. You

can use the SDA and SCL pins of the micro:bit to connect devices and

communicate through the I2C bus. Therefore, I2C requires two wires to

communicate.

Depending on its configuration, the I2C bus can support up to

1024 slave devices; however, as 7-bit addressing is used with micro:bit

MicroPython, the number of slave devices is 128. Figure 4-11 shows the

communication paths between the master and slave devices of an I2C bus.

Fortunately, you can learn how to read sensor data through an I2C

bus without connecting any I2C capable sensors with the micro:bit. The

on-board magnetometer and accelerometer of the micro:bit are internally

connected to the I2C bus.

Figure 4-11. Master and slave devices connected through the
I2C bus

Chapter 4 Using inpUts and OUtpUts

91

What follows is a quick example of reading data from the

accelerometer connected to the I2C bus. The micro:bit uses NXP/Freescale

MMA8652FC three-axis 12-bit digital accelerometer sensor. The datasheet

for MMA8652FC can be found at http://www.nxp.com/docs/en/data-

sheet/MMA8652FC.pdf.

Figure 4-12 shows a section of the register address map from the

MMA8652FC datasheet.

Figure 4-12. Register address map of the MMA8652FC (source:
http://www.nxp.com/docs/en/data-sheet/MMA8652FC.pdf)

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

92

The measured acceleration data is stored in the following registers as

2’s complement 12-bit:

• OUT_X_MSB, OUT_X_LSB

• OUT_Y_MSB, OUT_Y_LSB

• OUT_Z_MSB, OUT_Z_LSB

You can read the measured acceleration data as an 8-bit or 12-bit

result. The datasheet says: The most significant eight bits of each axis are

stored in OUT_X (Y, Z)_MSB, so applications needing only 8-bit results

can use these three registers (and ignore the OUT_X/Y/Z_LSB registers). To

use only 8-bit results, the F_READ bit in CTRL_REG1 must be set. When the

F_READ bit is cleared, the fast read mode is disabled (see Figure 4-13).

According to the datasheet, the I2C device address of the

accelerometer is 0x1d (see Figure 4-14).

Figure 4-13. CTRL_REG1 register

Chapter 4 Using inpUts and OUtpUts

93

Figure 4-14. I2C device address of the accelerometer chip

Listing 4-5 shows the MicroPython code that reads the accelerometer

data from the x-axis and displays it with REPL in the Mu editor.

Listing 4-5. Reading Accelerometer Data from the X-Axis Through

I2C

from microbit import *

i2c.write(0x1d, bytes([0x2a,1]), repeat=False)

while True:

 Byte = i2c.read(0x1d, 2) [1]

 print(Byte)

 sleep(100)

The code uses the i2c.write() and i2c.read() functions:

i2c.read(addr, n, repeat=False)

• addr: 7-bit I2C address of your device. In this case, the

I2C address of the accelerometer is 0x1d.

• n: Read n bytes.

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

94

• repeat: If True, no stop bit will be sent.

i2c.write(addr, buf, repeat=False)

• addr: 7-bit I2C address of your device. In this case, the

I2C address of the accelerometer is 0x1d.

• buf: Write bytes from buffer.

• repeat: If True, no stop bit will be sent.

To use only 8-bit results, the F_READ bit in CTRL_REG1 must be set.

You can use the i2c.write() function to write one byte to the register

CTRL_REG1 at address 0x2a. The repeat is set to False to send the stop bit.

If repeat is True, no stop bit will be sent.

i2c.write(0x1d, bytes([0x2a,1]), repeat=False)

Then, you can read the register, OUT_X_MSB, at address 0x1d. The

i2c.read() function can be used to read the first two bytes of the device.

However, you only need the byte at index 1, which holds the bytes for the

OUT_X_MSB register (see Figure 4-15).

Byte = i2c.read(0x1d, 2) [1]

Figure 4-15. OUT_X_MSB register at address 0x01

Chapter 4 Using inpUts and OUtpUts

95

Finally, print the bytes with the print() function.

print(Byte)

Figure 4-16 shows the output for this code. After flashing the code

to the micro:bit, click on the REPL button in the Mu editor to open and

view the REPL window. In some situations, the REPL window only shows

a few values and then stops. If you encounter a similar thing, press the

RESET button on the micro:bit to restart the program. Pan and tilt the

micro:bit board by hand to see the change of the accelerometer values on

the x-axis. You learn how to work with and read values from the built-in

accelerometer in Chapter 5.

Figure 4-16. Reading accelerometer values (values on the x-axis)
through I2C

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

96

 SPI (Serial Peripheral Interface)
The SPI (serial peripheral interface) allows you to connect devices to the

micro:bit through the SPI bus. The SPI uses a master-slave architecture

with a single master device. The SPI requires three wires to communicate

between the master and slave. They are:

• SCLK: Serial clock (output from master)

• MOSI: Master output, slave input (output from master)

• MISO: Master input, slave output (output from slave)

Now you are going to build a simple circuit with the Adafruit

Thermocouple Amplifier MAX31855 breakout board (see Figure 4-17) and

micro:bit. Then you will write a simple MicroPython program to read the

temperature through the SPI bus.

Figure 4-17. Adafruit thermocouple amplifier MAX31855 breakout
board (image courtesy of Adafruit Industries)

Chapter 4 Using inpUts and OUtpUts

97

Figure 4-18. Thermocouple Type-K glass braid insulated-K
(https://www.adafruit.com/product/270) (image courtesy of
Adafruit Industries)

Additionally, you need a Thermocouple Type-K glass braid insulated-K

(see Figure 4-18) or a Thermocouple type-k glass braid insulated stainless

steel tip (see Figure 4-19) to connect to the MAX31855 breakout board.

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

98

Assemble the MAX31855 breakout board with the provided 7-pin

header and terminal connector block. Then connect the Thermocouple

Type-K glass braid insulated-K or Thermocouple Type-K glass braid

insulated stainless steel tip to the terminal connector block. Connect the

red wire of the Thermocouple to the connector marked RED – and the

yellow wire of the Thermocouple to the connector marked YELLOW +

(see Figure 4-20).

Figure 4-19. Thermocouple Type-K Glass braid insulated stainless
steel tip (https://www.adafruit.com/product/3245) (Image
courtesy of Adafruit Industries)

Chapter 4 Using inpUts and OUtpUts

99

Figure 4-20. Assembled MAX31855 breakout board with
Thermocouple (image courtesy of Adafruit Industries)

Figure 4-21 shows the wiring diagram that you can use to connect the

Adafruit Thermocouple amplifier MAX31855 breakout board and micro:bit

together. You can use a micro:bit edge connector breakout board to easily

access the SPI pins (SCK and MISO) on the micro:bit. For an enlarged

view, see Figure 4-22.

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

100

Figure 4-22. Wiring diagram between the MAX31855 breakout
board and micro:bit (enlarged view)

Figure 4-21. Wiring diagram between the MAX31855 breakout
board and micro:bit

Chapter 4 Using inpUts and OUtpUts

101

Follow these steps to easily make connections between the MAX31855

breakout board and micro:bit with wires.

 1. Connect the MAX31855 breakout board Vin to

micro:bit 3V.

 2. Connect the MAX31855 breakout board GND to the

micro:bit GND.

 3. Connect the MAX31855 breakout board CLK to the

micro:bit SCK (pin 13).

 4. Connect the MAX31855 breakout board CS to the

micro:bit pin 0.

 5. Connect the MAX31855 breakout board D0 to the

micro:bit MISO (pin 14) .

Listing 4-6 shows the MicroPython code that reads the temperature

through the SPI bus and then prints it in Celsius.

Listing 4-6. Reading Temperature Through an SPI Bus

from microbit import *

spi.init(baudrate=1000000, bits=8, mode=0, sclk=pin13,

mosi=pin15, miso=pin14)

def temp_c(data):

 temp = data[0] << 8 | data[1]

 if temp & 0x0001:

 return float('NaN') # Fault reading data.

 temp >>= 2

 if temp & 0x2000:

 temp -= 16384 # Sign bit set, take 2's compliment.

 return temp * 0.25

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

102

while True:

 data = spi.read(4)

 print(temp_c(data))

 sleep(100)

The spi.init() function is used to initialize SPI communication with

the specified parameters on the specified pins:

• baudrate: 1000000 (the speed of communication)

• bits: 8 (the number of bytes being transmitted)

• mode: 0

• sclk: Pin 13 (micro:bit pin 13 SCK)

• mosi: Pin 15 (optional, as you will be reading data

through the SPI)

• miso: Pin 14 (micro:bit pin 14 MISO)

After initializing the SPI communication between both devices, the

spi.read() function is used to read data from the MAX31855 sensor. The

MAX31855 sensor has a very simple interface where you can read four

bytes of data (32 bits total) to get the current temperature reading and

other sensor states.

data = spi.read(4)

The helper function called temp_c() gets the temperature data from

the 32-bit result. Finally, the print() function will print the temperature.

A 100ms delay will be added between each temp_c() function call to give

it enough time to get the temperature data from the data register.

Chapter 4 Using inpUts and OUtpUts

103

 UART (Universal Asynchronous Receiver-
Transmitter)
micro:bit supports data communication with devices that have a

UART (Universal Asynchronous Receiver Transmitter) interface. The

MicroPython uart module allows you talk to a device connected to your

board using a serial interface.

Devices with a UART interface have two pins (or wires) for transmitting

and receiving data. Normally, these pins are called Tx (transmit) and Rx

(receive).

The following example explains how to connect the micro:bit to a mini

thermal receipt printer that has a UART interface.

To build the example project, you need the following things.

• Mini thermal receipt printer (https://www.adafruit.

com/product/597)

• 5V 2A (2000mA) switching power supply (https://

www.adafruit.com/product/276)

• Female DC power adapter, 2.1mm jack to screw

terminal block (https://www.adafruit.com/

product/368)

• Thermal paper roll that’s 16 feet long, 2.25 inches

(https://www.adafruit.com/product/2755)

• micro:bit

• A few crocodile clips and wires

The mini thermal receipt printer is ideal for interfacing with the

micro:bit through the a UART interface. Figure 4-23 shows the wiring

diagram between micro:bit and the printer.

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

104

Figure 4-23. Wiring diagram for UART communication

Chapter 4 Using inpUts and OUtpUts

105

The following steps guide you in how to connect the printer with

micro:bit.

 1. The back panel of the printer has two 3-pin

connectors—one for power and one for serial

communications.

 2. First, connect the provided data cable to the printer.

The data cable has three wires—black, yellow, and

green.

• Black = GND

• Yellow = Data IN to the printer (RX)

• Green = Data OUT of the printer (TX)

 3. Connect the data cable to the micro:bit as shown in

Figure 4-1.

• Connect the black cable to the micro:bit GND

• Connect the yellow cable to the micro:bit pin 0

 4. Connect the power cable of the printer with the 5V

2A switching power supply through the female DC

power adapter and apply power.

Listing 4-7 shows sample code that can be used to send

text to the printer through UART for printing. Flash it to the

micro:bit using the Mu editor.

Listing 4-7. Sending Text to the Printer

from microbit import *

uart.init(baudrate=19200, bits=8, parity=None, stop=1,tx=pin0)

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

106

while True:

 if button_a.was_pressed():

 uart.write('Button A was pressed\x0A\x0A')

 elif button_b.was_pressed():

 uart.write('Button B was pressed\x0A\x0A')

 sleep(100)

 5. After flashing the code, simply press and release the

built-in buttons A and B to test the code. The \x0A at

the end of each message is a hex code for line feed.

 6. The uart.init() function initializes serial

communication with the specified parameters

on the specified tx and rx pins. For correct

communication, the parameters must be the

same on both devices. The following is the list of

parameters you can use.

• baudrate: The speed of communication (9600, 14400,

19200, 28800, 38400, 57600, or 115200). The thermal

printer ships with a default of 19200bps baud rate.

uart.init(baudrate=9600, bits=8, parity=None,

stop=1,tx=pin0)

• bits: Defines the size of bytes being transmitted.

uart.init(baudrate=9600, bits=8, parity=None,

stop=1,tx=pin0)

• parity: Defines how parity is checked, and it can be

None, microbit.uart.ODD, or microbit.uart.EVEN.

uart.init(baudrate=9600, bits=8, parity=None,

stop=1,tx=pin0)

Chapter 4 Using inpUts and OUtpUts

107

• stop: The stop parameter tells the number of stop bits,

and must be 1 for this board.

uart.init(baudrate=9600, bits=8, parity=None,

stop=1,tx=pin0)

• tx: This is the pin used to transmit data. Connect this

pin to the RX pin of your UART device. The previous

code used micro:bit pin 0 to connect to the RX pin of

the printer.

uart.init(baudrate=9600, bits=8, parity=None,

stop=1,tx=pin0)

• rx: This is the pin used to receive data. Connect this

pin to the TX pin of your UART device. The previous

code only transmits data to the computer and is not for

receiving, so you can ignore the rx parameter.

• The uart.write() function is used to write a buffer of

bytes to the UART bus. You can input any text in to this

function:

uart.write('Button A was pressed\x0A\x0A')

 Summary
In this chapter, you learned about the 21 I/O pins in the micro:bit edge

connector. Then you built some simple projects based on digital, analog,

touch, I2C, SPI, and UART to see how they work with the micro:bit.

In next chapter, you learn in-depth about the micro:bit built-in

accelerometer and compass (magnetometer).

Chapter 4 Using inpUts and OUtpUts

www.allitebooks.com

http://www.allitebooks.org

109© Pradeeka Seneviratne 2018
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_5

CHAPTER 5

Using the
Accelerometer
and Compass
The micro:bit board comes with built-in accelerometer and a compass

that allows you to build applications that respond to the acceleration and

magnetic field of the earth.

In this chapter, you learn how to take readings from the built- in

accelerometer and compass (magnetometer) to build applications using

MicroPython.

 Accelerometer
The micro:bit has an on-board NXP/Freescale MMA8652 chip (see

Figure 5-1), which is a three-axis accelerometer that can be used to

measure the acceleration. The accelerometer is internally connected to the

micro:bit’s I2C bus.

110

 Reading Acceleration
The accelerometer measures the acceleration or movement along the

three axes (see Figure 5-2): x and y axes (the horizontal planes), and the

z axis (the vertical plane), which it experiences relative to freefall. This is

most commonly called the g-force. With the micro:bit’s accelerometer, you

will get acceleration values in mG (milliG).

1000mG = 1G

Figure 5-1. The micro:bit accelerometer

Chapter 5 Using the aCCelerometer and Compass

www.allitebooks.com

http://www.allitebooks.org

111

When you place the micro:bit board on the surface of the earth, it will

measure acceleration due to the earth’s gravity, straight upward of g ≈ 9.81

m/s2. The micro:bit accelerometer can measure accelerations between

+2g and -2g. This range is suitable to use with wide range of applications.

