
Beginning
PowerApps

The Non-Developers Guide to Building
Business Mobile Applications
—
Tim Leung

www.allitebooks.com

http://www.allitebooks.org

Beginning PowerApps
The Non-Developers Guide to Building

Business Mobile Applications

Tim Leung

www.allitebooks.com

http://www.allitebooks.org

Beginning PowerApps

Tim Leung
Reading, United Kingdom

ISBN-13 (pbk): 978-1-4842-3002-2 ISBN-13 (electronic): 978-1-4842-3003-9
https://doi.org/10.1007/978-1-4842-3003-9

Library of Congress Control Number: 2017961125

Copyright © 2017 by Tim Leung

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Technical Reviewer: Jenefer Monroe
Coordinating Editor: Jill Balzano
Copy Editor: Karen Jameson

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484230022. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3003-9
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484230022
http://www.apress.com/source-code
http://www.allitebooks.org

iii

Contents

About the Author ���xv

About the Technical Reviewer ���xvii

Foreword ��xix

Acknowledgments ��xxi

Introduction ��xxiii

 ■Part I: Getting Started ��� 1

 ■Chapter 1: Introducing PowerApps �� 3

What Is PowerApps? �� 3

Who Is the Typical Developer? �� 4

What Are the Typical Uses? �� 4

Asset Checkout App �� 4

Budget Tracker �� 5

Service Desk App �� 6

Site Inspection App ��� 7

Other Sample Apps ��� 8

How Do You Build a PowerApp? ��� 8

How Do Users Run PowerApp Applications? �� 9

What Data Can a PowerApps Consume? �� 10

Connecting to On-Premises Data �� 11

Common Data Service �� 11

Connecting to Other Data Sources ��� 12

How Do You Write Code? �� 12

www.allitebooks.com

http://www.allitebooks.org

■ Contents

iv

How Much Does It Cost? �� 13

Summary �� 14

 ■Chapter 2: Subscribing to PowerApps ��� 15

How to Get PowerApps ��� 15

Obtaining PowerApps via Office 365 �� 15

What Is Office 365? �� 16

Consumer vs� Business Office 365 ��� 16

Understanding Work Accounts and Personal Accounts �� 16

What Office 365 Editions Support PowerApps? �� 18

Subscribing to a PowerApps Stand-Alone Plan �� 18

Registering for an Account ��� 19

Obtaining a Suitable Email Address �� 20

Logging onto PowerApps ��� 21

Configuring Environments �� 21

Installing PowerApps Studio �� 22

Summary �� 24

 ■Chapter 3: Creating Your First App �� 25

Preparing an Excel Data Source ��� 25

Creating an App �� 26

Creating an Auto-Generated App �� 27

Creating Apps from SharePoint �� 28

Exploring the Designer ��� 29

Running Your App ��� 30

Examining the Screens at Runtime �� 30

Understanding the Auto-Generated App ��� 32

Adding and Removing Data Sources �� 32

Adding, Deleting, and Rearranging Screens ��� 33

Understanding How Screens Are Connected �� 34

Understanding Forms and Cards �� 39

www.allitebooks.com

http://www.allitebooks.org

■ Contents

v

Setting Project Properties �� 49

Saving Your Project �� 51

Opening a Project ��� 51

Summary �� 52

 ■Chapter 4: Sharing Apps �� 53

Sharing Your App �� 53

Adding a User ��� 55

Applying Permissions ��� 57

Managing Environments��� 57

Moving an App to a New Environment �� 57

Updating a Data Source �� 58

How Data Connections Work �� 59

Versioning an App ��� 60

Installing the Mobile Player �� 60

Running with Foreign Languages ��� 61

Summary �� 64

 ■Part II: Refining Your Application ��� 65

 ■Chapter 5: Exploring Data Sources �� 67

Using the Common Data Service �� 67

Getting Started ��� 68

Exploring the Common Data Model �� 70

Exploring a Standard Entity �� 71

Creating a Relationship �� 76

Using Field Groups �� 77

Picklists �� 78

Deleting CDS Data �� 81

On-Premises Data Gateway �� 82

Installing the Gateway �� 82

Starting the Gateway Service ��� 83

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

Connecting to a Data Source �� 84

Uninstalling a Gateway ��� 86

Using a SharePoint Data Source �� 86

Creating a SharePoint List �� 87

Connecting to a SharePoint Data Source �� 88

Other Data Sources �� 89

Microsoft Translation Data Source �� 90

Microsoft MSN Weather Services ��� 91

Summary �� 92

 ■Chapter 6: Using Formulas �� 95

Writing Formulas �� 95

Using the Function Tool �� 96

Working with Variables ��� 98

Setting Screen Variables��� 98

Setting Property Values from Code ��� 101

Setting Global Variables �� 102

Manipulating Data �� 102

Working with Text ��� 103

Working with Numbers ��� 107

Working with Dates �� 110

Working with Tables of Data ��� 113

Defining Hard-Coded Sets of Values ��� 113

Understanding Collections �� 113

Defining Tables ��� 116

Working with Columns �� 116

Table Functions ��� 117

Counting Records ��� 118

Performing Aggregate Calculations �� 119

Conditional Statements and Logical Operations �� 120

Specifying Colors ��� 121

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

Navigation Functions �� 121

Launching Websites and Apps �� 123

Retrieving Startup Parameters ��� 124

Exiting an App ��� 125

Managing Errors ��� 125

Summary �� 126

 ■Chapter 7: Customizing Screens ��� 129

Using Predefined Layouts ��� 129

Laying Out Tablet Apps ��� 134

Understanding Sample Screen Designs ��� 135

Building a List and Details Screen �� 135

Updating the Details Section of a Screen ��� 138

Displaying a Delete Confirmation Screen ��� 139

Building a Tab Control Screen ��� 140

Using Themes ��� 142

Summary �� 143

 ■Chapter 8: Using Controls �� 145

Overview of Controls �� 146

Building Data Structures to Support Controls �� 146

Action Controls ��� 147

Displaying Geometric Shapes ��� 148

Displaying Text with Label and HTML Text Controls ��� 149

Using Simple Controls �� 150

Text Input Control �� 150

Radio Control �� 151

Toggle and Checkbox Controls ��� 152

Slider Control �� 153

Rating Control ��� 154

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Working with Dates �� 155

Date Picker Control ��� 155

Setting Lookup Values �� 160

Limiting Input Values with a Drop-Down Control �� 160

Setting Lookup Values with a Drop-Down Control �� 161

Customizing the Drop-Down Display Value �� 162

Nesting Drop-Down Controls �� 163

List Box Control �� 164

Displaying Tables of Data ��� 164

Using CDS-Specific Controls �� 165

Using Entity Form Controls ��� 166

Drop-Down Controls with CDS �� 168

Working with Media Controls ��� 170

Playing Videos �� 172

Playing Audio �� 173

Image Controls ��� 173

Using the Timer Control �� 174

Resetting Form Controls ��� 175

Summary �� 176

 ■Chapter 9: Working with Data ��� 179

Basic Behavior�� 179

Understanding Delegation �� 180

Searching Data ��� 182

Basic Search Functions �� 183

Setting Multiple Sort Sequences �� 188

Additional Search Criteria Options �� 189

Joining Data ��� 191

Joining Records - Showing Related Records ��� 191

Checking for Nonexistence ��� 192

Returning Distinct Records ��� 193

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

Working with Data in Code ��� 194

Retrieving Single Records �� 194

Updating Records ��� 195

Creating a New Record ��� 196

Deleting Data �� 200

Setting Default Screen Values �� 200

Validating Form Values ��� 201

Checking Validation Rules �� 202

Sending Notifications ��� 203

Summary �� 206

 ■Chapter 10: Working with Images ��� 209

Choosing Where to Store Images ��� 209

Setting Up a Data Source ��� 210

Storing Images in Excel �� 210

Storing Images in CDS and SQL Server Databases �� 210

Creating an Image App ��� 211

Viewing Records in the CDS ��� 212

Using the Add Picture Control ��� 213

Using the Camera Control ��� 213

Retrieving the Camera Data �� 215

Switching Between Cameras�� 215

Setting Brightness, Contrast, and Zoom Levels �� 216

Creating a Gallery ��� 216

Using the Pen Control ��� 221

Erasing Text �� 221

Converting Annotations to Text ��� 222

Scanning Barcodes �� 223

Summary �� 224

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

 ■Chapter 11: Mapping Data ��� 227

Introduction to GPS �� 227

Retrieving Location Details��� 228

Introducing Signals ��� 228

Freezing the Location Details ��� 229

Obtaining Longitude and Latitude�Readings ��� 229

Saving Location Details �� 230

Switching the Signal On/Off ��� 231

Other Signals �� 232

Displaying Maps ��� 232

Using Google Maps ��� 233

Bing Maps ��� 234

Summary �� 235

 ■Chapter 12: Using Charts ��� 237

Introduction �� 237

Aggregating Data ��� 239

Column Chart �� 240

Creating a Chart �� 242

Setting Legends �� 244

Setting Label Orientation �� 244

Applying Colors and Styles ��� 245

Pie Chart ��� 246

Line Charts ��� 247

Grouping Data by Month ��� 247

Showing Chart Data Dynamically ��� 248

Showing Multiple Series ��� 249

Summary �� 252

■ Contents

xi

 ■Chapter 13: Securing Apps �� 253

Authentication �� 253

Role-Based Security ��� 255

Securing the CDS �� 255

Securing SharePoint Lists �� 257

Verifying Permissions Within an App �� 259

Configuring Record-Level Access��� 261

Setting Up the Data Source �� 261

Getting the Logged On User �� 262

Filtering Records by the Logged On User ��� 263

Creating Data Loss Prevention Policies �� 264

Testing a DLP Policy�� 266

Summary �� 266

 ■Part III: Maintaining Your Application �� 269

 ■Chapter 14: Importing and Exporting Data �� 271

Using the Import and Export Controls �� 271

Exporting Data �� 272

Importing Data �� 273

Importing and Exporting Related Data �� 277

Importing and Exporting CDS Data ��� 281

Importing Data �� 281

Exporting Data �� 283

Using the Excel Add-In ��� 283

Importing Static Data ��� 284

Summary �� 285

■ Contents

xii

 ■Chapter 15: Using Flow ��� 287

What Is Flow ��� 287

What Can We Do with Flow? �� 288

Creating a Flow �� 289

Copying Files �� 289

Calling Flows from Apps ��� 292

Sending Notifications ��� 293

Filtering Data �� 295

Working with Variables ��� 297

Sending the Email ��� 299

Manipulating Data �� 300

Constructing HTML Tables �� 300

Introducing Workflow Definition Language ��� 301

Applying Workflow Definition Language ��� 303

Using Output Values in Workflow Definition Commands ��� 305

Referring to Items in Loops �� 306

Calling SQL Stored Procedures �� 306

Approving Actions �� 308

Managing Flows ��� 309

Summary �� 311

 ■Part IV: Extending Your Application �� 313

 ■Chapter 16: Working Offline �� 315

What Happens Offline? ��� 315

Techniques to Enable Offline Working �� 316

Saving and Retrieving Local Data ��� 316

Making an App Available Offline ��� 317

Setting the Data Source to a Local Collection �� 319

Handling Offline Deletions �� 321

Handling Offline Record Updates �� 322

■ Contents

xiii

Building the Synchronization Screen �� 325

Building the Conflict Resolution Screen ��� 331

Summary �� 332

 ■Chapter 17: Creating Custom Data Connectors �� 335

What Can We Accomplish with Web Services? �� 335

Overview of Steps �� 336

Understanding How the Web Works ��� 336

Making HTTP Web Requests ��� 337

Understanding HTTP Responses ��� 337

Documenting a Web Service �� 338

Creating a Web Service Description ��� 339

Using Postman �� 340

Using Swagger ��� 340

Examining an Open API Document ��� 342

Creating a Custom Connector��� 343

Using the Custom Connector �� 348

Summary �� 351

 ■Appendix A: Data Models ��� 353

Overview of CDS Entities �� 353

Foundation Entities ��� 353

Person Entities �� 354

Group Entities ��� 355

Sales Entities �� 355

Purchase Entities �� 358

Customer Service Entities �� 360

Human Resources Entities �� 361

CDS Field Names �� 362

Foundation Entities ��� 362

Person Entities �� 362

Group Entities ��� 364

■ Contents

xiv

Sales Entities �� 365

Customer Service Entities �� 368

Organization Entities ��� 368

Purchase Entities �� 369

Human Resources Entities �� 370

Retail Entities �� 371

Data Structure of the Sample ‘Journey’ Application �� 371

Index ��� 373

xv

About the Author

Tim Leung is a software developer with vast experience in designing and
building large-scale commercial applications. He is a recognized expert
in the field of rapid application development and his previous publication
with Apress (Professional Visual Studio LightSwitch, 2015) covered this
topic in depth.

Tim is a Microsoft certified developer, a chartered member of the
British Computer Society, and holds a degree in Information Technology.

xvii

About the Technical Reviewer

Jenefer Monroe is a Principle PM Manager at Microsoft, currently serving
on the Customer Success Team for Power Apps, Microsoft Flow, and the
Common Data Service. She previously served as Software Engineering
Manager in the Excel team, and as a Software Engineer in SharePoint,
Access, and Excel Online.

xix

Foreword

Greetings readers! I am a program manager at Microsoft. I also served as the technical reviewer of Tim’s
Beginning PowerApps book. I would like to take a few minutes to share my insights on PowerApps, the role
they play on meeting the business needs of Microsoft customers and partners, and what they can mean to you.

First, please allow me the opportunity to introduce myself. My role at Microsoft is that of a Customer
Success program manager, which obviously means exactly that. I do everything in my power to make
sure our customers succeed at meeting their unique business needs. Organizational-wise, I exist as a
liaison between the customer and the product teams within engineering. Being here gives me the unusual
perspective of being able to look from the outside in, as well as the inside out. My two primary objectives in
this role are to work directly with customers to enroll them in the extensibility suite (otherwise known as the
power suite), which refers to common data service, Microsoft Flow, PowerBI and PowerApps—the subject
of this book. I hear firsthand about their challenges, be it the migration of InfoPath forms, the Access web
app, or a brand new business still using paper. Sometimes I build pilots and proofs of concept… anything I
can do to make their life easier. Wearing my other hat, I advocate for our customers and deliver stories to the
internal team, sharing general and specific feedback including pain points, features that our customers love
or hate, and anything in between.

I come from an engineering and development background. Prior to this role, I spent ten years (also with
Microsoft) with Excel and five years prior on teams in Office, SharePoint, and Access. My most recent years
with Excel were spent building the collaboration platform for Excel Desktop, which allows for the ability
to have the rich desktop application edit a file at the same time as other rich desktop applications. Whew,
talk about the hardest technical challenge of my life! So I stepped into this role in a similar fashion to other
people on my team. We are very able to be technically knowledgeable about what is impeding customer
success while keeping on top of what is getting rolled by the product team. It's an amazing role. I love it.
I absolutely love it!

However, while I was head-down in collaboration, I looked up and I immediately recognized I had
been so deeply entrenched in this singular technical problem for so long that I had some massive industry
transformation. You know the cloud? Yes, that cloud. Well, I had somehow convinced myself that it was just
for storing documents because that is how my product used it. Really? That was my wake up all. I began
searching for the Holy Grail and found PowerApps.

I believe in PowerApps as an extensibility platform for business users. When I began scratching the
surface of it, I realized that the myriad of opportunities it offers citizen developers (also referred to in many
circles as the power user) is nothing short of mind blowing. It offers an opportunity to utilize existing skill
sets to do something entirely new. Just as an example, say you have the tools to develop professional looking
PowerPoint decks. Then, like magic, you can apply those exact same skills to PowerApps to develop beautiful
professional-looking business applications. Or, if you are adept at making formulas in Excel, or mingling
data with a look up, or excel at doing logic flows with if statements, or doing mathematical operations on
data to summarize… all these skills transform to PowerApps and can be used to develop powerful logical
flows within your business application. Giving power users the resources to create an application that can
show up on Android, and iOS, and Windows and even in a browser, now that’s life changing.

 ■ Foreword

xx

Let’s talk about accessing data, and more specifically, connectors (160 available at time of writing) that
allow power users to connect to things like SQL in SharePoint, and external applications like Twitter and
Facebook as well. You cannot do that in PowerPoint and Excel. Now I can go into Active Directory and see
who you are, and I can pull your picture through the Office 365 connector simply by learning a couple of
interfaces that are readily available. You can build a really slick UI for your team that shows pictures and
other information. These connectors are a key new tool for the power user. And, wait, that’s not all! While
we're doing all of this cool stuff with connectors and cross platform development in PowerApps, we are
actually keeping our IT and admin colleagues in mind. Think about it. Massive user bases withstanding,
the ability for IT Pros and admins to create governance models around the usage of Excel and Access never
happened. Admins and IT departments hated Access and Excel because, in spite of them being user and
business friendly, it left the governance of those IT needs completely out of the hands of IT. Not so with
PowerApps! Right out of the starting gate, we are ensuring that IT and admins feel comfortable with data-loss
policies and monitoring features. In fact, I would even go so far as to call it a pillar in PowerApps. You have to
admit, the ability to see where the viral usage of this product is happening, and saying, “I have control over
it,” is pretty darn compelling.

PowerApps fits into the Microsoft business intelligence space as part of the new extensibility platform.
We also sometimes refer to it as the power suite, and in true Microsoft style, we continue to “evolve”
naming conventions. Greatly simplified, I ask you to think of it in three parts: Measure, Act, and Automate.
PowerBI is the Measure. It is how we expect people to measure their data. For example, it works for small
transactional style data (e.g. someone wants to see machine orders), but it also works for giant flows of data,
like from IoT. Power Apps is the Act. So now that I know this data that I have pulled together, what is the
human decision-maker going to do? If we refer back to the example of the hardware order app, it would be
something like, “which machine shall I query?” Flow is the Automate part of the platform. It is how you go
and take some of those processes for immediate action. Some don't actually require human intelligence;
they’re just automatic— like if you trigger an approval every time a new lead is found. Related, Common
Data Services is a topic on its own. Underneath it all, that has to do with the extensibility of data. So it’s
essentially the data service, SQL for the Power User, and the focal point of data.

PowerApps has been evolving for the last couple of years. Many of you probably remember when
PowerApps used “Sienna.” Well Tim has been working with PowerApps since way back when. I believe
he has more knowledge and context about this product than many of us on the team. He was one of the
first people I met in my new role. I can say with confidence that the book you are holding in your hands is
a phenomenal one. Tim, by nature, is such a detail-oriented and inquisitive person. But don’t just take it
from me; the proof is in pudding. Go ahead and take a quick look at the offline chapter— the one on how to
utilize caching for offline scenarios. If you think about Power apps as a mobile interface for data, the ability
to do small periods of offline reporting is really important. Let’s say, for example, that you are inspecting
oil rigs. You might not have constant access to the Internet. In order to sync the data in real time, you may
need to cache it locally for small periods of time to submit later. Now this is not something Microsoft natively
supports, but Tim’s book offers a workaround. While a somewhat complex task, Tim has laid out the process
in an intuitive and engaging manner. In fact, when I shared it with the team, they were notably impressed.
Tim’s book does not just impress in that one chapter. It also offers readers who are interested in learning
PowerApps a means to do so from A to Z. He offers a comprehensive learning path for PowerApps not seen
in depth or breadth in any articles, documentation, or sites anywhere, not even in the coursework that is
available online. To me, Beginning PowerApps hands down has the best content available to get yourself
to the 200 level. Read it, and by the time you are done, hopefully he will have a 300 level book in the queue
ready for publication. Enjoy!

Jenefer Monroe
Microsoft

November 2017

xxi

Acknowledgments

First, I’d like to thank Apress for the opportunity to publish this work. I especially want to thank all the
members of my editorial team for their hard work. This includes Todd Green, Joan Murray, Jill Balzano, and
Laura Berendson.

Equally, I’d like to thank Jenefer Monroe, Darshan Desei, and all the other team members at Microsoft
who have worked on my project behind the scenes.

Finally, I’d like to thank the PowerApps team for developing a great product and to acknowledge all of
those who have contributed to the PowerApps community.

xxiii

Introduction

Welcome, and thank you for choosing this book. Within its contents, you’ll learn how to build functional
apps and how to avoid the common mistakes that beginners often make. The contents of this book are
organized into three logical sections:

•	 The first four chapters describe how to build and publish an app. This book assumes
no prior knowledge and therefore, we’ll start at the very beginning. This includes
how to subscribe and to install the requisite software. Within these chapters, we’ll
cover elementary topics such as how to retrieve and update data from a data source,
how to build screens, and how to configure the navigation linkages between screens.

•	 The main section of this book describes how to embellish our apps. We’ll look at how
to use a cloud-based data store called the common data service. We’ll also cover
practical tasks including how to use screen controls, how to capture photos, how to
retrieve location details with GPS, and how to display data with charts. This section
of the book also contains a reference guide of formulas. These are very important
because they provide the means for us to program PowerApps.

•	 In the final section of this book, we’ll cover some advanced techniques. This includes
how to configure security, how to import and export data, and how to build apps that
can work offline. We’ll also examine how to use Flow, a workflow service that can
carry out tasks outside of PowerApps. The final chapter describes how to expand the
capabilities of PowerApps by calling third-party web services.

To provide some context to the concepts in this book, we’ll refer frequently to demonstration app that
records journey details. This typifies the sort of application that businesses use to record mileage expense
claims. In technical terms, this app enables us to explore a wide range of data types. The data structure that
supports this app stores user and vehicle details, and we can use this structure to explore techniques such as
how to use drop-down controls, and how to assign lookup values.

Figure 1 illustrates the type of screen that we can build with this data structure.

■ IntroduCtIon

xxiv

Versioning
PowerApps benefits from frequent updates. Microsoft usually updates PowerApps on a three-week cycle.
These updates include new features and bug fixes. Because of these frequent updates, menu item locations
can change over time, and the screenshots in this book may quickly appear out of date. Please don’t be too
alarmed by this! The core concepts and principles in this book are likely to remain the same, despite any
additions and cosmetic changes that take place afterward.

Erata
Although we take great care to verify the contents of this book, there is a slight chance that it might contain
some errors. Therefore, the product page for this book contains an up-to-date list of any problems that we
identify.

www.apress.com/9781484230022

Finally
We hope you find this book useful, and we wish you much success in building some great apps with
PowerApps.

Figure 1. Screen from example app

http://www.apress.com/9781484230022

PART I

Getting Started

3© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_1

CHAPTER 1

Introducing PowerApps

Even if you are completely new to PowerApps, you probably know that PowerApps is a tool for building
mobile device applications. Additionally, you’ll understand that PowerApps is simple to use and allows you
to build applications very quickly. But beyond these basic concepts, you might not fully understand the
specific capabilities of PowerApps, or how, exactly, a PowerApps application looks or feels. In this chapter,
we’ll clarify the things that we can do with PowerApps by looking at the sample apps that Microsoft provides.
The purpose of this is to clarify whether PowerApps can solve a specific business problem. Some of the basic
topics that we'll explore in this first chapter will include the following:

•	 What we can accomplish with PowerApps

•	 Examples of applications

•	 How to get started with building apps

What Is PowerApps?
From a high-level perspective, PowerApps is a subscription-based service for building applications. The
apps that we build can run through a web browser, and are therefore compatible with a wide range of
devices. However, these apps work best on a mobile or tablet device. A typical app will connect to a data
source and include screens to view and edit data. A typical app also includes functionality to help facilitate a
business process.

Historically, PowerApps evolved from a Microsoft project called Siena. Microsoft developed Siena
during the Windows 8 era. Siena provided a platform for programmers to build new style ‘metro’ apps that
connected to data.

Microsoft provides sample applications you can use to learn PowerApps, and we'll look at these later
in this chapter. These apps include service desk, budget tracking, and site inspection applications. One
thing you quickly realize is that PowerApps is a business tool. It isn’t a tool for building consumer grade
applications – for example, apps or games that you want to sell via app stores.

A key characteristic of PowerApps is the way in which it embraces the cloud. Specifically, apps can
access data from OneDrive, Dropbox, Salesforce, Dynamics 365, and many other cloud providers. Another
characteristic is the product’s ease of use. You don’t need to be developer to use PowerApps. In fact, the
product feels highly inspired by Microsoft Office. It includes a visual designer and we use Excel like formulas
to build functionality. In terms of deployment, the concept is that we share PowerApps in the same way that
we would share an Office document.

http://agilemanifesto.org/

Chapter 1 ■ IntroduCIng powerapps

4

Who Is the Typical Developer?
Microsoft designed PowerApps for non-developers – users who are not professionally trained software
programmers. The target demographic includes managers or office workers who work regularly with
Microsoft Office. Market research shows that demand for mobile applications will outstrip the availability of
qualified programmers. Therefore, the goal of PowerApps is to address this problem by making it easier for
users with basic IT literacy to build mobile apps.

At this early stage, the product seems to attract a large number of professional users from the Microsoft
Office community. This includes users with Office 365, Access and Access Web Apps, and SharePoint
experience. In part, this is because these users have easy access via SharePoint and Office 365.

The product is likely to attract Microsoft InfoPath users – a product that has been discontinued by
Microsoft. InfoPath is a tool for adding forms over data. Personally, I chose PowerApps as a LightSwitch
alternative – this was a Microsoft product for rapid application development.

For more complex applications, there may be tasks that require the skill of an experienced developer.
Such tasks include connecting apps to data sources that are not natively supported, configuring application
security, and building flows. A flow is a set of tasks that runs, following an event in an app. For example, you
can use flows to send emails, copy files, or to add items to a SharePoint list.

What Are the Typical Uses?
What applications can you build with PowerApps and what tasks can those applications carry out? To help
us better understand what PowerApps can do, let’s look at some of the sample apps that Microsoft provides.
These include the Asset Checkout, Budget Tracker, Cost Estimator, and Inventory Management apps.

Asset Checkout App
The Asset Checkout App enables users to check out items. However, this isn’t the e-commerce tool that
the ‘checkout’ part of the name suggests. It’s more like a system that enables you to borrow hardware
items from a library. That being said, the app demonstrates some useful features. The most noteworthy is
the integration of product images into the application (Figure 1-1). The first screen contains UI features
such as search, a horizontal scroll control, and a tab control. The product image strip on the home screen
shows the most recently checked-out items. Therefore, logic exists in the application to perform this type
of query.

Chapter 1 ■ IntroduCIng powerapps

5

Budget Tracker
The Budget Tracker App highlights the mathematical tasks that you can carry out in a PowerApps
application. The home screen shows calculations that are conditionally formatted with red and green fonts.
It also features a pie chart that illustrates a breakdown of expenses (Figure 1-2). With this app, users can add
and delete expense records. Therefore, we can learn how to program data tasks such as adding or deleting
records through this app.

Figure 1-1. Asset Checkout App

Chapter 1 ■ IntroduCIng powerapps

6

A highlight of the budget tracker app is the ability for users to capture pictures of receipts, and to assign
those receipts to an expense claim. This feature demonstrates how PowerApps can integrate natively with
cameras that are built into mobile devices.

Service Desk App
The Service Desk App is a nice example of a data entry application. The purpose of this app is to manage the
support tickets that arise through a help desk department. I like this application because it demonstrates the
data structures that developers typically expect to see in database applications. For example, the application
allows users to assign a priority rating, and an area (or department) to each support ticket, therefore
illustrating the concept of one-to-many data structures. See Figure 1-3.

Figure 1-2. Budget Tracker App

Chapter 1 ■ IntroduCIng powerapps

7

Figure 1-3. Service Desk App

Site Inspection App
The Site Inspection App demonstrates integration with location and mapping services. With each site
inspection record, the user can use a device camera to capture multiple images. This one-to-many
relationship of image data can be useful in the apps that you build. The Site Inspection app also enables
users to record the current location using the GPS on the mobile device. For each record, the app can also
integrate a map that shows the location. See Figure 1-4.

Chapter 1 ■ IntroduCIng powerapps

8

Other Sample Apps
The remaining sample applications are characterized by data features with a similar theme, namely, the
ability to select a record from a list, and to view and edit the selected record. Other notable apps include the
following:

•	 Product showcase app. – This is a well-presented app that looks great and
demonstrates how to display videos in apps.

•	 PDF Reader App – This app allows users to view PDF documents from within the app.

•	 Suggestion App – This app implements some basic role maintenance. You can add
users to an administrator role, and those users can carry out additional tasks in the
application.

•	 Case Management App – A feature of this app is that it stores data using the Common
Data Service (CDS). I’ll describe this in more detail later in this book.

How Do You Build a PowerApp?
PowerApps Studio is the tool for building apps. There are two versions available – a version that runs on
Microsoft Windows, and a version that runs through a web browser. The Windows version is a store app and
requires Windows 8.1 or Windows 10. The web-based version is slightly more limited than the Windows
version. Note that the Windows App doesn’t support Windows 7. Therefore, Windows 7 users will need to
use the web version of PowerApps Studio. There are currently three supported browsers – Microsoft IE11,
Google Chrome, and Microsoft Edge. Firefox and Safari are not supported.

Figure 1-4. Site Inspection App

Chapter 1 ■ IntroduCIng powerapps

9

Figure 1-5 shows a screenshot of the Windows version of PowerApps Studio. This image highlights
how we can design applications using a visual designer. At the top of the designer, there is a ribbon menu
bar that looks like the ribbon bar that exists in Microsoft Office. Within the designer, we can see a visual
representation of the screens and controls as we build our app.

Figure 1-5. PowerApps Studio

 ■ Tip the windows version of powerapps studio is a store app and therefore, we can only run one instance
of the app at a time. to work around this limitation, we can use powerapps studio for windows for our main
project, and open an additional project in the web version of powerapps studio. while we're learning, we can
use this technique to open a sample project in a separate window, and we can easily switch to the sample
project to refer to formulas and layout.

How Do Users Run PowerApp Applications?
Once we build an app in PowerApps Studio, we can grant users access to our app. Users use a PowerApps
‘runtime’ app to run apps on mobile devices. These runtime apps are called ‘players’, and players are
available for Android, iOS, and Windows Mobile devices. Figure 1-6 shows the section on the PowerApps
website where we can download the PowerApps software.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCIng powerapps

10

Users can download the mobile player from the app store of the device. The system requirements at the
time of writing are these:

•	 Android – version 5.0 (Lollipop)

•	 Apple iPhone / iPad – iOS 8.0

•	 Windows Mobile – Windows 10 Mobile

Desktop users can use PowerApps Studio to run apps. This method is particularly useful for desktop
users. With the browser version of PowerApps Studio, any device that can run a web browser can run
PowerApp apps.

What Data Can a PowerApps Consume?
The apps that we build with PowerApps can display and edit data from a wide range of data sources. The
simplest data storage option is to store our data on an Excel spreadsheet. Most of sample apps that we can
create with PowerApps templates work in this way. We must save the Excel spreadsheets onto cloud storage
in order for PowerApps to access the data. The most popular cloud storage platforms that PowerApps
supports include OneDrive, Dropbox, and Google Drive.

Figure 1-6. PowerApps Mobile and PowerApps Studio

Chapter 1 ■ IntroduCIng powerapps

11

Connecting to On-Premises Data
Typically, many businesses store data in databases that reside within an internal company network. We can
make this data available to PowerApps through a program called the ‘On-premises data gateway’. Through
the On-Premises data gateway, we can connect to various data sources. Two of the most common are SQL
Server and SharePoint Server.

Common Data Service
When we're building an application from scratch, we can save time by using the Common Data Service
(CDS). The CDS provides pre-built table definitions and saves us from having to design commonly used data
structures.

For example, let’s suppose that we want to build an app to store user details. With the CDS, we can
simply add the ‘Application User’ entity to our application. The ‘Application User’ entity includes the data
that we typically want to store for a user, such as name, address, and email address. Figure 1-7 shows some of
the CDS entities that are available.

Figure 1-7. CDS entities

Chapter 1 ■ IntroduCIng powerapps

12

Connecting to Other Data Sources
Companies increasingly store corporate data in online, cloud-based systems. To support this growing trend,
PowerApps can connect to a wide range of data sources. These include Dynamics 365, Sales Force, and
Email services. Figure 1-8 highlights the screen to add a data source. This image illustrates a handful of the
data sources that we can connect to.

Figure 1-8. Other data sources

How Do You Write Code?
PowerApps has a strong resemblance to Microsoft Excel. We use formulas to add logic and functionality
to an application, just like we would in Excel. This makes it easy for Microsoft Office users to transition to
PowerApps. However, traditional programmers might find it a struggle to adjust to this way of working.
To illustrate this, Figure 1-9 shows a typical formula.

Chapter 1 ■ IntroduCIng powerapps

13

The formula appears in the formula bar at the top of the screen, just like Excel. The purpose of the
formula in the screenshot is to display a set of images. As you can see, it can take some skill to build the
formula to carry out a task in PowerApps.

How Much Does It Cost?
An important consideration for any software solution is cost. PowerApps is a subscription-based service,
and the typical way to obtain access to PowerApps is through an Office 365 or Microsoft Dynamics 365
subscription.

Without an Office 365 or Dynamics subscription, another way is to purchase a PowerApps plan. There
are two plans available: PowerApps Plan 1 and PowerApps Plan 2. Plan 1 is the cheapest option and provides
most of the features for building, running, and sharing apps. The additional features you get with Plan 2 are
features to manage security policies, the ability to model data in the CDS, access to premium connectors
like Salesforce, and more data storage in the CDS. For example, Plan 1 provides 20MB storage in the CDS
whereas Plan 2 provides 200 MB.

Figure 1-10 shows the pricing from the official PowerApps website at https://powerapps.microsoft.
com/en-us/pricing/. At the time of writing, the cost for Plan 1 is $7 USD per user per month, and the cost
for Plan 2 is $40 USD. I mention these prices to give an indication of the costs and pricing of PowerApps. No
doubt, these prices will change over time.

Figure 1-9. Writing formulas

https://powerapps.microsoft.com/en-us/pricing/
https://powerapps.microsoft.com/en-us/pricing/

Chapter 1 ■ IntroduCIng powerapps

14

Within an organization, users do not need to all subscribe to the same plan. Therefore, an organization
could license 2 users with plan 2, 20 users with plan 1, and 30 users with Office 365.

Summary
PowerApps is a tool for building mobile business apps. A perfect use of PowerApps is to build ‘forms over
data’ apps. This tool is designed for power users.

Several sample applications are available, and we can use these to learn how to build apps with
PowerApps. These include a budgeting app, a service desk app, and many other apps. These sample apps
demonstrate how to use the camera, GPS, and how to access data and carry out calculations.

A PowerApp application can connect to wide range of data sources. This includes the CDS, cloud-based
data sources such as Dropbox and One Drive, and on-premises data sources. The on-premises data source is
very useful for corporate users who want to connect to data in their companies.

Users build apps with a tool called PowerApps Studio. This tool can run in Windows or in a browser.
Mobile users would run applications on mobile devices using a runtime app. This is available in iOS,
Android, and Windows Mobile.

PowerApps is a subscription-based service. We can use PowerApps by subscribing to Office 365 or by
purchasing a PowerApps plan.

Figure 1-10. PowerApps pricing illustration

15© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_2

CHAPTER 2

Subscribing to PowerApps

In this chapter, we’ll look at how to subscribe to PowerApps. This can be a challenge because several
subscriptions exist with different usage rights and prices. You’ll learn about the available subscription
options, and we’ll go through the steps to install the required software on a computer. What you will learn
in this chapter will include the following:

•	 An overview of Microsoft Cloud Services. Microsoft provides different cloud services
for consumers and businesses. This can be confusing, and it complicates the process
of logging in. We’ll examine these differences to help avoid any confusion moving
forward.

•	 How to manage a subscription through the web-based portal. The portal is
important because it enables us to manage some of the underlying PowerApps
settings.

•	 How to install PowerApps Studio – the tool that we’ll use throughout this book to
build apps.

How to Get PowerApps
PowerApps is a subscription-based service, and there are two main ways to obtain access to PowerApps,
which are the following:

•	 Through an Office 365 or Dynamics 365 subscription

•	 Through a PowerApps subscription

For learning purposes, Microsoft also provides a ‘Community Edition’ of PowerApps. This is a free
edition of PowerApps that individuals can use to gain familiarity with the software. The limitation with this
edition is that it’s not possible to share the apps that we create with other users.

Obtaining PowerApps via Office 365
A common way for organizations to access PowerApps is through an Office 365 or Dynamics 365 subscription.
To the uninitiated, the myriad of subscription offerings with Office 365 can be confusing. So to start this
section, I’ll provide an introduction to Office 365.

https://doi.org/10.1007/978-1-4842-3003-9_2

Chapter 2 ■ SubSCribing to powerappS

16

What Is Office 365?
By now, you are likely familiar with the desktop versions of Word, Excel, Outlook, PowerPoint, and Access
that run on Windows. In the past, many users would have purchased perpetual licenses to use these
products. From a strategic point of view, Microsoft needed to move toward a cloud-based, subscription
model. This business model would provide a more consistent revenue stream, and it would better position
the company against competition such as Google Apps.

In 2011, Microsoft released Office 365 as a subscription service aimed at businesses. For small
businesses, the service provided email hosting via hosted Exchange, SharePoint, and Lync (a tool for
communication and conferencing). The service also provided access to Office Web Apps. These are online
versions of Word, Excel, PowerPoint and OneNote that run through a web browser. At the same time,
Microsoft also offered an Enterprise version that included desktop licenses.

Later in 2013, Microsoft introduced editions of Office 365 for consumers. To cater for this demographic,
Microsoft sold prepaid subscriptions at shops and retail outlets.

Consumer vs. Business Office 365
There are two distinct ‘flavors’ of Office 365 that are targeted at business and retail users. Although both
share the same Office 365 name, they are fundamentally very different. It’s very important to understand this
in order to avoid confusion. In truth, much of the Microsoft Office branding can be confusing. Let’s examine
some of the differences between the business and retail editions of Office 365.

The business editions of Office 365 provide email hosting through Microsoft Exchange. They also
provide file storage though ‘OneDrive for Business’, and voice communications and instant messaging
through ‘Skype for Business’.

On the other hand, the retail editions of Office 365 provide email hosting through Outlook.com, the
name for what used to be Hotmail. The retail editions also provide file storage through OneDrive, and voice
communications through Skype.

Looking at online file storage, it’s important to realize that the retail version of OneDrive is not the same
as OneDrive for Business. The consumer version of OneDrive provides cloud storage, and users typically
use this service to store music and videos. On the other hand, ‘OneDrive for Business’ is a storage system
that is internally based on hosted Microsoft SharePoint. So as you can see, ‘OneDrive for Business’ and the
consumer edition of OneDrive are primarily very different.

Likewise, the version of Skype that you would use to call your parents is not the same as ‘Skype for
Business’. Skype for Business was formally known as Microsoft Lync, which was formally called Microsoft
Live Meeting.

The important thing to take away from this is that often, Microsoft Services are branded with similar
names, but refer to completely different services.

Understanding Work Accounts and Personal Accounts
Another very important difference between the business and retail editions of Office 365 is that both services
use completely separate authentication databases.

The business editions of Office 365 are based on Office 365 accounts. Users log on with credentials that
consist of an email address and password. In general, the Office 365 administrator for an organization sets
up the Office 365 accounts for users.

The retail editions of Office 365 are based on Microsoft accounts. Like most authentication methods, a
Microsoft account consists of an email address and password. These are the same credentials you could use
to log on to Windows 8 or 10 computers, or the credentials you would use to log in to the Hotmail or Outlook.
com services.

Chapter 2 ■ SubSCribing to powerappS

17

Because each email address can be associated with two separate authentication databases at Microsoft,
this can cause much confusion. For instance, if we log into a Microsoft website with a Microsoft account
(e.g., Outlook.com) and then navigate to certain areas on the PowerApps portal, we might see the error
message that’s shown in Figure 2-1.

Figure 2-1. Authentication error message

One way to overcome this type of error is to log out from our Microsoft account, or to completely close
and reopen our web browser.

Figure 2-2 shows the screen that appears when we log in with an email address that is associated with
both an Office 365 and a Microsoft account.

Figure 2-2. PowerApps login screen

Chapter 2 ■ SubSCribing to powerappS

18

To log in to PowerApps, we would choose the ‘Work or school account’ option. One thing to highlight
here is the use of the word ‘Work or school account’. This is the type of account that I call the ‘Office 365
account’. Another name that refers to the same type of account is an ‘Azure Active Directory’ account, often
abbreviated to ‘AAD’. The most likely place that we’ll encounter the term ‘AAD’ is on technical forums and
help sites. The main thing to understand here is that 'Office 365 account’, ‘Work or school account’, and ‘AAD
account’ all refer to the same thing.

Once you begin developing apps, it’s useful to relay this information to your end users, because those
users may not be familiar with the differences between the Microsoft account types. Even for experienced
users, it can be difficult to keep track of what account you need to log in to a specific Microsoft service. For
example, I use my ‘Personal account’ to log into my Azure and VisualStudio.com accounts, and this choice of
account isn’t perhaps the most obvious for a work-based service.

When we use PowerApps, it’s useful to have this clarity about the different account types to help avoid
confusion. To give a relevant example, it’s not uncommon to log into PowerApps with an Office 365 account,
and to store application data in a personal OneDrive account.

What Office 365 Editions Support PowerApps?
The business editions of Office 365 provide access to PowerApps. It is not available through the retail
editions of Office 365.

The business editions of Office 365 are further separated into Business and Enterprise plans. Only the
Enterprise plans provide access to PowerApps. Figure 2-3 shows a screenshot of the Office 365 Enterprise
plans. The purpose of this screenshot is to illustrate the tiers that make up the pricing structure, and the
approximate costs. By the time you read this, the prices will have likely changed.

Figure 2-3. Office 365 Enterprise plans

Subscribing to a PowerApps Stand-Alone Plan
If we choose not to access PowerApps through an Office 365 subscription, the alternative is to subscribe
to a PowerApps Stand-Alone plan. As Figure 2-4 illustrates, two plans are available – Plan 1 or Plan 2. To
build apps, we need to subscribe to Plan 2. The cheaper Plan 1 is designed for app users, rather than app
designers.

Chapter 2 ■ SubSCribing to powerappS

19

It’s possible to mix stand-alone and Office 365 plans. For example, if we build an app with a Plan 2
subscription, we can share our app with users that are licensed for PowerApps through Office 365.

If you’re only interested in learning how to use PowerApps, you can subscribe to the free community
plan. This plan still provides access to valuable features such as the Common Data Service and Microsoft
Flow. The only limitation is that you can’t share apps with other users. To sign up, you’ll need a Microsoft
work account.

Even if you subscribe to a paid-for plan, it’s still worth subscribing to the community plan. This is
because the community plan provides you with a separate environment that you can use for test purposes.
At the time of writing, here’s the address to register for the community plan.

https://powerapps.microsoft.com/communityplan/

Registering for an Account
To subscribe to PowerApps, visit https://powerapps.microsoft.com/ and register with a corporate email
address. It’s necessary to use an email address that ends with a custom domain name. The registration
process rejects personal email addresses that are hosted by ISPs, or companies like Gmail or Hotmail. It will
also reject a government or military email address (that is, an email address that ends with .gov or .mil).

Figure 2-4. Stand-Alone Plans and features

https://powerapps.microsoft.com/communityplan/
https://powerapps.microsoft.com/

Chapter 2 ■ SubSCribing to powerappS

20

If you have a corporate email address and attempt to subscribe, you might receive the error in
Figure 2-5 if your business is covered by an Office 365 subscription. In this case, you should speak to your
company administrator and request access to the PowerApps.

Figure 2-5. Registration error

If you attempt to sign up for PowerApps, there are several things that can cause your attempt to fail.
A common cause is if you attempt to register while still logged into a Microsoft personal account within the
same browser session. In the case of a registration failure, the page usually offers a friendly error message
like the one that’s shown in Figure 2-5. In such instances, you should visit the visit the web page that’s
devoted to troubleshooting registration failures:

https://powerapps.microsoft.com/en-us/tutorials/signup-for-powerapps/#troubleshoot

Here, we can find a table that translates these friendly error messages into technical explanations that
we can act on and resolve.

Obtaining a Suitable Email Address
If you want to sign up for PowerApps but don’t have a suitable email address, there isn’t any simple
workaround to this problem. You must obtain a custom email address in order to subscribe to PowerApps.

A search on the web will reveal hundreds of companies that can sell you a custom domain name. The
going rate seems to be around $2 for an initial 12-month registration. Once you purchase a domain name,
you can link it with a free email hosting provider such as Zoho.com to provide a low-cost method to trial
PowerApps.

If you work for a large bureaucratic organization, it may even be easier for you to trial PowerApps using
this technique, rather than to go through any complicated internal channels.

https://powerapps.microsoft.com/en-us/tutorials/signup-for-powerapps/#troubleshoot

Chapter 2 ■ SubSCribing to powerappS

21

Logging onto PowerApps
Once we subscribe successfully to PowerApps, we can access the PowerApps Portal, as shown in Figure 2-6.
This is the website that helps us administer our PowerApps account. Through this portal, we can create
apps, data connections, and Flows. We can also manage gateways, notifications, and manage the Common
Data Service (CDS).

Figure 2-6. PowerApps Web Portal

By clicking the download icon at the top of the page, we can download PowerApps Studio and the
mobile player apps. The cog icon opens the PowerApps Admin Center. Let’s now open the Admin Center
and see what features are available there.

Configuring Environments
From the Admin Center, there are two menu items: Environments and Data Policies. At this stage, the more
important of the two is Environments. Data Policies are a feature to help us secure our data and I’ll describe
this topic more fully in Chapter 13.

http://dx.doi.org/10.1007/978-1-4842-3003-9_13

Chapter 2 ■ SubSCribing to powerappS

22

Environments are containers for apps and resources. Environments play a key role in security and
access control. When we save an app to an Environment, we can control who can access our app based upon
access control permissions at an Environment level. Furthermore, data connections, flows, and Common
Data Model databases are entities that are specific to a single Environment. We can’t share these items
between Environments.

The reason to configure multiple Environments is to help compartmentalize apps and users. For
example, we could create separate environments for apps in development and apps that are currently in
live use.

Installing PowerApps Studio
In the final section of this chapter, we’ll look at how to install PowerApps Studio. This is the Windows
program that we use to build and run apps. To download the software, click the download link from the web
portal, or visit the following link:

https://aka.ms/powerappswin

PowerApps Studio is a Microsoft Store App that works with Windows 8 or above. The links above will
open the App Store on our computer. If you’ve never used the Store App, the first screen will prompt you
to log in with a Microsoft account (as shown in Figure 2-8). As you’ll recall, this is not the same as your
PowerApps/Office 365 account.

Figure 2-7. PowerApps Admin Center

https://aka.ms/powerappswin

Chapter 2 ■ SubSCribing to powerappS

23

Once you log in to the Store App, you’ll see the screen that’s shown in Figure 2-9. From here, click the
‘Install’ button to download and install App Studio.

Figure 2-8. Logging into the Windows Store App

Figure 2-9. Installing PowerApps via the Microsoft Store App

Chapter 2 ■ SubSCribing to powerappS

24

When the installation process completes, we can start PowerApps Studio by searching for the app
through the Windows start menu. When we run PowerApps Studio for the first time, it’ll prompt us to log in
with our Microsoft wok account.

Summary
In this chapter, we looked at how to subscribe to PowerApps. We can obtain PowerApps through an Office
365 or stand-alone PowerApps subscription.

There are separate versions of Office 365 for businesses and consumers. The business editions of Office
365 are further separated into business and enterprise plans. To gains access to PowerApps, we need to
select one of the enterprise plans.

To register for a stand-alone subscription to PowerApps, it’s necessary to use a custom email address.
The registration process rejects Gmail, Hotmail, ISP, and government email addresses. There are two stand-
alone plans that are offered: Plan 1 or Plan 2. To build apps, we need to subscribe to the more expensive Plan
2. Plan 1 subscriptions are designed for users who want to run the apps you build. For trial or test purposes,
we can subscribe to the free community plan.

We use a Microsoft ‘Work or School Account’ to log into PowerApps. This type of account is also known
as an 'Office 365 account, or an ‘Azure Active Directory account’. Once we log into the portal, we can access
the links to download PowerApps Studio, or the PowerApps players for mobile devices. PowerApps Studio is
the Windows application that we use to build apps. It can only run on computers with Windows 8 or above.

From the Admin Center section of the PowerApps portal, we can create and manage environments.
Environments allow us to compartmentalize apps and users for access control purposes. One use for
environments is to configure separate environments for apps that are in development, and apps that are in
live use.

25© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_3

CHAPTER 3

Creating Your First App

In this chapter, you’ll learn how to create a basic app that connects to data. It’s simple to build this type
of app because we can point PowerApps at a data source and tell it to generate an app for us. Because
PowerApps carries out all the hard work, the challenge is to understand the app that PowerApps builds.
This is important because the knowledge enables us to further enhance and develop such ‘auto-generated’
apps. To demonstrate this process, we’ll develop an app that connects to an Excel spreadsheet. The topics
that we’ll cover in this chapter will include the following:

•	 How to prepare an Excel spreadsheet for use in PowerApps. This step is important
because PowerApps can only connect to spreadsheets that are set up in a
certain way.

•	 How to use data forms and cards. These controls provide the ability to view and edit
individual records. They are complex controls that are not easy to understand. In this
chapter, we’ll discover exactly how these controls work.

•	 How screen navigation works. We’ll examine how to open an individual record when
a user selects an item from a list of records, and how to change the screen that is
visible. These techniques are applicable to almost all apps.

Preparing an Excel Data Source
PowerApps supports many data sources. This includes SharePoint, SQL Server, Salesforce, and many more.
Of all the supported data sources, the easiest to understand is an Excel spreadsheet. Therefore, that’s the
data source that we’ll use regularly throughout this book.

In this chapter, we’ll work step by step toward building a simple app. The purpose of our app is to store
names and addresses. So to begin, the first step is to create the spreadsheet that’s shown in Figure 3-1.

Figure 3-1. Sample Spreadsheet

https://doi.org/10.1007/978-1-4842-3003-9_3

Chapter 3 ■ Creating Your First app

26

For PowerApps to recognize a spreadsheet, the first row must contain column headings and the data
must be defined as a table. To do this, select the data and click Insert ➤ Table button from the menu in Excel.

The next step is to name our table by using the ‘Table Tools’ menu in Excel. Figure 3-2 outlines the steps
to rename our table to Users.

Figure 3-2. Use the ‘Table Tools’ ribbon option to name your table

If we choose not to name our table, it inherits the default name of ‘Table1’. If we retain the default name
of ‘Table1’, it makes it difficult to identify our data from within the PowerApps designer.

It’s possible to add multiple tables to each Excel spreadsheet. But if we decide to do this, it’s a good
idea to add each table to a separate worksheet. When PowerApps connects to an Excel spreadsheet, it stores
working data in the cells that are adjacent to the table. By adding each table to a separate worksheet, we
prevent the possibility of any data corruption to occur.

Once we complete our spreadsheet, the final step is to upload it to a cloud storage location. Two of the
most popular services that PowerApps supports are Microsoft OneDrive and Dropbox. For the purposes of
this chapter, we’ll upload our data to Microsoft OneDrive.

 ■ Note We must define our data as a table for powerapps to recognize the data in our spreadsheet.

Creating an App
Once we upload our spreadsheet to the cloud, we can start PowerApps Studio and begin to build our app.
When we start PowerApps for the first time, it prompts us to log in with our Microsoft Work Account. After
logging in, we can select the ‘New’ menu and view the choices for building a new app (Figure 3-3). An
effective way to build an app is to choose the option to ‘Start with data’. When we select this path, PowerApps
builds an app that includes screens to display, create, update, and delete records. Throughout the remainder
of this book, I’ll refer to these apps as ‘auto-generated apps’.

Chapter 3 ■ Creating Your First app

27

Alternatively, we can create an app from a template. Microsoft provides some excellent templates and I
recommend that you explore these. We can learn a great deal by examining the apps that we can build from
templates.

Creating an Auto-Generated App
To create our first app, we’ll choose the option to ‘Start with your data’. The ‘Start with your data’ section
offers a choice of five data sources that include Common Data Service, SharePoint, Dynamics 365, OneDrive
for Business, and Salesforce. The right-pointing arrow icon opens the screen that’s shown in Figure 3-4.
From here, we can connect to a wider range of data sources.

Figure 3-3. Ways to create a new App

Chapter 3 ■ Creating Your First app

28

From the screen that’s shown in Figure 3-4, add a connection to the cloud storage provider (in our
example, OneDrive), and navigate to the spreadsheet location. Select the spreadsheet to show a list of
available tables, as highlighted in Figure 3-5. Once we select a table from this list, PowerApps will create an
app. Note that we can only select a single table from this list. It isn’t possible to select more than one table as
a basis for an auto-generated app.

Figure 3-5. Choose a table from your spreadsheet

Figure 3-4. Creating a new connection

Creating Apps from SharePoint
If we were to build an app from a SharePoint Online data source, there’s another method to quickly
build auto-generated apps. From a SharePoint list, select the menu item to create a new app, as shown
in Figure 3-6.

Chapter 3 ■ Creating Your First app

29

Exploring the Designer
When PowerApps opens, we’ll see the screen that’s shown in Figure 3-7. Here are the highlights of the
sections that make up the designer:

•	 The top part of the designer contains a ribbon menu. The ‘File’ menu enables us
to perform tasks that include opening and saving apps. The remaining menu items
carry out design tasks, such as inserting controls on screens.

•	 The left part of the designer shows the screens in our app. We can edit a screen by
selecting it from this part of the designer. The icons at the top switches the view
between the ‘screen explorer’ and ‘screen thumbnails’ views. The ‘screen explorer’
view provides a tree view of all the controls on a screen, whereas the ‘screen
thumbnails’ view provides a far more basic view.

•	 The central section of the screen houses the screen designer. From here, we can edit
and position the controls on a screen. Furthermore, we can also delete controls, or
add additional controls through the menu items in the Insert section of the ribbon
menu bar.

•	 The right-hand side of the designer allows us to apply settings for the currently
selected control.

Figure 3-6. Creating an app from a SharePoint list

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Creating Your First app

30

Running Your App
Without having to make any additional modifications to our project, we can run our app by selecting the
first screen in the left pane (BrowseScreen1), and clicking the white ‘play’ button in the top-right part of the
menu bar. We can also run our app by pressing the F5 button on our keyboard instead.

It’s possible to run any screen in our project by selecting it via the left pane and clicking the play button.
For example, to run the edit screen, we can simply select it and click the play button. There’s no need to start
the app from the initial startup screen and to navigate to the screen that we want to see.

To return to the designer, the simplest way is to click the escape key on the keyboard.

Examining the Screens at Runtime
Let’s now examine the screens in our auto-generated app. The first screen that appears when we run the app
is the browse screen, as shown in Figure 3-8. The name of this screen is BrowseScreen1.

Figure 3-7. PowerApps designer

Chapter 3 ■ Creating Your First app

31

The browse screen displays a list of records from the data source. The buttons to the right of the title
bar refresh and sort the data that’s shown in the list. There is also a button to add a new record. Beneath the
title bar, the ‘Search items’ text box enables us to filter the results. Against each record, we can click the ‘right
arrow’ icon to open the selected record in the details screen (Figure 3-9).

Figure 3-8. Browse Screen

Figure 3-9. Details screen

The name of the details screen in our project is DetailScreen1. The main body of this screen shows
the value of each field in the selected record. To the right of the screen title are two buttons. The first button
deletes the record, and second button opens the edit screen as shown in Figure 3-10.

Chapter 3 ■ Creating Your First app

32

The name of this screen in our project is EditScreen1. From this screen, users can modify the selected
record. The ‘tick’ icon to the right of the screen title saves the record, while the cross icon on the left returns
the user to the detail screen.

The initial browse screen includes a button to add a new record. This button opens the same edit
screen, but places the screen into ‘add mode’, rather than ‘edit mode’.

Understanding the Auto-Generated App
Now that we’ve seen what an auto-generated app looks like, let’s look at how it works technically.

Adding and Removing Data Sources
The data source for our app is an Excel spreadsheet. You can examine the data sources in a project by
clicking the Data Sources button beneath the Content menu. When we click this button, the list of data
sources in our project appears in the lower-right section of the screen, as shown in Figure 3-11. Here, we can
see the data source in our app, which is called Users.

Figure 3-10. Edit screen

Figure 3-11. Managing Data Sources

Chapter 3 ■ Creating Your First app

33

The placement of the data sources panel in the screen designer might be confusing. Although the
Data Sources panel appears beneath the BrowseScreen1 heading, data sources are not screen specific.
In this case, Users is a data source that we can access from any screen in our project, and not just the
BrowseScreen1 screen.

As Figure 3-11 illustrates, each data source includes a context menu that we can access through the
button with three ellipses. Through this context menu, we can refresh or delete a data source.

The purpose of the refresh function is to update our project when a data source changes. For example,
if we were to add additional columns to our Excel spreadsheet table, PowerApps would recognize the new
columns only after we click the refresh button.

Frustratingly, there’s no simple way to view the details of an Excel data source. In this example, there’s
no way to tell the exact location on OneDrive where our Excel file exists. To make it easier to remember the
location of your Excel file, some app builders make a note of the OneDrive file path in the description setting
of the app.

Let’s suppose that we want to move our data source. For example, we might want to relocate our Excel
file to different location on OneDrive, or to move our file from OneDrive to Dropbox. To move a data source,
the best way is to delete our data source, and to re-add it. The good news is that when we delete a data
source, PowerApps doesn’t make any breaking changes to the project. For example, it won’t automatically
remove screens, controls, or objects that are associated with the data source.

 ■ Note We can access data sources globally throughout an app. a data source is not specific to an
individual screen.

Adding, Deleting, and Rearranging Screens
The left part of the screen designer enables us to manage the screens in our app. When a user runs an app,
the first screen that opens is the screen at the top of this list. Therefore, the way to configure an app to show a
different startup screen is to move the desired screen to the top of the list. We can move a screen by dragging
it with the mouse or by using the context menu, as shown in Figure 3-12.

Figure 3-12. Use the context menu to manage screens

Chapter 3 ■ Creating Your First app

34

Through the context menu, we can add, delete, and duplicate screens. Each application must include
at least one screen. Therefore, if only one screen exists in an application, the ‘delete screen’ item will not
appear in the menu. To rename a screen, we can use the context menu or use the screen name text box in
the properties pane, as shown in Figure 3-13.

Figure 3-13. Renaming a screen

The good news is that when we rename a screen, the designer will change all formula references to use
the new name. This makes it simple to rename screens because we don’t need to worry about manually
changing other parts of the app that refer to the screen.

Understanding How Screens Are Connected
The auto-generated app includes three screens that are all connected to data. It includes navigation links
and buttons that connect all three screens. How exactly does this work? In this section, we’ll find out how.

How the Browse Screen Works
Starting with the browse screen, the main body of the screen contains a control called a gallery control. The
purpose of this control is to show a list of records. It includes a property called Items. This property specifies
the data that appears.

The gallery control in the browse screen is called BrowseGallery1, and the screenshot in Figure 3-14
shows the value of the Items property. This property value contains a formula to support the search and sort
features of the screen. But ultimately, BrowseGallery1 connects to the Users data source, which was shown
in Figure 3-11.

Chapter 3 ■ Creating Your First app

35

Figure 3-14. The data source for the gallery control

From the browse screen, the user can open an existing record or create a new record. Let’s look at the
formula that opens an existing record. From BrowseGallery1, select the icon with the right-pointing arrow,
as shown in Figure 3-15.

Figure 3-15. Formula to open an existing record

Because the gallery control shows multiple records, we can only select the first item in the control.
This first item acts as a template for the repeating items in the gallery control.

The properties pane shows a property called OnSelect. This defines what happens when a user clicks
a control.

Chapter 3 ■ Creating Your First app

36

The OnSelect formula calls a function called Navigate. The purpose of this function is to change the
screen that is currently visible. This function accepts two arguments, the first being the screen that you want
to show. The second argument specifies the screen transition effect and there are four that we can choose
from – None, Fade, Cover, UnCover. The differences between these transition effects are these:

•	 Fade - The existing screen fades away to reveal the new screen.

•	 Cover - The new screen will slide into view, covering the existing screen.

•	 UnCover - The exiting screen will slide out of view, thereby uncovering the new screen.

You might be curious as to why the navigate function doesn’t specify which record to open in the detail
screen. Don’t worry, you’ll find out very soon.

Let’s look at the formula to create a new record. Figure 3-16 shows the formula attached to the add icon
at the top of the screen. This formula calls the Navigate function to open the edit screen (EditScreen1) but
before it does so, it calls a function called NewForm.

Figure 3-16. The add record button calls the NewForm function

The purpose of the NewForm function is to support the behavior of the edit screen. The edit screen
serves two purposes. It enables users to modify existing records and it also enables users to add new records.
The NewForm function prepares the form on the edit screen to receive the entry of a new record. A form is
a control that houses data entry controls and in this example, the name of the form on the edit screen is
EditForm1.

After the call to NewForm, the next command in the formula calls the Navigate function to open the
edit screen.

How the Detail Screen Works
The screen that displays a single record is called DetailScreen1. The main body of this screen contains a
form object called DetailForm1. See Figure 3-17.

Chapter 3 ■ Creating Your First app

37

Forms provide the framework to display a single record on a screen. The data source of DetailForm1
is set to Users. A form shows a single record and the Item property defines the record to display. In this
case, the Item property is set to BrowseGallery1.Selected. This refers to the browse gallery control in
BrowseScreen1. The browse gallery control keeps track of the selected item. When a user clicks an item in
the gallery, we can access the selected record through the Selected property.

Because the Item property in DetailForm1 refers to BrowseGallery1, this explains why we don’t need to
provide a record when we open this screen with a call to the Navigate function. DetailForm1 is connected to
BrowseGallery1 through the Item property of the DetailForm1.

Let’s look at the formula that opens the selected record in the edit screen. Figure 3-18 shows the formula
that is attached to the edit icon. The first command calls a function called EditForm. This function prepares
the form on the edit screen by loading the record into the form. The next command in the formula calls the
Navigate function to open the edit screen.

Figure 3-17. The data source for the detail form

Figure 3-18. The edit button calls the EditForm function

Chapter 3 ■ Creating Your First app

38

Searching for Controls
At this stage, it’s useful to clarify that control names are unique at an application level. For instance, we
can only have one control named DisplayForm1 within an app. This can be a surprise because many other
development platforms exist where controls are unique at a screen level, rather than at application level.

Because of the way that formulas can refer to controls on other screens, a very handy feature is the
search facility. If we were looking at the application for the first time and saw a reference to BrowseGallery1,
how would we know which screen to find BrowseGallery1? By using the search facility, we can search
for objects throughout our project. The search facility is very useful because it makes it much easier to
understand the complicated apps that we can build via the built-in templates.

To search for an item, use the search box at the top of the screen explorer. Figure 3-19 shows the result
when we enter the search term BrowseGallery. The search feature returns the objects that contain the
search term in the tree view.

Figure 3-19. Using the search facility

 ■ Note Control names in powerapps are case sensitive and must be unique throughout a project.

How the Edit Screen Works
Let’s now examine the last of our three screens – the screen to edit data. The name of this screen is
EditScreen1 and the body of the screen contains the edit form that I mentioned earlier.

