Beglnnlng
BBC micro:bit

A Practical Introduction to
micro:bit Development

Pradeeka Seneviratne

ﬁpl'ESE'
www.alTrteooks.com

http://www.allitebooks.org

Beginning BBC
micro:bit

A Practical Introduction to
micro:bit Development

Pradeeka Seneviratne

Apress’

Beginning BBC micro:bit: A Practical Introduction to micro:bit
Development

Pradeeka Seneviratne
Mulleriyawa, Sri Lanka

ISBN-13 (pbk): 978-1-4842-3359-7 ISBN-13 (electronic): 978-1-4842-3360-3
https://doi.org/10.1007/978-1-4842-3360-3

Library of Congress Control Number: 2018930256
Copyright © 2018 by Pradeeka Seneviratne

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Technical Reviewer: Michael Rimicans
Coordinating Editor: Jessica Vakili
Copy Editor: Kezia Endsley
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3359-7.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww . allitebooks.con

http://www.allitebooks.org

Table of Contents

About the AUhOrccccmmnnmmmmsmnmsssssssss s ssnn s ssnnnns ix
About the Technical REVIEWETcccccusssemmmssansmmsnsmsssnsssssnsssssnsssssnnsnns xi
FOreWOordcccuusseemmmssssnnnmmmssssnnmsssssnsnsssssssnnsessssnnnsessssnnnssssssnnnnsssssnnnnss Xiii
Chapter 1: Getting Ready........ccoiusuemmmmssssnnnmmsssssnnsmssssssnssssssssnsssssssnnsnss 1
What Is the BBC MICro:Dit?cccorerriiiniserinsssssese s 1
What’s on the miCro:bit?........covieinn s 3
Buying @ miCro:bitcceoerercerierre e 10
Buying a Starter Kit ..o 11
MICrO:Dit ACCESSONIEScveeerecercer e 15
Powering Your mMicro:Dit........oceoeeecnnesscs s 18
Powering the micro:bit with Batteries..........ccocvvvrinvennnesnnnsnnsessesesesenennes 19
Powering micro:bit with @ USB..........ccvvrirnnnininennserse s sessesaesees 21
Alternative Ways to Power the micro:bitccocvvevenircnsenncrceece e 24
Powered through the 3V Pin ... 27
Creating Your First Program with Online Python Editor...........ccoovrenreicrnccnne. 28
Coding with the Online Python Editorccocvevrrenmrnsnnsenesesesnsesesesenennes 28
Coding With MU ..o s 33
USING REPL With MU.......cccoviiiiinnniir e sees 36
1] 4= 7 38

iii

TABLE OF CONTENTS

Chapter 2: Working with Display and Imagesccucemrmmssssnnnsssssnnnns 39
The micro:bit Built-In LED DiSplayc.cccvievninvniennnnsncssesssessesesesessessessens 39
Turning LEDs On and Off........ccociiinininrnsnsenns s 41
Setting and Getting the Brightness of an LEDcccooeervennnenenencrenscnens 43
Clearing the DiSPlay.........ccuuereresernsessnesernsessssesessse s s ssssesessnnes 44
Turning the Display On and Off..........ccccvvrinnnninnnnnrnese s sesesaens 45
Using BUilt=in IMAJEScovvervirererirrerrerere s s e s s s e ssessessssessesneees 47
Creating YOUr OWN IMAQESccveevreverrerierereesessersessessssessessessssessessessesssssssesseses 50
Lists and ANIMALIoNScceoeeereecrrrcrereer e 54
Custom ANIMALIONcovveeeerererecr e 58
SUMMANY....eeiieerrcrere s s s e p e e 60
Chapter 3: Working with Buttonsc.cccccimnmnseemnnnnsssnsnmnsssssnmnsssnnns 61
BUIIt-iN BUIONS ..o 61
Handling User Input with BUttons.........c.ccocvinininnninsnsnse e 62
Connecting External BUHtONS.........cccoeviinninncnn e 66
Momentary PUShDULLONSccocieiiinrcr e 66
Using External BULLONScccoeerreneneser s 68
Connecting Buttons 10 GPIO..........coocvvenennserneserese s 70
SUMMAIY.c.veitiitr e s s e b e e e e s b e e e e e b s b e e e e naennes 73
Chapter 4: Using Inputs and Qutputs........cccecvniemmmnnssnnmnmnnssnnnmnsannn 75
010 e 0] 0 T (] R 75
Using an Edge Connector Breakout Board............cccccvvvernienennsernsenenesennnnes 76
Experimenting With 1/0 PiNS ..o 79
L0 1 SPRTR 82
Analog Input and QULPUL.........ccecririirrrr 85
Digital Input and QULPUL........cccccvirerrrrn e 87

iv

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

12C (Inter-Integrated CirCuit).........coovvrrririesnsnin e 90
SPI (Serial Peripheral INterface)covverrrereresrenseseseseresseses s 96
UART (Universal Asynchronous Receiver-Transmitter)ccccvvvererenerenne. 103
SUMMANY....ctiviertnerieese e r e s e e r e e nr e 107
Chapter 5: Using the Accelerometer and COMPAassccevusssnnnsrsssnnns 109
ACCEIBIOMELEN ... ———— 109
Reading ACCeIeration...........ccuvvcererceriensee s rerser e s ees 110
Building @ Spirit LEVEL.......cccccvveriererrsirere s sns s 114
Calculating Overall Acceleration............ccoveeererernsernnesessesess s 115
Gesture DEeCHionccccvvcrriererese s 116
Detecting the Current GESTUre........ccocecrecrncsre s 118
Getting Gesture Historycccvevevrrnieniens s sseenes 121
COMIPASS ..vverrererersersereeseressessessssessessessesessessessessssessessessssessessesssssssessesssssessnsessens 122
Calibrating the COMPASScccceererirernieninenire s s seens 123
Reading Compass ValUEScccoovvrvriniennnnne s sessssessesnens 124
Getting Compass Headingcoveveernnerennenenesenssesesese s sesse e sennes 126
SUMMANY....eieierieesenese e ne e e ne e e 131
Chapter 6: Working with MUSICcccciuusssmmmmmmssssnnnmssssssssssssssnsssssssnns 133
ConNECtiNg @ SPRAKEN.....ccvevrererrerererir s s s s se e saesas e s s sne s s e saesnens 133
L Tl T o] 10 T 141
BUIIt-IN MEIOTIESevecereeree e 143
Making Your OWn MelOTIeScovveerererereenerensesesesesesesessesessesessesesessesessenens 146
LT T J 0 7= SR 148
BBALScceeveerrre e e 150
Setting the TEMPO......ccoc e e 151
Getting the TEMPO.....cocveverrrere e nes 152

TABLE OF CONTENTS

Resetting AfrDULES ... 153
Playing @ PitCh.........ccoeerrereresere e 153
SUMMANY....ceiieeriresesese s se s sa s s s nensenenns 154
Chapter 7: Working with Speechccuscemmmisssenmnmnssssnsnmnssssssnmnssnnn 155
CoNNECING @ SPEAKENccerverrreriree s 155
L0110 157
Example: Creating @ RODOTIC VOICEcccevveverrerrererensensereseesessensessesessensensens 161
PUNCIUALION ... 162
PRONBIMES.....coecereeer e e e 162
SIrESS MANKEIScvreeerreerreeses e 167
Singing With PRONEMES........cccvevericernrcre s 168
SUMMAIY..c.eeiteirierere st s se s e sae e e e s e s aesa e e s e e aesae e e e naennees 169
Chapter 8: Storing and Manipulating Files.........ccceussemnnrmsssnnnnrsssanns 171
(=T LT o T S 171
Reading @ Fileccccoevriirirrrcr e 172
Writing Multiple Lines in @ File.......ccovovererernserreseseseressesesese e 174
Appending TeXt 10 @ File......ccocovvvnvrinrinrr s 175
Creating Files with @ .py EXtENSION..........ccoovermrivrinsesnenre e 176
Creating Your OWn LiDraries.......cccevvvrrrrerennsensense s sessessessessssessessessessssessessens 178
File Manipulationcoccvvrienininsinin e e s s s sseas 179
LiSting FIleS ...cccoeircrerese e 179
Deleting Files......cccvivrinrrirrrere e 180
Getting the Size 0f @ Fileccooeeeeecerrcre s 181
File Transfer with MICIOFSccooovviirercrncsreser s 181
Installing MICIOFS........c.cov v 181
Upgrading MICIOFS..........ccovvrierenrrrere e sae s sae e s e saesnes 182
SUMMAIY.c.veitetrerereseesere s ssesesesse e ssesessessess e e ssesaesaessssessesaesassensessesasssssensessens 187

vi

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 9: Networks and Radiosccccuriimssssssssssssssnnnsssssssssssssssnnnas 189
Building @ Wired NEIWOIKcovrvere ettt 189
Buffering Incoming Data...........cccooerrvrinininsninr e 192
UL T 2 1oL 193
Turning the Radio On and Off.........ccccccvvvvnnennns s 193
Sending and Receiving MeSSageS.........ccuvrererrererrnsessssesssssessssessssesssesessnnes 194
Configuring RAGIOcccvevrererrereriesersereresessese s s e sessessessesas e ssessesassessesaesnes 195
Remotely Controlling an LEDcccvvvverevenserseressssensessessesessessessessssessensens 197
Building the WireleSs BUggy.....c.coourrrrirennnmnsenesssensesesssssssessessessssessessens 200
SUMMAIY..c..citiiiire e s b e e s b e s ae b e e nne s 206
Appendix A: Updating DAPLink Firmware and Using REPL with
L= T [207
DAPLINK FIFMWAIEcoveeiiiiiirierssse s s sesnes 207
Updating DAPLINK FIrmWare..........ccccurniennnnsnesnesnsessessessssessessessssessessesnes 208
Maintenance MOdE.........oocoreereecrree e 209
Using REPL With TEra TEIMcccovvcererecresersscsese e seenes 211
Downloading mbed Serial Port Windows Drivercccccovnenenesmnnsesenenens 212
Downloading Tera TEIMcccvcvierenninsene s s ssessessssessessens 212
Configuring TEra TEIM.....coccvverrerererrersere e ses e e s s ssesas e ssesaesaesesesaesaes 213
Writing MicroPython Code on Tera TEerM......c.cceeeveerersersereressessessessssessessessens 215
Appendix B: Using micro:bit and micro:bit Blue Apps on
Mobile DEVICESccurrssanssssanssssanssssansssssnsssssnsssssnsssssnnssssnnssssnnssssnnssssns 219
Using the micro:bit APP.....ccoe i s 219
Pairing with MiCro:Ditccovvrirernirr e 220
Writing Code with micro:bit APP....c.cvevevrvrire e 228

vii

TABLE OF CONTENTS

Using the micro:bit BIUE APP.....ccccrrerncrrre s 240
Installing micro:bit BIUE........cccvevemreeerrccrrcrere s 240
Entering Pairing Mode..........ccocvorvernncnenenernsesese s s sessenens 241
Pairing Your micro:bit with Your Android Phone or Tablet...........c.ccocvceriernens 241
USING The APP ceereirrr e e e e s 244

INA@X.ciiiisssnnnnnnnnnnnnsssssssnnnnnnnnmsssssssssnnnnnnnnssssssssnnnnnnnnsnsssssssnnnnnnnnnsssssnnn 251
viii

www.allitebooks.cond

http://www.allitebooks.org

About the Author

Pradeeka Seneviratne is a software engineer with over 10 years of
experience in computer programming and systems design. He is an
expert in the development of Arduino and Raspberry Pi-based embedded
systems and is currently a full-time embedded software engineer working
with embedded systems and highly scalable technologies. Previously,
Pradeeka worked as a software engineer for several IT infrastructure and
technology servicing companies.

He collaborated with the Outernet (free data, forever) project as a
volunteer hardware and software tester for Lighthouse and Raspberry
Pi-based DIY Outernet receivers based on Ku band satellite frequencies.
Pradeeka is the author of Building Arduino PLCs, Internet of Things with
Arduino Blueprints, IoT: Building Arduino-Based Projects, and Raspberry Pi
3 Projects for Java Programmers.

ix

About the Technical Reviewer

Michael Rimicans has been tinkering with the micro:bit since its release
and has enjoyed making cool things. He is also a STEM ambassador and
CodeClub volunteer. He can normally be found at @heeedt on Twitter.

vww . allitebooks.con

http://www.allitebooks.org

Foreword

How can educators and education systems prepare children for an
uncertain future job market?
That'’s the challenge that the BBC chose to take on, back in 2012.

In the UK the BBC not only produces great TV and radio content,
the BBC Learning department also plays an important role in providing
curricula linked educational content and support for UK school children
and learners of all ages. The introduction of the BBC micro computer in
the 80s had a profound and transformational impact on the IT sector in the
UK that is still felt to this day, and the BBC saw that an updated initiative
could have a similarly transformational impact for the current generation
of young learners.

A bold and ambitious plan was drawn up and the BBC micro:bit
project was born!

This project culminated in 2016 when the BBC and a partnership of
30 organisations (including ARM, Samsung and Microsoft) distributed 1
million BBC micro:bit mini computers into high schools in the UK. Then
in October 2016 the Micro:bit Educational Foundation was formed to take
on micro:bit and bring it to a global audience. The coding revolution had
begun!

The BBC micro:bit is a small programmable device. Its a mixture
between a very small computer and a programmable embedded board. It
is easy to program, very versatile, and designed with young learners in
mind. In particular it is designed to be easy to get started with for people
who have never programmed before.

xiii

FOREWORD

The success of BBC micro:bit in the UK (and a fast growing number
of other countries around the world) is not just down to the innovative
hardware device though. It’s the micro:bit ecosystem that makes micro:bit
such a great tool for educators, children and anyone interested in using
tech in inventive and fun ways! Our ecosystem consists of the hardware, a
thriving market for peripherals and add ones, an ever growing library of
great books (including this one) and our great code editors. There is also
over 1000 amazing projects, lessons and fun ideas that are freely available
online as well as vibrant communities of enthusiasts. The Micro:bit
Educational Foundation is here to support and develop the ecosystem.

But the most important component of our ecosystem are the people
that use it.

So, thank you for picking up this book. We at the Micro:bit Educational
Foundation wish you good luck on your micro:bit journey!

Sincerely
—The Micro:bit Educational Foundation

Please note that this book is not an official or certified publication of the Micro:bit
Educational Foundation.

Xiv

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1

Getting Ready

Welcome to the exciting world of building projects with BBC micro:bit!
First, this chapter introduces the micro:bit and provides a shopping guide
for micro:bit and its accessories, including starter kits and inventor’s

kits. Then you will learn how to power the micro:bit board using various
powering options. The most interesting part of this chapter is when you
write your first code for the micro:bit with the online Python editor, and
the Mu editor. You will also learn how to flash a program to the micro:bit
and run it. The latter part of the chapter introduces working with REPL
(Read-Evaluate-Print-Loop) using the Mu editor to run code line-by-line
without flashing the complete program to the micro:bit.

What Is the BBC micro:hit?

The micro:bit (see Figure 1-1) is a pocket-sized microcontroller board
designed by the BBC for use in computer education in the UK. It is part

of the BBC’s “Make It Digital” campaign (see http://www.bbc.co.uk/
makeitdigital) and is becoming increasingly popular with people around
the world.

© Pradeeka Seneviratne 2018 1
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_1

CHAPTER 1 GETTING READY

Figure 1-1. The BBC micro:bit in use (image courtesy of the micro:bit
Foundation)

It is the successor of the BBC micro (see Figure 1-2), which was
introduced in 1980s. You can read more about the BBC micro by visiting
https://en.wikipedia.org/wiki/BBC_Micro.

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 GETTING READY

Figure 1-2. BBC micro from the 1980s (source: https://
en.wikipedia.org/wiki/BBC Micro)

What’s on the micro:bit?

Before you start coding with the micro:bit, you should familiarize yourself
with the key features of the board.

Figure 1-3 shows the front of the micro:bit board. The board has one
of four color schemes, and you don’t know which color you will get when
purchasing a board.

CHAPTER 1 GETTING READY

amn

amn

e e — e e e S o—

IIJ-I ¥R W amy aEnx

Figure 1-3. Front view of the micro:bit board (image courtesy of Kitronik)

The front of the micro:bit board is designed to interact with the user by
exposing the following components, as labeled on Figure 1-3:

1. The buttons: There are two momentary pushbuttons
labeled A and B that allow you to directly interact
with your programs. You can configure them to
control a game or pause and skip songs on a playlist,
for example.

2. Display: The display consists of 25 surface-mounted
red LEDs arranged as a 5x5 grid that allow you to
display text, images, and animations. The display
can be used as an ambient light sensor too.

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 GETTING READY

3. Edge connector: The total of 25 pins on the edge
connector allow you to connect various sensors
and actuators, access I/0 lines, and connect to
power and ground. They include an LED matrix,
two pushbuttons, an 12C bus, and a SPI. The 0, 1, 2,
3V, and GND pins are exposed as ring connectors,
which allow you to easily connect crocodile or
banana clips. The 0, 1, and 2 pins are specialized
for capacitive sensing. All the pins can be accessed
with the Kitronik edge connector breakout board
(see Figure 1-4) or the SparkFun micro:bit breakout
board (see Figure 1-5) .

Figure 1-4. Kitronik edge connector breakout board (image courtesy
of Kitronik: https://www.kitronik.co.uk/5601b-edge-connector-
breakout-board-for-bbc-microbit-pre-built.html)

CHAPTER 1 GETTING READY

Figure 1-5. SparkFun micro:bit breakout (image courtesy
of SparkFun Electronics: https ://www. sparkfun.com/
products/13989)

Figure 1-6 shows the pinout of the micro:bit edge connector. You will
learn in detail about the micro:bit edge connector and how to work with it
in Chapter 4, “Using Inputs and Outputs”.

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 GETTING READY

o LEDCol1 HawoswHIT)

Figure 1-6. The micro:bit pinout (image courtesy of micro:bit
Foundation)

The back of the board (see Figure 1-7) consists of a host of electronic
components and hardware.

CHAPTER 1 GETTING READY

' -y
s rumg v g peng ra N

Figure 1-7. Back view of the micro:bit board (image courtesy of
Kitronik)

The following list explains the most important things that can be found
on the back of the board, as numbered in Figure 1-7:

1. Processor (Nordic nRF51822): 16MHz 32-bit ARM
Cortex-M0 CPU, 256KB flash memory, 16KB Static
RAM (https://developer.arm.com/products/
processors/cortex-m/cortex-mo), with 2.4GHz
Bluetooth low energy wireless networking, which
allows you to pair the micro:bit with Bluetooth
enabled mobile devices running Android and iOS.

vww . allitebooks.con

http://www.allitebooks.org

10.

CHAPTER 1 GETTING READY

Compass (NXP/Freescale MAG3110): Allows you to
measure magnetic field strength in each of three

axes.

Accelerometer (NXP/Freescale MMAB8652): Allows
you to measure the acceleration and movement
along three axes.

USB controller (NXP/Freescale KL26Z): 48MHz ARM
Cortex-MO0+ core microcontroller, which includes

a full-speed USB 2.0 On-The-Go (OTG) controller,
used as a communication interface between the
USB and the main Nordic microcontroller.

Micro USB connector: Allows you to connect the
micro:bit board with a computer for flashing codes
or power it with 5V USB power.

Bluetooth smart antenna: A printed antenna that
transmits Bluetooth signals in the 2.4GHz band.

RESET button: Allows you to reset the micro:bit and
restart the currently running program or bring the
micro:bit into maintenance mode.

Battery connector/socket: Allows you to power the
micro:bit board with 2 AAA batteries.

System LED: The yellow color LED indicates USB
power (solid) and data transfer (flashing). It doesn’t
indicate the battery power.

Edge connector: Includes 21 pins

CHAPTER 1 GETTING READY

Buying a micro:bit

A single micro:bit board (see Figure 1-8) is more than enough to build
most of the applications that you can imagine, but if you're planning to
build the peer-to-peer and radio networks that we will be discussing in this
book, you need at least two micro:bit boards.

micro:bit (Board Only)
- Retail Pack

micro:bit (Board Only)

Figure 1-8. micro:bit board only

You can buy micro:bit boards from various local and online sellers.
Table 1-1 shows a list of online sellers that typically stock the micro:bit
along with the product name and product page. These sellers usually
ship the micro:bit to any country in the world. However, contact the seller
before ordering to verify if there are any shipping restrictions to your
country.

10

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 GETTING READY

Table 1-1. Where to Buy the micro:bit

Vendor Product Name Product Page
Kitronik BBC micro:bit (board https://www.kitronik.co.uk/5613-
only) bbc-microbit-board-only.html
BBC micro:bit (board https://www.kitronik.co.uk/5614-
only), retail pack bbc-microbit-board-only-retail-
pack.html
SparkFun micro:bit board https://www.sparkfun.com/
Electronics products/14208
Adafruit BBC micro:bit https://www.adafruit.com/
Industries product/3530
Pimoroni micro:bit only https://shop.pimoroni.com/
products/microbit
Seeed Studios micro:bit https://www.seeedstudio.com/

Micro%3ABit-p-2886.html

Buying a Starter Kit

Starter kits usually provide everything you need to connect the micro:bit to
your computer and power it with batteries. A starter kit typically includes
following parts:

¢ The micro:bit

e A micro USB cable

e Battery holder

e Two AAA batteries (optional)

Table 1-2 shows a list of online sellers that offer starter kits at
competitive prices.

11

CHAPTER 1 GETTING READY

Table 1-2. Where to Buy the Starter Kits

Vendor Product Page

Kitronik https://www.kitronik.co.uk/5615-bbc-microbit-
starter-kit.html

PiHut https://thepihut.com/products/micro-bit-starter-kit
Pi Supply https://www.pi-supply.com/product/microbit-go/

Figure 1-9 shows the BBC micro:bit starter kit by Kitronik
(https://www.kitronik.co.uk).

Figure 1-9. BBC micro:bit Starter Kit by Kitronik: (a) micro:bit
(b) micro USB cable (c) battery holder (d) two AAA batteries. Image
courtesy of Kitronik (https://www.kitronik.co.uk)

12

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 GETTING READY

Buying an Inventor’s Kit

Inventor’s kits provide a host of things you need to start building most of
the basic to advanced projects in the micro:bit. Table 1-3 shows some of
the inventor’s kits that were available at the time of this writing.

Table 1-3. Where to Buy Inventor’s Kits

Vendor Product Name Product Page
Kitronik Inventor’s kit for the BBC https://www.kitronik.
micro:bit co.uk/5603-inventors-kit-for-
the-bbc-microbit.html
BBC micro:bit with https://www.kitronik.
inventor’s kit and co.uk/5618-bbc-microbit-with-
accessories inventors-kit-and-accessories.
html
SparkFun SparkFun inventor's kit https://www.sparkfun.com/
Electronics for micro:bit products/14300

Seeed Studio Grove inventor kit for https://www.seeedstudio.
micro:bit com/Grove-Inventor-Kit-for-
micro%3Abit-p-2891.html

Figure 1-10 shows the Kitronik inventor’s kit for the BBC micro:bit. The
kit includes the following components.

e Perspex mounting plate

o Potentiometer and finger adjust spindle
e Plastic spacers 10mm (2)

o Sticky fixer for battery pack

e Small prototype breadboard

13

CHAPTER 1

14

GETTING READY

Terminal connector

Push switches (4)

Motor

Transistor

Red 5mm LEDs (2)

Orange 5mm LEDs (2)

Yellow 5mm LEDs (2)

Green 5mm LEDs (2)

RGB 5mm LED

Fan blade

2.2KQ resistors (5)

10KQ resistors (5)

47Q resistors (5)

Edge connector breakout board for BBC micro:bit
Miniature LDR

Male to male jumper wires (10)
Male to female jumper wires (10)
Self-adhesive rubber feet (4)
470uF electrolytic capacitor
Piezo element buzzer

Pan head M3 machine screw (4)

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 GETTING READY

Figure 1-10. Kitronik inventor’s kit for the BBC micro:bit (image
courtesy of Kitronik)

micro:bit Accessories

If you don’t have a micro:bit starter kit or an inventor’s kit, you should
prepare the following accessories and connect the micro:bit to a computer
and then use the micro:bit with battery power.

15

CHAPTER 1 GETTING READY

Batteries and Battery Holders

You need two Zinc Carbon or Alkaline batteries to power the micro:bit.
Kitronik stocks a good quality battery case for two AAA batteries.

The AAA battery cage with JST connector (see Figure 1-11) from
Kitronik has color-coded power leads and a JST connector. You can
purchase a battery holder by visiting https://www.kitronik.co.uk/2271-
2xaaa-battery-cage-with-jst-connector.html. If you are planning to
build the peer-to-peer and radio networks with micro:bit that we discuss in
Chapter 9, you should purchase two battery holders.

Figure 1-11. AAA battery cage with JST connector (image courtesy of
Kitronik)

16

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 GETTING READY

USB Cable

You need a Type-A to Micro-B USB cable (see Figure 1-12) to connect

the micro:bit to a computer. This is the same cable usually bundled with
many mobile phones and some consumer products. You can purchase a
1m USB Type-A to Micro-B USB Noodle Cable at https://www.kitronik.
co.uk/4154-1m-usb-type-a-to-micro-b-usb-noodle-cable.html.

N

Figure 1-12. Type-A to Micro-B USB cable (image courtesy of
Kitronik)

17

CHAPTER 1 GETTING READY

Crocodile Clips

You will need a few crocodile clips (see Figure 1-13) to build prototypes
without soldering wires with ring connectors of the edge connector. It is
not wise to use crocodile clips with small connectors. The wire can be
secured with the two side notches located at the back of the clip.

a)

Figure 1-13. A crocodile clip (image courtesy of Kitronik:
https://www.kitronik.co.uk/2470-28mm-crocodile-clips-
pack-of-50.html)

Powering Your micro:bit

The micro:bit is powered by 3.3v. This can be provided by suitable batteries
connected via the battery connector or via the USB connector. The USB
controller chip will automatically convert the 5v to 3.3v. It can also be
powered via the 3v pad on the edge connector but this may not be suitable
for beginners.

18

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 GETTING READY

Note The micro:bit can also be powered via the 3v pad on the edge
connector, but this may not be suitable for beginners.

