
Beginning 
PostgreSQL on 
the Cloud

Simplifying Database as a Service on 
Cloud Platforms
—
Baji Shaik
Avinash Vallarapu

www.allitebooks.com

http://www.allitebooks.org


Beginning 
PostgreSQL on  

the Cloud
Simplifying Database as a 

Service on Cloud Platforms

Baji Shaik
Avinash Vallarapu

www.allitebooks.com

http://www.allitebooks.org


Beginning PostgreSQL on the Cloud

ISBN-13 (pbk): 978-1-4842-3446-4		  ISBN-13 (electronic): 978-1-4842-3447-1
https://doi.org/10.1007/978-1-4842-3447-1

Library of Congress Control Number: 2018937882

Copyright © 2018 by Baji Shaik, Avinash Vallarapu 
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor:Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar.

Cover image by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, 
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a 
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc 
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available 
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3446-4. 
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Baji Shaik
Hyderabad, Andhra Pradesh, India

Avinash Vallarapu
Hyderabad, Andhra Pradesh, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3447-1
http://www.allitebooks.org


“Dedicated to our be-loved parents and family”

www.allitebooks.com

http://www.allitebooks.org


v

Table of Contents

Chapter 1: �Introduction to Databases in the Cloud��������������������������������1

What Is Database as a Service?�����������������������������������������������������������������������������1

Who Should Use DBaaS?����������������������������������������������������������������������������������2

What Database Platform Does an Organization Need?������������������������������������3

Features of DBaaS�������������������������������������������������������������������������������������������������7

Provisioning������������������������������������������������������������������������������������������������������7

Administration��������������������������������������������������������������������������������������������������9

Monitoring������������������������������������������������������������������������������������������������������10

High Availability����������������������������������������������������������������������������������������������10

Scalability�������������������������������������������������������������������������������������������������������11

Security����������������������������������������������������������������������������������������������������������11

Cloud Versus On-Premise Computing������������������������������������������������������������������12

The Pros and Cons of Cloud and On-Premise Computing�������������������������������12

Should You Move Your Databases to the Cloud?��������������������������������������������������14

Cloud Vendors Available for PostgreSQL��������������������������������������������������������������15

Amazon�����������������������������������������������������������������������������������������������������������16

Rackspace������������������������������������������������������������������������������������������������������18

Google Cloud��������������������������������������������������������������������������������������������������19

Microsoft Azure����������������������������������������������������������������������������������������������21

About the Authors�������������������������������������������������������������������������������xiii

About the Technical Reviewer�������������������������������������������������������������xv

Acknowledgments�����������������������������������������������������������������������������xvii

Introduction����������������������������������������������������������������������������������������xix

www.allitebooks.com

http://www.allitebooks.org


vi

IaaS����������������������������������������������������������������������������������������������������������������������23

Migrating to the Cloud�����������������������������������������������������������������������������������������24

Before Migrating to the Cloud������������������������������������������������������������������������25

Planning Your Infrastructure on the Cloud������������������������������������������������������26

Tools and Extensions��������������������������������������������������������������������������������������29

Summary�������������������������������������������������������������������������������������������������������������31

Chapter 2: �PostgreSQL Architecture����������������������������������������������������33

Key Features of PostgreSQL��������������������������������������������������������������������������������33

PostgreSQL Architecture��������������������������������������������������������������������������������������37

Components of Shared Memory��������������������������������������������������������������������������38

Shared Buffers������������������������������������������������������������������������������������������������39

WAL Buffers����������������������������������������������������������������������������������������������������39

Temp Buffers��������������������������������������������������������������������������������������������������39

CLOG (Commit LOG) Buffers���������������������������������������������������������������������������39

Lock Space�����������������������������������������������������������������������������������������������������39

Other Memory Areas���������������������������������������������������������������������������������������40

Utility Processes��������������������������������������������������������������������������������������������������40

Directory Structure����������������������������������������������������������������������������������������������42

Installation�����������������������������������������������������������������������������������������������������������44

Source Installation������������������������������������������������������������������������������������������44

Binary Installation�������������������������������������������������������������������������������������������47

RPM Installation���������������������������������������������������������������������������������������������48

Installers for Windows and Mac���������������������������������������������������������������������49

Setting Environment Variables�����������������������������������������������������������������������������49

Getting Started with PostgreSQL�������������������������������������������������������������������������50

Configuration Parameters������������������������������������������������������������������������������������53

Connection Settings���������������������������������������������������������������������������������������54

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org


vii

Security and Authentication Settings�������������������������������������������������������������55

Memory Settings��������������������������������������������������������������������������������������������55

Query Planner Settings�����������������������������������������������������������������������������������56

Write Ahead Log Settings�������������������������������������������������������������������������������56

Where to Log��������������������������������������������������������������������������������������������������57

When to Log����������������������������������������������������������������������������������������������������58

What to Log����������������������������������������������������������������������������������������������������59

Background Writer Settings����������������������������������������������������������������������������60

Vacuum Cost Settings������������������������������������������������������������������������������������60

Autovacuum Settings�������������������������������������������������������������������������������������61

Summary�������������������������������������������������������������������������������������������������������������61

Chapter 3: �Amazon Cloud��������������������������������������������������������������������63

Amazon Cloud or Amazon Web Services��������������������������������������������������������������63

AWS Regions and Availability Zones���������������������������������������������������������������63

Getting Started with AWS�������������������������������������������������������������������������������64

Creating an AWS Account�������������������������������������������������������������������������������65

Choosing an AWS Service������������������������������������������������������������������������������������68

RDS�����������������������������������������������������������������������������������������������������������������68

EC2�����������������������������������������������������������������������������������������������������������������79

Summary�����������������������������������������������������������������������������������������������������������105

Chapter 4: �Rackspace Cloud��������������������������������������������������������������107

Managed Hosting�����������������������������������������������������������������������������������������������107

Creating a Dedicated Server�������������������������������������������������������������������������111

Creating a Virtual Server������������������������������������������������������������������������������117

Connecting to the Virtual Machine and Installing PostgreSQL���������������������121

Cloud Block Storage�������������������������������������������������������������������������������������������124

Summary�����������������������������������������������������������������������������������������������������������132

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org


viii

Chapter 5: �Google Cloud��������������������������������������������������������������������133

Getting Started with GCP�����������������������������������������������������������������������������������133

What Is a GCP Project?���������������������������������������������������������������������������������133

Project Quota������������������������������������������������������������������������������������������������134

Creating a Project Using the Console�����������������������������������������������������������135

Deleting a Project�����������������������������������������������������������������������������������������136

Types of Google Cloud Platforms�����������������������������������������������������������������������137

Compute Engine�������������������������������������������������������������������������������������������137

Google Cloud Storage�����������������������������������������������������������������������������������151

Cloud SQL�����������������������������������������������������������������������������������������������������153

Summary�����������������������������������������������������������������������������������������������������������167

Chapter 6: �Azure Cloud����������������������������������������������������������������������169

Virtual Machines������������������������������������������������������������������������������������������������169

Virtual Machine Creation������������������������������������������������������������������������������172

Connecting to Virtual Machines��������������������������������������������������������������������184

Installing PostgreSQL on a Virtual Machine��������������������������������������������������185

Dealing with Storage������������������������������������������������������������������������������������������188

Azure Database for PostgreSQL�������������������������������������������������������������������������189

Advantages of Azure Database���������������������������������������������������������������������189

Azure Database for PostgreSQL Service Creation����������������������������������������190

Summary�����������������������������������������������������������������������������������������������������������197

Chapter 7: �Security on the Cloud�������������������������������������������������������199

Security on Amazon Cloud���������������������������������������������������������������������������������199

Identity and Access Management����������������������������������������������������������������199

Create a User Using AWS IAM�����������������������������������������������������������������������201

Restricting Access to an RDS or an EC2 Instance����������������������������������������206

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org


ix

Rackspace Cloud Security���������������������������������������������������������������������������������212

Securing the Rackspace Account�����������������������������������������������������������������212

Securing the Dedicated Cloud Server of Rackspace������������������������������������218

Security for the Google Cloud����������������������������������������������������������������������������219

Control Access to the Compute Engine��������������������������������������������������������220

Restricting Compute Engine VM Instances���������������������������������������������������226

Managing SSH Keys�������������������������������������������������������������������������������������226

Microsoft Azure Security������������������������������������������������������������������������������������227

Security for VM Machines����������������������������������������������������������������������������228

Security for SQL Database����������������������������������������������������������������������������232

Summary�����������������������������������������������������������������������������������������������������������234

Chapter 8: �Backups on the Cloud������������������������������������������������������235

Backups on the AWS Cloud��������������������������������������������������������������������������������235

Backing Up an RDS Instance������������������������������������������������������������������������236

Restore an AWS RDS Instance from Backup������������������������������������������������237

Backup of an EC2 Instance���������������������������������������������������������������������������239

Performing Backups on an EC2 Instance�����������������������������������������������������243

Restore Your Backup to an EC2 Instance������������������������������������������������������244

Backups on Rackspace Cloud����������������������������������������������������������������������������245

Backups to Google Cloud�����������������������������������������������������������������������������������250

Backups Using the Snapshot Option������������������������������������������������������������250

Back Up Your Files Using Storage����������������������������������������������������������������254

Back Up Your Cloud SQL for PostgreSQL������������������������������������������������������258

Backups to Microsoft Azure�������������������������������������������������������������������������������259

Virtual Machines�������������������������������������������������������������������������������������������260

Storage���������������������������������������������������������������������������������������������������������264

Azure Database for PostgreSQL�������������������������������������������������������������������269

Summary�����������������������������������������������������������������������������������������������������������269

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org


x

Chapter 9: �Replication and High Availability on the Cloud����������������271

The Purpose of Replication and High Availability�����������������������������������������������271

Replication and High Availability in AWS������������������������������������������������������������274

Read Replicas for RDS����������������������������������������������������������������������������������274

High Availability for EC2��������������������������������������������������������������������������������278

Replication and High Availability of Rackspace Cloud���������������������������������������281

Replication and High Availability of Google Cloud Instances�����������������������������282

Configure an Instance for High Availability���������������������������������������������������283

How Failover Works��������������������������������������������������������������������������������������285

Read Replicas�����������������������������������������������������������������������������������������������286

Replication and High Availability of Azure Services�������������������������������������������288

Azure Database for PostgreSQL�������������������������������������������������������������������288

Virtual Machines�������������������������������������������������������������������������������������������289

Summary�����������������������������������������������������������������������������������������������������������291

Chapter 10: �Encryption on the Cloud�������������������������������������������������293

Encryption for Amazon Cloud Servers���������������������������������������������������������������294

Enable Encryption for an RDS Instance��������������������������������������������������������297

Encryption on an Amazon EC2 Instance�������������������������������������������������������299

Encryption for Rackspace Cloud Servers�����������������������������������������������������������301

Encryption for Google Cloud Instances��������������������������������������������������������������303

Encrypting Cloud Storage�����������������������������������������������������������������������������304

Cloud SQL Encryption�����������������������������������������������������������������������������������304

Encryption for Azure Cloud Services������������������������������������������������������������������305

Summary�����������������������������������������������������������������������������������������������������������308

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org


xi

Chapter 11: �Connection Pooling on the Cloud�����������������������������������309

Connection Pooling��������������������������������������������������������������������������������������������309

What Is Forking?�������������������������������������������������������������������������������������������310

Understanding Why Process Creation Is Costly��������������������������������������������311

What Is Connection Pooling and How Can It Help?���������������������������������������311

PgBouncer����������������������������������������������������������������������������������������������������������312

Session Pooling��������������������������������������������������������������������������������������������313

Transaction Pooling��������������������������������������������������������������������������������������313

Statement Pooling����������������������������������������������������������������������������������������314

When Should You Think About a PgBouncer?�����������������������������������������������314

Installing PgBouncer������������������������������������������������������������������������������������316

How Does PgBouncer Work?������������������������������������������������������������������������327

High Availability While Using PgBouncer������������������������������������������������������327

Connection Pooling on AWS�������������������������������������������������������������������������������328

Connection Pooling for Rackspace Cloud Servers���������������������������������������������330

Connection Pooling for Google Cloud Instances������������������������������������������������330

Connection Pooling for Azure Cloud Instances��������������������������������������������������332

Summary�����������������������������������������������������������������������������������������������������������334

Chapter 12: �Monitoring Cloud Databases������������������������������������������335

Monitoring with Amazon Cloud��������������������������������������������������������������������������335

Monitoring an RDS or an EC2 Instance���������������������������������������������������������336

AWS CloudWatch Dashboard������������������������������������������������������������������������345

Create a Customized Dashboard for an EC2 Instance����������������������������������346

Monitoring for Rackspace Cloud Servers�����������������������������������������������������������349

Monitoring Google Cloud Instances�������������������������������������������������������������������354

Monitoring Your Project Activities�����������������������������������������������������������������354

Table of ContentsTable of Contents



xii

Monitoring VM Instances������������������������������������������������������������������������������357

Monitoring PostgreSQL Instances����������������������������������������������������������������358

Monitoring Azure Cloud Instances���������������������������������������������������������������������361

Virtual Machines�������������������������������������������������������������������������������������������362

Azure Database for PostgreSQL�������������������������������������������������������������������369

Summary�����������������������������������������������������������������������������������������������������������372

�Index��������������������������������������������������������������������������������������������������373

Table of ContentsTable of Contents



xiii

About the Authors

Baji Shaik is a database administrator and 

developer, working as a senior database 

consultant at OpenSCG, Hyderabad, India. He 

was introduced to databases in 2011 and over 

the years, has worked with Oracle, PostgreSQL, 

and Greenplum. He has a wide range of 

expertise and experience in SQL/NoSQL 

databases and has developed many successful 

database solutions addressing challenging 

business requirements. He has been working 

with a database service in Predix cloud from GE, where he continuously 

supports databases in automation and helps in developing features, 

fixing and testing defects of the service. Baji has organized a number of 

PostgreSQL meet-ups and maintains his own technical blog at bajis-

postgres.blogspot.in, where he likes to share his knowledge with the 

community. He co-authored PostgreSQL Development Essentials, released 

in September 2016.   



xiv

Avinash Vallarapu works as a database 

architect/trainer for one of PostgreSQL’s 

parent companies—OpenSCG. He has over 

11 years of experience in various database 

technologies such as Oracle, PostgreSQL, 

MySQL, MariaDB, and MongoDB and is an 

avid Python developer. He is also an author 

of pgPulse that enables features like AWR and 

Snapshotting on PostgreSQL 9.2 and above. He 

has been a speaker at a number of PostgreSQL 

conferences and meet-ups and holds expertise 

in migrations from Oracle to PostgreSQL and cloud deployments of 

PostgreSQL. He holds vast experience in performing architectural health 

checks of PostgreSQL and MySQL environments for customers across 

the globe. Apart from being an expert with databases, Avinash has won 

several hackathons. His interest toward simplifying complex issues using 

automation makes him a unique addition to the Open Source community.  

About the AuthorsAbout the Authors



xv

About the Technical Reviewer

Jobin Augustine is an industry expert in database 

systems, with more than 16 years of experience. He 

has technical expertise in handling the planning, 

development, and set up of large infrastructure 

setups and is an expert in consolidation 

environments. His experience is with a variety 

of database systems, including PostgreSQL, 

Oracle, MySQL, PostgreSQL, SQL Server, and 

MongoDB. He developed award-winning tools and automations ranging 

from plugins, scripts, and self-service portals for DBAs and developers 

(DevOps), DBA tools, and more. He is a contributor to various Open 

Source projects and an advocate of Open Source. Jobin is among the top 

bloggers in the Postgres community. He also regularly presents at  

meet-ups and Postgres conferences.  



xvii

Acknowledgments

From Baji Shaik: I have many people to thank, as without them, this book 

would not have been possible. Thanks to Apress Media for believing in 

this book and providing us this opportunity. Thanks to Sanchita Mandal 

for referring us to this book. Thanks to Avinash Vallarapu for being a 

wonderful co-author. Thanks to Nikhil Karkal and Divya Modi for working 

with us and giving us extended time in busy schedules. Thanks to my 

Guru, Dinesh Kumar. Thanks to Jobin Augustine for reviewing the book. 

And thanks to my loving parents—Lalu Saheb Shaik and Nasar Bee—

because of them, I am who I am today.

From Avinash Vallarapu: A special thanks to Apress Media for believing 

in me and giving me the great opportunity to write this book. Nikhil Karkal 

and Divya Modi from Apress have been very helpful in making the process 

very seamless for the authors. I want to thank Baji for collaborating with 

me and introducing me as an author. I want to thank my wife Samhitha 

Garudadri for all her support during the days of writing this book. 

Thanks to my dad, Srinivas Vallarapu, and mom, Padmavathi, for all the 

encouragement. The technical discussions I had with my wife and my 

brother Rajesh Vallarapu helped me a lot while writing this book. Many 

thanks to my guru, Jobin Augustine, who also reviewed this book.



xix

Introduction

Gone are the days where we had to use our own data centers to create 

our database infrastructure. We have seen a lot of progress in the cloud 

computing arena. We can now peacefully deploy our databases or 

applications on the cloud and avoid the cost and pain of managing the 

infrastructure. Likewise, most organizations have special projects in place 

to migrate their proprietary license databases to Open Source databases 

like PostgreSQL. Most such organizations consider it the right time to 

migrate to a PostgreSQL database deployed on the cloud, because doing 

so can save them money and effort. Thus, we knew it was time to write a 

book that helps users understand the advantages and limitations of all 

the existing cloud vendors available for deploying PostgreSQL on their 

platforms.

This book contains the details about the major vendors available to 

deploy a PostgreSQL database on the cloud. It starts with an introduction 

to DBaaS and IaaS and a brief description of the criteria considered by 

organizations when deploying databases as a service. We talk about 

the major concerns and issues you might come across while deploying 

databases on the cloud. We included steps and procedures involved in 

migrating from on-premise to the cloud. As this book is mainly written 

to address the process of deploying a PostgreSQL database on the cloud, 

we include a detailed architecture of PostgreSQL in one of the chapters. 

The architecture of PostgreSQL should help you understand most of the 

parameters that are needed to better tune your PostgreSQL environment.



xx

The main part of the book is a beginner’s guide to deploying 

PostgreSQL as a service on Amazon Web Services, Microsoft Azure, 

the Google cloud platform, and the Rackspace cloud platform. You will 

read an introduction to the services offered by each of these vendors for 

PostgreSQL, along with the steps to create your first PostgreSQL instance 

in a production environment. This book focuses on helping novice 

PostgreSQL users deploy a production PostgreSQL database as a service on 

any of these cloud vendors.

The book covers major aspects of this process—such as security, high 

availability, encryption, replication, monitoring, and connection pooling. 

All these topics are discussed about every cloud vendor, along with the 

services each of these vendors offers to satisfy the requirements.

IntroductionIntroduction



1© Baji Shaik, Avinash Vallarapu 2018 
B. Shaik and A. Vallarapu, Beginning PostgreSQL on the Cloud,  
https://doi.org/10.1007/978-1-4842-3447-1_1

CHAPTER 1

Introduction to  
Databases in the  
Cloud
This chapter is an overview of databases as a service (DBaaS) and their 

benefits. We also talk about the key things to be considered when choosing 

a service provider, including how to implement it on PostgreSQL using 

popular cloud vendors. The chapter also discusses the pros and cons 

of on-premise and cloud databases. We discuss all the cloud vendors 

available for PostgreSQL and explain how PostgreSQL is different from the 

other databases in the cloud.

�What Is Database as a Service?
DBaaS is a service that delivers a powerful on-demand database platform 

to provide an efficient way to satisfy all the needs of an organization. 

DBaaS enables DBAs to deliver database functionality as a service to 

their customers. This service eliminates the need to deploy, manage, 

and maintain on-premise hardware and software on a database or on a 

software stack, in the case of IaaS. It allows businesses to concentrate more 

on the application without worrying about the complexities of database 

administration and management.



2

DBaaS can simplify the deployment of your development and testing 

environments during the software development and testing phases. 

Maintaining a production environment with a failover mechanism and 

load balancing adds overhead to any organization. DBaaS can help you 

meet these requirements through self-service portals that manage load 

balancing and failover.

DBaaS helps deliver production and non-production database services 

with an architecture that is designed for elasticity and resource pooling. 

DBaaS also enables businesses to effectively use their resources for 

everyday DBA work. By consuming DBaaS, you can easily avoid the costs 

and possible delays in setting up and maintaining an infrastructure. This 

enables applications to be deployed to the database with no CapEx for 

hardware and software, and only OpEx for the database service. Most of the 

tools and automations are embedded as services by several cloud vendors.

The elasticity of DaaS services helps you avoid investing in capacity 

and resources in advance. DBaaS enables you upgrade resources and 

capacity as needed in the future through on-demand and self-provisioning 

portals. Monitoring solutions are nearly free for managing the logical 

infrastructure maintained as a service. DBaaS also avoids costs associated 

with maintaining the infrastructure and training in-house expertise. 

Having more visibility to the performance and diagnostic data helps you 

upgrade or downsize the service and thus have rightsized resources. 

Metrics collected through various solutions by the vendors are helpful in 

forecasting the business. DBaaS also brings improved availability through 

several monitoring solutions and high availability solutions implemented 

by the vendors.

�Who Should Use DBaaS?
DBaaS has no limitation on the type of business and the size or volume 

of the business it can serve well. There are a number of companies using 

DBaaS that manage several thousands of transactions per second and have 

Chapter 1  Introduction to Databases in the Cloud  

www.allitebooks.com

http://www.allitebooks.org


3

terabytes of data. Start-up companies as well as multinational companies 

use DBaaS as their choice of database platform. DBaaS has been the right 

choice for numerous small and medium sized businesses.

�What Database Platform Does an  
Organization Need?
Organizations need a platform that achieves the following requirements:

•	 A secured database

•	 Fast performance

•	 Reliable, redundant, and durable

•	 Geographically distributed and independent

•	 No single point of failures

•	 Can be integrated into their existing systems

•	 Help globally distributed teams and collaborate

Let’s discuss these needs in detail.

�Secured Database Environment

DBaaS helps protect databases against data theft, confidentiality, 

integrity, and unauthorized or unintended activity, and misuse by hackers 

or unauthorized users. DBaaS enables you to configure a database 

environment that avoids leakage or disclose of personal or confidential 

data. This is an important aspect in maintaining a secure database.

DBaaS helps administrators create users with limited or the 

appropriate set of roles and privileges so that no resource is overallocated 

with more destructive privileges. One of the important aspects of 

maintaining a secured database environment is encryption. Businesses 

consider it as a must to encrypt the data in motion and data at rest.  

Chapter 1  Introduction to Databases in the Cloud  



4

DBaaS helps businesses achieve this through various solutions, such as 

Secure Socket Layer (SSL) communication and encrypted storage volumes. 

Practical implementation of these features is discussed in the forthcoming 

chapters.

�Fast-Performing Database

How can I make my database perform better? This is one of the concerns 

raised by businesses while subscribing to DBaaS. Consider the database 

software—PostgreSQL. PostgreSQL requires several sets of important 

parameters to be tuned in advance to achieve a fast performing database. 

Parameters such as shared_buffers, work_mem, and autovacuum settings 

should be tuned in advance during the provisioning stage.

DBaaS provided by most vendors simplifies this requirement by tuning 

these settings automatically during the provisioning stage. Vendors use 

several algorithms based on existing instances and several benchmarks 

done by experts. This allows administrators or developers to self-provision 

an instance without worrying about tuning the database parameters. 

DBaaS vendors allow users to choose a disk that performs better starting 

from a raw hard disk to SSD and better.

�Reliable, Redundant, Durable Database

Database reliability is a serious concern. PostgreSQL, or any database 

software solution for that matter, is often deployed on hardware. It is the 

hardware that can cause reliability issues. For example, faulty RAM or a bad 

hard disk can result in reliability issues, as they can bring down a database 

or cause performance issues and downtime. Such issues are avoided in 

an infrastructure by continuous monitoring by DBAs or admins. The only 

applicable solution in such situations is to purchase new hardware.

DBaaS and deployments on the cloud take care of this issue by 

eliminating the need to monitor the hardware and avoid the efforts and 

cost involved in replacing faulty hardware. Vendors provide efficient ways 

Chapter 1  Introduction to Databases in the Cloud  



5

to back up databases, create replication instances, and back up transaction 

logs for databases deployed on the cloud.

For a production database, one of the important challenges is being 

able to recover a database to a certain point in time during disasters. 

Vendors that provide DBaaS take care of this requirement and make it 

easy for users. It is a UI and requires a few clicks to perform PITR during 

disasters, which makes it more redundant and durable.

�Geographically Distributed and Independent

Gone are the days when infrastructures were designed for vertical scaling. 

New generation techniques involve horizontal scaling and horizontal 

computing. What does horizontal scaling mean for database systems? It is 

all about slicing and dicing data across multiple machines horizontally to 

scale out.

When your users are distributed across the world globally and the 

applications are being accessed by users from various locations and 

countries, you must build infrastructures in several distributed regions. 

Building such environments is expensive but can be simplified by using 

the services provided by cloud vendors. DBaaS allows users to deploy their 

databases across several regions. Most vendors provide the infrastructure 

on various locations distributed globally. Users or businesses can choose 

several database services distributed across various regions with ease.

�No Single Point of Failures

In the vast topology involved in an infrastructure that consists of a web 

application or an application connecting to a database, there are lot of 

infrastructure components that can have single point of failures. For 

example, a router, a switch, a database server, a hard disk, RAM, or an 

application server can all cause failures or downtime.

Chapter 1  Introduction to Databases in the Cloud  



6

Several cloud vendors enable users to configure environments that 

prevent single point of failures by providing sufficient redundancy/backup 

mechanisms. These systems are generally called high availability features. 

DBaaS provides APIs and options on the dashboard that help to configure 

database high availability.

�Integrated into Existing Systems

Cloud vendors make it easy for developers and database admins to 

integrate their applications or environments into databases deployed 

using DBaaS. Most cloud vendors provide a way to deploy the DBaaS 

with no modifications needed on the application environment. 

Developers can just use the appropriate database drivers, which enable 

them to talk to the databases and perform their routine tasks. Moving 

from a database deployed on commodity hardware to a database on the 

cloud is no longer a tedious task. The options available for migrating 

and the steps involved in migrating to DBaaS are discussed in further 

chapters.

�Help Distributed Teams Work and Collaborate  
More Efficiently

Developers, admins, businesses, and testing teams work from various 

locations across the world. It is important to collaborate with other 

team members and continue structured and incremental code 

development. These development and testing teams should be able to 

deploy their code changes and test cases on development databases 

and revert to changes at different points in time. Most cloud vendors 

enable users to create snapshots of their databases. It is easy to create 

databases using these snapshots. This obviates the time and effort 

needed to involve a DBA.

Chapter 1  Introduction to Databases in the Cloud  



7

�Features of DBaaS
There are always feature-related questions about using DBaaS:

•	 How secured is the service?

•	 What level of availability does the vendor provide?

•	 Is it scalable?

DBaaS delivers a powerful on-demand database platform that provides 

an efficient way to satisfy all the needs of an organization. These features 

are covered in the following sections.

�Provisioning
DBaaS provided by most cloud vendors enables easy provisioning 

mechanisms to its users like DBAs and developers.

Users are provided with on-demand provisioning and self-service 

portals or mechanisms that enable user friendly and rapid provisioning. 

Organizations can spend days provisioning a database server.

Provisioning involves the following:

•	 Allocating a server with the CPU, memory, and disks 

requested.

•	 Installing an operating system.

•	 Adding hard disks as requested.

•	 Partitioning the disks.

•	 Installing database software and any additionally 

requested software.

•	 Configuring the database instance.

•	 Managing host based access control.

Chapter 1  Introduction to Databases in the Cloud  



8

•	 Managing encryption of hard disks.

•	 Distributing the data directory and the transaction logs 

to multiple hard disks.

•	 Creating users with appropriate sets of privileges.

All these stages can be automated using DBaaS.

DBaaS allows users to create a database service with the appropriate 

number of CPUs, RAM, and hard disks in the first phase. Hardware 

resources can be limited to each customer and can be upgradable 

on demand. If the user wants to modify the server capacity to satisfy 

the growing transactions in the business, it is very easy to upgrade or 

downgrade the server resources on demand through dashboards.

Self-service portals enable users to create database services on the fly. 

You cannot choose the underlying operating system of the DBaaS. If you 

are particular about the operating system, you must choose IaaS.

For example, you get an option to choose your own operating system 

while building an EC2 instance in Amazon but not an RDS instance.

You would be able to increase the disk space and the type of storage 

while choosing your DBaaS. Most vendors support on-demand upgrades 

to storage capacity, which in turn gives you more IOPS. But you may not be 

able to partition the disks or select physically partitioned disks to balance 

the IO across multiple disks while using a DBaaS.

While choosing the database type, you can select a supported version 

of the database software and any extensions that help you look into the 

diagnostic data or PostgreSQL. Many cloud vendors do provide APIs for 

automated provisioning/DevOps style of orchestration of DBaaS. They 

provide APIs for monitoring and managing services. A few cloud vendors 

also provide dashboards that help you look into the underlying CPU, 

memory utilizations, disk IO, replication lag, and a lot more for free. DBaaS 

has a few limitations and thus customers will choose an instance or a 

virtual server if their requirements are not met.

Chapter 1  Introduction to Databases in the Cloud  



9

The following list describes a few of the features that may not be 

available with DBaaS and could be a great concern while using DBaaS.

•	 Choosing multiple disks to redirect logs, transaction 

logs, and data files. Separation of storage volumes is 

common practice to decrease the IO bottlenecks and 

improve the performance of the database.

•	 If you have a concern with the disk IO due to the 

previous limitation, you may need to purchase more 

disk space to get more IO.

•	 Additional storage space, which is not be usable by the 

database, cannot be used for any other purpose such as 

storing HTML files or backups.

•	 You do not get a choice to install most of the Open 

Source extensions available while using DBaaS. In 

a way, you are at the mercy of the cloud vendor to 

provide extensions.

•	 You cannot create tablespaces while using DBaaS. It is 

common practice to create tablespaces that span on 

different storage volumes to improve the performance 

of a database. You might want to create partitions of 

frequently accessed transactional tables and redirect 

them to multiple tablespaces.

�Administration
As a user, you may not want to deal with sophisticated platforms that 

require a lot of knowledge to implement DBaaS or an infrastructure on 

the cloud. Gone are the days when you implemented a database using 

numerous manual steps. Users like to view the performance data and the 

diagnostic data, including the methods to monitor this, in a few clicks.

Chapter 1  Introduction to Databases in the Cloud  



10

Every well-known cloud vendor provides several APIs that not only 

help when provisioning a database environment but also give users 

several features to enable monitoring and alerting in a few clicks. Vendors 

provide several dashboards that help users view all the performance 

data for diagnostics in single page or multi-page views. Most everyday 

DBA activities include database cloning and database refreshes to enable 

functional and performance testing. Simplified cloning procedures help 

users perform database refreshes and cloning and are just a few clicks 

away. Hence, the time consumed in refreshing a development, testing, 

QA, and performance environments can be avoided by several APIs and 

options for refreshing.

Several maintenance operations can be configured automatically 

without an impact on the application or on the users connected to the 

database while using DBaaS.

�Monitoring
Most of the monitoring tools used with database environments require 

great effort from the DBAs in terms of setup and configuration. An 

admin has to build the monitoring server to configure monitoring for 

all his database environments and manage the monitoring server. If 

the monitoring server goes down, there is nothing that can continue 

monitoring a database environment. With DBaaS, you get several 

monitoring and alerting mechanisms. This saves you time and allows you 

to build an efficient monitoring system, as most of the monitoring checks 

are derived from the most frequent customer requests.

�High Availability
An important question raised by many users and businesses is whether a 

DBaaS solution enables options for high availability.

Chapter 1  Introduction to Databases in the Cloud  



11

This is one of the important ways to avoid downtime and loss during 

disasters. DBaaS does indeed provide several high availability features in 

the case of disasters.

Most customers look for options that provide seamless failovers during 

disaster recoveries. In fact, it may not be the DBaaS, but the cloud vendors, 

that allow us to configure load balancers and set up several other features 

that make a system highly available automatically and seamlessly.

�Scalability
The issue of scalability is raised by many customers who build their 

data warehouses and critical transactions systems on the cloud using 

DBaaS. The massive growth of data is a very big issue. Several petabytes 

of data are generated every day. In such a world, where we see several 

millions of transactions in a few critical transaction systems and several 

terabytes of data in a few data warehouse environments, scalability is a 

burning need. This same concern is likely raised for DBaaS. However, 

cloud vendors who provide DBaaS are well equipped with the features 

that enable scalability. You can still continue to partition your database 

tables and perform archiving as usual. We have all the possibilities to 

incrementally add hardware with new requirements but not anytime 

earlier and not in a hurry. Most cloud vendors provide load balancers that 

allow you to distribute your transactions across multiple database services.

�Security
The database technology has advanced to the level where access 

management can be considered at the cluster/instance and server levels, 

as well as the database level. The user is created inside the database 

and has to be assigned the required roles and privileges to connect 

and perform actions on the database. This advanced to the host-based 

authentication techniques on Open Source databases such as PostgreSQL 

Chapter 1  Introduction to Databases in the Cloud  



12

and MySQL. It has also been advanced to the firewall and network level 

rules to allow users to connect to a database. Most vendors (like Amazon) 

enable organizations to design their infrastructure that meet SOX, HIPAA, 

PCI, and several security compliances. That is the reason behind several 

financial and secured data driven companies choosing DBaaS.

Cloud vendors allow users to configure firewall policies and encrypt 

data in motion and data at rest.

�Cloud Versus On-Premise Computing
On-premise computing is the type of computing in which all the 

computing resources are accessed and managed by or from the premises. 

Overall costs are incurred by the premise that owns it; this translates to 

diminished returns in the long run.

In cloud computing, the pool of resources is accessed online. It is a 

usage on-demand service and is perceived as a utility—you pay as you go.

�The Pros and Cons of Cloud and On-Premise 
Computing
Let’s look at each approach in turn.

�On the Cloud Pros and Cons

•	 Databases can be deployed on the cloud using two 

types of services. They are DBaaS and IaaS. While 

using DBaaS, you have no choice of choosing your 

operating system, for a few vendors. However, when 

you subscribe to an IaaS, you can install and configure 

an OS and tools or the software of your choice on the 

database server.

Chapter 1  Introduction to Databases in the Cloud  



13

•	 No manpower is needed to manage your hardware. No 

extra cost is involved to replace hardware faults and no 

insurance or warranty cost is paid for your hardware.

•	 It’s easy to setup with a quick registration with the 

cloud vendor for the time and the resources you use. 

This makes it easily affordable.

•	 Most of the software updates, especially for the DBaaS, 

are managed by completely the vendor.

•	 These may incur security breaches or man in the 

middle attacks if they’re not configured properly. You 

should be aware of how to secure your database on the 

cloud.

•	 There may be a vendor lock-in, as DBaaS are more 

vendor specific.

•	 You may be limited to the list of services you can use.

•	 Any damage or outage at the cloud vendor may  

make you helpless. You need to wait until the vendor 

gets a fix.

•	 Monitoring can be enabled and managed by the cloud 

vendor for you. You do not have to configure or set up 

your own monitoring solutions on your infrastructure.

�On-Premise Pros and Cons

•	 You are free to install any software you want. Software 

licensing costs are managed by you and your team.

•	 You need to manage your hardware, which may involve 

additional manpower.

Chapter 1  Introduction to Databases in the Cloud  



14

•	 To achieve disaster recovery capabilities, you may have 

to build the same hardware in a different data center.

•	 You need to manage your software updates or hardware 

break fixes, which may involve more time during 

emergencies.

•	 You have complete control over your data and have an 

estimate of time to fix an issue during a disaster.

•	 You may have to manage your data backups and 

recovery.

•	 You have to enable your own monitoring tools and that 

may involve additional costs.

�Should You Move Your Databases 
to the Cloud?
Should your company move your data and infrastructure to the cloud or 

keep it on-premises?

Current IT organizations talk about three pain points.

•	 They need to save on cost.

•	 They need to improve the developer’s productivity in a 

cost-effective way.

•	 They need to retain the skillset that they already have.

In the long run, cloud computing is cost effective compared to  

the on-premises approach. It reduces the overall capital expenditure 

while maximizing efficiency and productivity. Let’s compare the cost 

models next.

Chapter 1  Introduction to Databases in the Cloud  



15

On-premises cost model:

•	 Initial investment for procurement of hardware and 

software for a projected/anticipated load.

•	 Scaling up requires investing more on hardware and 

other data center infrastructure.

•	 Hardware refresh and upgrade investments at the end 

of life.

•	 Software licenses.

Cloud-based cost model:

•	 Subscription based (pay what you use).

•	 No hardware related costs.

•	 No dedicated software licenses fees.

�Cloud Vendors Available for PostgreSQL
There are several vendors in the market who provide database services 

on the cloud. This book includes descriptions of solutions provided 

by a carefully selected vendor who are well-known in the market for 

PostgreSQL on the cloud.

Here is the list of vendors we discuss in future chapters.

•	 Amazon (Chapter 3)

•	 Rackspace (Chapter 4)

•	 Google Cloud (Chapter 5)

•	 Microsoft Azure (Chapter 6)

We talk about each vendor briefly in the following sections.

Chapter 1  Introduction to Databases in the Cloud  



16

�Amazon
Amazon Web Services, also known as AWS, is a well-known cloud hosting 

platform that provides services to several databases.

AWS is growing at a rapid pace. The Amazon public cloud is chosen 

as the best platform for deploying several applications and databases on 

the cloud and it is the largest cloud computing platform on the market. 

Amazon offers thousands of services, which makes means it provides more 

than 90% of the services of all the other cloud services combined.

AWS is distributed across 16 geographic regions and is expected to 

grow five more regions in North America, Europe, and Asia. To overcome 

the major challenges of such an infrastructure, such as reliability and 

durability, AWS provides 44 availability zones. Customers are allowed 

to build multiple availability zones and that means customers can build 

highly available database environments.

Amazon supports two major platforms on which PostgreSQL can be 

deployed.

•	 Amazon Relational Database Service (Amazon RDS)

•	 Amazon Elastic Compute Cloud (Amazon EC2)

�Amazon RDS

Amazon RDS is a well-known and widely implemented DBaaS solution for 

PostgreSQL. This is especially built to make the deployments and setup 

of PostgreSQL as a DBaaS platform faster and easier. Amazon RDS is one 

such solution and it allows customers to scale their databases on demand.

PostgreSQL service on Amazon, which is known as Amazon RDS, 

makes PostgreSQL deployments easy to set up and scale in the cloud. You 

can deploy PostgreSQL deployments, which are scalable and resizable, 

Chapter 1  Introduction to Databases in the Cloud  



17

cheaply and on-demand. The AWS RDS Console helps administrators and 

developers operate and manage their cloud platforms with many features.

•	 Provisioning the database service including software 

installation

•	 Seamless software upgrades and patches

•	 Enable replication or high availability for PostgreSQL 

with a few clicks

•	 Cost-efficient and on-demand resizable hardware 

capacity

•	 AWS Cloud Watch dashboard that stores the diagnostic 

data for analysis of the RDS instance

Amazon RDS instances restrict access to the operating system. Once 

provisioned, a user cannot manage the operating system and is limited to 

managing their instance through the available options on the dashboard. 

PostgreSQL does have several extensions that need to be installed or 

compiled to use them effectively. RDS restricts access to the OS and the 

limited number of extensions that it supports means fewer options for users.

�Amazon EC2

Amazon EC2 instance is the best choice for those users who want to go 

beyond the limitations of an RDS instance. IOPS in RDS are provisioned 

and depend on the storage chosen. Users are required to purchase more 

storage to get more IOPS. Storage purchased additionally cannot be used 

for any other purpose by the users. However, such limitations can be 

ignored in the case of an EC2. Customers can use the additional storage to 

store application-related data or backups. Users have the option to install 

any extension and software as needed on an EC2 instance. A few of the 

features that are provided to the users on the console may not be available 

to the EC2 users.