Listing 5-1 presents the MicroPython code that gets the values in mG

for movement along three axes.

Figure 5-2. Three axes of the accelerometer (Image source: micro:bit
Foundation)

Chapter 5 Using the aCCelerometer and Compass

112

Listing 5-1. Reading Acceleration Along Three Axes

from microbit import *

while True:

 x = accelerometer.get_x()

 y = accelerometer.get_y()

 z = accelerometer.get_z()

 print("x, y, z:", x, y, z)

 sleep(500)

Type this code into the Mu editor and then click the Repl button

followed by the Flash button to upload the code to the micro:bit. Hold

the micro:bit board flat with the LEDs in the uppermost corner, without

removing the USB cable.

You will get similar output as shown in Figure 5-3.

Figure 5-3. Accelerometer readings for movement in the x, y, and z
planes

Chapter 5 Using the aCCelerometer and Compass

www.allitebooks.com

http://www.allitebooks.org

113

You can see that the acceleration values for x and y are close to 0 and

the acceleration value for z axis is close to 1024. If you tilt the micro:bit

slowly along the x axis, you can change the value to nearly 0. The value

0 indicates that your micro:bit board is in the spirit level. A similar

technology is used in electronic spirit levels to detect the horizontal level

with the x and y axes.

The same result can be achieved with the accelerometer.get_

values() function. It outputs the acceleration values of the x, y, and z axes

as a three-element tuple of integers.

Note a tuple is a sequence of immutable python objects. tuples act
just like lists, but the elements of a tuple cannot be changed once
they have been assigned. tuples use parentheses to hold objects. You
can also store different types of objects in a tuple.

tuple = ([1,2], (3,4), “micropython”, 2017)

Listing 5-2 shows the same implementation of code that reads the

acceleration values along the three axes.

Listing 5-2. Reading Acceleration Along Three Axes as a Tuple

from microbit import *

while True:

 result = accelerometer.get_values()

 print("Values:", result)

 sleep(500)

Figure 5-4 shows the output for this code when you hold the micro:bit

flat with the LEDs at the top.

Chapter 5 Using the aCCelerometer and Compass

114

 Building a Spirit Level
A spirit level, bubble level, or simply a level, is an instrument designed to

indicate whether a surface is horizontal (level) along the x axis. Different

types of spirit levels may be used by carpenters, stonemasons, bricklayers,

other building trades workers, surveyors, millwrights, and other

metalworkers, as well as in some photographic or videographic work.

Listing 5-3 shows an example of how to code a simple spirit level.

Listing 5-3. Simple Spirit Level

from microbit import *

while True:

 val = accelerometer.get_x()

 if val > 0:

Figure 5-4. Reading acceleration along three axes

Chapter 5 Using the aCCelerometer and Compass

www.allitebooks.com

http://www.allitebooks.org

115

 display.show(Image.ARROW_W)

 elif val < 0:

 display.show(Image.ARROW_E)

 else:

 display.show(Image.YES)

This code will show the YES image (tick mark) when it detects the spirit

level. Otherwise, it will show the left arrow or right arrow so you can tilt the

micro:bit to get the spirit level.

 Calculating Overall Acceleration
The overall acceleration can be calculated with the Pythagorean Theorem,

as shown here. The formula uses the acceleration along the x and y axes to

calculate the overall acceleration.

acceleration x y= +2 2

If you want, you can calculate the overall acceleration along the x, y,

and z axes.

acceleration x y z= + +2 2 2

Listing 5-4 shows the MicroPython code to calculate the overall

acceleration in milliG with the acceleration values of all three axes.

Listing 5-4. Calculating Overall Acceleration with x, y, and z Values

from microbit import *

import math

while True:

 x = accelerometer.get_x()

Chapter 5 Using the aCCelerometer and Compass

116

 y = accelerometer.get_y()

 z = accelerometer.get_z()

 acceleration = math.sqrt(x**2 + y**2 + z**2)

 print("acceleration", acceleration)

 sleep(500)

Figure 5-5 shows the overall acceleration when you move the micro:bit

board.

 Gesture Detection
The micro:bit’s built-in accelerometer can also be used to create

interactive applications based on gestures. The following gestures are

recognized by the micro:bit.

• Up

• Down

Figure 5-5. Overall acceleration

Chapter 5 Using the aCCelerometer and Compass

www.allitebooks.com

http://www.allitebooks.org

117

• Left

• Right

• Face up

• Face down

• Freefall

• Shake

Figure 5-6 shows how you can perform these gestures by holding the

micro:bit in your hand.

Figure 5-6. Performing gestures with micro:bit (i.e., UP)

Chapter 5 Using the aCCelerometer and Compass

118

In addition to these basic gestures, you can also detect some advanced

gestures with the micro:bit related to the gravitational forces. They are:

• 2G

• 4G

• 8G

 Detecting the Current Gesture
The MicroPython provides some useful functions that you can use with the

accelerometer to work with gesture detection.

Listing 5-5 shows a simple example of how MicroPython can be used

to detect the current gesture with micro:bit.

Listing 5-5. Detecting and Printing Current Gesture

from microbit import *

last_gesture = ""

while True:

 current_gesture = accelerometer.current_gesture()

 sleep(100)

 if current_gesture is not last_gesture:

 last_gesture = current_gesture

 print('>{g:s}<'.format(g=current_gesture))

Type the code in the Mu editor, then flash it to the micro:bit and run

with the REPL. When you make a gesture by holding the micro:bit in your

hand, the terminal window will print the name of the detected gestures, as

shown in Figure 5-7. The last gesture you performed can be found at the

end of the list.

Chapter 5 Using the aCCelerometer and Compass

www.allitebooks.com

http://www.allitebooks.org

119

The accelerometer.current_gesture() function returns the name

of the current gesture as a string. Listing 5-6 lists the valid names for each

gesture that you can use with MicroPython. When you perform a new

gesture, the accelerometer.current_gesture() function stores this value

in current_gesture. If last_gesture is different, it is updated to this new

value and the gesture name is printed on the REPL screen.

Listing 5-6. Valid Gesture Names

up

down

left

right

face up

face down

freefall

shake

Figure 5-7. Output shows the current gesture

Chapter 5 Using the aCCelerometer and Compass

120

3g

6g

8g

Listing 5-7 shows the MicroPython code that can be used to detect

the “face up” gesture. If it detects the “face up” gesture, a HAPPY image will

display on the LED screen; otherwise, it will display an ANGRY image. The

accelerometer.current_gesture() function returns the name of the

gesture that you performed. Then it compares the returned gesture name

with the “face up” string. If both are equal, a HAPPY face will display on the

LED screen; otherwise, the screen will display a SAD image.

Listing 5-7. Detecting a “Face Up” Gesture

from microbit import *

while True:

 gesture = accelerometer.current_gesture()

 if gesture == "face up":

 display.show(Image.HAPPY)

 else:

 display.show(Image.ANGRY)

This code can be rewritten using the accelerometer.is_

gesture(name) function for the same application, as shown in Listing 5-8.

Listing 5-8. Detecting a “Face Up” Gesture

from microbit import *

while True:

 if accelerometer.is_gesture("face up"):

 display.show(Image.HAPPY)

 else:

 display.show(Image.ANGRY)

Chapter 5 Using the aCCelerometer and Compass

www.allitebooks.com

http://www.allitebooks.org

121

The accelerometer.is_gesture(name) function returns true if the

given gesture is currently active; otherwise, it returns false.

If you want to get a gesture after it is completed by the user,

accelerometer.was_gesture(name) can be used. Listing 5-9 shows

example code to get the previous gesture.

Listing 5-9. Detect Whether the micro:bit Has Been Shook

from microbit import *

while True:

 display.show('8')

 if accelerometer.was_gesture('shake'):

 display.clear()

 sleep(1000)

 display.scroll("shaked")

 sleep(10)

 Getting Gesture History
You can get the gesture history with the accelerometer.get_gestures()

function, as shown in Listing 5-10. It returns a tuple of the gesture history.

The most recent gesture is listed last in the tuple.

Listing 5-10. Getting Gesture History

from microbit import *

gestList = []

while True:

 gestures = accelerometer.get_gestures()

 print(len(gestures))

 if len(gestures) == 1:

Chapter 5 Using the aCCelerometer and Compass

122

 gestList.append(gestures[0])

 sleep(500)

 print("History: "+str(gestList))

Using the Mu editor, type and flash this code to the micro:bit. Then

open the REPL interactive shell and perform some gestures by holding the

micro:bit with your hand. You will get the output shown in Figure 5-8.

Note there may be a bug in the get_gestures() method and
you can’t get the output you expected in the program. When you
start a repl session with the code in listing 5-10, the mu editor may
sometimes appear to be frozen or non-responsive.

 Compass
Micro:bit comes with a built-in compass based on the NXP/Freescale

MAG3110, which is three-axis magnetometer sensor that can be accessed

via the I2C bus. The compass can also act as a metal detector. Figure 5-9

shows the NXP/Freescale MAG3110 chip, which you’ll see on the back of

the micro:bit board.

Figure 5-8. Gesture history

Chapter 5 Using the aCCelerometer and Compass

www.allitebooks.com

http://www.allitebooks.org

123

 Calibrating the Compass
Before using the compass, you should calibrate it to ensure correct

readings. It’s also wise to calibrate the compass each time you use it in a

new location.

In some situations, when the compass needs to be calibrated, the

micro:bit will automatically prompt the user to calibrate it. However, the

calibration sequence can also be manually started with the compass.

calibrate() function.

To calibrate the compass, tilt the micro:bit around until a circle of

pixels is drawn on the outside edges of the display.

Figure 5-10 shows the process of calibrating the micro:bit compass.

After calibrating the compass successfully, the micro:bit display will show

a smiley face on the LED display.

Figure 5-9. The micro:bit compass

Chapter 5 Using the aCCelerometer and Compass

124

 Reading Compass Values
When you want to determine the direction using the micro:bit compass,

you will only need to measure the magnetic field strength in the x and y

axes. Figure 5-11 shows the three axes—x, y, and z—that you can use to get

the strength of the magnetic field.

Figure 5-10. Calibrating the micro:bit compass

Chapter 5 Using the aCCelerometer and Compass

www.allitebooks.com

http://www.allitebooks.org

125

Listing 5-11 shows the sample code that can be used to read the

strength of the magnetic field in the x and y axes. The compass.get_y()

and compass.get_x() functions return magnetic field strength in the x and

y axes.

Listing 5-11. Reading the Strength of the Magnetic Field in the

x and y Axes

from microbit import *

compass.calibrate()

while True:

 x = compass.get_x()

 y = compass.get_y()

 print("x reading: ", x, ", y reading: ", y)

 sleep(500)

Figure 5-12 shows the output for this code when it’s run with the Mu.

As you can see, the stronger magnetic fields are represented by bigger

values.

Figure 5-11. Compass reading for three axes

Chapter 5 Using the aCCelerometer and Compass

126

 Getting Compass Heading
The compass heading represents an angle in the number of degrees from

the north, moving clockwise, which ranges from 0 to 360. North is set to 0.

For an example, the compass heading 45 degrees represents the direction

of west.

The magnetic field in the x and y axes of the micro:bit compass can be

used to calculate the compass heading value using the following formula.

 1. First, calculate the arc tangent using x and y values

with the math.atan2() function. You will get the

result in radians.

Arc tangent = math.atan2(y,x)

Figure 5-12. Magnetic field in x and y axes

Chapter 5 Using the aCCelerometer and Compass

www.allitebooks.com

http://www.allitebooks.org

127

 2. Then convert radians into degrees by multiplying it

with 180/Pi.

Angle in degrees (compass heading) = math.

atan2(y,x) *180/math.pi

Listing 5-12 shows sample code that can be used to calculate the

compass heading with x and y values. The same code can be found at

http://microbit- challenges.readthedocs.io/en/latest/tutorials/

compass.html and is used in this book to demonstrate the output.

Listing 5-12. Calculate the Compass Heading Using x and y Values

import math

from microbit import *

compass.calibrate()

while True:

 x = compass.get_x()

 y = compass.get_y()

 angle = math.atan2(y,x) *180/math.pi

 print("x", x, " y", y)

 print("Direction: ", angle)

 sleep(500)

Figure 5-13 shows the output for this code. It shows the magnetic field

in x and y axes, and the calculated compass heading (direction) in degrees.

Chapter 5 Using the aCCelerometer and Compass

128

However, with MicroPython, you can use the compass.heading()

function to easily get the compass heading in degrees from 0 to 360.

Note the compass-heading function returns -1004 when the
compass needs to be calibrated.

Listing 5-13 shows simple code that can be used to read the compass

heading.

Figure 5-13. Output of the x and y axes and the compass
heading

Chapter 5 Using the aCCelerometer and Compass

www.allitebooks.com

http://www.allitebooks.org

129

Listing 5-13. Reading the Compass Heading

from microbit import *

compass.calibrate()

while True:

 heading = compass.heading()

 print("heading: ", heading)

 sleep(500)

Figure 5-14 shows the output of Listing 5-13 when you run it with the Mu.

You can modify this code to show the bearing to north on the micro:bit

display. Listing 5-14 shows the sample micro:bit code that can be used to

display the compass heading with the ALL_CLOCKS image list.

Figure 5-14. Compass heading values in degrees

Chapter 5 Using the aCCelerometer and Compass

130

Listing 5-14. Displaying the Compass Heading

from microbit import *

compass.calibrate()

while True:

 sleep(100)

 needle = ((15 - compass.heading()) // 30) % 12

 display.show(Image.ALL_CLOCKS[needle])

This code displays the compass heading (see Figure 5-15) on the

micro:bit display and updates it when you rotate the micro:bit board.

Figure 5-15. Compass heading to southwest

Chapter 5 Using the aCCelerometer and Compass

www.allitebooks.com

http://www.allitebooks.org

131

 Summary
In this chapter, you built several applications with the micro:bit

accelerometer and the compass. The gesture detection is one of the

most interesting features of MicroPython, in conjunction with the

accelerometer.

In next chapter, you learn how to connect a speaker and write

applications with micro:bit’s music library to make melodies.

Chapter 5 Using the aCCelerometer and Compass

133© Pradeeka Seneviratne 2018
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_6

CHAPTER 6

Working with Music
In this chapter, you learn how to use the micro:bit music library to build

and play simple tunes. The music library allows you to build music by

combining music notes, octaves, beats (duration), accidentals (flats

and sharps), and so forth. You can also use built-in melodies in your

applications.