The edit form provides a framework to display, update, and add records. The data source of
our edit form is set to Users. An edit form is designed to show a single record, and the Item property
defines the record to show. Just like the form on the detail screen, the Item property of the form is set to
BrowseGallery1.Selected (Figure 3-20).

Chapter 3 ■ Creating Your First app

39

Figure 3-21 shows the formula that is attached to the save icon. This formula calls a function called
SubmitForm. The SubmitForm function saves the data changes to the underlying data source. If we called
the NewForm function before opening the screen, SubmitForm adds a new record to the data source.
Whereas if we called the EditForm function, the SubmitForm function will update the existing record in the
data source.

Figure 3-20. The data source of the edit form is connected to the gallery control

Figure 3-21. The save button calls the SubmitForm function

Understanding Forms and Cards
How exactly do forms retrieve and update data from a data source? In this section, we’ll find out how. A form
contains a series of card objects. Each card contains text boxes (or other controls) to display the data values.
At the beginning, I struggled to understand the necessity of this hierarchy of controls. It’s perfectly possible
to add text boxes directly to a screen. So why introduce a complex structure that requires us to connect text
boxes to cards, and cards to forms?

The main reason is that it provides a framework to retrieve and update data. It can make it quicker to
build screens, and it reduces the amount of code we would otherwise need to write to perform data
access tasks.

Figure 3-22 shows the design view of EditForm1. The items that appear beneath the Fields heading
represent the auto-generated cards that appear in the form. The reason they are called auto-generated cards
is because the designer creates the cards automatically based on the fields in the data source.

Chapter 3 ■ Creating Your First app

40

The card list reacts dynamically to the data source. If we were to add a new field (for example, phone
number) to our Excel table, the designer would generate a phone number card as soon as we refresh our
data source.

To hide a card, untick the checkbox that corresponds to the card that you want to hide. Figure 3-23
illustrates the appearance of the form with the ‘active’ card hidden. As you can see, the designer shows a
grayed-out version of the card when it is hidden. To reinstate the card, you can simply tick the checkbox to
reenable the card.

Figure 3-22. Features of Cards

Figure 3-23. Hiding and Showing cards

Chapter 3 ■ Creating Your First app

41

By default, the cards appear in alphabetical sequence. We can rearrange the sequence of the cards in a
form by dragging the cards in the ‘fields’ list to the desired location.

To summarize why we can build screens more easily with forms and cards, here are three benefits. The
first benefit is that forms react when a change to the underlying data source occurs and this behavior makes
it easier for us to maintain our app.

The second benefit of the card system is that the auto-generated cards can retrieve validation rules
from the data source. This doesn’t apply to our Excel example but if we used a SharePoint data source
instead, the cards would validate data type of the input data, and also enforce the entry of any mandatory
fields. Figure 3-24 shows an example from a separate app based on a SharePoint source.

Figure 3-24. The cards can enforce validation rules

Figure 3-25. Changing the control type

The third benefit of cards is that we can easily change the control type. If we click the ‘abc’ icon next
to the card name, the designer provides a list of controls that we can use instead of a text input control
(Figure 3-25). The choices include ‘View Text’, ‘View Phone’, ‘View Email’, ‘Edit Text’, ‘Edit Multi-Line Text’,
and ‘Allowed Values’.

Chapter 3 ■ Creating Your First app

42

It’s possible to modify the appearance of an auto-generated card but we can only do so once we unlock
it. To unlock a card, select the card and click the Advanced tab, as shown in Figure 3-26. From here, click the
padlock icon to unlock the card.

Figure 3-26. Unlocking a card

Let’s suppose that we unlock the firstname card. As soon as we unlock the card, the designer auto-
generates another firstname card, but the card will be in a disabled state. This allows us to revert to the
default state of an auto-generated card if we want to discard our customizations.

 ■ Caution if the designer fails to apply your changes, make sure that the card you want to edit is unlocked.

Reading Data into a Form
Here’s how a form retrieves data from its data source. The form uses the data source and selected item
properties to determine the record to load.

For each card, the Default property defines which field in the record to retrieve. Figure 3-27 shows the
auto-generated card for the firstname field. As this screenshot shows, the Default property of this card is set
to ThisItem.Firstname. The ThisItem keyword enables us to reference the fields in the record.

Chapter 3 ■ Creating Your First app

43

Figure 3-27. The default property specifies the field that the card retrieves

Another useful card property is DisplayName. PowerApps uses this value to set the label heading
for the card.

 ■ Tip to configure a card to read data, the only property we need to set is the Default property. in an
auto-generated card, we can clear all other property values and the data will still load.

How Card Controls Work

The card itself doesn’t display any data directly, or provide any discernable functionality to the end user. It
simply acts as a container for other controls. The content of the firstname card includes a text input control,
as shown in Figure 3-28. For text input controls, the Default property specifies the text that the control
displays. In this example, the value of this property is Parent.Default.

Figure 3-28. specifying the text that appears in the text input control

Chapter 3 ■ Creating Your First app

44

Because the text input control belongs inside a card control, the Parent keyword enables us to refer to
the properties of the parent card control. In this case, Parent.Default will resolve to the default property of
the card control, which in this case is ThisItem.Firstname.

Rather than set the default property of the text control to Parent.Default, everything would work the
same if we were to set the default property of the text control to ThisItem.Firstname. So why use this parent
syntax? The benefit of this pattern is that it encourages better encapsulation of the card. If a card were to
contain multiple child controls that refer to the firstname field, it’s better to use the Parent.Default syntax
because if we want to change the card so that it displays a different field, we can apply this change in a single
place at the card level, rather than apply the change in multiple places in child controls.

Notice that the label for the card also applies this same pattern. As Figure 3-29 shows, the Text property
of the text box control is set to Parent.DisplayName.

Figure 3-29. Label control for a card

Figure 3-30. Using the cookie control in the designer

When we work with forms and cards, a useful feature to mention is the cookie trail control that appears
in the lower part of the screen designer (Figure 3-30). If we want to set the properties of an object such as a
screen or a form, the cookie trail enables us to quickly select our desired object. When controls are placed
closely together on a screen, it can be difficult to select the correct object with the mouse. Using the cookie
trail makes this task simple. Another reason why the cookie control is useful is because it confirms that we’ve
added a control to the right place. For example, to insert a control onto a card, we need to select the card
with the mouse before choosing a control from the insert menu. If we forget to select the card, the designer
adds the item that we insert onto the screen. Therefore, the cookie trail provides confirmation when we
insert child items onto a control.

 ■ Tip We can also use the screen explorer to view the hierarchy of controls on a screen. the screen explorer
is especially useful because we can use this to view hidden controls.

Chapter 3 ■ Creating Your First app

45

Saving Form Data to a Data Source
How does PowerApps insert and update records? The insert or update operation begins when a user initiates
a call to the SubmitForm function. The save icon in EditScreen1 calls this function and supplies the name of
the edit form. The SubmitForm function retrieves the data that the user enters through the child controls on
the cards, and updates the data store.

Figure 3-31 shows the firstname card on the edit form. The card properties that are pertinent to the save
operation are the DataField and Update properties.

Figure 3-31. Inserting or Updating a record

The SubmitForm function works its way through each card on the form. For each card, it uses the
DataField property to determine which field to update in the data store and then uses the Update property
to work out the value to set. In this specific example, the SubmitForm function updates the Firstname
field, and sets the value to the text that the user enters through a text input control. Just to clarify,
DataCardValue14 is the name of the text input control inside the firstname card.

The SubmitForm function can update an existing record or it can insert a new record. This depends on
the function that we called prior to opening the screen. If we called the EditForm function, SubmitForm will
update an existing record in the data source. Whereas if we called the NewForm function, SubmitForm will add
a new record to the data source.

If the SubmitForm completes the save operation successfully, it runs the formula that’s defined in the
OnSuccess property. In this case, it calls the Back function (Figure 3-32). This function navigates the user
back to the screen that was previously open. In the event of a failure, the formula in the OnFailure property
will run instead.

Chapter 3 ■ Creating Your First app

46

Figure 3-32. Specifying the action that runs when the SubmitForm function succeeds or fails

Choosing Not to Use Forms and Cards
Although there are benefits to using forms and cards to read and write data, it’s possible to build data entry
screens without the use of these controls. We could add custom text controls to a screen and call a function
named Patch to update the data source.

One reason not to use forms and cards is the ability to build data entry screens with a greater level of
customization. There may also be situations where we need to update more than one table. Edit forms are
associated with single tables and in scenarios where we want to update more than one table, it can be easier
to write custom formula, rather than build screens with multiple forms.

Chapter 3 ■ Creating Your First app

47

Recap of Concepts
We’ve covered a lot so here’s a summary to reinforce some of the concepts that we’ve learned. Figure 3-33
illustrates how screen navigation works in an auto-generated app.

Figure 3-33. How the screens are connected

Chapter 3 ■ Creating Your First app

48

Figure 3-34 illustrates how the read process works in the form of a diagram, and it also describes the
role that forms and cards play in this process.

Figure 3-34. How the data read process works

Chapter 3 ■ Creating Your First app

49

Figure 3-35. How the save process works

Finally, Figure 3-35 illustrates how the save process works in the form of a diagram.

Setting Project Properties
For each application, there are project properties that we can set. Through the ‘App settings’ section of the
designer, we can specify an app name, description, background color, and icon (Figure 3-36). When we share
our app with other users, the app name and description help other users to identify our app.

Chapter 3 ■ Creating Your First app

50

Figure 3-37. App settings – screen size and orientation

Figure 3-36. App settings

Through the ‘App settings’ screen, we can also configure the screen size and orientation settings, as
shown in Figure 3-37. A notable setting is the lock orientation setting. By default, this is set to on. When we
turn this off, our app will re-orientate itself when the user rotates the device.

Chapter 3 ■ Creating Your First app

51

Saving Your Project
To save our work, use the File ➤ Save As menu item, as shown in Figure 3-38. There are two places where we
can save our project – to the cloud, or to our local PC.

Figure 3-38. Saving your project

If we choose the cloud option, PowerApps will save our work to the current environment. We can switch
environments though the account menu. However, we can’t switch environments at the point at which we
want to save because we’ll be prompted to discard our changes.

If we save our project to our local computer, we won’t be able to open it from the web version of
PowerApps Studio. Saving work to the local computer can make it easier to manage backup copies of your
work, if that is your preferred way of working. We can also share project files with other users by email when
we save our work locally.

When we choose the option to save to our local computer, PowerApps Studio creates a file with a .msapp
extension.

Opening a Project
To open a project, use the open menu, as shown in Figure 3-39. This is the default screen that appears
when PowerApps opens. For projects that are saved locally, we can double-click the .msapp file in Windows
Explorer to open the project directly.

Figure 3-39. Opening a project

Chapter 3 ■ Creating Your First app

52

We can use the ellipses button to access a context menu. Through this menu, we can view the details of
an app. One useful feature of the details page is that it lists the data connections that an app uses.

Through this context menu, another useful option is the ability to delete a project. Note that only the
app owner can delete an app. There is no administrative feature to delete an app that doesn’t belong to you.
Where this can be a problem is if the owner of an app leaves our organization. This can leave orphaned files
in an environment that no one can delete.

Summary
In this chapter, we looked at how to build an auto-generated app based on an Excel spreadsheet. To use
Excel as a data source, we must define the data as a table in order for PowerApps to recognize the data.
Once we complete the spreadsheet, we need to save it to one of the cloud storage providers that PowerApps
supports. This includes Microsoft OneDrive and Dropbox.

When we start PowerApps Studio, it offers several options to create a new app. The first is to build
an app based on one of the built-in templates. These templates provide a great way to learn more about
PowerApps.

Another option is to choose the ‘start with data’ option. This option builds an auto-generated app that
enables users to create, update, and delete records from a data source.

Once we create an app, we can use a simple graphical designer to modify our project. The left part of
the designer shows the screens in an app, and the menu options in the ribbon bar enables us to add content.
Though the properties pane on the right, we can modify the settings of objects such as screens and controls.

Auto-generated apps contain three screens – a browse screen, detail screen, and an edit screen. The
browse screen contains a gallery control. This control displays a list of data and a user can use this control to
open a specific record in the detail screen. The detail screen shows the full details of a record, and includes a
link that opens the record in the edit screen. The edit screen enables users to make modifications to a record.

To display an individual record, the display and edit screens utilize a control called a form control.
A form connects to a record, and typically, we would configure a form to connect to the selected item in a
gallery control. Forms are containers for cards. A card is an object that connects to a specific field in a record,
and the purpose of a card is to retrieve and update fields from a data source. Cards are containers for data
controls, which are controls that users interact with. Examples of these controls include text input controls
or drop-down boxes. One benefit of this system is that PowerApps produces auto-generated cards that we
can include in a form. These auto-generated cards reflect any subsequent changes that we make to the data
source, and therefore provide a simple way for us to add additional fields to a data source.

Here’s a summary of some the functions that we’ve covered in this chapter. The function that switches
the visible screen is called Navigate. A form control can modify an existing record, or it can create a new
record. To prepare a form to edit an existing record, we would call a function called EditForm. To prepare a
form to create a new record, we would call a function called NewForm. To save the form changes to the data
source, we would call a function called SubmitForm.

To round off an app, we can use the settings area to define the name, description, icon, and other
properties of our app. Finally, we can save apps either to the cloud or to our local computer.

53© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_4

CHAPTER 4

Sharing Apps

The final step of developing an app is to make it available to users. In this chapter, we’ll walk through the
steps to publish an app. This enables named groups or users to enjoy the work that we created. Other useful
topics that we’ll cover will include the following:

•	 How to manage app versions. This feature is helpful because it enables us to restore
a previous version of an app if we accidently publish updates that contain breaking
changes.

•	 How to configure data connections when publishing apps. In some cases,
PowerApps can share data connections with end users. It’s important to understand
how this works because this determines whether end users need to provide data
source credentials when they start an app.

•	 How to move apps between environments or organizations. This can be a challenge
because there’s no direct way to carry out this task. In this chapter, we’ll look at how
to carry out this task.

Sharing Your App
To share an app with other users, the first step is to save our app to the cloud. To help users identify an app,
it’s a good idea to provide a meaningful name and description. When the save operation completes, click the
link to ‘publish this version’, as shown in Figure 4-1. The publish option makes an app available to users. If
we save an app without publishing it, our work will only be visible to users with sufficient permissions to edit
the app.

https://doi.org/10.1007/978-1-4842-3003-9_4

Chapter 4 ■ Sharing appS

54

The next step is to define the users with whom we want to share our app. To do this, click the Share
menu to open the PowerApps web portal (Figure 4-2). From this section of the portal, we can specify the
user with whom we want to share our app. We can also choose the option to share the app with an entire
organization, or with a group of users. There is a checkbox option to notify our users by email. The email
notification that the user receives will include a link to your app.

Figure 4-1. Save your app to PowerApps

Figure 4-2. Sharing an app with other users

Chapter 4 ■ Sharing appS

55

Note that we can only share apps with users from the same organization. It’s not possible to share apps
with users outside of our organization.

PowerApps will notify the users with whom we share our app. End users can view notifications by
logging into the portal and opening the notifications section, as shown in Figure 4-3.

Figure 4-3. Viewing notifications

End users do not require any specific permissions on the environment that houses your app. However,
without permissions to the underlying environment, it can be slightly more difficult for the user to find your
app. This is because the user won’t be able to select the environment in the portal and to view the page that
shows the apps that belong in an environment.

Adding a User
To share an app with a new user, it’s necessary to create a work account for the user. The place to do this is
through the Office 365 Admin Portal, as shown in Figure 4-4. For the new user, we must enable the ‘Microsoft
PowerApps and Flow’ setting in the product licenses section.

Chapter 4 ■ Sharing appS

56

Figure 4-5. Creating a new group

Figure 4-4. Creating a new user in the Office 365 portal

To make it easier to manage users, we can organize sets of users into groups. Figure 4-5 shows the
section in the Admin center to add a new group.

Chapter 4 ■ Sharing appS

57

Applying Permissions
For each user or group that can access an app, we can assign one of two permissions: ‘Can use’ or ‘Can edit’.
Figure 4-6 shows the screen that’s visible through the File ➤ Share menu item in PowerApps Studio. Users
with the ‘Can use’ permission can run the app, and do nothing more. Users with the ‘Can edit’ permission
have full access. These users can run the app, customize it further, and share the modified version with
other users.

Figure 4-6. Specifying permissions for an app

Managing Environments
For development purposes, it can make sense to develop our app in a separate environment and to move
our work to a ‘live environment’ once we’re happy with our modifications. In this section, we’ll look at how
to move apps between environments.

Moving an App to a New Environment
The easiest way to move an app to a new environment is to save the app to our local computer. The next step
is to change the environment and open the app from the local file that we saved.

Figure 4-7 shows the section in PowerApps Studio where we can switch environments. Once we open
our app from the local file, we can save it to our new environment and publish it to our users.

Chapter 4 ■ Sharing appS

58

This technique of saving our work to a local file can help us transfer projects between organizations,
should the need arise.

Updating a Data Source
An important point to bear in mind is that data connections are defined at an environment level. If we move
an app to a new environment and fail to reconfigure the data source, the application will fail to run. Users
will receive an error that looks like the one that’s shown in Figure 4-8. The text in this message is very generic
(the specified record was not found), and it might not be obvious from this message that the cause is a
missing data connection.

Figure 4-7. Changing Environments

Figure 4-8. The error that appears when the data connection is missing

To update the data source in an app, go to the data sources section by clicking Content ➤ Data sources.
The menu next to the data source shows two options: - Refresh and Remove.

Chapter 4 ■ Sharing appS

59

Figure 4-9. Updating a data source to use a new connection

To update a data source so that it uses a new connection, remove the data source and re-add it with the
‘Add data source’ option.

How Data Connections Work
Data connections are always protected in some way. For instance, a username and password combination
controls access to the data in a SQL Server data source. In the case of an Excel spreadsheet, access to the
underlying file storage such as OneDrive or Dropbox controls access to the data. When we publish an app,
how does the end user authenticate to the underlying data source at runtime?

With some data connections, users connect to the data source with the credentials that the app builder
specified at design time. One example is an on-premise SQL Server data connection. We can determine
the data connections that are shared by viewing the connection details in the portal. A share option will be
visible against the data connections that are shared, as shown in Figure 4-10.

Figure 4-10. The presence of a share tab indicates a shared connection

Chapter 4 ■ Sharing appS

60

PowerApps does not share Excel connections. To share an app that uses an Excel data source, it’s
necessary to grant each intended user edit permissions through the settings of the cloud storage provider
(i.e., OneDrive, Dropbox, etc.).

For other non-shared connections that require authentication, the end user will need to enter
credentials when the app starts.

Versioning an App
Each time we save an app to the cloud, PowerApps maintains a history of our changes. We can view the
version history for each app through the PowerApps website. In the Apps section, click the information icon
against an app to open the page that’s shown in Figure 4-11.

Figure 4-11. Maintaining App versions

Through this page, we can use the restore button to restore an app to a previous version. In the example
shown in Figure 4-11, let’s suppose we want to restore the app to version 1. When we click the restore button
for version 1, the system will restore this version to a copy that is labeled version 4. This provides us with the
ability to restore our app back to version 2 or 3, if we later change our mind.

Before restoring an app, we should consider any data schema changes that might have occurred
following the version that we want to restore. If we renamed or removed data columns, it’s important to
revert these changes prior to restoring the app.

Another feature on this page is the option to delete copies of an app from the version history. We can
use this feature to de-clutter this view and to remove any app versions that we no longer want.

Installing the Mobile Player
Mobile users need to install the PowerApps player to run apps on their phone or tablet devices. Users can
do this by visiting the app store for their device. For example, an Android user would install PowerApps from
the Play Store.

When the mobile player starts for the first time, it prompts the user to log in with the username and
password for their Microsoft Work Account. The next screen shows a list of available apps. The mobile player
caches the login credentials. Therefore if a user turns the device off and on again, it won’t prompt for the
login credentials again.

Chapter 4 ■ Sharing appS

61

A useful feature in the details section of an app is the ability to ‘pin to homescreen’, as shown in
Figure 4-12. When we click this option, the application creates a shortcut on the home screen of the mobile
device, outside of the PowerApps player. This icon starts the specified app directly, and bypasses the app
selection screen.

Figure 4-12. Pinning an app to the home screen

As is typical with mobile apps, we can move away from the PowerApps player and the app will continue
in the background. For example, if we temporarily suspend what we’re doing to take a phone call or read a
text message, we can use the task switcher to return to the app and to resume from the screen that was last
open.

In the case of a stock Android device, we can use the task switcher button in the bottom right-hand part
of the device to resume a PowerApps session. If we were to click the PowerApps icon on the home screen,
however, PowerApps would start from scratch and we would need to reload the app from the app selection
screen.

Running with Foreign Languages
PowerApps can support languages other than English. To test an app under a different locale, we can achieve
this by changing the language of our browser and then opening the app in this browser. Alternatively, we can
open an app in PowerApps Studio for Windows by first changing the language of the Windows installation in
Control Panel, as shown in Figure 4-13.

Chapter 4 ■ Sharing appS

62

Once we add a language, click the Options button and download the supporting files. Once this is
complete, it’s necessary to restart our computer and at this point, the entire UI of Windows will appear in
the new language. When we start PowerApps, all of the menu items will appear in the new language, as
shown in Figure 4-14.

Figure 4-13. Changing the language of PowerApps by changing the Windows language

Chapter 4 ■ Sharing appS

63

French is an interesting language because it uses the comma character as a decimal point separator.
Because of this difference, it uses double semicolons in formulas to denote the command termination
command, rather than a single semicolon.

One final thing to be aware of is that we can change the language of the PowerApps Web portal by
specifying the language in the address bar. For example, we can open the PowerApps portal in Spanish by
logging into the PowerApps and website and then navigating to the address:

web.powerapps.com/?l=es-ES

The es-ES value in this address is a standard language tag. The first part denotes the language and the
second part denotes the region. For example, to specify French Canadian, we would append the value
fr-CA. To find a list of language tags we can use, the simplest way is to do an Internet search for the term
‘IETF language tags’.

Figure 4-14. PowerApps running in French

Chapter 4 ■ Sharing appS

64

Summary
In this chapter, we looked at how to make an app available to other users. To share an app, the first step
is to save the app to the cloud and to choose the option to publish the version. The next step is to visit the
PowerApps portal and to select the users or groups with whom we want to share our app. For each user or
group, we can assign one of two permissions – can use, or can edit. A user with the ‘can use’ permission can
only run the app, whereas a user with the ‘can edit’ permission can make further modifications to the app.

The place to add new logins or groups is through the Office 365 admin center. Note that it’s not possible
to share an app with users outside of our organization.

When we build apps, it can be useful to set up a development and a production environment. This
allows us to develop and test an app before releasing it to end users in the production environment. To
move an app between environments, save the project to a file in the source environment, and then open that
project file in the destination environment. When we move an app between environments, we need to re-
create the data connections in the destination environment.

When we publish an app, PowerApps can share certain data connections. An example of a shared
connection is SQL Server. Where connections are shared, PowerApps authenticates the user automatically
to the data source using the credentials that the app builder specified at design time. In cases where the
connection is not shared, the user will need to enter credentials when the app starts.

For apps that are stored in the cloud, PowerApps maintains a history of all changes. We can restore
previous versions through the PowerApps portal. This feature can help us roll back mistakes or unwanted
changes to an app.

PART II

Refining Your Application

67© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_5

CHAPTER 5

Exploring Data Sources

In the chapters so far, we’ve used Microsoft Excel as a data source. The benefit of Excel is that it’s simple
to use and understand. However, PowerApps supports many other data sources and in this chapter, we’ll
explore these in greater detail. The first section of this chapter focuses on the Common Data Service (CDS),
a data store that works hand in hand with PowerApps. We’ll also discover one the most outstanding features
of PowerApps - the On-Premises Data Gateway. This feature enables us to connect to SQL Server and
SharePoint servers that are inside internal company networks. For readers who are new to SharePoint, this
chapter also contains a basic guide on how to set up a SharePoint list and how to configure choice items.
This setup enables the basic storage of data in SharePoint. Useful topics that we’ll cover in this chapter
include the following:

•	 How to use the Common Data Service. We’ll look at how to get the most out of
the CDS, including how to configure lookup data and how to create hierarchical
data models.

•	 How to use the On-Premises Data Gateway. This section guides you step by step
toward setting up a gateway. Occasionally, unexpected errors may occur, but to help,
we’ll look at troubleshooting tips that you can apply.

•	 How to call external data services. We can add value to apps by utilizing data sources
in innovative ways. To demonstrate this, we’ll add translation capabilities to an app,
and find out to display the current weather on a screen.

Using the Common Data Service
The Common Data Service (CDS) is a service that enables us to build and store structured data. We can
access the CDS from the suite of Microsoft products that includes PowerApps, PowerBI, and Microsoft Flow.
Of all the data sources, the CDS is the easiest to use because it is inherently linked to the environment where
an app exists. Unlike other data sources, we don’t need to specify any connection settings to connect to a
CDS database.

There are several other benefits to using the CDS. The first is that we can use the web portal to build our
data structure, so it’s simple to use. The second benefit is that through the CDS, Microsoft provides common
data models that we can utilize. By using these models, we can save time by not having to set up and design
our data models. The third benefit is that if we want to use PowerBI or Microsoft Flow, we can more easily
share data with these products.

The CDS is a platform that Microsoft promotes heavily. There are plenty of tech articles on the CDS, and
Microsoft often applies new innovations to the CDS before other data sources.

https://doi.org/10.1007/978-1-4842-3003-9_5

Chapter 5 ■ exploring Data SourCeS

68

Despite these benefits, there are some drawbacks to using the CDS. First, it’s difficult to access data
from outside the suite of supported products. Second, there’s no built-in backup mechanism for data. Third,
there are plenty of included data models and if we choose to use these, it can be difficult to find a table to
match a specific requirement. Finally, Microsoft reserves the right to share and reuse any of the schemas
that we create. When we first provision a CDS database, Microsoft provides a prominent warning, as shown
in Figure 5-1. Therefore, if you want build schemas that are commercially sensitive, the CDS isn’t the best
choice.

Figure 5-1. Privacy warning when you create a CDS database

One last point to consider is licensing. We can provision a maximum of one database per environment.
At the time of writing, a ‘Plan 1’ subscription to PowerApps offers 20MB of data storage per user, while a
‘Plan 2’ subscription to PowerApps offers 200MB. To ensure that we don’t incur excessive storage charges,
it’s important to have some idea of how much storage capacity we require before choosing the CDS. As a
technical point, the maximum size of a CDS database is 10GB.

Getting Started
To get started with the CDS, the first step is to create a database. Databases are associated with environments
and we can create a maximum of one database per environment. To create a database, log onto the
PowerApps portal and select an environment. Next, select the Entities option from the Common Data
Services menu in the left-hand menu. This opens the screen that’s shown in Figure 5-2.

Chapter 5 ■ exploring Data SourCeS

69

An entity defines a structure of data in the CDS. In SharePoint, we would store our data in lists. In Excel,
we would store our data in tables. With the CDS, we would access a repository of data through entities.

When we create a new database, we can set the security of our database to one of two values: - open
access, or restricted access. With open access, any user with access to the environment can access the
database. It’s important not to enable open access if we want to prevent certain users from accessing our
data. In this situation, we should set our database to restricted access.

To modify the security setting of a database after creation, we can do this through the Admin Center, as
shown in Figure 5-3.

Figure 5-2. Creating a database

Figure 5-3. Administering a database

Chapter 5 ■ exploring Data SourCeS

70

The Admin Center includes links at the top of the screen to import and export resources. We can use
this feature to copy entities between databases. The ‘export resources’ function produces a file with a .pkg
extension and we can use this file to import entities into our target database. Note that this only imports the
definition of the entities; it won’t import the data that is stored in the entities.

One limitation to be aware of is that the time of writing, there isn’t an option in the Admin Center to
delete a database. The reason this is important is because some Office 365 subscriptions provide a limit of
two databases. In this situation, it’s difficult to re-provision a database for use in a different environment. As
a workaround, we can delete a database by deleting the host environment. But as you can imagine, this isn’t
convenient if our environment contains active users.

We can click the delete button at the top of the screen to delete an environment, and we can use the
setting in the Details section to rename an environment.

Exploring the Common Data Model
Once we create a database, we can explore the entities that make up the Common Data Model. To see these
entities, click the Entities menu in the PowerApps portal, as shown in Figure 5-4. As this screenshot shows,
there are plenty of entities to choose from. Because there are so many entities, it can be difficult to find an
entity that suits our intended requirement. For this reason, you can find a list of all the standard entities in
Appendix A.

Figure 5-4. Illustration of standard entities

The system groups entities into categories that share a common purpose, as shown in Table 5-1. If, for
example, we want to build a customer service app, we could potentially find all the entities we need in the
customer service category.

Chapter 5 ■ exploring Data SourCeS

71

Here’s a quick tip. The system assigns any entities we create into a category called custom. If we want
to show just the entities we create, enter the word ‘custom’ into the search box. Note that the search feature
matches search terms against entity names, but doesn’t match against field names. For example, we can’t
use this feature to find all entities that include a field called ‘surname’.

Exploring a Standard Entity
To learn more about the standard entities, let’s look at the first entity in the list, the Account entity. Figure 5-5
shows the design view of this entity.

Table 5-1. CDM Categories

Category Description

Foundation This category includes typical, generic entities such as Address and Currency.

Person The entities in this category are designed to store people data. It includes entities
such as Alumnus, Application User, Constituent, Tenant, and Worker entities.

Organizations There are two entities in this group – Organization and Organization Contact.

Groups The entities in this category are designed to store people data. It includes the Family,
Fan, and Team Member entities.

Purchase The entities in the Purchasing category are designed to build purchasing solutions. It
includes entities to store orders, receipts, tax, and vendor data.

Project The entities in the Project category store details of projects, and the contracts that are
associated with a project.

Sales The entities in the Sales category are designed to build sales solutions. It includes
entities to store accounts, leads, opportunities, quotes, and sales orders.

Customer service The entities in the Customer Service category are designed to build apps to manage
customer complaints. It includes entities to store cases and help desk articles.

Figure 5-5. Illustration of the Account entity

Chapter 5 ■ exploring Data SourCeS

72

The entity view includes five navigation links – Fields, Field Groups, Keys, Relationships, and Data. We
can use the initial page to manage the fields in an entity. Fields define the individual pieces of data for each
record. The fields in the Account entity include the common fields that we would like to store against an
account, such as organization name and full name. Each field stores data that matches a specific data type.
The data types that we can assign include numeric and text types, as well as specialized types such as email
addresses and phone numbers. We can also specify pick lists to constrain the values that a user can enter.

Something that might not seem obvious is that we can add additional fields to standard entities. If we
want to add a field called ‘account manager’ to the standard account entity, that’s entirely possible. To do
this, click the ‘Add field’ button.

Although we can add additional fields to a model, we can’t modify any of the standard fields in an
entity. So if we live in England and want to change the display name of the ‘Organization name’ field to
‘Organisation name’, that isn’t possible.

 ■ Tip We can add our own fields to the built-in, standard entities.

Creating a Custom Entity
To demonstrate how to create an entity, here’s how to create an entity to store vehicle makes (or
manufacturers). Select the Entities menu from the left-hand menu and click the ‘new entity’ button. This
opens the pane that’s shown in Figure 5-6. The mandatory fields here are Name and ‘Display name’.

Figure 5-6. Creating a new entity

The name is the programmatic value that we use to refer to the entity in formula, whereas Display name
is the value that appears in lists of entities.

Entity names must start with a character and can only include alphanumeric characters. The name
cannot include spaces, but the underscore character is permissible. The maximum length we can enter is 50
characters. The standard convention is to use singular nouns for our entities such as Customer, rather than
Customers. We can’t modify an entity name, so it’s important to choose a name that we want to keep.

Chapter 5 ■ exploring Data SourCeS

73

Once we provide an entity name and description, the fields will appear as shown in Figure 5-7. Each
custom entity includes built-in fields to record the date when the record was created and last modified, and
the user that carried out those operations. These built-in fields cannot be deleted.

Figure 5-7. Custom Entity with built-in fields

By default, the designer also adds a unique Primary Id field to make each record identifiable. The data
type of this field is AutoNumber. When we assign the AutoNumber type to a field, the database generates a
unique, consecutive number to each record. If desired, we can prefix each number with a set of characters.
The prefix cannot include spaces and must begin with a character. The prefix characters are stored with
each record. Therefore, if we modify the prefix value at a later point in time, the new prefix will not apply
retrospectively to existing records. The sequential numbering will still continue though.

Adding a New Field
To add a new field, click the Add field button at the top of the screen. This opens a panel to the right of the
screen, as shown in Figure 5-8. From here, we must provide a name, display name, and data type.

Chapter 5 ■ exploring Data SourCeS

74

Just like with entities, the name is the programmatic identifier that we use in formulas. The name
must begin with a character and cannot contain spaces. The underscore character is acceptable. The type
drop-down enables us to specify the data type of the field, and the data types are self-explanatory. The more
notable points to be aware of are these:

•	 To store text values, we can use the Text or Multiline Text data types. The Text data
type enforces a maximum of 128 characters whereas the Multiline Text data type
enforces a maximum character length of 2048 characters. The CDS does not support
text fields that exceed 2048 characters. The underlying storage for these data types is
Unicode, which makes it possible to store non-Latin, foreign characters.

•	 To store numeric data, we can use the Quantity, Integer, or Number data types.

•	 The CDS provides no support for binary data, but it does provide an image data type.

In addition, the CDS offers three compound data types – Address, Currency, and PersonName. These data
types enable a user to store multiple pieces of data in a single field. Here’s a summary of these three types:

•	 The Address data type provides separate fields for the first line, second line, city,
state/province, postal code, and country/region for an address.

•	 The Currency data type provides two fields – a decimal field to store the value, and a
second field to store the currency code. The currency type provides a built-in list of
three digit currency codes, such as USD or EUR.

•	 The PersonName data type provides three fields – first name, middle name, and
surname.

In terms of storing text, there are three special data types that are based on the string data type. These
are Email, Phone, and WebsiteUrl. The benefit of using these data types is that PowerApps provides controls
that are specially designed for these data types. Just like the other text types, PowerApps stores the data in
Unicode.

Figure 5-8. Adding a new field

Chapter 5 ■ exploring Data SourCeS

75

Finally, there are two data types that are related to dates: Date and DateTime. The DateTime data type
stores both the date and time components down to fractional seconds, whereas the Date data type stores
only the date component.

One important thing to stress is that we should never use the DateTime data type for fields where we
only want to store the date component (for example, birthdays). The reason is because screen controls
can carry out time zone conversions on DateTime fields and if we’re not careful, our screens may display
incorrect values. For example, if we store birthdays in a DateTime field, users in different time zones may
end up seeing values that are one day earlier or one day later than the correct value.

Storing Numbers

There are three data types that store numeric data: Integer, Number, and Quantity. But what exactly are the
differences between these three types?

The Integer data type stores whole numbers between -2,147,483,648 and 2,147,483,647. To store a
number with fractional units, we can use either the Number or Quantity data types. Both these types store
decimal numbers but the difference between these two types is that the quantity type is a compound type.
The quantity data type stores a decimal value and also stores the unit of measurement. Figure 5-9 shows
the appearance of an auto-generated app that’s based on an entity with a quantity field. As you can see, the
auto-generated card includes a drop-down that enables the user to select the unit of measurement.

Figure 5-9. The quantity type enables users to specify the unit of measure

According to the CDS documentation, the number data type can store up to 32 digits, with a maximum of
6 digits to the right of the decimal point. But in practice, the values that we can store with PowerApps are far
lower than this. PowerApps has a dependency on JavaScript and the maximum number that JavaScript supports
is 9,007,199,254,740,991. So by extension, this is the maximum number that we can use with PowerApps.

 ■ Tip Microsoft provides documentation that includes much more detail about how the CDS works. however,
you won’t find this through the usual powerapps website: http://powerapps.microsoft.com. instead, you
should visit the dedicated CDS website, which you can find here: https://docs.microsoft.com/en-us/
common-data-service/entity-reference/introduction.

http://powerapps.microsoft.com/
https://docs.microsoft.com/en-us/common-data-service/entity-reference/introduction
https://docs.microsoft.com/en-us/common-data-service/entity-reference/introduction

Chapter 5 ■ exploring Data SourCeS

76

Creating a Relationship
The relationship section in the entity designer enables us to define lookups. For example, to create an entity
that stores vehicle models and to allow users to assign a vehicle make to each vehicle model record, we
would need to define a relationship between the two separate entities.

To build this example structure, create an entity to store vehicle makes. Next, create an entity to store
vehicle models. In the Relationships section for the vehicle model entity, we can define a lookup to the
vehicle make entity, as shown in Figure 5-10.

Figure 5-10. Defining a relationship

Figure 5-11. An example of a self-join

It’s possible to define a relationship that references the same entity. In database terminology, this is
called a self-join. A common use of this structure is to model hierarchical data, such as organizational charts.
We can see an example of this in the standard Account entity, as shown in Figure 5-11. In this example, the
entity uses a self-join to store the parent account for each account record.

Chapter 5 ■ exploring Data SourCeS

77

Deletion Behavior
To help maintain data integrity, the CDS prevents users from deleting parent records if related child records
exist. So in this example, the CDS would prevent a user from deleting a ‘vehicle make’ record if vehicle
model records exist that refer to the vehicle make record.

One important thing to be aware is how auto-generated apps behave when record deletion fails. If a
user attempts to delete a record and the process fails because of related records, the app doesn’t report this
failure to the user.

Although PowerApps includes an errors collection to report data source errors, it won’t report this
particular type of error, and this can make it difficult to identify these types of errors.

Using Field Groups
We can organize fields with field groups. PowerApps includes a predefined set of field groups, and it uses
these groups when we create an auto-generated app. Figure 5-12 shows the designer.

Figure 5-12. Using Field Groups

Two of the more useful groups are the ‘default details’ and ‘default lookup’ groups. What exactly are
these field groups and how can they help us?

The ‘default details’ group helps us better manage entities that contain many fields. Take the standard
Account entity as an example. This entity contains an enormous number of fields - 71 in total. It’s unlikely
that we would want to utilize all the fields in this entity. For example, the freight terms, Twitter identity, and
stock ticker fields might be irrelevant for our needs. By adding only the fields we want to use to the ‘default
details’ group, we can subsequently create an auto-generated app and PowerApps will create active card
controls only for those fields that belong to the group.

The ‘default lookup’ group is also very useful because it defines which fields will appear in a drop-down
control, if the entity were used as a lookup from a related entity.

Chapter 5 ■ exploring Data SourCeS

78

Although field groups are useful, there are some limiting characteristics. We can only use the standard
field groups that exist, and we can’t create our own custom field groups. This means that when we create
an auto-generated app, we can’t choose which field group to use. The designer will always use the ‘default
details’ field group.

Picklists
Picklists are lists of static data of that we can apply to fields in a CDS data source. When we add a field that is
associated with a picklist to an app, we can limit the data values that a user can enter.

Picklists are ideal for common lists of data that we can apply to multiple entities. Examples include lists
of colors, currency codes, or titles.

The common data model includes many predefined picklists, and some of these are illustrated in
Figure 5-13. If a suitable picklist doesn’t exist, we can create our own picklist.

Figure 5-13. Standard Picklists

Here are some comments about picklist items. We can’t add additional items to any of the standard
picklists. For example, the account status picklist includes two values: Active and Inactive. If we want to add
the value ‘pending’ to the list, this wouldn’t be possible.

With a custom picklist, we have free reign to add whatever data values we choose. An administrator can
add items to a picklist through the PowerApps web portal. End users cannot add picklist items through an
app. Therefore, we should only use picklists to store static lists of data that are unlikely to change.

Chapter 5 ■ exploring Data SourCeS

79

It is also not possible to sort the items that appear in a picklist. Therefore, if we want users to be able to
add and sort list items, we should create custom entities for lookup values, rather than picklists.

 ■ Note use picklists to define static lists of data that will not change.

Creating a Picklist
To create a picklist, click the ‘new picklist’ button from the top of the page. This opens the new picklist panel,
as shown in Figure 5-14.

Figure 5-14. Adding a new picklist

From this panel, we can enter a picklist name, display name, and description. The Name of a picklist
cannot start with a number, and it cannot include spaces. The maximum length of a picklist name is 50
characters.

Adding Picklist Items
To add items to a picklist, click the Add item button that appears at the top of the picklist page. For each
picklist item, we can enter a name, display name, and description (Figure 5-15). The name must start with a
letter, and it cannot contain any spaces.

Chapter 5 ■ exploring Data SourCeS

80

So what exactly is the difference between the name and display name for a picklist item? When we add a
drop-down control to a screen in our app with the data source for the drop-down set to a picklist, the name values
will appear as items in the drop-down. Also, if we were to export the data for an entity through the web portal, the
output would include the picklist name value. This behavior seems unusual and may well be a bug in PowerApps.
One would expect drop-down list items to show the display name value, rather than the name value.

However if we were to view the data for an entity through the data page in the entity designer, this
output would show the picklist display name value against each row.

Applying Picklists to Fields
Once we define a picklist, we can apply our picklist to the fields in our entities. To do this, we would set the
data type of our field to Picklist, as shown in Figure 5-16. Through the properties pane, we can then select
our desired picklist.

Figure 5-16. Selecting a Picklist for use

Figure 5-15. Adding items to a picklist

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ exploring Data SourCeS

81

One final thing to mention about picklist data items is that unlike entity data, there isn’t the option to
export picklist values to an Excel spreadsheet. This may cause difficulties if we want to back up our picklist
values, or to move data to a different environment.

Deleting a Picklist
To delete a custom picklist, click the garbage icon that appears in the top right of the picklist designer. To
protect the integrity of our data, the CDS will prevent us from deleting a picklist if it is in use. In this scenario,
the designer will display an error like the one that’s shown in Figure 5-17.

Figure 5-17. Deleting a Picklist

Figure 5-18. Deleting CDS data

Deleting CDS Data
While on the topic of data deletion, the model database is preloaded with sample data. This sample data is
really helpful for test purposes and for learning how to use the CDS. However, when we deploy an app that
uses standard entities, we don’t want our live application to be littered with dummy data. It can be difficult
to delete this sample data because we need to delete any related data first in the correct sequence. As a tip,
the quickest way to purge the database of sample data is to select the clear all data option from the top of the
entity list, as shown in Figure 5-18.

Chapter 5 ■ exploring Data SourCeS

82

On-Premises Data Gateway
One of the most appealing features of PowerApps is the ability to build apps that can connect to SQL Server
databases or SharePoint servers that are inside our internal network. The tool that enables us to do this is the
on-premises data gateway.

Technically, here’s how the gateway works. When an app queries an on-premises data source, the app
passes the request to a cloud service called the Azure Data Bus. The on-premises gateway polls the Azure
Data Bus regularly and responds to any requests that it finds. The on-premises gateway doesn’t require
any incoming ports. In most cases, it doesn’t require any special firewall configuration. But if we install the
gateway in a more secure environment, the online help provides the specific ports we need to open on our
firewall.

One limitation is that the gateway works only with the default environment. This can be awkward
because it prevents us from connecting to on-premises data from other environments, such as a test
environment.

Installing the Gateway
To install the on-premises data gateway, the first step is to download the installer from the following web
site: https://powerapps.microsoft.com/en-us/downloads/

Ideally, we should install the gateway on a computer with a fast Internet connection that is permanently
switched on. We don’t need to install the gateway on the same computer that runs SQL Server or SharePoint
server. It’s even possible to install the gateway on a workstation. The gateway is compatible with 64-bit
versions of Windows only, and the minimum supported operating system is Windows 7.

During the installation, the installer prompts us to sign in with our Microsoft work account. Next, it
prompts us to specify a gateway name and recovery key, as shown in Figure 5-19.

Figure 5-19. Configuring the gateway server

https://powerapps.microsoft.com/en-us/downloads/

Chapter 5 ■ exploring Data SourCeS

83

We can install multiple instances of the on-premises data gateway on different networks, so the gateway
name enables us to identify the gateway when we make a connection from an app. The recovery key enables
us to restore the gateway, and it’s important to remember what we enter here. The reasons why we might
need to restore the gateway service include hardware or operating system failure on the gateway computer.
Microsoft also provides occasional bug fixes and updates to the gateway service. The recovery key would
enable us to reinstall the gateway in this scenario.

Once we install the on-premise gateway, we can log onto the PowerApps portal and see the status of
the gateway, as shown in Figure 5-20. We can use the status to determine if the gateway is operational. If
the gateway computer were to lose Internet connectivity, we could detect this from the status page. From
this page, we can also see the users and apps that are connected to the gateway, and we can also delete the
gateway.

Figure 5-20. Configuring the gateway server

Figure 5-21. Configuring the gateway service via Control Panel

 ■ Note the on-premises data gateway works only with the default environment.

Starting the Gateway Service
The gateway runs as a Windows service and therefore, there is no specific program to manage the service. The
place to manage the service is through the Services Snap-in, which we can find through the Windows Control
Panel. The exact name of the service is the ‘On-premises data gateway service’, as shown in Figure 5-21.

Chapter 5 ■ exploring Data SourCeS

84

If the gateway fails to work, the first thing to check is that the service is running. By default, this service
runs under an account called NT SERVICE\PBIEgwService. If the service fails to start with a logon failure,
we can reset the service account password by clearing the password fields and applying the change
(Figure 5-22). Alternatively, we can change the logon option to use a different account.

Figure 5-22. Resetting the service account

Connecting to a Data Source
Once we install the on-premises gateway, we can connect to an on-premises SQL Server or SharePoint data
sources by simply adding a connection in our project, just like we would for any other data source.

Connecting to SQL Server
When we add a connection to a SQL server data source, PowerApps prompts us to enter the name of our
SQL Server, as shown in Figure 5-23. If we want to connect to a named instance of SQL Server, we should
provide the instance name in the box in the format ‘MyServerServer\SQLInstanceName’.

Chapter 5 ■ exploring Data SourCeS

85

On this screen, we need to specify the login credentials to the SQL Server. Depending on how our target
SQL Server is set up, we can connect either using Windows authentication, or SQL Server authentication
(which is labeled Basic in the authentication type drop-down). Note that the credentials we enter here are
encrypted and stored in the PowerApps gateway cloud service. The credentials are decrypted on the local
computer that runs the gateway service.

Provided that all goes well, we should see the screen that’s shown in Figure 5-24. This screen enables
us to connect to a SQL table. Note that we can only connect to tables. The gateway doesn’t support views,
stored procedures, or functions. If we want to call a stored procedure, we can use Flow to do this. Also,
there is a limit to the number of tables that the screen will show. If we connect to a database that contains
approximately more than 1600 tables, not all the tables will appear. This is mostly a problem for users who
want to connect to a Microsoft Dynamics SQL database, because it’s not uncommon for these databases to
contain several thousand tables.

Figure 5-23. Connecting to SQL Server

Chapter 5 ■ exploring Data SourCeS

86

If the connection fails and you can’t see the screen that’s shown in Figure 5-24, try to use a different
authentication type. If you used Windows authentication, try using SQL authentication instead. You can
also try to use the IP address of the server, rather than the server name. If this fails, the next thing to do is to
examine the gateway log files and the Windows event log.

One thing to be aware of is that the gateway doesn’t support SQL Server tables with triggers. If we
attempt to update data in a table where triggers are defined, the save operation will fail.

 ■ Note the on-premises data gateway does not support tables with triggers, or SQl 2016 / SQl azure
temporal tables.

Uninstalling a Gateway
To uninstall the gateway, choose the uninstall option from the Programs and Features section of the Control
Panel on the machine where the gateway is installed. When we uninstall the gateway service, the gateway
will still appear in the Gateways section of the PowerApps web portal. This provides us with the option to
install the gateway service on a new computer.

If we want to completely delete the gateway registration, we can do this from the web portal. Deleting a
gateway won’t delete any connections that use the gateway.

Using a SharePoint Data Source
A very common data source for PowerApps is SharePoint. We can easily connect to SharePoint Online in
the cloud, or we can connect to an on-premises version of SharePoint via the on-premises Data Gateway. If
you’re completely new to SharePoint, this section provides a basic overview of how to set up a SharePoint list
that works with PowerApps.

Figure 5-24. Selecting SQL Server tables to use

Chapter 5 ■ exploring Data SourCeS

87

Creating a SharePoint List
Users with sufficient permissions in SharePoint can add a new list. A SharePoint list contains columns and
Figure 5-25 shows the screen for creating new columns. The purpose of this screenshot is to illustrate the
type of information we can store in a SharePoint list.

Figure 5-25. Creating a SharePoint Column

SharePoint can apply validation rules to columns, such as whether the data is mandatory, and the
maximum number of characters that the field can store. PowerApps will honor the validation rules that are
defined within SharePoint.

Apps work well with all the standard data types, including calculated types. However, one data type to
be aware of is the ‘Multiple lines of text’ data type. With this data type, we can set the text type to rich text.
Although PowerApps can display the rich text content without any difficulty, it doesn’t include a rich text
editor. This makes it very difficult for users to author rich text content.

Chapter 5 ■ exploring Data SourCeS

88

Choice Items
We can limit the data that users can enter by defining Choice or Lookup columns. When we create an app
that connects to one of these columns, PowerApps can populate drop-down boxes with the choice values to
limit the values that a user can enter.

One thing to be aware of is that PowerApps doesn’t support multiple selection choice columns, like
the setup that’s shown in Figure 5-26. On forms that bind to a data source with a multiple selection choice
column, the screen designer won’t create an auto-generated card for the column.

Figure 5-26. SharePoint multiselection choice columns

Connecting to a SharePoint Data Source
Just like all data sources, we can easily connect to SharePoint by adding a connection in our project. The
first screen enables us to choose whether to connect to SharePoint online, or to connect to an on-premises
instance of SharePoint, as shown in Figure 5-27. The next screen prompts us to enter the address of our
SharePoint site and we should enter this in the format:

http://mysharepointserver.com/MySharePointSite

http://mysharepointserver.com/MySharePointSite

Chapter 5 ■ exploring Data SourCeS

89

The next screen shows the lists in our site that we can connect to.
As you might recall, another way to create an auto-generated app from SharePoint Online is to use

the PowerApps button that appears in the list page. This saves us from having to manually create a data
connection. One thing to be aware of is that this feature can only create apps in the default environment.
There isn’t the option to choose which environment to use.

Other Data Sources
PowerApps supports a wide range of data sources and in the final part of this chapter, we’ll look at two
slightly unusual data sources – the Microsoft translator data source, and the MSN Weather data source.

Figure 5-27. Connecting to SharePoint from an app

Chapter 5 ■ exploring Data SourCeS

90

Microsoft Translation Data Source
The Microsoft Translation service enables us to build multilingual apps. With this service, we can translate
the data in our apps, as well the static user interface elements that make up the screens in our app. Here’s a
simple demonstration of how to translate the contents of a text input control from English to Spanish.

To use the Microsoft Translator service, the first step is to add a connection, as shown in Figure 5-28.
Once we do this, we can write formula to carry out translations.

Figure 5-29. Translating text from English to Spanish

Figure 5-28. Adding a connection to the Microsoft Translator service

Figure 5-29 shows a screen with two text input controls called TextInputEnglish and
TextInputSpanish. To configure the TextInputSpanish text input control so that it translates the English text
that a user enters into the TextInputEnglish text input control, set the Text value of TextInputSpanish to:

MicrosoftTranslator.Translate(TextInputEnglish.Text, "ES")

The Translate method accepts two arguments – the text to translate, and the target language. In this
example, “ES” denotes the language code for Spanish.

If you were unfamiliar with this data source, how would you know the capabilities of the data source,
and know what syntax to use? The key is to rely on the IntelliSense that the formula bar provides. When we
type the name of the data source into the formula bar followed by the period symbol, the formula bar will
show us a list of methods and provide a description of the arguments that we need to supply.

Chapter 5 ■ exploring Data SourCeS

91

Microsoft MSN Weather Services
To demonstrate the capabilities of the MSN Weather Service, here’s how to add a label that shows the current
weather in London.

Unfortunately, many of the more unusual data connections are not well documented. Therefore, this
example emphasizes the importance of using IntelliSense to determine the capabilities of the service and
the correct syntax to use.

To create this example, add a label to a screen. Next, select the Text property and type the name of the
data source MSNWeather into formula bar. At this point, IntelliSense reveals a method called CurrentWeather
(Figure 5-30), in addition to methods to obtain forecasts for today and tomorrow. If we choose the
CurrentWeather method, IntelliSense prompts us to provide a location and to specify the measurement
units for our results. We can choose either metric or imperial.

Figure 5-31. Hover the mouse over the exclamation point icon to see the exact error

Figure 5-30. Determining the method names

If we leave the formula bar at this point, we’ll discover that this syntax isn’t complete. The designer
underlines the formula with a red line, and shows the exact error when we hover the mouse over the
exclamation point icon, as shown in Figure 5-31.

To resolve these problems, the trick is to add a full stop character to the end of the formula to see what
IntelliSense suggests (Figure 5-32). By using this technique, we can discover that the correct syntax is:

MSNWeather.CurrentWeather("London, England", "Metric").responses.weather.current.temp

Chapter 5 ■ exploring Data SourCeS

92

When we enter the correct formula, PowerApps immediately calls the weather service and displays the
temperature in the design view of the screen.

To summarize the MSN Weather service, we can obtain the current weather by calling a function called
CurrentWeather. This function expects two arguments – the location and our preferred weather units. We
can provide our location in the format “city, country,” or we can specify our location with longitude and
latitude values.

 ■ Tip if the designer underlines a formula with a scribbly red line and you don’t understand why, try adding
a period to the end of the formula to see if intelliSense can provide any additional suggestions.

Summary
With PowerApps, we can connect to a wide range of data sources. In this chapter, we looked at how to
connect to some of the most common data sources – the Common Data Service, SQL Server, and SharePoint.

The Common Data Service provides cloud-based database storage. Databases are connected to
environments, and each environment can have a maximum of one database. Of all the data sources, the CDS
is the easiest to connect to because it forms an integral part of the environment. Therefore, there’s no need to
specify database names or to provide additional authentication details to create a connection to a CDS data
source. A feature of the CDS is that it provides pre-built data models that we can utilize. Say if we want to
build a sales or customer service app, the data structures to support those types of app are already there.

With the CDS, we define entities to store our data. Conceptually, an entity is equivalent to a database
table. For each entity, we can create fields to define the pieces of data to store for each row of data. Some
points to be aware of is that the CDS doesn’t support text fields that exceed 2048 characters. Also, it doesn’t
support the storage of binary data. With CDS entities, we can define lookup fields by defining relationships
between entities, or by creating picklists.

We can easily connect to a CDS database from PowerBI and Flow. However, it’s difficult to connect
to our data from other products, and there is no built-in backup mechanism for our data. The amount of
storage space is connected to the number of licenses we have. Therefore, we need to consider whether the
CDS provides sufficient storage capacity before we choose to use it.

Another popular data storage choice is SharePoint. SharePoint is simple to use because users can easily
define lists through the web-based SharePoint interface. SharePoint provides storage for a wide range of
data types, including text and numeric types. The benefit of SharePoint over the CDS is that we can store text
data that exceeds 2048 characters. The text columns in SharePoint support rich text. This is text that users
can format with different colors, sizes, or styles. Although PowerApps can display rich text from a SharePoint
data source, it doesn’t include a control for users to edit rich text. With both SharePoint and the CDS, we can
limit the data values that user can enter by defining choice lists.

Figure 5-32. Use IntelliSense to determine the correct syntax

Chapter 5 ■ exploring Data SourCeS

93

A great feature of PowerApps is the ability to connect to SQL Server or SharePoint data sources from
internal company networks. The tool that enables this is the on-premises data gateway. This is a service
that runs on a computer inside a local network. The on-premises data gateway is the perfect choice if we
need to connect to existing company data. One slight limitation is that service only works with the default
environment. Therefore, we cannot connect to SQL Server or other internal data sources from apps in other
environments.

In the final part of this chapter, we looked at two slightly unusual data sources – the Microsoft Translator
and MSN weather data sources. With these two data sources, we can translate data and obtain the current
weather. The point of this section is to emphasize the range of data sources that we can use. Many of these
data connectors are not well documented. Therefore, a helpful tip is to use IntelliSense to determine the
capabilities of the data source and to work out the correct syntax to use.

95© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_6

CHAPTER 6

Using Formulas

PowerApps is similar to Excel because it uses formulas to carry out tasks. Formulas are the lifeblood of an
app that enables us to add features to an app. One challenge is that many functions exist and it’s difficult to
appreciate how these functions apply in practical terms. Therefore, this chapter provides usage examples of
the most useful functions in PowerApps.

The layout of this chapter is split into three main sections. In the first part of this chapter, we’ll look
at how to write formulas and how to use variables. Variables are crucial because they enable us to assign
property values in PowerApps. The next part of the chapter provides a reference guide that lists the most
useful functions, along with usage examples. In the final part of this chapter, we’ll find out how to configure
the startup behavior of an app, and we’ll look at techniques that we can use to provide screen navigation.
The useful topics that we’ll cover will include the following:

•	 How to call functions that apply to text, number, and date values. We’ll look at
pattern matching techniques to help verify the format of input data. This technique
enables us to validate social security numbers, postal codes, phone numbers, and
more. We’ll also cover text formatting and mathematical tasks, including date
arithmetic and trigonometric functions.

•	 How to work with collections and tables of data. To illustrate how to apply bulk
operations to multiple rows, we’ll convert a table of mileages from miles to
kilometers with just a single formula. For more complex tasks, we’ll look at how to
carry out row-by-row processing. We’ll also find out how to calculate the average,
minimum, maximum, and other aggregate values from a set of data.

•	 How to build navigation features. We’ll find out how to build custom screen
navigation menus. We’ll look at how to launch websites, compose emails, send SMS
messages, and much more from within PowerApps. We’ll also build an app that can
optionally show a specified record at startup, and we’ll examine what happens when
PowerApps encounters errors in formulas.

Writing Formulas
The first part of this chapter covers some elementary characteristics that are related to formulas. To illustrate
these points, let’s examine the formula from the OnSelect property of the edit icon from the details screen in
an auto-generated app (Figure 6-1). The purpose of this formula is set the edit form on the edit screen to edit
mode, and to navigate the user to the edit screen.

https://doi.org/10.1007/978-1-4842-3003-9_6

Chapter 6 ■ Using FormUlas

96

As this example highlights, formulas can include calls to several functions and each function is
separated by a semicolon. Each function executes synchronously. That is, PowerApps will complete the
execution of a single command before it moves onto the next command.

Often, it can be difficult to read and interpret very long formulas. As Figure 6-1 shows, we can use the
mouse to extend the height of the formula bar. We can also insert line breaks by typing <shift><enter>. Both
techniques can make it easier to edit and read formulas.

The standard Windows shortcuts also work in the formula bar. We can use <ctrl><c> to copy formulas
into the Windows clipboard, and <ctrl><v> to paste the text from the clipboard. To edit very long formula,
it’s sometimes easier to copy the contents into Microsoft Notepad, make the modifications outside of the
formula bar, and to paste the completed formula back into the formula bar. This is because the formula
bar can react slowly as it tries to offer inline help, and this can make it difficult to select specific parts of a
formula.

There are two important points to be aware of when writing formula. The first is that all function names
and objects are case sensitive.

The second is that certain languages (for example, French) use the comma symbol as the decimal point
separation character. To enable these non-English users to specify decimal values in formulas, PowerApps
requires these users to use semicolons in places where we would normally use a comma. The knock-on
effect is that PowerApps requires multiple functions in a formula to be separated by two semicolons, rather
than a single semicolon. This behavior is important for non-English readers because most articles and code
samples on the Web follow the English convention, and non-English users will encounter errors if they
follow such code samples exactly.

Using the Function Tool
The designer provides a drop-down panel that provides additional assistance (Figure 6-2). This panel makes
it easier to locate functions by grouping sets of related functions together. The formula bar also includes
code coloration and offers help through IntelliSense. IntelliSense provides inline help and suggests the
arguments that a function expects.

Figure 6-1. Formula bar

Chapter 6 ■ Using FormUlas

97

ThisItem/Parent Syntax
Two useful keywords that don’t appear in the drop-down panel are ThisItem and Parent. These keywords
are applicable from inside the form control, as shown in Figure 6-3.

For controls that are nested inside cards, the Parent keyword references the properties of the card that
contains the control.

The ThisItem keyword is particularly useful because it enables us to retrieve the field values from the
record that is bound to the form.

Figure 6-2. Using the function tool

Figure 6-3. Use the ThisItem keyword to refer to data values in form controls

Chapter 6 ■ Using FormUlas

98

Working with Variables
Variables are a core component of all programming languages. They help us build functionality by storing
working copies of data. With PowerApps, variables are very important because they enable us to set property
values. You’ll understand what this means exactly by the end of this section.

Variables have a scope. This defines the boundary from which we can access a variable. We can create
variables that are accessible from individual screens only, or variables that are accessible throughout an app.

Unlike other systems, PowerApps is relaxed in the way that it deals with variables. We don’t need to
declare variables beforehand, nor do we need to specify the data type of a variable.

Setting Screen Variables
Screen-level variables are called context variables. This name derives from the fact that we can access these
variables only within the context of a screen. Here’s how to create a context variable called RecordCount and
to set the value to 0:

UpdateContext({ RecordCount: 0 })

UpdateContext is the function that sets the value of a variable. Readers with the experience of using
other programming languages might be tempted to use syntax that looks like this:

RecordCount = 0

With PowerApps, this syntax is not valid. The UpdateContext function is the only way to set the value of
a context variable.

When this function first runs, the UpdateContext function creates the RecordCount variable if it doesn’t
exist. A very interesting and useful characteristic is that context variables can store more than just simple
numbers and strings. We can store records and tables in context variables and this can be very powerful.

Once we run our app and call the UpdateContext function, the variable will appear in the variables
section of the app, as shown in Figure 6-4. This screen is very helpful because it summarizes all the places
that set or retrieve the variable.

Chapter 6 ■ Using FormUlas

99

Passing Values to Screens
Another way to set context variables is through the Navigate function. We can use this technique to supply
values to a screen when it opens. The syntax we would use looks like this:

Navigate(BrowseScreen1, ScreenTransition.Fade, {RecordCount:0})

In this example, the Navigate function opens a screen called BrowseScreen1 and sets the value of the
RecordCount context variable to 0.

When we build apps with screen navigation and context variables, there’s an important piece of
behavior to be aware of. When PowerApps switches the currently visible screen, it doesn’t completely close
the existing screen. Instead, the existing screen becomes invisible and remains active in the background. If a
user opens other screens and returns to a screen that was previously open, the screen will retain the context
variable values that were previously set. This might result in some unexpected behavior and is something to
be aware of.

Figure 6-4. Viewing the variables in an application

Chapter 6 ■ Using FormUlas

100

Example of Context Variables
So why would we want to use context variables? To better understand the capabilities of context variables,
let’s examine the sort button on a browse screen, as shown in Figure 6-5.

The purpose of this button is to toggle the sort order of the data. The OnSelect action of this button calls
the following function:

UpdateContext({SortDescending1: !SortDescending1})

This code sets the value of the SortDescending1 variable to the logical negative of the current value.
The initial state of the SortDescending1 variable is false. The ! operator returns true if its argument is
false, and returns false if its argument is true. Therefore, the effect of this code is to toggle the value of the
SortDescending1 variable.