Powering the micro:bit with Batteries

Powering the micro:bit with two AAA batteries is the easiest way to get
started and to see how it works. You need the following components to
power the micro:bit with batteries:

e Two AAA Zinc Carbon or Alkaline batteries (use the
same types of batteries without mixing them)

e AAA battery case with a wire and clip
Follow these steps to power the micro:bit with batteries:

1. First, insert the two batteries into the battery case
in the correct orientation. Then, connect the
JST connector of the battery case to the battery
connector of the micro:bit firmly without forcing
it (see Figure 1-14). The JST connector will only
connect one way with the battery connector.

19

CHAPTER 1 GETTING READY

Figure 1-14. Connecting JST connector to battery connector

20

www.allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 GETTING READY

2. When you power the micro:bit the very first time, a
pre-loaded demo program will automatically run
on the micro:bit. This program will show you how
to use the screen for displaying text and images,
use the two built-in buttons, interact with the
accelerometer, and play games.

Note When you flash a new program to the micro:bit, the demo
program is erased. However, you can flash it again by downloading
the demo program at https://support.microbit.org/
helpdesk/attachments/19002943122 or from the source code
archive of this book (visit source codes » chapter1 » BBC-MicroBit-
First-Experience-1460979530935 . hex).

Powering micro:bit with a USB

You need one of the following components to power the micro:bit with

USB power:
e Computer
o USB battery pack
o USB power adapter

Follow these steps to power the micro:bit with USB power using a

computer:

1. Connect the Micro-B connecter of the USB cable to
the Micro-B socket of the micro:bit (see Figure 1-15).

21

CHAPTER 1 GETTING READY

Micro-B socket

Micro-B connector

Figure 1-15. Connecting the Micro-B connector to the Micro-B
socket

22

www.allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 GETTING READY

2. Then, connect the Type-A connector of the USB

cable to the USB port of your computer (see
Figure 1-16).

Figure 1-16. Connecting the Type-A connector to a USB port (image
courtesy of Micro:bit Foundation)

3. The system LED (see Figure 1-17) on the back of the
micro:bit will light up in yellow. This indicates the
presence of USB power.

23

CHAPTER 1 GETTING READY

' -y pmy Py g
TRy PR pEmg Ay

Figure 1-17. System LED indicates the presence of USB power (image
courtesy of Kitronik)

Alternative Ways to Power the micro:bit

The micro:bit can be powered with some specially designed power sources
as well. For example, the MI:power board can supply 3V through the 3V
pin of the micro:bit board and the Seenov solar battery can supply 5V
through the micro USB port of the micro:bit board.

MIl:power Board

The MI:power board (see Figure 1-18) allows you to build compact
prototypes without using a bulky battery holder. This is great when you are

24

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 GETTING READY

building wearable, portable, and handheld devices with micro:bit because
it uses the same footprint of the micro:bit, and it is lightweight of course.

It has a 3V coin cell, a power on/off switch, and an integrated buzzer

that helps you use it as an audio output. You can read more technical
information about the MI:power board by visiting https://www.kitronik.
co.uk/5610-mipower-board-for-the-bbc-microbit.html.

Figure 1-18. MI:power board (image courtesy of Kitronik)

Seenov Solar Battery

The Seenov solar battery (see Figure 1-19) is an ideal solution to power
your micro:bit with solar power. Once you have completely charged the
solar battery with a solar panel or USB, it can power the micro:bit for five

25

CHAPTER 1 GETTING READY

days or more. The charger board can be purchased with or without the
solar panel of your choice. Here are the product links.

e Charger board only: https://www.seenov.com/
product/11/

o Charger board with solar panels: https://www.seenov.
com/product/solar-battery-bbc-microbit-wo-
solar-panel/

Charger board
ith solar battery

Figure 1-19. Seenov Solar Battery (image courtesy of Seenov)

26

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 GETTING READY

Powered through the 3v Pin

The micro:bit can be powered through the 3v pin on the edge connector.
You should apply a suitable protection, like a voltage regulator, to protect
the micro:bit.

For example, you can use a 3.7v LiPo battery to power the micro:bit
through a 3.3v voltage regulator. The MCP1702 can output regulated 3.3v
with an input voltage range from 2.7V to 13.2V. Here is a list of all the parts
needed to build the circuit.

e 3.7vLiPo battery (https://www.sparkfun.com/
products/13813)

e MCP1702-3302E/TO voltage regulator (http://
uk.farnell.com/microchip/mcp1702-3302e-to/ic-v-
reg-1do-250ma-to-92-3/dp/1331485)

e 1uF ceramic capacitors (2)

Figure 1-20 shows the circuit and Figure 1-21 shows the wiring diagram
for the power supply.

IN ouT

GND

¥ P

m 1 Bl icro:bit GND

Figure 1-20. 3.3v regulator circuit with MCP1702 voltage
regulator

27

CHAPTER 1 GETTING READY

Fsoga '

LiPo battery

g
8
':’
S
P

0zg

+
-
1=}
(=]
=}
=
5
o
2

IQ“"QIII"QHII.QII"

50
LR L

= il

fritzing

Figure 1-21. Wiring diagram for MCP1702 3.3v voltage
regulator

Creating Your First Program with Online
Python Editor

The version of Python that runs on the BBC micro:bit is called
MicroPython. It is designed to run on small microcontroller boards like
micro:bit.

Coding with the Online Python Editor

You can use the online Python editor hosted at http://python.microbit.
org/editor.html to write MicroPython code for micro:bit and get the
binary file of the code for flashing. Here is what you will need to write to
execute the MicroPython program.

e A micro:bit
e USB Type-A to Micro-B cable

e Any modern computer with a USB port and an up to
date browser

e An Internet connection

28

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 GETTING READY

The following steps guide you on how to write your first program for
micro:bit with the online Python editor.

1. Connect the micro:bit to your computer using a USB
cable.

2. Openyour favorite web browser and access the
online Python editor at http://python.microbit.
org/editor.html# (see Figure 1-22).

-
2
3
4
5
()
7
B

Figure 1-22. Online Python editor

3. Delete the default program’s lines and type the
program into the editor, as shown in Listing 1-1.

Listing 1-1. Displaying and scrolling text
from microbit import *

display.scroll("Hello World!", delay=150, loop=True)

29

CHAPTER 1 GETTING READY

4. Figure 1-23 shows the code window.

Figure 1-23. The ‘Hello World' code on the code editor

5. The firstline loads all the code required to allow you
to program the micro:bit with MicroPython.

6. The display.scroll() command tells MicroPython
to use the scroll part of the display command to
scroll the message provided on the LED display.

7. The delay parameter controls how fast the text is
scrolling. delay=150 tells MicroPython to use 150
milliseconds (0.15 seconds) to control the speed of
scrolling. (Recall that 1000 milliseconds is 1 second.)

8. loop=True tells MicroPython to repeat the
animation forever.

9. Type the file name Listing 1-1 in the Filename box and
click the Save button to save the Python source code to
your computer as a .py file (see Figure 1-24). By default,
the source code file will download and save on your
computer’s Downloads folder. The editor will automatically
replace any spaces in the file name with underscores.
Therefore, you will get a file named Listing_1-1.py.

30

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 GETTING READY

Listing 1-1

1 from microbit import *

3 display.scroll("Hellc World!", delay=152, loop=True)

Figure 1-24. Saving the python source file (.py)

10. Click the Download button to download the
Listing_1-1.hex file of your code, which is a

binary file to your computer (see Figure 1-25).
For Windows and the Mac, the default download
location is the Downloads folder.

Listing 1-1

1 from microbit import *

3 display.scroll("Hello World!", delay=152, loop=Truc)
4

Figure 1-25. Downloading/saving the binary file (.hex)

11. When you connect the micro:bit to a Windows or
Mac, the computer recognizes the internal storage
of the micro:bit as a removable disk and it appears
as MICROBIT. If you are using Windows, the micro:bit
drive can be found under Devices and Drives and

for the Mac, it can be found under Devices.

Note Notice that the capacity of the micro:bit drive is about 8MB
and the file system is FAT. As a best practice, eject the drive from the
operating system before unplugging it from the computer.

31

CHAPTER 1 GETTING READY

12. Drag and drop (or copy and paste) the downloaded
Listing 1-1.hex file from the Downloads folder to the
micro:bit drive (see Figure 1-26). The LED on the
back of your micro:bit flashes during the transfer,
which only takes a few seconds. Once the flashing
stops, your code is uploaded.

Note It may also be worth noting that the browser may ask you
where to save the .hex file. If it does, save the file directly onto the

micro:bit.

sl[2ui=1 Downloads

“ Home Share View
FH select an

y] % cut h }) x [,i_i l 1 New item + A [+]Open >
. g 4 £ Easy access - o Edit Select none

< [Copy path
t Move Copy Delete Rename New Froperties
¥ - -

Copy Paste o
7] Paste shortcut o= o folder i History o Invert selection

€ « 4 s » ThisPC » Downloads v €& Sesrch Downloads 2

~ (s
& OneDrive Mame

'% Hemegroup
Ml Pradecka Seneviratne

1™ This PC
e Desktop
! Documents
& Downloads _| Listing 1-1.hex 12/31/2017 228 AN
b Music
£ Pictures
B Videos
i Local Disk [C:)
Ca Local Disk (D)
ca Local Disk (E:)

Drag and drop

€l Network
>

376 tems 1#tem selected 851 KB

Figure 1-26. Copying a .hex file to the micro:bit

32

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 GETTING READY

Note Once your .hex file has been used to program the micro:bit, it
will be removed automatically from the drive.

13. The program automatically starts once the copy
operation is completed. If your program doesn’t
start after flashing the .hex file, press the RESET
button to start it.

Note When the yellow LED stops flashing, the micro:bit will restart
and your code will run. If there is an error, you will see a helpful
message scroll across the device’s display.

Coding with Mu

Mu is one of the easiest Python editors you can use to write MicroPython
programs for micro:bit. It is a cross-platform editor that works on
Windows, OSX, Linux, and Raspberry Pi. The main advantage of Mu is
that it includes REPL, which allows you to run codes line by line without
flashing the complete program to the micro:bit.

The Mu editor can be downloaded at https://codewith.mu/ for
Windows, OSX, Linux, and Raspberry Pi. For Windows, you get an
executable file that can run directly without being installed on the
operating system. At the time of this writing, the latest version of Mu
for Windows was 0.9.13. You can also directly download it from
https://github.com/mu-editor/mu/releases/download/v0.9.13/
mu-0.9.13.win.exe.

When you run the downloaded Mu executable file (mu-x.x.xx.win.exe),
you will get the Mu code editor shown in Figure 1-27.

33

CHAPTER 1 GETTING READY

i [

Fies Zwomin Zeomeout

H)@) (6@ @) (@)(a)(e) @) () (o

1 [from microbit import »
H
3 7 Write your code here :-)

Figure 1-27. Mu code editor

1. Write the MicroPython code shown in Listing 1-2
using the Mu editor.

Listing 1-2. Displaying and scrolling text

from microbit import *

display.scroll("Hello World!", delay=150, loop=True)

2. Once you have done this, you can save the
MicroPython source code as a .py file to the
computer using the Save button in the toolbar
(see Figure 1-28).

34

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 GETTING READY

)22 @@ (@) (@) (¢) &)/
m@f lﬁ; Save m& Files mu gw; ﬁ@eﬁ %a! aam ﬁ
!-mm'ﬂ]

from microbit import *

1

2

3 display.scroll("Hello World!", delay=158, loop=True)
4

Figure 1-28. The Save button

3. You can also directly flash the binary (the .hex file)
to the micro:bit using the Flash button in the toolbar
(see Figure 1-29).

New

| wntted =@ |

1 from microbit 1mport *
2

3 display.scroll("Hello World!", delay=150, loop=True)
4

Figure 1-29. The Flash button
4. The Check button can be used to check the code

for errors before flashing it to the micro:bit (see
Figure 1-30).

35

CHAPTER 1 GETTING READY

+ (&) (&) (S)B @) (@ Q) 6 |-) -

untitled = £

from microbit import

1
2
3 display.scroll("Hello World!", delay=150, loop=True)
4
Figure 1-30. The Check button

Using REPL with Mu

As mentioned, you can use Mu to run code line by line without flashing the
complete program to the micro:bit. This is known as REPL (Read-Evaluate-
Print-Loop).

For the REPL to work with Windows, you should install the mbed
Windows serial port driver. The driver can be downloaded from https://
developer.mbed.org/handbook/Windows-serial-configuration.

Run the code listed in Listing 1-3 with REPL.

Listing 1-3. Using REPL to execute code on micro:bit
from microbit import *
display.scroll(“Hello from Mu REPL”, delay=150, loop=True)
1. Before using the REPL interface, an empty
MicroPython code must be flashed onto the

microbit. This can be done by first clicking the New
button followed by the Flash button on the toolbar.

2. Then click the Repl button on the toolbar to open an
interactive shell (see Figure 1-31).

36

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 GETTING READY

+ 2 X S EB@=|a Q&) -

Repl Zoom-in Zoom-out Theme Check

Figure 1-31. The Repl button

3. Type the first line of the program, from microbit
import *, and press Enter (see Figure 1-32).

- Mu - olEN
+)(2)(&) (& @)(@)(c) (w)(?)(
New Load Flach Fles Repl Zoom-n Zoom-out Theme Check Help Quit
untited B3

MNigroPytflon v1.7-9-ghbed20eb fon 2016-64-18; micro:bit with nRF51822
Tybe "Welp()" for more infgfmation.

»>>> from microbit import =/

>>>

Figure 1-32. Writing on the interactive shell
4. Then type the second line, display.scroll("Hello

from Mu REPL", delay=150, loop=True), and
press Enter again (see Figure 1-33).

37

CHAPTER 1 GETTING READY

- Mu - olEN
+)(2)(&) (S Q)Q)¢)(d)(?)O
New Load Save Flach Flies Repl Zoom-n Zoom-out Theme Check Help Quit
wntited (3

Microffrthon v1.7-9-ghe®2feb on 2016-84-18; micro:bit with nKRF51822
Type Phelp()" for more information.

>>> from micrebit Amport #

>>> display.scroll("Hello from Mu REPL", delay=150, loop=True)

Figure 1-33. Writing on the interactive shell

5. TheHello from Mu REPL text will continually scroll
across the micro:bit LED screen.

Summary

Now you know how to set up your development environment with
micro:bit and code your micro:bit with online Python editor and the
Mu Editor. You also learned how to use REPL with the Mu editor to run
MicroPython code line-by-line without flashing the complete program to
the micro:bit.

The next chapter introduces how to display images and build
animations on the micro:bit display.

38

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2

Working with Display
and Images

By now, you should be fairly comfortable with the basics of micro:bit.
You've learned how to set up the development environment and write
simple code with the online Python editor and the Mu editor.

In this chapter, you learn about the micro:bit built-in LED screen.
You'll see how to turn LEDs on and off in the micro:bit display and control
the brightness of the LEDs. Then you'll learn how to turn the LED screen
on and off in order to use the GPIO pins associated with the LED screen.
After that, you learn how to display the built-in images and image lists and
create your own images and image lists. Finally, you'll see how to create
animations with built-in image lists and your own image lists.

The micro:bit Built-In LED Display

micro:bit is great for building things that need a visual output. You can do
this by using the built-in LED display on the front of the board. The built-in
display consists of 25 red LEDs arranged as a 5x5 grid. You can display text,
images, and animations with these 25 LEDs, thereby making your project
more interactive and providing a richer user experience.

© Pradeeka Seneviratne 2018 39
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_2

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

You can use the x and y coordinates to specify the location of a LED in
the grid. Figure 2-1 shows the column and row numbers associated with
the LED grid. You can read the column numbers (0 to 5) along the x axis
and the row numbers (0 to 5) along the y axis.

I:
|4=-

amn
imn

amn
. 8 N N N N N |

imy amn
Fl -

amx
“En

imx
Jmn

Figure 2-1. Built-in LED display consists of columns and rows

40

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

The address of a LED can be written using the associated column and
row number. When creating code, you start your counts at 0, hence five
LEDs will be addressed as 0, 1, 2, 3, and 4. As an example, Figure 2-2 shows
an LED on the display located at the address (3, 2), where 3 is the column
number and 2 is the row number.

Figure 2-2. LED located at the address column 3 and row 2 (3, 2)

Turning LEDs On and Off

This section starts with a simple example and shows you how to turn an
LED on and off in the LED screen. The code shown in Listing 2-1 blinks the
LED located in address (3,2).

41

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES
Listing 2-1. Turning an LED On and Off
from microbit import *

while True:
display.set pixel(3, 2, 9) # turn on the LED
sleep(1000) # wait for 1 second
display.set pixel(3, 2, 0) # turn off the LED
sleep(1000) # wait for 1 second

The while True statement helps you iterate the block of statements
underneath it as an infinite loop. The display.set pixel() function
allows you to tell the MicroPython where the LED is located in the LED
screen, using x and y. The first parameter takes the column number and
the second parameter takes the row number. The third parameter is set
to 9 to turn on the LED and 0 to turn off the LED. You will learn about the
third parameter of the display.set pixel() function in the next section.
The MicroPython code will turn on the LED for one second and turn off
the LED for one second. This sequence will continue and you can see a
blinking effect.

Note Python uses indentation to mark blocks of code. You should
indent each line of the block by the same amount. You can use the
Tab key on your keyboard to insert the same amount of indentation.

while True:
[TAB]display.set pixel(3, 2, 9)

42

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

Setting and Getting the Brightness of an LED

Controlling the brightness of an image is a key factor of graphics and
multimedia. In micro:bit, you can set or get the brightness level of any
LED in the grid. This is done through the third parameter of the display.
set_pixel() function.

Setting Brightness

The third parameter of the display.set pixel() function accepts a
brightness level for the LED between 0-9, where 0 indicates minimum
brightness (LED is off) and 9 indicates maximum brightness.

Listing 2-2 shows the code that sets the brightness level of the LED
located in column 3 and row 2 to 5.

Listing 2-2. Setting LED Brightness
from microbit import *

display.set pixel(3,2,5) # set the brightness level to 5

Getting Brightness

The display.get_pixel() function, on the other hand, returns the
brightness level of a given LED. Listing 2-3 shows the code that gets the
brightness level of the LED located in column 3 and row 2.

Listing 2-3. Getting LED Brightness
from microbit import *

display.set pixel(3,2,5) # first set the brightness level to 5
pixel brightness = display.get pixel(3,2) # then get the
current brightness level

display.scroll("brightness is: "+str(pixel brightness))

43

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

The micro:bit display will show the following output:

Brightness is: 5

Clearing the Display

The display.clear() function allows you to set the brightness level of all
LEDs to 0. This is helpful when you want to turn off all the LEDs at once
and clear the display.

Listing 2-4 shows the code used to clear the display, wait a few
seconds, and then turn on the display to full brightness.

Listing 2-4. Clearing the LED Display
from microbit import *

display.show('X")

sleep(5000) #wait for 5 seconds

display.clear() # set the brightness level of all the LEDs to 0

sleep(2000) #wait for 2 seconds

for x in range(0, 5):

for y in range(0, 5):

sleep(100) # slow down the code long enough for the
user to see the LEDs turn on and off in sequence
display.set pixel(x,y,9) # then set the brightness
level of all the LEDs to 9 using for loop

The for command can be used to create a loop, which will then run
the required code n amount of times.

The first for command will create a loop and run the code five times.
The number of times can be defined with the range() function. The
second for command, which resides inside the first for command, will
create another loop and execute the display.set_pixel() function

44

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

five times to turn on the LEDs. Brightness level 9 is used to turn
on LEDs at full brightness. So, these two for loops will execute the
display.set pixel() function 25 times for each LED.

Figure 2-3 shows the sequence of executing the two loops.

Figure 2-3. Execution of two for loops: x and y

Turning the Display On and Off

The display.off() function turns off the display and allows you to
use the GPIO pins (3, 4, 6, 7,9, and 10) associated with the display for
other purposes. As you can see in Figure 2-4, some of the GPIO pins are

45

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

connected to the LED display’s rows and/or columns, so if you want to use
them, you have to switch the display off. Otherwise, it will keep switching
the pins, and you will see unexpected display output, depending on what
the display shows.

| BUTTONB '_| E
llEi-J"'Ei

LED Col 8 }
_LED Col 9

BUTTONA
[_LED Col2 | ANALOGIN

[rovmio6 i JHIT S)

of LED Col1 H anawosin HIT)

Figure 2-4. GPIO pins 3,4, 6, 7, 9, and 10 are connecting to the LED
screen

You can turn on the display again by issuing the display.on()
function. This will bring the display back to the normal state. You can also
get the status of the display with the display.is_on() function. It returns
true if the display is on and false if the display is off.

46

www.allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

Listing 2-5 shows the code that turns off a display for a GPIO mode,
waits two seconds, and then turns it on again.

Listing 2-5. Turning the LED Display On and Off

from microbit import *
display.scroll("Turning display off")
sleep(100)
display.off() # turn off the display and goes to GPIO mode
sleep(5000)
display.on() # trun on the display
if display.is on():
display.scroll("Display back on")

Using Built-in Images

The MicroPython Image class offers 63 built-in images that are ready to use
with your code. Listing 2-6 presents the full list of built-in images that you
can use with the micro:bit.

Listing 2-6. Built-In Images

Image .HEART
Image.HEART_SMALL
Image.HAPPY
Image.SMILE
Image.SAD
Image.CONFUSED
Image.ANGRY
Image.ASLEEP
Image.SURPRISED
Image.SILLY
Image.FABULOUS

47

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

Image.MEH

Image.YES

Image.NO

Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,
Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5, Image.
CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1
Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E, Image.ARROW_SE,
Image.ARROW_S, Image.ARROW_SW, Image.ARROW_W, Image.ARROW_NW
Image.TRIANGLE

Image.TRIANGLE_LEFT

Image.CHESSBOARD

Image.DIAMOND

Image.DIAMOND_SMALL

Image.SQUARE

Image.SQUARE SMALL

Image.RABBIT

Image.COW

Image .MUSIC_CROTCHET

Image.MUSIC_QUAVER

Image .MUSIC_QUAVERS

Image.PITCHFORK

Image.XMAS

Image.PACMAN

Image.TARGET

Image.TSHIRT

Image.ROLLERSKATE

Image.DUCK

Image.HOUSE

Image.TORTOISE

Image.BUTTERFLY

Image.STICKFIGURE

48

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

Image.GHOST
Image.SWORD
Image.GIRAFFE
Image.SKULL
Image.UMBRELLA
Image.SNAKE

With MicroPython, any image can be displayed using the display.
show() function. The display.show() function takes an image as an input
and displays it on the LED screen.

Listing 2-7 shows the MicroPython code to display the built-in image
named BUTTERFLY on the micro:bit display.

Listing 2-7. Displaying the BUTTERFLY Built-In Image

from microbit import *
display.show(Image.BUTTERFLY)

Now, flash and run this code on micro:bit, and you should see a
butterfly image being displayed on the LED grid, as shown in Figure 2-5.

Figure 2-5. Butterfly image

As an exercise, you can modify the code to display other built-in
images and see how they are displayed on the grid.
In the next section, you learn about creating custom images.

49

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

Creating Your Own Images

The Image class of the MicroPython allows you to build your own images.
The following steps guide you through how to create an image and convert
it to code.

1. Start with a 5x5 grid and fill each square based on
how you would like it lit.

2. Toencode the image, read each square on each line
of the grid using the following rules:

o Ifthe square is empty, it has the value of 0.

o Ifthe square is filled, it has the value of the
brightness required from 1 to 9.

In this example, learn how to create a custom image to display a fish
on the micro:bit screen.

1. Draw a 5x5 grid on paper and fill each square so that
it forms the shape of a fish (see Figure 2-6).

Figure 2-6. Creating the shape of a fish

50

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

2. Encode each empty square with 0 (off) and each
filled square with 9 (the maximum brightness level),
as shown in Figure 2-7.

0 0

0

Figure 2-7. Encoding squares

3. Write the encoded values of each row as shown
here.

00900
09909
99999
09909
00900

4. Place each encoded line into code format. Each entry
should end with a colon, except for the last line, and
be placed within double quotes, as shown here.

ll00900: n Il09909 : n II99999: n ll09909: n “00900"

51

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

5. Name the image (such as FISH) and assign the
encoded line:

FISH = Image ("00900:""09909:""99999:""09909:""00900")
6. Display the image using the display.show()

function:

display.show(FISH)

Listing 2-8 shows the complete code to display the fish image with its
maximum brightness level, which is 9.

Listing 2-8. Custom Image Called FISH
from microbit import *

FISH = Image("00900:"
"09909:"
"99999:"
"09909:"
"00900")

display.show(FISH)

You can vary the brightness of each LED to create different shades
on the image. Figure 2-8 shows the same example marked with different
brightness levels.

52

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

QO O U»h © ©
Q Uh i h ©

0

Figure 2-8. Applying different brightness levels

The image uses brightness level 9 for the body, 7 for the fins, and
5 for the tail to create different shades. Brightness level 0 is used to
create the background by turning off other LEDs. Listing 2-9 shows the
modified code.

Listing 2-9. Applying Different Brightness Levels
from microbit import *

FISH = Image("00700:"
"09905:"
"99955:"
"09905:"
"00700")

display.show(FISH)

53

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

Lists and Animations

The MicroPython image library has two pre-built image lists—ALL _ CLOCKS
and ALL_ARROWS. Listings 2-10 and 2-11 present a list of images included
with each of the pre-built image lists.

Listing 2-10. ALL_CLOCKS

Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,
Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5, Image.
CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1

Listing 2-11. ALL_ARROWS

Image.ARROW_N, Image.ARROW_NE, Image.ARROW E, Image.ARROW_SE,
Image.ARROW_S, Image.ARROW_SW, Image.ARROW_W, Image.ARROW_NW

The display.show() command can display all the images in the list in
sequence. Listing 2-12 shows the complete code to display and animate
the built-in image list, ALL_CLOCKS.

Listing 2-12. Displaying a Clock Using the Built-In Image List

from microbit import *
display.show(Image.ALL CLOCKS, loop=True, delay=100)

The ALL_CLOCKS image list consists of 12 images that can be used
to display each hour from 1 to 12. The loop = true runs the animation
forever and the delay=100 will slow down the speed of the animation.