Chapter 1  Introduction to Databases in the Cloud  



18

Amazon Cloud is well-known for satisfying several compliances 

needed for a secured cloud hosting environment. Most customers get a 

performance hit while implementing security features such as encryption 

paying a huge expense. However, customers have a wide number of 

features they can use to encrypt and secure the data in motion and data at 

rest with a small or seamless performance hit. Amazon is also known for its 

network security, which enables users to configure firewalls and inbound/

outbound rules for every RDS or EC2 instance. Security and encryption are 

further discussed in Chapter 3.

�Rackspace
Rackspace is a managed cloud computing company that operates their 

data centers across the globe. As you know, every cloud has to be managed 

by someone. Rackspace offers services like managed hosts, managed 

cloud, and application services with fanatical support. It provides public, 

private, hybrid and multi-cloud solutions under managed cloud services. 

The platforms that Rackspace supports for these are services are:

•	 Dedicated servers

•	 VMware

•	 Amazon Web Services

•	 Google Cloud Platform

•	 Microsoft

•	 OpenStack

•	 Pivotal Cloud Foundry

Rackspace offers fully managed dedicated servers and physical firewall 

configurations. You can look at the detailed dedicated configurations 

that Rackspace can deploy at https://www.rackspace.com/dedicated-

servers.

Chapter 1  Introduction to Databases in the Cloud  

https://www.rackspace.com/dedicated-­servers
https://www.rackspace.com/dedicated-­servers


19

For the AWS platform, it provides ongoing architecture design, 

security, migration, and recurring optimization. Rackspace is the first 

premier managed services partner for Google Cloud Platform and it 

provides ongoing optimization and fanatical support for GCP.

You can run PostgreSQL on Rackspace in two ways—via the Managed 

Cloud and via the Private Cloud. More details on Managed Cloud are 

found at https://www.rackspace.com/cloud and more details on Private 

Cloud can be found at https://www.rackspace.com/cloud/private.

You can compare pricing details at https://www.rackspace.com/

openstack/public/pricing.

�Google Cloud
Google, a well-known search engine platform, has come with their 

innovative thoughts to build a cloud platform that suits databases like 

PostgreSQL. As with other vendors, Google includes a lot of features 

especially related to security that are very important to any enterprise. 

On their cloud platform, Google promises to keep the same security 

model that has been implemented on its applications like Gmail, Google 

Search, and other applications. On top of its excellent approach to 

network security and the default SSL-like policies, Google data centers 

are physically featured with a layered security model. Google builds its 

hardware, networking, and the software stack while keeping security in 

mind.

Google introduced transparent maintenance for Google Compute 

Engine in December 2013. Since then, most of the software updates, 

hardware break-fixes, and other issues don’t require downtime to the 

database or applications. This is addressed by one of their innovative 

Chapter 1  Introduction to Databases in the Cloud  

https://www.rackspace.com/cloud
https://www.rackspace.com/cloud/private
https://www.rackspace.com/openstack/public/pricing
https://www.rackspace.com/openstack/public/pricing


20

features known as Live Migration. This features allows Google to address 

the following issues with no impact to its customers.

•	 Regular infrastructure maintenance and upgrades

•	 Network and power grid maintenance in the data 

centers

•	 Bricked memory, disk drives, and machines

•	 Host OS and BIOS upgrades

•	 Security-related updates, with the need to respond 

quickly

•	 System configuration changes, including changing the 

size of the host root partition, for storage of the host 

image and packages

If you want to try the Google Cloud, check out the price calculator, 

which helps you build and understand the cost of spinning up your VM: 

https://cloud.google.com/products/calculator/.

Google currently has a hard limit of up to 64 vCPUs as a maximum 

number you can select for your virtual machine. This also includes a CAP 

of 6.5GB of memory per vCPU. gcloud compute is the command-line tool 

and it has a lot of options for managing your Google Compute Engines on 

top of its Compute Engine API.

Google Cloud platform services are currently available in 12 regions 

and 36 zones in locations across North America, Europe, and Asia.

Here is a list of regions where GCP has a presence.

•	 Oregon

•	 Iowa

•	 N Virginia

•	 S Carolina

Chapter 1  Introduction to Databases in the Cloud  

https://cloud.google.com/products/calculator/


21

•	 London

•	 Belgium

•	 Frankfurt

•	 Sao Paulo

•	 Tokyo

•	 Taiwan

•	 Singapore

•	 Sydney

It is also building new regions in Los Angeles and Montreal.

Every region consists of at least one or more zones. High availability 

is a major concern for any business. Google allows its customers to 

build their database infrastructures in multi-zones to allow failovers 

during disasters. Google provides features such as load balancing for 

the customers who want to redirect some of their read traffic to disaster 

recovery sites.

Google provides APIs, command-line tools, and a friendly dashboard 

to all its customers to manage their virtual machines.

�Microsoft Azure
Microsoft, a well-known multinational technology company that is best 

known for its software products such as Microsoft Office, introduced its 

cloud platform in October, 2008. It is an emerging cloud platforms that 

could become a great competitor to AWS. Azure provides a wide range of 

cloud services related to compute, analytics, storage, and networking.

Azure is scattered across 36 regions around the world, almost 

equivalent to the number of regions provided by Amazon. Azure also 

provides DBaaS for PostgreSQL Open Source databases, called Azure 

Chapter 1  Introduction to Databases in the Cloud  



22

Database for PostgreSQL. Users can create a PostgreSQL database in 

minutes, just a few clicks away on its self-service portals, which are truly 

user-friendly.

Azure provides the following features to attract customers with its data 

security model.

•	 Multi-factor authentication

•	 Encryption of data in motion and data at rest

•	 Support for encryption mechanisms such as SSL/TLS, 

IPsec, and AES

•	 Key vault service

•	 Identity and Access Management

Azure offers 57 compliance offerings to help users comply with their 

national, regional, and industry-specific requirements governing the 

collection and use of individual data.

If you want to choose an Azure Cloud but are not sure if your 

compliance requirement is met, use the following URL to validate.

https://www.microsoft.com/en-us/trustcenter/compliance/

complianceofferings

Azure allows you to select from 20 cores to 10,000 cores per 

subscription. You can increase the cores or your quota using the self-

service dashboards given by Azure upon subscription.

This pricing calculator helps you calculate the cost of your 

subscription: https://azure.microsoft.com/en-us/pricing/

calculator/

Azure Database for PostgreSQL is a fully managed database service 

that helps users deploy apps with ease. This service has built-in high 

availability with no additional costs for extra configuration and replication.

Chapter 1  Introduction to Databases in the Cloud  

https://www.microsoft.com/en-us/trustcenter/compliance/complianceofferings
https://www.microsoft.com/en-us/trustcenter/compliance/complianceofferings
­https://azure.microsoft.com/en-us/pricing/calculator/
­https://azure.microsoft.com/en-us/pricing/calculator/


23

Features like Automatic Backup help users achieve point-in-time-

recovery up to 35 days. CPUs and IOPS are provisioned for this service 

upon prediction and subscription.

Microsoft is expected to launch a premium service for Azure Database 

for PostgreSQL shortly.

�IaaS
IaaS is one of the services offered by cloud vendors along with DBaaS. IaaS 

stands for Infrastructure as a Service. Cloud vendors provide consoles 

through which users can self-provision and start a virtual machine/server 

on the cloud. These machines are managed by the vendors and do not 

require users to perform any hardware fixes or maintenance.

For example, Amazon provides EC2, S3, and several other services 

that come under IaaS. Google provides Google Compute Engine. Likewise, 

Microsoft Azure and Rackspace provide virtual machines on the cloud.

Several large and small/medium-sized business organizations build 

their own infrastructure at several locations. Building multiple locations 

enables them to improve performance and decrease latency to their 

globally distributed customers and helps them achieve high availability.  

If one data center is down, another standby site can take its role.

Consider, for example, an organization that has been globally 

distributed over 40 locations across the globe. Considering the latency 

between regions, it is almost impossible to build individual data centers 

at all the regions. This could be a burning need for all the organizations 

planning to have their business expanded all across the world.

Cloud vendors consider this fact very seriously. They build their 

data centers across several regions across the globe. Most cloud vendors 

expand their services to almost every continent. They have set up high 

availability zones within every region with several milliseconds of latency. 

Chapter 1  Introduction to Databases in the Cloud  



24

Large organizations simply subscribe to the service and the vendors 

manage their infrastructure.

Physical hardware used by vendors to provide IaaS may not be 

dedicated to an organization, unless requested. You may have to explicitly 

request a dedicated server for your organization. This way, you let all the 

cloud virtual machines be hosted on the same physical server. We need to 

consider the fact that not all cloud vendors take this approach. However, 

it may not be a burning need for all organizations. You may subscribe 

to an IaaS that’s hosted on a physical server shared by several other 

organizations. This makes it even cheaper for users to subscribe to an IaaS. 

To get more customers and revenue, cloud vendors continue to expand 

their data centers across the globe. This is why we see a notification of a 

new region being added almost every time we log in to a vendor's website.

We have already discussed the features of DBaaS such as provisioning, 

monitoring, high availability, scalability, and security. These same features 

are considered major features of IaaS offered by cloud vendors.

�Migrating to the Cloud
In the previous sections, you read an introduction to DBaaS and IaaS 

on the cloud. We also discussed a few of the vendors that have a great 

customer base subscribing to their cloud solutions. You have learned in 

detail about DBaaS and IaaS.

This section explains what is involved in moving to a DBaaS or an 

IaaS. Consider these situations that could make you think about migrating 

to the cloud.

•	 Huge cost involved in maintaining the infrastructure 

and the disaster recovery sites.

•	 Huge licensing costs involved in purchasing the 

software licenses.

Chapter 1  Introduction to Databases in the Cloud  



25

•	 Regular/periodic maintenance and man hours 

involved in hardware fixes and upgrades.

•	 Issues with scalability.

•	 Cost involved in monitoring the infrastructure and 

achieving more 9s of availability.

•	 Options to have the instances up when needed and 

terminate them to avoid cost involved when not 

needed.

As discussed, migrating to the cloud provides a lot of benefits in 

terms of cost and availability. Your organization can thus concentrate on 

improving their business more than managing their infrastructure and 

tuning it for better performance.

�Before Migrating to the Cloud
Let’s say you have a PostgreSQL production database cluster hosted at your 

own data center (on-premise). You might have already thought about high 

availability while using your PostgreSQL environment and built one or 

more slaves for high availability. You may have also installed or configured 

tools that help you achieve automatic failover and seamless application 

failover at your site.

Most organizations plan to replicate their existing architecture on 

the cloud and have their architecture design tuned at later stages. A few 

organizations may plan to redesign their architecture while moving to 

the cloud, by learning from current issues. For example, you may not 

have a load balancer in your existing architecture. A load balancer can 

redirect your application reads (such as reporting queries) to master 

and slave PostgreSQL instances using a round robin or least connection 

count algorithm. Likewise, a load balancer can also be used for automatic 

failover, by letting a failover service calling the load balancer API redirect 

Chapter 1  Introduction to Databases in the Cloud  



26

all the new connections to the promoted slave (the current master that was 

previously a slave). This is just a basic example.

Cloud vendors offer you several services that enable you to achieve 

load balancing, high availability, etc. Hence, you may want to redesign 

your existing environment on-premises by making the most of the services 

offered on the cloud. Be sure to understand the existing pain points in your 

database infrastructure design, be aware of the services that could help 

you overcome the existing issues, and create a test environment using the 

new architecture design.

�Planning Your Infrastructure on the Cloud
Most organizations follow several approaches when migrating their 

PostgreSQL databases to the cloud. The following approaches are all 

legitimate, depending on your needs:

	 1.	 Subscribe to the same number of CPUs, the same 

amount of RAM, and the same volume of disks as 

your existing PostgreSQL database on-premise.

	 2.	 Subscribe to bigger hardware needs than your 

existing environments, as it is a lot cheaper, or with 

an assumption that the performance can go down 

on the cloud.

	 3.	 Learn from your existing database usage metrics 

and plan hardware efficiently on the cloud.

	 4.	 Along with the point 3, test the performance metrics 

by generating almost double the peak application 

traffic on the hardware created on the cloud, as a 

phase of performance testing. If performance testing 

does not show fruitful results, upgrade the hardware 

as needed.

Chapter 1  Introduction to Databases in the Cloud  



27

You may follow any of these approaches, but it is always important to 

fine tune your database server and rightsize it by learning from its usage 

metrics over time.

After learning from several such migration experiences, here is how 

I recommend you start your migrations to the cloud. Let’s divide this 

migration into two types.

•	 Moving from other databases like Oracle to PostgreSQL 

on the cloud.

•	 Moving from PostgreSQL on-premises to the cloud.

In this book, we are concentrating on beginning PostgreSQL on the 

cloud, not migration from other databases to PostgreSQL, which means we 

only discuss the second point, assuming that we have an existing Postgres 

database on-premises or on bare metal.

Consider these points before moving to the cloud:

	 1.	 Understand the database peak transaction time/

hour/minute of the day and peak transaction day of 

the week and peak week of the month of an year.

	 2.	 Take a snapshot of the OS metrics using a tool like 

sar. The ability to draw a pattern using the history 

data drives you toward choosing the perfect server 

specifications for your database on the cloud.

	 3.	 Compare the load averages of a certain period and 

see if the load has been increasing with database 

growth or over a period of time.

	 4.	 Check if the CPU, memory, and IO utilizations are 

increasing gradually or staying under-utilized even 

at the peak transaction times.

Chapter 1  Introduction to Databases in the Cloud  



28

	 5.	 Enable snapshotting tools on the PostgreSQL 

database and look at the database traffic during the 

peak utilization times of the server resources.

	 6.	 Fix any contention issues caused by the application 

logic. Identify such locking SQLs or application logic 

using snapshotting solutions.

	 7.	 If the existing database server on-premise has a 

pattern of increasing server resource utilizations, 

estimate a server architecture that could 

accommodate that transaction load for an year. As 

you know already, you can scale up the resources 

such as CPU, RAM, or disk space and IOPS.

	 8.	 Note if there are any historic tables or tables 

with lots of historic data not being used by the 

application. Such data can be safely archived to 

avoid SQLs scanning the data blocks containing 

older data. If you find it difficult to archive such data 

at this point, enable opportunities for partitioning 

on the DB server being created on the cloud. 

PostgreSQL allows you to enable partitioning on 

your tables seamlessly.

	 9.	 When you create your database service on the 

cloud, be sure to create all the extensions that help 

you deep dive into performance data and tune your 

database to an optimal level.

	 10.	 As discussed, have at least one slave for high 

availability and use the services such as connection 

pooler or load balancers to effectively use your 

slaves for reads or reporting queries. Connection 

pooling is discussed in Chapter 11.

Chapter 1  Introduction to Databases in the Cloud  



29

�Tools and Extensions
These tools and extensions can help you rightsize your PostgreSQL server 

on the cloud. Rightsizing in this chapter refers to choosing the server or DB 

resources that suit your database traffic efficiently. You may have already 

deployed your PostgreSQL DB on the cloud, or you may be planning to 

do so in the future. Let’s say that you chose an instance type that you feel 

is not rightsized. Here are the methods and tools that could help you 

efficiently rightsize your PostgreSQL on the cloud.

•	 sar: Can be used to snapshot your Linux server 

resource utilizations.

•	 pgPulse: A snapshotting tool that helps PostgreSQL 

gather and store its history. Oracle-like databases 

have a feature that enables you to see the activity in 

the database at a certain point in time. This helps 

you be more predictive than reactive while managing 

PostgreSQL databases. Unlike with other databases, 

this tool allows you to capture historic information in a 

remote centralized database. Thus, you can avoid huge 

write IO on the production database where the data is 

being collected.

•	 This tool helps you query the historic data and 

understand the SQLs that have performed bad, 

tables/indexes accessed, locks acquired, etc., on the 

PostgreSQL database at a certain time. See https://

bitbucket.org/avinash_vallarapu/pgpulse.

Chapter 1  Introduction to Databases in the Cloud  

https://bitbucket.org/avinash_vallarapu/pgpulse
https://bitbucket.org/avinash_vallarapu/pgpulse


30

•	 Here’s a list of extensions to be created on the 

PostgreSQL database on the cloud:

	 a.	 pg_stat_statements: Historic data for SQLs 

that have hit the DB server with their total 

resource utilizations and average execution 

times.

	 b.	 pg_buffercache: List of tables in the shared 

buffers (PostgreSQL memory area) along with 

the amount of memory used by them.

	 c.	 pgstattuples: Amount of bloat/fragmentation 

in a table.

	 d.	 pg_repack: Tool used to perform online table 

maintenance.

Using all these tools, you can look into the following metrics to decide 

whether you have rightsized your PostgreSQL database:

•	 CPU usage trend: The percentage of CPU being used 

and the maximum CPU used at any given time.

•	 Memory usage: Amount of memory that is always 

free in the server. If you never have any free memory, 

including the cache, you need to have more RAM 

allocated to your instance. Or there is a culprit in the 

database that could be hanging all the server memory.

•	 IO queue depth and IO wait: This indicates how many 

processes are waiting for IO and the amount of time 

they waited to get IO.

•	 Temp usage: More usage of temp indicates that your 

application is badly designed or that your server's 

memory is not at an acceptable size.

Chapter 1  Introduction to Databases in the Cloud  



31

To conclude, you need to plan the future scope while deploying a 

database on the cloud and have all the tools and extensions in place that 

could enable you to efficiently tune your PostgreSQL instance. Having a 

rightsized PostgreSQL instance on the cloud is more efficient and  

cost-effective.

�Summary
This chapter covered what database as a service is and who should think 

about using it. It also covered the perfect business need and explained 

the differences between on-premise databases and cloud databases. This 

chapter explained the major cloud vendors for PostgreSQL service in brief, 

as well as the security features and limitations of each vendor. The next 

chapter covers the basic architecture of PostgreSQL, including installation, 

configuration, and limitations. It provides some basic commands to get 

started with PostgreSQL.

Chapter 1  Introduction to Databases in the Cloud  



33© Baji Shaik, Avinash Vallarapu 2018 
B. Shaik and A. Vallarapu, Beginning PostgreSQL on the Cloud,  
https://doi.org/10.1007/978-1-4842-3447-1_2

CHAPTER 2

PostgreSQL 
Architecture
In this chapter, we are going to cover the architecture of PostgreSQL.  

This includes how it is designed, its limitations, and how to install it. 

We explain each component in the architecture. We talk about different 

installation procedures and getting started with commands to work with 

PostgreSQL. We also talk about the basic parameters.

PostgreSQL is the world’s most advanced Open Source database. 

It is designed for extensibility and customization. It has ANSI/ISO 

compliant SQL support (strongly conforms to the ANSI-SQL:2008 standard 

specification). It has been actively developed for more than 25 years. It is 

well-known for its portability, reliability, scalability, and security.

�Key Features of PostgreSQL
It’s portable:

•	 PostgreSQL is written in ANSI C. As we all know, C is a 

very powerful and widely used language. Despite the 

prevalence of higher-level languages, C continues to 

empower the world.

•	 PostgreSQL is POSIX complaint and supports Windows, 

Linux, Mac OS/X, and major UNIX platforms.

www.allitebooks.com

http://www.allitebooks.org


34

It’s reliable:

•	 PostgreSQL is ACID compliant. So need to worry about 

the atomicity, consistency, isolation, and durability of 

your databases.

•	 PostgreSQL supports transactions. Transactions bundle 

multiple steps into a single, all-or-nothing, operation. 

If you see a failed statement in a transaction, that 

transaction would be rolled back.

•	 PostgreSQL supports savepoints. You can create 

savepoints within a transaction and roll back to that 

point when needed.

•	 PostgreSQL uses write ahead logging for crash 

recoveries and point in time recoveries of the 

databases.

It’s scalable:

•	 PostgreSQL uses multi-version concurrency control, 

which protects the transactions from viewing 

inconsistent data.

•	 PostgreSQL supports table partitioning, which is used 

to improve the performance of the database in case of 

large tables.

•	 PostgreSQL supports tablespaces to store some data 

into other filesystems to save I/O.

It’s secure:

•	 PostgreSQL employs host-based access control. You 

can specify the clients allowed for your database.

•	 PostgreSQL provides object-level permissions, which 

can secure objects from other users.

Chapter 2  PostgreSQL Architecture



35

•	 PostgreSQL supports logging for more visibility on the 

database on what is happening and supports SSL for 

more security.

It’s available:

•	 PostgreSQL supports replication of data, which is 

useful for load balancing.

•	 PostgreSQL supports high availability using streaming 

replication in disaster scenarios.

It’s advanced:

•	 PostgreSQL supports full text search for searching 

documents through queries.

•	 PostgreSQL supports triggers and functions like other 

databases.

•	 PostgreSQL supports custom procedural languages 

such as PL/pgSQL, PL/Perl, PL/TCL, PL/PHP, etc.

•	 PostgreSQL supports hot-backup and point-in-time 

recovery and it supports write ahead logging.

•	 PostgreSQL supports warm standby/hot standby/

streaming replication and logical replication for load 

balancing and high availability.

PostgreSQL maintains data consistency internally using Multi-

Version Concurrency Control (MVCC). While querying a database, each 

transaction sees a snapshot of data (a database version) as it was some 

time ago. It prevents transactions from viewing inconsistent data and 

provides transaction isolation in concurrent transactions. Readers do not 

block writers and writers do not block readers.

Chapter 2  PostgreSQL Architecture



36

PostgreSQL has a Write Ahead Logging (WAL) mechanism, which does 

the following:

•	 Makes a record of each insert/update/delete before it 

actually takes place.

•	 System does not consider data safe until the log is 

written to disk.

•	 Provides recovery in case of system crash or failure.

•	 Similar to Oracle REDO logs (no separate undo).

PostgreSQL has some limitations, which are generally defined by 

operating system limits, compile-time parameters, and data type usage.

Here are some of its limitations:

•	 Maximum database size is unlimited.

•	 Maximum table size is 32TB.

•	 Maximum row size is 1.6TB.

•	 Maximum field size is 1GB.

•	 Maximum rows per table is unlimited.

•	 Maximum columns per table is 250 - 1600 depending 

on the column types.

•	 Maximum indexes per table is unlimited.

Visit this link for more information: https://www.postgresql.org/

about/.

The PostgreSQL community keeps adding new features, which are for 

bigger databases for integrating with other Big Data systems. PostgreSQL 

is a reasonable choice for big data analytics, because of its development 

features. For example, PostgreSQL 9.5 includes BRIN indexes, faster sorts, 

cube/rollup/grouping sets, FDWS, tablesamples, etc. These features 

ensure that PostgreSQL continues to have a strong role in the rapidly 

growing Open Source Big Data marketplace.

Chapter 2  PostgreSQL Architecture

https://www.postgresql.org/about/
https://www.postgresql.org/about/


37

�PostgreSQL Architecture
PostgreSQL utilizes a multi-process architecture, which is where one 

process is created per session.

It has three types of processes—primary (postmaster), per-connection 

backend process, and utility (maintenance processes). Each process is 

explained in detail in the following sections.

A typical PostgreSQL architecture is shown in Figure 2-1.

When you start PostgreSQL, the postmaster starts first. The postmaster 

is a supervisory process and its responsibility is to start up and shut down 

the database, handle connection requests, and spawn other necessary 

backend processes. When you start the database, the postmaster is started 

first and it:

	 1.	 Allocates the shared memory.

	 2.	 Starts the utility processes.

Figure 2-1.  PostgreSQL basic architecture

Chapter 2  PostgreSQL Architecture



38

	 3.	 Starts semaphores (a semaphore is a label that 

indicates the status of the process).

	 4.	 Accepts connections and spins off a backend for 

each new connection.

As soon as the postmaster receives the connection, it creates a backend 

process that does an authentication check as part of the parsing process 

(checking the query syntactically and symmetrically—which is syntax 

of the query and privileges of user on the objects involved in the query). 

If everything goes well, it attaches that backend process to that session. 

Everything that runs in the session will be taken care by that backend 

process. So everything for a connection will be taken care of by backend 

processes as well.

Each backend (server process) gets its pointers to shared memory from 

the postmaster. It is pretty disastrous if the postmaster dies with backends 

still running, so we have it do as little as possible, so that there isn’t as 

much that can crash it. Postgres does have a pool of shared memory; 

however, it does not have a library or dictionary cache stored in that 

memory. This means that statements need to be parsed and planned every 

time they are entered. If parse/plan overhead is an issue, use prepared 

statements instead. The parser is quite lightweight, so we feel that the 

overhead of parsing the query each time is acceptable.

�Components of Shared Memory
PostgreSQL has shared memory that can be used by all sessions of the 

database. Each component of shared memory is explained in the following 

sections.

Chapter 2  PostgreSQL Architecture



39

�Shared Buffers
The biggest chunk of shared memory is the shared_buffers. When pages 

from a table or index are read from the OS, they are read into shared_

buffers, and the backends reference the pages and their contents right 

there in the shared memory. An exception are temporary tables, where 

(since only the creating backend can reference the temp table) data is 

accessed in the temp_buffer space as much as possible. temp_buffer 

is separate. It is not in shared memory. It’s faster to access process-local 

memory like that because you don’t need to worry about pinning or 

locking the data, since you are not sharing it.

�WAL Buffers
These are for buffering data to be written to the WAL files.

�Temp Buffers
These are buffers created from temp tables.

�CLOG (Commit LOG) Buffers
PostgreSQL holds the status of each ongoing transaction in buffers, which 

are called CLOG buffers. If there are any crashes or improper shutdowns of 

the database, these buffers will be used to determine the transaction status 

during the recovery.

�Lock Space
Memory structures in shared memory are generally protected by 

“lightweight” locks, which are in shared memory. Tables are protected by 

“heavyweight” locks, which are also in shared memory (and themselves 

protected by lightweight locks). Of course, lightweight locks are protected 

by spinlocks.

Chapter 2  PostgreSQL Architecture



40

�Other Memory Areas
Other buffers are probably mostly SLRU buffers besides CLOG (which was 

the first user of the SLRU system). SLRU is good for data where you mostly 

want to use recently accessed data and you are done with it relatively 

quickly.

The opposite of shared memory is process-local memory—only the 

one process that allocates it can access it. Each SLRU system has a separate 

subdirectory. Shared memory is memory that all of the backend server 

processes can directly access. To prevent chaos, access to shared memory 

must follow some rules, which tends to make it a little slower, like locking 

areas of memory a process will be using. Process-local memory is allocated 

by one backend server process, and the other backend server processes 

can’t see it or use it, so it’s faster to access and there are no worries about 

another process trashing it while you’re using it.

�Utility Processes
With a default configuration, we can see the postmaster, the checkpointer 

process, the writer process, the WAL writer process, the autovacuum 

launcher process, and the stats collector process. You will see more 

processes running if you turn on archiving or streaming replication. You 

might also get a process for writing the server log, depending on the 

configuration. As their names say:

•	 The WRITER process is responsible for writing the dirty 

buffers to data files.

•	 The CHECKPOINTER process is for checkpoint. This 

process is responsible for creating safe points as 

a checkpoint record in current WAL from which a 

Chapter 2  PostgreSQL Architecture



41

recovery can begin; the background writer tries to 

keep some pages available for re-use so that processes 

running queries don’t need to wait for page writes 

in order to have free spots to use in shared buffers. 

Both the checkpointer and writer processes write to 

the same files; however, the checkpointer writes all 

data that was dirty as of a certain time (the start of the 

checkpoint) regardless of how often it was used since 

the data was dirtied, whereas the background writer 

writes data that hasn’t been used recently, regardless 

of when it was first dirtied. Neither knows nor cares 

whether the data being written was committed, rolled 

back, or is still in progress.

•	 The WAL WRITER process is for writing the dirty buffers 

in WAL buffers to WAL files.

•	 The AUTOVACUUM launcher process launches 

autovacuum when required (depends on your 

autovacuum settings in PostgreSQL configuration file).

•	 The STATS COLLECTOR process collects the statistics 

of objects in the database required by Optimizer to 

improve the performance.

•	 The LOGGING COLLECTOR is responsible for writing 

database messages into database log files. According to 

the level set in the configuration file, it writes into log 

files.

•	 The ARCHIVER process is responsible for copying files 

from the pg_xlog location to the archive location.

Chapter 2  PostgreSQL Architecture



42

�Directory Structure
All the data needed for a database cluster is stored in the cluster’s data 

directory, commonly referred to as PGDATA. See Figure 2-2.

•	 Each table/relation/index in PostgreSQL gets a 

database file that can be extended to 1GB. So file-per-

table, file-per-index.

•	 Each tablespace is a directory under the PGDATA/

pg_tblspc.

•	 Each database that uses that tablespace gets a 

subdirectory under PGDATA/pg_tblspc.

•	 Each relation using that tablespace/database 

combination gets one or more files, in 1GB chunks.

•	 Additional files used to hold auxiliary information 

(free space map, visibility map) look like 12345_fsm, 

12345_vm.

•	 Each file name is a number that’s called an Object ID (OID).

Figure 2-2.  PostgreSQL directory structure

Chapter 2  PostgreSQL Architecture



43

You can get a detailed description at https://www.postgresql.org/

docs/current/static/storage-file-layout.html.

The catalog cache is information from the system tables, which 

describes the tables, indexes, views, etc. in the database. If you had to  

re-read that from the system tables each time, it would be slow.  

Even shared memory would be clumsy for that, so each backend process 

has its own cache of system catalog data for fast lookup.

When anything changes, all backends are sent a signal to update or 

reload their cache data. When pages are read or written, they go through 

the OS cache, which is not directly under PostgreSQL control. The 

optimizer needs to keep track of a lot of information while it parses and 

plans a query, which is why that is shown. A plan has execution nodes, 

some of which may need to use memory. That is where work_mem comes 

in—a sort or hash table (as examples) will try not to exceed work_mem for 

that node. It is significant that one query might use quite a few nodes, 

which each allocate memory up to work_mem. But since most queries are 

simpler and might not use any work_mem allocations, people often do 

their calculations based on an expected maximum of one allocation per 

backend (i.e., per connection). But that could be off by quite a bit if all 

connections are running queries with five nodes allocating memory.

It is worth noting that if there is enough RAM on the machine to have a 

good-sized OS cache, a PostgreSQL page read will often just be a copy from 

OS cache to pg shared_buffers, and a page write will often just be a copy 

from pg shared_buffers to the OS cache. The fsync of tables is the part of 

the checkpoint process when they are actually written from the OS to the 

storage system. But even there a server may have a battery-backed RAM 

cache, so the OS write to storage is often just a copy in RAM. That is, unless 

there is so much writing that the RAID controller’s cache fills, at which 

point writes suddenly become hundreds of times slower than they were.

Other interesting dynamics are pg will try to minimize disk writes by 

hanging onto dirty buffers (ones that have logically been updated) before 

writing them to the OS. But buffers may need to be written so they can be 

Chapter 2  PostgreSQL Architecture

https://www.postgresql.org/docs/current/static/storage-file-layout.html
https://www.postgresql.org/docs/current/static/storage-file-layout.html


44

freed so that a new read or write has a buffer to use. If a request to read a 

page or write to a new buffer can’t find an idle page, the query might need 

to write a buffer dirtied by some other backend before it can do its read  

(or whatever). The background writer can help with this. It tries to watch 

how fast new pages are being requested and write dirty pages at a rate that 

will stay ahead of demand.

�Installation
Before you use PostgreSQL you need to install it, of course. You can install 

PostgreSQL in four ways.

•	 Source installation

•	 Binary installation

•	 RPM installation

•	 One-click installer

As PostgreSQL is Open Source, the source code is available on the 

postgresql.org website. We are going to cover each installation in detail 

in the following sections.

�Source Installation
Source installation is nothing but compiling the source code of 

PostgreSQL. Here are the high-level steps that you should follow to install 

from source.

The following steps use PostgreSQL version 9.6.2 as the example, but 

nearly the same steps are applicable to the other versions.

	 1.	 Download the PostgreSQL source from here:

https://ftp.postgresql.org/pub/source/

v9.6.2/postgresql-9.6.2.tar.bz2

Chapter 2  PostgreSQL Architecture

https://ftp.postgresql.org/pub/source/v9.6.2/postgresql-9.6.2.tar.bz2
https://ftp.postgresql.org/pub/source/v9.6.2/postgresql-9.6.2.tar.bz2


45

	 2.	 Unzip the downloaded file:

unzip postgresql-9.6.2.tar.bz2

	 3.	 Go inside the directory created by unzip of Step 2 

and run the configure command as follows:

cd postgresql-9.6.2

./configure

A simple configure installs in the default location, 

which is /usr/local/pgsql. If you want to install 

it in a different location, use the prefix option to 

configure it.

--prefix=/location/to/install/

Configure basically looks at your machine 

for dependency libraries necessary for 

PostgreSQL. It reports if your machine 

is missing any. You can install missing 

libraries first and then re-run the 

configure command. So basically, it prepares 

your machine for installation.

	 4.	 Once the compilation is done, you can use make and 

make install to complete the installation.

make -j 8 && make install

-j is for parallel jobs. Define this value based 

on your CPU cores, which can be utilized for the 

compilation job.

Chapter 2  PostgreSQL Architecture



46

	 5.	 Once the installation is done, create a data directory 

where data can be stored. You need to create the 

postgres user to own that data directory.

Each instance of PostgreSQL is referred to as a 

“cluster”. This means an instance can have multiple 

databases. Don’t get confused with a cluster of 

server nodes. Each data directory contains all the 

data and configuration files of one instance. So each 

instance can be referred to in two ways:

•	 Location of the data directory

•	 Port number

A single server can have many installations and you 

can create multiple clusters using initdb.

Here are the commands that need to be executed 

to create a user, create data directory, and initialize 

that data directory:

adduser postgres

mkdir /usr/local/pgsql/data

chown postgres /usr/local/pgsql/data

su - postgres

/usr/local/pgsql/bin/initdb -D /usr/local/

pgsql/data

Note that /usr/local/pgsql/data is the data 

directory. initdb is the binary to initialize a new 

data directory.

Chapter 2  PostgreSQL Architecture



47

	 6.	 You need to start the data directory to connect 

the database. pg_ctl is the binary to start/stop a 

PostgreSQL data directory.

/usr/local/pgsql/bin/pg_ctl -D /usr/local/

pgsql/data start

Details of basic requirements, installation procedure, post-installation 

steps, and supported platforms are found at https://www.postgresql.

org/docs/current/static/installation.html.

�Binary Installation
This installation is nothing but downloading already compiled binaries 

(from source installation) from different repositories maintained by 

communities and PostgreSQL support vendors.

Binary installation expects the server to satisfy all the dependencies. 

However, most of the package managers are smart enough to detect the 

required dependencies and install them if required.

Some of the notable binary repositories are as follows:

•	 https://www.postgresql.org/ftp/binary/

•	 https://yum.postgresql.org/

•	 https://www.postgresql.org/download/linux/

ubuntu/

There are portable/relocatable binaries also, such as what BigSQL 

package manager offers at https://www.openscg.com/bigsql/package-

manager/.

Chapter 2  PostgreSQL Architecture

https://www.postgresql.org/docs/current/static/installation.html
https://www.postgresql.org/docs/current/static/installation.html
https://www.postgresql.org/ftp/binary/
https://yum.postgresql.org/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.openscg.com/bigsql/package-manager/
https://www.openscg.com/bigsql/package-manager/


48

�RPM Installation
PostgreSQL maintains a repository where you can see all versions of 

PostgreSQL at https://yum.postgresql.org/rpmchart.php

RHEL, CentOS, Oracle Enterprise Linux, and Scientific Linux are 

currently supported by the PostgreSQL yum repository. Only current 

versions of Fedora are supported due to the shorter support cycle, so 

Fedora is not recommended for server deployments.

	 1.	 Install the repository RPM:

yum install https://download.postgresql.org/

pub/repos/yum/9.6/redhat/rhel-7-x86_64/pgdg-

redhat96-9.6-3.noarch.rpm

	 2.	 Install the client packages:

yum install postgresql96

	 3.	 Optionally install the server packages:

yum install postgresql96-server

	 4.	 Optionally initialize the database and enable 

automatic start:

/usr/pgsql-9.6/bin/postgresql96-setup initdb

systemctl enable postgresql-9.6

systemctl start postgresql-9.6

	 5.	 Post-installation.

Chapter 2  PostgreSQL Architecture

https://yum.postgresql.org/rpmchart.php


49

Automatic restart or auto-initialization of the data directory is not 

enabled for Red Hat family distributions due to some policies. You need 

to perform the following steps manually to complete your database 

installation.

service postgresql initdb

chkconfig postgresql on

On Fedora 24 and other later derived distributions:

postgresql-setup initdb

systemctl enable postgresql.service systemctl start  

postgresql.service

�Installers for Windows and Mac
The easiest way to install is through installers. One-click installers provide 

a graphical wizard for installation. These installers have options for 

choosing your installation and data directory locations, as well as ports, 

user, passwords, etc.

Download the installers from here (according to your operating 

system): https://www.openscg.com/bigsql/postgresql/installers/

Double-click on the installer and follow the GUI wizard.

�Setting Environment Variables
It is very important to set up these environment variables for trouble-free 

startup/shutdown of the database server.

•	 PATH: Should point to the correct bin directory

•	 PGDATA: Should point to the correct data cluster 

directory

Chapter 2  PostgreSQL Architecture

https://www.openscg.com/bigsql/postgresql/installers/


50

•	 PGPORT: Should point to the correct port on which 

the database cluster is running. You will get the port 

number of the instance from the port parameter in the 

postgresql.conf file.

•	 PGUSER: specifies the default database user name.

Edit the .profile or .bash_profile file to set these variables. In 

Windows, set these variables using the My Computer Properties page. 

More environment variables are found here: https://www.postgresql.

org/docs/current/static/libpq-envars.html.

�Getting Started with PostgreSQL
This section talks about some basic commands that are very helpful on a 

day-to-day basis. The following examples involving service startup are on 

Linux. However, these commands work across all platforms.

The pg_ctl command can be used to control the PostgreSQL database. 

To check the status of the PostgreSQL instance:

$ su – root

# service postgresql-9.6 status

Or:

#su - postgres

$ /install/location/bin/pg_ctl D /location/to/data status

To start the PostgreSQL service:

 $ su – root

# service postgresql9.2 start

Chapter 2  PostgreSQL Architecture

https://www.postgresql.org/docs/current/static/libpq-envars.html
https://www.postgresql.org/docs/current/static/libpq-envars.html


51

To start the Postgresql service as a Postgres user (an operating system 

user), use this command:

 $ /install/location/bin/pg_ctl D /location/to/data start.

To stop the PostgreSQL service, use this command:

$ su – root

# service postgresql-9.6 stop

(OR)

#su - postgres

$ /install/location/bin/pg_ctl D /location/to/data stop mf

Reload PostgreSQL means to force the PostgreSQL service to allow 

the modifications in postgresql.conf/pg_hba.conf. To reload the 

PostgreSQL service:

$ su – root

# service postgresql-9.6 reload

Or:

$/install/location/bin/pg_ctl D /location/to/data reload

Use the psql utility to connect to the database. It needs a port, 

username, hostname, and database name to be passed. An example:

$/install/location/bin/psql –p port –h hostname –U username –d 

dbname

$/install/location/bin/psql –p 5432 –h localhost –U postgres –d 

postgres

To get the object details, PostgreSQL has meta-commands that help 

you get the list of objects. Connect to the psql prompt and execute these 

commands.

Chapter 2  PostgreSQL Architecture



52

postgres=# \dt

         List of relations

 Schema |  Name  | Type  |  Owner

--------+--------+-------+----------

 test   | test_1 | table | postgres

 test   | test_2 | table | postgres

 test   | test_3 | table | postgres

 test   | test_5 | table | postgres

 test   | test_6 | table | postgres

(5 rows)

postgres=#

•	 \dv: Meta command to get the list of views

•	 \di: List of indexes

•	 \d: Table description

You can find all these meta-commands by executing \? in the psql 

terminal. These commands are not supported in any other applications.