Now that we see how the SortDescending1 variable is set, how exactly does the screen use this variable?
The Items property of the gallery control refers to the SortDescending1 variable, as shown in Figure 6-6.

As this screenshot shows, a function called SortByColumns populates the items of the gallery control.
This function expects three arguments - a data source, the column to sort by, and the sort direction.

The data source for the SortByColumns function is the result of a function called Search. This function
accepts a data source, a search term, and the columns to match against. The second argument to the
SortByColumns function defines the column to a sort by - address, in this example. The final argument
specifies the sort direction. This can be one of two values - Descending or Ascending.

The sort direction argument refers to the function called If. This function enables us to run commands
conditionally. The syntax of the If function is this:

If (logical test, action(s) to run if true, action(s) to run if false)

Figure 6-6. The Items property of the gallery control

Figure 6-5. The sort button on a browse screen updates a variable

Chapter 6 ■ Using FormUlas

101

In this example, the If function checks the value of the SortDescending1 variable. If the value of this is
true, it returns the result Descending. Otherwise, it returns the result Ascending.

 ■ Note Context variables and the if function are two essential features that enable us to build apps with any
reasonable functionality. even the simplest apps rely heavily on these structures, and we can see evidence of
this throughout all the sample apps that microsoft provides.

Setting Property Values from Code
What we’re about to cover here is a very important concept, perhaps the most important concept in this book.
With PowerApps, we can’t use formulas to assign property values from other objects. To illustrate this, let’s
build a simple Hello World program - a program that teaches programmers the very basics of a language.

To build this feature, we’ll create a screen and add two controls: a label called LabelHello and a button
called ButtonSayHello. The aim of this program is to show the text “Hello World” in the label when a user
clicks the button. Let’s attempt to build this feature by setting the OnSelect property of the button to the
following formula:

 LabelHello.Text = "Hello World"

As Figure 6-7 shows, this code looks OK. The designer doesn’t underline the formula with a squiggly red
line, and it doesn’t show a warning icon next to the control. What do you think will happen when we click
the button? Will the text “Hello Word” appear in the label?

Figure 6-7. Screen with a button and label

The answer to this question is no. When we run this app and click the button, nothing happens. The
reason for this is that we cannot assign property values in this way. This syntax is not valid.

So how do we overcome this problem? The answer is to use variables. To fix this example, we would
write formula in the OnSelect property of the button that sets the value of a variable. The code would look
like this:

UpdateContext({LabelText:"Hello World"})

We would then set the text property of the label to the name of this variable (LabelText in this example).

Chapter 6 ■ Using FormUlas

102

Figure 6-8. In Excel, we can't assign cell values from other cells

This is one of the most useful techniques in PowerApps because it enables us to make property
assignments. When I began using PowerApps, I found it curious why we couldn’t assign property values with
formulas. To make sense of why PowerApps behaves like this, it can help to recognize that Excel behaves in
exactly the same way. To illustrate this point, in Excel, we can’t write a formula in the A2 cell to set the value
of the A1 cell, using the type of formula that’s shown in Figure 6-8.

Setting Global Variables
In addition to context variables, we can store values in global variables. The main difference between a
global variable and a context variable is that we can access global variables throughout an app rather than
only on the screen where we define the variable. In addition to simple strings and numbers, we can store
records, tables, and object references in global variables. Compared to context variables, the syntax to set
a variable value is much simpler. Here’s how to define a global variable called RecordCount, and to set the
value to 8:

Set(RecordCount, 8)

Unlike the UpdateContext function, notice that there’s no need to enclose the variable name and value
within curly brackets. Once we define a global variable, we can refer to it by name in the formula.

The name of a global variable cannot match the name of an existing data source or collection. However,
it can share the same name as a context variable on a screen. To clarify how to distinguish between variables
that are named identically, let’s suppose that we declare a context variable on the same screen using the
following syntax:

UpdateContext({RecordCount:5})

In this scenario, RecordCount will refer to the context variable. To refer to the global
variable with the same name, we would use the syntax: [@RecordCount].

A final point is that in cases where we set a global variable in multiple places, we must always assign
values with matching data types. The designer will show a warning if we attempt to assign a value to a global
variable that doesn’t match the data type of a value that we assigned elsewhere. In these cases, it may help
to pass the value that we want to store through a data type conversion function such as Value or Text. This
ensures that we consistently store values of the same type in the global variable. The Value function converts
an input value to a number whereas the Text function converts an input value to text.

Manipulating Data
In this section of the book, we’ll examine the most helpful functions in PowerApps. We’ll cover functions
that help us manipulate text, numbers, and collections of data. This section serves a useful reference guide
that we can refer to throughout the rest of this book. We’ll begin by looking at how to work with text.

Chapter 6 ■ Using FormUlas

103

Working with Text
A fundamental part of building an app involves working with text data (also known as string data). The
elementary things to know about this topic are the following:

•	 Defining strings - To specify a piece of text in a formula, we must enclose the text
inside double quotes. To include a double quote within a string, we can use a double
set of double quotes instead.

•	 New lines - To introduce a new line into a string, type <Shift><Enter> into the
formula bar. Alternatively, we can use the Char function. Char(10) represents a
carriage return and Char(13) represents a line feed.

•	 String concatenation – To combine strings, use the & operator.

•	 Char function – We can call this function to obtain a character by ASCII code.

To highlight these techniques, Figure 6-9 shows a formula that sets the text of a label. This formula
illustrates the basic concepts that are described here.

Figure 6-9. Using the Char function, and escaping double quote characters

 ■ Tip to display richly formatted text on a screen, construct html and display it with the html text control,
rather than use the label control.

Text Manipulation Functions
Here are the functions we can use to manipulate text:

•	 Text – Use this to convert numbers, dates, and other data types to text

•	 PlainText – Call this function to strip the HTML and XML tags from an input string

•	 HashTags - Call this function to extract the hashtags (#hashtag) from a string

The Text function is extremely useful because we can use it to convert numbers to text. To build a string
that includes numbers (for example, to display in a label), we would need to call this function to convert the
numbers to text.

Chapter 6 ■ Using FormUlas

104

The HashTags function is useful for social media scenarios. It extracts the hashtags from a string, and
returns the result in a single column table. This table will contain one row for each hashtag.

Text Extraction Functions
PowerApps provides functions to extract characters from an input string. The Left and Right functions
return portions of a string, starting from the left or the right. The Mid function returns a portion from the
middle of the string, and the Len function returns the length of a string. Table 6-1 shows the output of these
functions when provided with the input string: “The quick brown fox jumps over the lazy dog”.

Table 6-1. Text manipulation functions

Function Output

Left(“The quick brown fox”,5) The q

Right(“The quick brown fox”,5) n fox

Mid(“The quick brown fox”,5,5) quick

Len(“The quick brown fox”) 19

To clarify how these functions work, the Mid function expects three arguments: an input string, a start
position, and number of characters to extract. The start position refers to the number of characters from the
left. This number is 1 based, rather than 0 based. Therefore, 1 represents the position at the very start of the
string. If we supply a start position that exceeds the length of the string, the Mid function returns an empty
string and will not cause any exceptions. This behavior is useful to know because if the input string comes
from the user, the length of the input string may be unknown.

The Len function returns the length of a string. The return value includes any leading or trailing spaces.
If we provide either a null value or an empty string, the function will return 0.

A useful tip is that with all these functions, we can supply a single value, or we can supply a single
column table. The ability to pass a single column table to a function is very powerful because it enables us to
carry out bulk operations on multiple values. When we pass a single column table to a function, the output
from the function will be a single column table.

PowerApps provides a couple of functions to remove spaces from an input string. These two functions
are called Trim and TrimEnds. The difference between these two functions is that Trim removes extra spaces
from the start, end, and throughout the content of a string, whereas TrimEnds removes trailing spaces from
the end of a string only.

Modifying the Casing of Sentences
The three functions that modify the casing of sentences are Upper, Lower, and Proper. The Upper function
coverts all the characters from an input string to upper case. Conversely, the Lower function coverts all the
characters from an input string to lower case.

The Proper function converts the first letter of every word in a sentence to uppercase, and converts the
remaining characters to lowercase. Here’s an example of how to call this function:

Proper ("tim leung")

Chapter 6 ■ Using FormUlas

105

The result of this function returns “Tim Leung”. As this example highlights, a perfect use of this function
is to clean up the names and addresses that users enter on data input screens. On mobile devices, users
often enter data all in lower case because of the awkwardness of using a soft keyboard.

Searching Within Strings
There are two functions we can call to search the contents of a string: Find and StartsWith. The Find
function checks if one string appears within another and we can optionally provide a start position. The call
beneath returns the value 5.

Find("quick", "The quick brown fox", 1)

In this example, the function searches for the word “quick” within the sentence “The quick brown fox”.
The call to this function includes the optional starting position of 1. The search that the Find function carries
out is case sensitive. If it fails to find the search string, it returns an empty string.

The StartsWith function checks if a string begins with a specified piece of text. This function expects
two arguments: - the text to search, and the starting piece of text. This function returns true or false. Unlike
the Find function, the search that StartsWith carries out is not case sensitive. In the call shown beneath, the
function will return true.

StartsWith("The quick brown fox","THE")

Matching with Regular Expressions
In addition to the Find and StartsWith functions, PowerApps enables us to carry out advanced pattern
matching searches with regular expressions. A question that you might have is, what are regular expressions?
You’ve probably encountered search systems where you specify wildcard characters in the search criteria.
Regular expressions enable us to carry out this type of matching, but in a much more powerful way.

Regular expressions offer a perfect way to validate user input, such as email addresses, telephone
numbers, and social security numbers. The function that provides regular expression matching is called
IsMatch.

It can be difficult to learn how to build regular expressions. Therefore, a simple method is to visit websites
that contain libraries of regular expressions that we can reuse. One such website is www.regexlib.com.

To demonstrate the use of regular expression matching, here’s how to confirm that a social security
number is valid. The first step is to find a regular expression, and Figure 6-10 shows one of the search results
from www.regexlib.com.

http://www.regexlib.com/
http://www.regexlib.com/

Chapter 6 ■ Using FormUlas

106

Once we find a suitable regular expression, we can pass this to the IsMatch function to validate social
security numbers. Here’s how to call this function to validate the social security number "123-45-6789":

IsMatch("123-45-6789",
 "\b(?!000)(?!666)(?!9)[0-9]{3}[-]?(?!00)[0-9]{2}[-]?(?!0000)[0-9]{4}\b")

The first argument in this example defines the social security number to check. The second argument
contains the regular expression from www.regexlib.com. The result from this example returns true because
the social security number matches a valid format.

Note that for simpler matching, we can call the IsMatch function and build an expression with one of
the predefined patterns from the Match namespace. Figure 6-11 shows some of these predefined patterns.

Figure 6-11. Using a predefined expression

Figure 6-10. Use the Web to find regular expressions

As an example, if we want to confirm that the input text "Inv123" contains three letters followed by three
numbers, we could use the formula that’s shown beneath. In this example, the function would return true.

IsMatch("Inv123", Match.Letter & Match.Letter & Match.Letter & Match.Digit & Match.Digit &
Match.Digit)

http://www.regexlib.com/

Chapter 6 ■ Using FormUlas

107

Replacing Text
PowerApps provides two functions to carry out text replacements - Replace and Substitute. These
functions sound similar, so what are the differences between these functions?

The Replace function performs a single replacement and requires us to provide a numeric start
position, and the numeric length of the text that we want to replace. The example beneath would return the
string “The quick red fox”.

Replace("The quick brown fox", 11, 5, "red")

To clarify the usage of this function, the first argument defines the input string. The second argument
defines the start position for the text we want to replace, and the third argument specifies the length of the
text that we want to replace. The final argument specifies the replacement text.

If we were to provide a start position that exceeds the length of the string, how do you think this
function would behave? The answer is that the function would return the input string with the replacement
text appended to the end.

The Substitute function enables us to substitute characters from an input string with a different set of
characters. Unlike the replace function, we don’t need to provide numeric positions. By default, the function
substitutes every instance of the old text value with the new text value. The example below would return the
string “The quick brown fox jumped over a lazy dog”.

Substitute(“The quick brown fox jumped over the lazy dog”, “the”, “a”)
The first argument to the Substitute function defines the input string. The second argument defines

the text to replace, and the third argument specifies the replacement text. If the input string contains more
than one instance of the text that we want to replace, we can specify which instance to replace by optionally
supplying a fourth argument that defines the instance number.

An important point this example highlights is that the Substitute function is case sensitive. Notice how
the function doesn’t replace the first instance of the word “The” in the sentence.

Working with Numbers
PowerApps provides a wide range of mathematical functions and in this section, we’ll look at how to work
with numbers. Starting with the basics, PowerApps provides basic arithmetic operators that include add (+),
subtract (-), multiply (*), and divide (/).

To demonstrate a simple mathematical task, here’s a simple screen that converts miles to kilometers.
This screen contains a text input control that accepts a value in miles. When the user enters a value, the
result in kilometers will appear instantly in a label. Figure 6-12 illustrates this screen. The name of the text
input control is TextInputMiles, and the name of the label that displays the result is LabelResult.

Chapter 6 ■ Using FormUlas

108

To implement this functionality, set the text property of LabelResult to the following formula:

"Value in KM: " & Value(TextInputMiles.Text) * 1.60934

This formula calculates the value in kilometers by multiplying the input value by 1.60934. The
formula prefixes this result with the text: "Value in KM: "

This example highlights two useful points about using user input for calculations. The first is the use
of the Value function. The data that we retrieve from the text input control is of type text. It’s not possible
to perform mathematical operations on text data, so we must convert the input data to the numeric
representation. This is what the Value function does.

The second point is that with the text input control, we can set the format property to TextFormat.
Number. This setting prevents users from entering non-numeric figures by configuring the control to accept
only numbers.

Formatting Numbers
A common requirement is to format numbers in a certain way. We can accomplish this by calling the Text
function. This function accepts two arguments - an input value, and a format string. Taking the example
from the previous section, we can format the result to two decimal places by using the formula shown
beneath:

"Value in KM: " & Text(Value(TextInputMiles.Text) * 1.60934, "#.##")

In this example, the string to format a number to two decimal places is “#.##”. The # character defines
a numeric placeholder. If the input value contains a number that maps to the position where the # character
appears, the output will include the value. If not, nothing will appear. As an example, if we were to format the
value 8.5 using the same format string, the output would be 8.5, and not 8.50.

In cases where we want to display preceding or trailing zeros, we would use the placeholder symbol
0, rather than #. We can also the use the comma symbol to format a number that includes thousand value
separators. Here’s an example:

Text(60934.2, "#,#.000")

Figure 6-12. An example screen to convert Miles to kilometers

Chapter 6 ■ Using FormUlas

109

In this example, the output of the function would be 6,0934.200. One other useful point is that we can
add currency symbols to a format string. We can also specify a language tag to format a result for a particular
region. Take the following example:

Text(60934.2, "[$-en-GB]#,#.00", "fr-FR")

This example would produce the result "60 934,20". To clarify how this works, the second argument
specifies a region for the format specification, and the third argument defines the output region. So in
this example, we are asking the Text function to return the French equivalent of the British format string
"#,#.00". As the result shows, the function produces a result with a space character as the thousand
separator, and a comma as the decimal point separator.

Rounding Functions
There are three functions to carry out rounding operations. These are Round, RoundUp, and RoundDown. These
functions accept an input value, and the number of decimal places to round to. The RoundUp function rounds
up the input value to the specified number of decimal place, whereas the RoundDown function rounds down
the input value to the specified number of decimal place. The Round function performs arithmetic rounding
on the input value. Here’s an example:

Round(85.665,2)

This example rounds the value 85.665 to two decimal places. The result of this function is 85.67. One
thing to be aware of is that unlike rounding functions that we might find in other systems, the round function
performs arithmetic rounding rather than bankers rounding. Bankers rounding prevents the upward bias
that occurs when rounding up as soon the minor fractional unit reaches 5. It does this by rounding to the
nearest even number.

If we were to perform the same calculation in an Excel macro using the VBA (Visual Basic for
Applications) version of the Round function, the return value would be 85.66, compared to the 85.67
value that PowerApps returns. If you’re familiar with using Excel macros to round numbers, it’s useful to
understand that the result in Excel may be different to the result in PowerApps.

Trigonometric Functions
PowerApps provides the standard trigonometric functions Cos, Cot, Sin, and Tan. These functions accept an
input angle in radians, and return the result of the trigonometric operation.

We can also call the inverse trigonometric functions, which are Acos, Acot, Asin, and Atan. With these
functions, we can calculate arccosine, arccotangent, arcsine, and arctangent values. These functions accept
an input value, and return the result of the function in radians. With all these trigonometric functions, we
can supply a single value, or we can supply a single column table.

There are two functions to covert values between degrees and radians. The Degrees function converts
an angle in radians to degrees, and the Radians function converts an angle in degrees to radians.

Finally, the Pi function returns the value of π – the number that begins with 3.14159.

Chapter 6 ■ Using FormUlas

110

Other Mathematical Functions
Other mathematical functions that are available are shown in Table 6-2. This table provides a description of
the functions, and provides us with examples of how to call the functions, and the expected output.

Table 6-2. Mathematical functions

Example Function Call Function Description Example Output Value

Abs(-80) Absolute positive value 80

Exp (5) e raised to the power of 5 148.41315910

Ln(50) Natural logarithm (base e) of 50 3.91202301

Power(8, 3) 8 raised to the power of 3 (8*8*8) 512

Sqrt(3) Square root of 3 1.73205081

Working with Dates
PowerApps provides functions to help us work with dates and times. Here are the functions that retrieve the
current date and time:

•	 Now – this function returns the current date and time

•	 Today – this function returns the current date with the time set to midnight

To create a date, we would call the Date function. This function accepts year, month, and day
arguments, and returns a date with the time set to midnight. Here’s an example of how to create a date set to
the value of July 12th 2017:

Date(2017,7,12)

To create a time object, we would call the Time function. This function accepts hour, minute, second,
and millisecond arguments. Here’s an example of how to create a time object, set to the value of 2:15PM

Time(14,15,0,0)

Notice how the Date function doesn’t allow us to specify a time element. It will always create a date with
the time set to midnight. If we want to create a date object with specific date and time values, we can call
the DateTimeValue function. This function accepts a string argument and returns a date object. Here’s an
example of how to create a date object with the value set to July 12th 2017, 12:15 PM:

DateTimeValue ("12/07/2017 12:15 PM", "en-GB")

In this example, we provide a language code to specify that the input date is in British format (that is,
day/month/year). This language code argument is optional. If we don’t specify a language code, the function
will use the locale of the current user.

Two other useful conversion functions are DateValue and TimeValue. The DateValue function accepts
an input string and returns a date object. The TimeValue function accepts an input string and returns a time
object.

Chapter 6 ■ Using FormUlas

111

One reason why these string to date and time functions are useful is because PowerApps doesn’t
include a stand-alone time picker control. Therefore, these functions help us convert the text representation
of dates and times that users enter, into objects that we can use to perform date arithmetic, or to save into a
database.

Formatting Dates Times
To format dates and times, we would call the Text function. We can format dates using predefined formats, or
we can specify our own custom format.

Starting with the predefined formats, PowerApps offers a choice of date and time formats, in long
and short formats. A long date format includes the full month name, whereas the short format includes an
abbreviation of the month name. Table 6-3 shows a list of the predefined formats that we can use.

Table 6-3. Predefined Date and Time formats

Function Call Example Output Value

Text(Now(), DateTimeFormat.LongDate) 17 December 2017

Text(Now(), DateTimeFormat.LongDateTime) 17 December 2017 02:00:00

Text(Now(), DateTimeFormat.LongDateTime24) 17 December 2017 14:00:00

Text(Now(), DateTimeFormat.LongTime) 02:00:00

Text(Now(), DateTimeFormat.LongTime24) 14:00:00

Text(Now(), DateTimeFormat.ShortDate) 12/17/2017

Text(Now(), DateTimeFormat.ShortDateTime) 12/17/2017 02:00:00

Text(Now(), DateTimeFormat.ShortDateTime24) 12/17/2017 14:00:00

Text(Now(), DateTimeFormat.ShortTime) 02:00

Text(Now(), DateTimeFormat.ShortTime24) 14:00

Text(Now(), DateTimeFormat.UTC) 2017-12-17T14:00:00.000Z

With these predefined formats, we can optionally provide a language code like so:

Text(Now(), DateTimeFormat.ShortDate, "en-GB")

This function formats the date in British format (day/month/year) and produces the output
“17/07/2017”. If the predefined formats are too rigid and we want to customize our output further, we can
provide a custom format string. Here’s an example.

Text(Now(), "dddd dd-mmmm-yyyy mm:hh ss f ", "es-ES")

This example specifies a Spanish language code, and the result from this formula would produce output
in the format - “domingo 17-diciembre-2017 14:00 00 0”.

Looking more closely at this format string, the initial four characters “dddd” denote the day of the week
in long format. The format “ddd” would return the day of the week in short format, that is, “dom” in Spanish,
or “Sun” in English. The “mmmm” section of the string returns the full month name, whereas “mmm” would
return a three-character representation of the month (for example, “dic” in Spanish, or “Dec” in English).
The format string “mm” returns a two-digit numeric representation of the month.

Chapter 6 ■ Using FormUlas

112

One important point about custom formats is that the “mm” placeholder can represent the month
number, or the minute component of the time. When we specify a custom format that includes the “mm”
placeholder, the first instance of “mm” will always output the month component. Therefore, it isn’t possible
to construct a custom format that shows the minute component of the time prior to the month. To do this,
we would need to format the times and dates separately and then concatenate the results.

Performing Date Arithmetic
PowerApps provides functions to carry out date arithmetic. The two main functions are DateAdd and
DateDiff. The DateAdd function adds or subtracts durations from a date. The DateDiff function returns the
number of days, months, quarters, or years between two dates.

To demonstrate the DateAdd function, here’s the formula to retrieve yesterday’s date:

DateAdd(Today(), -1, Days)

The first argument specifies the input date. The second argument defines the number of units to add.
This can be a positive or a negative value. The third argument defines the units, and the possible options
include days, months, quarters, or years. The third argument is optional. If we don’t specify the units, the
DateAdd function uses days as the unit for calculation.

To demonstrate the use of the DateDiff function, the formula beneath returns the number of days
between January 1st 2017 and January 14th 2017.

DateDiff(Date(2017, 01, 01),Date(2017, 01, 14), Days)

The return value from this formula is 14. The first argument specifies the start date, the second
argument specifies the end date, and the third argument specifies the number of units.

Although DateDiff appears easy to use, don’t let this fool you into thinking that calculating date
differences is a trivial task. A challenging task for developers is to calculate a person’s age (or any time
duration) expressed in years, months and days. Part of the challenge is that it’s not possible to carry out
the base calculation by taking the difference in days and dividing by 365. The reason for this is because the
time span may include leap years. The second challenge is that date difference functions can often return
ambiguous results. As an illustration, the formula below calculates the difference in months between
December 30th 2016, and January 2nd 2017.

DateDiff(Date(2016, 12, 30),Date(2017, 01, 02), Months)

What do you think this call to DateDiff returns, given these dates? In this example, DateDiff reports a
one-month difference for a time span of three days. In fact, it would even return a time difference of one year
if we were to specify the unit as years. The lesson from this is that it’s important to be aware of this behavior,
especially if, for example, we were building apps for billing purposes.

Calendar Functions
PowerApps provides functions to retrieve a list of month names or weekday names in the language of the
logged-in user. The results from these functions are ideal for use in drop-down boxes, or for date selection
scenarios.

The Calendar.MonthsLong and Calendar.MonthsShort functions return a table that contains month
names. The MonthsLong function returns a table that begins ‘January’, ‘February’, ‘March’ and so on,
whereas the MonthsShort function returns a table that begins ‘Jan’, ‘Feb’, ‘Mar’ and so on.

Chapter 6 ■ Using FormUlas

113

The Calendar.WeekdaysLong and Calendar.WeekdayShort functions return a table that contains
weekday names. The WeekdaysLong function returns a table that begins ‘Sunday’, ‘Monday’, ‘Tuesday’, and so
on, whereas the MonthsShort function returns a table that begins ‘Sun’, ‘Mon’, ‘Tue’, and so on.

Working with Tables of Data
With PowerApps, there are several ways to build table like structures of data that can contain multiple rows.
In this section, we’ll examine these structures in more detail, and we’ll examine the functions that work
against tables of data.

Defining Hard-Coded Sets of Values
The basic way to define a list of data is to specify the items in a hard-coded array. We can use this technique
to populate the items in a drop-down box. As an example, here’s the syntax to define an array that contains
two values: - male and female.

 ["male", "female"]

The items in an array are enclosed in square brackets. The comma symbol separates each item in the
array. Figure 6-13 illustrates a drop-down box that contains a list of hours. In this example, PowerApps is set
to French.

The purpose of this screenshot is to illustrate two points. The first is how to set the Items property of a
drop-down to an array. The second is a reminder that because the comma symbol denotes the decimal point
separator in French, French users must use the semicolon character to separate the items in an array.

With PowerApps set to English, you’ll recall that the semicolon is the symbol that separates each
function in a formula.

Understanding Collections
Collections provide an in-memory store for data. We can access the data in a collection from any screen in
an app. This is useful because it gives us the ability to share working data between screens.

Figure 6-13. Setting the data source of an item

Chapter 6 ■ Using FormUlas

114

In practical terms, here are a couple of ways that we can use collections in an app. Supposing that we
want to transpose or to aggregate data, we can use collections to store our working data, while we carry out a
series of steps to shape our data.

Another use for collections is to cache data. If we were to perform a time-consuming data operation,
we can store the results in a collection for later use. Because collections are held in memory, we can load
frequently used data in collections to speed up an app.

To store an item in a collection, call the Collect function like so:

Collect(<CollectionName>, <DataToCollect>)

The first argument to this function specifies the collection name. Like context variables, we don’t need to
declare, or define a collection before use. The Collect function creates the collection for us if it doesn’t exist.

The second argument specifies the data to add to the collection. This can include simple pieces of data
such as numbers or strings, rows of data, or even entire tables of data.

We can clear all the items in a collection by calling the Clear function like so:

Clear(<CollectionName>)

PowerApps provides a function that combines the functionality of Collect and Clear. The name of this
function is ClearCollect. ClearCollect removes all the data that is in the collection prior to collecting it,
whereas Collect will append data to the collection. Here’s how to call the ClearCollect function:

ClearCollect(<CollectionName>, <DataToCollect>)

ClearCollect is perhaps one of the most widely used functions. You’ll find plenty of references to it in
technical articles and blog posts.

Collecting Data
To demonstrate the use of collections, here’s how to build a screen to collect data. Imagine a screen that
contains many records. The functionality that we’ll build will enable users to mark records for review. When
a user marks a record, we’ll add the record to a collection. At the end of this process, the user can navigate to
a separate screen and view the records that have been collected.

To build this screen, create an auto-generated app. On the browse screen, add an icon to the item
template. Select the icon, click the Action menu and select the collect option. When the collect dialog opens,
select Collection1 and select ThisItem from the second drop-down, as shown in Figure 6-14.

Chapter 6 ■ Using FormUlas

115

At this point, we can run our app. When the browse screen opens, click the icon to add some records to
the collection. Now stop the app and return to the designer. The designer includes a special place where we
can view the collections and the data in an app. Click the File ➤ Collections menu item, and you’ll see the
collections and data, as shown in Figure 6-15.

Figure 6-14. Adding an item to a collection

Figure 6-15. Items in the collection

Chapter 6 ■ Using FormUlas

116

At design time, any data that we add to a collection will available, even after we close and reopen our
app. If we were to add some data to collection and then call ClearCollect to add a different type of data
to the collection, the column headings from the initial collect operation will remain. To remove additional
columns from the design time view, you’ll need to call the DeleteColumn function. At run time, any data that
is held in a collection will be lost when the user closes the app.

To complete this example, we can add a screen with a gallery control. We can then set the Items
property of this control to Collection1 to enable the user to view the records that have been marked.

Chapter 12 includes another example of how to use collections. This chapter describes how to use
collections to aggregate data for the purposes of building a chart.

Defining Tables
Another way to define a structure that stores row data is to call the Table function. This function creates a
temporary table. Here’s an example of how to use this function.

Table({Desc:"Tomorrow", Date: DateAdd(Today(),1, Days) },
 {Desc:"Today", Date: Today()},
 {Desc:"Yesterday", Date: DateAdd(Today(), -1, Days) }
)

This formula creates a table with three rows of data. The items that we add to a table defines the
columns. In this example, the table contains two columns - a column called Desc, and a column called Date.

Just like collections, we can use tables as the data source for a drop-down, or a gallery control. To do
this, we can directly assign the table formula to the Items property of the control.

Here are a few useful tips about tables. We can only access tables from the screen where we define the
table. We should use a collection instead if we want to share data between screens.

In terms of the data that we can store in a table, we can store tables within tables, and we can even store
objects such as screens. This technique is especially useful for building screen navigation functions in an app.

Working with Columns
PowerApps provides functions to add, drop, or rename columns from data sources, collections, and tables.
These functions are particularly useful when we work with collections. A common pattern in PowerApps is
to gradually shape the data to suit our needs, especially in scenarios where we want to group or summarize
values. These functions can help carry out this task. In this section, we’ll look at these column-shaping
functions in greater detail.

Adding Columns
The AddColumns function adds columns to a data source, collection, or table. Once reason why this function
is useful is because it enables us to carry out operations that affect multiple rows with a single function call.
To demonstrate, here’s how to take a data source that contains journey data, and to add a column that shows
the mileage traveled in kilometers. The data source includes a column called MileageInMiles that stores the
mileage in miles.

AddColumns(Journey, "MileageInKM", MileageInMiles * 1.60934)

This function accepts three arguments - a data source, the name of the column to add, and the value for
each row. To define the value for each record, we can specify a formula that refers to other columns in the
same data source.

http://dx.doi.org/10.1007/978-1-4842-3003-9_12

Chapter 6 ■ Using FormUlas

117

An interesting thing is that the AddColumns function returns a table. This enables us to set the items
property of a control such as a gallery control, directly to the output of the AddColumns function.

Dropping Columns
The DropColumns function takes a data source and column name. It then returns a table of data with
the specified column removed. Here’s an example of how to return the journey data source with the
MileageInMiles column removed:

DropColumns (Journey, "MileageInMiles")

To clarify, the DropColumns function returns a table without the specified column. It does not delete any
data from the data source that we provide. Like the AddColumns function, we can set the items property of a
gallery or data control to the result of this function.

Renaming Columns
The function to rename a column is called RenameColumns. This function accepts three arguments - a data
source, the column to rename, and the new name for the column. Here’s how to return the journey data
source with the MileageInMiles renamed:

RenameColumns(Journey, "MileageInMiles", "Mileage (miles)")

Like the previous functions in this section, the RenameColumns function returns a table with the
specified column renamed. It does not modify the column name in the actual source data.

On reason why this function is useful is because we can use it to provide more meaningful column
names to the controls that use the data. For example, when we set the data source for a chart, the chart
control displays the column name in the legend. As this example shows, we can improve the readability of a
chart legend by changing the column name to something that is more human readable.

Showing Columns
A useful function is the ShowColumns function. This function returns a subset of columns from a table. Here’s
how to return only the JourneyDate and MileageInMiles columns from the journey data source:

ShowColumns(Journey, JourneyDate, MileageInMiles)

The reason why this function is useful is because certain functions are designed to operate against
a single column table. Examples include the aggregate functions such as Min, Max, and Avg. By using the
ShowColumns function, we could return just the MileageInMiles column, and provide this to the Avg
function to calculate the mean average of the mileage.

Table Functions
In this section, we’ll look at how to work through the rows in a table, and how to perform aggregate
calculations. This includes functions to retrieve the row count, minimum, maximum, or average values from
a set of data.

Chapter 6 ■ Using FormUlas

118

Performing Actions Row by Row
The ForAll function enables us to calculate values or to perform actions for all records in a table. This
function is perhaps the closest thing to carrying out a loop in PowerApps. The actions that we can call for
each record in a table include Collect and Patch. As you’ll recall, the Collect function adds data to a
collection. Patch is a function that can update data in a data source, and I’ll describe this later in the book.

To demonstrate the ForAll function, here’s the syntax to copy rows from the journey table into a
collection. This example includes a conditional clause, so that it only copies journeys that exceed 100 miles.

ForAll (Journey, If(MileageInMiles > 100, Collect(HighMileageCollection, JourneyUser))

The ForAll function accepts two arguments - a data source, and the action to carry out for each row in
the data source. If the action that we want to carry out for each row in the data source consists of more than
one function, we can specify additional functions by separating each one with a semicolon.

Because the ForAll function carries out row by row processing, it performs slower compared to other
functions that operate directly on tables. Therefore, it’s good practice to consider alternative ways of carrying
out a task before we decide to use the ForAll function. In the given example, we could use a combination of the
Filter, ClearCollect, and ShowColumns functions to accomplish the same task. Here’s how this would look:

ClearCollect(HighMileageCollection, ShowColumns(Filter(Journey, MileageInMiles > 100), JourneyUser))

In the previous ForAll example, another thing to point out is that the Collect function returns a table
that contains the contents of the collection. Therefore, calling Collect inside the ForAll function can result
in high memory usage, which can cause your app to run more slowly.

An interesting point is that PowerApps can speed up this task by processing the actions inside
the ForAll function in parallel. This means that we can’t rely on the function processing the records
sequentially. The side effect of this behavior is that PowerApps prohibits us from calling the UpdateContext,
Clear, and ClearCollect functions from within the ForAll function.

Concatenating Data
A very useful function is the Concat function. This function enables us to combine the data from columns in
a table. We can use this function to flatten columns of data into a comma-separated list. Here’s the syntax we
would use to carry out this task:

Concat(UsersDataSource, Firstname & " " & Surname & ",")

Counting Records
There are four functions we can use to count the number of records in a table. These are shown in Table 6-4.

Table 6-4. Counting Records

Function Call Provides a count of…

Count(<SingleColumnTable>) Records that contain a single number

CountRows(<Table>) Records in a table

CountA(<SingleColumnTable>) Records that are not blank, including “”

CountIf(<SingleColumnTable>) Records that match a logical condition

Chapter 6 ■ Using FormUlas

119

At first glance, these functions look very similar. In particular, the Count and CountRows functions
appear to do the same thing, because they provide a total count of records. The main difference is that the
Count function accepts a single column table, whereas CountRows can accept a table with multiple columns.
As an example of how to use the CountRows function, we could apply the CountRows function directly against
a data source and show the count of records in a label.

The CountA function provides a count of records that are not null. A tip we might find useful is to
combine the CountA and Table functions to check if a scalar value is null. For example, the following
function will resolve to true if the input value is not null.

CountA(Table({ValueToCheck: YourInputValue })) = 1

In this example, YourInputValue could be a variable, or it could be an expression that that uses the
ThisItem function to refer to data field in a form.

The CountIf function accepts an input table and returns a count of the records that match the condition.
For example, here’s how to retrieve the number of records in the journey table where the mileage value
exceeds 100.

CountIf(Journey, MileageInMiles > 100)

An important point to mention is that all these functions are not delegable. This means that an app will
download all the data to carry out the count, which can be a slow process.

 ■ Tip powerapps does not provide an IsNull function, but we can use the CountA function instead to check
for null values.

Performing Aggregate Calculations
PowerApps provides functions to aggregate tables of data. These are shown in Table 6-5.

Table 6-5. Returning Aggregate Values

Function Returns the…

Average (<Table>, Expression) Mean average

Max(<Table>, Expression) Maximum value

Min(<Table>, Expression) Minimum value

Sum(<Table>, Expression) Sum of the arguments

VarP (<Table>, Expression) Variance

StdevP (<Table>, Expression) Standard deviation

All of these functions accept two arguments - a data source and an expression. The expression could
consist of a single column, or a mathematical expression. Here’s a demonstration of how to use the Sum
function with an expression.

Sum(Journey, MileageInMiles * 0.45)

Chapter 6 ■ Using FormUlas

120

In this example, the Sum function returns the total mileage multiplied by 0.45, to mimic the type
of calculation that carries out a mileage expense claim. With all these functions, we can use the Filter
function against the data source to limit the aggregation to a subset of records.

To provide a brief mathematical explanation, variance is a measurement of how spread out a set of
numbers are, and standard deviation is the square root of the variance.

A big warning is that in most cases, these functions are not delegable. In such instances, the result
from these functions may be inaccurate because PowerApps will operate against the first 500 rows only. At
the time of writing, PowerApps provides delegation support for aggregation tasks against SQL Server data
sources only. The functions that PowerApps can delegate are Sum, Average, Min, and Max only.

Finally, these functions can work against a comma-separated list of expressions, instead of an input
table. For example, the formula beneath would return the result 88.

Max(1, 14, 5 * 0.45, 50, 88. -5)

 ■ Caution sQl server is the only data source that supports delegation, and therefore the only data source
where we can perform aggregate calculations quickly and accurately.

Conditional Statements and Logical Operations
So far, we’ve seen how to use the If function. This is one of the most useful and widely used functions in
PowerApps. The way to call this function is as follows:

If(logical test, functions to run if true, functions to run if false)

In addition to the If functions, PowerApps provides other conditional functions. These include CountIf,
RemoveIf, and UpdateIf.

 ■ Note Because the if function is so widely used, here’s a quick reminder that in French and other languages
that use commas as a decimal point character, we should use semicolons to separate the arguments inside the
if statement.

To build the conditional tests for use with the If function, PowerApps provides all the logical operators
that we would expect to find. These include basic operators such as equals (=), greater than (>), less than (<),
greater than or equal to (>=), and less than or equal to (<=).

There are two keywords we can use to carry out a logical and operation These are And and &&. We can
use the && operator to combine sets of conditions. The And function accepts a comma-separated list of
arguments and returns a Boolean result to indicate whether all the arguments resolve to true.

Likewise, there are two keywords we can use to carry out a logical or operation - Or and ||. The ||
operator enables us to supply sets of conditions and it returns true if any of the conditions resolve to true.
The Or function accepts a comma-separated list of arguments and returns true if any of the arguments
resolve to true.

Chapter 6 ■ Using FormUlas

121

Table 6-6. Obtaining a color value

Method Example Call…

Use predefined color Color.Red

Obtain color from hex code ColorValue(“#ff0000”)

Obtain color from red/green/blue/alpha values RGBA(255, 0, 0, 1)

Obtain a lighter/darker shade of color ColorFade(Color.Red, -0.2)

Specifying Colors
To specify a color, we can call one of several functions. The ability to specify colors is important because it
enables us to set control properties, such as the foreground color of a piece of text. The functions that we can
call are shown in Table 6-6.

The simplest way to specify a color is to use one of the built-in colors in the Color enumeration. This
provides access all the most popular colors.

The ColorValue function returns a color value from a hex code. This is perfect if you’re familiar with
HTML and CSS (Cascading Style Sheets) color codes.

The ColorFade function returns a brighter or darker version of a color. This function requires us to
provide two arguments - a base color, and a fade value that ranges from -1 to 1. A fade value of -1 fully
darkens the color to black, whereas a fade value of 1 fully lightens a color to white. By using this function, we
can improve the appearance of an app by applying subtle offsets of colors to borders or adjacent controls.

Navigation Functions
We’ll now look at functions to carry out navigation tasks. First, we’ll explore a technique that we can use to
provide screen navigation menus in apps. Next, we’ll look at how to launch websites, compose emails, send
SMS messages, and much more. To complete this section, we’ll build an app that can optionally show a
specified record at startup.

The two functions that provide navigation functionality are the Navigate and Back functions. The
Navigate function changes the visible screen. With this function, we can pass values to the target screen by
providing context variables in the call. The Back function returns the user to the previous screen. Both of
these functions return true or false, depending on the outcome. Here’s a formula that demonstrates how to
use the return value.

If(Back(), true, Navigate(BrowseScreen1,ScreenTransition.Cover))

This formula calls the Back function. If the call to this function fails, the code navigates the user to a
screen called BrowseScreen1 instead. A call to the Back function could fail if we run a specific screen in the
designer and there isn’t a screen that we can return to. The Back and Navigate functions could also fail if an
error exists on the screen that we want to navigate to.

To make it easier to write the navigate code, we can select a control and use the navigate item in the
toolbar. This feature inserts the correct formula and saves us from having to type out the formula manually,
as shown in Figure 6-16.

Chapter 6 ■ Using FormUlas

122

When building apps, we might want to open screens conditionally, or to add gallery or drop-down
controls to navigate the user to a different screen. One challenge we face is that the navigate function expects
us to provide a screen object, rather than the string representation of the screen name. This prevents us from
constructing a screen name with formula and opening the result with the Navigate function. This limitation
also makes it difficult to store unique startup screens for each user in a database because it’s not possible
to call the Navigate function and to supply a textual screen name from the database. The technique to work
around this limitation is to store the screen references in a table.

As an example, let’s imagine that we want to add a gallery control that shows a list of browse screens
in our application. When a user selects an item from the control, the app should navigate to the selected
screen. To build this function, add a gallery control to a screen. Set the items property of the control to the
following formula:

Table({Desc:"View Journeys", ScreenObject: BrowseJourneys},
 {Desc:"View Users", ScreenObject: BrowseUsers}
)

This code is based on the assumption that we have two screens in our app - one called BrowseJourneys,
and the other called BrowseUsers. Now add an icon to the template and set the OnAction property to the
following

Navigate(GalleryControl1.Selected.ScreenObject, ScreenTransition.Fade)

Figure 6-16. Setting the navigate action with the designer

Chapter 6 ■ Using FormUlas

123

Figure 6-17. Using a Gallery control to provide screen navigation

Figure 6-17 illustrates how this feature appears in the screen designer.

Table 6-7. Launching apps

Description Launch Function Syntax

Send an email Launch(“mailto:recipient@emailaddress.com”)

Open the telephone dialer Launch(“tel:07876987656”)

Send SMS Launch(“sms:07876987656”, “body”, “Our SMS message”)

Initiate Skype call Launch(“skype:skypeRecipient?call”)

Send WhatsApp message Launch(“whatsapp://send/07876987656”, “text”, “our message”)

Launching Websites and Apps
PowerApps provides a function called Launch that enables us to launch websites in a browser. To
demonstrate this function, we’ll create a button that opens a currency conversion web page from Google.

The first step is to determine the web address to use. If we open the currency conversion web page in
Google and convert 50 US dollars to Euros, the page would display an address that looks like this:

https://www.google.com/finance/converter?a=50&from=USD&to=EUR

The a parameter specifies the amount to convert. The from parameter specifies the source currency
type, and the to parameter specifies the target currency type.

To open this web page from a screen, add a button to your screen. Next, set the OnSelect property to the
following value:

Launch("https://www.google.com/finance/converter", "a","50","from","USD","to","EUR")

The Launch function requires us to provide the address of the webpage to open. We can optionally
provide a list of parameters and in this example, we provide the a, to, and from arguments to specify our
search terms.

A handy tip is to take advantage of the Launch function and to use it to open the telephone dialer, email
client, SMS, or message apps. Table 6-7 provides highlights of the syntax that we could use.

https://www.google.com/finance/converter?a=50&from=USD&to=EUR

Chapter 6 ■ Using FormUlas

124

Retrieving Startup Parameters
For web-based users of PowerApps, we can call the Param function to retrieve parameter values from the
web address. This feature is very useful because it enables us to configure the behavior when a user starts
an app. For example, we could open a specific screen that shows a specific record based on a value that a
user supplies. This feature is useful for workflow type apps. For instance, if the status of a record changes, we
could send an email to a user with a link that directly opens the specified record in PowerApps.

To demonstrate this technique, we’ll adapt an auto-generated app to optionally open a record on
startup. Our auto-generated app will be based on a table of journeys. The URL parameter that signals the
app to open a journey record will be called JourneyID.

We can find the web address for an app through the details page for the app in the web portal. The
address will look something like this:

https://web.powerapps.com/apps/c354bf49-7618-4ee8-8603-4f29d484af33

To help build this feature, we’ll utilize a property called OnStart. This useful property enables us to
run formula when an app starts. The OnStart property is a perfect place to carry out initialization tasks. An
example of the type of functionality we could carry out here might include formula that caches records into
local collections to help improve application performance.

To build this feature, the first step is to build an auto-generated app. The data source for our example
app will be called Journey. In the browse screen, set the OnStart property to the following value:

If(Not(IsBlank(Param("JourneyID"))),
 Set(RecordSeen, false); Navigate(DetailScreen1,ScreenTransition.Fade),
 Set(RecordSeen, true)
)

On DetailScreen1, set the Item property of the form, DetailForm1, to the following:

If(RecordSeen=true,
 BrowseGallery1.Selected,
 LookUp(Journey, JourneyID= Param("JourneyID"))
)

On DetailScreen1, set the OnHidden property to the following:

If(RecordSeen=false, Set(RecordSeen, true))

We can now test our app by opening a browser and appending a journey id argument to the end of the
address, like so.

https://web.powerapps.com/apps/c354bf49-7618-4ee8-8603-4f29d484af33?JourneyID=12

This link opens the app and shows the record that matches journey id 12 in the detail screen. Note that
the JourneyID parameter name is case sensitive. From this screen, the user can click the back icon to open
the browse screen.

To clarify how this works, the formula that runs when the app starts checks whether the user has
provided a JourneyID value. If so, the formula sets a global variable called RecordSeen to false, and navigates
the user to the details screen. On the details screen, the formula that determines the record to show on the
form checks the value of the RecordSeen variable. If this is false, the formula calls the Lookup function to
retrieve the record that matches the JourneyID value that the user provides. Otherwise, it reverts to the its

https://web.powerapps.com/apps/c354bf49-7618-4ee8-8603-4f29d484af33
https://web.powerapps.com/apps/c354bf49-7618-4ee8-8603-4f29d484af33?JourneyID=12

Chapter 6 ■ Using FormUlas

125

Figure 6-18. Forumulas with errors

default behavior and shows the record that is selected on the browse screen. When the user leaves the details
screen, the formula sets the value of the RecordSeen variable to true. This prevents the form from showing
the startup record when a user subsequently opens the details screen.

 ■ Tip the OnStart property is a very useful property because it enables us to customize the startup
behavior of an app.

Exiting an App
Finally, PowerApps provides a function to close an app called Exit. This function accepts a single argument
that controls whether to log the user out of PowerApps.

In the mobile versions of PowerApps, the Exit function closes the app and the user will remain in the
PowerApps app. If we were to call the Exit function while previewing our app in the PowerApps Studio
designer, the function will not exit our session.

Managing Errors
PowerApps deals with errors in a relaxed way. In most cases, PowerApps continues when it encounters an
error and it won’t crash, or grind to a halt.

Here’s a screen that demonstrate how PowerApps copes with errors. This screen contains a button that
calls the formula that’s shown in Figure 6-18. The screen contains a label control, and the text property of
this is set to a context variable called LabelText.

Chapter 6 ■ Using FormUlas

126

This formula contains two errors. The second line in the formula contains the nonsense text BlahBlah.
A subsequent command in this formula divides the number 80 by zero. This is a classic type of error that
often crashes other types of application.

How do you think PowerApps behaves when this formula runs? Following the error, will it still execute
the functions that are that are syntactically correct? The answer is that the whole block of code fails to run
due to the unknown expression BlahBlah. If we were to remove this offending line, the code would run,
despite the divide by zero error, and the label would display the text “Task Completed”.

Another place where errors can occur is during data operations. Errors can occur when an app tries to
read, or to save data to a data source. When these errors occur, we can retrieve a list of error messages by
calling a function called Errors. This function accepts the name of a data source and here’s the syntax we
would use to call this function:

Errors(Journeys)

This function returns a table. Therefore, we can set the items property of a gallery control to this
function to show a list of errors that have been generated for a specific data source.

Summary
Just like Microsoft Excel, we can write formula to add functionality to our apps. A formula bar at the top of
the screen enables us to enter formula, and we can write formula to respond to control clicks and taps, and
to set data sources and property values. In fact, we can assign formula in almost all the places where we can
enter a property value.

Any nontrivial app will rely on variables and collections to store working copies of data. An important
use of variables is to help set property values. Variables are necessary because it’s not possible to assign
property values through formula that is attached to a different object. To demonstrate this concept, we
learned how to show a message on a label in response to a click of a button. To build this functionality, we
configure the OnSelect property of a button to store the message text in a variable. We then set the text
property of the label to this variable.

PowerApps offers two types of variable: global variables and context variables. The difference between
these two types of variables is that global variables are accessible throughout an app whereas context
variables are accessible from a single screen only. We can store all types of data in variables, including
simple numeric and text values, as well as rows and tables. The UpdateContext function defines and sets the
value of a context variable, while the Set function defines and sets the value of a global variable.

Collections provide local storage for rows of data. Just like variables, PowerApps clears all the data
in a collection when a user exits an app. Collections are useful because they can store working data while
we carry out data transformation tasks. We can also cache data in collections to help speed up apps.
ClearCollect is the function that defines and adds data to a collection.

PowerApps provides functions that work with text, numbers, and dates. This includes functions to
modify the case of text, and functions that search for the existence of a text value within another piece of
text. A particularly useful feature is support for regular expressions. We can use this to match a piece of text
against a predefined format, and this enables us to validate whether a piece of text matches the format of an
email address, telephone number, or social security number. To extract parts of an input string, PowerApps
provides string manipulation functions that include Mid, Left, Right, and Trim.

The mathematical functions that PowerApps provides include arithmetic operators, rounding
operators, trigonometric functions, and many more. It also provides functions to carry out date arithmetic
and to display dates in a format of our choice. Two useful functions are Text and Value. Text converts an
input value to its text representation. This is useful because it allows us to covert data values into a format
that we can display in labels. We can also call this function to format date values in a specified format. The
Value function converts a text value to its numeric representation. This function is important because it
allows us to convert user input into actual numbers that we use in mathematical calculations.

Chapter 6 ■ Using FormUlas

127

PowerApps provides helpful functions that can work against tables of data. This includes functions to
add, remove, or rename columns. These functions allow us to extract specific columns that we can provide
as inputs to other functions.

PowerApps provides aggregate functions to count, sum, or to calculate the average value from a set of
data. An important point to be aware of is that SQL Server is the only data source that can delegate aggregate
calculations. When we perform aggregate calculations against data sources that don’t support delegation,
PowerApps carries out the operation against the first 500 rows only and this can result in inaccurate
calculations.

A useful function is the CountA function. This function is designed to count the numbers of rows in a
single column table that are not null. However, we can also use this function to determine whether a single
value is null. The is useful because the IsBlank function returns true for both empty string and null values.
The CountA function enables us to specifically check for null values.

We looked at how to build custom screen navigation menus. The challenge here is that the Navigate
function requires us to provide a screen object. This makes it difficult for us to navigate to a screen name that
we construct through formula. The way to work around this is to create a lookup list of screen objects with
the Table function, and to use this in conjunction with the Navigate function.

Another useful function is the Lanuch function. We can call this function to launch websites, initiate
phone calls, compose SMS messages, or launch other mobile apps such as Skype or WhatsApp.

Finally, we can call the Param function to retrieve the arguments that a user provides to an app when it
runs in a browser. This is useful because we can use these values with the OnStart property to specify the
startup behavior of an app. The example in this chapter showed how to build an app that displays a user-
specified record at startup.

129© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_7

CHAPTER 7

Customizing Screens

Many users, including myself, learned how to use PowerApps by studying the built-in template apps. These
apps provide sophisticated and good-looking examples of what we can achieve with PowerApps. However,
it can be a challenge for beginners to make sense of how they work. These apps are complex, and it’s difficult
to decipher how all the different parts fit together. Therefore, the main theme of this chapter is to document
the interesting features within these apps. We can apply the lessons that we learn from this to help improve
the presentation of our own apps. The topics that we’ll cover in this chapter will include the following:

•	 Applying predefined layouts. The screen designer offers pre-built layouts that apply
to screens, gallery controls, and forms. We’ll examine the effect these layouts have
on the appearance of an app, and we’ll also find out how to apply a consistent color
scheme to an app through themes.

•	 Building single screen layouts. By examining the template apps, we’ll discover how
to build a layout that contains two sections: a section that shows a list of records,
and a section that shows the details of the selected record. The user can change
the selected record by clicking a record from the list. We’ll also find out how to
implement a tab control. This enables the user to change the details that are shown
in a predefined section of a screen.

•	 Building features. We’ll find out how to add features to help improve the user
experience. This will include how to show a confirmation screen when a user
attempts to delete a record and how to display summary data when a user selects a
record from a list. This summary data can include counts of child records, or totals
and summaries of financial values.

Using Predefined Layouts
To begin, let’s examine some of the predefined layouts in the designer. When we use the menu to add a
new screen, the menu provides a choice of four screen types, as shown in Figure 7-1. These include blank,
scrollable screen, list screen, and form screen layouts. What exactly are the characteristics of these four
layout types?

https://doi.org/10.1007/978-1-4842-3003-9_7

Chapter 7 ■ Customizing sCreens

130

The blank screen layout is the simplest layout, and adds an empty screen to your app. The ‘scrollable
screen’ layout is very useful because it extends the usable area of a screen. With this layout, we can add cards
to the bottom of the layout. A card is a container for controls and we can add as many cards as we want to a
screen. The cards stack on top of each other and at runtime, a user can scroll down to view the cards that are
lower down in the stack, outside of the visible area.

The form screen layout adds a screen with a title bar, a save icon, and a form control. When we connect
the form to a data source, the layout drop-down offers a choice of vertical or horizontal layouts. The default
is the vertical layout and in this layout, field labels appear above the data entry controls. If we choose the
horizontal layout, the field labels appear to the left of the data entry controls, as shown in Figure 7-2.

Figure 7-1. The new screen option

Chapter 7 ■ Customizing sCreens

131

Figure 7-2. Selecting either the Vertical or Horizontal layouts

Chapter 7 ■ Customizing sCreens

132

Figure 7-3. Gallery control layouts

With the ‘list screen’ layout, we can use the layout drop-down to apply one of the many built-in layouts.
The available layouts are grouped into lists and gallery layouts, as shown in Figure 7-3. The list layouts
are designed to display a combination of text and images, whereas the gallery layouts are predominantly
designed to show images.

Chapter 7 ■ Customizing sCreens

133

Figure 7-4 shows the appearance of a screen when we select the ‘image, title, subtitle, and body’ layout.
The template includes placeholders for all of these items. By default, the gallery control on a new screen
shows sample data. We can change the Items property of the gallery control so that it references an actual
data source. We can then use the controls in the properties panel to set the data fields that you want to show
in each placeholder control.

Figure 7-4. The 'image,title, subtitle, and body' layout

The remaining layouts in the list group are a subset of the ‘image,title, subtitle, and body’. For instance,
the ‘title and subtitle’ layout contains a gallery template with two placeholder controls only.

The layouts in the list group show one record per row. However, the gallery group control includes
layouts that show multiple records per row. For gallery controls, the property that controls the number of
records per row is the ‘wrap count’ property, as shown in Figure 7-5.

Chapter 7 ■ Customizing sCreens

134

Laying Out Tablet Apps
So far, we’ve focused on phone apps because the designer builds this type of app when we create an
auto-generated app. With tablet apps, the horizontal gallery control fits the landscape orientation of tablet
devices much better. The predefined layouts with horizontal gallery controls include carousel layouts,
as shown in Figure 7-6.

Figure 7-5. By default, the 'title and subtitle' gallery layout shows two records per row

Figure 7-6. Horizontal gallery control in a tablet application

With such layouts, the records are arranged horizontally and a user would swipe left to view
additional records. To configure other gallery controls to behave like this, we would set the Layout property
to Layout.Horizontal.

Chapter 7 ■ Customizing sCreens

135

When we build a tablet app, we can configure the aspect ratio through the File ➤ App settings menu.
Figure 7-7 shows the available aspect ratios. Note that it’s not possible to convert a phone app to a tablet app,
and vice versa.

Figure 7-7. Setting the aspect ratio of an app

Understanding Sample Screen Designs
In this section, we’ll examine some of the layouts from the template apps. By examining these apps, we can
discover useful techniques that we can apply to our own apps. This includes how to construct list and detail
screen layouts, how to show summary values, how to display delete confirmation messages, and how to
build a tab control.

Building a List and Details Screen
The first layout we’ll examine is the tablet version of the budget tracker track. This layout shows a list of
budgets in a left-hand pane, as shown in Figure 7-8. When a user selects a budget item from the list, the
other sections of the screen update themselves with the data that relates to the selected budget. The details
section includes a pie chart that shows the total amount spent, a list of expenses, and summary values at the
top of the screen that apply to the selected budget record. What ties all of this together? What is it that links
the various controls on the screen with the list of budget records?

Chapter 7 ■ Customizing sCreens

136

To explain this layout, let’s begin by examining the structure of the source data, and the control that
shows the list of budget records.

The data source for this app is an Excel spreadsheet held in OneDrive. This spreadsheet contains five
tables, and the details of these are shown in Table 7-1.

Figure 7-8. List and details screen

Table 7-1. Data source for the budget tracker application

Table Name Table Columns

Budgets BudgetTitle, BudgetAmount, BudgetID

Expenses Id, ExpenseName, BudgetTitle, Category, Expense, BudgetId

Categories CategoryName

Receipts Id, BudgetId, ExpenseId, ReceiptList[image], ReceiptName

ExpenseByCategory Category, BudgetId, Expense

On the main screen of the app, the control that shows the list of budgets is a gallery control named
Gallery1. The Items property of this control is set to the Excel table Budgets.

Chapter 7 ■ Customizing sCreens

137

If we take a closer look at this gallery control, each row includes the budget amount, the amount of
money that has been spent, and the amount of money remaining, as shown in Figure 7-9.

Figure 7-9. The formula for the budgeted value

Figure 7-9 illustrates the formula that displays the total budgeted amount. This formula formats the
BudgetAmount value with thousand comma separators, and a preceding currency symbol. You might be
curious to understand why the formula includes a conditional statement to display the literal text “$0” if the
BudgetAmount is 0. Could we not just apply the following formula without the If function, like so?

Text(Value(BudgetAmount),"$#,##")

The reason why the formula conditionally tests for zero is to fix a piece of behavior with the Text
function. If we were to format the value zero with the format string as shown below, the result of this
function would return an empty string.

Text(0,"$#,##")

Therefore, the purpose of the If statement is to display the value “$0” when the budgeted amount is
zero, rather than an empty string.

Let’s now look at the formulas that calculate the spent and remaining amounts. The amount of money
that has been spent against a budget is stored in the expenses table, and not in the budget table. Therefore,
the formula that carries out the amount spent and the amount remaining are slightly more complex.
Listing 7-1 shows the formula that carries out the spent calculation.

Listing 7-1. Formula for spent amount

If
(
 Text(
 Sum(
 Filter(Expenses,BudgetTitle = ThisItem.BudgetTitle &&
 BudgetId=ThisItem.BudgetId),
 Value(Expense)
),
 "[$-en-US]$#,##")="$",
 "$0",

Chapter 7 ■ Customizing sCreens

138

 Text(
 Sum(
 Filter(Expenses,BudgetId = ThisItem.BudgetId),
 Value(Expense)
),
 "[$-en-US]$#,##"
)
)

The first thing you’ll notice is that this formula begins with an If function. Just like before, the purpose
of this conditional test is to format zero values as “$0”. The pertinent code that calculates the sum of the
expenses resides in the true part of the If function.

This formula calls the Sum function to calculate the sum of the expense column in the expenses table
where the budget id matches the selected budget id in the gallery control.

Listing 7-2 shows the code that calculates the remaining budget amount. This code is mostly identical to
the code that calculates the spent amount. The primary difference is that it subtracts the spent amount from
the budget amount.

Listing 7-2. Formula to calculate the remaining amount

If (
 Text(ThisItem.BudgetAmount-Sum(
 Filter(
 Expenses,BudgetTitle = ThisItem.BudgetTitle && BudgetId=ThisItem.BudgetId),
 Value(Expense)
),
 "[$-en-US]$#,##")="$"
 ,"$0",
 Text(ThisItem.BudgetAmount-Sum(
 Filter(
 Expenses,BudgetId = ThisItem.BudgetId),
 Value(Expense)
),
 "[$-en-US]$#,##")
)

In conclusion, this section illustrates the code we would use to calculate sums and highlights how this
code might be more complex than we first expect.

Updating the Details Section of a Screen
When a user clicks an item in the gallery control, the central part of the screen updates itself to show the
budget record that the user selects. This central part of the screen shows a list of expenses that are related
to the selected budget record. The controls that are linked to the selected budget work by referencing the
selected item in the gallery control for the budget records. These controls are illustrated in Figure 7-10.

Chapter 7 ■ Customizing sCreens

139

Figure 7-10. Controls in central part of the screen

The control that shows the list of expenses is a gallery control. The control that shows the ‘total spent’
is a label control. Note that the actual formula includes a call to the If statement to correctly format the zero
values but the code in Figure 7-10 omits this for brevity.

Displaying a Delete Confirmation Screen
To prevent users from accidently deleting records, a common technique is to show a delete confirmation
screen. The budget tracker app provides this feature, and in this section, we’ll look at how this works.

In the gallery control of budget records, each row includes a trash icon, as shown in Figure 7-11.

Figure 7-11. The trash icon navigates the user to a new custom delete screen

Chapter 7 ■ Customizing sCreens

140

As Figure 7-12 shows, the OnSelect property of the delete button calls the RemoveIf function five
times. The RemoveIf function deletes data from a data source based on a condition. This code deletes the
records in the four related tables that match the selected Budget Id of the record in Gallery1 (the gallery
control that shows the list of budget records). Finally, the formula navigates the user back to the
main budget screen.

The Cancel button simply returns the user to the previous screen by calling the Back function.

Building a Tab Control Screen
To organize the layout of a screen, we can group your controls into tabs. The asset checkout app includes
such an example, as shown in Figure 7-13. In this screen, the main screen contains four groups - laptops,
keyboards, monitors, and mice. When a user selects one of these items, the background color of the selected
item turns gray, and the gallery control at the bottom of the screen updates and displays the products that
belong to the group.

This icon navigates the user to a screen called DeleteBudget, as shown in Figure 7-12. This screen
includes two buttons - a delete button, and a cancel button.

Figure 7-12. Deleting a budget record

Chapter 7 ■ Customizing sCreens

141

Figure 7-13. The 'Asset Checkout' app includes a tab type control

Let’s take a look at how this screen is constructed. The strip that shows the groups is actually a gallery
control. The reason why the gallery control resembles a tab strip is because the layout property is set to
vertical. This configures the control so that the items sit side to side, rather than top to bottom. Additionally,
the ‘show navigation’ setting is set to false to hide the navigation controls that would usually appear.

The background color of the gallery control is a light orange color. The Fill and TemplateFill
properties of the gallery control help to define this.

The item template for the gallery control includes a gray color rectangle control. This rectangle control
provides the canvas for the icon and text that appears in the template. The setting that makes this control
behave like a tab control is the visibility setting of the rectangle control, which is set to the following formula:

If(ThisItem.IsSelected,true,false)

This formula hides the gray rectangle when the item is not selected. The final touch that rounds
off the appearance of this control is that the strip at the bottom of the control is set to the same gray color.
Figure 7-14 illustrates the settings that we looked at.

Chapter 7 ■ Customizing sCreens

142

Using Themes
We can use themes to apply a fresh new look to an app. The purpose of a theme is to apply a consistent color
scheme to all the screens and controls in an app. There are 12 predefined themes that we can access through
the home menu, as shown in Figure 7-15.