If you want, you can display a selected image from the image list, as
all image lists are based on a 0 index. As an example, the 12 images in the
ALL_CLOCKS list are indexed from 0 to 11, as shown here.

54

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

CLOCK12: index 0

CLOCK1: index 1

CLOCK2: index 2

CLOCK3: index 3

CLOCK4: index 4

CLOCK5: index 5

CLOCK6: index 6

CLOCK7: index 7

CLOCK8: index 8

CLOCK9: index 9

CLOCK10: index 10

CLOCK11: index 11

Listing 2-13 shows the code that displays the CLOCK6 image, which is

located atindex 6 in the ALL_CLOCKS list.
Listing 2-13. Displaying CLOCK6 Image

from microbit import *
display.show(Image.ALL_CLOCKS[6]) # index 6 for CLOCK6

Listing 2-14 shows the code to animate a clock using image indexes
/indices.

Listing 2-14. Animate Images Using Image Indexes

from microbit import *

for x in range(0,12):
display.show(Image.ALL CLOCKS[x])
sleep(100)

55

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

The code in Listing 2-14 will show each CLOCK image, starting from 12
hoursto 11 hours (12,1, 2, .., 10, 11). You can press the RESET button to start
the animation from the beginning or add awhile True statement to the code.

You can create custom image lists with the pre-built images. For
example, the list named SPOOKY has three pre-built images—GHOST, SWORD,
and SKULL.

spooky = [Image.GHOST, Image.SWORD, Image.SKULL]

You can simply create an animation with this list, as shown in Listing 2-15.
The animation will run forever and display each image for one second.

Listing 2-15. Displaying a Spooky Image List

from microbit import *
spooky = [Image.GHOST, Image.SWORD, Image.SKULL]

display.show(spooky, loop=True, delay=1000)

You can arrange the sequence of images to make an animation by
adding a delay between them. Listing 2-16 shows the code that displays a
simple animation on micro:bit with two heart images.

Listing 2-16. Display a Beating Heart

from microbit import *

while True:
display.show(Image.HEART)
sleep(500)
display.show(Image.HEART SMALL)
sleep(500)

First, the HEART image will appear on the screen for 500 milliseconds.
Then the HEART _SMALL image will appear on the screen for 500
milliseconds. The while True statement will continually repeat these two
images on the screen. This will create a blinking effect.

56

vww . allitebooks.con

http://www.allitebooks.org

Listing 2-17 shows the code that displays an animated clock with 12

individual CLOCK images.

Listing 2-17. Displaying a Clock with Individual Images

from microbit import *

while True:
display.show(Image.
sleep(100)
display.show(Image.
sleep(100)
display.show(Image.
sleep(100)
display.show(Image.
sleep(100)
display.show(Image.
sleep(100)
display.show(Image.
sleep(100)
display.show(Image.
sleep(100)
display.show(Image.
sleep(100)
display.show(Image.
sleep(100)
display.show(Image.
sleep(100)
display.show(Image.
sleep(100)
display.show(Image.
sleep(100)
display.show(Image.

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

CLOCK12)
CLOCK1)
CLOCK2)
CLOCK3)
CLOCK4)
CLOCK5)
CLOCK®6)
CLOCK7)
CLOCKS)
CLOCK9)
CLOCK10)
CLOCK11)

CLOCK12)

57

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

In this code, the display.show() function is used to display each clock
image in the list for 100 milliseconds using the sleep() function. The
while True statement creates a continuous loop and animates the hour
hand of the clock to move clock-wise.

Custom Animation

If you have a series of custom built images, you can display them in a loop
and generate a simple animation based on the custom image, FISH. Let’s
create a series of images to move the fish from right to left on the LED
display. Figure 2-9 shows the image sequence to move the fish to the left
from its initial position, which will simulate the swimming effect.

o O v o o
S v v v o
N v v N
o o oS o
S »n n n ©
S o v v o
N e b o\
o o »nh oo
S ¢ nh ©
S o O © O
N e v v\
o o nh o o
S »nh n n ©
[~ - TN — T — T]
o © o o o

;
3
5

S o n o o
S n nh n o
o o ©o © ©
o o O © o
(=T~ T~ T~ T]
S n G ©
o © © © ©
o o oo o o
o o o o
LT T~ T~ T
o o o o o
o o O o o
(=T~ T~ T~ T]
(=T — T — T — T |
o o ©o © ©

FISH_4 IR FISH_5 IR FISH 6 [

Figure 2-9. Image frames for animating the FISH

58

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

Listing 2-18 shows the complete code needed to create the animation.

Listing 2-18. Creating a Set of Custom Images and Animating Them
from microbit import *

FISH 1 = Image("00700:"
"09905:"
"99955:"
"09905:"

"00700")

FISH 2

Image("07000:"
"99050:"
"99550:"
"99050:"
"07000")

FISH 3 = Image("70000:"
"90500:"
"95500: "
"90500: "

n 70000“)

FISH 4

Image("00000:"
"05000: "
"55000: "
"05000: "
"00000")

FISH 5 = Image("00000:"
"50000:"
"50000:"
"50000: "

"00000")

59

CHAPTER 2 WORKING WITH DISPLAY AND IMAGES

FISH 6 = Image("00000:"
"00000:"
"00000: "
"00000: "
"00000")

ALL_FISH = [FISH 1, FISH 2, FISH 3, FISH 4, FISH 5, FISH 6]
display.show(ALL FISH, loop=True, delay=250)

The ALL_FISH list holds six image frames that can be used to emulate
the swimming effect. The delay is set to 250 milliseconds to slow down the
speed of the animation. The loop=True statement causes the animation to
run forever.

Summary

In this chapter, you learned how to work with images and with the LED
display. You displayed built-in images and custom images on the micro:bit
LED display. Then you created animations based on the pre-built image
lists and custom image lists. Finally, you controlled the LED display with a
set of core display functions.

The next chapter explains how to work with buttons to get user inputs
and control the execution flow of a program.

60

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3

Working with Buttons

By now, you should be fairly comfortable with micro:bit LED display,
images, and animations.

In this chapter, you learn how to use the two built-in buttons on
the front of the micro:bit board. You also learn how to connect external
buttons to handle user inputs and control the execution flow of a program
according to the button events.

Built-in Buttons

The micro:bit board has two built-in momentary pushbuttons soldered

on the front of the board, labeled A and B. Button A is internally coupled
to digital pin 5 and button B is internally coupled to digital pin 11. You will
learn about input/output (I/0) pins in Chapter 4. Figure 3-1 shows the two
pushbuttons.

© Pradeeka Seneviratne 2018 61
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_3

CHAPTER 3 WORKING WITH BUTTONS

Figure 3-1. Built-in buttons, A and B

Handling User Input with Buttons

Buttons can be used to access user input while running the code and make
decisions accordingly. The MicroPython library provides some useful
methods to interact with the two built-in buttons. Here is the list of these
methods:

o button a.is pressed()
o button a.was pressed()

o button_a.get presses()

62

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH BUTTONS

o button b.is pressed()
o button b.was pressed()

o button b.get presses()

Button Is Pressed

First, you'll learn how to check whether a button is being pressed by the
user using the is_pressed() method. This method will return true if the
button is pressed, and false otherwise. This event is only raised when the
button is being pressed and held.

Listing 3-1 shows the code used to detect whether button A is pressed.
When you press and hold button A, the LED display will show a HAPPY face;
otherwise, the LED display will show a SAD face.

Listing 3-1. Check whether a button is pressed
from microbit import *

while True:
if button a.is pressed():
display.show(Image.HAPPY)
else:
display.show(Image.SAD)

The while True statement creates an infinite loop that helps you
detect the button’s situation. The is_pressed() method returns true if the
button is pressed and returns false otherwise.

Listing 3-2 shows you how to exit from an infinite loop with the break
statement.

63

CHAPTER 3 WORKING WITH BUTTONS

Listing 3-2. Check whether a button is pressed and exit from the
while True loop

from microbit import *

while True:
if button a.is pressed():
display.show(Image.HAPPY)
elif button b.is pressed():
break
else:
display.show(Image.SAD)

display.clear()

With this code, when you press button B, the execution flow of the
program will exit from the while Trueloop and execute the display.
clear() method. You can then press the RESET button to start the
program from the beginning.

Listing 3-3 presents the code that detects whether buttons A and B are
being pressed at the same time. The logical and statement can be used to
check whether both conditions are true.

Listing 3-3. Check whether two buttons are being pressed at the
same time

from microbit import *

while True:
if button a.is pressed() and button b.is pressed():
display.scroll("AB")
elif button a.is pressed():
display.scroll("A")
elif button b.is pressed():
display.scroll("B")
sleep(100)
64

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH BUTTONS

Button Was Pressed

The was_pressed() method returns true after pressing a button. The code
shown in Listing 3-4 detects the release event of button A.

Listing 3-4. Check whether a button was pressed
from microbit import *

while True:
if button a.was pressed():
display.show(Image.HAPPY)
else:
display.show(Image.SAD)
sleep(3000)

When you run this code on the micro:bit, initially the LED display will
show a SAD face. If you press button A, the HAPPY image will display on the
LED screen for three seconds, a duration defined by the sleep method.
Otherwise, it will display a SAD image until you press button A again. If you
press button A while the program is sleeping, it will not immediately be
detected by the program, but it will be detected in the next iteration of the

program.

Button Presses

The get_presses() method returns the number of times a button has
been pressed. The code shown in Listing 3-5 can be used to count the
number of times button A has been pressed.

65

CHAPTER 3 WORKING WITH BUTTONS

Listing 3-5. Counts the number of times a button has been pressed
from microbit import *

while True:
sleep(10000)
display.scroll(str(button a.get presses()))

The sleep function is used to pause the program. During that time,
the program counts the number of times the user pressed button A. You
can increase the delay time to get more button presses. Finally, the
get presses() method returns the number of times button A has been
pressed. The str () function converts the numeric value from button_a.
get presses() to a string to scroll on the display.

Connecting External Buttons

micro:bit has two built-in pushbuttons called momentary pushbuttons.
You can use external buttons to replace them or increase the number of
buttons to handle more user inputs.

Momentary Pushbuttons

Typically, a momentary pushbutton has four pins, as shown in the
Figure 3-2.

66

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH BUTTONS

Figure 3-2. Pinout of the momentary pushbutton

The internal connection between the four pins is shown in the
Figure 3-3.

A D

B C

Figure 3-3. Internal connection between pins

These switches are normally in the OPEN state and you must be
pushed to complete or close the circuit. The circuit can be completed
through AB, CD, AC, or BD.

67

CHAPTER 3 WORKING WITH BUTTONS

Using External Buttons

You can replace the two built-in buttons with external momentary
pushbuttons. Button A is internally connected to pin 5 and button B is
internally connected to the pin 11. Pins 5 and 11 have pull-up resistors,
which means that by default they use a voltage of 3V.

Figure 3-4 shows how to connect external momentary pushbuttons to
the micro:bit to use the functions of built-in buttons A and B. You do not
need to use extra pull-up resistors because pins 5 and 11 have built-in pull-
up resistors. You can easily access the micro:bit’s pins 5 and 11 by plugging
the micro:bit in to an edge connector breakout (see Chapter 4 for more
information).

68

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH BUTTONS

P
e.
®)

B
....?.%I..........?.%....
o ¢ & & & 9 8 ¢ % 0 O 0 " OO OO O EY YYD
® ® ® 0 9§ 9 9 ® 9% 0" O ° T P O PN " B R B RED
o ® & ® F 9" " " P P S T PR Y YYD
* 9 9 0 8 0 PP YYD

* L L L L * 9 0 0 L
L] L L L e * * 0 9 L

Figure 3-4. Connecting external buttons for built-in buttons A
and B

69

CHAPTER 3 WORKING WITH BUTTONS

Listing 3-6 shows the MicroPython code that you can use to test the
behavior of the new external buttons. The same code can be found in
Listing 3-3.

Listing 3-6. Using external buttons
from microbit import *

while True:

if button a.is pressed() and button b.is pressed():
display.scroll("AB")
break

elif button a.is pressed():
display.scroll("A")

elif button b.is pressed():
display.scroll("B")

sleep(100)

Connecting Buttons to GPIO

You can connect external buttons to the GPIO pins 0 to 16. The wiring
diagram in Figure 3-5 shows how to connect a momentary pushbutton
with GPIO pin 0 to a pull-up resistor of about 1 kiloohm.

70

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH BUTTONS

o
e o o ¢ ¢ 0 o ©

® & & ¢ 0 0 0 0 0 0 00

® O ¢ & 9 o 0 " O 0 O 0 00

o ® o @ 0o @ o ©

® & ¢ ¢ * & ¢ ® 9 0 " 0 8O " PO PO TS Y O

o o 90 o 0 ® ® 9o o 0 e o 9 o ® o 9 9o

* ® 0 o 0 ® o o o 0 * o 0 0 0 e * 0 0o 0

Figure 3-5. Connecting an external pushbutton with GPIO 0 (wiring

diagram)

71

CHAPTER 3 WORKING WITH BUTTONS

The schematic for the wiring diagram in Figure 3-5 is shown in
Figure 3-6.

\'
i il
PIN 0 =
swi1
R1
1kQ
ND

Figure 3-6. Connecting an external pushbutton with GPIO 0
(schematic)

Listing 3-7 shows the code used to test the button press event of the
new pushbutton.

Listing 3-7. Testing button press event by connecting an external
button with a GPIO pin

from microbit import *

while True:
if pino.read digital():
display.show(Image.HAPPY)
else:
display.show(Image.SAD)

72

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 WORKING WITH BUTTONS

The read_digital() method returns 1 (true for 3V) or 0 (false for 0V),
depending on the voltage level of pin 0. When you press and hold the
pushbutton, the voltage level of pin 0 becomes 3V and the HAPPY image
appears on the LED screen. When you release the pushbutton, the voltage
level of pin 0 becomes 0V and the SAD image appears.

You can use crocodile clips to connect external components to the
large pads (GPIOs 0, 1, and 2) of the micro:bit edge connector. If you want
to connect wires to small pads of the edge connector to access other GPIO
pins, the easiest way is to use an edge connector breakout. You will learn
how to use an edge connector breakout with micro:bit in Chapter 4, “Using
Inputs and Outputs”.

Summary

In this chapter, you learned about the micro:bit built-in buttons, button
events, and the use of external buttons.

The next chapter explains how to use inputs and outputs with a
micro:bit edge connector and connect devices with communication
protocols such as SPI, UART, and 12C.

73

CHAPTER 4

Using Inputs
and Outputs

In this chapter, you learn how to handle inputs and outputs with micro:bit
through the edge connector. The 21 I/O pins can be used to work with
analog, digital, I2C, SPI, and UART. Some I/O pins are also specialized to
build touch-sensitive applications. The micro:bit only exposes three I/0
pins through the edge connector for basic users. If you want to access the
full set of I/0 pins, you can use the edge connector breakout board.

Edge Connector

micro:bit exposes its I/O pins through the edge connector, as shown in
Figure 4-1. The edge connector consists of large and small connection
pads. The large connection pads expose GPIO pins 0, 1, and 2 only.

© Pradeeka Seneviratne 2018 75
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_4

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

Large Pad Small Pad

Figure 4-1. Edge connector with large and small pads (image source:
micro:bit Foundation)

Using an Edge Connector Breakout Board

For practical use, the small pads in the edge connector are difficult to
access with crocodile clips. As a solution, you can use an edge connector
breakout board to access all 21 I/0 pins. The micro:bit pins are broken
into a row of pin headers. You can use male-to-female jumper wires to

76

CHAPTER 4 USING INPUTS AND OUTPUTS

connect the pin headers. The I12C pin (pins 19 and 20) are separated from
the pin header and exposed as solderable pads. Figure 4-2 shows the edge
connector breakout board.

Figure 4-2. Edge connector breakout board (image courtesy of
Kitronik: https://www.kitronik.co.uk/)

There are four major areas in the edge connector breakout board, as
shown in Figure 4-3.

e BBC micro:bit compatible connector: This is the slot
where you insert the edge connector side of the
micro:bit board.

e I2C pins: Solder pads connected to the micro:bit [2C
pins 19 and 20.

77

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

e Pin headers: The 20x2 row of pin headers connected
through the micro:bit pin numbers, as indicated.
You can connect IDC cable or jumper wires to make
connections.

o Prototyping area: Allows you to prototype simple
circuits in this area with switches, sensors, and any
pull-up or pull-down resistors. The area consists of 3V
and 0V rows, and three additional connecting sections.

Figure 4-3. Major areas of the edge connector breakout board (image
courtesy of Kitronik: https://www.kitronik.co.uk/)

Figure 4-4 shows how to insert the micro:bit board into the edge

connector breakout board. Make sure to insert it firmly into the slot; the
side of the LED matrix should be face up.

78

CHAPTER 4 USING INPUTS AND OUTPUTS

Figure 4-4. Inserting micro:bit into the edge connector breakout
board (image courtesy of Kitronik: https://www.kitronik.co.uk/)

Experimenting with 1/0 Pins

The 21 I/0 pins can be categorized in to three types: touch, analog, and
digital. Furthermore, some digital pins are specialized to use with serial
communication protocols such as 12C, SPI, and UART. Figure 4-5 shows
the type of pins and usage.

79

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

Reserved: accessibility = pl2
 BUTTON B _'—‘
II

=N
LED Col 8
LED Col 9
BUTTON A

LED Col 2 ANALOG IN < P4

o{ LEDCol1 Hanuocow HEZD)

Figure 4-5. Type of pins and usage (image courtesy of micro:bit

Foundation: http://microbit.org/)

Table 4-1 shows the type and function of each pin.

80

CHAPTER 4 USING INPUTS AND OUTPUTS

Table 4-1. Type and Function of micro:bit I/O Pins

Pin Name Description

22 OV 0V/GND

ov ov 0V/GND

21 oV 0V/GND

20 SDA Serial data pin connected to the magnetometer and accelerometer
connected through 12C bus

19 SCL Serial clock pin connected to the magnetometer and accelerometer
through 12C bus

18 3V 3V/positive supply

v v 3V/positive supply

17 3V 3V/positive supply

16 DIO General purpose digital 1/0

15 MOSI Serial connection: master output/slave input

14 MISO Serial connection: master input/slave output

13 SCK Serial connection clock

2 PAD2 General purpose digital/analog 1/0

12 DIO General purpose digital 1/0

11 BTN_B Button B: normally high, goes low on pressing

10 COL3 Column 3 on the LED matrix

9 COL7 Column 7 on the LED matrix

8 DIO General purpose digital /0

1 PAD1 General purpose digital/analog I/0

7 COL8 Column 8 on the LED matrix

(continued)

81

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

Table 4-1. (continued)

Pin Name Description

6 COL9 Column 9 on the LED matrix

5 BTN_A Button A: normally high, goes low on pressing
4 COL2 Column 2 on the LED matrix

0 PADO General purpose digital/analog 1/0

3 COL1 Column 1 on the LED matrix

Source: Kitronik at https : //www. kitronik.co.uk/

Touch

Micro:bit board has three specialized pins with large connector pads,
known as touch pins. Figure 4-6 shows the touch pins that you can use

to build touch-sensitive applications based on the analog input. They

are pins 0, 1, and 2. The large connector pads allow you to touch them
with your fingertips to change the capacitance. To apply the electrical
capacitance of your body on a touch pin, first touch and hold the GND pin
followed by the touch pin associated with your application.

82

CHAPTER 4 USING INPUTS AND OUTPUTS

Figure 4-6. Touch pins

83

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

Figure 4-7 shows how to touch and hold the GND pin and pin 0.

Figure 4-7. First hold the GND pad (left); then touch the pin 0 pad
(right)

Listing 4-1 presents simple MicroPython code that can be used to
sense the electrical capacitance of the human body by touching pin 0. If
you touch the ground pin with pin 0, the LED screen will show a HAPPY
image; otherwise, it will show a SAD image.

Listing 4-1. Detecting human touch
from microbit import *

while True:
if pino.is touched():
display.show(Image.HAPPY)
else:
display.show(Image.SAD)

The micro:bit TouchPin class provides the is_touched() method,
which returns True if the pin is being touched with a finger, and returns
False otherwise. The show() method of the display class is used to
display images on the LED screen.

84

CHAPTER 4 USING INPUTS AND OUTPUTS

When you touch a touch pad, the capacitance on the pad will increase.
You can determine the capacitance on a touch pad using the read_analog()
method. It will return a value between 0-1023.

Listing 4-2 shows the MicroPython code that reads the capacitance
on pin 0.

Listing 4-2. Reading capacitance on pin 0

from microbit import *

while True:
display.scroll(str(pino.read analog()))
sleep(100)

Analog Input and Output

You can use the same large touch pads to build circuits with analog input
and output. First, prepare with following components to build the circuit.

e A l0kiloohm potentiometer
o Three wires with crocodile clips attached to both sides
¢ A3mmLED

Figure 4-8 shows the wiring diagram for the circuit.

85

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

fritzing

Figure 4-8. Wiring diagram for the analog read/write circuit

Follow these steps to wire the circuit.
1. Connect the positive lead of the LED to micro:bit pin 1.

2. Connect the negative lead of the LED to the
micro:bit GND pin.

3. Connect the middle pin of the potentiometer to

micro:bit pin 0.

4. Connect one of the outer pins of the potentiometer
to micro:bit 3V.

5. Connect another outer pin of the potentiometer to
the micro:bit GND pin.

Listing 4-3 show code that controls the brightness of a LED using a
potentiometer.

86

CHAPTER 4 USING INPUTS AND OUTPUTS

Listing 4-3. Controlling brightness of a LED
from microbit import *

while True:
pini.write analog(pin0.read analog())
sleep(100)

When you turn the shaft of the potentiometer, the voltage at the center
pin will change. The same effect will happen at the micro:bit pin 0. You can
read the voltage at the center pin with read_analog() method and write
the same value at pin 1 to change the brightness of the LED.

The read_analog() returns an integer between 0-1023. The same
value can be passed to the write _analog() method to control the voltage
at pin 1, which controls the brightness of the attached LED.

The following steps show you how to calculate voltage on pin 1 for an
analog value 500 on pin 0.

First, calculate the voltage for the analog read value 1 by dividing the
maximum voltage, 3V, by 1023:

3.0 / 1023 = 0.002932551v
Then multiply this result by 500:
0.002932551 x 500 = 1.46

So a value of 500 will send 1.46 volts in to pin 1.

Digital Input and Output

Digital signal or data can be expressed as a series of 0 and 1 digits.
Figure 4-9 shows a digital signal with two states over time. The voltage
level of HIGH takes 3.3V and LOW takes OV.

87

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

Digital 3.3v Signal Over Time

Figure 4-9. Digital 3.3V signal over time

You can also use the large touch pads in the edge connector to work
with digital signals. By now, you have learned that the large connection
pads (pins 0, 1, and 2) support with touch, analog, and digital processing.

First, you learn how to read a button state using digital read and show
the button status using an LED. Figure 4-10 shows the wiring diagram.

fritzing

Figure 4-10. Wiring diagram for a digital read/write circuit

88

CHAPTER 4 USING INPUTS AND OUTPUTS

Follow these steps to make the connections between components.

1. Connect the pushbutton to micro:bit between pin 0
and GND.

2. Connect the positive pin of the LED to micro:bit pin 1.
3. Connect the negative pin of the LED to micro:bit GND.

Listing 4-4 presents the MicroPython code that detects the button state
and controls the LED.

Listing 4-4. Detecting button state
from microbit import *

while True:
if pino.read digital():
pinl.write digital(1)
else:
pinil.write digital(o)

When you press and hold the pushbutton, the read_digital()
method returns 1. The if statement is used to compare the return value at
pin 0.

Alternatively, you can write the if pino.read digital():statement
as if pino.read digital()== 1:.Thewrite digital() method will
change the voltage at pin 1 by writing the value 1 or 0, depending on the
button status. In the previous example, the LED will turn on if the button is
pressed, and will turn off otherwise.

89

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

12C (Inter-Integrated Circuit)

The micro:bit supports the 12C (inter-integrated circuit) communication
protocol that allows you to connect devices through the 12C bus. You
can use the SDA and SCL pins of the micro:bit to connect devices and
communicate through the 12C bus. Therefore, 12C requires two wires to
communicate.

Depending on its configuration, the 12C bus can support up to
1024 slave devices; however, as 7-bit addressing is used with micro:bit
MicroPython, the number of slave devices is 128. Figure 4-11 shows the
communication paths between the master and slave devices of an I2C bus.

SDA —= 3 > SDA

Master 1 Slave 1
SCL > SCL
SDA = > SDA

Master 2 Slave 2
SCL * > SCL

Figure 4-11. Master and slave devices connected through the
12C bus

Fortunately, you can learn how to read sensor data through an I12C
bus without connecting any I2C capable sensors with the micro:bit. The
on-board magnetometer and accelerometer of the micro:bit are internally
connected to the 12C bus.