To monitor the database connections, such as which application user 

executes which query from which IP, you can use the following query to list 

all the connection details of a cluster.

 postgres=# select * from pg_stat_activity;

To list all the active connections (the connections that are doing some 

actions on the database), use this command:

 postgres=# select * from pg_stat_activity where waiting is 

false; --(for <= PostgreSQL 9.5)

Chapter 2  PostgreSQL Architecture



53

To list all the connections that are waiting, use this command.

 postgres=# select * from pg_stat_activity where waiting is 

true; --(for <= PostgreSQL 9.5)

To get the current locks in database, use this command.

 postgres=# select * from pg_locks;

�Configuration Parameters
postgresql.conf is the configuration file in PostgreSQL. You can find it 

under the DATA directory. It’s used to set configuration parameters. There 

are many configuration parameters that affect the behavior of the database 

system. All the parameter names are case-insensitive. Every parameter 

takes a value of one of four types: boolean, integer, floating point, or string.

•	 postgresql.conf holds parameters used by clusters. 

Parameters are case-insensitive.

•	 postgresql.conf is normally stored in data directory.

•	 Initdb installs a default copy of the config file.

•	 Some parameters take effect only on server restart 

(pg_ctl), while others go into effect by signaling the 

postmaster.

•	 # is used for comments.

•	 One parameter allowed per line.

•	 They can also be specified as command-line option.

Some parameters can be changed per session using the SET command 

and some parameters can be changed at the user level using ALTER USER. 

Some parameters can be changed at the database level using ALTER 

DATABASE. The SHOW command can be used to see settings. The pg_settings  

catalog table lists the settings information.

Chapter 2  PostgreSQL Architecture



54

�Connection Settings
•	 listen_addresses (default localhost): Specifies 

the addresses on which the server is to listen for 

connections or from which hosts you can connect to 

instance. Provide user-comma separated host IPs or 

use * for all hosts.

•	 port (default 5432): The port the server listens on. The 

default is 5432; however, you can use any port number 

that is free on the server.

•	 max_connections (default 100): The maximum number 

of concurrent connections the server can support. 

If you want to increase this parameter, remember 

that you can see an increase in memory in case of all 

concurrent sessions.

•	 superuser_reserved_connections (default 3): 

Number of connection slots reserved for superusers. If 

max_connections are 100, the normal user connections 

would be 100 – superuser_reserved_connections. 

These are reserved for the worst case when an instance 

is running out of connections for normal users.

•	 unix_socket_directory (default /tmp): Directory to be 

used for UNIX socket connections to the server.

Chapter 2  PostgreSQL Architecture



55

�Security and Authentication Settings
•	 authentication_timeout (default 1 minute): 

Maximum time to complete client authentication, in 

seconds. Default is one minute and it will error out 

after one minute.

•	 ssl (default off): Enables SSL connections for more 

security.

•	 ssl_ciphers: List of SSL ciphers that may be used for 

secure connections.

�Memory Settings
•	 shared_buffers (default really small): Size of 

PostgreSQL shared buffer pool in shared memory. Rule 

of thumb is 25% of system memory to a maximum of 

8GB on Linux; or 512MB on Windows.

•	 temp_buffers (default 8MB): Amount of memory used 

by each backend for caching temporary table data. It is 

used only when temporary tables are created.

•	 work_mem (default 1MB): Amount of memory used for 

each sort or hash operation before switching to temporary 

disk files. Default is conservative, but don't overdo it. 

If you increase, it may cause the system to go out of 

memory. Rule of thumb is 25% of RAM/max_connections.

•	 maintenance_work_mem (default 16MB): Amount of 

memory used for each index build or VACUUM. It is 

useful to increase it at the session level when you 

are running VACUUM or CREATE INDEX, but not at the 

instance level.

Chapter 2  PostgreSQL Architecture



56

�Query Planner Settings
•	 random_page_cost (default 4.0): Estimated cost of a 

random page fetch, in abstract cost units. May need 

to be reduced to account for caching effects. It is used 

during index scans.

•	 seq_page_cost (default 1.0): Estimated cost of a 

sequential page fetch, in abstract cost units. May need 

to be reduced to account for caching effects. Must 

always set random_page_cost >= seq_page_cost to 

get better performance. However, the planner decides 

which scan is to be performed based on the stats. You 

can force seq scan or index scan by altering these 

parameters, when necessary.

•	 effective_cache_size (default 128MB): Used to 

estimate the cost of an index scan. Rule of thumb is 75% 

of system memory.

�Write Ahead Log Settings
•	 wal_level (default minimal): Determines how much 

information is written to the WAL. Other values are 

archive and hot_standby. Set to archive if you want to 

enable only archiving for point in time recovery and set 

to hot_standby if you want to set up a replication.

•	 fsync (default on): Turn this off to make your 

database much faster and silently cause arbitrary 

corruption in case of a system crash. It is not 

recommended to turn it off.

Chapter 2  PostgreSQL Architecture



57

•	 wal_buffers (default 64KB): The amount of memory 

used in shared memory for WAL data. May need to be 

raised to 1-16 MB on busy systems.

•	 checkpoint_timeout (default 5 minutes): Maximum 

time between checkpoints. After this much time, the 

checkpoint will be performed automatically.

•	 max_wal_size (integer): Maximum size to let the WAL 

grow to between automatic WAL checkpoints. This is 

a soft limit; WAL size can exceed max_wal_size under 

special circumstances, like under heavy load, a failing 

archive command, or a high wal_keep_segments 

setting. The default is 1GB. Increasing this parameter 

can increase the amount of time needed for crash 

recovery. This parameter can only be set in the 

postgresql.conf file or from the server command line.

•	 min_wal_size (integer): As long as WAL disk usage 

stays below this setting, old WAL files are always 

recycled for future use at a checkpoint, rather than 

removed. This can be used to ensure that enough 

WAL space is reserved to handle spikes in WAL usage. 

For example, when running large batch jobs. The 

default is 80MB. This parameter can only be set in the 

postgresql.conf file or from the server command line.

�Where to Log
•	 log_destination: Destination to log written types. 

Valid values are combinations of stderr, csvlog, 

syslog, and eventlog, depending on the platform.

Chapter 2  PostgreSQL Architecture



58

•	 logging_collector: Enables advanced logging 

features. csvlog requires logging_collector. Enabling 

it creates a utility process called “logger process,” which 

takes care of writing into log files.

•	 log_directory: Directory where log files are written. 

Requires logging collector to be turn on.

•	 log_filename: Format of log file name (e.g., 

postgresql-%Y-%M- %d.log). Allows regular log 

rotation. Requires logging collector.

•	 log_rotation_age: Automatically rotates logs after this 

much time. Requires logging_collector to be turn on.

•	 log_rotation_size: Automatically rotates logs when they 

get this big. Requires logging_collector to be turn on.

�When to Log
•	 client_min_messages (default NOTICE): Messages of 

this severity level or above are sent to the client. Other 

severity levels are LOG, WARNING, ERROR, FATAL, and PANIC.

•	 log_min_messages (default WARNING): Messages of this 

severity level or above are sent to the database log files.

•	 log_min_error_statement (default ERROR): When a 

message of this severity or higher is written to the server 

log, the statement that caused it is logged along with it.

•	 log_min_duration_statement (default -1, disabled): 

When a statement runs for at least this long (specified 

in milliseconds), it is written to the server log, with its 

duration.

Chapter 2  PostgreSQL Architecture



59

�What to Log
•	 log_connections (default off): Log successful 

connections to the server log. Useful when generating 

reports on the number of connections based on  

log files.

•	 log_disconnections (default off): Log some 

information each time a session disconnects, including 

the duration of the session. Useful when generating 

reports on number of connections based on log files.

•	 log_error_verbosity (default “default”): Can also 

select “terse” or “verbose”.

•	 log_duration (default off): Log duration of each 

statement. Useful when you want to see the duration of 

each statement that is logged.

•	 log_line_prefix: Additional details to log with each 

line. You can log details of each statement such as 

hostname, pid, database/username, duration, etc.

•	 log_statement (default none): Legal values are 

none, ddl, mod (DDL and all other data-modifying 

statements), or all. Though all is specified, it will 

not log error statements, as this is applicable to the 

statements that pass parsing.

•	 log_temp_files (default -1): Log temporary files of this 

size or larger in kilobytes. These files are created when 

work_mem is not sufficient during the sorting of the 

queries.

Chapter 2  PostgreSQL Architecture



60

�Background Writer Settings
•	 bgwriter_delay (default 200 ms): Specifies time 

between activity rounds for the background writer. 

Resting time of background writer after it writes and 

before it starts writing again.

•	 bgwriter_lru_maxpages (default 100): Maximum number 

of pages that the background writer may clean per activity 

round. Increasing it makes the background writer write 

more buffers and may cause some I/O on the server.

•	 bgwriter_lru_multiplier (default 2.0): Multiplier 

on buffers scanned per round. By default, if the 

system thinks 10 pages will be needed, it cleans 10 * 

bgwriter_lru_multiplier of 2.0 = 20.

�Vacuum Cost Settings
•	 vacuum_cost_delay (default 0 ms): The length of time, 

in milliseconds, that the process will wait when the cost 

limit is exceeded. By default, it does not wait.

•	 vacuum_cost_page_hit (default 1): The estimated cost of 

vacuuming a buffer found in the PostgreSQL buffer pool.

•	 vacuum_cost_page_miss (default 10): The estimated 

cost of vacuuming a buffer that must be read into the 

buffer pool.

•	 vacuum_cost_page_dirty (default 20): The estimated 

cost charged when vacuum modifies a buffer that was 

previously clean.

•	 vacuum_cost_limit (default 200): The accumulated 

cost that will cause the vacuuming process to sleep.

Chapter 2  PostgreSQL Architecture



61

�Autovacuum Settings
•	 autovacuum (default on): Controls whether the 

autovacuum launcher runs and starts worker processes 

to vacuum and analyze tables. It may create some load 

on heavily active tables (update/deletes); however, 

it increases the performance of the table. It is not 

recommended to turn this off.

•	 log_autovacuum_min_duration (default -1): 

Autovacuum tasks running longer than this duration 

(in milliseconds) are logged.

•	 autovacuum_max_workers (default 3): Maximum 

number of autovacuum worker processes that may be 

running in parallel at one time.

We covered a few of the most important parameters. However, there 

are a lot of parameters not covered here. For more information, visit 

https://www.postgresql.org/docs/9.5/static/runtime-config.html.

�Summary
This chapter covered the detailed architecture of PostgreSQL and its design 

and data limits. We went through the installation procedures and showed 

you how to get started with PostgreSQL. We also looked at the directory 

structure and some basic parameters. The next chapter covers one of the 

main PostgreSQL service cloud vendors, Amazon Cloud. We talk about the 

types of instances, including how to choose one, and the limitations and 

advantages of EC2 and RDS instances. 

Chapter 2  PostgreSQL Architecture

https://www.postgresql.org/docs/9.5/static/runtime-config.html


63© Baji Shaik, Avinash Vallarapu 2018 
B. Shaik and A. Vallarapu, Beginning PostgreSQL on the Cloud,  
https://doi.org/10.1007/978-1-4842-3447-1_3

CHAPTER 3

Amazon Cloud
This chapter covers Amazon Web Services (AWS) and how to get started 

with it. We talk about availability zones and getting started with AWS and 

answer queries that most of the people raise before they choose AWS. We 

cover only a few services related to PostgreSQL, like ec2 machines and 

RDS instances. We describe the step-by-step process of creating each 

service, which will give you a better idea about which option you should 

choose for your environment.

�Amazon Cloud or Amazon Web Services
As discussed in Chapter 1, AWS is widespread across 16 geographic regions 

with 43 availability zones. It is about to launch four more regions with 11 

availability zones. AWS also has over 66 edge locations or CDN endpoints 

for CloudFront.

�AWS Regions and Availability Zones
An AWS region is a geographical or physical location that hosts multiple 

availability zones. Figure 3-1 shows 16 geographic regions across various 

locations in the world.



64

As seen in Figure 3-1, each region or location has at least two 

availability zones (AZ) to enable high availability and disaster recovery 

features for production environments. An availability zone is a data center 

in simple terms. To enable high availability, all the availability zones in a 

region are connected through a fast and private fiber optic network with 

redundant power and security. Choosing multiple availability zones for 

your infrastructure helps you build redundant applications that manage 

failover automatically. You can build replication between multiple regions 

or within the same region using availability zones.

�Getting Started with AWS
Before starting your deployment of PostgreSQL on AWS, you may have a 

few questions. This chapter addresses the following questions:

•	 How do you create an AWS account?

•	 What is the difference between an RDS and EC2 

instance?

•	 When do you choose between an RDS and an EC2 for 

PostgreSQL?

Figure 3-1.  The 16 geographic regions across various locations in the 
world 

Chapter 3  Amazon Cloud

www.allitebooks.com

http://www.allitebooks.org


65

•	 How do you create a PostgreSQL RDS instance or an 

EC2 instance on AWS?

•	 How do you choose a region? When should you choose 

a multi-availability zone and how?

•	 How should you determine the correct specifications or 

instance type?

•	 What are all services you need to know to implement 

PostgreSQL on AWS?

•	 How can you monitor PostgreSQL on AWS?

•	 Is PostgreSQL on AWS secured?

•	 How do you choose a VPC?

•	 How do you encrypt data in motion and data at rest?

•	 How do you take backups of PostgreSQL on AWS?

•	 How is user management and privileged access control 

achieved on AWS?

•	 What is Aurora PostgreSQL and how is it different from 

Community PostgreSQL?

All these questions are answered in the next pages.

�Creating an AWS Account
Creating an AWS account is very easy and user friendly. Using the 

following link, you can directly land on the page that requires you to enter 

your AWS account name, email address, and password. See https://

portal.aws.amazon.com/billing/signup.

Chapter 3  Amazon Cloud

https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup


66

On the next page, you see an option asking you to select whether it is a 

company or personal account (see Figure 3-2). In fact, it does not matter. 

If you are creating the account for your organization, feel free to select the 

company account and complete the rest of the fields.

Figure 3-2.  Creating the account

Chapter 3  Amazon Cloud



67

Once you click on Create Account and Continue, you are asked to enter 

your credit card number and choose the billing address for the card. You 

are then asked to provide a telephone number for a confirmation call. The 

verification stage is then complete. See Figure 3-3.

The final step is to choose a support plan. Here are the four support 

plans available for users on AWS:

•	 Basic support plan

•	 Developer support plan

•	 Business support plan

•	 Enterprise support plan

Figure 3-3.  Provide a phone number for verification

Chapter 3  Amazon Cloud



68

If you are planning to try AWS for the first time, feel free to choose the 

Basic support plan, which is available at no extra cost. To see more details 

on the support plans offered by AWS, visit https://aws.amazon.com/

premiumsupport/compare-plans/.

Once you have selected your support plan, you are done with AWS 

account creation. It may take up to 24 hours for your account to be activated. 

AWS should send you an email if they need more details from you.

�Choosing an AWS Service
As you have already seen the procedure for creating an AWS account, let’s 

see how you can get to the services offered by AWS. Once you have logged 

in to your AWS account, click on the Services icon on the top-left corner of 

your AWS Console. You can use the following URL to land on the services 

offered by AWS.

https://console.aws.amazon.com/console/

As this chapter is more inclined toward creating a PostgreSQL database 

on AWS, we need to understand the two major services offered by Amazon 

for this purpose.

•	 Relational Database Service (RDS)

•	 Elastic Compute Cloud (EC2)

�RDS
As discussed in the Chapter 1, Amazon RDS is a managed relational 

database service or a DBaaS (Database as a Service) offered by AWS.

Amazon RDS offers a customizable database service that allows scaling 

of components like CPU, memory, storage, and IOPS independently. RDS 

enables developers to focus on building their applications, as many of 

Chapter 3  Amazon Cloud

https://aws.amazon.com/premiumsupport/compare-plans/
https://aws.amazon.com/premiumsupport/compare-plans/
https://console.aws.amazon.com/console/


69

the time-consuming tasks such as database provisioning, administration, 

backups, database software installation, database setup, upgrades, 

patching, and monitoring can be automated and left to AWS. Amazon 

provides this service for a variety of database software products such as 

PostgreSQL and MySQL.

�Choosing an RDS Instance

Amazon allows you to choose an instance type of your choice from a list 

of several instance types. Every instance type varies in terms of the CPUs, 

memory, IOPS, and network capacity. You can choose an instance type 

that is optimal for your requirements. This list may vary but should give 

you an understanding that you have a list of instances from which you can 

select your RDS instance. See Figure 3-4.

Figure 3-4.  List of instance types

Chapter 3  Amazon Cloud



70

Amazon offers two types of storage for RDS instances.

•	 General Purpose (SSD) Storage

•	 Provisioned IOPS (SSD) Storage

General Purpose (SSD), or gp2, is suitable for applications that don’t 

require guaranteed and consistent IOPs and are not concerned about huge 

IO intensive transactions. IOPS is the number of input/output operations 

second. This storage type scales at a rate of three IOPS per gigabyte of 

storage. For example, 33.33GB of storage gets you 100 IOPS. There is also 

a hard limit of 10,000 IOPS being the maximum for gp2 storage when you 

choose a storage of size 3,334GB and above. To get more IOPS, you need 

to choose more storage. Choosing 100GB General Purpose (SSD) storage 

gets you 300 IOPS. Choosing gp2 type of storage gets you an initial credit 

balance of IOPS (5.4 million IOPS), which can be used automatically by 

the instance to sustain a burst performance when large amounts of IO are 

happening. These credits can sustain 3000 IOPS for 30 minutes. Hence, 

if you are building an OLTP environment that gets a huge number of 

transactions for longer durations, needing more IOPS, you may not choose 

this storage type.

Provisioned IOPS (SSD) Storage is a storage type that lets you provision 

your instance IOPS between 3 to 10 times of your storage, unlike General 

Purpose Storage. That means that choosing a storage of size 1,000GB lets 

you choose an IOPS between 3,000 to 10,000, incremented by 1000. 300GB 

of storage would let you choose an IOPS between 1000 to 3000, which are 

always rounded off to multiples of 1000. This is why the minimum storage 

you can choose while choosing the Provisioned IOPS Storage type is 100GB 

and it’s scalable up to 6144GB.

You can choose up to 30,000 IOPS per database instance irrespective 

of the instance type you choose. Hence, your instance is now capable 

of processing a bigger number of I/O requests concurrently if you have 

chosen this storage type. Provisioned IOPS storage is highly suitable for 

Chapter 3  Amazon Cloud



71

OLTP workloads. Increased IOPS refers to decreased IO latency in a system 

with huge transactions, which makes your transactions complete more 

quickly. If you want to modify your storage type from gp2 to Provisioned 

IOPS, doing so requires downtime. Storage, once allocated, can be 

upgraded without downtime, but it is not possible to downgrade your 

storage size.

�Creating PostgreSQL on an RDS

Follow these steps to create a PostgreSQL RDS instance:

	 1.	 As you saw earlier, you need to search for the 

RDS service in the AWS Console. Once you click 

on RDS, you should land on an RDS Dashboard. 

Click on Instances and you should see an option to 

launch a DB instance. Figure 3-5 shows the options 

highlighted for your understanding.

Figure 3-5.  Launching the DB instance

Chapter 3  Amazon Cloud



72

	 2.	 Once you click on Launch DB Instance, you should 

select your engine. Since we are talking about 

PostgreSQL, lets select PostgreSQL, as highlighted in 

Figure 3-6. Click Next to continue.

	 3.	 Now you need to select your use case from the  

two options—production and development  

(see Figure 3-7). If you are building this service for 

production, select production. However, there is no 

difference between production and development 

except for the Multi-AZ and Provisioned IOPS 

selected by default. You can choose the same 

options if you select development as your use case. 

Click Next to proceed.

Figure 3-6.  Select PostgreSQL as the engine

Chapter 3  Amazon Cloud



73

	 4.	 This step is crucial. You need to select the 

PostgreSQL version you want to install on your 

RDS instance. AWS takes care of the installation 

automatically. You see an option to choose your 

instance class or instance type. Among the list of 

instances available, you need to select the type 

that suits your environment in terms of CPU and 

memory. As seen in Figure 3-8, Create Replica In 

Different Zone is automatically highlighted for you. 

As discussed at the beginning of this chapter, there 

are at least two availability zones in every region. 

Amazon creates a replica that can be used for reads 

and high availability when you select this option. 

Choosing a use case as production will select this 

option automatically for you.

Figure 3-7.  Select the use case

Chapter 3  Amazon Cloud



74

In the same step, you can see Storage type - Provisioned IOPS 

selected by default. As discussed, you need to select your IOPS based 

on a mathematical formula rounded off to multiples of 1000. Otherwise, 

you’ll see an error that helps you choose the correct numbers, as shown in 

Figure 3-8.

Figure 3-8.  The error tells you the correct range for the entry

Chapter 3  Amazon Cloud



75

On the same page, once you scroll down to the end, you should see 

Settings (see Figure 3-9). Choose a name that will help you identify this 

instance. Look at the standard naming conventions at your organizational 

level. You can choose your own username and passport that helps you get 

superuser access to this instance. Click Next to proceed.

	 5.	 Now you’ll land on the Advanced Settings page 

(see Figure 3-10). You can create your own VPC 

or choose an existing VPC. One of the important 

decision is whether to let your instance be publicly 

accessible. If you need to let other EC2 instances or 

devices outside the VPC of your instance connect to 

your instance, you need to choose Yes. However, you 

need to specifically choose the VPC so devices can 

connect to your instance explicitly.

Figure 3-9.  Fill in the settings here

Chapter 3  Amazon Cloud



76

There are multiple availability zones in every region, and you can 

choose one AZ from your region in which to create this instance using the 

dropdown under Availability Zone.

Figure 3-10.  The advanced settings page

Chapter 3  Amazon Cloud



77

	 6.	 On the same page, choose your default database 

name and the port on which this instance should 

run. You can select Yes for encryption if you would 

like to encrypt your data at rest, such as database 

storage, snapshots, backups, etc. See Figure 3-11.

	 7.	 Once you scroll down, you can choose your backup 

retention period, which is modifiable at later stages. 

AWS automatically takes care of your backups. You 

can enable more detailed monitoring by selecting 

Enable Enhanced Monitoring under Monitoring. 

See Figure 3-12.

Figure 3-11.  Choose the database name and port

Chapter 3  Amazon Cloud



78

	 8.	 The final step before launching the database instance 

is to enable or disable the automatic maintenance 

of your instance. You must be careful while enabling 

automatic maintenance, as it can perform minor 

version upgrades of your PostgreSQL instance 

automatically during a scheduled maintenance 

window. You can choose your maintenance window 

or let AWS proceed with the maintenance window, 

which would be announced in their community 

forums. I prefer to choose No to take care of such 

maintenance in my production environments through 

a planned downtime.

Figure 3-12.  Set up the backup, monitoring, and maintenance 
features of you database instance

Chapter 3  Amazon Cloud



79

Now, click on Launch DB Instance to finish creating your RDS 

instance.

�EC2
EC2 stands for Elastic Compute Cloud. Unlike an RDS instance, this web 

service allows users to configure a compute capacity in the cloud with 

complete control over it. EC2 instances can be provisioned in no time, 

irrespective of the number of instances you create simultaneously. It is 

much easier to scale capacity on demand. EC2 instances get root access 

to users and allow them to install any external applications and software 

on the server without hassle. Amazon EC2 also commits to a Service Level 

Agreement of 99.95%.

There are currently five types of instances that you need to understand 

before creating an EC2 instance the first time.

•	 Spot instances

•	 Reserved instances

•	 Dedicated hosts

•	 Dedicated instances

•	 Elastic GPUs

�EC2 Spot Instances

Spot instances help users save more money for a workload that is tolerant 

for interruption. Users can create a spot instance for non-mission critical 

requirements such as analytics and testing. Using spot instances, you 

can choose a price you want to pay for an instance you choose, per hour, 

through a bid. You can view the current spot price and choose a price 

higher than that through a bid. This way, you can provision your spot 

instances at the same time. The history of spot pricing is available on the 

Chapter 3  Amazon Cloud



80

Amazon website and it will help you understand the spot price in the last 

90 days. Using this history, you can choose a price that can sustain for a 

longer period. When the bid reaches or exceeds the spot price chosen by 

the user, the service is interrupted. The reason that many users choose a 

spot instance is because it is very cheap when compared to a EC2 reserved 

instance but has the same performance.

�Reserved Instances

There are several attributes that help you choose a reserved instance 

and avail a better discounted price. These attributes include instance 

type, region, and commitment (1 or 3 years). If you choose to delete your 

instance and not worry about your contract, you can sell it in the Amazon 

Marketplace. It does not make any difference if you choose a Reserved 

Instance that is sold in the Marketplace or directly on the AWS Dashboard, 

because it is the same hardware that is being managed by Amazon. Within 

Reserved Instances (RIs), you have three categories.

•	 Standard RIs: Help you choose an instance with a great 

discount without the feature of changing the instance 

family and other attributes.

•	 Convertible RIs: Gets you a good discount (could be 

less than standard RIs) but allows you to change the 

attributes of the RI at the same or higher value.

•	 Scheduled RIs: These instances best suit a predictable 

workload. For example, I perform a month-end report 

on the last day of the month or a weekly report every 

Sunday. You can select a Scheduled RI that would be 

available for launch for a specified time through a  

one-year term.

Chapter 3  Amazon Cloud



81

�Dedicated Hosts

EC2 dedicated hosts help you create your own physical server. This makes 

it easier to launch your instances on your own dedicated host, which helps 

you meet your organizational compliance requirements. Dedicated hosts 

also allow you to use your existing software licenses, which are calculated 

on per socket, per core (or VM core) basis, subject to the terms and 

conditions of the software. You can let Amazon create your instance on 

your dedicated host explicitly.

�Dedicated Instances

Dedicated instances run on hardware that is dedicated to a single 

customer. You may choose to launch an instance on your dedicated host. 

However, by choosing a dedicated instance, you would only pay per hour 

billing for the dedicated instance.

�Elastic GPUs

AWS allows you to add virtual graphics, which is as easy as adding an EBS 

volume to an EC2 instance. Users do not have to choose a physical GPU 

that is very costly and choose a fraction of resources using elastic GPUs. 

Elastic GPU instances save users who are involved in 3D gaming and 

designing a lot of money.

Let’s now see how AWS categorizes their instances into five groups/

types of instances:

•	 General purpose

•	 Compute optimized

•	 Memory optimized

•	 Accelerated computing

•	 Storage optimized

Chapter 3  Amazon Cloud



82

General Purpose

General purpose instances include the T2, M4, and M3 family of instances.

•	 T2 instances: These instances are also referred to as 

burstable performance instances. These instances allow 

users to get more CPU performance than the baseline 

through CPU credits. CPU credits are accumulated 

depending on the idle time of an instance. More CPU 

credits can be accumulated by a bigger instance type. 

Environments or applications that are idle most of the 

time but require a burst performance while running a 

certain activity or analysis find this instance type better. 

Currently, you can choose up to 8 vCPUs and 32GB of 

RAM with EBS-Only. See Figure 3-13.

Figure 3-13.  The T2 instances

Chapter 3  Amazon Cloud



83

•	 M3 instances: These instances are SSD-based storage 

Instances for fast I/O performance. You can choose up 

to eight vCPUs and 30GB RAM and 2 x 80GB of SSD 

storage. See Figure 3-14.

Figure 3-14.  M3 instances

Figure 3-15.  M4 instances

•	 M4 instances: These instances provide a great balance 

of CPU, memory, and network resources. Thus, it 

can be one of the instance types chosen by many 

applications. These instances are EBS optimized by 

default. They use 2.3GHz and 2.4GHz of Intel Xeon 

processors. See Figure 3-15.

Chapter 3  Amazon Cloud



84

Compute Optimized

Compute Optimized instances consist of the C5, C4, and C3 family of 

instances. Let’s learn more about these family of instances.

•	 C5 instances: These instances are chosen by users 

who deal with time-series data collection and machine 

learning, and gaming and video encoding, or by users 

who have a demand for high-performance web servers. 

This instance features a 3.0 GHz Intel Xeon processor, 

which can go up to 3.5 GHz using Intel Turbo Boost. 

The highest instance in this family consists of 72 

vCPUs and 144GB of RAM with a dedicated network 

bandwidth. Figure 3-16 shows the type of instances 

available in this family of instances.

Figure 3-16.  C5 instances

Chapter 3  Amazon Cloud



85

•	 C4 instances: These instances are built with Intel 

Xeon E5-2666 processors and are EBS-optimized. 

Applications needing high performance and users with 

gaming needs should choose an instance from this 

instance class. See Figure 3-17.

Figure 3-17.  C4 instances

Chapter 3  Amazon Cloud



86

•	 C3 instances: These Instances are good for high 

performance with local SSD-based storage. 

They include Intel Xeon E5 processors with EBS-

optimization available at an extra cost. See Figure 3-18.

Memory Optimized Instances

Memory Optimized Instances include X1e, X1, R4, and R3 instances. Let’s 

learn what these four instances include.

•	 X1e instances: X1e instances are designed for high 

performance in-memory databases and memory 

intensive applications. These instances include a high 

frequency Intel Xeon E7 processor and the highest 

Figure 3-18.  C3 instances

Chapter 3  Amazon Cloud



87

instance of this class can be configured with up to 

3,904GB of RAM. These instances include SSD and are 

EBS-optimized by default. See Figure 3-19.

•	 X1 instances: Designed for memory intensive 

applications and databases that are designed for  

in-memory. These instances can scale up to 128 vCPUs 

and 1,952GB of RAM. These instances include SSD and 

are EBS-optimized by default. See Figure 3-20.

Figure 3-19.  X1e instances

Figure 3-20.  X1 instances

Chapter 3  Amazon Cloud



88

•	 R4 instances: R4 instances are considered for memory 

intensive applications with less memory and vCPUs 

requirements when compared to the X1e and X1 

instances. These instances include SSD by default 

and reach up to 25GB of network performance. See 

Figure 3-21.

Figure 3-21.  R4 instances

Chapter 3  Amazon Cloud



89

•	 R3 instances: RS instances are chosen for memory 

intensive applications but with less memory and vCPUs 

requirements than R4 instances. These instances 

include SSD storage by default. See Figure 3-22.

Accelerated Computing

These instances are an example of Elastic GPU instances. P3, P2, G3, and 

F1 instances are considered Accelerated Computing instances. Let’s learn 

more about what these instances offer.

•	 P3 instances: These instances better suit applications 

that deal with high-performance computing, speech 

recognition, high-end gaming, and 3D graphics. These 

instances offer up to 128GB of graphics memory and 

488GB of RAM. These instances include eight NVIDIA 

Tesla V100 GPUs and a high frequency Intel Xeon E5 

processor. Figure 3-23 shows the list of P3 instances 

currently available.

Figure 3-22.  R3 instances

Chapter 3  Amazon Cloud



90

•	 P2 instances: P2 instances suit environments 

with massive parallel graphics processing and 

high performance computing dealing with 3D 

graphics rendering, etc. These instances have higher 

configurations available than P3 instances. You can 

choose up to 16 GPUs with 64 vCPUs and 732GB of 

RAM and 192GB of GPU memory. Figure 3-24 shows 

the list of instances available in P2.

Figure 3-23.  P3 instances

Figure 3-24.  P2 instances

Chapter 3  Amazon Cloud



91

•	 G3 instances: These instances suit graphics intensive 

applications better. G3 instances feature an Intel Xeon 

E5 series processor with NVIDIA Tesla M60 GPUs, 

each with 2048 parallel processing cores and 8GB of 

memory. These instances are good for users looking for 

3D visualizations, 3D rendering, and video encoding. 

These instances consist of an elastic network adapter 

with 25GBs of network bandwidth. Figure 3-25 shows 

the list of instances within the G3 instances family.

•	 F1 instances: These instances offer high frequency 

Intel Xeon E5 series processors and SSD storage with 

an enhanced networking support. These instances 

especially offer customizable hardware with FPGAs 

(field programmable gate arrays). Users looking for Big 

Data analytics and genomics searches may choose this 

as their preferred instance type.

Figure 3-25.  G3 instances

Chapter 3  Amazon Cloud



92

Figure 3-26 shows a list of instances available within 

this family.

Storage Optimized Instances

These instances consists of I3: High I/O instances and D2: Dense-storage 

instances. Let’s learn more about these instances:

•	 I3 - high I/O instances: These instances use NVMe 

SSD Storage up to 8 x 1.9 TB, which is good for a very 

high random I/O performance and a much higher 

sequential read throughout. These instances are 

preferred for data warehouse and NoSQL databases 

such as Cassandra, MongoDB, and Redis. Figure 3-27 

shows a list of instances available in this instance class.

Figure 3-26.  F1 instances

Chapter 3  Amazon Cloud



93

Figure 3-27.  I3 instances

Chapter 3  Amazon Cloud



94

•	 D2 - Dense-storage instances: These instances offer 

up to 48TB of local HDD-based storage with a high 

disk throughout and enhanced networking support. 

These instances are better for MPP data warehousing 

environments, such as MapReduce and Hadoop. 

Figure 3-28 shows the list of instances available in this 

family.

�Creating an EC2 Instance

You have seen the type of instances available with EC2, so now you can 

create your first EC2 instance. AWS gives you the option to configure a free-

tier instance that is free for an year with certain terms and conditions.

	 1.	 In the AWS Services Dashboard, search for EC2. 

Once you see EC2 listed as one of your services, click 

on it.

	 2.	 You should see the screen similar to Figure 3-29. 

What you see here is an EC2 Dashboard that helps 

you launch an EC2 instance for the first time and 

manage your EC2 instances that are already created. 

Figure 3-28.  D2 instances

Chapter 3  Amazon Cloud



95

You could see options to request spot instances, 

reserved instances, and dedicated hosts in the same 

EC2 dashboard.

	 3.	 Click on Launch Instance to launch your first EC2 

instance. Once you click on Launch Instance, 

you should see an option to choose your AMI 

(see Figure 3-30). You can proceed to choose the 

Amazon Linux AMI or any option of your choice.

Figure 3-29.  The EC2 Dashboard

Chapter 3  Amazon Cloud



96

	 4.	 Now you should land to the page that asks for the 

instance type. If you click on the dropdown for All 

Instance Types, you’ll see all the instance types 

discussed previously. You may choose the Free tier 

instance or an instance of your choice. Click on 

New: Configure Instance Details. See Figure 3-31.

Figure 3-30.  Choose your AMI from this window

Figure 3-31.  Choose an instance type

Chapter 3  Amazon Cloud



97

	 5.	 You get an option to configure your instance details, 

as shown in Figure 3-32. Leave the defaults if you 

are trying this for the first time. We discuss VPC and 

subnet more in the next chapters. If you click on 

Request Spot Instance, you can see if Spot Instances 

are currently available for the instance type you 

choose.

	 6.	 Click on Next: Add Storage to add more storage. 

Once you click on Add Storage, you can see that  

the default root partition is already available  

(see Figure 3-33). You can click on Add New 

Volume and add more storage and choose the 

volume type that suits your needs. Free tier 

customers are eligible for up to 30GB of EBS 

General Purpose Storage for free. You can choose 

your preference and click Next: Add Tags.

Figure 3-32.  Configure your instance details here

Chapter 3  Amazon Cloud



98

	 7.	 You can now add a tag to the instance you are 

creating and click on Next: Configure Security 

Group to proceed. See Figure 3-34.

Figure 3-33.  Adding storage

Figure 3-34.  Add a tag to your instance

Chapter 3  Amazon Cloud



99

	 8.	 Configuring security groups is important. You see 

a default SSH rule for port 22 already added as an 

option. You can edit it or add more rules for TCP or 

HTTP.

In Figure 3-35, a new rule is added which is the custom 

TCP for port 5432 from 10.0.0.0/32 series of IPs.

You should also see a warning that 0.0.0.0/0 is 

accessible by all IPs. You may modify it per your 

requirements. Once you have selected your rules, 

click on Review and Launch.

Figure 3-35.  Configuring security groups

Chapter 3  Amazon Cloud



100

	 9.	 Now you get a box that asks you to select an existing 

key pair or create a new one. If it is the first time you 

are creating an EC2 instance, you can select Create 

a New Key Pair and type a key pair. Once you type a 

name, click on Download Key Pair. The downloaded 

key pair should be kept safe to ensure that you 

can connect to your EC2 instance once it has been 

created. It should take some time to launch your 

first EC2 instance. The status can be seen on the EC2 

Dashboard.

Figure 3-36.  Creating a key pair

Chapter 3  Amazon Cloud



101

�Connecting to Your First EC2 Instance

Once your EC2 instance has been successfully launched, you need to 

connect to it for the first time using the .pem file you downloaded in the 

last step before launching. Follow these steps:

	 1.	 You can see the public IP or the public DNS that 

you can use to connect to your EC2 instance under 

Description, as seen in Figure 3-37.

	 2.	 Let’s say you are using Linux or a Mac. You can 

safely copy the .pem file to a location and modify  

its permissions so that only the owner has read  

and write access. Once that’s done, SSH to the  

EC2 instance using the default user ec2-user.  

See Figure 3-38.

Figure 3-37.  Look for the public IP or public DNS

Chapter 3  Amazon Cloud



102

This way, you can connect to your EC2 instance.

�Creating Your First PostgreSQL on an EC2 Instance

Now it’s time to create a PostgreSQL instance. To make the Installation 

easier, lets use BigSQL. This should help you install any PostgreSQL binary 

using just a few commands without any hassle of building or compiling 

external tools or extensions needed by PostgreSQL. For more details, 

search for bigsql postgresql in Google or visit https://www.openscg.

com/bigsql/.

	 1.	 Copy and paste the following link in your EC2 

instance to download the BigSQL tarball. See 

Figure 3-39.

python -c "$(curl -fsSL https://s3.amazonaws.

com/pgcentral/install.py)"

Figure 3-38.  Copy the .pem file

Figure 3-39.  Downloading BigSQL

Chapter 3  Amazon Cloud

https://www.openscg.com/bigsql/
https://www.openscg.com/bigsql/


103

	 2.	 Now install PostgreSQL 9.6 or PostgreSQL 10. See 

Figure 3-40.

	 3.	 Now start the installed PostgreSQL software. When 

you start it the first time, you will be asked to select 

your superuser password and re-enter it. This will be 

your Postgres superuser password. See Figure 3-41.

Figure 3-40.  Downloading the tarball

Chapter 3  Amazon Cloud



104

Now you can connect to your first PostgreSQL instance to your first 

EC2 instance. See Figure 3-42.

Figure 3-41.  Enter the superuser password

Figure 3-42.  Your first PostgreSQL instance

Chapter 3  Amazon Cloud



105

�Summary
This chapter introduced AWS and its available zones. As only a few services 

are related to PostgreSQL, we covered only those. You learned about EC2 

and RDS instances and how to create these services with the step-by-

step process using snapshots for each step. We hope this chapter helps 

you get started with AWS services for PostgreSQL. In the next chapter, we 

cover Rackspace cloud and its services. We talk about the services that it 

provides for PostgreSQL and its backups.

Chapter 3  Amazon Cloud



107© Baji Shaik, Avinash Vallarapu 2018 
B. Shaik and A. Vallarapu, Beginning PostgreSQL on the Cloud,  
https://doi.org/10.1007/978-1-4842-3447-1_4

CHAPTER 4

Rackspace Cloud
This chapter covers Rackspace solutions like Managed Hosting and 

Managed Cloud. Under Managed Hosting, we cover creation and 

configuration of dedicated or bare metal server and virtual servers. 

Under Managed Cloud, we cover the support that Rackspace provides for 

customers who are using other cloud venders like Amazon, Google Cloud, 

and Microsoft Azure. We also cover managed data storage of Rackspace.

Rackspace is a managed cloud computing company that provides 

cloud services/solutions that are based on other venders as well as its own. 

This book is specific to PostgreSQL database on the cloud, so we cover the 

solutions that relate to a database.

•	 Managed Hosting

•	 Managed Cloud

�Managed Hosting
Rackspace’s Managed Hosting service provides dedicated as well as 

VMware servers, which means you can create on-metal (on-premises) 

servers or a virtual machine.

To start, you have to sign up at https://cart.rackspace.com/cloud.

Once you are done with the signup, it will take some time (around 24 

hours) for Rackspace to review and activate the account. You can access 

the products only after they are activated. You will get an email to register 

https://cart.rackspace.com/cloud


108

an email ID once the account is approved. After your account is approved, 

you have to log in at https://login.rackspace.com.

Your Rackspace portal dashboard looks like Figure 4-1 after you log in.