Figure 7-14. How the tab control works

Figure 7-15. Applying a theme

Chapter 7 ■ Customizing sCreens

143

When we apply a theme, the designer changes the control and background colors in every screen in
the app. To prevent you from losing custom changes, the designer will not update any controls where you’ve
modified the colors.

There are themes that consist of a light background and themes that consist of a dark background. A
useful tip is that dark themes can help preserve the battery life of mobile devices. This is because a device
requires less power to light up a screen that is predominantly dark.

Summary
In this chapter, we examined various screen design techniques that we can apply to our apps. PowerApps
provides predefined layouts that we can apply to a screen. The most basic is the scrollable screen layout.
This layout applies a colored title bar and a card control in the body of the screen. Cards are containers for
child controls, and we can add multiple cards to a screen. The cards stack on top of each other, and the user
can scroll down to reveal the cards that are beneath the visible area. The remaining layouts apply to screens
that contain a gallery control.

The template apps provide a great way to learn more about PowerApps. Many of these templates follow
a similar pattern. They consist of a principal screen with a gallery control. When a user selects a record from
the gallery control, other labels and gallery controls update themselves to show data that pertains to the
selected record.

The design principle is that the selected item in the gallery control is the object that drives everything
in the application. If child records are associated with the main record, the data source of any child gallery
controls are filtered by selected item in the main gallery control, therefore producing the correct data.

The budget tracker app includes a delete confirmation screen. This screen appears when a user triggers
the deletion of a record. The confirmation screen contains two buttons - a delete button and a cancel button.
The delete button calls the RemoveIf function to delete the specified record. If there are related records, the
formula removes all child records before removing the main record.

To better organize the layout of a screen, we can group our controls into a tab structure. We can implement
this feature by adding a gallery control to a screen and setting the layout property to vertical. We would set a
different background color for the selected item in the gallery control to achieve the look of a tab strip.

Finally, we can skin an app through the help of a theme. A theme applies consistent colors to all the
screens and controls in an app.

145© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_8

CHAPTER 8

Using Controls

Controls provide the means for users to interact with apps and play a crucial role in app design. In this
chapter, we’ll cover this important topic through four sections: how to work with simple controls, how to set
lookup values, how to work with CDS-specific controls, and how to show media content on screens.

The overriding characteristic of simple controls is the ability to work against single values. Examples of
these controls include the text input, radio, checkbox, and many more. Afterwards, we’ll look at how to use
the drop-down control and how to set lookup values. We’ll also find out how to use the list box and table
controls in this section.

There are some differences that exist when we work with CDS data sources. This includes a new type of
form control, and different behavior with drop-down controls. We’ll explore these topics and then move on
to look at media controls. This will include how to display images, videos, and audio in apps.

In the final part of this chapter, we’ll explore some practical techniques that we can apply. This includes
how to use the timer control to run formula at timed intervals, and how to utilize the control reset feature.
This feature restores control values back to their initial states, and we’ll find out how to use this to allow
users to undo changes to a record. Some valuable highlights in this chapter include the following:

•	 How to map data values to controls. It’s common for data sources to store codified or
abbreviated data values. Examples can include country code abbreviations, or letters
such as ‘Y’ and ‘N’ to denote true or false. It can be a challenge to configure controls
such as radio or list box controls to display meaningful options to the user, yet store
and retrieve codified values from the data store. We’ll find out exactly how to carry
out the mapping task.

•	 How to work with dates and times. Surprisingly, displaying and editing dates can be
quite complex. First, it’s not straightforward to configure the controls on a default
card to allow just the entry of the date without the time component. Secondly,
PowerApps performs time zone conversions to allow users in different regions to
work with times in their local time zones. The difficulty is that if we misconfigure our
apps, we can store incorrect time values in the data source. In this chapter, we’ll find
out how to avoid these problems.

•	 How to use the drop-down control. To address the common task of setting lookup
values, we’ll examine some tricky yet important topics that relate to this control. This
includes how to customize the text that appears in each row, and how to build a set
of nested drop-down controls. This is where the data items in one drop-down will
depend on the selected item of another drop-down.

https://doi.org/10.1007/978-1-4842-3003-9_8

Chapter 8 ■ Using Controls

146

Overview of Controls
To explore the controls that PowerApps offers, we’ll build an auto-generated app that’s based on a table of
vehicle records. We’ll then replace the text input controls on the edit form with alternative controls.
Figure 8-1 shows the end result of this exercise. The controls that we’ll explore will include the drop-down,
date picker, radio, rating, and slider controls. We’ll fit the replacement controls into the existing card and
form structure to ensure that the form continues to save and retrieve data correctly.

Before we begin, here are some elementary points to mention. First, the Insert menu in the designer
enables us to add controls to screens. Second, we can only use the controls that PowerApps provides. There
is no way to create our own custom controls.

 ■ Tip We can arrange the cards on a form to span across multiple columns (as shown in Figure 8-1)
by selecting the ‘snap to columns’ checkbox on the form and entering the number of columns to display.

Building Data Structures to Support Controls
Here’s the data structure of the Excel spreadsheet that supports the example in this chapter. The main table
stores vehicle details, as shown in Figure 8-2. This spreadsheet stores common vehicle details such as the
registration number, color, and model.

Figure 8-1. The screen that we'll build in this chapter

Figure 8-2. Vehicle Spreadsheet

Chapter 8 ■ Using Controls

147

The model id field stores a numeric model number that corresponds to a value that’s held in a model
table, as shown in Figure 8-3. This table stores the model name and the year of the model. The table also
includes a field called MakeID. This is a numeric field that references a Make table, which is also shown in
Figure 8-3.

These sets of tables represent a typical data structure that we would find in a relational database. Later
in this chapter, these tables provide a structure that we can use to learn how to set look up values with drop-
down controls.

Action Controls
Before we look at data controls, let’s find out how to configure a control to respond to user taps or clicks. The
obvious control that provides this function is the button control. However, almost all controls in PowerApps
can also respond to this type of interaction. To configure a control to respond to a user tap or click, we would
add formula to the OnSelect property of the control. The buttons in the Action menu provide a simple way
to build the OnSelect formula, as shown in Figure 8-4. We can use the options in this menu to navigate to a
new screen, or to add and remove items from a collection.

Figure 8-3. The Model and Make tables

Figure 8-4. Configuring the action of a button

Chapter 8 ■ Using Controls

148

A common design technique is to use icons to respond to user interactions. We can insert icons through
the Icon button in the Insert menu. Figure 8-5 shows the available icons.

Displaying Geometric Shapes
The geometric shapes we can add to a screen include all the common shapes such as circles, rectangles,
and triangles. The menu item to add shapes is slightly hidden away. It appears beneath the icon menu in a
shapes group, rather than a separate menu. Figure 8-6 shows the shapes that are available.

Figure 8-5. Icons that we can add to a screen

Chapter 8 ■ Using Controls

149

These shape controls are useful because they can serve as a background for other controls. For example,
we could add a rectangle control and add child controls over the control. We could then apply background
colors and borders to group controls together and to improve the appearance of your screen.

Another useful tip is to apply formula to the OnSelect property of a shape. This makes the shape react to
a screen tap and we can use this technique to create custom buttons. For example, we could enable users to
set the priority value of a record by clicking red, yellow, or green rectangles on a screen.

Displaying Text with Label and HTML Text Controls
There are two controls to display text: the label control and the HTML text control. The label control displays
simple text and the Home menu provides options to format the contents of the control. As Figure 8-7
shows, we can set the font type, size, and color of a label. We can also apply text styles such as bold, italics,
underline, and strikethrough. We can better align our label with adjacent controls by adjusting the vertical
and horizontal text alignment.

The Text property defines the text that appears in the label, which can include display multiline text. To
enter a line break, we can type <shift><enter> into the formula bar.

We can configure the label height to adapt automatically to its content. The AutoHeight property
enables this behavior. We can also configure the label to show scrollbars by setting the Overflow property
to true.

The fonts that we can use are limited. For example, the Wingdings font isn’t available, which would
enable us enter symbols that could include checkmarks, crosses, or emoticons.

The HTML text control enables us to display HTML content. HTML provides far greater control over the
formatting of text. Unlike the label control, we can set the colors and styles of individual words in a sentence
with HTML.

Figure 8-6. Geometric shapes that we can add to a screen

Figure 8-7. Formatting the contents of a label

Chapter 8 ■ Using Controls

150

When we add an HTML text control to our screen, the HtmlText property provides example markup to
help us author basic HTML, as shown in Figure 8-8. This includes how to set the text style to bold with the
 tag, and how to set the text color to blue with the tag .

The HTML text control is particularly useful when we want to display characters that are unavailable
with plain text. This could include the superscript characters in chemical symbols, mathematical symbols,
or even musical characters. Example symbols and the corresponding HTML tags include CO2 (CO<sup>2</
sup>),∞ (∞), or B♭ (B ♭).

Using Simple Controls
Let’s now look at how to use simple data controls - controls that bind to a single value. We’ll use the edit form
in our auto-generated app to help describe how these controls work. The controls that we’ll examine in this
section will include the Text Input, Radio, Slider, Toggle, and Rating controls.

Text Input Control
The default control that appears in the edit form is the text input control. This control receives text input
from the user, and it offers many useful features that we can take advantage of.

To restrict the data that users can enter, the control provides a mode property that we can set to one of
three values: MultiLine, SingleLine, or Password. The MultiLine and SingleLine properties control the
entry of multiline text. In password mode, the control masks each character that the user enters with asterisk
characters.

To restrict the amount of text that a user can enter, we can set the ‘max length’ property. The control also
provides a format property that we can set to one of two values: text or number. If we set the format property
to number, the control will only accept numeric input from the user.

To provide users with additional help, there are two properties we can set - the tooltip property and
the hint text property. A tooltip is a piece of help text that appears when a user hovers the mouse over the
control. Since there is no concept of a mouse for mobile devices, this is where the hint property comes into
play. The text input control shows the hint text when the control is empty, as shown in Figure 8-9. As soon
as the user enters some text into the control, the hint text disappears and the control shows the text that the
user has entered.

Figure 8-8. The HTML text control provides example markup.

Chapter 8 ■ Using Controls

151

The text input control also includes a property called Clear. When this is set to true, a cross icon
appears in the far right of the control and the user can click this icon to clear the contents of the control.

On Windows, the official browsers that support this feature are IE and Edge. The clear feature does not
work in the Windows version of PowerApps Studio.

 ■ Tip Use the hint text property to provide help for smartphone or tablet users. tooltips do not appear on
devices without a mouse.

Radio Control
The radio control permits a user to make a single selection from a list of choices. To demonstrate how to
use this control, we’ll replace the fuel type text input control in our edit form with a radio control. In our
example, we’ll set up the radio control to store one of three values in the spreadsheet. The values that we’ll
store in the ‘fuel type’ field will be P, D, or E (to denote petrol, diesel, or electric).

To replace the default text input control, the first step is to unlock the ‘fuel type’ card and to delete the
text input control.

When we delete a text input control from a card, the designer will display two warnings. The first relates
to the Update property of the card that is now invalid, and the second refers to a formula that calculates the
y-position coordinate of an error warning label. We need to change this formula so that it refers to our new
control, rather than the old text input control name. The other examples in this section follow the same
pattern, and therefore, these steps will apply to those examples too.

The next step is to insert a radio control and to name it RadioFuelType. To define the items that appear
in the radio control, set the Items property to the following value:

Table({FuelId:"P", FuelDesc:"Petrol"}, {FuelId:"D", FuelDesc:"Diesel"},
{FuelId:"E", FuelDesc:"Electric"})

This formula defines a table that includes the columns FuelID and FuelDesc. The FuelID field denotes
a single character code, and the FuelDesc field contains a friendly description of the fuel type. To configure
the radio control to show the friendly description, set the value property to FuelDesc.

The next step is to configure the card to use the selected radio item to update the ‘fuel type’ field when
a user saves a record. To do this, select the parent card control, and set the Update property to the formula
beneath:

RadioFuelType.Selected.FuelId

Figure 8-9. Setting the hint text on the text input control

Chapter 8 ■ Using Controls

152

To complete this example, the final step is to configure the radio control to display the correct item
when a user opens an existing record. The default property defines the selected radio option, and in our
example, we need to provide the friendly description, because this is what the control shows. Therefore,
we need a formula that converts the values P to Petrol, D to Diesel, and E to Electric. Here’s the formula we
would use to set the Default property:

If(Parent.Default="P", "Petrol",If(Parent.Default="D", "Diesel",If(Parent.Default="E",
"Electric","")))

Figure 8-10 shows our screen in the designer and highlights the appropriate formula. We can now run
our app and the set the fuel type using the radio control.

A useful point to be aware of is that we cannot change the orientation of the radio items. The radio items
always stack on top of each other, and it’s not possible to amend the layout so that the items flow from left
to right.

Toggle and Checkbox Controls
There are two controls that can accept yes/no, or true/false values from the user. These are the toggle
control, and the checkbox control. Both of these controls function similarly so for brevity, we’ll examine the
use of the toggle control only. The toggle control is identical to the checkbox, except that the user changes
the state of the control by sliding a button, rather than clicking a checkbox with a mouse.

To demonstrate this control, we’ll add a toggle control to our screen to allow users to set the
transmission type of a vehicle. The transmission field in the spreadsheet will contain the values A or M
(to denote automatic or manual transmission). The state of a toggle control can be true or false. In our app,
we’ll use true to denote an automatic vehicle, and false to denote a manual vehicle.

The first step is to unlock the fuel type card and to delete the text box. Just like the previous example, we
need to resolve any errors that might arise. Next, insert a toggle control and name it ToggleTransmission.
Add a label next to the toggle control and set the text to “Is automatic”.

Figure 8-10. Configuring a radio control

Chapter 8 ■ Using Controls

153

The next step is to set up the card to use the toggle control to update the transmission field when a user
saves the record. To do this, select the parent card control and set the Update property to:

If(ToggleTransmission.Value, "A","M")

To complete this example, the final step is to show the correct value in the toggle control when a user
opens an existing record. This requires a formula that converts the value “A” to true, and “M” to false. The
formula we would use to set the Default property of the toggle control is shown beneath:

If(Parent.Default="A", true, false)

A helpful point to mention about this formula is that the equality operator is case sensitive. Therefore
Parent.Default=“A” is not the same as Parent.Default=“a”.

Figure 8-11 shows this control in the designer. We can now run our app and then set the transmission
type of a vehicle with the toggle control.

Slider Control
The slider control provides a simple way for a user to enter a numeric value between a minimum and
maximum value. To demonstrate this control, we’ll provide a slider control on the edit form to set the
number of seats in a vehicle.

The first step is to unlock the seat card and to delete the text box. Just like the earlier example, resolve
any errors that occur. Insert a slider control and name it SliderSeats.

Some useful properties that we can set on the slider control are the minimum and maximum values, as
shown in Figure 8-12. The minimum value can be negative, and the maximum value can be as large as the
maximum number that JavaScript permits. Other useful settings include the size of the slider bar and button.

Figure 8-11. Configuring toggle control

Figure 8-12. Configuring the slider control

Chapter 8 ■ Using Controls

154

The next step is to configure the card to use the slider value to update the seat field when a user saves a
record. To do this, select the parent card control, and set the Update property to:

SliderSeats.Value

The final step is to display the correct value when a user opens an existing record. To do this, set the
Default property to:

Parent.Default

We can now run our app and set the number of seats with the slider control.

Rating Control
The final control that we’ll look at in this section is the rating control. This is a control that can set and
retrieve numeric values. This control displays a number of stars and users can assign a rating by clicking on
a star.

To demonstrate this control, we’ll configure the rating control to store the comfort level of a vehicle. The
first step is to unlock the comfort level card and to delete the text input control. Insert a rating control and
name it RatingComfort.

We can set the maximum value that the control can accept, as shown in Figure 8-13. Like the slider
control, the maximum value can be as large as the maximum number that JavaScript permits.

The next step is to configure the card to use the rating control to update the comfort rating field when a
user saves a record. Select the parent card control and set the Update property to:

RatingComfort.Value

The final step is to display the correct value in the rating control when a user opens an existing record.
To do this, set the Default property to:

Parent.Default

We can now run our app and set the comfort level of a vehicle with the rating control. One thing to note
is that some iOS users have reported problems with this control. In some circumstances, users may have to
carry out a long press of a star before the control registers the selection.

Figure 8-13. Configuring the rating control

Chapter 8 ■ Using Controls

155

Working with Dates
We’ll now look at how to work with date values and how to use the date picker control. The biggest challenge
is that due to time zone conversions, it’s possible for apps to store and display incorrect time values. With the
help of this section, we can take steps to avoid this problem.

Date Picker Control
PowerApps provides a date picker that users can use to enter dates. Figure 8-14 shows the date picker control
at runtime. The highlights of this control are as follows. Initially, the control appears on a single line and
shows the date in short date format. The control applies the short date format that is associated with the
regional settings of the device or browser and there is no way to specify a different format. When a user clicks
the control, it provides the ability to make a date selection through a calendar view.

This calendar view provides forward and backward icons to navigate thought the months. Something
that might not be obvious is that users can quickly change the year and month values by clicking on these
labels. Users who are unaware of this feature can easily become frustrated when they set a date that is
significantly earlier or greater than the current date with the backward and forward navigation icons.

An important property to be aware of is the ‘start year’ property. This defaults to 1970 and users cannot
select a year earlier than this. It’s necessary to reduce this value if we want to accept earlier dates.

With Excel data sources, it’s important to add sample data to a spreadsheet before we attempt to build
an auto-generated app. If we create an auto-generated app with a spreadsheet that contains only table
headings, the designer cannot determine the data types of any of the fields. In this instance, all the auto-
generated cards will contain text input controls.

Showing Dates Only
For auto-generated apps, PowerApps provides auto-generated cards that include both date and time entry
controls for the date fields in a data source. A common question from app builders is how to modify a card
to accept date entries only. The answer is straightforward; we can simply remove the hour and minute

Figure 8-14. Date picker control

Chapter 8 ■ Using Controls

156

drop-down controls. To demonstrate, this technique, we’ll modify a date on the edit form of our sample app
to accept date entries only. The name of the field that we’ll modify is the ‘insurance end date’ field to accept
only date entries.

Once we open the edit form in the designer, the first step is to unlock the card. Within the card, there
are three controls that relate to the time component: an hour drop-down, a minute drop-down, and a label
control that displays a colon between these two drop-downs. Select these three controls and delete them
from the card. If the delete key on the keyboard fails to work, try using the delete option in the right-click
context menu.

When we delete these time controls, the designer reports several errors, and we can review these
by clicking the exclamation point icons, as shown in Figure 8-15. Several of these occur because X and Y
coordinates of adjacent controls refer to the controls that we deleted. For the purposes of this demonstration,
we can hide these errors by setting the incorrect values to 0.

The most importing setting to change is the update property. One of the exclamation point icons will
take us to the update formula, and we can remove the references to the time controls. At this point, we can
run our app and use the date picker to save just the date value.

Here’s a useful tip. The designer does not provide an option to insert the time picker controls through
the inset menu. If we want to add hour and minute drop-down controls to other parts of an app, we can copy
and paste these controls from an auto-generated card.

Understanding How Date Values Are Stored
Let’s now examine one of the biggest challenges that some app builders face. Because users from different
parts of the world can run the same app at the same time, PowerApps is designed to accommodate users
from different time zones. To display times values that are appropriate for the time zone for the user,
PowerApps stores the UTC (Universal Time Coordinated) value of dates and times in the underlying data
store. UTC shares the same time as GMT (Greenwich Mean Time), the time zone for England, and all time
zones in the world are expressed as positive or negative offsets against UTC. This support for multiple time
zones can lead to some unexpected behavior and we’ll now explore this in more detail.

Let’s assume that we’re in London and that the current month is June. At this location, the current time
zone is BST (British Summer Time), which equates to UTC+ 1hr. If we set the insurance end date value of a
record in our example app to the 10th May 2017, the record handling will appear to work correctly. We can
open the record and view the insurance end date value as expected.

Figure 8-15. The Update property is no longer valid when we delete the hour and minute controls

Chapter 8 ■ Using Controls

157

However, things become more interesting when we start to delve into the underlying data. Figure 8-16
shows the record that PowerApps saves to Excel and as we can see, the date doesn’t appear to be correct.
It shows up as the 9th December 2017 23:00. This is because PowerApps converts the input date to UTC by
subtracting one hour. When a user opens this record, PowerApps converts the value back to BST by adding
one hour. Therefore, the user can enter and retrieve date values consistently because PowerApps carries out
the UTC conversions during the save and retrieval operations.

Figure 8-16. PowerApps saves UTC times to the underlying data source

Figure 8-17. Excel data appears correct when we set the TimeZone to UTC

However, there is one side effect of changing the time zone to UTC. When PowerApps retrieves the
record, it still converts the source date to the local time zone, and therefore adds one hour. So although dates
now appear correctly in Excel, the dates that appear in an app will be one hour greater than the correct time,
as shown in Figure 8-18.

This behavior causes a problem for other users who want to work directly with the data in Excel (or
the underlying data source). The date values here will be one hour out of sync and will not be an accurate
reflection of what the user intended.

Is there a fix for this? The answer is ‘kind-of’. The date picker control provides a property called
TimeZone. This property defines the time zone of the selected date in the control and we can set this to one of
two values: local or UTC. The default value is local, and this is the reason why PowerApps subtracts one hour
when it saves the date to Excel.

If we were to change this setting to UTC, PowerApps assumes that the input date is in UTC and will not
carry out any conversions when it saves the data to Excel. By changing the TimeZone setting to UTC, the data
in the Excel spreadsheet will appear more accurate, as shown in Figure 8-17.

Chapter 8 ■ Using Controls

158

So to make sure that users can consistently save and retrieve dates, we would need to find all the places
where an app displays the date, and convert the value back to UTC like so:

Text(ThisItem.InsuranceEnd, "UTC")

The disadvantage of setting the TimeZone to UTC is that we now need to change all the places where
the date appears and this can involve a lot of work. If we’ve built screens to search data based on date
criteria, we would need to make sure to convert the input date to UTC.

Saving Dates in year-month-day Format
As you can see, creating apps that can read and write time values consistently throughout an app and the
underlying data source can be a challenge. With the automated UTC time adjustments, the potential for
incorrect data to enter a system is greater because dependencies exist that are outside of our control.

A typical problem that app builders report is that with apps that connect to SharePoint, the times that
users enter through an app fail to match the values that appear in SharePoint. There are several possible
causes for this. The regional settings on the client device or browser might be incorrect. Or alternatively, the
administrator may never have set up the regional settings for the SharePoint site.

These problems are guaranteed to be difficult to diagnose. Therefore, one simple solution to maintain
consistent dates is to store our date and time values as strings in the format yyyymmddhhmm. When we want to
display a date in an app, we would format the date as required. Another benefit of this approach is that we
can still sort our date values in ascending or descending order.

Here’s how to amend our app to store the ‘insurance end date’ values in yyyymmddhhmm format. Open
the edit form and modify the Update command for the ‘insurance end date’ card. Use the formula below to
convert the input date in the date picker to yyyymmddhhmm format. In this formula, DateValue1 refers to the
date picker control.

Text(DateValue1.SelectedDate, "yyyymmddhhmm")

Now modify the Default property of the date picker control to provide it with a valid date when a user
opens an existing record. We need to call the DateTimeValue function and to provide an input string in the
format “yyyy-mm-dd hh:mm ”, like so:

DateTimeValue(Left(Parent.Default, 4) & "-" & Mid(Parent.Default, 5,2) & "-" & Mid(Parent.
Default, 7,2) & " " &
 Mid(Parent.Default, 9,2) & ":" & Mid(Parent.Default, 11,2)
)

Figure 8-18. The date that PowerApps retrieves is incorrect when we set the TimeZone to UTC

Chapter 8 ■ Using Controls

159

This formula will produce an error (as shown in Figure 8-19) because in the initial spreadsheet, the data
type of the insurance end field was a date and we’ve now modified this field to store text values instead.

To resolve this error, change the date values in the Excel spreadsheet to be in the format yyyymmddhhmm.
In Excel, it’s necessary to precede the values we enter with a single quote to force Excel to recognize the data
as a string like so:

'201705090000

Next, change the format of the cells to Text, as shown in Figure 8-20. At this point, return to PowerApps
and refresh your data source by clicking the Insert ➤ Data sources menu and choosing the right-click refresh
option against the data source. Once we refresh our data source, the error will disappear.

The final step is to apply a more readable format to any controls that display the ‘insurance end date’
field. In the auto-generated app, we would need to do this on the detail form. We can use a formula to
display the date in long date time format, like so:

Text(DateValue(Left(Parent.Default, 4) & "-" & Mid(Parent.Default, 5,2) & "-" & Mid(Parent.
Default, 7,2) & " " & Mid(Parent.Default, 9,2) & ":" & Mid(Parent.Default, 11,2)),
DateTimeFormat.LongDateTime)

Figure 8-19. Converting a field to yyyymmddhhmm

Figure 8-20. Changing the data type in the source data

Chapter 8 ■ Using Controls

160

At this stage, we can run our app. The app will function as before, but the date values will be stored in
yyyymmddhhmm format in the underlying Excel spreadsheet.

Setting Lookup Values
In this section, we’ll examine the use of the drop-down and list box controls. These controls are important
because they enable us to limit the values that a user can enter, or to set lookup values.

To demonstrate the drop-down control, we’ll apply this control to two fields in the edit form of our
auto-generated app - the color field, and the model id field. You can refer to Figure 8-2 and Figure 8-3 to
review the structure of our data.

In the first example, we’ll find out how to use a drop-down control to limit the colors that a user can
enter to a set of predefined values. In the second example, we’ll find out how to populate a drop-down
control with vehicle model names, and how to store the numeric model id in the vehicle spreadsheet.

Limiting Input Values with a Drop-Down Control
Starting with the color field, let’s replace the text input control with a drop-down list of hard-coded color
values. The first step is to open the edit form and to find the card that relates to the color field. Change the
control type to ‘Allowed Values’ and then unlock the card, as shown in Figure 8-21.

Select the drop-down control in the card and set the Items property to the following formula:

["Red", "Green", "Blue", "Yellow", "Orange", "Purple", "Pink", " Brown" ," White"," Black"]

Figure 8-22 shows how this setting appears in the designer. We can now run our app and use the drop-
down to set the color field of vehicle record.

Figure 8-21. Changing the control type to 'Allowed Values'

Chapter 8 ■ Using Controls

161

An interesting question you might ask is this. If we open an existing record with a color value that
doesn’t exist in the drop-down, what would happen? The answer is that the drop-down would show a blank
value. In this scenario, PowerApps will not display any error messages to the user, and it will not crash or
stop working entirely.

Setting Lookup Values with a Drop-Down Control
We’ll now look at the more complex scenario, which is how to set up a drop-down to assign a vehicle model
to a vehicle record. Our drop-down control will display the vehicle model details from the model table, and
we’ll configure the form to save the numeric model id to the vehicle table.

The first step is to open the edit form and to select the card that relates to the model id field. Change the
control type to ‘Allowed Values’ and unlock the card.

Set the Items property to the data source of the vehicle model spreadsheet, as shown in Figure 8-23.
Because the vehicle models table includes several columns, we can use the value property to specify the field
that appears in the drop-down. Set the value property to the Name field.

Figure 8-22. Setting up drop-downs with static items

Figure 8-23. Setting up Drop-Downs

The default name of the drop-down will be something like DataCardValue18. To make this control
easier to identify, rename it to DropdownModel.

The next step is to configure the card to save the numeric model id value when a user saves the record.
To do this, select the parent card control, and set the Update property to the following formula:

 DropdownModel.Selected.ModelID

Chapter 8 ■ Using Controls

162

To complete this example, the final step is to setup the drop-down box to show the correct item when a
user opens an existing record. To configure this, set the Default property of the drop-down to the following
formula:

LookUp(VehicleModel, ModelID = Parent.Default).Name

We can now run our app and then set the model using a drop-down box control.

Customizing the Drop-Down Display Value
A common task is to customize and display multiple fields in each row of a drop-down. In our example
so far, the drop-down shows just the model name. How can we modify the drop-down to display both the
model name and year of the model? The answer is to set the Items property of the drop-down to a formula
that combines the fields that we want to display. Here’s the formula we would use to display both the model
name and the year:

AddColumns(VehicleModel, "ModelAndYear", Name & " (" & Year & ")")

The purpose of the AddColumns function is to add columns to a data source, collection, or table. This
function accepts three arguments - a data source, the name of the column to add, and the value for each
row. Chapter 6 provides more details about these data-shaping functions. Once we add this function, we can
set the value property of the drop-down to ModelAndYear.

The next step is to modify the formula for the Default property so that it selects the correct item in the
drop-down for existing records. Here’s the formula we would use:

LookUp(AddColumns(VehicleModel, "ModelAndYear", Name & " (" & Year & ")"),
 ModelID = Parent.Default).ModelAndYear

The purpose of the Lookup function is to return the first record from a data source that matches a
formula that we provide. The formula that we use here looks up the record in the data source where the
ModelID value in VehicleModel table matches the ModelID value of the vehicle record.

Figure 8-24 shows the appearance of this code in the designer. We can now run our app, and each row
in the vehicle model drop-down will show the name and the year fields.

Figure 8-24. Edit the Items, Value, and Default properties to customize the drop-down text

http://dx.doi.org/10.1007/978-1-4842-3003-9_6

Chapter 8 ■ Using Controls

163

Nesting Drop-Down Controls
To make it easier for users to enter data, we can nest together sets of drop-down controls. As a logical
extension of the previous example, we’ll add a vehicle make drop-down to the edit form and configure the
vehicle model drop-down so that it shows records that match the selected vehicle make.

Figure 8-25 shows the vehicle makes table, and the formula in this section will refer to this data source
as VehicleMake.

To build this feature, select the card that displays the vehicle model and insert a drop-down control
above the ‘vehicle model’ drop-down. Name this control DropdownMakes and set the Items property to
VehicleMake, as shown in Figure 8-26.

When the card loads an existing vehicle record, it needs to show the vehicle make that corresponds to
the vehicle model of the record. To configure this, set the Default property of the DropdownMakes control to
the following formula:

LookUp(VehicleMake,
 LookUp(VehicleModel, ModelID = ThisItem.ModelID).MakeID = MakeID
).Name

This formula contains a set of nested lookups. The innermost lookup retrieves the MakeID that
corresponds to the ModelID of the vehicle record. It uses the VehicleModel table to carry out the lookup.
The outermost lookup retrieves the name field of the make record that matches the MakeID value from the
inner lookup.

Figure 8-25. The VehicleMakes table

Figure 8-26. The 'vehicle makes' drop-down

Chapter 8 ■ Using Controls

164

We can now configure the ‘vehicle models’ drop-down to filter the items according to the ‘vehicle make’
that the user chooses. To make this change, set the Items property of the ‘vehicle models’ drop-down to the
formula below:

Filter(AddColumns(VehicleModel, "ModelAndYear", Name & " (" & Year & ")"),
 MakeID =DropdownMakes.Selected.MakeID)

We can now run our screen and select a vehicle make. As soon as this happens, the vehicle model
drop-down will show only those vehicle models that are associated with the selected vehicle make.

List Box Control
The list box control provides the ability for a user to select one or more items from a list. For practical
purposes, this control works identically to the drop-down control, and the only difference is that the data
items are always on display. Figure 8-27 shows the list box control in the designer.

The Items property defines the data source for the control. If the data source contains multiple
columns, the value property will specify the field to display.

The SelectMultiple property controls whether the user can select multiple items, or whether the user
can select a single item only.

We can use the SelectedItems property to retrieve the selected items with formula. Here’s a useful
tip. To show all the selected items in a label, we can call the Concat function to build a string that shows the
selected items. Here’s the syntax we would use.

Concat(ListBoxDefects.SelectedItems, Description & " ")

The Concat function accepts a data source and a formula. This function applies the formula to each row
in the data source and combines all the results into a single output value.

The default property of the list box control specifies the selected item. We would set this to the text of
the item to select. However, a major limitation is that we can preselect a maximum of one item only and this
prevents us from using this control to display multiple items that are associated with a record.

Displaying Tables of Data
We’ll now look at a control that displays data in a tabular format - the Table control. To add this control to a
screen, click the ‘data table’ button in the insert menu. Next, use the Items property to set the data source.
We can then define the columns in the table by enabling cards, as shown in Figure 8-28.

Figure 8-27. The list box control

Chapter 8 ■ Using Controls

165

The table control is read only, and doesn’t provide cell-level editing like Excel. This control behaves
similarly to the gallery control because it keeps track of the selected row. A typical design pattern is to place
an edit form next to the table control, and to set the data source of the edit form to the selected item in the
data table. This provides the ability for users to select and edit a record on the same screen, as shown in
Figure 8-29.

Using CDS-Specific Controls
In this section of the chapter, we’ll look at control features that are unique to CDS data sources. This
includes a different type of form control called the ‘entity form control’, and differences in behavior with the
drop-down control.

Figure 8-28. Using the Table Control

Figure 8-29. Creating a List and Details screen

Chapter 8 ■ Using Controls

166

Using Entity Form Controls
In addition to the form and card controls that we’ve seen in auto-generated apps, we can utilize another
type of form control with CDS data sources - the Entity Form control. This control allows us to quickly set up
forms to display and edit data, and a key feature is the ability to show data in a tabular format.

To use this control, use the Insert menu to add the control to a screen and set the DataSource property
to a CDS table, as shown in Figure 8-30. This control requires more screen space to fit all the data, and
therefore works best on tablet applications.

The Pattern property provides one of four predefined formats: CardList, Details, List, None. The List
pattern displays a tabular view of the data, the CardList pattern applies a format that resembles a tiled view
of the data, and the Details pattern displays an individual record, rather than a list of records (as shown in
Figure 8-31).

Figure 8-30. Using the Entity Form Control - the List pattern displays data in tabular format

Figure 8-31. The CardList and Details patterns

Chapter 8 ■ Using Controls

167

An interesting characteristic is that there are no properties to define the fields or columns that appear
in the form. Instead, we define the fields through ‘field groups’ in the entities section of the web portal, as
shown in Figure 8-32.

This provides a centralized method to specify the fields that appear in a form, and any fields that we
subsequently add or remove from the field group will affect all instances of the entity form control in all our
applications.

The field group that applies to the entity form control depends on the pattern setting. With the
pattern set to list, the DefaultList field group defines the columns that appear in the control. For the
CardList pattern, the DefaultCard field group defines the visible fields. And for the Details pattern, it’s the
DefaultDetails field group that we need to set.

To define the fields that belong to a field group, select a field group to display the properties pane in the
right-hand section of the screen. From here, we can select the fields for the group, as shown in Figure 8-33.

Figure 8-32. The Field Groups for an entity

Figure 8-33. Selecting the fields that belong to a field group

Chapter 8 ■ Using Controls

168

In the data section of the properties pane, we can configure fields in the form to navigate the user to a
different screen. When a user navigates away from an entity form control, the control automatically sets a
context variable called NavigationContext. This variable stores the selected item in the form control, and
we can use this to set the data source of data controls on any child controls that we choose to add to a screen.

Drop-Down Controls with CDS
Earlier in this chapter, we looked at how to set up a drop-down control to allow users to assign lookup values.
With SharePoint and CDS data sources, the drop-down box controls work differently. The auto-generated
cards recognize the existence of related data and include drop-down boxes for related data. This is great
because it simplifies the task of building forms with lookup data.

To demonstrate how this works, here’s a re-creation of the Excel example, but with a CDS data source.
The CDS database contains two related entities - a vehicle entity and a ‘vehicle model’ entity. The vehicle
entity includes a lookup to a vehicle model entity. Figure 8-34 shows the design of these two entities.

Figure 8-34. Vehicle and Vehicle Model entities

Figure 8-35 shows the edit screen from an auto-generated app that’s based on the vehicle entity. The
default card for the model field includes a drop-down box. Unlike the Excel example, there’s no need to add
a separate data source for vehicle models or to carry out any additional configuration. Everything works as it
should by default!

Figure 8-35. Drop-down control for a CDS lookup field - notice the Value1 and Value2 properties

Chapter 8 ■ Using Controls

169

Unlike the drop-down control that we added through the Insert menu of the toolbar, the drop-
down controls on auto-generated cards for CDS and SharePoint data sources are different. As we can
see in Figure 8-35, they include two slightly obscure options: Value1 and Value2. What exactly do these
options do?

To explain this behavior, Figure 8-36 shows the appearance of the drop-down at runtime. Notice that the
control shows the numeric id of the model number rather than the descriptive text.

This view of the data isn’t very meaningful, so how do we change the drop-down so that it shows the
model name rather than the model id?

The answer lies not in the designer, but in the entity designer. The ‘default lookup’ field group defines
the fields that appear in drop-downs. To make additional fields available, we first need to add those fields
to the ‘default lookup’ field group. Once we do this, we can return to the screen designer and set Value1 to
the field name that we want to show in the drop-down. In our example, this would be ModelName, as shown
in Figure 8-37. Note that it’s necessary to set the Value1 property at the card level. At the time of writing, the
drop-down does not show the correct field when we set the Value1 or Value2 property at the control level.

Figure 8-36. At runtime, the drop-down shows the numeric id - this isn't much help for the user!

Figure 8-37. Setting the display values of a CDS lookup field

Chapter 8 ■ Using Controls

170

Another property we can set is the ‘display fields’ setting. This setting controls the number of fields
to show in each row of the drop-down. By setting this to two, we can use the Value2 property to define the
second field that appears in the drop-down. At runtime, both fields will appear one on top of each other, as
shown in Figure 8-38.

Although we can more easily add drop-downs against lookup fields in CDS or SharePoint data sources,
there are some limitations. First, we can’t filter the items in the drop-down. For instance, if we want to
restrict the items in a drop-down box of employees to show only active employees, this isn’t possible.
Second, we can’t show multiple fields in each row of a drop-down box. If we need any of these features, we
should add a custom card and insert a drop-down control manually. This would allow us to set the items
property of the drop-down to a filtered data source, or a data source that combines multiple fields.

Finally, it’s important to be aware that there is a limit on the number of items in a drop-down. In the
case of a SharePoint data source, the maximum number of rows that a drop-down can display is 100 records.

Working with Media Controls
Let’s now look at media controls. We can make applications more attractive by incorporating sounds,
images, and videos. To make media content available in our apps, use the File ➤ Media menu to upload files,
as shown in Figure 8-39.

Figure 8-38. Displaying two fields for each row in a drop-down

Chapter 8 ■ Using Controls

171

One important point is that that media files can easily bloat the size of an app. If we were to upload a
15MB video into an app, this would result in a corresponding increase in the size of the project. This would
cause the app to load more slowly because the initial download of the app onto the device would take longer.

We can use the file name to refer to a file that we uploaded in formulas. Therefore, it makes good sense
to provide files with meaningful names before we upload them into an app. Table 8-1 shows the file types
that PowerApps supports. We’ll now examine the controls that we can use to display images, and to play
back video and audio files.

Table 8-1. Supported media types

Media Supported file types

Images .jpg, .jpeg, .gif, .png, .bmp, .tif,, .tiff, .svg

Videos .mp4, .wmv

Audio .wav, .mp3, .wma

Figure 8-39. Uploading media files into a project

Chapter 8 ■ Using Controls

172

Playing Videos
The video control can play videos that we’ve uploaded or videos from the Web or YouTube. Figure 8-40
shows the appearance of this control in the designer.

The Media property specifies the video to play. To specify a YouTube video, it’s necessary to enclose the
URL with double quotes. To specify a file that we uploaded, set the Media property to the file name. If the file
name includes spaces, we would need to enclose the file with single quotes.

There are two properties that relate to the playback of videos: Start and AutoStart. The Start property
specifies whether the video plays. The AutoStart property defines whether the video plays as soon the
screen becomes visible.

A typical user requirement is to provide a button that starts and stops the playback of a video. To
build this functionality, we would insert a button to the screen and set the OnSelect property value to the
following formula:

UpdateContext({PlayVideo:true})

This code toggles the value of a variable called PlayVideo. The value of this when the screen first opens
will be false. We would then set the Start property of the video control to the variable PlayVideo.

Other useful properties that we can set include the auto pause, start time, and loop properties. The auto
pause property controls whether video playback pauses automatically when a user navigates away from the
screen. The ‘start time’ property specifies the position in the video to begin playback, specified in milliseconds.
Finally, the control can restart playback when the video ends when we set the loop property to true.

Figure 8-40. The video control

Chapter 8 ■ Using Controls

173

Playing Audio
The audio control plays sound files. Just like the video control, the Media property specifies the file or URL to play.

With all media content, a useful feature is to provide a list of content and to play back the item that that
the user selects. We can accomplish this by adding a list box control to our screen, and setting the Media
property of the audio control to the selected item in the control.

For example, if we uploaded the audio files MusicFile1.mp3 and MusicFile2.mp3 into an app, we can
set the Items property of the list box control to:

Table({Description:"Music File 1", AudioFile:MusicFile1},
 {Description:"Music File 2", AudioFile:MusicFile2}
)

Assuming that the name of the list box is ListBoxAudio, we would then set the Media property of the
audio control to:

First(ListBoxAudio.SelectedItems).AudioFile

Figure 8-41 illustrates this setup. This is a useful feature, and we can also apply this same technique to
the video control example.

Image Controls
The image control displays an image on a screen. The Image property specifies the image that the control
shows. This could be a file that we upload to an app or an image URL. Useful properties of this control
include the image position and transparency settings, as shown in Figure 8-42.

Figure 8-41. A screen with the audio control

Chapter 8 ■ Using Controls

174

Here’s a tip that might be useful. The image control shows rectangular images. We can make the image
placeholder circular and the typical places where we see this design are in screens that display a profile
picture of an individual. The way to set up a circular image is to set Height and Width to equal values.
Next, there are four radius settings and we would set the each of these equal to the height value. These four
settings are RadiusTopLeft, RadiusTopRight, RadiusBottomLeft, and RadiusBottomRight. For the radius
settings, we can reference the height of the control by using the syntax ImageControl.Height, rather than
the actual numeric values.

Using the Timer Control
The timer control runs formula after a predetermined time. We can configure the timer to reset itself after
the elapsed time and this enables us to repeat an action at regular intervals. The timer control can be
useful for many reasons. We can use the timer control to refresh data, update caches of data, or even carry
out animations. One way to do this would be to change the background color of a shape control at rapid
intervals to give the appearance of an animation.

The most important properties of this control include the duration, repeat, start, and auto start
properties. The duration property is measured in milliseconds. The start property controls whether the
timer is working and counting down. The auto start property defines whether the timer begins counting
down immediately when the screen becomes visible. To retrieve the elapsed time, we can refer to the Value
property. This returns the elapsed time in milliseconds.

To demonstrate this control, here’s how to build a screen that refreshes every 60 seconds and displays
the details of the last journey record in the data source.

The first step is to add a timer control to a screen. Set the Duration property to 60000, which is
equivalent to 60 seconds. To configure the timer to start when the screen becomes visible and to restart
every 60 seconds, set the AutoStart and Repeat properties to true.

To specify the behavior when the timer elapses, add formula to the OnTimerEnd property. Here’s the
formula to add:

UpdateContext({LatestJourney: "Latest record: " & Text(Last(Journey).StartTime) })

Figure 8-42. A screen with an image control

Chapter 8 ■ Using Controls

175

The purpose of this formula is to retrieve the latest journey record and to store the details into a variable
called LatestJourney. To show these details, add a label and set the Text property to LatestJourney. We can
now run our app and Figure 8-43 shows the appearance of this screen.

The timer control is visible to the user and by default, the text on the control shows the elapsed time.
When the timer is visible, users can click the control to start and to pause the timer. To hide the timer
control, set the Visible property to false.

One point to be aware of is that the timer control isn’t guaranteed to be precise. If we set the duration of
a timer to five minutes, the time that it takes for the timer to complete may take more than five minutes. One
possible way to re-create this behavior is to use a slower device where the JavaScript in the browser may run
more slowly. If we were to build a measurement app that takes readings at specified intervals, we should be
cautious of the impact that this has on the accuracy of the solution.

Another useful point to be aware of is that we can configure a timer to continue to run when a user
navigates away from a screen. The way to enable this is to set the AutoPause property to false.

Resetting Form Controls
PowerApps provides a framework to reset control values back to their default states. This feature serves
a very useful purpose because we can use it to allow users to undo their changes. We’ll demonstrate this
feature by adding a discard feature to the vehicle edit form. If a user starts to edit a record and decides not to
continue, the discard button will restore the control values back to their initial state.

Every control includes a property called Reset and all controls will respond to a change in this property.
When the reset property for a control changes to true, it triggers the control to restore its value back to its
initial state. The pattern to build a discard feature is to set the Reset property of all controls to a context
variable. To trigger the reset operation, we would set the value of the variable to true. Next, we would
immediately set the value back to false to allow the user to discard changes at a later point in time.

To build this feature, the first step is to create an auto-generated app. Next, open the edit form and add a
control to trigger the reset operation. A natural place is to add an icon to the top of the edit screen, as shown
in Figure 8-44.

Figure 8-43. Using the timer control

Chapter 8 ■ Using Controls

176

Here’s the formula to add to the reset icon.

UpdateContext({ResetForm: true}); UpdateContext({ResetForm: false})

Now set the Reset property on all the data entry controls to the variable ResetForm. We can now run our
screen. If we change the values on a form and click the reset icon, the controls will revert to their initial values.

Summary
This chapter covered the important topic of screen controls through four sections: how to work with simple
controls, how to set lookup values, how to work with CDS-specific controls, and how to show media content
on screens.

Starting with simple controls, we learned how to configure buttons and icons to respond to mouse
clicks or taps. Almost all controls can respond to this type of interaction and the settings in the action menu
enable us to define the behavior of a control.

Controls that display text include the Label and HTML text controls. The more powerful of these
two controls is the HTML Text control because this provides the ability to format text with different
styles. Therefore, useful applications of this control include the ability to show subscript and superscript
characters, mathematical symbols, and many more.

The text input control receives text from the user. We can encourage users to enter valid data by
specifying a maximum length, and we can also configure the control to accept numeric input only.

Other simple controls include the radio, slider, toggle, and rating controls. On the edit form of an auto-
generated app, we can delete the default text input control on a card and replace it with an alternate control.
To maintain the ability of the form to save and retrieve data, there are two settings we need to modify.
First, it’s necessary to set the Default property of the new control to show the existing data value when the
form loads. In general, we would specify the Parent.Default property to retrieve the data value from the
containing card, and we can also apply formula to carry out any data transformations. For example, with a
checkbox or slider control, we could apply a formula to transform an underlying data value of ‘T’ or ‘F’ to the
Boolean values true or false respectively. The second step is to modify the Update property of the containing
card. This configures the card to retrieve the input value from the new control when the user saves the
record. We can apply formula in the Update property to carry out any reverse transformations. For example,
we could convert the Boolean value of a checkbox or slider control to the values ‘T’ or ‘F’ for storage in the
underlying data source.

Figure 8-44. Adding a discard button

Chapter 8 ■ Using Controls

177

Next, we looked at the drop-down box control. This control is especially important because we can use
it to restrict the values that a user can enter, and we can also use it to set lookup values. We can set the items
of a drop-down to a static list or a data source. It’s possible to filter the items in a drop-down and we can use
this technique to build nested drop-down controls.

A typical way to configure a drop-down control is to set the data source to a two-column table that
contains descriptive text and a corresponding code or numeric value. The drop-down would display the
descriptive text and store the corresponding code in the data source. This technique relies on the use of the
selected property of the drop-down to retrieve the code value. A common requirement is to customize the
text in each row of the drop-down control, in order to present more meaningful details to the user. One way
to accomplish this is to call the AddColumns function to build a data source that contains the customized text,
and to then set the data source of the drop-down to the result of this function.

When we build auto-generated apps against SharePoint lists or CDS entities with lookup fields, the edit
form provides drop-down controls to set the lookup fields. Compared to other data sources where we have to
manually set up a drop-down control, there is less work to carry out with SharePoint or CDS data sources.

In auto-generated apps that are based on tables with datetime fields, the card on the edit form will
include a date picker and time entry controls. A common requirement is to accept date entries without the
time component, for example, to store birthdays. We can apply this change by deleting the time and minute
controls and modifying the Update property of the parent card to remove any references to the time controls.

Outside of the form control, PowerApps doesn’t provide a combined date and time entry control. To
accept date and time entries on screens outside of forms, a quick way to implement this is to copy and paste
the date and time entry controls from an auto-generated app.

To support multiple users in different time zones, the date picker control can automatically carry
out time zone conversions. At the time of writing, this feature does not work completely reliably. In the
meantime, a reliable workaround is to store the text representation of the date and time in the format
yyyymmddmmss.

There are two controls that can display tabular data - the table control and the entity form control. Of
these two controls, the table control is more flexible because it can display data from any data source. The
entity form control works against CDS data sources only. The main characteristic of the entity form control is
that the display fields are defined centrally through the CDS designer. Therefore, every instance of an entity
form control across all apps displays the same fields.

We can use the media controls to display images, view videos, or to play audio. These controls can work
against Internet-based resources such as YouTube for video files, or they can work against resources that we
upload into the app.

To run formula at set intervals, we can use the timer control. We can specify the timer duration and
configure the control to reset itself when the time elapses. This allows us to run formula repetitively, or for
one time only. By default, this control is visible on a screen and shows the elapsed time.

Finally, we looked at how to restore control values back to their initial states. Each control includes a
property called reset. When this value is true, the control will reset itself to its initial state. A typical way to
build a reset or undo feature on a screen is to set the reset property on all participating controls to a Boolean
variable. We would then add a button that sets the variable to true, and then back to false. This would trigger
all participating controls to revert to their initial values.

179© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_9

CHAPTER 9

Working with Data

In this chapter, we’ll find out to perform data-related tasks with formula. This is an important topic because
it opens many new possibilities. By accessing data with formula, we can build better search capabilities,
show more pertinent information, and provide better data entry screens.

This chapter describes how to build features to improve the usability of our apps. This includes how to
set default values on new records and how to show alerts in the notifications section of mobile devices. The
main topics that we’ll cover in this chapter will include the following:

•	 How to build search screens. The auto-generated apps provide basic search
capabilities. But what if we want to filter records by date, drop-down values, or show
records that match a list of items? In this chapter, we’ll find out how.

•	 How to carry out common data tasks on multiple sets of tables. Taking the typical
example of an order processing app with two tables, customers and orders, how do
we join these tables to show the customer detail that’s associated with an order? How
can we show customers who have not made orders, or show the distinct customers
who have made orders? With the techniques from this chapter, you’ll be able to
answer these questions. In addition, we’ll also discover how to group, ungroup, and
to combine (or union) sets of tables together.

•	 How to retrieve, add, update, and delete records. We can apply the techniques in
this section to update a field without showing or loading the entire record. We’ll also
discover how to create records in multiple related tables in one go. We’ll address
the complex task of how to retrieve server-generated primary key values prior to
inserting child records.

Basic Behavior
To begin, there is one important data handling characteristic to be aware of. PowerApps limits the number of
records that it retrieves to 500 records. It enforces this limit for performance reasons. By limiting the number
of records that it returns, we’re less likely to build features that can slow down our app.

The major disadvantage of this limit is that it prevents us from performing certain tasks. This applies
particularly when we attempt to sum, or to count, fields from a data source. In these circumstances, the
operation will apply to the first 500 records only and can therefore produce incorrect results. One exception,
however, is SQL Server, which provides proper support for functions that include Sum, Min, Max, and Average.

To overcome this limit, we can load records 500 rows at a time into a local collection. Because there are
no limits to the number of records you can store and retrieve from a collection, you can use collections to
carry out more accurate aggregate calculations.

https://doi.org/10.1007/978-1-4842-3003-9_9

Chapter 9 ■ Working With Data

180

Understanding Delegation
Delegation is a feature that speeds up data retrieval. Not all data sources support delegation, but SharePoint
and SQL Server are two popular data sources that do support delegation.

What exactly does the term delegation mean? When we search data from a delegable source, the
data source performs the search and returns the result. If we carry out the same operation against a non-
delegable data source, the data source returns all the data and PowerApps then carries out the search on
the local device. The non-delegable search works inefficiently because PowerApps needs to download
more data than is necessary. Because the network connection is often the slowest link in any computerized
system, non-delegable searches perform far more slowly. Additionally, mobile devices generally contain
slower hardware compared to servers; and therefore, filtering data on a mobile device will be slower.
Figure 9-1 illustrates this concept in the form of a diagram.

When we call the filter and lookup functions to search for data, the commands that support delegation
include the following:

•	 And (including &&), Or (including ||), Not (including !), In

•	 =, <>, >=, <=, >, <

•	 +, -

•	 String functions including TrimEnds, IsBlank, and StartsWith

These operators depend on the data source, and not all delegable data sources will support the
operators that are shown here. Most of the remaining functions do not support delegation .

Because it’s preferable to write formula that is delegable, the designer shows a warning when we write
data access formulas that are non-delegable. To demonstrate the type of warning we would receive, let’s take
the SQL server table that’s shown in Figure 9-2.

Figure 9-1. How delegation works

Chapter 9 ■ Working With Data

181

Let’s suppose we want to show records where the country field matches the value ‘United States’
or England. If we implement this search by calling the in function, the designer shows the warning in
Figure 9-3.

Is there any way for us to avoid this problem? One way is to rewrite our formula using operators that are
delegable. Here’s an example of how to express the same query with the || operator.

Filter('[dbo].[User]', Country="England" || Country="United States")

With this expression, the designer will not show a warning. One useful thing to be aware of is that the ||
and Or functions do not function identically. With SQL Server data sources, the designer warns that the Or
function is not delegable and underlines the operator with a blue line, as shown in in Figure 9-4.

Figure 9-2. Table structure for search examples

Figure 9-3. Delegation warning

Figure 9-4. The Or function is not delegable with SQL Server data sources

Chapter 9 ■ Working With Data

182

Searching Data
An important feature in all applications is the ability to search for data. In this section, we’ll look at how
to provide users with the ability to search for records in an app. We’ll develop a custom search screen that
enables users to filter data more precisely by search criteria. Figure 9-5 shows the screens that we’ll work
toward building in this section. The first screen enables users to search journey records by a drop-down
list of users. The user can also filter the records by date. We’ll then adapt the screen to provide the ability to
select more than one user.

Developing these types of screens isn’t as easy as it first appears. There are several complexities that
we need to cover. The first is to configure the screen to not filter by date if the user leaves the date field
blank. Additionally, we’ll also look at a difficulty that can arise when we attempt to apply date filters. If
the underlying data field contains both date and time components and we want to filter just by the date
component, we need to customize our search formula to take this into account.

The user can also choose not to filter by user by selecting the ‘Show all users’ option from the drop-
down. However, this presents another challenge - how to add a ‘Show all users’ row to the top of the drop-
down control.

The final challenge is to initiate the search operation from a search button. We’ll find out to conduct the
search, only when the user clicks the search button.

The prerequisite to this section is to create an auto-generated app based on the journey table shown
in Figure 9-6. This is a SQL Server table and the code in this section will refer this data source as '[dbo].
[Journey]'. If you don't have access to an SQL Server, you can easily substitute this with
any other data source of your choice. The reason why we use an SQL Server in this chapter is because
it allows us to better examine delegation characteristics, and it also enables us to explore how to retrieve
server-generated validation rules and identity values.

Figure 9-5. The example screens that we'll build

Chapter 9 ■ Working With Data

183

Basic Search Functions
To begin, let’s review some of the search functions that enable us to build a search function. The key
functions that we can call include search, filter, and lookup. These functions all sound very similar, so what
are the differences? Here’s a brief overview:

•	 Search - this function matches input text against the data in one or more columns

•	 Filter - this function matches records based on a formula that you provide

•	 Lookup - this function matches records based on a formula that you provide and
returns the first record only

In the remainder of this section, we’ll examine how to use these functions in greater detail.

Filtering by Drop-Down Values
To begin our sample search screen, the first step is to build an auto-generated app that’s based on the
journey table. The next step is to add the user tables to the app. The code in this section will refer to this table
as '[dbo].[User]'. Figure 9-2 shows the structure of this table.

Next, add a drop-down control to the browse screen of the auto-generated app and name it
DropdownUsers. Set the Items property of the control to the following formula:

AddColumns('[dbo].[User]', “FullName”, Firstname & “ ” & Surname)
The purpose of this formula is to combine the first name and surname fields in order to show the full

name in the drop-down. The final step to configure is the value property. Set this to Fullname, as shown in
Figure 9-7.

Figure 9-6. Journey table

Chapter 9 ■ Working With Data

184

The next step is to modify the gallery control so that it filters records by selected item in the drop-down.
To accomplish this, modify the Items property for the gallery control to the formula that’s shown beneath:

SortByColumns(
 Filter('[dbo].[Journey]',
 UserID=DropdownUsers.Selected.UserID
),
 "StartDate",
 If(SortDescending1, Descending, Ascending)
)

This formula filters the journey table to return only those records where the UserID value matches
selected a UserID in the drop-down box. The Filter function is the pertinent part of this formula, but for
completeness, this code retains the default functionality that allows users to sort the records, which is
implemented through the call to the SortByColumns function.

We can now review the fields that appear in the gallery control and at this point, we can run our app.

Adding a ‘Show All’ Option

Let’s now extend our drop-down to include a ‘Show all users’ option at the top of the control. To help identify
this row, we’ll set the numeric ID value that’s associated with this option to -1.

To add the ‘Show all users’ row to the top of the drop-down, set the items property of the
DropdownUsers control to the following formula:

AddColumns (
 Ungroup(Table({TableSet: Table({UserID:-1,
 Firstname:"Show all users", Surname:""})},
 {TableSet: ShowColumns('[dbo].[User]',
 "UserID", "Firstname", "Surname")}),
 "TableSet")
 ,"FullName", Firstname & " " & Surname
)

If we now run our app, the ‘Show all users’ row will appear at the top of the drop-down, as shown in
Figure 9-8.

Figure 9-7. Setting the data source of a drop-down control

Chapter 9 ■ Working With Data

185

The next step is to configure the Items property of the gallery control to stop it from filtering by user if
the user selects the ‘Show all users’ row. The formula to do this is shown below:

If(DropdownUsers.Selected.UserID > 0,
 SortByColumns(Filter('[dbo].[Journey]',
 UserID=DropdownUsers.Selected.UserID
),
 "StartDate",
 If(SortDescending1, Descending, Ascending)
),
 SortByColumns('[dbo].[Journey]',
 "StartDate",
 If(SortDescending1, Descending, Ascending)
)
)

This formula checks if the selected row in the drop-down has a user id value greater than 0. If so, the
formula filters the records by the selected user. If not, it returns all records.

Grouping, Ungrouping, and Combining Data

The formula that we used to add ‘Show all users’ row is particularly helpful because we can use this
same technique to union, or merge, sets of rows together. The syntax that we used isn’t particularly
straightforward, so let’s take a closer look at how this formula works. The pertinent part of the formula is
shown beneath:

Ungroup(Table({TableSet: Table({UserID:-1,
 Firstname:"Show all users", Surname:""})},
 {TableSet: ShowColumns('[dbo].[User]',
 "UserID", "Firstname", "Surname")}
),
 "TableSet"
)

PowerApps provides no direct union operator, so instead, we need to perform this task with the help
of a function called Ungroup. The primary purpose of this function is to expand a set of grouped data. To
understand how this function works, let’s begin by examining the simple usage of the Group and Ungroup
functions.

Figure 9-8. Adding an item to the top of the drop-down

Chapter 9 ■ Working With Data

186

The Group function groups data by columns. As an example, here’s how to group user records by the
country field.

GroupBy('[dbo].[User]', “Country”, “UserRecords”)
This code groups the data into the format that’s shown in Figure 9-9. The result of this function is a two-

column table. The first column contains the group value, and the second column contains the data rows that
belong to the group.

It can be useful to store the results in a collection. If it’s necessary to refer to the results often, it’s more
efficient to store the results in a collection because the process of grouping data can be intensive. Here’s how
to store the result of this GroupBy operation into a collection called UsersByCountry.

ClearCollect(UsersByCountry , GroupBy('[dbo].[User]', “Country”, “UserRecords”))
Now that we’ve seen how the GroupBy function works, let’s look at the Ungroup function. To ungroup

the UsersByCountry collection and return the data to its initial state, here’s the formula we would use:
Ungroup(UsersByCountry, "Country")
This formula expands the data in the UserByCountry collection by the country column, as illustrated in

Figure 9-10.

Now that we can see how the ungroup function works, let’s look at how this applies to the task of adding
a ‘show all users’ row to a drop-drown. Our code calls the table function to define a two row, single column
table. The column name of the outermost table is TableSet and the first row in this table contains a single
row table that contains the record ‘Show all Users’. The second row in the table contains user records from
the data source.

Figure 9-10. Ungrouping data

Figure 9-9. The result of a GroupBy operation

Chapter 9 ■ Working With Data

187

Ungrouping this data by the TableSet column provides the same effect as combining the table data in
each row, as shown in Figure 9-11.

Searching by Date Criteria
Returning to our search example, let’s now adapt our search screen to allow users to filter the records by the
journey date.

First, add a date picker control to the browse screen and name it DatePickerJourney. Next, clear the
DefaultDate property so that by default, the date picker control shows a blank value.

To highlight a slightly nontrivial example, the start date column in our journey table stores both the date
and time. To match a single input date against date and time values, we need to filter for records that fall
between midnight and 23:59 of the target date. For most data sources, the formula we would add to the items
property of the gallery control is shown below:

Filter('[dbo].[Journey]',
 StartDate >= DatePickerJourney.SelectedDate &&
 StartDate < DateAdd(DatePickerJourney.SelectedDate, 1, Days))

However, if we were to run this screen against our SQL server data source, we would discover that this
formula returns zero records. Therefore, this example also highlights a bug where the PowerApps connector
fails to filter date and time fields properly. The workaround is to force PowerApps to filter the data locally by
introducing a non-delegable clause in the filter operation. Here’s how the formula would look:

Filter('[dbo].[Journey]',
 StartDate >= DatePickerJourney.SelectedDate &&
 StartDate < DateAdd(DatePickerJourney.SelectedDate, 1, Days)
 Day(StartDate) > 0)

The unfortunate effect of this workaround is that our screen will experience the problems of a non-
delegable query, which includes slower performance and inaccurate results if the data source data exceeds
500 rows.

In terms of our custom search screen, we can adapt the call to the filter function so that it that filters by
both the date picker and the user drop-down control.

Figure 9-11. Combining a set of data

Chapter 9 ■ Working With Data

188

 ■ Note the date filtering bug applies only to SQL Server data sources. You can find out more about this
problem here:

https://powerusers.microsoft.com/t5/PowerApps-Forum/Filtering-on-prem-SQL-data-source-by-

date/m-p/6151

Searching by Numeric Criteria
To search by numeric input values, an important step is to convert the input string to a numeric value by
calling the Value function. Suppose we want to return journey records where the mileage exceeds a value
that the user enters into a text input control, then here’s the formula that we would use.

Filter('[dbo].[Journey]', MileageInMiles >= Value(TextInputMinMileage.Text))

Adding a Search Button
In the screen that we adapted, the gallery control refers directly to the data entry controls. This causes the
gallery control to refresh as soon as a user enters any data into any of the controls. This behavior is not ideal
because the gallery control will refresh more than it needs to. To address this issue, we’ll add a search button
to the screen to trigger the search operation.