90

CHAPTER 4 USING INPUTS AND OUTPUTS

What follows is a quick example of reading data from the

accelerometer connected to the 12C bus. The micro:bit uses NXP/Freescale
MMAB8652FC three-axis 12-bit digital accelerometer sensor. The datasheet
for MMA8652FC can be found at http://www.nxp.com/docs/en/data-

sheet/MMA8652FC. pdf.
Figure 4-12 shows a section of the register address map from the
MMAB8652FC datasheet.
Auto-ncrement Address
—— He
Name Type Addross | FMODE = 0 | FMODE >0 | FMODE = 0 | FMODE > 0 Default Val:e Comment
F_READ =0 |F_READ = 0|F_READ = 1 [F_READ = 1
STATUS/ FMODE = 0, real time status
F_STATUS(1X?) RO 0x00 ox0t 00000000 | Ox00 | ¢\ 0E » 0, FIFO status
{12) _ |(7-0) are 8 MSBs | Root pointer to
OUT_X_MSE R 001 002 001 0x03 Output of 125t | xvz FiFO data.
OUT X LSB!N2) _ |4 aces LSBs of 12-bet real-tima
X R | 0x02 0x03 0x00 Output somple
ouT_Y_M sBiIN) R Ox3 04 ox05 o _ |[7:0) are 8 M5Bs of 12-t4t real-time
sampla
OUT_Y_LSBlKR) R 0x04 0x05 080 Output _ |4y are 4 LSBs of 12:bk reak-time
sample
OUT_z_MsBI1K2) R | ox0s 0x06 0x00 oupu | — |/7018re8MS8sof12-bit realime
sample
T (132) a _ |4l are 4 LSBs of 12-bit reak-time
QUT_Z_LSBE 0x06 0x00 Output
Reserved R L0 — — — — — |Reserved. Read return 0x00.
Ox08
F_SETUP(I¥) RW | Ox00 0x0A 00000000 | 0x00 |FIFO setup
TRIG_CFGIX4) RW | Oox0A 0x08 00000000 | 0x00 |Map of FIFO data capture events
SYSMOD! X2 R 0x08 ox0C 00000000 | 0x00 |Current System mode
INT_SOURCE(¥2) R 0x0C 0x00 00000000 | 0x00 |interrupt status
WHO_am_I(") R 0x00 Ox0E 01001010 | OxdA | Device 1D (0x4A)
XYZ_DATA_CFG™) | paw | onoE OxOF 00000000 | 0x00 |Dynamic Range Settings
1
E.F,'-F'LTER-C”TOFF‘ RW | OxOF 0x10 00000000 | 0x00 |High-Pass Filter Selection

Figure 4-12.

Register address map of the MMA8652FC (source:
http://www.nxp.com/docs/en/data-sheet/MMA8652FC. pdf)

vww . allitebooks.con

91

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

The measured acceleration data is stored in the following registers as

2’s complement 12-bit:
« OUT X_MSB, OUT X LSB
e OUT_Y MSB, OUT_Y LSB
« OUT Z MSB, OUT Z LSB

You can read the measured acceleration data as an 8-bit or 12-bit

result. The datasheet says: The most significant eight bits of each axis are

stored in OUT_X (Y, Z)_MSB, so applications needing only 8-bit results

can use these three registers (and ignore the OUT_X/Y/Z_LSB registers). To
use only 8-bit results, the F_READ bit in CTRL_REG1 must be set. When the
F_READ bit is cleared, the fast read mode is disabled (see Figure 4-13).

PULSE_TMLT!4) RW | 0x26 ox27 00000000 Time limit for pulse
PULSE_LTCY!H) RW | ox27 0x28 00000000 Latency time for 2™ pulse
PULSE_WIND!TX9) RW | Ox28 0x29 00000000 Window time for 2nd pulse
ASLP_COUNT!) RIW | ox29 D2A 00000000 Counter selting for Auto-SLEEP
[|cTRL_REGH™! RW | oxzA 2B 00000000 Data rates and moges seting
CTRL_REG2™) RW | ox2B 0x2C 00000000 IEESESET WaBle. O modes.
CTRL_REG3 rw | e 0220 00000000 Wake from Sleep, IPOL, PP_OD
CTRL_REG4{1M4) RW | 2D 0x2E 00000000 Interrupt enable register
CTRL_REGS!1H4) RW | Ox2E 0x2F 00000000 Interrupt pin (INT1INT2) map
OFF_XI1H4) RW | ox2F 0x30 00000000 X-axis offset adjust
OFF_Y!1H4) RW | ox30 0x31 00000000 Y-axis offset adjust
OFF_2{"4) RIW | 0x31 0x0D 00000000 Z-aviis offset adjust

Figure 4-13.

CTRL_REG] register

According to the datasheet, the I12C device address of the

accelerometer is 0x1d (see Figure 4-14).

92

CHAPTER 4 USING INPUTS AND OUTPUTS

Pin# | Pin Name Description Notes
1| oo |powersuppiy Shouid bepaced as lose 85 possibe 1opin 1 and i 8afhe dovce
2 scLM [PC Serial Clock 7-bit 12C device address is 0x1D.
3 INT1 Interrupt 1 output The interrupt source and pin settings are user-programmable through the I12C interface.
4 BYP L‘;‘:ﬁ";;“”gﬂ'ie‘“d;;w
5 INT2 Interrupt 2 output See INT1.
6 GND Ground
7 GND |Ground
8 VDDIO | Digital Interface Power supply
9 GND Ground
10 SDAM | 12C Serial Data See SCL.

Figure 4-14. 12C device address of the accelerometer chip

Listing 4-5 shows the MicroPython code that reads the accelerometer
data from the x-axis and displays it with REPL in the Mu editor.

Listing 4-5. Reading Accelerometer Data from the X-Axis Through
12C

from microbit import *

i2c.write(oxad, bytes([ox2a,1]), repeat=False)
while True:

Byte = i2c.read(ox1d, 2) [1]
print(Byte)

sleep(100)
The code uses the i2c.write() and i2c.read() functions:

i2c.read(addr, n, repeat=False)

e addr: 7-bit 12C address of your device. In this case, the
12C address of the accelerometer is 0x1d.

e n:Read n bytes.

93

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

o repeat:If True, no stop bit will be sent.
i2c.write(addr, buf, repeat=False)

e addr: 7-bit 12C address of your device. In this case, the
12C address of the accelerometer is 0x1d.

e buf: Write bytes from buffer.

repeat: If True, no stop bit will be sent.

To use only 8-bit results, the F_READ bit in CTRL_REG1 must be set.
You can use the i2c.write() function to write one byte to the register
CTRL_REG1 at address 0x2a. The repeat is set to False to send the stop bit.
If repeat is True, no stop bit will be sent.

i2c.write(oxad, bytes([0x2a,1]), repeat=False)

Then, you can read the register, OUT_X_MSB, at address 0x1d. The
i2c.read() function can be used to read the first two bytes of the device.
However, you only need the byte at index 1, which holds the bytes for the
OUT_X_MSB register (see Figure 4-15).

Byte = i2c.read(oxid, 2) [1]

Auto-Increment Address

Register
Name Type Address FMODE=0 | FMODE >0 | FMODE=0 | F

F_READ = 0|F_READ = 0|F_READ =1|F

STATUS/
|= STATUS()) R | e ‘ -

OUT_X_MsB(2 0x01 0x02 0x01 0x03
OUT_X_LsB(M@ R 0x02 0x03 0x0C
‘OUT_Y_MSB“"Z‘ R 0x03 ’ 0x04 0x05

Figure 4-15. OUT_X_MSB register at address 0x01

94

CHAPTER 4 USING INPUTS AND OUTPUTS
Finally, print the bytes with the print() function.
print(Byte)

Figure 4-16 shows the output for this code. After flashing the code
to the micro:bit, click on the REPL button in the Mu editor to open and
view the REPL window. In some situations, the REPL window only shows
a few values and then stops. If you encounter a similar thing, press the
RESET button on the micro:bit to restart the program. Pan and tilt the
micro:bit board by hand to see the change of the accelerometer values on
the x-axis. You learn how to work with and read values from the built-in
accelerometer in Chapter 5.

from microbit import *

i2c.write(0x1d, bytes([0x2a,1]), repeat=False)
while True:

L T T B R

Byte = i2c.read(&x1d, 2) [1]

(230
230
226
252
11
22
36
30
16
251
237
227,

Figure 4-16. Reading accelerometer values (values on the x-axis)
through 12C

95

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

SPI (Serial Peripheral Interface)

The SPI (serial peripheral interface) allows you to connect devices to the
micro:bit through the SPI bus. The SPI uses a master-slave architecture
with a single master device. The SPI requires three wires to communicate
between the master and slave. They are:

e SCLK: Serial clock (output from master)
e MOSI: Master output, slave input (output from master)
e MISO: Master input, slave output (output from slave)

Now you are going to build a simple circuit with the Adafruit
Thermocouple Amplifier MAX31855 breakout board (see Figure 4-17) and
micro:bit. Then you will write a simple MicroPython program to read the
temperature through the SPI bus.

OUm ﬁ‘“ ﬂﬁ@ ©

Red -
Q3vos s

OG 03’:-" -
4000 "‘} : I .
Ocs abEiid

Yellou + .

tOCLK.? % -a
atil- Lo}

Figure 4-17. Adafruit thermocouple amplifier MAX31855 breakout
board (image courtesy of Adafruit Industries)

96

CHAPTER 4 USING INPUTS AND OUTPUTS

Additionally, you need a Thermocouple Type-K glass braid insulated-K
(see Figure 4-18) or a Thermocouple type-k glass braid insulated stainless
steel tip (see Figure 4-19) to connect to the MAX31855 breakout board.

Figure 4-18. Thermocouple Type-K glass braid insulated-K
(https://www.adafruit.com/product/270) (image courtesy of
Adafruit Industries)

97

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

Figure 4-19. Thermocouple Type-K Glass braid insulated stainless
steel tip (https://www.adafruit.com/product/3245) (Image
courtesy of Adafruit Industries)

Assemble the MAX31855 breakout board with the provided 7-pin
header and terminal connector block. Then connect the Thermocouple
Type-K glass braid insulated-K or Thermocouple Type-K glass braid
insulated stainless steel tip to the terminal connector block. Connect the
red wire of the Thermocouple to the connector marked RED - and the
yellow wire of the Thermocouple to the connector marked YELLOW +
(see Figure 4-20).

98

CHAPTER 4 USING INPUTS AND OUTPUTS

ERYNERRUNYBEEIISES
o

Figure 4-20. Assembled MAX31855 breakout board with
Thermocouple (image courtesy of Adafruit Industries)

Figure 4-21 shows the wiring diagram that you can use to connect the
Adafruit Thermocouple amplifier MAX31855 breakout board and micro:bit
together. You can use a micro:bit edge connector breakout board to easily
access the SPI pins (SCK and MISO) on the micro:bit. For an enlarged
view, see Figure 4-22.

99

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

buyzyLy

Figure 4-21. Wiring diagram between the MAX31855 breakout
board and micro:bit

Figure 4-22. Wiring diagram between the MAX31855 breakout
board and micro:bit (enlarged view)

100

CHAPTER 4 USING INPUTS AND OUTPUTS

Follow these steps to easily make connections between the MAX31855

breakout board and micro:bit with wires.

1.

Connect the MAX31855 breakout board Vin to
micro:bit 3V.

Connect the MAX31855 breakout board GND to the
micro:bit GND.

Connect the MAX31855 breakout board CLK to the
micro:bit SCK (pin 13).

Connect the MAX31855 breakout board CS to the
micro:bit pin 0.

Connect the MAX31855 breakout board DO to the
micro:bit MISO (pin 14) .

Listing 4-6 shows the MicroPython code that reads the temperature

through the SPI bus and then prints it in Celsius.

Listing 4-6. Reading Temperature Through an SPI Bus

from microbit import *

spi.init(baudrate=1000000, bits=8, mode=0, sclk=pini3,
mosi=pini15, miso=pini4)

def temp c(data):
temp = data[o] << 8 | data[1]
if temp & 0x0001:

return float('NaN') # Fault reading data.

temp >>= 2
if temp & 0x2000:

temp -= 16384 # Sign bit set, take 2's compliment.

return temp * 0.25

vww . allitebooks.con

101

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

while True:
data = spi.read(4)
print(temp c(data))
sleep(100)

The spi.init() function is used to initialize SPI communication with

the specified parameters on the specified pins:

baudrate: 1000000 (the speed of communication)
bits: 8 (the number of bytes being transmitted)
mode: 0

sclk: Pin 13 (micro:bit pin 13 SCK)

mosi: Pin 15 (optional, as you will be reading data
through the SPI)

miso: Pin 14 (micro:bit pin 14 MISO)

After initializing the SPI communication between both devices, the
spi.read() function is used to read data from the MAX31855 sensor. The

MAX31855 sensor has a very simple interface where you can read four
bytes of data (32 bits total) to get the current temperature reading and

other sensor states.

data = spi.read(4)

The helper function called temp_c() gets the temperature data from
the 32-bit result. Finally, the print() function will print the temperature.
A 100ms delay will be added between each temp _c() function call to give
it enough time to get the temperature data from the data register.

102

CHAPTER 4 USING INPUTS AND OUTPUTS

UART (Universal Asynchronous Receiver-
Transmitter)

micro:bit supports data communication with devices that have a

UART (Universal Asynchronous Receiver Transmitter) interface. The
MicroPython uart module allows you talk to a device connected to your
board using a serial interface.

Devices with a UART interface have two pins (or wires) for transmitting
and receiving data. Normally, these pins are called Tx (transmit) and Rx
(receive).

The following example explains how to connect the micro:bit to a mini
thermal receipt printer that has a UART interface.

To build the example project, you need the following things.

e Mini thermal receipt printer (https://www.adafruit.
com/product/597)

e 5V 2A(2000mA) switching power supply (https://
www.adafruit.com/product/276)

o Female DC power adapter, 2.1mm jack to screw
terminal block (https://www.adafruit.com/
product/368)

« Thermal paper roll that’s 16 feet long, 2.25 inches
(https://www.adafruit.com/product/2755)

e micro:bit
e Afew crocodile clips and wires

The mini thermal receipt printer is ideal for interfacing with the
micro:bit through the a UART interface. Figure 4-23 shows the wiring
diagram between micro:bit and the printer.

103

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

To 5V power supply

Tx

RERHHANBHENERRANRERNERBRANNERY
ddddddadddaddddddadaddadddddaddadda
SE8ZERBBEREEEARREBEEEREREEREERREE
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
daasaaaaaaaaaadaaaaaaaaaaaaaaaa
EBEEBBBBBBEBEEBBBEBBEBEBEBBEBBB

;Thermal Printer

Figure 4-23. Wiring diagram for UART communication

104

CHAPTER 4 USING INPUTS AND OUTPUTS

The following steps guide you in how to connect the printer with
micro:bit.

1. The back panel of the printer has two 3-pin
connectors—one for power and one for serial

communications.

2. First, connect the provided data cable to the printer.
The data cable has three wires—black, yellow, and
green.

e Black=GND
e Yellow = Data IN to the printer (RX)
o Green = Data OUT of the printer (TX)

3. Connect the data cable to the micro:bit as shown in
Figure 4-1.

o Connect the black cable to the micro:bit GND
o Connect the yellow cable to the micro:bit pin 0

4. Connect the power cable of the printer with the 5V
2A switching power supply through the female DC
power adapter and apply power.

Listing 4-7 shows sample code that can be used to send
text to the printer through UART for printing. Flash it to the
micro:bit using the Mu editor.

Listing 4-7. Sending Text to the Printer
from microbit import *

uart.init(baudrate=19200, bits=8, parity=None, stop=1,tx=pin0)

105

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 USING INPUTS AND OUTPUTS

while True:

106

if button a.was pressed():

uart.write('Button A was pressed\x0A\x0A')

elif button b.was pressed():

uart.write('Button B was pressed\x0A\x0A")

sleep(100)

After flashing the code, simply press and release the
built-in buttons A and B to test the code. The \x0A at
the end of each message is a hex code for line feed.

The uart.init() function initializes serial
communication with the specified parameters
on the specified tx and rx pins. For correct
communication, the parameters must be the
same on both devices. The following is the list of
parameters you can use.

baudrate: The speed of communication (9600, 14400,
19200, 28800, 38400, 57600, or 115200). The thermal
printer ships with a default of 19200bps baud rate.

uart.init(baudrate=9600, bits=8, parity=None,
stop=1,tx=pin0)

bits: Defines the size of bytes being transmitted.

uart.init(baudrate=9600, bits=8, parity=None,
stop=1,tx=pin0)

parity: Defines how parity is checked, and it can be
None, microbit.uart.ODD, or microbit.uart.EVEN.

uart.init(baudrate=9600, bits=8, parity=None,
stop=1,tx=pin0)

CHAPTER 4 USING INPUTS AND OUTPUTS

o stop: The stop parameter tells the number of stop bits,
and must be 1 for this board.

uart.init(baudrate=9600, bits=8, parity=None,
stop=1, tx=pin0)

o tx: This is the pin used to transmit data. Connect this
pin to the RX pin of your UART device. The previous
code used micro:bit pin 0 to connect to the RX pin of
the printer.

uart.init(baudrate=9600, bits=8, parity=None,
stop=1, tx=pino)

o rx: This is the pin used to receive data. Connect this
pin to the TX pin of your UART device. The previous
code only transmits data to the computer and is not for
receiving, so you can ignore the rx parameter.

e Theuart.write() function is used to write a buffer of
bytes to the UART bus. You can input any text in to this
function:

uart.write('Button A was pressed\x0A\x0A")

Summary

In this chapter, you learned about the 21 I/O pins in the micro:bit edge
connector. Then you built some simple projects based on digital, analog,
touch, I12C, SPI, and UART to see how they work with the micro:bit.

In next chapter, you learn in-depth about the micro:bit built-in
accelerometer and compass (magnetometer).

107

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5

Using the
Accelerometer
and Compass

The micro:bit board comes with built-in accelerometer and a compass
that allows you to build applications that respond to the acceleration and
magnetic field of the earth.

In this chapter, you learn how to take readings from the built-in
accelerometer and compass (magnetometer) to build applications using
MicroPython.

Accelerometer

The micro:bit has an on-board NXP/Freescale MMA8652 chip (see

Figure 5-1), which is a three-axis accelerometer that can be used to
measure the acceleration. The accelerometer is internally connected to the
micro:bit’s I12C bus.

© Pradeeka Seneviratne 2018 109
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_5

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

UL -r.;-.".‘
. =;I=acs£wn0umn) ‘.‘ £ '
. Micro:bit-- e

Figure 5-1. The micro:bit accelerometer

Reading Acceleration

The accelerometer measures the acceleration or movement along the
three axes (see Figure 5-2): x and y axes (the horizontal planes), and the
z axis (the vertical plane), which it experiences relative to freefall. This is
most commonly called the g-force. With the micro:bit’s accelerometer, you
will get acceleration values in mG (milliG).

1000mG = 1G

110

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

Figure 5-2. Three axes of the accelerometer (Image source: micro:bit
Foundation)

When you place the micro:bit board on the surface of the earth, it will
measure acceleration due to the earth’s gravity, straight upward of g ~ 9.81
m/s2. The micro:bit accelerometer can measure accelerations between
+2g and -2g. This range is suitable to use with wide range of applications.

Listing 5-1 presents the MicroPython code that gets the values in mG
for movement along three axes.

111

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

Listing 5-1. Reading Acceleration Along Three Axes

from microbit import *

while True:
x = accelerometer.get x()
y = accelerometer.get y()
z = accelerometer.get z()
print("x, y, z:", X, y, z)
sleep(500)

Type this code into the Mu editor and then click the Repl button
followed by the Flash button to upload the code to the micro:bit. Hold
the micro:bit board flat with the LEDs in the uppermost corner, without
removing the USB cable.

You will get similar output as shown in Figure 5-3.

AN)’, . L L LU LT

X, Y, z: 0 16 1008
X5 ¥ Z2: =16 16 1624
X, ¥, z: 0 16 1024
X, ¥; Z: =16 16 1624
X, Y, z: 0 16 1008
X, Y, z: 0 16 1024
X, ¥V, Z: =16 16 1824

Figure 5-3. Accelerometer readings for movement in thex, y, and z
planes

112

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

You can see that the acceleration values for x and y are close to 0 and
the acceleration value for z axis is close to 1024. If you tilt the micro:bit
slowly along the x axis, you can change the value to nearly 0. The value
0 indicates that your micro:bit board is in the spirit level. A similar
technology is used in electronic spirit levels to detect the horizontal level
with the x and y axes.

The same result can be achieved with the accelerometer.get
values() function. It outputs the acceleration values of the x, y, and z axes
as a three-element tuple of integers.

Note A fupleis a sequence of immutable Python objects. Tuples act
just like lists, but the elements of a tuple cannot be changed once
they have been assigned. Tuples use parentheses to hold objects. You
can also store different types of objects in a tuple.

tuple = ([1,2], (3,4), “micropython”, 2017)

Listing 5-2 shows the same implementation of code that reads the
acceleration values along the three axes.

Listing 5-2. Reading Acceleration Along Three Axes as a Tuple

from microbit import *

while True:
result = accelerometer.get values()
print("Values:", result)
sleep(500)

Figure 5-4 shows the output for this code when you hold the micro:bit
flat with the LEDs at the top.

113

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

L R e N & A SRS

Values: (112, 80, -1024)
Values: (112, 80, -1040)
Values: (80, 96, -1024)
Values: (-112, 176, -1328)
Values: (-80, 0, -1040)
Values: (48, -16, -1120)
Values: (32, 9, -1008)
Values: (48, 9, -1040)
Values: (64, 9, -1024)
Values: (64, 0, -1088)
Values: (32, 0, -992)
Values: (32, 9, -1024)
Values: (48, -16, -1024)
Values: (48, 0, -1024)

Figure 5-4. Reading acceleration along three axes

Building a Spirit Level

A spirit level, bubble level, or simply a level, is an instrument designed to
indicate whether a surface is horizontal (level) along the x axis. Different
types of spirit levels may be used by carpenters, stonemasons, bricklayers,
other building trades workers, surveyors, millwrights, and other
metalworkers, as well as in some photographic or videographic work.
Listing 5-3 shows an example of how to code a simple spirit level.

Listing 5-3. Simple Spirit Level
from microbit import *

while True:
val = accelerometer.get x()
if val > o:

114

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

display.show(Image.ARROW_W)
elif val < o:

display.show(Image.ARROW E)
else:

display.show(Image.YES)

This code will show the YES image (tick mark) when it detects the spirit
level. Otherwise, it will show the left arrow or right arrow so you can tilt the
micro:bit to get the spirit level.

Calculating Overall Acceleration

The overall acceleration can be calculated with the Pythagorean Theorem,
as shown here. The formula uses the acceleration along the x and y axes to
calculate the overall acceleration.

acceleration=/x* +y*

If you want, you can calculate the overall acceleration along the x, y,

and z axes.
acceleration=\/x* +y* + z*

Listing 5-4 shows the MicroPython code to calculate the overall
acceleration in milliG with the acceleration values of all three axes.

Listing 5-4. Calculating Overall Acceleration with x, y, and z Values

from microbit import *
import math

while True:
x = accelerometer.get x()

115

CHAPTER 5

y
z

accelerometer.get y()
accelerometer.get z()

USING THE ACCELEROMETER AND COMPASS

acceleration = math.sqrt(x**2 + y**2 + z**2)
print("acceleration", acceleration)

sleep(500)

Figure 5-5 shows the overall acceleration when you move the micro:bit

board.

acceleration
acceleration
acceleration
acceleration
acceleration
acceleration
acceleration
acceleration
acceleration
acceleration
acceleration
acceleration

Figure 5-5. Overall acceleration

Gesture Detection

The micro:bit’s built-in accelerometer can also be used to create
interactive applications based on gestures. The following gestures are

recognized by the micro:bit.

116

° Up

¢ Down

2904 .518
1221.356
1164.927
1028.241
1059.147
847.396
10190.41
955.4558
1068.651
1022.749
1022.749
1022.749

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5

Left

Right

Face up
Face down
Freefall
Shake

USING THE ACCELEROMETER AND COMPASS

Figure 5-6 shows how you can perform these gestures by holding the

micro:bit in your hand.

Figure 5-6. Performing gestures with micro:bit (i.e., UP)

117

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

In addition to these basic gestures, you can also detect some advanced
gestures with the micro:bit related to the gravitational forces. They are:

e 2G
o 4G
¢« 8G

Detecting the Current Gesture

The MicroPython provides some useful functions that you can use with the
accelerometer to work with gesture detection.

Listing 5-5 shows a simple example of how MicroPython can be used
to detect the current gesture with micro:bit.

Listing 5-5. Detecting and Printing Current Gesture

from microbit import *

last _gesture =

while True:
current_gesture = accelerometer.current_gesture()
sleep(100)
if current gesture is not last gesture:
last_gesture = current_gesture
print('>{g:s}<'.format(g=current gesture))

Type the code in the Mu editor, then flash it to the micro:bit and run
with the REPL. When you make a gesture by holding the micro:bit in your
hand, the terminal window will print the name of the detected gestures, as
shown in Figure 5-7. The last gesture you performed can be found at the
end of the list.

118

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

>face up<
>face downc<
>face up<
>right<
>left<

>up<

>downc<

>up<
>shake<

>face upc<
><

Figure 5-7. Output shows the current gesture

The accelerometer.current_gesture() function returns the name
of the current gesture as a string. Listing 5-6 lists the valid names for each
gesture that you can use with MicroPython. When you perform a new
gesture, the accelerometer.current gesture() function stores this value
in current_gesture. If last_gesture is different, it is updated to this new
value and the gesture name is printed on the REPL screen.

Listing 5-6. Valid Gesture Names

up

down

left
right
face up
face down
freefall
shake

119

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

38
6g
8g

Listing 5-7 shows the MicroPython code that can be used to detect
the “face up” gesture. If it detects the “face up” gesture, a HAPPY image will
display on the LED screen; otherwise, it will display an ANGRY image. The
accelerometer.current gesture() function returns the name of the
gesture that you performed. Then it compares the returned gesture name
with the “face up” string. If both are equal, a HAPPY face will display on the
LED screen; otherwise, the screen will display a SAD image.

Listing 5-7. Detecting a “Face Up” Gesture
from microbit import *

while True:
gesture = accelerometer.current gesture()
if gesture == "face up":
display.show(Image.HAPPY)
else:
display.show(Image.ANGRY)

This code can be rewritten using the accelerometer.is
gesture(name) function for the same application, as shown in Listing 5-8.

Listing 5-8. Detecting a “Face Up” Gesture
from microbit import *

while True:
if accelerometer.is gesture("face up"):
display.show(Image.HAPPY)
else:
display.show(Image.ANGRY)

120

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

The accelerometer.is gesture(name) function returns true if the
given gesture is currently active; otherwise, it returns false.

If you want to get a gesture after it is completed by the user,
accelerometer.was_gesture(name) can be used. Listing 5-9 shows
example code to get the previous gesture.

Listing 5-9. Detect Whether the micro:bit Has Been Shook

from microbit import *
while True:
display.show('8")
if accelerometer.was gesture('shake'):
display.clear()
sleep(1000)
display.scroll("shaked")
sleep(10)

Getting Gesture History

You can get the gesture history with the accelerometer.get gestures()
function, as shown in Listing 5-10. It returns a tuple of the gesture history.
The most recent gesture is listed last in the tuple.