By default, the music module expects the speaker to be connected

through micro:bit’s pin 0. However, you can use any analog pin to connect

the speaker (or multiple speakers) by defining the output pin to override

the default pin 0.

 Connecting a Speaker
You can connect a speaker to the micro:bit pin 0 through the edge

connector. An 8-ohm speaker is ideal to work with micro:bit to produce

audio. Figure 6-1 shows a small 8-ohm speaker (https://www.kitronik.

co.uk/3341-thin-speaker.html) that can be used with the micro:bit.

www.allitebooks.com

http://www.allitebooks.org

134

A speaker has two wires, positive (red) and negative (black). Some

speakers use different colored codes for positive and negative leads. With

some speakers, you must solder wires to the solder tabs before using them.

Figure 6-2 shows how to wire the speaker with the micro:bit using the edge

connector breakout board. The speaker doesn’t use a separate power line

and gets the power from pin 0.

 1. Connect the positive lead of the speaker to the

micro:bit pin 0.

 2. Connect the negative lead of the speaker to the

micro:bit GND.

Figure 6-1. 0.25W 8-ohm 40mm thin speaker front and rear views
(image courtesy of Kitronik at https://www.kitronik.co.uk)

Chapter 6 Working With MusiC

135

Simply use crocodile leads (https://www.kitronik.co.uk/2407-

crocodile-leads-pack-of-10.html) to make these connections (see

Figure 6-3).

Figure 6-2. Wiring between the micro:bit and a speaker

Chapter 6 Working With MusiC

www.allitebooks.com

http://www.allitebooks.org

136

When attaching the crocodile clips to the micro:bit, make sure that the

clips are perpendicular to the board so that they are not touching any of the

neighboring connectors on the micro:bit edge connector (see Figure 6- 4).

Figure 6-3. Wiring between micro:bit and a speaker with crocodile
leads (Image credits: http://learnlearn.uk/microbit/)

Chapter 6 Working With MusiC

137

Figure 6-4. Attaching crocodile clips perpendicular to the board bit
(image credit: Monk Makes at https://www.monkmakes.com/)

Chapter 6 Working With MusiC

www.allitebooks.com

http://www.allitebooks.org

138

Alternatively, you can use an edge connector breakout board to

make the setup neater, as shown in Figure 6-5. You will need following

components in addition to build the setup.

• Edge connector breakout

• Breadboard

• Male/female jumper wires (https://www.kitronik.

co.uk/4129-jumper-wires-premium-mf-pack-of-10.

html)

Figure 6-5. Attaching crocodile clips perpendicular to the board
(image courtesy of Kitronik at https://www.kitronik.co.uk)

Chapter 6 Working With MusiC

139

You cannot control the volume of the sound from the micro:bit.

However, you can control the volume by adding a potentiometer (a volume

control) to the micro:bit, as shown in the Figure 6-6.

Some vendors offer speakers with built-in amplifiers to make louder

music. If you need one, Monk Makes sells a speaker with a built-in amplifier

for micro:bit (https://www.monkmakes.com/mb_speaker/). You can connect

it to your micro:bit using alligator clips. As shown in Figure 6- 7, it uses three

wires for connectivity and draws additional power from the micro:bit’s 3V

pin. Table 6-1 shows the pin connection between the two boards.

Figure 6-6. Adding a potentiometer to the micro:bit to control the
volume

Chapter 6 Working With MusiC

www.allitebooks.com

http://www.allitebooks.org

140

Figure 6-7. Monk Makes speaker for micro:bit (image credit: Monk
Makes at https://www.monkmakes.com/)

Table 6-1. Wiring Between Monk Makes

Speakers and micro:bit

Speaker micro:bit

in pin 0

3V 3V

gnD gnD

Chapter 6 Working With MusiC

141

If you want to play sound through more than one speaker, it is possible

to connect multiple speakers to the micro:bit through different analog

pins. However, you must carefully define the output pin for each speaker in

the code.

 Using Earphones
If you don’t have a speaker, you can still use your micro:bit with earphones.

You can connect earphones by cutting off the earphone jack and

connecting the leads to the micro:bit GND and pin 0.

You can also use crocodile clips to connect a speaker to the micro:bit

without cutting off the jack. The following list explains and Figure 6-8

shows how to connect crocodile clips to an earphone jack.

 1. Take two crocodile leads (black and red).

 2. Connect one end of the black crocodile lead to the

micro:bit GND and the other end to the base of your

earphone jack.

 3. Connect one end of the red crocodile lead to the

micro:bit pin 0 and the other end to the tip of the

earphone jack.

Chapter 6 Working With MusiC

www.allitebooks.com

http://www.allitebooks.org

142

However, pre-built audio cables are available to quickly connect

earphones or headphones to the micro:bit. Figure 6-9 shows an audio

cable with a 3.5mm socket and two crocodile clips. You can simply

connect the earphone jack to the 3.5mm socket of the audio cable and two

crocodile clips to the micro:bit.

Figure 6-8. Connecting an earphone to the micro:bit

Chapter 6 Working With MusiC

143

 Built-in Melodies
The easiest way to get started with the micro:bit music library is using

built-in melodies. It provides a set of built-in melodies that you can play

with a simple MicroPython code.

The following list shows some interesting built-in melodies that

you can use to play music. (Source: http://microbit-micropython.

readthedocs.io/en/latest/music.html.)

• DADADADUM: The opening to Beethoven’s 5th Symphony

in C minor.

• ENTERTAINER: The opening fragment of Scott Joplin’s

Ragtime classic “The Entertainer”.

• PRELUDE: The opening of the first Prelude in C major of

J. S. Bach’s 48 Preludes and Fugues.

• ODE: The “Ode to Joy” theme from Beethoven’s 9th

Symphony in D minor.

Figure 6-9. Audio cable for micro:bit (image courtesy of Kitronik:
https://www.kitronik.co.uk/5622-audio-cable-for-bbc-
microbit.html)

Chapter 6 Working With MusiC

www.allitebooks.com

http://www.allitebooks.org

144

• NYAN: The Nyan Cat theme (http://www.nyan.

cat/). The composer is unknown. This is fair use for

educational purposes.

• RINGTONE: Something that sounds like a mobile phone

ringtone. Used to indicate an incoming message.

• FUNK: A funky bass line for secret agents and criminal

masterminds.

• BLUES: A boogie-woogie 12-bar blues walking bass.

• BIRTHDAY: “Happy Birthday to You…”. For copyright

status, see http://www.bbc.co.uk/news/world-us-

canada-34332853.

• WEDDING: The bridal chorus from Wagner’s opera

“Lohengrin”.

• FUNERAL: The “funeral march,” otherwise known as

Frédéric Chopin’s Piano Sonata No. 2 in B minor, Op. 35.

• PUNCHLINE: A fun fragment that signifies a joke has

been made.

• PYTHON: John Philip Sousa’s march “Liberty Bell”. The

theme from “Monty Python’s Flying Circus” (after

which the Python programming language is named).

• BADDY: Silent movie era entrance of a bad guy.

• CHASE: Silent movie era chase scene.

• BA_DING: A short signal to indicate something has

happened.

• WAWAWAWAA: A very sad trombone.

• JUMP_UP: For use in a game, indicating upward

movement.

Chapter 6 Working With MusiC

145

• JUMP_DOWN: For use in a game, indicating downward

movement.

• POWER_UP: A fanfare to indicate an achievement has

been unlocked.

• POWER_DOWN: A sad fanfare to indicate an achievement

has been lost.

Let’s write simple MicroPython code to play the melody BIRTHDAY.

Listing 6-1 shows the complete MicroPython code.

Listing 6-1. Playing a Melody

from microbit import *

import music

music.play(music.BIRTHDAY)

The second line of the code imports the music library from

MicroPython. Then it plays the “Happy Birthday to You…” built-in melody

by using the music.play() function. You must provide the name of

the melody (i.e., BIRTHDAY) as the input. You can modify the code with

different melody names.

You can play a melody continuously by adding the loop=True keyword

as shown in Listing 6-2.

Listing 6-2. Playing a Melody Continuously

from microbit import *

import music

music.play(music.BIRTHDAY, loop=True)

By default, the music module expects the speaker to be connected via

pin 0. If you want to connect the speaker to a different pin, let’s say to pin 1

(see Figure 6-10), write the code shown in Listing 6-3.

Chapter 6 Working With MusiC

www.allitebooks.com

http://www.allitebooks.org

146

Listing 6-3. Playing a Melody by Connecting a Speaker to Pin 1

from microbit import *

import music

music.play(music.BIRTHDAY, pin=pin1, loop=True)

 Making Your Own Melodies
In music, a note is the pitch and duration of a sound. The following are the

basic notes used with English music.

C, D, E, E, F, G, A, B
In Neo-Latin music, the same thing can be written as follows.

Do, Re, Me, Fa, Sol, La, Si
With MicroPython, you can easily play a musical note or a set of notes

in a sequence.

Figure 6-10. Connecting speaker to pin 1

Chapter 6 Working With MusiC

147

Let’s start with a single note. Listing 6-4 shows the MicroPython code

to play the musical note C. With this code, you can press built-in button A

on the micro:bit board to play the note. Before running your code with the

micro:bit, connect the crocodile clip back to pin 0.

Listing 6-4. Playing a Single Musical Note

from microbit import *

import music

while True:

 if button_a.is_pressed():

 # Play a 'C'

 music.play('C')

You can also play many musical notes sequentially to make melodies.

The code shown in Listing 6-5 plays the five basic musical notes.

Listing 6-5. Playing Musical Notes

from microbit import *

import music

while True:

 if button_a.is_pressed():

 # Play a 'C'

 music.play('C')

 # Play a 'D'

 music.play('D')

 # Play a 'E'

 music.play('E')

 # Play a 'F'

 music.play('F')

 # Play a 'G'

 music.play('G')

Chapter 6 Working With MusiC

www.allitebooks.com

http://www.allitebooks.org

148

 # Play a 'A'

 music.play('A')

 # Play a 'B'

 music.play('B')

The code in Listing 6-5 can also be written with a few lines of code to

produce the same output, as shown in Listing 6-6.

Listing 6-6. Playing Musical Notes

from microbit import *

import music

tune = ["C", "D", "E", "F", "G"]

music.play(tune)

You can use the note name R to create silence in your melody. For

an example, the code in Listing 6-7 will add silence between the musical

notes E and F.

Listing 6-7. Adding Silence

from microbit import *

import music

tune = ["C", "D", "E", "R", "F", "G"]

music.play(tune)

 Using Octave
In music, an octave or perfect octave is the interval between one musical

pitch and another with half or double its frequency. Figure 6-11 shows a

keyboard with four octaves, from octave 2 to octave 5.

Chapter 6 Working With MusiC

149

Each octave has seven musical notes and they can be written with the

letter followed by the number of the octave.

As an example, the musical note C belongs to octave 3 and can be

written as C3.

Listing 6-8 shows code that plays the musical note C in octave 4.

Listing 6-8. Playing a Musical Note with Octave

from microbit import *

import music

while True:

 if button_a.is_pressed():

 # Play a 'C3'

 music.play('C3')

By default micro:bit plays musical notes in octave 4, unless you

explicitly define it followed by the musical note. In other words, the

musical note C is exactly equivalent to C4.

In addition to the octaves, accidentals (flats and sharps) can be

denoted with musical notes. A flat is written as a lowercase b and a sharp is

written as #. Listing 6-9 plays A flat and C sharp.

Figure 6-11. Keyboard with four octaves

Chapter 6 Working With MusiC

www.allitebooks.com

http://www.allitebooks.org

150

Listing 6-9. Playing Musical Notes with Accidentals

from microbit import *

import music

while True:

 if button_a.is_pressed():

 # Play a 'A-flat'

 music.play('Ab')

 # Play a 'C-sharp'

 music.play('C#')

Note the default status of an octave is 4. as an example, if you
write the musical note C in your code, it explicitly becomes C4.

 Beats
In music, a beat is the basic unit of time. You can specify a musical note

with a beat as follows:

NOTE[octave][:duration]

The duration specifies the arbitrary length of time defined by a tempo

setting function (see the section called “Setting the Tempo”).

If you want to play the musical note C in octave 4 for three beats, you

can write it with the MicroPython shown in Listing 6-10.

Listing 6-10. Playing Musical Notes with Beats

from microbit import *

import music

while True:

 if button_a.is_pressed():

 # Play a 'C4:3'

 music.play('C4:3')

Chapter 6 Working With MusiC

151

By default, micro:bit plays musical notes with four beats long unless

you explicitly define the number of beats.

 Setting the Tempo
The music.set_tempo() function makes the tempo (the speed of a piece

of music) as fast or as slow as you say. With this function, you can set the

number of ticks that constitute a beat. Each beat is played at a certain

frequency per minute expressed as the more familiar bpm (beats per

minute). Let’s look at a few examples of how you can set the tempo with

different parameters.

If you only need to change the definition of a beat, input the number of

ticks that you want to define the beat with the music.set_tempo() function

(see Listing 6-11) .

Listing 6-11. Defining Number of Ticks

from microbit import *

import music

music.set_tempo(ticks=8) # set ticks to 8

music.play('C4:3')

If you want to change the tempo, set the beats per minutes, as shown in

Listing 6-12.

Listing 6-12. Defining Beats per Minutes

from microbit import *

import music

music.set_tempo(bpm=180) # set the bpm to 180

music.play('C4:3')

Chapter 6 Working With MusiC

www.allitebooks.com

http://www.allitebooks.org

152

You can use the music.set_tempo() function without any parameters to

reset the tempo to the default of ticks = 4 and bpm = 120 (see Listing 6-13).

Listing 6-13. Setting the Tempo to the Default Values

from microbit import *

import music

music.set_tempo() # set the bpm to 120 and ticks to 4

music.play('C4:3')

 Getting the Tempo
The music.get_tempo() function returns the current tempo as a tuple

of integers. Listing 6-14 shows the MicroPython code that displays the

current tempo.

Listing 6-14. Getting the Current Tempo

from microbit import *

import music

music.set_tempo(bpm=180, ticks=8) # set the bpm to 180 and

ticks to 8

tempo = music.get_tempo()

print("Current Tempo: ", tempo)

First, set the tempo using the music.set_tempo() function with

bpm=180 and ticks=8. Then display the current tempo using the music.

get_tempo() function. This code will produce the output shown in

Figure 6-12.

Chapter 6 Working With MusiC

153

The output shows the current tempo as 180, followed by the number

ticks as 8. This function can be used to confirm that you are using the

correct tempo in your melody.