To build this feature, we would amend the Items property of the gallery control so that it filters the data
by variables, rather than by control values. We would then set the context variables on the click of the search
button.

To clarify the exact formula that carries out this task and to avoid any extraneous logic, we’ll apply this
technique to the initial screen that contains a drop-down control of users only. The first step is to add a
button to the screen and set the OnSelect property like so:

UpdateContext({SearchUserId: DropdownUsers.Selected.UserID })

Now set the Items property of the gallery control to the formula below:

SortByColumns(
 Filter('[dbo].[Journey]', UserID= SearchUserId),
 "StartDate",
 If(SortDescending1, Descending, Ascending)
)

We can now run our screen and initiate a search by clicking the button. To complete this example, we
would extend the UpdateContext function to store all the criteria that user enters into variables. We would
then reference these variables in the call to the filter function, rather than reference the user controls.

Setting Multiple Sort Sequences
To help users more easily find data, we can sort the items in gallery and other data controls by multiple
fields. The browse screen in an auto-generated app sorts the records by single field, as shown in Figure 9-12.

https://powerusers.microsoft.com/t5/PowerApps-Forum/Filtering-on-prem-SQL-data-source-by-date/m-p/6151
https://powerusers.microsoft.com/t5/PowerApps-Forum/Filtering-on-prem-SQL-data-source-by-date/m-p/6151

Chapter 9 ■ Working With Data

189

We can sort by additional fields by providing additional sets of field names and sort sequences to the
SortByColumns function. Here’s the formula to sort the user table by surname, followed by first name.

SortByColumns(Filter('[dbo].[User]', StartsWith(Surname, TextSearchBox1.Text)),
 "Surname", If(SortDescending1, Descending, Ascending),
 "Firstname",If(SortDescending1, Descending, Ascending))

Additional Search Criteria Options
Other useful search capabilities that we can add to an app include the ability to match records against a list,
or to find fields that contain null or empty data.

Matching Against Lists of Data
To match records against a user-defined list, we can provide a list box control that enables users to select
one or more items to match against. To demonstrate this technique, we’ll modify our search screen to return
journey records that match a list of selected users.

To begin, add a list box control to our search screen and call it ListBoxUsers. Set the Items property to
the formula that we used in our drop-down box earlier in this chapter, as shown beneath.

AddColumns('[dbo].[User]', "FullName", Firstname & " " & Surname)

Next, set the value property to FullName and confirm that the SelectMultiple property is set to
true. The SelectMultiple enables users to select more than one item from the list. Figure 9-13 shows the
appearance of this control in the designer.

Figure 9-12. The default sort formula in an auto-generated app

Figure 9-13. Configuring the drop-down control

Chapter 9 ■ Working With Data

190

The next step is to modify the gallery control to filter the records by the selected items in the list box.
To accomplish this, set the Items property of the gallery control to the formula that’s shown beneath:

Filter('[dbo].[Journey]', UserID in ListBoxUsers.SelectedItems.UserID)

This formula calls the in function. This function tests if a value belongs in a table or collection. At this
point, we can run the screen and filter the journey records by one or more users.

It’s important to apply some caution when you use this technique against SQL Server data sources. The
in operator is not delegable and therefore, this technique will suffer from the usual limitations that apply
with non-delegable queries.

Matching Blank Fields
It can be a challenge to search for empty fields because the matching functions behave differently when they
encounter empty string or null values. To help highlight the techniques that we can use, Figure 9-14 shows
an excerpt from the journey table. The journey description column contains records that are null, contain an
empty string, and records that are not blank.

PowerApps provides a function called IsBlank This function accepts an input value and returns true if
the input is empty string or null. If we set the items property of a gallery control to the formula shown below,
the control would show the records with the JourneyIDs 1 and 2.

Filter('[dbo].[Journey]', IsBlank(JourneyDesc))

In other words, the IsBlank function matches both null and empty string values. However, a
disadvantage of this function is that it is not delegable. So if we intend to return records where the journey
description field contains an empty string, a faster approach is to use the formula shown beneath.
PowerApps can delegate the operation of matching against an empty string, and in this example, the formula
would return the record for JourneyID 2 only.

Filter('[dbo].[Journey]', JourneyDesc="")

The inverse operation is to return records that are not blank. To do this, we can use the delegable
expression that’s shown beneath. This formula returns the records that match JourneyID 3 and 4.

Filter('[dbo].[Journey]', JourneyDesc<>"")

Finally, the expression below returns only the records that are null, excluding records that contain an
empty string. This expression will return the record for JourneyID 1 only. Note that this expression is not
delegable because it includes a call to the IsBlank function.

Filter('[dbo].[Journey]', IsBlank(JourneyDesc) && JourneyDesc <>"")

Figure 9-14. Example data in the journey table

Chapter 9 ■ Working With Data

191

Joining Data
With any sizable app, a common and essential task is to display data from related tables. Unlike typical
relational database systems, PowerApps provides no specific join command. Therefore, we’ll now look at the
techniques that we can use to display related data.

Joining Records - Showing Related Records
One technique we can use to show related records is to apply the lookup function. To highlight the use of
this method, here’s how to configure the gallery control in our auto-generated app to show a list of journey
records combined with the associated user details. To accomplish this, set the items property of the gallery
control to the following formula:

AddColumns('[dbo].[Journey]',
 "UserRecord",
 LookUp('[dbo].[User]',
 '[dbo].[User]'[@UserID] = '[dbo].[Journey]'[@UserID]
)
)

This formula calls the AddColumns function to append the associated user record to the journey data
source. The interesting thing this demonstrates is how we can create a structure of nested tables. Figure 9-15
illustrates the output of this function.

This formula also illustrates an important learning point. It demonstrates how to fully qualify field
names when we nest data with functions such as AddColumns, Filter, and Lookup. In this example, both
the journey and user tables include a field called UserID. In formula, how would we distinguish between
these two fields? Specifically, from the inner Lookup function, we need some way to distinguish between
the UserID field in the journey table, and the UserID field in the user table. When we nest functions, any
field name that we specify will refer to the innermost data source. So in this example, when we specify

Figure 9-15. Nested data source

Chapter 9 ■ Working With Data

192

UserID from inside the Lookup function, UserID will refer to the UserID field in the user table. To refer
to the UserID field from the journey table, we need to prefix the UserID field with the table name in the
format TableName[@Fieldname]. Therefore, we would refer to the UserID field in the journey table with the
following syntax:

'[dbo].[Journey]'[@UserID]

The name for the @ operator is the disambiguation operator. Another scenario where this operator
applies is in situations where a variable, collection, or data source that matches a field name. In this case,
you would specify the variable, collection, or data source in the format [@ObjectName] to distinguish it from
the field name.

Now that we’ve set the items property for our gallery control, we can access all the fields in the user
record for each journey record through the UserRecord column, as shown in Figure 9-16.

A word of caution is that the Lookup function is not delegable. Therefore, this technique will suffer from
the usual limitations that are associated with non-delegated queries.

Checking for Nonexistence
A useful task that we occasionally need to carry out is to check for the nonexistence of a group of data within
another data set. As an example, traditional order processing systems would use this technique to find
customers who have not placed any orders. To highlight this technique, here’s how to show the names of
users who have not completed any journeys.

To show these users, add a gallery control to a screen and set the items property to the following
formula:

Filter('[dbo].[User]',
 Not(UserID in ShowColumns('[dbo].[Journey]', "UserID"))
)

Figure 9-16. Showing related records

Chapter 9 ■ Working With Data

193

This formula filters the user table to show the records where a matching user id doesn’t exist in the
journey table. Just like the previous example, the syntax that we use here is not delegable, and therefore, the
code here may perform slowly.

Returning Distinct Records
Sometimes, there may be the requirement to return a list of distinct records. To demonstrate this technique,
here’s how to return a distinct list of users who have carried out a journey in a specified month.

The underlying formula we would use to carry out this task is the GroupBy function. This function
allows us to group data by a column. The formula shown below would return a list of journeys grouped by
user id.

GroupBy('[dbo].[Journey]', "UserID", "JourneyRecordsForUser")

Figure 9-17 shows how this data looks after the GroupBy operation.

The UserID column shows the distinct data. Once we apply this formula to a gallery control, we can add
a label and call the LookUp function to retrieve the user details that are associated with the user id, as shown
in Figure 9-18.

Figure 9-17. Grouped data

Chapter 9 ■ Working With Data

194

A typical use of this type of query is to return distinct records that are filtered by date. So to extend this
formula, here’s how to filter the source data by a specific month.

GroupBy(Filter('[dbo].[Journey]',
 StartDate >= Date(2017,6,1) &&
 StartDate < Date(2017,7,1)
),
 "UserID", "JourneyRecordsForUser"
)

This formula filters the data source to return journeys with a start date of June 2017. As a reminder,
the Filter function does not filter by dates properly against SQL Server data sources. Like we saw earlier in
this chapter, we can overcome this problem by adding the criteria && Day(StartDate) >0 to force the filter
operation to run on the local device

Working with Data in Code
In this section, we’ll find out how to perform data access tasks with formula. The specific tasks that we’ll
examine include how to write formula to create, retrieve, update, and delete data.

Retrieving Single Records
We can retrieve multiple records by writing formula that refers to the data source name. To retrieve an
individual record by unique id, we could call the LookUp function. For example, to retrieve a user record
with a user id of 8 and to show the surname value in a label control, here’s the formula that we would add to
the text property of the label:

LookUp('[dbo].[User]', UserID = 8).Surname

If a record with a UserID of 8 does not exist in the data source, the lookup function returns an empty
string. This might not be very useful to the user, so therefore, we can test for this condition and show a
meaningful message if the record doesn’t exist. The syntax we would use would look like this:

If (CountIf('[dbo].[User]', UserID = 8) > 0,
 LookUp('[dbo].[User]', UserID = 8).Surname ,
 "User not found"
)

Figure 9-18. LookUp in the label

Chapter 9 ■ Working With Data

195

Updating Records
The function that creates and updates records is called a patch. This function can update data in data
sources as well as data in a local collection.

Updating a Single Record
Just like its name suggests, we can call the patch function to make small lightweight patches to data. This is
ideal in cases where we want to make small one-off changes, and don’t want to load and display an entire
record.

To demonstrate this method, Figure 9-19 shows an example screen to deactivate users. In businesses,
this represents the typical screen that a manager would use to mark ex-employees. In other apps, we could
use this same technique to change the status or to set the closure date of a record, especially for workflow
type apps.

The example screen here contains a gallery control called GalleryUsers. This control shows records
from the users table, and the item template of the control contains a button with the text “Deactivate user”.
The OnSelect property of the button contains the following formula:

Patch ('[dbo].[User]', GalleryUsers.Selected, {Active:false})

When this screen runs, we can click the button to set the active field of the record to false.
Here’s an explanation of how the patch function works. This function expects three arguments. The first is

the data source, the second is the record to update, and the third argument specifies the field values to update.
When we call this function, it returns the newly updated record. In the event of an error, we can access

the details by calling the Error function.
A useful piece of built-in behavior is that after the call to the patch function, the gallery control will

automatically refresh and show the up-to-date data values.

Updating Multiple Records
We can call the UpdateIf function to update multiple records. For example, to update the journey data to set
the mileage value to 5 for records lower than 5, we can use the formula that’s shown beneath:

UpdateIf('[dbo].[Journey]', MileageInMiles < 5, { MileageInMiles: 5 })

Figure 9-19. Layout of example screen to update data

Chapter 9 ■ Working With Data

196

An important point is that this function isn’t delegable. Because of this, the formula here will process
the first 500 records only. Another thing to be aware of is that updating records in bulk like this can be slow.
In the tests that I conducted, this formula took around 20 minutes to process 500 records.

Creating a New Record
We can call the Patch function to add a new record, as well as update an existing record. We saw earlier how
the patch function requires us to provide a source record to patch. In the case where we want to add a new
record, there won’t be an existing record. Therefore, PowerApps provides a function called Defaults that
returns a default record that we can supply to the patch function.

Here’s a formula we can use to create a new record in the users table.

Patch('[dbo].[User]',
 Defaults('[dbo].[User]'),
 { Firstname: Joe, Surname: Smith }
)

 ■ Tip We can call the Collect function to insert multiple new records. the data import example in Chapter 14
demonstrates the use of this technique.

Retrieving Auto-Generated Numbers
When we call the Patch function to add a record, the result of this function includes all server-generated
data. This includes calculated fields, or auto-generated numbers from databases.

To demonstrate how to retrieve auto-generated data, Figure 9-20 shows the definition of the user table
in SQL Server. The primary key is an identity column called UserID. Identity columns contain sequential
numbers that are auto-generated by SQL Server.

Figure 9-20. The definition of an identity column

http://dx.doi.org/10.1007/978-1-4842-3003-9_14

Chapter 9 ■ Working With Data

197

In this example, each journey record stores the UserID of the user that is associated with the journey.
If we were to build a screen to create both the user and journey records at the same time, we would need to
retrieve the auto-generated UserID value before we add the journey record.

Let’s look at how to build this feature. The first step is to build a screen with data entry controls that
correspond to the fields in both tables, as shown in Figure 9-21. This screen includes a save button that saves
the data into both tables.

Here’s the formula we would add to the OnSelect property of the button:

ClearCollect(AffectedRecords,
 Patch('[dbo].[User]',
 Defaults('[dbo].[User]'),
 {Firstname:TextInputFirstname.Text,
 Surname:TextInputSurname.Text}
)
);
Patch('[dbo].[Journey]',
 Defaults('[dbo].[Journey]'),
 {UserID:First(AffectedRecords).UserID,
 StartDate:DatePickerJourneyStart.SelectedDate,
 MileageInMiles:Value(TextInputMileage.Text),
 JourneyDesc:TextInputJourneyDesc.Text
 }
)

In the formula that’s shown here, the first function patches a new record into the user table using the
details that the user enters into the surname and firstname text input controls. The patch function returns a
table of the affected records and we store this in a collection called AffectedRecords.

Figure 9-21. Inserting data into two tables at the same time

Chapter 9 ■ Working With Data

198

The second function retrieves the UserID of the newly added user, and the formula uses this to patch a
new record into the journey table. Because the AffectedRecords collection could contain multiple records,
the code calls the First function to return the first record.

Patching Associated Records in SharePoint
When patching records, another common task is to patch lookup values. It’s simple to patch lookup values
with data sources that use numeric IDs or text codes to identify lookup values. But with SharePoint, it’s not
as simple to patch lookup values. We’ll now look at how to carry out this task.

Figure 9-22 shows a reconstruction of our journey table in SharePoint. The Journey list contains a
lookup column called User that derives its values from a separate SharePoint list called UserList.

Let’s suppose that we want to add a new item to the journey list and assign the user item that matches
the id value of 2. The fragment of code that returns the user item that we can pass to the patch function is
shown beneath.

User:{'@odata.type':
 "#Microsoft.Azure.Connectors.SharePoint.SPListExpandedReference",
 Id:2, Value:""
}

This code might seem quite obscure, in particular, the reference to the property @odata.type. What is
this and where does it come from? To explain this, the method to patch a lookup value is to supply a record to
the patch function that represents the lookup value. To determine the fields that this lookup record contains,
we can examine the Value1 drop-down for the default property in an auto-generated edit screen, as shown in
Figure 9-23. This reveals that the lookup record includes three fields: @odata.type, Value, and Id. So to build a
valid record that we can pass to the patch function, the record should contain these three fields.

Figure 9-22. The user column in the journey list looks like this

Chapter 9 ■ Working With Data

199

For SharePoint lookup values, the value of @odata.type will always be #Microsoft.Azure.Connectors.
SharePoint.SPListExpandedReference. We can determine this by changing the value of Value1 to
@odata.type and running our app. When we return to designer, the value that we require (#Microsoft.
Azure.Connectors.SharePoint.SPListExpandedReference) will appear in the drop down box. The content
of the user drop down in Figure 9-23 illustrates this.

An interesting thing about the lookup record that we built is that it isn’t necessary to provide a value
for the value property. Just the Id value is sufficient enough. So to patch a record to the journey list in
SharePoint, the full formula we would use is shown below.

Patch(Journey,
 Defaults(Journey),
 { StartDate: "2017-01-01",
 VehicleID: 1,
 MileageInMiles: 3,
 EndDate: "2017-01-01",
 User:{'@odata.type':
 "#Microsoft.Azure.Connectors.SharePoint.SPListExpandedReference",
 Id:2, Value:""
 }
 }
)

Patching Associated Records into a CDS Data Source

With CDS data sources, the code is more straightforward because we don’t need to build a lookup record
that includes the odata.type field. Instead, we can just specify the Id and Value properties as shown
beneath. Like the SharePoint example, we can leave the Value property blank.

Patch(Journey,
 Defaults(Journey),
 {StartDate: "2017-01-01",
 VehicleID: 1,
 MileageInMiles: 3,
 EndDate: "2017-01-01",
 User:{ Id:2, Value:""}
 }
)

Figure 9-23. Determining the Odata type property of a SharePoint drop-down

Chapter 9 ■ Working With Data

200

Deleting Data
There are two functions that we can call to delete data: Remove and RemoveIf. The Remove function requires
us to supply the record that we want to delete. A typical way to call this function is to provide it with the
selected record in a gallery control. As an example, here’s the formula from the delete icon on the details
screen from an auto-generated app that’s based on the Journey table:

Remove(Journey, BrowseGallery1.Selected);

In contrast, the RemoveIf function enables us to specify the records that we want to delete. This
enables us to delete a single record by Id value, or to delete multiple records. For example, we could add the
following formula to a button to delete all journey records that are older than 3 years old.

RemoveIf(Journey, JourneyDate < DateAdd(Now(), -3, Years));

One thing to note is that like in the case of the budget tracker sample app (see Chapter 7, ‘Displaying
a Delete Confirmation Screen’), we need to delete any related records before we delete the main record.
Note that the delegation issue applies, and that the RemoveIf function operates against the first 500
records only.

Setting Default Screen Values
To help users more easily create new records, we can set default field values for a record. Here’s how to
modify the edit screen on an auto-generated app for the journey table. We’ll default the start date to today’s
date when a user creates a new record. To do this, open the edit form and find the card that corresponds to
the start date field, as shown in Figure 9-24. Unlock the card and set the default property of the data card to
the formula shown below:

If (EditForm1.Mode = FormMode.New, Now(), ThisItem.StartDate)

Figure 9-24. Setting default screen values

This formula detects the form mode, which can be one of two modes - new or existing. If the form is
in new mode, the formula returns today’s date. Otherwise, the formula returns the start date of the exiting
record.

http://dx.doi.org/10.1007/978-1-4842-3003-9_7

Chapter 9 ■ Working With Data

201

Validating Form Values
With data sources such as SharePoint and SQL Server, PowerApps provides data type and data length
validation. Sometimes, it’s necessary to apply additional validation rules, and in this section, we’ll look at
how to add this feature to our auto-generated journey app. To demonstrate a technique that we can use,
here’s how to ensure that users enter end date values that are greater than the start date.

To add this validation rule, open the edit screen and find the start date card. Unlock the card and
rename the start date picker and time controls to DateValueStart, HourValueStart, and MinuteValueStart.
Next, unlock the end date card and rename the end date picker and time controls to DateValueEnd,
HourValueEnd, and MinuteValueEnd. Beneath the date and time controls, add a label control, and set the
color to red, as shown in Figure 9-25. Set the text property of the label control to the formula that’s shown
below.

If((DateValueStart.SelectedDate +
 Time(Value(HourValueStart.Selected.Value),
 Value(MinuteValueStart.Selected.Value),
 0)
)
 >
 (DateValueEnd.SelectedDate +
 Time(Value(HourValueEnd.Selected.Value),
 Value(MinuteValueEnd.Selected.Value),
 0)),
 "End date must be greater than start date",
 ""
)

Figure 9-25. Adding a validation message that compares two fields

Chapter 9 ■ Working With Data

202

This formula calls the if function to test if the end date value exceeds the start date. If a user enters
valid data, the label shows an empty string. Otherwise, it shows a message that indicates the error to the user.

To configure the label so that it doesn’t take up any space when the data is valid, set the AutoHeight
property to true. Note that we can only resize the height of the card control to hide the label when the label
text is empty.

To complete this example, it’s a good idea to also apply this rule to the save icon. This would prevent the
form calling the submit form function when the data is invalid. The formula we would use is shown beneath:

If((DateValueStart.SelectedDate +
 Time(Value(HourValueStart.Selected.Value),
 Value(MinuteValueStart.Selected.Value),
 0)
)
 >
 (DateValueEnd.SelectedDate +
 Time(Value(HourValueEnd.Selected.Value),
 Value(MinuteValueEnd.Selected.Value),
 0)),
 false,
 SubmitForm(EditForm1)
)

 ■ Tip a great way to validate data is to call the IsMatch function. We can call this function to check that
users enter data in the correct format. For example, we can call this function to validate the format of email
addresses or telephone numbers.

Checking Validation Rules
With data sources that support validation rules such as SharePoint or SQL Server, we can test whether input
data adheres to the rules by calling a function called Validate. This is ideal during occasions when we want
to build custom data entry screens.

The validate function can validate a single field or an entire record. To demonstrate this function,
Figure 9-26 shows a custom screen for adding journey records. Our SQL database imposes a maximum of 50
characters on the journey description field. To validate the journey description value that a user enters, we
can use the formula that’s shown beneath:

Validate('[dbo].[Journey]', "JourneyDesc", TextInputJourneyDesc.Text)

Chapter 9 ■ Working With Data

203

The validate function returns a string and a natural place to show the result of this function is in a label.
If there are no errors, the function returns an empty string.

To validate an entire record rather than a single field, we can pass an existing record and the intended
changes to the validate function. The formula beneath shows how to validate a new record.

Validate('[dbo].[Journey]',
 Defaults('[dbo].[Journey]'),
 {JourneyDesc:TextInputJourneyDesc.Text,
 MileageInMiles:Value(TextInputMileage.Text),
 StartDate:Now()
 }
)

Because the intention here is to validate a new record, we call the Defaults function to return a base
record that we can pass to the validate function. If we were validating an existing record, we would provide
the existing record to the validate function instead.

 ■ Tip a good way to force users to enter numeric data is to use a text input control and to set the format property
to textFormat.number. this technique can help us avoid writing specific code to validate numeric input data.

Sending Notifications
For Android and iOS users, we can alert users through the notifications area of the mobile operating system.
When a user receives an alert, the user can click the message to open the specific app that’s associated with
the message.

We can send notifications from any app or from Microsoft Flow. To send a notification from an app,
we would add a data connection to the PowerApps Notification Provider. We would then use this data
connection to send our notifications. The notifications that we send must be targeted at specific users and
the method we use to identify users is by email address.

Figure 9-26. Using the validate function to validate a single field

Chapter 9 ■ Working With Data

204

To demonstrate this feature, here’s how to modify our auto-generated journey app so that it sends a
notification to a manager whenever a user creates a new record.

Because the messages that we send are associated with an app, the first step is to determine the unique
identifier for our app. To do this, find the app in the web portal and navigate to the details section, as shown
in Figure 9-27. A quick way to go to the approximate place in the portal is to click the share menu item in
PowerApps Studio.

The next step is to add a data source to the PowerApps Notification Provider. When we add the data
source, the designer will prompt us to enter the AppID or Web link.

To avoid any confusion, note that there is a similar data connector called Notifications, as shown in
Figure 9-28. The purpose of this connector is to send email notifications, rather than mobile device alerts.

Figure 9-27. Determining the id of an app

Figure 9-28. Adding a data source to the PowerApps Notifications Provider

Chapter 9 ■ Working With Data

205

The next step is open the edit form and to modify the formula for the save icon. Modify the OnSelect
property as shown below:

If(EditForm1.Mode=FormMode.New,
 SubmitForm(EditForm1);
 PowerAppsNotification.SendPushNotification(
 {recipients:["tim@timleung.co.uk"],
 message:"A new journey record was created",
 openApp:true}
),
 SubmitForm(EditForm1)
)

This formula uses the value of EditForm1.Mode to test if the user is entering a new record. If this is
true, the formula calls the SubmitForm function to save the record and then calls the function to send the
notification. If the user is not entering a new record, the code calls the SubmitForm function only.

A piece of behavior that catches some users out is that when a user enters a new record, the value of
EditForm1.Mode changes to edit mode immediately after the call to the SubmitForm succeeds. Therefore, if
we want to use the value of EditForm1.Mode to test that a user is entering a new record, we need to carry out
this test before we call SubmitForm.

At this point, we can run our app. When we add a new record, the app will send a notification to the
mobile device of the recipient, as shown in Figure 9-29.

There are two useful features about the SendPushNotification function that are worth mentioning.
The first is that we can specify multiple recipients by providing a comma-separated list. The second is that
we can specify a table of parameters. When the user starts the app by clicking the notification message, the
parameter values will be available to the target app. Here’s an example formula to illustrate these concepts.

Figure 9-29. Example of the actual sent message

Chapter 9 ■ Working With Data

206

PowerAppsNotification.SendPushNotification({
 recipients:["tim@timleung.co.uk","administrator@timleung.co.uk"],
 message:"A new journey record was created",
 openApp:true,
 params:Table({key:"JourneyID",
 value: EditForm1.LastSubmit.JourneyID }
)
 }
)

This code illustrates the formula to retrieve the journey id of the newly created record. On the
assumption that the data source is an SQL Server table and that the JourneyID field stores an identity value
that the server generates, we can use the LastSubmit property of the form to retrieve any values that have
been generated by the server.

In our app, we could then use the code Param("JourneyID") to retrieve the parameter value. We could
then apply the technique in Chapter 8 to open the specified record directly in the app.

Summary
There are two very important points to understand when working with data. The first is that PowerApps
imposes a 500 row limit when it retrieves data from a data source. The impact of this is that PowerApps
might fail to retrieve the records that we expect. The second point is delegation. When filtering data, we
can use delegable operators against data sources that support delegation. With delegable operators, the
data source filters the data and returns the results to the client device. With non-delegable data sources
or operators, the data source returns all the data to the client and the client performs the filtering. Non-
delegable operations are slower and if the source data exceeds 500 rows, the filter result will not include
any records beyond the base data of 500 rows. When we build formulas that filter data in a non-delegable
way, the formula bar underlines the formula with a blue line. This feature is very useful because it warns us
against these potential problems.

The two most useful functions to search for records include Filter and LookUp. Both of these functions
accept a data source and a formula that defines a successful match. The main difference between the two
functions is that the Filter function returns multiple records, whereas the LookUp function returns the first
record.

The browse screen in an auto-generated app provides basic search capabilities. We looked at how to
build a search screen that enables users to filter records by drop-down lists and by date picker controls. This
technique calls the filter function to filter the source data by data entry controls. We looked at how to address
some difficult issues. To offer the choice in a drop-down control to return all records, one option is to add
a ‘show all records’ item to the top of the drop-down list. This requires us to combine a ‘show all records’
row with the items in the drop-down. The technique we learned here also enables us to combine (or union)
multiple sets of data together. This technique adds each data set that we want to combine to a separate row
in a single column table. We then call the Ungroup function to combine all the data sets into a single table.

A typical requirement is to offer a search facility that returns records by date. If the records that we want
to match against contain both date and time elements, it’s necessary to create a filter operation that returns
records that fall between midnight and 23:59 of the target date. To find records that match a list of items, we
can filter the source records with a formula that utilizes the in function.

When displaying data, a common requirement is to join or to show the details of a related record.
PowerApps provides no specific join operator so instead, we use the LookUp function to carry out this task.
We learned how to return distinct records and to how to check for non-matching records across a set of
tables. The method to return distinct records is to group our records by the column that contains the data
where we want to find distinct values.

http://dx.doi.org/10.1007/978-1-4842-3003-9_8

Chapter 9 ■ Working With Data

207

The typical example of why we might want to find non-matching records across a set of tables is to
search for customers without any order records. We can accomplish this by filtering the source records with
a formula that applies the not and in functions.

A useful topic that we explored was how to carry out data operations with formula. The function that
updates and inserts records is called a patch. We found out how to carry out nontrivial data creation tasks,
including how to retrieve auto-generated data from the data source, and how to insert records into multiple
tables. The patch function accepts a data source, the record to update, and the field values to set. To create a
record, we would define a new record with a function called Defaults. We would then pass this to the patch
function to create the record in the underlying data source. The patch function returns the records that were
updated, including any server-generated values. We can use this to find any server-generated primary key
values.

To simplify the entry of new records, we can configure the form control to provide default values. To do
this, we would apply a formula to the default property of the data card. This formula would return a default
value if the form is in new mode, or return the existing value if the form is in edit mode.

In the final part of this chapter, we learned how to show messages in the notifications section of a
mobile device. We can configure the system to open the associated PowerApp when a user clicks the
message. To build this type of functionality, we would utilize the PowerApps Notification connector. This
connector enables us to target messages at specific users. It also enables us to attach parameter values to the
message. This is a useful feature because it enables us to configure the startup behavior of an app when a
user clicks the notification message.

209© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_10

CHAPTER 10

Working with Images

With PowerApps, we can build apps to take advantage of the cameras that are built into smartphone and
tablet devices. In this chapter, we’ll discover how to take photos and how to perform image-related activities
such as scanning barcodes and receiving pen input.

We’ll start by building a simple auto-generated app that can store and retrieve images. Later in this
chapter, we’ll find out how to build an image gallery screen by exploring how the site inspection template
app implements this feature.

The useful topics that we’ll cover in this chapter will include the following:

•	 How to configure a data store. To store images with an Excel data store, it’s necessary
to set up our spreadsheet in a specific way. We’ll find out exactly how.

•	 We can use a file selection control or a camera control to select images. It can be
tricky to work with these controls because depending on circumstances, the control
value can return binary data, or a pointer to a file in a private storage area. We’ll
clarify exactly the data that these controls return.

•	 We’ll find out how to scan barcodes and how to use the pen control. The pen control
is especially useful because we can use it to capture signatures, and to convert
handwritten annotations to text.

Choosing Where to Store Images
PowerApps supports the storage of image data in Excel, CDS, and SQL Server data sources. Other data
sources are not yet supported: the most notable one being SharePoint. With SharePoint, PowerApps doesn’t
support the ‘Hyperlink or Picture’ column types. It isn’t able to display the images that are stored in these
columns and it also doesn’t support file attachments.

To work around this limitation, a hack that some app builders carry out is to store the base 64 text
representation of the image in a text field. The main issue with this approach is that it’s not straightforward
to retrieve the image data from controls such as the camera or to add picture control. These controls often
expose an identifier rather than the actual image data, and we’ll explore this in more detail as the chapter
progresses.

 ■ Tip The PowerApps blog provides a detailed guide on how to store images in Azure Blob Storage. This is
quite an involved technique and you can find out more here:

https://powerapps.microsoft.com/en-us/blog/custom-api-for-image-upload/

https://doi.org/10.1007/978-1-4842-3003-9_10
https://powerapps.microsoft.com/en-us/blog/custom-api-for-image-upload/

ChAPTer 10 ■ Working WiTh imAgeS

210

Setting Up a Data Source
To store image data, we need to configure our data source to store data of this type. In this section, we’ll look
at how to set up an Excel spreadsheet, CDS entity, or SQL Server table to store image data.

Storing Images in Excel
With Excel data sources, PowerApps stores image files in a subfolder where the Excel spreadsheet resides.
The Excel file stores the path and name of the file. The benefit of Excel is that it’s easy to work with the image
data. We can easily download and view the image files from within the cloud storage.

To set up an Excel file to store images, create a spreadsheet as shown in Figure 10-1. Use the Insert ➤
Table menu item in Excel to configure the data range as a table.

In our example, the purpose of this spreadsheet is to store the photos and signatures of users. The
PhotoData column stores the image path file name and the Description column enables the user to provide
some descriptive text. Note that any image columns must end with the word [image]. This enables the
designer to recognize the column as an image field. We’ll use the UserSignature column later in this chapter
to demonstrate the use of the pen control.

We can store our Excel spreadsheet on all the supported file-based data stores such as OneDrive or
Dropbox. Out of these two providers, Dropbox works better than OneDrive. This is because OneDrive
has a problem that occurs when you share your app with other users. If other users are logged into their
personal OneDrive accounts, PowerApps saves the image files incorrectly into the OneDrive account that is
associated with the user, rather than the OneDrive account that is associated with the data connection
in the app.

Storing Images in CDS and SQL Server Databases
With the CDS, it’s simple to set up an entity to store image data. In the designer, simply add a field and set the
type to image, as shown in Figure 10-2.

Figure 10-1. Creating a spreadsheet to store image data

Figure 10-2. Creating an image field for a CDS entity

ChAPTer 10 ■ Working WiTh imAgeS

211

With SQL Server, it’s just as easy. In SQL Server Management Studio, simply create a table, and add a
new column of data type image, as shown in Figure 10-3.

One note of caution is that Microsoft plans to remove the image data type in future releases of SQL
Server and therefore recommend the use of the varbinary data type instead. The disadvantage of the
varbinary data type is that when we build auto-generated apps against fields of this type, PowerApps will not
detect these as image fields and will not provide the option to use image controls on the default cards.

Creating an Image App
The quickest way to build an app to store images is to create an auto-generated app. Let’s build an auto-
generated app and examine the image-related features.

In an auto-generated app, the edit screen includes an ‘Add picture’ control, which is a control that the
user can use to upload a file from the local device (Figure 10-4). The file extensions that PowerApps supports
include .jpg, .jpeg, .gif, .png, .bmp, .tif. .tiff, and .svg.

Figure 10-3. Setting up an SQL field to store image data

Figure 10-4. The edit screen in an auto-generated app includes an ‘add picture’ control

ChAPTer 10 ■ Working WiTh imAgeS

212

The detail screen provides a picture control to display the image that the user has uploaded.
Let’s run our app and add a new record. Click the Add Picture control and upload an image file. Now

save the record and examine the contents of the spreadsheet. As Figure 10-5 shows, PowerApps inserts the
image path and location into the PhotoData field.

In the location where the spreadsheet resides, PowerApps creates a subfolder to store the image files.
The name of the folder matches the name of the spreadsheet with the word “_images” appended to the end,
as shown in Figure 10-6.

With Excel data sources, one thing to note is that when you delete a record, PowerApps does not delete
the image that is associated with the record.

Viewing Records in the CDS
Let’s examine what we would see with a CDS data source. As Figure 10-7 shows, the data section of the entity
designer shows the records in the entity. However, this view doesn’t show images, or even indicate whether an
image is associated with the record. The ‘Open in Excel’ feature also does not show the image data. This highlights
a potential difficulty when we store images in the CDS. It can be difficult to extract our image data from the CDS,
and this can make it difficult to migrate away from the CDS if we choose to do this at a future point in time.

Figure 10-5. The Excel file contains a link to the image file.

Figure 10-7. The data view in the CDS

Figure 10-6. Folder view in Dropbox, showing the image folder

ChAPTer 10 ■ Working WiTh imAgeS

213

Using the Add Picture Control
The ‘Add Picture’ control integrates very well with the form control and enables us to easily add pictures to
a data source. But if we want to use this control in isolation, it’s not simple to retrieve the actual image data
from the control. Let’s explore this in a bit more detail.

The ‘Add Picture’ control is a composite control that consists of an ‘add media button’ control and an
image control. The image control displays the image that the user adds. The media property of the ‘add
media button’ returns the image data.

If we were to insert an ‘Add Picture’ control and display the contents of the media property in a label
control, the media property would return a unique identifier that references a unique identifier. Figure 10-8
illustrates how this would look in the Windows version of PowerApps Studio.

If we were to run the app in the browser or Android versions, the value of the media property would
appear in the following format:

•	 Browser version- https://us.create.powerapps.com/60ca5079-ef7d-4b10-95b2-
96a4ceb3c0c6

•	 Android version - http://127.0.0.1:49428/60ca5079-ef7d-4b10-95b2-
96a4ceb3c0c6

The important point here is that we can’t easily retrieve the binary content from the ‘Add Picture’
control. The conversion from a blob address to the binary content occurs when an app connects to a data
source and calls an operation on the data source (such as a save operation). If we were to write a custom API
method that receives image data, we could call the method from PowerApps and retrieve the binary data
from our API code.

Using the Camera Control
The camera control enables us to build apps to capture photos. To demonstrate the use of this control, here’s
how to replace the Add Picture control in an auto-generated app with a camera control.

Figure 10-8. The media property of the ‘add picture’ control

https://us.create.powerapps.com/dd6409a9-1b09-4ef5-a64b-21c84b16bb54#_blank
https://us.create.powerapps.com/dd6409a9-1b09-4ef5-a64b-21c84b16bb54#_blank
http://127.0.0.1:49428/b7371d5a-bec9-45da-acb4-e2c6a1fefff6#_blank
http://127.0.0.1:49428/b7371d5a-bec9-45da-acb4-e2c6a1fefff6#_blank

ChAPTer 10 ■ Working WiTh imAgeS

214

As an introduction, the camera control provides a property called photo. This property returns the
image from the camera at the moment when we read the property. The standard behavior on most mobile
apps is to provide a method for the user to take a snapshot and to review the image before saving it. This is
the feature that we’ll build in this section.

To begin, open the edit screen and select the default card for the photo data field. Unlock the card and
delete all the controls on the card. We can use the screen explorer view on the left-hand side of the designer
to quickly delete all the controls. Add a camera control and insert an image control adjacent to it. Name
these controls CameraUserPhoto and ImageUserPhoto, as shown in Figure 10-9.

The next step is to build the feature that allows the user to take a snapshot. The method we’ll use is to
store the photo in a variable when the user taps the camera control. To do this, add the following code to the
OnSelect property of the camera control:

UpdateContext({CapturedPhoto: CameraUserPhoto.Photo})

An important step is to clear this variable when the user navigates away from the screen. If we fail to
do this, the captured image will remain when the user reopens the screen. To clear the variable, set the
OnHidden property of the screen to the following formula:

UpdateContext({CapturedPhoto: Blank()})

The next step is to configure the image control so that it shows the image when a user opens an existing
record, or to show the image that the user captures with the camera. To do this, set the image property of the
image control to the formula beneath:

If(IsBlank(CapturedPhoto), Parent.Default, CapturedPhoto)

Finally, we need to set up the form to save the photo to the data source. To do this, set the Update
property of the card to ImageUserPhoto.Image.

At this point, we can run our app and use the camera control to capture and save photos.

Figure 10-9. Add a camera control and an image control

ChAPTer 10 ■ Working WiTh imAgeS

215

Retrieving the Camera Data
In the previous section, we saw how the Media property of the Add Picture control returns a unique
identifier that begins with the text “blob:”. Does the camera control behave in the same way? The answer is
that it varies.

On browser, iPhone, and Android devices, the Photo property of the camera control returns a base64
encoded representation of the image. Figure 10-10 shows the result on Android when we display the photo
property of the camera control in a label. The photo property returns a string that begins “data:image/
jpeg;base64,”,followed by a long base64 encoded representation of the image. This is useful because
we can store the result in a text field in a data source. Outside of PowerApps, a simple way to convert this
text representation to an image is to strip off the preceding “data:image/jpeg;base64,” text and to enter
the remaining characters into an online base64 to image converter. You can find plenty of these online
converters by searching the web.

However, in PowerApps Studio and on Window devices (such as Surface tablets), the photo property
does not return the base64 representation of the image and instead returns a string that looks like this:
“blob:60ca5079-ef7d-4b10-95b2-96a4ceb3c0c6”.

The important point to take from this is that when we build custom features with the camera control, it’s
important to exercise some caution because the photo property returns different results depending on the
device.

Switching Between Cameras
Many mobile devices provide at least two cameras - a rear camera and a front-facing camera. We can set the
camera id property to choose which camera to use. Here’s how to add a control to allow the user to switch
cameras.

First, add a slider control and name it SliderCameraId. Set the max property to 1 and the default
value to 0. Next, set the camera property of the camera control to SliderCameraId.Value, as shown in
Figure 10-11. You can now run your app and use the slider control to change the camera.

Figure 10-10. The Photo property of the camera control returns base64 encoded text on some devices

ChAPTer 10 ■ Working WiTh imAgeS

216

Setting Brightness, Contrast, and Zoom Levels
We can use the same technique as above to enable users to set the brightness, contrast, and zoon levels of
the camera. Simply add slider controls and set the Zoom, Brightness, or Contrast properties of the camera
control to the value of the slider control. Table 10-1 shows the details of these properties.

 ■ Note There’s no way to configure the resolution of the picture that the camera control captures. Users with
high-resolution cameras may find that the camera control captures images with insufficient resolution.

Creating a Gallery
The template apps provide some sophisticated image and photo-taking techniques that we can reuse in our
own apps. The best app that uses the camera control is the site inspection app. This app provides a screen
that adds photos to a site inspection record. This screen contains a camera control that allows a user to
attach up to seven photos at a time, as shown in Figure 10-12. The middle of the screen contains a gallery
control that displays images that have been captured. The ‘done’ button at the bottom part of the screen
saves the images to an Excel data source.

Table 10-1. Camera Control Properties

Property Property Description

Zoom The percentage by which an image from a camera is magnified.

Brightness How much light the user is likely to perceive in an image.

Contrast How easily the user can distinguish between similar colors in an image.

Figure 10-11. Add a slider control to enable the user to switch cameras

ChAPTer 10 ■ Working WiTh imAgeS

217

There are two places in the app where a user can reach this photo entry screen. The first is through
a screen called ‘new inspection screen’. This is the screen that a user can use to add a new site inspection
record. The second is through a screen called ‘image screen’. This screen enables users to view the photos
that are associated with an existing site inspection record.

Let’s take a closer look at the photo capture screen. How exactly does this screen work? When the user
taps the camera control (the name of this control is Camera1), the control runs the formula that’s shown
beneath.

If(CountRows(CameraPhotos) <=7,
 Collect(CameraPhotos,
 {Note:"",
 Photo:Camera1.Photo,
 PhotoId:CountRows(CameraPhotos)
 }
)
)

This formula captures the images into a collection called CameraPhotos. The first part of this formula
checks that there are fewer than seven items in the collection. The app only collects photos when this
condition is true. Each record in the collection includes a field called PhotoId. The collect function sets the
PhotoId value of a record to the count of records when it adds a record to the collection. This technique
assigns a sequential PhotoID value to each record.

Figure 10-12. The photo entry screen

ChAPTer 10 ■ Working WiTh imAgeS

218

The ‘done’ button calls the patch function to save the photos to the Excel data source. An excerpt of this
code is shown in Listing 10-1.

Listing 10-1. Patching the data to the data source

If(NewRecord,
 Navigate(NewInspectionScreen,ScreenTransition.Fade),
 If(CountRows(CameraPhotos)>=1,
 UpdateContext(
 {AddPhoto:Patch(SitePhotos,
 Defaults(SitePhotos),
 {PhotoId:Max(SitePhotos,PhotoId)+1,
 Photo:Last(FirstN(CameraPhotos,1)).Photo,
 ID:Gallery3.Selected.ID,
 Note:Text(Last(FirstN(CameraPhotos,1)).Note)
 })
 }
)
);
 If(CountRows(CameraPhotos)>=2,
 UpdateContext(
 {AddPhoto:Patch(SitePhotos,
 Defaults(SitePhotos),
 {PhotoId:Max(SitePhotos,PhotoId)+1,
 Photo:Last(FirstN(CameraPhotos,2)).Photo,
 ID:Gallery3.Selected.ID,
 Note:Text(Last(FirstN(CameraPhotos,2)).Note)
 })
 }
)
);

The main purpose of this formula is to update the photos for an existing site inspection record. The first
part of this formula checks the value of the NewRecord variable. If the user is adding a new site inspection
record, the formula navigates the user to the ‘new inspection screen’. If the user is editing an existing record,
the formula calls the patch function to insert a record into a table called SitePhotos. This table stores the
photo data and Figure 10-13 shows the data structure. The PhotoId field uniquely identifies each record, and
the ID field refers to the primary key value of the parent site inspection record.

ChAPTer 10 ■ Working WiTh imAgeS

219

The code that patches each image follows the same pattern. Listing 10-1 illustrates the code to patch the
first two images and omits the remaining code for brevity. The pertinent code that patches the first image is
shown beneath.

Patch(SitePhotos,
 Defaults(SitePhotos),
 {PhotoId:Max(SitePhotos,PhotoId)+1,
 Photo:Last(FirstN(CameraPhotos,1)).Photo,
 ID:Gallery3.Selected.ID,
 Note:Text(Last(FirstN(CameraPhotos,1)).Note)
 }
)

The first interesting thing is the excerpt of code that generates the PhotoId value. The formula calls the
max function to return the highest photo id value from the site photos data source, and adds one. This is the
code that generates a sequence of sequential photo id values.

Another interesting part of this formula is the logic that retrieves an individual photo from the
CameraPhotos collection. As an example, the formula to retrieve the forth record from a collection would
look like this:

Last(FirstN(CameraPhotos,4)).Photo

Figure 10-13. SitePhotos data source

ChAPTer 10 ■ Working WiTh imAgeS

220

This formula calls the FirstN function to return the first four records from the CameraPhotos collection.
The outermost call to the Last function returns the last record from the result of the FirstN function, which
equates to the fourth record in the collection.

The code we’ve seen adds photos to an existing site inspection record. In the case where a user is
adding a new site inspection record, it’s not possible to use this code because there isn’t a parent site
inspection record to relate the photos to. In this instance, the formula returns the user to the new inspection
screen. This screen provides a form control to add a new site inspection record. When a user adds a new
record, the code in the OnSuccess property of the screen adds the photos in the CameraPhotos collection to
the SitePhotos table. The OnSuccess formula looks almost identical to the code in the photo capture screen,
as shown in Figure 10-14.

To summarize, the code in this section provides some excellent learning points. The first is the
technique that captures the photos into a collection and defers the save operation to a later point in time.
This code demonstrates how we can use the patch function to insert multiple records at a time. The code
also demonstrates the syntax we can use to generate a sequence of numbers, and how to retrieve a record by
ordinal number (for example, the second, third, fourth record, etc)

 ■ Note The code in this section provides an excellent example on how to generate sequences of numbers,
and how to retrieve records by ordinal number.

Figure 10-14. Adding photos to a new site inspection record

ChAPTer 10 ■ Working WiTh imAgeS

221

Using the Pen Control
PowerApps provides a pen control that is ideal for capturing annotations or signatures. This control
generates images in png format and we can easily assign this control to the image fields on a form. To do this,
set the control type to ‘Add Notes’, as shown in Figure 10-15.

We can now run our app and use the pen control to enter text, as shown in Figure 10-16. When we
save our record and examine the folder that contains our Excel spreadsheet, we’ll find a png file in the
images folder that contains the note.

The pen control provides an image property that allows us to access the annotation. Just like the add
picture control, this property returns a blob address. We would need to save the record, or to pass the image
property value to a data source to obtain the image data.

Erasing Text
To allow users to correct any mistakes, there are a couple of techniques we can use. We can set the pen mode
to erase, or we can completely clear the contents of the control.

With the pen mode set to erase, the user can erase individual pen strokes by drawing over the
annotation. Let’s look at how to implement this feature. The mode property allows us to switch between the
pen modes. To enable users to alter the pen mode, we can add a toggle control and write formula to set the
mode property of the pen control depending on the value of the toggle control, as shown in Figure 10-17.

Figure 10-15. Change the control type from Add Picture to Add Notes

Figure 10-16. Using the pen control at runtime

ChAPTer 10 ■ Working WiTh imAgeS

222

Alternatively, we can use the reset property technique from Chapter 8 to completely clear the contents
of the pen control. To demonstrate this technique, here’s how to add a button to clear the contents of the pen
control.

First, add a button and add formula to set the value of a variable to true, and then back to false. In this
example, we’ll name our variable ResetPenControl and the formula would look like this:

UpdateContext({ResetPenControl: true});
UpdateContext({ResetPenControl: false})

Figure 10-18 illustrates the view in the designer. The next step is to set the Reset property of the pen
control to ResetPenControl. We can now run our app and click the button to clear the contents of the pen
control.

Converting Annotations to Text
A great feature of the pen control is the ability to convert annotations to text. This feature is simple to
implement because the pen control exposes a property called RecognizedText. We can read this property to
retrieve the pen control’s attempt to convert the annotation to text. The accuracy of the text recognition can
vary and will not be perfect. Figure 10-19 demonstrates the text recognition feature by setting the text of a
label to the recognized text property of a pen control. The value of the recognized text changes following the
entry of each letter in the pen control.

Figure 10-18. Adding a button to clear the contents of the pen control

Figure 10-17. Switching the pen mode to erase

http://dx.doi.org/10.1007/978-1-4842-3003-9_8

ChAPTer 10 ■ Working WiTh imAgeS

223

Scanning Barcodes
PowerApps provides a control to capture barcodes. In this section, we’ll explore how to use this control to
scan and extract barcode numbers. This control supports six common barcode types, and these are shown in
Figure 10-20.

The notable barcode type that is not supported is the QR (quick response) barcode. QR barcodes often
appear in adverts, and you can scan these barcodes with a smart phone to open an associated web page.

To demonstrate the barcode control, we’ll build a simple screen that enables a user to scan a barcode
and to extract the barcode number. The first step is to insert a barcode control and label control onto a
screen. Name these controls BarcodeControl and LabelBarcodeNumber, as shown in Figure 10-21. To
configure the control so that it scans the barcode when the user taps the control, set the OnSelect property of
the barcode control to the formula shown below:

UpdateContext({CapturedBarcode: BarcodeControl.Value})

Next, set the ‘barcode type’ property to the barcode type that we want to detect. A useful feature we
can enable is the ‘show live barcode detection’ option. With this feature enabled, the control displays a
rectangular overlay when it detects a barcode. This makes it easier for the user to scan the barcode.

Figure 10-19. Recognizing annotations

Figure 10-20. Supported barcode types

ChAPTer 10 ■ Working WiTh imAgeS

224

The final step is to set the text property of the label control to the variable CapturedBarcode. At this
stage, we can run our app and use the control to scan a barcode. When the control scans the barcode
successfully, the number will appear in the label control.

To learn more about this control, the PowerApps blog contains a detailed article that describes this
control in detail. You can find this article here:

https://powerapps.microsoft.com/en-us/blog/make-barcode-scanning-apps-in-minutes/

Summary
In this chapter, we looked at ways to capture, store, and retrieve image-related data. The main data sources
that support image are the CDS, SQL Server, and Excel data sources.

To store image data in an Excel spreadsheet, the important step is to define a column with a name that
ends with [image]. The next step is to save the spreadsheet to a cloud storage provider. When we build an
auto-generated app and save a record that includes an image, PowerApps saves the image to a subfolder of
the folder that contains the Excel spreadsheet and stores the file location of the image in the spreadsheet.

Auto-generated apps allow users to upload images to image fields through the Add Picture control. This
control enables users to select a file from the local file system.

PowerApps provides a camera control that is useful when we want to build apps where users can
capture photos. The typical way to use this control is to capture an image when a user taps the camera
control. The photo property of the control returns the image data, and we can store this in a variable, prior
to saving the image to the data source. Many mobile devices include multiple cameras, and it’s possible to
choose which camera the control uses. We can also configure the brightness, contrast, and zoom properties
of the camera.

Figure 10-21. Configuring the barcode control

https://powerapps.microsoft.com/en-us/blog/make-barcode-scanning-apps-in-minutes/

ChAPTer 10 ■ Working WiTh imAgeS

225

The example site inspection app provides an excellent example of how to use the camera control. This
app allows the user to take up to seven photos at a time. The screen collects the images to a collection, and
calls the patch function to add the multiple images to the Excel data source. This app includes some useful
code snippets that we can reuse. This includes formula to retrieve a record by ordinal number, and code to
generate numeric field sequences.

A very useful control is the pen control. Users can use this control to enter signatures or annotations.
With auto-generated apps, you choose to use this control against an image field by choosing this control type
in the card settings of a form.

Finally, PowerApps provides a barcode control and we can use this to scan and retrieve the barcode
numbers for a range of common barcode types.

227© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_11

CHAPTER 11

Mapping Data

PowerApps is designed for mobile devices and therefore works naturally with location services. Although we
can easily retrieve location details from within an app, there are various intricacies that we need to be aware
of, especially when we want to save location details to a data store. In this chapter, we’ll examine these issues
and focus on the following topics:

•	 Retrieving GPS data. We’ll find out how to retrieve values such as longitude, latitude,
compass bearing, and acceleration details.

•	 Saving location details. We’ll create an auto-generated app and go through the steps
to provide the capability for users to retrieve and save location details on the edit
form.

•	 Integrating with mapping services. We’ll find out how to use mapping services to
pinpoint locations. We’ll cover two of the most popular services - Google Maps and
Bing Maps.

Introduction to GPS
PowerApps can integrate with the location services that are provided by mobile device operating systems.
These services can provide the device location based on GPS or cellular information. From within an app,
we can use formula to determine the longitude, latitude, or compass bearing of a device.

For readers who are unfamiliar with longitude and latitude values, here’s a brief introduction.
Longitude and latitude values are measured in degrees, and we can use these readings to locate a specific
location on Earth. These values can be positive or negative. Locations in the Southern hemisphere have a
negative longitude, and locations in the Western hemisphere have a negative latitude. Figure 11-1 illustrates
this in the form of a diagram.

https://doi.org/10.1007/978-1-4842-3003-9_11

Chapter 11 ■ Mapping Data

228

When we retrieve a location from a mobile device, the accuracy of the reading can vary. If the user has
only just switched on the GPS, there may be insufficient time for the device to lock onto sufficient satellites to
give an accurate reading. In this situation, devices have a tendency to return the last known location.

In the case of PowerApps, an important point is that when a user starts an app with the GPS turned on
and turns off the GPS at a later point, any subsequent attempt to retrieve the location will return the last
known location.

Retrieving Location Details
With PowerApps, we can very easily retrieve the current location of a device. PowerApps provides functions
to obtain the longitude, latitude, and compass bearing of a device. To demonstrate this topic, we’ll build an
app that can retrieve and store location details.

Introducing Signals
PowerApps provides objects called signals. The signals that are of interest in this section are the location,
compass, and acceleration signals. A key characteristic of a signal is that its value can constantly change. In
the case of the location signal, the value of this signal can change regularly to reflect the current location.

We can treat signals as though they are records. In the case of the location signal, we can treat this as
a record that contains three fields: longitude, latitude, and altitude. If we want to retrieve the longitude or
latitude in formula, we would use the syntax Location.Longitude or Location.Latitude respectively.

The location signal returns longitude and latitude.readings in degrees, and altitude readings in the
number of feet above sea level.

Figure 11-1. Longitude and Latitude measurements

Chapter 11 ■ Mapping Data

229

Freezing the Location Details
In the vast majority of cases, it’s good practice not to work directly with a signal. In many cases, we want
to work with a snapshot of a location at a single moment in time. Let’s imagine that we’ve built an app
that captures photos and stores the location where the photos were taken. In this scenario, it wouldn’t be
accurate to retrieve the location at the point when the user saves the record. If the user were traveling in a
car, there could be a considerable difference in distance between the time when the user takes the photo and
the time when the user saves the record. Therefore, it’s common practice to save locations to a variable and
to work with the variable value. This is the technique that we’ll adopt in this chapter.

Obtaining Longitude and Latitude.Readings
To demonstrate how to retrieve locations, we build a screen to retrieve the location details into a variable
and to display the values on screen. To build this example, add a screen and insert three labels. Name these
controls LabelLongitude, LabelLatitude, and LabelAltitude. Now add a button and name it GetLocation
(Figure 11-2). Set the OnSelect property of the GetLocation button to the formula beneath:

UpdateContext({CurrentLocation: Location})

This code stores the result of the Location signal to a context variable called CurrentLocation.
The next step is to set the Text properties of the LabelLongitude and LabelLatitude labels to the values
CurrentLocation.Longitude.and CurrentLocation.Latitude respectively.

At this point, we can run our app to test this functionality. To make sure that the location signal returns
data when we run our app in PowerApps Studio, make sure to turn on location services in the settings of
Windows. In Windows, we can specify a default location. The location signal in PowerApps returns the
default location if our computer cannot detect a more precise location.

Figure 11-2. Layout of sample screen

At runtime, the GetLocation button may fail to retrieve the location and the app will appear to do
nothing. To improve this behavior, we can show a message that indicates this condition. We can accomplish
this by amending the formula in the GetLocation button so that it stores a message in a variable when
location services are not available. The formula beneath illustrates this technique.

Chapter 11 ■ Mapping Data

230

UpdateContext({CurrentLocation: Location});
UpdateContext({LocationMessage:If(IsBlank(Location.Longitude),
 "Location Unavailable",
 "")
 }
)

To explain this formula in more detail, when PowerApps fails to retrieve a location, it returns blank
longitude and latitude.readings. We can test for the presence of a blank longitude to determine when
a device has failed to retrieve the location. In this example, the formula stores the message "Location
Unavailable" in a variable called LocationMessage when the location details are not available. When
location details are available, the formula sets the value of this variable to an empty string. We can then
display this message through a label on a screen.

Saving Location Details
A typical task is to store the location values to a data source. In this section, we’ll walk through the steps to
create an auto-generated app to store these details. Figure 11-3 shows the source data that we’ll use. Just like
our previous example, we’ll add a button that retrieves the location. We’ll then use the location details to
populate the data entry controls on the edit form.

The first step is to create an auto-generated app based on this data source. Next, add a button and name
it GetLocation. Set the OnSelect property of the GetLocation button to the same formula as before, as
shown beneath:

UpdateContext({CurrentLocation: Location})

Unlock the card for the longitude.field and change the default property of the text input control to the
formula shown beneath:

If(IsBlank(CurrentLocation.Longitude),
 Parent.Default,
 CurrentLocation.Longitude
)

This formula shows the longitude.value that the user obtains by clicking the GetLocation button. If this
value is blank, the formula returns the existing longitude value for the record.

The next step is to modify the update property of the card so that it updates the data source with the
desired value. Select the card for the longitude.field and set the Update property to the formula shown
beneath:

If(IsBlank(CurrentLocation.Longitude),
 Parent.Default,
 CurrentLocation.Longitude
)

Figure 11-3. Layout of sample data

Chapter 11 ■ Mapping Data

231

Now repeat the same process for the latitude values. Set the default property of the latitude text input
control and the update property of the latitude card to the formula shown beneath.

If(IsBlank(CurrentLocation.Latitude),
 Parent.Default,
 CurrentLocation.Latitude
)

The final step is to clear the CurrentLocation variable when the user leaves the screen. Here’s the code
to add to the OnHidden property of the screen.

UpdateContext({CurrentLocation: Location})

Figure 11-4 shows the layout of the screen in the designer. At this stage, you can run your app and save
the updated location details to a data store.

Switching the Signal On/Off
Apps that use location services can quickly drain the battery of a device. It’s not just the GPS that causes the
power drain. If an app includes formulas that refer to the location signal, those formulas will recalculate
whenever the location changes. This behavior adds an additional overhead to the battery drain.

One way to conserve battery life is to turn off the location signal when it’s not needed. To turn off the
location signal, we can add a button to our screen and add the following code:

Disable(Location)

Here’s the formula to turn the signal back on again:

Enable(Location)

Figure 11-4. Layout of the sample screen

Chapter 11 ■ Mapping Data

232

A piece of behavior that’s worth noting is that a user may start an app with the GPS of the device
switched off. In the case of an Android device, if a user turns on GPS through the icon in the notification
bar or through any other quick access icon, the location signal from PowerApps might continue to return
no data. One way to force the location signal to refresh and return data is to minimize PowerApps to the
background and to switch back to the app. One technique to force PowerApps to the background is to call
the launch function to launch a webpage that contains instructions for the user to switch back to PowerApps.

Other Signals
There are two other signals that might be of use when you’re building a location-based app - the Compass
and Acceleration signals. The Compass.Heading function returns the heading value, measured in degrees.

The Acceleration signal returns the acceleration in X, Y and Z planes, measured in g units (this is the
standard unit of measurement of acceleration, equivalent to 9.8 meters per second squared). Figure 11-5
shows this in the form of a diagram.

Displaying Maps
We can display locations much more meaningfully through the use of maps. Two common online mapping
services we can use are Google Maps and Bing Maps and in this section, we’ll look at both.

Both these services provide a static map API that returns an image of a map based on arguments that we
provide through the web address. To show the output, we can use an image control to display the map that
the service returns.

Google and Bing provide free plans for commercial use. With Google, the free standard plan provides
a maximum of 25,000 map loads during each 24-hour period. The maximum resolution of the maps that
we can retrieve through the standard plan is 640x640 pixels. With Bing, we can register for a free ‘Basic Bing
Maps key’ and this offers up to 125,000 map views per calendar year for commercial use.

Both Google and Bing offer the same basic mapping features through the static map APIs. This includes
the ability to center a map based on longitude and latitude, or by address or other search terms. Additional
basic features include the ability to display markers, and to switch the presentation between aerial or road
map views. An added feature of Bing Maps is that it provides the ability to show traffic flow and routing
details between two points.

Figure 11-5. Measuring Acceleration

Chapter 11 ■ Mapping Data

233

Using Google Maps
With Google Maps, the format of the web address that returns an image from the static maps API is shown
below.

https://maps.googleapis.com/maps/api/staticmap?center=51.51128434,-0.11915781&zoom=12&size=
400x400

The two important values that we need to provide are the latitude and longitude. We provide these as
comma-separated latitude and longitude values through the center argument. Technically, we should use
the key parameter to specify the API key value that we generate after registering for the Google Maps service.
For test purposes, the API appears to work without needing a key, but this may change in the future.

To demonstrate how to show a Google map on a screen, let’s modify the detail form from the auto-
generated app that we created earlier in this chapter. Open the details form and add a custom card. Insert an
image control and set the image property to the following value:

"https://maps.googleapis.com/maps/api/staticmap?center="& ThisItem.Latitude & "," &
ThisItem.Longitude & "& zoom=12&size=500x400"

Figure 11-6 shows the view of the screen in the designer. We can now run our app and the details screen
will display a map that corresponds to the latitude and longitude of the current record.

Figure 11-6. Using Google Maps

https://maps.googleapis.com/maps/api/staticmap?center=51.51128434,-0.11915781&zoom=12&size=400x400
https://maps.googleapis.com/maps/api/staticmap?center=51.51128434,-0.11915781&zoom=12&size=400x400

Chapter 11 ■ Mapping Data

234

For more information on how to use this API, including how to change the view and how to add
markers, visit the Google Static Maps API website through the link below:

https://developers.google.com/maps/documentation/static-maps/intro

Bing Maps
Bing Maps provides a static map API that works similarly to Google Maps. The example Site Inspector uses
this method, and we can refer to this app to find out more. The Bing service requires us to register and to
obtain an API key to access the service. Here’s the website to register for a key.

https://www.bingmapsportal.com/

For development purposes, a quick way to obtain an API key is to run the example Site Inspector app
and to use the API key that’s embedded in this app. The format of the web address that returns an image
from the API is shown below:

http://dev.virtualearth.net/REST/v1/Imagery/Map/Road/51.51128434,-0.11915781/15?mapSize=500,
500&key=wg9mvoY3hN6AVoUPutnZ~y8lVN1szjh6d5E8Vs8h48A~AtTHu5h2www6JiWYy5l3eKT8Cfl7SDg4f4jJUiwV
L9beAGFEPcLyCe2iBvkF--_9

The values that we need to provide here are the location and the key. The web address above specifies
the comma-separated latitude and longitude value of 51.51128434 and -0.11915781.