Listing 5-10. Getting Gesture History
from microbit import *

gestlist = []
while True:

gestures = accelerometer.get gestures()
print(len(gestures))

if len(gestures) == 1:

121

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

gestList.append(gestures[0])
sleep(500)

print("History: "+str(gestList))

Using the Mu editor, type and flash this code to the micro:bit. Then
open the REPL interactive shell and perform some gestures by holding the
micro:bit with your hand. You will get the output shown in Figure 5-8.

Izl-is‘tory: ['down', 'left', 'freefall', 'freefall', 'freefall', 'freefall']
Elistory: ["down', 'left', 'freefall', 'freefall', 'freefall', 'freefall']
:‘:"I story: ['down', 'left', 'freefall', 'freefall', 'freefall', 'freefall']
%' , 'freefall', 'freefall', 'freefall']

ﬂ"istory: ['down', 'left', 'freefall', 'freefall', 'freefall', 'freefall']
EH story: ['down', 'left', 'freefall', 'freefall', 'freefall', 'freefall']
gis‘tory: ["down', 'left', 'freefall', 'freefall', 'freefall', 'freefall']
8

Figure 5-8. Gesture history

Note There may be a bug in the get gestures() method and
you can’t get the output you expected in the program. When you
start a REPL session with the code in Listing 5-10, the Mu editor may
sometimes appear to be frozen or non-responsive.

Compass

Micro:bit comes with a built-in compass based on the NXP/Freescale
MAG3110, which is three-axis magnetometer sensor that can be accessed
via the I12C bus. The compass can also act as a metal detector. Figure 5-9
shows the NXP/Freescale MAG3110 chip, which you'll see on the back of
the micro:bit board.

122

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

: W fco"cflfgsoMEﬁﬁ .'
] micro:bit.. o

Figure 5-9. The micro:bit compass

Calibrating the Compass

Before using the compass, you should calibrate it to ensure correct
readings. It’s also wise to calibrate the compass each time you use it in a
new location.

In some situations, when the compass needs to be calibrated, the
micro:bit will automatically prompt the user to calibrate it. However, the
calibration sequence can also be manually started with the compass.
calibrate() function.

To calibrate the compass, tilt the micro:bit around until a circle of
pixels is drawn on the outside edges of the display.

Figure 5-10 shows the process of calibrating the micro:bit compass.
After calibrating the compass successfully, the micro:bit display will show
a smiley face on the LED display.

123

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

Figure 5-10. Calibrating the micro:bit compass

Reading Compass Values

When you want to determine the direction using the micro:bit compass,
you will only need to measure the magnetic field strength in the xand y
axes. Figure 5-11 shows the three axes—x, y, and z—that you can use to get
the strength of the magnetic field.

124

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

Figure 5-11. Compass reading for three axes

Listing 5-11 shows the sample code that can be used to read the
strength of the magnetic field in the x and y axes. The compass.get_y()
and compass.get x() functions return magnetic field strength in the x and
y axes.

Listing 5-11. Reading the Strength of the Magnetic Field in the
x and y Axes

from microbit import *
compass.calibrate()

while True:
x = compass.get x()
y = compass.get y()
print("x reading: "
sleep(500)

, X, ", y reading: ", vy)

Figure 5-12 shows the output for this code when it’s run with the Mu.
As you can see, the stronger magnetic fields are represented by bigger
values.

125

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

X Feading: 43728 , y reading: 9873
x reading: 37828 , y reading: -23127
x reading: 30628 , y reading: -30627
x reading: 33128 , y reading: -28127
x reading: 41228 , y reading: -9727
x reading: 42928 , y reading: 4473

x reading: 43528 , y reading: 4273

x reading: 41528 , y reading: 15473
x reading: 39128 , y reading: 20873
x reading: 39528 , y reading: 21473
x reading: 39528 , y reading: 20673
x reading: 39428 , y reading: 21273
x reading: 39128 , y reading: 21173
X reading: 39228 , y reading: 21273

Figure 5-12. Magnetic field in x and y axes

Getting Compass Heading

The compass heading represents an angle in the number of degrees from
the north, moving clockwise, which ranges from 0 to 360. North is set to 0.
For an example, the compass heading 45 degrees represents the direction
of west.

The magnetic field in the x and y axes of the micro:bit compass can be
used to calculate the compass heading value using the following formula.

1. First, calculate the arc tangent using x and y values
with the math.atan2() function. You will get the
result in radians.

Arc tangent = math.atan2(y,x)

126

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

2. 'Then convert radians into degrees by multiplying it
with 180/Pi.

Angle in degrees (compass heading) = math.
atan2(y,x) *180/math.pi

Listing 5-12 shows sample code that can be used to calculate the
compass heading with x and y values. The same code can be found at
http://microbit-challenges.readthedocs.io/en/latest/tutorials/
compass.html and is used in this book to demonstrate the output.

Listing 5-12. Calculate the Compass Heading Using x and y Values

import math
from microbit import *

compass.calibrate()

while True:
x = compass.get x()

y = compass.get y()
angle = math.atan2(y,x) *180/math.pi

print("x", x, " y", y)
print("Direction: ", angle)
sleep(500)

Figure 5-13 shows the output for this code. It shows the magnetic field
in x and y axes, and the calculated compass heading (direction) in degrees.

127

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

T S OTYTT. T s T L& L

X 6886 vy 38607
Direction: 79.88699
X 4086 y 35507
Direction: 83.43552
X 8 y 30507
Direction: 89.83848
X 2786 y 32807
Direction: 85.14603
X 986 vy 30307
Direction: 88.1366
X =214 vy 30107
Direction: 90.4072
X —-314 y 28807
Direction: 990.62449

Figure 5-13. Output of the x and y axes and the compass
heading

However, with MicroPython, you can use the compass.heading()
function to easily get the compass heading in degrees from 0 to 360.

Note The compass-heading function returns -1004 when the
compass needs to be calibrated.

Listing 5-13 shows simple code that can be used to read the compass
heading.

128

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS
Listing 5-13. Reading the Compass Heading
from microbit import *
compass.calibrate()

while True:
heading = compass.heading()
print("heading: ", heading)
sleep(500)

Figure 5-14 shows the output of Listing 5-13 when you run it with the Mu.

heading: 76
heading: 81
heading: 83
heading: 42
heading: 137
heading: 138
heading: 139
heading: 141
heading: 148

Figure 5-14. Compass heading values in degrees

You can modify this code to show the bearing to north on the micro:bit
display. Listing 5-14 shows the sample micro:bit code that can be used to
display the compass heading with the ALL_CLOCKS image list.

129

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS
Listing 5-14. Displaying the Compass Heading
from microbit import *

compass.calibrate()

while True:
sleep(100)
needle = ((15 - compass.heading()) // 30) % 12
display.show(Image.ALL_CLOCKS[needle])

This code displays the compass heading (see Figure 5-15) on the
micro:bit display and updates it when you rotate the micro:bit board.

Figure 5-15. Compass heading to southwest

130

www.allitebooks.cond

http://www.allitebooks.org

CHAPTER 5 USING THE ACCELEROMETER AND COMPASS

Summary

In this chapter, you built several applications with the micro:bit
accelerometer and the compass. The gesture detection is one of the
most interesting features of MicroPython, in conjunction with the
accelerometer.

In next chapter, you learn how to connect a speaker and write
applications with micro:bit’s music library to make melodies.

131

CHAPTER 6

Working with Music

In this chapter, you learn how to use the micro:bit music library to build
and play simple tunes. The music library allows you to build music by
combining music notes, octaves, beats (duration), accidentals (flats
and sharps), and so forth. You can also use built-in melodies in your
applications.

By default, the music module expects the spealker to be connected
through micro:bit’s pin 0. However, you can use any analog pin to connect
the speaker (or multiple speakers) by defining the output pin to override
the default pin 0.

Connecting a Speaker

You can connect a speaker to the micro:bit pin 0 through the edge
connector. An 8-ohm speaker is ideal to work with micro:bit to produce
audio. Figure 6-1 shows a small 8-ohm speaker (https://www.kitronik.
co.uk/3341-thin-speaker.html) that can be used with the micro:bit.

© Pradeeka Seneviratne 2018 133
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_6

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH MUSIC

Figure 6-1. 0.25W 8-ohm 40mm thin speaker front and rear views
(image courtesy of Kitronik at https://www.kitronik.co.uk)

A speaker has two wires, positive (red) and negative (black). Some
speakers use different colored codes for positive and negative leads. With
some speakers, you must solder wires to the solder tabs before using them.
Figure 6-2 shows how to wire the speaker with the micro:bit using the edge
connector breakout board. The speaker doesn’t use a separate power line
and gets the power from pin 0.

1. Connect the positive lead of the speaker to the

micro:bit pin 0.

2. Connect the negative lead of the speaker to the
micro:bit GND.

134

CHAPTER6 WORKING WITH MUSIC

fri

Figure 6-2. Wiring between the micro:bit and a speaker

tzing

Simply use crocodile leads (https://www.kitronik.co.uk/2407-
crocodile-leads-pack-of-10.html) to make these connections (see
Figure 6-3).

135

www.allitebooks.cond

http://www.allitebooks.org

CHAPTER6 WORKING WITH MUSIC

1 It |4

Figure 6-3. Wiring between micro:bit and a speaker with crocodile
leads (Image credits: http://learnlearn.uk/microbit/)

When attaching the crocodile clips to the micro:bit, make sure that the
clips are perpendicular to the board so that they are not touching any of the
neighboring connectors on the micro:bit edge connector (see Figure 6-4).

136

CHAPTER6 WORKING WITH MUSIC

e

—

Figure 6-4. Attaching crocodile clips perpendicular to the board bit
(image credit: Monk Makes at https://www.monkmakes.com/)

137

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH MUSIC

Alternatively, you can use an edge connector breakout board to
make the setup neater, as shown in Figure 6-5. You will need following
components in addition to build the setup.

o Edge connector breakout

e Breadboard

o Male/female jumper wires (https://www.kitronik.
co.uk/4129-jumper-wires-premium-mf-pack-of-10.
html)

Figure 6-5. Attaching crocodile clips perpendicular to the board
(image courtesy of Kitronik at https://www.kitronik.co.uk)

138

CHAPTER6 WORKING WITH MUSIC

You cannot control the volume of the sound from the micro:bit.
However, you can control the volume by adding a potentiometer (a volume
control) to the micro:bit, as shown in the Figure 6-6.

fritzing

Figure 6-6. Adding a potentiometer to the micro:bit to control the
volume

Some vendors offer speakers with built-in amplifiers to make louder
music. If you need one, Monk Makes sells a speaker with a built-in amplifier
for micro:bit (https://www.monkmakes.com/mb_speaker/). You can connect
it to your micro:bit using alligator clips. As shown in Figure 6-7, it uses three
wires for connectivity and draws additional power from the micro:bit’s 3V
pin. Table 6-1 shows the pin connection between the two boards.

139

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH MUSIC

Table 6-1. Wiring Between Monk Makes
Speakers and micro:bit

Speaker micro:bit
IN pin0

3V 3V

GND GND

L=

w @2
X 0
\ MU
\ @
YO .
e

i
5

e

—

Figure 6-7. Monk Makes speaker for micro:bit (image credit: Monk
Makes at https ://www.monkmakes . com/)

140

CHAPTER6 WORKING WITH MUSIC

If you want to play sound through more than one speaker, it is possible
to connect multiple speakers to the micro:bit through different analog
pins. However, you must carefully define the output pin for each speaker in
the code.

Using Earphones

If you don’t have a speaker, you can still use your micro:bit with earphones.
You can connect earphones by cutting off the earphone jack and
connecting the leads to the micro:bit GND and pin 0.

You can also use crocodile clips to connect a speaker to the micro:bit
without cutting off the jack. The following list explains and Figure 6-8
shows how to connect crocodile clips to an earphone jack.

1. Take two crocodile leads (black and red).

2. Connect one end of the black crocodile lead to the
micro:bit GND and the other end to the base of your
earphone jack.

3. Connect one end of the red crocodile lead to the
micro:bit pin 0 and the other end to the tip of the
earphone jack.

141

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH MUSIC

Figure 6-8. Connecting an earphone to the micro:bit

However, pre-built audio cables are available to quickly connect
earphones or headphones to the micro:bit. Figure 6-9 shows an audio
cable with a 3.5mm socket and two crocodile clips. You can simply
connect the earphone jack to the 3.5mm socket of the audio cable and two
crocodile clips to the micro:bit.

142

CHAPTER6 WORKING WITH MUSIC

Figure 6-9. Audio cable for micro:bit (image courtesy of Kitronik:
https://www.kitronik.co.uk/5622-audio-cable-for-bbc-
microbit.html)

Built-in Melodies

The easiest way to get started with the micro:bit music library is using
built-in melodies. It provides a set of built-in melodies that you can play
with a simple MicroPython code.

The following list shows some interesting built-in melodies that
you can use to play music. (Source: http://microbit-micropython.
readthedocs.io/en/latest/music.html.)

o DADADADUM: The opening to Beethoven'’s 5th Symphony
in C minor.

o ENTERTAINER: The opening fragment of Scott Joplin’s
Ragtime classic “The Entertainer”.

o PRELUDE: The opening of the first Prelude in C major of
J. S. Bach’s 48 Preludes and Fugues.

o ODE: The “Ode to Joy” theme from Beethoven’s 9th
Symphony in D minor.

143

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH MUSIC

144

NYAN: The Nyan Cat theme (http://www.nyan.
cat/). The composer is unknown. This is fair use for
educational purposes.

RINGTONE: Something that sounds like a mobile phone
ringtone. Used to indicate an incoming message.

FUNK: A funky bass line for secret agents and criminal
masterminds.

BLUES: A boogie-woogie 12-bar blues walking bass.

BIRTHDAY: “Happy Birthday to You...” For copyright
status, see http://www.bbc.co.uk/news/world-us-
canada-34332853.

WEDDING: The bridal chorus from Wagner’s opera
“Lohengrin”.

FUNERAL: The “funeral march,” otherwise known as
Frédéric Chopin’s Piano Sonata No. 2 in B minor, Op. 35.

PUNCHLINE: A fun fragment that signifies a joke has
been made.

PYTHON: John Philip Sousa’s march “Liberty Bell”. The
theme from “Monty Python’s Flying Circus” (after
which the Python programming language is named).

BADDY: Silent movie era entrance of a bad guy.
CHASE: Silent movie era chase scene.

BA_DING: A short signal to indicate something has
happened.

WAWAWAWAA: A very sad trombone.

JUMP_UP: For use in a game, indicating upward
movement.

CHAPTER6 WORKING WITH MUSIC

e JUMP_DOWN: For use in a game, indicating downward

movement.

o POWER_UP: A fanfare to indicate an achievement has
been unlocked.

o POWER_DOWN: A sad fanfare to indicate an achievement
has been lost.

Let’s write simple MicroPython code to play the melody BIRTHDAY.
Listing 6-1 shows the complete MicroPython code.

Listing 6-1. Playing a Melody

from microbit import *
import music

music.play(music.BIRTHDAY)

The second line of the code imports the music library from
MicroPython. Then it plays the “Happy Birthday to You...” built-in melody
by using the music.play() function. You must provide the name of
the melody (i.e., BIRTHDAY) as the input. You can modify the code with
different melody names.

You can play a melody continuously by adding the loop=True keyword
as shown in Listing 6-2.

Listing 6-2. Playing a Melody Continuously

from microbit import *
import music

music.play(music.BIRTHDAY, loop=True)

By default, the music module expects the speaker to be connected via
pin 0. If you want to connect the speaker to a different pin, let’s say to pin 1
(see Figure 6-10), write the code shown in Listing 6-3.

145

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH MUSIC

fritzing

Figure 6-10. Connecting speaker to pin 1

Listing 6-3. Playing a Melody by Connecting a Speaker to Pin 1

from microbit import *
import music

music.play(music.BIRTHDAY, pin=pinl, loop=True)

Making Your Own Melodies

In music, a note is the pitch and duration of a sound. The following are the
basic notes used with English music.

C,D,EEEG,A,B

In Neo-Latin music, the same thing can be written as follows.

Do, Re, Me, Fa, Sol, La, Si

With MicroPython, you can easily play a musical note or a set of notes
in a sequence

146

CHAPTER6 WORKING WITH MUSIC

Let’s start with a single note. Listing 6-4 shows the MicroPython code
to play the musical note C. With this code, you can press built-in button A
on the micro:bit board to play the note. Before running your code with the
micro:bit, connect the crocodile clip back to pin 0.

Listing 6-4. Playing a Single Musical Note

from microbit import *
import music

while True:
if button a.is pressed():
Play a 'C'

music.play('C")

You can also play many musical notes sequentially to make melodies.
The code shown in Listing 6-5 plays the five basic musical notes.

Listing 6-5. Playing Musical Notes

from microbit import *
import music

while True:

if button a.is pressed():
Play a 'C'
music.play('C")
Play a 'D'
music.play('D")
Play a 'E'
music.play('E")
Play a 'F'
music.play('F")
Play a 'G'
music.play('G")

147

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH MUSIC

Play a 'A’
music.play('A")
Play a 'B’

music.play('B")

The code in Listing 6-5 can also be written with a few lines of code to
produce the same output, as shown in Listing 6-6.

Listing 6-6. Playing Musical Notes
from microbit import *

import music
tune - [IIC"’ "DII, IIEII’ "F", IIGII]
music.play(tune)

You can use the note name R to create silence in your melody. For
an example, the code in Listing 6-7 will add silence between the musical
notes Eand E

Listing 6-7. Adding Silence
from microbit import *

import music
tune - ["C", "DII, IIE"’ "R", IIFII’ "G"]
music.play(tune)

Using Octave

In music, an octave or perfect octave is the interval between one musical
pitch and another with half or double its frequency. Figure 6-11 shows a
keyboard with four octaves, from octave 2 to octave 5.

148

CHAPTER6 WORKING WITH MUSIC

CDEFGABCDEFGABQDEFIGABCDEFGA!BC

Octave 2 Octave 3 [Octave 4 Octave 5

Figure 6-11. Keyboard with four octaves

Each octave has seven musical notes and they can be written with the
letter followed by the number of the octave.

As an example, the musical note C belongs to octave 3 and can be
written as C3.

Listing 6-8 shows code that plays the musical note C in octave 4.

Listing 6-8. Playing a Musical Note with Octave

from microbit import *
import music

while True:
if button a.is pressed():
Play a 'C3'
music.play('C3")

By default micro:bit plays musical notes in octave 4, unless you
explicitly define it followed by the musical note. In other words, the
musical note C is exactly equivalent to C4.

In addition to the octaves, accidentals (flats and sharps) can be
denoted with musical notes. A flat is written as a lowercase b and a sharp is
written as #. Listing 6-9 plays A flat and C sharp.

149

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH MUSIC

Listing 6-9. Playing Musical Notes with Accidentals

from microbit import *
import music

while True:
if button a.is pressed():
Play a 'A-flat’
music.play('Ab")
Play a 'C-sharp'
music.play('C#")

Note The default status of an octave is 4. As an example, if you
write the musical note C in your code, it explicitly becomes C4.

Beats

In music, a beat is the basic unit of time. You can specify a musical note
with a beat as follows:

NOTE[octave][:duration]

The duration specifies the arbitrary length of time defined by a tempo
setting function (see the section called “Setting the Tempo”).

If you want to play the musical note C in octave 4 for three beats, you
can write it with the MicroPython shown in Listing 6-10.

Listing 6-10. Playing Musical Notes with Beats

from microbit import *
import music

while True:
if button a.is pressed():
Play a 'C4:3'
music.play('C4:3")

150

CHAPTER6 WORKING WITH MUSIC

By default, micro:bit plays musical notes with four beats long unless
you explicitly define the number of beats.

Setting the Tempo

The music.set tempo() function makes the tempo (the speed of a piece
of music) as fast or as slow as you say. With this function, you can set the
number of ticks that constitute a beat. Each beat is played at a certain
frequency per minute expressed as the more familiar bpm (beats per
minute). Let’s look at a few examples of how you can set the tempo with
different parameters.

If you only need to change the definition of a beat, input the number of
ticks that you want to define the beat with the music.set tempo() function
(see Listing 6-11) .

Listing 6-11. Defining Number of Ticks

from microbit import *
import music

music.set tempo(ticks=8) # set ticks to 8
music.play('C4:3")

If you want to change the tempo, set the beats per minutes, as shown in
Listing 6-12.

Listing 6-12. Defining Beats per Minutes

from microbit import *
import music

music.set tempo(bpm=180) # set the bpm to 180
music.play('C4:3")

151

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH MUSIC

You can use the music.set tempo() function without any parameters to
reset the tempo to the default of ticks = 4 and bpm = 120 (see Listing 6-13).

Listing 6-13. Setting the Tempo to the Default Values

from microbit import *
import music

music.set_tempo() # set the bpm to 120 and ticks to 4
music.play('C4:3")

Getting the Tempo

The music.get tempo() function returns the current tempo as a tuple
of integers. Listing 6-14 shows the MicroPython code that displays the
current tempo.

Listing 6-14. Getting the Current Tempo

from microbit import *
import music

music.set tempo(bpm=180, ticks=8) # set the bpm to 180 and
ticks to 8

tempo = music.get tempo()

print("Current Tempo: ", tempo)

First, set the tempo using the music.set tempo() function with
bpm=180 and ticks=8. Then display the current tempo using the music.
get_tempo() function. This code will produce the output shown in
Figure 6-12.

152

CHAPTER6 WORKING WITH MUSIC

%>> Current Tempo: (189, 8)
on 2016-94-18

Type "help()}" for more information.
>>>

Figure 6-12. Displaying the current tempo

The output shows the current tempo as 180, followed by the number
ticks as 8. This function can be used to confirm that you are using the

correct tempo in your melody.

Resetting Attributes

Any time you can reset the following musical attributes to the default
values with the music.reset() function. They are as follows:

o ticks=4
e bpm=120
e duration=4

e oOctave=4

Playing a Pitch

In music, the pitch of a musical note means how high or low the note is.
The pitch of a musical note can be measured in a unit called Hertz. With
MicroPython, you can use the music.pitch() function to set the frequency
of a musical note. This function is very similar to the music.play()
function that you used. The most important inputs for the music.pitch()
function are frequency and duration.

153

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER6 WORKING WITH MUSIC

Listing 6-15 shows code that plays a tone at the frequency of 440Hz for
one second. The duration is presented in the code as length and it should
be in milliseconds.

Listing 6-15. Playing a Pitch for a Known Duration

from microbit import *
import music

music.pitch(440, 1000)

If you want to play a pitch continuously until the blocking call is
interrupted, or, in the case of a background call, a new frequency is set or
stop is called, use a negative number for len (i.e., -1). Listing 6-16 shows
code that plays a pitch continuously at 440Hz.

Listing 6-16. Playing a Pitch Continuously

from microbit import *
import music

music.pitch(440, -1)

Summary

In this chapter, you learned how to connect a speaker to the micro:bit
in various ways. Then you learned how to code to produce music with
micro:bit’s built-in melodies and build new melodies with the micro:bit
music library. In the next chapter, you learn how use micro:bit’s speech
API to convert text to speech with punctuation, timbre, and phonemes.

154

CHAPTER 7

Working with Speech

In the previous chapter, you learned how to use micro:bit’s audio
capabilities to produce music using the music library. In addition to that,
micro:bit provides a speech library to work with text-to-speech conversion
that can be used to produce sound similar to the human voice by way of
fine tuning various parameters.

Connecting a Speaker

You can use the same wiring diagram that you used in Chapter 6, “Working
with Music,” to connect a speaker to the micro:bit. Instead of connecting a
speaker to the micro:bit pin 0 and GND, you can use the micro:bit’s pins 0
and 1 to connect a speaker, as shown in Figure 7-1.

© Pradeeka Seneviratne 2018 155
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_7

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 WORKING WITH SPEECH

fritzing

Figure 7-1. Connecting a speaker to pins 0 and 1

The speech library provides all the functionalities needed to work with
speech and voice related projects. You can import the speech library by
adding the import speech statement to the beginning of your program.

Let’s start with simple code used to convert text to speech (see
Listing 7-1). It converts the text Hello, World to speech and you can
hear it from the speaker.

Listing 7-1. Text to Speech Conversion

from microbit import *
import speech

speech.say("Hello, World")

156

CHAPTER 7 WORKING WITH SPEECH

The speech.say() function converts English text to speech and plays
it from the attached speaker. When you run this code with micro:bit, you
can hear a voice similar to a robot, which is semi-accurate in English. The
quality of the voice is not amazing, but it is quite usable. In addition, the
speech.say() function provides some parameters that you can use to
change the default voice.

Timbre

The character or quality of a musical sound or voice is known as its timbre.
You can change the quality of the default voice by overriding some of the
parameters that the speech synthesizer uses to produce it.

Pitch

The pitch defines how high or low the voice sounds. The acceptable values
are 0 (high) to 255 (low). You can get a clue about the pitch by hearing the
vocals of following singers.

o Highest pitch: Adam Lopez Costa at https://
www.youtube.com/results?search_
query=Adam+Lopez+Costa

o Lowest pitch: Barry White at https://www.youtube.
com/results?search _query=Barry+White

The default pitch value is 64. Listing 7-2 shows a list of value categories

that you can use to set the pitch of the voice.

Listing 7-2. Pitch Categories and Values

0-20 impractical
20-30 very high
30-40 high

40-50 high normal

157

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 WORKING WITH SPEECH

50-70 normal
70-80 low normal
80-90 low

90-255 very low

Listing 7-3 shows the MicroPython code that produces a voice with
different pitch categories. The code uses average values in each category.

Listing 7-3. Pitch Levels

from microbit import *
import speech

speech.say("Hello, World")#default pitch is 64
sleep(1000)

speech.say("Hello, World", pitch=10)# impractical
sleep(1000)

speech.say("Hello, World", pitch=25)# very high
sleep(1000)

speech.say("Hello, World", pitch=35)# high
sleep(1000)

speech.say("Hello, World", pitch=45)# high normal
sleep(1000)

speech.say("Hello, World", pitch=60)# normal
sleep(1000)

speech.say("Hello, World", pitch=75)# low normal
sleep(1000)

speech.say("Hello, World", pitch=85)# low
sleep(1000)

speech.say("Hello, World", pitch=170)# very low

158

CHAPTER 7 WORKING WITH SPEECH

Speed

Speed defines how quickly the device talks. The acceptable values are from
0 (impossible) to 255 (like bedtime story). The default value is 72.
Listing 7-4 shows a list of categories and values to define the speed.