 Resetting Attributes
Any time you can reset the following musical attributes to the default

values with the music.reset() function. They are as follows:

• ticks = 4

• bpm = 120

• duration = 4

• octave = 4

 Playing a Pitch
In music, the pitch of a musical note means how high or low the note is.

The pitch of a musical note can be measured in a unit called Hertz. With

MicroPython, you can use the music.pitch() function to set the frequency

of a musical note. This function is very similar to the music.play()

function that you used. The most important inputs for the music.pitch()

function are frequency and duration.

Figure 6-12. Displaying the current tempo

Chapter 6 Working With MusiC

www.allitebooks.com

http://www.allitebooks.org

154

Listing 6-15 shows code that plays a tone at the frequency of 440Hz for

one second. The duration is presented in the code as length and it should

be in milliseconds.

Listing 6-15. Playing a Pitch for a Known Duration

from microbit import *

import music

music.pitch(440, 1000)

If you want to play a pitch continuously until the blocking call is

interrupted, or, in the case of a background call, a new frequency is set or

stop is called, use a negative number for len (i.e., -1). Listing 6-16 shows

code that plays a pitch continuously at 440Hz.

Listing 6-16. Playing a Pitch Continuously

from microbit import *

import music

music.pitch(440, -1)

 Summary
In this chapter, you learned how to connect a speaker to the micro:bit

in various ways. Then you learned how to code to produce music with

micro:bit’s built-in melodies and build new melodies with the micro:bit

music library. In the next chapter, you learn how use micro:bit’s speech

API to convert text to speech with punctuation, timbre, and phonemes.

Chapter 6 Working With MusiC

155© Pradeeka Seneviratne 2018
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_7

CHAPTER 7

Working with Speech
In the previous chapter, you learned how to use micro:bit’s audio

capabilities to produce music using the music library. In addition to that,

micro:bit provides a speech library to work with text-to-speech conversion

that can be used to produce sound similar to the human voice by way of

fine tuning various parameters.

 Connecting a Speaker
You can use the same wiring diagram that you used in Chapter 6, “Working

with Music,” to connect a speaker to the micro:bit. Instead of connecting a

speaker to the micro:bit pin 0 and GND, you can use the micro:bit’s pins 0

and 1 to connect a speaker, as shown in Figure 7-1.

www.allitebooks.com

http://www.allitebooks.org

156

The speech library provides all the functionalities needed to work with

speech and voice related projects. You can import the speech library by

adding the import speech statement to the beginning of your program.

Let’s start with simple code used to convert text to speech (see

Listing 7-1). It converts the text Hello, World to speech and you can

hear it from the speaker.

Listing 7-1. Text to Speech Conversion

from microbit import *

import speech

speech.say("Hello, World")

Figure 7-1. Connecting a speaker to pins 0 and 1

Chapter 7 Working With SpeeCh

157

The speech.say() function converts English text to speech and plays

it from the attached speaker. When you run this code with micro:bit, you

can hear a voice similar to a robot, which is semi-accurate in English. The

quality of the voice is not amazing, but it is quite usable. In addition, the

speech.say() function provides some parameters that you can use to

change the default voice.

 Timbre
The character or quality of a musical sound or voice is known as its timbre.

You can change the quality of the default voice by overriding some of the

parameters that the speech synthesizer uses to produce it.

 Pitch

The pitch defines how high or low the voice sounds. The acceptable values

are 0 (high) to 255 (low). You can get a clue about the pitch by hearing the

vocals of following singers.

• Highest pitch: Adam Lopez Costa at https://

www.youtube.com/results?search_

query=Adam+Lopez+Costa

• Lowest pitch: Barry White at https://www.youtube.

com/results?search_query=Barry+White

The default pitch value is 64. Listing 7-2 shows a list of value categories

that you can use to set the pitch of the voice.

Listing 7-2. Pitch Categories and Values

0-20 impractical

20-30 very high

30-40 high

40-50 high normal

Chapter 7 Working With SpeeCh

www.allitebooks.com

http://www.allitebooks.org

158

50-70 normal

70-80 low normal

80-90 low

90-255 very low

Listing 7-3 shows the MicroPython code that produces a voice with

different pitch categories. The code uses average values in each category.

Listing 7-3. Pitch Levels

from microbit import *

import speech

speech.say("Hello, World")#default pitch is 64

sleep(1000)

speech.say("Hello, World", pitch=10)# impractical

sleep(1000)

speech.say("Hello, World", pitch=25)# very high

sleep(1000)

speech.say("Hello, World", pitch=35)# high

sleep(1000)

speech.say("Hello, World", pitch=45)# high normal

sleep(1000)

speech.say("Hello, World", pitch=60)# normal

sleep(1000)

speech.say("Hello, World", pitch=75)# low normal

sleep(1000)

speech.say("Hello, World", pitch=85)# low

sleep(1000)

speech.say("Hello, World", pitch=170)# very low

Chapter 7 Working With SpeeCh

159

 Speed

Speed defines how quickly the device talks. The acceptable values are from

0 (impossible) to 255 (like bedtime story). The default value is 72.

Listing 7-4 shows a list of categories and values to define the speed.

Listing 7-4. Speed Categories and Values

0-20 impractical

20-40 very fast

40-60 fast

60-70 fast conversational

70-75 normal conversational

75-90 narrative

90-100 slow

100-225 very slow

Listing 7-5 shows the code that speaks the text Hello, World in

different speeds.

Listing 7-5. Speak with Different Speeds

from microbit import *

import speech

speech.say("Hello, World")#default speed is 72

sleep(1000)

speech.say("Hello, World", speed=10) # impractical

sleep(1000)

speech.say("Hello, World", speed=30) # very fast

sleep(1000)

speech.say("Hello, World", speed=50) # fast

sleep(1000)

speech.say("Hello, World", speed=65) # fast conversational

sleep(1000)

Chapter 7 Working With SpeeCh

www.allitebooks.com

http://www.allitebooks.org

160

speech.say("Hello, World", speed=73) # normal conversational

sleep(1000)

speech.say("Hello, World", speed=83) # narrative

sleep(1000)

speech.say("Hello, World", speed=95) # slow

sleep(1000)

speech.say("Hello, World", speed=175) # very slow

sleep(1000)

 Mouth

Mouth defines how tight-lipped or overtly enunciating the voice sounds

(0 = tight-lipped, 255 = Foghorn Leghorn).

• Tight-lipped: The most extreme example of this is a

ventriloquist, which is a person who changes his or her

voice so that it appears that the voice is coming from

elsewhere.

• Overtly enunciating: A good example of this is Foghorn

Leghorn, who was a cartoon character that has

appeared in the Looney Tunes and Merrie Melodies

cartoons of Warner Bros. (See https://www.youtube.

com/results?search_query=Foghorn+Leghorn.)

Listing 7-6 shows some sample code with the mouth parameter.

Listing 7-6. Controlling the Mouth Parameter

from microbit import *

import speech

speech.say("Hello, World", mouth=200)

Chapter 7 Working With SpeeCh

161

 Throat

Throat defines how relaxed or tense the tone of voice is (0 = falling apart,

255 = totally chilled).

Listing 7-7 shows some sample code with the throat parameter.

Listing 7-7. Controlling the Throat Parameter

from microbit import *

import speech

speech.say("Hello, World", throat=100)

 Example: Creating a Robotic Voice
The default voice produced by a speech synthesizer can be tuned with the

parameters just discussed (pitch, speed, mouth, and throat) to produce a

robotic voice.

Listing 7-8 shows some sample code that can be used to produce a

voice similar to a robot. The speech.say() function combines all the given

parameters to produce the voice for the given text.

Listing 7-8. Voice of a Robot

from microbit import *

import speech

speech.say("I am a baker bot", speed=120, pitch=100,

throat=100, mouth=200)

Chapter 7 Working With SpeeCh

www.allitebooks.com

http://www.allitebooks.org

162

 Punctuation
Punctuation makes a voice more realistic. With a speech library, you can

use five types of punctuation to alter the delivery of speech. They are as

follows:

• Hyphen: Creates a short pause in the speech.

speech.say("I am a baker bot – crazy cooking",

speed=120, pitch=100, throat=100, mouth=200)

• Comma: Adds a pause of approximately double that of

the hyphen.

speech.say("I am a baker bot, crazy cooking",

speed=120, pitch=100, throat=100, mouth=200)

• Full stop: Creates a pause and causes the pitch to fall.

speech.say("I am a baker bot – crazy cooking.",

speed=120, pitch=100, throat=100, mouth=200)

• Question mark: Creates a pause and causes the pitch

to rise.

speech.say("I am a baker bot. Who are you?", speed=120,

pitch=100, throat=100, mouth=200)

 Phonemes
Phonemes can be used to translate English words into the correct sounds.

They are the building blocks of language. The speech.pronounce()

function allows you to translate any phoneme into the correct voice in

English.

Chapter 7 Working With SpeeCh

163

An example, the word Hello can be written with phonemes as

/HEHLOW. Listing 7-9 shows the MicroPython code used to produce the

voice using phonemes.

Listing 7-9. Phonemes

from microbit import *

import speech

speech.pronounce("/HEHLOW") # "Hello"

You can convert any English text to a string of phonemes using the

speech.translate() function (see Listing 7-10). Then you can fine tune

the phonemes to produce a more natural voice.

Listing 7-10. Translate the Text to Phonemes

from microbit import *

import speech

print(speech.translate("Hello"))

The following table lists the phonemes understood by the synthesizer

(Source: http://microbit-micropython.readthedocs.io/en/latest/

speech.html).

Chapter 7 Working With SpeeCh

www.allitebooks.com

http://www.allitebooks.org

164

Here is a list of non-standard symbols:

Chapter 7 Working With SpeeCh

165

Here is a list of some seldom used phoneme combinations:

 Using lmtool

lmtool (see http://www.speech.cs.cmu.edu/tools/lmtool-new.html)

provides an easy way to convert English text to phonemes. Use the following

steps to convert a text file to a Pronunciation Dictionary file using lmtool.

 1. Using a text editor, create a file with your sentence

(or many sentences) in English. You should include

at least two words in your file, otherwise the

compilation will fail. Then, save the file on your

computer (see Figure 7-2).

Figure 7-2. Source file with text

Chapter 7 Working With SpeeCh

www.allitebooks.com

http://www.allitebooks.org

166

 2. Browse and locate the saved file by clicking the

Choose File button (see Figure 7-3).

 3. Click the Compile Knowledge Base button (see

Figure 7-3).

 4. On the results page, click the file name with the .dic

extension (see Figure 7-4). This is the Pronunciation

Dictionary file.

Figure 7-3. Uploading and compiling a text file

Chapter 7 Working With SpeeCh

167

 5. The file contains phonemes for each word in the

sentence (see Figure 7-5). As you can see, the tool

suggests two phonemes for the word “Hello”. Choose

the most relevant phoneme for your micro:bit

application.

 Stress Markers
Stress markers can be used to create a more expressive tone of voice.

They range from 1-8. You can insert the required number after the vowel

to create stress. For example, the lack of expression of /HEHLOW can be

improved by inserting stress marker 3 followed by the vowel EH, as in

/HEH3LOW. Listing 7-11 shows a list of stress markers.

Figure 7-4. Pronunciation Dictionary file

Figure 7-5. Phonemes for each word

Chapter 7 Working With SpeeCh

www.allitebooks.com

http://www.allitebooks.org

168

Listing 7-11. Stress Markers

1- very emotional stress

2- very emphatic stress

3- rather strong stress

4- ordinary stress

5- tight stress

6- neutral (no pitch change) stress

7 - pitch-dropping stress

8- extreme pitch-dropping stress

Listing 7-12 shows the MicroPython code that produces a much

improved voice for the word “Hello” by inserting a stress marker.

Listing 7-12. Stress Markers

from microbit import *

import speech

speech.pronounce("/HEH3LOW") # "Hello"

 Singing with Phonemes
The speech.sing() function can be used to sign phonemes. Listing 7-13

shows the lyrics for a happy birthday song.

Listing 7-13. Lyrics for the Happy Birthday Song

Happy Birthday to You

Happy Birthday to You

Happy Birthday Dear Micro Bit

Happy Birthday to You

First, you need to convert the text to phonemes, as shown in

Listing 7- 14. You can use the speech.translate() function or lmtool to

convert the text into phonemes.

Chapter 7 Working With SpeeCh

169

Listing 7-14. Phonemes for the Happy Birthday Song

HH AE P IY B ER TH D EY T UW Y UW

HH AE P IY B ER TH D EY T UW Y UW

HH AE P IY B ER TH D EY D IH R M AY K R OW B IH T

HH AE P IY B ER TH D EY T UW Y UW

Listing 7-15 shows the MicroPython code used to sing a happy birthday

song with phonemes.

Listing 7-15. Sing a Song with Phonemes

from microbit import *

import speech

speech.sing("#115 /H AE P IY B ER TH D EY T UW Y UW",

speed=100)

speech.sing("#115 /H AE P IY B ER TH D EY T UW Y UW",

speed=100)

speech.sing("#115 /H AE P IY B ER TH D EY D IH R M AY K R OW B

IH T", speed=100) speech.sing("#115 /H AE P IY B ER TH D EY T

UW Y UW", speed=100)

You can change the value of the speed parameter to control the

speed of the song. The pitch number 115 is used with a hash (#115) as an

annotation. You can also add other parameters—such as pitch, mouth, and

throat—to change the timbre (quality) of the voice.

 Summary
In this chapter, you learned how to produce voices and songs using the

micro:bit speech library. You learned how to emulate different voices by

changing the characteristics of the voice.

The next chapter explains how to store and manipulate files with

micro:bit’s internal storage.

Chapter 7 Working With SpeeCh

www.allitebooks.com

http://www.allitebooks.org

171© Pradeeka Seneviratne 2018
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_8

CHAPTER 8

Storing and
Manipulating Files
micro:bit provides a persistent file system that allows you to store files in

the flash memory. The size of the storage reserved for the file system is

approximately 30KB. However, micro:bit provides a flat file system, so you

can’t store files in directories to create a hierarchy. The stored files will

remain intact until you either delete them or re-flash the device.

In this chapter, you learn how to store files in the micro:bit internal

storage and manipulate them with some OS functions. Then you learn

about the MicroFS utility that can be used to manipulate files on micro:bit

and transfer files between micro:bit and the computer.

 Creating a File
With micro:bit, you can create files with any extension. The open()

function allows you to create a file for a given name with the w parameter

for writing. This function will also overwrite the contents of the file if it

exists. The write() function can be used to write a line of text into the file.