You can see your profile settings in the right-top corner, as shown 

in Figure 4-2. These settings include user management, changing the 

password, enabling/disabling multi-factor authentication, etc.

Figure 4-1.  The Rackspace portal dashboard 

Chapter 4  Rackspace Cloud

https://login.rackspace.com/


109

We’ll start by creating a dedicated server. Rackspace will help you 

design a server that’s the right fit for your workload. These dedicated 

servers are on-metal servers, which means the virtual machine is installed 

directly on the hardware rather than within the host operating system. 

To solve existing permanent problems (in terms of compromised speed/

performance due to the hypervisor and other virtualization overhead 

Figure 4-2.  The profile settings

Chapter 4  Rackspace Cloud



110

and complexity) with shared virtual machines, use on-metal servers. 

Rackspace on-metal cloud servers are high-performance, reliable servers 

designed to help you grow and scale your business quickly and easily.

Features of dedicated or virtual servers that Rackspace provides include:

•	 High performance

•	 Options are available for optimized workloads

•	 Hybrid flexibility with dedicated or private cloud 

environments

•	 Provision on-metal bare metal cloud servers for large, 

demanding workloads

•	 Highly reliable, with fully redundant networking and power

Rackspace also provides virtual servers so you do not need to walk 

away from VMware to get the benefits of the cloud. It gives you customized 

dedicated hardware and your choice of management and control levels. 

Rackspace provides VMWare Certified Professional to manage your virtual 

machines, so whichever solution you choose, you will reap the benefits.

Here are some features of the virtual server that Rackspace provides:

•	 As Rackspace has VMWare Certified Professionals, 

it builds and manages the world's largest VMware 

vSphere footprints. It will help you to architect, deploy, 

and troubleshoot your environments irrespective of 

how complex they are.

•	 100% network uptime and hardware uptime guarantees 

with consistent, reliable performance.

•	 Provide full level of control and flexibility.

•	 Get the enhanced security of a customized single-

tenant environment with fully-dedicated network, 

compute, and storage hardware.

Chapter 4  Rackspace Cloud



111

�Creating a Dedicated Server
Here are the steps to create a dedicated server:

	 1.	 On the dashboard (after you log in), you can click on 

the Servers tab and select Cloud Servers, as shown 

in Figure 4-3.

Figure 4-3.  Choose a cloud server

Chapter 4  Rackspace Cloud



112

	 2.	 Click on Create a Server, as shown in Figure 4-4.

	 3.	 To create the server, you need to add the details 

according to your needs.

Server name: Name of the server, just like a tag 

name, to differentiate your servers.

Region: Multiple data centers are available. Choose 

a data center near your application and users to 

introduce geographic redundancy. You will get the 

list of available data centers from the dropdown, as 

shown in Figure 4-5.

Figure 4-4.  Click the Create a Server button

Chapter 4  Rackspace Cloud



113

	 4.	 Select the OnMetal Server, as shown in Figure 4-6.

Note that OnMetal Servers are available only for the 

Northern Virginia (IAD) and Dallas (DFW) regions.

Figure 4-5.  List of available data centers

Figure 4-6.  Choose the OnMetal Server option

Chapter 4  Rackspace Cloud



114

	 5.	 Choose an operating system from a wide range of 

Linux and Windows images. We selected Linux ➤ 

CentOS ➤ OnMetal - CentOS 7 for demo purposes. 

See Figure 4-7.

	 6.	 Select an OS flavor. There are some predefined 

configurations from Rackspace. With dozens of 

hardware options optimized for popular workloads, 

you will find the right match for your needs. 

Currently, there are five workloads, as shown in 

Figure 4-8. The purpose and hardware configuration 

of each flavor, including pricing, is clearly 

mentioned.

Figure 4-7.  Choose an operating system

Chapter 4  Rackspace Cloud



115

We selected General Purpose v2 for demo purposes. 

You can click on the + sign to increase the hardware 

in terms of RAM/CPU/storage.

	 7.	 In the Advanced Options area (see Figure 4-9), 

notice the SSH Key and Networks options.

•	 SSH Key: Add a public key that you want for the 

server.

•	 Networks: You can add networks (IP ranges) from 

where you want to connect. You can see a couple 

of networks already added that are used for certain 

Rackspace products, including monitoring and 

Figure 4-8.  Choose among the five workload flavors

Chapter 4  Rackspace Cloud



116

backups. If you deselect any of the networks, the 

server no longer has access to the Internet and will 

not be able to use monitoring and backups. You 

can look at the limitations at https://support.

rackspace.com/how-to/removing-networks-

from-a-cloud-server.

	 8.	 You can see your charges per day for the selected 

type of server before you create it. This pricing is the 

raw infrastructure plus the managed infrastructure 

rate, with a minimum service charge of $50/month 

after the first 30 days across all cloud servers (virtual 

and bare metal).

Figure 4-9.  The Advanced Options area

Chapter 4  Rackspace Cloud

https://support.rackspace.com/how-­to/removing-networks-from-a-cloud-server
https://support.rackspace.com/how-­to/removing-networks-from-a-cloud-server
https://support.rackspace.com/how-­to/removing-networks-from-a-cloud-server


117

	 9.	 Click on Create Server once you done with all 

options to create the final product, as shown in 

Figure 4-10.

�Creating a Virtual Server
Creating a virtual server is basically the same as creating a dedicated 

server. Steps 1-3 are essentially the same as when you’re creating a 

dedicated server, except for a few minor changes. Follow Steps 1-3 from 

the previous section and then use these steps to create a virtual server:

	 1.	 Create Virtual Server instead of OnMetal Server.

	 2.	 Choose an operating system as before.

Figure 4-10.  Create the server when you’re ready

Chapter 4  Rackspace Cloud



118

	 3.	 Virtual servers have different flavors than OnMetal 

Servers. The purposes and hardware configurations 

are mentioned in the Description field shown in 

Figure 4-11.

We selected the General Purpose flavor for demo 

purposes. You can use the Comparison Chart option 

shown in Figure 4-11. If you click on that option, you 

can see a clear comparison of all available flavors, as 

shown in Figure 4-12.

Figure 4-11.  Virtual server flavors

Chapter 4  Rackspace Cloud



119

	 4.	 Fill in the Advanced Options area the same as the 

previous section for the dedicated server.

	 5.	 You will be prompted with some recommendations 

for your server, as shown in Figure 4-13, before you 

create it.

Figure 4-12.  Comparison of all available flavors

Figure 4-13.  Server setup recommendations

Chapter 4  Rackspace Cloud



120

•	 You can enable/disable monitoring for your server 

for free.

•	 You can select to apply operating system patches 

for free.

•	 You can enable/disable backup of the server. Note 

that enabling the backup charges you.

	 6.	 You can see the charges for the selected virtual 

machine server in the Itemized Charges section.

	 7.	 Click on Create Server. It will take few minutes to 

create the virtual machine. It will then pop up the 

root password. Take note of the password, as you 

will not be able to view it again (see Figure 4-14).

Figure 4-14.  Be sure to make note of the password before exiting

Chapter 4  Rackspace Cloud



121

�Connecting to the Virtual Machine and Installing 
PostgreSQL
The following steps explain how to connect to the virtual server you 

created and install PostgreSQL on it:

	 1.	 Once you have created your virtual machine choose 

Servers ➤ Cloud Servers from the dashboard. You 

can then see the virtual server you created, as shown 

in Figure 4-15.

	 2.	 If you click on the virtual server, you can see the 

details of your server and commands (as highlighted 

in Figure 4-16) to connect to the virtual server. If you 

want to reboot/resize or delete the server, go to the 

Actions tab, as highlighted in Figure 4-16.

Figure 4-15.  The virtual server you created

Chapter 4  Rackspace Cloud



122

	 3.	 Once you have the public IP of the virtual server, you 

can connect the server, as shown in Figure 4-17.

As we already added the public key when we created 

the virtual server, it does not need a password to 

connect.

Figure 4-16.  The details of the virtual server

Figure 4-17.  Connecting the new server

Chapter 4  Rackspace Cloud



123

	 4.	 Go to https://www.openscg.com/bigsql/.

	 5.	 Click on the Downloads section.

	 6.	 Click on the Usage Instructions link, as shown in 

Figure 4-18.

	 7.	 As per the usage instructions, for Linux machines, 

you can execute this command to install BigSQL 

package.

python -c "$(curl -fsSL  

https://s3.amazonaws.com/pgcentral/install.py)"

BigSQL uses a command-line utility called pgc (pretty good command-

line). For example, to list the available PostgreSQL binaries, extensions, 

and tools for PostgreSQL, users can run the following command.

pgc list

To install PostgreSQL 9.6, just fire the following command.

pgc install pg96

Figure 4-18.  Click on usage instructions

Chapter 4  Rackspace Cloud

https://www.openscg.com/bigsql/


124

To install an extension called pg_repack, use the following command.

pgc install pg_repack

Users don’t have to worry about several dependencies such as a gcc 

compiler or any other packages that need to be installed while installing 

Postgres or its extensions. BigSQL takes care of all the dependencies and 

makes it very easy for users to deal with PostgreSQL.

One of the most advanced features of BigSQL is its pgDevOps. 

pgDevOps is a UI that allows users to install and manage PostgreSQL 

instances in a few clicks. Users can upgrade PostgreSQL minor version or 

install or update an extension in a few clicks. PgDevOps also helps users 

analyze queries and database metrics like connections, checkpointing, 

temp file generation, etc., through pgBadger reports on its UI, as requested.

Users can also tune their complex procedural language using an 

excellent tool embedded in its UI, called plProfiler console. Using 

plProfiler console, users can look at the complete call stack of a complex 

PostgreSQL function and concentrate on the code that consumed more 

time of execution in its entire call stack.

Thus, BigSQL helps users install and manage PostgreSQL and its 

extensions in a few clicks. BigSQL, combined with any cloud service, can 

easily build a very economic PostgreSQL database on the cloud.

�Cloud Block Storage
Cloud block storage allows us to create persistent block-level storage 

volumes that can be used with Rackspace cloud servers. So it allows us to 

scale storage independently of whatever servers are already created.

Chapter 4  Rackspace Cloud



125

More information on this storage is available at https://developer.

rackspace.com/docs/user-guides/infrastructure/cloud-config/

storage/cloud-block-storage-product-concepts/#cloud-block-

storage-product-concepts.

Let’s look at creating a block storage volume and attaching it to the 

server that we already created.

	 1.	 From the dashboard, choose Storage ➤ Block 

Storage Volumes.

	 2.	 You will see a list of created volumes if there are any; 

otherwise, you can create a volume by clicking on 

the Create Volume button, as shown in Figure 4-19.

Figure 4-19.  Creating a block storage volume

Chapter 4  Rackspace Cloud

https://developer.rackspace.com/docs/user-guides/infrastructure/cloud-config/storage/cloud-block-storage-product-concepts/#cloud-block-storage-product-concepts
https://developer.rackspace.com/docs/user-guides/infrastructure/cloud-config/storage/cloud-block-storage-product-concepts/#cloud-block-storage-product-concepts
https://developer.rackspace.com/docs/user-guides/infrastructure/cloud-config/storage/cloud-block-storage-product-concepts/#cloud-block-storage-product-concepts
https://developer.rackspace.com/docs/user-guides/infrastructure/cloud-config/storage/cloud-block-storage-product-concepts/#cloud-block-storage-product-concepts


126

	 3.	 You will need to fill in the details to create the 

volume, as shown in Figure 4-20.

•	 Name: Refers to name of the volume.

•	 Region: Select a region. Note that you can attach 

volumes to servers that are in same region. So 

select the region that your servers are in.

Figure 4-20.  Fill in the details about the block storage volume

Chapter 4  Rackspace Cloud



127

•	 Type: Type of volume. It can be a regular hard disk 

storage (SATA) or high speed solid state drives 

(SSD).

•	 Size: The size of the volume. Minimum 75GB to 

maximum 1TB.

•	 Disaffinity: This can be

•	 Best-Effort

	 Avoid placing the new volume on the same 

node or rack as my other volumes, but allow it if 

unavoidable.

•	 Node

Do not place the new volume on the same node 

as the volume(s) I select. If unavoidable, prevent 

volume creation.

•	 Rack

Do not place the new volume on the same rack 

as the volume(s) I select. If unavoidable, prevent 

volume creation.

Chapter 4  Rackspace Cloud



128

	 4.	 Click on Create Volume.

	 5.	 Once the volume is created, you can see the details 

of volume, as shown in Figure 4-21, with actions like 

Rename/Attach/Create/Clone/Delete Volume.

Figure 4-21.  Volume details and actions

Chapter 4  Rackspace Cloud



129

	 6.	 Click on the Attach Volume option from the Actions 

dropdown and attach the volume to one of the 

servers (see Figure 4-22). It will take few minutes to 

attach the volume.

Note that book-demo is the virtual server that was 

created for demo purposes here.

Figure 4-22.  Attaching a volume

Chapter 4  Rackspace Cloud



130

	 7.	 Once you have attached the new volume, it is visible 

to your virtual server. You can check using the 

following command after connecting to your virtual 

server:

C1MQV0FZDTY3:bin bajishaik$ ssh 

root@23.253.109.31

ssh: connect to host 23.253.109.31 port 22: 

Connection refused

C1MQV0FZDTY3:bin bajishaik$ ssh 

root@23.253.109.31

Last login: Wed Nov  1 22:01:44 2017 from 

171.49.231.43

[root@book-demo ~]#ls /dev/xv*

/dev/xvda  /dev/xvda1  /dev/xvdb

	 8.	 The next step is to create a Linux filesystem on 

the volume so that the operating system can use 

it to store files and data. The easiest way to create 

a filesystem on a volume is to use the mkfs.ext4 

utility, which takes as arguments the label and the 

volume device:

[root@book-demo ~]# /sbin/mkfs.ext4 -L /

new_volume /dev/xvdb

mke2fs 1.42.9 (28-Dec-2013)

Filesystem label=/new_volume

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

Stride=0 blocks, Stripe width=0 blocks

4915200 inodes, 19660800 blocks

Chapter 4  Rackspace Cloud



131

983040 blocks (5.00%) reserved for the super 

user

First data block=0

Maximum filesystem blocks=2168455168

600 block groups

32768 blocks per group, 32768 fragments per 

group

8192 inodes per group

Superblock backups stored on blocks:

        �32768, 98304, 163840, 229376, 

294912, 819200, 884736, 1605632, 

2654208,

        �4096000, 7962624, 11239424

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem 

accounting information: done

	 9.	 Now mount the filesystem so that you can see and 

use the volume in the virtual server.

[root@book-demo ~]# mkdir /new_volume

[root@book-demo ~]# mount /dev/xvdb /new_

volume/

[root@book-demo ~]# mount | grep new_volume

/dev/xvdb on /new_volume type ext4 (rw,relat

ime,seclabel,data=ordered)

[root@book-demo ~]#

[root@book-demo ~]# df -h

Chapter 4  Rackspace Cloud



132

Filesystem      Size  Used Avail Use% Mounted on

/dev/xvda1       20G  1.3G   18G   7% /

devtmpfs        484M     0  484M   0% /dev

tmpfs           494M     0  494M   0% /dev/shm

tmpfs           494M   13M  481M   3% /run

tmpfs           494M     0  494M   0% /sys/fs/cgroup

tmpfs            99M     0   99M   0% /run/user/0

/dev/xvdb        74G   53M   70G   1% /new_volume

[root@book-demo ~]#

[root@book-demo ~]# cd /new_volume/

[root@book-demo new_volume]# ls -ltrh

total 16K

drwx------. 2 root root 16K Nov  1 22:10 

lost+found

[root@book-demo new_volume]# touch test

[root@book-demo new_volume]# ls -ltrh

total 16K

drwx------. 2 root root 16K Nov  1 22:10 

lost+found

-rw-r--r--. 1 root root   0 Nov  1 22:15 

test

[root@book-demo new_volume]#

�Summary
This chapter talked about Rackspace solutions like Managed Hosts and 

Managed Cloud. We covered creating/configuring bare metal and virtual 

servers, which are part of the Managed Host solution, and installation of 

PostgreSQL on top of the servers. We also talked about the storage volumes 

that Rackspace provides. In the next chapter, we talk about Google cloud in 

terms of what services it provides and how to create/configure those services.

Chapter 4  Rackspace Cloud



133© Baji Shaik, Avinash Vallarapu 2018 
B. Shaik and A. Vallarapu, Beginning PostgreSQL on the Cloud,  
https://doi.org/10.1007/978-1-4842-3447-1_5

CHAPTER 5

Google Cloud
This chapter talks about using the Google Cloud Console to create projects 

and instances in order to build/install PostgreSQL and your applications. 

The chapter also covers some of the Google Could Platforms (GCP), like 

Compute Engine, Could Storage, and Cloud SQL, in detail. You’ll learn 

how to install PostgreSQL on machines created using Compute Engine and 

on the PostgreSQL service, which is part of Cloud SQL.

�Getting Started with GCP
As with the other cloud vendors, Google Cloud has a console through 

which you can see all the available services and create/modify/delete 

services that you need.

The first step to creating an instance or a service using GCP is to sign 

in to its console from https://console.cloud.google.com/. This console 

requires you to sign in using an existing email account with no hassles. It 

took me 10 seconds to access the Google Cloud Console.

Before going further with GCP, we cover why you’ll need a project in GCP.

�What Is a GCP Project?
This is something interesting, as it is not something you see with most 

of the cloud vendors. Consider an organization that has 10 applications. 

It uses 300 servers for application servers/web servers and another 10 

https://console.cloud.google.com/


134

servers for databases. It may look confusing to view the console with such 

a huge list of servers. If you cannot segregate the servers by application on 

the console, managing these accounts could be difficult.

I still remember working with a console that had several hundred 

servers. I started to search the entire list to understand the database 

servers of an application that was getting retired. Decommissioning those 

database servers took a few days, as I had to confirm several times before 

deleting those instances.

GCP forces you to create a project before creating an instance. A simple  

solution to the previous problem is to create one project for every application 

and create your instances within those projects. This makes life simple.  

GCP allows you to create multiple projects using a single account.

Considering the example without such segregation on the console, if I 

have 10 applications running in my organization, I create 10 projects and 

create all the 300 application servers and 10 database servers within their 

respective projects. In this case, I don't have to scan through the entire list 

of instances if I have to retire an application. I can just delete the instances 

in that project.

�Project Quota
Have you ever thought about the project quota, which is the number of 

projects that are allowed to be created using a single account? Yes, there 

is a limit and it’s 12 projects. However, Google allows you to request more 

projects considering a variety of factors, including resources that most 

legitimate customers use, the customer’s previous usage and history with 

Google Cloud, and previous abuse penalties. When you try to create your 

13th project, you are automatically prompted to fill out a form.

You need to pay to increase your quota, but it is then available as a 

credit in a later billing cycle.

Chapter 5  Google Cloud



135

�Creating a Project Using the Console
Once you log in to your Google Cloud Console, you have two options to 

create your first project. As shown in Figure 5-1, you can click on Select a 

Project from the top-left corner or click on Create an Empty Project from 

the bottom-left corner of your console.

Once you click on Create an Empty Project, you see a rectangular box 

that allows you to choose a project name. Your project name can only 

include letters, numbers, quotes, hyphens, spaces, and exclamation points. 

As shown in Figure 5-2, you could see a message that says that you have 11 

projects remaining in your quota. Every time you create a project, you’ll 

see the number of projects you have left.

Figure 5-1.  Getting started window

Chapter 5  Google Cloud



136

One interesting observation is the Project ID. We will discuss its 

significance later in the chapter. You may want to edit the Project ID and 

choose your own for your project. Otherwise, GCP automatically chooses a 

Project ID for you.

Click on Create to create your first project on GCP. You should be 

automatically redirected to the dashboard. You can also access your 

dashboard with this link: https://console.cloud.google.com/home.

�Deleting a Project
It is easy to delete an entire project that consists of several instances. 

However, the registered user will be notified. A project delete is a 

scheduled event. It will not take place immediately. The registered user 

can click the link sent to his email within a month to retrieve his project. 

The deletion email is shown in Figure 5-3.

Figure 5-2.  Creating a project

Chapter 5  Google Cloud

https://console.cloud.google.com/home


137

�Types of Google Cloud Platforms
There are several categories in GCP that you might be interested in. However, 

as per the subject of this book, we are going to cover only these platforms:

•	 Compute Engine

•	 Cloud Storage

•	 Cloud SQL

�Compute Engine
Compute Engine provides virtual machines running on Google data 

centers. As with the other cloud venders, it provides a powerful network 

that makes you connect your machines without any interruptions and 

comes with a persistence disk that persists during the crashes and delivers 

a consistent performance.

Figure 5-3.  Email stating the project is being deleted

Chapter 5  Google Cloud



138

�Key Features of Compute Engine

You can create multiple instances (which typically means multiple VMs). 

Some of the key features that you get are described here:

•	 Global load balancing: You can load balance your 

incoming connections and requests across multiple 

instances that are created across regions. It gives 

maximum performance, throughput, and availability.

•	 Linux and Windows support: You can select OSes 

of Linux flavors like Debian, CentOS, SUSE, Ubuntu, 

and Red Hat; Unix flavors like FreeBSD; and Windows 

flavors like Windows 2008 R2, 2012 R2, and 2016.

•	 Compliance and security: Data written to persistent 

disk is encrypted on the fly and stored in encrypted 

form. Google Compute Engine has completed 

ISO 27001, SSAE-16, SOC 1, SOC 2, and SOC 3 

certifications, demonstrating their commitment to 

information security.

•	 Transparent maintenance: You do not need to worry 

about maintenance of your infrastructure selected with 

Compute Engine. It provides innovative data centers 

that are secure, migrate data without downtime, and 

enable proactive infrastructure maintenance such as 

patching OS. This transparent maintenance improves 

reliability and security.

•	 Automatic discounts: If you have long-running 

workloads, Google automatically gives you discounted 

prices with no sign-up fees or up-front commitment.

Chapter 5  Google Cloud



139

•	 Customer machine types: You can select your VMs 

and shape them based on how many vCPUs and GB of 

RAM you actually need, with increments of two vCPUs 

and 0.25GB at a time. By customizing your machines, 

you can save money and pay only for what you use.

•	 Per-minute billing: This is an excellent feature that 

GCP has. Google bills in minute-level increments. After 

a 10-minute minimum charge, you pay only for the 

actual compute time that you use.

More information about Google Compute Engine is available at 

https://cloud.google.com/compute/docs/.

�Create an Instance

When you log in to the Google Cloud Console, it typically looks Figure 5-4. 

Note the Cloud Launcher, which typically contains all the solutions available 

in Google Cloud.

Figure 5-4.  Dashboard

Chapter 5  Google Cloud

https://cloud.google.com/compute/docs/


140

Once you click on Cloud Launcher, it will direct you to a window where 

you can see the GCP (Google Cloud Platform) on the left side. Just clicking 

on that shows all available solutions for GCP. The typical steps to create a 

VM are as follows:

	 1.	 Log in to the Google Cloud Console using your 

Gmail account.

	 2.	 Create a project in which you want to initialize your 

services. Read the “How to Create a Project Using 

the Console” section in this chapter to create a 

project.

	 3.	 Click on Cloud Launcher on the left side panel.

	 4.	 Click on Google Cloud Platform on the left side 

panel.

	 5.	 Click on Compute Engine in the Compute section.

	 6.	 You will be directed to a page where you see a 

couple of options—Go to Compute Engine and Take 

Quickstart (see Figure 5-5).

Figure 5-5.  Create a Compute Engine

Chapter 5  Google Cloud



141

	 7.	 You can click on Take Quickstart to get quick 

10-minute video on this process.

	 8.	 Once you’re done with the quickstart, come back 

and select the Go To Compute Engine option. You 

can instead directly open the https://console.

cloud.google.com/compute/instances link, which 

takes you to the Create Instance page, as shown in 

Figure 5-6.

	 9.	 You need to fill in the details of the instance before 

you create it (see Figure 5-7).

	 a.	 Name: Must start with a lowercase letter 

followed by up to 63 lowercase letters, numbers, 

or hyphens, and cannot end with a hyphen.

	 b.	 Zone: Determines what computing resources 

are available and where your data is stored and 

used.

Figure 5-6.  Create Virtual Machine

Chapter 5  Google Cloud

https://console.cloud.google.com/compute/instances
https://console.cloud.google.com/compute/instances


142

	 c.	 Machine Type: The type of machine that you 

want to create. You can choose CPU Cores and 

Memory for your instance. It can be upgraded 

later if you choose a machine with low 

configuration.

	 d.	 Boot: Each instance requires a disk to boot 

from. Select an image or snapshot to create a 

new boot disk or attach an existing disk to the 

instance. Be sure to choose the operating system 

that you want, as shown in Figure 5-8.

Figure 5-7.  Create the Virtual Machine options

Chapter 5  Google Cloud



143

	 e.	 Identity and API access: Applications running 

on the VM use the service account to call 

Google Cloud APIs. Select the service account 

you want to use and the level of API access you 

want to allow. Access Scopes is selecting the 

type and level of API access to grant the VM. The 

defaults are read-only access to storage and 

service management, write access to stackdriver 

logging and monitoring, and read/write access 

to service control.

Figure 5-8.  Selecting the OS

Chapter 5  Google Cloud



144

	 f.	 You can see more options on managing disks, 

networking, and SSH keys by clicking on the 

Management, Disks, Networking, SSH Keys 

option, as shown in Figure 5-9.

	 10.	 Click on Create to create the instance.

	 11.	 Once the instance is created, the page looks  

like Figure 5-10. Clicking on the new instance 

(as highlighted) gives you the details about your 

instance, as shown in Figure 5-11.

Figure 5-9.  Creating the VM security options

Chapter 5  Google Cloud



145

Figure 5-10.  Virtual machine

Figure 5-11.  VM details

Chapter 5  Google Cloud



146

	 12.	 Connecting to this instance is easy, as Google Cloud 

provides its own shell to connect. The available 

connection options are shown in Figure 5-12.

	 13.	 The following images show the process after 

connecting to instances using the SSH options.

Figure 5-13 shows the browser window on the customer port option 

that used port 22 to connect.

Figure 5-12.  VM shell to connect

Figure 5-13.  VM open in browser

Chapter 5  Google Cloud



147

Figure 5-14 shows the result of the view gcloud command option. You 

should click on Run In Cloud Shell.

Figure 5-14.  VM gcloud result

Chapter 5  Google Cloud



148

�How to Connect from Your Machine

If you want to connect through your machine, edit the instance by clicking 

on Edit and then add your SSH keys, as shown in Figure 5-15.

Once you have added your keys, you can directly SSH to your virtual 

machine using this command:

ssh username@ipaddress

Note that ipaddress is the same one you can see in the VM details.

�Install PostgreSQL

Once you have created your instance, you will have a VM/machine 

ready for PostgreSQL installation. There are several ways to choose your 

PostgreSQL installation. You can use RPMs or use source installation.

One of the most easiest and most reliable ways to perform a 

PostgreSQL installation is through BigSQL, which is an Open Source 

DevOps platform designed for PostgreSQL. BigSQL binaries are portable 

across any Linux and Windows operating system. A user may want to 

install additional extensions and tools to build a complete PostgreSQL 

server for production. BigSQL combines a carefully selected list of 

extensions deployed in several PostgreSQL production environments after 

Figure 5-15.  SSH to Virtual Machine

Chapter 5  Google Cloud



149

rigorous testing. This makes it easy for users to choose the extension they 

want to install using BigSQL. Then they can use very easy command-line 

features to install BigSQL.

To install PostgreSQL using BigSQL, follow these steps:

	 1.	 Go to https://www.openscg.com/bigsql/.

	 2.	 Click on the Downloads section.

	 3.	 Click on Usage Instructions, as shown in Figure 5-16.

	 4.	 As per the usage instructions, for Linux machines, 

you can execute the following command to install 

the BigSQL package.

python -c "$(curl -fsSL  

https://s3.amazonaws.com/pgcentral/install.py)"

BigSQL uses a command-line utility called pgc 

(pretty good command-line).

Figure 5-16.  BigSQL usage instructions

Chapter 5  Google Cloud

https://www.openscg.com/bigsql/


150

Here are some example commands.

To list the available PostgreSQL binaries and extensions for 

PostgreSQL, run the following command.

pgc list

To install PostgreSQL 9.6, run the following command.

pgc install pg96

To install an extension called pg_repack, run this command.

pgc install pg_repack

You need not worry about dependencies, such as gcc compiler or any 

other packages that need to be installed while installing postgres or its 

extensions. BigSQL takes care of all the dependencies and makes it very 

easy for you to deal with PostgreSQL.

One of the most advanced features of BigSQL is pgDevOps. pgDevOps 

is a UI that allows users to install and manage PostgreSQL instances in 

a few clicks. Users can upgrade PostgreSQL minor version or install and 

update an extension in a few clicks. BigSQL also helps users generate 

the queries/connections metrics through PgBadger reports on its UI, as 

requested. Users can also tune their complex procedural language using 

an excellent tool embedded in its UI, called plProfiler Console. Using 

plProfiler Console, users can look at the complete call stack of a complex 

PostgreSQL function and concentrate on the code that consumed more 

time of the execution in its entire call stack.

Thus, BigSQL helps users install and manage PostgreSQL and its 

extensions in a few clicks. BigSQL, combined with a cloud service, can 

easily build a very economic PostgreSQL database on the cloud.

Chapter 5  Google Cloud



151

�Google Cloud Storage
Google Cloud Storage (GCS) offers object storage that’s simple, secure, 

durable, and highly available. It can be used by developers and IT 

organizations. GCS’s simple capacity pricing is highly effective across all 

storage classes with no minimum fee. It’s a pay for what you use model.

�Storage Classes

GCS has four storage classes:

•	 Multi-regional storage

•	 Regional storage

•	 Nearline storage

•	 Coldline storage

Multi-regional storage is a redundant storage model across 

geographical locations and it has the highest level of availability and 

performance. It is ideal for low-latency, high QPS content serving to users 

distributed across geographic regions.

Regional storage is only for a single region and provides the same level 

of availability and performance as multi-regional. It is ideal for compute, 

analytics, and Machine Learning (ML) workloads in a particular region.

The other two—the Nearline and Coldline storage classes—are fast 

and low-cost. Both have highly durable storage with consistent APIs. Use 

cases for these two storage options are:

•	 Nearline is designed for data that you do not want to 

access frequently. So, it is useful infrequently accessed 

data.

•	 Coldline is designed for cold data, such as archive and 

disaster recovery.

Chapter 5  Google Cloud



152

In addition, with lifecycle management, Google Cloud storage 

allows you to reduce your costs even further by moving your objects to 

Nearline and Coldline, and through scheduled deletions. Google Cloud 

Storage stores and replicates your data, thereby allowing a high level of 

persistence, and all the data is encrypted both in-flight and at rest.

�Key Features of GCS

Google Cloud Storage is almost infinitely scalable. It can support 

applications irrespective of whether they are small or large or in a multi-

exabyte system.

All four storage classes that we talked about offer very high availability. 

Multi-regional storage offers 99.95% monthly availability in its Service 

Level Agreement. Regional storage offers 99.9% availability, and the 

Nearline and Coldline storage classes offer 99%.

Like very few venders, Google Cloud Storage is designed for 

99.999999999% durability. This is because it stores multiple copies 

redundantly across multiple disks, racks, power and network failure 

domains, with automatic checksums to ensure data integrity. As we 

already discussed, with the Multi-Regional storage class, data is also  

geo-redundant across multiple regions and locations

GCS has very consistent data and guarantees that when a write 

succeeds, the latest copy of the object will be returned to any GET, globally 

(applies to PUTs, new or overwritten objects, and DELETEs).

More information about Google Cloud Storage is available at https://

cloud.google.com/storage/docs/.

We cover this storage option more in Chapter 8, “Backups on the 

Cloud.”

Chapter 5  Google Cloud

https://cloud.google.com/storage/docs/
https://cloud.google.com/storage/docs/


153

�Cloud SQL
Google Cloud SQL is a fully managed database service from GCP. Like 

other cloud vendors for RDBMS, Google Cloud SQL makes it easy to set up, 

manage, and maintain relation databases. It makes the administrator’s job 

easy.

There are two relational databases available with Cloud SQL.

•	 Cloud for MySQL

•	 Cloud for PostgreSQL (beta)

Let’s talk about the PostgreSQL service.

�Cloud for PostgreSQL

This service was introduced recently and is still in its beta version. 

However, still you can choose this for your POCs and test your 

applications. As this is still in beta, some important features when 

compared to other cloud vendors for PostgreSQL are not available. They 

will likely be introduced in later releases. Due to storage security and 

durability, you can still consider your applications deployed on Cloud 

SQL. This product might change in backward-incompatible ways and is 

not subject to any SLA or deprecation policy. Let’s look at key features of 

this service.

Advantages:

•	 The latest version of PostgreSQL 9.6 is available in the 

cloud, which is fully managed.

•	 You can choose machine types according to your 

application demand. Custom machine types with up to 

208GB of RAM and 32 CPUs are available.

Chapter 5  Google Cloud



154

•	 You can create and manage instances in the Google 

Cloud Platform Console just like with other cloud 

vendors.

•	 Instances are available in US, EU, and Asia.

•	 You do not need worry about storage in the case of 

large applications. Up to 10TB of storage is available, 

with the ability to automatically increase storage as 

needed.

•	 There is more security for your data as customer data 

is encrypted on Google’s internal networks and in 

database tables, temporary files, and backups.

•	 Has support for secure external connections using 

Cloud SQL Proxy or SSL protocol.

•	 Support for PostgreSQL client-server protocol and 

standard PostgreSQL connectors.

•	 You can import and export databases using SQL dump 

files.

•	 Backup are automated and you can have on-demand 

backups too.

•	 Monitoring and logging are available.

Because Cloud SQL for PostgreSQL is in beta, some PostgreSQL 

features are not yet available:

•	 Replication

•	 High-availability configuration

•	 Point-in-time recovery (PITR)

•	 Import/export in CSV format

Chapter 5  Google Cloud



155

Cloud SQL for PostgreSQL supports many types of PostgreSQL 

extensions. A few of them are:

•	 PostGIS

•	 Data type extensions like btree_gin, btree_gist, cube, 

hstore, etc.

•	 Language extensions like plpgsql

•	 Miscellaneous extensions like pg_buffercache, 

pgcrypto, tablefunc, etc.

For a complete list, visit this link: https://cloud.google.com/sql/

docs/postgres/extensions.

Cloud SQL for PostgreSQL supports the PL/pgSQL SQL procedural 

language.

Support for languages, in terms of front-end or application languages 

for an application that is going to connect PostgreSQL, is robust. Without 

a cloud (or a on-premises database), you can use applications written 

in several languages. Just like on-premise, Cloud SQL provides a flexible 

environment for applications that are written in Java, Python, PHP, Node.js,  

Go, and Ruby. You can also use Cloud SQL for PostgreSQL with external 

applications using the standard PostgreSQL client-server protocol.

You can connect to a Google Cloud SQL instance for PostgreSQL from 

the following:

•	 A psql client: https://cloud.google.com/sql/docs/

postgres/connect-admin-ip

•	 Third-party tools that use the standard PostgreSQL 

client-server protocol

•	 External applications: https://cloud.google.com/

sql/docs/postgres/connect-external-app

Chapter 5  Google Cloud

https://cloud.google.com/sql/docs/postgres/extensions
https://cloud.google.com/sql/docs/postgres/extensions
https://cloud.google.com/sql/docs/postgres/connect-admin-ip
https://cloud.google.com/sql/docs/postgres/connect-admin-ip
https://cloud.google.com/sql/docs/postgres/connect-external-app
https://cloud.google.com/sql/docs/postgres/connect-external-app


156

•	 Google App Engine applications: https://cloud.

google.com/sql/docs/postgres/connect-app-engine

•	 Applications running on Google Compute Engine: 

https://cloud.google.com/sql/docs/postgres/

connect-compute-engine

•	 Applications running on Google Container Engine: 

https://cloud.google.com/sql/docs/postgres/

connect-container-engine

Connecting from Google Cloud functions or by using Private Google 

access is not supported.

So, what are the differences between Cloud SQL and the standard 

PostgreSQL functionality? The PostgreSQL functionality provided by 

a Cloud SQL instance is generally the same as that provided by a local 

PostgreSQL instance. However, there are a few differences between a 

standard PostgreSQL instance and a Cloud SQL for PostgreSQL instance.

•	 You cannot have SUPERUSER privileges for your users. 

However, an exception to this rule is made for the 

CREATE EXTENSION statement, but only for supported 

extensions.

•	 It has custom background workers.

•	 The psql client in the Cloud Shell does not support 

operations that require a reconnection, such as 

connecting to a different database using the \c 

command.

•	 Some PostgreSQL options and parameters are not 

enabled for editing as Cloud SQL flags. Google advises: 

“If you need to update a flag that is not enabled for 

editing, start a thread on the Cloud SQL Discussion 

group.”

Chapter 5  Google Cloud

https://cloud.google.com/sql/docs/postgres/connect-app-engine
https://cloud.google.com/sql/docs/postgres/connect-app-engine
https://cloud.google.com/sql/docs/postgres/connect-compute-engine
https://cloud.google.com/sql/docs/postgres/connect-compute-engine
https://cloud.google.com/sql/docs/postgres/connect-container-engine
https://cloud.google.com/sql/docs/postgres/connect-container-engine


157

�Create a PostgreSQL Instance Using Cloud SQL

When you log in to the Google Cloud Console, it typically looks like 

Figure 5-17. You can see Cloud Launcher, which typically contains all the 

solutions available in Google Cloud.

Once you click on Cloud Launcher, it will direct you to a window where 

you can see the GCP (Google Cloud Platform) on the left side. Clicking 

on that shows all available solutions for GCP. The typical steps to create a 

PostgreSQL service instance are as follows:

	 1.	 Log in to the Google Cloud Console using your 

Gmail account.

	 2.	 Create a project in which you want to initialize your 

services. Look at the “How to Create a Project Using 

the Console” section earlier in this chapter to create 

a project.

	 3.	 Click on Cloud Launcher on the left side panel.

Figure 5-17.  The Google Cloud Dashboard

Chapter 5  Google Cloud



158

	 4.	 Click on Google Cloud Platform on the left side 

panel.

	 5.	 Click on Cloud SQL in the Storage section.

	 6.	 You will be directed to a page where you will see 

a couple of options—Go to Cloud SQL and Take 

Quickstart. See Figure 5-18.

	 7.	 If you want to look at the documentations/pricing/

APIs related information, click on Take Quickstart. 

Click on PostgreSQL, as highlighted in Figure 5-19.

Figure 5-18.  Create PostgreSQL instance

Chapter 5  Google Cloud



159

	 8.	 Once you’re done with the quickstart, you select 

the Go to Cloud SQL option. You can also directly 

open the https://console.cloud.google.com/

sql/instances link, which takes you to the create 

instance page shown in Figure 5-20.

Figure 5-20.  Create PostgreSQL instance

Figure 5-19.  Quickstart for Cloud SQL for PostgreSQL

Chapter 5  Google Cloud

https://console.cloud.google.com/sql/instances
https://console.cloud.google.com/sql/instances


160

	 9.	 Select PostgreSQL Beta on the left side panel and 

click on Next. See Figure 5-21.

	 10.	 The creation instance window in shown in Figure 5-22. 

Set the following options:

•	 Instance ID: The name of your instance, which you 

can use as a tag in the future.

•	 Default user password: The password of your 

postgres user. You can create your own password or 

you can generate a random password by clicking on 

Generate.

•	 Location: Shows the region and zone where you 

want your instance. If you choose a region near 

your location, you will get better performance.

Figure 5-21.  Choose PostgreSQL instance

Chapter 5  Google Cloud



161

Figure 5-22.  Create PostgreSQL instance options

You can click on Show Configuration Options to expand it and choose 

the options (see Figure 5-23):

•	 Machine type: Determines the virtualized hardware 

resources available to your instance, such as memory, 

virtual cores, and persistent disk limits. This choice 

affects billing. Constraints on dedicated core machine 

types are that memory must be at least 3.75GB, 

memory must be a multiple of 0.25GB, vCPU count 

must be one or even, and memory per vCPU must be 

between 0.9GB and 6.5GB per vCPU, inclusive. Some 

zones do not support machine types with 32 vCPUs.

