
Beginning Xamarin
Development for

the Mac
Create iOS, watchOS, and Apple tvOS apps
with Xamarin.iOS and Visual Studio for Mac

Dawid Borycki

www.allitebooks.com

http://www.allitebooks.org

Beginning Xamarin Development for the Mac

Dawid Borycki
Institute of Physical Chemistry,
Polish Academy of Sciences,
Kasprzaka 44/52, Warsaw, 01-224, Poland

ISBN-13 (pbk): 978-1-4842-3131-9 ISBN-13 (electronic): 978-1-4842-3132-6
https://doi.org/10.1007/978-1-4842-3132-6

Library of Congress Control Number: 2017963095

Copyright © 2018 by Dawid Borycki

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Technical Reviewer: Chaim Krause
Coordinating Editor: Jill Balzano
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484231319. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3132-6
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484231319
http://www.apress.com/source-code

This book is dedicated to my wife, Agnieszka, daughter, Susanna, and son, Xavier, with love.

We all have dreams. But in order to make dreams come into reality, it takes an awful
lot of determination, dedication, self-discipline, and effort.

—Jesse Owens

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author ��� ix

About the Technical Reviewer ��� xi

Acknowledgments ��� xiii

Introduction ���xv

 ■Chapter 1: Fundamentals �� 1

Setting Up the Development Environment ��� 2

Hello, World! App �� 8

Creating the Project �� 8

Storyboard Designer ��� 16

User Interface ��� 17

AlertViewController ��� 20

Actions �� 23

Action Sheet ��� 25

Summary ��� 26

 ■Chapter 2: App Structure and Lifecycle ��� 27

An Entry Point ��� 27

AppDelegate ��� 29

View Lifecycle �� 32

Information Property List �� 34

Entitlements Property List �� 35

Launch Storyboard �� 36

Storyboards Under the Hood �� 38

Model View Controller �� 41

■ Contents

vi

Persisting Data ��� 42

Summary �� 46

 ■Chapter 3: Views ��� 47

Basic Controls �� 47

Tables ��� 50

Displaying Items ��� 51

Selecting Items ��� 55

Deleting Items �� 57

Web View �� 61

Google Geocoding API ��� 64

Invoking JavaScript Functions �� 66

Map View and Geolocation ��� 68

Auto-Layout �� 73

Size Classes ��� 77

UI Thread �� 80

Summary �� 82

 ■Chapter 4: Navigation �� 83

Tab Bar ��� 83

Pages �� 90

Navigation Between View Controllers ��� 95

Editing a Segue ��� 97

Unwind Segue �� 98

Preparing for Segues �� 99

Summary �� 100

 ■Chapter 5: Touch �� 101

Touches and Gesture Recognizers ��� 101

Swipe and Long-Press Gesture Recognizers ��� 103

Manipulating Controls with Gestures ��� 107

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

Pan Gesture Recognizer ��� 107

Detecting Gesture Location �� 109

Rotation and Pinch Gesture Recognizers �� 111

Summary �� 116

 ■Chapter 6: Unit Testing �� 117

Creating a Model to Test ��� 119

Implementing Unit Tests ��� 120

Running Unit Tests �� 126

User Interface Tests �� 127

Creating an App �� 128

Xamarin Test Cloud Agent ��� 128

Creating UI Tests ��� 130

Xamarin Test Cloud ��� 135

Provisioning Profile ��� 136

Running Tests in the XTC �� 140

Summary �� 142

 ■Chapter 7: Consuming RESTful Web Services �� 143

REST Service Client �� 145

Updating Data ��� 148

Getting a Specific User ��� 149

Testing the REST Client �� 149

Users Repository �� 152

Presenting a List of Users �� 155

Displaying User Details �� 158

Summary �� 162

 ■Chapter 8: watchOS ��� 163

Creating the Project �� 163

Watch App Bundle �� 165

Watch Extension ��� 166

■ Contents

viii

Hello, Watch!��� 166

Watch Simulator ��� 169

View Lifecycle �� 171

App Lifecycle �� 173

Text Input �� 175

Force Touch and Navigation ��� 177

Notification Controller �� 181

ClockKit and Complication Controller ��� 184

Glance Controller �� 189

Summary �� 191

 ■Chapter 9: tvOS �� 193

Creating a Project ��� 194

User Interface ��� 195

OpenWeatherMap API ��� 197

Retrieving the Weather Report ��� 199

Presenting the Weather �� 202

Temperature Units �� 205

Testing the App in a Simulator ��� 206

Summary �� 209

Index ��� 211

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

Dawid Borycki is a software engineer, biomedical researcher, and an
expert in several Microsoft developer technologies. He has resolved a
broad range of software development challenges for device prototypes
(mainly medical equipment), embedded device interfacing, and desktop
and mobile programming. Dawid regularly speaks at international
developers conferences and has published, cited, and presented on
numerous developer topics, including web technologies, mobile/cross-
platform development, wearables, embedded, and more.

xi

About the Technical Reviewer

Chaim Krause is an expert computer programmer with over thirty years
of experience to prove it. He worked as a lead tech support engineer for
ISPs as early as 1995 and as a senior developer support engineer with
Borland for Delphi, and has worked in Silicon Valley for over a decade
in various roles, including technical support engineer and developer
support engineer. He is currently a military simulation specialist for the
US Army’s Command and General Staff College, working on projects such
as developing serious games for use in training exercises. He has also
authored several video training courses on Linux topics and has been
a technical reviewer for over twenty books, including iOS Code Testing,
Android Apps for Absolute Beginners (4th ed.), and XML Essentials for C#
and .NET Development (all Apress). It seems only natural then that he

would be an avid gamer and have his own electronics lab and server room in his basement. He currently
resides in Leavenworth, Kansas, with his loving partner, Ivana, and a menagerie of four-legged companions:
their two dogs, Dasher and Minnie, and their three cats, Pudems, Talyn, and Alaska.

www.allitebooks.com

http://www.allitebooks.org

xiii

Acknowledgments

Dear reader, you hold or view this book thanks to Joan Murray, who was very encouraging of my book
proposal and provided a lot of writing tips.

I am grateful to Chaim Krause for providing a very detailed technical review and catching even the
smallest mistakes.

Many thanks go to Laura Berendson for reading the manuscript, providing feedback, and giving general
advice. I thank Jill Balzano for her patience and keeping track of the book project. I also thank Welmoed
Spahr and Todd Green for publishing this book and April Rondeau for copyediting.

Finally, special thanks go to my wife, Agnieszka, daughter, Susanna, and son, Xavier, for their
continuous support and patience shown to me during the writing of this book.

xv

Introduction

The programming of mobile apps has recently become one of the most important and exciting aspects of
the IT market, leading to numerous applications. At the same time, mobile development is very challenging
because of market fragmentation, which is manifested by the presence of devices of different sizes, operating
systems, and software development tools. So, to start doing mobile development, you need to take into
account these various factors and decide your strategy.

There are three leading mobile platforms: Apple (including iOS, watchOS, and tvOS), Android, and
Universal Windows Platform (UWP), each of which provides dedicated tools for developing apps. Each
platform has specific hardware requirements. Clearly, iOS SDKs require you to use the local Mac machine
or the remote build agent installed on a Mac. UWP apps can be built on Windows 10 machines. Finally, you
can use either Mac or Windows machines to develop Android apps. So, first and foremost, the question to
answer is that of which hardware to choose. For mobile development, the Intel-based Mac platform is the
best choice because it allows you to use macOS and Windows 10 concurrently. The latter can be installed
natively through the Boot Camp or virtually using the Parallels Desktop. Accordingly, Mac machines will give
you the most flexibility.

After choosing the hardware, you need to select the software development strategy. You have three
traditional options here:

•	 Native apps – In this case, you use platform SDKs, which require you to utilize
platform-specific IDEs and programming languages. For instance, in terms of iOS,
watchOS, and tvOS, you would need to use either Swift or Objective-C along with
Xcode. Native tools give you full access to the platform API at the cost of needing to
learn platform-specific programming languages.

•	 Hybrid apps – They are programmed with web technologies as web pages. These
pages are then rendered with a native WebView component, which can be virtually
understood as the local web browser, delivered by each platform. In this case, you
have a lot of flexibility in terms of programming tools and can use the same code
across various platforms at the cost of reduced access to platform-specific APIs.

•	 Mobile web apps – They are web apps whose views are tailored to mobile
devices. Such a strategy is the simplest to apply but does not let you access device
components, and it also requires a network connection.

Of course, development strategy is dictated by a number of factors, ranging from your programming
preferences to application complexity and target platforms. If you intend to target multiple platforms at
the same time, you can choose one of the cross-platform mobile tools, like Xamarin.Forms, Qt Mobile,
Embarcadero RAD Studio, or React Native. They provide an additional layer of the unified, platform-
independent programming API, which is translated to a platform-specific API during compilation.
Importantly, cross-platform instruments provide not only access to the API but also to visual controls. For
instance, if you create a message dialog, it will be converted during compilation to the platform-specific
message dialog. As a result, in such a “Write once, run anywhere (WORA)” approach, you can indeed
compile the same code across various platforms at the cost of flexibility. Finally, if your goal is to extensively
utilize platform-specific APIs, you will choose Xamarin.iOS or Xamarin.Android. These let you develop

www.allitebooks.com

http://www.allitebooks.org

■ IntroduCtIon

xvi

native apps with C# or F#. Xamarin.iOS and Xamarin.Android provide an additional thin layer that maps C#
or F# code onto the native platform API. You typically use Xamarin.iOS and Xamarin.Android to implement
logic and design the UI separately for each platform. Although you have the extra work of creating platform-
specific UIs, you can still share the platform-independent code between various apps. Such an approach
gives you two important advantages:

•	 Your app is native. So, it looks like any other built-in app, as it utilizes native visual
controls.

•	 Your app is written in modern programming language. As a result, you have easy
access to numerous libraries and a wide community. This is especially important
when you are C# programmer who wants to start developing mobile apps.

In this book, we will learn how to use Xamarin.iOS to develop apps for Apple devices: iPhone and iPad
(iOS), Apple Watch (watchOS), and Apple TV (tvOS). We will first prepare the development tools (Visual Studio
for Mac) and will get to know available project templates (Chapter 1). Subsequently, I will explicitly show how
Xamarin.iOS is related to the native SDKs delivered by Apple, and we will investigate the app structure and
lifecycle (Chapter 2). Then, we will learn how to create views (Chapter 3) and implement navigation between
them (Chapter 4). Afterward, we will work with touch gestures (Chapter 5), study how to achieve high-quality
apps with automatic testing (Chapter 6), and consume data from RESTful web services (Chapter 7). Finally,
we will learn how to develop apps for Apple Watches (Chapter 8) and Apple TVs (Chapter 9).

In this book, however, we will not learn how to reuse code between various platforms nor how to
develop WORA apps with Xamarin.Forms. You can find more information about this in this book Beginning
Visual Studio for Mac: Build Cross-Platform Apps with Xamarin and .NET Core by Alessandro Del Sole.

http://dx.doi.org/10.1007/978-1-4842-3132-6_1
http://dx.doi.org/10.1007/978-1-4842-3132-6_2
http://dx.doi.org/10.1007/978-1-4842-3132-6_3
http://dx.doi.org/10.1007/978-1-4842-3132-6_4
http://dx.doi.org/10.1007/978-1-4842-3132-6_5
http://dx.doi.org/10.1007/978-1-4842-3132-6_6
http://dx.doi.org/10.1007/978-1-4842-3132-6_7
http://dx.doi.org/10.1007/978-1-4842-3132-6_8
http://dx.doi.org/10.1007/978-1-4842-3132-6_9

1© Dawid Borycki 2018
D. Borycki, Beginning Xamarin Development for the Mac, https://doi.org/10.1007/978-1-4842-3132-6_1

CHAPTER 1

Fundamentals

In this chapter, I will guide you through the installation of the development tools you will need for this book.
Specifically, we will install Visual Studio for Mac as well as Xcode. The latter is the native toolset for Mac
developers. It delivers IDE, SDKs, and also the device simulators we will use. If you have these tools already
installed, you can skip to the subsequent section.

After ensuring that all tools are ready, we will create the first Xamarin.iOS app for the iPhone and iPad.
This app, shown in Figure 1-1, displays various alerts and responds to user actions. I will also discuss the
available project templates that are delivered by Visual Studio. The same templates are available in Xcode, so
Xamarin.iOS and Visual Studio let you access iOS platform–specific programming interfaces in a way similar
to native development tools but with the ease and smoothness provided by the C# programming language.
In this chapter, I will also discuss the basic aspects of designing user interfaces in Visual Studio and show
you how to associate event handlers with events fired by visual controls.

 ■ Note In this chapter, I will not discuss Visual Studio for Mac in detail. I will only discuss the necessary
elements of this IDE. You can find a comprehensive description of Visual Studio for Mac in the book Beginning
Visual Studio for Mac. Build Cross-Platform Apps with Xamarin and .NET Core by Alessandro Del Sole.

www.allitebooks.com

http://dx.doi.org/https://doi.org/10.1007/978-1-4842-3132-6_1
http://www.allitebooks.org

ChAptEr 1 ■ FunDAMEntAlS

2

Setting Up the Development Environment
To install Visual Studio for Mac, you’ll need a Mac with macOS Sierra 10.12 or above. Here, I’ll be using either
a MacBook Pro or iMac with macOS Sierra 10.16. Once you know that you meet basic platform requirements,
you can download the Visual Studio installer from the following website: http://bit.ly/vs-mac. Once you
have downloaded the installation package, run the installer. A window appears, as shown in Figure 1-2. In this
window, you double-click the icon with a down arrow. Subsequently, you will see a dialog informing you that
the installer was downloaded from the internet (Figure 1-3). Click the Open button to continue.

Figure 1-1. The Hello, World! app we will build in this chapter. The app is executed in the iPhone X simulator.

http://bit.ly/vs-mac

ChAptEr 1 ■ FunDAMEntAlS

3

Figure 1-2. An installer for Visual Studio for Mac

Figure 1-3. A confirmation dialog

Visual Studio installer will now verify your system configuration (Figure 1-4). More specifically, it looks
for installed components (like Mono Framework, Java SDK, and so on) in order to verify which of them have
to be downloaded and installed. Once this is done, another dialog appears on top of the window shown in
Figure 1-4. Its header tells you “Thank you for downloading Visual Studio.” In this dialog, you simply press
the Continue button.

www.allitebooks.com

http://www.allitebooks.org

ChAptEr 1 ■ FunDAMEntAlS

4

At this point, the Visual Studio installer might prompt you to install Xcode (Figure 1-5). This happens
only if you do not have Xcode already installed. According to this dialog, you can install Xcode concurrently
with the Visual Studio installation. Note that the Xcode installation is optional and depends on your current
system configuration. I assume that you start with a clean install of macOS and therefore explicitly show how
to install Xcode.

Figure 1-4. Visual Studio installer is inspecting the operating system

ChAptEr 1 ■ FunDAMEntAlS

5

To install Xcode, you can press the Get Xcode button shown in Figure 1-5. This will direct you to a
website, where you click the View in Mac App Store or Install App button. It opens the Xcode page in the
App Store, on which you only need to click the Install App button (Figure 1-6). Alternatively, to install Xcode
you can open the Mac App Store locally and then look up Xcode. Irrespective of which method you choose,
Xcode and all related developer tools will be downloaded and installed in the background. So, you can now
go back to Visual Studio installer.

Figure 1-5. A dialog prompting for Xcode installation

www.allitebooks.com

http://www.allitebooks.org

ChAptEr 1 ■ FunDAMEntAlS

6

The Visual Studio installer will now let you choose which components to install (Figure 1-7). To reduce
installation size, I uncheck the “Android + Xamarin.Forms” entry and only install iOS- and macOS-related
components. Then, after you click the Install button, the actual installation process begins.

Figure 1-6. Xcode page in the Mac App Store

ChAptEr 1 ■ FunDAMEntAlS

7

Visual Studio will now download and install the components. This will take a while, depending on
network speed. You will be informed about each installation step and the overall progress, as shown in
Figure 1-8. Also, as depicted in this figure, macOS may prompt you for the administrator password several
times during installation. Once installation has finished, an appropriate dialog appears. Note that to build
and run apps in the simulator, you will need to wait until Xcode installation has finished.

Figure 1-7. Choosing components to install

www.allitebooks.com

http://www.allitebooks.org

ChAptEr 1 ■ FunDAMEntAlS

8

Hello, World! App
After installing the development tools, we can start building the first app. To jumpstart the Xamarin.iOS
development, I will tell you how to create the project using the Single View app template. Then, we will
supplement the app with a single button. This button will react to taps such that the native alert will be
displayed. Subsequently, we will add specific actions to this alert. Displaying alerts is a typical functionality
of not only introductory apps, but also real apps, where it is used to collect user input or get confirmation for
performing irreversible operations.

Creating the Project
To create the project, open Visual Studio for Mac. A welcome screen, depicted in Figure 1-9, appears. Then,
you either choose File/New Solution in the menu bar or click the New Project button, located under the
“Recent” header. This activates the New Project window, shown in Figure 1-10.

Figure 1-8. Installing Visual Studio for Mac

ChAptEr 1 ■ FunDAMEntAlS

9

Figure 1-9. A welcome screen for Visual Studio for Mac

www.allitebooks.com

http://www.allitebooks.org

ChAptEr 1 ■ FunDAMEntAlS

10

The New Project creator lets you choose a template for your project. To filter the list of templates to
items directly related to iOS apps, you click App entry under the iOS tab. A list of available project templates
will then appear on the right. This list is divided into two categories: General and Games. In this book, we
will only use project templates from the General group. This category contains the following templates:

•	 Single View App — You use this template to create the app, which comprises a single
view; i.e., an app without any navigation, like the app shown in Figure 1-1.

•	 Master-Detail App — This template creates apps that use Master-Detail interface. In
such cases, a list displays short descriptions of objects. Once you choose an object from
this list (master), corresponding details will be displayed in the dedicated area (detail).
Master-Detail interface is used, for example, in the Stocks iOS app (Figure 1-11).

Figure 1-10. Project template selection

ChAptEr 1 ■ FunDAMEntAlS

11

•	 Tabbed App — You use this template to create a multi-tab application in which you
can arrange visual controls in multiple tabs. User then navigates between tabs using
labeled icons shown at the botton of the screen. Such navigation is used in the Clock
iOS app (Figure 1-12).

Figure 1-11. Representational view of a Master-Detail iOS app. The list of objects (companies) is shown on
top. When you tap any of these objects, corresponding details (stock values) appear at the bottom.

www.allitebooks.com

http://www.allitebooks.org

ChAptEr 1 ■ FunDAMEntAlS

12

•	 Page-based App — Use this template to create a multi-view app in which controls are
arranged in pages. The user swipes between pages with touch gestures. For instance,
such page-based navigation is utilized in the Weather iOS app, shown in Figure 1-13.

Figure 1-12. An example of Tabbed iOS application. You switch between tabs using labeled icons displayed in
the bottom part of the view

ChAptEr 1 ■ FunDAMEntAlS

13

•	 WebView App — You use this template to jumpstart hybrid app development. This
project template creates a view with an embedded WebView control. The latter
renders a website written with HTML, CSS, and JavaScript. I will tell you more about
WebView in Chapter 3.

To proceed further, let’s pick the Single View app project template and keep the default language
selection of C#. Then, you will have the option to specify the name of your app and organization identifier
(Figure 1-14). I set these values to HelloWorld and com.db, respectively. The next group of controls in app
configuration lets you specify which devices will be supported by your app. In this case, I made my app
universal and chose iPad and iPhone. The very last control in the app configuration screen is the Target
drop-down list. You use this list to select the minimum iOS version that will be supported by your app. I
set this to iOS 9.0. After configuring the app, press the Next button, which activates the view depicted in
Figure 1-15.

Figure 1-13. Page-based navigation is utilized in the Weather app to switch between weather forecasts

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-3132-6_3
http://www.allitebooks.org

ChAptEr 1 ■ FunDAMEntAlS

14

The Project Summary window shown in Figure 1-15 displays the project and solution names. You can
also use this screen to set the location for your source code, enable version control, and add an automated
UI test project. Here, I keep the settings at their default values. I will tell you more about unit testing in
Chapter 6. So, go ahead and press the Create button to proceed further. You will quickly see the Getting
Started screen of Visual Studio (Figure 1-16).

Figure 1-14. iOS app configuration

http://dx.doi.org/10.1007/978-1-4842-3132-6_6

ChAptEr 1 ■ FunDAMEntAlS

15

The Getting Started screen displays several options for you. Specifically, it lets you start designing
the user interface (UI) of your app, add a mobile backend, and unit test the project. Also, on the left-hand
side of this window you will see the Solution Explorer, which displays the structure of the HelloWorld app.
Specifically, there is a HelloWorld solution, under which you can find the project of the same name (refer to
Figure 1-15). This project contains the files that make up your app. They are discussed in more detail in the
next chapter. For now, let’s create a simple UI for the HelloWorld app using the Storyboard (or iOS) Designer.

Figure 1-15. Project summary

www.allitebooks.com

http://www.allitebooks.org

ChAptEr 1 ■ FunDAMEntAlS

16

Storyboard Designer
To start creating the UI, you can click the Open Storyboard Designer button. This will open the Main.
storyboard file and activate the Visual Interface or Storyboard Designer (or simply iOS Designer) of Visual
Studio. This designer is shown in Figure 1-17. Three elements of this designer should be discussed in more
detail, as follows:

•	 Visual preview of the app. This element covers the central part of the designer
and lets you see how your views will be displayed in the device without your
having to run your app. For multi-view apps, the visual preview will also depict the
relationships between views (tabs or pages) through which the user can navigate.

•	 Toolbox, which is in the top-right corner, contains a list of visual objects you can drag
on the view.

•	 Properties window, located below the Toolbox. You use the Properties window to
change the appearance of and configure visual controls, to define the layout, and to
wire methods to events (like tap or input) fired by controls.

Note that you can also activate the preceding windows or pads using an appropriate menu option in
Visual Studio: View ➤ Pads (see Figure 1-18). There is also one useful drop-down list in the preview mode.
That is the View As list, which you can find on the top pane of the visual preview. The View As drop-down list
lets you choose the device type to use for the preview. As shown in Figure 1-17, I set this device to iPhone 6.

Figure 1-16. HelloWorld project open in Visual Studio

ChAptEr 1 ■ FunDAMEntAlS

17

User Interface
To proceed further, let’s add the button to the view. You can do so by dragging the button control from
the toolbox onto the view. You can then modify the visual appearance of the button using the Properties
window after clicking the inserted control. As shown in Figure 1-19, the content of the Properties window is
partitioned into three tabs: Widget, Layout, and Events. You use the first tab to adjust the identity and visual

Figure 1-17. Storyboard editor

Figure 1-18. View menu of Visual Studio

www.allitebooks.com

http://www.allitebooks.org

ChAptEr 1 ■ FunDAMEntAlS

18

appearance. The Layout tab allows you to specify the control’s dimensions and its arrangement with respect
to other controls. The last tab, Events, displays the list of events fired by the specific control along with the
methods associated with these events; i.e., event handlers.

First, go to the Widget tab and change the Name property (Identity group) to ButtonAlert and title
property (Button group) to Hello, World! Note that these changes are automatically reflected in the
preview window. Specifically, you will see that the button title does not fit the control size. To resize the
visual control, you can use the Layout tab of the Properties window or resize the control manually in the
preview window. I resized the button using the first option. Hence, in the Layout tab, I set the button width
to 100, leaving other parameters (like X, Y, height, and arrangement) unchanged. After changing the button
size, the internal text becomes fully visible. However, the button is not in the center of the view anymore. To
put it back to the center you can press the first button in the Position in Parent option of the Arrange section
(see right part of Figure 1-19).

Figure 1-19. Widget (left) and Layout tabs of button-control properties

With the button adjusted we can create the first event handler, which will display the message to the user.
You can do so in two ways. The easiest one is to double-click the button in preview mode. This will switch the
view to display the contents of ViewController.cs. Additionally, a small popup window titled “Add event
handler” appears. As shown in Figure 1-20, you can use the arrow keys to specify the location it should go in
the source-code file, and Visual Studio will insert a definition of the default event handler. I placed this event
handler below the previous method, DidReceiveMemoryWarning. So, my ViewController.cs looks as shown
in Listing 1-1.

ChAptEr 1 ■ FunDAMEntAlS

19

Listing 1-1. A Default ViewController Class Supplemented by TouchUpInside Event Handler

public partial class ViewController : UIViewController
{
 // Other methods are shown in Figure 1-20.

 partial void ButtonAlert_TouchUpInside(UIButton sender)
 {
 throw new NotImplementedException();
 }
}

As you see in Listing 1-1, this new event handler is associated with the TouchUpInside event (also see
Figure 1-21).

The alternative way of adding an event handler is through the Events tab of the Properties window.
You would only need to type the name of the event handler and press Enter. It is also important to note that,
once you create an event handler, it can be associated with other events. To this end, use the drop-down list,
which is populated by available event handlers (Figure 1-21).

When you double-click a control in preview mode, Visual Studio automatically creates the event
handler, depending on the control type. This event handler is called “default event handler” because it is
related to the common usage of a particular control. In the case of a button, the default event handler is “Up
Inside.” I will show you more examples of event handlers in Chapter 3.

Figure 1-20. Adding an event handler

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-3132-6_3
http://www.allitebooks.org

ChAptEr 1 ■ FunDAMEntAlS

20

AlertViewController
We are now ready to replace the default definition of the ButtonAlert_TouchUpInside event handler we
created in the previous subsection. The logic we implement will display a native alert window that will
present the Hello, Xamarin.iOS! message. To display such an alert, you first create and configure an instance
of the UIAlertViewController class and then show it to the user with the PresentViewController method.
A complete example appears in Listing 1-2.

Listing 1-2. Creating and Displaying an Alert Window

private const string title = "Apress";
private const string message = "Hello, Xamarin.iOS!";

partial void ButtonAlert_TouchUpInside(UIButton sender)
{
 var alertController = UIAlertController.Create(
 title, message, UIAlertControllerStyle.Alert);

 PresentViewController(alertController, false, null);
}

To create an instance of the UIAlertController class I use its Create static method. This method
accepts three arguments: title, message, and UIAlertControllerStyle. The purpose of the first two
arguments is rather obvious. They specify the title and the message of the alert. The last argument,
UIAlertControllerStyle, is the enumeration you use to define the alert style. You can choose between
Alert or ActionSheet. Here, I set the alert style to UIAlertControllerStyle.Alert. In the next subsection,

Figure 1-21. Events tab of button properties. Note that the ButtonAlert_TouchUpInside event handler can be
also associated with Up Outside event.

ChAptEr 1 ■ FunDAMEntAlS

21

I will create the action sheet, and, therefore, I saved title and message in corresponding fields of the
ViewController class.

To display an alert, I use PresentViewController, which is implemented within the UIViewController
class, the base class of the ViewController class associated with a default view of the HelloWorld app. As
shown in Listing 1-2, the PresentViewController method accepts the following three arguments:

•	 viewControllerToPresent is the object, deriving from the UIViewController class,
representing a view controller to be presented.

•	 animated indicates whether the view controller should be presented with animation
or not.

•	 completionHandler is the action to be executed after animation is done.

You can now test the preceding solution in the device emulator. To run the app, click the Play button
in the Debug toolbar (Figure 1-22). This toolbar is located inside the top pane of Visual Studio. You use the
Target toolbar not only to run the app but also to set configuration (Debug or Release) and choose target
device. Here, I set the target device to iPhone 8 with iOS 11.0, but you can choose any other simulator. For
instance, to create screenshots from Figure 1-1 I used iPhone X simulator.

Figure 1-22. A target toolbar

When you press the Play button it changes to a Stop button, and the device simulator will be started.
Subsequently, the HelloWorld app will be executed (Figure 1-23), so you can click the Hello, World! Button.
As a result, the alert will be displayed (right part of Figure 1-23).

www.allitebooks.com

http://www.allitebooks.org

ChAptEr 1 ■ FunDAMEntAlS

22

Figure 1-23. HelloWorld app running in the iPhone simulator

As you will quickly find out, the alert window blocks the app; there is not yet a button or control to close
the alert. Thus, to break the app execution you need to either click the Stop button in the Debug toolbar or
double press the SHIFT + COMMAND + H keyboard short key on your PC or double press a Home button
on the simulator. The simulator screen takes the form depicted in Figure 1-24. You can then swipe up the
HelloWorld app to kill its process.

At this point, it is also good to note that you can use the device simulator to emulate various user
actions. For instance, you can emulate shake gesture, Touch ID, Apple Pay, or simply rotate or reboot a
device. You can access these options through the Hardware menu of the simulator.

ChAptEr 1 ■ FunDAMEntAlS

23

Figure 1-24. Multi-tasking management in iPhone simulator

Actions
Let’s now add an action to the alert view. This action will enable the user to close the alert window instead of
killing the whole app process. In practice, an action will appear as the button within the alert window. When
you press this button, the alert window is closed and additional custom code can be executed. Exemplary
usage of such an action is presented in Listing 1-3, which shows an extended implementation of the alert
creation. Similarly, as before, I created the action outside the event handler to reuse an action later. If you
now re-run the app in the simulator, the alert will be supplemented by the OK button (Figure 1-25).

Listing 1-3. Adding a Default Action to the Alert

private const string title = "Apress";
private const string message = "Hello, Xamarin.iOS!";
private UIAlertAction okAction =
 UIAlertAction.Create("OK", UIAlertActionStyle.Default, null);

www.allitebooks.com

http://www.allitebooks.org

ChAptEr 1 ■ FunDAMEntAlS

24

partial void ButtonAlert_TouchUpInside(UIButton sender)
{
 var alertController = UIAlertController.Create(
 title, message, UIAlertControllerStyle.Alert);

 alertController.AddAction(okAction);

 PresentViewController(alertController, false, null);
}

Figure 1-25. An alert with a default action

ChAptEr 1 ■ FunDAMEntAlS

25

As Listing 1-3 shows, to create an action you use the UIAlertAction class. In particular, this class
implements the static Create method, which accepts three arguments, as follows:

•	 title — Use this argument to specify the action title; i.e., action’s caption displayed
in the alert.

•	 style — This defines action style or type. All available action types are represented
as values of the UIAlertStyle enumeration. This enumeration defines typical
actions, which are taken depending on the user input:

•	 Cancel — This type indicates that a given operation should be canceled and
that associated application state or data should be left unchanged.

•	 Default — This is a default action for the particular alteration of the application
state.

•	 Destructive — This type is typically used to confirm deletion of specific
application data.

•	 handler allows you to define a set of statements, which are invoked when the action
button is tapped by the user.

In Listing 1-3, I created a single Default action with OK title, which does not invoke any further logic
(handler argument is null). Of course, you can add more actions. We will use this possibility in the next
subsection while creating the action sheet.

Action Sheet
Action sheet is another style for iOS alerts. According to Apple guidelines, an action sheet should be used
to present a few choices for the user depending on the current context. In particular, you use such an object
to get confirmation of deleting specific elements of the app data. You create the action sheet analogously
as an alert, namely by using UIAlertController class. To explicitly show that, let’s now supplement
the HelloWorld app with another button, which, when tapped, will display an action sheet. To this end,
go to the Storyboard Editor by double-clicking Main.storyboard in the Solution Explorer. Then, add
the second button and place it below the ButtonAlert. Change the name and title of the new button to
ButtonActionSheet and ActionSheet, respectively. Adjust its width and location and then create the default
event handler (place it below ButtonAlert_TouchUpInside). Modify the definition of this handler as shown
in Listing 1-4. Finally, you can rerun the app, and you will get the results previously depicted in Figure 1-1.