Listing 7-4. Speed Categories and Values

0-20 impractical

20-40 very fast

40-60 fast

60-70 fast conversational
70-75 normal conversational
75-90 narrative

90-100 slow

100-225 very slow

Listing 7-5 shows the code that speaks the text Hello, Worldin
different speeds.

Listing 7-5. Speak with Different Speeds

from microbit import *
import speech

speech.say("Hello, World")#default speed is 72

sleep(1000)

speech.say("Hello, World", speed=10) # impractical
sleep(1000)

speech.say("Hello, World", speed=30) # very fast
sleep(1000)

speech.say("Hello, World", speed=50) # fast

sleep(1000)

speech.say("Hello, World", speed=65) # fast conversational
sleep(1000)

159

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 WORKING WITH SPEECH

speech.say("Hello, World", speed=73) # normal conversational
sleep(1000)

speech.say("Hello, World", speed=83) # narrative

sleep(1000)

speech.say("Hello, World", speed=95) # slow

sleep(1000)

speech.say("Hello, World", speed=175) # very slow
sleep(1000)

Mouth

Mouth defines how tight-lipped or overtly enunciating the voice sounds
(0 = tight-lipped, 255 = Foghorn Leghorn).

o Tight-lipped: The most extreme example of this is a
ventriloquist, which is a person who changes his or her
voice so that it appears that the voice is coming from
elsewhere.

e Overtly enunciating: A good example of this is Foghorn
Leghorn, who was a cartoon character that has
appeared in the Looney Tunes and Merrie Melodies
cartoons of Warner Bros. (See https://www.youtube.
com/results?search_query=Foghorn+Leghorn.)

Listing 7-6 shows some sample code with the mouth parameter.

Listing 7-6. Controlling the Mouth Parameter

from microbit import *
import speech

speech.say("Hello, World", mouth=200)

160

CHAPTER 7 WORKING WITH SPEECH

Throat

Throat defines how relaxed or tense the tone of voice is (0 = falling apart,
255 = totally chilled).
Listing 7-7 shows some sample code with the throat parameter.

Listing 7-7. Controlling the Throat Parameter

from microbit import *
import speech

speech.say("Hello, World", throat=100)

Example: Creating a Robotic Voice

The default voice produced by a speech synthesizer can be tuned with the
parameters just discussed (pitch, speed, mouth, and throat) to produce a
robotic voice.

Listing 7-8 shows some sample code that can be used to produce a
voice similar to a robot. The speech.say() function combines all the given
parameters to produce the voice for the given text.

Listing 7-8. Voice of a Robot

from microbit import *
import speech

speech.say("I am a baker bot", speed=120, pitch=100,
throat=100, mouth=200)

161

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 WORKING WITH SPEECH

Punctuation

Punctuation makes a voice more realistic. With a speech library, you can

use five types of punctuation to alter the delivery of speech. They are as

follows:

Hyphen: Creates a short pause in the speech.
speech.say("I am a baker bot - crazy cooking"”,
speed=120, pitch=100, throat=100, mouth=200)
Comma: Adds a pause of approximately double that of
the hyphen.

speech.say("I am a baker bot, crazy cooking",
speed=120, pitch=100, throat=100, mouth=200)
Full stop: Creates a pause and causes the pitch to fall.
speech.say("I am a baker bot - crazy cooking.",
speed=120, pitch=100, throat=100, mouth=200)
Question mark: Creates a pause and causes the pitch

torise.

speech.say("I am a baker bot. Who are you?", speed=120,
pitch=100, throat=100, mouth=200)

Phonemes

Phonemes can be used to translate English words into the correct sounds.

They are the building blocks of language. The speech.pronounce()

function allows you to translate any phoneme into the correct voice in

English.

162

CHAPTER 7 WORKING WITH SPEECH

An example, the word Hello can be written with phonemes as
/HEHLOW. Listing 7-9 shows the MicroPython code used to produce the
voice using phonemes.

Listing 7-9. Phonemes

from microbit import *
import speech

speech.pronounce("/HEHLOW") # "Hello"

You can convert any English text to a string of phonemes using the
speech.translate() function (see Listing 7-10). Then you can fine tune
the phonemes to produce a more natural voice.

Listing 7-10. Translate the Text to Phonemes

from microbit import *
import speech

print(speech.translate("Hello"))

The following table lists the phonemes understood by the synthesizer
(Source: http://microbit-micropython.readthedocs.io/en/latest/
speech.html).

163

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 WORKING WITH SPEECH

SIMPLE VOWELS VOICED CONSONANTS
Iy f(ee)t R (r)ed
IH p(i)n L a(ll)ow
EH b(e)g W a(w)ay
AE s(a)m W (wh)ale
AA p(o)t Y (y)ou
AH b(u)dget M (S)am
AO t(al)k N ma(n)
OH c(o)ne NX so(ng)
UH b(oo)k B (b)ad
ux 1(o0)t D (d)og
ER b(ir)d G a(g)ain
AX gall(o)n J (j)u(dg)e
IX dig(i)t z (z)oo
ZH plea(s)ure
DIPHTHONGS v se(v)en
EY m(a)de DH (th)en
AY h(igh)
oy b(oy)
AW h(ow) UNVOICED CONSONANTS
ouW sl(ow) S (S)am
Ul cr(ew) SH fi(sh)
F (f)ish
TH (th)in
SPECIAL PHONEMES P (p)oke
UL sett(le) (=AXL) T (t)alk
UM astron(om)y (=AXM) K (c)ake
UN functi(on) (=AXN) CH spee(ch)
Q kitt-en (glottal stop) /H a(h)ead

Here is a list of non-standard symbols:

¥X diphthong ending (weaker version of Y)

WX diphthong ending (weaker version of W)

RX R after a vowel (smooth version of R)

LX L after a vowel (smooth version of L)

/X H before a non-front vowel or consonant - as in (wh)o
DX T as in pi(t)y (weaker version of T)

164

CHAPTER 7 WORKING WITH SPEECH

Here is a list of some seldom used phoneme combinations:

PHONEME YOU PROBABLY WANT: UNLESS IT SPLITS SYLLABLES LIKE:
COMBINATION

GS GZ e.g. ba(gs) bu(gs)pray

BS BZ e.g. slo(bz) o(bsc)ene

DS DZ e.g. su(ds) Hu(ds)son

PZ PS e.g. sla(ps) =-----

TZ TS e.g. cur(ts)y =-----

KZ KS e.g. fi(x) ==---

NG NXG e.g. singing i(ng)rate

NK NXK e.g. bank su(nk)ist

Using Imtool

Imtool (see http://www.speech.cs.cmu.edu/tools/Imtool-new.html)
provides an easy way to convert English text to phonemes. Use the following
steps to convert a text file to a Pronunciation Dictionary file using Imtool.

1. Using a text editor, create a file with your sentence
(or many sentences) in English. You should include
at least two words in your file, otherwise the
compilation will fail. Then, save the file on your
computer (see Figure 7-2).

!‘ MICrobit - Notepac
File Edit Format View Help
HELLO WORLD|

Figure 7-2. Source file with text

165

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 WORKING WITH SPEECH
2. Browse and locate the saved file by clicking the
Choose File button (see Figure 7-3).

3. Click the Compile Knowledge Base button (see
Figure 7-3).

To use: Create a sentence corpus file, cc
a line (but do not need to have standard
fragments to recombine into new senten

nload a senfence corpus file:

| Choose File | icrobit.txt

Figure 7-3. Uploading and compiling a text file

4. Onthe results page, click the file name with the .dic
extension (see Figure 7-4). This is the Pronunciation
Dictionary file.

166

Name Size
99
@ 2772.1m 1.eK
@ 2772.log_pronounce 65
@ 2772.sent 42
@ 2772.vocab 24
ﬁ TAR2772.tgz 868

CHAPTER 7 WORKING WITH SPEECH

cription

Pronunciation Dictionary
Language Model

Log File

Corpus (processed)

Word List

COMPRESSED TARBALL

Figure 7-4. Pronunciation Dictionary file

5. The file contains phonemes for each word in the

sentence (see Figure 7-5). As you can see, the tool

suggests two phonemes for the word “Hello” Choose

the most relevant phoneme for your micro:bit

application.

HELLO HH AH L OW

HELLO(2)

WORLD W ER LD

Figure 7-5. Phonemes for each word

Stress Markers

HH EH L OW

Stress markers can be used to create a more expressive tone of voice.

They range from 1-8. You can insert the required number after the vowel

to create stress. For example, the lack of expression of /HEHLOW can be

improved by inserting stress marker 3 followed by the vowel EH, as in
/HEH3LOW. Listing 7-11 shows a list of stress markers.

167

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 7 WORKING WITH SPEECH

Listing 7-11. Stress Markers

1- very emotional stress

2- very emphatic stress

3- rather strong stress

4- ordinary stress

5- tight stress

6- neutral (no pitch change) stress
7 - pitch-dropping stress

8- extreme pitch-dropping stress

Listing 7-12 shows the MicroPython code that produces a much
improved voice for the word “Hello” by inserting a stress marker.

Listing 7-12. Stress Markers

from microbit import *
import speech

speech.pronounce("/HEH3LOW") # "Hello"

Singing with Phonemes

The speech.sing() function can be used to sign phonemes. Listing 7-13
shows the lyrics for a happy birthday song.

Listing 7-13. Lyrics for the Happy Birthday Song

Happy Birthday to You
Happy Birthday to You
Happy Birthday Dear Micro Bit
Happy Birthday to You

First, you need to convert the text to phonemes, as shown in
Listing 7-14. You can use the speech.translate() function or Imtool to
convert the text into phonemes.

168

CHAPTER 7 WORKING WITH SPEECH

Listing 7-14. Phonemes for the Happy Birthday Song

HH AE P IY B ER THD EY T UW Y UW
HH AE P IY B ER THD EY T UW Y UW
HH AEP IYBERTHDEYDIHRMAY KROWBIHT
HH AE P IY B ER THD EY T UW Y UW

Listing 7-15 shows the MicroPython code used to sing a happy birthday
song with phonemes.

Listing 7-15. Sing a Song with Phonemes

from microbit import *
import speech

speech.sing("#115 /H AE P IY B ER THD EY T UN Y UW",
speed=100)

speech.sing("#115 /H AE P IY B ER THD EY T UN Y UW",
speed=100)

speech.sing("#115 /H AE P IY B ER THD EY D IH R M AY K R OW B
IH T", speed=100) speech.sing("#115 /H AE P IY B ER THD EY T
UW Y UW", speed=100)

You can change the value of the speed parameter to control the
speed of the song. The pitch number 115 is used with a hash (#115) as an
annotation. You can also add other parameters—such as pitch, mouth, and
throat—to change the timbre (quality) of the voice.

Summary

In this chapter, you learned how to produce voices and songs using the
micro:bit speech library. You learned how to emulate different voices by
changing the characteristics of the voice.

The next chapter explains how to store and manipulate files with

micro:bit’s internal storage.

169

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 8

Storing and
Manipulating Files

micro:bit provides a persistent file system that allows you to store files in
the flash memory. The size of the storage reserved for the file system is
approximately 30KB. However, micro:bit provides a flat file system, so you
can’t store files in directories to create a hierarchy. The stored files will
remain intact until you either delete them or re-flash the device.

In this chapter, you learn how to store files in the micro:bit internal
storage and manipulate them with some OS functions. Then you learn
about the MicroFS utility that can be used to manipulate files on micro:bit
and transfer files between micro:bit and the computer.

Creating a File

With micro:bit, you can create files with any extension. The open()
function allows you to create a file for a given name with the w parameter
for writing. This function will also overwrite the contents of the file if it
exists. The write() function can be used to write a line of text into the file.

© Pradeeka Seneviratne 2018 171
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_8

CHAPTER 8 STORING AND MANIPULATING FILES

Flash the sample code in Listing 8-1 to your micro:bit using the Mu
editor. After the flashing is done, click on the Files button. The Mu editor
will display all the files in your micro:bit storage under the Files on Your
micro:bit list view (see Figure 8-1) . You can see that the file named foo.
txt has been created on your micro:bit with the given content, which is a
single line of text.

Listing 8-1. Creating a File

with open('foo.txt', 'w') as myFile:
myFile.write("This is the first line")

- W - oEm
+
+) ()&l =) (Q)(Q)(C) () ? .
tiew Load Save Flash Fles Repl Zomn Zoomout Theme Check Help
untitied = [
1 with open('foo.txt', 'w') as myFile:
2 myFile.write("This is the first line")
Files on your micro:bit: Files on your computer:
foo.txt .

Figure 8-1. Files window

Reading a File

You can also read a file with the open() function. You must provide the file
name with the extension and the optional argument r to open the file for
reading in text mode.

172

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 8 STORING AND MANIPULATING FILES

You can read the contents of the foo. txt file, as shown here.

1. Click again on the Files button to close the Files
window.

2. Click the Repl button to start a new REPL session
(an interactive shell).

3. Run the code shown in Listing 8-2 using the Repl
window. Press the Enter key followed by each line.

Note Don’t flash the code shown in Listing 8-2 to the micro:bit.
Flashing a new code to the micro:bit will destroy all the stored files in
the micro:bit internal storage.

Listing 8-2. Reading a File

with open('foo.txt') as myFile:
print(myFile.read())

4. When you press the Enter key followed by the last
line, you will get the contents of the file as the output
(see Figure 8-2).

>>> with open('foo.txt') as myFile: EE]
print(myFile.read()) EXE)

This s the first line
>>> |

Figure 8-2. Reading the contents of a file

173

CHAPTER 8 STORING AND MANIPULATING FILES

Writing Multiple Lines in a File

When you are creating or overwriting a file, you can write multiple lines in
a file. The write() function can be called any number of times with your
code for each line of text. Listing 8-3 shows the sample code that uses the
write() function for each line of text. However, remember to add a new
line character \n at the end of each line before starting a new line.

Flash the sample code to the micro:bit using the Mu editor. This will
create the file called foo.txt on the micro:bit internal storage with the

given content.

Listing 8-3. Creating a File with Multiple Lines of Text

with open('foo.txt', 'w') as myFile:
myFile.write("This is the first line\n")
myFile.write("This is the second line")

You can also write the two lines of text using a single write() function
as shown here.

myFile.write("This is the first line\nThis is the second line")

After flashing the code, you can read the contents of the foo. txt file
with the read() command. Start a new REPL session by clicking on the
Repl button and entering the code into the REPL window, as shown in
Figure 8-3. After executing the complete code, you will get the contents of
the file as the output on the REPL window.

174

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 8 STORING AND MANIPULATING FILES

>>> with open('foo.txt') as myFile:CE
print(myFile.read()) EED

Figure 8-3. Reading the contents of a file

Appending Text to a File

micro:bit doesn’t provide a function to append text to a file after creating
it. However, there is a way you can append text to an existing file using

a tricky mechanism. The implementation of the append operation is
explained here.

1. Read the contents of the existing file and store it in a
variable.

2. Add new text to the stored content.

3. Create the file again with the same name (this will
overwrite the existing file) and write the stored
contents to the file at the same time.

Assume you created a file named foo. txt with a single line of text.
Now you are going to add another line of text to the file. Figure 8-4 shows
how to do this with a REPL session (don’t flash it to the micro:bit!). It also
shows the final contents of the foo. txt file after appending the second line
of text.

175

CHAPTER 8 STORING AND MANIPULATING FILES

>>> with open('foo.txt') as myFilel:[EE]
content = myFilel.read() EEY
content = content + '\nThis is the second line' EILED
. print(content) EE]
BACKSPACE [ENTER

Th*ns is the first line

This is the second line

>>> with open('foo.txt', 'w') as myFile2: EE]
myFile2.write{content) [EIUE]

W BACKSPACE JENTER |
46
>>> with open('foo.txt') as myFile3:[FE;

. print(myFile3.read()) EED
M BACKSPACE JENTER |

Th'ls is the first line
This s the second line
>>>

Figure 8-4. Appending text to a file

Creating Files with a .py Extension

If a file ends with the .py extension, it can be imported to your code. For
example, a file named hello.py can be imported like so:

import hello.

This will output any statement written with the print function in the
Python file.

Create the foo.py file as shown in Listing 8-4 using the Mu editor and
then flash it to the micro:bit.

Listing 8-4. Creating the foo.py File

with open('foo.py', 'w') as myFile:
myFile.write("i=10\n")

myFile.write("print('------------- ")\n")
myFile.write("print(i)\n")
myFile.write("print('------------- ")

176

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 8 STORING AND MANIPULATING FI

LES

After flashing the file, start a new REPL session and type this statement:

import foo

When you press the Enter key followed by this statement, you will
get the output shown in Figure 8-5. This indicates that when you run the

import command followed by the file name, the file gets executed (not the

contents of the file) and the result will print to the console.

>>> dmport foo [EINEY

>>>

Figure 8-5. Output for foo.py with a REPL session

However, you can print the contents of this file using the read()

function. Figure 8-6 shows the complete REPL session to get the contents

of the foo. py file with the read() function.

>>> with open('foo.py') as myFile:

print(myFile.read()) EE]

=y
PrRE('~ "2
print(i)
brant('~————mm————— 3
>>>i

Figure 8-6. Using the read() function to get the contents of the
Jfoo.py file

177

CHAPTER 8 STORING AND MANIPULATING FILES

Creating Your Own Libraries

You can now import any valid Python file to your code. A Python file that
contains a function or set of functions is called a library. In this section,
you'll see how to use a function in an external Python file with your code.
First create a Python file named gereeting.py with a simple function.
Listing 8-5 shows the MicroPython code that can be used to create the
greeting.py file with a simple function named showGreeting().

Listing 8-5. Creating a Python Library

with open('greeting.py', 'w') as myFile:
myFile.write("def showGreeting():\n")
myFile.write(" print('Hello Friend!')")

You can use this Python library using a REPL session with Mu, as
shown in Figure 8-7. First you must import the Python file stored in the

internal storage with this command:
import greeting
Then you can call the function as follows:

greeting.showGreeting()

>>> Amport greeting EIEY

>>> greeting.showGreeting() EED
Hello Friend!

>>> |

Figure 8-7. Using a Python library

178

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 8 STORING AND MANIPULATING FILES

File Manipulation

micro:bit allows you to manipulate the files stored in internal storage. The
os library provides some useful functions to work with the micro:bit file
system.

Before working with the examples given in file manipulation, first
create some files in the microbit internal storage using the code shown in
Listing 8-6.

Listing 8-6. Creating Four Files on micro:bit Storage

with open('foo.txt', 'w') as foo:
foo.write("foo")

with open('bar.txt', 'w') as bar:
bar.write("bar")

with open('baz.py', 'w') as baz:
baz.write("a=5")

with open('qux.py', 'w') as qux:
qux.write("b=7")

Listing Files

You can list all the files stored in your micro:bit using the 1istdir()
function. First, open a REPL session and run these statements.

import os
os.listdir()

The 1itsdir() function will return the list of files stored in your
micro:bit storage. Figure 8-8 shows the complete REPL session with the
output.

179

CHAPTER 8 STORING AND MANIPULATING FILES

>>> Amport os EEY

>>> os.listdir ()
['foo.txt', 'bar.txt', 'baz.py', 'qux.py']
>>> |

Figure 8-8. Listing files on micro:bit storage

Deleting Files

You can delete a file using the remove () function. Now you’re going to
delete the foo. txt file stored on the micro:bit storage.
Using the same REPL session, run the following statement:

os.remove('foo.txt")

After running the remove () function to delete the file, run the
listdir() function again to verify that the file is deleted. Figure 8-9 shows
the REPL session with output.

>>> os.remove('foo.txt') EED
>>> os.listdir () Y

['bar.txt', 'baz.py', 'qux.py']
>>> |

Figure 8-9. REPL session for deleting a file

180

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 8 STORING AND MANIPULATING FILES

Getting the Size of a File

The size() function can be used to get the size of a file stored on the
micro:bit storage. It returns the size of a given file in bytes. Let’s get the
size of the file named bar . txt by running the following statement with the
same REPL session.

print(os.size('bar.txt"))

The size() function returns the size of the bar.txt file, which is three
bytes.
Figure 8-10 shows the REPL session with the output.

>>> print(os.size('bar.txt')) EHZJ
3
>>>

Figure 8-10. Getting the size of a file

File Transfer with MicroFS

MicroFS is a simple command-line tool that can be used to interact with
the limited file system provided by MicroPython on the micro:bit.

Installing MicroFS

You can install MicroFS on a computer running Windows, Linux, or Mac
operating systems. The details in this section can be directly applied to
installing MicroFS on all three of these operating systems.

181

CHAPTER 8 STORING AND MANIPULATING FILES

Before installing MicroFS, determine whether you already have Python
and pip installed on your computer as prerequisites. If you don’t have
Python and pip, install them on your computer using these sources:

o Python: https://www.python.org/downloads/
o pip: https://pip.pypa.io//en/latest/installing/

From now on, the Windows command prompt is used to demonstrate
the installation and use of MicroFsS.

After setting up everything, simply run the following command from
the Windows command prompt (see Figure 8-11):

$ pip install microfs

This will install MicroFS on your Windows computer in a few minutes.

E:\>pip install microfs
Collecting microfs
pownloading microfs-1.2.1.tar.gz
Collecting pyserial (from microfs)
Downloadin serial-3.4-py2.py3-none-any.wh1 (193kB)
100% | | 194kB 481kB/s
Building wheels for collected packages: microfs
Running setup.py bdist_wheel for microfs ... done
Stored in directory: C:\Users\Pasindu‘\AppData‘\Local‘\pip\Cache‘\wheels\94\c4\10%
9ac4b445f4436b4bl5a3b2e1c5091908a576e48fb31c2004bc
successfully built microfs
Insta11in? collected packages: pyserial, microfs
successfully installed microfs-1.2.1 pyserial-3.4

E:\>

Figure 8-11. Installing MicroFS

Upgrading MicroFS

After installing MicroFS, you can upgrade it by using this command (see
Figure 8-12):

pip install -no-cache -upgrade microfs

182

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 8 STORING AND MANIPULATING FILES

Microsoft windows [Version 6.3.9600] — W
(c) 2013 Microsoft Corporation. All rights reserved.

:\Users\Pasindu>pip install --no-cache --upgrade microfs
Requirement already up-to-date: microfs in c:\users\pasindu\appdata\local\progra
ms\python\python36\1ib\site-packages

Requirement already up-to-date: Eyser'ia'l in c:\users\pasindu\appdata\local\progr
ams\python\python36\11b\s1te packages (from microfs)

:\Users\Pasindu>_

Figure 8-12. Upgrading MicroFS

Now you are ready to access your micro:bit using the MicroFS utility.
You should start every command with ufs:

$ufs [command]

List the Files on the micro:bit
The 1s command can list all the files in your micro:bit storage:
$ufs 1s

Assume there are three files created on your micro:bit storage (see
Figure 8-13). If you want to run the commands in this section with the
same examples, first create three files named bar . txt, baz.py, and qux.py
on your micro:bit.

183

CHAPTER 8 STORING AND MANIPULATING FILES

Files on your micro:bit:
bar.txt
baz.py
qux . py

Figure 8-13. Three files created on the micro:bit

Figure 8-14 shows you how to run the 1s command from the command
prompt. After running the 1s command, you should get the names of three
files as the result.

C:\Users\Pasindu>ufs 1s
bar.txt baz.py qux.py

C:\Users\Pasindu>

Figure 8-14. Listing all the files on micro:bit

Copy a File from the micro:bit

The get command can be used to transfer any file from the micro:bit to
your computer:

$ufs get bar.txt

184

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 8 STORING AND MANIPULATING FILES

After running the get command, the targeted file will be saved on
the local drive of your computer. (You can find the copied file on your
computer’s hard drive by following the current directory of the command
prompt.)

Figure 8-15 shows how to run the get command from the command
prompt. After running the command, the dir command can be run from
the command prompt to verify whether the file is copied to the computer.

:\Users\Pasindu>ufs get bar.txt
:\Users\Pasindu>dir

volume 1in drive C has no label.
volume Serial Number is B604-473E

Directory of C:\Users\Pasindu

11/04/2017 11:03 AM <DIR>

1/04/2017 11:03 AM <DIR> &
04/21/2016 10:16 PM <DIR> .android
04/09/2016 12:43 PM <DIR> .dnx
05/07/2016 12:17 AM <DIR> .eclipse

04/01/2016 09:29 PM <DIR> .electron
09/17/2016 11:50 PM <DIR> .jssc
03/11/2017 05:46 PM <DIR> .m2
2/19/2016 08:59 AM <DIR> .nbi
04/01/2016 08:58 PM .node_repl_history
09/10/2016 : PM <DIR> .oracle_jre_usage
06/02/2017 : PM <DIR> .p2
06/03/2016 - PM <DIR> .VirtualBox

016 R:45 P <DIR> .

L0 . =ULlrR~
09/11/2016 : <DIR> Creative Cloud Files
0/31/2017 3 <DIR> Desktop
10/31/2017 T <DIR> Documents

Figure 8-15. Copying a file from micro:bit followed by verifying it

Copy a File to the micro:bit

You can copy any file from your computer to micro:bit using the put
command:

$ ufs put path/to/file.txt

185

CHAPTER 8 STORING AND MANIPULATING FILES

As an example, if you want to copy the file named led. py on your
computer to micro:bit, run the command shown here. This example
assumes that the file is currently located in the D: /microbit/files/
directory.

$ufs put d:/microbit/files/led.py

Figure 8-16 shows how to run the put command from the command
prompt. After running the put command, you can verify it using the 1s
command.

= Command Prompt - clEN

C:\Users\Pasindu>ufs put d:/microbit/files/led.py

C:\Users\Pasindu>ufs 1s
bar.txt baz.py qux.py led.py

C:\Users\Pasindu>

Figure 8-16. Copying a file to the micro:bit followed by verifying it

Deleting a File on the micro:bit

The rm command can be used to delete a file on the micro:bit. An example,
if you want to delete the qux. py file on your micro:bit, issue this command.