Chapter 5  Google Cloud



162

•	 Network throughput (MB/s): The maximum amount 

of data that can be delivered over a connection to 

your instance. This includes reads/writes of your data 

(disk throughput) as well as the content of queries, 

calculations, and other data not stored on your 

database.

•	 Storage type: A permanent option. Select SSD or HDD.

•	 Storage capacity: Cannot be decreased later. So choose 

capacity wisely.

•	 If you want auto-scalable machines in terms of storage, 

select the Enable Automatic Storage Increases option. 

Whenever it reaches the threshold, it increases the 

storage.

Chapter 5  Google Cloud



163

Figure 5-23.  Configure the machine type and storage

Chapter 5  Google Cloud



164

•	 Enable auto backups: Enables auto backups of your 

databases. You can schedule a time for your backups. 

As they affect performance, it is recommended to 

schedule backups during your off-peak hours. See 

Figure 5-24.

Figure 5-24.  Enabling auto backups

Chapter 5  Google Cloud



165

•	 Authorize Networks: Add IP4 addresses that you want 

to allow to connect to the database. You can provide a 

particular IP or a range of IPs. See Figure 5-25.

Figure 5-25.  Authorizing networks

Chapter 5  Google Cloud



166

•	 Add Cloud SQL flags: You can add parameters that 

you want to change. Currently it allows only a few 

parameters to change (see Figure 5-26). The full list is 

available at https://cloud.google.com/sql/docs/

postgres/flags.

Figure 5-26.  Adding Cloud SQL flags

•	 Set maintenance schedule: Allows you to set a time 

for the database maintenance activities. The instance 

will automatically restart to apply updates during a 

one-hour maintenance window. Updates happen once 

every few months. Choose a window, or leave it as Any 

window and Cloud SQL will pick a day and hour. See 

Figure 5-27.

Chapter 5  Google Cloud

https://cloud.google.com/sql/docs/postgres/flags
https://cloud.google.com/sql/docs/postgres/flags


167

Figure 5-27.  Set the maintenance mode

Once you have set all the PostgreSQL instance options the way you 

want them, click on Create to create the instance.

�Summary
This chapter explained the Google Cloud Console (GCC) and how to start 

using it. You learned how to create projects in GCC and how to create 

instances using GCC under Google Cloud Platforms like Compute Engine. 

We also covered PostgreSQL installation on instances. This chapter 

covered cloud storage, Cloud SQL, and the PostgreSQL service under 

Cloud SQL. We hope that it helps you start your applications on Google 

Cloud. The next chapter covers Microsoft Azure, including how to start it 

and the services available. It also covers how to create virtual machines 

and focuses on the PostgreSQL service that was introduced recently.

Chapter 5  Google Cloud



169© Baji Shaik, Avinash Vallarapu 2018 
B. Shaik and A. Vallarapu, Beginning PostgreSQL on the Cloud,  
https://doi.org/10.1007/978-1-4842-3447-1_6

CHAPTER 6

Azure Cloud
This chapter covers products that Microsoft provides and how you can 

use them with PostgreSQL. We cover how to initialize VMs and install/

configure PostgreSQL on them. This chapter provides basic information 

on the storage that Azure provides, which we cover in further chapters in 

detail. There is also an overview, initialization, and API discussion for the 

PostgreSQL service recently introduced by Microsoft Azure.

Although Microsoft Azure provides a lot of services, we are going to 

cover only a few services that are specific to PostgreSQL. See this link for a 

list of services that it provides: https://docs.microsoft.com/en-us/azure/

#pivot=products&panel=all.

The following services are covered in this chapter:

•	 Virtual machines

•	 Storage

•	 Azure database for PostgreSQL

We discuss each service in detail.

�Virtual Machines
Azure provides a way to create Windows or Linux virtual machines in a few 

seconds. It is all about the choice of your operating system. You can choose 

to be on-premises, in the cloud, or both. Choose your own operating 

https://docs.microsoft.com/en-us/azure/#pivot=products&panel=all
https://docs.microsoft.com/en-us/azure/#pivot=products&panel=all


170

system virtual machine image or download a certified preconfigured 

image from the Azure marketplace.

You can scale your machine depending on needs. You can create a 

large cluster with cloud scalability. You can scale globally with a growing 

number of regional Azure data centers, which makes you closer to your 

customers.

You can encrypt your data to protect it from viruses using encrypting 

options available. Using the security options, you can easily meet your 

compliance requirements. More details on security are here: https://

azure.microsoft.com/en-us/services/security-center/.

You can control your budget by paying for what you use. You can go 

for per-minute billing as well, which gives you better budget allocation for 

resources. Pricing details are based on need. Details are here: https://

azure.microsoft.com/en-us/pricing/details/virtual-machines/

linux/.

You can start using Azure with a free account. Go to https://azure.

microsoft.com/en-us/free/ and click on Start Free, as shown in Figure 6-1.

Figure 6-1.  Click Start Free to begin using Azure 

Chapter 6  Azure Cloud

https://azure.microsoft.com/en-us/services/security-center/
https://azure.microsoft.com/en-us/services/security-center/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/


171

Once you click on Start Free, it will take you to a window where you can 

sign up for a free account by filling in the details, as shown in Figure 6-2.

Once you sign up, you can log in in to the Azure Portal to use the 

services provided by Azure. Here is the Portal login link: https://portal.

azure.com/.

The Azure Portal is shown in Figure 6-3.

Figure 6-2.  Fill in the details of your free account

Chapter 6  Azure Cloud

https://portal.azure.com/
https://portal.azure.com/


172

�Virtual Machine Creation
This section explains how to create a virtual machine. Here are the  

high-level steps to doing so:

	 1.	 After logging in to the Azure Portal, click on Virtual 

Machines on left side and then choose Create 

Virtual Machines on right side, as highlighted in 

Figure 6-4.

Figure 6-3.  The Azure Portal

Chapter 6  Azure Cloud



173

	 2.	 The available operating systems are listed in 

Figure 6-5.

Figure 6-4.  Create a virtual machine

Chapter 6  Azure Cloud



174

	 3.	 By default, the section goes to Red Hat Enterprise 

Linux 7.4, but you can select whichever OS you 

want from the Recommended section. Look at the 

legal terms once you click Create. As RHEL OS is 

not covered under free trail, we selected Ubuntu for 

demo purposes.

	 4.	 The basic configuration settings are shown in 

Figure 6-6 and described in the following list.

Figure 6-5.  The list of available operating systems is long

Chapter 6  Azure Cloud



175

•	 Name: The name of the virtual machine to 

differentiate.

•	 VM disk type: The type of disk. You can choose 

SSD or HDD. Premium (SSD) disks are backed by 

solid state drives and offer consistent, low-latency 

performance. They provide the best balance 

between price and performance and are ideal 

Figure 6-6.  The basic configuration settings

Chapter 6  Azure Cloud



176

for I/O-intensive applications and production 

workloads. Standard (HDD) disks are backed by 

magnetic drives and are better for applications 

where data is accessed infrequently.

•	 User name: The username to connect the virtual 

machine.

•	 Authentication type: This can be SSH Public Key 

or Password. If SSH is chosen, you would need 

to provide your machine’s SSH keys so that you 

can directly connect; otherwise, if the password 

is chosen, you can give a password to connect to 

machine.

•	 Subscription: You can see the Free Trail 

subscription by default, if you're logged in with a 

free trail account. However, to create a VM, you 

need a different subscription than Free Trail. 

You can log in using the following link to add a 

subscription, depending on your needs.

https://account.windowsazure.com

•	 Resource group: You can create a new one or use 

an existing resource group if you have created one 

already. You can create a resource by clicking on 

Resource Group on left side panel.

•	 Location: The region in which you want your 

virtual machine. Available locations are shown in 

Figure 6-7.

Chapter 6  Azure Cloud

https://account.windowsazure.com


177

	 5.	 The next step is to choose the size of the machine 

that you want. Figure 6-8 shows the available sizes. 

You can also click on View All, as highlighted in 

Figure 6-8, to see all available sizes.

Figure 6-7.  Locations available for the virtual machine

Chapter 6  Azure Cloud



178

	 6.	 The next step is to configure some optional features, 

as shown in Figure 6-9 and described next.

Figure 6-8.  Choose the size of the machine

Chapter 6  Azure Cloud



179

•	 High Availability Section

•	 Availability set: Provides redundancy to your 

application; we recommend that you group 

two or more virtual machines in an availability 

set. This configuration ensures that during a 

planned or unplanned maintenance event, at 

least one virtual machine will be available and 

meet the 99.95% Azure SLA. The availability set 

of a virtual machine can't be changed after it is 

created.

Figure 6-9.  Optional features for the VM

Chapter 6  Azure Cloud



180

•	 Storage Section

•	 Use managed disks: Enable this feature to have 

Azure automatically manage the availability 

of disks to provide data redundancy and fault 

tolerance, without creating and managing 

storage accounts on your own. Managed disks 

may not be available in all regions.

•	 Network Section

•	 Virtual network: Logically isolated from 

each other in Azure. You can configure the IP 

address ranges, subnets, route tables, gateways, 

and security settings, much like a traditional 

network in your data center. Virtual machines 

in the same virtual network can access each 

other by default.

•	 Subnet: A range of IP addresses in your virtual 

network, which can be used to isolate virtual 

machines from each other or from the Internet.

•	 Public IP address: Use this if you want to 

communicate with the virtual machine from 

outside the virtual network.

•	 Network security group(firewall): A set of 

firewall rules that control traffic to and from the 

virtual machine.

•	 Extensions Section

•	 Extensions: These add new features, like 

configuration management or antivirus 

protection, to your virtual machine. See 

Figure 6-10.

Chapter 6  Azure Cloud



181

•	 Auto-Shutdown Section

•	 Enable auto-shutdown: Configures your virtual 

machines to shut down daily.

•	 Shutdown time: The time when virtual 

machines shut down daily.

•	 Timezone: Refers to the timezone for the time 

you selected.

Figure 6-10.  The Extensions section

Chapter 6  Azure Cloud



182

•	 Notifications before shutdown: If you 

subscribe using your email ID, it sends 

notification before it shuts down.

•	 Email: To send notifications.

•	 Monitoring Section

•	 Boot diagnostics: It captures serial console 

output and screenshots of the virtual machine 

running on a host to help diagnose startup 

issues.

•	 Guest OS diagnostics: Gets metrics every 

minute for your virtual machine. You can use 

them to create alerts and stay informed of your 

applications.

	 7.	 The last step to create the virtual machine is to 

purchase it. You can look at the offers available and 

per hour charges for your virtual machines based on 

the size that you selected. Click on it to accept the 

terms and conditions and give Microsoft permission 

to contact you.

Once you click on Purchase, it will start initializing/deployment of the 

virtual machine. It may take a few seconds.

You can click on Notifications to see the process of deployment of your 

virtual machine, as highlighted in Figure 6-11.

Chapter 6  Azure Cloud



183

Once the virtual machine is created, you can see the details by clicking 

on Virtual Machines on left panel and then on the virtual machine 

name on the right panel. You’ll see all the details that you have chosen 

while creating the virtual machine. It shows monitoring metrics as well. 

Figure 6-12 is an example.

Figure 6-11.  The deployment process

Chapter 6  Azure Cloud



184

�Connecting to Virtual Machines
The virtual machine is created using a password, so you can directly use ssh 

to log in to Linux virtual machine using the public IP. You can get the public 

IP from the overview of the virtual machine, as shown in Figure 6-13.

Figure 6-12.  The virtual machine’s data and metrics

Figure 6-13.  The public IP of the Linux virtual machine

Chapter 6  Azure Cloud



185

You can ssh from your local machine, as shown in Figure 6-14. 

However, make sure that your IP is open. Take a look at Network Section in 

Step 6 to open IPS to connect.

�Installing PostgreSQL on a Virtual Machine
One of the easiest and most reliable ways to perform a PostgreSQL 

installation is through BigSQL, which is an Open Source DevOps platform 

designed for PostgreSQL. BigSQL binaries are portable across any Linux 

and Windows operating system. A user might want to install additional 

extensions and tools to build a complete PostgreSQL server for production. 

BigSQL combines a carefully selected list of extensions deployed in several 

Figure 6-14.  Use ssh from your local machine

Chapter 6  Azure Cloud



186

PostgreSQL production environments after rigorous testing. It makes it 

easy for users to choose the extension they want to install and then they 

can use the easy command-line features to install BigSQL.

To install PostgreSQL using BigSQL, follow these steps:

	 1.	 Go to https://www.openscg.com/bigsql/.

	 2.	 Click on the Downloads section.

	 3.	 Click on Usage Instructions, as shown in Figure 6-15.

	 4.	 As per the usage instructions, for Linux machines, 

you can simply execute the following command to 

install the BigSQL package.

python -c "$(curl -fsSL https://s3.amazonaws.com/

pgcentral/install.py)"

Figure 6-15.  Click on usage instructions

Chapter 6  Azure Cloud

https://www.openscg.com/bigsql/


187

BigSQL uses a command-line utility called pgc (pretty good  

command-line).

•	 To list the available PostgreSQL binaries and extensions 

available for PostgreSQL, users can run the following 

command.

pgc list

•	 To install PostgreSQL 9.6, users can simply fire the 

following command.

pgc install pg96

•	 To install an extension called pg_repack, users can run 

the following command.

pgc install pg_repack

Users need not worry about several dependencies—such as gcc 

compiler or any other packages that need to be installed—while installing 

postgres or its extensions. BigSQL takes care of all the dependencies and 

makes it very easy to deal with PostgreSQL.

One of the most advanced features of BigSQL is its pgDevOps. 

pgDevOps is a UI that allows users to install and manage PostgreSQL 

instances in a few clicks. Users can upgrade the PostgreSQL minor version 

or install or update an extension in a few clicks. PgDevOps also helps 

users analyze queries and other database metrics like Connections, 

checkpointing, temp file generation, etc., through pgBadger reports on its 

UI, as requested. Users can also tune their complex procedural language 

using an excellent tool embedded in the UI, called plProfiler console. 

Using plProfiler console, users can look at the complete call stack of a 

complex PostgreSQL function and concentrate on the code that consumed 

more time of execution in its entire call stack.

Chapter 6  Azure Cloud



188

Thus, BigSQL helps users install and manage PostgreSQL and its 

extensions in a few clicks. BigSQL, combined with any cloud service, can 

easily build a very economic PostgreSQL database on the cloud.

�Dealing with Storage
Microsoft Azure provides scalable, durable cloud storage. It can be used for 

backup and recovery solutions for any volume of data, whether it is big or 

small. You can plan your database backups to upload to the cloud storage. 

If you have virtual machines created already, you can add more storage 

required by your application cost-effectively, whereas additional storage 

could be unstructured text or binary data such as video, audio, and images.

There are several storage types available, such as:

•	 Blob storage

•	 File storage

•	 Disk storage

•	 Table storage

•	 Queue storage

However, we cover only blob storage, as it is used for streaming and 

storing documents, videos, pictures, backups, and other unstructured text 

or binary data.

For blob store accounts, you can the Access Tier attribute, which you 

can see during account creation. Based on the access pattern, there are 

two types of access tiers:

•	 A hot access tier for the objects that you access 

frequently

•	 A cool access tier for the objects that you do not access 

frequently

Chapter 6  Azure Cloud



189

The pricing details for dedicated Blob storage accounts with hot, 

cool, and archive (where available) access tiers are here: https://azure.

microsoft.com/en-us/pricing/details/storage/blobs/.

We cover more about this storage in Chapter 8, “Backups on the Cloud.”

�Azure Database for PostgreSQL
After looking at the popularity of PostgreSQL in the Open Source world 

and listening to what customers wanted, Microsoft Azure announced 

Azure Database for PostgreSQL in May of 2017. It was the most frequently 

asked for service from its customers.

�Advantages of Azure Database
This section looks at the advantages/benefits of this service. Azure 

Database for PostgreSQL provides a managed database service that can be 

set up in minutes and used for app development and deployments. You 

can scale on the fly.

With its low price (there are different pricing models), you will get 

much needed features like high-availability, security, and recovery—all 

built in. No need to pay extra for these features.

There is also no need to worry about database administration, as 

Azure Database for PostgreSQL provides managed database service, which 

means it provides automatic database patching, built-in monitoring, 

automatic backups, security, high-availability, and more. You don’t need 

to worry about database administration. You can only focus on your 

applications, however, not on the infrastructure.

Scale without downtime. You can provision this service in minutes. 

And you can scale it on the fly to improve the performance without any 

downtime.

Chapter 6  Azure Cloud

https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/


190

Built-in high availability. Azure Database for PostgreSQL provides 

built-in high availability and it needs no extra manual work from the user 

end, such as configuration or replication. There is no additional cost.

Use your favorite languages. You don’t need to change your application 

programming language. You can just use what you’re currently using with 

this service. It supports all the application programming languages that a 

stand-alone PostgreSQL installation supports.

Pay one simple price for everything. Features like point-in-time-

recovery and high availability for Azure database for PostgreSQL come at 

no extra cost. They are included in the basic pricing.

Rest assured knowing you are backed by Azure. Once you create Azure 

Database for PostgreSQL, your data will be in Microsoft’s global network of 

data centers, which are secure and have round-the-clock monitoring.

�Azure Database for PostgreSQL Service Creation
You need to sign up to create the service. As explained in the “Virtual 

Machines” section, you may create a free account from https://azure.

microsoft.com/en-us/free/.

Later you can add subscriptions that you want.

Follow these high-level steps to create an Azure Database for 

PostgreSQL instance:

	 1.	 Once you log in to the Azure Portal, click on 

+ on the left panel and type Azure Database 

for PostgreSQL. Click on Azure Database on 

PostgreSQL, which you see from search and then 

you can see a window, which shows a Create button, 

as shown in Figure 6-16.

Chapter 6  Azure Cloud

https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/


191

	 2.	 After clicking Create, you’ll see the window shown 

in Figure 6-17, where you need to fill in the details as 

explained.

Figure 6-16.  Create an Azure Database for PostgreSQL instance

Chapter 6  Azure Cloud



192

Figure 6-17.  Fill in the details for your PostgreSQL instance

Chapter 6  Azure Cloud



193

•	 Server name: The name of the instance. It’s like a 

tag that differentiates it from other instances. You 

have to use the same name while staring/stopping/

removing the instance.

•	 Subscription: If you added a subscription other 

than Free Trail, use it here.

•	 Resource group: A collection of resources that 

share the same lifecycle, permissions, and policies. 

If you have already created one, use it; otherwise, it 

creates one for you with the details you provide.

•	 Server admin login name: The database user that 

you use to connect.

•	 Location: The region in which you want your 

instance.

•	 Version: The PostgreSQL version. Currently, only 

9.5 and 9.6 versions are available.

•	 Price tier: The type of instance that you want.  

Two types are currently available:

•	 Basic: For workloads that scale with variable 

IOPS.

•	 Standard: For workloads that require on-

demand scaling optimized for high throughput 

with provisioned IOPS.

•	 Compute Units: A measure of CPU processing 

throughput that is guaranteed to be available to  

a single Azure Database for PostgreSQL server.  

A compute unit is a blended measure of CPU and 

memory resources. In general, 50 compute units 

Chapter 6  Azure Cloud



194

equate to half a core. 100 compute units equate to 

one core. 2000 compute units equate to 20 cores 

of guaranteed processing throughput available to 

your server. The amount of memory per compute 

unit is optimized for the Basic and Standard pricing 

tiers. Doubling the compute units by increasing the 

performance level equates to doubling the set of 

resource available to that single Azure Database for 

PostgreSQL.

	 For example, a standard 800 compute units 

provides eight times more CPU throughput and 

memory than a standard 100 compute units 

configuration. However, while standard 100 

compute units provide the same CPU throughput, 

as does basic 100 compute units, the amount of 

memory that is preconfigured in the Standard 

pricing tier is double the amount of memory 

configured for the Basic pricing tier. Therefore, 

the Standard pricing tier provides better workload 

performance and lower transaction latency than 

does the Basic pricing tier with the same compute 

units selected.

	 More details about compute units are found here: 

https://docs.microsoft.com/en-us/azure/

postgresql/concepts-compute-unit-and-

storage.

•	 Storage: The storage required for your database.

	 Once you have entered the Compute Units and 

Storage, it will show the monthly cost for your 

instance, as shown in Figure 6-18.

Chapter 6  Azure Cloud

https://docs.microsoft.com/en-us/azure/postgresql/concepts-compute-unit-and-storage
https://docs.microsoft.com/en-us/azure/postgresql/concepts-compute-unit-and-storage
https://docs.microsoft.com/en-us/azure/postgresql/concepts-compute-unit-and-storage


195

	 Click on OK and then Create so that it will start 

creating the instance.

	 3.	 See the Notifications tab on the right-side top to see 

the deployment process. The deployment takes a 

few minutes.

	 4.	 Once the instance is created, you can click on  

All Resources to see the instance, as shown in 

Figure 6-19.

Figure 6-18.  The pricing tier

Chapter 6  Azure Cloud



196

	 5.	 Now connect to the psql prompt using the cloud 

shell, as shown in Figure 6-20.

	 6.	 Once you click on the cloud shell, you need to 

choose a Bash shell or a Power shell and then create 

storage to store your files. As psql is already installed 

on the cloud shell, you can do a quick psql to your 

instance, as shown in Figure 6-21. You can get the 

connection properties from your Connection Strings 

instance, as highlighted in Figure 6-21.

Figure 6-19.  Click on All Resources to see the new resource

Figure 6-20.  Connecting to the psql prompt using the cloud shell

Chapter 6  Azure Cloud



197

	 7.	 Migrating to your Azure instances is covered in 

further chapters.

�Summary
This chapter covered Microsoft Azure services like virtual machines, 

storage, and Azure database for PostgreSQL and how can you use them 

with PostgreSQL. It covered the steps needed to create and configure 

a virtual machine and installing PostgreSQL on it. You got a little 

introduction to storages and learned which storage types we cover in 

further chapters. We also covered Azure Database for PostgreSQL service 

creation/connection. In the next chapter, we cover available options for 

securing data on each cloud. We also talk about the available tools and 

how to use them.

Figure 6-21.  The Connection Strings instance

Chapter 6  Azure Cloud



199© Baji Shaik, Avinash Vallarapu 2018 
B. Shaik and A. Vallarapu, Beginning PostgreSQL on the Cloud,  
https://doi.org/10.1007/978-1-4842-3447-1_7

CHAPTER 7

Security on the Cloud
This chapter discusses why anyone needs security and why anyone would 

want to secure their data in the current world. It also covers the security 

options that each cloud vendor provides and how to achieve maximum 

security using those options. There might differences in ways of securing 

data for each vendor, but the ultimate goal is the same—secured data.

�Security on Amazon Cloud
In previous chapters, we discussed how to create an AWS account and 

create our first EC2 or RDS instance. As a database administrator, my first 

priority is to ensure that my database is secure. In order to build such a 

secured environment, we need to know how we can implement proper 

user management and security procedures, by restricting unauthorized 

access and encryption of data in motion and data at rest. AWS provides a 

console that helps administrators achieve proper user management. This 

is applicable to all services created on AWS.

�Identity and Access Management
Identity and Access Management (IAM) provides a mechanism that allows 

for user management of accounts in AWS. Users cannot use a root account 

to access AWS. There needs to be privileges, roles, or groups to ensure 

limited access to users. IAM allows us to create and manage user accounts 



200

on AWS and control the access-level privileges of an AWS account. Using 

IAM, we can provide shared access with restricted permissions to an AWS, 

including temporary access to a few services. IAM allows us to use SSO 

(single sign-on) for an organization email account along with LinkedIn, 

Facebook, and Active Directory.

It is very important to secure an AWS account through several layers 

of security features. For example, using only password authentication is 

not good enough. AWS provides multi-factor authentication to secure your 

AWS account. You can enable password rotation policies to satisfy your 

organizational compliances.

Before going through the steps to use IAM to create a user, you should 

understand that there are two types of access that IAM provides:

•	 Programmatic access: When you select Programmatic 

access when creating a user, you get an access key ID 

and a secret access key. Programmatic access is needed 

for a user who uses AWS CLI and API.

•	 AWS Management Console access: Selecting this 

access when creating a user gives the user access to the 

AWS Management Console. This creates a password for 

every user to log in to the AWS Console.

AWS supports PCI DSS compliance. You can create a user or a group, 

which is a collection of users with one set of privileges. You can create roles 

and assign them to AWS resources. Policies can be created and assigned to 

a user, role, or a group.

A user needs to be given a certain set of privileges using policies.  

A policy is a document that defines permissions. AWS IAM enables you to 

create your own policies.

Chapter 7  Security on the Cloud



201

The policy document includes the following elements:

Effect: Whether the policy allows or denies access

Action: The list of actions that are allowed or denied 

by the policy

Resource: The list of resources on which the actions 

occur

Condition (Optional): The circumstances under 

which the policy grants permission

�Create a User Using AWS IAM
To create a user in IAM, click on Users on the IAM Home page. You can 

also use the following link to do the same: https://console.aws.amazon.

com/iam/home#/users. Follow these steps:

	 1.	 Click on Add User, as shown in Figure 7-1.

Figure 7-1.  Click on Add User 

Chapter 7  Security on the Cloud

https://console.aws.amazon.com/iam/home#/users
https://console.aws.amazon.com/iam/home#/users


202

	 2.	 Type your username and select the type of access 

you need. See Figure 7-2. If you want to use AWS 

CLI or APIs provided by AWS, you can select 

programmatic access. You can let AWS choose an 

auto-generated password that forces the user to 

reset it upon signing in. Click on Next to proceed to 

the permissions.

Figure 7-2.  Entering the user details

	 3.	 Now you get an option to set permissions to the 

user, as shown in Figure 7-3. Before proceeding 

to the next step, it’s important to understand 

how organizations can implement a better user 

management system.

•	 Understand the type of users and their access 

requirements. For example, DBAs, developers, 

business analysts, infrastructure admins, etc.

Chapter 7  Security on the Cloud



203

•	 Create groups with a certain set of privileges for 

every type of user.

•	 Assign a group to a user instead of assigning 

individual policies every time a user is created.

If you have not created a group yet, follow these 

steps to do so. As you can see in Figure 7-3, the 

IAM Console enables you to create a group. 

Click on Create Group to create a group using a 

set of policies.

Once you clicked on Create Group, you’ll see a 

list of policies that clearly describes every policy, 

as shown in Figure 7-4. As you can see in the 

image, we selected AdministratorAccess, which 

gives the superuser full access to all the services 

of AWS on your AWS account.

Figure 7-3.  Click on Create Group to create a group using a set of 
policies

Chapter 7  Security on the Cloud



204

If you need to give one of your developers 

read-only access to your RDS instances, 

type rds in the search box and choose 

AmazonRDSReadOnlyAccess. This works the 

same with EC2 and services. See Figure 7-5.

Figure 7-4.  Select a policy type

Figure 7-5.  Setting up read-only access

Chapter 7  Security on the Cloud



205

Now, you can click on Create Group.

	 4.	 This way, you can create multiple groups that 

distinguish privileges as per your organizational 

standard naming conventions. Now, you can select 

the group you want to assign to the user being 

created and proceed to the next step. See Figure 7-6.

Figure 7-6.  Adding a user to a group

	 5.	 Once you have created the user, you’ll see an URL 

created by AWS to let your user access the console 

specific to your AWS account. Using this URL, users can 

log in to the console and perform activities allowed by 

the group to which they are assigned. See Figure 7-7.

Figure 7-7.  Users log in to the console with the new URL

Chapter 7  Security on the Cloud



206

�Restricting Access to an RDS or an EC2 Instance
We discussed how to implement a better user management policy that 

helps an organization distinguish every user through the roles and 

activities they are intended to perform. In an organization, we need to 

implement multiple layers of security, which may not be achieved using a 

proper user management policy alone.

Let’s discuss more about how we can limit host-based access to an RDS 

or an EC2 instance. This way, we tell AWS to accept connections only from 

certain IP addresses.

To proceed further, let us have a detailed discussion about VPC.

�What Is VPC?

Amazon allows you to create your own virtual network using its Virtual 

Private Cloud (VPC) . Using AWS, you can create your own VPC that is 

physically within the Amazon network but logically isolated. You can 

define your own IP address range, subnets, security gateways, and settings 

while creating your VPC.

A subnet is a range of IP addresses within a single availability zone 

or region. While creating AWS instances, we can specify the subnet in 

which they are created. While creating a VPC, you must specify a range 

of IP addresses that belong to this VPC by adding one or more subnets. 

As availability zones are geographically isolated from each other within a 

region, a subnet must be created for a single availability zone and cannot 

be spanned across multiple AZs. If you launch each of your instances in 

two different AZs—let’s say a master and slave in two different AZs—it is 

easy to avoid failures and achieve high availability.

Once you create a VPC, you can use VPN to connect to the AWS cloud.

Chapter 7  Security on the Cloud



207

�Creating Subnet Groups

Use these steps to create subnet groups and a VPC.

	 1.	 As shown in Figure 7-8, search for VPC and  

click on it.

Figure 7-8.  Find VPC and click on it to begin

	 2.	 Once you click on VPC, you should see a VPC 

dashboard, where you can get to the VPC Wizard 

and create subnets, route tables, and Internet 

gateways. See Figure 7-9.

Chapter 7  Security on the Cloud



208

	 3.	 Click on your VPCs to create your VPC and then 

click on Create VPC.

Now you can choose a name tag to better identify this 

VPC. Select the IPv4 CIDR Block and click on Create VPC, 

as shown in Figure 7-10.

Figure 7-9.  The VPC dashboard

Chapter 7  Security on the Cloud



209

	 4.	 You can now click on Subnets and then choose 

Create Subnet in an availability zone.

Click on Subnets to proceed. See Figure 7-11.

Figure 7-10.  Add a name tag to better identify the VPC

Figure 7-11.  Click on Subnets to reach this window

	 5.	 To create a subnet in an availability zone of a 

different region, you can change the region, as 

shown in Figure 7-12. In the top-right corner, click 

on the dropdown to modify the region in which you 

need to create your subnet.

Chapter 7  Security on the Cloud



210

	 6.	 Once you click on Create Subnet, select the name 

tag that identifies the subnet being created. Choose 

the VPC in which you want to create this subnet. 

Choose the availability zone and the IPV4 CIDR 

Block for this subnet as well. Once you’re done, click 

on Yes, Create, as shown in Figure 7-13.

Figure 7-12.  Find the proper region for the new subnet

Figure 7-13.  Add the details about the subnet

	 7.	 Once your VPC has been created, you can now 

create your EC2 instance using this VPC. This allows 

you to restrict access to your EC2 instances.

Chapter 7  Security on the Cloud



211

While creating an RDS instance, as you learned in 

previous chapters, you can choose the VPC of your 

region. Your instance will then be created there. See 

Figure 7-14.

Figure 7-14.  Choose the VPC where you want to create the instance

Likewise, you can choose a VPC while creating your 

EC2 instance, as shown in Figure 7-15.

Figure 7-15.  Configuring the instance details

Chapter 7  Security on the Cloud



212

�Rackspace Cloud Security
In Chapter 4, we talked about how to create a Rackspace account to 

manage the Rackspace solutions. In this chapter, we talk about the 

security that Rackspace provides to its VMs, dedicated servers, and storage 

components. Apart from these, Rackspace has managed security that helps 

you build security policies according to your organization’s needs.  

For more information about Rackspace managed security, visit  

https://www.rackspace.com/security.

�Securing the Rackspace Account
Let’s start by securing your Rackspace account.

	 1.	 Log in to your Rackspace portal here:  

https://login.rackspace.com.

	 2.	 Click on My profile & Settings in the top-right 

corner, as shown in Figure 7-16.

Chapter 7  Security on the Cloud

https://www.rackspace.com/security
https://login.rackspace.com/


213

	 3.	 You’ll then see the security settings, as shown in 

Figure 7-17.

Figure 7-16.  Click on My Profile & Settings

Figure 7-17.  The security settings

Chapter 7  Security on the Cloud



214

Password: You should have strong password that 

meets the requirements of your security policies.

Multi-Factor Authentication: Enable multifactor 

authentication by clicking on Enable.

Security Question: Configure a good security 

question.

Rackspace API Key: Reset this periodically for 

security purposes.

	 4.	 Follow these sub-steps to configure multi-factor 

authentication.

	 a.	 Click on the Enable option. The window shown 

in Figure 7-18 will pop up.

Figure 7-18.  Choose the recommended option of mobile app here

Chapter 7  Security on the Cloud



215

	 b.	 Click on Using a Mobile App, as it is 

recommended and then Next. You will have 

to enter your device name (see Figure 7-19). 

Currently supported applications for multi-

factor authentication are Authy, Duo, and 

Google Authenticator.

	 c.	 Install the security app on your phone  

(for example, install DUO app) and scan the 

barcode, which appears in the window in your 

phone app. See Figure 7-20.

Figure 7-19.  Name your device

Chapter 7  Security on the Cloud



216

	 d.	 Click on Verify. You will then be prompted to 

log in to your account again. Now, your account 

is configured for multi-factor authentication. 

Whenever you need to log in, you have to enter 

the code that is generated from your DUO app.

	 5.	 If you click on User Management shown on the left 

corner of the same page, you can see users related to 

your account. See Figure 7-21.

Figure 7-20.  This barcode appears in the window in your app

Chapter 7  Security on the Cloud



217

	 6.	 You can create users and provide only required 

privileges, as shown in Figure 7-22.

	 7.	 You can also add an identity provider using the Add 

identity Provider button from the Identity Provider 

tab, as shown in Figure 7-23.

Figure 7-21.  Other users related to your account

Figure 7-22.  Setting up user permissions

Chapter 7  Security on the Cloud



218

For more information on identity providers, the user guide is found at 

https://developer.rackspace.com/docs/rackspace-federation/.

�Securing the Dedicated Cloud Server of 
Rackspace
If you click on the VM that was created, you’ll see the Networks section, as 

shown in Figure 7-24.

Figure 7-23.  Adding an identity provider

Figure 7-24.  Current networks on the VM

Chapter 7  Security on the Cloud

https://developer.rackspace.com/docs/rackspace-federation/


219

Adding a network that allows only specific IP ranges will secure your 

VM because users will be prohibited from logging in from other hosts.  

See Figure 7-25.

�Security for the Google Cloud
Chapter 5 talked about creating an account to sign in to the GCP (Google 

Cloud Platform) console. Your user login will be the administrator of your 

console and can access any service. So it has no limitations.

Figure 7-25.  Adding a network

Chapter 7  Security on the Cloud



220

Say there are multiple users who need read-only access to the 

instances of the Compute Engine or SQL databases or storage. Each user 

has his/her own login ID. In this case, you have to manage all the users 

and their respective privileges. Google Cloud has a Cloud IAM feature 

that enables you to control access to each user on any project in order to 

manage cloud resources.

To explain it with an example, say we have a GCP project with a VM 

instance (under Compute Engine), a storage bucket (under Storage), and a 

PostgreSQL instance (under SQL). You can log in to the GCP console using 

https://console.cloud.google.com/.

Check under Compute Engine, Storage, or SQL within your project. 

Because the login user is an admin, you can see the stop/reset/delete of 

the VM instance options are enabled. See Figure 7-26.

�Control Access to the Compute Engine

	 1.	 Log in to IAM console using the admin user and  

this link:

https://console.cloud.google.com/iam-admin/

iam/project

You’ll see the window in Figure 7-27 after you log in.

Figure 7-26.  All options are enabled due to the account settings

Chapter 7  Security on the Cloud

https://console.cloud.google.com/
https://console.cloud.google.com/iam-admin/iam/project
https://console.cloud.google.com/iam-admin/iam/project


221

	 2.	 You need to add a member to grant permission on 

your compute resources. Click on Add, as shown in 

Figure 7-28.

Figure 7-27.  The IAM console as viewed from the admin account

Figure 7-28.  Adding a member

Chapter 7  Security on the Cloud



222

	 3.	 Once you clicked on Add, you’ll can see the window 

shown in Figure 7-29.

To add the member, you can add any of these:

Google account email such as user@gmail.com

Google groups such as admins@googlegroups.com

Service account such as server@example.

gserviceaccount.com

Google Apps domain such as example.com

Anybody: Enter allUsers to grant access to all users

All Google accounts: Enter allAuthenticatedUsers 

to grant access to any user signed in to a Google 

account

There are lot of roles that you can grant to your 

member. Figure 7-30 shows you the available roles 

for the Compute Engine service.

Figure 7-29.  Adding a member

Chapter 7  Security on the Cloud



223

Let’s look at the roles available for Compute Engine:

•	 Compute Admin: Full control of all Compute 

Engine resources

•	 Compute Image User: Read and use image 

resources

•	 Compute Instance Admin (beta): Full control of 

Compute Engine instance resources

•	 Compute Instance Admin (v1): Full control of 

Compute Engine instances, instance groups, disks, 

snapshots, and images. Read access to all Compute 

Engine networking resources

•	 Compute Load Balancer Admin: Full control of 

Compute Engine resources related to the load 

balancer

Figure 7-30.  Available roles for the Compute Engine service

Chapter 7  Security on the Cloud



224

•	 Compute Network Admin: Full control of 

Compute Engine networking resources

•	 Compute Network User: Access to use Compute 

Engine networking resources

•	 Compute Network Viewer: Read-only access to 

Compute Engine networking resources

•	 Compute OS Admin Login: Access to log in to a 

Compute Engine instance as an administrator user

•	 Compute OS Login (beta): Access to log in to  

a Compute Engine instance as a standard  

(non-administrator) user

•	 Compute Security Admin: Full control of 

Compute Engine security resources

•	 Compute Storage Admin: Full control of 

Compute Engine storage resources

•	 Compute Viewer: Read-only access to get and 

list information about all Compute Engine 

resources including instances, disks, and 

firewalls. Allows getting and listing information 

about disk, images, and snapshots, but does not 

allow reading the data stored on them

For this demo, we are selecting the Compute 

Viewer role.

Click on Add after selecting the required role.

	 4.	 Once you have added the role, you can see the 

member, as shown in Figure 7-31.

Chapter 7  Security on the Cloud



225

	 5.	 As Compute Viewer is selected, this user can only 

see VM instances. He can’t control instances. If 

you click on the VM instance, all the features for 

Reset/Clone/Stop/Delete are disabled, as shown in 

Figure 7-32.

Figure 7-31.  Adding the role

Figure 7-32.  The features for Reset/Clone/Stop/Delete are disabled 
because of the user’s permissions settings

Chapter 7  Security on the Cloud



226

In this way, you can control access to the data and services. We showed 

Compute Engine as an example, but you will see more or less same kind of 

privileges for Cloud SQL and storage services as well.

�Restricting Compute Engine VM Instances
To restrict the Compute Engine VM instances, you can edit the VM 

instance properties as shown in Figure 7-33.

�Managing SSH Keys
You connect to a VM instance using an SSH key. Compute Engine manages 

your SSH keys for you whenever you connect to an instance from the 

browser or connect to an instance with the gcloud command-line tool, 

creating and applying public SSH keys when necessary.

However, sometimes you’ll need to manage your SSH keys. Once your 

instance is created, you can add the SSH keys of the machines that you 

want to connect to the VM instance. See Figure 7-34.

Figure 7-33.  Edit the VM properties

Chapter 7  Security on the Cloud



227

�Microsoft Azure Security
Chapter 6 talked about the services that Microsoft Azure provides for use 

with PostgreSQL. This section discusses the security that Microsoft Azure 

provides to their apps.

As with the other cloud venders, Microsoft Azure provides IAM with 

single sign-on as Microsoft Azure Active Directory Premium.

In the arms race between cyber criminals and IT security, the side with 

the most advanced tools wins. That means that it is not enough to rely on 

tools that monitor or log your systems or tools built around static policies 

and lists. To stay one step ahead of the other side, you need a tool that can 

do more.

Figure 7-34.  Adding SSH keys

Chapter 7  Security on the Cloud



228

You can sign up for Azure Active Directory Premium. The detailed 

steps are found at https://docs.microsoft.com/en-us/azure/

active-directory/active-directory-get-started-premium.