172

Flash the sample code in Listing 8-1 to your micro:bit using the Mu

editor. After the flashing is done, click on the Files button. The Mu editor

will display all the files in your micro:bit storage under the Files on Your

micro:bit list view (see Figure 8-1) . You can see that the file named foo.

txt has been created on your micro:bit with the given content, which is a

single line of text.

Listing 8-1. Creating a File

with open('foo.txt', 'w') as myFile:

 myFile.write("This is the first line")

 Reading a File
You can also read a file with the open() function. You must provide the file

name with the extension and the optional argument r to open the file for

reading in text mode.

Figure 8-1. Files window

Chapter 8 Storing and Manipulating FileS

www.allitebooks.com

http://www.allitebooks.org

173

You can read the contents of the foo.txt file, as shown here.

 1. Click again on the Files button to close the Files

window.

 2. Click the Repl button to start a new REPL session

(an interactive shell).

 3. Run the code shown in Listing 8-2 using the Repl

window. Press the Enter key followed by each line.

Note don’t flash the code shown in listing 8-2 to the micro:bit.
Flashing a new code to the micro:bit will destroy all the stored files in
the micro:bit internal storage.

Listing 8-2. Reading a File

with open('foo.txt') as myFile:

 print(myFile.read())

 4. When you press the Enter key followed by the last

line, you will get the contents of the file as the output

(see Figure 8-2).

Figure 8-2. Reading the contents of a file

Chapter 8 Storing and Manipulating FileS

174

 Writing Multiple Lines in a File
When you are creating or overwriting a file, you can write multiple lines in

a file. The write() function can be called any number of times with your

code for each line of text. Listing 8-3 shows the sample code that uses the

write() function for each line of text. However, remember to add a new

line character \n at the end of each line before starting a new line.

Flash the sample code to the micro:bit using the Mu editor. This will

create the file called foo.txt on the micro:bit internal storage with the

given content.

Listing 8-3. Creating a File with Multiple Lines of Text

with open('foo.txt', 'w') as myFile:

 myFile.write("This is the first line\n")

 myFile.write("This is the second line")

You can also write the two lines of text using a single write() function

as shown here.

myFile.write("This is the first line\nThis is the second line")

After flashing the code, you can read the contents of the foo.txt file

with the read() command. Start a new REPL session by clicking on the

Repl button and entering the code into the REPL window, as shown in

Figure 8-3. After executing the complete code, you will get the contents of

the file as the output on the REPL window.

Chapter 8 Storing and Manipulating FileS

www.allitebooks.com

http://www.allitebooks.org

175

 Appending Text to a File
micro:bit doesn’t provide a function to append text to a file after creating

it. However, there is a way you can append text to an existing file using

a tricky mechanism. The implementation of the append operation is

explained here.

 1. Read the contents of the existing file and store it in a

variable.

 2. Add new text to the stored content.

 3. Create the file again with the same name (this will

overwrite the existing file) and write the stored

contents to the file at the same time.

Assume you created a file named foo.txt with a single line of text.

Now you are going to add another line of text to the file. Figure 8-4 shows

how to do this with a REPL session (don’t flash it to the micro:bit!). It also

shows the final contents of the foo.txt file after appending the second line

of text.

Figure 8-3. Reading the contents of a file

Chapter 8 Storing and Manipulating FileS

176

 Creating Files with a .py Extension
If a file ends with the .py extension, it can be imported to your code. For

example, a file named hello.py can be imported like so:

import hello.

This will output any statement written with the print function in the

Python file.

Create the foo.py file as shown in Listing 8-4 using the Mu editor and

then flash it to the micro:bit.

Listing 8-4. Creating the foo.py File

with open('foo.py', 'w') as myFile:

 myFile.write("i=10\n")

 myFile.write("print('-------------')\n")

 myFile.write("print(i)\n")

 myFile.write("print('-------------')")

Figure 8-4. Appending text to a file

Chapter 8 Storing and Manipulating FileS

www.allitebooks.com

http://www.allitebooks.org

177

After flashing the file, start a new REPL session and type this statement:

import foo

When you press the Enter key followed by this statement, you will

get the output shown in Figure 8-5. This indicates that when you run the

import command followed by the file name, the file gets executed (not the

contents of the file) and the result will print to the console.

However, you can print the contents of this file using the read()

function. Figure 8-6 shows the complete REPL session to get the contents

of the foo.py file with the read() function.

Figure 8-5. Output for foo.py with a REPL session

Figure 8-6. Using the read() function to get the contents of the
foo.py file

Chapter 8 Storing and Manipulating FileS

178

 Creating Your Own Libraries
You can now import any valid Python file to your code. A Python file that

contains a function or set of functions is called a library. In this section,

you’ll see how to use a function in an external Python file with your code.

First create a Python file named gereeting.py with a simple function.

Listing 8-5 shows the MicroPython code that can be used to create the

greeting.py file with a simple function named showGreeting().

Listing 8-5. Creating a Python Library

with open('greeting.py', 'w') as myFile:

 myFile.write("def showGreeting():\n")

 myFile.write(" print('Hello Friend!')")

You can use this Python library using a REPL session with Mu, as

shown in Figure 8-7. First you must import the Python file stored in the

internal storage with this command:

import greeting

Then you can call the function as follows:

greeting.showGreeting()

Figure 8-7. Using a Python library

Chapter 8 Storing and Manipulating FileS

www.allitebooks.com

http://www.allitebooks.org

179

 File Manipulation
micro:bit allows you to manipulate the files stored in internal storage. The

os library provides some useful functions to work with the micro:bit file

system.

Before working with the examples given in file manipulation, first

create some files in the microbit internal storage using the code shown in

Listing 8-6.

Listing 8-6. Creating Four Files on micro:bit Storage

with open('foo.txt', 'w') as foo:

 foo.write("foo")

with open('bar.txt', 'w') as bar:

 bar.write("bar")

with open('baz.py', 'w') as baz:

 baz.write("a=5")

with open('qux.py', 'w') as qux:

 qux.write("b=7")

 Listing Files
You can list all the files stored in your micro:bit using the listdir()

function. First, open a REPL session and run these statements.

import os

os.listdir()

The litsdir() function will return the list of files stored in your

micro:bit storage. Figure 8-8 shows the complete REPL session with the

output.

Chapter 8 Storing and Manipulating FileS

180

 Deleting Files
You can delete a file using the remove() function. Now you’re going to

delete the foo.txt file stored on the micro:bit storage.

Using the same REPL session, run the following statement:

os.remove('foo.txt')

After running the remove() function to delete the file, run the

listdir() function again to verify that the file is deleted. Figure 8-9 shows

the REPL session with output.

Figure 8-8. Listing files on micro:bit storage

Figure 8-9. REPL session for deleting a file

Chapter 8 Storing and Manipulating FileS

www.allitebooks.com

http://www.allitebooks.org

181

 Getting the Size of a File
The size() function can be used to get the size of a file stored on the

micro:bit storage. It returns the size of a given file in bytes. Let’s get the

size of the file named bar.txt by running the following statement with the

same REPL session.

print(os.size('bar.txt'))

The size() function returns the size of the bar.txt file, which is three

bytes.

Figure 8-10 shows the REPL session with the output.

 File Transfer with MicroFS
MicroFS is a simple command-line tool that can be used to interact with

the limited file system provided by MicroPython on the micro:bit.

 Installing MicroFS
You can install MicroFS on a computer running Windows, Linux, or Mac

operating systems. The details in this section can be directly applied to

installing MicroFS on all three of these operating systems.

Figure 8-10. Getting the size of a file

Chapter 8 Storing and Manipulating FileS

182

Before installing MicroFS, determine whether you already have Python

and pip installed on your computer as prerequisites. If you don’t have

Python and pip, install them on your computer using these sources:

• Python: https://www.python.org/downloads/

• pip: https://pip.pypa.io//en/latest/installing/

From now on, the Windows command prompt is used to demonstrate

the installation and use of MicroFS.

After setting up everything, simply run the following command from

the Windows command prompt (see Figure 8-11):

$ pip install microfs

This will install MicroFS on your Windows computer in a few minutes.

 Upgrading MicroFS
After installing MicroFS, you can upgrade it by using this command (see

Figure 8-12):

pip install –no-cache –upgrade microfs

Figure 8-11. Installing MicroFS

Chapter 8 Storing and Manipulating FileS

www.allitebooks.com

http://www.allitebooks.org

183

Now you are ready to access your micro:bit using the MicroFS utility.

You should start every command with ufs:

$ufs [command]

 List the Files on the micro:bit

The ls command can list all the files in your micro:bit storage:

$ufs ls

Assume there are three files created on your micro:bit storage (see

Figure 8-13). If you want to run the commands in this section with the

same examples, first create three files named bar.txt, baz.py, and qux.py

on your micro:bit.

Figure 8-12. Upgrading MicroFS

Chapter 8 Storing and Manipulating FileS

184

Figure 8-14 shows you how to run the ls command from the command

prompt. After running the ls command, you should get the names of three

files as the result.

 Copy a File from the micro:bit

The get command can be used to transfer any file from the micro:bit to

your computer:

$ufs get bar.txt

Figure 8-14. Listing all the files on micro:bit

Figure 8-13. Three files created on the micro:bit

Chapter 8 Storing and Manipulating FileS

www.allitebooks.com

http://www.allitebooks.org

185

After running the get command, the targeted file will be saved on

the local drive of your computer. (You can find the copied file on your

computer’s hard drive by following the current directory of the command

prompt.)

Figure 8-15 shows how to run the get command from the command

prompt. After running the command, the dir command can be run from

the command prompt to verify whether the file is copied to the computer.

 Copy a File to the micro:bit

You can copy any file from your computer to micro:bit using the put

command:

$ ufs put path/to/file.txt

Figure 8-15. Copying a file from micro:bit followed by verifying it

Chapter 8 Storing and Manipulating FileS

186

As an example, if you want to copy the file named led.py on your

computer to micro:bit, run the command shown here. This example

assumes that the file is currently located in the D:/microbit/files/

directory.

$ufs put d:/microbit/files/led.py

Figure 8-16 shows how to run the put command from the command

prompt. After running the put command, you can verify it using the ls

command.

 Deleting a File on the micro:bit

The rm command can be used to delete a file on the micro:bit. An example,

if you want to delete the qux.py file on your micro:bit, issue this command.

$ ufs rm qux.py

Figure 8-17 shows you how to run the rm command from the command

prompt. After running the rm command, you can verify it using the ls

command.

Figure 8-16. Copying a file to the micro:bit followed by verifying it

Chapter 8 Storing and Manipulating FileS

www.allitebooks.com

http://www.allitebooks.org

187

 Summary
In this chapter, you learned how to use the micro:bit’s file system to store

and manipulate files with the os module. You also learned how to use the

MicroFS utility to manipulate files on micro:bit as well as how to transfer

files between micro:bit and your computer.

In next chapter, you learn how to build applications based on micro:bit

wired and wireless (radio) networks.

Figure 8-17. Deleting a file on the micro:bit followed by verifying it

Chapter 8 Storing and Manipulating FileS

189© Pradeeka Seneviratne 2018
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_9

CHAPTER 9

Networks and Radios
Networking micro:bits together allows you to exchange data and broadcast

to many micro:bit boards. In this chapter, you learn how to build wired

and wireless networks with micro:bit boards. You’ll be able to build a wide

range of applications based on the networking features of the micro:bit,

such as data loggers, remote control vehicles, advertising beacons, and

many more.

 Building a Wired Network
Wired networks allow you to connect two or more micro:bit boards using

wires. However, this architecture doesn’t support any addressing and

grouping features. Therefore, this type of network is more suitable to

connect two micro:bit boards.

You need the following things to build a simple wired network.

• Two crocodile leads

• Two micro:bit boards

• Two battery cases

• Four AA batteries

Connect the two micro:bit boards using the crocodile leads, as shown

in Figure 9-1.

www.allitebooks.com

http://www.allitebooks.org

190

Before make the connections, you must decide which pins you are

going to use for input and output on both micro:bit boards.

This example uses pin 2 for input and pin 1 for output. This will apply

to both boards, so both boards know what to do with each pin.

Here are the two MicroPython statements that you can use to write

digital 1 and 0 on pin 1 (OUT):

pin1.write_digital(1) # switch the signal on

pin1.write_digital(0) # switch the signal off

You can also read the incoming signal on pin 2 (IN) with this

MicroPython statement:

input = pin2.read_digital() # read the value of the signal

(either 1 or 0)

Figure 9-1. Connecting two micro:bit boards for networking

Chapter 9 Networks aNd radios

191

Let’s build a basic application based on the micro:bit wired network.

Assume that you have two micro:bit boards labeled X and Y, wired as

discussed previously.

When you press and hold built-in button A on the micro:bit board X,

an image should display on the micro:bit board Y. Similarly, when you

press and hold built-in button A on the micro:bit board Y, an image should

display on the micro:bit board X. The implementation is very simple, as

shown in Listing 9-1 with MicroPython code.

Listing 9-1. Basic micro:bit Network Application

from microbit import *

while True:

 if button_a.is_pressed():

 pin1.write_digital(1)

 else:

 pin1.write_digital(0)

 input = pin2.read_digital()

 if (input == 1):

 display.show(Image.HAPPY)

 else:

 display.clear()

Flash the code into both micro:bit boards. According to the code, when

you press and release button A, it will write digital 1 on pin 1; otherwise,

the value on pin 1 is 0 (OUT). Meanwhile, it will read the incoming values

(IN) on pin 2. If it finds that the incoming value is 1, it will display an image

on the LED display.

Chapter 9 Networks aNd radios

www.allitebooks.com

http://www.allitebooks.org

192

 Buffering Incoming Data
Buffering is useful for storing data temporarily for processing when

required. Listing 9-2 shows how to send data and buffer receiving data with

MicroPython using the same hardware setup shown in Figure 9-1.

According to the code, when you press and release built-in button A,

the value on pin 1 becomes 1 (HIGH).

When receiving, micro:bit stores all the digital 1 (HIGH) status on pin

2 in the variable named buffer. It ignores digital 0 (LOW) status. At any

time, you can press built-in button B to see all the buffered 1 (HIGH) status

on the LED display.

Flash the code into both micro:bit boards. Label these two boards as X

and Y. Now test the code.

 1. Press and release button A five times on micro:bit

board X.

 2. Then press and release built-in button B on the

micro:bit board Y to see the output on the LED

display. Five x marks will scroll on the LED display

to indicate the five button pressed events. See

Listing 9-2.