Here’s how to modify the detail form from our auto-generated app to use Bing Maps to display the
location of the current record. Like the Google Maps example, open the details form and add a custom card
to the form. Insert an image control and set the image property to the following value:

"http://dev.virtualearth.net/REST/v1/Imagery/Map/Road/"& ThisItem.Latitude & "," & ThisItem.
Longitude & "/15?mapSize=500,500&key=wg9mvoY3hN6AVoUPutnZ~y8lVN1szjh6d5E8Vs8h48A~AtTHu5h2www
6JiWYy5l3eKT8Cfl7SDg4f4jJUiwVL9beAGFEPcLyCe2iBvkF--_9"

Figure 11-7 shows the view of the screen in the designer. We can now run our app and the details screen
will use the Bing Maps API to display a map that corresponds to the latitude and longitude of the current
record. For more information on how to use the Bing Maps API, here’s the link to the help site.

https://msdn.microsoft.com/en-us/library/ff701724.aspx

https://developers.google.com/maps/documentation/static-maps/intro
https://www.bingmapsportal.com/
http://dev.virtualearth.net/REST/v1/Imagery/Map/Road/51.51128434,-0.11915781/15?mapSize=500,500&key=wg9mvoY3hN6AVoUPutnZ~y8lVN1szjh6d5E8Vs8h48A~AtTHu5h2www6JiWYy5l3eKT8Cfl7SDg4f4jJUiwVL9beAGFEPcLyCe2iBvkF--_9
http://dev.virtualearth.net/REST/v1/Imagery/Map/Road/51.51128434,-0.11915781/15?mapSize=500,500&key=wg9mvoY3hN6AVoUPutnZ~y8lVN1szjh6d5E8Vs8h48A~AtTHu5h2www6JiWYy5l3eKT8Cfl7SDg4f4jJUiwVL9beAGFEPcLyCe2iBvkF--_9
http://dev.virtualearth.net/REST/v1/Imagery/Map/Road/51.51128434,-0.11915781/15?mapSize=500,500&key=wg9mvoY3hN6AVoUPutnZ~y8lVN1szjh6d5E8Vs8h48A~AtTHu5h2www6JiWYy5l3eKT8Cfl7SDg4f4jJUiwVL9beAGFEPcLyCe2iBvkF--_9
https://msdn.microsoft.com/en-us/library/ff701724.aspx

Chapter 11 ■ Mapping Data

235

Summary
In this chapter, we looked at how to work with location services. PowerApps provides signals to help us
determine the location, compass, and acceleration values of the current device. The main characteristic of
a signal is that it returns a value that constantly changes. A signal returns a record of information, and the
location signal returns three fields: longitude, latitude, and altitude.

The compass signal enables us to retrieve the current heading using the formula Compass.Heading.
The acceleration signal returns the acceleration of the device in the X, Y, and Z planes.

The best way to save the current location is to store the location value to a local variable and to use the
variable to update the data source. This technique enables us to take a snapshot of a location and to avoid
any inaccuracy that might occur if we choose instead to retrieve the location during the time when we save
the record.

Apps that use location services can quickly drain the battery of a device. We can help preserve the
battery life by calling a function to disable the location signal.

In the final part of this chapter, we looked at how to show Google and Bing Maps on our screens. Both
these services provide a service that returns an image of a map based on arguments that we provide through
the web address. To display the map, we would use an image control to display the result from the mapping
service.

Figure 11-7. Using the Bing Maps API

237© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_12

CHAPTER 12

Using Charts

To help users visualize data, PowerApps offers a range of chart controls. Although these are simple to use, a
difficult challenge is to work out how to convert a set of raw data into a format that enables the chart control
to display our desired view of the data.

For example, a common business requirement is to show how figures change over a given time, for
planning and measurement purposes. However, this type of data aggregation can be difficult to implement
so in this chapter, we’ll find out how to carry out these steps. We’ll also cover a range of useful topics that will
include the following:

•	 Using and configuring charts. We’ll find out what chart controls are available and
how to configure settings such as the legend text, colors, and labels.

•	 Aggregating data. We’ll look at how to group and sum data by date, or by some other
column. To help users compare data, we’ll find out to show multiple series on a
single chart.

•	 Filtering data. We’ll find out how to configure the data on a chart to change
dynamically, depending on criteria that a user enters through screen controls. This
technique provides users with more flexibility to visualize data in ways that can
better aid decision making.

Introduction
PowerApps provides three different chart types – bar, line, and pie. To explore the capabilities of charts in
PowerApps, a great place to begin is to examine the Budget Tracker App. This app features a pie chart, as
shown in Figure 12-1.

https://doi.org/10.1007/978-1-4842-3003-9_12

Chapter 12 ■ Using Charts

238

Because PowerApps is designed for non-developers, the chart controls are intuitive to use. We can
simply add a chart control to a screen and use the designer to set our data source. However, transforming
data into a format that works with the chart controls can often be difficult. So in the first section, we’ll
examine techniques to group and aggregate data. Figure 12-2 shows the layout of the example data that
we’ll use.

This is a simplified version of the journey data from earlier in this book, and highlights more clearly
the users and mileages. This data includes the date of a journey, the name of the person that traveled, the
vehicle that was used, and the mileage that was covered.

Figure 12-1. Budget Tracker Application

Figure 12-2. Example Data for this chapter

Chapter 12 ■ Using Charts

239

Aggregating Data
Taking our example data, let’s start by building a column chart that shows the total mileage traveled by user.
Our target chart will show users along the x axis and the mileage along the y-axis. Figure 12-3 illustrates how
such a chart would look in Excel.

To build this chart, we first need to aggregate our source data. To show the total mileage by user, it’s
necessary to build a data set that resembles the format that’s shown in Figure 12-4.

With PowerApps, it’s not possible to aggregate data with a single command like we would with SQL.
Instead, it’s necessary to apply a series of formulas to gradually transform our data, step by step. In our
example, we would carry out two steps to aggregate our data, as shown in Figure 12-5.

Figure 12-3. Illustration of desired result in Excel

Figure 12-4. Desired format of aggregated data

Chapter 12 ■ Using Charts

240

The first step is to group the data into two columns. The first column contains the user and the second
column contains the remaining columns of data. The second step is to add a third column to store the data
that we want to sum.

Column Chart
Let’s now walk through the steps to add a column chart that displays the data that we discussed above. To
carry out this task, we’ll add the journey data to an app and create a new screen. We’ll then add a button
and attach the formula to aggregate the data line by line. The purpose of this is to enable us to more closely
examine and understand the actions of the formula.

Once we add the journey data and create a screen, add a button and set the text to ‘Show chart’. Next, set
the OnSelect property of the button to the formula beneath:

ClearCollect(
 JourneysByUser,
 GroupBy(Journey, "User", "JourneyDetails")
)

Figure 12-5. Top-level process overview

Chapter 12 ■ Using Charts

241

This formula calls the GroupBy function to group the journey data into two columns. The result of this
function returns a table with two columns. The first column contains the user name and the second contains
the remaining rows. The ClearCollect function stores the output in a collection called JourneysByUser.

Let’s now run our app and click the button. After we click the button, we can return to the designer and
view the result through the collections menu, as shown in Figure 12-6.

From here, we can select the JourneysByUser collection and view the two-column result of the GroupBy
function. A useful feature is the ability expand the JourneyDetails cell, as shown in Figure 12-7. We can use
this to check our data and to make sure that our formula produces the correct values.

Figure 12-6. Viewing the collection in the designer

Figure 12-7. View the collection

Chapter 12 ■ Using Charts

242

Let’s complete our formula so that it returns the total mileage by user. Select the button and modify the
OnSelect property to include an additional line to calculate the total, like so:

ClearCollect(
 JourneysByUser,
 GroupBy(Journey, "User", "JourneyDetails")
);

ClearCollect(
 MileageByUser,
 AddColumns(JourneysByUser,
 "Total Mileage",
 Sum(JourneyDetails, MileageInMiles)
)
)

We can now run our app and click the button once again. Like before, we can return to the designer
afterward and view the result in the collections menu, as shown in Figure 12-8.

The additional line in this formula adds a column called "Total Mileage" to the JourneysByUser
collection. The third argument to the AddColumns function specifies the value to set for each row. Here, we
call the sum function to calculate the sum of the Mileage field for the user.

To clarify the usage of the Sum function, the first argument specifies the source data - JourneyDetails.
JourneyDetails is the child table in the JourneysByUser collection that contains the journey details for an
individual user.

At this stage, we now have a set of data that we can use to populate a chart.

Creating a Chart
Now that we’ve built our aggregated source data, let’s now examine the steps to create a chart. The first step
is to add a new screen; let’s call this ChartScreen. Next, use the Insert menu to add a chart control to the
screen. The chart control is a composite control that consists of three items: a chart, title, and legend. The
items property of the chart object specifies the source data for the chart. Set this to MileageByUser, as shown
in Figure 12-9.

Figure 12-8. View the collection

Chapter 12 ■ Using Charts

243

To display a chart that’s based on data in a collection, there’s a specific process that we need to follow.
It’s necessary to build the data in the collection before we open the screen that houses the chart control.
If we use formula to build the data collection on the same screen that contains the chart control, the chart
control won’t refresh itself to show the latest data from the collection.

To apply this technique, select the ‘Show Chart’ button from our previous screen and amend the
OnSelect property to add an extra line to open the chart screen, like so:

ClearCollect(
 JourneysByUser,
 GroupBy(Journey, "User", "JourneyDetails")
);

ClearCollect(
 MileageByUser,
 AddColumns(JourneysByUser,
 "Total Mileage",
 Sum(JourneyDetails, MileageInMiles)
)
);

Navigate(ChartScreen,ScreenTransition.Fade)

At this point, we can run our app and click the ‘Show Chart’ button to open the chart screen and to view
the column chart.

To enhance our example, let’s suppose that we don’t want to initiate a chart through the click of a
button and to open the result in a new screen. Is that any way to accomplish this? The answer to this is yes,
and there are a couple of techniques that we can use. The first is to use the table function, and we’ll explore
this later in the chapter. The second is to avoid the use of collections and to set the items property of the
chart control to the pertinent formula that builds the collections. In our example, we would set the items
property of the chart control to the formula shown here:

Figure 12-9. Adding a chart control

Chapter 12 ■ Using Charts

244

AddColumns(GroupBy(Journey, "User", "JourneyDetails"),
 "Total Mileage",
 Sum(JourneyDetails, MileageInMiles)
)

In most cases, it’s still very useful to build our initial formula with collections because it enables us to
use the collections designer to visualize the actions of our formula.

Setting Legends
A standard practice is to use legends to identify the data in the charts. By default, the chart control includes
a legend. However, you’ll notice in Figure 12-9 that the legend shows the series name, ‘Total Mileage’. While
this can be useful in some circumstances, a better use of the legend in this example is to show the user name.
To accomplish this, set the items property of the legend to the data source of the chart (MileageByUser), and
set the value to user, as shown in Figure 12-10.

When we now run our screen, the legend will display the user names, rather than the series name.

Setting Label Orientation
By default, the labels on the x axis are slanted by 60 degrees to better accommodate charts with multiple
items on the X axis. For charts with fewer items, we can change the angle of the label with the XLabelAngle
property, as shown in Figure 12-11.

Figure 12-10. Setting the legend text

Chapter 12 ■ Using Charts

245

Applying Colors and Styles
The chart control applies a default set of colors that are defined through the ItemColorSet property, as
shown in Figure 12-12. This property contains an array of colors, and we can modify these values to change
the colors of the items in the chart.

Figure 12-11. Setting the label orientation

Figure 12-12. Setting the chart colors

Other useful properties we can set include the grid style, marker suffixes, the width of the gap between
the bars, and the minimum and maximum values in the scale, as shown in Figure 12-13.

Chapter 12 ■ Using Charts

246

Pie Chart
Another type of chart that PowerApps supports is the pie chart. The process of creating a pie chart is mostly
identical to the column chart. The pie chart is also a composite control that includes a chart, legend, and
title. Like the column chart control, the items property of the chart control defines the data source, and we
can also configure items such as colors and legend items in the same way.

Let’s look at how to set up a pie chart that displays the same data as before (that is, the total mileage by
user). On our chart screen, remove the column chart and insert a pie chart control. Set the items property of
the control to the MileageByUser collection, as shown in Figure 12-14.

Figure 12-13. Some of the chart items that we can configure

Chapter 12 ■ Using Charts

247

We can now run our app and view the pie chart. One useful property we can set is the explode property.
This setting explodes the sections of the chart to provide a visual effect that highlights the segments of the
chart

Line Charts
The third chart type that we’ll look at is the line chart.

Grouping Data by Month
To demonstrate how to create a line chart and to illustrate a common charting requirement, here’s how to
create a chart that groups data by date. We’ll build a line chart that displays the mileage traveled by users by
month, and we’ll walk through this process step by step.

The line chart control works similarly to the column and pie chart controls. The control requires a data
source so the first task is to devise a formula that aggregates our journey data into a structure that shows
a sum of mileage by month. The technique that we’ll use incorporates the use of the table function. We’ll
use this function to build a table that contains two columns: month name, and total mileage. This table will
contain 12 rows, one for each month of the year. Here’s the formula to build this table:

Table(
 {Month:"Jan",
 Mileage:Sum(Filter(Journey, Month(StartDate)=1 && Year(StartDate)=2017),
 MileageInMiles)},
 {Month:"Feb",
 Mileage:Sum(Filter(Journey, Month(StartDate)=2 && Year(StartDate)=2017),
 MileageInMiles)},
 {Month:"Mar",
 Mileage:Sum(Filter(Journey, Month(StartDate)=3 && Year(StartDate)=2017),
 MileageInMiles)}
)

Figure 12-14. Setting up a pie chart

Chapter 12 ■ Using Charts

248

For brevity, this formula shows only the data for the first three months. However, we can easily adapt
the formula to add the remaining rows from April to December. For each additional row, we would need to
set the month name and amend the filter function to filter by the relevant month and year values.

The next step is to add a line chart control to a screen and to set the items property to the formula that’s
shown above. Figure 12-15 illustrates the appearance of this chart control in the designer.

Showing Chart Data Dynamically
The beauty of setting the items property of a chart control to a formula that uses the table function is that we
can reference external controls. We can use this feature to build charts that derive data from user selections.
In this example, we could provide a drop-down box of years, and allow the user to filter the chart data by
year. To accomplish this, add a drop-down control to your screen and set the items property to an array of
year values. Name this control DropdownYear. Now modify the items property of the chart control so that it
filters the data by the selected year, as shown below.

Table(
 {Month:"Jan",
 Mileage:Sum(Filter(Journey,
 Month(StartDate)=1 &&
 Year(StartDate)= Value(DropdownYear.Selected.Value)),
 MileageInMiles)},
 {Month:"Feb",
 Mileage:Sum(Filter(Journey,
 Month(StartDate)=2 &&
 Year(StartDate)= Value(DropdownYear.Selected.Value)),
 MileageInMiles)},

Figure 12-15. Setting up a line chart

Chapter 12 ■ Using Charts

249

 {Month:"Mar",
 Mileage:Sum(Filter(Journey,
 Month(StartDate)=3 &&
 Year(StartDate)= Value(DropdownYear.Selected.Value)),
 MileageInMiles)}
)

Figure 12-16 shows the appearance of this chart in the designer. We can now run our app and use the
drop-down to change the year.

Showing Multiple Series
The chart controls support up to nine series and we can use this feature to display multiple groups of data on
a chart. To demonstrate the application of multiple series, here’s how to build a line chart that displays the
mileage traveled by each user, by month.

This technique requires us to construct a data source that breaks down the mileage by month and user.
Figure 12-17 shows the target layout that we’re aiming for, based on a larger set of records.

Figure 12-16. Dynamically changing the data in a chart

Figure 12-17. Example data structure for multiple series

Chapter 12 ■ Using Charts

250

To build this data structure, we would use the table function as shown beneath.

Table(
 {Month:"Jan",
 Tim: Coalesce(
 Sum(Filter(Journey, Month(StartDate)=1 && Year(StartDate)= 2017 &&
 User="Tim"),
 MileageInMiles
),0),
 John: Coalesce(
 Sum(Filter(Journey, Month(StartDate)=1 && Year(StartDate)= 2017 &&
 User="John"),
 MileageInMiles
),0),
 Sally: Coalesce(
 Sum(Filter(Journey, Month(StartDate)=1 && Year(StartDate)= 2017 &&
 User="Sally"),
 MileageInMiles
),0)
 },
 {Month:"Feb",
 Tim: Coalesce(
 Sum(Filter(Journey, Month(StartDate)=2 && Year(StartDate)= 2017 &&
 User="Tim"),
 MileageInMiles
),0),
 John: Coalesce(
 Sum(Filter(Journey, Month(StartDate)=2 && Year(StartDate)= 2017 &&
 User="John"),
 MileageInMiles
),0),
 Sally: Coalesce(
 Sum(Filter(Journey, Month(StartDate)=2 && Year(StartDate)= 2017 &&
 User="Sally"),
 MileageInMiles
),0)
 },
 {Month:"Mar",
 Tim: Coalesce(
 Sum(Filter(Journey, Month(StartDate)=3 && Year(StartDate)= 2017 &&
 User="Tim"),
 MileageInMiles
),0),
 John: Coalesce(
 Sum(Filter(Journey, Month(StartDate)=3 && Year(StartDate)= 2017 &&
 User="John"),
 MileageInMiles
),0),
 Sally: Coalesce(
 Sum(Filter(Journey, Month(StartDate)=3 && Year(StartDate)= 2017 &&
 User="Sally"),

Chapter 12 ■ Using Charts

251

 MileageInMiles
),0)
 }
)

The first step is to set the items property of a chart control to this formula. Next, set the ‘number of
series’ property to three, and select the user names from the series drop-downs, as shown in Figure 12-18.
At this stage, we can run our app and view the chart.

Figure 12-18. A chart that shows multiple series of data

Within this formula, one function that we’ve not come across is the Coalesce function. This useful
function accepts any number of arguments, and returns the first non-blank value. We use the Coalesce
function here to return 0 rather than a blank value in the case where no records exist when the formula
attempts to sum the mileage for a given user during a specific month.

 ■ Caution With all the examples in this chapter, remember that unless we use an sQL server data source
and call functions that are delegable, powerapps will impose a 500-record limit on the data that it returns. if
more than 500 rows exist in our source data, any aggregate calculations that we perform may not be accurate.

Chapter 12 ■ Using Charts

252

Summary
PowerApps provides the following three chart controls: bar, line, and pie. In this chapter, we looked at how to
use all three of these controls.

The chart controls are straightforward to use. The most difficult part is to aggregate the data in a way
that is suitable for the chart control. The typical way to build source data for a chart is to use formulas
that call the GroupBy and Sum functions. In this chapter, we saw several examples of how to apply this
technique.

The first chart type that we looked at was the column chart. To demonstrate this control, we built a chart
to show a summary of miles traveled by user. To transform our source data into a structure that contains the
sum of miles traveled by each user, we carried out our actions step by step and used collections to save our
progress. The collections section of the designer enables us to view the result of our actions and we can use
this to make it easier for us to build complex formula.

When we use a collection as a data source for a chart, it’s necessary to build the data in the collection
before we open the screen that houses the chart control. To avoid the need to initialize chart data through
a button click or user action, we need to avoid the use of collections as the data source for a chart. One
technique to accomplish this is to set the data source of a chart to a formula that’s based on the table
function. When we call the table function, we can refer to controls on a screen, and we can use this
technique to build charts that update automatically depending on criteria that the user enters.

In the final part of this chapter, we looked at how to create a line chart. In our example, we looked at
how to summarize data by month. We then used the table function to build a formula to transform the data
into a structure that the line chart control can use to display multiple series - one line for each user.

253© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_13

CHAPTER 13

Securing Apps

The ability to secure apps and data is important, particularly given the ease with which we can build apps
that connect to sensitive commercial data. In this chapter, we’ll investigate how to keep our apps and data
safe. The techniques that we’ll cover will include the following:

•	 How to strengthen the login process. We’ll find out how to authenticate users based
on one-time SMS text message codes. This provides a higher level of security,
compared to using usernames and passwords.

•	 How to secure data. We’ll look at how to grant or deny user access to underlying CDS
or SharePoint data sources. We’ll also find out how to secure access to individual
records. This technique is useful because we can restrict users to viewing only the
records that they create. In this section, we’ll also look at how to secure access to
screens and features.

•	 How to prevent data leakage. With the help of data loss prevention policies, we’ll find
out how to stop users from copying data from internal on-premise data sources to
external cloud data sources.

Authentication
Let’s start by looking at the way that users log into PowerApps. Users use Microsoft Work Accounts to log in
into PowerApps. To maintain security, it’s important for users to choose strong passwords and to guard their
credentials. But is there anything more to further secure the authentication process?

The answer to this question is yes. A great feature that Office 365 offers is multi-factor authentication.
With this feature, the system sends an SMS text message to the user during each login attempt. This message
includes a code and the login attempt succeeds only when the user enters the correct code. This can protect
apps against malicious users who try to guess passwords, or more sophisticated attackers who attempt to
carry out brute force dictionary attacks. It can also protect against usernames and passwords that might have
been compromised through keystroke loggers or other malware.

We can apply multi-factor authentication to specific users through the Office 365 admin center. To set
this up, the first step is to locate the user in the Admin center, as shown in Figure 13-1.

https://doi.org/10.1007/978-1-4842-3003-9_13

Chapter 13 ■ SeCuring appS

254

The bottom part of this screen shows a link with the title ‘manage multi-factor authentication’.
This opens a separate page to complete the setup of multi-factor authentication. With this setting
enabled, PowerApps will prompt the user to provide a phone number at the next login attempt, as
shown in Figure 13-2. From this point onward, the user will be prompted for additional verification on
each login.

Figure 13-1. Setting up multi-factor authentication

Chapter 13 ■ SeCuring appS

255

Role-Based Security
In addition to strengthening the authentication process, we can also configure security at the data source
level. A common requirement is to apply different sets of permissions to different groups of users. A typical
setup is to grant certain users with full edit permissions to data, and to grant other users with read-only
access. In this section, we’ll look at how to implement user-level permissions in apps with CDS or SharePoint
data sources.

Securing the CDS
With CDS data sources, the environment section of the Admin center enables us to configure settings for
each individual environment, as shown in Figure 13-3.

Figure 13-2. The user will be prompted to provide a phone number

Figure 13-3. Security settings that apply to environments

Chapter 13 ■ SeCuring appS

256

There are three items in the security section - Environment roles, User roles, and Permission sets.
Environment roles control the management of the environment and define the users that can create and
administer entities in the CDS database. There are two fixed environment roles - Environment Admin and
Environment Maker. Users who belong to the Environment Maker role can create and view all apps in an
environment, and can carry out tasks in the CDS database. Users who belong to the Environment Admin role
have full control over the environment.

The User roles and Permissions sets options control runtime access to the content in the CDS
database.

Granting Read and Write Access to Entities
Let’s walk through how to grant certain users full access to an entity, while restricting other users to
read-only access. The objects that define user-level access to entities are user roles and permission sets.

User roles are containers for groups of users, whereas permission sets allow us to define create, read,
update, and delete permissions on entities.

To demonstrate, let’s imagine that we’ve built an app that’s based on the journey entity and that three
active users exist - Tim, Jenefer, and Jill. The aim of this exercise is to grant Tim and Jenefer full access to the
data, and to restrict Jill with read-only access.

The first step is to create two permission sets. Name the first permission set ‘Maintain Journey Data’ and
grant create, read, update, and delete permissions for the journey entity, as shown in Figure 13-4.

Now create a second permission set called ‘View Journey Data’ and grant read access only to the
journey entity.

The next step is to create a set of user roles. Let’s call these ‘Company Managers’ and ‘Company
Viewers’. For the ‘Company Managers’ role, add the ‘Maintain Journey Data’ permission set and add the
users Tim and Jenefer, as shown in Figure 13-5. For the ‘Company Viewer’ role, add the ‘View Journey Data’
permission set and add the user Jill.

Figure 13-4. Setting up the ‘Maintain Journey Data’ permissions set - grant full access to the journey entity

Chapter 13 ■ SeCuring appS

257

The completes the configuration of the data source and later in this chapter, we’ll look at how to use
formula to verify these permissions.

Securing SharePoint Lists
Let’s now look at how to implement role-level access for a list in SharePoint Online. SharePoint security
is a large topic, so we’ll cover just the basic steps of granting certain users full edit access to a list, while
restricting other users to read-only access.

SharePoint provides groups that are defined at a site level. Groups are containers for users. Against each
group, we can assign a permission level. The permission level defines the actions that are permitted, and we
can use this to grant read, edit, or delete permissions on list items.

To demonstrate, let’s set up SharePoint groups for ‘Company Managers’ and ‘Company Viewers’, just like
our CDS example. To create a group, use the cog icon to open the ‘Site Settings’ page. From here, click the ‘Site
Permissions’ link. Click the ‘Create Group’ button in the ribbon bar (Figure 13-6) to create the new groups.

Figure 13-5. Setting up the ‘Company Managers’ user role

Figure 13-6. Creating a new SharePoint group

Chapter 13 ■ SeCuring appS

258

When we create a new group, we can associate a permission level with the group. In the case of
our ‘Company Managers’ group, we can set the permission level to Edit, as shown in Figure 13-7. This
permission level provides members with the ability to add, update, and delete list items. We can set the
permission level of our ‘Company Viewers’ group to Read, to provide read-only access to list items.

After creating the ‘Company Managers’ and ‘Company Viewers’ groups, we can open the group and add
members, as shown in Figure 13-8.

By default, the lists in SharePoint will inherit the site-level permission settings. It’s possible to define a
custom set of permissions for each list. To do this, open the SharePoint list that you want to protect and use
the gear icon to open the list settings page. From this page, click the link that’s titled ‘permissions for this list’.
When this page opens, click the ‘stop inheriting permissions’ button. We can then use this page that’s shown
in Figure 13-9 to assign permission levels against each group.

Figure 13-7. Specifying permissions of a group

Figure 13-8. Adding users to the ‘Company Managers’ group

Chapter 13 ■ SeCuring appS

259

A very useful feature on this screen is the Check Permissions button. Because a user can belong
to multiple groups, it can be difficult to determine the exact permissions that a user has. The Check
Permissions button allows us to easily see the effective permissions of a user.

The built-in permission levels that we’ve used are adequate for most scenarios. For more granular
control, we can create custom permission levels. For example, the built-in edit permission level enables
members to add, update, and delete list items. If we want to allow members to add and update but not delete
list items, we would need to create a custom permission level. The place to create a custom permission
level is through the Site Settings ➤ Site permissions menu item at the root level. From here, we can click the
permission levels button in the ribbon bar to open the page that enables us to create a custom permission
level.

On-Premises SharePoint
For on-premise SharePoint data sources, we can use the same procedure to set up role-level security. Note
that PowerApps does not share SharePoint data connections. When a user runs an app with a SharePoint
data source, the initial screen prompts the user to enter their SharePoint credentials. Therefore, the
connection to SharePoint will take place under the security context of the credentials that the user enters.

Verifying Permissions Within an App
All apps will enforce the permissions at the data source level. When we build an auto-generated app against
a data source with user-level permissions, the app disables any features that the user does not have access
to. For example, the app disables the icon that opens the record entry screen if the user has insufficient
permissions to add records to the data source.

As shown in Figure 13-10, the add record icon includes formula that disables the control in this
scenario. This formula relies on a function called DataSourceInfo. This function enables us to verify the
permissions of a user. Table 13-1 shows the example usage of this function.

Figure 13-9. Assigning custom permissions for a SharePoint list

Chapter 13 ■ SeCuring appS

260

The DataSourceInfo function expects two arguments - the data source name, and an argument that
defines the permission that we want to check. The function returns a true/false value to indicate whether the
logged-in user has been granted the specified permission.

Disabling Icons and Buttons
Let’s take a closer look at the technique to disable buttons and controls. As Figure 13-10 shows, we can use
the DisplayMode property to disable a control. There are actually two places in the designer where we set
this property. In addition to the DisplayMode text box in the advanced section of the properties pane, we can
also set the display mode through a drop-down in the main properties section, as shown in Figure 13-11.

Table 13-1. DataSourceInfo

Example Call Description

DataSourceInfo(Journey, DataSourceInfo.
ReadPermission)

Returns whether the logged-in user can read
journey records

DataSourceInfo(Journey, DataSourceInfo.
EditPermission)

Returns whether the logged-in user can edit journey
records

DataSourceInfo(Journey, DataSourceInfo.
CreatePermission)

Returns whether the logged-in user can create
journey records

DataSourceInfo(Journey, DataSourceInfo.
DeletePermission)

Returns whether the logged-in user can delete
journey records

Figure 13-11. The DisplayMode property of a control

Figure 13-10. The new record icon refers to the create permission

Chapter 13 ■ SeCuring appS

261

As you can see, this drop-down can take one of three values: Disabled, Edit, or View. You might be
curious as to what the difference is between these three settings. What exactly is the difference between Edit
and View? The View setting disables a control and prevents it from running the formula that is attached to
the OnSelect property. However, the control will not look disabled to the user - it will appear like a working
control. The Edit setting configures a control to be fully functional. The Disabled setting configures a control
to look disabled, and it will prevent the control from running the formula that is attached to the OnSelect
property.

In cases where we want to set the display mode of a control conditionally, we would add formula to
display mode text box, rather than use the drop-down.

Configuring Record-Level Access
PowerApps provides no built-in way to apply security at a record level. However, we can devise our own
methods to authorize access at a record level. In this section, we’ll look at how to restrict access to individual
records in CDS or SharePoint Online data sources. To demonstrate a typical requirement, here’s how to build
an app where users can create new records and modify their own records, but not edit records that were
created by other users.

Setting Up the Data Source
We can easily implement this requirement in apps that are based on CDS and SharePoint Online data
sources because these data sources record the created by and last modified user details automatically, as
shown in Figure 13-12. In this screenshot, notice how PowerApps use a globally unique identifier (GUID) to
identify the created by and last modified users.

Figure 13-12. The CDS stores the GUID of the ‘created by’ and ‘last modified’ users

Chapter 13 ■ SeCuring appS

262

Getting the Logged On User
To apply any type of record-level security, we need to know who the currently logged-on user is. Through the
User function, we can obtain the email address and full name of the current user, as shown in Figure 13-13.
Note that the user function can return the profile image for the user but at the time of writing, this feature
does not work correctly. You can find out more details here:

https://powerusers.microsoft.com/t5/PowerApps-Forum/user-image/td-p/4460

We can use the email address to uniquely identify the logged-on user. But to retrieve the GUID of a user,
we need to carry out an additional step. The step is to add a data source with the Office 365 Users connector,
which is a connector that enables us to retrieve and to update Office 365 profiles, as shown in Figure 13-14.

After we add this data source, we can convert an email address to the GUID value using the formula
below:

Office365Users.UserProfile("tim@timleung.co.uk").Id

To convert a user id GUID to an email address, the formula we would use is this:

Office365Users.UserProfile("f773deca-bc6d-45ac-8877-7060cf191398").Mail

Figure 13-14. Adding a connection to the Office 365 Users data source

Figure 13-13. The user function returns the currently logged-on user.

https://powerusers.microsoft.com/t5/PowerApps-Forum/user-image/td-p/4460

Chapter 13 ■ SeCuring appS

263

Filtering Records by the Logged On User
Now that we have a method to retrieve the GUID of the logged-on user, we can modify the gallery controls
in our apps to show only the data that relates to the logged-in user. To filter the gallery control in the browse
screen in an auto-generated app that’s based on a CDS data source, we would filter the data source by the
‘created by user’. It’s a good idea to retrieve current user id into a variable to improve performance and to do
this, here’s the formula we would add to the OnVisible property of a screen.

UpdateContext({CurrentUserID:Office365Users.UserProfile(User().Email).Id})

We could then apply the filter function to the Items property of our gallery control with the formula
shown beneath:

Filter(Journey, CreatedBy= CurrentUserID)

To clarify why it’s more efficient to use a variable when filtering data, Figure 13-15 shows the warning
that appears when we apply the formula to look up the current user’s id inline. With this syntax, PowerApps
cannot delegate the filter expression to the CDS and will filter the data locally.

In situations where we want to refer to the current user id frequently, an alternative is write the formula
that looks up the current user id in the StartUp property of the first screen and to store the value in a
collection. This makes the value more readily available and saves us from calling the Office 365 data source
multiple times. However, one slight awkwardness is that it’s not possible to run the StartUp formula in
PowerApps studio, and this behavior can make it more difficult to design our apps.

To prevent users from updating records that were created by other users, we can write formula to
disable the save icon on the edit screen. To do this, set the value of the CurrentUserID variable in the
OnVisible property of the screen. Next, set the display mode property of the icon to the following formula:

If(
 If(EditForm1.Mode = FormMode.Edit,
 Not(BrowseGallery1.Selected.CreatedByUser = CurrentUserID),
 false
),
 DisplayMode.Disabled,
 DisplayMode.Edit
)

Figure 13-15. Filtering a gallery control by the logged-on user

Chapter 13 ■ SeCuring appS

264

This formula ensures that the icon will always be enabled when a user creates a new record, and
Figure 13-16 illustrates the view of this screen in the designer.

For more granular control, we can create a table to store the users that are permitted to view, update, or
delete each individual record in a table. We would also apply a similar technique for data sources other than
the CDS or SharePoint online, because these data sources do not automatically store the record owner.

Whenever we customize record-level access, we should consider whether the user can circumvent the
rules in our app by accessing the data source outside of PowerApps. If the user can access the data outside of
PowerApps, this can undermine the efforts that we make in PowerApps to secure our data.

Creating Data Loss Prevention Policies
With the help of DLP (Data Loss Prevention) policies, we can prohibit users from copying sensitive company
data to unintended destinations. To give an example, some companies might want to prevent users from
copying on-premise SQL Server data to a spreadsheet that’s hosted in OneDrive. DLP policies protect
data by grouping data sources into two groups: business data and non-business data. Policies prevent app
builders from mixing data sources from different groups in the same app.

To demonstrate, here’s how to build a DLP policy to isolate SQL Server and SharePoint data sources.
To create a DLP Policy, select the Data Policies menu item from the Admin Center and click the New policy
button at the top of the screen. This opens the screen that’s shown in Figure 13-17.

Figure 13-16. Disabling the save button

Chapter 13 ■ SeCuring appS

265

Note that we can set the name of a policy through the section at the top of the screen. This section might
look like a read-only label, but the text is editable.

In the ‘Data groups’ section, use the add button to add the SQL Server and SharePoint connectors to the
‘Business data only’ group as shown in Figure 13-18.

Figure 13-18. Adding connectors to the business data only group

Figure 13-17. Creating a data loss prevention policy

Chapter 13 ■ SeCuring appS

266

Testing a DLP Policy
Now that we’ve implemented a DLP policy, let’s see what happens when we attempt to build an app that
includes SQL Server and OneDrive data sources.

To test our policy, create an auto-generated app based on an SQL Server data source. Now try to add a
data source to an Excel spreadsheet from OneDrive. When we attempt to add this connection, PowerApps
shows a warning and prevents us from adding the data source, as shown in Figure 13-19. This confirms that
our DLP policy has worked.

An interesting question is, can PowerApps apply policies retrospectively? For instance, if we have an
existing app that contains both SQL Server and OneDrive data sources, would any new policy that we create
apply to the existing app? The actual behavior is interesting. If we were to apply a policy retrospectively, the
existing app will still run. However, PowerApps Studio will hang when we attempt to open the app and this
behavior will prevent us from editing existing apps.

Summary
In this chapter, we looked at techniques to secure our apps and data. Users log on to PowerApps using
a Microsoft Account, and therefore, the security of an app relies on these credentials. To further secure
accounts, administrators can configure multi-factor authentication. With this setting enabled, users will only
be able to log on after entering an SMS code.

With CDS and SharePoint data sources, we can apply role-based security to restrict the actions that
specific users can carry out. For instance, we can grant certain groups of users full access, while restricting
other groups of users to read-only access. With CDS databases, we use permission sets to grant create, edit,
read, and delete permissions on entities. We then associate permission sets with user roles. User roles are
containers for users. With SharePoint, we can also group users and to apply custom permissions.

For data sources that don’t natively support role-based security, we can implement a custom approach
to permissions. Such an approach relies on us knowing who the logged-in user is and we can determine this
by calling the User function. This function returns the email address and we can use this to uniquely identify
the logged-on user.

Figure 13-19. Data loss prevention policy warning

Chapter 13 ■ SeCuring appS

267

There is no built-in method to apply record-level permissions so once again, we would need to
build our own scheme. CDS and SharePoint make this task slightly easier because these data sources
automatically store the user id of the user that created the record, and the user id of the user that last
modified the record. To interpret these user ids, we can use the Office 365 Users connector to convert user
ids to email addresses, and email address to user ids.

Finally, we can protect data with the use of data loss prevention policies. DLP policies group data
sources into business and non-business groups. A DLP policy prevents users from creating a single app that
includes data sources from both the business and non-business groups.

PART III

Maintaining Your Application

271© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_14

CHAPTER 14

Importing and Exporting Data

Getting data in and out of PowerApps is useful because it enables apps to integrate with wider business
processes.

Exporting data is particularly useful for reporting and backup purposes. Importing data can be very
useful for data migration purposes, or for setting up apps for first-time use.

The are several ways to import and export data from PowerApps. These techniques may appear
straightforward, but beyond the simple task of working with a single table of data, there are some difficult
challenges that we can face. To import sets of related data, how do we maintain the linkages between
parent and child records? If we import data to a system that contains existing records, how do we build a
synchronization process to add nonexistent records and to update the existing records? This chapter will
answer these questions. Other topics of specific interest will include the following:

•	 How to provide import and export capabilities to end users. We can add import and
export controls to screens; however, it’s not obvious how these controls work. In this
chapter, we’ll find out exactly how to use these controls.

•	 How to work with CDS data sources. We’ll find out how to use an administrative
feature in the portal to import and export data. We’ll also examine tips that can help
us resolve import failures.

•	 How to work with Excel. With the help of an Excel add-in, we can view, copy, and
edit CDS data directly from a spreadsheet. We’ll find out exactly how this works.

Using the Import and Export Controls
To enable users to import and export data from within an app, PowerApps provides two controls - an
import control and an export control. We can add these controls through the Controls menu, as shown in
Figure 14-1.

https://doi.org/10.1007/978-1-4842-3003-9_14

Chapter 14 ■ ImportIng and exportIng data

272

These controls provide a simple way for end users to back up, and restore data and to demonstrate
this feature, we’ll build a screen that users can use to import and export records from our sample data.
For simplicity, we’ll base our examples on an Excel data source.

As a brief overview, the export control displays a button that the user can click. The user can click
this button to download and save an export file to the local file system. The export control produces a
compressed zip file that contains data in XML format. We can specify the data that we want the control to
export. This could include all records from a data source, or a filtered subset of data.

The import control displays a button. When a user clicks the button, the control prompts the user to
select an export file. From within an app, we can write custom formula to work with the data that the user
uploads. We can patch this input data to a data source, or we can carry out other custom tasks with this data.

Exporting Data
To demonstrate the import and export controls, we’ll build an app to export and import data from the table
of vehicle makes. The first step is to create an app and to add a connection to the data source. Next, create
a new screen and insert an export control. Use the data property to specify the data to export, as shown in
Figure 14-2. In this example, the name of the data source is VehicleMake.

Figure 14-1. Adding the Import and Export controls to a screen

Figure 14-2. Specifying the data

Chapter 14 ■ ImportIng and exportIng data

273

The Data property of this control defines the data to export. We can set the value of this to a table or we
can call functions like Filter, Search, or Lookup to limit the export data.

At this point, let’s run our app and examine what happens. When we click the export button, PowerApps
opens a save dialog and prompts us to save the output to a local file location. We can use this file later with
the import control.

The export file that PowerApps produces is a compressed zip file that contains three separate files,
as shown in Figure 14-3. The main file that contains the data is called data.xml. It’s possible to modify
the contents of this file in a text editor. If we were to modify the contents manually, we would need to
recompress the file with the header and schema files before importing it into PowerApps.

 ■ Note note that the export button does not work when powerapps runs in a browser.

Importing Data
Let’s now examine the import control. This control allows us to import the data that we exported with the
export control, and there are two broad ways for us to handle the input data. The first is to add the input data
as new rows in the target data source. The second is to add only the records that don’t exist in the destination
data source and to update the records that do exist. For both approaches, the initial step is to add an import
control to our screen. By default, the name of the control that we add to a screen is Import1.

Importing New Records
To configure the import control to add new records to the data source, add the following formula to the
OnSelect property.

ClearCollect(ImportedData, Import1.Data);
Collect(VehicleMake, ShowColumns(ImportedData, "MakeID", "Name")

Figure 14-4 shows this control in the designer.

Figure 14-3. The extracted contents of the export file

Chapter 14 ■ ImportIng and exportIng data

274

The initial line in this formula calls the ClearCollect function to store the imported data in a collection
called ImportedData. The data property of the import control (Import1.Data) returns the contents of the
input file. The second line calls the Collect function to insert the records from the ImportedData collection
into the VehicleMake data source.

In cases where the destination data source is an Excel spreadsheet, it’s important to call the
ShowColumns function to define strictly the fields to import. The reason for this is because our export file
contains the entire VehicleMake table. Because of this, the export file also includes data from a system
field called ' __PowerAppsId__ '. If we were to call the collect function directly against this data, the save
operation would fail silently when it attempts to insert values for the ' __PowerAppsId__ ' field. Therefore,
we must exclude the ' __PowerAppsId__ ' field by calling either the ShowColumns or DropColumns
functions.

If the destination data source were a database table with server-generated fields such as
auto-incrementing identity values, we would also apply the same technique to exclude these fields during an
import.

At this point, we can run our app and import our export file. If all goes well, the operation will append
the input data into the target data source.

 ■ Caution When calling the Collect function, be very careful to spell the data source correctly. If you spell
the data source incorrectly, the function collects the data to a new local collection that matches the incorrect
spelling. at this point, it’s easy to spend ages trying to work out why the function didn’t add the records to the
desired data source.

Inserting and Updating Data
Let’s now configure the import control to add only the records that don’t exist in the destination data source
and to update the records that do exist. We can accomplish by calling the patch function to the update the
existing records, followed by the collect function to add the nonexistent records. This example works on
the basis that the MakeID field uniquely identifies each record. Here’s the formula that we would add to the
OnSelect property of the import control. This formula contains comments to aid clarity. To avoid errors, it’s
important to remove these comments from your actual app.

Figure 14-4. The import control

Chapter 14 ■ ImportIng and exportIng data

275

'Setup the collections of data
ClearCollect(ImportedData, VehicleMake);
ClearCollect(RecordsToUpdate,
 ShowColumns(Filter(ImportedData,
 (MakeID in ShowColumns(VehicleMake, "MakeID")))
 , "MakeID", "Name"
)
);

ClearCollect(RecordsToAdd,
 ShowColumns(Filter(ImportedData,
 Not(MakeID in ShowColumns(VehicleMake, "MakeID")))
 , "MakeID", "Name"
)
);

'Update the existing records
ForAll(RecordsToUpdate,
 Patch(VehicleMake,
 LookUp(VehicleMake, RecordsToUpdate[@MakeID]=MakeID),
 {Name:RecordsToUpdate[@Name]}
)
);

'Insert the new records
Collect(VehicleMake, RecordsToAdd)

The first part of this formula creates collections that contain the records to update and the records to
add. These formulas utilize the in function to return the matching and non-matching records from vehicle
make and import tables, based on the MakeID. The collection that contains the records to update is called
RecordsToUpdate, and the collection that contains the records to add is called RecordsToAdd.

To update the records, the formula calls the ForAll function to loop through the collection of records
to update. For each record in this collection, the formula calls the Patch function to update the data source.
The final part of this formula calls the Collect function to add the nonexistent records.

To clarify this technique, the reason why we initially add the records to add and update to local
collections is for reliably. If we call the patch or update functions on the direct result of an inline filter
operation, the save operation can fail due to the complexity of the expression.

The formula to update the records calls the ForAll function. This function expects two arguments: the
data source to loop over and the action to apply to each row.

The patch function expects three arguments - the data source to update, the source record, and the
destination record. In this example, we call the Lookup function to locate the source record to update. Notice
the use of the disambiguation syntax to distinguish between the MakeID fields in the VehicleMake and
RecordsToUpdate data sources.

One final point to mention is that the patch function can update multiple records, and it’s possible to
call this function in the format that’s shown beneath:

Patch(DataSource, SourceRecords, RecordsToUpdate)

We can use this method to avoid calling the ForAll function and calling the Patch function for each
record. To update the multiple records with the patch function, the data source must have a primary key so
that the function can identify the records to update. Therefore, this technique does not work on Excel data
sources where it’s not possible to define primary key fields, and this is the reason why we use the ForAll
function in this example.

Chapter 14 ■ ImportIng and exportIng data

276

Understanding Import Errors
The process of importing data can be highly susceptible to error. Let’s look at this in more detail.

When a user clicks the import button, the control checks that the file is valid. If the file does not match
the format that PowerApps expects (that is, a compressed file with XML content), PowerApps will display the
error that’s shown in Figure 14-5.

Beyond this, the import control does not carry out any additional validation. In our example, it’s
possible for a user to upload a file of journey records when our import feature expects vehicle make records.
Therefore, one reason why we initially import the data into a collection is to provide us with an opportunity
to cleanse or to transform the data before we save it to the target data source. We can call the Validate
function to verify the data in the collection before we attempt to save it to the data source.

When we develop screens to import data, a good tip is to call the Errors function to display any errors
that might have occurred during the save operation. The formula below returns the first error in the data
source.

First(Errors('[dbo].[VehicleMake]')).Message

Figure 14-6 demonstrates the type of information the we can return when we attempt to import data
into an SQL Server data source. Without the help of this technique, it can be very difficult to determine the
cause of an import failure.

Figure 14-5. Error when a user attempts to import an invalid file

Figure 14-6. Viewing the errors

Chapter 14 ■ ImportIng and exportIng data

277

Importing and Exporting Related Data
We’ll now look at how to export and import multiple sets of data. The way to achieve this is to add the sets of
data to a parent collection and to export this single collection. This process can be particularly useful in data
migration scenarios.

To demonstrate this technique, here’s how to export the vehicle make and vehicle model tables from an
Excel data source and to import the data into a CDS database. Figure 14-7 shows the example Excel data that
we’ll export.

To export our data, the key step is to build a collection that includes both tables. Here’s the formula that
we can attach to the OnVisible property of the screen that contains the export control.

ClearCollect(MakeModelCollection, {Makes:VehicleMake, Models:VehicleModel})

It may seem more obvious to add this formula to the OnSelect action of the export control. However,
this will not work due to timing. The export control exports the data before it runs the formula in the
OnSelect action.

The formula above creates a collection that contains a single record that contains the vehicle make and
vehicle model tables, as illustrated in Figure 14-8.

Figure 14-7. Design of the Excel tables

Figure 14-8. Exporting Collections of data

Chapter 14 ■ ImportIng and exportIng data

278

The next step is to add an export control and to set the data property to MakeModelCollection.

Importing the Data
Figure 14-9 shows the design of the destination tables in the CDS. To adhere to the standard naming
convention that the CDS designer applies, the primary key field of both the vehicle make and vehicle model
entities is PrimaryID. The PrimaryID field is an auto number field, and a feature of this example is to show
how to migrate the old MakeID and ModelID identifiers to new PrimaryID values that the CDS generates.

In this example, the field name of the CDS vehicle model entity that stores the model name is called
ModelName, in contrast to the field name in the Excel data source that was called Name. The reason for
this difference is to demonstrate how to map data when destination field names differ from the source field
names.

To build the import feature, the first step is to add the CDS vehicle make and vehicle model entities
to a new app. Next, add a new screen and insert an import control. Next, set the OnSelect action to the
formula that’s shown beneath. Note that like before, you should remove the comments that are shown in this
formula.

Figure 14-9. The design of the CDS entities that will receive the import data

Chapter 14 ■ ImportIng and exportIng data

279

'Import the data
ClearCollect(ImportedData, Import1.Data);
ClearCollect(VehicleMakesImport, First(ImportedData).Makes);
ClearCollect(VehicleModelsImport, First(ImportedData).Models);

'Add the vehicle make records
Clear(VehicleMakesAdded);
ForAll(VehicleMakesImport,
 Collect(VehicleMakesAdded,
 {MakeIDOriginal:VehicleMakesImport[@MakeID],
 MakeRecordCDS:Patch(VehicleMake,
 Defaults(VehicleMake),
 {Name:VehicleMakesImport[@Name]}
)
 }
)
);

'Prepare the vehicle model records to add
ClearCollect(VehicleModelsToAdd,
 AddColumns(VehicleModelsImport,
 "VehicleMake_",
 LookUp(VehicleMakesAdded,

VehicleModelsImport[@MakeID]=VehicleMakesAdded[@MakeIDOriginal]).
MakeRecordCDS

)
);

Collect(VehicleModel,
 ShowColumns(RenameColumns(VehicleModelsToAdd, "Name", "ModelName"),
 "ModelName","Year", "VehicleMake_"
)
)

Here’s an explanation of this formula. The first part of the formula stores the import data into working
sets of collections. It stores the vehicle makes and models into collections called VehicleMakesImport and
VehicleModelsImport respectively.

Next, the formula loops through the input table of vehicle makes. For each input record, the formula
patches a new record into the CDS vehicle makes entity. It stores the original MakeID value and the new
CDS record in a collection called VehicleMakesAdded. The formula utilizes the return value from the patch
function to retrieve the new CDS record. The reason it’s important to retrieve this is because it provides us
with the new PrimaryId value that corresponds to the MakeID of the original data. We need this later when
we add the related vehicle model records.

Note that PowerApps restricts the functions that we can call from inside the ForAll function. For
example, we can’t set variable values with UpdateContext or collect data with ClearCollect. This is one
reason why this part of the formula relies on the Collect function. To improve performance, PowerApps can
carry out the actions within the ForAll function in parallel. As a result, PowerApps might not add the records
to the CDS in a sequential sequence that matches the import data.

Figure 14-10 shows the result of this part of the formula in the designer.

Chapter 14 ■ ImportIng and exportIng data

280

The next part of the formula builds a collection that contains the vehicle models that we want to add
to the CDS. This collection is called VehicleModelsToAdd and contains the model name and year values
from the input data, and the matching CDS vehicle make record. The formula calls the Lookup function
on the VehicleMakesAdded collection to retrieve this record. Figure 14-11 shows how this collection
appears in the CDS.

The final part of the formula calls the Collect function to add the vehicle model records to the CDS.
Notice the use of the RenameColumns function to enable the formula to add the source field "Name" to
the destination field "ModelName". To specify the vehicle make lookup value, we specify the field name
"VehicleMake_".

Figure 14-11. The collection of vehicle make records to append

Figure 14-10. The collection of newly added records and the original MakeID values

Chapter 14 ■ ImportIng and exportIng data

281

Importing and Exporting CDS Data
Another way to the import and export data from the CDS is to use an administrative feature in the entity
designer. This feature enables us to import and export data in Excel format. We’ll now explore this feature in
greater detail.

Importing Data
There are two relevant buttons that relate to the import of data - the Export template and Import data
buttons. The Export template button generates an empty spreadsheet that we can complete and import
into the CDS. The template generation screen provides the option to choose the fields that appear in the
spreadsheet and it provides the option to generate a spreadsheet that contains only the required fields for
the entity.

Let’s walk through the steps to import vehicle model data from an Excel spreadsheet. First, click the
Export template button to generate a template spreadsheet, as shown in Figure 14-12.

Next, complete the template spreadsheet and save the file to your local machine. Figure 14-13 illustrates
an example of this spreadsheet. This screenshot highlights the method to import lookup values. To set
the vehicle make, we would supply the primary ID value of the associated vehicle make record. So in this
example, we would enter the “VehicleMake_PrimaryID” value.

Figure 14-12. Importing data

Figure 14-13. Complete the Excel spreadsheet with data

Chapter 14 ■ ImportIng and exportIng data

282

The next step is to return to the entity designer and to click the Import data button. This opens a screen
to upload our Excel spreadsheet and to select the worksheet that contains our data. From this screen, we can
open the field mapping settings, as shown in Figure 14-14. If our source spreadsheet did not originate from
the system-generated template, we can use this screen to map the fields from the source Excel spreadsheet
to destination entity fields.

Once we complete these settings, we can click the import button to finalize the import process.

Resolving Error Conditions
In practice, the import process can fail, especially when we attempt to import large quantities of data. There
are many reasons why failures can occur and one main reason is invalid data. For example, the data type of
a source value might not match the data type of the destination field. Also, failures can occur when a data
value exceeds the maximum length of the destination field, or when a data value causes a duplicate in a
destination field that is designed to store unique values. When the import process fails, the screen displays
an error message like the one that’s shown in Figure 14-15.

Unfortunately, the message often provides little to diagnose import errors. Sometimes, the process can
generate an error report that appears in the notifications section. Sadly, the error report can often be blank.

Figure 14-14. Configuring the field mappings

Figure 14-15. Import failure message

Chapter 14 ■ ImportIng and exportIng data

283

In some cases, the import process can fail if the data range of the source spreadsheet contains empty
rows. Therefore, it can help to copy the rows into a new spreadsheet and to import the new spreadsheet.
Alternatively, it can also help to save the spreadsheet in CSV format and to import the CSV file instead. One
final thing that can help is to split the contents of a large spreadsheet into multiple smaller spreadsheets
and to import each spreadsheet individually. The benefit of this technique is that it can help us more easily
identify the exact rows that cause the failure.

Exporting Data
The entity designer provides a button to export data to CSV or Excel formats. There are two ways to access
this feature. We can export the data for a single entity by opening the entity in the designer and clicking
the ‘export data’ button. Alternatively, we can click the ‘export data’ button from the main entities list. This
opens the screen that’s shown in Figure 14-16. We can use this screen to export multiple entities in one go.
When we select this option, the export feature generates a ZIP file that contains separate files for each entity.

Using the Excel Add-In
A useful tool that that can help us work with CDS data is the PowerApps Office Add-in. We can use this to
view, edit, and delete rows in entities. A big benefit of the add-in is that it allows us to take advantage of
the copy and paste features in Excel, and we can use this to quickly add and manipulate data. This add-in
works with Excel 2016 and Excel Online only. To use the add-in with the desktop version of Excel 2016, a
prerequisite is to install the add-in. We can obtain this through the Office Store via the link beneath:

https://store.office.com/en-001/app.aspx?assetid=WA104380330

To demonstrate how to use the add-in, we’ll walk through the steps to open our vehicle make entity in
Excel Online. First, open the entity designer and click the ‘open in Excel’ button. This button initiates the
download of an Excel file. Save this file locally and upload it to OneDrive for Business. The reason why we
choose OneDrive for Business is because this service uses Microsoft Work Accounts for authentication. The
PowerApps add-in authenticates to the CDS with a Microsoft Work Account and by running Excel Online
under the same security context as the add-in, we can avoid potential problems where the add-in fails to
connect to the CDS.

Figure 14-16. Exporting data to Excel

https://store.office.com/en-001/app.aspx?assetid=WA104380330

Chapter 14 ■ ImportIng and exportIng data

284

After uploading our spreadsheet to OneDrive for Business, we can open our spreadsheet directly from
our browser. The add-in appears in the right-hand side of the screen, as shown in Figure 14-17. We can
click the new icon to add a new row to our entity. If we make any changes to existing rows, we can click the
publish icon to save our changes.

Importing Static Data
In cases where we want to access static read-only data, we can import Excel data directly into an app. To
import an Excel file, the first step is to define the data as a table and to give it a meaningful name, just like we
would for any other Excel data source.

The next step is to click the ‘add static data to your app’ item from the data sources list, as shown
in Figure 14-18. This opens a file dialog that we can use to select our Excel file. Once the import process
completes, we can access the data just like any other Excel data source. The only difference of course is that
we cannot update or add rows to this data.

Figure 14-17. Use the Office Add-In

Chapter 14 ■ ImportIng and exportIng data

285

Summary
There are several ways to import and export data from PowerApps. The main set of controls that carry out
this task are the import and export controls. Unlike some other import and export methods, one benefit of
using these controls is that we can provide import and export capabilities to the end users of our apps.

To export data with the control, we specify the data that we want to export. This could be any type of
data including a collection, a table, or a filtered set of data. At runtime, a user would click the export control
to download an export file. The file contains a compressed copy of the data in XML format.

We can use the import control to import data that users have exported with the export control. To utilize
this control, we would add it to screen and attach formula to the OnSelect property to define the actions to
carry out. Typically, we would add formula to add the data to a collection. We can then cleanse, validate, and
transform the data prior to saving it to a data source. We would call functions like Patch and Update to save
the data.

To export and import sets of related data, we would export a collection that contains a nested set of
tables. We would then use the import control to import these records and to patch the parent records,
followed by the child records.

With CDS databases, we can use the import and export options in the entity designer to export data. The
import and export features can work with data in Excel and CSV formats.

A useful tool is the PowerApps Office add-in. This enables us to add, edit, and delete CDS records from
inside Excel 2016 or Excel Online. The entity designer provides a button to download an Excel file that we
can use with the add-in.

Finally, it’s possible to import static read-only data for use in our apps. We can find the option to do this
through the ‘data sources’ menu in the designer.

Figure 14-18. Select the Add static data to your app option

287© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_15

CHAPTER 15

Using Flow

By integrating our apps with Microsoft Flow, we can build more rounded and complete solutions. Microsoft
Flow fills the gaps that PowerApps leaves behind and enables us to perform tasks beyond the limits of
PowerApps.

With Microsoft Flow, we can access records from all the same data sources that we can access in
PowerApps. To filter records, we use operators that are based on a protocol called OData. And to carry out
other programming tasks such as program control, string manipulation, and date formatting, we can use
a language called workflow definition language. Sometimes, it’s necessary to mix OData operators and
workflow definition language. An example is where we want to filter records by a programmatic expression.
The challenge here is that we need to escape expressions in a way that might not be obvious. Within this
chapter, we’ll find out how to address these tricky syntactical issues.

At the start of this chapter, we’ll cover basic concepts such as what we can do with flows and how to
call flows from apps. Next, we’ll walk through practical examples of how to use flow, which will include the
following:

•	 How to carry out file operations. We’ll find out how to use the on-premises gateway
to copy files from OneDrive (or any other cloud storage provider), to a location on
our internal network.

•	 How to send email notifications. A typical use of flow is to send notifications and
we’ll find out how to send emails. We’ll populate the email body with data from a
database. We’ll also find out how to conduct row-by-row processing, and how to call
SQL Server stored procedures. Stored procedures can help improve performance
and to overcome some of limitations that delegation imposes.

•	 How to develop approval processes. We’ll learn how to build workflows that require
approval from other users. Such flows can react differently depending on the
approval outcome. We’ll find out how to configure a flow that requires approval from
multiple users, or approval from a single user out of a list of possible approvers.

What Is Flow
To start this chapter, let’s examine the following question - what is Flow and what can we do with it?
Microsoft Flow is a service that carries out processes and workflows independently of PowerApps. Just like
PowerApps, Microsoft Flow is designed for non-developers and provides the ability to build workflows
without any coding skills. With Flow, we can design workflows through a simple to use, graphical web-based
designer. Because the designer is web based, there isn’t a need to install any custom software.

https://doi.org/10.1007/978-1-4842-3003-9_15

Chapter 15 ■ Using Flow

288

A key characteristic of ‘workflow’ is the ability to respond to events. An example of this is for Flow to
detect when a user creates a new record, and to respond by sending an email to a manager. In more complex
scenarios, Flow also offers the ability to add conditional and looping constructs into your workflow.

To feed our Flows with data, we can connect to a wide range of data sources. Most of these are data
sources that we’ve seen in PowerApps already, such as SharePoint, OneDrive, Dropbox, and SQL Server. It’s
also possible to connect to CDS databases and to use the on-premises gateway to access internal SharePoint
and SQL Servers.

In addition to these standard data sources, we can also connect to third-party web services. Flow
supports REST (Representational State Transfer) based web services that use JSON (JavaScript Object
Notation), and it also supports most of the common authentication methods.

An important thing to note is that the use of Flow isn’t unlimited. The number of Flows that we can
run is limited through PowerApps licensing. As a rough indication, each Office 365 user can run up to 2,000
Flows per month. Plan 1 users can run up to 4,500 Flows per month, whereas Plan 2 users have an allowance
of 15,000 Flow runs. As with all licensing guidelines, it’s very possible that these limits will change over time.

What Can We Do with Flow?
The typical use of Flow usually features notifications. and approvals. A simple example is a Flow that checks
when a tweet arrives and sends an email notification to a manager if the content of the message includes
a specific word. An example of a Flow that features an approval process is a vacation request system. It’s
possible to build workflows that require approval from single or multiple approvers, and we’ll examine this
later in this chapter.

Flow enables us to carry out some practical tasks and here are some examples.

•	 File handling - we can create, copy, and carry out file operations on files in OneDrive,
Dropbox, and other supported cloud storage providers. We can also transfer files
through FTP. A great feature is the ability to access the files in internal networks
through the on-premises gateway.

•	 SQL tasks - we can connect to on-premise and Azure databases to insert, update,
and retrieve rows from tables. A very helpful feature is the ability to call stored
procedures. This can help overcome some of the bugs and problems that exist in
PowerApps, and can also help us improve the performance of our apps.

•	 SharePoint - we can carry out tasks that are not supported in PowerApps, such as
accessing files that are stored in SharePoint.

•	 Looping - PowerApps doesn’t include any looping constructs, besides the limited
ForAll function (there are certain functions that we cannot call within a ForAll
loop). We can overcome this limitation with Flow to carry out actions repeatedly
until a condition becomes true.

•	 Scheduling - we can schedule Flows to run at predetermined times. We can use this
to carry out tasks such as data archiving, backup, or overnight reporting.

Chapter 15 ■ Using Flow

289

Creating a Flow
To demonstrate how to create a flow, we’ll start by building a flow that copies a file from OneDrive to a
location on our internal network. A prerequisite is to install the on-premises gateway (see Chapter 5). Once
we install and configure a gateway, we can create a flow by visiting the flow website:

https://flow.microsoft.com/

Another way to reach this page is to click the File ➤ Flows menu item from PowerApps Studio.
Figure 15-1 shows the page to create a flow. This page offers us the choice to create a blank flow, or to
create a flow from a template.

Figure 15-1. The Microsoft Flow website

Copying Files
To build our flow, choose the option to ‘create a flow from blank’. This opens the page that’s shown in
Figure 15-2. A flow provides two basic objects - connectors and triggers. Connectors allow us to access data
sources such as the CDS, SQL Server, Excel, and many more. From within Flow, we can access the same
connectors that are available in PowerApps.

https://flow.microsoft.com/

Chapter 15 ■ Using Flow

290

Triggers define events that we can react to. An example of a trigger is the occurrence of a user adding a
new item to a SharePoint list. We can respond to triggers with actions. An example of an action is to send an
email message to a manager.

To build flows that users can call from PowerApps, the initial step in the flow must be the PowerApps
trigger. Besides the PowerApps trigger, another common trigger is the schedule trigger. We can use this
trigger to run flows at specified times, or to repeat flow runs at intervals.