$ ufs rm qux.py

Figure 8-17 shows you how to run the rm command from the command
prompt. After running the rm command, you can verify it using the 1s
command.

186

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 8 STORING AND MANIPULATING FILES

C:\Users\Pasindu>ufs rm qux.py

C:\Users\Pasindu>ufs 1s
bar.txt baz.py led.py

C:\Users\Pasindu>_

Figure 8-17. Deleting a file on the micro:bit followed by verifying it

Summary

In this chapter, you learned how to use the micro:bit’s file system to store
and manipulate files with the os module. You also learned how to use the
MicroFS utility to manipulate files on micro:bit as well as how to transfer
files between micro:bit and your computer.

In next chapter, you learn how to build applications based on micro:bit
wired and wireless (radio) networks.

187

CHAPTER 9

Networks and Radios

Networking micro:bits together allows you to exchange data and broadcast
to many micro:bit boards. In this chapter, you learn how to build wired
and wireless networks with micro:bit boards. You'll be able to build a wide
range of applications based on the networking features of the micro:bit,
such as data loggers, remote control vehicles, advertising beacons, and
many more.

Building a Wired Network

Wired networks allow you to connect two or more micro:bit boards using
wires. However, this architecture doesn’t support any addressing and
grouping features. Therefore, this type of network is more suitable to
connect two micro:bit boards.

You need the following things to build a simple wired network.

e Two crocodile leads

o Two micro:bit boards
e Two battery cases

o Four AA batteries

Connect the two micro:bit boards using the crocodile leads, as shown

in Figure 9-1.

© Pradeeka Seneviratne 2018 189
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3_9

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER9 NETWORKS AND RADIOS

fritzing

Figure 9-1. Connecting two micro:bit boards for networking

Before make the connections, you must decide which pins you are
going to use for input and output on both micro:bit boards.

This example uses pin 2 for input and pin 1 for output. This will apply
to both boards, so both boards know what to do with each pin.

Here are the two MicroPython statements that you can use to write
digital 1 and 0 on pin 1 (OUT):

pinl.write digital(1) # switch the signal on
pinl.write digital(o) # switch the signal off

You can also read the incoming signal on pin 2 (IN) with this
MicroPython statement:

input = pin2.read digital() # read the value of the signal
(either 1 or 0)

190

CHAPTER9 NETWORKS AND RADIOS

Let’s build a basic application based on the micro:bit wired network.
Assume that you have two micro:bit boards labeled X and Y, wired as
discussed previously.

When you press and hold built-in button A on the micro:bit board X,
an image should display on the micro:bit board Y. Similarly, when you
press and hold built-in button A on the micro:bit board Y, an image should
display on the micro:bit board X. The implementation is very simple, as
shown in Listing 9-1 with MicroPython code.

Listing 9-1. Basic micro:bit Network Application
from microbit import *

while True:
if button a.is pressed():
pinl.write digital(1)
else:
pinl.write digital(0)

input = pin2.read digital()
if (input == 1):
display.show(Image.HAPPY)
else:
display.clear()

Flash the code into both micro:bit boards. According to the code, when
you press and release button A, it will write digital 1 on pin 1; otherwise,
the value on pin 1 is 0 (OUT). Meanwhile, it will read the incoming values
(IN) on pin 2. If it finds that the incoming value is 1, it will display an image
on the LED display.

191

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER9 NETWORKS AND RADIOS

Buffering Incoming Data

Buffering is useful for storing data temporarily for processing when
required. Listing 9-2 shows how to send data and buffer receiving data with
MicroPython using the same hardware setup shown in Figure 9-1.

According to the code, when you press and release built-in button A,
the value on pin 1 becomes 1 (HIGH).

When receiving, micro:bit stores all the digital 1 (HIGH) status on pin
2 in the variable named buffer. It ignores digital 0 (LOW) status. At any
time, you can press built-in button B to see all the buffered 1 (HIGH) status
on the LED display.

Flash the code into both micro:bit boards. Label these two boards as X
and Y. Now test the code.

1. Press and release button A five times on micro:bit
board X.

2. Then press and release built-in button B on the
micro:bit board Y to see the output on the LED
display. Five x marks will scroll on the LED display
to indicate the five button pressed events. See
Listing 9-2.

Listing 9-2. Buffering Data
from microbit import *

buffer = "'
while True:
Sending
if button a.was pressed():
pinil.write digital(1)
else:
pinil.write digital(o)

192

CHAPTER9 NETWORKS AND RADIOS

Receiving
if (pin2.read digital() == 1):
buffer += 'x '

if button b.was pressed():
display.scroll(buffer)
buffer = "'

sleep(100)

Using Radios

Micro:bit’s CPU (central processing unit) has a built-in 2.4GHz radio
module that allows you to send and receive messages wirelessly with

the radio library. With the radio library, you can build a wide range of
applications that can be used to exchange data between micro:bit boards.

Turning the Radio On and Off

The radio.on() function allows you to turn on the radio module and send
and receive messages. You can turn off the radio by simply calling the
radio.off() function. Listing 9-3 shows the MicroPython code needed to
turn on the micro:bit radio for five seconds.

Listing 9-3. Turn On the micro:bit Radio for Five Seconds

from microbit import *

import radio

radio.on() # turns the radio on
sleep(5000)

radio.off() # turns the radio off

193

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER9 NETWORKS AND RADIOS

Sending and Receiving Messages

You can send messages up to 251 bytes long (or 250 characters per
message) with the radio.send() function.

Sending messages are similar to broadcasting programs from a radio
station. All radios can receive the same program if they are tuned to the
correct frequency. Similarly, micro:bit boards will receive the message
within the transmission range if they are configured to receive.

This can be demonstrated by using two micro:bit boards. Listing 9-4
shows the MicroPython code to send a message to the other micro:bit
board. The code should be saved onto the first micro:bit board.

Listing 9-4. Sending a Message

from microbit import *
import radio

while True:
radio.on() # turns the radio on
message = "Hello,World!."
radio.send(message)

sleep(500)

Micro:bits may receive a message using the radio.receive() function.
Listing 9-5 shows the MicroPython code that should be saved onto the
second micro:bit board so the message can be received and displayed.

Listing 9-5. Receiving Incoming Messages

from microbit import *
import radio

radio.on()

while True:

194

CHAPTER9 NETWORKS AND RADIOS

incoming = radio.receive()
if incoming is not None:
display.show(incoming)
print(incoming)
sleep(500)

Configuring Radio

By now, you know how to send and receive messages using the micro:bit
radio module. All of the previous examples used the micro:bit radio’s
default configuration settings to send and receive messages. If you use the
default configuration settings, you can send the same message to every
micro:bit board that has the default configuration. You can configure the
radio module using the radio.config() function.

Selecting a Channel

Like a radio or TV transmitter, the micro:bit radio module can be
configured with a transmission frequency. The same frequency will receive
the data too. The channel keyword can be used to set the channel number,
as shown here.

radio.config(channel=25)

The micro:bit supports a total of 101 channels for general use,
numbered 0 to 100, with the default channel set to 7.

Channel 0 has a frequency of 2400Mhz and each channel has a
bandwidth of 1Mhz. For example, channel 1 will be at 2401Mhz, channel 2
at 2402MhZ, and so forth.

195

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER9 NETWORKS AND RADIOS

Defining Groups

You can assign your micro:bit to a virtual group using the group keyword.
Groups allow you to create more than one micro:bit radio project in the
same network range without interfering with messages. Remember, your
micro:bit can only ever be a member of one group at a time, and any
packets sent will only be received by other micro:bits in the same group.
You can use a group number from 0 to 255. The default group number is 0.

radio.config(group=7)

Assigning Addresses

Assigning an address to the micro:bit radio module allows you to filter the
incoming messages at the hardware level, keeping only those that match
the address you set. You can express an address as a 32-bit address. The
default address used is 0x75626974. The address keyword can be used to
set the address for the radio.

radio.config(address=0x11111111)

Transmission Power

Transmission power of the radio module indicates the strength of the
signal and how far it can go from the source. You can set the transmission
power for the micro:bit radio module using the radio.power () function.
This function accepts values from 0 to 7; the default is 6. The higher the
value, the more power the radio module consumes from the micro:bit.
However, using a strong signal will help you reach more micro:bit radio
modules.

radio.config (power = 7)

196

CHAPTER9 NETWORKS AND RADIOS

Remotely Controlling an LED

You can build a wide range of wireless applications using the micro:bit
radio module. As a first example, let’s write MicroPython code to control
an LED remotely.

Figure 9-2 shows the wiring diagram for connecting an LED with the
micro:bit. Connect the positive leg (anode) of the LED with micro:bit pin 0
and the negative leg (cathode) of the LED with the micro:bit GND through
a 220 Ohm resistor.

fritzing

Figure 9-2. Wiring diagram for connecting an LED with
micro:bit

Listing 9-6 shows the MicroPython code you can flash to the micro:bit
board that you are going to use as the remote control (the sender).

197

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER9 NETWORKS AND RADIOS

Listing 9-6. Remote Control (Sender)

from microbit import *
import radio

radio.on() # turns the radio on
radio.config(power=7)

while True:
if(button a.was pressed()): # to turn the remote LED on
radio.send("H") # sends letter H to receiver
elif(button b.was pressed()): # to turn the remote LED off
radio.send("L") # sends letter L to receiver
sleep(100)

Listing 9-7 shows the MicroPython code you can flash to the micro:bit
board (the receiver) connected to the LED. The code will handle all the
incoming messages from the remote control (sender) and will write values
on the pin attached to the LED.

Listing 9-7. Receiver

from microbit import *
import radio

radio.on() # turns the radio on
radio.config(power=7)

pino.write digital(0) # turns the LED off on startup

while True:
message = radio.receive() # read incoming message
if (message == "H"): # compare incoming message
pino.write digital(1) # turns the LED on
if (message == "L"):
pino.write digital(o) # turns the LED off

198

CHAPTER9 NETWORKS AND RADIOS

After flashing the code onto both micro:bit boards, unplug them from
the computer and connect them with batteries. Your micro:bit boards will
connect to each other within a few seconds through the radio network (see
Figure 9-3).

220Q

fritzing

Figure 9-3. Radio network for controlling an LED remotely

Controlling the LED

Table 9-1 shows the list of button events that you can use to control the
LED attached to the micro:bit (R2) remotely.

Table 9-1. Button Events to Control LED Remotely

Sender (R1) LED State (R2)
On startup/RESET OFF

Press and release Button A ON

Press and release Button B OFF

199

www.allitebooks.cond

http://www.allitebooks.org

CHAPTER9 NETWORKS AND RADIOS

Building the Wireless Buggy

You can use the micro:bit radio network to control a robot wirelessly
by applying the same technique used in the previous section, entitled
"Remotely Controlling an LED".

Let’s build a simple wireless buggy using the following components.

e One "line following buggy" for the BBC micro:bit

(https://www.kitronik.co.uk/5604-1ine-
following-buggy-for-the-bbc-microbit.html)

e Two micro:bit boards for the buggy and the remote
control

o Four AA batteries for the buggy

o« Two AA batteries for the remote control

Assembling the Line Following Buggy

A very good tutorial about assembling the line following buggy can
be found on Kitronik’s blog (https://www.kitronik.co.uk/blog/
bbc-microbit-line-following-buggy/). You will be using the same
instructions, but don’t assemble and connect the line following PCB.

After assembling the hardware, connect the two motors to the motor
driver board, as instructed here. Figure 9-4 shows the wire connections
between the motors and the motor driver board. Label the left motor of the
buggy as Motor 1 and the right motor as Motor 2.

e Wire 1 on Motor 1 (white) goes into the P12 terminal.
e Wire 2 on Motor 1 (green) goes into the P8 terminal.
e Wire 1 on Motor 2 (blue) goes into the PO terminal.

e Wire 2 on Motor 2 (black) goes into the P16 terminal.

200

CHAPTER9 NETWORKS AND RADIOS

—
-—
-
-
-
L
—
-
e
—
—
[
-
-
—
—
-
—
—
—
—
—
-
—
—
—
——
—
-
-
B o
L
Ll
—
-
Ll
W
o
—
W
L

Figure 9-4. Connecting motors with a motor driver board (image
courtesy of Kitronik)

First, insert the batteries into the buggy’s battery case and slide the
power switch on the battery case to the OFF position. Then connect the
wires from the battery case to the power terminal block on the motor
driver board. Use the correct polarity marked on the motor driver board to
connect the wires to the terminal block. Figure 9-5 shows the completed
chassis.

201

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER9 NETWORKS AND RADIOS

Figure 9-5. Completed chassis of the buggy (image courtesy of Kitronik)

Writing the Code

You can control each motor by writing values on the micro:bit I/O pins
connected to them. Tables 9-2 and 9-3 show the input values that can be
used to control motors (read https://www.kitronik.co.uk/pdf/5620%20
Motor%20Driver%20Board%20V1.1-2.pdf for more information). However,
forward and reverse directions can vary depending on how the motors are
connected. You can correct the direction by swapping the two motor wires
with the terminal block.

202

CHAPTER9 NETWORKS AND RADIOS

Table 9-2. Motor Control Pins for
Motor 1 (Assume This Is the Left Motor)

P8 P12 Motor 1 Function
0 0 Coast

1 0 Forward

0 1 Backward

1 1 Brake

Table 9-3. Motor Control Pins for Motor 2
(Assume This Is the Right Motor)

PO P16 Motor 2 Function
0 0 Coast

1 0 Forward

0 1 Backward

1 1 Brake

You can assign the following operations to the built-in buttons on the

micro:bit board that you are going to use as the remote control.

e Button A: FORWARD

e Button B: BACKWARD

e Button A+B: BRAKE

Listing 9-8 shows the MicroPython code for the remote control and
Listing 9-9 shows the code for the buggy. Write them using the Mu editor
and flash to the respective micro:bit boards.

203

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER9 NETWORKS AND RADIOS

Listing 9-8. Remote Control Code

from microbit import *
import radio

radio.on() # turns the radio on
radio.config(power=7)

while True:
if(button a.is pressed()):
radio.send("F") # FORWARD
elif(button b.is pressed()):
radio.send("B") # BACKWARD
elif(button a.is pressed() and button b.is pressed()):
radio.send("S") # BRAKE
else:
radio.send("C") #COAST
sleep(100)

Listing 9-9. Buggy Code

from microbit import *
import radio

radio.on() # turns the radio on
radio.config(power=7)

while True:
message = radio.receive()
if (message == "F"): # FORWARD
pin8.write digital(1) # motor 1
pini2.write digital(0) # motor 1
pin0.write digital(1) # motor 2
pin16.write digital(0) # motor 2

204

CHAPTER9 NETWORKS AND RADIOS

if (message == "B"): # BACKWARD
pin8.write digital(o) # motor 1
pini2.write digital(1) # motor 1
pin0.write digital(0) # motor 2
pin16.write digital(1) # motor 2

if (message == "S"): # BRAKE
pin8.write digital(1) # motor 1
pini2.write digital(1) # motor 1
pino.write digital(1) # motor 2
pini6.write digital(1) # motor 2

if (message == "C"): # COAST
pin8.write digital(0) # motor 1
pini2.write digital(0) # motor 1
pino.write digital(0) # motor 2
pini16.write digital(o) # motor 2

After flashing the code to both micro:bit boards, move the switch on the
buggy’s battery case to the ON position. Then connect the remote control
battery case to the micro:bit you are going to use as the remote control.

Now you're ready to play with your wireless buggy. You can move
the buggy forward and backward using built-in buttons A and B. To stop
the buggy, press and hold both buttons at the same time. If you haven’t
pressed any buttons, the buggy will go into coast (neutral) state.

You can improve the design of the buggy by including the following

operations.

e Point turn. One motor must go forward and the other
motor must go backward. The vehicle turns to the side
where the motor is going backward.

e Swing turn. One motor must stop and the other motor
must go backward or forward. There are four types of swing
turns: forward left swing turn, backward left swing turn,
forward right swing turn, and backward right swing turn.

205

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER9 NETWORKS AND RADIOS

o Attach additional buttons to the micro:bit and
implement code for these turning operations to
turn the buggy left and right with different turning

mechanisms.

Summary

In this chapter, you learned about the networking features of the micro:bit.
Now you know how to build simple applications based on wired and
wireless micro:bit networks. The basic knowledge you gained can be
applied to build more complex applications, such as data loggers, robots,
home automation systems, content delivery systems, and so forth based on
the micro:bit networking features.

Throughout this book, you gained foundational knowledge to develop
applications for micro:bit with MicroPython. Unfortunately, MicroPython
still doesn’t support the Bluetooth services provided by the micro:bit.
However, you can develop applications with the micro:bit Bluetooth
services using the JavaScript Blocks Editor; you can find many resources
related to that in the Internet. Appendix B covers the micro:bit Blue app,
which you can use with micro:bit Bluetooth services.

206

APPENDIX A

Updating DAPLink
Firmware and Using
REPL with Tera Term

This appendix explains how to update the DAPLink firmware on the
micro:bit by using maintenance mode. It also shows you how to use REPL
(Read-Evaluate-Print-Loop) with Tera Term, a serial terminal program.

DAPLink Firmware

The firmware on the micro:bit is stored inside a separate interface chip
called the KL.26. This firmware is known as DAPLink. It is the responsibility
of this firmware to connect to the USB port and to allow you to drag and
drop .hex files that are then programmed into the application processor.

If you want to determine what firmware is loaded in the K126 interface
chip, plug it in and open it in your file manager. Then look inside the
details.txt file (see Figure A-1).

© Pradeeka Seneviratne 2018 207
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3

vww . allitebooks.con

http://www.allitebooks.org

APPENDIXA UPDATING DAPLINK FIRMWARE AND USING REPL WITH TERA TERM

E DETAILS - Notepad - oI El
File Edit Format View Help

DAPLink Firmware - see https://mbed.com/daplink »
Unique ID:
9900000037024245005220090000002d000000LB97969901

HIC ID: 97969901

Auto Reset: 1

Automation allowed: ©

02¢51c110751d8bdb8a74aeb7b071b

Local Mods: 1
USB Interfaces: MSD, CDC, HID
Interface CRC: 9xe369fblé

Figure A-1. The details.txt file contains firmware information

Updating DAPLIink Firmware

You can download the latest DAPLink firmware from https://github.
com/ARMmbed/DAPLink/tags. At the time of this writing, it was version 0244
(https://github.com/ARMmbed/DAPLink/releases/tag/0244).

Note You should only update the firmware when there is a new
DAPLink version available.

The following steps explain how to update the DAPLink firmware on
micro:bit.

1. First, bring your micro:bit into maintenance mode.
(Read the “Maintenance Mode” section to learn how
to bring your micro:bit into maintenance mode.)

208

APPENDIXA UPDATING DAPLINK FIRMWARE AND USING REPL WITH TERA TERM

2. Copy the firmware (the .hex file) to the MAINTENANCE

drive.

3. The system LED will start to blink. After the copy
operation has completed, the LED will stop blinking
and the drive will be dismounted.

4. Unplug the micro:bit from the computer and plug it
in again. The micro:bit should appear as MICROBIT in
the computer’s file browser.

Maintenance Mode

Maintenance mode allows you to update the DAPLink firmware, which is
an USB interface that allows you to drag and drop binaries onto the target
microcontroller. Simply press and hold the RESET button near the micro
USB connector while connecting the USB cable to your computer’s USB
port to enter maintenance mode (see Figure A-2).

209

vww . allitebooks.con

http://www.allitebooks.org

APPENDIXA UPDATING DAPLINK FIRMWARE AND USING REPL WITH TERA TERM

Figure A-2. Preparing micro:bit for MAINTENANCE mode

Your micro:bit will appear as a mass storage device labeled
MAINTENANCE (see Figure A-3). Sometimes this will happen when you
connect the USB cable to the computer while pressing the RESET button.
You can exit from maintenance mode by unplugging the micro:bit from the
USB and then plugging it back in without pressing the RESET button.

210

APPENDIXA UPDATING DAPLINK FIRMWARE AND USING REPL WITH TERA TERM

Computer View Manage ~ 0

[Properties w - ‘. {8 Uninstall or change a program

4 Open ce-_ 78 System properties
Access Map network Add a network Open Control
&0 Rename media~ drive location Panel & Manage

Location Network System
®© v~ 1 ™) ThisPC » v & | Search This PC

4 Devices and drives (5
> @ OneDrive ' ©)
2 .‘ Homegroup ==_ _ Local Disk (C:)
> il Pradeeka Seneviratne 23.6 GB free of 243 GB

Local Disk (D:)

> /% This PC | -

4 S0 e |
S 27.3 6B free of 217 GB

> €l Network Local Disk (E:)
o
7 332G free of 3.8 GB

é DVD RW Drive (F:)

MAINTENANCE (G:)

ﬁ 8.03 MB free of 8,05 MB

1items 1itemn selected

Figure A-3. micro:bit appears as MAINTENANCE in the file browser
in Windows

Using REPL with Tera Term

REPL (Read-Evaluate-Print-Loop) allows you to run codes line by line
without flashing the complete program to the micro:bit. With REPL, you
can quickly execute and debug your code while writing. REPL can be
performed through a serial connection between the micro:bit and the
computer. This section guides you on how to use REPL with Tera Term,
which is a serial terminal program in the Windows environment. You can
also use REPL with PuTTY or Mu installed on your computer.

211

vww . allitebooks.con

http://www.allitebooks.org

APPENDIXA UPDATING DAPLINK FIRMWARE AND USING REPL WITH TERA TERM

Downloading mbed Serial Port Windows
Driver

To use REPL with a Windows computer, first you should install

the mbed serial port driver. The driver can be downloaded

from https://developer.mbed.org/media/downloads/drivers/
mbedWinSerial 16466 .exe. Simply run the downloaded executable file
and follow the setup instructions to install it on your Windows OS.

Downloading Tera Term

Tera Term is a very popular serial terminal program that can be used with
Windows. It is simple to use and open source. You can read about the Tera
Term project by visiting https://ttssh2.o0sdn.jp/index.html.en.

You can download Tera Term for Windows at https://osdn.net/
projects/ttssh2/releases/. Be sure to download the most recent
version. The downloadable files are available in both .exe and .zip formats.
The following instructions guide you on how to install Tera Term on
Windows and connect the micro:bit from Windows.

1. Run the installer. Choose I Accept the Agreement
and click Next.

2. Browse the installation location and click Next.

3. Select Standard Installation from the drop-down list
and click Next.

4. Choose your language and click Next. The default
language is English.

5. Select Start Menu Folder and click Next.

6. Select Additional Tasks and click Next.

212

APPENDIXA UPDATING DAPLINK FIRMWARE AND USING REPL WITH TERA TERM
7. Click Install.

8. The setup will install Tera Term on your computer.

9. Select Launch Tera Term and click Finish to
complete this process.

Configuring Tera Term

First, you need to configure Tera Term so it can establish the proper
communications through the serial port connected to the micro:bit. The
following steps explain how to configure Tera Term.

1. Tera Term opens and prompts you for a new
connection (see Figure A-4). Select the Serial option
and choose the correct COM port from the drop-
down list for your micro:bit. Usually, the COM port
for your micro:bit is called mbed serial port. Click
OK; you should see a blank Tera Term window.

Tera Term: New connection H

O TCPIP Host: myhost.example.com

v History
Service: _ Telnet JCR UsiE
® SSH SSH version: SSH2

Other
Protocol: UNSPEC

@ Serial : COM3: mbed Serial Port ([COM3)

‘ | OK | Cancel Help

Figure A-4. Choosing the serial port for micro:bit

213

vww . allitebooks.con

http://www.allitebooks.org

APPENDIXA UPDATING DAPLINK FIRMWARE AND USING REPL WITH TERA TERM

2. Select Terminal from the Setup menu. In the
Terminal setup dialog box (see Figure A-5), choose

CR+LF for New-line Receive. Check the Local Echo

box as well.
Tera Term: Terminal setup E
Terminal size New-line OK 1
80 | x 24 Receive: CR#LF v - '
[¥ Term size = win size Transmit: cRp = Cancel
Auto window resize
— Help
Terminal ID: VT100 v I 1Local echol
Answerback: [_] Auto switch [VT<->TEK)

Figure A-5. Terminal Setup dialog box

214

3. Select Serial Port from the Setup menu to confirm

that the communication settings are correct. In the

Serial Port Setup dialog box (see Figure A-6), choose

the Baud rate as 115200. Then click OK to save the
settings and close the dialog box.

APPENDIXA UPDATING DAPLINK FIRMWARE AND USING REPL WITH TERA TERM

Tera Term: Serial port setup “

Port: .COM3 v . 0K

Data: 8 bit v Cancel
Parity: none v

Stop: 1 bit v Help
Flow control: none v

Transmit delay

0 msec/char 0 msecfline

Figure A-6. Serial port setup

4. Ifyou want to permanently save the configuration,
select Save Setup from the Setup menu and click the
Save button.

Writing MicroPython Code on Tera Term

You can write MicroPython code on a Tera Term window to execute it
line-by-line. When you press the Enter key after each line of code, it will
execute on micro:bit. Tera Term will store everything you type in a buffer.
The following steps explain how to write and execute simple code with
Tera Term.

215

vww . allitebooks.con

http://www.allitebooks.org

APPENDIXA UPDATING DAPLINK FIRMWARE AND USING REPL WITH TERA TERM

1. Within the Tera Term window, press the Enter key
to enter command mode. You should see a prompt
with three greater than signs (see Figure A-7).

Eile Edit Setup Control Window Help

>

Figure A-7. Getting to the prompt

2. First, type the following line of code and press the
Enter key.

import from microbit *

3. Next, type the following line and press the Enter key
again (see Figure A-8).

display.scroll ('Hello from Tera Term')

216

APPENDIXA UPDATING DAPLINK FIRMWARE AND USING REPL WITH TERA TERM

Eile Edit Setup Cgntrol Window Help

>>> from microbit import =
>>> display.scroll{’Helle from Tera Term’>

Figure A-8. Writing code on the Tera Term window
4. Immediately, the micro:bit will start to scroll the
'"Hello from Tera Term' text on its display.
5. Ifyouwant, you can add more lines to this test code.