Listing 1-4. Creating the UIAlertViewController Using the Class Constructor

private UIAlertAction cancelAction =
 UIAlertAction.Create("Cancel", UIAlertActionStyle.Cancel, null);

partial void ButtonActionSheet_TouchUpInside(UIButton sender)
{
 var actionSheetController = new UIAlertController()
 {
 Title = title,
 Message = message
 };

www.allitebooks.com

http://www.allitebooks.org

ChAptEr 1 ■ FunDAMEntAlS

26

 actionSheetController.AddAction(okAction);
 actionSheetController.AddAction(cancelAction);

 PresentViewController(actionSheetController, true, null);
}

Listing 1-4 presents an alternative way of creating an instance of the UIAlertController class. I
used the parameterless constructor of this class and then modified the Title and Message properties
of the resulting object. Note that there is no property to configure the alert style, which in this case is set
to UIAlertControllerStyle.ActionSheet by default. Of course, you can still use the Create method
UIAlertController to create an action sheet, but you would need to replace the last parameter with
UIAlertControllerStyle.ActionSheet (refer back to Listing 1-2).

In the preceding example, I supplemented the alert sheet by two actions: one created with a default
style (okAction), and the other built with a cancel style (cancelAction). You can note a difference in the
appearance of the buttons associated with these actions in Figure 1-1. The Cancel button is distinguished
with respect to the OK button.

Finally, to present an action sheet, I use the same method as before, PresentViewController, but I
changed its second argument to true so the alert presentation will be animated. After re-running the app,
you will get the results shown previously in Figure 1-1.

Summary
In this chapter, we prepared a development environment, which will be utilized in the next chapters. We
then discussed available project templates for creating iOS apps and implemented our first Single View
HelloWorld app, which displays various alerts. In the next chapter, using the source code developed here we
will analyze the app structure and discuss the most important elements of every Xamarin.iOS app.

27© Dawid Borycki 2018
D. Borycki, Beginning Xamarin Development for the Mac, https://doi.org/10.1007/978-1-4842-3132-6_2

CHAPTER 2

App Structure and Lifecycle

In this chapter, you will learn about the most important elements of an app and relationships between them.
We will begin by exploring the app entry point and how Xamarin.iOS interfaces with the native iOS SDK.
Subsequently, we will learn about the app and view lifecycles, declaration of app capabilities, and properties
to reach the storyboards. Additionally, we will analyze the Model View Controller (MVC) design pattern
utilized in programming for the Apple platforms. Lastly, we will combine the view lifecycle with the MVC
pattern to store data in a device’s memory.

An Entry Point
The HelloWorld app, similar to any other C# app, begins its execution from the static Main method of the
Application class. This applies regardless of whether you are creating a console application, Universal
Windows Platform app, ASP.NET web application, or .NET Core or Xamarin.iOS app. All of these apps utilize
the Application.Main method as an entry point. However, the particular implementation of this method
varies between those app types. In the case of Xamarin.iOS, the implementation of the Main method is
tailored to the iOS platform. More specifically, as Listing 2-1 shows, the Application.Main method invokes
the function of the same name from the UIApplication class. The UIApplication class encapsulates the
main processing loop of the Xamarin.iOS app. This processing loop, as in all other apps with a graphical
user interface, handles all the events related to the app lifecycle (activation, switching between foreground
and background), events triggered by the user (like touch, inputting data, switching between views), or the
operating system (OS restarts, memory warnings).

Importantly, every iOS app creates only one instance of the UIApplication class or its subclass.
Internally, the UIApplication class uses another class, which implements the UIApplicationDelegate
interface. The latter object is dedicated to handling the app lifecycle. Therefore, the Main method from
Listing 2-1, apart from command-line arguments (args, which is the array of strings), accepts two other
parameters: principalClassName and delegateClassName. The first one specifies the name of the class
deriving from UIApplication. If you want to use a default UIApplication class, then you pass null for
principalClassName. The second argument, delegateClassName, lets you specify the name of the class
implementing UIApplicationDelegate. By default, delegateClassName is set to AppDelegate. You
will learn about this class later in this chapter, as this is a part of the HelloWorld and
any other Xamarin.iOS project.

www.allitebooks.com

http://dx.doi.org/https://doi.org/10.1007/978-1-4842-3132-6_2
http://www.allitebooks.org

Chapter 2 ■ app StruCture and LifeCyCLe

28

Listing 2-1. An Entry Point of the Xamarin.iOS App

namespace HelloWorld
{
 public class Application

 {
 static void Main(string[] args)
 {
 UIApplication.Main(args, null, "AppDelegate");
 }
 }
}

To explain what an encapsulation of the processing loop means, let’s analyze the source code of
Xamarin.iOS, which is available here: http://bit.ly/xamarin_ios_code. This analysis also helps us to
better understand what Xamarin.iOS really is. In particular, the definition of UIApplicationClass (http://
bit.ly/UiApplication) shows that its Main method (Listing 2-2), after obtaining handles to the principal
and delegate class names, invokes another version of the Main method. The latter, as depicted in Listing 2-3,
first invokes the Initialize method. This method configures thread-synchronization context, which is used
to update controls through the UI thread. Then, the Main method invokes the UIApplicationMain function,
which is declared in an external, Objective-C library. This library comes from the iOS SDK. You now see
that Xamarin.iOS, in the simplest definition, is the set of C# bindings to the native iOS SDK exposed through
Objective-C libraries. Therefore, Xamarin.iOS lets you develop native apps with full access to the platform’s
SDK. For this reason, Xamarin apps are referred to as native mobile apps.

Listing 2-2. A Definition of the UIApplication.Main Method Invoked in the Entry Point of HelloWorld App

public static void Main(string[] args, string principalClassName,
 string delegateClassName)
{
 IntPtr principal = principalClassName != null ?
 new NSString(principalClassName).Handle : IntPtr.Zero;
 IntPtr delegatec = delegateClassName != null ?
 new NSString(delegateClassName).Handle : IntPtr.Zero;
 Main(args, principal, delegatec);
}

Listing 2-3. An Actual Call to the UIApplicationMain Method Implemented in the Objective-C Library from
the iOS SDK

static void Main(string[] args, IntPtr principal, IntPtr @delegate)
{
 Initialize();
 UIApplicationMain(args.Length, args, principal, @delegate);
}

[DllImport("__Internal")]
extern static int UIApplicationMain(int argc, string[] argv,
 IntPtr principalClassName, IntPtr delegateClassName);

http://bit.ly/xamarin_ios_code
http://bit.ly/UiApplication
http://bit.ly/UiApplication

Chapter 2 ■ app StruCture and LifeCyCLe

29

To invoke a function from the Objective-C library you use the Platform Invocation Services (P/Invoke).
In this mechanism, you first declare the C# method with extern and static keywords and decorate this
declaration with the DllImportAttribute. This attribute is used to specify the physical location of the library
to load DllImportAttribute can be optionally used to specify a name of the function exported by this library
in case this name differs from a method you declare in the C# code. Once you have this declaration, you
call an external function by invoking the C# method, exactly the same as in Listing 2-3. However, as we see
in Listing 2-3, the DllImportAttribute of the C# method does not include a path to the external library.
Instead, it uses the __Internal string. This instructs P/Invoke to load a function from the static library,
which compiles into an application.

But wait, how is my C# code turned into the actual iPhone or iPad application? This is done
automatically when we compile the project in Visual Studio through the tool called mtouch. Mtouch is
the command-line program that changes your C# .NET code into the app bundle, which is then executed
by iOS. In the case of the HelloWorld app, we compiled for the simulator; the bundle can be found
under the following subfolder of the HelloWorld project: bin\iPhoneSimulator\Debug\device-builds\
iphone9.1-10.3\HelloWorld.app. If you open this folder, you will see a number of files. For now, let’s just
point out the relevant ones. First, the app bundle contains Xamarin.iOS.dll, which has bindings to the iOS
SDK. Second, there is an mscorlib.dll file. It implements the Microsoft Common Object Runtime Library,
a runtime for all Microsoft .NET applications. Finally, there are several other .NET libraries, like System.
dll, System.Core.dll, and System.Xml.dll. They are referenced in the HelloWorld app project to use basic
types and functionality from the .NET framework.

Now that we have a solid understanding of the most important behind-the-scenes aspects of Xamarin.
iOS, we can move forward to learn about the AppDelegate class.

AppDelegate
To discuss the AppDelegate class, let’s open the AppDelegate.cs file from the HelloWorld project. First, when
inspecting the class declaration, you will see that the AppDelegate implements the UIApplicationDelegate
interface. Second, the AppDelegate declaration is decorated with the RegisterAttribute. It is implemented
within the Xamarin.iOS and is used to register a class to the Objective-C runtime. This registration is
required since an instance of the AppDelegate class is passed to the UIApplicationMain Objective-C
function. Third, the AppDelegate implements a single property, Window, of type UIWindow. UIWindow
represents the container for views found in the iOS apps. So, you use this property to control that container.
Last, AppDelegate overrides a number of methods from the UIApplicationDelegate. You use these
methods to handle particular application events during the app lifecycle. To explicitly show how these
lifecycles proceed, let’s modify AppDelegate according to Listing 2-4.

Listing 2-4. Modified Definition of the AppDelegate Class

using System.Diagnostics;
using Foundation;
using UIKit;

namespace HelloWorld
{
 [Register("AppDelegate")]
 public class AppDelegate : UIApplicationDelegate
 {
 public override UIWindow Window { get; set; }

 public override bool WillFinishLaunching(
 UIApplication application, NSDictionary launchOptions)
 {

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ app StruCture and LifeCyCLe

30

 DisplayInfo("WillFinishLaunching", application);

 return true;
 }

 public override bool FinishedLaunching(
 UIApplication application, NSDictionary launchOptions)
 {
 DisplayInfo("FinishedLaunching", application);

 return true;
 }

 public override void OnResignActivation(
 UIApplication application)
 {
 DisplayInfo("OnResignActivation", application);
 }

 public override void DidEnterBackground(
 UIApplication application)
 {
 DisplayInfo("DidEnterBackground", application);
 }

 public override void WillEnterForeground(
 UIApplication application)
 {
 DisplayInfo("WillEnterForeground", application);
 }

 public override void OnActivated(UIApplication application)
 {
 DisplayInfo("OnActivated", application);
 }

 public override void WillTerminate(UIApplication application)
 {
 DisplayInfo("WillTerminate", application);
 }

 private void DisplayInfo(string eventName,
 UIApplication application)
 {
 Debug.WriteLine($"App event: {eventName}."
 + $"App state: {application.ApplicationState}");
 }
 }
}

Chapter 2 ■ app StruCture and LifeCyCLe

31

In Listing 2-4, there is one new public method, WillFinishLaunching, and one private method,
DisplayInfo. WillFinishLaunching handles the corresponding app event, while DisplayInfo is
implemented to present information about the application event. Therefore, this method is invoked within
each application event handler, being an overriden version of appropriate event handler from the base class
(UIApplicationDelegate). Note that I always pass the name of the application event to the first argument
of DisplayInfo. This method then prints the event name along with the application state in the application
output. To that end, I use the WriteLine method of the System.Diagnostics.Debug class. To obtain an
application’s state, I read the corresponding property of the UIApplication class. An instance of this class is
passed to the second argument of the DisplayInfo method.

Application states are represented by the following values of the UIApplicationState enumeration:

•	 Active – The app is running in the foreground and responds to user actions. This
means that the app UI is visible to the user, and the user can interact with the app.

•	 Inactive – The app is running in the foreground but does not respond to user
actions. In such cases, the UI can be still visible, but the app does not respond. This
can happen, for example, when you activate multitask selection in your phone or
simulator (refer back to Figure 1-24).

•	 Background – The app is running in the background, so its UI is invisible. However,
the app can perform some sort of background operation like fetching data from an
external web service.

Let’s now see at what point the application event handlers are invoked during the application
lifecycle. To this end, let’s start the app in a simulator and open Application Output. By default, this output
is undocked and minimized, so to activate this window you will need to click Application Output ➤
HelloWorld bar, which is located in the bottom right part of the Visual Studio screen (Figure 2-1).

Figure 2-1. HelloWorld Application Output, showing the app lifecycle

Right after running the app, you will see that there are three app events reported: WillFinishLaunching,
FinishedLaunching, and OnActivated (Figure 2-1). The first, the WillFinishLaunching event handler, is
invoked when the UIApplication gets created. Subsequently, after the app has launched, another method,
FinishedLaunching, is invoked. Typically, this method is used to create the app window and display a view
by setting the RootViewController property of the Window class. However, the HelloWorld app was created
using a template. In such a case, the default view is configured in the main storyboard. As I will explain later,
this is done by setting the initialViewController attribute of the document XML tag. Note that the app is
inactive until it is activated. An app activation is reported by the dedicated event, OnActivated. Once the app

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ app StruCture and LifeCyCLe

32

is active, its UI becomes visible, and you can start tapping the buttons we created previously. The app will
respond to your requests.

By comparing the definitions of WillFinishLaunching and FinishedLaunching to all other event
handlers related to the app lifecycle, we can see that they contain an additional argument, launchOptions.
This argument is of type NSDictionary and comprises a set of key–value entries. These entries allow you to
determine how your app was launched and what kind of launch parameters were passed to the app. You
can find a list of all available keys along with an example of how to use them here: http://bit.ly/launch_
options.

Let’s now see what happens when we send the app to the background. You can do this in the simulator
by pressing the following keyboard shortcut keys: COMMAND + SHIFT + H. The app will disappear, and
you will see that another two event handlers are invoked: OnResignActivation and DidEnterBackground.
You use the first one to save the application state or release any resources that the app does not need when
inactive. After OnResignActivation, the DidEnterBackground app event is raised. It informs you that the app
state has been changed to background (refer back to Figure 2-1).

You can now send the HelloWorld app to the foreground by pressing its icon in the simulator (see
Figure 2-2). Another two app events are fired: WillEnterForeground and OnActivated. They correspond
to the two app events raised when the app was put in the background, so their usage is reversed. Namely,
WillEnterForeground informs you that the app is about to enter the foreground so you can use the
appropriate event handler to restore the app state and prepare all the resources your app needs in the
foreground. Subsequently, the app is activated, and you are notified about that through the OnActivated
event.

Figure 2-2. Simulator home screen with HelloWorld app icon

Finally, let’s see what happens when you kill the app through multitasking (which you can activate,
as in the previous chapter, by clicking the home button twice). In such a case, three events are reported:
OnResignActivation, DidEnterBackground, and WillTerminate. The first two are raised when you activate
multitasking. So, up to this point, everything works the same as it would if you just put your app in the
background. Once the app is about to terminate, an additional event is raised, WillTerminate. You use this
event to clean up any resources used when your app was working in the background.

View Lifecycle
In the previous section, we learned about the app lifecycle. A similar mechanism is also available
for individual views. View events are represented by appropriate event handlers implemented in the
UIViewController class. You override these handlers in the derived class associated with the particular view
(its view controller). Event handlers of the view lifecycle are utilized to prepare the view. For instance, you
first restore data from a device’s memory and then use these data to update controls. So, the controls are
ready to present data before the view is presented to the user.

http://bit.ly/launch_options
http://bit.ly/launch_options

Chapter 2 ■ app StruCture and LifeCyCLe

33

To demonstrate when particular view events are fired, I modify the source code of the ViewController
class by adding methods from Listing 2-5. Again, there is one private helper method, DisplayInfo. It is
used to display the name of the actual view event. Then, I use this method in the following five view event
handlers: ViewDidLoad, ViewWillAppear, ViewDidAppear, ViewWillDisappear, and ViewDidDisappear.
Therefore, I can track the view lifecycle.

Listing 2-5. Handling the View Lifecycle

public override void ViewDidLoad()
{
 base.ViewDidLoad();

 DisplayInfo("ViewDidLoad");
}

public override void ViewWillAppear(bool animated)
{
 base.ViewWillAppear(animated);

 DisplayInfo("ViewWillAppear");
}

public override void ViewDidAppear(bool animated)
{
 base.ViewDidAppear(animated);

 DisplayInfo("ViewDidAppear");
}

public override void ViewWillDisappear(bool animated)
{
 base.ViewWillDisappear(animated);

 DisplayInfo("ViewWillDisappear");
}

public override void ViewDidDisappear(bool animated)
{
 base.ViewDidDisappear(animated);

 DisplayInfo("ViewDidDisappear");
}

private void DisplayInfo(string eventName)
{
 Debug.WriteLine($"View event: {eventName}");
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ app StruCture and LifeCyCLe

34

Note that in order to use the Debug class you will need to import the System.Diagnostics namespace by
supplementing the file header with the following statement:

using System.Diagnostics;

After re-running the app in the simulator, we will see a list of app and view events in the Application
Output Window (Figure 2-3). As we can expect, the first view event handler, ViewDidLoad, is invoked right
after the app is loaded. Then, when the view is loaded, another two events are fired: ViewWillAppear and
ViewDidAppear. You use them to implement a logic that prepares the view before it is displayed to the user.

To induce other view events, ViewWillDisappear and ViewDidDisappear, I terminated the app using
iOS multitasking. So, ViewWillDisappear and ViewDidDisappear events are invoked right after the app
enters the background (see bottom lines of the application output in Figure 2-3).

Figure 2-3. Application output showing events fired during consecutive steps of the app and view lifecycles

As I will show later in this chapter, ViewWillDisappear and ViewDidDisappear are employed to store
data when or after the view disappears.

Information Property List
So far, we have only discussed files that contained the C# code. However, the HelloWorld project also has
several other files, which are required by all iOS apps. One such file is the Information Property List (Info.
plist). This file defines application configuration. When you double-click this file in the Solution Explorer,
you will see the editor featured in Figure 2-4. This editor has the following tabs, which you use to configure
different options:

•	 Application – You use this tab to specify the following:

•	 App identity: application name, bundle identifier, and version

•	 Deployment information: target iOS version, device family (iPhone, iPad, or
Universal), the name of the storyboard, which defines the user interface of
the app (main interface), available app orientations, and configure status bar
appearance

•	 App icons and launch images: used to specify the name of the collection with
icons and the name of the storyboard, which will be displayed during app
launch—the so-called launch or splash screen

Chapter 2 ■ app StruCture and LifeCyCLe

35

•	 Artwork for iTunes

•	 Enable Game Center and Maps Integration and configure Background Modes.

•	 Advanced – In this tab you will configure the Document Types and Universal Type
Identifiers (UTIs) of the files that your app will support. Document Types, like PDFs, are
used to define files that your app will support. On the other hand, UTIs refer to custom
file types. You can also use the Advanced tab to define URL schemas for your app.

•	 Source – This is the tab that you use to define custom properties for your app.
This feature is required in order to access specific functionalities of the iOS, like
geolocation of the device.

Figure 2-4. Information Property List Editor in Visual Studio

Entitlements Property List
Entitlements Property List, defined in the Entitlements.plist file, specifies the app’s capabilities. When
you open this file, Visual Studio for Mac activates the editor featured by Figure 2-5. This editor has two tabs:
Application and Source. The first one is a graphical representation of various app capabilities (like iCloud
integration or push notifications) you can enable, while the Source tab lets you define custom capabilities.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ app StruCture and LifeCyCLe

36

Launch Storyboard
We have just seen that Information Property List allows us to specify the storyboard, which defines the
launch screen. In the HelloWorld app, this storyboard is saved in LaunchScreen.storyboard. If you double-
click this file in the Solution Explorer, the Visual Editor will open. This editor looks exactly the same as
in the case of Main.storyboard, so you can define the Launch Screen in a similar manner. Let’s use this
opportunity to add the Image View, which will display an image when the app is being loaded. To add the
Image View, you first locate this object in the Toolbox and then drag it onto the rectangle, representing the
device. Subsequently, you can rescale it, so it fills the whole view, and then define the image to display.
To select this image, you use the Image property of the Image View (Figure 2-6). By default, this entry is
empty, and when you click it a file browser appears. Use this browser to pick any image you want. If this
file is outside the target directory, the Add New File dialog, shown in Figure 2-7, will appear. iOS requires
that all resources—the static files your app loads during runtime (like images)—should be stored under the
Resources folder. Therefore, in the Add New File dialog, you need to choose the Copy option. An image file
you selected will be then copied to the Resources subfolder of the HelloWorld app. Subsequently, the name
of this file will appear in the drop-down list of the Image property (Figure 2-6).

Figure 2-5. Entitlements Property List Editor in Visual Studio

Chapter 2 ■ app StruCture and LifeCyCLe

37

The Image View has a very important property, Content Mode (refer back to Figure 2-6). It controls how
the image will be rescaled to fit the bounds of the Image View. Content Mode can take one of the following
values defined in UIKit.UIViewContentMode:

•	 ScaleToFill – The image aspect ratio (a quotient of image width and height) will be
adjusted to fill the whole area of the Image View.

•	 ScaleAspectFit – The image will be rescaled to fit the Image View, but the image
aspect ratio will be preserved.

•	 ScaleAspectFill – The image will be rescaled and eventually cropped to fit the
Image View.

•	 Redraw – The Image View will be redisplayed when its size changes.

•	 Center, Top, Bottom, Left, Right, TopLeft, TopRight, BottomLeft, BottomRight –
These options define how the image will be aligned within the Image View.

Figure 2-6. Selected properties of the Image View

Figure 2-7. Adding a resource file

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ app StruCture and LifeCyCLe

38

In this example, I set the Content Mode to ScaleAspectFit. This is seen as the Aspect Fit option in
Figure 2-7. In such a case, the aspect ratio of my image will not be changed, and therefore the image is
located in the center of the screen, when the app is launching (Figure 2-8).

Figure 2-8. Launch screen of the HelloWorld application

Storyboards Under the Hood
A storyboard represents the whole user interface of an iOS app. In iOS, this user interface is composed of
objects called scenes. A scene is the combination of a view controller and its associated views. The view
controller displays and manages its views. In general, a storyboard can have multiple scenes (multiple view
controllers and associated views). Transitions between these scenes are defined as segues.

We already used storyboards to define simple views, and we used the view controller to handle events
(like tapping buttons) and view lifecycle management. A view controller plays one of the most important role
in the iOS app, and therefore I used these two paragraphs to distinguish it from views, scenes, and segues.

You may actually wonder how it is possible to visually define a storyboard from Visual Studio. It is
possible because the storyboard is written in XML format. Such an approach makes the storyboard portable
and platform-independent. So, a storyboard can be edited manually or visually using a variety of tools.

Chapter 2 ■ app StruCture and LifeCyCLe

39

Listing 2-6. Document Tag of Main.storyboard

<document type="com.apple.InterfaceBuilder3.CocoaTouch.Storyboard.XIB"
 version="3.0"
 toolsVersion="12120"
 systemVersion="16F73"
 targetRuntime="iOS.CocoaTouch"
 propertyAccessControl="none"
 useAutolayout="YES"
 useTraitCollections="YES"
 colorMatched="YES"
 initialViewController="BYZ-38-t0r">

To see the actual XML definition of the storyboard, right-click the storyboard file (Main.storyboard)
in the Solution Explorer and then choose Open With/Source Code Editor from the context menu. The
source code of the storyboard will be displayed. By inspecting the contents of this file, we can easily note
that it has the typical hierarchical form of the XML file. There is one root node, xml, and right after it you
can find the document tag, the declaration of which looks like the one from Listing 2-6. We see that this tag
has a number of attributes, which, in particular, specify the document type, its version, target runtime, and
identifier of the initial view controller. In the HelloWorld app we have a single view controller, so we actually
did not to have to think about that. However, if an app has multiple view controllers, you can choose the
initial one in the Visual Editor. You go there and then open the Properties window of the view controller.
Subsequently, as Figure 2-9 shows, you check the “Is Initial View Controller” checkbox. The value of the
initialViewController attribute will be updated automatically. That’s why the HelloWorld app loads the
ViewController as the first one. Consequently, its default view is presented after the app is launched.

Figure 2-9. Properties of the View Controller. Note that “Is Initial View Controller” is checked, so a selected
view associated with this view controller will appear as the first.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ app StruCture and LifeCyCLe

40

Right after the document tag, we can see another tag, scenes. It contains a collection of scene objects,
each of which is represented by the scene tag, whose sceneID attribute identifies the particular scene. Then,
under the scene object, we can easily identify the viewController tag. It contains a child item and views,
which contain a declaration of views associated with the view controller. In the HelloWorld app, the view
controller has only one view, which hosts declarations of the two buttons we created. As Listing 2-7 shows,
these declarations are within the subviews collection. Note that buttons are declared with a XML tag of the
same name. This tag has a number of attributes that specify button parameters. Button size and location
are then controlled by the child tag, rect. Title and color of the button caption are controlled by the state
tag. There is also one other important tag, connections. It hosts actions (or events) associated with the
particular button or another control. For each button, we have just a single action, which responds to the
TouchUpInside event. Note that this action is further associated with the particular button or control through
the connections collection defined right above the closing tag of viewController (Listing 2-8). Importantly,
each element in this collection is represented by an outlet. This outlet, in the iOS nomenclature, wires an
event fired by the control with its event handler. This connection was done automatically when we choose
the event handler from the appropriate list of events in Visual Studio. Note that the destination attribute of
each outlet precisely corresponds to the ID attributes of the button tag (Listing 2-7).

Listing 2-7. Subviews Collection

<subviews>
 <button contentMode="scaleToFill"
 contentHorizontalAlignment="center"
 contentVerticalAlignment="center"
 buttonType="roundedRect"
 lineBreakMode="middleTruncation"
 id="3"
 translatesAutoresizingMaskIntoConstraints="NO"
 fixedFrame="YES"
 opaque="NO">
 <rect key="frame" x="138" y="50"
 width="100" height="30"/>
 <autoresizingMask key="autoresizingMask"
 flexibleMaxX="YES"
 flexibleMaxY="YES"/>
 <state key="normal" title="Hello, World!">
 <color key="titleShadowColor"
 white="0.5" alpha="1"
 colorSpace="calibratedWhite"/>
 </state>
 <connections>
 <action selector="ButtonAlert_TouchUpInside:"
 destination="BYZ-38-t0r"
 id="6"
 eventType="touchUpInside"/>
 </connections>
 </button>
 <!--Definition of ButtonActionSheet-->
</subviews>

Chapter 2 ■ app StruCture and LifeCyCLe

41

Listing 2-8. A Collection of Outlets, Which Wire Control Events with Actions

<connections>
 <outlet property="ButtonAlert" destination="3" id="name-outlet-3"/>
 <outlet property="ButtonActionSheet" destination="10" id="name-outlet-10"/>
</connections>

The last interesting tag of the storyboard XML declaration is the resources collection. As Listing 2-9
shows, this collection contains a single entry that represents the image we used in the launch storyboard.

Listing 2-9. Resources Collection

<resources>
 <image name="xamagon.png" width="609" height="609"/>
</resources>

Model View Controller
So far, we have discussed the elements of the HelloWorld app that either constitute the app entry point
or are related to views or view control. However, iOS apps very often cooperate with data. Apps need to
retrieve data from internal or external storage or services and then display it to the user. The user can then
modify this data, and the app has to reflect these changes in the storage it is cooperating with. This is a very
common scheme for modern mobile apps, which constitute the end point of some larger system. Therefore,
to simplify the app organization and improve its maintenance, iOS apps are built with the use of the Model
View Controller (MVC) programming paradigm or design pattern. MVC divides the app into three main
elements: View, Controller, and Model. General relationships between these elements as well as the data
and signals flow are depicted in Figure 2-10. The controller is placed in the center because it plays the most
important role. It displays views and handles user actions. These actions are mapped to event handlers and
used to update the model, which represents the app state or some data set. A model notifies the controller
whenever data was successfully updated or changed by some external process (another app or service).
Controller uses these notifications to update its views.

Figure 2-10. A general scheme of the Model View Controller programming paradigm

The MVC design pattern improves app maintenance thanks to the explicit separation of each layer.
Consequently, each app layer can be developed and tested independently. This further helps you to reuse
your code and better control your development.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ app StruCture and LifeCyCLe

42

Persisting Data
In this final subsection, I will tell you how to supplement the HelloWorld app with the simple model, Person.
This class will contain two properties, which will store the person’s first and last name. Then, in the default
view, I will create two text-input fields, which will display a person’s data and will let the user arbitrarily
change them (Figure 2-11). The data will be stored in a file in the device’s memory so that it can be restored
after the app is restarted. The person’s data will be stored and restored within the ViewWillDisappear and
ViewWillAppear events of the view lifecycle.

Figure 2-11. A HelloWorld app supplemented by additional controls for editing a person’s data

To implement the preceding solution, I first add the Person.cs file to the HelloWorld app. You can do
this by clicking File ➤ New File from the Visual Studio menu. The dialog shown in Figure 2-12 appears. In
this dialog, you pick the Empty Class item from the General tab and then change the class name to Person.
After ensuring that the “Add to project” checkbox is selected, you click the New button.

Then, I implement the Person class (see companion code: Chapter_02/HelloWorld/Person.cs). As
Listing 2-10 shows, this class derives from the NSCoding class. NSCoding provides a functionality for encoding
and decoding objects in order to archive (store in file) or distribute them. Encoding means that the object is
transformed into the architecture-independent byte stream, which can be further archived or transmitted to
another process or a remote device. Then, the archived or received data is decoded such that the byte stream
is transformed back to the particular object. In this case, the Person class has two public properties that will
be stored in the device’s memory: FirstName and LastName. For each property, I defined a key (saved in
firstNameArchiveKey and lastNameArchiveKey), which identifies a property in the archive. This archive
will be a file in the app temporary folder (archiveLocation field).

Chapter 2 ■ app StruCture and LifeCyCLe

43

Listing 2-10. Declaration and Selected Elements of the Person Class

public class Person : NSCoding
{
 public string FirstName { get; set; } = string.Empty;
 public string LastName { get; set; } = string.Empty;

 private const string firstNameArchiveKey = "FirstName";
 private const string lastNameArchiveKey = "LastName";

 private string archiveLocation = Path.Combine(
 Path.GetTempPath(), "person");

 public Person() { }

 // Further definition of the Person class
}

Figure 2-12. A New File dialog of Visual Studio

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ app StruCture and LifeCyCLe

44

To encode and decode string properties, I defined two methods in the Person class. Definitions of both
methods appear in Listing 2-11. Let’s see how the first method, EncodeString, works. This method invokes
an Encode method of the Foundation.NSCoder class. NSCoder.Encode has several overloaded methods,
which encode variables of several simple types. However, none of them can encode strings. Therefore, I had
to convert a string to a byte array using the System.Text.Encoding class. Specifically, I use the GetBytes
method of the UTF8 encoding. Then, I pass the result of this method to NSCoder.Encode along with the key
used to identify the encoded value. The DecodeString method works in a reverse order. First, it uses a coder
to retrieve the byte stream of the previously encoded value. Second, this byte stream is converted to a string
with the UTF8.GetString method.

Listing 2-11. Encoding and Decoding String Properties

private void EncodeString(NSCoder encoder,
 string property, string propertyKey)
{
 var buffer = Encoding.UTF8.GetBytes(property);
 encoder.Encode(buffer, propertyKey);
}

private string DecodeString(NSCoder coder,
 string propertyKey)
{
 var result = string.Empty;

 var bytes = coder.DecodeBytes(propertyKey);
 if(bytes != null)
 {
 result = Encoding.UTF8.GetString(bytes);
 }

 return result;
}

The preceding methods are then utilized as shown in Listing 2-12. Namely, the DecodeString method is
invoked within the Person class constructor. This constructor is exported as the initWithCoder Objective C
initializer. This initializer is invoked automatically by the iOS runtime whenever you unarchive the object.
A similar approach is used to encode an object. In such a case, you override the EncodeTo method, which
comes from the NCoding class. This method is invoked when you archive the object. Therefore, in Listing 2-12
I use the EncodeString method to encode first and last name.