Once we add our initial trigger, we can append additional steps. Figure 15-3 shows the steps that we can
add after the PowerApps trigger. This includes actions, conditions, switch cases, or loops.

Figure 15-2. Creating our first flow

Chapter 15 ■ Using Flow

291

To select the source file for our file copy operation, click the ‘Add an action’ option and choose the
OneDrive connector. Select the ‘Get file content’ action and select the source file with the file browser. To
configure the OneDrive connector, including the account name and authentication credentials, click the
icon with the three ellipses in the title bar of the step to access additional menu items.

To configure the destination location for the file copy operation, add an additional step and choose the
‘Create file’ action. We can click the icon with the three ellipses to configure the connector. This enables us
to set the root destination location. This can be a location on the machine that runs the on-premises gateway
(for example, C:\GatewayFiles) or it can be a network share (for example, \\server\share).

The next step is to enter the destination folder and file name. To select the file content, click the ‘file
content’ input control. This prompts the designer to show a list of available options, and one of these will be
the output from the OneDrive connector. This step highlights the method to pass results between actions.
Figure 15-4 shows the appearance of our flow.

Figure 15-3. Adding a step to a flow

Chapter 15 ■ Using Flow

292

At this point, we can save our work. For the purposes of this demonstration, we’ll name our flow
‘BackupExcelData’.

Calling Flows from Apps
Now that we’ve created our flow, let’s build a screen to enable users to call the flow from within an app. This
process is straightforward. Simply add a button to a screen and click the flows button from the Action menu,
as shown in Figure 15-5. This opens a list of flows that we can add to our app. Once we add a flow, we can
refer to it in formula and call the Run method to execute the flow.

Figure 15-4. Flow to copy a file from OneDrive to a location inside our network

Chapter 15 ■ Using Flow

293

We can now run our app and click the button to test our flow. If the flow succeeds, we’ll find a copy of
the file in the destination folder.

An important piece of behavior is that the Run method does not return a result to PowerApps. This is
slightly limiting because it prevents us from using flow to process data and to return rows or single values
to our calling app. The way to work around this problem is to save the result to a data source from within
flow. After running the flow in PowerApps, we can add additional formula to retrieve the result from the data
source.

Sending Notifications
To demonstrate a more complex example, here’s how to build a flow to send email notifications. We’ll create
a screen with the option to specify a user, year, and month. A button on this screen will initiate a flow that
produces an email summary of journey records that match the specified criteria.

Although the idea of composing an email might seem simple, it requires us to carry out several tasks,
and some of these can be quite complex. Figure 15-6 illustrates the result of this exercise, and highlights the
technical topics that we’ll cover.

Figure 15-5. Calling Flow from a screen

Chapter 15 ■ Using Flow

294

The topics in this section will be useful because they play a key role in enabling us to build flows that
can fulfill real life, nontrivial business requirements.

This example uses an on-premise SQL Server database as the data source, and Figure 15-7 illustrates
the journey table that we’ll use.

Figure 15-6. The key topics that we'll cover in this section

Figure 15-7. The SQL Server data source that we'll use

Chapter 15 ■ Using Flow

295

Like our previous example, the first step is to create a flow and to add the PowerApps trigger as the
initial step.

Filtering Data
The next step in our flow is to access our on-premises SQL database and to retrieve the journey records that
match the user id, month, and year arguments that the user provides from PowerApps.

The first step is to add a new action and select the “SQL Server - Get rows” action. Through the settings
of the action, we can use a drop-down control to specify the source table, as shown in Figure 15-8.

To filter the data that the ‘Get rows’ action returns, it’s not possible to use a SQL WHERE clause, as you
might imagine. Instead, the way to filter data in a flow is to provide OData filter expressions. OData stands
for Open Data Protocol. This protocol provides a standard way to query data from web services. The benefit
of this is that we can learn a single query language and use that with all the data connectors that are available
in flow. For example, if we were to use a SharePoint data source rather than an SQL data source, we could
use the same OData syntax to perform a query. As Figure 15-9 shows, the ‘get items’ action for a SharePoint
connection provides the same ability to filter by an OData expression.

Figure 15-8. Getting rows with the SQL connector

Chapter 15 ■ Using Flow

296

Table 15-1 shows a list of common OData operators. As this table shows, there are mathematical, string,
and date operators that we can use.

Figure 15-9. SharePoint provides the same ability to filter by OData expressions

Table 15-1. OData filter expressions

Description Operator Example

Equal eq UserID eq 8

Not equal ne JourneyDesc ne 'London'

Greater than gt JourneyID gt 8

Greater than or equal ge JourneyID ge 10

Less than lt JourneyID lt 8

Less than or equal le JourneyID le 8

Logical and and JourneyID ge 10 and UserID eq 8

Logical or or UserID eq 8 or UserID eq 3

Logical negation not not UserID eq 8

To configure the ‘get rows’ step to filter the journey records by parameter values that the user supplies
through PowerApps, we can compose an OData query and click the ‘Ask in PowerApps’ button in the places
where we want to accept user input. Figure 15-10 shows the appearance of this in the designer. Notice how
we can use OData operators to define the sort sequence of the results also.

Chapter 15 ■ Using Flow

297

One slight limitation is that for SQL Server data sources, we can compose OData expressions to filter
by text and character values only. It’s not possible to filter datetime values with an expression that looks
like this:

JourneyDate eq ''2017-01-25T05:13:40.1374695Z'
Instead, we need to utilize the OData month and year functions to extract and filter by the relevant parts

of the date, as demonstrated in this example. For reference, the OData function to return the day is called
day.

Working with Variables
Now that we’ve retrieved a set of data, let’s look at how to work with the results. To demonstrate how to use
loops, variables, and to perform simple calculations, here’s how to sum the mileage field of the data that we
retrieved.

To calculate the sum, we’ll declare a variable. Next, we’ll loop over the rows and increment the variable
by the mileage value.

To declare a variable, insert a step at the start of the flow immediately after the initial PowerApps trigger.
Select the “Variables - Initialize variable” action and create a new variable called MileageRunningTotal. Set
the data type to float, and set the initial value to 0, as shown in Figure 15-11.

Figure 15-10. Specifying filter operators

Chapter 15 ■ Using Flow

298

Next, add an “Apply to each” step after the “Get Rows” action, and set the input of the step to the result
of the “Get Rows”. Within the “Apply to each” step, add an “Increment variable” action and select the option
to increment the MileageRunningTotal variable by the MileageInMiles field, as shown in Figure 15-12.

Figure 15-11. Initializing a variable

Figure 15-12. Incrementing a variable

Chapter 15 ■ Using Flow

299

With the “Apply to each” step, there are a couple of points to be aware of. First, with Excel data sources,
the designer doesn’t show the Excel column headings so it’s not possible to use this same technique with
Excel. Second, it’s not possible to add an “Apply to each” step inside another “Apply to each” step. Therefore,
this can be a challenge if we need to build a flow with nested loops.

 ■ Tip You can move steps in a flow by dragging and dropping with the mouse. this is particularly useful if
you configure a step inside an ‘apply to each’ loop and want to move it outside at a later point in time.

Sending the Email
To send an email, add a connector to an email service. Flow provides connectors for a range of email
connectors, including SMTP (Simple Mail Transport Protocol), Gmail, Office 365 Outlook, and Outlook.com.

For the purposes of this example, choose the Outlook.com connector and select the “Send an email”
action. With all email connectors, we can use static values or parameter values to set the message recipient
and subject fields of the message. We can also combine static text and parameter values when composing
the message body, as shown in Figure 15-13.

A useful thing we can do is to set the message type to HTML in the advanced settings. We can use HTML
to produce emails that contain formatted text, images, and colors.

 ■ Note note that connectors are shared with owners of a flow only. with sMtp, a user who is not the owner
of a flow will need to enter valid sMtp settings when the powerapps app loads. these settings are not simple
for end users to enter because it will include values such as server name and port number, as well as the
username and password.

Figure 15-13. Composing email messages

Chapter 15 ■ Using Flow

300

Manipulating Data
In addition to variables, Flow provides other ways to manipulate data and we’ll now explore these in more
detail.

Constructing HTML Tables
Flow provides the ability to convert rows of data to HTML or CSV strings. These are useful techniques
because they enable us to convert raw rows of data into a flattened format that users can interpret. To
demonstrate this technique, we’ll modify our email example to additionally show the journey records that
relate to the user.

The connector that enables us to carry out this task is the “Data Operations” connector. As Figure 15-14
illustrates, this connector provides seven useful actions, including the operations to create CSV and HTML
tables.

The “Create HTML table” action accepts an input and converts all the rows and columns to an HTML
table. Often, it’s necessary to filter the rows and columns before we carry out the conversion to HTML and
we can accomplish this by using the “Select” and “Filter array” actions.

In our example, it’s not necessary to convert all the columns in our journey table to HTML. Therefore,
we can call the Select action to filter the columns before outputting the result to an HTML table. Figure 15-15
shows the two steps to output the journey table to HTML.

Figure 15-14. Data operations connector

Chapter 15 ■ Using Flow

301

As this illustration shows, the select action enables us to rename the columns with descriptions that
are more meaningful. In this example, we’ve renamed the JourneyDesc and StartDate fields with friendlier
names.

At this stage, we can insert the output the of “Create HTML table” into the body of our email message.
The designer will show this item as a selectable option when we click into the email message input control.
Figure 15-16 shows the HTML output that appears in the email.

Figure 15-15. Converting rows to HTML

Figure 15-16. The HTML content that appears in the email

Introducing Workflow Definition Language
Flow provides a language called workflow definition language. We can use this to cater for scenarios that
require more programmatic control. Here are some practical ways for us to use workflow definition language.

•	 String manipulation - We can convert the casing of strings with the toLower and
toUpper functions. We can call the length function to return the length of a string,
and we can perform string manipulation with the substring and replace functions.
We can also call the startswith and endswith functions to check if a string starts or
ends with a specified piece of text.

•	 Date handling - The utcnow function returns the current date and time in UTC
format. This is very useful because we can use this expression in filter operations
to return records for the current date. There are also functions to carry out date
arithmetic such as addhours, addminutes, and adddays. We can also format dates
with the formatDateTime function.

Chapter 15 ■ Using Flow

302

•	 Math - We can carry out addition, subtraction, multiplication and division with the
functions add, sub, mul, and div.

•	 Program Control - The if function works like the if function in PowerApps. This is
useful because it provides a way to test a condition and to return values depending
on the result. We can utilize the if function directly in user definable settings within
individual actions. Other functions include and, or, not, greater, greaterOrEquals,
and lessOrEquals.

Table 15-2 shows the example usage of some of most useful functions.

Table 15-2. Example workflow definition functions

Description Example Use Result

Length of a string length('tim') 3

Length of an array length(['tim','tom']) 2

Concatinate strings concat('hi ', 'world') hi world

Get a substring substring('hi world',3,5) world

Replace text replace('the dog', 'the', 'a') a dog

Uppercase text toUpper('Tim') TIM

Lowercase text toLower('tim) tim

Maths Functions

Add two numbers add(3,2) 5

Subject two numbers sub(10, 3) 7

Multiply two numbers mul(4,2) 8

Divide two numbers div(10/2) 5

Date Functions

Get current UTC date/time utcnow() 2017-07-14T13:30:00Z

Get current UTC date/time utcnow('yyyy/MM/dd') 2017/07/14

Format a date/time formatDateTime(utcnow, 'dd
mmm yy')

14 Jul 2017

Add minutes addminutes('2017-07-
14T13:30:00Z', 35)

2017-07-14T14:05:00Z

Add days adddays('2017-07-14T13:30:00Z',
10)

2017-07-24T13:30:00Z

Add months addmonths('2017-07-
14T13:30:00Z', -2)

2017-05-14T13:30:00Z

Logic Functions

Equals equals(1, 1) True

Greater than greater(15,20) False

And and(greaterOrEquals(5,5),
equals(8,8))

True

If, and if(equals(6, 6), 'yes', 'no') Yes

Chapter 15 ■ Using Flow

303

This is just a small subset of the most useful string, number, date, and logic functions. Workflow
definition language provides many extra powerful functions, including functions to carry out XML
operations, complex date time calculations, data type conversions, and set operations such as unions and
joins.

Note that Microsoft Flow is a service that’s built ontop of Azure Logic Apps. Azure Logic Apps is a
workflow service that’s very similar to Flow, and shares the same graphical workflow designer. The main
difference is that Azure Logic Apps contains additional developer features, such as security and support for
source control and testing. Therefore, a good place to find help with workflow definition language is through
web resources that are targeted at Azure Logic Apps. For example, here’s a useful page on the Microsoft
Azure website that contains a list of all workflow definition language commands.

https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-workflow-definition-language

One caveat is that it’s important to exercise some caution because subtle differences exist between
Azure Logic Apps and Flow, and the syntax that we use with these two services are not always identical.

Applying Workflow Definition Language
Where exactly can we use workflow definition language? The answer is that we can use workflow definition
language in almost all places where we can enter some text. However, one very versatile place is the “Data
Operations - Compose” action. This action enables us to calculate output values that we can use in other
parts of a flow.

To demonstrate this technique, here’s how to configure a ‘Get Rows’ action to return Journey records for
today’s date.

The first part of this flow includes three compose actions to retrieve the day, month, and year of the
current date. The compose actions call the utcnow function to retrieve the date components. When we
compose expressions with workflow definition language, it’s important to enclose commands with double
quotes. It’s also necessary to prefix commands with the @ symbol. The @ symbol enables Flow to recognize
the proceeding text as workflow definition language, rather than literal text.

Figure 15-17 shows the layout of these actions. To make it easier to refer to output of these actions,
it’s a good idea to rename the actions that we create. In this example, these three actions are renamed to
CurrentDay, CurrentMonth, and CurrentYear.

Chapter 15 ■ Using Flow

304

To complete this flow, the final step is to incorporate the output of these actions into an OData query
expression for the ‘Get Rows’ action, as shown in Figure 15-18.

Figure 15-17. Using compose actions to retrieve the current day, month, and year

Figure 15-18. Filtering records by today’s date

Chapter 15 ■ Using Flow

305

Using Output Values in Workflow Definition Commands
It’s not possible to use the visual designer to add the results of actions to a workflow definition command.
Instead, we need to access the function outputs with special syntax. It can be difficult to work out what this is
so in this section, we’ll look at a tip that can help us.

To demonstrate this technique, here’s how to modify our flow to include a calculation of the
average mileage for the rows that we return. Our flow already stores the total mileage in a variable called
MileageRunningTotal. To calculate the average, we need to divide the MileageRunningTotal value by
the number of records that the ‘get rows’ action returns. To retrieve the number of records that the ‘get
rows’ action returns, we need to call the length function and to provide the output of the ‘get rows’ action.
Figure 15-19 shows visually what we’re attempting to do.

The expression that’s shown in Figure 15-19 is not valid because it mixes a value from the visual
designer with a workflow definition language expression. So in this example, what workflow definition
language expression would we use to reference the visual ‘value’ object that we see in Figure 15-19?

To way to work this out is to save the flow and to use the error message to determine the correct syntax.
If we attempt to save this action, flow returns the error that’s shown in Figure 15-20.

Figure 15-19. Attempting to retrieve a count of the rows returned

Figure 15-20. Finding the names of output parameters by examining errors

By inspecting this error message, we can see that following identifier refers to the output from the ‘Get
rows’ action.

body('Get_rows')?['value']

As a point of reference, the ? operator enables us to access null values without triggering a
runtime error. By using this same technique, we can work out the syntax to return the value of the
MileageRunningTotal variable. The result looks like this:

variables('MileageRunningTotal')

Chapter 15 ■ Using Flow

306

Now that we know the syntax to access the MileageRunningTotal variable and the row count from the
‘get rows’ action, we can create a compose action and add code to divide these two values. Figure 15-21
shows the syntax we would use. We can then incorporate this result into the email message that we send to
the user.

Referring to Items in Loops
Within “Apply to each” steps, we can use the item function to refer to the current item in the loop. As an
example, here’s how to amend the flow so that it formats the journey dates more neatly. Figure 15-22 shows
the change that we would make to our ‘Data Operations - Select’ action.

Figure 15-21. Calculating an average value

Figure 15-22. Converting rows to HTML and applying a format

An important point that this highlights is that with the ‘Data Operations - Select’ action, we must use
the icon in the body of the action to switch the action to text mode. If we don’t switch to text mode, the
action outputs the literal command instead of parsing the workflow definition language.

Calling SQL Stored Procedures
For SQL Server data sources, we can call stored procedures with flow. For app builders who work with SQL
Server, this opens many possibilities. We can use this to improve performance or to overcome some of the
delegation limitations in PowerApps.

To demonstrate this technique, here’s how to delete all journey records for a user in a specified month.
In Chapter 9, we saw how to do this with the RemoveIf function. The problem with this technique is that
it performs very slowly. Second, this technique removes only the first 500 records. By deleting the records
directly through a stored procedure, we can overcome these problems.

http://dx.doi.org/10.1007/978-1-4842-3003-9_9

Chapter 15 ■ Using Flow

307

Writing stored procedures is large topic and beyond the scope of this book. Therefore, the intention
here is to create an awareness that this technique exists.

To demonstrate, Listing 15-1 shows the definition of a stored procedure to delete journey records that
match a specified user, month, and year. To create this procedure, we require access to SQL Management
Studio and suitable permissions for the server.

Listing 15-1. An example stored procedure to delete records

CREATE PROC DeleteJourneyForUser
 @UserID int,
 @MonthNum int,
 @YearNum int

AS
 DELETE FROM [Journey]
 WHERE
 UserID= @UserID
 AND Month(StartDate)=@MonthNum
 AND Year(StartDate)=@YearNum

Once we add the stored procedure, we can call it from flow using the ‘Execute stored procedure’ action,
as shown in Figure 15-23. When we create the action, we can map the stored procedure parameters to flow
parameters. This enables us to supply the parameter values from within PowerApps.

Figure 15-23. Calling a stored procedure

It’s worth noting that for simple deletions and updates of records in SQL Server, we can use the ‘Delete’
and ‘Update’ actions, and provide OData expressions to specify the records to update.

Chapter 15 ■ Using Flow

308

Approving Actions
A powerful feature that flow provides is action approval. This feature is powerful because we can configure
actions to occur following approval from a single approver, multiple approvers, or a single approver from a
list of approvers.

Examples of how we could use this feature include building processes to request approval from
managers before publishing a document to SharePoint. We could use this same mechanism to request
approval before a user posts a message to social media, or to update records from a data source. The
Microsoft flow website provides an example of how to build a SharePoint-based system to approve vacation
requests.

To demonstrate this feature, here’s how to build a flow to only allow the deletion of journey records
following approval from a manager.

To first step is to add an approval action, as shown in Figure 15-24. The ‘start an approval’ action
enables us to target the request at individuals by an email address. We can define multiple approvers by
entering a list of semicolon-separated email addresses into the ‘Assigned to’ text box. The approval types that
we can select are ‘Anyone from the assigned list’, and ‘Everyone from the assigned list’. We can also attach
additional details to the approval request, including a title, description, and link.

Figure 15-24. Starting an approval

Chapter 15 ■ Using Flow

309

Immediately after the ‘start an approval’ step, we can add a condition to test whether the response
matches the value ‘Approve’. We can then add the actions that we want to carry out to the ‘if yes’ section of
the condition step. This would include the action to carry out the record deletion.

How exactly does an approver authorize an approval request? After the flow runs, the request will
show up in a dedicated section on the flow website, as shown in Figure 15-25. The approver can use this to
approve or reject requests.

Figure 15-25. Approving a flow

To configure a flow to require approval from multiple users, we would chain together ‘start an approval’
actions. We would then configure conditions to test the responses, and to carry out actions depending on the
result.

Managing Flows
To complete this chapter, let’s look at the section on the flow website that enables us to manage flows. The
‘My flows’ part of the website shows a list of flows, and we can use the options on this page to edit or delete a
flow. Figure 15-26 shows the page that appears when we view the details for a flow. On this page, we can view
the run history of the flow, as well as the connectors and the owners.

Chapter 15 ■ Using Flow

310

We can use the run history section to open a specific run and to view the results of each step, as shown
in Figure 15-27. This feature is very useful because it enables us to debug and diagnose any problems that
arise during a flow run.

Figure 15-26. Viewing the status of a flow

Chapter 15 ■ Using Flow

311

Here are a couple of points that are worth noting. When we update a flow and add additional ‘Ask
PowerApps’ parameters, an existing app will not recognize these changes. We need to delete the flow from
our app and re-add it for PowerApps to recognize our new parameters.

The second point is that there’s no way to back up flows, or to move flows between environments.
Therefore, we should apply some caution. We can consider taking screenshots of flows to help us re-create
our work, in case we accidently delete steps that we later want to restore.

Summary
In this chapter, we looked at how to use Flow. Flow allows us to carry out tasks independently of PowerApps.
Flow provides us with the ability to carry out certain tasks that are not possible with PowerApps. Practical
examples of the types of things we can do with Flow include sending notifications, copying files, and
carrying out data tasks by connecting more directly with SQL Server or SharePoint.

Flow provides a browser-based graphical designer that caters for non-developers. It offers the ability to
build processes that include loops, conditions, and schedules without the need for code. With these features,
we can build solutions to automate repetitive processes.

The core components of Flow are triggers and actions. A trigger defines an event, for example, “when
a new document is added to SharePoint”. In response to a trigger, we can carry out an action, for example,
“send an email to a manager”.

Figure 15-27. Viewing the data that was returned during a flow run

Chapter 15 ■ Using Flow

312

We can connect to a wide range of data sources, including all the connections that are available from
within PowerApps. We can even use the on-premises gateway to connect to SQL Server or SharePoint.
With the help of this connector, we can call SQL stored procedures and directly add, update, or delete the
data in tables. We can therefore utilize Flows to help overcome delegation limitations and to improve the
performance of our apps. The on-premises gateway provides an additional benefit because it enables us to
access files in our internal networks. In this chapter, we saw an example of how to use flow to copy files from
OneDrive to an internal file share.

We can use variables to help us better accomplish tasks in Flow. For example, we can use variables to
carry out calculations. We can also use workflow definition language to carry out programmatic tasks, and
we saw several examples of how to apply this to an app.

Workflow definition language provides functions that can carry out string manipulation, and date
formatting, and other programatic tasks. We can insert workflow definition commands in most places where
we can enter text. The “Data Operations - Compose” action provides a handy place for us to execute and to
return values from workflow definition commands. Calls to workflow definition commands must begin with
the @ symbol. This indicates that the preceding content is workflow definition command, rather than literal
text. We can pass the output of other actions to a function and in such cases, it’s necessary to use special
syntax to refer to other objects in a flow. An easy way to work out the correct syntax is to deliberately cause
an error and to the use the error message to determine the correct syntax.

Finally, Flow provides an approval framework that can help us carry out workflow processes. We can
configure actions to occur after approval from one or more individuals. Approvers visit a special section on
the flow website to approve or reject approval requests.

PART IV

Extending Your Application

315© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_16

CHAPTER 16

Working Offline

PowerApps is designed for mobile devices, and there are times when these devices lose connectivity with
the Internet. The ability for users to continue working during these times can be extremely useful. This is
especially true for field workers, users that work outside regularly, or users that travel often.

To cater for these scenarios, PowerApps provides the ability to cache data on the local device. We can
use this feature to build apps that can work offline. However, building an app that works completely offline is
a manual task and it introduces a very difficult challenge - how to synchronize data and to resolve conflicts.

If an offline user modifies a record that another user modifies during an offline session, who wins?
Can we merge changes from two users together? And how do we cope with situations where an online user
deletes the record that an offline user modifies? In this chapter, we’ll find out the answers to these questions.
The specific topics that we’ll cover in this chapter will include the following:

•	 What happens when a device becomes offline? We’ll examine the behavior of a
standard app when it becomes offline.

•	 How to view data offline. We’ll look at how to cache data to the local device, and
how to detect offline conditions. When an app becomes offline, we’ll find out how to
display the cached data.

•	 How to add and update records while offline. We’ll develop a system to enable the
offline update of data. We’ll find out how to build a conflict resolution screen. When
conflicts occur, users can use this screen to retain the offline record, or to revert to
the most recent server version of the record.

What Happens Offline?
To begin, let’s examine what happens when a device becomes disconnected from the Internet. In the case
of a running auto-generated app that becomes offline midway through a session, the app will continue to
be mostly functional. The browse screen will continue to show the data that existed before the app became
offline, and the search and sort buttons on this screen will continue to work. Individual records will still open
in the display screen and we can even open records in the edit screen to view the data.

As we would expect, the refresh button on the browse screen will not work. Also, the save button on the
edit screen will not work because both of these actions require an active Internet connection. In cases where
PowerApps fails to carry out an action due to a lack of connectivity, it displays an error message like the one
that’s shown in Figure 16-1.

https://doi.org/10.1007/978-1-4842-3003-9_16

Chapter 16 ■ Working offline

316

In cases where a user starts PowerApps while disconnected from the Internet, the user can only run
apps that have previously run on the device. When an app loads while offline, it can’t retrieve an initial set of
data from the data source and therefore won’t show any data.

 ■ Note a simple way to test how an app behaves offline is to run your app on a mobile device and to enable
‘airplane mode’.

Techniques to Enable Offline Working
To build apps that can work offline, there are two key features that can help us: the connection signal, and
the SaveData and LoadData functions.

We can use the connection signal to detect the connection status of an app. Table 16-1 illustrates the
formula we can use to utilize this signal.

This signal can detect whether the active connection is a metered connection. The cellular connection
is usually configured as a metered connection on smartphones. The ability to detect a metered connection is
useful because we can adapt our app to use less data when the device is connected to a metered connection.
For instance, we can write formula to hide images in this scenario.

Saving and Retrieving Local Data
A key feature that enables us to build offline apps is the ability to store collections of data into a private
area on the local device. The functions to save and retrieve local data are called SaveData and LoadData
respectively.

The SaveData function expects two parameters - the collection of data to save, and a file name.
Here’s an example of how to store the data from a collection called LocalJourney into a file called
OfflineJourneyFile.

SaveData(LocalJourney, “OfflineJourneyFile”)

Figure 16-1. The error that occurs when we attempt to save a record while offline

Table 16-1. The connection signal

Formula Result

Connection.Connected true when the device is connected to a network

Connection.Metered true when a device is connected to a metered network

Chapter 16 ■ Working offline

317

The SaveData function stores and encrypts the data in an area that is isolated from other users and
other apps. To retrieve the file data, we would call the LoadData function like so:

LoadData(LocalJourney, “ OfflineJourneyFile”, true)

The first parameter specifies the target collection for the data and the second parameter specifies the
file name from which to retrieve the data. The third parameter configures the LoadData function to continue
without error if the file doesn’t exist.

We can only call LoadData to retrieve the data that we saved with SaveData from the same app. It’s not
possible to load data from other apps.

Making an App Available Offline
Let’s now walk through the process of adapting an auto-generated app to work offline. Our app will be based
on a CDS data source. The modification that we’ll apply will enable users to view, update, and add records
while offline. We’ll base this example on our journey entity. Figure 16-2 shows an overview of how this
process will work.

Figure 16-2. Overview of how to adapt an app to work offline

Chapter 16 ■ Working offline

318

When the app starts, it loads the data from the CDS data store into a local collection. We’ll adapt all the
screens in the app to work against the local collection rather than directly against the CDS table. When a user
edits or adds a new record, the app will save any changes to the underlying CDS table if the device is online.
If the device is offline, the app saves the changes to a holding table (JourneyChanges in our example).

During any data refresh or update operation, the app will cache the changes to the local device by
calling the SaveData method. If the device is offline when the app starts, it attempts to load the data from a
local file rather than the CDS.

The app will include a screen that shows the records in the holding table, as shown in Figure 16-3. When
the device becomes online, the user can use this screen to synchronize the changes to the CDS data store.

In cases where the user disconnects from the network for an extended period, other users might
modify the same records. To prevent users from overwriting each other’s changes, the app will check that no
changes have been made before synchronizing the data. If data conflicts exist, the user can choose to keep or
to discard the offline changes using the screen that’s shown in Figure 16-4.

The prerequisite for this example is to build an auto-generated app that’s based on the journey table
that’s shown in Figure 16-5. The two important fields that our app relies on are the Primary Id and Last
Modified Datetime fields. We will use the primary id field to uniquely identify records and we’ll use the Last
Modified Datetime to check whether changes have occurred during the offline session. The data type of the
Primary Id field is a server-generated auto number field.

Figure 16-3. Synchronization screen

Figure 16-4. The user can choose to keep or discard changes.

Chapter 16 ■ Working offline

319

To keep this example simple, we won’t include any lookup data. To make lookup data available offline,
we would need to extend our app to load the lookup data in a local collection.

Note that building an offline app is a highly customized process. Therefore, the main purpose of this
example is to provide an insight into the challenges that exist and to provide a broad structure that we can
adapt to build offline apps.

Setting the Data Source to a Local Collection
When the app loads, the main task is to load the source data from the CDS to a local collection, in addition
to several other data initialization tasks. Listing 16-1 shows the code to add to the OnStart property of the
browse screen.

Note that throughout this chapter, the code listings will include boldified comments for additional
clarification. It’s important to remove these lines in our actual app because the comments will cause errors
in the formula.

Listing 16-1. Loading the data to a local collection

If(Connection.Connected,
 ClearCollect(LocalJourney, Journey),
 LoadData(LocalJourney, "OfflineJourneyFile", true)
);

UpdateIf(LocalJourney, IsBlank(JourneyDesc), {JourneyDesc:""});
SaveData(LocalJourney, "OfflineJourneyFile");
LoadData(JourneyChanges, "OfflineJourneyChangesFile", true);

Figure 16-5. CDS Data source

Chapter 16 ■ Working offline

320

'Initialize collections that we'll use elsewhere (Optional)
'JourneyChangesReview is a collection we'll use later to help synchronize records
ClearCollect(JourneyChangesReview,
 {OfflineRecord:BrowseGallery1.Selected,
 CurrentRecord:BrowseGallery1.Selected
 }
);
Clear(JourneyChangesReview);

'JourneyChangesConflict is a collection we'll use later to store data conflicts
ClearCollect(AddColumns(JourneyChangesReview, "Status", ""));
Clear(JourneyChangesConflict)

The first part of this formula checks if the device is connected to the Internet. If so, it copies the data
from the CDS entity (called Journey) into the local collection. If not, it retrieves the saved data from the file
on the device and copies that data to the local collection.

The UpdateIf function replaces all null instances of the JourneyDesc field to an empty string. The
purpose of this is to fix a bug that affects edit forms that bind to local collections that contain null values. A
card on a form will not update the value of a field in a local collection if the original value is null. Therefore,
the fix is to initially replace all null values with empty strings.

The next section in the formula caches the data to a local file by calling the SaveData function. This
provides the app with data if a user subsequently starts the app later while offline. Next, the formula calls
the LoadData function to load any unsynchronized data modifications that might have taken place during a
previous offline session.

The formula that appears next is optional. This section of code initializes the collections that we’ll
use later with random values and immediately clears the values afterward. The purpose of this is to prime
the designer with the schema of the local collections. By doing this, the IntelliSense in the formula bar can
recognize the fields in the collections and the designer won’t underline any unrecognized fields in red.

The next step is to reconfigure all the screens in the app to use the LocalJourney collection. On the
basis that the CDS data source is called Journey, the step is to rename all references of the Journey data
source to LocalJourney. The places in the app to modify are these:

•	 BrowseScreen1 ➤ BrowseGallery1 ➤ Items

•	 DetailsScreen1 ➤ DetailForm1 ➤ DataSource

•	 EditScreen1 ➤ EditForm1 ➤ DataSource

Finally, we need to modify the Refresh icon on the browse screen so that it saves the data to the offline
file after a refresh. Listing 16-2 shows the formula.

Listing 16-2. Refreshing the Data

If(Connection.Connected,
 Refresh(Journey);
 ClearCollect(LocalJourney, Journey);
 UpdateIf(LocalJourney, IsBlank(JourneyDesc), {JourneyDesc:""});
 SaveData(LocalJourney, "OfflineJourneyFile")
)

Chapter 16 ■ Working offline

321

Handling Offline Deletions
For an app to be fully functional offline, it should handle the offline deletion of data. The display screen
provides a delete icon. Listing 16-3 shows how to adapt the formula in this icon to support the offline
deletion of data.

Listing 16-3. Formula to delete records

RemoveIf(LocalJourney, BrowseGallery1.Selected.PrimaryId = PrimaryId);
If(Connection.Connected,
 RemoveIf(Journey,
 LookUp(Journey,BrowseGallery1.Selected.PrimaryId = PrimaryId)
),
 Collect(JourneyChanges, {Record:BrowseGallery1.Selected, Status:"D"});
 SaveData(JourneyChanges, "OfflineJourneyChangesFile");
);
Back()

The first line of this formula removes the record from the LocalJourney collection. If the device is
connected to the Internet, it also removes the record from the main Journey data source. If the device is
offline, the formula stores the data in a collection called JourneyChanges. This collection keeps track of all
offline changes and Figure 16-6 shows the layout of this collection. The status field indicates the type of
modification that has taken place. The values we’ll use are “D” for a deleted record, “A” for a new record, and
“U” for an updated record.

The next section in the formula calls the SaveData function to save the data to the offline file. This
enables the app to retain the data modifications if a user quits an offline session and starts another offline
session.

Figure 16-6. The JourneyChanges data collection to store offline changes

Chapter 16 ■ Working offline

322

Deleting Records from Local Collections
Note that the most reliable way to remove an item form a local collection is to remove the item by a unique
identifier, rather than to reference the item itself with formula like so:

Remove(LocalJourney, BrowseGallery1.Selected)

Although this syntax looks correct, it only works with connected data sources. This is the reason why the
formula in this section calls the RemoveIf function, rather than the Remove function. You can find out more
about this behavior here:

https://powerusers.microsoft.com/t5/PowerApps-Forum/Method-to-Remove-items-from-local-
Collection/m-p/27157

Handling Offline Record Updates
To provide offline data edit and data entry capabilities, there are several changes that we need to make to the
save icon on the edit screen. Figure 16-7 shows the high-level process.

A key modification is to adapt the edit form to avoid the use of the SubmitForm function to save the
record to the LocalJourney collection. The reason for this is to enable us to generate a temporary primary id
value when the device is offline. Usually, the CDS would generate this value but this would not happen if the
device is offline. We need to allocate a temporary primary id value to enable us to edit or delete records that
were created offline.

Listing 16-4 shows the formula to add to the OnSelect property of the save icon.

Figure 16-7. The JourneyChanges data collection to store offline changes

https://powerusers.microsoft.com/t5/PowerApps-Forum/Method-to-Remove-items-from-local-Collection/m-p/27157
https://powerusers.microsoft.com/t5/PowerApps-Forum/Method-to-Remove-items-from-local-Collection/m-p/27157

Chapter 16 ■ Working offline

323

Listing 16-4. Formula to save a record

'1. Collect values for use later in the formula.
UpdateContext(
 {EditForm1Mode: If(EditForm1.Mode = FormMode.New, "A", "U")}
);

' 1.1 Get the form values that the user enters.
UpdateContext(
 {EditForm1Record: EditForm1.Updates}
);

'1.2 Calculate the next available temporary id.
UpdateContext(
 {PrimaryIdNew: If(Min(LocalJourney, PrimaryId) > 0,
 -1,
 Min(LocalJourney, PrimaryId) - 1)
 }
);

'2. If the device is online, update the CDS data source
' JourneyRecordCDS stores the return record from the patch operation.
If(Connection.Connected,
 If(EditForm1Mode="A",
 UpdateContext(
 {JourneyRecordCDS:Patch(Journey,
 Defaults(Journey),
 EditForm1Record)
 }
),
 UpdateContext(
 {JourneyRecordCDS:Patch(Journey,
 LookUp(Journey,
 BrowseGallery1.Selected.PrimaryId = PrimaryId),
 EditForm1Record)
 }
)
)
 ,
 '3 If the device is offline, build a journey record to patch to
 the JourneyChanges collection. JourneyRecordOffline is the record that
 we build here If the user is adding a new record, set the primary id
 value to the temporary value that we calculated earlier.

 If(EditForm1Mode="A",
 UpdateContext(
 {JourneyRecordOffline:{JourneyDesc:EditForm1Record.JourneyDesc,
 StartDate: EditForm1Record.StartDate,
 MileageInMiles: EditForm1Record.MileageInMiles,
 PrimaryId: Text(PrimaryIdNew)
 }
 }
),

Chapter 16 ■ Working offline

324

 UpdateContext(
 {JourneyRecordOffline:{JourneyDesc:EditForm1Record.JourneyDesc,
 StartDate: EditForm1Record.StartDate,
 MileageInMiles: EditForm1Record.MileageInMiles,
 LastModifiedDateTime:
 BrowseGallery1.Selected.LastModifiedDateTime
 }
 }
)

)
);

'4 Now synchronize the LocalJourney collection. If online, patch the
 the JourneyRecordCDS to the LocalJourney collection. Otherwise, patch
 the JourneyRecordOffline record.

If(Connection.Connected,
 If(EditForm1Mode="A",
 Patch(LocalJourney,
 Defaults(LocalJourney),
 JourneyRecordCDS
),
 Patch(LocalJourney,
 LookUp(LocalJourney,
 BrowseGallery1.Selected.PrimaryId = PrimaryId),
 JourneyRecordCDS
)
),
 If(EditForm1Mode="A",
 Patch(LocalJourney,
 Defaults(LocalJourney),
 JourneyRecordOffline
),
 Patch(LocalJourney,
 LookUp(LocalJourney,
 BrowseGallery1.Selected.PrimaryId = PrimaryId),
 JourneyRecordOffline
)
);

'5. If the user edits a record that was created offline, remove and re-add the record in
JourneyChanges
RemoveIf(JourneyChanges, Record.PrimaryId = JourneyRecordOffline.PrimaryId);

If(Value(JourneyRecordOffline.PrimaryId) < 0,
 Collect(JourneyChanges, {Record: JourneyRecordOffline,Status:"A"}),
 Collect(JourneyChanges, {Record: JourneyRecordOffline,Status:"U"})
)
);

'6. Save the updated data to the offline file
SaveData(JourneyChanges, "OfflineJourneyChangesFile")

Chapter 16 ■ Working offline

325

The first section of the formula stores whether the user is adding or editing a record into a variable
called EditForm1Mode. The next line retrieves the form values to a variable called EditForm1Record. The
Updates property provides access to the form values. The ability to access the values that a user enters into a
form can be very useful in many other scenarios.

If the app is online, the next part of the formula calls the patch function to save the record to the CDS
data source. The patch function returns the CDS record that was added or updated. In the case of a new
record, the result from the patch function will include the server-generated primary id value. We retain this
record in a variable called JourneyRecordCDS so that we can update the LocalJourney collection later on.

If the device is offline, the code builds a journey record that we can patch into the LocalJourney
collection. In the case of a new record, we allocate a temporary primary id value. This enables the app to
uniquely identify records that were created offline. Without this temporary primary id value, we would not
be able to remove or edit records that were created offline. To avoid the possibility of generating duplicate
primary id values, the formula allocates primary id values that are negative. For data updates, the offline
journey record includes the last modified date time value. We need this to check for conflicts during the
synchronization process.

Merging Records
The formula that builds the JourneyRecordOffline record effectively merges a source record with the
updates that a user enters through the edit form. It might seem a good idea to call the patch function to
merge the two records using syntax like this:

Patch(BrowseGallery1.Selected, EditForm1.Updates)

In practice, this technique isn’t reliable and it’s better to merge records with the more verbose syntax
that we used earlier. You can read more about the problems of merging records with the patch function here.

https://powerusers.microsoft.com/t5/PowerApps-Forum/Bug-report-Patch-function-not-working-
as-expected-when-merging/m-p/29156

Building the Synchronization Screen
The next stage is to build the sync screen. The main part of this screen shows a sync button. Figure 16-8
shows what should happen during the synchronization process.

https://powerusers.microsoft.com/t5/PowerApps-Forum/Bug-report-Patch-function-not-working-as-expected-when-merging/m-p/29156
https://powerusers.microsoft.com/t5/PowerApps-Forum/Bug-report-Patch-function-not-working-as-expected-when-merging/m-p/29156

Chapter 16 ■ Working offline

326

To build the synchronization feature, the first step is to add a new screen. Next, add a gallery control and
set the items property to the JourneyChanges collection. To display a field from the offline record, we can use
the syntax ThisItem.Record.<Fieldname>, as shown in Figure 16-9.

Figure 16-9. Appearance of the synchronization screen

Figure 16-8. Flowchart of the synchronization feature

Chapter 16 ■ Working offline

327

At this point, we can add an icon on the browse screen to navigate to the synchronization screen, as
shown in Figure 16-10.

Returning to the synchronization screen, add a button to synchronize the data. Set the OnSelect
property of the button to the formula that’s shown in Listing 16-5. This formula carries out the process
that’s shown in the flowchart at the start of this section (Figure 16-8). There are three logical parts to this
formula that consists of code to add the new records, code to synchronize the updated records, and code to
synchronize the deleted records.

Listing 16-5. Synchronizing the records

'1 Save the records that were added
ForAll(Filter(JourneyChanges, Status="A"),
 Patch(Journey,
 Defaults(Journey),
 {JourneyDesc:Record.JourneyDesc,
 StartDate:Record.StartDate,
 MileageInMiles:Record.MileageInMiles
 }
)
);

RemoveIf(JourneyChanges, Status="A");

Clear(JourneyChangesReview);
Clear(JourneyChangesConflict);

'2 Refresh the CDS data source. For records updated offline, retrieve the corresponding
current record
Refresh(Journey);
ForAll(Filter(JourneyChanges, Status="U"),
 Collect(JourneyChangesReview,
 {OfflineRecord:Record,
 CurrentRecord:LookUp(Journey, PrimaryId = Record.PrimaryId)
 }
)
);

Figure 16-10. Opening the Sync screen

Chapter 16 ■ Working offline

328

'3 If the source record is not found, add the record to the conflict collection
If(CountRows(Filter(JourneyChangesReview,IsEmpty(CurrentRecord))) > 0,
 Collect(JourneyChangesConflict,
 AddColumns(Filter(JourneyChangesReview,IsEmpty(CurrentRecord)),
 "Status",
 "Update failed - source record deleted"
)
)
);
RemoveIf(JourneyChangesReview, IsEmpty(CurrentRecord));

'4 Process the records that have not been modified on the server
ForAll(Filter(JourneyChangesReview,
 CurrentRecord.LastModifiedDateTime=
 OfflineRecord.LastModifiedDateTime),
 Patch(Journey,
 CurrentRecord,
 {JourneyDesc:OfflineRecord.JourneyDesc,
 StartDate:OfflineRecord.StartDate,
 MileageInMiles:OfflineRecord.MileageInMiles
 }
)
);
RemoveIf(
 JourneyChangesReview,
 CurrentRecord.LastModifiedDateTime=OfflineRecord.LastModifiedDateTime
);

'5 The remaining rows in JourneyChangesReview are conflicting records
If(CountRows(JourneyChangesReview) > 0,
 Collect(JourneyChangesConflict,
 AddColumns(JourneyChangesReview,
 "Status",
 "Update failed - source record modified by other user"
)
)
);
Clear(JourneyChangesReview);

'6 Collect the records that were deleted offline into JourneyChangesReview
ForAll(Filter(JourneyChanges, Status="D"),
 Collect(JourneyChangesReview,
 {OfflineRecord:Record,
 CurrentRecord:LookUp(Journey, PrimaryId = Record.PrimaryId)
 }
)
);

'7 Remove records that have also been deleted on the server
RemoveIf(JourneyChangesReview, IsEmpty(CurrentRecord));

Chapter 16 ■ Working offline

329

'8 Process the records that were deleted offline
ForAll(Filter(JourneyChangesReview,
 CurrentRecord.LastModifiedDateTime=
 OfflineRecord.LastModifiedDateTime),
 Remove(Journey, CurrentRecord)
);
RemoveIf(JourneyChangesReview,
 CurrentRecord.LastModifiedDateTime=
 OfflineRecord.LastModifiedDateTime
);

'9 The remaining rows in JourneyChangesReview are conflicting records
If(CountRows(JourneyChangesReview) > 0,
 Collect(JourneyChangesConflict,
 AddColumns(JourneyChangesReview,
 "Status",
 "Delete failed - source record modified by other user"
)
)
);

Clear(JourneyChanges);

'9 Update the offline file
SaveData(JourneyChanges, "OfflineJourneyChangesFile");

'10 Build a message that we can show to the user
If(CountRows(JourneyChangesConflict) > 0,
 UpdateContext(
 {ConflictMessage:
 Text(CountRows(JourneyChangesConflict)) & " conflicting record(s)"}
),
 UpdateContext(
 {ConflictMessage: ""}
)
);

This formula works by processing the offline data modifications from the JourneyChanges collection.
When all the records have been processed, this collection will be empty.

As the formula processes the records, it stores working copies in a collection called
JourneyChangesReview. For each record that was modified offline, the process retrieves the up-to-date
record and stores the result in the JourneyChangesReview collection. Figure 16-11 shows the schema of this
collection.

Chapter 16 ■ Working offline

330

If the process cannot locate an up-to-date record, this indicates that the source record was deleted.
If the up-to-date record shows a different last modified datetime, this indicates that the source record was
modified by another user. In both these cases, the formula stores the conflicting records in a collection called
JourneyChangesConflict. Figure 16-12 shows the schema of this collection

During this process, the formula will add the new records to the data source, and update the records
that are not in a conflicting state. At the end of this process, we’ll be left with only the records in the
JourneyChangesConflict collection.

Disabling Icons and Buttons
With all the controls that are associated with the synchronization process, we can disable a control based on
the state of the app. As we saw earlier in this book, the DisplayMode property provides the means to disable
a control. This can take one of three values: Disabled, Edit, or View. The main difference between the View
and Disabled modes is that in View mode, the control will be disabled but visually appear as though it’s not
disabled.

Figure 16-11. The JourneyChangesReview collection

Figure 16-12. The JourneyChangesConflict collection

Chapter 16 ■ Working offline

331

In our example, we can use the formula below to disable the synchronization button when the device
is offline.

If(Connection.Connected,
 DisplayMode.Edit,
 DisplayMode.Disabled
)

Figure 16-13 shows how this appears in the designer.

Building the Conflict Resolution Screen
If the synchronization process returns records that are in a conflicted state, we can provide a means for users
to resolve these data conflicts. This will allow users to retain the offline changes, or to revert to the most
recent server version of the record. To build this feature, the first step is to create a screen and to add a gallery
control. Name this control GalleryConflict and set the items property to JourneyChangesConflict. We can
configure the gallery control to show the fields that we desire using the syntax OfflineRecord.<Fieldname>.

The next step is to add the controls that users can click to retain or discard the offline changes. Add two
buttons to item of the gallery control, as shown in Figure 16-14.

The process to retain the server version of a record is to simply remove the offline version of the record.
Here’s the formula that we would add to the OnSelect property of the button to discard the offline change:

RemoveIf(JourneyChangesConflict,
 OfflineRecord.PrimaryId =
 GalleryConflict.Selected.OfflineRecord.PrimaryId)

Figure 16-14. Creating a conflict resolution screen

Figure 16-13. The DisplayMode property of a control

Chapter 16 ■ Working offline

332

It’s useful to note that although the syntax beneath may seem valid, the formula will not remove the
selected record. Therefore, it’s better to use the former syntax that references the record to remove by
primary id.

Remove(JourneyChangesConflict, GalleryConflict.Selected)

To retain the offline version of the record, we would patch the offline record to the data source. Here’s
the formula to add to the OnSelect property of the button to retain the offline version:

Patch(Journey,
 GalleryConflict.Selected.CurrentRecord,
 {JourneyDesc: GalleryConflict.Selected.OfflineRecord.JourneyDesc,
 StartDate: GalleryConflict.Selected.OfflineRecord.StartDate,
 MileageInMiles: GalleryConflict.Selected.OfflineRecord.MileageInMiles
 }
);
RemoveIf(JourneyChangesConflict,
 OfflineRecord.PrimaryId =
 GalleryConflict.Selected.OfflineRecord.PrimaryId
)

Finally, to enable users to open the conflict resolution screen, we can provide a button on the
synchronization screen as shown in Figure 16-15. As this screenshot shows, we can write formula to disable
or hide this button if there are no conflicting records.

Summary
In this chapter, we examined what happens when an app becomes offline and we walked through the steps
to develop an app that works offline.

When an auto-generated app becomes offline, the browse screen continues to show the data that
existed before the app became offline. Not surprisingly, the refresh and save functions will not work. When
an app is disconnected from the Internet, users can start apps that they have run previously. However, an
auto-generated app that starts offline will not show any data. PowerApps does not automatically retain app
data for future offline sessions.

To cater for these offline scenarios, PowerApps provides two useful features that can help. First, it
provides the ability to save and retrieve data from files on the local device. Second, it can detect whether the
device is connected to the Internet, and it can also detect if the connection is a metered connection.

To build an app that can edit, create, and delete records while offline, the general technique is to call
a function called SaveData to cache the data to a local file. If a user starts an app while offline, we can call a
function called LoadData function to load the contents of the local file into the app.

Figure 16-15. Opening the Conflict screen

Chapter 16 ■ Working offline

333

To support offline data modifications, we can save the offline data changes to a local collection and
call the SaveData function to store the changes in a locale file. When the app becomes online again, we can
patch the offline changes to the data store.

Providing offline editing capabilities is not a trivial task. The main difficulty is that other users can
modify or delete source records during an offline session. During the data synchronization process, we need
to check for conflicting records. We looked at how to write formula to detect data conflicts by examining the
last modified time of the source record. In the event of a data conflict, we developed a process to move the
offending record to a conflict collection. At the end of the synchronization process, the user can review the
conflicting records and choose whether to apply or to discard the offline changes.

335© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_17

CHAPTER 17

Creating Custom Data Connectors

PowerApps supports a wide range of data sources through its built-in data connectors. But what if we want
to access data sources that are not natively supported - is this possible? The answer is yes. By building a
custom data connector, we can connect to any data source that is accessible through a web service. And if
our required data source doesn’t include a web service interface, we can overcome this by building our own
web service (although this falls outside the scope of this book).

For non-developers, however, this topic can involve lots of confusing jargon. This includes words such
as Restful services, JSON, and Swagger. To make this task as simple to understand as possible, we’ll walk step
by step through a practical example of how to call a postcode lookup service. The purpose of this exercise is
to provide a means for users to enter data more quickly and easily. By the end of this chapter, you’ll be able
to apply the same techniques to add similar valuable features to your apps. The key features that we’ll cover
in this chapter will include the following:

•	 What we can accomplish through web services and how the Web works. This chapter
explains the technical jargon that surrounds this topic and describes how web
requests and responses work. This will provide useful background knowledge for
later parts of this chapter and beyond.

•	 How to build a custom connector. We’ll walk through the steps to build a custom
connector. This will include how to create a web service description file and how to
register the service with PowerApps.

•	 How to use a custom connector. This chapter will explain the most important task of
all - how to call the web service from an app, and how to display the results on screen
controls. We’ll also find out how to save these results to a data source by adapting an
auto-generated app.

What Can We Accomplish with Web Services?
There are thousands of web services that we can call. All modern social media sites provide access features
through web services. These include sites such as Twitter, YouTube, and many more.

For business purposes, practical uses can include looking up stock prices, currency conversion rates,
or converting IP addresses to locations. In fact, the list is almost endless. If you have some idea of what you
want to do, you can probably find a service that fulfills your requirement by searching the web. If no such
service exists, you can write your own web service, or find a developer to build a web service for you.

https://doi.org/10.1007/978-1-4842-3003-9_17

Chapter 17 ■ Creating Custom Data ConneCtors

336

Overview of Steps
Here’s an overview of the steps to call a web service from PowerApps. To accomplish this, we need to build
a custom connector. This is a connector that we can use inside an app, just like the built connectors such as
SharePoint, Excel, and SQL Server. Once we build a custom connector, we can add a data source in our app
that uses the custom connector. We can then write formula that references the data source to call the web
service methods.

Here’s a high-level overview of how to make a web service available in PowerApps:

•	 Find or build a web service.

•	 Document the web service and produce a contract.

•	 Define a custom connector through the PowerApps admin website.

•	 From within an app, add a data source that’s based on the custom connector.

•	 Write formula to call the web service.

The most difficult part of this process is to document the web service and to produce a contract. This
part is crucial because the custom connector requires this to know exactly how a web service works and
behaves. This includes details such as the address, method names, parameters, and return values.

To define this contract, there are two formats that we can use: The ‘Open API’ (also known as Swagger)
format, or the Postman format. To create these files, we would use the Swagger and Postman programs. Both
of these are fully fledged API documentation tools that provide a feature set way beyond what we need to
create a custom connector.

Swagger is the de facto tool for documenting web services. With Swagger, we use a language called
YAML (Yet Another Markup Language) to document a web service. Once this is complete, we save the output
in JSON format because this is the format that PowerApps expects.

Because the target output format is JSON, we can avoid the use of Swagger and Postman and build a
contract file directly with a text editor. For beginners, this can be easier because it avoids the need to register
for a Swagger account and to learn how to use an additional tool. Later in this chapter, we’ll look at Swagger
and Postman but before that, we’ll go through some basic web concepts such as HTTP requests, responses,
and verbs. This is important because the configuration pages for a custom connector refer to these concepts.

Understanding How the Web Works
For non-developers, some of the terminology can be confusing. The documentation refers to REST, JSON,
and other acronyms. Another term we frequently hear is ‘RESTful API’. But what do all these terms mean?

REST stands for Representational State Transfer and it describes a common characteristic of a modern
web service. With REST, every call to a web service must provide all the data that the service needs to fulfill
a request. We can provide this data through arguments in the web address, or the body or headers of the
request.

A purpose of REST is to avoid the storage of session data on a specific server and in doing so, it avoids
the need to tie down the communication between a client and a service to a specific web server. This enables
infrastructure teams to more easily load balance, replace, or scale up a service by adding more servers.
When each request contains all the state data, it makes it possible to cache results on any intermediary
device between the client and server, and this can help speed up performance.

API stands for application programming interface. Through an API, one system can call functionality
or access data from another system through programmatic means. Therefore, a RESTful API describes
something that we can use to access a system through web calls that are REST based.

Chapter 17 ■ Creating Custom Data ConneCtors

337

Another aim of a REST service is to provide addresses that are descriptive and understandable. For
example, here’s the format of a typical REST-based URL.

http://myserver.com/journeys/item/1729

Due to the format of this URL, we can guess that the purpose of this request is to return a journey record
that matches journey id 1729.

Making HTTP Web Requests
Web devices communicate with web servers through HTTP (Hypertext Transfer Protocol). With this
protocol, the communication between a client device and a server consists of isolated requests and
responses. When a client requires data from a web server, it makes a request to the server. The server replies
with a response and at this point, the communication finishes. A web session between a device and a server
consists of a series of isolated requests and responses.

Every HTTP request includes a verb. This describes the type of request that the client is making and it
can be one of four types: GET, POST, PUT, and DELETE.

In all instances where a client wants to retrieve data from a server, it issues an HTTP request with the
GET verb. The client can provide arguments through the path, like so. In this example, the URL specifies a
journey id of 1729.

http://myserver.com/journeys/item/1729

HTTP requests can also specify arguments through query string parameters. Here’s the format of a URL
that uses a query string parameter. The parameters values appear after the ? symbol in the address, and
consist of name-value pairs that are separated with the = sign.

http://myserver.com/journeys.aspx?id=1729

When a client calls a web service to add or submit data, it typically issues an HTTP request with the
POST verb. The data that the client posts will be attached to the body of the request.

Understanding HTTP Responses
A web server replies to HTTP requests with responses that include a status code. Perhaps the most common
status code that people are aware of is the 404 status code. A web server returns this status code when the
user requests a page that doesn’t exist. Another status code is 500, and this is the error code that a server
returns when it encounters an error that the caller cannot resolve.

When we call a web service, the status code that we want to receive is 200. This is the status code that
indicates success. Another success code is 201, and this is a code that indicates a successful POST or a PUT
request.

The response from a web service method might include data that will usually be in XML or JSON
format. Modern web services tend to return data in JSON format because this format is more lightweight.
Listing 17-1 shows an example of a successful HTTP response that includes JSON data.

http://myserver.com/journeys/item/1729
http://myserver.com/journeys/item/1729
http://myserver.com/journeys.aspx?id=1729

Chapter 17 ■ Creating Custom Data ConneCtors

338

Listing 17-1. How a 200 response with JSON data looks like

200 OK
Content-Type: application/json

{
 "post code": "90210",
 "country": "United States",
 "country abbreviation": "US",
 "places": [
 {
 "place name": "Beverly Hills",
 "longitude": "-118.4065",
 "state": "California",
 "state abbreviation": "CA",
 "latitude": "34.0901"
 }
]
}

This structure will look familiar because we’ve seen this notation used throughout this book. JSON
encloses a data set in curly brackets and separates field items with commas. For each field item, JSON
separates the field name from the field value with a colon.

In contrast, XML format wraps data items with start and end tags. In general, it takes more data to
express the same thing with XML and this is one reason why JSON is the format of choice for web services.

Documenting a Web Service
Now that we have an understanding of web protocols, let’s walk through the process of building a custom
connector that connects to a postal code lookup web service.

The first step is to find a web service that provides this functionality. The simplest way to find a service is
to carry out a web search on the phrase ‘zipcode api’. This type of search returns numerous web services that
we can use. This example uses a service called Zippoptam.us, but we can just as easily use any other web
service.

Figure 17-1 shows the home page of this service. The description here provides simple instructions
on how to call this service. For example, to search for the zipcode ‘90210’, we would use the following web
address:

http://api.zippopotam.us/us/90210

http://api.zippopotam.us/us/90210

Chapter 17 ■ Creating Custom Data ConneCtors

339

To test this service, Figure 17-2 shows the response when we enter this address into a web browser. As
this screenshot shows, the service returns a result in JSON format.

Creating a Web Service Description
The next step is to build a document or contract that describes the Zippopotam web service. This is
important because it enables PowerApps to understand the methods, parameters, and return values
of the service.

Figure 17-1. Zippopotam home page

Figure 17-2. The JSON result from the Zippopotam service

Chapter 17 ■ Creating Custom Data ConneCtors

340

For this example, we’ll produce an ‘Open API’ document in JSON format. We’ll examine two tools that
can help us document web APIs: Postman and Swagger.

Using Postman
Postman is a desktop program that runs on Windows and Mac. To use Postman, we first need to download
and install the application. The web address for Postman is: https://www.getpostman.com/

Figure 17-3 shows a screenshot of the app.

The best approach with Postman is to create an environment in which to work in. An environment
provides a container where we can define variables. We can use the designer to call the web methods and to
see the response of the server. Variables enable us to provide parameter values for web requests.

The save feature in Postman saves a collection of files where each file represents a web request.
PowerApps can natively create a custom connector based on a collection of Postman files.

Using Swagger
Unlike Postman, Swagger is a web-based tool. To use Swagger, we first need to visit the Swagger website
and to create an account. Swagger offers a range of subscription plans that includes a free individual plan.
This free plan provides enough functionality to document a web service for use with PowerApps. Here’s the
website for Swagger:

https://app.swaggerhub.com/

Figure 17-3. The Postman app

https://www.getpostman.com/
https://app.swaggerhub.com/

Chapter 17 ■ Creating Custom Data ConneCtors

341

To use Swagger, create an account, log in, and select the option to ‘Start a new API project’. Swagger
provides the option to create a project based on a template. A helpful template is the PetStore API template.
This template is designed for learning purposes and demonstrates lots of useful syntax.

For basic purposes, the easiest option is to build a project based on a blank template. Once we create
a project, we can use the left-hand section to define our web service. Figure 17-4 shows the YAML that we
would use to describe the postcode lookup service.

The code in this illustration provides a template that we can use to describe simple web services.
To reuse this YAML for a different web service, the most crucial parts to modify are the host and basePath
settings. These define the base URL for the service.

The paths entry that begins on line 12 defines the web method that returns an address based on a
zipcode. Within a path definition, we can define parameter placeholders by enclosing the parameter names
in curly brackets (for example, /us/{zipcode}).

Within the designer, we can use the feature in the right-hand section to call our web service and to view
the result from the server, as shown in Figure 17-5. Once we complete our work in Swagger, the final step is
to click the icon in the top-right section to download the document in JSON format.

Figure 17-4. Creating YAML

Chapter 17 ■ Creating Custom Data ConneCtors

342

Examining an Open API Document
Listing 17-2 shows the JSON output that Swagger produces. The structure of this code looks very similar to
the YAML that we entered into Swagger.

This listing is useful because we can use it as a template to define other web services. Just as before,
the crucial sections are the host and the paths settings. We can import this JSON content directly into
PowerApps when we create our custom connector. Therefore, this is the code that we would author
manually if we were to choose not to use Swagger or Postman.

Listing 17-2. JSON Output

{
 "swagger": "2.0",
 "info": {
 "version": "1",
 "title": "PostCode API",
 "description": "Call Zippopotam Lookup"
 },
 "schemes": ["https", "http"],
 "produces": ["application/json"],
 "paths": {
 "/us/{zipcode}": {
 "get": {
 "summary": "Get Postcode",
 "description": "Enter the postcode to search",
 "responses": { "200": { "description": "JSON postcode result" } },

Figure 17-5. The Swagger designer

Chapter 17 ■ Creating Custom Data ConneCtors

343

 "parameters": [
 {
 "name": "zipcode",
 "in": "path",
 "description": "US Zipcode",
 "required": true,
 "type": "string"
 }
]
 }
 }
 },
 "host": "api.zippopotam.us",
 "basePath": "/"
}

Creating a Custom Connector
Now that we’ve built an Open API document, the difficult part is over. The next step is to create a
custom connector and we can do this easily through the PowerApps admin site. From the admin site,
click the Connectors menu item on the left-hand menu and click the ‘Manage custom connectors’ item
that appears in the top menu. When the Custom connectors screen opens, click the ‘Create Custom
Connector’ item.

The page to create a custom connector consists of four sections: general, security, definition, and test.
Figure 17-6 shows the first screen, the general screen. To upload our Open API file, select the ‘Upload an
OpenAPI file’ radio option and click the file browse button to select the file. Other options include the ability
to specify an OpenAPI URL or to upload a Postman collection.

Chapter 17 ■ Creating Custom Data ConneCtors

344

Creating a custom connector with one of these options will populate the general section in the lower
part of the screen. This section includes the host and base URL settings. These two settings are not editable,
but it’s crucial that these settings are correct. If not, we need to correct the entries in the OpenAPI file and
re-upload the file through this screen.

The next screen enables us to configure the security of the web service. The Zippopotam web service
does not require authentication, but many other web services do. To connect to a web service that requires
authentication, use the settings that are shown in Figure 17-7. This screenshot shows the text boxes to enter
a username and password with basic authentication.

Figure 17-6. Creating a custom connector

Chapter 17 ■ Creating Custom Data ConneCtors

345

The next page enables us to define the web service method. The settings here derive their values from
the contents of the Open API file that we uploaded. The URL setting defines the endpoint of the web service.
This setting is not editable, but it’s very important to make sure it is correct. The combined values of the host,
root path, and URL settings should make up the correct web service address.