�Security for VM Machines
This section discusses a few ways to secure your VM created on an Azure 

cloud.

	 1.	 While creating the VM, you can choose the 

authentication type, as shown in Figure 7-35. If you 

choose SSH Public Key and provide your key, only 

your machine can log in to the VM.

Figure 7-35.  Choose SSH Public Key to limit access

Chapter 7  Security on the Cloud

https://docs.microsoft.com/en-us/azure/active-directory/active-directory-get-started-premium
https://docs.microsoft.com/en-us/azure/active-directory/active-directory-get-started-premium


229

	 2.	 While creating the VM, you can also configure IP 

address ranges, subnets, route tables, gateways, and 

security settings, much like a traditional network in 

your data center. See Figure 7-36.

Figure 7-36.  Configuring security settings for the VM

	 3.	 You can turn on Data Collection to receive security 

alerts and recommendations about system updates, 

OS vulnerabilities, and end point protection. To turn 

it on, choose Security Center from the left panel of 

the Azure Portal, and then click on Security Policy. 

Choose Subscription. See Figure 7-37.

Chapter 7  Security on the Cloud



230

Once you click on the subscription, you will see the Data Collection 

option on the left side panel, as shown in Figure 7-38.

Figure 7-37.  Find your subscription settings

Chapter 7  Security on the Cloud



231

Figure 7-38.  Turn on Data Collection to receive security alerts

If you turn it on, data collection agents will be installed on all the 

VMs in the subscription. If you click on Security Policy, you will see 

recommendations for what policies you want, as shown in Figure 7-39.

Chapter 7  Security on the Cloud



232

You can also set email notifications so you are contacted in case the 

Azure security team finds that your resources have been compromised.

�Security for SQL Database
This section covers the process of securing PostgreSQL databases on 

Azure.

There are two ways to do so:

•	 Create and manage firewall rules

•	 Configure SSL

Figure 7-39.  Choosing Security Policy shows the recommendations

Chapter 7  Security on the Cloud



233

To configure an SSL, you need a Azure Database for PostgreSQL 

instance. Once the instance has been created, follow these steps:

	 1.	 Click on the instance that you created.

	 2.	 On the left panel, you’ll see Connection Security. 

Click on it to see the window shown in Figure 7-40.

	 3.	 Fill the details under the Firewall Rules section, as 

shown in Figure 7-41.

For this demo, we added a rule named Dev_rule 

with IP starting and ending ranges so that only 

requests from these IPs can be served.

Figure 7-40.  Connection security window

Figure 7-41.  Fill in the Firewall Rules section

Chapter 7  Security on the Cloud



234

	 4.	 On the same page, you can enable SSL under the 

SSL Settings area, as shown in Figure 7-42.

	 5.	 Click on Save once you are done with the changes.

�Summary
This chapter covered why there is a need for security. You went through 

the steps-by-step procedures to achieve security on each cloud vendor for 

cloud servers/virtual machines and PostgreSQL instances. We hope this 

chapter helps you better understand security and see how to implement 

in for your servers/database. In the next chapter, we talk about the need to 

back up your virtual machines and PostgreSQL instances, including how to 

schedule machine backups using each vendor in detail.

Figure 7-42.  Enable SSL from here

Chapter 7  Security on the Cloud



235© Baji Shaik, Avinash Vallarapu 2018 
B. Shaik and A. Vallarapu, Beginning PostgreSQL on the Cloud,  
https://doi.org/10.1007/978-1-4842-3447-1_8

CHAPTER 8

Backups on the Cloud
This chapter covers why we need backups for our machines and databases. 

The chapter talks about the backup options available with each cloud 

vendor and how to deal with them. Every cloud vendor is not the same 

when it comes to backup schedules and cost. We cover all the backup 

solutions available with each vendor.

�Backups on the AWS Cloud
Amazon allows users to manage backups of RDS instances through a 

user-friendly console. These backups can also be encrypted and are easily 

recoverable. The AWS Console allows users to perform point in time 

recovery of their RDS instances with a few clicks. This makes it one of the 

easiest backup tools available on the cloud for users.

While creating an RDS instance, you can choose your backup policy. 

If you already have an RDS instance, you can easily modify and choose a 

backup strategy using the options covered here.



236

�Backing Up an RDS Instance
Let’s look at backing up an RDS instance:

	 1.	 Log in to the Amazon AWS Console and search for 

RDS. Click on it.

	 2.	 Click on Instances to view a list of Instances created 

using the account.

	 3.	 Choose the instance for which you want to modify 

the backup policy and click on Instance Actions, as 

shown in Figure 8-1. Click on Modify to proceed.

Figure 8-1.  Accessing the instance actions 

	 4.	 You can modify the backup retention period and the 

backup window, as shown in Figure 8-2.

Chapter 8  Backups on the Cloud



237

	 5.	 Click on Continue and Modify DB Instance to make 

the changes, as shown in Figure 8-3.

Figure 8-2.  Modifying the backup options

Figure 8-3.  Click on Modify DB Instance

�Restore an AWS RDS Instance from Backup
Using the AWS Console, users can easily restore a backup without needing 

to understand how PostgreSQL backup works in real time. The following 

steps perform a recovery using an existing backup of an RDS instance. 

You cannot restore a backup of an RDS instance to an EC2 instance or vice 

versa.

	 1.	 Choose the instance for recovery. Click on Instance 

Actions and choose Restore to Point in Time, as 

shown in Figure 8-4.

Chapter 8  Backups on the Cloud



238

	 2.	 You can either click on Latest Restorable Time 

or Custom to choose a custom restore time. See 

Figure 8-5.

Figure 8-4.  Restoring an instance to a point in time

Figure 8-5.  Choose the restore options

	 3.	 Now you can choose the DB Instance Identifier and 

click on Launch DB Instance to perform recovery of 

the database you selected. See Figure 8-6.

Chapter 8  Backups on the Cloud



239

�Backup of an EC2 Instance
The AWS Console does not give you an option to manage backup and 

recovery of a PostgreSQL database on an EC2 instance. You can use 

backup options such as pg_basebackup and pgbackrest or pgbarman to 

manage backups on an EC2 instance. However, these backups need not be 

stored locally.

Amazon allows you to create storage services on the cloud such as the 

following:

•	 S3 (Simple Storage Service). Object based storage.

•	 GLACIER. Used to archive S3 backups as it is very low 

cost. Takes more time to restore.

•	 EFS. Elastic File Service is block-based storage. This 

type of storage is good for DBs and apps.

•	 EBS. Elastic Block Store for EC2 instances.

Here are the steps involved in creating storage to store the DB backups.

	 1.	 On the AWS Cloud Console, search for S3 Service 

and click on it.

	 2.	 Click on Create Bucket, as shown in Figure 8-7.

Figure 8-6.  The restore operation can take several hours

Chapter 8  Backups on the Cloud



240

	 3.	 Choose a bucket name that can be uniquely 

identified for its purpose. Select the region where 

you want to create this bucket (see Figure 8-8). 

Click Next to continue. If you already have a bucket, 

you can copy the settings from that and skip the 

following steps.

Figure 8-7.  Click on Create Bucket

Chapter 8  Backups on the Cloud



241

	 4.	 You can now choose an encryption option. Choose 

the KMS key you want to use to encrypt the data in 

the S3 bucket, if needed. See Figure 8-9.

Click Next to proceed.

Figure 8-8.  Enter the bucket’s settings

Chapter 8  Backups on the Cloud



242

	 5.	 Now you can choose all the accounts that can have 

read or read/write access to this S3 bucket. See 

Figure 8-10.

Figure 8-9.  Pick an encryption option

Figure 8-10.  Choose the accounts

Chapter 8  Backups on the Cloud



243

	 6.	 Click on Create Bucket. Now, the S3 Bucket you 

created should appear, as shown in Figure 8-11.

Figure 8-11.  The new bucket is shown here

�Performing Backups on an EC2 Instance
As discussed earlier, you can connect to your EC2 instance and install the 

AWS cli using the following steps.

	 1.	 If you do not have pip already installed on your OS, 

install it (see the commented section at the start of 

the following listing). Once you’re done, you can 

proceed to install AWS cli using pip.

# yum install python-setuptools -y

# sudo easy_install pip

# pip install --upgrade pip

# Install awscli using pip and set PATH

su - postgres

pip install --upgrade --user awscli

export PATH=~/.local/bin:$PATH

aws --version

	 2.	 Now configure AWS using the following command. 

You need to know your AWS access key ID and AWS 

secret ID, which are generated while creating the 

user account set as the owner of the S3 bucket you 

need to access.

Chapter 8  Backups on the Cloud



244

$ aws configure

AWS Access Key ID [None]: (Access Key)

AWS Secret Access Key [None]: (Secret Key)

Default region name [None]:

Default output format [None]:

	 3.	 See if you are able to list the S3 buckets created or 

accessible to your account.

$ aws s3 ls

	 4.	 Back up the PostgreSQL instance using pg_basebackup.

$ pg_basebackup -h localhost -p 5432 -D /tmp/ 

backup -x -Ft -z -P

	 5.	 Now, push the backup to S3 using the following 

command.

$ aws s3 cp /tmp/backup s3://yourbucketname/ 

dbbackups

�Restore Your Backup to an EC2 Instance
This section covers the process of restoring the backups:

	 1.	 You need to use the same cp command to copy the 

backup pushed to S3.

$ aws s3 cp s3://yourbucketname/dbbackups/* /tmp/

backup/*

	 2.	 Once it’s copied, you can use tar to extract the 

backup and restore it to start PostgreSQL using the 

backup.

Chapter 8  Backups on the Cloud



245

�Backups on Rackspace Cloud
In Chapter 4, we talked about the solutions that Rackspace provides—

Managed Hosting, Managed Cloud, and Cloud Block Storage. In this 

chapter, we talk about how to back up a Rackspace cloud server.

It is very simple to back up Rackspace cloud servers. While creating the 

cloud server, there is an option to enable backups of the machines. If you 

check the box for backups, your backups will be enabled (see Figure 8-12). 

Note that this option cost more.

Figure 8-12.  Check the box to enable backups

Figure 8-13.  Click the Manage Backups link

You can also manage your backups by clicking on Manage Backups, as 

shown in Figure 8-13.

You can create/restore/delete backups or enable encryption for your 

backups. You can also disable the backup option. See the options in 

Figure 8-14.

Chapter 8  Backups on the Cloud



246

Enabling the backup option should install backup agents 

automatically. However, if you manage your backup without using the 

option, you can install the backup agent by following these steps: https://

clouddrive.rackspace.com/installer

If you want to schedule a backup other than the default one that we 

enabled, here are the steps:

	 1.	 Log in to the Rackspace Portal at https://mycloud.

rackspace.com/cloud/1042301/home.

	 2.	 Click on the Backups tab and then click Systems, as 

shown in Figure 8-15.

Figure 8-14.  You can create/restore/delete backups from this page

Chapter 8  Backups on the Cloud

https://clouddrive.rackspace.com/installer
https://clouddrive.rackspace.com/installer
https://mycloud.rackspace.com/cloud/1042301/home
https://mycloud.rackspace.com/cloud/1042301/home


247

	 3.	 On the Cloud Backup Systems page, click the name 

of the server for which you want to create a backup.

	 4.	 You will see the Configure Backups page, as shown 

in Figure 8-16.

Figure 8-15.  Scheduling a backup

Figure 8-16.  The Configure Backups page

	 5.	 On the Configure Backup page, configure the items 

shown in Figure 8-17 and then click Next Step.

Chapter 8  Backups on the Cloud



248

Name: Enter a name for the backup.

In the Schedule section, specify a schedule for the 

backup and select how many prior backup versions 

to retain.

In the Notifications section, specify the email 

address for notifications and select whether you 

want to receive notifications of successful backups.

Figure 8-17.  Configure the items here

Chapter 8  Backups on the Cloud



249

	 6.	 Select the folder that you want to back up and click 

on Next Step, as shown in Figure 8-18.

Figure 8-18.  Choose the folder you want to back up

	 7.	 Check the backup details and click on Save. See 

Figure 8-19.

Figure 8-19.  Check the backup details before clicking Save

Chapter 8  Backups on the Cloud



250

�Backups to Google Cloud
In Chapter 5, we saw how to create VM instances using the Compute 

Engine service. Now let’s look at how you can take backup of instances that 

you created.

�Backups Using the Snapshot Option
Using the snapshot option, you can take a backup of your data from a 

persistent disk. Let’s make a persistent disk and create a snapshot for it.

�Making a Persistent Disk

Here are the steps to make a persistent disk.

	 1.	 To make a persistent disk, connect your instance by adding 

SSH keys of your machine, as shown in Figure 8-20.

Figure 8-20.  Add the SSH keys

Chapter 8  Backups on the Cloud



251

	 2.	 You can connect through SSH using your private 

key, as shown in Figure 8-21.

Figure 8-21.  Connecting through SSH using your private key

	 3.	 Just for demo purposes, we are installing 

PostgreSQL using the BigSQL package manager.  

See Figure 8-22.

Chapter 8  Backups on the Cloud



252

	 4.	 Create a data directory on a mount point, as shown 

in Figure 8-23.

Figure 8-23.  Creating a data directory on a mount point

Figure 8-22.  Installing PostgreSQL using the BigSQL package 
manager

Chapter 8  Backups on the Cloud



253

	 5.	 As you can see, this data is on a root mount point.

	 6.	 Execute a checkpoint in the database by connecting 

using psql. Your mount point is ready for a snapshot.

�Take a Backup of a Persistent Disk

Here are the steps to take a backup of a persistent disk using the snapshot 

option.

	 1.	 Connect to your console and select Compute Engine 

and then choose Storage from the left panel. Then 

you can see the Create Snapshot button, as shown in 

Figure 8-24.

Figure 8-24.  The Create Snapshot button

	 2.	 Give your snapshot a name and a source disk 

in order to create it. You can use instance name 

for your source disk. Then click on Create. Your 

snapshot will be ready, as shown in Figure 8-25.

Chapter 8  Backups on the Cloud



254

	 3.	 You can restore this snapshot whenever you need it.

�Back Up Your Files Using Storage
Chapter 5 introduced GCS (Google Cloud Storage). Using GCS can be 

anything, such as pushing your server filesystem backups, pushing your 

database backups, or pushing any important documents. This section 

covers creating, configuring, and using the GCS.

Data (unstructured objects) will be stored in containers called buckets. 

If you want to push any kind of backups to GCS, you need to create a 

bucket. You can use buckets to store the data for other Google Cloud 

Platform services.

Figure 8-25.  The snapshot is ready

Chapter 8  Backups on the Cloud



255

�Create Buckets and Upload Files

This section covers creating a bucket and uploading files/folders to it:

	 1.	 You will see “Storage” in the left panel after you log 

in to the console. See https://console.cloud.

google.com/, as shown in Figure 8-26.

Figure 8-26.  Cloud storage

	 2.	 You then enter the details shown in Figure 8-27.

Chapter 8  Backups on the Cloud

https://console.cloud.google.com/
https://console.cloud.google.com/


256

Name: Name of the bucket where you are going to 

store the data. It is not recommended to use any 

sensitive information in your bucket name, as it will 

be easy to figure out by others.

We used postgresql-cloud-book-demo for the 

name here.

Default storage class: As explained in Chapter 5, 

there are four types of storage classes. The storage 

class you choose depends on your data type, 

purpose, and how frequently you access data.

Region: The region where your bucket is created.

Figure 8-27.  Enter these details to create a bucket

Chapter 8  Backups on the Cloud



257

	 3.	 Click on Create.

	 4.	 As shown in Figure 8-28, you’ll see options like 

Upload Files, Upload Folder, and Create Folder once 

you have created the bucket.

Figure 8-28.  Bucket options

	 5.	 After the bucket has been created and selected, 

click on Upload Files to upload the files or click 

on Upload Folder to upload any directories. See 

Figure 8-29.

Figure 8-29.  Choose Upload Files or Upload Folder

Chapter 8  Backups on the Cloud



258

�Back Up Your Cloud SQL for PostgreSQL
Chapter 5 discussed Cloud for PostgreSQL in detail. This section covers 

enabling backups for the PostgreSQL instances.

Here are the steps:

	 1.	 Connect to the console and select Cloud SQL on the 

left panel.

	 2.	 You will see your instance that you created on the 

left panel.

	 3.	 Click on Edit, as shown in Figure 8-30.

Figure 8-30.  Click Edit to edit the instance

	 4.	 Scroll down to the Enable Auto Backups and 

High Availability section, where you can find the 

option to enable auto backups of your instance. 

You can provide a time to perform the backup. It is 

recommended to choose a window of time that’s 

during off-peak hours of your application.  

See Figure 8-31.

Chapter 8  Backups on the Cloud



259

�Backups to Microsoft Azure
Chapter 6 talked about the services related to PostgreSQL that Microsoft 

Azure provides. This section discusses how you enable/take backups for the 

services that are created by Azure. The services that we talked about are:

•	 Virtual machines

•	 Storage

•	 Azure Database for PostgreSQL

The following sections cover enabling/taking backups of each service.

Figure 8-31.  Choose the time that the backups are performed

Chapter 8  Backups on the Cloud



260

�Virtual Machines
Use the following steps to enable backup on virtual machines.

	 1.	 Click on the virtual machine from the Azure Portal. 

You will see the Backup tab shown in Figure 8-32.

Figure 8-32.  The Backup tab

Chapter 8  Backups on the Cloud



261

	 2.	 Click on the Backup tab. You’ll see the options for 

backing up the machine, as shown in Figure 8-33.

Figure 8-33.  Options for backing up your virtual machine

The recovery services vault holds the backup copies and you can 

monitor backup using this vault. You can create a new vault or if you have 

an existing vault, you can use that.

The Azure Backup service has two types of vaults—the Backup vault 

and the Recovery Services vault. The Backup vault came first. Then the 

Recovery Services vault came along to support the expanded Resource 

Manager deployments. Microsoft recommends using Resource Manager 

deployments unless you specifically require a Classic deployment. Just 

to differentiate, Classic deployment is old portal and it’s going to be 

retired soon (see https://manage.windowsazure.com). The new portal is 

https://portal.azure.com/.

Chapter 8  Backups on the Cloud

https://manage.windowsazure.com/
https://portal.azure.com/


262

For the resource group, you can create a new one or use an 

existing resource group to be backed up.

The backup policy specifies the frequency and time at 

which items will be backed up and how long backup copies 

are retained.

	 3.	 After you choose Recovery Services Vault and 

Resource Group, click on Backup Policy. You will see 

the window shown in Figure 8-34.

Figure 8-34.  Setting up the backup policy

Choose backup policy: Specifies frequency and 

time at which items will be backed up, as well as 

how long backup copies are retained.

Policy name: Choose the name for the backup 

policy that you are going to create.

Chapter 8  Backups on the Cloud



263

Backup frequency: You can set up daily or weekly 

backups with the time window.

You can set retention of policy in terms of days 

under the Retention Range option.

	 4.	 Once you are done, click on OK and then on Enable. 

Backup for your VM is enabled now. Click on 

Backup after it is configured to see the details shown 

in Figure 8-35.

Figure 8-35.  The backup has been set up

	 5.	 If you click on the vault as highlighted in Figure 8-35,  

you will see the backup alerts, backup pre-check 

status, site recovery health, etc. See Figure 8-36.

Chapter 8  Backups on the Cloud



264

�Storage
Azure Storage consists of three data services: blob storage, file storage, and 

queue storage. Blob storage supports standard and premium storage, with 

premium storage using only SSDs for the fastest performance possible. 

Another feature is cool storage, which allows you to store large amounts of 

rarely accessed data at a lower cost.

Figure 8-36.  The details of the backup

Chapter 8  Backups on the Cloud



265

This section covers blob storage and how to create/manage it. Here are 

the steps to create it:

	 1.	 On the Azure Portal, select Storage Accounts on the 

left panel and click on Add to create storage. See 

Figure 8-37.

Figure 8-37.  Click Add to create storage

	 2.	 When you click on Add, the program opens new 

options to be entered to create your storage, as 

shown in Figure 8-38.

Chapter 8  Backups on the Cloud



266

Name: This name should be unique across all 

storage account names in Azure. It must be 3 to 24 

characters long, and can contain only lowercase 

letters and numbers.

Deployment model: Use the Resource Manager for 

new applications and for the latest Azure features. 

Use Classic if you have any existing applications 

deployed in a Classic virtual network.

Figure 8-38.  Add details about the new storage

Chapter 8  Backups on the Cloud



267

Account kind: General purpose storage accounts 

provide storage for files, blobs, tables, and queues 

in a unified account. Blobstore accounts are 

specialized for storing blob data and support 

choosing an access tier, which allows you to specify 

how frequently data in the account is accessed. 

Choose an access tier that matches your storage 

needs and optimizes cost.

Performance: Standard storage accounts are 

backed by magnetic drives and provide the lower 

cost per gigabyte. They are best for applications that 

require bulk storage or where data is being accessed 

infrequently. Premium storage accounts are backed 

by solid state drives and offer consistent low-latency 

performance. They can only be used with Azure 

virtual machine disks and are best for I/O intensive 

applications, like databases. Additionally, virtual 

machines that use Premium storage for all disks 

qualify for a 99.9% SLA, even when running outside 

of availability set. This setting can’t be changed after 

the storage account is created.

Replication: The data in your Azure storage 

account is always replicated to ensure durability 

and high availability. Choose a replication strategy 

that matches your durability requirements. Some 

settings can’t be changed after the storage account 

is created.

Secure transfer required: This option enhances 

the security of your storage account by only 

allowing requests to the storage account by secure 

connection. For example, when calling REST 

Chapter 8  Backups on the Cloud



268

APIs to access your storage accounts, you must 

connect using HTTPs. Any requests using HTTP 

will be rejected when Secure Transfer Required is 

enabled. When you are using the Azure files service, 

connection without encryption will fail.

Subscription: Choose the subscription in which you 

want to create the storage.

Resource group: Choose an existing Resource 

Group or create a new one.

Location: Choose the region in which you want to 

create your storage.

Configure virtual networks: Enabling this setting 

will grant exclusive access to this storage account 

from the specified virtual network and subnets. 

Additional virtual networks and subnets can be 

specified after storage account creation.

	 3.	 Click on Create once you fill in all the details.

If you want to know more about the Azure storage 

services, the types of storage accounts, accessing 

your blobs/queues/files, encryption, replication, 

transferring data into or out of storage, and the 

many storage client libraries available, visit 

https://docs.microsoft.com/en-us/azure/

storage/common/storage-introduction for more 

information.

Chapter 8  Backups on the Cloud

https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction


269

�Azure Database for PostgreSQL
When you create an Azure Database for PostgreSQL service, you are 

automatically set up with the default backup policy. This service 

automatically makes a back up of the database every five minutes. 

Retention of these backups depends on the pricing tier that you choose. 

If it is Basic, retention of backups is seven days, and if it is Standard, 

retention is 35 days. More information about pricing tiers is at https://

docs.microsoft.com/en-us/azure/postgresql/concepts-service-

tiers.

If you want to restore the database, the steps to do so are found 

at https://docs.microsoft.com/en-us/azure/postgresql/howto-

restore-server-portal#restore-in-the-azure-portal.

The automatic backups, which are part of the service, cannot be 

altered. The service takes full backups every week, two incremental 

backups per day, and log backups every five minutes.

�Summary
This chapter talked about why backing up a server or a database is 

important. We covered all backup solutions available by default from each 

cloud vendor and how you can modify the default schedules or retentions. 

There are lot of differences in backups from each vendor. We hope this 

chapter helps you understand the differences and choose the correct 

backup policy for your setup and requirements. The next chapter covers 

the need for data replication and high availability in the current world, 

including what solution each vendor provides for replication and high 

availability.

Chapter 8  Backups on the Cloud

https://docs.microsoft.com/en-us/azure/postgresql/concepts-service-tiers
https://docs.microsoft.com/en-us/azure/postgresql/concepts-service-tiers
https://docs.microsoft.com/en-us/azure/postgresql/concepts-service-tiers
https://docs.microsoft.com/en-us/azure/postgresql/howto-restore-server-portal#restore-in-the-azure-portal
https://docs.microsoft.com/en-us/azure/postgresql/howto-restore-server-portal#restore-in-the-azure-portal


271© Baji Shaik, Avinash Vallarapu 2018 
B. Shaik and A. Vallarapu, Beginning PostgreSQL on the Cloud,  
https://doi.org/10.1007/978-1-4842-3447-1_9

CHAPTER 9

Replication 
and High Availability 
on the Cloud
In this chapter, we talk about the purpose of replicating data or databases 

and why we need high availability. Some cloud vendors provide replication 

for the disks of virtual machines or databases and some do not. Similarly, 

some vendors provide high availability of servers and database instances 

by default and some do not. We talk about replication and high availability 

for every cloud vendor in detail.

�The Purpose of Replication and High 
Availability
High availability is represented by the letter “D” in the ACID properties 

(for durability). Database servers are prone to single points of failure. 

In order to avoid such single point of failures, we have a feature called 

replication in the database world. If the master DB server goes down due 

to environmental or hardware level damages, we have a slave that can take 

the role of its master.



272

Achieving high availability in PostgreSQL has been easy since 

streaming replication was introduced. We can build slaves (aka, replicas 

or DRs) to a master (primary) PostgreSQL database server, and these 

slaves are in a continuous replication with their master at any given time. 

Replication in the database language is a process in which a DB server can 

ship its changes to another DB server. It can be achievable using several 

solutions in the RDBMS world.

We have two types of replication in PostgreSQL:

•	 Streaming replication

•	 Logical replication

Streaming replication deals with the blocks that have been modified 

by the processes writing to the master. These blocks are shipped over 

the network to the slave and replayed on the slave continuously. This 

replication can be both synchronous and asynchronous.

Logical replication helps users configure replication between multiple 

versions of PostgreSQL and have a selected list of tables or databases 

replicated to slaves and cascaded slaves. However, this may not serve the 

purpose of a true high-availability cluster unless every database object is 

in the replication set, which may not be possible unless every object has a 

primary or a unique key and a NOT NULL column.

Thus, to achieve high availability, you may want to have at least one 

slave server that is in replication (preferably streaming replication) with its 

master. PostgreSQL allows us to use cascaded replication. This way, a slave 

can ship its changes to another slave. In this case, the first slave is treated 

as a master by the second slave.

A few important factors to be considered while building replication in 

a PostgreSQL environment.

•	 Ensure you have the same server configurations on 

both the master and the slave DB servers. In the event 

of failure, the slave should be able to take the load that 

would usually hit the master.

Chapter 9  Replication and High Availability on the Cloud



273

•	 Ensure you have a common mount point, such as 

a NAS mount point, accessible by the master and 

slave. This mount point can be used to archive the 

WALs (write-ahead logs or transaction logs). If you 

subscribed to a DBaaS such as an Amazon RDS, you 

may not have to worry about archiving WALs. However, 

if you selected an EC2 Instance (IaaS) or a virtual 

machine on Azure or GCP or Rackspace, you may 

subscribe to the vendor-specific cloud storage service 

for archiving. Vendors provide several APIs that use 

WALs that can either be sent to or pulled from storage 

as needed.

•	 Load-balance your reads. When the wal_level has 

been set to hot_standby, an application can send its 

read queries to the slave. Slaves are open for read-

only queries. Thus, you can have your application 

logic rewritten in such a way that your writes go to one 

connection string that connects to the master and the 

reads go to another connection string that redirects 

the connections to the slave. You may also have a 

load balancer service that can redirect your reads to 

multiple slaves or to the master and the slave in an 

even manner. This way, you let the idle computing 

resources on the slave become busy with reporting or 

read queries.

Consider high availability a key to avoiding single point of failures and 

an enabler for developing always-on database systems.

Chapter 9  Replication and High Availability on the Cloud



274

�Replication and High Availability in AWS
AWS allows you to build replication for RDS and EC2 services. AWS 

console allow users to achieve replication in RDS instances in very few 

clicks.

�Read Replicas for RDS
This section shows the steps involved in building a read replica for an 

AWS RDS instance. In the previous chapters, we saw the steps involved in 

creating an RDS instance. While creating an RDS instance, you have an 

option to automatically create a read replica, as shown in Figure 9-1.

Figure 9-1.  Automatically create a read replica

If you did not create a read replica at the time of instance creation, 

follow these steps, which allow you to add a read replica to an existing RDS 

instance.

	 1.	 Search for RDS in the AWS Console and click on it to 

proceed, as shown in Figure 9-2.

Chapter 9  Replication and High Availability on the Cloud



275

	 2.	 Click on Instances to view the list of your RDS 

instances. You may find one or more depending 

on the number of RDS instances you have already 

created. See Figure 9-3.

Figure 9-2.  Choose RDS from the AWS Console

Figure 9-3.  View the list of RDS instances

	 3.	 Select the instance for which you need to create 

the read replica. Once it’s selected, click on the 

dropdown for Instance Actions. You see an option 

that says Create Read Replica, as shown in Figure 9-4. 

Click on it.

Chapter 9  Replication and High Availability on the Cloud



276

	 4.	 Now you should see the options to choose the 

region and availability zone in which you want to 

create your read replica. You may choose any region 

and availability zone depending on your business 

requirements. See Figure 9-5.

Figure 9-4.  The Create Read Replica option

Figure 9-5.  Read replica options

Chapter 9  Replication and High Availability on the Cloud



277

	 5.	 On the same page, scroll down to choose the 

instance type and storage. You may choose any 

configuration for the read replica that supports your 

business needs. Once you choose the instance type, 

choose the DB instance identifier that will help 

you uniquely identify this read replica, as shown in 

Figure 9-6.

Figure 9-6.  Choose a DB instance identifier

	 6.	 Click on Create Replica to proceed further. Now 

you should see the read replica listed under the 

Instances, as shown in Figure 9-7.

Chapter 9  Replication and High Availability on the Cloud



278

You’ve now seen the steps involved in creating a read replica or slave 

for an RDS instance. It’s now time to go through the steps involved in 

creating a read replica for an EC2 instance.

You need to remember that you cannot have an EC2 instance with a 

replica created using RDS instance. Similarly, you cannot have an RDS 

instance with a slave created on an EC2 instance.

�High Availability for EC2
The following steps involved in creating a slave for an EC2 instance:

	 1.	 An EC2 instance master needs a slave to be created 

on an EC2 instance or any cloud virtual machine or a 

physical server in your data center. The server being 

created as a replica for the EC2 Instance should be 

using the same OS and PostgreSQL version as the 

master. The master and slave server should be able 

to connect between each other over the network. 

Create a new EC2 instance or a server that can be 

used as a slave and proceed to the next step.

Figure 9-7.  The new read replica is listed under the Instances

Chapter 9  Replication and High Availability on the Cloud



279

	 2.	 Connect to the new server that has been created as 

a slave and install PostgreSQL as a root user. Install 

the latest pgdg repo that suits the PostgreSQL 

version. See Figure 9-8.

$ yum install https://yum.postgresql.org/9.6/redhat/

rhel-7.3-x86_64/pgdg-centos96-9.6-3.noarch.rpm -y

Figure 9-8.  Install the pgdg repo that suits the PostgreSQL version

	 3.	 Install PostgreSQL using the following code.  

The following example in Figure 9-9 installs 

PostgreSQL 9.6.

$ yum install postgresql96* -y

Chapter 9  Replication and High Availability on the Cloud



280

	 4.	 Be sure to set the appropriate parameters on the 

master EC2 instance if this has not been done 

already.

The parameters shown in Figure 9-10 are set as an 

example. However, you may need to set different 

parameters as appropriate for your environment on 

your master EC2 instance.

Figure 9-9.  Installing PostgreSQL 9.6

Figure 9-10.  Parameters for the master EC2 instance

	 5.	 Create a replication user on the master server that 

can be used by the slave EC2 instance. Add the 

slave server IP to pg_hba.conf to allow replication 

connections from the new slave, as shown in 

Figure 9-11.

Chapter 9  Replication and High Availability on the Cloud



281

	 6.	 Take a backup of the master using pg_basebackup 

and start the slave. Run the following command on 

the slave to directly copy the data directory to the 

network. You may choose a different method to copy 

the data directory to the network.

$ pg_basebackup -h 172.31.20.216 -p 5432 -U replicator 

-D $PGDATA -Fp -P -Xs -R

	 7.	 Start the slave using hot_standby = ON.

$ echo "hot_standby = 'ON'" >> $PGDATA/postgresql.conf

$ pg_ctl -D $PGDATA start

	 8.	 Setting up a high availability replica on an EC2 

instance uses exactly same approach as setting up 

the slave on any other virtual machine or dedicated 

server. As hot_standby is ON, this slave is now open 

for read connections, making it a read replica.

�Replication and High Availability 
of Rackspace Cloud
Rackspace has no built-in mechanism for high availability of cloud servers, 

but you can always schedule or manually take backups of your filesystems, 

as explained in Chapter 8. See Figure 9-12.

Figure 9-11.  Create a replication user on the master server

Chapter 9  Replication and High Availability on the Cloud



282

And for PostgreSQL installed on Rackspace cloud servers, you can 

follow the same HA solution that you follow for PostgreSQL with on-

premises servers by following the steps mentioned in the “High Availability 

for EC2” section.

�Replication and High Availability of Google 
Cloud Instances
Like other cloud providers, Google Cloud also provides read replicas and 

high availability options for PostgreSQL instances. If a PostgreSQL instance 

is configured for high availability, we call it a “regional instance”. A regional 

instance is located in two zones in the configured region, so if it cannot 

serve data from its primary zone, it fails over and continues to serve data 

from its secondary zone.

This high availability configuration provides an auto-failover to a 

secondary zone if an instance experiences outage or is unresponsive. 

Highly-available PostgreSQL instances do not have a separate failover 

instance the way MySQL instances do.

Figure 9-12.  The Backups menu

Chapter 9  Replication and High Availability on the Cloud



283

�Configure an Instance for High Availability
There is a two-step process for an already created instance to configure 

high availability.

	 1.	 Select the instance that you want to configure for 

high availability after logging in to the console and 

selecting Cloud SQL from the left panel and instance 

from the right panel, as shown in Figure 9-13.

Figure 9-13.  Select an instance to configure for high availability

	 2.	 Once you click on the Edit instance option, scroll 

down to the Enable Auto Backups And High 

Availability section. Then you’ll find the High 

Availability option under the Availability sub-

section. See Figure 9-14.

Single zone: By selecting this, there will not be any 

failover in case of outage. So it is not recommended 

for production instances.

Chapter 9  Replication and High Availability on the Cloud



284

High availability (regional): This will enable auto-

failover to another zone within the selected region. 

So it is recommended for production instances.

Figure 9-14.  The high availability option

Configuring for high availability does not affect your 

backups and does not change the backup/restore 

procedures. You can follow the same procedures for 

backup/restore that you followed before configuring 

the high availability.

Chapter 9  Replication and High Availability on the Cloud



285

�How Failover Works
Auto-failover happens when one of the following scenarios occurs:

•	 The zone where the regional instance is located 

experiences an outage.

•	 The regional instance is unresponsive for 

approximately 60 seconds.

There is no concept of a replication lag; as as long as the secondary 

zone is healthy, failover can occur. When failover occurs, all the 

connections to the primary will be dropped and any new connections 

will be connected to the promoted instance. There is no need to change 

anything in the application end for connectivity.

You can manually initiate a failover to check how your application 

behaves in failover situations. For that, you just need to click the Failover 

button on the Instance Details tab, as shown in Figure 9-15.

Figure 9-15.  Click the Failover button on the Instance Details tab

Chapter 9  Replication and High Availability on the Cloud



286

�Read Replicas
A read replica is just a copy of the master. It is used to offload read requests 

or analytics traffic from the master. It does not provide failover capability.

Here are the steps to create a read replica:

	 1.	 Go to the console and select Cloud SQL from the left panel.

	 2.	 Choose the instance that you want to create a replica 

for and open its More Actions menu at the far right 

of its listing, as shown in Figure 9-16. Select a zone 

in which to create the replica.

Figure 9-16.  Choose Create Read Replica from the more actions 
menu

Figure 9-17.  The new read replica on the Replicas tab

	 3.	 Click on Create Read Replica.

	 4.	 From the Replicas tab, as shown in Figure 9-17, you 

can see the replica.

Chapter 9  Replication and High Availability on the Cloud



287

	 5.	 If the replica is created, the master instance will 

have the details of its replica. You can check the 

pg_stat_replication view for the replica details. 

It will show the ID of the process responsible for 

sending data to the replica from the master and 

the user through which replication was set up. To 

check the replica from the psql terminal, click on 

Connect Using Cloud Shell from the Overview tab of 

the primary instance. You will be connected to the 

primary instance, as shown in Figure 9-18.

Figure 9-18.  The primary instance

	 6.	 Connect to the replica using the Connect Using 

Cloud Shell option from the Overview tab of the 

replica instance. Now you will be connected to the 

replica, as shown in Figure 9-19.

Chapter 9  Replication and High Availability on the Cloud



288

�Replication and High Availability of Azure 
Services
This section covers the replication and high availability options for Azure 

virtual machines and the Azure Database for the PostgreSQL service.

�Azure Database for PostgreSQL
Azure Database for PostgreSQL offers built-in high availability out-of-the-

box. There are no additional replication setup, configuration changes, or 

extra costs. As a developer, you do not need to set up any additional VMS 

or manually configure any replication to achieve high availability. While 

in preview, the service is not backed up with a specific SLA. However, all 

databases will have an SLA of 99.99% availability.

This high availability mechanism is based on a built-in fail-over 

mechanism. It fails over only when node-level interruption occurs, which 

means if any hardware fails on any node, the total node is shut down.

Figure 9-19.  The replica

Chapter 9  Replication and High Availability on the Cloud



289

Every time changes are made to an Azure database for PostgreSQL 

database server, they will be recorded synchronously in Azure storage. This 

works on a transaction basis. When a transaction is committed, changes 

will be recorded to the storage. During the time of failover, it creates a 

new node and attaches data storage where changes being recorded are 

attached to the node. However, any active connections during the failover 

will be dropped.

This service is fairly new, so they are still trying to implement lots of 

features that other vendors in the market have. Azure continuously allows 

customers to provide feedback about the service and improve according to 

the customer requests. There are a lot of feature requests being taken care 

by the Azure development team to improve the service and make it more 

reliable when compared to other venders.

As an example, many customers want to create a streaming replica in 

an Azure service database for many unsupported use cases. However, this 

has been raised as feature request for the Azure development team. See 

https://feedback.azure.com/forums/597976-azure-database-for-

postgresql/suggestions/19418071-replication-support-or-is-that-

built-in for more information.

Replication for read-only replicas is not supported yet in the Azure 

database for PostgreSQL service. Read replicas are currently in the Azure 

plan to announce early next year. They are also going to add replication 

from on-premises to Azure Postgres services. High availability is built into 

the service using Azure Service Fabric.

You can find feature requests for Azure service at https://feedback.

azure.com/forums/597976-azure-database-for-postgresql.

�Virtual Machines
While creating the virtual machine during on Step 3 (Settings, Configure 

Optional Features), select High Availability, as shown in Figure 9-20.

Chapter 9  Replication and High Availability on the Cloud

https://feedback.azure.com/forums/597976-azure-database-for-postgresql/suggestions/19418071-replication-support-or-is-that-built-in
https://feedback.azure.com/forums/597976-azure-database-for-postgresql/suggestions/19418071-replication-support-or-is-that-built-in
https://feedback.azure.com/forums/597976-azure-database-for-postgresql/suggestions/19418071-replication-support-or-is-that-built-in
https://feedback.azure.com/forums/597976-azure-database-for-postgresql
https://feedback.azure.com/forums/597976-azure-database-for-postgresql


290

To provide redundancy to your application, we recommend that you 

group two or more virtual machines in an availability set (see Figure 9-21). 

This configuration ensures that, during a planned or unplanned maintenance 

event, at least one virtual machine will be available and meet the 99.9% Azure 

SLA. The availability set of a virtual machine can’t be changed after it has 

been created.

Figure 9-20.  Choose high availability

Figure 9-21.  Group virtual machines in an availability set

Chapter 9  Replication and High Availability on the Cloud



291

�Summary
The chapter explored how replication and high availability help you when 

something goes wrong or in disaster situations. We covered details about 

which cloud vendor provides what kind of replication and which types 

of high availability solutions. We hope this helps readers proceed with 

setting up replication and high availability for their cloud instances. The 

next chapter covers the need of encryption and how to implement it. It 

also discusses what kind of encryption each cloud vendor provides for its 

servers and instances by default.