Listing 2-12. Decoding and Encoding a Person object

[Export("initWithCoder:")]
public Person(NSCoder coder)
{
 FirstName = DecodeString(coder, firstNameArchiveKey);
 LastName = DecodeString(coder, lastNameArchiveKey);
}

Chapter 2 ■ app StruCture and LifeCyCLe

45

public override void EncodeTo(NSCoder encoder)
{
 EncodeString(encoder, FirstName, firstNameArchiveKey);
 EncodeString(encoder, LastName, lastNameArchiveKey);
}

To actually archive and unarchive an object, you use NSKeyedArchiver and NSKeyedUnarchiver,
respectively. As Listing 2-13 shows, to archive an object in a file you use the ArchiveRootObjectToFile
method of the NSKeyedArchiver class instance. Then, the object can be unarchived from the file with the
UnarchiveFile method of the NSKeyedUnarchiver.

Listing 2-13. Archiving and Unarchiving a Person Object

public void StoreValues()
{
 NSKeyedArchiver.ArchiveRootObjectToFile(
 this, archiveLocation);
}

public void RestoreValues()
{
 if (NSKeyedUnarchiver.UnarchiveFile(archiveLocation)
 is Person retrievedPersonData)
 {
 FirstName = retrievedPersonData.FirstName;
 LastName = retrievedPersonData.LastName;
 }
}

After implementing the Person class, I supplement a default view of the HelloWorld app with two
text fields and two labels. To that end, I use a storyboard visual designer in which I drag and drop two
TextField and two Label objects onto the view. Then, I rename the text fields to TextFieldFirstName and
TextFieldLastName, respectively. Last, I change the captions of the labels to First name: and Last name: and
position the controls as shown in Figure 2-11.

As the next step, I modify the ViewController class as follows. First, I instantiate a Person class with
a default parameterless constructor, and then I implement two helper methods: DisplayPersonData and
StorePersonData. These methods are depicted in Listing 2-14. DisplayPersonData retrieves a person object
from the file and then displays its name in the view by rewriting properties of the Person class instance as
Text properties of the TextField controls. StorePersonData works in the opposite order—it rewrites data
from text fields as properties of the Person class and then stores them in the file.

Listing 2-14. Storing and Restoring Person Data

private Person person = new Person();

private void DisplayPersonData()
{
 person.RestoreValues();

 TextFieldFirstName.Text = person.FirstName;
 TextFieldLastName.Text = person.LastName;
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ app StruCture and LifeCyCLe

46

private void StorePersonData()
{
 person.FirstName = TextFieldFirstName.Text;
 person.LastName = TextFieldLastName.Text;

 person.StoreValues();
}

Finally, I need to invoke DisplayPersonData and StorePersonData, when the view appears and
disappears, respectively. To that end, I employ corresponding view event handlers (Listing 2-15).

Listing 2-15. Utilizing View Lifecycle to Display and Store Person Data

public override void ViewWillAppear(bool animated)
{
 base.ViewWillAppear(animated);

 DisplayInfo("ViewWillAppear");

 DisplayPersonData();
}

public override void ViewWillDisappear(bool animated)
{
 base.ViewWillDisappear(animated);

 DisplayInfo("ViewWillDisappear");

 StorePersonData();
}

Now, when you run the app you can type any values into the two text fields. After closing the app and re-
running it, you will see that these values are restored and displayed again in the UI.

Summary
In this chapter, you learned about app structure and lifecycle. You became more knowledgeable about the
app entry point, the role of the AppDelegate class, and how you can define app properties and capabilities.
We learned about the launch storyboard, and I described the internal structure of the main storyboard.
Finally, we delved into the Model View Controller design pattern and used it, along with the view lifecycle, to
persist data in a device’s memory.

47© Dawid Borycki 2018
D. Borycki, Beginning Xamarin Development for the Mac, https://doi.org/10.1007/978-1-4842-3132-6_3

CHAPTER 3

Views

Fueled by knowledge about the iOS app structure, available project templates, and the app lifecycle, we
can move forward to learn about creating complex views. We will start by learning how to use several
basic controls, like switch or slider, and then investigate advanced controls, like table views, web views,
and map views. Specifically, we will learn how to use tables to display collections of data. Web view will be
utilized to render interactive web pages (Google Maps) in Xamarin.iOS apps. Lastly, we will use the map
view to present a native iOS map. In this chapter, we will also learn how to define adaptive views, which
automatically adjust to screens of various sizes and also to device orientation.

The name of almost every iOS control ends with “view”; for instance, Table View or Map View.
Therefore, to save space I will quite often refer to them as table or map instead of using the fully
qualified name.

Basic Controls
We have already worked with several basic controls, like buttons, labels, text fields, and images. In this
section, I will show you another three controls: a switch, a slider, and a view. More specifically, I will tell you
how to utilize these controls to create an app, shown in Figure 3-1. In this app, the orange view of square
shape is translated when you change a slider value. The translation direction depends on the switch state—
the square translates vertically if the switch is on, and horizontally otherwise. So, additionally, you will learn
how to dynamically change the position of any control.

www.allitebooks.com

http://dx.doi.org/https://doi.org/10.1007/978-1-4842-3132-6_3
http://www.allitebooks.org

Chapter 3 ■ Views

48

To implement the app shown in Figure 3-1, I started by creating a new single view application (universal
app compatible with iOS 9.0 and above) and set its name to InputControls. Then, I supplemented the
main view of the app with four controls: switch, label, slider, and view (you can find all these controls in the
toolbox). Controls were arranged as shown in Figure 3-1, and their properties were configured as follows:

•	 Switch:

•	 Name: SwitchIsVertical

•	 Slider:

•	 Name: SliderShift

•	 View:

•	 Name: ViewMoveableSquare

•	 Background: Orange

•	 Width and height (Layout tab): 50

Given the UI, I start implementing the logic layer. To that end, I modify the definition of the
ViewController class (ViewController.cs). I declare a private member initialSquareCenter and
implement four helper methods (Listing 3-1 and Listing 3-2). Two methods from Listing 3-1 are used to store
the initial location of the square and recenter it when user changes the translation direction with a switch. To
obtain and update the location of the square, I use the Center property of the View control. This property is
of type CoreGraphics.CGPoint, which is a struct representing a point in a plane. To use this type, you need to
import the CoreGraphics namespace in the header of the ViewController.cs file:

using CoreGraphics;

Figure 3-1. UI of the app illustrating sample usage of switch and slider

Chapter 3 ■ Views

49

Listing 3-1. Managing Initial Location of the Moveable Square (Orange View)

private CGPoint initialSquareCenter;

private void StoreSquareCenter()
{
 initialSquareCenter = ViewMoveableSquare.Center;
}

private void RecenterSquare()
{
 ViewMoveableSquare.Center = initialSquareCenter;
}

Two other helpers, shown in Listing 3-2, are utilized to actually translate the square over the available
range. This range depends on the width (horizontal translation) or height (vertical translation) of the
device’s screen (see AdjustSliderRange method from Listing 3-2). I additionally reduce this range by a half
of the square’s side length, so the square will be always visible within the main view. To translate the square,
I add the shift value (obtained from the slider value) to the X or Y coordinate of the initial square location.
Effectively, this changes the point coordinates, and hence translates the square in a selected direction. As
Listing 3-2 shows, I add the shift value to either the X or the Y property of the CGPoint (instantiated with
initialSquareCenter), depending on the state of the switch control. If it is on (On property is true), I change
the Y coordinate. Otherwise, I update the X coordinate.

Listing 3-2. Adjusting a Slider Range

private void AdjustSliderRange()
{
 var margin = ViewMoveableSquare.Frame.Width / 2.0;
 var range = SwitchIsVertical.On ? View.Frame.Height : View.Frame.Width;
 var maxShiftValue = Convert.ToInt32(range / 2.0 - margin);

 SliderShift.MinValue = -maxShiftValue;
 SliderShift.MaxValue = maxShiftValue;
 SliderShift.Value = 0;
}

private void TranslateSquare()
{
 var newCenter = new CGPoint(initialSquareCenter);

 if (!SwitchIsVertical.On)
 {
 newCenter.X += SliderShift.Value;
 }
 else
 {
 newCenter.Y += SliderShift.Value;
 }

 ViewMoveableSquare.Center = newCenter;
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

50

I use the preceding helper methods in the ViewDidLoad view event handler (Listing 3-3) and in two event
handlers associated with the ValueChanged events of the switch and slider (Listing 3-4). I created these event
handlers with the Events tab of the Control Properties pad. A default definition of ViewDidLoad was modified
such that the initial position of the square is stored whenever the view is loaded. This is used to recenter the
square within the view whenever the user taps a switch control. When the user changes a slider value, the
second event handler from Listing 3-4 is invoked. This event handler uses the TranslateSquare method
shown previously in Listing 3-2. So, when you run the app you will see the results shown in Figure 3-1.

Listing 3-3. Store Actual Square Position and Adjust Slider Range

public override void ViewDidLoad()
{
 base.ViewDidLoad();

 StoreSquareCenter();

 AdjustSliderRange();
}

Listing 3-4. Square Position Is Controled with Two Controls: Switch and Slider

partial void SwitchIsVertical_ValueChanged(UISwitch sender)
{
 RecenterSquare();

 AdjustSliderRange();
}

partial void SliderShift_ValueChanged(UISlider sender)
{
 TranslateSquare();
}

Tables
Many mobile apps are dedicated to displaying data obtained from web services. To display such data in
an organized way, you typically use the Table View. In this section, I will tell you how to create a table
presenting a list of colors along with their names (Figure 3-2). We will then modify the table’s data source
such that a user can delete and mark selected items and also obtain detailed information about the color
through the UIAlertController. By completing this sample, you will know how to create tables that will
respond to user requests via native iOS interfaces.

Chapter 3 ■ Views

51

Displaying Items
To show how to use tables, I create a new single view iOS project and set its name to ColorsTable. Then, I add a
new folder, Colors, in which I create three files: Color.cs, ColorsHelper.cs, and ColorsTableSource.cs.
Each of these will store a definition of the appropriate class. I start by implementing the Color class, which
is a helper object used to represent items in the table. As Listing 3-5 shows, the Color class has two public
properties: Name and Value. Name stores a description of the color, while Value stores the actual color,
represented as an instance of the UIColor class. UIColor, defined in the UIKit namespace, has a number
of public static properties with predefined iOS colors. To get this list, I implement a ColorsHelper class
(ColorsHelper.cs file), seen in Listing 3-6.

Listing 3-5. A Definition of the Color Class

using UIKit;

namespace ColorsTable.Colors
{
 public class Color
 {
 public string Name { get; set; }
 public UIColor Value { get; set; }
 }
}

Figure 3-2. A list of predefined iOS colors displayed in a Table View

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

52

The ColorsHelper class has only one public static method: GetColors. This method uses a C# reflection
mechanism to read any information about all the public, static properties of the UIColor class. This
information is represented as a collection of PropertyInfo objects. Each object of this type is then used to
obtain the property name by simply reading the Name member and property value by invoking the GetValue
method of the PropertyInfo class instance. These values are then utilized to create an instance of the Color
class and add it to the resulting collection.

Listing 3-6. A List of Predefined iOS Colors Obtained with the C# Reflection Mechanism

using System.Collections.Generic;
using System.Reflection;
using UIKit;

namespace ColorsTable.Colors
{
 public static class ColorsHelper
 {
 public static List<Color> GetColors()
 {
 var colors = new List<Color>();

 var uiColorType = typeof(UIColor);

 var availableColors = uiColorType.GetProperties(
 BindingFlags.Public | BindingFlags.Static);

 foreach (var color in availableColors)
 {
 colors.Add(new Color()
 {
 Name = color.Name,
 Value = color.GetValue(uiColorType) as UIColor
 });
 }

 return colors;
 }
 }
}

Given the list of colors, I can now implement the collection of items for the Table View. To that end,
I create the ColorsTableSource class, as shown in Listing 3-7. ColorsTableSource derives from the
UITableViewSource and, because of that, has to implement two methods: RowsInSection and GetCell.
The first one is used by the runtime to determine the number of rows in the current section of the table.
The second one is invoked whenever the runtime is about to draw a cell for a particular row. Hence, in
Listing 3-7, I use this method to prepare a cell using UITableViewCell. This class represents the visual
appearance of the cell in a table. There are a few predefined cell styles you can use. They are represented by
the following values from the UITableViewCellStyle enumeration (see Figure 3-3):

Chapter 3 ■ Views

53

•	 Default – specifies that a cell contains a single, left-aligned text label and an optional
image view

•	 Value1 – specifies that a cell contains two labels: one that is left-aligned and the
other that is right-aligned. The first label displays text you specify by setting the
Text property of the TextLabel member of the UITableView class instance. To
configure a string displayed by the second label, you use an Text property of the
DetailTextLabel.

•	 Value2 – uses a similar layout as Value1, but the first label is right-aligned while the
second is left-aligned

•	 Subtitle – in this case, the DetailTextLabel is right below TextLabel, and both
labels are left-aligned.

Figure 3-3. Predefined cell layouts: Default (top left), Value1 (top right), Value2 (bottom left), and Subtitle

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

54

To optimize performance, you typically reuse existing cells with the DequeueReusableCell method
of the UITableView class instance. This method accepts the cell identifier and returns either a valid
instance of the UITableViewCell or null. In the second case, you need to create a new cell by invoking the
UITableViewCell constructor. In Listing 3-7, I use a default cell style and set the cell identifier to that stored
in the cellId constant. Given the instance of the UITableViewCell, I configure its properties such that the
main label displays a color name while the minor label shows a string representation of the UIColor class
instance (type name and ARGB components). Additionally, I change the foreground color of the main label
to the color carried by the Value property of the current item. The code from Listing 3-7 depends upon the
following namespaces, which you need to include in the ColorsTableSource.cs file:

using System;
using System.Collections.Generic;
using Foundation;
using UIKit;

Listing 3-7. A Collection of Items for the UITableView

public class ColorsTableSource : UITableViewSource
{
 private const string cellId = "ColorCell";

 public List<Color> Items { get; private set; } = ColorsHelper.GetColors();

 public override UITableViewCell GetCell(
 UITableView tableView, NSIndexPath indexPath)
 {
 // Get item to display
 var item = Items[indexPath.Row];

 // Try to reuse a cell before creating the new one
 var cell = tableView.DequeueReusableCell(cellId)
 ?? new UITableViewCell(UITableViewCellStyle.Default, cellId);

 // Configure cell properties
 cell.TextLabel.Text = item.Name;
 cell.TextLabel.TextColor = item.Value;

 if (cell.DetailTextLabel != null)
 {
 cell.DetailTextLabel.Text = item.Value.ToString();
 }

 return cell;
 }

 public override nint RowsInSection(UITableView tableview, nint section)
 {
 return Items.Count;
 }
}

Chapter 3 ■ Views

55

Finally, to display a table, I modify the ViewDidLoad method of the ViewController class, as shown in
Listing 3-8. First, I instantiate the UITableView class such that it fills the whole view, and then I set its Source
property to the instance of the ColorsTableViewSource. Last, I add a table to the view using the Add method
of the ViewController class. So, after running the app, you will get the results shown previously in Figure 3-2.

Note that in this example I created the control (UITableView) from the source code. I did not use
a visual designer to modify the storyboard. Naturally, you can use this option to define the whole view.
In specific cases, this can be faster than designing a view with the storyboard. At the same time, you can
create the UITableView with a storyboard. In that case, you can manually draw the cell layout and refer to
underlying controls by their names.

To successfully compile the code from Listing 3-8, we need to include the ColorsTable.Colors
namespace in ViewController.cs file. It is also a good point to stop for a while, compile the app to ensure
that everything is working correctly, and test various cell styles.

Listing 3-8. Creating a Table

public override void ViewDidLoad()
{
 base.ViewDidLoad();

 var table = new UITableView(View.Frame)
 {
 Source = new ColorsTableSource()
 };

 Add(table);
}

Selecting Items
Quite often, you need to display additional data to the user whenever he or she selects an item in the
table. Here, I show you how to display the full information about the color (Name and Value) using an alert.
You already know how to display an alert, so the only new thing is to create and display the alert from the
UITableViewSource whenever the user selects a row. To handle such an event, you override the RowSelected
method of the UITableViewSource. The RowSelected method gives you access to a reference to the
UITableView, raising an event and an instance of the NSIndexPath class, which you can use to get the index
of a selected row. Similarly, as before, I use the index to get the selected item and then create and configure
the UIAlertController as shown in Listing 3-9.

Listing 3-9. Displaying Info About Selected Item

public override void RowSelected(UITableView tableView, NSIndexPath indexPath)
{
 if (ParentViewController != null)
 {
 DisplayColorInfo(tableView, indexPath);
 }
 else
 {
 base.RowSelected(tableView, indexPath);
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

56

private void DisplayColorInfo(UITableView tableView, NSIndexPath indexPath)
{
 var selectedItem = Items[indexPath.Row];

 var alertController = UIAlertController.Create(
 selectedItem.Name, selectedItem.Value.ToString(),
 UIAlertControllerStyle.Alert);

 alertController.AddAction(UIAlertAction.Create(
 "OK", UIAlertActionStyle.Default, null));

 ParentViewController.PresentViewController(
 alertController, true,
 () => { tableView.DeselectRow(indexPath, true); });
}

To display an alert, I invoke the PresentViewController method. To do so, I need an instance of the
UIViewController or a derived class. Here, I use the ViewController associated with a default view. The
ViewController class instance is passed through the constructor of the ColorsTableSource class and then
stored in the ParentViewController property (see Listing 3-10).

Listing 3-10. Additional Members of the ColorsTableSource Used to Obtain and Store a Reference to the
UIViewController Class

public UIViewController ParentViewController { get; private set; }

public ColorsTableSource(UIViewController viewController)
{
 ParentViewController = viewController;
}

To use the modified definition of the ColorsTableSource, I change the ViewDidLoad view event handler
as shown in Listing 3-11. Afterward, by re-running the app, you can tap any entry in the table. The alert
shown in Figure 3-4 appears.

Listing 3-11. Passing an Instance of the ViewController to the ColorsTableSource

public override void ViewDidLoad()
{
 base.ViewDidLoad();

 var table = new UITableView(View.Frame)
 {
 Source = new ColorsTableSource(this)
 };

 Add(table);
}

Chapter 3 ■ Views

57

Deleting Items
To enable item deletion, override the CommitEditingStyle method of the UITableViewSource. Listing 3-12
shows a sample implementation of this method for the ColorsTableSource. I first read the editingStyle
parameter passed to the CommitEditingStyle method to see if it is equal to UITableViewCellEditingStyle.
Delete. If so, I remove the selected item from the Colors list and also from the Table View. The latter is done
using the DeleteRows method of the UITableView class instance. This method accepts two arguments: an
array of NSIndexPath objects, which identify items to be deleted, and animation type. Available animation
types are defined in the UITableViewRowAnimation enumeration as follows:

•	 Fade – specifies that deleted rows will fade out

•	 Right, Left, Top, Bottom – specify that the deleted rows slide out to the right, left, top,
or bottom, respectively

•	 Middle – specifies that the deleted rows will “fly away”

•	 Automatic – forces the UITableView to automatically adjust animation style
depending on the positions of the rows being deleted

In Listing 3-12, I use Automatic animation, but you can easily change it to any other value and see how
it affects row deletion. After running the app, you can choose any item and swipe it to the left; you will see
a red Delete button (Figure 3-5). After tapping this button, the item will be removed from the underlying list
and from the Table View.

Figure 3-4. Information about the color is displayed as an alert

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

58

Listing 3-12. Deleting an Item

public override void CommitEditingStyle(
 UITableView tableView,
 UITableViewCellEditingStyle editingStyle,
 NSIndexPath indexPath)
{
 if (editingStyle == UITableViewCellEditingStyle.Delete)
 {
 Items.RemoveAt(indexPath.Row);
 tableView.DeleteRows(
 new NSIndexPath[] { indexPath },
 UITableViewRowAnimation.Automatic);
 }
}

Figure 3-5. Swipe-to-delete feature in the UITableView

Chapter 3 ■ Views

59

You can also programmatically prevent an item from being deleted. You do so by implementing the
CanEditRow method. Listing 3-13 shows how to prevent deleting a magenta color. When you re-run the app,
a Delete button will not appear for the row with the magenta color when you swipe the corresponding item.

Listing 3-13. Deleting of the Magenta Color Is Disabled

public override bool CanEditRow(UITableView tableView,
 NSIndexPath indexPath)
{
 var itemToDelete = Items[indexPath.Row];

 return itemToDelete.Name != "Magenta";
}

In more-advanced scenarios, you may need to create more than one button to handle item
swiping. In such cases, you create a collection of UITableViewRowAction objects by overriding the
UITableViewRowAction of the UITableViewSource. In Listing 3-14, I implement two such actions. One
will look and act analogous to the Delete button from the previous example but will have a different label,
Remove. The other button will have a gray background and will change the background of the selected cell,
as shown in Figure 3-6.

Listing 3-14. Creating a Collection of Row Actions

public override UITableViewRowAction[] EditActionsForRow(
 UITableView tableView, NSIndexPath indexPath)
{
 var removeButton = UITableViewRowAction.Create(
 UITableViewRowActionStyle.Destructive,
 "Remove",
 delegate {
 Items.RemoveAt(indexPath.Row);
 tableView.DeleteRows(
 new NSIndexPath[] { indexPath },
 UITableViewRowAnimation.Middle);
 });

 var markItemButton = UITableViewRowAction.Create(
 UITableViewRowActionStyle.Normal,
 "Mark",
 delegate
 {
 tableView.CellAt(indexPath).BackgroundColor =
 UIColor.FromRGBA(0, 255, 0, 35);
 });

 return new UITableViewRowAction[] { removeButton, markItemButton };
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

60

To create the UITableViewRowAction, you use the static Create method. This method accepts three
arguments, as follows:

•	 style, which is represented by one of the following values from the
UITableViewRowActionStyle enumeration:

•	 Default – specifies that a button will have a default style—red background.
Default style is equivalent to Destructive, which means that the button action
will remove the item from a table.

•	 Normal – applies a non-destructive style for a button—gray background

•	 Title – a string you use to set a button label

•	 handler – an action to be invoked after a button is tapped

In Listing 3-14, I use the UITableViewRowAction.Create method twice. The resulting two instances
of the UITableViewRowAction class are used to create an array of row actions. So, every time you swipe a
UITableView item, two buttons appear, as shown in Figure 3-6. Note that EditActionsForRow has higher
priority than CommitEditingStyle. So, after defining EditActionsForRow in the ColorsTableSource class,
CommitEditingStyle is ignored.

Figure 3-6. A Table View with two row actions

Chapter 3 ■ Views

61

Web View
A Web View is a visual control that you use to render a web page in your app. A Web View is used in a
number of scenarios. For instance, you can use it to display an interactive help guide for your app or to
render content from an external server. In this section, I will show you how to build an app that, based on
the Web View control, displays a Google Map for a geolocation you choose (Figure 3-7). Note that the Google
Map, hosted on a web page rendered in the Web View, will be fully functional. As Figure 3-7 shows, you will
be able to translate a map and even enter the street view because Web Views render interactive web pages.

Figure 3-7. A Web View displaying fully functional Google Maps

To implement the app shown in Figure 3-7, I use the Single View iOS project template and set the app
name to GoogleMap. Then, I create the HTML subfolder, where I put three files: map.css (Listing 3-15), map.js
(Listing 3-16), and map.html (Listing 3-17). These files implement a web page that displays two text inputs,
one button, and a Google Map. You use input fields to enter latitude and longitude, which are used to set the
map’s center. The map is displayed when you press a button.

The code of the map.css from Listing 3-15 does not require any additional comments. This is a short
definition of the CSS class, named map. This class configures the display mode and dimensions of the
resulting map.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

62

Listing 3-15. CSS File Storing a Definition of the map Class

.map {
 float: left;
 width: 100%;
 height: 500px;
}

The JavaScript function displayMap (map.js) shown in Listing 3-16 is used to display a Google Map in a
selected div element. These functions take the geocoordinates for the map’s center from two input fields. To
this end, displayMap accepts the following three arguments:

•	 mapDivId – identifier of the div element in which to display a map

•	 latInputId and lngInputId – identifiers of the input fields with the latitude and
longitude, respectively

Given the preceding values, I configure a map options object, which here specifies the zoom and center
of the map. Subsequently, I display a map using the google.maps.Map object.

Listing 3-16. JavaScript Function for Displaying a Google Map

function displayMap(mapDivId, latInputId, lngInputId) {
 lat = document.getElementById(latInputId).value;
 lng = document.getElementById(lngInputId).value;

 var mapCenter = new google.maps.LatLng(lat, lng);

 var options = {
 zoom: 14,
 center: mapCenter
 };

 new google.maps.Map(document.getElementById(mapDivId), options);
}

The last file, for defining a web page, map.html (Listing 3-17), contains a set of standard HTML
declarations. Within the head element, I reference a stylesheet, map.css, and necessary JavaScript
components. The first one is the Google Map API, while the other is map.js. Then, I declare two labels, two
text inputs, a button, and a div element where the map will be rendered. Note that the onclick attribute of the
button points to the displayMap function. So, whenever you tap this button, the function from Listing 3-16
will be invoked to display a map.

Listing 3-17. Contents of the map.html File

<html>
 <head>
 <link href="map.css" rel="stylesheet" type="text/css"/>
 <script src="https://maps.googleapis.com/maps/api/js"></script>
 <script src="map.js"></script>
 </head>

Chapter 3 ■ Views

63

 <body>
 <p>
 Latitude: <input type="text" id="input-lat"/>
 </p>
 <p>
 Longitude: <input type="text" id="input-lng"/>
 </p>

 <button onclick="displayMap('div-map',
 'input-lat', 'input-lng')">Display map</button>

 <div id="div-map" class="map"/>
 </body>
</html>

Given the web page is ready, I can now display it using a Web View. To this end, in the ViewController
class I first import the necessary namespaces:

using System;
using System.IO;
using CoreGraphics;
using Foundation;
using UIKit;

Then, I define two helper methods, seen in Listing 3-18. The first one, GetFrameWithVerticalMargin, is
used to determine the rectangle in which I display the Web View. Note that in the previous section, a Table
View was overlaid on the status bar. To solve this issue, in Listing 3-18 I add a vertical margin to the rectangle
and reduce its height accordingly. The second method, LoadMapUrl, invokes the LoadRequest method of
the UIWebView class instance in order to render a web page. LoadRequest accepts a single argument of type
NSUrlRequest. This is instantiated with the NSUrl object, pointing to the map.html file. So, UIWebView will
display this web page.

Listing 3-18. Helper Methods Used to Display a Web Page Within the Web View

private CGRect GetFrameWithVerticalMargin(nfloat offset)
{
 var rect = View.Frame;

 rect.Y = offset;

 rect.Height -= offset;

 return rect;
}

private void LoadMapUrl(UIWebView webView)
{
 var url = Path.Combine(NSBundle.MainBundle.BundlePath,
 "HTML/map.html");

 webView.LoadRequest(new NSUrlRequest(new NSUrl(url, false)));
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

64

To access the map.html web page during runtime, you need to set the build action of map.css, map.js,
and map.html to BundleResource, as shown in Figure 3-8.

Figure 3-8. Configuring a build action for the web page

Lastly, I modify the ViewDidLoad event handler as shown in Listing 3-19. There, I instantiate a Web
View control and specify bounds for it using my GetFrameWithVerticalMargin method. Subsequently, I
invoke LoadMapUrl and finally display a Web View. So, after you run the app, you will see a web page with
text inputs and a button. After entering geocoordinates, you click a button and the map will be displayed
after a short while.

Listing 3-19. Creating and Displaying a Web View

public override void ViewDidLoad()
{
 base.ViewDidLoad();

 var webView = new UIWebView(GetFrameWithVerticalMargin(20));

 LoadMapUrl(webView);

 Add(webView);
}

Google Geocoding API
In the previous sample, I used geocoordinates for New York City. If you would like to display a map for another
location, you need to know its geocoordinates. To find these for any address, you can use the Google Geocode
service. This is a webservice that converts addresses into geocoordinates (latitude and longitude). To use
geocoding, you type the following URL in your browser (you can replace New York with any other value):

https://maps.googleapis.com/maps/api/geocode/json?address=New+York

As a result, the Geocoding API will return the JSON file describing your address. This description is an
array of key–value pairs, which store several objects like address components or geometry. In particular,
the location of your address is saved under the location key. Here, this key is associated with the following
geocoordinates—lat: 40.7127837 and lng: -74.0059413. I used these values to generate screenshots for
Figure 3-7. See Listing 3-20.

https://maps.googleapis.com/maps/api/geocode/json?address=New+York

Chapter 3 ■ Views

65

Listing 3-20. A Sample JSON Response from Google Geocode

{
 "results" : [
 {
 "address_components" : [
 {
 "long_name" : "New York",
 "short_name" : "New York",
 "types" : ["locality", "political"]
 },
 {
 "long_name" : "New York",
 "short_name" : "NY",
 "types" : ["administrative_area_level_1", "political"]
 },
 {
 "long_name" : "United States",
 "short_name" : "US",
 "types" : ["country", "political"]
 }
],
 "formatted_address" : "New York, NY, USA",
 "geometry" : {
 "bounds" : {
 "northeast" : {
 "lat" : 40.9175771,
 "lng" : -73.70027209999999
 },
 "southwest" : {
 "lat" : 40.4773991,
 "lng" : -74.25908989999999
 }
 },
 "location" : {
 "lat" : 40.7127837,
 "lng" : -74.0059413
 },
 "location_type" : "APPROXIMATE",
 "viewport" : {
 "northeast" : {
 "lat" : 40.9152555,
 "lng" : -73.70027209999999
 },
 "southwest" : {
 "lat" : 40.4960439,
 "lng" : -74.25573489999999
 }
 }
 },

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

66

 "place_id" : "ChIJOwg_06VPwokRYv534QaPC8g",
 "types" : ["locality", "political"]
 }
], "status" : "OK";
}

Invoking JavaScript Functions
A Web View allows you to run JavaScript from the C# code. To that end, Web View delivers the
EvaluateJavaScript method. It accepts one argument, which is a string with JavaScript code to run. To
demonstrate how to use the EvaluateJavascript method, I supplement the map.js file with another
function, displayGeocoordinate (Listing 3-21). This function takes an address, represented as a string, and
displays its geocoordinate, which is obtained from the Google Geocode service (Figure 3-9). To that end,
I instantiate a google.maps.Geocoder object and then invoke its geocode method. This method sends a
request to the Google Geocode service and accepts two arguments. The first one is an array of parameters,
while the second is the callback function, which is executed after the request is completed. A callback
function is fed with two other parameters, as follows:

•	 results – an object representing the results part of the JSON response from the
Google Geocode service (refer back to Listing 3-20)

•	 status – status of the request

In Listing 3-21, I use both parameters. First, I read the status to validate that the request was successfully
handled by Google Geocode. If so, I get the first element of the results array and then obtain the location
from the geometry object.

Listing 3-21. Geocoding an Address

function displayGeocoordinate(address) {
 var geocoder = new google.maps.Geocoder();

 geocoder.geocode({'address': address}, function(results, status) {
 if (status === 'OK') {
 var geocoordinate = results[0].geometry.location;

 alert('Address: ' + address
 + '\nLat: ' + geocoordinate.lat().toFixed(3)
 + '\nLng: ' + geocoordinate.lng().toFixed(3));
 }
 else {
 alert('Geocoder failed: ' + status);
 }
 });
}

Chapter 3 ■ Views

67

To invoke the displayGeocoordinate function, I modify the ViewDidLoad method of the
ViewController as shown in Listing 3-22. I create the handler for the LoadFinished event of the Web View.
The latter is fired after the web page has been rendered. This ensures that all necessary references are ready
so I can invoke the displayGeocoordinate function using EvaluateJavascript. For the address, I pass New
York, so after re-running an app I obtain the results shown in Figure 3-9. Note that Web View automatically
reinterprets the JavaScript alert function such that the resulting popup window looks like the one created
with UIAlertController.