Listing 9-2. Buffering Data

from microbit import *

buffer = ''

while True:

 # Sending

 if button_a.was_pressed():

 pin1.write_digital(1)

 else:

 pin1.write_digital(0)

Chapter 9 Networks aNd radios

193

 # Receiving

 if (pin2.read_digital() == 1):

 buffer += 'x '

 if button_b.was_pressed():

 display.scroll(buffer)

 buffer = ''

 sleep(100)

 Using Radios
Micro:bit’s CPU (central processing unit) has a built-in 2.4GHz radio

module that allows you to send and receive messages wirelessly with

the radio library. With the radio library, you can build a wide range of

applications that can be used to exchange data between micro:bit boards.

 Turning the Radio On and Off
The radio.on() function allows you to turn on the radio module and send

and receive messages. You can turn off the radio by simply calling the

radio.off() function. Listing 9-3 shows the MicroPython code needed to

turn on the micro:bit radio for five seconds.

Listing 9-3. Turn On the micro:bit Radio for Five Seconds

from microbit import *

import radio

radio.on() # turns the radio on

sleep(5000)

radio.off() # turns the radio off

Chapter 9 Networks aNd radios

www.allitebooks.com

http://www.allitebooks.org

194

 Sending and Receiving Messages
You can send messages up to 251 bytes long (or 250 characters per

message) with the radio.send() function.

Sending messages are similar to broadcasting programs from a radio

station. All radios can receive the same program if they are tuned to the

correct frequency. Similarly, micro:bit boards will receive the message

within the transmission range if they are configured to receive.

This can be demonstrated by using two micro:bit boards. Listing 9-4

shows the MicroPython code to send a message to the other micro:bit

board. The code should be saved onto the first micro:bit board.

Listing 9-4. Sending a Message

from microbit import *

import radio

while True:

 radio.on() # turns the radio on

 message = "Hello,World!."

 radio.send(message)

sleep(500)

Micro:bits may receive a message using the radio.receive() function.

Listing 9-5 shows the MicroPython code that should be saved onto the

second micro:bit board so the message can be received and displayed.

Listing 9-5. Receiving Incoming Messages

from microbit import *

import radio

radio.on()

while True:

Chapter 9 Networks aNd radios

195

 incoming = radio.receive()

 if incoming is not None:

 display.show(incoming)

 # print(incoming)

 sleep(500)

 Configuring Radio
By now, you know how to send and receive messages using the micro:bit

radio module. All of the previous examples used the micro:bit radio’s

default configuration settings to send and receive messages. If you use the

default configuration settings, you can send the same message to every

micro:bit board that has the default configuration. You can configure the

radio module using the radio.config() function.

 Selecting a Channel

Like a radio or TV transmitter, the micro:bit radio module can be

configured with a transmission frequency. The same frequency will receive

the data too. The channel keyword can be used to set the channel number,

as shown here.

radio.config(channel=25)

The micro:bit supports a total of 101 channels for general use,

numbered 0 to 100, with the default channel set to 7.

Channel 0 has a frequency of 2400Mhz and each channel has a

bandwidth of 1Mhz. For example, channel 1 will be at 2401Mhz, channel 2

at 2402MhZ, and so forth.

Chapter 9 Networks aNd radios

www.allitebooks.com

http://www.allitebooks.org

196

 Defining Groups

You can assign your micro:bit to a virtual group using the group keyword.

Groups allow you to create more than one micro:bit radio project in the

same network range without interfering with messages. Remember, your

micro:bit can only ever be a member of one group at a time, and any

packets sent will only be received by other micro:bits in the same group.

You can use a group number from 0 to 255. The default group number is 0.

radio.config(group=7)

 Assigning Addresses

Assigning an address to the micro:bit radio module allows you to filter the

incoming messages at the hardware level, keeping only those that match

the address you set. You can express an address as a 32-bit address. The

default address used is 0x75626974. The address keyword can be used to

set the address for the radio.

radio.config(address=0x11111111)

 Transmission Power

Transmission power of the radio module indicates the strength of the

signal and how far it can go from the source. You can set the transmission

power for the micro:bit radio module using the radio.power() function.

This function accepts values from 0 to 7; the default is 6. The higher the

value, the more power the radio module consumes from the micro:bit.

However, using a strong signal will help you reach more micro:bit radio

modules.

radio.config (power = 7)

Chapter 9 Networks aNd radios

197

 Remotely Controlling an LED
You can build a wide range of wireless applications using the micro:bit

radio module. As a first example, let’s write MicroPython code to control

an LED remotely.

Figure 9-2 shows the wiring diagram for connecting an LED with the

micro:bit. Connect the positive leg (anode) of the LED with micro:bit pin 0

and the negative leg (cathode) of the LED with the micro:bit GND through

a 220 Ohm resistor.

Listing 9-6 shows the MicroPython code you can flash to the micro:bit

board that you are going to use as the remote control (the sender).

Figure 9-2. Wiring diagram for connecting an LED with
micro:bit

Chapter 9 Networks aNd radios

www.allitebooks.com

http://www.allitebooks.org

198

Listing 9-6. Remote Control (Sender)

from microbit import *

import radio

radio.on() # turns the radio on

radio.config(power=7)

while True:

 if(button_a.was_pressed()): # to turn the remote LED on

 radio.send("H") # sends letter H to receiver

 elif(button_b.was_pressed()): # to turn the remote LED off

 radio.send("L") # sends letter L to receiver

 sleep(100)

Listing 9-7 shows the MicroPython code you can flash to the micro:bit

board (the receiver) connected to the LED. The code will handle all the

incoming messages from the remote control (sender) and will write values

on the pin attached to the LED.

Listing 9-7. Receiver

from microbit import *

import radio

radio.on() # turns the radio on

radio.config(power=7)

pin0.write_digital(0) # turns the LED off on startup

while True:

 message = radio.receive() # read incoming message

 if (message == "H"): # compare incoming message

 pin0.write_digital(1) # turns the LED on

 if (message == "L"):

 pin0.write_digital(0) # turns the LED off

Chapter 9 Networks aNd radios

199

After flashing the code onto both micro:bit boards, unplug them from

the computer and connect them with batteries. Your micro:bit boards will

connect to each other within a few seconds through the radio network (see

Figure 9-3).

 Controlling the LED

Table 9-1 shows the list of button events that you can use to control the

LED attached to the micro:bit (R2) remotely.

Figure 9-3. Radio network for controlling an LED remotely

Table 9-1. Button Events to Control LED Remotely

Sender (R1) LED State (R2)

on startup/reset oFF

press and release Button a oN

press and release Button B oFF

Chapter 9 Networks aNd radios

www.allitebooks.com

http://www.allitebooks.org

200

 Building the Wireless Buggy
You can use the micro:bit radio network to control a robot wirelessly

by applying the same technique used in the previous section, entitled

"Remotely Controlling an LED".

Let’s build a simple wireless buggy using the following components.

• One "line following buggy" for the BBC micro:bit

 (https://www.kitronik.co.uk/5604-line-

following-buggy-for-the-bbc-microbit.html)

• Two micro:bit boards for the buggy and the remote

control

• Four AA batteries for the buggy

• Two AA batteries for the remote control

 Assembling the Line Following Buggy

A very good tutorial about assembling the line following buggy can

be found on Kitronik’s blog (https://www.kitronik.co.uk/blog/

bbc-microbit-line-following-buggy/). You will be using the same

instructions, but don’t assemble and connect the line following PCB.

After assembling the hardware, connect the two motors to the motor

driver board, as instructed here. Figure 9-4 shows the wire connections

between the motors and the motor driver board. Label the left motor of the

buggy as Motor 1 and the right motor as Motor 2.

• Wire 1 on Motor 1 (white) goes into the P12 terminal.

• Wire 2 on Motor 1 (green) goes into the P8 terminal.

• Wire 1 on Motor 2 (blue) goes into the P0 terminal.

• Wire 2 on Motor 2 (black) goes into the P16 terminal.

Chapter 9 Networks aNd radios

201

First, insert the batteries into the buggy’s battery case and slide the

power switch on the battery case to the OFF position. Then connect the

wires from the battery case to the power terminal block on the motor

driver board. Use the correct polarity marked on the motor driver board to

connect the wires to the terminal block. Figure 9-5 shows the completed

chassis.

Figure 9-4. Connecting motors with a motor driver board (image
courtesy of Kitronik)

Chapter 9 Networks aNd radios

www.allitebooks.com

http://www.allitebooks.org

202

 Writing the Code

You can control each motor by writing values on the micro:bit I/O pins

connected to them. Tables 9-2 and 9-3 show the input values that can be

used to control motors (read https://www.kitronik.co.uk/pdf/5620%20

Motor%20Driver%20Board%20V1.1-2.pdf for more information). However,

forward and reverse directions can vary depending on how the motors are

connected. You can correct the direction by swapping the two motor wires

with the terminal block.

Figure 9-5. Completed chassis of the buggy (image courtesy of Kitronik)

Chapter 9 Networks aNd radios

203

Table 9-2. Motor Control Pins for

Motor 1 (Assume This Is the Left Motor)

P8 P12 Motor 1 Function

0 0 Coast

1 0 Forward

0 1 Backward

1 1 Brake

Table 9-3. Motor Control Pins for Motor 2

(Assume This Is the Right Motor)

P0 P16 Motor 2 Function

0 0 Coast

1 0 Forward

0 1 Backward

1 1 Brake

You can assign the following operations to the built-in buttons on the

micro:bit board that you are going to use as the remote control.

• Button A: FORWARD

• Button B: BACKWARD

• Button A+B: BRAKE

Listing 9-8 shows the MicroPython code for the remote control and

Listing 9-9 shows the code for the buggy. Write them using the Mu editor

and flash to the respective micro:bit boards.

Chapter 9 Networks aNd radios

www.allitebooks.com

http://www.allitebooks.org

204

Listing 9-8. Remote Control Code

from microbit import *

import radio

radio.on() # turns the radio on

radio.config(power=7)

while True:

 if(button_a.is_pressed()):

 radio.send("F") # FORWARD

 elif(button_b.is_pressed()):

 radio.send("B") # BACKWARD

 elif(button_a.is_pressed() and button_b.is_pressed()):

 radio.send("S") # BRAKE

 else:

 radio.send("C") #COAST

 sleep(100)

Listing 9-9. Buggy Code

from microbit import *

import radio

radio.on() # turns the radio on

radio.config(power=7)

while True:

 message = radio.receive()

 if (message == "F"): # FORWARD

 pin8.write_digital(1) # motor 1

 pin12.write_digital(0) # motor 1

 pin0.write_digital(1) # motor 2

 pin16.write_digital(0) # motor 2

Chapter 9 Networks aNd radios

205

 if (message == "B"): # BACKWARD

 pin8.write_digital(0) # motor 1

 pin12.write_digital(1) # motor 1

 pin0.write_digital(0) # motor 2

 pin16.write_digital(1) # motor 2

 if (message == "S"): # BRAKE

 pin8.write_digital(1) # motor 1

 pin12.write_digital(1) # motor 1

 pin0.write_digital(1) # motor 2

 pin16.write_digital(1) # motor 2

 if (message == "C"): # COAST

 pin8.write_digital(0) # motor 1

 pin12.write_digital(0) # motor 1

 pin0.write_digital(0) # motor 2

 pin16.write_digital(0) # motor 2

After flashing the code to both micro:bit boards, move the switch on the

buggy’s battery case to the ON position. Then connect the remote control

battery case to the micro:bit you are going to use as the remote control.

Now you’re ready to play with your wireless buggy. You can move

the buggy forward and backward using built-in buttons A and B. To stop

the buggy, press and hold both buttons at the same time. If you haven’t

pressed any buttons, the buggy will go into coast (neutral) state.

You can improve the design of the buggy by including the following

operations.

• Point turn. One motor must go forward and the other

motor must go backward. The vehicle turns to the side

where the motor is going backward.

• Swing turn. One motor must stop and the other motor

must go backward or forward. There are four types of swing

turns: forward left swing turn, backward left swing turn,

forward right swing turn, and backward right swing turn.

Chapter 9 Networks aNd radios

www.allitebooks.com

http://www.allitebooks.org

206

• Attach additional buttons to the micro:bit and

implement code for these turning operations to

turn the buggy left and right with different turning

mechanisms.

 Summary
In this chapter, you learned about the networking features of the micro:bit.

Now you know how to build simple applications based on wired and

wireless micro:bit networks. The basic knowledge you gained can be

applied to build more complex applications, such as data loggers, robots,

home automation systems, content delivery systems, and so forth based on

the micro:bit networking features.

Throughout this book, you gained foundational knowledge to develop

applications for micro:bit with MicroPython. Unfortunately, MicroPython

still doesn’t support the Bluetooth services provided by the micro:bit.

However, you can develop applications with the micro:bit Bluetooth

services using the JavaScript Blocks Editor; you can find many resources

related to that in the Internet. Appendix B covers the micro:bit Blue app,

which you can use with micro:bit Bluetooth services.

Chapter 9 Networks aNd radios

207© Pradeeka Seneviratne 2018
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3

APPENDIX A

Updating DAPLink
Firmware and Using
REPL with Tera Term
This appendix explains how to update the DAPLink firmware on the

micro:bit by using maintenance mode. It also shows you how to use REPL

(Read-Evaluate-Print-Loop) with Tera Term, a serial terminal program.

 DAPLink Firmware
The firmware on the micro:bit is stored inside a separate interface chip

called the KL26. This firmware is known as DAPLink. It is the responsibility

of this firmware to connect to the USB port and to allow you to drag and

drop .hex files that are then programmed into the application processor.

If you want to determine what firmware is loaded in the KL26 interface

chip, plug it in and open it in your file manager. Then look inside the

details.txt file (see Figure A-1).

www.allitebooks.com

http://www.allitebooks.org

208

 Updating DAPLink Firmware
You can download the latest DAPLink firmware from https://github.

com/ARMmbed/DAPLink/tags. At the time of this writing, it was version 0244

(https://github.com/ARMmbed/DAPLink/releases/tag/0244).

Note You should only update the firmware when there is a new
DAPLink version available.

The following steps explain how to update the DAPLink firmware on

micro:bit.

 1. First, bring your micro:bit into maintenance mode.

(Read the “Maintenance Mode” section to learn how

to bring your micro:bit into maintenance mode.)

Figure A-1. The details.txt file contains firmware information

APPENDIX A UPDAtINg DAPLINk FIrmwArE AND UsINg rEPL wIth tErA tErm

209

 2. Copy the firmware (the .hex file) to the MAINTENANCE

drive.

 3. The system LED will start to blink. After the copy

operation has completed, the LED will stop blinking

and the drive will be dismounted.

 4. Unplug the micro:bit from the computer and plug it

in again. The micro:bit should appear as MICROBIT in

the computer’s file browser.