Chapter 9  Replication and High Availability on the Cloud



293© Baji Shaik, Avinash Vallarapu 2018 
B. Shaik and A. Vallarapu, Beginning PostgreSQL on the Cloud,  
https://doi.org/10.1007/978-1-4842-3447-1_10

CHAPTER 10

Encryption 
on the Cloud
This chapter explains encryption and how it helps you secure your data. 

We cover encryption at rest and in motion. Each cloud vendor provides 

default encryption for virtual machines at the disk level and for PostgreSQL 

at the disk level and in motion. The chapter also covers how to manage 

your encryption keys.

A database system is considered a store for application data. An 

application may refer to a website that has static data that almost never 

changes. Or an application may refer to a critical transactional that always 

has over several thousands of write transactions sending or retrieving 

data from the DB server. For example, see www.postgresql.org/docs for 

versions 9.1 or 9.2. As these are currently unsupported versions, you would 

find no new patches of PostgreSQL. Thus, you would not find any updates 

happening to the pages that refer to the 9.1 or 9.2 versions of PostgreSQL 

database software.

However, users who have implemented PostgreSQL 9.1 or 9.2 may still 

retrieve such pages from the website. Several organizations might archive 

their data up to several years. Such data may not be accessed (read or 

written) by any of the application logic, but need to be stored for archiving 

purposes. Such data that is stored for the purpose of archiving, but not 

read or updated, can be considered data at rest. Also, any database that 

is not being written frequently can be considered static but cannot be 

http://www.postgresql.org/docs#_blank


294

considered at rest. For example, we discussed that the older version of the 

PostgreSQL docs are not being updated but are being read by users. Thus, 

this data cannot be treated as data at rest. Any data that is being read or 

written to or frequently being moved via network packets from one server 

to another is considered data at rest.

�Encryption for Amazon Cloud Servers
AWS offers KMS (Key Management Services) to manage the encryption 

of data on RDS and EC2 instances. Using KMS, we can create encryption 

keys that help us encrypt data. KMS is integrated with several other 

services such as RDS and EC2. KMS enables you to access the logs that 

help you understand the key usage. KMS provides a centralized key 

management system that gives you a centralized view of keys created for 

the organization and a view of the usage details over the AWS command-

line interface, etc.

The following steps are involved in creating a master key.

	 1.	 In the AWS Services Console, search for IAM and 

click it to proceed. See Figure 10-1.

Figure 10-1.  Find IAM on the AWS Services Console 

Chapter 10  Encryption on the Cloud



295

	 2.	 Click on Encryption Keys (see Figure 10-2). You’ll 

then see a list of encryption keys already created or 

available for use for the account.

Figure 10-2.  Click on Encryption Keys on the left

	 3.	 Click on the Create Key button to begin creating a 

key, as shown in Figure 10-3.

Figure 10-3.  Click Create Key

Chapter 10  Encryption on the Cloud



296

	 4.	 Choose an alias name to identify the key. Add a 

description that helps you uniquely identify and 

understand the purpose of this key. See Figure 10-4.

Figure 10-4.  Add an alias and description for this key

	 5.	 Click on Next Step. You may want to proceed to the 

next step when it asks you to add tags. You should 

now see an option to choose an admin user who 

can manage the key being created (see Figure 10-5). 

Click Next Step once you have chosen the user.

Figure 10-5.  Choose the admin user

Chapter 10  Encryption on the Cloud



297

	 6.	 Now you can choose the user or role that will 

use this key to encrypt or decrypt data from 

applications, as shown in Figure 10-6. Click Next 

Step to proceed.

Figure 10-6.  Choose the IAM users and roles

	 7.	 Click Finish to complete creating the key.

�Enable Encryption for an RDS Instance
It is not possible to enable encryption for all the RDS instance types during 

instance creation. You have a list of instances that use encryption at the 

time of instance creation, as shown in Figure 10-7. You can choose the 

master key that you created in advance, before creating an RDS instance 

that needs to be encrypted (we are talking about data at rest).

Chapter 10  Encryption on the Cloud



298

You cannot enable encryption for an Amazon RDS DB instance 

after the DB instance is created. It is still possible to create an encrypted 

snapshot and restore a database using an encrypted snapshot. Once the 

encryption is enabled, you cannot disable encryption for the instance. 

The master and read replicas must both be encrypted with the same key 

and you cannot have a master or read replica with only one of them being 

encrypted.

Amazon also supports SSL encryption for PostgreSQL DB instances. 

SSL is the preferred mode of encryption for data in motion, while KMS can 

be used for encrypting data at rest.

To connect to a PostgreSQL instance using SSL, you can use the 

following steps.

	 1.	 Download the certificate stored at https://

s3.amazonaws.com/rds-downloads/rds-combined-

ca-bundle.pem.

	 2.	 Import the certificate.

Figure 10-7.  Enabling encryption

Chapter 10  Encryption on the Cloud

https://s3.amazonaws.com/rds-downloads/rds-combined-ca-bundle.pem
https://s3.amazonaws.com/rds-downloads/rds-combined-ca-bundle.pem
https://s3.amazonaws.com/rds-downloads/rds-combined-ca-bundle.pem


299

	 3.	 Force connections over SSL by setting the  

rds.force_ssl parameter to 1. It is set to 0 by default.  

A value of 1 would set SSL encryption to ON forcefully.

Once you set the parameter to ON in the parameter group, this is how 

the connection output looks.

$ psql postgres -h $hostname -p 5432 -U myuser

psql (9.6.4, server 9.6.4)

SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)

Type "help" for help.

postgres=>

�Encryption on an Amazon EC2 Instance
Amazon supports encryption of EBS volumes, making it possible to 

encrypt data at rest. Encryption is supported by all EBS volume types of 

an EC2 instance such as General Purpose, Provisioned IOPS, Throughput 

Optimized HDD, Cold HDD, and Magnetic. Encrypted volumes come with 

a performance cost, although it’s negligible for several workloads. EBS 

volume encryption is available by default for only a selected list of EC2 

instances, as shown in the list in Figure 10-8.

Chapter 10  Encryption on the Cloud



300

You can choose to enable encryption for your EC2 instances at the time 

of creation. As shown in Figure 10-9, while creating your EC2 instance, 

under the Storage section, choose the EBS volume of any type and click on 

the checkbox that allows you to enable encryption.

Figure 10-8.  Instance types that support Amazon EBS encryption

Figure 10-9.  Enabling encryption for EC2 instances at the time of 
creation

Chapter 10  Encryption on the Cloud



301

�Encryption for Rackspace Cloud Servers
The purpose of encryption is to secure your data. However, encrypting 

data may involve some overhead, which means that backing up and 

restoring encrypted data takes significantly longer. If you really want 

encryption for your data, go for it, but don’t forgot the overhead costs.

Rackspace provides encryption for your backups using AES-356 

encryption. You need to create a key or a passphrase that’s known only to 

you. Without the key or passphrase you will not be able to recover your 

backups. Once you choose to encrypt the backups, you cannot disable 

encryption. However, you can change your passphrase when you want.

To encrypt your backups, perform the following steps:

	 1.	 Click on the Backups tab and then on Systems in the 

Rackspace portal, as shown in Figure 10-10.

Figure 10-10.  Choose backup systems

Chapter 10  Encryption on the Cloud



302

	 2.	 From the backup settings, click on the Enable 

Encryption option.

 

	 3.	 Enter a passphrase for encryption, as shown in 

Figure 10-11.

Figure 10-11.  Choose a passphrase for encryption 

Chapter 10  Encryption on the Cloud



303

Encrypting the data contained in your backups from 

this system provides an additional level of security. 

Without having the passphrase, the contents of 

your backup are unreadable. Thus, be sure to use 

a passphrase that you will remember. If you forget 

your passphrase, you will not be able to recover the 

data from your backups.

Once encryption has been enabled, you will not be 

able to disable it.

	 4.	 Once you encrypt it, you can see in the backup 

configuration details that your backup is encrypted, 

as shown in Figure 10-12.

Figure 10-12.  The backup has been encrypted

�Encryption for Google Cloud Instances
In previous chapters, we discussed creating instances, cloud storages, 

cloud SQL instances, and how to back up instances and replication/high 

availability of instances. Now, let’s look at encrypting the data when we use 

Google cloud.

Chapter 10  Encryption on the Cloud



304

�Encrypting Cloud Storage
Encryption of data for Google cloud storage is on the server side by default. 

It will be encrypted before it is written to disk and needs no extra charges. 

This encryption is data at rest using AES-256 encryption. Server-side 

encryption keys will be managed by Google cloud storage, so you do not 

need to worry about the keys. To enable encryption, you don’t need to 

perform any additional configuration. The overhead is very small so there 

is no visible performance impact.

If you don’t want to use default encryption, you can choose your own 

encryption option when you provide your own encryption keys for server-

side encryption. It will replace the default encryption keys. However, you 

are responsible for your keys. If you lose your keys, you will not be able to 

use your backups.

The steps to set up encryption using the Customer-Supplied 

Encryption Keys are at https://cloud.google.com/storage/docs/using-

encryption-keys.

More options to encrypt data at rest are at https://cloud.google.

com/security/encryption-at-rest/.

�Cloud SQL Encryption
Encryption for cloud SQL can be done in two ways.

•	 Using SSL

•	 Using Proxy

�Using SSL

Cloud SQL supports connecting to your PostgreSQL instances using SSL.  

It works on certificates. Server-side certificates are self-signed and need a 

certificate at the client side. These certificates work together to enable the 

server (instance) and client (application) to encrypt their communication.

Chapter 10  Encryption on the Cloud

https://cloud.google.com/storage/docs/using-encryption-keys
https://cloud.google.com/storage/docs/using-encryption-keys
https://cloud.google.com/security/encryption-at-rest/
https://cloud.google.com/security/encryption-at-rest/


305

You can manage your certificate through the console. Select Cloud SQL 

on left panel of the console and then click on the instance and use the SSL 

tab to see/manage your certificates. See Figure 10-13.

Figure 10-13.  Managing SSL configuration

�Using Cloud Proxy

Another way to secure your connection is using cloud proxy. That way, you 

need not whitelist your IP addresses or configure SSL. More information 

on Cloud Proxy is at https://cloud.google.com/sql/docs/postgres/

sql-proxy.

�Encryption for Azure Cloud Services
When it comes to data security, Azure Database for PostgreSQL has 

features that protect data at rest and in motion, limit access, and help you 

monitor activity. If you want to know more about Azure's platform security, 

visit the Azure Trust Center at https://www.microsoft.com/en-us/

trustcenter.

Chapter 10  Encryption on the Cloud

https://cloud.google.com/sql/docs/postgres/sql-proxy
https://cloud.google.com/sql/docs/postgres/sql-proxy
https://www.microsoft.com/en-us/trustcenter
https://www.microsoft.com/en-us/trustcenter


306

This section covers encryption for PostgreSQL services on Azure. There 

are two ways to secure the data—one is to encrypt the data at rest or in 

motion and the other is to secure the connection.

This service uses storage encryption for data at rest. Except temporary 

files created by the engine while running the queries, all the data, 

including backups, are encrypted on disks. The encryption type that the 

service uses is AES 256-bit, which is included in Azure storage encryption. 

You do not need to manage keys, as they are system managed. Encryption 

for storage is ON by default and you cannot disable it.

When it comes to data in motion, the Azure Database for PostgreSQL 

service is configured to require SSL connection security. Enforcing SSL 

connections between your database server and your client applications 

helps protect against "man in the middle" attacks by encrypting the data 

stream between the server and your application. Optionally, you can 

disable requiring SSL for connecting to your database service if your client 

application does not support SSL connectivity.

As storage encryption is ON by default and we do not have any option 

to change it, let’s look at enabling SSL for PostgreSQL connections.

	 1.	 Select your PostgreSQL instance from your 

resources, as shown in Figure 10-14.

Chapter 10  Encryption on the Cloud



307

	 2.	 Click on Connection Security and you will see the 

ENABLED/DISABLED option under SSL settings on 

the right panel, as shown in Figure 10-15.

Figure 10-14.  Select the PostgreSQL instance from the resources

Figure 10-15.  Enabling SSL for PostgreSQL connections

Chapter 10  Encryption on the Cloud



308

Many applications that use PostgreSQL for their database services—

such as Drupal and Django—do not enable SSL by default during 

installation. So, make sure your application supports SSL before you 

enable it for database service.

For applications that require certificate verification for SSL 

connectivity, see the steps at https://docs.microsoft.com/en-us/

azure/postgresql/concepts-ssl-connection-security#applications-

that-require-certificate-verification-for-ssl-connectivity.

�Summary
This chapter covered encrypting data and how doing so helps in terms 

of security. We also talked about encryption of virtual machines and 

PostgreSQL service data at rest and in motion. We hope that this chapter 

has helped readers understand the need for encryption and how to do 

that in the cloud for each vendor. In the next chapter, we cover connection 

pooling in detail—what is it, how it works, and what solutions are available 

for each cloud vendor in terms of it.

Chapter 10  Encryption on the Cloud

https://docs.microsoft.com/en-us/azure/postgresql/concepts-ssl-connection-security#applications-­that-­require-certificate-verification-for-ssl-connectivity
https://docs.microsoft.com/en-us/azure/postgresql/concepts-ssl-connection-security#applications-­that-­require-certificate-verification-for-ssl-connectivity
https://docs.microsoft.com/en-us/azure/postgresql/concepts-ssl-connection-security#applications-­that-­require-certificate-verification-for-ssl-connectivity


309© Baji Shaik, Avinash Vallarapu 2018 
B. Shaik and A. Vallarapu, Beginning PostgreSQL on the Cloud,  
https://doi.org/10.1007/978-1-4842-3447-1_11

CHAPTER 11

Connection Pooling 
on the Cloud
This chapter covers what a connection pooler is and how it helps database 

connections. We include installation and configuration of external 

connection poolers like pgBouncer on each cloud vendor, as well as 

external connection poolers like DBCP on all cloud venders. Apart from 

learning about the external tools, you’ll learn how to set up connection 

poolers at the application level.

�Connection Pooling
To get started with connection pooling, you learn how connections are 

handled in PostgreSQL. When an application or an application server (aka, 

a client) sends a request to PostgreSQL database for a connection, the 

postmaster listens to it first.

It is similar to a listener for Oracle. The postmaster listens to 

the connection and forks another backend process for it. The client 

connection now has a process in the operating system.



310

�What Is Forking?
Forking is the process of creating a child process that looks identical to the 

parent process that created it. This child process is also called a fork. Both 

the parent and the child process have the same code segment, but with 

a different address space. The child process has a different process ID. In 

a multiprogramming operating system, semaphores are used to control 

access to a common resource. The same semaphores as parent processes 

will be open in child process.

Figure 11-1 shows a good example of forking in Linux.

Figure 11-1.  An example of forking in Linux 

In Figure 11-1, note that the process ID of the parent postgres process 

is 2236.

As discussed in the PostgreSQL architecture, there are several backend 

utility process started by Postgres, such as the writer process, the logger 

process, the checkpointer, the WAL writer, etc. All these processes are 

created or forked by the postmaster as child processes. If you observe 

carefully, you see a different process ID for each of these child processes, 

but with the same parent process ID (2236) as the parent process. In the 

last four lines of the output in Figure 11-2, you can see idle connections 

from 192.168.0.9. These are two client connections for which two child 

processes have been created by the Postgres parent process.

Chapter 11  Connection Pooling on the Cloud



311

Every child process created for the client connections can be observed 

in pg_stat_activity, as shown in Figure 11-2.

�Understanding Why Process Creation Is Costly
Several system resources are involved in creating a process in the operating 

system. Likewise, once a client connection is closed or terminated, it 

involves several system resources in closing a child process. Consider a 

critical production database server that takes over 1000 transactions per 

second. For every client request, a process needs to be opened and closed 

by the server. Creating or forking a process for every client connection in 

such a production database system is very costly and time consuming. 

More time is consumed while creating address space, file descriptors the 

same as parent processes, and semaphores for the child process.

�What Is Connection Pooling and How Can  
It Help?
Connection pooling is a mechanism that uses a cache of connections that 

are maintained on the database server. This helps applications reuse the 

already established connections on a database.

Figure 11-2.  Child processes created for the client connections

Chapter 11  Connection Pooling on the Cloud



312

Reusing the already existing connections avoids the time consumption 

involved in starting and stopping processes for every client request. 

Applications either use a built-in connecting pooling mechanism or 

external connection poolers. These connections poolers establish a pool 

of connections to the database and keep them persistent until a timeout. 

Applications can configure the minimum number of connections that 

always exist in the pool and the maximum number of connections that a 

pool of connections can reach up to. A connection pooler provides better 

performance between an application and a database when compared to 

an application without an connection pooler.

�PgBouncer
PgBouncer is an open source, lightweight connection pooler that is 

designed and built for PostgreSQL databases. Applications that do not 

support native connection pooling can implement pgBouncer-like 

external connection poolers to achieve better performance results. Just as 

with the definition of connection pooling, pgBouncer establishes a pool of 

connections upon client requests, having all the established connections 

placed back into the pool when the client disconnects. This pool of 

connections can be reused by further client requests.

PgBouncer can understand the startup parameters on the PostgreSQL 

database. It also detects changes to the startup parameters and ensure 

that the parameters remain consistent for clients. The startup parameters 

include timezone, datestyle, client_encoding, application_name, and 

standard_conforming_strings.

PgBouncer supports three modes of connection pooling:

•	 Session pooling

•	 Transaction pooling

•	 Statement pooling

Chapter 11  Connection Pooling on the Cloud



313

Let’s begin by understanding what mode you should use while using 

pgBouncer.

�Session Pooling
This is one of the most widely used modes, as it is a polite method. When 

a client connects, a server connection is created on the DB server and it is 

assigned to the client connection. That server connection or child process 

stays with the client for the entire duration until the client disconnects. 

This mode supports all PostgreSQL features.

�Transaction Pooling
We have seen PgBouncer performing better with transaction pooling.  

In Transaction pooling, a server connection is assigned to the client only 

during a transaction. If the transaction is over, the server connection will 

be placed back into the pool. Unlike session mode, transaction mode 

does not let a client connection stay until the client is disconnected.  

A server connection will be assigned for every transaction and taken back 

once it is over.

There are a few features that could break if the application does not 

cooperate. For example, transaction mode does not support prepared 

statements. Prepared statements reuse the execution plan and the cache 

of the first SQL. In this mode, the client connection is disconnected once 

the first transaction is over. The next SQLs cannot take the advantage of 

an SQL being prepared. If your application logic does not support all of its 

logic to be completed within a single transaction but depends on the entire 

session that got established, transaction pooling is not a good choice. You 

should instead look for session pooling.

Chapter 11  Connection Pooling on the Cloud



314

�Statement Pooling
Statement pooling is the most aggressive. It does not support transactions 

with multiple statements. For every statement, a server connection is 

assigned and the connection is placed back into pool when the statement 

is finished. This is mainly used for auto-commit of every statement of the 

client. If you are using transactions with multiple SQLs or sessions with 

multiple transactions, this pool may not be the right choice for you.

�When Should You Think About a PgBouncer?
PostgreSQL is observed to have scaling issues with connections if the 

native application pooler is not configured properly or if there is no 

application pooler. There is a general rule that PostgreSQL scales up 

to 350 transactions per second without any connection pooler and the 

performance is optimal. This number may be higher or lower depending 

on your application logic, server configuration, and other reasons. There 

is no such hard limit as to when you should implement a connection 

pooler. However, with increasing demand of connection traffic from an 

application, we must think about introducing the correct connection 

pooler. This is because every connection established directly is a process 

fork with a resident memory of up to 10 MB or more. If you have 1000 

connections, you should be able to save around 9 to 10GB of RAM.

Most of the production database environments deal with several tens 

of application servers. Each individual application server may have either 

built-in connection poolers or external connection poolers. Consider 

an example where 20 app servers establish over 10 connections every 

second to the database on an average. You may need to have a connection 

pooler on every app that establishes a minimum of 10 connections to the 

database, which can go up to 20 or 30 assuming the highest transaction 

peak. If you observe that the active connections on the database at any 

given time are not more than 50, this is because not all app servers are 

Chapter 11  Connection Pooling on the Cloud



315

expected to get the same load. You may still need to have several idle 

connections opened on the database. There is a cost to maintaining those 

idle connections.

We have observed several situations in real-time scenarios where the 

application pooler fails to terminate the maximum pool of connections 

established during a huge peak due to the timeout settings. There are 

also situations where the process memory area created by the previous 

statement is held in memory but not released. This is mostly useful in 

prepared transactions or prepared statements. The prepared transactions 

require the SQL to be pre-cached so that further SQLs reuse the cached 

buffers. This has been observed to be a pain point. If the memory used 

by the previous transaction is not released, you would always see a lot of 

memory being used even when you have 3 to 10 active connections on 

the database. There could be some settings on the application pooler that 

allow you to reset the cache created by the transaction upon its disconnect. 

This is configurable with a few poolers and may not be configurable across 

the board. PgBouncer allows you to have parameters in place that take care 

of resetting the memory used by the previous SQLs.

One of the most difficult tasks with connection poolers on application 

servers is high availability. When a master or primary database is down, 

you need to promote its slave to the master and ensure that all the app 

servers connect to the newly promoted master. This involves modification 

of the connection strings on all application servers with great downtime.

If your application servers connect to a pgBouncer, it just involves 

modification of one connection string. That redirects all connections to 

the newly promoted master. We discuss the steps involved in setting up a 

high availability cluster using pgBouncer that also serves the purpose of 

connection pooler in this chapter.

Chapter 11  Connection Pooling on the Cloud



316

�Installing PgBouncer
If you have very few application servers, you may want to build pgBouncer 

on all of them. However, in an environment that has several tens of 

application servers, you may need to build pgBouncer externally and have 

all the application servers connect to it. See the following instructions on 

how to install and configure pgBouncer in a Linux environment.

These steps were performed on a CentOS 7.3 operating system:

	 1.	 Have the latest pgdg repo installed on your virtual 

machine. Pgdg repo contains a list of Postgres 

software being used by users in their production 

environments. You have to install the pgdg repo 

that suits your operating system and the PostgreSQL 

database version.

Say that you need PostgreSQL 9.6 on CentOS 7.3 

OS. In that case, you would use the following link 

and click on the PostgreSQL version that suits your 

needs.

https://yum.postgresql.org/

Figure 11-3 should help you understand how you 

can choose the pgdg repo that has all the software 

that’s built and tested for the PostgreSQL version 

you choose.

Let’s assume that you need PostgreSQL 9.6. Click on 

it to proceed.

Chapter 11  Connection Pooling on the Cloud

https://yum.postgresql.org/


317

	 2.	 Now you get an option to choose the operating 

system on which you want PostgreSQL or its tools 

to be installed (see Figure 11-4). Select the OS on 

which you need to install pgBouncer (same as with 

the PostgreSQL database OS).

Figure 11-3.  Click on PostgreSQL 9.6 to proceed

Chapter 11  Connection Pooling on the Cloud



318

	 3.	 Now you can either click on the OS version that 

suits you or copy the link. If you click on it, it will 

download the rpm for you. Instead, right-click on 

CentOS 7 - x86_64 and choose Copy Link Address. 

This link can be directly used in the pgBouncer 

server.

This is how the link appears when you copy it for 

CentOS 7:

https://download.postgresql.org/pub/

repos/yum/9.6/redhat/rhel-7-x86_64/pgdg-

centos96-9.6-3.noarch.rpm

	 4.	 Get the pgBouncer ready with a hard disk of at least 

30GB. As we do not want to store several days or 

years of pgBouncer logs, we may need very small 

storage. pgBouncer is a single process. Thus, you 

may not need a very huge server configuration to set 

Figure 11-4.  Choose the operating system to install PostgreSQL

Chapter 11  Connection Pooling on the Cloud

https://download.postgresql.org/pub/repos/yum/9.6/redhat/rhel-7-x86_64/pgdg-centos96-9.6-3.noarch.rpm
https://download.postgresql.org/pub/repos/yum/9.6/redhat/rhel-7-x86_64/pgdg-centos96-9.6-3.noarch.rpm
https://download.postgresql.org/pub/repos/yum/9.6/redhat/rhel-7-x86_64/pgdg-centos96-9.6-3.noarch.rpm


319

it up. A server configuration with 8GB RAM and four 

CPUs may be good for a database that takes over 

1000 to 2000 or more transactions per second.

	 5.	 As a root user, install the pgdg repo rpm on the 

pgBouncer server.

Here is the command to install it. As you can see 

in the command, we can directly use the link 

to download the pgdg repo rpm and yum will 

download and install it automatically.

# yum install https://download.postgresql.

org/pub/repos/yum/9.6/redhat/rhel-7-x86_64/

pgdg-centos96-9.6-3.noarch.rpm

You may press Y when asked for confirmation to 

install the pgdg repo. Once it’s installed, you should 

be able to see a new repo file created in the /etc/

yum.repos.d directory. See Figure 11-5.

[root@localhost yum.repos.d]# ls -alrth | head -4

total 44K

-rw-r--r--.  1 root root 1012 Sep 20  2016 pgdg-96-

centos.repo

-rw-r--r--.  1 root root 2.9K Nov 29  2016 CentOS-

Vault.repo

-rw-r--r--.  1 root root 1.3K Nov 29  2016 CentOS-

Sources.repo

Chapter 11  Connection Pooling on the Cloud

https://download.postgresql.org/pub/repos/yum/9.6/redhat/rhel-7-x86_64/pgdg-centos96-9.6-3.noarch.rpm
https://download.postgresql.org/pub/repos/yum/9.6/redhat/rhel-7-x86_64/pgdg-centos96-9.6-3.noarch.rpm
https://download.postgresql.org/pub/repos/yum/9.6/redhat/rhel-7-x86_64/pgdg-centos96-9.6-3.noarch.rpm


320

	 6.	 Now search for the pgBouncer software and install 

it. These commands help you list the package 

named pgbouncer and install it. See Figure 11-6.

# yum list pgbouncer

# yum install pgbouncer -y

Figure 11-5.  The new repo file created in the /etc/yum.repos.d 
directory

Chapter 11  Connection Pooling on the Cloud



321

	 7.	 If you observe Figure 11-7 closely, you can see that a 

user by the name pgbouncer has been automatically 

created for pgbouncer.

Verify that pgBouncer is installed. The following 

command verifies the version of pgBouncer 

installed.

# su - pgbouncer

$ pgbouncer --version

Figure 11-6.  Finding and installing the pgBouncer software

Chapter 11  Connection Pooling on the Cloud



322

All the configuration files of pgBouncer are located 

by default in the /etc/pgbouncer directory.

	 8.	 Create all the required directories needed by 

pgBouncer, if they don’t already exist. Here are the 

directories needed to log pgBouncer error logs and 

messages and the directories to create the socket 

files or lock files of pgBouncer:

mkdir -p /var/log/pgbouncer/

mkdir -p /var/run/pgbouncer/

chown -R pgbouncer:pgbouncer /etc/pgbouncer/

chown -R pgbouncer:pgbouncer /var/log/pgbouncer/

chown -R pgbouncer:pgbouncer /var/run/pgbouncer/

	 9.	 Change the configuration file to let your application 

connect through pgBouncer to master or slave 

PostgreSQL servers. The following example 

pgBouncer file should help you build a better 

Figure 11-7.  The user pgbouncer has been automatically created for 
pgbouncer

Chapter 11  Connection Pooling on the Cloud



323

pgBouncer setup the first time. However, you may 

still need to make modifications depending on your 

application requirements.

$ cat /etc/pgbouncer/pgbouncer.ini

[databases]

master = host=MasterServerIP port=5432  

dbname=testing

slave = host=SlaveServerIP port=5432  

dbname=testing

listen_addresses = *

[pgbouncer]

logfile = /var/log/pgbouncer/pgbouncer.log

pidfile = /var/run/pgbouncer/pgbouncer.pid

listen_addr = *

listen_port = 6432

auth_type = md5

auth_file = /etc/pgbouncer/cfg/pg_auth

admin_users = postgres

stats_users = postgres

pool_mode = session

server_reset_query = DISCARD ALL

ignore_startup_parameters = extra_float_digits

server_check_query = select 1

max_client_conn = 200

default_pool_size = 10

log_connections = 1

log_disconnections = 1

log_pooler_errors = 1

server_lifetime = 600

server_idle_timeout = 60

autodb_idle_timeout = 3600

Chapter 11  Connection Pooling on the Cloud



324

Let’s try to understand all these parameters to 

understand and build it better.

Under the [databases] section, you need to give 

the alias names to your master and slave DB servers. 

I refer to my master DB server as master and the 

slave DB Server as slave. You can give an alias of 

my choice that helps you identify the name and 

determine if it is a master or a slave.

•	 listen_addresses: Same as with PostgreSQL, you 

see a parameter that allows you to let only a fixed 

range of IPs or all IPs connect through pgBouncer 

to your DB Server. However, this does not bypass 

the pg_hba.conf file on your DB server. Restricting 

IPs through this setting may allow you to avoid 

pgBouncer, by allocating a connection from the 

pool for an IP that is not allowed to connect a 

master or slave DB server.

•	 listen_port: This is the port on which your 

pgBouncer should listen for connections. The 

default port of pgBouncer is 6432. You can always 

modify it and choose a port that is not being used 

by any other service on the pgBouncer server.

•	 logfile: You pass the log file name where 

pgBouncer can log errors and messages.

•	 pidfile: This is the location/filename where 

pgBouncer creates a file that contains the process 

ID of the pgBouncer service. This file will be 

updated upon restart with a new pid.

Chapter 11  Connection Pooling on the Cloud



325

•	 auth_type: Defaults to md5. This can be modified 

if needed. Encrypted passwords are sent over the 

wire.

•	 auth_file: This is the name of the file used to load 

the usernames and passwords. This contains the list 

of users who can connect to the database through 

pgBouncer. This file contains two fields—username 

and password—surrounded by double quotes.

	 For example:

"app_user_reads" "md5abcd1234efgh5678"

"app_user_writes" "md5abcd5678efgh1234"

	 To get the list of users and md5 passwords of 

database users, you can run the following SQL in 

the database and store the output in this file.

select '"'||usename||'" "'||passwd|| 

'"' from pg_shadow;

•	 admin_users: Defaults to null. This is the list of 

users who can run all commands on the console.

•	 stats_users: List of DB users who can run read only 

queries on the console, such as SHOW commands.

•	 pool_mode: This is the parameter that lets you 

choose the mode from the list of three modes 

possible for pgBouncer, as discussed earlier.

•	 server_reset_query: This cleans the changes made 

to a database session leaving the session in a no 

cached state. DISCARD ALL cleans all the cache. 

DEALLOCATE ALL simply drops prepared statements. 

This parameter is not needed for transaction mode.

Chapter 11  Connection Pooling on the Cloud



326

•	 max_client_conn: The maximum number of client 

connections allowed, including all the pools that 

can be created.

•	 default_pool_size: A pool is created for every 

combination of user/database. The number of 

connections to be allowed per such pool can be 

configured using this parameter. The default is 20.

•	 min_pool_size: The number of connections to be 

always maintained in the pool considering peak 

loads that could request more connections.

•	 log_connections: Log all successful connections. 

Default is 1.

•	 log_disconnections: Log all connection 

disconnections. Default is 1.

•	 server_lifetime: This is the time after which the 

pooler closes the server connections that have 

connected longer than this.

•	 server_idle_timeout: Drops all the connections 

that have been idle since these many seconds.

•	 autodb_idle_timeout: If database pools are 

unused for these many seconds, they are freed.

	 10.	 Now start pgBouncer using service or do so directly.

# service pgbouncer start

Or

$ pgbouncer -d /etc/pgbouncer/pgbouncer.ini

Chapter 11  Connection Pooling on the Cloud



327

�How Does PgBouncer Work?
Let’s say a user with the username abc established a connection for the 

first time to the pgBouncer from an application. PgBouncer would check 

if this user authentication was successful by reading its auth file. Once 

the user is authenticated successfully, pgBouncer establishes a pool of 

connections to the database. It would not just open one connection to the 

database. It would opens a default_pool_size number of connections.

If the application sends another session using the same user, the pool 

of connections will be used and one connection from the pool will be 

assigned to the application again. If the first connection is completed from 

the application, it disconnects from pgBouncer. But pgBouncer would not 

disconnect from the database until a timeout occurs. So, if application 

establishes another connection from the same user, the connection the 

from pool would be reused.

�High Availability While Using PgBouncer
One of the major concerns in any environment is ensuring high 

availability. Adding a component or service may add more single point of 

failures. To ensure high availability in an environment where pgBouncer 

is used as an external connection pooler, you can use the design shown in 

Figure 11-8.

Chapter 11  Connection Pooling on the Cloud



328

As you can see in Figure 11-8, you can configure two pgBouncer 

servers and install HAProxy on all the app servers. Choose two servers 

that belong to two different regions and that have pgBouncers installed in 

them. Now, HAProxy should connect to any of the available pgBouncer 

servers. This way, application connections are always redirected to the 

master or slave DB via at least one of the available pgBouncers, thus 

ensuring high availability.

�Connection Pooling on AWS
PostgreSQL can be installed on AWS either by choosing RDS or an EC2 

instance. It is much easier to configure and set up a secured and high 

performance PostgreSQL instance on AWS. Similarly, you may choose to 

build your application servers on EC2 instances or your own data centers.

Figure 11-8.  Design for high availability with pgBouncer

Chapter 11  Connection Pooling on the Cloud



329

While using your PostgreSQL instance that is being hit with several 

hundreds or thousands of transactions per second, you may choose to 

involve an external connection pooler such as pgBouncer. This is because 

the connection pooler would reuse the connections established to the 

database and avoid the time and resource costs involved in starting and 

stopping processes. For more details on the need for connection pooling, 

see the “Connection Pooling” section of this chapter.

There is no such service for PostgreSQL connection pooling on 

AWS. Instead, you may choose to install pgBouncer like external 

connection poolers on either the DB servers or on a separate EC2 instance. 

It is very easy to install pgBouncer on an EC2 instance.

Here are the steps that you need to follow to install pgBouncer.

	 1.	 Create an EC2 instance that is in the same region 

as the DB server. To ensure high availability, create 

multiple (two) pgBouncer instances.

	 2.	 Download and install the latest pgdg repo from 

yum.postgresql.org.

# yum install https://download.postgresql.org/ 

pub/repos/yum/9.6/redhat/rhel-7-x86_64/pgdg-

centos96-9.6-3.noarch.rpm

	 3.	 Search for the pgBouncer package and install it.

# yum list pgbouncer

# yum install pgbouncer -y

These are the steps that you need to follow to install 

pgBouncer on an EC2 instance. The step-by-step 

process of installing pgBouncer is explained in this 

chapter in the “Installing pgBouncer” section.

Chapter 11  Connection Pooling on the Cloud



330

�Connection Pooling for Rackspace Cloud 
Servers
There is no separate connection pooler from Rackspace for their cloud or 

dedicated servers.

You can use external poolers like pgBouncer for PostgreSQL installed 

on Rackspace cloud machines. The steps to install and configure 

pgBouncer are already described in this chapter in the “Installing 

PgBouncer” section.

You can also use an application level pooling for the PostgreSQL 

database. If you are using applications based on Java, widely used ORM 

frameworks like Hibernate provide built-in as well as pluggable connection 

pooler interfaces. The Postgres JDBC driver supports connection pooling 

as a DataSource Implementation. Documentation is available at  

https://jdbc.postgresql.org/documentation/head/ds-ds.html.

However, neither JDBC driver-provided pools or Hibernate-provided 

pools are recommended for production use. Instead, the most widely used 

and advanced connection poolers like C3P0 or DBCP are recommended for 

production use. See http://commons.apache.org/proper/commons-dbcp/.

�Connection Pooling for Google Cloud 
Instances
There have been many discussions about implementing or using a 

connection pooler against Google cloud SQL instances. However, 

they never end up with a solution. The whole concept is that database 

connections in a cloud-hosted environment should be managed 

differently than those on a conventional server. In particular, be aware 

that your database instance may be taken offline while not in use, and any 

pooled connections would be closed. We recommend that you create a 

Chapter 11  Connection Pooling on the Cloud

https://jdbc.postgresql.org/documentation/head/ds-ds.html
http://commons.apache.org/proper/commons-dbcp/


331

new connection to service each HTTP request, and then you reuse it for 

the duration of that request (since the time to create a new connection is 

similar to that required to test the liveness of an existing connection).

However, Google cloud is still open for discussions around connection 

pooling. They are really interested to know about requirements or 

use cases that help to understand the need of connection pooling to 

implement it.

One option is the commons DBCP pool (with straight JDBC, no JDO/

JPA). It has a facility for testing a connection before returning from the 

pool, which prevents any errors if the database instance goes “to sleep”. 

The test query adds 10-15ms seconds before every query, which is 

acceptable to most of the requirements. DBCP has more efficient ways to 

check for dead connections (e.g., every x seconds while sitting in the pool), 

but these can't be used because they involve starting up new maintenance 

threads that are not allowed in AppEngine.

Of course, this will prevent any errors, but it will not keep some 

requests from taking upward of 15 seconds while they wait for the database 

instance to come up. You can deal with that by having your monitoring 

server hit an URL every five minutes that involves a database call, so even 

in periods of very low activity, the database should stay on.

See more at http://commons.apache.org/dbcp/configuration.html.

Here’s how we wire up our data source and transaction manager in 

Spring:

    �<bean id="dsSearchIndex" class="org.apache.commons.dbcp.

BasicDataSource" destroy-method="close">

        �<property name="driverClassName" value="com.google.

appengine.api.rdbms.AppEngineDriver"/>

        �<property name="url" value="jdbc:google:rdbms://xxxx.

com:web-prod:searchindex/ctssearchidx"/>

        <property name="username" value="xxx"/>

        <property name="password" value="xxx"/>

Chapter 11  Connection Pooling on the Cloud

http://commons.apache.org/dbcp/configuration.html


332

        �<property name="testOnBorrow" value="true"/>

        �<property name="validationQuery" value="select 1"/>

    </bean>

        �<bean id="tmSearchIndex" class="org.springframework.

jdbc.datasource.DataSourceTransactionManager">

            <property name="dataSource" ref="dsSearchIndex"/>

            <qualifier value="searchIndex"/>

        </bean>

        �<tx:annotation-driven mode="aspectj" transaction-

manager="tmSearchIndex" />

    �<bean id="daoSearchIndex" class="com.commentous.

searchindex.SearchIndexJdbcDao">

        <property name="dataSource" ref="dsSearchIndex"/>

    </bean>

If you want to install PgBouncer on Google cloud virtual machines, 

follow the steps explained in the “Installation of pgBouncer” section after 

you create the machine and connect to it.

�Connection Pooling for Azure Cloud 
Instances
Like some of the other venders, there is no special connection pooler 

implemented for Azure database for PostgreSQL instances or PostgreSQL 

installed on virtual machines. You need to use external pooling software 

like pgBouncer or pool the connections at the application level. Since you 

have learned about pgBouncer in this chapter, can consider implementing 

it in this case.

Once you have connected to your Azure cloud virtual machine, you 

can follow the steps explained in the “Installation of PgBouncer” section.

Chapter 11  Connection Pooling on the Cloud



333

Apart from using external tools, if you want to connect your application 

using pooling internally, use the documentation mentioned in the 

following list. Explaining the connection of each application is beyond 

the scope of this book, so we provide Azure documentation that includes 

step-by-step procedures with sample codes and that makes it easy to 

implement your applications.

•	 Use Python to connect and query data: https://docs.

microsoft.com/en-us/azure/postgresql/connect-

python

•	 Use Node.js to connect and query data: https://docs.

microsoft.com/en-us/azure/postgresql/connect-

nodejs

•	 Use Java to connect and query data: https://docs.

microsoft.com/en-us/azure/postgresql/connect-java

•	 Use Ruby to connect and query data: https://docs.

microsoft.com/en-us/azure/postgresql/connect-ruby

•	 Use PHP to connect and query data: https://docs.

microsoft.com/en-us/azure/postgresql/connect-php

•	 Use .NET (C#) to connect and query data: https://

docs.microsoft.com/en-us/azure/postgresql/

connect-csharp

•	 Use the Go language to connect and query data: 

https://docs.microsoft.com/en-us/azure/

postgresql/connect-go

•	 If you are using applications based on Java, the most 

widely used and advanced connection poolers, like 

C3P0 or DBCP are recommended for production use. 