Listing 3-22. Invoking a JavaScript Function Through the Web View

public override void ViewDidLoad()
{
 base.ViewDidLoad();

 var webView = new UIWebView(GetFrameWithVerticalMargin(20));

 LoadMapUrl(webView);

 Add(webView);

 webView.LoadFinished += (sender, e) =>
 {
 webView.EvaluateJavascript("displayGeocoordinate('New York');");
 };
}

Figure 3-9. Displaying an alert with a JavaScript function invoked through the Web View

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

68

Map View and Geolocation
The goal of the example with the Google Map we developed in the previous section was to show the
comprehensive capabilities of the Web View. On iOS, if you want to display a map, you do not necessarily
need to use a Web View. Instead, you can use the native map kit, which is delivered by the iOS SDK. In
particular, this kit brings the Map View, which you can access through the MKMapView class declared under
the MapKit namespace of Xamarin.iOS. MKMapView lets you quickly add an interactive native iOS map to your
app. In this map, you can even display the current location of the user’s device, add appropriate annotations,
or even display driving directions. Accordingly, you can relatively quickly add advanced functionality to your
app. In this section, I will tell you how to use the map kit along with the CLLocationManager, a class used to
track the geolocation of the iOS device, to create an app that will display the user’s location on the map. More
specifically, the app will have a single view, which will look like the one from Figure 3-10.

To implement this app, I start by creating a new project with the Single View App template. I set the
app name and its minimum target version to Map and iOS 9.0, respectively. Then, in the ViewController
class, I import three namespaces: MapKit, System.Linq, and CoreLocation. Subsequently, I declare the
private member, map, and a helper function, InitMap (Listing 3-23). This method is used to create an
instance of the MKMapView class and set its selected properties. Specifically, I enable zooming and scrolling
and set the ShowsUserLocation property to true. This enables a map to display the user’s location, which
is indicated by the blue dot with a white border (Figure 3-10). Additionally, I configure the map type using
the corresponding property of the MKMapView class instance. All available map types are defined under the
MKMapType enumeration. You can choose between the following map styles:

•	 Standard – indicates that a map uses standard cartographic map style (similar to the
one shown in left part of Figure 3-7)

•	 Satellite – a map will be created using images acquired with a satellite

•	 Hybrid – a combination of standard and satellite images

•	 SatelliteFlyover and HybridFlyovers – indicate that a map type will be a flyover of
the satellite or hybrid imaginary, respectively

Chapter 3 ■ Views

69

Listing 3-23. Initializing a Map

private MKMapView map;

private void InitMap()
{
 map = new MKMapView(View.Frame)
 {
 ZoomEnabled = true,
 ScrollEnabled = true,
 MapType = MKMapType.HybridFlyover,
 ShowsUserLocation = true
 };

 Add(map);
}

Figure 3-10. Exemplary use of the map view

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

70

To display a map, you add the InitMap method to the ViewDidLoad event handler of the
ViewController class. If you do so and re-run the app, you will see that the view will be filled with a map
view. You can arbitrarily translate the map view. If you want to zoom the map view in the simulator, then you
would need to press and hold the Alt/Option key. Two circles, representing two fingers, will be shown in the
simulator. They emulate the positions of your fingers during the pinch gesture. So, you can now change a
distance between circles to increase or decrease the map zoom.

Listing 3-24. Instantiating CLLocationManager

private CLLocationManager locationManager;

private void InitLocationManager()
{
 locationManager = new CLLocationManager();

 // Request authorization
 if (UIDevice.CurrentDevice.CheckSystemVersion(8, 0))
 {
 locationManager.RequestWhenInUseAuthorization();
 }

 // Handle LocationsUpdated event
 locationManager.LocationsUpdated += (sender, e) =>
 {
 UpdateMap(e);
 };
}

Let’s now move forward and access the device’s geolocation. To that end, I extend a definition of the
ViewController class by another private field, locationManager, of the CLLocationManager and a helper
method, InitLocationManager (Listing 3-24). This method creates an instance of the CLLocationManager with
the default parameterless constructor and then requests that the user allow the Map app to access his location
when the app is running in the foreground. To this end, I use the RequestWhenInUseAuthorization. If you want
to access the device’s location in the background also, then you need to use the RequestAlwaysAuthorization
method. Independently of the method you choose, you also need to specify a corresponding property in
the Information property list. You configure this under the Source tab of the Info.plist editor (refer back to
Chapter 2). Then, you click the “Add new entry” link (the last element of the list); a custom property string
appears. Next to it, you will find an icon, which activates the drop-down list. You use this list to choose
“Location When In Use Usage Description” (foreground access to user’s location) or “Location Always Usage
Description” (background access to user’s location). Here, I use the first property (Figure 3-11). Then, in the
Value column of the editor, you type the string. This string defines a message that will be displayed to the user
whose location you request to access. This modal window is displayed automatically whenever you invoke
RequestWhenInUseAuthorization (Figure 3-12) and your app does not have access to the user’s location.

http://dx.doi.org/10.1007/978-1-4842-3132-6_2

Chapter 3 ■ Views

71

You can request the user’s private data only in iOS 8.0 or above. Therefore, before I invoke
RequestWhenInUseAuthorization, I verify the iOS version using the CheckSystemVersion method of the
CurrentDevice static property of the UIDevice class.

Finally, in Listing 3-24, I associate the UpdateMap method with the LocationsUpdated event handler of
the CLLocationManager class instance. The LocationsUpdated event is fired whenever the user’s location
changes. A definition of the UpdateMap and its dependencies is given in Listing 3-25. As shown there, I first
read the last known location and use it to set the map center and configure a map region. The latter is the
fragment of a map that is displayed or defines the map zoom. To configure a map region, I first create an
instance of the MKCoordinateSpan class. You use this class to specify the map distance for latitude (north to

Figure 3-11. Adding a custom property to the Information property list

Figure 3-12. Requesting access to user’s location

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

72

south) and longitude (east to west) using corresponding arguments (latitudeDelta and longitudeDelta) of
the MKCoordinateSpan class constructor. Both arguments are expressed in degrees. One degree corresponds
to approximately 69 miles (111 kilometers). However, an exact value for the latitudeDelta depends
on the longitudinal span. Here, I set the span for both directions to 0.005 degrees. Given an instance of
MKCoordinateSpan, I use it to instantiate the MKCoordinateRegion class. Its constructor accepts the following
two arguments:

•	 center of type CLLocationCoordinate2D, which specifies the midpoint of a map
region

•	 span of type MKCoordinateSpan, which determines the map zoom level

In order to obtain an instance of the CLLocationCoordinate2D, which is required by the
MKCoordinateRegion constructor, I read the Coordinate property of the location obtained from the
CLLocationManager (Listing 3-25).

Listing 3-25. Updating a Map View to Display User’s Location

private const double spanDelta = 0.005d;

private void UpdateMap(CLLocationsUpdatedEventArgs e)
{
 var location = e.Locations.LastOrDefault();

 if (location != null)
 {
 map.CenterCoordinate = location.Coordinate;

 SetMapRegion(location.Coordinate);
 }
}

private void SetMapRegion(CLLocationCoordinate2D centerCoordinate)
{
 var span = new MKCoordinateSpan(spanDelta, spanDelta);

 var region = new MKCoordinateRegion(centerCoordinate, span);

 map.SetRegion(region, false);
}

Lastly, I add the InitLocationManager method to ViewDidLoad (Listing 3-26). Then, I need
to force CLLocationManager to report changes in the user’s location. To this end, I invoke the
StartUpdatingLocation method within the ViewDidAppear view event handler. Correspondingly, when
the view disappears I invoke StopUpdatingLocation so the app does not access the user’s location when
running in the background.

You can now you re-run the app, and you will quickly see that the map view displays the user’s current
location. To emulate changes in geoposition within the simulator, you can use several options from the
simulator’s Debug/Location menu (Figure 3-13). You will achieve the best results with City Bicycle Ride, City
Run, or Freeway Drive.

Chapter 3 ■ Views

73

Listing 3-26. View Event Handlers of the ViewController

public override void ViewDidLoad()
{
 base.ViewDidLoad();

 InitMap();

 InitLocationManager();
}

public override void ViewDidAppear(bool animated)
{
 locationManager.StartUpdatingLocation();
}

public override void ViewDidDisappear(bool animated)
{
 base.ViewDidDisappear(animated);

 locationManager.StopUpdatingLocation();
}

Figure 3-13. A screenshot showing Location menu you can use to emulate changes in geolocation of the
simulator

Auto-Layout
Creating adaptive views or auto-layout is one of the biggest challenges in mobile development. Controls of
the adaptive view have to be automatically resized or rearranged to fit the available space when the view is
resized or rotated. To design such an auto-layout, you utilize a platform-specific mechanism to automatically
adjust the view layout to the device’s screen size.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

74

To formulate a problem to be tackled by the auto-layout, I use a direct example. To that end, I create a
new single view, universal iOS app targeting iOS 9.0 and above. I set the app name to AutoLayout and then
go to the iOS designer, where I first choose iPhone 6 from the View As drop-down list (Figure 3-14). Then, I
add one label and one text field to the view of the ViewController. I set the label text to First name: and put
it right above the text field. I set fixed widths for the label and text field to 90 and 355 px, respectively. So, in
the iOS designer, my layout looks fine on the iPhone 6 (Figure 3-14).

Figure 3-14. iOS designer showing the preview of AutoLayout app on iPhone 6

Figure 3-15. Preview of the AutoLayout app on the iPhone 5S and iPhone 6 Plus reveals layout issues

When I change the iOS designer preview to iPhone 5[S], the text field becomes clipped (see top part of
Figure 3-15). A contrary problem occurs on devices with larger screens; e.g., on iPhone 6 Plus, my text field
becomes too short (bottom part of Figure 3-15).

The preceding problem can be fixed with the use of constraints. They define a set of rules that are
used by the runtime to automatically resize or rearrange the controls of the particular view. For instance,
you can define margins between a text field and screen bounds such that the width of a text field will be
automatically changed to fit the available space. To define such constraints, you use the iOS designer, where
you click the text field twice (do not double-click the control). As Figure 3-16 shows, the text field becomes
surrounded by four T symbols, which represent pin spacing (distance between controls), and two double-T
symbols, used to specify pin sizing (sizes of controls).

Chapter 3 ■ Views

75

Now, click and hold the T-shape located on the right-hand side of the text field. A dashed green line
appears on the right (Figure 3-17). This line represents a default margin. You can drag the T-shape to define the
constraint. Let’s move it above the green dashed line, and then, as shown in the bottom part of Figure 3-17,
release the mouse button after the color of the dashed line changes to blue. Visual Studio creates the first
constraint and displays a yellow warning sign in the bottom of the View Controller rectangle. After you click
it, a message appears, telling you to add another constraint for the Y position (Figure 3-18). To do so, just click
the Update Constraints button. Finally, click the T-shaped icon to the left of the text field and drag it over the
green dashed line located on the left-hand side of the view (similar to what you did with the left margin). You
should now have three constraints for a text field. To see a list of constraints, use the Layout tab of the text field
properties window (Figure 3-19).

Figure 3-16. T-shaped and double T-shaped icons can be used to visually define constraints

Figure 3-17. Creating a spacing constraint

Figure 3-18. Updating constraints

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

76

As Figure 3-19 shows, the list of constraints is displayed under the group of the same name. In this case,
I have four constraints, as follows:

•	 Trailing Space to: Superview, equal to: 10 – specifies the right margin between text
field and a superview

•	 Top Space to: Superview, equal to: 116 – specifies a top margin between text field and
a superview

•	 Leading Margin Space to: Superview, equal to: 6 – this constraint specifies a left
margin between text field and a superview, the view in which text field is embedded

•	 Width equal to 355 – specifies width of the text field. This constraint was generated to
reflect the initial width we set at the beginning of implementation.

Note that each entry of the constraints group has a small icon that graphically represents a constraint
(on the left), and also a settings drop-down list (on the right). You use the latter to either delete or edit the
constraint. Deleting a constraint does not warrant additional comment, unlike the edit mode. Once in
the editing mode (right part of Figure 3-19), you can modify the multiplier and constant of the constraint.
These values are used by the runtime to resize a control according to the mathematical formula: [attribute
of the first item] = [attribute of the second item] × Multiplier + Constant. You can change this equality to an
inequality with a Relation drop-down list. This has three available options: Equal (=), LessThanOrEqual (<=),
and GreaterThanOrEqual (>=).

I can now modify the Leading Margin Space to 10 and Top Space to 60 px, respectively. Also, the
last constraint (Width Equal to 355 px) will cause conflicts when the screen size changes since the layout
mechanism cannot satisfy this constraint. Therefore, I remove this constraint. All remaining constraints
ensure that a text field will have a fixed margin. So, when the screen size changes, the width of the text field
will be updated as follows: [width of the text field] = [width of the view] – 2 × 10. Let’s check this and change
the preview to smaller (iPhone 5[S]) and larger (iPhone 6 Plus) devices. In both cases, the text field fits the
view as in the case of iPhone 6 because it is auto-layouted.

Figure 3-19. Constraints can be edited using the Properties window

Chapter 3 ■ Views

77

Size Classes
Although the text field of the AutoLayout app adjusts to the screen width, it will disappear when you change
the preview to iPad or switch the device orientation from portrait to landscape. This is because portrait
orientation uses a different size class than landscape uses. Figure 3-20 shows that iPhone 5[S] in portrait mode
utilizes a wCompacthRegular size class, contrary to the wCompacthCompact class used in landscape mode.

Figure 3-20. Size classes for various orientations of iPhone 5S

A size class specifies the group of devices and their orientation for which the available view sizes have a
similar width and height. There are three different classes for width (w) and height (h):

•	 Any – a group of devices with screens of arbitrary width or height. This is the most
general group, covering all devices.

•	 Regular – represents devices of regular screen sizes

•	 Compact – represents devices with compact screens

Accordingly, you can arrange 3 × 3 combinations of these classes, resulting in nine size classes total,
which are summarized in Table 3-1. To see how devices are categorized into size classes, click the class
name, located to the left of the View As drop-down list. A small popup window appears. This window is
partitioned into a 3 × 3 grid. By moving a pointer within this grid, various cells are highlighted, describing the
size class. Its description and covered devices are then displayed in the bottom (Figure 3-21).

Table 3-1. Size Classes for iOS Apps

Width/Height Any Regular Compact

Any wAnyhAny wAnyhR wAnyhC

Regular wRhAny wRhR wRhC

Compact wChAny wChR wChC

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

78

When you use iOS designer to design a view, the controls you add are implicitly associated with the
actual size class. So, when you change the size class, these controls do not appear. The only exception is the
wAnyhAny class, which is associated with the Generic device from the View As drop-down list. In this case,
the layout you define will work the same for every device and orientation.

You may wonder why you need size classes. The simplest answer is that they allow you to easily design
adaptive views. For instance, the layout I use in the AutoLayout app works perfectly for portrait mode. The
label is above the text field, so the user can easily modify the text. However, when the device orientation is
changed to landscape, the text field would be resized to fit the available width, but this will not look natural.
Instead, it would be more efficient to change the layout and place the label to the left of the text field. By
doing so you will save the vertical space for other controls and use the available space more efficiently.

Let’s see how to implement such a dynamic change of control arrangement. I start by installing the wChC
class for the text field and the label. To this end, I use the Properties window, in which the list of installed size
classes is located right below the Height property (Figure 3-22). Then, I click the Settings drop-down list and
choose the Compact ➤ Compact option from the context menu. The first specifies the width group, while
the second corresponds to the height group.

Figure 3-21. A grid showing size class along with its short description

Chapter 3 ■ Views

79

Given the new size classes are installed, I can switch the preview mode to landscape. The controls
become visible. However, the width of the text field does not change, because constraints I defined
previously work for the wChR size class only. I need to specify new constraints for the wChC size class. I can
also arbitrarily rearrange controls. So, I first place the text field next to the label. Then, analogously as for the
wChR size class, I use a T-shaped icons to define three constraints between the text field and the superview
(parent view) such that the left, top, and right margins are fixed to 100, 32, and 10 px, respectively. You add
these constraints analogously as previously, with the only difference being that now you need to drag the left
T-shape to the text field. After defining new constraints for the wChC size class, I re-run the AutoLayout app,
and its view now depends on the screen orientation (Figure 3-23).

Figure 3-22. Installing the wChC size class

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

80

UI Thread
In many scenarios, you need to update specific properties of the controls from a background thread to
avoid blocking the user interface, which is controlled by the main or UI thread. For instance, when the user
presses a button, you send a request to a web service and wait for a response and update the UI accordingly.
Depending on the network speed, this can take from a few to several seconds. So, the UI can freeze for a
while. To avoid such locks, you need to send and parse a request in the background thread. However, as
every Xamarin.iOS app utilizes the .NET Framework, you need to ensure that all updates to visual controls
are performed from the UI thread. This is required by the .NET threading model, in which only the UI
thread can access visual controls. In .NET Framework apps, when you try to update visual controls from the
background thread, a corresponding exception is thrown. Let’s investigate this issue in a Xamarin.iOS app.
To this end, I create another app, BackgroundUpdate (Single View App project template, targeting iOS 9.0
and above). Then, I define the user interface of this app such that the default view contains a button with
caption Run timer and a label named LabelTime. A button is located on top, while the label is placed below
it. Then, I create a default event handler for the button and define it according to Listing 3-27. This code
requires a System.Threading.Tasks namespace.

When the user presses a button, I run another method, UpdateTimer, in a background thread using the
static Run method of the Task class. This method enqueues the specified block of code to be executed in the
thread pool. The thread pool is a set of pre-created background threads. They are created by the runtime in
order to save time when executing work in the background.

Figure 3-23. AutoLayout, when combined with the size classes, allows you to design adaptive views in which
the controls are resized and rearranged according to screen-size orientation: portrait (top) and landscape
(bottom)

Chapter 3 ■ Views

81

Listing 3-27. Enqueueing UpdateTimer Method in the Thread Pool

private bool isTimerActive = false;

partial void ButtonRunTimer_TouchUpInside(UIButton sender)
{
 if (!isTimerActive)
 {
 isTimerActive = true;

 Task.Run(UpdateTimer);
 }
}

As shown in Listing 3-28, the UpdateTimer implements an infinite loop. At each iteration of this loop,
I read the current time and rewrite it to the Text property of the LabelTime. Then, I delay execution of the
loop by a one-second (Task.Delay). Therefore, I expect that UpdateTimer will work like a simple watch and
display a current time with one-second accuracy. However, when I run the app in the simulator and press a
button, nothing happens, although the UpdateTimer method is running. The application output shows the
reason for that: UIKit Consistency error: you are calling a UIKit method that can only be invoked from the UI
thread. This means that you cannot update visual controls from the background thread directly. Instead, you
need to invoke every such operation on the main thread. To do so, you use the InvokeOnMainThread method
as shown in Listing 3-29. After making these changes in the UpdateTimer method, the timer will work
correctly after you re-run the app (Figure 3-24).

Listing 3-28. Updating Text Property of the Label from the Background Thread Does Not Work

private Task UpdateTimer()
{
 while (true)
 {
 try
 {
 LabelTime.Text = DateTime.Now.ToLongTimeString();
 }
 catch(Exception e)
 {
 Console.WriteLine(e.Message);
 }

 Task.Delay(1000).Wait();
 }
}

Listing 3-29. Properties of Visual Controls Can Be Updated from the Main Thread Only

private Task UpdateTimer()
{
 while (true)
 {

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Views

82

 InvokeOnMainThread(() =>
 {
 LabelTime.Text = DateTime.Now.ToLongTimeString();
 });

 Task.Delay(1000).Wait();
 }
}

Figure 3-24. Exemplary results of the BackgroundUpdate app

Summary
In this chapter, you learned how to define views. We started by creating single view applications in order to
master the use of some basic controls like switch or slider. Then, we moved to the more advanced topics of
using tables and their sources to create views, which display multiple items. You also learned how to render
interactive web pages using the Web View, and to access and display the user’s location using the map kit.
Subsequently, we worked with auto-layouts, which you can use to design adaptive apps, whose views
adjust automatically to the particular device’s size. In the next chapter, we will continue to work with views.
Namely, we will create multi-view applications and learn how to navigate between views using various
navigation approaches.

83© Dawid Borycki 2018
D. Borycki, Beginning Xamarin Development for the Mac, https://doi.org/10.1007/978-1-4842-3132-6_4

CHAPTER 4

Navigation

In all previous samples, we created single view apps. However, in practice your app will most likely comprise
more than one view. To implement such a multi-view app you need to know how to handle navigation,
which is defined as switching between the views. In this section, I will discuss several approaches for
creating multi-view apps.

Tab Bar
I start with the tab bar control, which lets you create multi-tab apps. In this case, the user switches between
various views (tabs) using a bar. This bar contains buttons with icons and optional labels. When the user
presses such a button, a corresponding tab appears.

Figure 4-1. Creating a tabbed app in Visual Studio

www.allitebooks.com

http://dx.doi.org/https://doi.org/10.1007/978-1-4842-3132-6_4
http://www.allitebooks.org

Chapter 4 ■ NavigatioN

84

To create the tabbed app, I use a dedicated project template (see Figure 4-1). I set the app name to
Navigation.Tabs and the minimum target version to iOS 9.0. Visual Studio creates a project comprising the
following view controllers (see Figure 4-2):

•	 Tab Bar Controller – the controller that manages the tab interface. More specifically,
this controller is responsible for switching between tabs. Each tab has separate view
controllers and corresponding views.

•	 First View Controller and Second View Controller – view controllers associated
with the first and second tabs. Note that the Navigation.Tabs project also contains
two files: FirstViewController.cs and SecondViewController.cs, which
store definitions of the classes of the same names. FirstViewController and
SecondViewController both derive from the UIViewController and, apart from
the protected constructor, contain default implementations of the ViewDidLoad and
DidReceiveMemoryWarning methods, similar to the definition of the ViewController
class utilized in all previous single view apps.

Figure 4-2. A default structure of the tabbed app created from a dedicated template

Chapter 4 ■ NavigatioN

85

Note that by default there are only two tabs, so when you run the app it will look as shown in Figure 4-3.
Namely, the bar has two elements: First and Second. You can tap them to switch between tabs. Each tab has two
labels, which display the view number and the name of the associated class implementing the view controller.

Figure 4-3. A default tabbed app

To control the appearance of an item in the tab bar, you use the properties of the tab bar item. As the left
part of Figure 4-4 shows (Document Outline), each tab has an associated tab bar item. When you click it, all
control properties appear under the Properties pad (right part of Figure 4-4). In particular, you can modify
the item title (Title entry under Bar Item group) and its image (drop-down list right below Title). You can
also use one of the system icons via the System Item drop-down list (Tab Bar Item group). This list includes
the following tab bar icons: bookmarks, contacts, downloads, favorites, featured, history, more, most recent,
most viewed, recents, search, and top rated.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ NavigatioN

86

Now that we know the structure of the Navigation.Tabs project, let’s see how to add another tab. To
this end, I proceed as follows. First, in the iOS designer, I add the view controller from the Toolbox. Then,
I associate this object with the tab bar controller using CTRL+Drag. I click the gray area of the tab bar
controller while pressing CTRL on the keyboard. Then, I move the mouse cursor on the new view controller
and release the mouse button. A segue popup appears from which I choose Tab under the Relationship
group (Figure 4-5).

Figure 4-4. The properties pad of the selected tab bar item

Figure 4-5. Creating a tab relationship

Chapter 4 ■ NavigatioN

87

iOS designer creates the third tab, which I can now design by modifying the view of the new view
controller. Lastly, I create the view controller class. To this end, I use the Properties pad of the view controller,
where under the Identity group I type ThirdViewController in the Class entry (Figure 4-6). After pressing
Enter, Visual Studio adds the ThirdViewController.cs file to the Navigation.Tabs project.

Figure 4-6. Associating a class with the view controller

Before I implement the ThirdViewController class, I add to the project another file,
BaseViewController.cs, in which I define a base class for all other view controllers (Listing 4-1). I use
the base class because I want all my view controllers to follow a similar logic whenever the associated
view appears. Namely, I display in the application output the name of the class associated with the view. I
implement such a logic to explicitly show you that different views are displayed when you switch between
tabs. Therefore, you can use this option to write custom logic that handles the view lifecycle for tabs just as
you can for all other views.

Listing 4-1. Displaying the Name of a Type Associated with the View When the View Is About to Appear

using System;
using System.Diagnostics;
using Foundation;
using UIKit;

namespace Navigation.Tabs
{
 public class BaseViewController : UIViewController
 {
 protected BaseViewController(IntPtr handle) : base(handle) { }

 public override void ViewWillAppear(bool animated)
 {
 base.ViewDidLoad();

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ NavigatioN

88

 Debug.WriteLine(GetType().Name);
 }
 }
}

Given the BaseViewController, I create the skeleton of the ThirdViewController class as shown in
Listing 4-2 and modify declarations of the FirstViewController and SecondViewController such that they
derive from BaseViewController instead of from UIViewController (Listing 4-3).

Listing 4-2. A Skeleton of the ThirdViewController Class

public partial class ThirdViewController : BaseViewController
{
 public ThirdViewController(IntPtr handle) : base(handle) { }

 public override void ViewDidLoad()
 {
 base.ViewDidLoad();
 }

 public override void DidReceiveMemoryWarning()
 {
 base.DidReceiveMemoryWarning();
 }
}

Listing 4-3. Modified Declarations of the FirstViewController and the SecondViewController

public partial class FirstViewController : BaseViewController

public partial class SecondViewController : BaseViewController

The preceding changes ensure that when you run the app and switch between tabs you will see the
class name in the application output. However, when you activate the last tab, it will be empty, and also the
last tab bar item will display a default button. To change the icon and the caption of the tab bar item I use
the Properties pad (refer back to Figure 4-4), where I select the More icon from the System Item drop-down
list. To add a label on the last tab, I open the ThirdViewController.cs file and define the AddLabel method.
Lastly, I invoke this method in the ViewDidLoad view event handler (Listing 4-4).

Listing 4-4. Creating a Label Dynamically

public override void ViewDidLoad()
{
 base.ViewDidLoad();

 AddLabel();
}

Chapter 4 ■ NavigatioN

89

private void AddLabel()
{
 // Create the label
 var label = new UILabel()
 {
 Text = "Third View"
 };

 // Update font size
 nfloat fontSize = 36.0f;
 label.Font = label.Font.WithSize(fontSize);

 // Measure the label
 var labelSize = UIStringDrawing.StringSize(label.Text, label.Font);

 // and adjust the frame accordingly
 label.Frame = new CGRect(View.Frame.Width / 2 - labelSize.Width / 2,
 View.Frame.Height / 2 - labelSize.Height / 2,
 labelSize.Width,
 labelSize.Height) ;

 Add(label);
}

In the AddLabel method, I first instantiate the UILabel class and set its Text property to Third View.
Subsequently, I set the font size to 36 pixels and measure the resulting label with the static method
StringSize of the UIStringDrawing class. This method returns an instance of the CGRect class, which I use
to set the position of the label such that it is centered within the view. Then, I invoke the Add method of the
UIViewController class to add the label to the view. I also change the button for the third bar to More by
modifying the appropriate property of the tab bar item of the last tab (refer back to Figure 4-3). So, after
re-running the app, it will look as shown in Figure 4-7.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ NavigatioN

90

Pages
There is yet another project template, which enables you to jumpstart implementing multi-view apps—the
Page-Based App template, highlighted in Figure 4-8. In this section, I will use this template to create another
app, Navigation.PageBased, which targets iOS 9.0 and above. When you use this template, Visual Studio
creates the app, which has twelve pages, each of which displays the name of the month in the label. So, when
you run the app, it will look as shown in Figure 4-9.

Figure 4-7. The final form of the Navigation.Tabs app

Chapter 4 ■ NavigatioN

91

Let’s see how the Navigation.PageBased app works. If you open the iOS designer of this project, you will
see that it is composed of the two controllers:

•	 Root View Controller – the initial view controller, that provides content view of the
windows,

•	 Data View Controller – a view controller that provides and displays data (appropriate
month name) at each page.

The logic for the root view controller is implemented within the class of the same name and stored
under the RootViewController.cs file. RootViewController has two public members (Listing 4-5):
ModelController and PageViewController.

Listing 4-5. Public Members of the RootViewController

public UIPageViewController PageViewController { get; private set; }

public ModelController ModelController { get; private set; }

The first member, PageViewController, is of type UIPageViewController. The latter represents
the page view controller. This controller is the central part of the Navigation.PageBased project (and
all other projects created with the Page-Based App template) and manages the navigation between the

Figure 4-9. A default page-based application has twelve pages, each of which displays a month name

Figure 4-8. New Project window, showing Page-Based App iOS project template

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ NavigatioN

92

underlying pages. Each of these pages has an associated view controller, which in this case is represented
as the DataViewController class. The PageViewController is instantiated within the ViewDidLoad
event handler of the RootViewController (see companion code, Chapter_04/Navigation.PageBased/
RootViewController.cs).

The second public member of the RootViewController, the ModelController, derives from the
UIPageViewControllerDataSource class and implements a data source for each page. More specifically,
ModelController has a pageData field, which is the collection of strings. This collection contains the list of
months, which is obtained using the NSDateFormatter class (Listing 4-6).

Listing 4-6. Fragment of the ModelController Class Definition

public class ModelController : UIPageViewControllerDataSource
{
 readonly List<string> pageData;

 public ModelController()
 {
 var formatter = new NSDateFormatter();
 pageData = new List<string>(formatter.MonthSymbols);
 }

 // The rest of ModelController definition
}

Then, the ModelController implements a GetViewController method, which is shown in Listing 4-7.
GetViewController creates an instance of the DataViewController using the InstantiateViewController
static method of the UIStoryboard class instance. Subsequently, GetViewController passes an appropriate
month name to the created view controller. The month name is stored in the DataObject public property of
the DataViewController class instance.

Listing 4-7. GetViewController Method of the ModelController Class

public DataViewController GetViewController(int index, UIStoryboard storyboard)
{
 if (index >= pageData.Count)
 return null;

 // Create a new view controller and pass suitable data.
 var dataViewController = (DataViewController)storyboard.
 InstantiateViewController("DataViewController");

 dataViewController.DataObject = pageData[index];

 return dataViewController;
}

The GetViewController method is utilized in GetNextViewController and GetPreviousViewController,
being overrides of the corresponding methods from the base class, UIPageViewControllerDataSource
(see Listing 4-8). These two methods are invoked when the user switches between tabs, so the month name
is displayed through the DataViewController.

Chapter 4 ■ NavigatioN

93

Listing 4-8. Implementation of the GetNextViewController and GetPreviousViewController of the
UIPageViewControllerDataSource Class

public override UIViewController GetNextViewController(
 UIPageViewController pageViewController,
 UIViewController referenceViewController)
{
 int index = IndexOf((DataViewController)referenceViewController);

 if (index == -1 || index == pageData.Count - 1)
 return null;

 return GetViewController(index + 1, referenceViewController.Storyboard);
}

public override UIViewController GetPreviousViewController (
 UIPageViewController pageViewController,
 UIViewController referenceViewController)
{
 int index = IndexOf((DataViewController) referenceceViewController);

 if (index == -1 || index == 0)
 return null;

 return GetViewController(index - 1, referenceViewController.Storyboard);
}

public int IndexOf(DataViewController viewController)
{
 return pageData.IndexOf(viewController.DataObject);
}

As I mentioned previously, the DataViewController class has one public member, DataObject. It is
used to pass the month name. Then, this value is displayed in the label, identified as dataLabel, whenever
the view is about to appear (Listing 4-9).