 Maintenance Mode
Maintenance mode allows you to update the DAPLink firmware, which is

an USB interface that allows you to drag and drop binaries onto the target

microcontroller. Simply press and hold the RESET button near the micro

USB connector while connecting the USB cable to your computer’s USB

port to enter maintenance mode (see Figure A-2).

APPENDIX A UPDAtINg DAPLINk FIrmwArE AND UsINg rEPL wIth tErA tErm

www.allitebooks.com

http://www.allitebooks.org

210

Figure A-2. Preparing micro:bit for MAINTENANCE mode

Your micro:bit will appear as a mass storage device labeled

MAINTENANCE (see Figure A-3). Sometimes this will happen when you

connect the USB cable to the computer while pressing the RESET button.

You can exit from maintenance mode by unplugging the micro:bit from the

USB and then plugging it back in without pressing the RESET button.

APPENDIX A UPDAtINg DAPLINk FIrmwArE AND UsINg rEPL wIth tErA tErm

211

 Using REPL with Tera Term
REPL (Read-Evaluate-Print-Loop) allows you to run codes line by line

without flashing the complete program to the micro:bit. With REPL, you

can quickly execute and debug your code while writing. REPL can be

performed through a serial connection between the micro:bit and the

computer. This section guides you on how to use REPL with Tera Term,

which is a serial terminal program in the Windows environment. You can

also use REPL with PuTTY or Mu installed on your computer.

Figure A-3. micro:bit appears as MAINTENANCE in the file browser
in Windows

APPENDIX A UPDAtINg DAPLINk FIrmwArE AND UsINg rEPL wIth tErA tErm

www.allitebooks.com

http://www.allitebooks.org

212

 Downloading mbed Serial Port Windows
Driver
To use REPL with a Windows computer, first you should install

the mbed serial port driver. The driver can be downloaded

from https://developer.mbed.org/media/downloads/drivers/

mbedWinSerial_16466.exe. Simply run the downloaded executable file

and follow the setup instructions to install it on your Windows OS.

 Downloading Tera Term
Tera Term is a very popular serial terminal program that can be used with

Windows. It is simple to use and open source. You can read about the Tera

Term project by visiting https://ttssh2.osdn.jp/index.html.en.

You can download Tera Term for Windows at https://osdn.net/

projects/ttssh2/releases/. Be sure to download the most recent

version. The downloadable files are available in both .exe and .zip formats.

The following instructions guide you on how to install Tera Term on

Windows and connect the micro:bit from Windows.

 1. Run the installer. Choose I Accept the Agreement

and click Next.

 2. Browse the installation location and click Next.

 3. Select Standard Installation from the drop-down list

and click Next.

 4. Choose your language and click Next. The default

language is English.

 5. Select Start Menu Folder and click Next.

 6. Select Additional Tasks and click Next.

APPENDIX A UPDAtINg DAPLINk FIrmwArE AND UsINg rEPL wIth tErA tErm

213

 7. Click Install.

 8. The setup will install Tera Term on your computer.

 9. Select Launch Tera Term and click Finish to

complete this process.

 Configuring Tera Term
First, you need to configure Tera Term so it can establish the proper

communications through the serial port connected to the micro:bit. The

following steps explain how to configure Tera Term.

 1. Tera Term opens and prompts you for a new

connection (see Figure A- 4). Select the Serial option

and choose the correct COM port from the drop-

down list for your micro:bit. Usually, the COM port

for your micro:bit is called mbed serial port. Click

OK; you should see a blank Tera Term window.

Figure A-4. Choosing the serial port for micro:bit

APPENDIX A UPDAtINg DAPLINk FIrmwArE AND UsINg rEPL wIth tErA tErm

www.allitebooks.com

http://www.allitebooks.org

214

 2. Select Terminal from the Setup menu. In the

Terminal setup dialog box (see Figure A-5), choose

CR+LF for New-line Receive. Check the Local Echo

box as well.

Figure A-5. Terminal Setup dialog box

 3. Select Serial Port from the Setup menu to confirm

that the communication settings are correct. In the

Serial Port Setup dialog box (see Figure A-6), choose

the Baud rate as 115200. Then click OK to save the

settings and close the dialog box.

APPENDIX A UPDAtINg DAPLINk FIrmwArE AND UsINg rEPL wIth tErA tErm

215

 4. If you want to permanently save the configuration,

select Save Setup from the Setup menu and click the

Save button.

 Writing MicroPython Code on Tera Term
You can write MicroPython code on a Tera Term window to execute it

line-by-line. When you press the Enter key after each line of code, it will

execute on micro:bit. Tera Term will store everything you type in a buffer.

The following steps explain how to write and execute simple code with

Tera Term.

Figure A-6. Serial port setup

APPENDIX A UPDAtINg DAPLINk FIrmwArE AND UsINg rEPL wIth tErA tErm

www.allitebooks.com

http://www.allitebooks.org

216

 1. Within the Tera Term window, press the Enter key

to enter command mode. You should see a prompt

with three greater than signs (see Figure A-7).

Figure A-7. Getting to the prompt

 2. First, type the following line of code and press the

Enter key.

import from microbit *

 3. Next, type the following line and press the Enter key

again (see Figure A-8).

display.scroll ('Hello from Tera Term')

APPENDIX A UPDAtINg DAPLINk FIrmwArE AND UsINg rEPL wIth tErA tErm

217

Figure A-8. Writing code on the Tera Term window

 4. Immediately, the micro:bit will start to scroll the

'Hello from Tera Term' text on its display.

 5. If you want, you can add more lines to this test code.

 6. If you want to type a new program, select Clear

Buffer from the Edit menu.

APPENDIX A UPDAtINg DAPLINk FIrmwArE AND UsINg rEPL wIth tErA tErm

www.allitebooks.com

http://www.allitebooks.org

219© Pradeeka Seneviratne 2018
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3

 APPENDIX B

Using micro:bit and
micro:bit Blue Apps
on Mobile Devices
This appendix presents how to use micro:bit and micro:bit Blue apps

on mobile devices to work with micro:bit. These apps act as a Bluetooth

bridge between the micro:bit and the mobile device. Each app has its own

advantages and disadvantages. However, they allow you to get more out of

the micro:bit. Let’s explore the micro:bit and micro:bit Blue apps.

 Using the micro:bit App
The micro:bit app allows you to create code, flash the resulting .hex file

onto micro:bit and interface with device components of the mobile device

such as the camera.

You can download the official micro:bit app for Android, developed

by Samsung Electronics UK at Google Play (https://play.google.com/

store/apps/details?id=com.samsung.microbit). This will require

Android 4.4. or higher installed on your mobile device.

220

If you have an Apple iPhone or iPad, you can download the micro:bit

app from the iTunes App Store at https://itunes.apple.com/gb/app/

micro-bit/id1092687276?mt=8. The micro:bit app for iOS is currently

compatible with a wide range of iPhone and iPad devices with different

combinations of component hardware and iOS versions. The list of

compatible devices can be found on the app’s download page.

 Pairing with micro:bit
The pairing process is fun and easy with both the official Android and the

iOS app. First apply power to your micro:bit using two 1.5V AA batteries.

The following steps guide you on how to pair your micro:bit with a

mobile device. The images shown in this section are from a mobile phone

with Android OS. The same steps can be applied to devices using iOS.

 1. Open the micro:bit app.

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

www.allitebooks.com

http://www.allitebooks.org

221

Figure B-1. Tapping the Connect button

 2. Tap the Connect button (see Figure B-1).

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

222

Figure B-2. Tapping the PAIR A NEW MICRO:BIT button

 3. Tap the PAIR A NEW MICRO:BIT button (see

Figure B-2).

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

www.allitebooks.com

http://www.allitebooks.org

223

Figure B-3. Turning on Bluetooth

 4. Turn on the Bluetooth of your mobile device if you

haven’t done so already (see Figure B-3).

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

224

Figure B-4. Pairing step 1

 5. The app prompts you to hold the built-in A and B

buttons, then press and release the RESET button

(see Figure B-4).

 6. The text PAIRING MODE will scroll along the micro:bit

LED display.

 7. Tap NEXT on the app.

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

www.allitebooks.com

http://www.allitebooks.org

225

 8. The micro:bit will display a pattern on the LED

display, and the app will show an empty grid. Now

copy the pattern from your micro:bit onto the grid

of the app. If you have created the same pattern on

the grid, the app displays the message Ooh, pretty!

(see Figure B-5). Then tap the PAIR button to pair

the micro:bit with the mobile device.

Figure B-5. Pairing step 2

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

226

 9. A left arrow will blink on the LED display to prompt you

to press the A button. When you press the A button, a

series of numbers will display on the LED screen. This is

the pairing key that’s used to authenticate both devices.

Meanwhile, a notification will arrive to your mobile

device that prompts you to enter the same key. Now

enter the key in the text box and tap OK to proceed.

 10. If you entered the same key, you will get the

message shown in Figure B-6.

Figure B-6. Message saying you have successfully paired with
micro:bit

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

www.allitebooks.com

http://www.allitebooks.org

227

 11. Press the RESET button on the micro:bit to complete

the setup.

 12. You can reconnect your micro:bit to the app at

any time by tapping the name (i.e., PEVUP) of your

micro:bit listed under Connect Previously Paired

micro:bit (see Figure B-7).

Figure B-7. Reconnect to the previously paired micro:bit

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

228

 Writing Code with micro:bit App
Now you are ready to create code with the micro:bit app. The app allows

you to flash the code to the micro:bit from your mobile device through

Bluetooth connectivity.

 1. Go to the micro:bit app’s main page and tap the

Flash button (see Figure B-8).

Figure B-8. Tapping the Flash button

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

www.allitebooks.com

http://www.allitebooks.org

229

 2. Then tap the MY SCRIPTS button (see Figure B-9).

Figure B-9. Tapping the MY SCRIPTS button

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

230

 Creating MicroPython Code with the micro:bit App

The app allows you to choose following code editors to create code for

micro:bit.

• JavaScript

• Block Editor

Figure B-10. Tapping the Create Code button

 3. Tap the Create Code button (see Figure B-10) from

the list to create a new script.

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

www.allitebooks.com

http://www.allitebooks.org

231

• Touch Develop

• MicroPython

The following steps guide you on how to create simple code with

MicroPython and flash it to the micro:bit through the micro:bit app.

 1. Tap the MicroPython option (see Figure B-11) from

the list of code editors.

Figure B-11. Tapping the MicroPython editor option

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

232

 2. The MicroPython editor will open with default code

(see Figure B-12). This is the same MicroPython

editor that you explored in Chapter 1. Note that this

editor is not a part of the micro:bit app and can be

directly accessed at https://www.microbit.co.uk/app.

Figure B-12. MicroPython editor

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

www.allitebooks.com

http://www.allitebooks.org

233

 3. Let’s flash the default MicroPython code to the

micro:bit. To do so, tap the Download button on

the editor’s toolbar (see Figure B-13). The .hex

file for the MicroPython code will download to

the downloads folder of your mobile device (i.e.,

marvelous_script.hex). Also, the micro:bit app can

access the downloaded .hex files directly from the

downloads folder of your mobile device.

Figure B-13. Downloading a .hex file for the code

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

234

 4. Now go to the main page of the micro:bit app and

tap the Flash button. The app will show all the

downloaded .hex files as a list, so you can flash

them to the micro:bit by tapping the FLASH button

associated with the file name (i.e., marvelous_script)

(see Figure B-14).

Figure B-14. List of .hex files for flashing

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

www.allitebooks.com

http://www.allitebooks.org

235

 5. The app will start to flash the code into the micro:bit

board with the Bluetooth connectivity. Turn on the

Bluetooth on your mobile device if you’re prompted

by tapping the Allow button (see Figure B-15).

Figure B-15. Turning on Bluetooth

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

236

 6. Tap the OK button to confirm the flashing (see

Figure B-16).

Figure B-16. Confirmation screen for flashing

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

www.allitebooks.com

http://www.allitebooks.org

237

 7. The app will start to flash the code to the micro:bit.

Don’t try to interact with the micro:bit board during

the flashing process (see Figure B-17).

Figure B-17. Flashing in progress

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

238

 8. Tap the OK button to disconnect the micro:bit board

from the app (see Figure B-18).

Figure B-18. Flashing successful message

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

www.allitebooks.com

http://www.allitebooks.org

239

 9. If you want to reconnect the app to the micro:bit

board, tap the OK button (see Figure B-19).

Figure B-19. The Reconnect screen

Note sometimes, using the micro:bit app to flash code to micro:bit
over Bluetooth isn’t successful.

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

240

 Using the micro:bit Blue App
The micro:bit Blue app contains a series of demonstrations that use the

BBC micro:bit Bluetooth profile in various ways. Its purpose is to act as a

demo and to provide a source of example code that shows you how to use

the Bluetooth profile from Android. This app is originally developed by

Martin Woolley and currently available for Android.

 Installing micro:bit Blue
You can install micro:bit Blue from Google Play (see Figure B-20).

Figure B-20. Micro:bit Blue at Google Play

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

www.allitebooks.com

http://www.allitebooks.org

241

 Entering Pairing Mode
Before pairing your micro:bit with your phone or tablet, you should enter your

micro:bit board into pairing mode. Follow these steps to enter pairing mode.

 1. Hold down buttons A and B on the front of your

micro:bit at the same time.

 2. While still holding down buttons A and B, press and

then release the RESET button on the back of the

micro:bit. Keep holding down buttons A and B.

 3. You should see the message ‘PAIRING MODE!’ start

to scroll across the micro:bit display. When you see

this message, you can release the buttons.

 4. Eventually you’ll see a strange pattern on your

micro:bit display. This is like your micro:bit’s

signature. Other people’s micro:bits will probably

display a different pattern.

Your micro:bit is now ready to be paired with the other device.

 Pairing Your micro:bit with Your Android
Phone or Tablet
With the pairing mode, you can pair your micro:bit board with your

phone or tablet using the Bluetooth screen within the Android’s Settings

screen. The following steps guide you on how to do this with common

smartphones and tablets.

 1. Go into Settings.

 2. Select Bluetooth.

 3. Switch your micro:bit into pairing mode using the

steps in the previous section.

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

242

 4. Wait until 'PAIRING MODE!' has finished scrolling

across the micro:bit display. You should see your

micro:bit listed on your Android smartphone

under the “Available Devices” heading with a name

something like micro:bit [pevup]. Note that the

five characters in brackets at the end will vary.

 5. On the Android smartphone, tap the micro:bit named

in the Available Devices list (see Figure B-21). This

will initiate the pairing process.