See http://www.mchange.com/projects/c3p0/ and 

http://commons.apache.org/proper/commons-dbcp/.

Chapter 11  Connection Pooling on the Cloud

https://docs.microsoft.com/en-us/azure/postgresql/connect-python
https://docs.microsoft.com/en-us/azure/postgresql/connect-python
https://docs.microsoft.com/en-us/azure/postgresql/connect-python
https://docs.microsoft.com/en-us/azure/postgresql/connect-nodejs
https://docs.microsoft.com/en-us/azure/postgresql/connect-nodejs
https://docs.microsoft.com/en-us/azure/postgresql/connect-nodejs
https://docs.microsoft.com/en-us/azure/postgresql/connect-java
https://docs.microsoft.com/en-us/azure/postgresql/connect-java
https://docs.microsoft.com/en-us/azure/postgresql/connect-ruby
https://docs.microsoft.com/en-us/azure/postgresql/connect-ruby
https://docs.microsoft.com/en-us/azure/postgresql/connect-php
https://docs.microsoft.com/en-us/azure/postgresql/connect-php
https://docs.microsoft.com/en-us/azure/postgresql/connect-csharp
https://docs.microsoft.com/en-us/azure/postgresql/connect-csharp
https://docs.microsoft.com/en-us/azure/postgresql/connect-csharp
https://docs.microsoft.com/en-us/azure/postgresql/connect-go
https://docs.microsoft.com/en-us/azure/postgresql/connect-go
http://www.mchange.com/projects/c3p0/
http://commons.apache.org/proper/commons-dbcp/


334

�Summary
The chapter talked about the need for connection pooling and how it saves 

connection timing during new connections. It covered external connection 

pooling tools, like PgBouncer and DBCP, and other options for connection 

pooling, like setting up poolers in application code. In the next chapter, 

we are going to talk about monitoring. We will cover default monitoring 

provided by each cloud vendor for cloud servers/virtual machines and 

PostgreSQL services.

Chapter 11  Connection Pooling on the Cloud



335© Baji Shaik, Avinash Vallarapu 2018 
B. Shaik and A. Vallarapu, Beginning PostgreSQL on the Cloud,  
https://doi.org/10.1007/978-1-4842-3447-1_12

CHAPTER 12

Monitoring Cloud 
Databases
This chapter covers an introduction to monitoring, including why it is 

needed and how it helps in a real-time environment. This chapter also 

covers the monitoring that is included by default with each cloud vendor. 

The cloud vendors provide different types of monitoring, so you just need to 

differentiate among them when choosing the right monitoring. This chapter 

includes virtual machines and PostgreSQL services for each vendor.

�Monitoring with Amazon Cloud
Amazon Cloud offers several services that let you build your databases, 

applications, or your entire infrastructure ecosystem. It is very important to 

have one service that lets you monitor the ecosystem built using AWS. As 

we are mainly concerned about PostgreSQL on AWS in this book, we 

need a service that helps us monitor instances. As you probably guessed, 

Amazon offers a service called CloudWatch that helps you monitor your 

RDS and EC2 instances. One of the important features needed in an 

infrastructure is historic data. CloudWatch Service helps you look into 

historic data and analyze the resource utilization so you can rightsize your 

AWS instances. All the data collected by monitoring will be retained for 15 

months, even if the instance was terminated. This helps you look back at a 

certain point in history.



336

�Monitoring an RDS or an EC2 Instance
Monitoring is enabled for all the RDS and EC2 instances by default. 

Statistics or diagnostic data about every RDS Instance is collected every 

minute or every five minutes as subscribed and made available for 

CloudWatch.

You may want to enable enhanced monitoring when creating your RDS 

instance or EC2 instance the first time. See Figure 12-1.

To access CloudWatch, search for CloudWatch under Services, as 

shown in Figure 12-2. You can click on CloudWatch once it appears.

Figure 12-1.  Enabling monitoring 

Figure 12-2.  Searching for CloudWatch

Chapter 12  Monitoring Cloud Databases



337

There are two types of monitoring possible using CloudWatch.

•	 Basic Monitoring: This is free. You get seven metrics 

that are collected every five minutes free of charge. You 

also get three status check metrics for free.

•	 Detailed Monitoring: Collects the same metrics as the 

Basic Monitoring option, but at a frequency of every 

minute.

Here are the steps involved in enabling alarms or alerts for EC2 or RDS 

instances that are being monitored so that we are notified about service 

outage.

	 1.	 After logging in to the AWS Console, search for EC2 

Under Services and click on it.

	 2.	 Now click on Instances to see the list of running EC2 

instances on your account, as shown in Figure 12-3.

	 3.	 Choose the instance for which you need to enable 

detailed monitoring. Click on Actions. Under the 

Actions dropdown, click on CloudWatch Monitoring 

and Enable Detailed Monitoring, as shown in 

Figure 12-4.

Figure 12-3.  List of running EC2 instances on the account

Chapter 12  Monitoring Cloud Databases



338

	 4.	 You have now enabled detailed monitoring, so let’s 

see how you can create alarms.

Choose the instance for which you need to create 

alarms and click on the Actions dropdown. Choose 

CloudWatch Monitoring and click on Add/Edit 

Alarms (see Figure 12-5).

You do not have to enable detailed monitoring to 

create alarms. It is just an option to enable granular 

debugging.

Figure 12-4.  Enable detailed monitoring

Figure 12-5.  Creating an alarm

Chapter 12  Monitoring Cloud Databases



339

	 5.	 Once you click on Add/Edit Alarms, you get an 

option to Create Alarm, as shown in Figure 12-6. 

Click on it to proceed.

	 6.	 Now you can choose a title for your alarm and pick 

the recipients who should be notified about it. You 

can choose the metric for which you need an alarm 

or notification to be sent. Alarms are not free. There 

is a charge involved, depending on the alarms you 

create. Choose the threshold at which you should be 

notified and then click on Create Alarm, as shown in 

Figure 12-7.

Figure 12-6.  Create an alarm by clicking the button

Chapter 12  Monitoring Cloud Databases



340

	 7.	 Here is a list of alarms that you can create  

(see Figure 12-8).

•	 CPU Utilization

•	 Disk Reads

•	 Disk Read Operations

•	 Disk Writes

•	 Disk Write Operations

•	 Network In

•	 Network Out

•	 Status Check Failed (Any)

•	 Status Check Failed (Instance)

•	 Status Check Failed (System)

Figure 12-7.  Pick your thresholds for the alarm

Chapter 12  Monitoring Cloud Databases



341

	 8.	 Once you have created your alarm, you should 

get a popup that says that you need to confirm 

your subscription within three days, as shown in 

Figure 12-9.

You should also receive an email that asks you to 

confirm the subscription, as shown in Figure 12-10. 

Click on Confirm Subscription.

Figure 12-8.  The dropdown list of alarms that you can create

Figure 12-9.  Alarm created successfully message

Chapter 12  Monitoring Cloud Databases



342

	 9.	 If you need to add more alarms, you can search for 

CloudWatch Service and click on Alarms. You’ll see 

an option to create an alarm (see Figure 12-11). You 

can then create an alarm for another metric.

	 10.	 There are several metrics available for creating 

alarms. These alarms are not restricted to an EC2 

instance (see Figure 12-12).

Figure 12-10.  Email confirming the subscription

Figure 12-11.  You can create more alarms through the CloudWatch 
service

Chapter 12  Monitoring Cloud Databases



343

You can have alarms created for:

•	 EBS volumes

•	 EC2 instances (per-instance and across all 

instances)

•	 Logs metrics

•	 RDS instances (per-database and across all 

databases)

As you can see in Figure 12-13, we can set an alarm for your RDS 

instances as well.

Figure 12-12.  Metrics by category

Chapter 12  Monitoring Cloud Databases



344

Once you have created all your alarms, you can check to see if all the 

alarms are OK, as shown in Figure 12-14.

Figure 12-13.  You can set an alarm for your RDS instances as well

Figure 12-14.  Checking the state of the alarms

Chapter 12  Monitoring Cloud Databases



345

�AWS CloudWatch Dashboard
The Amazon Dashboard enables you to view all the resource utilization in a 

graphical view. These dashboards can be created or customized as you like.

To get a dashboard for your RDS instance, search for RDS service in 

the AWS Console. Then choose the instance that you need to see in the 

dashboard. Click on Instance Actions and then click on See Details, as 

shown in Figure 12-15.

You should see a dashboard that gives you a graphical representation 

of CPU, disk IO, etc. (see Figure 12-16). You can click on an individual 

metric and go back to a point in time captured by CloudWatch. Similar 

information is available for an EC2 instance too.

Figure 12-15.  Looking at the instances

Chapter 12  Monitoring Cloud Databases



346

�Create a Customized Dashboard for an EC2 
Instance
You can create a customized dashboard using CloudWatch. Search for 

CloudWatch under Services and click on it.

	 1.	 Click on Dashboards and then click on Create 

Dashboards (see Figure 12-17). You’ll see a popup 

where you choose a dashboard name. Click Next to 

proceed.

Figure 12-16.  The dashboard showing various metrics

Figure 12-17.  Name the dashboard

Chapter 12  Monitoring Cloud Databases



347

	 2.	 You can choose a widget type of your choice, as 

shown in Figure 12-18. Choose a widget type and 

click on Configure.

	 3.	 Choose the service for which you need to create a 

dashboard, as shown in Figure 12-19.

	 4.	 If you selected EC2, you can select Per-Instance 

Metrics or Metrics for All, as shown in Figure 12-20.

Figure 12-18.  Choose a widget type for your dashboard

Figure 12-19.  Choose a service for the dashboard

Chapter 12  Monitoring Cloud Databases



348

	 5.	 Let’s say you choose per-instance metrics. If so, 

you’ll get an option to choose the metric to be 

displayed on the dashboard. Click on the metric and 

Create Widget. See Figure 12-21.

	 6.	 Proceed to create as many widgets as you need. You 

may finally see a dashboard. This dashboard shown 

in Figure 12-22 includes RDS and EC2 instances. 

However, it is wise to have multiple dashboards for 

each instance or instance type.

Figure 12-20.  Choose the type of metrics

Figure 12-21.  Creating the widget

Chapter 12  Monitoring Cloud Databases



349

�Monitoring for Rackspace Cloud Servers
As all other venders, Rackspace provides monitoring for Rackspace Cloud 

servers by default. Let’s look at the metrics it provides as part of the default 

monitoring service.

	 1.	 On the Rackspace portal, you can see your server 

created (see Figure 12-23). The Monitoring column 

shows green dots, which indicates monitoring of 

each metric.

Figure 12-22.  Dashboard with RDS and EC2 instances

Figure 12-23.  The Rackspace portal, with monitoring shown

Chapter 12  Monitoring Cloud Databases



350

	 2.	 Click on the server that you want to see and you 

will see the Monitoring Checks section, as shown in 

Figure 12-24.

	 3.	 If you click on each metric, you will see details with 

graphs. See Figure 12-25.

Figure 12-24.  Monitoring checks section

Chapter 12  Monitoring Cloud Databases



351

	 4.	 If you click on View Check's Metrics in Rackspace 

Intelligence, you can some detailed graphs if you 

scroll down. See Figure 12-26.

Figure 12-25.  Graphs of the monitoring process

Chapter 12  Monitoring Cloud Databases



352

	 5.	 You can create alarms for each metric. You need to 

click on Create Alarm, as shown in Figure 12-27.

Figure 12-26.  Detailed graphs of the monitoring process

Chapter 12  Monitoring Cloud Databases



353

You can find more about alarms at https://

developer.rackspace.com/docs/rackspace-

monitoring/v1/tech-ref-info/alert-triggers-

and-alarms.

Figure 12-27.  You can create alarms for each metric

Chapter 12  Monitoring Cloud Databases

https://developer.rackspace.com/docs/rackspace-monitoring/v1/tech-ref-info/alert-triggers-and-alarms
https://developer.rackspace.com/docs/rackspace-monitoring/v1/tech-ref-info/alert-triggers-and-alarms
https://developer.rackspace.com/docs/rackspace-monitoring/v1/tech-ref-info/alert-triggers-and-alarms
https://developer.rackspace.com/docs/rackspace-monitoring/v1/tech-ref-info/alert-triggers-and-alarms


354

	 6.	 You can set up mobile monitoring as well. For more 

details, go to https://support.rackspace.com/

how-to/introducing-rackspace-monitoring-on-

mobile-devices.

	 7.	 You can set up notifications and a notifications 

plan for your alarms. For more information, 

visit https://developer.rackspace.com/docs/

rackspace-monitoring/v1/getting-started/

create-first-monitor/.

�Monitoring Google Cloud Instances
By default, Google Cloud monitors Compute Engine VM instances and 

cloud SQL instances. There are different kinds of monitoring depending on 

your needs, such as monitoring activities for your project, monitoring the 

VM instance, or monitoring your PostgreSQL instance. Let’s look at each in 

detail.

�Monitoring Your Project Activities
If you want to monitor your project based on which instances have been 

created/deleted or other activities that were done to your resources, you 

can do it through the Logs Viewer. Here are the steps:

	 1.	 Log in to your console using your credentials. 

https://console.cloud.google.com

	 2.	 Select Logging from the StackDriver section on the 

left panel, as shown in Figure 12-28.

Chapter 12  Monitoring Cloud Databases

https://support.rackspace.com/how-to/introducing-rackspace-monitoring-on-mobile-devices
https://support.rackspace.com/how-to/introducing-rackspace-monitoring-on-mobile-devices
https://support.rackspace.com/how-to/introducing-rackspace-monitoring-on-mobile-devices
https://developer.rackspace.com/docs/rackspace-monitoring/v1/getting-started/create-first-monitor/
https://developer.rackspace.com/docs/rackspace-monitoring/v1/getting-started/create-first-monitor/
https://developer.rackspace.com/docs/rackspace-monitoring/v1/getting-started/create-first-monitor/
https://console.cloud.google.com/


355

	 3.	 Select the project that you want to monitor. You will 

see the activities performed under that project. See 

Figure 12-29.

Figure 12-28.  Choose Logging

Chapter 12  Monitoring Cloud Databases



356

	 4.	 You can create your own metrics for a specific 

period of time. Then you can see the metrics from 

Logs-Based Metrics on the left panel, as shown in 

Figure 12-30.

	 5.	 Logging usage can be viewed from the Resource 

Usage tab on left panel of the same page.

Figure 12-29.  Select the project you want to monitor

Figure 12-30.  Create your own metrics here

Chapter 12  Monitoring Cloud Databases



357

�Monitoring VM Instances
You can see hardware monitoring of VM instances, which is provided by 

default.

	 1.	 Log in to the console at https://console.cloud.

google.com.

	 2.	 Select VM Instances from Compute Engine on the 

left panel.

	 3.	 Click on the instance that you want to monitor. You 

will see nice graphs of monitoring, as shown in 

Figure 12-31.

	 4.	 You can see these metrics in the monitoring report:

•	 CPU utilization

•	 Disk bytes

•	 Disk operations

•	 Network bytes

•	 Network packets

	 5.	 You can see graphs captured for 30 days.

Figure 12-31.  Monitoring graphs

Chapter 12  Monitoring Cloud Databases

https://console.cloud.google.com/
https://console.cloud.google.com/


358

�Monitoring PostgreSQL Instances
You do not need to configure monitoring for PostgreSQL instances on 

Google Cloud, as it provides monitoring of some metrics by default. Let’s 

look at the monitoring it provides.

	 1.	 Log in to the console at https://console.cloud.

google.com.

	 2.	 Select SQL from the left panel.

	 3.	 Select the instance that you want to see monitoring 

and you will see the monitoring graphs in the 

Overview tab, as shown in Figure 12-32.

	 4.	 This provides operating system and database 

metrics. Figure 12-33 shows the metrics captured for 

the PostgreSQL instance.

Figure 12-32.  The monitoring graphs in the Overview tab

Chapter 12  Monitoring Cloud Databases

https://console.cloud.google.com/
https://console.cloud.google.com/


359

	 5.	 If you click on the Operations tab on the same page, 

you can see the operations performed for particular 

instances, such as shown in Figure 12-34.

Figure 12-33.  Metrics captured for the PostgreSQL instance

Figure 12-34.  Operations for particular instances

Chapter 12  Monitoring Cloud Databases



360

	 6.	 You can also see the PostgreSQL database logs by 

choosing the View PostgreSQL Error Logs option 

from the the Operation and Logs section. See 

Figure 12-35.

	 7.	 If you want to monitor more metrics of PostgreSQL 

apart from the metrics that are provided by default, 

you can look at the PostgreSQL plugin at https://

cloud.google.com/monitoring/agent/plugins/

postgreSQL.

You can enable more logging, monitoring, and diagnostics using 

StackDriver.

	 1.	 You need to provide your Gmail ID to log in and then 

create an account, which come with 30-day free trail. 

See https://app.google.stackdriver.com/.

Figure 12-35.  Viewing the PostgreSQL database logs

Chapter 12  Monitoring Cloud Databases

https://cloud.google.com/monitoring/agent/plugins/postgreSQL
https://cloud.google.com/monitoring/agent/plugins/postgreSQL
https://cloud.google.com/monitoring/agent/plugins/postgreSQL
https://app.google.stackdriver.com/


361

	 2.	 Add a project that you want to monitor.

	 3.	 A typical StackDriver window is shown in Figure 12-36.

	 4.	 You can set up alerting policies, monitor uptime of 

applications and instances, and more.

�Monitoring Azure Cloud Instances
As with all other venders, Microsoft Azure provides monitoring by default. 

This section looks at how monitoring works on these services.

•	 Virtual machines

•	 Azure Database for PostgreSQL

Figure 12-36.  Typical StackDriver window

Chapter 12  Monitoring Cloud Databases



362

�Virtual Machines
Let’s look at the monitoring that’s provided by default for Azure virtual 

machines. Here are the steps to look at the metrics:

	 1.	 Click on All Resources on the left panel of your 

Azure Portal.

	 2.	 Click on the virtual machine that was already 

created.

	 3.	 You can see Monitoring section once you click on 

the virtual machine, as shown in Figure 12-37.

	 4.	 If you click on Metrics under the Monitoring section, 

you can see the list of metrics that you can monitor, 

as shown in Figure 12-38.

Figure 12-37.  Monitoring section of the Azure Portal

Chapter 12  Monitoring Cloud Databases



363

	 5.	 You can select the metric that you want to monitor. 

Be sure to select the metric of same unit.

	 6.	 You can create alerts on each metric. For that, you 

need to click on Alert Rules on the same page. 

Then click on Add Metric Alert, as highlighted in 

Figure 12-39.

Figure 12-38.  Metrics that you can monitor

Chapter 12  Monitoring Cloud Databases



364

	 7.	 Once you click on Add Metric Alert, you will see a 

window where you need to provide the details to 

create an alert on a metric. See Figures 12-40  

and 12-41.

Figure 12-39.  Choose to add a metric alert

Chapter 12  Monitoring Cloud Databases



365

Figure 12-40.  Provide details to create the alert on a metric

Chapter 12  Monitoring Cloud Databases



366

Figure 12-41.  Set up the alert

Chapter 12  Monitoring Cloud Databases



367

Name: Specify a name to identify this rule

Description: Describe the rule

Subscription: Select the subscription

Resource group: Select the resource group that you 

want to create an alert on

Resource: Select the resource for creating the alert

Metric: Select the metric that you want this alert 

rule to monitor

Condition: Condition for the alert

Threshold: Threshold to send the alert

Period: Select a time span during which to monitor 

the metric data specified by this alert rule

Webhook: Choose the HTTP or HTTPs endpoint 

that will route the Azure alerts to other notification 

channels

Take action: Select an automation runbook to run 

each time the alert is triggered (see Figure 12-42)

Chapter 12  Monitoring Cloud Databases



368

Figure 12-42.  Select an automation runbook

Chapter 12  Monitoring Cloud Databases



369

	 8.	 You can also look at advisor recommendations 

from Azure to set up metrics and alerts, as shown in 

Figure 12-43.

�Azure Database for PostgreSQL
Azure provides default monitoring for Azure database for PostgreSQL as 

well. Here are the steps:

	 1.	 Select the PostgreSQL instance and select Metrics 

from the Monitoring section. You will see the OS 

metrics, as shown in Figure 12-44.

Figure 12-43.  Advisor recommendations from Azure

Chapter 12  Monitoring Cloud Databases



370

	 2.	 You can also look at the Activity Log, where 

you’ll see Log Analytics and Operation Logs. See 

Figure 12-45.

Figure 12-44.  Viewing the OS metrics

Chapter 12  Monitoring Cloud Databases



371

	 3.	 Check the PostgreSQL database logs from the Server 

Log option, as shown in Figure 12-46.

Figure 12-45.  The Activity Log shows log analytics and operation logs

Figure 12-46.  PostgreSQL database logs

Chapter 12  Monitoring Cloud Databases



372

�Summary
This chapter covered why monitoring is needed and how it helps. It talked 

about the monitoring services available from each vendor by default and 

where to find monitoring for cloud solutions. We hope this chapter helps 

you understand monitoring your servers and databases on the cloud, 

regardless of the cloud vendor you’re using.

Chapter 12  Monitoring Cloud Databases



373© Baji Shaik, Avinash Vallarapu 2018 
B. Shaik and A. Vallarapu, Beginning PostgreSQL on the Cloud,  
https://doi.org/10.1007/978-1-4842-3447-1

Index

A
Accelerated computing instances

F1, 91
G3, 91
P3 and P2, 89–91

Amazon
AWS (see Amazon Web Services 

(AWS))
EC2, 17–18
network security, 18
RDS, 16–17

Amazon Cloud
CloudWatch, 335
master key creation, Servers

admin user, choosing, 296
alias and description, 296
AWS Services Console, 294
create Key button, 295
encryption keys, 295
IAM users and roles, 297

monitoring RDS/EC2 instance
basic monitoring, 337
detailed monitoring, 337
enable enhanced 

monitoring, 336
enabling alarms/alerts, 337, 

339, 341–344
search for CloudWatch, 336

Amazon Web Services (AWS)
availability zones, 63–64
backing up

EC2 instance, 239–244
RDS instance, 236–238

CloudWatch dashboard, 
345–346

connection pooling, 328–329
create account, 65–67
defined, 16
EC2 (see Elastic Compute Cloud 

(EC2), Amazon)
read replicas, 274–278
RDS (see Relational Database 

Service (RDS))
ANSI C, 33
AUTOVACUUM launcher process, 

41
Autovacuum settings, 61
Availability zones (AZ), 63–64
AWS, see Amazon Web Services 

(AWS)
Azure

connection pooling, 332–333
Database, 22
offers, 22
PostgreSQL (see PostgreSQL 

software)

https://doi.org/10.1007/978-1-4842-3447-1


374

storage, 188
subscription, 22
virtual machine (see Virtual 

machines)
Azure Cloud Services, 305–307

B
Background writer settings, 60
Binary installation, 47
Blob storage, 264

add new storage, 266–268
add to create storage, 265

Buckets, 254–257
Burstable performance instances, 

82

C
CHECKPOINTER process, 40
Cloud

-based cost model, 15
computing

pros and cons, 12–13
vs. on-premise computing, 

12–14
migrating to, 24–28

Cloud block storage
Attach Volume option, 129–132
block storage volume, 125, 128
volume details and actions, 128

Cloud security
Compute Engine, 220

Microsoft Azure Security, 
227–228

SQL Database, 232–234
SSH Keys, 226–227
VM instances, 220, 226
VM machines, 228, 230–232

Cloud SQL encryption
cloud proxy, 305
SSL, 304

CloudWatch, 335–337, 345–346
Commit LOG (CLOG)  

buffers, 39
Compute Engine

adding a member, 221–222
available roles, 223–224
creation, 140
dashboard, 139
features, 138, 225
Google data centers, 137
IAM console, 221
OS, 143
PostgreSQL installation, 

148–150
SSH keys, 148
virtual machine, 141–142, 

145–146
VM security options, 144

Compute Optimized instances, 
84–86

Connection pooling
AWS (see Amazon Web Services 

(AWS)
Azure, 332–333
cost and time consuming, 311

Azure (cont.)

Index



375

external connection poolers, 
312

forking, 310–311
Google Cloud, 330, 332
PgBouncer (see PgBouncer)
Rackspace, 330

D
Data at rest, 293
Databases as a service (DBaaS)

in business, 2–3
deliver production, 2
enabling, 1–2
features

administration, 9
high availability, 10
monitoring tools, 10
provisioning  

mechanisms, 7–9
scalability, 11
security, 11

limitations, 8
organization

cloud vendors, 6
collaboration with other 

team, 6
durable database, 4
fast-performing database, 4
high availability features, 6
horizontal scaling, 5
no single point of failures, 6
redundant, 4
reliability, 4

secured database 
environment, 3–4

testing, 2
Data security model, 22
Deployment model, 266

E
Elastic Compute Cloud (EC2), 

Amazon, 278–281
backup instance, 239–244
create customized dashboard, 

346–348
create instance

Add Storage option, 97–98
add tag, 98
choose AMI, 95
choose instance type, 96
configure instance  

details, 97
configuring security  

groups, 99
create key pair, 100
EC2 dashboard, 94
.pem file, 101–102

create PostgreSQL instance, 
102–104

dedicated hosts, 81
dedicated instance, 81
elastic GPUs

accelerated computing, 
89–91

compute optimized, 84–86
M3 instances, 83

Index



376

M4 instances, 83
R3 instances, 89
R4 instances, 88
storage optimized instances, 

92–94
T2 instances, 82
X1e instances, 86
X1 instances, 87

instances, 79
IOPS, 17
RIs, 80
spot instances, 79

Encryption
Amazon Cloud Servers

EC2 instances, 299–300
enabling, RDS instance, 

297–299
master key creation, 294

Azure Cloud Services, 305–307
cloud SQL, 304–305
Google cloud storage, 304
rackspace cloud servers, 301–303

F
Fast-performing database, 4
Forking, 310–311

G
General purpose (SSD) storage 

(gp2), 70
Google Cloud

connection pooling, 330, 332
failover, 285
features, 19
Google Compute  

Engine, 19–20
high availability, 283–284
load balancing, 21
monitoring instances

PostgreSQL, 358–361
project activities, 354–356
VM, 357

platform services, 20–21
read replica, 286–288
security model, 19
SQL, 153
using snapshot option, 

persistent disk, 250–251, 
253–254

virtual machine, 20
Google Cloud Storage (GCS)

Cloud SQL, 153
create buckets and upload files, 

255–257
features, 152
PostgreSQL, 153–156
storage classes, 151–152

Google Compute Engine, 19
Google Could Platforms (GCP)

application servers/web 
servers, 133

database servers, 134
Google Cloud Console, 135–136
project deletion, 136–137
project quota, 134

Elastic Compute Cloud (EC2), 
Amazon (cont.)

Index



377

H
High availability cloud, see 

Replication
High availability features, 6

I, J
IaaS, see Infrastructure as a  

Service (IaaS)
Identity and access management 

(IAM)
access-level privileges, 200
AWS, 201–203, 205
multi-factor  

authentication, 200
policy document, 201
types of access, 200
user management, 199

Infrastructure as a  
Service (IaaS)

cloud vendors, 23
in organizations, 23
subscribe, 24

K
Key Management  

Services (KMS), 294

L
Live Migration, Google, 20
Logical replication, 272

M
Memory optimized instances

R3, 89
R4, 88
X1, 87
X1e, 86–87

Microsoft Azure
add new storage, 266–268
add to create storage, 265
blob storage, 264
database, 22
database for PostgreSQL, 269
data security model, 22
monitoring instances

database for PostgreSQL, 
369–371

VM, 362–364, 367, 369
offers, 22
subscription, 22
virtual machines, backup on

backup policy, 262, 264
Backup tab, 260–261
options for backing up, 261
vaults, 261

Microsoft Azure Security, 227–228
Multi-regional storage classes, 151
Multi-Version Concurrency Control 

(MVCC), 35

N
Nearline and Coldline storage 

classes, 151

Index



378

O
One-click installers, 49
On-premise computing

cost model, 15
pros and cons, 13–14

P
PgBouncer

configuration, 321–322, 324–326
high availability, 327
installation

file creation, 318–320
PostgreSQL 9.6, 316–318

memory, 314
session pooling, 313
statement pooling, 314
transaction pooling, 313

pgPulse tools, 29
plProfiler Console, 150
Point-in-time recovery (PITR), 154
PostgreSQL service instance

advantages, 153–154
authorizing networks, 165–166
choose, database engine, 160
client-server protocol, 155
Cloud SQL flags, 166
configuration options,  

161–162, 164
creation, 157–159
enabling auto backups, 164
features, 154
Google Cloud Console, 157

Google Cloud Dashboard, 157
Google Cloud SQL, 155
Quickstart for Cloud SQL, 159
set maintenance mode, 167
types, 155

PostgreSQL software, 4, 288–289
Amazon (see Amazon)
architecture, 37
ARCHIVER process, 41
AUTOVACUUM launcher 

process, 41
autovacuum settings, 61
availability, 35
Azure database, 189–190, 

369–371
background writer settings, 60
back up Cloud SQL, 258–259
CHECKPOINTER process, 40
cluster, 46
configuration file, 53
connection settings, 54
creation, 190–192, 194–196
environment variables, 49
extensions, 30
Google Cloud (see Google 

Cloud)
installation

binary, 47
one-click installers, 49
RPM, 48
source, 44–46

limitations, 36
log, 57–59
LOGGING COLLECTOR, 41

Index



379

memory settings, 55
Microsoft Azure (see Microsoft 

Azure)
migrating to cloud, 24–28
monitoring instances on Google 

Cloud, 358–361
MVCC, 35
parameters, 4
PGDATA, 42–44
portability, 33
query planner settings, 56
Rackspace (see Rackspace)
reliability, 34
scalability, 34
secure, 34–35
security and authentication 

settings, 55
service startup on Linux, 50–51, 

53
shared memory

CLOG buffers, 39
lock space, 39
shared_buffers, 39
temp buffers, 39
WAL buffers, 39

SLRU, 40
STATS COLLECTOR process, 41
supports, 35
tools, 29–30
vacuum cost settings, 60
WAL, 36
WAL WRITER process, 41
write ahead log settings, 56–57

WRITER process, 40
Provisioned IOPS (SSD) Storage, 70

Q
Query planner settings, 56

R
Rackspace

backups on cloud
check backup details, 249
check box, 245
choose folder, 249
Configure Backup page, 

247–248
create/restore/delete, 245
manage backups, 245
schedule, 246–247

cloud block storage (see Cloud 
block storage)

cloud servers, 301–303, 349, 
351–354

connection pooling, 330
Managed Cloud, 107
Managed Hosting

dedicated server, 111, 
113–117

portal dashboard, 108
PostgreSQL, 121–124
profile settings, 108–109
virtual server, 117–120
VMWare, 110

Index



380

offers, 18
replication and high  

availability, 281
supports, 18

Rackspace cloud security
Rackspace account

barcode, 216
identity provider, 218
mobile app, 214
My Profile & Settings, 213
security settings, 213
user management, 217
user permissions, 217

VM, 218–219
Regional storage classes, 151
Relational Database Service (RDS)

backing up instance, 236–238
create PostgreSQL instance

advanced settings  
page, 75, 77

backups, 77–79
choose database name and 

port, 77
correct range for entry, 74
launch DB instance, 71
maintenance, 78–79
monitoring, 77, 79
select engine, 72
select use case, 72–73
settings, 75

enables, 68
gp2, 70
offers, 68

Provisioned IOPS (SSD) 
Storage, 70

subnet groups, 207–211
VPC, 206

Replication
AWS (see Amazon Web  

Services (AWS))
Azure services (see Azure)
Google Cloud (see Google 

Cloud)
logical, 272
PostgreSQL, 272
Rackspace cloud, 281
streaming, 272

Reserved Instances (RIs), 80
RPM installation, 48

S
sar tools, 29
Session pooling, 313
Single sign-on (SSO), 200
SLRU system, 40
Snapshot option, 250–251,  

253–254
Statement  

pooling, 314
STATS COLLECTOR  

process, 41
Storage optimized instances

dense-storage (D2), 94
high I/O (I3), 92–93

Streaming replication, 272
Subnet, 206

Rackspace (cont.)

Index



381

T, U
Transaction pooling, 313

V
Vacuum cost settings, 60
Virtual machines, 289–290

account creation, 171
backup on

backup policy, 262, 264
Backup tab, 260–261
options for backing  

up, 261
vaults, 261

creation
configuration settings, 

175–176
data and metrics, 183–184
deployment process, 

182–183

extensions section, 181–182
features, 179–180
locations, 177
operating systems, 174
size, 178

Linux, 184–185
PostgreSQL, 185–187
Start Free, 171

Virtual Private Cloud (VPC), 206

W
WAL WRITER process, 41
Write Ahead Logging (WAL), 36
Write ahead log settings, 56–57
WRITER process, 40

X, Y, Z
X1e instances, 86

Index


	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to  Databases in the  Cloud
	What Is Database as a Service?
	Who Should Use DBaaS?
	What Database Platform Does an  Organization Need?
	Secured Database Environment
	Fast-Performing Database
	Reliable, Redundant, Durable Database
	Geographically Distributed and Independent
	No Single Point of Failures
	Integrated into Existing Systems
	Help Distributed Teams Work and Collaborate More Efficiently


	Features of DBaaS
	Provisioning
	Administration
	Monitoring
	High Availability
	Scalability
	Security

	Cloud Versus On-Premise Computing
	The Pros and Cons of Cloud and On-Premise Computing
	On the Cloud Pros and Cons
	On-Premise Pros and Cons


	Should You Move Your Databases to the Cloud?
	Cloud Vendors Available for PostgreSQL
	Amazon
	Amazon RDS
	Amazon EC2

	Rackspace
	Google Cloud
	Microsoft Azure

	IaaS
	Migrating to the Cloud
	Before Migrating to the Cloud
	Planning Your Infrastructure on the Cloud
	Tools and Extensions

	Summary

	Chapter 2: PostgreSQL Architecture
	Key Features of PostgreSQL
	PostgreSQL Architecture
	Components of Shared Memory
	Shared Buffers
	WAL Buffers
	Temp Buffers
	CLOG (Commit LOG) Buffers
	Lock Space
	Other Memory Areas

	Utility Processes
	Directory Structure
	Installation
	Source Installation
	Binary Installation
	RPM Installation
	Installers for Windows and Mac

	Setting Environment Variables
	Getting Started with PostgreSQL
	Configuration Parameters
	Connection Settings
	Security and Authentication Settings
	Memory Settings
	Query Planner Settings
	Write Ahead Log Settings
	Where to Log
	When to Log
	What to Log
	Background Writer Settings
	Vacuum Cost Settings
	Autovacuum Settings

	Summary

	Chapter 3: Amazon Cloud
	Amazon Cloud or Amazon Web Services
	AWS Regions and Availability Zones
	Getting Started with AWS
	Creating an AWS Account

	Choosing an AWS Service
	RDS
	Choosing an RDS Instance
	Creating PostgreSQL on an RDS

	EC2
	EC2 Spot Instances
	Reserved Instances
	Dedicated Hosts
	Dedicated Instances
	Elastic GPUs
	General Purpose
	Compute Optimized
	Memory Optimized Instances
	Accelerated Computing
	Storage Optimized Instances

	Creating an EC2 Instance
	Connecting to Your First EC2 Instance
	Creating Your First PostgreSQL on an EC2 Instance


	Summary

	Chapter 4: Rackspace Cloud
	Managed Hosting
	Creating a Dedicated Server
	Creating a Virtual Server
	Connecting to the Virtual Machine and Installing PostgreSQL

	Cloud Block Storage
	Summary

	Chapter 5: Google Cloud
	Getting Started with GCP
	What Is a GCP Project?
	Project Quota
	Creating a Project Using the Console
	Deleting a Project

	Types of Google Cloud Platforms
	Compute Engine
	Key Features of Compute Engine
	Create an Instance
	How to Connect from Your Machine
	Install PostgreSQL

	Google Cloud Storage
	Storage Classes
	Key Features of GCS

	Cloud SQL
	Cloud for PostgreSQL
	Create a PostgreSQL Instance Using Cloud SQL


	Summary

	Chapter 6: Azure Cloud
	Virtual Machines
	Virtual Machine Creation
	Connecting to Virtual Machines
	Installing PostgreSQL on a Virtual Machine

	Dealing with Storage
	Azure Database for PostgreSQL
	Advantages of Azure Database
	Azure Database for PostgreSQL Service Creation

	Summary

	Chapter 7: Security on the Cloud
	Security on Amazon Cloud
	Identity and Access Management
	Create a User Using AWS IAM
	Restricting Access to an RDS or an EC2 Instance
	What Is VPC?
	Creating Subnet Groups


	Rackspace Cloud Security
	Securing the Rackspace Account
	Securing the Dedicated Cloud Server of Rackspace

	Security for the Google Cloud
	Control Access to the Compute Engine
	Restricting Compute Engine VM Instances
	Managing SSH Keys

	Microsoft Azure Security
	Security for VM Machines
	Security for SQL Database

	Summary

	Chapter 8: Backups on the Cloud
	Backups on the AWS Cloud
	Backing Up an RDS Instance
	Restore an AWS RDS Instance from Backup
	Backup of an EC2 Instance
	Performing Backups on an EC2 Instance
	Restore Your Backup to an EC2 Instance

	Backups on Rackspace Cloud
	Backups to Google Cloud
	Backups Using the Snapshot Option
	Making a Persistent Disk
	Take a Backup of a Persistent Disk

	Back Up Your Files Using Storage
	Create Buckets and Upload Files

	Back Up Your Cloud SQL for PostgreSQL

	Backups to Microsoft Azure
	Virtual Machines
	Storage
	Azure Database for PostgreSQL

	Summary

	Chapter 9: Replication and High Availability on the Cloud
	The Purpose of Replication and High Availability
	Replication and High Availability in AWS
	Read Replicas for RDS
	High Availability for EC2

	Replication and High Availability of Rackspace Cloud
	Replication and High Availability of Google Cloud Instances
	Configure an Instance for High Availability
	How Failover Works
	Read Replicas

	Replication and High Availability of Azure Services
	Azure Database for PostgreSQL
	Virtual Machines

	Summary

	Chapter 10: Encryption on the Cloud
	Encryption for Amazon Cloud Servers
	Enable Encryption for an RDS Instance
	Encryption on an Amazon EC2 Instance

	Encryption for Rackspace Cloud Servers
	Encryption for Google Cloud Instances
	Encrypting Cloud Storage
	Cloud SQL Encryption
	Using SSL
	Using Cloud Proxy


	Encryption for Azure Cloud Services
	Summary

	Chapter 11: Connection Pooling on the Cloud
	Connection Pooling
	What Is Forking?
	Understanding Why Process Creation Is Costly
	What Is Connection Pooling and How Can It Help?

	PgBouncer
	Session Pooling
	Transaction Pooling
	Statement Pooling
	When Should You Think About a PgBouncer?
	Installing PgBouncer
	How Does PgBouncer Work?
	High Availability While Using PgBouncer

	Connection Pooling on AWS
	Connection Pooling for Rackspace Cloud Servers
	Connection Pooling for Google Cloud Instances
	Connection Pooling for Azure Cloud Instances
	Summary

	Chapter 12: Monitoring Cloud Databases
	Monitoring with Amazon Cloud
	Monitoring an RDS or an EC2 Instance
	AWS CloudWatch Dashboard
	Create a Customized Dashboard for an EC2 Instance

	Monitoring for Rackspace Cloud Servers
	Monitoring Google Cloud Instances
	Monitoring Your Project Activities
	Monitoring VM Instances
	Monitoring PostgreSQL Instances

	Monitoring Azure Cloud Instances
	Virtual Machines
	Azure Database for PostgreSQL

	Summary

	Index