Listing 4-9. A Definition of the DataViewController Class

public partial class DataViewController : UIViewController
{
 public string DataObject

 protected DataViewController(IntPtr handle) : base(handle) { }

 // Default definitions of the ViewDidLoad
 // and DidReceiveMemoryWarning

 public override void ViewWillAppear(bool animated)
 {
 base.ViewWillAppear(animated);
 dataLabel.Text = DataObject;
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ NavigatioN

94

After getting to know the structure of the Navigation.Pages project, let’s modify it. I will now replace
the default data source, the list of months, by a list of key–value pairs. Each such pair will consist of a color
caption and an instance of the UIColor class. The color caption will be displayed in the label, replacing the
month name, while an instance of the UIColor will be used to set the background of the page, as shown in
Figure 4-10.

Figure 4-10. A modified page-based app now displays names of colors instead of months. Moreover, the
background color of the rectangle corresponds to the color name displayed in the label.

To introduce the preceding changes, I first open the iOS designer, then set the name of the white
rectangle from the data view controller to ViewDataPanel. Then, I modify the DataViewController class
according to Listing 4-10.

Listing 4-10. A Modified Definition of the DataViewController Class

using System;
using System.Collections.Generic;
using UIKit;

namespace Navigation.PageBased
{
 public partial class DataViewController : UIViewController
 {
 public KeyValuePair<string, UIColor> DataObject { get; set; }

 protected DataViewController(IntPtr handle) : base(handle) { }

 // Default definitions of ViewDidLoad
 // and DidReceiveMemoryWarning

 public override void ViewWillAppear(bool animated)
 {
 base.ViewWillAppear(animated);

 dataLabel.Text = DataObject.Key;
 ViewDataPanel.BackgroundColor = DataObject.Value;
 }
 }
}

Chapter 4 ■ NavigatioN

95

In Listing 4-10, I replaced the type of the DataObject member from string to KeyValuePair<string,
UIColor>. Then, in the ViewWillAppear view event handler, I obtain the color name and value from the Key
and Value properties of DataObject, respectively.

Lastly, I need to update the ModelController, in which I change the declaration and initialization of the
pageData member as shown in Listing 4-11. I create three KeyValuePair objects:

•	 Key: Red, Value: UIColor.Red

•	 Key: Green, Value: UIColor.Green

•	 Key: Blue, Value: UIColor.Blue

So, when you re-run the app, there will be three pages available, each of which will correspond to an
appropriate color (red, green, or blue). Therefore, the app will look as previously shown in Figure 4-10.

Listing 4-11. A Modified Data Source for the Page View Controller

public class ModelController : UIPageViewControllerDataSource
{
 readonly List<KeyValuePair<string, UIColor>> pageData;

 public ModelController()
 {
 pageData = new List<KeyValuePair<string, UIColor>>
 {
 new KeyValuePair<string, UIColor>("Red", UIColor.Red),
 new KeyValuePair<string, UIColor>("Green", UIColor.Green),
 new KeyValuePair<string, UIColor>("Blue", UIColor.Blue)
 };
 }

 // The rest of ModelController definition
}

Navigation Between View Controllers
Although tabbed and page-based project templates can be utilized to quickly create multi-view iOS
applications, these project templates are not always suitable. In such cases, you can manually create segues
between view controllers. When the user presses a particular control, the selected view controller will be
presented. In this section, I’ll show you how to manually create such a custom multi-view app of name
Navigation. As Figure 4-11 shows, the app will have two view controllers: First View Controller and Second
View Controller. Both of them will have associated views with labels describing a view controller. The user
will be able to switch between views using Switch view or Go back buttons, depending on the currently
displayed view.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ NavigatioN

96

To implement the Navigation app, I use the Single View App project template, which targets iOS 9.0 and
above. Then, I modify the view by adding a button and a label, configuring them as shown in the left part
of Figure 4-11. Subsequently, I set the class of the initial view controller to FirstViewController, then add
another view controller and set its class to SecondViewController. Then, I modify the view of the second
view controller as shown in the right part of Figure 4-11. Lastly, I remove the ViewController.cs file, because
it is not needed anymore.

Given the view controllers are ready, I define the first segue. As shown in Figure 4-12, I CTRL+Drag from
the Switch view button to the second view controller. After releasing the left mouse button, a popup window
appears. This popup allows me to choose the segue, which presents a new view controller. There are eight
segue types to choose from. However, three of them (Non-Adaptive Action Segue group) are deprecated, and
thus I do not discuss them. The other segues are the following:

•	 Show – displays the view of the selected view controller modally over the content of
the current or source view controller. This segue can be also done programmatically
with the ShowViewController method of the UIViewController.

•	 Show Detail – this segue corresponds to the UIViewController.
ShowDetailViewController method and is only valid for the UISplitViewController.
In this case, Show Detail replaces the second child view controller with the selected
view controller. For other view controllers, Show Detail works like the Show segue.

•	 Present Modally – presents a view controller modally. Basically, it works similarly to
the Show segue, but you can modify its presentation and transition styles.

•	 Popover Presentation – the effect of this segue depends on the actual size class. For
screens with regular widths, the target view controller will appear as a popover, and
modally (full-screen) on horizontally compact devices.

•	 Custom – custom-created segue. You can use this if none of the others are suitable.

Figure 4-11. Views of the Navigation app, which we will develop in this section

Chapter 4 ■ NavigatioN

97

Here, I choose the Show segue, so after re-running the Navigation app, a view of the Second View
Controller appears when you tap the Switch view button.

Editing a Segue
You can modify the segue by editing its properties. All created segues appear in the Document Outline pad.
So far, we have only one segue, which appears under the FirstViewController item. As Figure 4-13 shows,
you can use the properties of the segue to change its type (Show, Show Detail, Present Modally, or Popover
Presentation). Depending on the segue type, additional controls appear. In my case, I change the segue type
to Present Modally. Then, the Presentation and Transition drop-down lists appear. I use them to set the
presentation and transition styles to Full Screen and Partial Curl, respectively.

Figure 4-12. Creating a segue between view controllers

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ NavigatioN

98

Unwind Segue
Although we created the segue, the user cannot go back to the First View Controller because the Go back
button does not work yet. To enable such a feature, we need to create the Unwind segue, which is used
to dismiss the view controller. To create such a segue, you first need to define the action so that the view
controller will be unwound. This method is defined as the target of the Unwind segue.

To create the Unwind segue in the Navigation app, I supplement a definition of the FirstViewController
class by the UnwindToFirstViewController method, which appears in Listing 4-12, and I also import a
necessary namespace: System.Diagnostics. UnwindToFirstViewController is decorated with the Action
attribute, so it can be invoked by the Objective-C runtime. Therefore, the iOS designer can recognize it, and
we can now use this method for the Unwind segue.

Listing 4-12. An Action for the Unwind Segue

[Action("UnwindToFirstViewController:")]
public void UnwindToFirstViewController(UIStoryboardSegue segue)
{
 Debug.WriteLine("UnwindToFirstViewController");
}

To associate the UnwindToFirstViewController method with the Go back button, I open the visual
designer and then CTRL+Drag from the Go back button to the green Exit icon, which is located on the
bottom of the Second View Controller (Figure 4-14). After releasing the left mouse button, a popup window
appears. This window contains a list of compatible action methods, which can be used for the segue. In my
case, this list contains only one item, UnwindToFirstViewController. So, after choosing this item, I can re-
run the app, and you will see that you can now navigate between the view controllers.

Figure 4-13. Properties of the segue

Chapter 4 ■ NavigatioN

99

Preparing for Segues
Very often, you need to transfer data between view controllers. For instance, you show the view controller
to collect user input, and after this view controller is dismissed, collected data is utilized in the initial
view controller. To pass data between view controllers, you use the PrepareForSegue method of the
UIViewController class. PrepareForSegue is invoked right before the segue is performed.

To present a sample usage of the PrepareForSegue class, I supplement the Navigation project with
another class, BaseViewController, which I define according to Listing 4-13.

Listing 4-13. PrepareForSegue Method Outputs Names of Classes Implementing the Source and
Destination View Controllers

public class BaseViewController : UIViewController
{
 protected BaseViewController(IntPtr handle) : base (handle){ }

 public override void PrepareForSegue(
 UIStoryboardSegue segue, NSObject sender)
 {
 base.PrepareForSegue(segue, sender);

Figure 4-14. Creating the unwind segue

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ NavigatioN

100

 var sourceViewControllerName =
 segue.SourceViewController.GetType().Name;
 var destinationViewControllerName =
 segue.DestinationViewController.GetType().Name;

 Debug.WriteLine($"From: {sourceViewControllerName} " +
 $"To: {destinationViewControllerName}");
 }
}

The BaseViewController class derives from UIViewController, has a default constructor, and also
overrides the PrepareForSegue method. Apart from the base functionality, PrepareForSegue reads the
names of two classes, implementing the source and destination view controllers, and then displays them in
the application output.

This example shows how to access instances of view controllers participating in the segue. Hence, to
actually pass data between view controllers, you would need to supplement the associated classes with
public properties and then rewrite them within the PrepareForSegue method.

To use the class from Listing 4-13, I modify declarations of the FirstViewController and the
SecondViewController such that they derive from BaseViewController instead of UIViewController
(as in Listing 4-3). So, when you re-run the app and perform navigation between the views, the output of
the Navigation app should look like the one from Figure 4-15.

Figure 4-15. Application output showing the flow of a segue

Summary
In this chapter, we learned how to create multi-view applications and how to perform navigation between
views using various approaches. We started with the Tabbed App project template and investigated how to
create and modify tabs. Then, we moved to the Page-Based App project template. We deeply examined its
relatively complex structure and then modified the app code to better understand page-based navigation.
Finally, we created custom segues between view controllers. In the next chapter, we will learn how to handle
touch gestures in iOS apps.

101© Dawid Borycki 2018
D. Borycki, Beginning Xamarin Development for the Mac, https://doi.org/10.1007/978-1-4842-3132-6_5

CHAPTER 5

Touch

Mobile devices are controlled by touch gestures. Users can use gestures to switch between views or to
manipulate visual elements to translate, rotate, and resize them. In this chapter, we will learn how to handle
gestures in Xamarin.iOS. We will start with a short description of gesture recognizers and then investigate
how to use gestures for navigation. Subsequently, we will learn how to programmatically create and control
gesture recognizers and the programmatic events they generate. Finally, we will implement the app, in
which the location, rotation, and scale of the visual component will be controlled with gestures. So, after
completing this chapter, you will know how to perform complex manipulation of visual controls, which you
will find useful for media apps (like a photo editor or drawing tool) that extensively utilize gestures to tailor
the appearance of visual elements.

Touches and Gesture Recognizers
Whenever the user touches the screen, a series of appropriate events are raised. To handle these events, you
would normally need to implement the following methods in the class associated with the view controller:

•	 TouchesBegan, which is invoked when the user touches the screen with one or more
fingers

•	 TouchesMoved, which is called when user changes the location of his or her fingers
on the screen

•	 TouchesCancelled, which is invoked when the touch is canceled

•	 TouchesEnded, invoked when the touch gesture is finished

To show an actual sample, I create a new single view app (universal targeting iOS 9.0 and above) with
the name Touches. Subsequently, I extend the definition of the ViewController class by the preceding
methods and implement them according to Listing 5-1 (note that this code depends upon the following
namespaces: Foundation, System.Diagnostics, and System.Linq). Implementation of TouchesBegan,
TouchesCancelled, and TouchesEnded does not require any additional comments. All of these methods
simply print the method name to the application output. A little more explanation is required for the
TouchesMoved method. This function, apart from printing a TouchesMoved string, also iterates through
the set of touches received by the event handler. In general, the application user can use more than one
finger to perform a gesture. Each contact between his or her fingers and the screen is defined as a touch.
The information about each touch is provided to the event handler as an instance of the NSSet. This object
represents an unordered collection of objects, which in this specific case represents a touch. Hence, in
Listing 5-1, the set of touches is first casted to a collection of UITouch objects, each of which is an abstract
representation of the touch or finger movement on the screen. Then, I print the contact locations in the
application output.

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3132-6_5
http://www.allitebooks.org

Chapter 5 ■ touCh

102

Listing 5-1. Handling Low-level Information About Touches

public override void TouchesBegan(NSSet touches, UIEvent evt)
{
 base.TouchesBegan(touches, evt);

 Debug.WriteLine("TouchesBegan");
}

public override void TouchesMoved(NSSet touches, UIEvent evt)
{
 base.TouchesMoved(touches, evt);

 Debug.WriteLine("TouchesMoved");

 foreach (var touch in touches.Cast<UITouch>())
 {
 Debug.WriteLine(touch.GetPreciseLocation(View));
 }
}

public override void TouchesCancelled(NSSet touches, UIEvent evt)
{
 base.TouchesCancelled(touches, evt);

 Debug.WriteLine("TouchesCancelled");
}

public override void TouchesEnded(NSSet touches, UIEvent evt)
{
 base.TouchesEnded(touches, evt);

 Debug.WriteLine("TouchesEnded");
}

When you run the Touches app in the simulator, it will generate output that should look like that
in Figure 5-1. As shown there, the beginning of the gesture is indicated by the TouchesBegan method.
Subsequently, a series of TouchesMoved events is raised, each of which reports the current position of the
touch contacts (where the finger touches the screen). Finally, TouchesEnded is fired, informing you that user
has released his or her fingers from the screen.

Chapter 5 ■ touCh

103

In order to recognize or detect a particular gesture, like swipe, long press, pan, rotation, or pinch, you
would need to analyze the collection of touches to find patterns representing the particular gesture. More
specifically, using the location of each contact, you would need to determine the touches’ path. However,
the iOS SDK provides several classes that do it for you. These classes are defined as gesture recognizers and
greatly simplify gesture recognition because they implement all the necessary calculations. You only need to
instantiate an appropriate gesture-recognizer class, and it will raise an appropriate event whenever it detects
the particular gesture. As with most of the other iOS SDK components, gesture recognizers are wrapped by
appropriate objects from Xamarin.iOS.

In the next few sections, I will tell you how to utilize gesture recognizers to perform navigation and to
manipulate visual components.

Swipe and Long-Press Gesture Recognizers
To show how to use gesture recognizers, I extend the Navigation app we developed in the previous chapter
so that the user will be able to switch between views using swipe and long-press gestures. Specifically, the
long-press gesture will let him or her navigate from the first to the second view, while he or she will use the
swipe gesture to navigate back to the first view. I will first create the swipe-gesture recognizer using the iOS
designer, then generate a long-press gesture recognizer programmatically.

To implement such a functionality, I first copy the project folder under Chapter_05 of the companion
code and then rename the project in Visual Studio (the Rename… option from the context menu) from
Navigation to Navigation.Swipe. Subsequently, I open iOS designer, and from the Toolbox I drag Swipe
Gesture Recognizer to the second view controller. A small icon representing this gesture recognizer appears
at the bottom of the second view controller (see Figure 5-2).

Figure 5-1. A screenshot showing the sample output of the Touches app

Figure 5-2. A Swipe Gesture Recognizer added to the view controller

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ touCh

104

Then, I open the Properties pad of the Swipe Gesture Recognizer, where I go to the Events tab and type
SwipeDetected into the Action drop-down list (Figure 5-3). After pressing Enter, Visual Studio creates an
event handler, which I define according to Listing 5-2.

Listing 5-2. Dismissing the View Controller When the Swipe Gesture Is Recognized

partial void SwipeDetected(UISwipeGestureRecognizer sender)
{
 DismissViewController(true, null);
}

When you re-run the app, you can navigate to the second view by tapping the Switch view button.
Once the second view is displayed, you can go back to the first view by using the right-swipe gesture.
Whenever such a gesture is detected, the recognizer raises an appropriate event, which is handled here by
SwipeDetected. As Listing 5-2 shows, I use this method to navigate back using the DismissViewController
method of the UIViewController class. DismissViewController accepts two arguments:

•	 animated – specifies if the transition between views should be animated

•	 completionHandler – lets you specify the code that is executed when the animation
is completed

In Listing 5-2, I enable animation and pass null for the second argument of DismissViewController
since I do not need to execute any additional methods.

Gesture recognizers also have several properties that let you adjust them to your specific needs. For
instance, you can modify the swipe gesture recognizer to react to the selected swipe direction (see Figure 5-4).
To this end, you use the Swipe drop-down list. Additionally, you can specify how many fingers are required for
a swipe gesture (the Touches numeric control).

Figure 5-3. Creating an event handler for the Swipe Gesture Recognizer

Chapter 5 ■ touCh

105

Let’s now use the long-=press gesture recognizer to implement navigation from the first to the second view.
To this end, I proceed as follows. First, I programmatically instantiate the UILongPressGestureRecognizer, a
class representing the recognizer, in the ViewDidLoad method of the FirstViewController class (Listing 5-3).
Then, I associate the resulting instance with the view using the AddGestureRecognizer method.

Listing 5-3. Programmatic Creation of the Gesture Recognizer

public override void ViewDidLoad()
{
 base.ViewDidLoad();

 var longPressGestureRecognizer =
 new UILongPressGestureRecognizer(PresentSecondViewController);

 View.AddGestureRecognizer(longPressGestureRecognizer);
}

As Listing 5-3 shows, the constructor of the UILongPressGestureRecognizer class accepts an argument
pointing to an action, PresentSecondViewController, which is called whenever the gesture is recognized. In
the previous case, we did the same thing (associate a method with the Action event) through the Properties
pad. So now you know two equivalent methods of associating actions with gesture recognizers.

Listing 5-4. Presenting a View Controller

private void PresentSecondViewController(
 UILongPressGestureRecognizer sender)
{
 if(sender.State == UIGestureRecognizerState.Began)
 {

Figure 5-4. Properties of the swipe gesture recognizer

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ touCh

106

 var secondViewController = Storyboard.
 InstantiateViewController("SecondViewController")
 as UIViewController;

 PresentViewController(secondViewController, true, null);
 }
}

A definition of PresentSecondViewController appears in Listing 5-4. This method has a single
argument, sender, which is of type UILongPressGestureRecognizer. This argument stores an instance of the
gesture recognizer, which in this case detected the long-press gesture. In practice, you use this instance to
get more information about the gesture. In particular, you can check the gesture state, which is represented
by one of the following items from the UIGestureRecognizerState enumeration:

•	 Began – indicates that the gesture recognizer has identified a set of touches as the
particular gesture

•	 Changed – specifies that touches (or finger positions) have been changed

•	 Possible – gesture recognizer has identified the set of touches but it is still
processing them in order to recognize a gesture

•	 Ended, Cancelled, Failed – informs that the gesture has been completed, canceled,
or failed (not recognized), respectively.

In Listing 5-4, I look for the Began state and then create the second view controller using the
InstantiateViewController method of the Storyboard. Subsequently, I invoke PresentViewController to
navigate to the second view controller. In order to instantiate the view controller using a Storyboard class,
I need to set the storyboard identifier for the view controller. I do so using the Properties pad as shown in
Figure 5-5.

If you now re-run the app, you can click and hold the mouse button in the first view. The second view
will appear after a while. As you see, you can now navigate between the views using gestures and buttons.

Figure 5-5. Setting the storyboard identifier of the SecondViewController

Chapter 5 ■ touCh

107

Manipulating Controls with Gestures
I will now tell you how to use gesture recognizers to manipulate controls. To this end, I will develop an app,
shown in Figure 5-6. This app has a single control, an instance of the UIView class, which represents a purple
square. This control will be translated with the pan gesture, rotated with the rotation gesture, and rescaled
with the pinch gesture.

Pan Gesture Recognizer
I start by creating the Gestures app using the Single View App project template. I made this app universal
and set the minimum target version to iOS 9.0. Then, in the ViewController class, I first import two
namespaces: System.Drawing and CoreGraphics. Then, I declare one private field of type UIView. This field
stores a reference to the purple rectangle. Afterward, I implement two private methods, AddSquare and
AddPanGestureRecognizer (Listing 5-5).

Figure 5-6. The sample view of the Gestures app we will develop to learn about the pan, rotation and pinch
gesture recognizers

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ touCh

108

Listing 5-5. Private Members of the ViewController Class

private UIView square;

private void AddSquare(float squareSideLength, UIColor color)
{
 square = new UIView()
 {
 BackgroundColor = color,
 Frame = new RectangleF(0, 0, squareSideLength, squareSideLength),
 Center = new CGPoint(View.Frame.Width / 2.0, View.Frame.Height / 2.0)
 };

 Add(square);
}

private void AddPanGestureRecognizer()
{
 var panGestureRecognizer =
 new UIPanGestureRecognizer(TranslateSquare);

 View.AddGestureRecognizer(panGestureRecognizer);
}

The AddSquare method is used to create and configure an instance of the UIView class, which
represents the purple square. This method uses features that were already discussed, so further comments
about AddSquare are not necessary. The second method from Listing 5-5, AddPanGestureRecognizer,
first instantiates the UIPanGestureRecognizer and then associates it with the view. Whenever this object
recognizes a pan gesture, it will invoke the TranslateSquare method from Listing 5-6.

Listing 5-6. Translating the Square

private void TranslateSquare(UIPanGestureRecognizer sender)
{
 var translation = sender.TranslationInView(View);

 square.Transform = CGAffineTransform.
 MakeTranslation(translation.X, translation.Y);
}

TranslateSquare reads the amount of translation made with the pan gesture using the
TranslationInView method of the UIPanGestureRecognizer class instance. TranslationInView
returns an instance of the CGPoint struct, whose X and Y properties store the relative translation along
the horizontal and vertical directions, respectively. I then use those values to translate the square by
modifying the Transform property of the UIView, to which a reference is contained in the square field. The
Transform property is of type CGAffineTransform and represents the geometrical transformation of the
particular visual component. In general, this transformation is called an affine transform and describes the
translation, rotation, and scale changes of the visual control. For now, I only translate the square, so I create
a translation transformation using the MakeTranslation static method of the CGAffineTransform struct.
The MakeTranslation method accepts two arguments, which denote the amount of translation along the
horizontal (first argument, tx) and vertical directions (second argument, ty). So, whenever the pan gesture
is recognized, the square will be translated accordingly.

Chapter 5 ■ touCh

109

To actually use the AddSquare and AddPanGestureRecognizer methods, I modify the ViewDidLoad view
event handler as shown in Listing 5-7. You can now run the Gestures app in the simulator and use the pan
gesture—simply move the mouse cursor while holding the left mouse button. You will see that the square is
translated as you move the mouse cursor within the view. However, you can easily notice that you can make
the pan gesture anywhere in the view. Let’s now modify the app such that it will only translate the square
when the pan gesture is performed against it or, in other words, when you virtually hold the square. This
requires detecting contact location, which is discussed in the next section.

Listing 5-7. ViewDidLoad Method of the ViewController

public override void ViewDidLoad()
{
 base.ViewDidLoad();

 AddSquare(50.0f, UIColor.Purple);

 AddPanGestureRecognizer();
}

Detecting Gesture Location
To get the location of the touch, you use the LocationInView method of the gesture-recognizer
class instance. This method is available for all gesture recognizers because it is implemented in the
UIGestureRecognizer class, which all other gesture recognizers derive from. You can also track the location
of the particular touches (fingers) doing the gesture with the LocationOfTouch method. Both methods
return the CGPoint struct. Its X and Y properties store the geometrical location of the gesture (or particular
finger) on the screen.

In the Gestures app, I use the LocationInView method to check whether the pan gesture is performed
on the purple square. As Listing 5-8 shows, I employ this method to implement another helper function,
IsTouchLocationWithinSquare. The latter reads the touch location within the main view and then checks
if it’s contained within the square. To that end, I use the Contains method of the square.Frame property.
Contains calculates if the X and Y components of the location (CGPoint struct) are within the rectangle
(Frame property) enclosing the purple square. If so, I can translate the square. Therefore, I modify the
TranslateSquare method (Listing 5-6) by first invoking IsTouchLocationWithinSquare. Then, if this
method returns true, I create the translation transformation for the square (Listing 5-9).

Figure 5-7. Translating the square with the pan gesture

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ touCh

110

Listing 5-8. A View Is Translated Only When the Pan Gesture Is Performed Over the Square

private bool IsTouchLocationWithinSquare(
 UIPanGestureRecognizer panGestureRecognizer)
{
 var location = panGestureRecognizer.LocationInView(View);

 return square.Frame.Contains(location.X, location.Y);
}

Listing 5-9. The Purple Square Is Translated Only When the Gesture Location Is Within the Bounds of This
Control

private void TranslateSquare(UIPanGestureRecognizer sender)
{
 if (IsTouchLocationWithinSquare(sender))
 {
 var translation = sender.TranslationInView(View);

 square.Transform = CGAffineTransform.
 MakeTranslation(translation.X, translation.Y);
 }
}

If you now re-run the Gestures app, you will see that the square is translated only when you perform
the pan gesture above this control. However, as you repeat this gesture, you will notice that a translation
transformation of the purple square always has its origin at the center of the screen. This happens because
the gesture recognizer calculates the shift made during a single gesture and does not take into account
any translations made with previous gestures. To accurately translate the square, we would need to have
the amount of the total translation accumulated during all gestures performed since the app was started.
Therefore, we need to store the translation value after consecutive pan gestures have ended, and then add
the resulting value to subsequent shifts. To implement such a functionality, I first supplement a definition
of the ViewController with another private field, lastTranslation (of type CGPoint), and then modify the
TranslateSquare method to store the amount of translation from when the gesture ended (Listing 5-10).
To tally the amount of translation done during the single pan gesture, I read the x0 and y0 properties of the
square.Transform property. I store the resulting values in the X and Y components of the lastTranslation
member and add them to the actual translation transformation. Hence, when you re-run the app, the purple
square “remembers” its position from the previous pan gesture. Therefore, all subsequent pan gestures
correctly translate the purple square.

Listing 5-10. Accumulating the Translation of the Square

private CGPoint lastTranslation;

private void TranslateSquare(UIPanGestureRecognizer sender)
{
 if (IsTouchLocationWithinSquare(sender))
 {
 var translation = sender.TranslationInView(View);

 square.Transform = CGAffineTransform.MakeTranslation(
 translation.X + lastTranslation.X,

Chapter 5 ■ touCh

111

 translation.Y + lastTranslation.Y);
 }

 if (sender.State == UIGestureRecognizerState.Ended)
 {
 lastTranslation.X = square.Transform.x0;
 lastTranslation.Y = square.Transform.y0;
 }
}

Rotation and Pinch Gesture Recognizers
Let’s now incorporate rotation and pinch gesture recognizers into the Gestures app so the purple square can
be rotated and rescaled. The implementation of this sample requires several components. I will start with a
method that combines a translation, rotation, and scaling into a single affine transformation. Then, I will tell
you how to programmatically create the rotation and pinch gesture recognizers and enable simultaneous
gesture recognition.

A Total Affine Transformation
Mathematically, the affine transformation can be represented as the 3 × 3 transformation matrix, T:

T

xx xy

yx yy

x y

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

0

0

0 0 1

Each element of this matrix from the first and second columns corresponds to the appropriate fields of the
CGAffineTransform struct. So, in general, you can implement the total affine transformation by manually
calculating values for matrix elements. For instance, if you want to translate an object, you write shift values
along the horizontal and vertical directions to the x0 and y0 properties, respectively. Scaling and rotation
require a little bit more mathematics:

xx sx= ´ ()cos ,a

xy = ()sin a ,

yx = - ()sin a ,

yy sy= ´ ()cos a ,

where sx and sy denote the scaling factors along the horizontal and vertical directions, while α is the
rotation angle.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ touCh

112

Hopefully, the CGAffineTransform delivers methods that simplify these calculations. More
specifically, to create the total affine transformation, I combine the following static methods of the
CGAffineTransform struct:

•	 MakeIdentity, which creates the identity transformation. It’s a special form of the
affine transformation that does not modify the visual control. MakeIdentity sets the
xx, xy, yx, and yy properties of the CGAffineTransform to ones, and x0, y0 to zeros.

•	 Translate, which updates the x0 and y0 properties of CGAffineTransform

•	 Rotate, which updates xx, xy, yx, and yy elements of the transformation matrix
without changing the scaling factors

•	 Scale, which changes the scaling factors (sx and sy) and includes them in the
following properties of CGAffineTransform: xx, xy, yx, and yy, but without changing
the rotation angle

I utilize the preceding methods in the UpdateSquareTransform method in Listing 5-11. This method
also includes the previous translation, rotation, and scale values. To this end, values stored in the
lastTranslation and lastRotation fields are added to the current translation and rotation, while the
current scale factor is multiplied by the previous one. This is because the scaling operation is multiplicative,
while shifts and rotations are additive (see preceding equations).

Listing 5-11. Implementation of the Total Affine Transformation for the Purple Square

private nfloat lastRotation;
private nfloat lastScale = 1.0f;

private void UpdateSquareTransform(CGPoint translation,
 nfloat rotation, nfloat scale)
{
 var transform = CGAffineTransform.MakeIdentity();

 // Include previous translation, rotation, and scale
 translation.X += lastTranslation.X;
 translation.Y += lastTranslation.Y;
 rotation += lastRotation;
 scale *= lastScale;

 // Combine translation, rotation, and scale
 transform = CGAffineTransform.Translate(
 transform, translation.X, translation.Y);
 transform = CGAffineTransform.Rotate(transform, rotation);
 transform = CGAffineTransform.Scale(transform, scale, scale);

 square.Transform = transform;
}

Given the UpdateSquareTransform method, I first modify the TranslateSquare function as shown in
Listing 5-12 and then implement two other methods (Listing 5-13), which be used later by the rotation and
pinch gesture recognizers.

Chapter 5 ■ touCh

113

Listing 5-12. An Updated Definition of the TranslateSquare Method

private void TranslateSquare(UIPanGestureRecognizer sender)
{
 if (IsTouchLocationWithinSquare(sender))
 {
 var translation = sender.TranslationInView(View);

 //square.Transform = CGAffineTransform.MakeTranslation(
 // translation.X + lastTranslation.X,
 // translation.Y + lastTranslation.Y);

 UpdateSquareTransform(translation, 0.0f, 1.0f);
 }

 if (sender.State == UIGestureRecognizerState.Ended)
 {
 lastTranslation.X = square.Transform.x0;
 lastTranslation.Y = square.Transform.y0;
 }
}

Listing 5-13. Rotating and Scaling the Purple Square (note that scaling factors are equal along horizontal
and vertical directions)

private void RotateSquare(UIRotationGestureRecognizer sender)
{
 UpdateSquareTransform(new CGPoint(), sender.Rotation, 1.0f);

 if (sender.State == UIGestureRecognizerState.Ended)
 {
 lastRotation += sender.Rotation;
 }
}

private void ScaleSquare(UIPinchGestureRecognizer sender)
{
 UpdateSquareTransform(new CGPoint(), 0.0f, sender.Scale);

 if (sender.State == UIGestureRecognizerState.Ended)
 {
 lastScale *= sender.Scale;
 }
}

Rotating and Scaling the Control
Finally, all I need to do is create two additional gesture recognizers—one for rotation and the second for a
pinch. To do so, in the ViewController class I implement the AddRotationAndPinchGestureRecognizers
method (Listing 5-14) and then invoke it in the ViewDidLoad event handler (Listing 5-15).

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ touCh

114

Listing 5-14. Creating Rotation and Pinch Gesture Recognizers

private void AddRotationAndPinchGestureRecognizers()
{
 var rotationGestureRecognizer =
 new UIRotationGestureRecognizer(RotateSquare);
 var pinchGestureRecognizer =
 new UIPinchGestureRecognizer(ScaleSquare);

 View.AddGestureRecognizer(pinchGestureRecognizer);
 View.AddGestureRecognizer(rotationGestureRecognizer);
}

Listing 5-15. Adding the Support for Rotation and Pinch Gestures

public override void ViewDidLoad()
{
 base.ViewDidLoad();

 AddSquare(50.0f, UIColor.Purple);

 AddPanGestureRecognizer();

 AddRotationAndPinchGestureRecognizers();
}

After re-running the app, you will see results similar to Figure 5-6. Note that to perform rotation and
pinch gestures you need to use multi-touch, which you enable in the simulator using the ALT key. It activates
two rectangles, representing two fingers. Then, you press the left mouse button and either rotate fingers
(rotation gesture) or change the distance between them (pinch gesture). You will note that the purple square
is transformed according to your virtual touches. However, only one gesture recognizer runs at a time, which
means, for instance, that you cannot perform a pinch gesture while rotating the square. This is because such
simultaneous gesture recognition is disabled by default. I’ll tell you how to enable it next.