6. Ifyouwant to type a new program, select Clear
Buffer from the Edit menu.

217

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B

Using micro:bit and
micro:bit Blue Apps
on Mobile Devices

This appendix presents how to use micro:bit and micro:bit Blue apps

on mobile devices to work with micro:bit. These apps act as a Bluetooth
bridge between the micro:bit and the mobile device. Each app has its own
advantages and disadvantages. However, they allow you to get more out of
the micro:bit. Let’s explore the micro:bit and micro:bit Blue apps.

Using the micro:bit App

The micro:bit app allows you to create code, flash the resulting .hex file
onto micro:bit and interface with device components of the mobile device
such as the camera.

You can download the official micro:bit app for Android, developed
by Samsung Electronics UK at Google Play (https://play.google.com/
store/apps/details?id=com.samsung.microbit). This will require
Android 4.4. or higher installed on your mobile device.

© Pradeeka Seneviratne 2018 219
P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

If you have an Apple iPhone or iPad, you can download the micro:bit
app from the iTunes App Store at https://itunes.apple.com/gb/app/
micro-bit/id1092687276?mt=8. The micro:bit app for iOS is currently
compatible with a wide range of iPhone and iPad devices with different
combinations of component hardware and iOS versions. The list of
compatible devices can be found on the app’s download page.

Pairing with micro:bit

The pairing process is fun and easy with both the official Android and the
iOS app. First apply power to your micro:bit using two 1.5V AA batteries.
The following steps guide you on how to pair your micro:bit with a
mobile device. The images shown in this section are from a mobile phone
with Android OS. The same steps can be applied to devices using iOS.

1. Open the micro:bit app.

220

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

2. Tap the Connect button (see Figure B-1).

Connect

Flash

Create Code

Discover

Figure B-1. Tapping the Connect button

221

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES
3. Tap the PAIR A NEW MICRO:BIT button (see
Figure B-2).

= il 24% M 0912

< | Connect

Connect previously paired

micro:bit

How do | remove a paired
micro:bit?

Having problems?
Try the help page.

3, PAIR A NEW MICRO:BIT

Figure B-2. Tapping the PAIR A NEW MICRO:BIT button

222

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

4. Turn on the Bluetooth of your mobile device if you
haven’t done so already (see Figure B-3).

=" 24%0 09:13

Tumn on Bluetooth

An app wants to turn on Bluetooth.

Deny Allow

Figure B-3. Turning on Bluetooth

223

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

5. The app prompts you to hold the built-in A and B
buttons, then press and release the RESET button
(see Figure B-4).

£ 2 "l 24%009:13

How to pair your micro:bit

RELEASE!

)

@ [o |

il = .

Step 1

Hold the A and B
buttons, then PRESS
==

Figure B-4. Pairing step 1

6. The text PAIRING MODE will scroll along the micro:bit
LED display.

7. Tap NEXT on the app.

224

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

8. The micro:bit will display a pattern on the LED
display, and the app will show an empty grid. Now
copy the pattern from your micro:bit onto the grid
of the app. If you have created the same pattern on
the grid, the app displays the message Ooh, pretty!
(see Figure B-5). Then tap the PAIR button to pair
the micro:bit with the mobile device.

£ = il 22% 07 09:23

Enter the pattern

EEEEE
SEEEE
T

Copy the pattern
from your micro:bit
onto this grid

Figure B-5. Pairing step 2

225

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

9. Aleft arrow will blink on the LED display to prompt you
to press the A button. When you press the A button, a
series of numbers will display on the LED screen. This is
the pairing key that’s used to authenticate both devices.
Meanwhile, a notification will arrive to your mobile
device that prompts you to enter the same key. Now
enter the key in the text box and tap OK to proceed.

10. Ifyou entered the same key, you will get the
message shown in Figure B-6.

You have successfully

paired with micro:bit

Please press RESET button and
you're done!

Figure B-6. Message saying you have successfully paired with
micro:bit

226

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

11. Pressthe RESET button on the micro:bit to complete
the setup.

12. You can reconnect your micro:bit to the app at
any time by tapping the name (i.e., PEVUP) of your
micro:bit listed under Connect Previously Paired
micro:bit (see Figure B-7).

Connect

Connect previously paired
micro:bit

PEVUP

How do | remove a paired
micro:bit?

Having problems?
Try the help page.

3, PAIR A NEW MICRO:BIT

Figure B-7. Reconnect to the previously paired micro:bit

227

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

Writing Code with micro:bit App

Now you are ready to create code with the micro:bit app. The app allows
you to flash the code to the micro:bit from your mobile device through
Bluetooth connectivity.

1. Go to the micro:bit app’s main page and tap the
Flash button (see Figure B-8).

Connect
Flash

Create Code

Discover

Figure B-8. Tapping the Flash button

228

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

2. Then tap the MY SCRIPTS button (see Figure B-9).

music remote sample

find my phone sample

selfie remote sample

! MY SCRIPTS

Figure B-9. Tapping the MY SCRIPTS button

229

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

3. Tap the Create Code button (see Figure B-10) from
the list to create a new script.

2 =l 89% B 11:23

@ https://www.microbit.co.uk/ar

Search... EI

marvellous script
Me

amazing script
Me

a a minute ago
A

28 minutes ago
exceptional script

E.]E) Me

34 minutes ago
Create Code

Create a new script

Import Code

Import a script from a file

ouse niles 0.0.2263.2649 © Copyright 2017

Figure B-10. Tapping the Create Code button

Creating MicroPython Code with the micro:bit App

The app allows you to choose following code editors to create code for
micro:bit.

e JavaScript

¢ Block Editor

230

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

e Touch Develop
e MicroPython

The following steps guide you on how to create simple code with
MicroPython and flash it to the micro:bit through the micro:bit app.

1. Tap the MicroPython option (see Figure B-11) from
the list of code editors.

create code with...

; JavaScript
“ K e Kingdoms

the
Block Editor
5:\]9 Microsoft
Drag and drop blocks to code!
Touch Develop
@ (3N Microsoft
A beginner friendly editor

MicroPython
The Python Scftware Foundation
Hack your micro-bit with MicroPython!

Import Code
Impart a seript from a file

Figure B-11. Tapping the MicroPython editor option

231

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

2. The MicroPython editor will open with default code
(see Figure B-12). This is the same MicroPython
editor that you explored in Chapter 1. Note that this
editor is not a part of the micro:bit app and can be
directly accessed at https://www.microbit.co.uk/app.

@ https://www.microbit.co.uk/ap

marvellous script
A MicroPython script
1

o~y WM

Figure B-12. MicroPython editor

232

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

3. Let’s flash the default MicroPython code to the
micro:bit. To do so, tap the Download button on
the editor’s toolbar (see Figure B-13). The .hex
file for the MicroPython code will download to
the downloads folder of your mobile device (i.e.,
marvelous script.hex). Also, the micro:bit app can
access the downloaded .hex files directly from the
downloads folder of your mobile device.

marvellous script
A MicroPython script

Figure B-13. Downloading a .hex file for the code

233

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

4. Now go to the main page of the micro:bit app and
tap the Flash button. The app will show all the
downloaded .hex files as a list, so you can flash
them to the micro:bit by tapping the FLASH button
associated with the file name (i.e., marvelous_script)
(see Figure B-14).

music remote sample

find my phone sample

selfie remote sample

! MY SCRIPTS

Figure B-14. List of .hex files for flashing

234

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

5. The app will start to flash the code into the micro:bit
board with the Bluetooth connectivity. Turn on the
Bluetooth on your mobile device if you're prompted
by tapping the Allow button (see Figure B-15).

B il 27% 00 23:46

marvellous script

Turn on Bluetooth

An app wants to turn on Bluetooth

Deny

Figure B-15. Turning on Bluetooth

235

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

6. Tap the OK button to confirm the flashing (see
Figure B-16).

Flashing

Do you want to flash the program to
PEVUP ?

Figure B-16. Confirmation screen for flashing

236

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

7. The app will start to flash the code to the micro:bit.
Don’t try to interact with the micro:bit board during
the flashing process (see Figure B-17).

Flashing marvellous

script'

|

Please do not interact with micro:bit
before flashing process is complete

Figure B-17. Flashing in progress

237

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

8. Tap the OK button to disconnect the micro:bit board
from the app (see Figure B-18).

Flashing successful

You have successfully downloaded
program to micro:bit

Figure B-18. Flashing successful message

238

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

9. Ifyou want to reconnect the app to the micro:bit
board, tap the OK button (see Figure B-19).

Reconnect

You've been disconnected from the
micro:bit board. Do you want to
reconnect?

Figure B-19. The Reconnect screen

Note Sometimes, using the micro:bit app to flash code to micro:bit
over Bluetooth isn’t successful.

239

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

Using the micro:bit Blue App

The micro:bit Blue app contains a series of demonstrations that use the
BBC micro:bit Bluetooth profile in various ways. Its purpose is to act as a
demo and to provide a source of example code that shows you how to use
the Bluetooth profile from Android. This app is originally developed by
Martin Woolley and currently available for Android.

Installing micro:bit Blue

You can install micro:bit Blue from Google Play (see Figure B-20).

micro:bit Blue

Martin Woolley Education L & & 2

D

A

Figure B-20. Micro:bit Blue at Google Play

240

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

Entering Pairing Mode

Before pairing your micro:bit with your phone or tablet, you should enter your

micro:bit board into pairing mode. Follow these steps to enter pairing mode.

1.

2.

3.

Hold down buttons A and B on the front of your
micro:bit at the same time.

While still holding down buttons A and B, press and
then release the RESET button on the back of the
micro:bit. Keep holding down buttons A and B.

You should see the message ‘PAIRING MODE!’ start
to scroll across the micro:bit display. When you see
this message, you can release the buttons.

Eventually you'll see a strange pattern on your
micro:bit display. This is like your micro:bit’s
signature. Other people’s micro:bits will probably
display a different pattern.

Your micro:bit is now ready to be paired with the other device.

Pairing Your micro:bit with Your Android
Phone or Tablet

With the pairing mode, you can pair your micro:bit board with your

phone or tablet using the Bluetooth screen within the Android’s Settings

screen. The following steps guide you on how to do this with common

smartphones and tablets.

1.

2.

3.

Go into Settings.
Select Bluetooth.

Switch your micro:bit into pairing mode using the
steps in the previous section.

241

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

4. Waituntil 'PAIRING MODE!"' has finished scrolling
across the micro:bit display. You should see your
micro:bit listed on your Android smartphone
under the “Available Devices” heading with a name
something like micro:bit [pevup]. Note that the
five characters in brackets at the end will vary.

5. Onthe Android smartphone, tap the micro:bit named
in the Available Devices list (see Figure B-21). This
will initiate the pairing process.

Bluetooth

Turn on or turn off

Turn on Bluetooth (_J

Visibility

Only visible to paired devices
Device name CHe-U01

Show received files
Paired devices
d '} ooxew

Available devices

. BBC micro:bit [pevup]

B

Search

=
3
3

Figure B-21. The micro:bit is under the Available Devices list (image
captured from a Huawei CHC-UOI phone)

242

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

6. The micro:bit will display a left pointing arrow and
the Android smartphone will pop up a box into
which you will be invited to enter a PIN (a Personal
Identification Number).

7. Press button A on the micro:bit and watch carefully
as the micro:bit displays a sequence of six random
numbers. You may find it easier to write them down
than to remember them.

8. Enter the six digits that the micro:bit displayed
on your Android smartphone in the pop-up box
provided. Select Done. See Figure B-22.

2 0" 52% M0 10:08

Bluetooth pairing request

To pair with:
BBC micro:bit [pevup]

580863

PIN contains letters or symbols

Youmay also need to enter this PIN on the other
device.

Pairing grants access to your contacts and call log
when connected.

Cancel

Figure B-22. Pairing the PIN (image captured from a Huawei
CHC-UO0I phone)

243

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

9. Ifyou entered the right numbers, the micro:bit will
display a tick/check mark. If you made a mistake, it
will display a cross or X and you should try again.

Using the App

Open the app by tapping the micro:bit blue icon on your Android screen.
Then, you must connect your paired micro:bit board to the micro:bit blue app.

1. Tap the FIND PAIRED BBC MICRO BIT(S) button
at the bottom of the screen (see Figure B-23). The
app will start to scan for paired micro:bit boards and
display them on the screen.

$ 0% 00759
H

FIND PAIRED BBC MICRO BIT(S)

Figure B-23. Finding paired micro:bit(s)

244

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

2. Tap the name of your micro:bit board from the list of
names (see Figure B-24).

PR B 2 0= "l 49%M010:21

Device List

Scanning for paired micro:bits
BBC micro:bit [pevup] (BONDED)

CD:57:40:26:8B:55

STOP SCANNING

Figure B-24. List of paired micro:bit(s)

245

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

3. The app will show the Demo list. The Demo list
includes the following sample projects, which use
the micro:bit Bluetooth profile.

e Accelerometer

e Magnetometer

e Buttons

e LEDs

o Temperature

o I/0 Digital Output

e Temperature Alarm

e Squirrel Counter

e Device Information

e Animal Magic

e Dual D-Pad Counter
e Heart Rate Histogram
e Animal Vegetable Mineral
e Trivia Scoreboard

You can open any demo program by tapping its demo icon. As an

example, open the LEDs demo program from the list. The LED demo

allows you to draw an image or display text on the LED display.

246

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

1. Under the Demo list, tap LEDs (see Figure B-25).

PRBEE& P

Demo List

Ready

Accelerometer

Magnetometer

Buttons

LEDs

Figure B-25. Demo list

247

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

2. You will get the screen shown in Figure B-26.

0 2 "l 48% M) 10:26

Ready

SET DISPLAY
Display Text

Hello!

SEND TEXT

Figure B-26. Settings page for LED display

3. The screen has two sections. The first section allows
you to draw any image on the LED display. You can
tap any square to create a new image. After creating
the image, tap SET DISPLAY. You can see the new
image on the micro:bit’s LED display.

248

vww . allitebooks.con

http://www.allitebooks.org

APPENDIX B USING MICRO:BIT AND MICRO:BIT BLUE APPS ON MOBILE DEVICES

4. Then type new text under the Display text by
replacing the default Hello!. Then tap the SEND
TEXT button. You can see the new text start to scroll
on the LED display.

When you try a demo program, the micro: bit blue
doesn’t flash any code to your micro:bit board. You
can press the RESET button on the micro:bit to exit
from the program and use the previously flashed
program.

249

Index

A

Accelerometer
NXP/Freescale MMAB8652 chip,
109-110
overall, 115-116
reading
movement in X, y, zZ planes,
112
three axes, 110-114
tuples, 113
spirit level, 114-115
Analog1/0, 85-87

B

Beats, 150
Buttons
handling user inputs
get_presses() method, 65
is_pressed() method, 63
methods, 62
was_pressed() method, 65
momentary pushbutton
external buttons, 68
GPIO pins, 70
internal connection, 67
pinout, 67
read_digital() method, 73
pushbuttons, 61-62

© Pradeeka Seneviratne 2018

C

Compass
calibrating, 123-124
heading, 126-130
magnetic field, x and y axes,
124-126
NXP/Freescale MAG3110
chip, 122

D

DAPLink firmware
details.txt file, 207-208
KL26 interface chip, 207
maintenance mode, 209-211
update, 208-209

Digital 1/0, 87-89

E

Earphones, 141-143
Edge connector, I/O pins
analog, 85-87
breakout board
BBC micro, 77
12C pins, 77
inserting micro, 78-79
pin headers, 78
prototyping area, 78

P. Seneviratne, Beginning BBC micro:bit, https://doi.org/10.1007/978-1-4842-3360-3

vww . allitebooks.con

http://www.allitebooks.org

INDEX

Edge connector, I/0 pins (cont.) history, 121-122
digital, 87-89 names, 119
I12C (see Inter-integrated circuit performing, 117
(12C))
large and small pads, 75-76
SPI (see Serial peripheral I’ J’ K
interface (SPI)) Images
touch pins, 82-85 built-in, 47-49
type and function, 80-82 creation, 50
type of pins and usage, 79-80 custom animation, 58-60
UART, 103 fish
brightness levels , 53
custom image , 52
F encoding squares, 51
Files shape of, 50
appending text, 175-176 lists and animations
creating, 171-172 ALL_ARROWS, 54
deleting, 180 ALL_CLOCKS, 54
listing, 179-180 Inter-integrated circuit (12C)
microbit internal storage, 179 accelerometer data, 93
Python library, 178 CTRL_REG1 register, 92
reading, 172-173 device address, accelerometer
size of, 181 chip, 92-93
with .py extension, 176-177 master and slave devices, 90
writing multiple lines, 174-175 measured acceleration data, 92

OUT_X_MSB register, 94
reading accelerometer

G, H

values, 95
Gestures register address map,
advanced, 118 MMA8652FC, 91
basic, 116 SDA and SCL pins, 90
current, 118-121 sensor data, 90
“face up’, 120 Inventor’s Kits, 13

252

L

LED display, 39
address (3, 2), 41
brightness
display.set_pixel()
function, 43
clear() function, 44
columns and rows, 40
GPIO pins (3,4, 6,7,9, and 10),
45, 46
On and Off (blink.py), 41, 42
On and Off (display_on_off.py),
47
Imtool, 165-167

M, N
Micro:bit Blue app
Demo list, 246-247
FIND PAIRED BBC MICRO
BIT(S), 244
Google Play, 240
list of names, 245
pairing mode, smartphones and
tablets, 241-243
settings page, LED display,
248-249
Micro:bit app
accessories, 15
batteries and battery
holders, 16
crocodile clips, 18

INDEX

JST connector, 16
USB cable, 17
back view, 8
buying option, 10
components
breakout, 6
buttons, 4
display, 4
edge connector, 5
pinout, 7
SparkFun, 6
download, 219-220
front view, 4
MicroPython code
editors, 230-239
pairing process,
220-227
power board
batteries, 19
MCP1702 voltage
regulator, 27
M], 25
Seenov solar
battery, 25
USB, 21
3.3v, 18
3v pin, 27
REPL, 36
starter kits, 11-12
successor of, 2-3
use of, 1-2
writing code, 228-230

253

vww . allitebooks.con

http://www.allitebooks.org

INDEX

MicroFs§, file transfer
installing, 181-182
upgrading

command, 182

copy a file from micro,
184-185

copy a file to micro, 185-186

deleting a file on micro,
186-187

list the files on
micro, 183-184

MicroPython code editor
default code, 232
downloaded .hex files
flashing

confirmation screen, 236
list of .hex files, 234
process, 237
successful message, 238
Reconnect screen, 239
tapping, 231
Turning on Bluetooth, 235

Mouth, 160

Mu editor
check button, 36
code editor, 33
flash button, 35
REPL, 36
save button, 35

Music, speaker connection
attaching, crocodile clips,

136-137
beats, 150

254

built-in melodies, 143-146

crocodile leads, 135-136

current tempo, 152-153

earphones, 141-143

edge connector breakout
board, 138

making own melodies, 146-148

Monk Makes speakers, 139-140

octaves, 148-150

8-ohm speaker, 133-134

playing a pitch, 153-154

potentiometer, 139

resetting attributes, 153

setting tempo, 151

setup, components, 138

wiring, micro:bit and speaker,
134-135

O

Octaves, 148-150
Online Python editor
binary file (.hex), 31
code window, 30
copy operation, 33
display.scroll() command, 30
hex file, 32
MicroPython editor, 28
Mu editor
check button, 36
code editor, 33
flash button, 35
save button, 35

python source file (.py), 31
steps, 29
web browser and

access, 29

PQ

Phonemes, 162-163, 165, 167-169
Pitch, 157-158
Punctuation, 162

R

Radios
configuration
assigning addresses, 196
defining groups, 196
selecting channel, 195
transmission power, 196
LED, remote control, 197-199
on and off, turning, 193
sending and receiving
messages, 194-195
wireless buggy
components, 200
design of, 205
line following buggy, 200-201
motor control pins, 203
writing code, 202-204
Read-Evaluate-Print-Loop (REPL)
with Mu
interactive shell, 37-38
Repl button, 37
with Tera Term

INDEX

download, 212
installation, instructions
guides, 212-213
mbed serial port
driver, 212
new connection, 213
Serial Port Setup, 214-215
Terminal setup, 214
writing MicroPython code,
215,217
Robotic voice, 161

S

Serial peripheral interface (SPI)

Adafruit Thermocouple
Amplifier MAX31855
breakout board, 96

assembled MAX31855 breakout
board, 98-99

master and slave
devices, 96

spi.init() function, 102

spi.read() function, 102

temperature, 101

Thermocouple Type-K glass
braid insulated-K, 97

Thermocouple Type-k glass
braid insulated stainless
steel tip, 97-98

wiring diagram, MAX31855
breakout board and
micro:bit, 99-101

Singing with phonemes, 168-169

255

vww . allitebooks.con

http://www.allitebooks.org

INDEX

Speech library, speaker connection T
Imtool, 165-167
mouth, 160
phonemes, 162-165
pins 0 and 1, 155-156
pitch, 157-158
punctuation, 162
robotic voice, 161
singing with phonemes,

168-169
speed, 159-160
stress markers, 167-168

Throat, 161
Timbre, 157
Touch pins, 82-85

U Vv
Universal Asynchronous Receiver-
Transmitter (UART), 103

text to speech conversion, W! X, Y! y4

156-157 Wired networks
throat, 161 basic micro:bit network
timbre, 157 application, 191

Speed, 159-160
Starter kits

Kitronik, 12
online sellers, 11
parts, 11

Stress markers, 167-168

256

buffering incoming data,
192-193

connecting two micro:bit
boards, 189-190

MicroPython
statements, 190

	Table of Contents
	About the Author
	About the Technical Reviewer
	Foreword
	CHAPTER 1
	Chapter 1: Getting Ready
	What Is the BBC micro:bit?
	What’s on the micro:bit?
	Buying a micro:bit
	Buying a Starter Kit
	Buying an Inventor’s Kit

	micro:bit Accessories
	Batteries and Battery Holders
	USB Cable
	Crocodile Clips

	Powering Your micro:bit
	Powering the micro:bit with Batteries
	Powering micro:bit with a USB
	Alternative Ways to Power the micro:bit
	MI:power Board
	Seenov Solar Battery

	Powered through the 3v Pin

	Creating Your First Program with Online Python Editor
	Coding with the Online Python Editor
	Coding with Mu

	Using REPL with Mu
	Summary

	CHAPTER 2
	Chapter 2: Working with Display and Images
	The micro:bit Built-In LED Display
	Turning LEDs On and Off
	Setting and Getting the Brightness of an LED
	Setting Brightness
	Getting Brightness

	Clearing the Display
	Turning the Display On and Off
	Using Built-in Images
	Creating Your Own Images
	Lists and Animations
	Custom Animation

	Summary

	CHAPTER 3
	Chapter 3: Working with Buttons
	Built-in Buttons
	Handling User Input with Buttons
	Button Is Pressed
	Button Was Pressed
	Button Presses

	Connecting External Buttons
	Momentary Pushbuttons
	Using External Buttons
	Connecting Buttons to GPIO

	Summary

	CHAPTER 4
	Chapter 4: Using Inputs and Outputs
	Edge Connector
	Using an Edge Connector Breakout Board
	Experimenting with I/O Pins
	Touch
	Analog Input and Output
	Digital Input and Output
	I2C (Inter-Integrated Circuit)
	SPI (Serial Peripheral Interface)
	UART (Universal Asynchronous Receiver-­Transmitter)

	Summary

	CHAPTER 5
	Chapter 5: Using the Accelerometer and Compass
	Accelerometer
	Reading Acceleration
	Building a Spirit Level
	Calculating Overall Acceleration

	Gesture Detection
	Detecting the Current Gesture
	Getting Gesture History

	Compass
	Calibrating the Compass
	Reading Compass Values
	Getting Compass Heading

	Summary

	CHAPTER 6
	Chapter 6: Working with Music
	Connecting a Speaker
	Using Earphones
	Built-in Melodies
	Making Your Own Melodies
	Using Octave
	Beats
	Setting the Tempo
	Getting the Tempo
	Resetting Attributes
	Playing a Pitch

	Summary

	CHAPTER 7
	Chapter 7: Working with Speech
	Connecting a Speaker
	Timbre
	Pitch
	Speed
	Mouth
	Throat

	Example: Creating a Robotic Voice
	Punctuation
	Phonemes
	Using lmtool

	Stress Markers
	Singing with Phonemes

	Summary

	CHAPTER 8
	Chapter 8: Storing and Manipulating Files
	Creating a File
	Reading a File
	Writing Multiple Lines in a File
	Appending Text to a File
	Creating Files with a .py Extension
	Creating Your Own Libraries
	File Manipulation
	Listing Files
	Deleting Files
	Getting the Size of a File

	File Transfer with MicroFS
	Installing MicroFS
	Upgrading MicroFS
	List the Files on the micro:bit
	Copy a File from the micro:bit
	Copy a File to the micro:bit
	Deleting a File on the micro:bit

	Summary

	CHAPTER 9
	Chapter 9: Networks and Radios
	Building a Wired Network
	Buffering Incoming Data

	Using Radios
	Turning the Radio On and Off
	Sending and Receiving Messages
	Configuring Radio
	Selecting a Channel
	Defining Groups
	Assigning Addresses
	Transmission Power

	Remotely Controlling an LED
	Controlling the LED

	Building the Wireless Buggy
	Assembling the Line Following Buggy
	Writing the Code

	Summary

	APPENDIX.pdf
	Appendix A: Updating DAPLink Firmware and Using REPL with Tera Term
	DAPLink Firmware
	Updating DAPLink Firmware
	Maintenance Mode

	Using REPL with Tera Term
	Downloading mbed Serial Port Windows Driver
	Downloading Tera Term
	Configuring Tera Term
	Writing MicroPython Code on Tera Term

	Appendix B: Using micro:bit and micro:bit Blue Apps on Mobile Devices
	Using the micro:bit App
	Pairing with micro:bit
	Writing Code with micro:bit App
	Creating MicroPython Code with the micro:bit App

	Using the micro:bit Blue App
	Installing micro:bit Blue
	Entering Pairing Mode
	Pairing Your micro:bit with Your Android Phone or Tablet
	Using the App

	Index