The parameters from the Open API file appear lower down in the screen. Figure 17-8 shows the zipcode
parameter. We can click this entry to view and to further configure the parameter.

Figure 17-7. Configuring authentication

Chapter 17 ■ Creating Custom Data ConneCtors

346

The next step is to define the JSON result that the web service returns. This enables PowerApps to
understand the structure of the data and to provide suitable IntelliSense in the formula bar. Click the ‘200’
response entry that appears lower in the page. In the page that opens, click the ‘import from sample’ button
to reveal the panel that’s shown in Figure 17-9.

Figure 17-8. Configuring the web service definition

Chapter 17 ■ Creating Custom Data ConneCtors

347

Because our web service returns JSON, enter 'content-type application/json' into the headers text
box. For the body section, enter JSON data that matches the data structure that the web service returns. We
can call the web service from a browser and paste the output into this box. When we click the import button,
the output data fields from the web service will appear, as shown in Figure 17-10.

Figure 17-9. Configuring the web service response

Figure 17-10. Configuring the web service response

Chapter 17 ■ Creating Custom Data ConneCtors

348

The next page enables us to test the connector. If the test succeeds, a success message appears, as
shown in Figure 17-11. If the test fails, it can be difficult to diagnose the exact cause because the error
message that comes back is not particularly helpful. In such cases, the first thing to check are the host and
URL values. Incorrect values here are a likely cause of errors.

Using the Custom Connector
Now that we’ve added our custom connector, we can use it in our apps. The connector will appear in the add
data source menu as shown in Figure 17-12. Once we add a data source, we can use it in our formulas.

Figure 17-11. Testing the web service method

Chapter 17 ■ Creating Custom Data ConneCtors

349

To show how to populate data controls on a screen with results from a web service, here’s how to adapt
the edit screen from an auto-generated app. We’ll add a text box for users to enter a ZIP code and a button
that retrieves the associated data from the Zippopotam service.

In this demonstration, we’ll use an app that’s based on the location table from Chapter 11. The button
will retrieve the longitude and latitude values for the zipcode, and populate the text input controls on the
form. An important feature of this modification is that it retains the save feature of the form. As a reminder,
Figure 17-13 shows the structure of the location table.

To create this example, the first step is to build an auto-generated app that’s based on this data
structure. On the edit screen, add a card and on this card, insert a text input control called TextinputZipcode.
Next, add a button called GetLocation and set the OnSelect property of the button to the formula beneath:

UpdateContext(
 {AddressResult: PostCodeAPI.Zippopotam(TextinputZipcode.Text)}

)

Unlock the card for the longitude field and change the default property of the text input control to the
formula shown beneath:

If(IsBlank(First(AddressResult.places).longitude),
 Parent.Default,
 First(AddressResult.places).longitude
)

Figure 17-13. Layout of the location table

Figure 17-12. Adding a data source for a custom connector

http://dx.doi.org/10.1007/978-1-4842-3003-9_11

Chapter 17 ■ Creating Custom Data ConneCtors

350

The purpose of this formula is to show the longitude value that the user obtains by clicking the
GetLocation button. If this value is blank, the formula returns the existing longitude value for the record.

The next step is to modify the update property of the card so that it updates the data source with the
desired value. Select the card for the longitude field and set the Update property to the same formula, as
shown beneath:

If(IsBlank(First(AddressResult.places).longitude),
 Parent.Default,
 First(AddressResult.places).longitude
)

Now repeat the same process for the latitude values. Set the default property of the latitude text input
control, and then update the property of the latitude card to the formula shown beneath.

If(IsBlank(First(AddressResult.places).latitude),
 Parent.Default,
 First(AddressResult.places).latitude
)

The final step is to clear the longitude and latitude values that are associated with the AddressResult
variable when the user leaves the screen. Here’s the formula to add to the OnHidden property of the screen.

UpdateContext({AddressResult:
{
 places: [
 {
 longitude: "",
 latitude: ""
 }
]
}
})

Note that it’s not possible to set a variable to a null value using the syntax that’s shown below. This is the
reason why it’s necessary to use the verbose syntax that is shown above to set the AddressResult variable to
a blank value.

UpdateContext({AddressResult: Blank})

Figure 17-14 shows the layout of the screen in the designer. At this stage, we can run our app and save
the updated location details to the data store.

Chapter 17 ■ Creating Custom Data ConneCtors

351

Figure 17-14. Layout of the sample screen

Summary
In this chapter, we looked at how to build a custom connector. This enables apps to call web services.
This provides an enormous benefit because it extends widely the systems and data sources that apps can
integrate with. Examples of what we can do include connecting to social media sites, retrieving stock prices,
or converting currency values.

After we build or find a web service that we want to use, the first step is to document the web service
and to produce a contract. Two tools that we can use to do this are Swagger and Postman. With Swagger, we
can generate an Open API file in JSON format that describes the web service. The contents of this file would
include the address, expected parameters, and expected output of web methods.

Once we produce this contract, we can upload it through the PowerApps admin website and use it
to create a custom connector. During this stage, we can configure authentication settings, the parameters
of web methods, and the data structures that they return. When this process is complete, we can use the
connector to add a data source to an app, and write formula to call the web method.

To show how to save the results from a web service, we adapted the edit screen from an auto-generated
app. We saved the result of the web service to a local variable and modified the default and update properties
of the form cards to refer to the variable values.

To create custom connectors, it’s useful to understand the technology behind web services. To call a
web method, a client device uses HTTP to communicate with a server. To retrieve data, it issues an HTTP
request to the server. The response from the server can include a payload of data, and a common format for
the return data is JSON. HTTP responses include a status code and the code that we generally seek is 200 -
this is the code that indicates success.

353© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9_18

APPENDIX A

Data Models

The built-in standard entities in the CDS support many common business scenarios. However, it can often
be difficult to find the entities to cater to a specific requirement because there are more than 90 standard
entities, and it’s difficult to know where to start. To bring some clarify, this appendix offers an overview of the
standard entities and provides a summary of the names, fields, and relations between the entities.

The final part of this appendix summarizes the structure of the example journey app that we’ve seen
throughout this book.

Overview of CDS Entities
The standard entities are organized into the eight groups: Foundation, Person, Group, Sales, Customer
Service, Organization, Purchase, and Human Resources. To begin this section, we’ll examine the purpose
and relationships between the entities in each group.

Foundation Entities
The foundation entities allow us to store fundamental details about a business. This group contains seven
entities, which are Business unit, Business unit contact, Cost center, Product, Product category, Product
category assignment, and Unit of measure conversion.

Figure A-1 shows the relationships between these entities, and it also illustrates relationships with
entities that fall outside of this group. This diagram indicates the direction of the one-to-many relationship
between pairs of entities.

https://doi.org/10.1007/978-1-4842-3003-9_18

Appendix A ■ dAtA Models

354

The business unit, cost center, and organization entities store the contact details and descriptions for
each record. A notable entity is the product entity. This entity stores the description, price, and image for
each record. The product entity includes a lookup field that stores the product category for each record. For
additional flexibility, we can choose not to use this lookup field and to use the Product category assignment
entity instead. This enables us to set multiple product categories for each product record, as shown in
Figure A-1. The same concept applies to the Contact and Business unit entities. We can associate a contact
with a single business unit, or alternatively, associate a contact with multiple business units with the help of
the Business Unit Contact entity.

Another notable feature is that for each business unit and cost center record, we can associate the
record with a parent record. This theme of self-joins and many-to-many relationships extends throughout
many of the entities in the CDS.

Person Entities
The entities in the person group store details about people. There are eight entities in this group, which
include Alumnus, Application user, Application user contact, Constituent, Contact, Person, Tenant, and
Worker.

These entities are very similar and store details such as the name, address, and social media identifiers
for each record. The Application user entity includes a field that stores the application id of a user. This field
is perfect for storing the Office 365 GUID of a user.

The worker entity provides fields to store the hire date and the manager of the worker. Most of the
entities in the person group include fields to store taxation details. The exceptions are the contact, alumnus,
and application user entities.

One highlight of the contact entity is that it includes a marital status field. None of the other entities
provide this field.

Figure A-1. Foundation Entities

Appendix A ■ dAtA Models

355

As Figure A-2 shows, we can associate an application user record with multiple contact records though
the help of the Application user contact entity.

Group Entities
There are entities that we can use to define groups of people. This includes the Application User Group,
Team, Household, and Family entities. These entities include fields that store the description and primary
contact details of the group.

The Person entity stores details about individuals, and we can use the Team Member, Household
Member, and Family Member entities to associate single individuals with multiple teams, households, or
families. Figure A-3 illustrates the relationships between these entities.

Sales Entities
The sales group provides entities to help build apps for sales purposes. We can use the entities in this group
to record the details of accounts, leads, opportunities, competitors, and orders.

The Account entity stores account information that includes the name, shipping address, payment
terms, and credit limit of each account. The account entity plays a pivotal role and many other entities
refer to this entity. This includes entities that record sales details such as leads, orders, case management,
quotations, and invoices. Figure A-4 illustrates the main entities that relate to the account entity. With the
help of these entities, we can associate accounts with the multiple organizations using the Account Group
entity. We can use the Account Contact entity to associate a contact with multiple accounts.

Figure A-2. Person Entities

Figure A-3. Group Entities

Appendix A ■ dAtA Models

356

Another notable feature about the Account entity is that it includes a lookup field to store the parent
account for each record.

Figure A-5 shows the entities that we can use to store leads, opportunities, and competitors.

Figure A-6 shows the entities that store quotation details, and Figure A-7 shows the entities that store
sales invoice details.

Figure A-4. Account Entities

Figure A-5. Opportunities, Competitor, and Lead Entities

Appendix A ■ dAtA Models

357

Figure A-6. Quotation Entities

Figure A-7. Sales Invoice

Appendix A ■ dAtA Models

358

Figure A-8 shows the entities that store sales order details.

Purchase Entities
The purchase group provides entities to help build apps for purchasing operations. We can use the entities in
this group to record vendors, purchase orders, and invoices from vendors. Figure A-9 shows the main entities
that are related to the Vendor entity.

Figure A-8. Sales Order Entities

Appendix A ■ dAtA Models

359

Figure A-10 shows the entities that relate to purchase orders, while Figure A-11 shows the entities that
relate to vendor invoices.

Figure A-9. Vendor Entities

Figure A-10. Purchase Order Entities

Appendix A ■ dAtA Models

360

Customer Service Entities
The customer service group provides entities to help build apps for customer service purposes. Figure A-12
shows the entities in the customer services group. For each case record, we can create multiple case activity
records. We can use the KB Article entity to store knowledgebase records, and we can associate multiple KB
Articles with each Case Activity record with the use of the Case Activity KB Article entity.

Figure A-11. Vendor Invoice Entities

Appendix A ■ dAtA Models

361

Human Resources Entities
The human resources group provides entities to help build apps to support human resource departments.
Figure A-13 shows the entities in this group. We can use the entities in this group to store leave request
details, and details about jobs, workers, and positions.

Figure A-12. Customer Service Entities

Figure A-13. Human Resources Entities

Appendix A ■ dAtA Models

362

CDS Field Names
This final part of this appendix lists the fields in each standard entity.

Foundation Entities
Listing A-1 shows the fields for each entity in the foundation group.

Listing A-1. Foundation Entities

Business Unit (BusinessUnitId, Costcenter_CostcenterId, Description, EmailAlternate,
EmailPrimary, Fullname, Image, IsDefaultForOrganization, IsEmailContactAllowed,
IsPhoneContactAllowed, MailingPostalAddress, OfficeGraphIdentifier, Organization_
OrganizationId, OrganizationName, OtherPostalAddress, OwnedByUser, ParentBusinessUnit_
BusinessUnitId, PartyType, Phone01, Phone02, Phone03, PhonePrimary, SatoriId,
ShippingPostalAddress, Source, Status, TaxIdentificationIssuer, TaxIdentificationNumber,
WebsiteURL)

Business Unit Contact (BusinessUnit_BusinessUnitId, Contact_ContactId, Datasource,
Description, OwnedByUser)

Cost Center (CostcenterId, Description, Name, Organization_OrganizationId, OwnedByUser,
Parentcostcenter_Costcenterid)

Product (ProductId, DefaultBuyingUnitOfMeasure, DefaultSellingQuantity,
DefaultStockingUnitOfMeasure, Description, Image, IsStocked, Name, Organization_
OrganizationId, OwnedByUser, Productcategory_CategoryId, Producttype, SellingUnitprice,
StandardCostAmount, Status, UnitOfMeasureScale)

Product Category (CategoryId, Description, Name, Organization_OrganizationId, OwnedByUser,
Parentprodcutcategory_Categoryid)

Product Category Assignment (Product_ProductId, Productcategory_CategoryId, OwnedByUser)

Unit of measure conversion (FromUnitOfMeasure, ToUnitOfMeasure, FromToConversionRate,
OwnedByUser, ToFromConversionRate)

Person Entities
Listing A-2 shows the fields for each entity in the person group.

Listing A-2. Person Entities

Alumnus (AlumnusId, BirthDate, BusinessPostalAddress, Description, EmailAlternate,
EmailPrimary, FacebookIdentity, Fullname, Gender, Generation, GraduationClass,
GraduationDate, HomePostalAddress, Image, IsEmailContactAllowed, IsPhoneContactAllowed,
LinkedinIdentity, Name, OfficeGraphIdentifier, OwnedByUser, PartyType, PhoneBusiness,
PhoneCell, PhoneHome, PhonePrimary, Profession, ShippingPostalAddress, SocialNetwork01,
SocialNetwork02, SocialNetworkIdentity01, SocialNetworkIdentity02, Source, Status,
TwitterIdentity, WebsiteURL)

Appendix A ■ dAtA Models

363

Application User (AaduseroId, ApplicationuserId, BirthDate, BusinessPostalAddress,
BusinessUnit_BusinessUnitId, Description, EmailAlternate, EmailPrimary, FacebookIdentity,
Fullname, Gender, Generation, HomePostalAddress, IsAdmin, IsEmailContactAllowed,
IsPhoneContactAllowed, LinkedinIdentity, Name, OfficeGraphIdentifier, OwnedByUser,
PartyType, PhoneBusiness, PhoneCell, PhoneHome, PhonePrimary, Profession,
ShippingPostalAddress, SocialNetwork01, SocialNetwork02, SocialNetworkIdentity01,
SocialNetworkIdentity02, Source, Status, TwitterIdentity, WebsiteURL)

Application User Contact (Applicationuser_AaduseroId, Contact_ContactId, Datasource,
Description, IsOwner, OwnedByUser)

Constituent (ConstituentId, BirthDate, BusinessPostalAddress, Description, EmailAlternate,
EmailPrimary, FacebookIdentity, Fullname, Gender, Generation, HomePostalAddress, Image,
IsEmailContactAllowed, IsPhoneContactAllowed, IsSecurityPrincipal, LinkedinIdentity,
Name, OfficeGraphIdentifier, OwnedByUser, PartyType, PhoneBusiness, PhoneCell, PhoneHome,
PhonePrimary, Profession, SatoriId, ShippingPostalAddress, SocialNetwork01, SocialNetwork02,
SocialNetworkIdentity01, SocialNetworkIdentity02, Source, Status, TaxIdentificationIssuer,
TaxIdentificationNumber, TwitterIdentity, WebsiteURL)

Contact (ContactId, BirthDate, BusinessPostalAddress, BusinessUnit_BusinessUnitId,
Department, Description, EmailAlternate, EmailPrimary, FacebookIdentity, Fullname, Gender,
Generation, Governmentidentifier, HomePostalAddress, Image, IsEmailContactAllowed,
IsPhoneContactAllowed, IsPostalMailAllowed, LinkedinIdentity, MaritalStatus,
Name, OfficeGraphIdentifier, Organization_OrganizationId, OwnedByUser, PartyType,
Personinformation, PhoneBusiness, PhoneCell, PhoneHome, PhonePrimary, Primaryaccount_
AccountId, Primaryaccountrole, Profession, ShippingPostalAddress, SocialNetwork01,
SocialNetwork02, SocialNetworkIdentity01, SocialNetworkIdentity02, Source, Status,
TwitterIdentity, WebsiteURL, WorkerResponsible_WorkerId)

Fan (FanId, BirthDate, BusinessPostalAddress, Description, EmailAlternate, EmailPrimary,
FacebookIdentity, FanSince, FavoritePlayer, Fullname, Gender, Generation, HomePostalAddress,
Image, IsEmailContactAllowed, IsPhoneContactAllowed, IsSecurityPrincipal, LinkedinIdentity,
Name, OfficeGraphIdentifier, OwnedByUser, PartyType, PhoneBusiness, PhoneCell, PhoneHome,
PhonePrimary, Profession, SatoriId, ShippingPostalAddress, SocialNetwork01, SocialNetwork02,
SocialNetworkIdentity01, SocialNetworkIdentity02, Source, Status, TaxIdentificationIssuer,
TaxIdentificationNumber, TwitterIdentity, WebsiteURL)

Person (PersonId, BirthDate, Description, EmailAlternate, EmailPrimary, FacebookIdentity,
Fullname, Gender, Generation, Image, IsEmailContactAllowed, IsPhoneContactAllowed,
IsSecurityPrincipal, Linkedinapiurl, LinkedinIdentity, MailingPostalAddress, Name,
OfficeGraphIdentifier, OtherPostalAddress, OwnedByUser, PartyType, Phone01, Phone02,
Phone03, PhonePrimary, Profession, SatoriId, ShippingPostalAddress, SocialNetwork01,
SocialNetwork02, SocialNetworkIdentity01, SocialNetworkIdentity02, Source, Status,
TaxIdentificationIssuer, TaxIdentificationNumber, TwitterIdentity, WebsiteURL)

Tenant (TenantId, BirthDate, BusinessPostalAddress, Description, EmailAlternate,
EmailPrimary, FacebookIdentity, Fullname, Gender, Generation, HomePostalAddress, Image,
IsEmailContactAllowed, IsPhoneContactAllowed, IsSecurityPrincipal, LinkedinIdentity,
OfficeGraphIdentifier, OwnedByUser, PartyType, PersoName, PhoneBusiness, PhoneCell,
PhoneHome, PhonePrimary, Profession, SatoriId, ShippingPostalAddress, SocialNetwork01,

Appendix A ■ dAtA Models

364

SocialNetwork02, SocialNetworkIdentity01, SocialNetworkIdentity02, Source, Status,
TaxIdentificationIssuer, TaxIdentificationNumber, TwitterIdentity, WebsiteURL)

Worker (WorkerId, Alias, BirthDate, Building, BusinessPostalAddress, BusinessUnit_
BusinessUnitId, Description, EmailAlternate, EmailPrimary, Externalreference,
FacebookIdentity, Fullname, Gender, Generation, HomePostalAddress, Image,
IsEmailContactAllowed, IsPhoneContactAllowed, LinkedinApiUrl, LinkedinIdentity, Manager_
WorkerId, Name, OfficeGraphIdentifier, Organization_OrganizationId, OriginalHireDate,
OwnedByUser, PartyType, PhoneBusiness, PhoneCell, PhoneHome, PhonePrimary, Profession, Room,
SatoriId, ShippingPostalAddress, SocialNetwork01, SocialNetwork02, SocialNetworkIdentity01,
SocialNetworkIdentity02, Source, Status, TaxIdentificationIssuer, TaxIdentificationNumber,
TwitterIdentity, Type, WebsiteURL)

Group Entities
Listing A-3 shows the fields for each group entity.

Listing A-3. Group Entities

Application User Group (ApplicationUserGroupId, BusinessUnit_BusinessUnitId,
Description, EmailAlternate, EmailPrimary, Fullname, Groupname, IsSecurityPrincipal,
MailingPostalAddress, OfficeGraphIdentifier, OtherPostalAddress, OwnedByUser, PartyType,
PhonePrimary, ShippingPostalAddress, Source, Status, WebsiteURL)

Family (FamilyId, Description, EmailAlternate, EmailPrimary, Fullname, Groupname, Image,
MailingPostalAddress, OtherPostalAddress, OwnedByUser, PartyType, Phone01, Phone02, Phone03,
PhonePrimary, ShippingPostalAddress, Source, Status, WebsiteURL)

Family Member (Family_FamilyId, Person_PersonId, Description, OwnedByUser, PrimaryRole,
Status)

Household (HouseholdId, Description, EmailAlternate, EmailPrimary, Fullname, Groupname,
Image, MailingPostalAddress, OtherPostalAddress, OwnedByUser, PartyType, Phone01, Phone02,
Phone03, PhonePrimary, ShippingPostalAddress, Source, Status, WebsiteURL)

Household Member (Household_HouseholdId, Person_PersonId, Description, OwnedByUser,
PrimaryRole, Status)

Team (TeamId, Description, EmailAlternate, EmailPrimary, Fullname, Groupname, Image,
MailingPostalAddress, OtherPostalAddress, OwnedByUser, PartyType, Phone01, Phone02, Phone03,
PhonePrimary, ShippingPostalAddress, Source, Status, WebsiteURL)

Team Member (Team_TeamId, Person_PersonId, Description, OwnedByUser, PrimaryRole, Status)

Appendix A ■ dAtA Models

365

Sales Entities
Listing A-4 shows the fields for each entity in the sales group.

Listing A-4. Sales Entities

Account (AccountId, AccountGroup_AccountGroupId, BirthDate, BusinessUnit_BusinessUnitId,
CreditLimitAmount, Description, DunsNumber, EmailAlternate, EmailPrimary, Employeecount,
FacebookIdentity, FreightTerms, Fullname, Gender, Image, Industrycode, IsEmailContactAllowed,
IsPhoneContactAllowed, LinkedinIdentity, MailingPostalAddress, MaritalStatus,
OfficeGraphIdentifier, Organization_OrganizationId, OrganizationName, OtherPostalAddress,
OwnedByUser, Parentaccount_AccountId, PartyType, Paymentterms, Personinformation, PersonName,
Phone01, Phone02, Phone03, Phonefax, PhonePrimary, Primarycontact_ContactId, Salescurrencycode,
SatoriId, ShippingMethod, ShippingPostalAddress, SocialNetwork01, SocialNetwork02,
SocialNetworkIdentity01, SocialNetworkIdentity02, Source, Status, StockExchange, StockTicker,
TaxIdentificationIssuer, TaxIdentificationNumber, TwitterIdentity, WebsiteURL)

Account Contact (Account_AccountId, Contact_ContactId, Datasource, Description, OwnedByUser)

Account Group (AccountGroupId, Description, Name, Organization_OrganizationId, OwnedByUser)

Account Lead (Account_AccountId, Lead_LeadId, OwnedByUser)

Competitor (CompetitorId, Description, DunsNumber, EmailAlternate, EmailPrimary,
FacebookIdentity, Fullname, Image, Industrycode, KeyProductName, LinkedinIdentity,
MailingPostalAddress, OpportunityDescription, Organization_OrganizationId, OrganizationName,
OtherPostalAddress, OverviewDescription, OwnedByUser, PartyType, PersonName, Phone01,
Phone02, Phone03, Primarycontact_ContactId, Referenceinfourl, ReportedAnnualRevenue,
ReportingQuarter, ReportingYear, ShippingPostalAddress, SocialNetwork01, SocialNetwork02,
SocialNetworkIdentity01, SocialNetworkIdentity02, Source, Status, StockExchange,
StockTicker, StrengthDescription, ThreatDescription, TransactionCurrency, TwitterIdentity,
Weaknesses, WebsiteURL, WinPercentage)

Competitor other postal address (AddressId, Competitor_CompetitorId, Description,
OtherPostalAddress, OwnedByUser)

Competitor Product (Competitor_CompetitorId, Product_ProductId, CompetitorProductId,
OwnedByUser)

Contact Lead (Contact_ContactId, Lead_LeadId, OwnedByUser)

Lead (LeadId, Account_AccountId, AnnualRevenue, BirthDate, BudgetAmount, BudgetStatus,
BusinessUnit_BusinessUnitId, Description, DunsNumber, EmailAlternate, EmailPrimary,
EstimatedAmount, EstimatedCloseDate, FacebookIdentity, Fullname, Gender, Generation,
Image, IndustryCode, IsDecisionMaker, IsEmailContactAllowed, IsInterestConfirmed,
IsPhoneContactAllowed, IsSecurityPrincipal, LastCampaignDate, LeadRating, LeadSource,
LinkedinIdentity, MailingPostalAddress, OfficeGraphIdentifier, Organization_
OrganizationId, OrganizationName, OtherPostalAddress, OwnedByUser, PartyType,
PersonName, Phone01, Phone02, Phone03, PhonePrimary, PreferredContactMethod, Profession,
PurchaseTimeLine, QualificationDescription, QualifyingOpportunity_OpportunityId,
SatoriId, ScheduleFollowUpProspect, ScheduleFollowUpQualify, ShippingPostalAddress, Sic,
SocialNetwork01, SocialNetwork02, SocialNetworkIdentity01, SocialNetworkIdentity02, Source,

Appendix A ■ dAtA Models

366

Status, StockExchange, StockTicker, TaxIdentificationIssuer, TaxIdentificationNumber,
TwitterIdentity, WebsiteURL)

Lead Competitor (Competitor_CompetitorId, Lead_LeadId, OwnedByUser)

Lead Contact (Lead_LeadId, Contact_ContactId, Datasource, Description, OwnedByUser)

Lead Other Postal Address (AddressId, Description, Lead_LeadId, OtherPostalAddress,
OwnedByUser)

Lead Product (Lead_LeadId, Product_ProductId, OwnedByUser)

Opportunity (OpportunityId, ActualCloseDate, ActualValueAmount, BudgetAmount, BusinessUnit_
BusinessUnitId, CloseProbability, CompetitorsIdentified, Contact_ContactId, CreatedDate,
CurrentSituationDescription, CustomerContactsIdentified, CustomerNeedDescription,
CustomerPainPointsDescription, Description, DiscountAmount, DiscountPercentage,
EstimatedCloseDate, EstimatedValueAmount, FollowUpProspectDate, FollowupqualifyDate,
Industrycode, Isdecisionmaker, Name, NextfollowupDate, Organization_OrganizationId,
OriginalEstimatedValueAmount, OriginatingLead_LeadId, OwnedByUser, ParentOpportunity_
OpportunityId, ProposalMeetingDate, ProposedSolutionDescription, PurchaseProcess,
PurchaseTimeframe, QualificationDescription, RatingCode, SalesStage, SalesTeamIdentified,
Source, Status, Timeline)

Opportunity competitor (Competitor_CompetitorId, Opportunity_OpportunityId, OwnedByUser)

Opportunity product (Opportunity_OpportunityId, Product_ProductId, Description,
DiscountAmount, IsPriceOverridden, LineAmount, OwnedByUser, Quantity, Sequence,
TotalTaxAmount, Unitprice)

Partner (PartnerId, BusinessUnit_BusinessUnitId, Description, DunsNumber, EmailAlternate,
EmailPrimary, FacebookIdentity, Fullname, Image, Industrycode, IsEmailContactAllowed,
IsPhoneContactAllowed, IsSecurityPrincipal, LinkedinIdentity, MailingPostalAddress,
Organization_OrganizationId, OrganizationName, OtherPostalAddress, OwnedByUser,
Parentpartner_PartnerId, PartyType, Phone01, Phone02, Phone03, PhonePrimary, Primarycontact_
ContactId, SatoriId, ShippingPostalAddress, SocialNetwork01, SocialNetwork02,
SocialNetworkIdentity01, SocialNetworkIdentity02, Source, Status, StockExchange,
StockTicker, TaxIdentificationIssuer, TaxIdentificationNumber, TwitterIdentity, WebsiteURL)

Quotation (QuotationId, Account_AccountId, Accountcontact_ContactId, BillingAddress,
BusinessUnit_BusinessUnitId, CustomerPurchaseOrderReference, DeliveryAddress, Description,
DiscountAmount, Discount Discountpercent, ExpectedShipDate, ExpirationDate, FreightTerms,
InvoiceAccount_AccountId, Name, Opportunity_OpportunityId, Organization_OrganizationId,
OwnedByUser, Paymentterms, QuotationDate, Quotationtype, RequestedDeliveryDate,
SalesOrderReference, SalesPersonworker_WorkerId, ShippingMethod, Status, StatusReason,
TotalAmount, TotalChargeAmount, TotalDiscountAmount, TotalDiscountPercent, TotalTaxAmount)

Quotation Charge (Quotation_QuotationId, Chargetype, Amount, BusinessUnit_BusinessUnitId,
Description, Name, OwnedByUser)

Quotation Line (Quotation_QuotationId, Sequence, BusinessUnit_BusinessUnitId,
DeliveryAddress, Description, DiscountAmount, DiscountPercent, ExpectedShipDate,

Appendix A ■ dAtA Models

367

LineAmount, MostRecentActualShipDate, Name, OwnedByUser, Product_ProductId, Productname,
PromisedShipDate, Quantity, RequestedDeliveryDate, Status, StatusReason, TotalChargeAmount,
TotalTaxAmount, UnitPrice)

Quotation Line Charge (QuotationLine_Quotation_QuotationId, QuotationLine_Sequence,
Chargetype, Amount, BusinessUnit_BusinessUnitId, Description, Name, OwnedByUser)

Quotation Line Tax (QuotationLine_Quotation_QuotationId, QuotationLine_Sequence, TaxType,
Amount, BusinessUnit_BusinessUnitId, Description, Name, OwnedByUser, RateCode)

Quotation Tax (Quotation_QuotationId, TaxType, Amount, BusinessUnit_BusinessUnitId,
Description, Name, OwnedByUser, RateCode)

Sales Invoice (SalesInvoiceId, Account_AccountId, Accountcontact_ContactId, BillingAddress,
BusinessUnit_BusinessUnitId, CustomerPurchaseOrderReference, Description, DiscountAmount,
Discount FreightTerms, InvoiceDate, Name, Opportunity_OpportunityId, Organization_
OrganizationId, OwnedByUser, PaymentTerms, SalesOrder_SalesOrderId, SalesPersonworker_
WorkerId, ShippingMethod, Status, TotalAmount, TotalChargeAmount, TotalDiscountAmount,
TotalTaxAmount)

Sales Invoice Charge (SalesInvoice_SalesInvoiceId, Chargetype, Amount, BusinessUnit_
BusinessUnitId, Description, Name, OwnedByUser)

Sales Invoice Line (SalesInvoice_SalesInvoiceId, Chargetype, Amount, BusinessUnit_
BusinessUnitId, Description, Name, OwnedByUser)

Sales Invoice Line Charge (SalesInvoiceLine_SalesInvoice_SalesInvoiceId, SalesInvoiceLine_
Sequence, ChargeType, Amount, BusinessUnit_BusinessUnitId, Description, Name, OwnedByUser)

Sales Invoice Line Tax (SalesInvoiceLine_SalesInvoice_SalesInvoiceId, SalesInvoiceLine_
Sequence, TaxType, Amount, BusinessUnit_BusinessUnitId, Description, Name, OwnedByUser,
RateCode)

Sales Invoice Tax (SalesInvoice_SalesInvoiceId, TaxType, Amount, BusinessUnit_
BusinessUnitId, Description, Name, OwnedByUser, RateCode)

Sales Order (SalesOrderId, Account_AccountId, Accountcontact_ContactId, BillingAddress,
BusinessUnit_BusinessUnitId, CustomerPurchaseOrderReference, DeliveryAddress, Description,
DiscountAmount, Discount ExpectedShipDate, FreightTerms, InvoiceAccount_AccountId,
Name, Opportunity_OpportunityId, OrderDate, Organization_OrganizationId, OwnedByUser,
Paymentterms, RequestedDeliveryDate, SalesPersonworker_WorkerId, ShippingMethod, Status,
TotalAmount, TotalChargeAmount, TotalDiscountAmount, TotalTaxAmount)

Sales Order Charge (SalesOrder_SalesOrderId, Chargetype, Amount, BusinessUnit_
BusinessUnitId, Description, Name, OwnedByUser)

Sales Order Line (SalesOrder_SalesOrderId, Sequence, BusinessUnit_BusinessUnitId,
DeliveryPostalAddress, Description, DiscountAmount, ExpectedShipDate, LineAmount,
MostRecentActualShipDate, Name, OwnedByUser, Product_ProductId, ProductName,
PromisedShipDate, Quantity, RequestedDeliveryDate, Status, TotalChargeAmount,
TotalTaxAmount, UnitPrice)

Appendix A ■ dAtA Models

368

Sales Order Line Charge (SalesOrderline_SalesOrder_SalesOrderId, SalesOrderline_Sequence,
Chargetype, Amount, BusinessUnit_BusinessUnitId, Description, Name, OwnedByUser)

Sales Order Line Shipment (SalesOrderline_SalesOrder_SalesOrderId, SalesOrderline_Sequence,
Sequence, ActualShipDate, BusinessUnit_BusinessUnitId, Description, OwnedByUser, Quantity,
Status)

Sales Order Line Tax (SalesOrderline_SalesOrder_SalesOrderId, SalesOrderline_Sequence,
TaxType, Amount, BusinessUnit_BusinessUnitId, Description, Name, OwnedByUser, RateCode)

Sales Order Tax (SalesOrder_SalesOrderId, TaxType, Amount, BusinessUnit_BusinessUnitId,
Description, Name, OwnedByUser, RateCode)

Customer Service Entities
Listing A-5 shows the fields for each entity in the customer service group.

Listing A-5. Customer Service Entities

Case (CaseId, Account_AccountId, ArrivalDate, BusinessUnit_BusinessUnitId, Category,
CloseDate, Comment, CurrentAssignedSupportWorker_WorkerId, CurrentContact_ContactId,
CustomerSatisfactionCode, Description, Name, Organization_OrganizationId, OriginCode,
OwnedByUser, ParentCase_CaseId, Severity, SolutionType, Status)

Case Activity (SupportCase_CaseId, Sequence, BeginDate, BusinessUnit_BusinessUnitId,
CaseSeverity, CaseStatus, Comment, Contact_ContactId, ContactType, Description, EndDate,
HasKbArticle, Image, IsReassignment, IsSeverityChange, IsStatusChange, OwnedByUser,
PriorCaseSeverity, PriorCaseStatus, ReassignedComment, ReassignedFromCaseworker_WorkerId,
ReassignedReason, SupportWorker_WorkerId, Type)

Case Activity Kb Article (CaseActivity_SupportCase_CaseId, CaseActivity_Sequence,
KbArticle_KbArticleId, ArticleValue, Description, KbArticleName, OwnedByUser)

Kb Article (KbArticleId, ArticleScore, Author_WorkerId, Description, LinkToArticle,
OwnedByUser, Synopsis)

Organization Entities
Listing A-6 shows the fields for each entity in the organization group.

Listing A-6. Organization Entities

Organization (OrganizationId, Description, DunsNumber, EmailAlternate, EmailPrimary,
FacebookIdentity, Fullname, Image, IndustryCode, IsEmailContactAllowed, IsInternal,
IsPhoneContactAllowed, LinkedinIdentity, MailingPostalAddress, OfficeGraphIdentifier,
OrganizationName, OtherPostalAddress, OwnedByUser, Parentorganization_OrganizationId,
PartyType, Phone01, Phone02, Phone03, PhonePrimary, Primarycontact_ContactId, SatoriId,
ShippingPostalAddress, SocialNetwork01, SocialNetwork02, SocialNetworkIdentity01,
SocialNetworkIdentity02, Source, Status, StockExchange, StockTicker,
TaxIdentificationIssuer, TaxIdentificationNumber, TwitterIdentity, Type, WebsiteURL)

Organization Contact (Organization_OrganizationId, Contact_ContactId, Datasource,
Description, OwnedByUser)

Appendix A ■ dAtA Models

369

Purchase Entities
Listing A-7 shows the fields for each entity in the purchase group.

Listing A-7. Purchase Entities

Purchase Order (PurchaseOrderId, ApprovalStatus, BillingAddress, BusinessUnit_
BusinessUnitId, ConfirmedDeliveryDate, DeliveryPostalAddress, Description, DiscountAmount,
ExpectedDeliveryDate, ExpectedShipDate, FreightTerms, OrderDate, Organization_
OrganizationId, OwnedByUser, Paymentterms, PriceIncludesSalesTax, PromisedDeliveryDate,
PromisedShipDate, RequestedDeliveryDate, ShippingAddress, ShippingMethod, Status,
TaxRegistrationNumber, TotalAmount, TotalChargeAmount, TotalDiscountAmount, TotalTaxAmount,
Vendor_VendorId, Vendorcontact_ContactId, VendorForInvoice_VendorId, VendorInvoice,
VendorReference, WorkerBuyer_WorkerId)

Purchase Order Charge (PurchaseOrder_PurchaseOrderId, Chargetype, Amount, BusinessUnit_
BusinessUnitId, Description, Name, OwnedByUser)

Purchase Order Line (PurchaseOrder_PurchaseOrderId, Sequence, BusinessUnit_
BusinessUnitId, ConfirmedDeliveryDate, DeliveryPostalAddress, Description, DiscountAmount,
ExpectedDeliveryDate, ExpectedShipDate, LineAmount, MostRecentActualReceiptDate,
MostRecentActualShipDate, Name, OwnedByUser, PriceUnitQuantity, ProcurementCategory,
Product_ProductId, ProductName, PromisedDeliveryDate, PromisedShipDate, Quantity,
RequestedDeliveryDate, Status, TotalChargeAmount, TotalTaxAmount, UnitPrice,
VendorProductName)

Purchase Order Line Charge (PurchaseOrderline_PurchaseOrder_PurchaseOrderId,
PurchaseOrderline_Sequence, ChargeType, Amount, BusinessUnit_BusinessUnitId, Description,
Name, OwnedByUser)

Purchase Order Line Receipt (PurchaseOrderline_PurchaseOrder_PurchaseOrderId,
PurchaseOrderline_Sequence, Sequence, ActualReceiptDate, BusinessUnit_BusinessUnitId,
Description, OwnedByUser, Quantity, Status)

Purchase Order Line Tax (PurchaseOrderline_PurchaseOrder_PurchaseOrderId, PurchaseOrderline_
Sequence, TaxType, Amount, BusinessUnit_BusinessUnitId, Description, Name, OwnedByUser,
RateCode)

Purchase Order Tax (PurchaseOrder_PurchaseOrderId, TaxType, Amount, BusinessUnit_
BusinessUnitId, Description, Name, OwnedByUser, RateCode)

Vendor (VendorId, BirthDate, BusinessUnit_BusinessUnitId, Description, DunsNumber,
EmailAlternate, EmailPrimary, FacebookIdentity, Fullname, Gender, Image, IndustryCode,
IsDisabledOwned, IsEmailContactAllowed, IsMinorityOwned, IsNativeamOwned,
IsPhoneContactAllowed, IsWomanOwned, LinkedinIdentity, MailingPostalAddress,
OfficeGraphIdentifier, Organization_OrganizationId, OrganizationName, OtherPostalAddress,
OwnedByUser, ParentVendor_VendorId, PartyType, PersonName, Phone01, Phone02, Phone03,
PhonePrimary, Primarycontact_ContactId, SatoriId, ShippingPostalAddress, SocialNetwork01,
SocialNetwork02, SocialNetworkIdentity01, SocialNetworkIdentity02, Source, Status,
StockExchange, StockTicker, SupplierApprovalStatus, TaxIdentificationIssuer,
TaxIdentificationNumber, TwitterIdentity, WebsiteURL)

Appendix A ■ dAtA Models

370

Vendor Contact (Vendor_VendorId, Contact_ContactId, Datasource, Description, OwnedByUser)

Vendor Invoice (VendorInvoiceId, BillingAddress, BusinessUnit_BusinessUnitId, Description,
DiscountAmount, FreightTerms, Organization_OrganizationId, OwnedByUser, PaymentTerms,
PurchaseOrder_PurchaseOrderId, ShippingAddress, ShippingMethod, Status, TotalAmount,
TotalChargeAmount, TotalDiscountAmount, TotalTaxAmount, Vendor_VendorId, VendorContact_
ContactId, VendorInvoiceDate, WorkerBuyer_WorkerId)

Vendor Invoice Charge (Vendorinvoice_VendorInvoiceId, ChargeType, Amount, BusinessUnit_
BusinessUnitId, Description, Name, OwnedByUser)

Vendor Invoice Line (VendorInvoice_VendorInvoiceId, Sequence, BusinessUnit_BusinessUnitId,
Description, DiscountAmount, LineAmount, Name, OwnedByUser, Product_ProductId, ProductName,
PurchaseOrderline_PurchaseOrder_PurchaseOrderId, PurchaseOrderline_Sequence, Quantity,
Status, TotalChargeAmount, TotaltaxAmount, UnitPrice, VendorProductName)

Vendor Invoice Line Charge (VendorInvoiceLine_VendorInvoice_VendorInvoiceId,
VendorInvoiceline_Sequence, ChargeType, Amount, BusinessUnit_BusinessUnitId, Description,
Name, OwnedByUser)

Vendor Invoice Line Tax (VendorInvoiceLine_VendorInvoice_VendorInvoiceId, VendorInvoiceLine_
Sequence, TaxType, Amount, BusinessUnit_BusinessUnitId, Description, Name, OwnedByUser,
RateCode)

Vendor Invoice Tax (VendorInvoice_VendorInvoiceId, TaxType, Amount, BusinessUnit_
BusinessUnitId, Description, Name, OwnedByUser, RateCode)

Human Resources Entities
Listing A-8 shows the fields for each entity in the human resources group.

Listing A-8. Human Resources Entities

Employment (Worker_WorkerId, Organization_OrganizationId, ValidFrom,
AdjustedWorkerStartDate, EmployerNoticeAmount, EmployerUnitOfNotice, EmploymentEndDate,
EmploymentStartDate, LastDateWorked, OwnedByUser, TransitionDate, ValidTo,
WorkerNoticeAmount, WorkerStartDate, WorkerType, WorkerUnitOfNotice)
Job (JobId, AllowUnlimitedPositions, DefaultFulltimeEquivalent, Description, Jobfunction_
JobfunctionId, Jobtype_JobtypeId, MaximumNumberOfPositions, Name, OwnedByUser, Title,
ValidFrom, ValidTo)
Job function (JobfunctionId, Description, OwnedByUser)
Jobtype (JobtypeId, Description, ExemptStatus, OwnedByUser)
Leave Request (LeaveRequestId, Comment, Organization_OrganizationId, OwnedByUser,
RequestDate, Status, Worker_Workerid)
Leave Request Detail (LeaveRequest_LeaveRequestId, LeaveType_LeaveTypeId, LeaveDate, Amount,
OwnedByUser)

Appendix A ■ dAtA Models

371

LeaveType (LeaveTypeId, Description, Organization_OrganizationId, OwnedByUser)
Position (PositionId, Activation, AvailableForAssignment, Department_DepartmentId,
Description, FullTimeEquivalent, Job_JobId, OwnedByUser, ParentPosition_PositionId,
PositionType_PositionTypeId, Retirement, Title, ValidFrom, ValidTo)
Position Type (PositionTypeId, Classification, Description, OwnedByUser)
Position Worker Assignment (Position_PositionId, ValidFrom, OwnedByUser, ValidTo, Worker_
Workerid)

Retail Entities
The retail group contains just one single entity, as shown in Listing A-9.

Listing A-9. Retail Entities

Retail Channel Worker (Retailchannel_RetailchannelId, Worker_WorkerId, OwnedByUser, Status)

Data Structure of the Sample ‘Journey’ Application
For reference, this section summarizes the data structure for the journey app that this book uses. Figure A-14
shows the table names and the relationships between the tables. Figure A-15 shows some example data from
these tables.

Figure A-14. Table names and relationships

Appendix A ■ dAtA Models

372

Figure A-15. Example values in the sample

373© Tim Leung 2017
T. Leung, Beginning PowerApps, https://doi.org/10.1007/978-1-4842-3003-9

��������� A
Action approval, 308–309
Admin Center, 21–22
App properties

aspect ratio, 135
background color, 49–50
icon, 50
orientation, 50

App startup behavior/parameters, 123
Assigning permissions, 57
Auto-generated app

browse screen, 34–35
creating, 27–29
detail screen, 36–37
edit screen, 38, 40–42

��������� B
Barcodes, 209, 223
Buttons

conditions, 332
enable/disable, 259–260, 264
setting actions, 101
set visibility, 260

��������� C
Cards unlock, 42
CDS entities

application user, 11
customer, 360–361, 368
data types, 72, 74
fields, 72–73
foundation, 353–354, 362
granting read/write access, 256
group, 355, 364
human resources, 361, 370
importing/exporting, 70
organization, 354, 368
person entities, 354–355, 362

purchase
invoice, 358–360
order, 358–359
vendor, 358–359

sales
account, 355–356
competitor, 355–356
invoice, 356–357
opportunities, 356
order, 358
quotation, 355–357
store leads, 356

service, 360–361, 368
Charts

column, 239–240, 243, 246–247, 252
legends, 244
line, 237, 243, 247–249, 252
pie, 237, 246–247, 252

Collect (function), 274–275, 279–280
Collections

data, 114, 116, 241–243, 252
LoadData function, 318, 320, 332
SaveData and LoadData, 316, 320

Columns
adding, 116–117
dropping, 117
renaming, 117
ShowColumns function, 117

Common data service (CDS)
connecting with Excel, 283
database creation and deletion, 68–70, 81
deleting sample data, 81
entities (see CDS entities)
exporting data, 281, 283
field groups, 72, 77–78
importing data, 281–282
PowerApps, 209
securing, 253, 255–256
standard entities, 70–71, 81
storage limits, 68, 74, 92
storing images, 210

Index

■ INDEX

374

viewing records, 212
working offline, 317–318

Conditional tests (If function), 100, 120
Controls

add picture, 209, 211–213, 215, 221, 224
audio, 173
barcode, 209, 223–225
button, 147, 152, 175
camera, 209, 213–217, 224–225
chart, 237–238, 242–249, 251–252
checkbox, 145, 152–153
date picker, 146, 155–158
disable, 259
drop down control, 145, 147, 156, 160,

164–165, 170
enable/disable, 260–261
entity form, 166–168
export, 271–272, 277
HTML text, 149–150
icons, 148, 156
image, 173–174
import, 271–274, 276, 278
labels, 149–150, 156
list box, 145, 160, 164, 173
radio, 145–146, 150–152
setting values, 101
set visibility, 256, 261
Shapes, 149, 174
slider, 146, 150, 153–154
tab control, 129, 135, 140–142
table, 145, 151, 164–165, 177
text input, 145–146, 150–151, 154, 160
timer, 145, 174–175
toggle, 150, 152–153
video, 172

Conversion
handwriting to text, 209
numbers to text, 103
text to dates, 103
text to numbers, 126
text to upper/lower/proper case, 104

Custom connector, 335–336, 338, 340,
342–344, 348, 351

��������� D
Data lists, 113, 118, 126
DataSourceInfo, 259–260
Data sources

adding/removing/renaming, 32, 34
collection, 12
excel, 25
Microsoft translation services, 90
MSN weather services, 91

refreshing (updating), 58–59
SharePoint, 84, 86, 88
sharing, 59–60, 259
SQL Server, 84
static data, 284

Data structure, 353, 371
Dates

arithmetic, 112
entering dates without times, 155
entry (date picker control), 155
formatting, 111
getting month/day names, 112
storing, 156
UTC conversion, 157

Delegation, 180–182, 200, 206
Dialing phone numbers, 95
Disambiguation, 192, 275
Drop down control

adding values, 182–183, 188, 206
displaying CDS values, 168–170
nesting controls, 163–164
set display items, 147, 161

��������� E
Environments

CDS data sources, 256
configuration, 21–22
moving apps, 57–58

Error handling, 125–126, 282
Errors(function), 276
Excel, 209–210, 212, 216, 218, 221, 224–225,

289, 299
add-in, 271, 283–284
backup Excel file, 292
preparing spreadsheet for use, 25–26
storing images, 210
update records with Patch, 274–275

��������� F
Files copying, 288, 289, 311, 312
Flow, 287–295, 297, 299–301, 303–312
ForAll, 279, 329
Forms

arrange controls horizontally/vertically, 130,
134, 141

default values, 207
EditMode, 323–325
FormMode, 200, 263
null values with collections, 320
reading data, 42–44
resetting values, 145, 175–176
retrieve entered values

(updates property), 325

Common data service (CDS) (cont.)

■ INDEX

375

saving data, 45–46, 151
securing save button, 263
submitted values, 206
updating data from web service, 351
updating values, 233
validation, 202

Formula
entering/editing, 95
running on start, 124, 263
semi-colon, 96, 113

��������� G
Gallery control, 34–35, 37, 52

display nested record values, 326
displaying images, 209, 212–213, 215–216
layout, 129, 132–134, 136, 141

��������� H, I
HTTP

request, 336–337, 351
response, 336–337, 351
return status, 337, 351
verb, 336–337

��������� J, K
JavaScript Object Notation (JSON), 288, 335–338,

340–342, 346–347, 351

��������� L
Location, 227–232, 234–235
LookUp (function), 275, 280, 162

��������� M
Maps

Bing Maps, 227, 232, 234–235
Google Maps, 227, 232–234

Mobile players
installing, 60–61
system requirements, 10

��������� N
Notifications, 311

Email, 287, 293
mobile, 179, 203–205, 207

Null values
checking, 119
Coalesce, 251
JourneyDesc field, 320
searching, 190

Numbers, 223, 225
auto-incrementing sequences, 220
basic arithmetic, 107
formatting currencies, 109
formatting zeros, 137
rounding, 109
trigonometric functions, 95, 109, 126

��������� O
OData, 287, 295–297, 304, 307
Office, 365

plans types/pricing, 18
userId GUID, 262

Offline, 333
On-premises Gateway, 291

copying files, 287–288, 312
installing/uninstalling, 82, 84, 86
overview, 11
starting/stopping, 83

��������� P, Q
Parent, 97
Patch(function)

add new record, 196
merging records, 325
retrieve auto-generated IDs, 196–198, 279
return values, 279
update data, 195

Permissions, 255–259, 266–267
Postman, 336, 340, 342–343, 351
PowerApps Studio

finding items, 51
installing, 22–24
opening apps, 51
pricing, 10
saving apps, 51
system requirements, 8–9

Publishing apps
runtime language, 61–63
versioning, 60

��������� R
Records, 212, 217, 220

aggregating, 237, 239
average, min, max and sum, 117, 119
check for non existence, 192
counting, 118
creation, 196
deletion, 179, 200

confirmation, 129, 139–140
local collections, 322

distinct, 193–194, 206

■ INDEX

376

filtering by logged on user, 263
grouping, 185–186, 206
grouping (by month), 247, 249, 251
importing, 272–273
joining, 191, 206
looping through results, 118
merging, 325
retrieve by ordinal number, 220
retrieving, 194, 196
row by row processing (ForAll), 275, 327–329
sorting, 184, 188
sum, 135, 137–138
ungrouping, 185–187
union, 185
updating, 195–196

conditional (UpdateIf), 325
multiple rows, 195

Regular expressions, 105–106, 126
Representational State Transfer

(REST), 288, 336–337
500 row limit, 179, 206

overcoming, 306

��������� S
Sample apps

asset checkout, 4
budget tracker, 5–6, 135–136, 139, 237
service desk, 6–7
site inspector, 7–8

Screens
adding, deleting and rearranging, 33–34
custom navigation, 95, 127
Navigation, 121
navigation, 99
passing data, 113, 116
setting layouts, 129, 132–134
startup screen, 33

Searching data
by date criteria, 187
by drop down, 179, 182, 184, 189
lists, 189–190
by SSN, 95, 105, 126
strings, 105

Securing apps, 59
SharePoint

choice items, 67, 88, 257, 259
creating lists, 67, 87, 257–259
securing lists, 257

Signals
connection, 316
location, 228–229, 231–232, 235

SQL Server, 67, 82, 84–85, 209–211, 224, 287–289,
294–295, 297, 306–307, 311–312

filtering data, 297
preventing Data Loss (DLP Policy), 264, 266
storing images, 210
stored procedures, 287–288, 306–307, 312

SubmitForm, 39, 45–46
Subscription

Community edition, 15, 18
features, 19
flow–limits, 288
pricing–office 18, 365
pricing-standalone, 13–14
registration, 20

Swagger, 335–336, 340–342, 351

��������� T
Tables, 95, 98, 102, 113–114, 116, 118–119, 126–127
Text

concatenation, 103, 164
hashtags, 103
input control, 150–151, 188, 203
label and HTML text control, 149–150
line breaks, 96, 101, 126
replacing values, 107

Themes, 129, 142–143
ThisItem, 97, 114, 119
Translating Data, 90
Troubleshooting, on-premises Gateway

service, 67, 83

��������� U
User management

adding users, 55–56
authentication, 253–254, 266
getting logged on user, 262
Logging on, 21
Microsoft personal account, 16–18
Microsoft work account, 16–18

��������� V
Validation, 42, 87, 182, 201–202
Variables

context, 98–99, 101–102, 114, 121, 125–126
global, 102, 124, 126
NavigationContext, 168

��������� W, X, Y, Z
Workflow, 287–288, 301–303, 305–306, 312

Records (cont.)

	Contents
	About the Author
	About the Technical Reviewer
	Foreword
	Acknowledgments
	Introduction
	Part I: Getting Started
	Chapter 1: Introducing PowerApps
	What Is PowerApps?
	Who Is the Typical Developer?
	What Are the Typical Uses?
	Asset Checkout App
	Budget Tracker
	Service Desk App
	Site Inspection App
	Other Sample Apps

	How Do You Build a PowerApp?
	How Do Users Run PowerApp Applications?
	What Data Can a PowerApps Consume?
	Connecting to On-Premises Data
	Common Data Service
	Connecting to Other Data Sources

	How Do You Write Code?
	How Much Does It Cost?
	Summary

	Chapter 2: Subscribing to PowerApps
	How to Get PowerApps
	Obtaining PowerApps via Office 365
	What Is Office 365?
	Consumer vs. Business Office 365
	Understanding Work Accounts and Personal Accounts
	What Office 365 Editions Support PowerApps?

	Subscribing to a PowerApps Stand-Alone Plan
	Registering for an Account
	Obtaining a Suitable Email Address

	Logging onto PowerApps
	Configuring Environments
	Installing PowerApps Studio
	Summary

	Chapter 3: Creating Your First App
	Preparing an Excel Data Source
	Creating an App
	Creating an Auto-Generated App
	Creating Apps from SharePoint

	Exploring the Designer
	Running Your App
	Examining the Screens at Runtime

	Understanding the Auto-Generated App
	Adding and Removing Data Sources
	Adding, Deleting, and Rearranging Screens
	Understanding How Screens Are Connected
	How the Browse Screen Works
	How the Detail Screen Works
	Searching for Controls
	How the Edit Screen Works

	Understanding Forms and Cards
	Reading Data into a Form
	How Card Controls Work

	Saving Form Data to a Data Source
	Choosing Not to Use Forms and Cards
	Recap of Concepts

	Setting Project Properties
	Saving Your Project
	Opening a Project
	Summary

	Chapter 4: Sharing Apps
	Sharing Your App
	Adding a User
	Applying Permissions

	Managing Environments
	Moving an App to a New Environment
	Updating a Data Source
	How Data Connections Work

	Versioning an App
	Installing the Mobile Player
	Running with Foreign Languages
	Summary

	Part II: Refining Your Application
	Chapter 5: Exploring Data Sources
	Using the Common Data Service
	Getting Started
	Exploring the Common Data Model
	Exploring a Standard Entity
	Creating a Custom Entity
	Adding a New Field
	Storing Numbers

	Creating a Relationship
	Deletion Behavior

	Using Field Groups
	Picklists
	Creating a Picklist
	Adding Picklist Items
	Applying Picklists to Fields
	Deleting a Picklist

	Deleting CDS Data

	On-Premises Data Gateway
	Installing the Gateway
	Starting the Gateway Service
	Connecting to a Data Source
	Connecting to SQL Server

	Uninstalling a Gateway

	Using a SharePoint Data Source
	Creating a SharePoint List
	Choice Items

	Connecting to a SharePoint Data Source

	Other Data Sources
	Microsoft Translation Data Source
	Microsoft MSN Weather Services

	Summary

	Chapter 6: Using Formulas
	Writing Formulas
	Using the Function Tool
	ThisItem/Parent Syntax

	Working with Variables
	Setting Screen Variables
	Passing Values to Screens
	Example of Context Variables

	Setting Property Values from Code
	Setting Global Variables

	Manipulating Data
	Working with Text
	Text Manipulation Functions
	Text Extraction Functions
	Modifying the Casing of Sentences
	Searching Within Strings
	Matching with Regular Expressions
	Replacing Text

	Working with Numbers
	Formatting Numbers
	Rounding Functions
	Trigonometric Functions
	Other Mathematical Functions

	Working with Dates
	Formatting Dates Times
	Performing Date Arithmetic
	Calendar Functions

	Working with Tables of Data
	Defining Hard-Coded Sets of Values
	Understanding Collections
	Collecting Data

	Defining Tables
	Working with Columns
	Adding Columns
	Dropping Columns
	Renaming Columns
	Showing Columns

	Table Functions
	Performing Actions Row by Row
	Concatenating Data

	Counting Records
	Performing Aggregate Calculations

	Conditional Statements and Logical Operations
	Specifying Colors
	Navigation Functions
	Launching Websites and Apps
	Retrieving Startup Parameters
	Exiting an App

	Managing Errors
	Summary

	Chapter 7: Customizing Screens
	Using Predefined Layouts
	Laying Out Tablet Apps

	Understanding Sample Screen Designs
	Building a List and Details Screen
	Updating the Details Section of a Screen
	Displaying a Delete Confirmation Screen
	Building a Tab Control Screen

	Using Themes
	Summary

	Chapter 8: Using Controls
	Overview of Controls
	Building Data Structures to Support Controls
	Action Controls
	Displaying Geometric Shapes

	Displaying Text with Label and HTML Text Controls
	Using Simple Controls
	Text Input Control
	Radio Control
	Toggle and Checkbox Controls
	Slider Control
	Rating Control

	Working with Dates
	Date Picker Control
	Showing Dates Only
	Understanding How Date Values Are Stored
	Saving Dates in year-month-day Format

	Setting Lookup Values
	Limiting Input Values with a Drop-Down Control
	Setting Lookup Values with a Drop-Down Control
	Customizing the Drop-Down Display Value
	Nesting Drop-Down Controls
	List Box Control

	Displaying Tables of Data
	Using CDS-Specific Controls
	Using Entity Form Controls
	Drop-Down Controls with CDS

	Working with Media Controls
	Playing Videos
	Playing Audio
	Image Controls

	Using the Timer Control
	Resetting Form Controls
	Summary

	Chapter 9: Working with Data
	Basic Behavior
	Understanding Delegation

	Searching Data
	Basic Search Functions
	Filtering by Drop-Down Values
	Adding a ‘Show All’ Option
	Grouping, Ungrouping, and Combining Data

	Searching by Date Criteria
	Searching by Numeric Criteria
	Adding a Search Button

	Setting Multiple Sort Sequences
	Additional Search Criteria Options
	Matching Against Lists of Data
	Matching Blank Fields

	Joining Data
	Joining Records - Showing Related Records
	Checking for Nonexistence
	Returning Distinct Records

	Working with Data in Code
	Retrieving Single Records
	Updating Records
	Updating a Single Record
	Updating Multiple Records

	Creating a New Record
	Retrieving Auto-Generated Numbers
	Patching Associated Records in SharePoint
	Patching Associated Records into a CDS Data Source

	Deleting Data

	Setting Default Screen Values
	Validating Form Values
	Checking Validation Rules

	Sending Notifications
	Summary

	Chapter 10: Working with Images
	Choosing Where to Store Images
	Setting Up a Data Source
	Storing Images in Excel
	Storing Images in CDS and SQL Server Databases

	Creating an Image App
	Viewing Records in the CDS
	Using the Add Picture Control

	Using the Camera Control
	Retrieving the Camera Data
	Switching Between Cameras
	Setting Brightness, Contrast, and Zoom Levels

	Creating a Gallery
	Using the Pen Control
	Erasing Text
	Converting Annotations to Text

	Scanning Barcodes
	Summary

	Chapter 11: Mapping Data
	Introduction to GPS
	Retrieving Location Details
	Introducing Signals
	Freezing the Location Details
	Obtaining Longitude and Latitude.Readings
	Saving Location Details
	Switching the Signal On/Off
	Other Signals

	Displaying Maps
	Using Google Maps
	Bing Maps

	Summary

	Chapter 12: Using Charts
	Introduction
	Aggregating Data
	Column Chart
	Creating a Chart
	Setting Legends
	Setting Label Orientation
	Applying Colors and Styles

	Pie Chart
	Line Charts
	Grouping Data by Month
	Showing Chart Data Dynamically
	Showing Multiple Series

	Summary

	Chapter 13: Securing Apps
	Authentication
	Role-Based Security
	Securing the CDS
	Granting Read and Write Access to Entities

	Securing SharePoint Lists
	On-Premises SharePoint

	Verifying Permissions Within an App
	Disabling Icons and Buttons

	Configuring Record-Level Access
	Setting Up the Data Source
	Getting the Logged On User
	Filtering Records by the Logged On User

	Creating Data Loss Prevention Policies
	Testing a DLP Policy

	Summary

	Part III: Maintaining Your Application
	Chapter 14: Importing and Exporting Data
	Using the Import and Export Controls
	Exporting Data
	Importing Data
	Importing New Records
	Inserting and Updating Data
	Understanding Import Errors

	Importing and Exporting Related Data
	Importing the Data

	Importing and Exporting CDS Data
	Importing Data
	Resolving Error Conditions

	Exporting Data

	Using the Excel Add-In
	Importing Static Data
	Summary

	Chapter 15: Using Flow
	What Is Flow
	What Can We Do with Flow?
	Creating a Flow
	Copying Files
	Calling Flows from Apps

	Sending Notifications
	Filtering Data
	Working with Variables
	Sending the Email

	Manipulating Data
	Constructing HTML Tables
	Introducing Workflow Definition Language
	Applying Workflow Definition Language
	Using Output Values in Workflow Definition Commands
	Referring to Items in Loops

	Calling SQL Stored Procedures
	Approving Actions
	Managing Flows
	Summary

	Part IV: Extending Your Application
	Chapter 16: Working Offline
	What Happens Offline?
	Techniques to Enable Offline Working
	Saving and Retrieving Local Data

	Making an App Available Offline
	Setting the Data Source to a Local Collection
	Handling Offline Deletions
	Deleting Records from Local Collections

	Handling Offline Record Updates
	Merging Records

	Building the Synchronization Screen
	Disabling Icons and Buttons

	Building the Conflict Resolution Screen

	Summary

	Chapter 17: Creating Custom Data Connectors
	What Can We Accomplish with Web Services?
	Overview of Steps
	Understanding How the Web Works
	Making HTTP Web Requests
	Understanding HTTP Responses

	Documenting a Web Service
	Creating a Web Service Description
	Using Postman
	Using Swagger
	Examining an Open API Document

	Creating a Custom Connector
	Using the Custom Connector
	Summary

	Appendix A: Data Models
	Overview of CDS Entities
	Foundation Entities
	Person Entities
	Group Entities
	Sales Entities
	Purchase Entities
	Customer Service Entities
	Human Resources Entities

	CDS Field Names
	Foundation Entities
	Person Entities
	Group Entities
	Sales Entities
	Customer Service Entities
	Organization Entities
	Purchase Entities
	Human Resources Entities
	Retail Entities

	Data Structure of the Sample ‘Journey’ Application

	Index