Simultaneous Gesture Recognition
To enable simultaneous gesture recognition, you use the ShouldRecognizeSimultaneously property of the
gesture-recognizer class. Listing 5-16 shows how to enable simultaneous gesture recognition for the rotate
and pinch gestures.

Listing 5-16. Enabling Simultaneous Gesture Recognition

private UIRotationGestureRecognizer rotationGestureRecognizer;
private UIPinchGestureRecognizer pinchGestureRecognizer;

private void AddRotationAndPinchGestureRecognizers()
{
 rotationGestureRecognizer =
 new UIRotationGestureRecognizer(RotateSquare);
 pinchGestureRecognizer =
 new UIPinchGestureRecognizer(ScaleSquare);

Chapter 5 ■ touCh

115

 rotationGestureRecognizer.ShouldRecognizeSimultaneously
 += GestureRecognizer_ShouldRecognizeSimultaneously;
 pinchGestureRecognizer.ShouldRecognizeSimultaneously
 += GestureRecognizer_ShouldRecognizeSimultaneously;

 View.AddGestureRecognizer(pinchGestureRecognizer);
 View.AddGestureRecognizer(rotationGestureRecognizer);
}

private bool GestureRecognizer_ShouldRecognizeSimultaneously(
 UIGestureRecognizer RgestureRecognizer,
 UIGestureRecognizer otherGestureRecognizer)
{
 return true;
}

Rotation and pinch gestures can now be processed simultaneously. Therefore, you also need to update
the RotateSquare and ScaleSquare methods to include the fact that a square can be rescaled when rotated.
For this reason, in Listing 5-16, references to both gesture recognizers were stored in the fields of the
ViewController class. Then, you use this reference to update the rotation and scale changes of the square,
as shown in Listing 5-17.

Listing 5-17. Scale Changes Are Included During Rotation

private void RotateSquare(UIRotationGestureRecognizer sender)
{
 //UpdateSquareTransform(new CGPoint(), sender.Rotation, 1.0f);

 if (sender.State == UIGestureRecognizerState.Changed)
 {
 if (pinchGestureRecognizer.State == UIGestureRecognizerState.Changed)
 {
 UpdateSquareTransform(new CGPoint(),
 sender.Rotation, pinchGestureRecognizer.Scale);
 }
 else
 {
 UpdateSquareTransform(new CGPoint(), sender.Rotation, 1.0f);
 }
 }

 if (sender.State == UIGestureRecognizerState.Ended)
 {
 lastRotation += sender.Rotation;
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ touCh

116

private void ScaleSquare(UIPinchGestureRecognizer sender)
{
 // UpdateSquareTransform(new CGPoint(), 0.0f, sender.Scale);

 if (sender.State == UIGestureRecognizerState.Changed)
 {
 if (rotationGestureRecognizer.State == UIGestureRecognizerState.Changed)
 {
 UpdateSquareTransform(new CGPoint(),
 rotationGestureRecognizer.Rotation, sender.Scale);
 }
 else
 {
 UpdateSquareTransform(new CGPoint(), 0.0f, sender.Scale);
 }
 }
 if (sender.State == UIGestureRecognizerState.Ended)
 {
 lastScale *= sender.Scale;
 }
}

Both methods from Listing 5-17 work similarly, so I will only discuss the first one, RotateSquare.
In this method, I first check if the rotation gesture has been correctly recognized. To this end, I read the
State property of the UIRotationGestureRecognizer class instance provided by the sender argument.
Subsequently, I invoke UpdateSquareTransform. The parameters of this method depend on whether the
user does the pinch gesture in parallel with the rotation. If so, I pass the scale changes obtained from the
pinch gesture recognizer as the last parameter of the UpdateSquareTransform. However, if the user does not
re-scale the purple square during rotation, I simply pass 1 for this last parameter. It indicates that the scale
should not be changed. Lastly, I store the accumulated rotation in the lastRotation member.

I encourage you to independently extend the Gestures app such that it will simultaneously recognize
not only rotation and pinch gestures but also the pan gesture.

Summary
In this chapter, we created three sample apps, which show you how to work with touch in Xamarin.iOS. You
learned how to employ gestures to implement navigation between views and also how to manipulate visual
controls with various gesture recognizers. Along the way, you learned about the gesture states, simultaneous
gesture recognition, and the CGAffineTransform struct, which helps you to arbitrarily transform objects with
the affine transformation.

117© Dawid Borycki 2018
D. Borycki, Beginning Xamarin Development for the Mac, https://doi.org/10.1007/978-1-4842-3132-6_6

CHAPTER 6

Unit Testing

Achieving high-quality apps is one of the most important and difficult tasks in software engineering,
especially in mobile development. Mobile apps usually have a lot of competing solutions, and therefore
to make your app successful you need to ensure that the app works correctly on various mobile devices.
This requires you to repeat the same testing for your app on many devices, which can be a very long and
expensive process. Unit, or automatic, testing is therefore not only another fancy tool for developers but
also becomes a habit in software engineering. Automatic tests can be run right after code compilation as
many times as needed to ensure that new features do not affect other project components. As a result, you
can easily track app development and its maintenance. Automatic testing is not limited to validating the
functionality of the logic layer but can also be utilized to test the user interface. More specifically, automatic
UI tests synthesize user actions to interact with the visual components (or views) of the app exactly the same
as a human would.

Figure 6-1. A diagram showing the relationships between the projects we will implement in this chapter.
Single arrows represent references only, while double arrows indicate projects that will be tested automatically.

In this chapter, I will show you how to implement automatic unit and UI tests. To this end, I will create
several projects that will be related to each other as shown in Figure 6-1. Clearly, I will have a single view iOS
app, Persons. This app targets the Xamarin.iOS framework and uses a model class, Person. The Person class
will be implemented in a separate, reusable .NET Standard Library project, Persons.Common. The Persons
app has the UI shown in Figure 6-2. There is one button, four labels, and four text fields. When you tap the
button, a default person’s data (first and last name, email, and age) will be displayed in the text fields.

To validate this functionality, I will have two test projects: Persons.Tests and Persons.UITests. The first one,
Persons.Tests, will be a standard Xamarin.iOS app that implements the test runner shown in Figure 6-3. This
project will be used to test the Person class. In particular, I will check the public property setters and public

www.allitebooks.com

http://dx.doi.org/https://doi.org/10.1007/978-1-4842-3132-6_6
http://www.allitebooks.org

Chapter 6 ■ Unit testing

118

methods. The second test project, Persons.UITests, is a .NET Framework Class Library and will be invoked by
the Xamarin UI Test Framework to validate the UI of the Persons app. In particular, I will implement a test that
will virtually tap a button and then check whether the text fields possess the expected values. Finally, I will
show how to run the UI tests in the Xamarin Test Cloud (XTC). XTC provides you with cloud-based access to
a farm of physical devices with various screens and operating systems. Therefore, you can automatically test
your app to ensure it will be compatible with all target devices. XTC has a web-based interface that even lets
you visualize how your app will look on the devices on which you choose to run your UI tests (Figure 6-4).

Figure 6-2. User interface of the Persons app

Figure 6-3. Unit test runner

Chapter 6 ■ Unit testing

119

Creating a Model to Test
I start by implementing a Persons.Common shared library, which I create with the .NET Standard Library
project template (Figure 6-5). Within this project, I make a new folder, Models, in which I save a Person.cs
file with a definition of the Person class given in Listing 6-1. This class has four public properties, three of
which are of type string. They store first and last name and an email address. The last property, Age, is of
the integral (int) type and is used to store the age of the given person. Additionally, a Person class defines
two public methods. The first, FullName, returns a first and last name combined into one string. The second
method, IsEmailValid, implements a very simple verification of the email address. This method only
checks whether the given string contains the @ symbol. Of course, this algorithm is too primitive to effectively
validate an email address. However, it will be the goal of one of our unit tests to find this issue.

Figure 6-4. An example report showing results of UI tests executed on a number of physical devices from the
Xamarin Test Cloud

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Unit testing

120

Listing 6-1. A Definition of the Model to Be Tested

public class Person
{
 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Email { get; set; }

 public int Age { get; set; }

 public string FullName()

 {
 return $"{FirstName} {LastName}";
 }

 public static bool IsEmailValid(string email)
 {
 return email.Contains("@");
 }
}

Implementing Unit Tests
Given the model to test, we can implement actual unit tests that verify its functionality. To that end, I create
another project named Persons.Tests using a Unit Test App project template. The location of this template in
the New Project dialog is shown in Figure 6-6. Then, I configure the unit test app in the same way as I would
any other iOS app (see Figure 6-7). More specifically, I make this app universal so it is compatible with
iPhones and iPads, and then I set the target version to iOS 9.0. Finally, I choose a location for my project and
create it.

Figure 6-5. Creating a shared library

Chapter 6 ■ Unit testing

121

Figure 6-6. Creating the unit test app project

Figure 6-7. Configuring Persons.Tests unit test app

After creating the unit test app, you will see that its structure is the same as that of a typical iOS app. In
particular, as Listing 6-2 shows, this app has a standard Main method that starts the UI of the app with the
UnitTestAppDelegate class.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Unit testing

122

Listing 6-2. The Entry Point of the Unit Test App

public class Application
{
 static void Main(string[] args)
 {
 UIApplication.Main(args, null, "UnitTestAppDelegate");
 }
}

Listing 6-3 features a definition of the UnitTestAppDelegate class. As the “standard” AppDelegate class,
UnitTestAppDelegate derives from UIApplicationDelegate. However, contrary to a typical AppDelegate
like those we have used so far, UnitTestAppDelegate explicitly implements the FinishedLaunching app
event handler. This is because the Persons.Tests app does not have a main storyboard, which is what sets the
initial view controller. Instead, this is done programmatically by instantiating the UIWindow object, setting its
RootViewController property, and making the window visible by invoking the MakeKeyAndVisible method
of the UIWindow class instance. We see that the root view controller is created using a TouchRunner class. This
class is provided by the NUnit testing framework and provides the UI, which is then used to execute the unit
tests (refer back to Figure 6-3).

Listing 6-3. A Full Definition of the UnitTestAppDelegate

[Register("UnitTestAppDelegate")]
public partial class UnitTestAppDelegate : UIApplicationDelegate
{
 UIWindow window;
 TouchRunner runner;

 public override bool FinishedLaunching(
 UIApplication app, NSDictionary options)
 {
 // create a new window instance based on the screen size
 window = new UIWindow(UIScreen.MainScreen.Bounds);
 runner = new TouchRunner(window);

 // register every test included in the main application/assembly
 runner.Add(System.Reflection.Assembly.GetExecutingAssembly());

 window.RootViewController = new UINavigationController(
 runner.GetViewController());

 // make the window visible
 window.MakeKeyAndVisible();

 return true;
 }
}

Before we can test the model, we need to configure references. Note that the Person class is defined in
a separate project with respect to Persons.Tests, so the latter has to reference the Persons.Common library.
To configure this reference, you use the Reference Manager (Figure 6-8). To open this window, you go to
Solution Explorer, navigate to the Persons.Tests project, and then use the “Edit References…” option from the
context menu of the References node. Once in Reference Manager, you go to the Projects tab and select the
Persons.Common project as shown in Figure 6-8. The Person class can now be used inside Persons.Tests.

Chapter 6 ■ Unit testing

123

Figure 6-8. Reference Manager showing the Persons.Tests project

Figure 6-9. Adding the unit tests file

To implement the actual unit tests, I supplement the Persons.Tests project with a new file, PersonTests.cs.
To create this file, I use the New File dialog, in which I select the “Unit tests” object from the iOS tab (Figure 6-9).
The default content of the PersonTests.cs file shows how to create the test class and test methods that actually
perform unit testing. More specifically, the test class has to be decorated by the TestFixtureAttribute (see
Listing 6-4). This attribute instructs the testing framework to look for test methods in this class. Note that the
PersonTests class is public. Otherwise, the NUnit testing framework would not recognize it.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Unit testing

124

Listing 6-4. A Declaration of the PersonTests Class

[TestFixture]
public class PersonTests

The default tests given in the PersonTests.cs file do not implement anything useful, but they do show
how to define a test method. Namely, such a method has to be a public function of the test class. Moreover, a
test method does not return any value and is decorated with a TestAttribute. Every method that conforms
to these requirements will be seen by the TouchRunner and displayed in its UI.

To define the actual tests, I first import two additional namespaces, Persons.Common.Models and
System.Text.RegularExpressions, and then replace the default definition of the PersonTests class
with three test methods: VerifyPublicProperties, VerifyFullName, and VerifyEmail. The first one,
VerifyPublicProperties, appears in Listing 6-5. The general structure of this and any other test method
comprises three well-separated blocks of code: arrange, act, and assert. In the following listings, each of
these blocks is marked by an appropriate comment. In the arrange block, you typically prepare the input
data for your test. Therefore, in Listing 6-5, I declare four constants, which are then used in the act block
to invoke the logic being tested. Here, I validate public property setters of the Person class. So, I instantiate
this class with a default constructor and then set the values of its public properties to previously declared
constants. Then, in the assert block, I verify if, indeed, public properties of the Person class instance possess
the expected values.

To validate values being tested, you use static methods of the NUnit.Framework.Assert class. If you
have previously worked with Visual Studio for Windows, you probably already know the Assert class from
the Microsoft.VisualStudio.TestPlatform.UnitTestFramework package. Both classes work similarly
and expose analogous functionality. In particular, the AreEqual method I use in Listing 6-5 compares two
variables and raises an exception of type NUint.Framework.AssertionException whenever the values
of these variables differ. Additionally, you can define the message that is displayed when this assertion is
raised. In Listing 6-5, I independently validate each public property of the Person class instance, and hence
each assertion has a different message.

Listing 6-5. A Definition of Test Method, Which Validates Public Property Setters

[Test]
public void VerifyPublicProperties()
{
 // Arrange
 const string expectedFirstName = "Dawid";
 const string expectedLastName = "Borycki";
 const string expectedEmail = "dawid@borycki.com.pl";
 const int expectedAge = 34;

 // Act
 var person = new Person()
 {
 FirstName = expectedFirstName,
 LastName = expectedLastName,
 Email = expectedEmail,
 Age = expectedAge
 };

 // Assert
 Assert.AreEqual(expectedFirstName, person.FirstName,
 "Incorrect first name");

Chapter 6 ■ Unit testing

125

 Assert.AreEqual(expectedLastName, person.LastName,
 "Incorrect last name");
 Assert.AreEqual(expectedEmail, person.Email,
 "Incorrect e-mail");
 Assert.AreEqual(expectedAge, person.Age,
 "Incorrect age");
}

The second test method, VerifyFullName, validates a FullName method of the Person class
instance. Basically, VerifyFullName works in a way similar to VerifyPublicProperties. Namely, in the
VerifyFullName method, I first declare the expected values within the arrange block. Then, I use these
values to instantiate a Person class (act block). Finally, I invoke the FullName method and check if its result is
the same as the expected one.

You may wonder why I implement such relatively simple test methods when I know a definition of
the Person class. Typically, as a unit tester, you do not have such a privilege. Instead, you have to write
test methods that fully cover a class definition, but you typically do not have access to the source code.
So, in general, you start with simple test methods, validate basic class functionality, and then increase the
complexity of your tests. By doing so, you ensure that the class is properly tested from the ground up.

Such an approach is also utilized in test-driven development (TDD). In TDD, you first implement the
class skeleton, and then write appropriate unit tests. At this first stage, all tests should fail due to the lack of
actual class implementations. Subsequently, you start implementing a class, and iteratively run unit tests
to ensure that your implementation is valid. You continue this process as long as all tests have been passed.
TDD is also beneficial when you modify and extend your app. You run unit tests after introducing any
change to your code to ensure that it does not affect a functionality that is already implemented.

Listing 6-6. Validating a FullName Method of the Person Class Instance

[Test]
public void VerifyFullName()
{
 // Arrange
 const string expectedFirstName = "Dawid";
 const string expectedLastName = "Borycki";

 string expectedFullName = $"{expectedFirstName} {expectedLastName}";

 // Act
 var person = new Person()
 {
 FirstName = expectedFirstName,
 LastName = expectedLastName
 };

 // Assert
 Assert.AreEqual(expectedFullName, person.FullName());
}

The last test method of the PersonTests class, VerifyEmail, appears in Listing 6-7. This method aims
at validating the IsEmailValid static method of the Person class. Following what I said before, VerifyEmail
has a more complex implementation. More specifically, in the arrange block, I start by declaring an email
to be checked. In this example, this email is invalid because it does not contain a domain. Then, in the
act block, I perform the validation of the email string using a regular expression. This is implemented in a

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Unit testing

126

private helper method, PersonsTests.EmailCheck. Since this method does not conform to test-method
requirements, it will not be recognized by the test runner.

The EmailCheck function utilizes the Regex class from the .NET Framework. This class is used to
perform operations with regular expressions. In particular, I use the IsMatch static method to check whether
a regular expression pattern matches the given string. The pattern I use in Listing 6-7 matches every string
that contains a combination of letters and digits followed by the @ sign and a domain name. The result of
this match is then compared to the value returned by the Person.IsEmailValid method. Because the latter
uses a very naive way of validating an email address, this test should fail. To see that, we need to run the test
methods we implemented.

Listing 6-7. Validating Email Address

[Test]
public void VerifyEmail()
{
 // Arrange
 const string email = "dawid@";

 // Act
 var isValid = EmailCheck(email);

 // Assert
 Assert.AreEqual(isValid, Person.IsEmailValid(email));
}

private bool EmailCheck(string email)
{
 const string emailPattern = "[A-Z0-9a-z._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,}";

 return Regex.IsMatch(email, emailPattern);
}

Running Unit Tests
To run the unit tests, you set the Persons.Tests app as a startup project. To do so, use the Solution Explorer,
where you right-click the Persons.Tests node and then choose the “Set As Startup Project” option from the
context menu (Figure 6-10). You then run the app by using the Run menu or by pressing a Play button in the
Debug Target pad. After a while, the Persons.Tests app or test runner will be launched in the simulator and
will look analogous to Figure 6-11.

Chapter 6 ■ Unit testing

127

The test runner will display any information about the test methods it recognized. Now, you can
run all these unit tests by clicking the Run Everything button, or you can select Persons.Tests.exe and
then PersonsTests. A list of test methods appears, as shown earlier in Figure 6-3. You can run each test
individually by pressing a corresponding entry or run them all by clicking the Run all button. After a short
while, the results of each test method will be displayed. We see that only one test method (VerifyEmail) fails.

Figure 6-10. Setting Persons.Tests as startup project

Figure 6-11. A test runner

User Interface Tests
After validating the Person class, we can move forward and use it to implement the Persons app.
Subsequently, we will test its UI with the Xamarin UI Tests framework and Xamarin Test Cloud (XTC).

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Unit testing

128

Creating an App
I create the Persons app with a Single View iOS app template (which supports iOS 9.0 and later).
Subsequently, I define the UI of this app as shown earlier in Figure 6-2. Namely, I create one button, four
labels, and four text fields. I now set the name and accessibility identifier (Figure 6-12) of each text field to
TextFieldFirstName, TextFieldLastName, TextFieldEmail, and TextFieldAge, respectively. Names will
be used to set the text properties of each TextField in C# code, while accessibility identifiers will be used
to find controls in the UI test. Subsequently, I double-click the button to create the TouchUpInside event
handler, and for now I leave this method empty. Finally, I edit the references such that the Persons app
references the Person.Common library.

Figure 6-12. Configuring accessibility identifier

Xamarin Test Cloud Agent
To enable a test runner to interact with the Persons app, you use the Xamarin Test Cloud Agent, which you
install as a NuGet package. To install it, you can either go to Solution Explorer and then select the “Add
Packages…” option from the context menu of the Persons/Packages node or use menu Project ➤ Add NuGet
Packages…. Regardless of the method you choose, the Add Packages dialog appears. In this dialog, you go to
the search box and type Xamarin Test Cloud Agent. A list of matched packages appears on the left, as shown
in Figure 6-13. You then choose the first element on the list and click the Add Package button.

Chapter 6 ■ Unit testing

129

After a short while, the NuGet package will be added to the Persons project. Then, you just
need to enable it by adding the following statement (Listing 6-8), Xamarin.Calabash.Start(), to the
FinishedLaunching event handler. This event handler is defined in the AppDelegate.cs file of the Persons
project. Since the app cannot be submitted to the store with the Xamarin Test Cloud Agent enabled, a
corresponding statement from Listing 6-8 is surrounded by the C# preprocessor directives and is executed
only when the ENABLE_TEST_CLOUD symbol is defined. This is done by default in the Debug configuration
of the tested app after installing a Xamarin Test Cloud Agent NuGet package. To see this, go to the options
of the Persons project and then open the Build/Compiler tab. ENABLE_TEST_CLOUD will be listed within the
Define Symbols text box. If you change the configuration to Release, this symbol is undefined.

Listing 6-8. Setting Up the Xamarin Test Cloud Agent

public override bool FinishedLaunching(
 UIApplication application, NSDictionary launchOptions)
{
#if ENABLE_TEST_CLOUD
 Xamarin.Calabash.Start();
#endif

 return true;
}

Figure 6-13. Installing the Xamarin Test Cloud Agent NuGet package

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Unit testing

130

The Xamarin Test Cloud Agent, when enabled, listens for requests from the test runner. This agent
accepts programmatically generated gestures (like tap and swipe) and also allows a test runner to interact
with visual controls; for example, to read text from text fields. Importantly, the test runner can also use the
Xamarin Test Cloud Agent to take app screenshots to verify that the layout is correct on various devices and
that all necessary controls are visible and in expected locations when the device is rotated.

Creating UI Tests
To create the test runner, which will send requests to Xamarin Test Cloud Agent to test the UI of the Persons
app, I add the new project, Persons.UITests, which I make using the UI Test App project template in Visual
Studio (Figure 6-14).

Figure 6-14. UI Test App project template in the New Project dialog

After creating Persons.UITests, we can note that this project, unlike Persons.Tests, does not have the
typical structure of an iOS app. Moreover, by comparing both projects, we see that they target different
frameworks and compile to different targets. To see this, go to Solution Explorer and select “Options” from
the context menu of each project, then go to the Build/General tab ➤ Target framework and compile the
target shown on top (see Figure 6-15).

Chapter 6 ■ Unit testing

131

As Figure 6-15 shows, Persons.Tests is the Xamarin.iOS executable app and runs directly on the device
or a simulator as with any other iOS app. In this case, you invoke test methods using the UI of the test
runner (refer back to Figure 6-3). On the other side of things, Persons.UITests is the .NET Framework Class
Library. Since it is not compiled to the executable, it is run indirectly. Every test method implemented within
Persons.UITests is invoked by the Xamarin.UITest framework. To associate the apps that will be executed
by this framework using the Unit Tests pad, you go to View ➤ Pads ➤ Unit Tests. A window as shown in
Figure 6-16 appears.

Figure 6-15. General options of the build options of the Persons.Tests (top) and Persons.UITests projects

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Unit testing

132

In the Unit Tests pad, you first choose the app to be tested. To that end, you right-click the Test Apps
node and then choose the “Add App Project” option to browse for the Persons project. Henceforth, you can
run UI tests by either pressing the Run All button or double-clicking any of the test methods that appear in
the Unit Tests pad under the Persons ➤ UITests ➤ Tests node, provided the app was previously deployed
to the simulator. A default UI Test App project has only one test method, AppLaunches. If you now execute
this method, you will see that the UI Test Framework deploys another app to your simulator, DeviceAgent.
DeviceAgent uses the UI automation API provided by the iOS to emulate the gestures and actions that
are programmatically defined within your unit tests and send them to the app under test. So, effectively,
DeviceAgent acts as a virtual user that, instructed by the test methods, emulates user actions. DeviceAgent
also collects the results of these actions and passes them back to the test methods.

To implement test methods, you proceed in a way similar to implementing unit tests. More specifically,
every test class is marked by TestFixtureAttribute, while every test method has to be public and decorated
by TestAttribute. Listing 6-9 shows that such a structure is utilized in the Tests class—a default test class
created with the Persons.UITests project.

Listing 6-9. A Default Definition of the UI Test Class

[TestFixture]
public class Tests
{
 iOSApp app;

 [SetUp]
 public void BeforeEachTest()
 {
 app = ConfigureApp.iOS.StartApp();
 }

Figure 6-16. The Unit Tests pad

Chapter 6 ■ Unit testing

133

 [Test]
 public void AppLaunches()
 {
 app.Screenshot("First screen.");
 }
}

By analyzing Listing 6-9, we can easily note two new elements with respect to the unit tests we
implemented previously. First and foremost, there is yet another method, BeforeEachTest. This method is
marked with a SetUpAttribute. The latter instructs a test runner to invoke a selected function before every
test method. Here, BeforeEachTest creates an object that derives from the iOSApp interface. This interface
defines methods and properties that you use to interact with the app under test.

To create an object iOSApp, you use the static class ConfigureApp. This class has two properties:
Android of type AndroidAppConfigurator, and iOS of type iOSAppConfigurator. For iOS apps, we are only
interested in the second one, which is used to configure test parameters (like device identifier, app bundle,
and so on). Then, we run tests with the StartApp method. An instance of the iOSApp class is then used to
programmatically manipulate the UI in exactly the same way the user would.

To prepare the first UI test for the Persons app, I first extend a definition of the Person class (Persons.
Common project) by a static method from Listing 6-10. This method creates an instance of the Person object
and then configures the public properties to default values. I will later use the Person.Default method in
the UI test and in the Person app.

Listing 6-10. Additional Static Method of the Person Class

public static Person Default()
{
 return new Person
 {
 FirstName = "Dawid",
 LastName = "Borycki",
 Age = 34,
 Email = "dawid@borycki.com.pl",
 };
}

Next, in the Tests class (Persons.UITests), I implement the VerifyDisplayDataButton test method
according to Listing 6-11. VerifyDisplayDataButton virtually taps a button from the view of the Persons app
and verifies whether the text in each text field corresponds to the default person data.

To virtually tap a control, you use the Tap method of the iOSApp class instance. This method has two
overloaded versions: the one, which accepts as an argument a C# Func delegate, and the other, which
accepts string arguments. In the first case, you create the lambda expression, which returns an instance of
the AppQuery class. The AppQuery class provides a number of methods that are used to find UI elements. In
the second case, you pass a string, which is used by the test runner to find UI elements by inspecting their
accessibility identifiers or accessibility labels. Here, to find a button, I use a lambda expression, which I
constructed with an AppQuery.Button method. This method matches the first button on the view.

Next, I read text from the text fields using the helper method GetTextFieldText, which finds text
fields by their accessibility identifiers. To do so, I construct an AppQuery, in which I pass a string argument
representing the control accessibility identifier. Once text from text fields is obtained, I compare it to
expected values, and if they differ I raise a corresponding assertion using static methods of the Assert class.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Unit testing

134

Listing 6-11. UI Test

[Test]
public void VerifyDisplayDataButton()
{
 // Arrange
 var defaultPerson = Person.Default();

 // Act
 app.Tap(b => b.Button());

 var actualFirstName = GetTextFieldText("TextFieldFirstName");
 var actualLastName = GetTextFieldText("TextFieldLastName");
 var actualEmail = GetTextFieldText("TextFieldEmail");
 var actualAge = GetTextFieldText("TextFieldAge");

 // Assert
 Assert.AreEqual(defaultPerson.FirstName, actualFirstName);
 Assert.AreEqual(defaultPerson.LastName, actualLastName);
 Assert.AreEqual(defaultPerson.Email, actualEmail);
 Assert.AreEqual(defaultPerson.Age.ToString(), actualAge);

}

private string GetTextFieldText(string textFieldAccessibilityId)
{
 var result = string.Empty;

 if(app.Query(c => c.Id(textFieldAccessibilityId)).FirstOrDefault()
 is AppResult matchedTextField)
 {
 result = matchedTextField.Text;
 }

 return result;
}

We can now execute the VerifyDisplayDataButton test method by double-clicking it in the Unit Tests
pad. The test runner executes the DeviceAgent, which subsequently runs the Person app and virtually taps
a button. Since the corresponding event handler is empty, none of text fields will contain expected values,
and the test will fail, which is shown in the Test Results window (Figure 6-17). The Assert.AreEqual method
throws an exception, saying that the expected string ("Dawid") differs from the actual one (string.Empty).

Chapter 6 ■ Unit testing

135

We can now implement the handler for the TouchUpInside event of the button in the Person app
according to Listing 6-12 (ViewController.cs), rebuild the Person app, and re-run the UI test to confirm
the correctness of our implementation. By doing so, we effectively perform a single iteration of the TDD
approach. Namely, we first wrote a test method and ran it to verify that the app did not implement expected
functionality. We then supplemented an app with the correct logic and re-ran a test method to confirm
it. Once test methods are implemented, you can execute them every time you change the related source
of code to ensure that you do not introduce regression errors or lose already-implemented functionality.
Therefore, such automatic testing helps to develop high-quality apps.

Listing 6-12. A Final Definition of the Event Handler for Displaying Default Person Data

partial void ButtonDisplayPersonData_TouchUpInside(UIButton sender)
{
 var defaultPerson = Person.Default();

 TextFieldFirstName.Text = defaultPerson.FirstName;
 TextFieldLastName.Text = defaultPerson.LastName;
 TextFieldAge.Text = defaultPerson.Age.ToString();
 TextFieldEmail.Text = defaultPerson.Email;
}

Xamarin Test Cloud
All tests we’ve written so far were run locally in the simulator. However, the Xamarin UI testing framework
can be also utilized to run tests on physical devices. Typically, you deploy an app to be tested to the device
and then run UI tests on that device. So, if you need to perform the same tests on various devices, you do it
sequentially, which requires extra time. Moreover, you need to physically possess all devices with various
OS versions. So, comprehensive testing of an iOS app can be very expensive, especially for individual
developers. To solve these problems, Xamarin delivers a farm of physical devices known as the Xamarin Test
Cloud. XTC is a cloud-based service to which you can upload an app and its UI tests directly from Visual
Studio and then run tests on as many devices as needed. Test results are then presented to you in the form
of a clear report, shown previously in Figure 6-4. Although submitting an app to XTC is straightforward, it
requires you to create a provisioning profile for your app because an app bundle is executed on physical
devices. Hence, I will start this subsection by explaining how to create a provisioning profile, and then I will

Figure 6-17. Test Results window

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Unit testing

136

show you how to submit an app to XTC, choose devices, and execute tests. To complete this section, you will
need to create a trial account in the XTC: https://testcloud.xamarin.com/register.

Provisioning Profile
To create a provisioning profile, you need Xcode, an Apple ID, and a physical iOS device connected to your
development Mac. Then, you proceed as follows:

 1. Open Xcode, where you click the Accounts tab. Under Preferences, choose “Apple
ID” for type of account, and then type your Apple ID credentials (Figure 6-18).
Your account will then appear on the left-hand side of the window, as shown.

Figure 6-18. Signing in to Xcode with the Apple ID

Figure 6-19. A list of teams associated with the Apple ID

 2. Choose your account and click the Manage Certificates… button, located in the
bottom right part of the Accounts tab (Figure 6-19). This activates the Signing
Certificates window.

https://testcloud.xamarin.com/register

Chapter 6 ■ Unit testing

137

 3. In the Signing Certificates window, press the + button and choose “iOS
Development” (Figure 6-20). Press the Done button after a certificate is created,
and then press the Download All or Manual Profiles button. You can now close
Xcode preferences.