Figure B-21. The micro:bit is under the Available Devices list (image
captured from a Huawei CHC-U0I phone)

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

www.allitebooks.com

http://www.allitebooks.org

243

Figure B-22. Pairing the PIN (image captured from a Huawei
CHC- U0I phone)

 6. The micro:bit will display a left pointing arrow and

the Android smartphone will pop up a box into

which you will be invited to enter a PIN (a Personal

Identification Number).

 7. Press button A on the micro:bit and watch carefully

as the micro:bit displays a sequence of six random

numbers. You may find it easier to write them down

than to remember them.

 8. Enter the six digits that the micro:bit displayed

on your Android smartphone in the pop-up box

provided. Select Done. See Figure B-22.

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

244

 9. If you entered the right numbers, the micro:bit will

display a tick/check mark. If you made a mistake, it

will display a cross or X and you should try again.

 Using the App
Open the app by tapping the micro:bit blue icon on your Android screen.

Then, you must connect your paired micro:bit board to the micro:bit blue app.

 1. Tap the FIND PAIRED BBC MICRO BIT(S) button

at the bottom of the screen (see Figure B-23). The

app will start to scan for paired micro:bit boards and

display them on the screen.

Figure B-23. Finding paired micro:bit(s)

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

www.allitebooks.com

http://www.allitebooks.org

245

Figure B-24. List of paired micro:bit(s)

 2. Tap the name of your micro:bit board from the list of

names (see Figure B-24).

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

246

 3. The app will show the Demo list. The Demo list

includes the following sample projects, which use

the micro:bit Bluetooth profile.

• Accelerometer

• Magnetometer

• Buttons

• LEDs

• Temperature

• I/O Digital Output

• Temperature Alarm

• Squirrel Counter

• Device Information

• Animal Magic

• Dual D-Pad Counter

• Heart Rate Histogram

• Animal Vegetable Mineral

• Trivia Scoreboard

You can open any demo program by tapping its demo icon. As an

example, open the LEDs demo program from the list. The LED demo

allows you to draw an image or display text on the LED display.

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

www.allitebooks.com

http://www.allitebooks.org

247

 1. Under the Demo list, tap LEDs (see Figure B-25).

Figure B-25. Demo list

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

248

 2. You will get the screen shown in Figure B-26.

Figure B-26. Settings page for LED display

 3. The screen has two sections. The first section allows

you to draw any image on the LED display. You can

tap any square to create a new image. After creating

the image, tap SET DISPLAY. You can see the new

image on the micro:bit’s LED display.

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

www.allitebooks.com

http://www.allitebooks.org

249

 4. Then type new text under the Display text by

replacing the default Hello!. Then tap the SEND

TEXT button. You can see the new text start to scroll

on the LED display.

When you try a demo program, the micro: bit blue

doesn’t flash any code to your micro:bit board. You

can press the RESET button on the micro:bit to exit

from the program and use the previously flashed

program.

APPENDIX B UsINg mIcro:BIt AND mIcro:BIt BlUE APPs oN moBIlE DEvIcEs

251© Pradeeka Seneviratne 2018
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3

Index

A
Accelerometer

NXP/Freescale MMA8652 chip,
109–110

overall, 115–116
reading

movement in x, y, z planes,
112

three axes, 110–114
tuples, 113

spirit level, 114–115
Analog I/O, 85–87

B
Beats, 150
Buttons

handling user inputs
get_presses() method, 65
is_pressed() method, 63
methods, 62
was_pressed() method, 65

momentary pushbutton
external buttons, 68
GPIO pins, 70
internal connection, 67
pinout, 67
read_digital() method, 73

pushbuttons, 61–62

C
Compass

calibrating, 123–124
heading, 126–130
magnetic field, x and y axes,

124–126
NXP/Freescale MAG3110

chip, 122

D
DAPLink firmware

details.txt file, 207–208
KL26 interface chip, 207
maintenance mode, 209–211
update, 208–209

Digital I/O, 87–89

E
Earphones, 141–143
Edge connector, I/O pins

analog, 85–87
breakout board

BBC micro, 77
I2C pins, 77
inserting micro, 78–79
pin headers, 78
prototyping area, 78

www.allitebooks.com

http://www.allitebooks.org

252

digital, 87–89
I2C (see Inter-integrated circuit

(I2C))
large and small pads, 75–76
SPI (see Serial peripheral

interface (SPI))
touch pins, 82–85
type and function, 80–82
type of pins and usage, 79–80
UART, 103

F
Files

appending text, 175–176
creating, 171–172
deleting, 180
listing, 179–180
microbit internal storage, 179
Python library, 178
reading, 172–173
size of, 181
with .py extension, 176–177
writing multiple lines, 174–175

G, H
Gestures

advanced, 118
basic, 116
current, 118–121
“face up”, 120

history, 121–122
names, 119
performing, 117

I, J, K
Images

built-in, 47–49
creation, 50
custom animation, 58–60
fish

brightness levels , 53
custom image , 52
encoding squares, 51
shape of, 50

lists and animations
ALL_ARROWS, 54
ALL_ CLOCKS, 54

Inter-integrated circuit (I2C)
accelerometer data, 93
CTRL_REG1 register, 92
device address, accelerometer

chip, 92–93
master and slave devices, 90
measured acceleration data, 92
OUT_X_MSB register, 94
reading accelerometer

values, 95
register address map,

MMA8652FC, 91
SDA and SCL pins, 90
sensor data, 90

Inventor’s Kits, 13

Edge connector, I/O pins (cont.)

Index

253

L
LED display, 39

address (3, 2), 41
brightness

display.set_pixel()
function, 43

clear() function, 44
columns and rows, 40
GPIO pins (3, 4, 6, 7, 9, and 10),

45, 46
On and Off (blink.py), 41, 42
On and Off (display_on_off.py),

47
lmtool, 165–167

M, N
Micro:bit Blue app

Demo list, 246–247
FIND PAIRED BBC MICRO

BIT(S), 244
Google Play, 240
list of names, 245
pairing mode, smartphones and

tablets, 241–243
settings page, LED display,

248–249
Micro:bit app

accessories, 15
batteries and battery

holders, 16
crocodile clips, 18

JST connector, 16
USB cable, 17

back view, 8
buying option, 10
components

breakout, 6
buttons, 4
display, 4
edge connector, 5
pinout, 7
SparkFun, 6

download, 219–220
front view, 4
MicroPython code

editors, 230–239
pairing process,

220–227
power board

batteries, 19
MCP1702 voltage

regulator, 27
MI, 25
Seenov solar

battery, 25
USB, 21
3.3v, 18
3v pin, 27

REPL, 36
starter kits, 11–12
successor of, 2–3
use of, 1–2
writing code, 228–230

Index

www.allitebooks.com

http://www.allitebooks.org

254

MicroFS, file transfer
installing, 181–182
upgrading

command, 182
copy a file from micro,

184–185
copy a file to micro, 185–186
deleting a file on micro,

186–187
list the files on

micro, 183–184
MicroPython code editor

default code, 232
downloaded .hex files
flashing

confirmation screen, 236
list of .hex files, 234
process, 237
successful message, 238

Reconnect screen, 239
tapping, 231
Turning on Bluetooth, 235

Mouth, 160
Mu editor

check button, 36
code editor, 33
flash button, 35
REPL, 36
save button, 35

Music, speaker connection
attaching, crocodile clips,

136–137
beats, 150

built-in melodies, 143–146
crocodile leads, 135–136
current tempo, 152–153
earphones, 141–143
edge connector breakout

board, 138
making own melodies, 146–148
Monk Makes speakers, 139–140
octaves, 148–150
8-ohm speaker, 133–134
playing a pitch, 153–154
potentiometer, 139
resetting attributes, 153
setting tempo, 151
setup, components, 138
wiring, micro:bit and speaker,

134–135

O
Octaves, 148–150
Online Python editor

binary file (.hex), 31
code window, 30
copy operation, 33
display.scroll() command, 30
hex file, 32
MicroPython editor, 28
Mu editor

check button, 36
code editor, 33
flash button, 35
save button, 35

Index

255

python source file (.py), 31
steps, 29
web browser and

access, 29

P, Q
Phonemes, 162–163, 165, 167–169
Pitch, 157–158
Punctuation, 162

R
Radios

configuration
assigning addresses, 196
defining groups, 196
selecting channel, 195
transmission power, 196

LED, remote control, 197–199
on and off, turning, 193
sending and receiving

messages, 194–195
wireless buggy

components, 200
design of, 205
line following buggy, 200–201
motor control pins, 203
writing code, 202–204

Read-Evaluate-Print–Loop (REPL)
with Mu

interactive shell, 37–38
Repl button, 37

with Tera Term

download, 212
installation, instructions

guides, 212–213
mbed serial port

driver, 212
new connection, 213
Serial Port Setup, 214–215
Terminal setup, 214
writing MicroPython code,

215, 217
Robotic voice, 161

S
Serial peripheral interface (SPI)

Adafruit Thermocouple
Amplifier MAX31855
breakout board, 96

assembled MAX31855 breakout
board, 98–99

master and slave
devices, 96

spi.init() function, 102
spi.read() function, 102
temperature, 101
Thermocouple Type-K glass

braid insulated-K, 97
Thermocouple Type-k glass

braid insulated stainless
steel tip, 97–98

wiring diagram, MAX31855
breakout board and
micro:bit, 99–101

Singing with phonemes, 168–169

Index

www.allitebooks.com

http://www.allitebooks.org

256

Speech library, speaker connection
lmtool, 165–167
mouth, 160
phonemes, 162–165
pins 0 and 1, 155–156
pitch, 157–158
punctuation, 162
robotic voice, 161
singing with phonemes,

168–169
speed, 159–160
stress markers, 167–168
text to speech conversion,

156–157
throat, 161
timbre, 157

Speed, 159–160
Starter kits

Kitronik, 12
online sellers, 11
parts, 11

Stress markers, 167–168

T
Throat, 161
Timbre, 157
Touch pins, 82–85

U, V
Universal Asynchronous Receiver-

Transmitter (UART), 103

W, X, Y, Z
Wired networks

basic micro:bit network
application, 191

buffering incoming data,
192–193

connecting two micro:bit
boards, 189–190

MicroPython
statements, 190

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Foreword
	CHAPTER 1
	Chapter 1: Getting Ready
	What Is the BBC micro:bit?
	What’s on the micro:bit?
	Buying a micro:bit
	Buying a Starter Kit
	Buying an Inventor’s Kit

	micro:bit Accessories
	Batteries and Battery Holders
	USB Cable
	Crocodile Clips

	Powering Your micro:bit
	Powering the micro:bit with Batteries
	Powering micro:bit with a USB
	Alternative Ways to Power the micro:bit
	MI:power Board
	Seenov Solar Battery

	Powered through the 3v Pin

	Creating Your First Program with Online Python Editor
	Coding with the Online Python Editor
	Coding with Mu

	Using REPL with Mu
	Summary

	CHAPTER 2
	Chapter 2: Working with Display and Images
	The micro:bit Built-In LED Display
	Turning LEDs On and Off
	Setting and Getting the Brightness of an LED
	Setting Brightness
	Getting Brightness

	Clearing the Display
	Turning the Display On and Off
	Using Built-in Images
	Creating Your Own Images
	Lists and Animations
	Custom Animation

	Summary

	CHAPTER 3
	Chapter 3: Working with Buttons
	Built-in Buttons
	Handling User Input with Buttons
	Button Is Pressed
	Button Was Pressed
	Button Presses

	Connecting External Buttons
	Momentary Pushbuttons
	Using External Buttons
	Connecting Buttons to GPIO

	Summary

	CHAPTER 4
	Chapter 4: Using Inputs and Outputs
	Edge Connector
	Using an Edge Connector Breakout Board
	Experimenting with I/O Pins
	Touch
	Analog Input and Output
	Digital Input and Output
	I2C (Inter-Integrated Circuit)
	SPI (Serial Peripheral Interface)
	UART (Universal Asynchronous Receiver-Transmitter)

	Summary

	CHAPTER 5
	Chapter 5: Using the Accelerometer and Compass
	Accelerometer
	Reading Acceleration
	Building a Spirit Level
	Calculating Overall Acceleration

	Gesture Detection
	Detecting the Current Gesture
	Getting Gesture History

	Compass
	Calibrating the Compass
	Reading Compass Values
	Getting Compass Heading

	Summary

	CHAPTER 6
	Chapter 6: Working with Music
	Connecting a Speaker
	Using Earphones
	Built-in Melodies
	Making Your Own Melodies
	Using Octave
	Beats
	Setting the Tempo
	Getting the Tempo
	Resetting Attributes
	Playing a Pitch

	Summary

	CHAPTER 7
	Chapter 7: Working with Speech
	Connecting a Speaker
	Timbre
	Pitch
	Speed
	Mouth
	Throat

	Example: Creating a Robotic Voice
	Punctuation
	Phonemes
	Using lmtool

	Stress Markers
	Singing with Phonemes

	Summary

	CHAPTER 8
	Chapter 8: Storing and Manipulating Files
	Creating a File
	Reading a File
	Writing Multiple Lines in a File
	Appending Text to a File
	Creating Files with a .py Extension
	Creating Your Own Libraries
	File Manipulation
	Listing Files
	Deleting Files
	Getting the Size of a File

	File Transfer with MicroFS
	Installing MicroFS
	Upgrading MicroFS
	List the Files on the micro:bit
	Copy a File from the micro:bit
	Copy a File to the micro:bit
	Deleting a File on the micro:bit

	Summary

	CHAPTER 9
	Chapter 9: Networks and Radios
	Building a Wired Network
	Buffering Incoming Data

	Using Radios
	Turning the Radio On and Off
	Sending and Receiving Messages
	Configuring Radio
	Selecting a Channel
	Defining Groups
	Assigning Addresses
	Transmission Power

	Remotely Controlling an LED
	Controlling the LED

	Building the Wireless Buggy
	Assembling the Line Following Buggy
	Writing the Code

	Summary

	APPENDIX.pdf
	Appendix A: Updating DAPLink Firmware and Using REPL with Tera Term
	DAPLink Firmware
	Updating DAPLink Firmware
	Maintenance Mode

	Using REPL with Tera Term
	Downloading mbed Serial Port Windows Driver
	Downloading Tera Term
	Configuring Tera Term
	Writing MicroPython Code on Tera Term

	Appendix B: Using micro:bit and micro:bit Blue Apps on Mobile Devices
	Using the micro:bit App
	Pairing with micro:bit
	Writing Code with micro:bit App
	Creating MicroPython Code with the micro:bit App

	Using the micro:bit Blue App
	Installing micro:bit Blue
	Entering Pairing Mode
	Pairing Your micro:bit with Your Android Phone or Tablet
	Using the App

	Index