Figure 6-20. Creating a signing certificate

Figure 6-21. New project dialog in Xcode

Given a signing certificate for iOS development, we need to associate it with the Persons app. This
needs to be done using Xcode and a physical iOS device connected to the Mac. In Xcode, you now create a
new iOS app by going to File ➤ New ➤ Project… A window like that shown in Figure 6-21 appears. In this
window, you choose a Single View Application and then click the Next button.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Unit testing

138

After choosing a project template, another window, Choose options for your new project, appears. This
window, shown in Figure 6-22, lets you specify the product and organization name for your app. Ensure that
these values match the corresponding configuration from the Info.plist of your Xamarin.iOS Person app.
Namely, in my case the product name is set to Persons, while the organization name is com.db. You can leave
other options at the default values, then click the Next button and choose a location for your project. Xcode
will then create an empty app and display its configuration (Figure 6-23). In this window, you need to ensure
that the provisioning profile and signing certificate (Signing section) are set. If not, you need to connect a
physical iOS device and then press the Try Again button, which appears at the bottom of the Signing section.

Figure 6-22. Configuring project options

Chapter 6 ■ Unit testing

139

Given the provisioning profile, you go back to Visual Studio and open the options of the Persons project
(Figure 6-24). Then, go to iOS Bundle Signing under the Build tab, in which you do the following:

•	 Choose “iPhone” from the Platform drop-down list.

•	 Set Signing Identity to “Developer (Automatic).”

•	 Choose “Automatic” from the Provisioning Profile drop-down list.

Figure 6-23. Identity and signing sections of the Persons Xcode app

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Unit testing

140

Visual Studio can now generate the app package, which can be deployed to the XTC.

Running Tests in the XTC
To run tests in the XTC, you will eventually need to downgrade the NUnit NuGet package of Persons.UITest.
When I was writing this chapter, XTC was supporting NUnit version 2.6.4. The easiest way to downgrade this
package is to uninstall it with the “Remove” option of the Package context menu in the Solution Explorer.
Then, you re-install a package with the Add Packages window and choose the NUnit version with the drop-
down list available in the bottom right part of Package Manager (Figure 6-13).

After ensuring that the NUnit version is compatible with XTC, you go to the Unit Tests pad, right-
click the selected UI test, and then choose “Run in Test Cloud.” An app will be automatically submitted to
the XTC, and after a while you will be automatically redirected to the XTC website. Then, you choose the
devices on which tests should be executed. As shown in Figure 6-25, I chose 12 devices, of which 5 are iPads.
The others are randomly selected iPhones. Given the list of devices, you then choose Test series (master,
production, or beta) and system language, and then press the Done button. A test process will be started,
and its current status will be displayed on the XTC website (Figure 6-26).

Figure 6-24. iOS Bundle Signing section of the Xamarin.iOS Persons app in Visual Studio

Chapter 6 ■ Unit testing

141

Figure 6-25. XTC device selection

Figure 6-26. Test progress

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Unit testing

142

Once the tests have completed, you can review the test results for each device using the test report
shown earlier in Figure 6-24. In my case, I found that the VerifyDisplayDataButton test method failed on
all iPads. According to app screenshots, none of the controls were displayed. I then checked this locally by
re-running the Persons app in the iPad simulator. Indeed, none of controls were displayed. However, this
is easy to fix with the layout strategies described in Chapter 3. At a minimum, to force the controls to be
displayed on larger screens, one must check the “Installed” checkbox of the wAnyhAny control property, as
shown in Figure 6-27. You can now re-run the tests or run the Persons app in the iPad simulator.

Figure 6-27. Enabling control visibility for devices of any screen size

Summary
In this chapter, we explored methods for automatic testing of Xamarin.iOS apps. We started by creating
unit tests of the C# code, and then we implemented automatic UI tests. The latter were run locally in
the simulator and on multiple physical iOS devices from the Xamarin Test Cloud. You can use all of the
presented methods to ensure the high quality of your apps on the very demanding mobile market. We will
use the unit testing approach we learned here to develop a client app that consumes and updates data from
a web service.

http://dx.doi.org/10.1007/978-1-4842-3132-6_3

143© Dawid Borycki 2018
D. Borycki, Beginning Xamarin Development for the Mac, https://doi.org/10.1007/978-1-4842-3132-6_7

CHAPTER 7

Consuming RESTful Web Services

Frequently, iOS apps constitute the mobile endpoint of a larger system. The mobile app retrieves some
data, like the weather forecast, news, or bank statements, from a remote web server using RESTful or REST
architecture and then displays this data to the user. The user can change or update parts of this data locally
and then transfer it to the server. The mobile client can also send requests to the web server; for instance,
to execute the money transfer. In this chapter, we will learn how to implement such a mobile client using
Xamarin.iOS.

We will use JSONPlaceholder (https://jsonplaceholder.typicode.com/) as the REST web service.
It provides several resources that you can use to test your mobile or web app. Here, I’ll use the Users
resource. It contains a collection of ten objects, each of which represents the hypothetical user object,
stored in the JSON format. To see this list, you can type the following URL in your web browser: https://
jsonplaceholder.typicode.com/users. You will quickly see that each user is represented by the JSON
object shown in Listing 7-1. This object contains several simple type properties, like identifier, name,
username, email, phone, and website. There are also two properties of complex types. These are address and
company and contain detailed information about the user’s address and associated company.

As shown in Figure 7-1, I use this data in the Users.MobileClient app to display the list of users in the
UITableView. Each table row will contain the user and company name. When you swipe each entry in the
list, two row actions will appear: Remove and Details. The first one will let you remove the particular item
from the Users resource. The second action will activate another view, which presents the user’s location
on the UIMapView as well as two text fields. These will enable you to change the user’s name and his or her
email address. To implement such a functionality, I utilize and combine many topics we learned in previous
chapters.

Although the JSONPlaceholder API does not allow you to actually update or remove items from the web
service, we can still use it to mimic real interactions with such a web service and update the local data store.

Listing 7-1. JSON Representation of User Object from the JSONPlaceholder

{
 "id": 5,
 "name": "Chelsey Dietrich",
 "username": "Kamren",
 "email": "Lucio_Hettinger@annie.ca",
 "address": {
 "street": "Skiles Walks",
 "suite": "Suite 351",
 "city": "Roscoeview",
 "zipcode": "33263",

www.allitebooks.com

http://dx.doi.org/https://doi.org/10.1007/978-1-4842-3132-6_7
https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/users
https://jsonplaceholder.typicode.com/users
http://www.allitebooks.org

Chapter 7 ■ Consuming restful Web serviCes

144

 "geo": {
 "lat": "-31.8129",
 "lng": "62.5342"
 }
 },
 "phone": "(254)954-1289",
 "website": "demarco.info",
 "company": {
 "name": "Keebler LLC",
 "catchPhrase": "User-centric fault-tolerant solution",
 "bs": "revolutionize end-to-end systems"
 }
}

Figure 7-1. The Users.MobileClient app

Chapter 7 ■ Consuming restful Web serviCes

145

REST Service Client
To implement the Users.MobileClient app, I start by creating the new iOS project using the Single View App
template. Then, I add two dependencies, which I will use to communicate with the REST API over the HTTP:

•	 System.Net.Http, which provides the implementation of the HttpClient class,
which I use to communicate with the REST API

•	 Newtonsoft.Json or Json.NET NuGet package, which implements several classes
and methods used to serialize and deserialize JSON objects. More specifically, with
this package you can almost automatically map the response received from the web
service to the C# object or collection of such objects.

To reference the System.Net.Http assembly, I right-click the References node of the Users.MobileClient
app and choose “Edit References,” which opens the window shown in Figure 7-2. Subsequently, on the All
tab, I check “System.Net.Http.”

Figure 7-2. Adding a reference to System.Net.Http

I install the Newtonsoft.Json NuGet package using the Add Packages window, in which I type
Newtonsoft.Json (Figure 7-3). Then, I check the first item on the list of packages and click the Add Package
button.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7 ■ Consuming restful Web serviCes

146

Given the project and all dependencies are ready, under the Users.MobileClient project, I create the
new folder, Helpers, where I add a file, UsersServiceHelper.cs, which stores the static class of the same
name. This class, UsersServiceHelper, is used to send requests to the REST API. As Listing 7-2 shows,
UsersServiceHelper implements a static constructor that creates the HttpClient class instance. To that
end, I use the parameterless constructor of the HttpClient and set its BaseAddress property to the URL of
the REST API (Users resource from JSONPlaceholder). Once this is done, you can start sending requests to
the REST API using the appropriate methods from the HttpClient class instance. These methods implement
corresponding REST verbs. For example, to delete the user you use the DeleteAsync method (Listing 7-3).

Listing 7-2. A Constructor of the UsersServiceHelper Class

private static readonly HttpClient httpClient;

static UsersServiceHelper()
{
 httpClient = new HttpClient()
 {
 BaseAddress = new Uri("http://jsonplaceholder.typicode.com/users/")
 };
}

Each particular method of the HttpClient class implementing the HTTP requests returns an object
of type HttpResponseMessage. The latter, as its name suggests, is an abstract representation of the web
server response. So, to check the status of the request and to obtain data returned from the server, you read
properties of the HttpResponseMessage. In Listing 7-3, I showed how to check the HTTP status code by
accessing the StatusCode property. This property is of type HttpStatusCode enumeration and contains all
possible HTTP status codes. To obtain the actual data received from the web service, you use the Content

Figure 7-3. Installing the Newtonsoft.Json aka Json.NET NuGet package

Chapter 7 ■ Consuming restful Web serviCes

147

property of type HttpContent. This class represents the body of the HTTP message and has several methods
that enable you to read and convert the body to specific formats: string (ReadAsStringAsync method), byte
array (ReadAsByteArray async), or stream (ReadAsStreamAsync).

Listing 7-3. Deleting the User

public static async Task Delete(int userId)
{
 var response = await httpClient.DeleteAsync($"{userId}");

 CheckStatusCode(response.StatusCode);
}

private static void CheckStatusCode(HttpStatusCode statusCode)
{
 if(statusCode != HttpStatusCode.OK)
 {
 throw new Exception($"Unexpected status code: {statusCode}");
 }
}

In Listing 7-4, which shows the Get method of the UsersServiceHelper class, I use the
ReadAsStringAsync method because data returned from the web service is written in the JSON
format (Listing 7-4). Given that string, I deserialize it to the collection of User .NET objects using the
DeserializeObject static method of the JsonConvert class. The latter class comes from Newtonsoft.Json
and is the main class that you use to convert between JSON and .NET objects.

Listing 7-4. Retrieving the List of Users from the REST API

public static async Task<IEnumerable<User>> Get()
{
 var response = await httpClient.GetAsync(string.Empty);

 CheckStatusCode(response.StatusCode);

 var jsonString = await response.Content.ReadAsStringAsync();

 return JsonConvert.DeserializeObject<IEnumerable<User>>(jsonString);
}

Note that in order to convert .NET and C# objects properly you need to implement C# classes whose
properties correspond to the appropriate keys in the JSON objects. To make things easier, you can use one
of the available online services that generate C# classes based on the JSON object. Here, I use the https://
jsonutils.com website, where I paste the JSON object from Listing 7-1 into the JSON text or URL text areas,
select C# language, and check “Pascal Case.” After pressing the Submit button, the website generates four
classes: Geo, Address, Company, and Example. I renamed the latter class to User and then stored all of these
classes in separate files under the Models folder, which I add to the Users.MobileClient project.

As Listing 7-5 shows, the definition of the User class contains eight auto-implemented public properties
that directly correspond to the keys of the JSON object (Listing 7-1). Properties of complex types (Address
and Company) are represented by classes of the same names. Their structure is similar to the User class.
Namely, they contain appropriate auto-implemented public properties. So, I do not list them here. You can
find them in the companion code (Chapter_07/Users.MobileClient/Models).

www.allitebooks.com

https://jsonutils.com/
https://jsonutils.com/
http://www.allitebooks.org

Chapter 7 ■ Consuming restful Web serviCes

148

Listing 7-5. A Definition of the User Class

public class User
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string Username { get; set; }
 public string Email { get; set; }
 public Address Address { get; set; }
 public string Phone { get; set; }
 public string Website { get; set; }
 public Company Company { get; set; }
}

The only modification I made to these autogenerated classes was to extend the Geo class by
another method, ToCLLocationCoordinate2D (Listing 7-6), which converts instances of the Geo class to
CLLocationCoordiante2D. I will use this method later to display the user’s location on the native map.

Listing 7-6. A Definition of the Geo Class Is Extended by One Public Method

using CoreLocation;

namespace Users.MobileClient.Models
{
 public class Geo
 {
 public double Lat { get; set; }
 public double Lng { get; set; }

 public CLLocationCoordinate2D ToCLLocationCoordinate2D()
 {
 return new CLLocationCoordinate2D(Lat, Lng);
 }
 }
}

Updating Data
You already know how to delete and retrieve the list of objects from the REST API. You can also update
users or add new ones with the PutAsync and PostAsync methods of the HttpClient class, respectively. In
both cases, you proceed similarly, so I will only discuss a method of updating user data. Listing 7-7 contains
the Update method of the UsersServiceClientHelper class. This method accepts a single argument, an
instance of the User class, which contains updated user data. This data is sent to the REST API using the
PutAsync method.

Before you can send updated data to the web server, you need to convert or serialize the C# to the
JSON object. You do so by using the SerializeObject static method of the JsonConvert class. Then, you
send the identifier of the user to be updated and the serialized object. You also need to set the format of
the transmitted data: string, byte array, or stream. To that end, you use one of the classes StringContent,
ByteArrayContent, or StreamContent, respectively. In Listing 7-7, I show how to use the first of these, which
I instantiate with the string returned by the JsonConvert.SerializeObject method. I then put the method
from Listing 7-7 in the UsersServiceHelper class.

Chapter 7 ■ Consuming restful Web serviCes

149

Listing 7-7. Updating User Data

public static async Task Update(User user)
{
 var userJson = JsonConvert.SerializeObject(user);

 var response = await httpClient.PutAsync($"{user.Id}",
 new StringContent(userJson));

 CheckStatusCode(response.StatusCode);
}

Getting a Specific User
To get a single user, you need to supplement the GET request with a user identifier. This can be done in a
way similar to the case of the Update method from Listing 7-7. In Listing 7-8, I show a complete example
of the overloaded UsersServiceClientHelper.Get method, which aims at receiving individual users
distinguished by identifiers. It works similarly to the Get method from Listing 7-4 but retrieves only a single
User class instance representing the user of a given ID.

Listing 7-8. Retrieving Users by ID

public static async Task<User> Get(int userId)
{
 var response = await httpClient.GetAsync($"{userId}");

 CheckStatusCode(response.StatusCode);

 var jsonString = await response.Content.ReadAsStringAsync();

 return JsonConvert.DeserializeObject<User>(jsonString);
}

Testing the REST Client
Now, when we have the REST client class implemented we can verify its functionality. Because we
already know how to write unit tests, we can test the client class automatically. To create unit tests for
UsersServiceClientHelper, I start with a new Unit Test App template and change its name to Users.
MobileClient.Tests. Then, I edit references such that Users.MobileClient.Tests references the Users.
MobileClient project. Subsequently, under the test app, I add a new file, UsersServiceHelperTests.cs, in
which I import the following namespaces: System.Linq, System.Threading.Tasks, NUnit.Framework, and
Users.MobileClient.Helpers. Then, I declare the UsersServiceHelperTests class as shown in Listing 7-9.

Listing 7-9. A Test Class for the UsersServiceHelper

[TestFixture]
public class UsersServiceHelperTests

www.allitebooks.com

http://www.allitebooks.org

Chapter 7 ■ Consuming restful Web serviCes

150

To define the UsersServiceHelperTests class, I first create two private members, shown in Listing 7-10.
The first one, UserId, is a field that stores a default user identifier I will use to validate the Get and Update
methods. The second one is a private function, GetUserCount, which calculates the number of elements in a
collection of users received from the REST API.

Listing 7-10. Private Members of UsersServiceHelperTest

private const int UserId = 5;

private async Task<int> GetUserCount()
{
 return (await UsersServiceHelper.Get()).Count();
}

Given the preceding private members, I write the first test method, VerifyGet, which validates the
number of elements returned by the REST API (Listing 7-11). From the JSONPlaceholder website, I know
that the Users resource has ten elements. So, in the VerifyGet method, I compare this expected value to that
returned by the GetUserCount helper from Listing 7-10.

Listing 7-11. Testing a Get Method by Verifying the Number of Returned Elements

[Test]
public async void VerifyGet()
{
 // Arrange
 const int expectedDataCount = 10;

 // Act and Assert
 Assert.AreEqual(expectedDataCount, await GetUserCount());
}

Next, I implement another test method, VerifyGetById, shown in Listing 7-12. This function checks
whether two selected public properties of the user retrieved from the REST API possess expected values.
Here, I only check the Name and Email properties of the user with identifier 5.

Listing 7-12. Validating Selected Properties of the User Object Retrieved from the REST API

[Test]
public async void VerifyGetById()
{
 // Arrange
 const string expectedName = "Chelsey Dietrich";
 const string expectedEmail = "Lucio_Hettinger@annie.ca";

 // Act
 var user = await UsersServiceHelper.Get(UserId);

 // Assert
 Assert.AreEqual(expectedName, user.Name);
 Assert.AreEqual(expectedEmail, user.Email);
}

Chapter 7 ■ Consuming restful Web serviCes

151

After writing test methods for the Get functions of the UsersServiceHelper, I implement another
two tests, which are shown in Listings 7-13 and 7-14. The first one, VerifyDelete, checks if the number of
elements in the Users resource will be decremented after removing one item. To that end, I first read the
number of users and store it in the currentDataCount variable. Then, I delete the user of ID 5 and get the
user count again. Finally, I check if the actual user count was indeed decremented.

Listing 7-13. Checking if the Delete Method Reduces the Number of Users in the Web Service

[Test]
public async void VerifyDelete()
{
 // Arrange
 var currentDataCount = await GetUserCount();
 var expectedDataCount = currentDataCount - 1;

 // Act
 await UsersServiceHelper.Delete(UserId);
 var actualDataCount = await GetUserCount();

 // Assert
 Assert.AreEqual(expectedDataCount, actualDataCount);
}

The second method, VerifyUpdate, is used to check whether the UsersServiceHelper.Update
method changes the properties of the selected user object in the web service. So, I first get the user of
ID 5 and then change its Name property to that stored in the expectedName constant. Then, I invoke the
UsersServiceHelper.Update method to request that the web service update the selected user, and then
I retrieve the data of this object. Given that user, I read its Name property to see if it was indeed changed as
expected. If not, an appropriate assertion will be raised.

Listing 7-14. Validating an Update Method by Checking if It Indeed Changes the Name of the User in the
Web Service

[Test]
public async void VerifyUpdate()
{
 // Arrange
 const string expectedName = "New name";
 var user = await UsersServiceHelper.Get(UserId);

 // Act
 // Update name of the user and then get the user again from the API
 user.Name = expectedName;
 await UsersServiceHelper.Update(user);
 user = await UsersServiceHelper.Get(UserId);

 // Assert
 // Check if the name of user was indeed updated
 Assert.AreEqual(expectedName, user.Name);
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 7 ■ Consuming restful Web serviCes

152

Given the preceding test methods, I run the Users.MobileService.Tests app in the simulator, and then
I execute all four tests. Figure 7-4 features the test app running and the results of our unit tests. We see that
only two test methods, VerifyGet and VerifyGetById, were successful. This is because the DELETE and
PUT HTTP requests sent to the JSONPlaceholder REST API were faked. The service only returns the OK
HTTP status code but does not modify the underlying data. Hence, this functionality will also not work in
the mobile client we are going to write. However, we still can modify the data locally and assume that it is
correctly updated in the web service.

Figure 7-4. Unit testing the UsersServiceHelper class

Users Repository
Given the communication layer is ready, we can now use it in the Users.MobileClient app. As shown in
Figure 7-1, Users.MobileClient has two views. Both of them utilize the class implementing a web service
client. The first view displays a list of users in the UITableView, while the second view presents more
detailed information about the user. Accordingly, there are two view controllers, which will interact with the
UsersServiceHelper class. Therefore, I made this class static so it can be easily accessed from various app
components. Another approach would be to use the singleton design pattern for the UsersServiceHelper.
I’ll show you later how to do it with respect to another class, UsersRepository.

There are two more things that should be taken into account when developing a mobile REST API
client. First is the local store of the data retrieved from the web service. Second is the data synchronization
between the mobile app and the web service. To reduce the number of requests sent to the web service, you
typically retrieve the data to a local store when the app starts and then synchronize it with the web service
when needed. In advanced scenarios, you perform this synchronization in the background using dedicated
worker threads or native background mechanisms.

Here, to implement a local data store or users repository, I create another class, UsersRepository,
which I save in the UsersRepository.cs file under the Model folder (see companion code, Chapter_07/
Users.MobileClient/Models). This class serves as the local data store that is synchronized with the remote
collection of users. Since UsersRepository will be accessed in several different places of the code and

Chapter 7 ■ Consuming restful Web serviCes

153

needs to present the same data, I implement this class with a singleton design pattern. This means that
UsersRepository will have only one instance, which can be accessed from different places in the source
code.

Listing 7-15 shows a fragment of the UsersRepository class, including the following four members:

•	 Users – a public property that gives other classes access to the collection of users
retrieved from the web service

•	 instance – a private static field that stores a reference to the instance of the
UsersRepository class

•	 GetInstance – a public static method that instantiates the UsersRepository class
and saves a reference to it in the instance member. GetInstance also retrieves
the list of users from the web service. However, this happens only once, when the
instance field is created for the first time. All subsequent calls to the GetInstance
method will return a reference to the UsersRepository object

•	 UsersRepository – a private constructor that prevents the creation of the class from
outside. So, callers can only access the privately created instance by invoking the
GetInstance method

Listing 7-15. Selected Fragments of the UsersRepository Class

public class UsersRepository
{
 public List<User> Users { get; private set; }

 private static UsersRepository instance;

 public static async Task<UsersRepository> GetInstance()
 {
 // Create and initialize an instance only once
 if (instance == null)
 {
 instance = instance ?? new UsersRepository();

 instance.Users = (await UsersServiceHelper.Get()).ToList();
 }

 return instance;
 }

 private UsersRepository()
 {
 // Make default constructor private
 // so the class can be instantiated
 // with the GetInstance method only
 }

 // Definitions of Delete and Update methods
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 7 ■ Consuming restful Web serviCes

154

Subsequently, I extend a definition of the UsersRepository class by three public methods (Listing 7-16):

•	 GetUserById – retrieves the user from the local data store by user identifier

•	 Delete – removes the user of the given identifier from the local store and from the
remote web service

•	 Update – updates the user in the local store and in the service

Note that in Listing 7-16 the definitions of the Delete and Update methods are surrounded by the
#pragma warning preprocessor directives. This is done to suppress a CS4014 warning, which says: Because
this call is not awaited, execution of the current method continues before the call is completed. Consider
applying the ‘await’ operator to the result of the call. Here, I intentionally omit the await operator because I
do not want to wait for these methods to complete. Instead, I send requests in parallel to speed up updates
of the UI.

Listing 7-16. Accessing Data from a Local Store and Data Synchronization with the Remote Web Service

public User GetUserById(int userId)
{
 return Users.Find(u => u.Id == userId);
}

#pragma warning disable CS4014

public void Delete(int userId)
{
 if (UserExists(userId))
 {
 var userToDelete = GetById(userId);

 Users.Remove(userToDelete);

 UsersServiceHelper.Delete(userId);
 };
}

public void Update(User user)
{
 if (UserExists(user.Id))
 {
 UsersServiceHelper.Update(user);
 };
}

#pragma warning restore CS4014

private bool UserExists(int userId)
{
 return Users.Exists(u => u.Id == userId);
}

Chapter 7 ■ Consuming restful Web serviCes

155

Presenting a List of Users
Given the preceding components, I can create the first view, which will present the list of users in a
table. To this end, I start by adding to the project another folder, TableSources, where I create a new file,
UsersTableSource.cs. It stores a definition of the class UsersTableSource, implementing a source for the
users table.

As Listing 7-17 shows, UsersTableSource derives from the UITableViewSource class as does any other
class implementing the data source for the UITableView (see Chapter 3). Then, UsersTableSource has
two public properties, which store references to the parent view controller (used for navigation) and users
repository, respectively. As explained in Chapter 3, UsersTableSource has to override several base methods.
In particular, it should override the GetCell method, which is used to display elements of the list. Here,
this method first retrieves an instance of the User class from the repository. This object contains the user
data to be displayed in a given row. The row index path is related to the user identifier, so I use this path to
retrieve users from the repository using the GetById method (Listing 7-16). To convert a row index path to
a user identifier, I utilize a helper method, GetUserId, seen in Listing 7-17. Given the User class instance, I
create or reuse the cell of style UITableViewCellStyle.Value1. Finally, I configure the Text properties of
the TextLabel and DetailTextLabel such that they display the name of the user and the name of his or her
company (refer back to Figure 7-1).

Listing 7-17. A Fragment of UsersTableSource Class

public class UsersTableSource : UITableViewSource
{
 public UIViewController ParentViewController { get; set; }
 public UsersRepository UsersRepository { get; set; }

 private const string cellId = "UserCell";

 public override UITableViewCell GetCell(
 UITableView tableView, NSIndexPath indexPath)
 {
 // Get item to display
 var user = UsersRepository.GetById(GetUserId(indexPath));

 // Try to reuse a cell before creating a new one
 var cell = tableView.DequeueReusableCell(cellId)
 ?? new UITableViewCell(UITableViewCellStyle.Value1, cellId);

 // Configure cell properties
 cell.TextLabel.Text = user.Name;
 cell.DetailTextLabel.Text = user.Company.Name;

 return cell;
 }

 private int GetUserId(NSIndexPath indexPath)
 {
 return UsersRepository.Users[indexPath.Row].Id;
 }

 // The rest of class definition
}

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-3132-6_3
http://dx.doi.org/10.1007/978-1-4842-3132-6_3
http://www.allitebooks.org

Chapter 7 ■ Consuming restful Web serviCes

156

I now add row actions representing two buttons, which appear when the user swipes an element in a
table (refer back to Figure 7-1). As Listing 7-18 shows, the first button has a Remove caption and will invoke the
DeleteUser method whenever user taps it. The second button has the Details caption and is used to present a
second view with user details and his or her location on the map using the DisplayUserDetails helper method.

Listing 7-18. Creating Row Actions

public override UITableViewRowAction[] EditActionsForRow(
 UITableView tableView, NSIndexPath indexPath)
{
 var removeButton = UITableViewRowAction.Create(
 UITableViewRowActionStyle.Destructive,
 "Remove",
 delegate
 {
 DeleteUser(tableView, indexPath);
 });

 var detailsButton = UITableViewRowAction.Create(
 UITableViewRowActionStyle.Normal,
 "Details",
 delegate
 {
 DisplayUserDetails(tableView, indexPath);
 });

 return new UITableViewRowAction[] { removeButton, detailsButton };
}

To delete the user, in the UsersTableSource class I implement a DeleteUser method, shown in
Listing 7-19. This function first removes the user from the repository, and then the item from the list.

Listing 7-19. Deleting the User

private void DeleteUser(UITableView tableView, NSIndexPath indexPath)
{
 UsersRepository.Delete(GetUserId(indexPath));

 tableView.DeleteRows(RowIndexToArray(indexPath),
 UITableViewRowAnimation.Automatic);
}

private NSIndexPath[] RowIndexToArray(NSIndexPath indexPath)
{
 return new NSIndexPath[] { indexPath };
}

A definition of the DisplayUserDetails method appears in Listing 7-20. This function instantiates the
UserDetailsViewController, which is associated with the second view shown on the right part of Figure 7-1.
Then, I use the User property of this view controller to pass the data for the current user from the first to the
second view. Finally, I perform a navigation to the second view with the PresentViewController method of
the UIViewController class. After the navigation is done, I reload the current row so the action buttons do not
appear when the app user navigates back to the first view.

Chapter 7 ■ Consuming restful Web serviCes

157

Listing 7-20. Displaying User Details

private void DisplayUserDetails(
 UITableView tableView, NSIndexPath indexPath)
{
 // Instantiate view controller
 var userDetailsViewController = ParentViewController.
 Storyboard.InstantiateViewController("UserDetailsViewController")
 as UserDetailsViewController;

 // Pass selected user
 userDetailsViewController.User =
 UsersRepository.GetById(GetUserId(indexPath));

 // Present view controller
 ParentViewController.PresentViewController(
 userDetailsViewController,
 true,
 () => ReloadRow(tableView, indexPath));
}

private void ReloadRow(UITableView tableView, NSIndexPath indexPath)
{
 var indexes = RowIndexToArray(indexPath);

 tableView.ReloadRows(indexes, UITableViewRowAnimation.None);
}

Now, when the table source is ready, I can use it to create the UITableView and display it in the first
app view. Before I do this, in the iOS designer, I use the properties of the view controller to set its class
to UsersListViewController, and then I remove the ViewController.cs file, as it is not necessary.
Subsequently, in the UsersListViewController, I declare the following private members (Listing 7-21):

•	 usersTable of type UITableView, which stores a reference to the table

•	 AddUsersTable, which creates and configures the table

•	 GetFrameWithVerticalMargin, a method that adds a constant top margin to the view
frame to save space for the iOS status bar

Listing 7-21. Creating a Table and Presenting a List of Users

private UITableView usersTable;

private async Task AddUsersTable()
{
 var usersTableSource = new UsersTableSource()
 {
 ParentViewController = this,
 UsersRepository = await UsersRepository.GetInstance()
 };

www.allitebooks.com

http://www.allitebooks.org

Chapter 7 ■ Consuming restful Web serviCes

158

 usersTable = new UITableView(GetFrameWithVerticalMargin(20))
 {
 Source = usersTableSource
 };

 Add(usersTable);
}

private CGRect GetFrameWithVerticalMargin(nfloat offset)
{
 var rect = View.Frame;

 rect.Y = offset;
 rect.Height -= offset;

 return rect;
}

Then, I modify the ViewDidLoad and ViewWillAppear view event handlers according to Listing 7-22.
Namely, I use ViewDidLoad to create and display a table, while in ViewWillAppear I reload the data in the
table so that it will include all eventual updates that the app user can make using the second view.

Listing 7-22. View Event Handlers of UsersListViewController

public override async void ViewDidLoad()
{
 base.ViewDidLoad();

 await AddUsersTable();
}

public override void ViewWillAppear(bool animated)
{
 base.ViewWillAppear(animated);

 usersTable?.ReloadData();
}

Displaying User Details
After ensuring the first view is ready, we can move forward and create the second view, which shows
user details. To this end, I use the iOS designer, where I drag from the toolbox a new view controller.
Subsequently, I set its class to UserDetailsViewController, and design its view, as shown in the right
part of Figure 7-1. I also change the names of selected controls in the view as follows:

•	 The name of the first text field is TextFieldName.

•	 The name of the second text field is TextFieldEmail.

•	 The name of the MKMapView control is MapViewAddress.

•	 The first button is named ButtonCancel.

•	 The second button is named ButtonUpdate.

Chapter 7 ■ Consuming restful Web serviCes

159

Once this is done, I implement the logic. First, in the UserDetailsViewController class, I declare one
public property, User, and two private fields (Listing 7-23). The property is used to pass the user data to
be displayed. The first field configures the region of the map, and the second field stores a reference to the
UsersRepository object.

Listing 7-23. A Fragment of the UserDetailsViewController Class

public partial class UserDetailsViewController : UIViewController
{
 public User User { get; set; }

 private const double spanDelta = 0.05d;

 private UsersRepository usersRepository;

 // Further class definition
}

Then, I implement the ViewDidLoad event handler as shown in Listing 7-24. Namely, I obtain the
instance of the UsersRepository class and then configure the map such that it can be scrolled and zoomed.

Listing 7-24. Obtaining an Instance of the UsersRepository and Map Configuration

public override async void ViewDidLoad()
{
 base.ViewDidLoad();

 usersRepository = await UsersRepository.GetInstance();

 MapViewAddress.ScrollEnabled = true;
 MapViewAddress.ZoomEnabled = true;
}

Given that this part is ready, I can display the user’s name, email address, and location in the view. I
use the ViewWillAppear view event handler (Listing 7-25). I extend the base implementation of this event
handler by two statements invoking the following methods: DisplayUserData and UpdateMap. As shown in
Listing 7-25, the first one is utilized to update the Text properties of text fields so that they present the name
and email address of the user. The second method, which I will discuss shortly, takes the user’s geolocation
and presents it on the map.

Listing 7-25. Displaying User Details

public override void ViewWillAppear(bool animated)
{
 base.ViewWillAppear(animated);

 DisplayUserData();

 UpdateMap(User.Address.Geo.ToCLLocationCoordinate2D());
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 7 ■ Consuming restful Web serviCes

160

private void DisplayUserData()
{
 TextFieldName.Text = User.Name;
 TextFieldEmail.Text = User.Email;
}

As a next step, I create TouchUpInside event handlers for two buttons and then implement them
according to Listing 7-26. The first event handler associated with ButtonCancel is used to navigate back to the
first view without making any changes to the user’s data, unlike the second event handler, which first updates
these data according to changes made by the app user (see UpdateUserData method from Listing 7-26).

Listing 7-26. TouchUpInside Event Handlers for Buttons

partial void ButtonCancel_TouchUpInside(UIButton sender)
{
 DismissViewController(true, null);
}

partial void ButtonUpdate_TouchUpInside(UIButton sender)
{
 UpdateUserData();

 ButtonCancel_TouchUpInside(sender);
}

private void UpdateUserData()
{
 User.Name = TextFieldName.Text;
 User.Email = TextFieldEmail.Text;

 usersRepository.Update(User);
}

Finally, I update the map view using a set of methods from Listing 7-27. I used similar methods
previously in Chapter 3. So, I do not repeat this discussion. The only new thing is the AddPin method,
which creates the pin annotation on the map.

Listing 7-27. Displaying User’s Geolocation on the Map

private void UpdateMap(CLLocationCoordinate2D centerCoordinate)
{
 AddPin(centerCoordinate);

 SetMapRegion(centerCoordinate);
}

private void SetMapRegion(CLLocationCoordinate2D centerCoordinate)
{
 var span = new MKCoordinateSpan(spanDelta, spanDelta);

 var region = new MKCoordinateRegion(centerCoordinate, span);

http://dx.doi.org/10.1007/978-1-4842-3132-6_3

Chapter 7 ■ Consuming restful Web serviCes

161

 MapViewAddress.SetRegion(region, false);
}

private void AddPin(CLLocationCoordinate2D centerCoordinate)
{
 var pin = new PinMapAnnotation(centerCoordinate, User.Name);

 MapViewAddress.AddAnnotation(pin);
}

To create an annotation, you first implement a class deriving from the MKAnnotation and then add
instances of your class to the map using the AddAnnotation method of the MKMapView class instance (refer
back to the AddPin method from Listing 7-27). Listing 7-28 shows a full definition of the PinMapAnnotation
class, which I use to create a simple pin annotation. PinMapAnnotation has two private fields: coordinate and
title. The first one represents the pin location, while the other is a title displayed in the popup that appears
when you tap the pin. There are also three methods associated with these fields. These methods, which are
derived from the base class, are the following: Coordinate, SetCoordinate, and Title. The first two methods
are used to get and set coordinates, while the last method is used to get the title value. The last element of
the PinMapAnnotation is the class constructor, which accepts two arguments. Their values are stored in the
appropriate private members of the class.

Listing 7-28. Implementation of the Pin Map Annotation

public class PinMapAnnotation : MKAnnotation
{
 private CLLocationCoordinate2D coordinate;
 private readonly string title;

 public override CLLocationCoordinate2D Coordinate
 {
 get => coordinate;
 }

 public override void SetCoordinate(CLLocationCoordinate2D value)
 {
 coordinate = value;
 }

 public override string Title
 {
 get => title;
 }

 public PinMapAnnotation(CLLocationCoordinate2D coordinate, string title)
 {
 this.coordinate = coordinate;
 this.title = title;
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 7 ■ Consuming restful Web serviCes

162

Now, you can compile and execute the app in the simulator. You will quickly see the first view, which
presents the list of users. You can swipe each element to activate row actions. Use them to either update or
remove users.

Summary
In this chapter, we learned how to implement a Xamarin.iOS app that interacts with a web service over
the HTTP protocol. To that end, we utilized the HttpClient class from the System.Net.Http assembly and
implemented a class to consume and send data from and to the remote RESTful service. We also created
a local data store, which was synchronized with remote resources. Subsequently, we created unit tests to
automatically validate the correctness of our implementations. Finally, we created the app, which displays
information retrieved from the remote service. Because the HttpClient class is also available for other
platforms, including Universal Windows Platform and Android.iOS, we could also use techniques presented
here to develop REST API clients for those platforms. This chapter ends our exciting adventure with iOS
apps. In the next chapter, we will learn how to create apps for a wearable Apple Watch platform.

163© Dawid Borycki 2018
D. Borycki, Beginning Xamarin Development for the Mac, https://doi.org/10.1007/978-1-4842-3132-6_8

CHAPTER 8

watchOS

Apple Watch is a smartwatch equipped with multiple sensors supporting health and activity data tracking.
Moreover, Apple Watch contains communication interfaces, making it a wearable endpoint of the iOS
device. The smartwatch becomes your best friend when riding a bike, when at an important meeting, or
when standing on a crowded bus. In such situations, you cannot pull out the phone. Instead, you can use
your Apple Watch to quickly check your schedule, reply to incoming messages, or glance at the map to see
route directions.

Apple Watch is controlled by the dedicated operating system watchOS. There are several generations of
this OS. The first one, watch OS 1, is already deprecated, and new solutions should target at least watchOS 2.
When I was writing this chapter, Visual Studio for Mac and Xamarin.iOS were supporting watchOS 2
and above.

You can develop custom apps for watchOS using the dedicated SDK. In practice, you do this quite
similarly to how you develop iOS apps. However, there is a difference between the watchOS and iOS; namely,
watch apps comprise two bundles. The first one is the actual watch app, which contains the user interfaces.
The other bundle, watch or WatchKit extension, implements a logic controlling the UI. So, most of the time
you modify the storyboard of the watch app and implement logic by modifying the definitions of classes
representing controllers that are associated with the UI. This is done using the WatchKit framework, which is
a set of classes that helps you control watchOS app.

In this chapter, I will guide you through this process starting from the ground up. We will first create the
project and then analyze its structure, learning about the most important features of watchOS apps.

Creating the Project
Every watchOS app has an associated iOS app. Therefore, to implement the first watchOS solution, I start by
creating the parent app, HelloWatchKit, using Single View App iOS project template. I set the target version
to iOS 11.0. Then, I create the actual watchOS app with the WatchKit App project template. The latter is
available under the watchOS group (Figure 8-1). After choosing a template, I press the Next button, which
activates another window in which, similar to the iOS case, you can configure your new watchOS app.

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3132-6_8
http://www.allitebooks.org

Chapter 8 ■ watChOS

164

As Figure 8-2 shows, to configure the watchOS app you specify the following attributes:

•	 Project – which indicates the parent iOS project. Here, I set it to HelloWatchKit.

•	 App Name – I set it to Watch. When typing the name of your watch app, keep in
mind that it will be preceded by the name of your parent iOS app. For instance,
for HelloWatchKit, watchOS projects will be named HelloWatchKit.Watch and
HelloWatchKit.WatchExtension. As we will quickly see, the first one defines the
UI of the watch app and the latter contains associated logic.

•	 Target – the minimum watchOS version that your app will support. I set it to
watchOS 2.0, which is officially the minimum watchOS version available.

•	 Scenes – a list of scenes for your watchOS app. Here, I checked all possible scenes
and will discuss them later in this chapter.

Figure 8-1. A list of project templates for creating watchOS apps

Figure 8-2. Configuring the watchOS app such that it is associated with the HelloWatchKit iOS parent app

Chapter 8 ■ watChOS

165

After creating the project, you will see that the whole solution comprises three projects, as follows:

•	 HelloWatchKit – the parent iOS app. This is the only app that your watchOS app can
communicate with. This project references HelloWatchKit.Watch.

•	 HelloWatchKit.Watch – a bundle that contains storyboards for the watchOS app and
references HelloWatchKit.WatchExtension.

•	 HelloWatchKit.WatchExtension – a bundle that stores logic (the app’s code) and
resources.

Since we already know the structure of the iOS app, let’s briefly investigate the last two bundles.

Watch App Bundle
A quick glance at HelloWatchKit.Watch reveals that its structure is composed of three files. There are two
property lists (Info and Entitlements) and the Interface.storyboard. After opening the latter in the iOS
designer, you will see that it contains four scenes. Similar to the iOS case, these scenes represent views with
content. The number of scenes depends on what we configured in Figure 8-2. Therefore, apart from the
initial scene, we have notification and glance scenes.

Once in the iOS designer (Figure 8-3), you can visually design each scene by dragging controls from the
toolbox. Note that the list of available controls is different than what we saw when working with iOS apps.
The toolbox now contains controls that are tailored to the physical limitations of the Apple Watch.

In the watchOS app, controllers associated with views are defined as interface controllers instead
of view controllers as in iOS. Each scene has an associated interface controller, which is defined in the
HelloWatchKit.WatchExtension and, as we will quickly see, derives from the WKInterfaceController class
of the WatchKit. WKInterfaceController is the base class for all interface controllers. This class is the
watch counterpart of the UIViewController from the iOS app. However, unlike the UIViewController, the
WKInterfaceController does not directly manage any views. Instead, it remotely (from a different bundle)
interfaces with and controls the behavior of the storyboard defined in the Watch bundle.

Figure 8-3. A default storyboard of the watchOS app

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ watChOS

166

Watch Extension
The watch extension bundle is implemented within HelloWatchKit.WatchExtension. If you expand this
project in the Solution pad, you will quickly see that it contains several files that implement interface
controllers. This file set includes the following items:

•	 InterfaceController.cs – This file stores a definition of the InterfaceController
class. The latter implements the logic associated with the default or initial scene of
the HelloWatchKit.Watch app. Therefore, InterfaceController is analogous to the
default ViewController we used while developing iOS apps.

•	 NotificationController.cs – This contains a definition of the
NotificationController, which manages notifications.

•	 ComplicationController.cs – This stores a definition of the
ComplicationController used to define small visual elements (complications) that
are shown directly on the watch face.

•	 GlanceController.cs – This contains a definition of the GlanceController class,
which is used to control the glance scene.

There is also one other important file, ExtensionDelegate.cs. It stores a definition of the
ExtensionDelegate class, which is somewhat analogous to the AppDelegate class used by the iOS apps.
I will tell you later how you can utilize the preceding classes while developing apps for the watchOS.

Hello, Watch!
Let’s now use the watch and watch extension bundles to implement a custom timer, as shown in Figure 8-4.
To this end, I first open the Watch app bundle project and modify the first scene by adding a label. I then set
the label name to LabelTime and center it vertically and horizontally by choosing the center option from the
Horizontal and Vertical Alignment drop-down lists. They are located under the View group.

Figure 8-4. A view of the watchOS app

Chapter 8 ■ watChOS

167

Subsequently, I go to the WatchExtension bundle and edit InterfaceController.cs. I first import
the System.Timers namespace and then extend a definition of the InterfaceController class such that a
current time will be presented in the label. Therefore, I will repeatedly obtain the current system time and
display it in the label. To implement such a functionality, you typically use the System.Timers.Timer class. It
implements a mechanism, which lets you execute a method at specified intervals. You specify the interval by
setting the Interval property of the Timer class instance. Once this is done and the timer is started (Start
method), it will raise an Elapsed event. To execute your custom logic, all you need to do is handle that event.
Because this event is invoked on the UI thread, you do not need to worry about thread safety when accessing
visual controls from the Timer.Elapsed event handler, as discussed in Chapter 3.

In Listing 8-1, I show one private field and three private methods, which I use to implement the digital
watch. The first function, ConfigureTimer, is used to create an instance of the Timer class, which is stored in
the Timer field. Here, the Timer class is used to repeatedly execute a DisplayCurrentTime method at one-
second intervals. This method reads and formats the current time and then displays it in the label with the
SetText method. In Listing 8-1, I also include a method for starting and stopping the timer (UpdateTimer).

Listing 8-1. Using a Timer to Present Current Time

private Timer timer;

private void ConfigureTimer()
{
 if(timer == null)
 {
 timer = new Timer();

 timer.Elapsed += (sender, e) =>
 {
 DisplayCurrentTime();
 };

 timer.Interval = 1000;
 }
}

private void DisplayCurrentTime()
{
 var time = String.Format("{0:HH:mm:ss}", DateTime.Now);

 LabelTime.SetText(time);
}

private void UpdateTimer(bool start = true)
{
 if(start)
 {
 DisplayCurrentTime();
 timer.Start();
 }
 else
 {
 timer.Stop();
 }
}

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-3132-6_3
http://www.allitebooks.org

Chapter 8 ■ watChOS

168

I then use the ConfigureTimer and UpdateTimer methods in the view event handlers of
InterfaceController. By default, there are three such methods implemented: Awake, WillActivate,
and DidDeactivate. They override the base implementations of the corresponding methods from the
WKInterfaceController, and, similar to iOS, correspond to the view lifecycle. The first method, Awake, is
invoked by the runtime shortly after initializing the interface controller. So, you use this method to customize
the initialization process. Therefore, the Awake method is a good place to create and configure the timer.
Thus, as shown in Listing 8-2, I invoke the ConfigureTimer method there. Also, I use the SetTitle method
there, which changes the string displayed in the view header (see Figure 8-4).

Listing 8-2. Configuring a Timer

public override void Awake(NSObject context)
{
 base.Awake(context);

 SetTitle("Hello, watch!");

 ConfigureTimer();

 Console.WriteLine("{0} awake with context", this);
}

Once the timer is set up, I can start and stop it when the interface controller is about to become active
or inactive, respectively (Listing 8-3). Any attempts to update the interface controller when it is inactive are
ignored by the runtime.

Listing 8-3. Starting and Stopping a Timer

public override void WillActivate()
{
 UpdateTimer();

 Console.WriteLine("{0} will activate", this);
}

public override void DidDeactivate()
{
 UpdateTimer(false);

 Console.WriteLine("{0} did deactivate", this);
}

Now, you can run the watch app in one of the simulators. As shown in Figure 8-5, to choose the
simulator use the Debug Target drop-down list in Visual Studio. Here, I use Apple Watch Series 3 – 42 mm
watchOS 4.0. Also note that you have three possible options for how to execute the HelloWatchKit.Watch app.
Depending on this choice, a different interface controller will be used to initialize the app. The possible run
options include a default (HelloWatchKit.Watch), glance (HelloWatchKit.Watch – Glance), and notification
(HelloWatchKit.Watch – Notification) items. For now, choose a default one and run the app. Two simulators
will be started. The first iOS simulator runs in order to execute the parent iOS app. The second emulates the
paired Apple Watch and executes the watchOS app shown previously in Figure 8-4. Note that, depending on
the Apple Watch simulator you choose, a different iOS simulator will be used. Each Watch simulator is paired
with only one iPhone simulator. You can configure this pairing in the Xcode by going to the Hardware ➤
Device ➤ Manage Devices option from the Hardware menu of any simulator.

Chapter 8 ■ watChOS

169

Watch Simulator
After implementing and running the first watchOS app, it is a good time to stop and learn how to control
the Apple Watch simulator so we can test various app functionalities. The Apple Watch simulator can be
controlled in much the same way as the iPhone simulator. Specifically, when you turn on the simulator it
will present the screen shown in the top left corner of Figure 8-6. That is the watch face. You can change this
face by swiping left or right. Once in the watch face, you can tap one of complications (small icons shown
at the top or bottom of the screen). You can also go to the home screen by pressing SHIFT+COMMAND+H.
The home screen, shown in the top right corner of Figure 8-6, contains a series of circular icons representing
apps. The upper one is associated with the HelloWatchKit.Watch app we created. So, when you tap it, this
app becomes active. You can use the home screen to run any other app, like Settings, for instance (see
bottom left part of Figure 8-6). To switch between apps, you use the dock (bottom right part of Figure 8-6),
which you can activate in the simulator by pressing SHIFT+COMMAND+B or press the side button of the
Apple Watch simulator. Once the dock is shown, you can choose the app to activate (by swiping left or right)
or close it by swiping up and then pressing the Remove icon. A real Apple Watch is also equipped with the
digital crown, used to scroll between various options. To use the digital crown in the simulator, you use the
mouse scroll or appropriate gesture on your touchpad.

Figure 8-5. Choosing the Apple Watch simulator

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ watChOS

170

You can also personalize the Apple Watch from the paired iPhone. To do so, you use the Apple Watch
app on the parent device. Figure 8-7 shows an example of how to use Apple Watch app to change the
watch face.

Figure 8-6. A series of screenshots of the Apple Watch simulator

Chapter 8 ■ watChOS

171

View Lifecycle
After getting familiar with the Apple Watch simulator and the app structure, let’s go further and investigate
the view (or interface) controller lifecycle. As I mentioned previously, this lifecycle is accompanied by
several events you can customize with the appropriate view event handlers. These handlers are defined in
the WKInterfaceController class, so to implement custom logic you need to override them in the derived
class. To present an example, I modify the InterfaceController by importing the System.Diagnostics
namespace and implementing the DisplayInfo method from Listing 8-4. Then, I invoke this method in five
view event handlers (Listing 8-5): Awake, WillActivate, DidDeactivate, DidAppear, and WillDisappear.

Listing 8-4. Displaying the Name of the View Event

private void DisplayInfo(string eventName)
{
 Debug.WriteLine($"{this.Class.Name}, view event: {eventName}");
}

Figure 8-7. Configuring the watch from the associated iPhone

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ watChOS

172

Listing 8-5. Tracking the View Lifecycle

public override void Awake(NSObject context)
{
 base.Awake(context);

 SetTitle("Hello, watch!");

 ConfigureTimer();

 DisplayInfo("Awake");
}

public override void WillActivate()
{
 UpdateTimer();

 DisplayInfo("WillActivate");
}

public override void DidDeactivate()
{
 UpdateTimer(false);

 DisplayInfo("DidDeactivate");
}

public override void DidAppear()
{
 DisplayInfo("DidAppear");
}

public override void WillDisappear()
{
 DisplayInfo("WillDisappear");
}

To see when the preceding event handlers are invoked during the view lifecycle, I re-run the
HelloWatchKit.Watch app and open the application output (Figure 8-8). When the app is started, the
runtime invokes the following view event handlers sequentially: Awake, WillActivate, and DidAppear. This
means that the interface controller is first initialized and configured, then the view is activated and shown
on the screen of the smartwatch. Subsequently, I go to the home screen. As a result, the app is deactivated
and its view disappears. This is associated with five events: DidDeactivate, WillActivate, DidAppear,
WillDisappear, and DidDeactivate. We see that right after the app is deactivated it becomes active and
visible for a short while (WillActivate and DidAppear view events are raised). This is done only by watchOS
3.0 and above to take a snapshot of the current app state. The watchOS takes the app snapshot to present it
in the Dock. After the snapshot is taken, the view of the app becomes invisible (WillDisappear) and the app
is deactivated (DidDeactivate).

Chapter 8 ■ watChOS

173

App Lifecycle
You now know how to handle view event handlers. So, we can now learn how to implement custom
logic for handling the watchOS app lifecycle. To this end, you subclass the WKExtensionDelegate class.
In the HelloWatchKit.WatchExtension app we already have an ExtensionDelegate.cs file containing a
definition of the class deriving from WKExtensionDelegate. This class, ExtensionDelegate, serves a similar
purpose as AppDelegate (a subclass of the UIApplicationDelegate) in iOS apps. More specifically, you
use ExtensionDelegate to handle the app’s execution state changes using associated events. To show the
execution order of these events, I modify the ExtensionDelegate.cs file, where I first import the System.
Diagnostics namespace and then supplement a definition of the ExtensionDelegate class by the two
private methods from Listing 8-6. The first one, DisplayInfo, is used to write an event name to the
application output. The second one, IsEventSupported, is used to check the watchOS version. This is a
helper that I use to ensure that the specific event handlers can be utilized.

Listing 8-6. Outputting Event Name to the Application Output and Checking watchOS Version

private void DisplayInfo(string eventName)
{
 Debug.WriteLine($"App event: {eventName}");
}

private bool IsEventSupported()
{
 return WKInterfaceDevice.CurrentDevice.CheckSystemVersion(3, 0);
}

I then use the preceding methods to implement five app event handlers as shown in Listing 8-7.
Note that I check for watchOS version in two of them—ApplicationWillEnterForeground and
ApplicationDidEnterBackground—because they are only available in watchOS 3.0 or later. Otherwise, the
DisplayInfo will not be invoked for that two event handlers.

Figure 8-8. A view lifecycle

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ watChOS

174

Listing 8-7. Tracking the App Lifecycle

public override void ApplicationDidFinishLaunching()
{
 DisplayInfo("ApplicationDidFinishLaunching");
}

public override void ApplicationDidBecomeActive()
{
 DisplayInfo("ApplicationDidBecomeActive");
}

public override void ApplicationWillResignActive()
{
 DisplayInfo("ApplicationWillResignActive");
}

public override void ApplicationWillEnterForeground()
{
 if (IsEventSupported())
 {
 DisplayInfo("ApplicationWillEnterForeground");
 }
}

public override void ApplicationDidEnterBackground()
{
 if (IsEventSupported())
 {
 DisplayInfo("ApplicationDidEnterBackground");
 }
}

I now re-run the app and open the Application Output pad to see when the preceding event handlers
are invoked during the runtime. As shown in Figure 8-9, this output, in addition to the strings describing
view event handlers, contains entries about the app view lifecycle. We can see that two app events,
ApplicationDidFinishLaunching and ApplicationDidBecomeActive, are raised after initialization of the
interface controller (Awake view event handler). Then, the interface controller is activated and displayed.

Subsequently, I go to the home screen. As a result, the watch app becomes inactive and is put
into the background. This is accompanied by two app events, ApplicationWillResignActive and
ApplicationDidEnterBackground, respectively. After these app events, five view events are raised,
which we have analyzed already. Let’s now see what happens if we re-activate the app from the home
screen. This will cause watchOS to fire another two app events: ApplicationWillEnterForeground and
ApplicationDidBecomeActive. So, you now know the exact order of app and view events, which you can use
to write custom logic handling various states of your app and interface controllers.

Chapter 8 ■ watChOS

175

Text Input
Collecting user input from the wearable app is more challenging than doing so from the iOS app because
watches have much smaller screens and the user typically wants to interact quickly. For this reason,
WatchKit provides a dedicated text input controller that you use for gathering user input on watchOS. As
shown in Figure 8-10, this controller appears as a modal window and contains a predefined list of suggested
values. Additionally, depending on the controller configuration, you can collect user input as emoji, voice
command, or scribble.

Figure 8-10. Example appearance of the text input controller

Figure 8-9. Application Output of the HelloWatchKit.Watch app, presenting the order of raising the view and
app events by the runtime

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ watChOS

176

Listing 8-8. Collecting User Input with TextInputController

partial void ButtonInput_Activated()
{
 var colors = new string[]
 {
 "Red", "Green", "Blue", "Orange", "Purple"
 };

 PresentTextInputController(colors,
 WKTextInputMode.AllowEmoji, DisplayUserResponse);
}

To show how to use the text input controller, I modify the first scene defined under the HelloWatchKit.
Watch app. Namely, I add a separator, a button, and a label. I set their horizontal and vertical alignment
to center. Then, I change the name of the button and label to ButtonInput and LabelAnswer, respectively.
Finally, I double-click the button. This creates a default event handler, ButtonInput_Activated, which I
define as shown in Listing 8-8. In the ButtonInput_Activated event handler, I first create an array of strings,
which serves as the list of predefined inputs or suggestions in the text input controller. Then, I show this
controller to the user by invoking the PresentTextInputController method, which is implemented in the
WKInterfaceController class and accepts three arguments:

•	 suggestions – an array of strings with predefined items displayed in the modal
window

•	 inputMode – specifies the type of input described by one of the values declared in the
WKTextInputMode enumeration:

•	 AllowEmojiAnimated and AllowEmoji – indicate that either animated or non-
animated emojis are allowed, respectively

•	 Plain – indicates that emojis are not allowed

•	 completion – an action that is invoked after the user dismisses the controller

In Listing 8-8, I allow non-animated emojis and use a DisplayUserResponse action as the completion
handler. As Listing 8-9 shows, the DisplayUserResponse method displays the first item retrieved from the text
input controller and displays it in the label of name LabelAnswer. The text input controller returns a collection of
items selected by the user as an instance of the NSArray object, which is then provided to the completion handler.

Listing 8-9. Presenting an Item Chosen by the User

private void DisplayUserResponse(NSArray result)
{
 var answer = "No answer";

 if (result != null)
 {
 if (result.Count > 0)
 {
 answer = result.GetItem<NSObject>(0).ToString();
 }
 }

 LabelAnswer.SetText(answer);
}

Chapter 8 ■ watChOS

177

After re-running the app, you can press the button to activate the text input controller. It will look as
previously shown in Figure 8-10. Try to tap one of the suggested values (colors) or emoji. You will see that
the text input controller is dismissed and the selected value is displayed in the bottom label (Figure 8-11).

Force Touch and Navigation
Apple Watch is equipped with the Force Touch sensor, which detects how firmly you press the screen. Force
touch is also defined as an additional gesture. You can use it to extend the way your app interacts with the
user. In this section, we will learn how to use the force touch to activate a menu containing a list of city
names. After tapping the menu item, another interface controller will be presented. This controller will show
the geolocation of the selected city (Figure 8-12).

Figure 8-11. Displaying user input gathered with text input controller

Figure 8-12. Force touch gesture activates the menu, containing a list of cities. When you tap the item, another
view is displayed. This view displays the geocoordinates of selected city.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ watChOS

178

To implement this functionality, I open the Interface.storyboard, where I add a menu from the toolbox
onto the interface controller, representing a default scene. The menu appears in the Document Outline pad
under the Interface Controller item. I tap this entry, and then in the Properties pad I change the number of
items from 1 to 2. Consequently, two menu items are created. To configure them, I use the Properties pad,
where I set Title and Image properties under the Menu Item group as follows (Figure 8-13):

•	 New York and More for the first item

•	 San Francisco and Maybe for the second item

Then, for each item I declare action events, which are invoked when the user taps each menu item. To
that end, I use the Events tab of the Properties pad, where I type the method name and hit Enter (see right
part of Figure 8-13). Visual Studio then asks me to choose a place in the code to insert an empty definition of
the event handlers. I set the names of these event handlers to NewYorkItem_Tapped and SanFranciscoItem_
Tapped, respectively. Before I define these event handlers, I go back to the iOS designer, where I add the
new interface controller to the storyboard. Using the Properties pad of this controller, I change its class and
identifier to CityGeolocationController. Then, I supplement the view of this interface controller with three
labels. I center these labels vertically and horizontally and stack them as shown in Figure 8-12. Next, I set the
Text property of the first label to Geolocation: and update the names of the two other labels to LabelLat and
LabelLng.

Given the UI is now ready and configured, I can implement the logic. I start by adding a new
file, LocationHelper.cs, to the HelloWatchKit.WatchExtension project. In this new file, I import the
CoreLocation namespace and then define a static class, LocationHelper, and custom enumeration, City, as
in Listing 8-10.

Figure 8-13. Properties pad showing configuration of the first menu item

Chapter 8 ■ watChOS

179

Listing 8-10. A Definition of the LocationHelper Class and Custom Enumeration City

public static class LocationHelper
{
 public static CLLocation GetLocationForCity(City city)
 {
 CLLocation result = null;

 switch(city)
 {
 case City.NewYork:
 result = new CLLocation(40.7127837, -74.0059413);
 break;

 case City.SanFrancisco:
 default:
 result = new CLLocation(37.77493, -122.419416);
 break;
 }

 return result;
 }
}

public enum City
{
 NewYork, SanFrancisco
}

LocationHelper implements a single static method, GetLocationForCity, which accepts an argument
named city of type City. The latter is the enumeration defining the elements NewYork and SanFrancisco.
Depending on the city argument, GetLocationForCity will return an instance of the CoreLocation.
CLLocation class, which stores the geocoordinates of either New York or San Francisco. I obtained
geocoordinates from the Google Geocode API.

As a next step, I open the InterfaceController.cs file, where I modify the definition of the
InterfaceController class. First, I add the DisplayCityGeolocationController method seen in
Listing 8-11. This method obtains geocoordinates from the LocationHelper and then passes them to the
CityGeolocationController, which is initialized and presented with the PushController method. This
method accepts two arguments, as follows:

•	 name – specifies the name of the interface controller to display

•	 context – optional argument you use to pass an object to the target interface
controller

Here, I set the name to CityGeolocationController, and as a context I pass an instance of the
CCLocation class obtained from the LocationHelper.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ watChOS

180

Listing 8-11. Presenting the CityGeolocationController with Geocordinates to Be Displayed

private void DisplayCityGeolocationController(City city)
{
 var location = LocationHelper.GetLocationForCity(city);

 PushController("CityGeolocationController", location);
}

Then, I use the DisplayCityGeolocationController method to implement event handlers associated
with menu items, as shown in Listing 8-12. So, the new interface controller will be fed with different
geocoordinates, depending on the user’s choice.

Listing 8-12. A Context Is Passed to the CityGeolocationController

partial void NewYorkItem_Tapped()
{
 DisplayCityGeolocationController(City.NewYork);
}

partial void SanFranciscoItem_Tapped()
{
 DisplayCityGeolocationController(City.SanFrancisco);
}

Finally, I need to present geocoordinates. To that end, I modify the CityGeolocationController.cs
file, where I first import the CoreLocation namespace and then modify a definition of the
CityGeolocationController class (Listing 8-13). I supplement a default definition of this controller with
a private field, location, two view event handlers (Awake and WillActivate), and one private method,
GetLocation. The latter is used to obtain an instance of the CLLocation class from the context passed to the
interface controller and store the resulting object in the location field. To access the context, I use the Awake
view event handler, where I invoke the GetLocation method. Subsequently, when the view of the interface
controller is about to be presented to the user, I change the text displayed in the labels such that they present
latitude and longitude for the selected city.

To test the app, run it in the Apple Watch simulator. Then, change the touch pressure to deep press
(COMMAND+SHIFT+2) and hold the screen of the simulator for a short while. This enables the menu
shown previously in Figure 8-12. Now, change the touch pressure to shallow press (COMMAND+SHIFT+1)
and tap one of the items. The corresponding geocoordinates will be presented (right part of Figure 8-12).

You can now easily extend this example and add a Map control to the view of the
CityGeolocationController. Given the geocoordinate all you need to do is to set the map center and region
just as I showed you in Chapters 3 and 7.

Listing 8-13. Presenting Latitude and Longitude

public partial class CityGeolocationController : WKInterfaceController
{
 private CLLocation location;

 public CityGeolocationController(IntPtr handle) : base(handle)
 {
 }

http://dx.doi.org/10.1007/978-1-4842-3132-6_3
http://dx.doi.org/10.1007/978-1-4842-3132-6_7

Chapter 8 ■ watChOS

181

 public override void Awake(NSObject context)
 {
 base.Awake(context);

 GetLocation(context);
 }

 public override void WillActivate()
 {
 LabelLat.SetText(location.Coordinate.Latitude.ToString());
 LabelLng.SetText(location.Coordinate.Longitude.ToString());
 }

 private void GetLocation(NSObject context)
 {
 location = context as CLLocation;

 if (location == null)
 {
 location = LocationHelper.GetLocationForCity(
 City.SanFrancisco);
 }
 }
}

Notification Controller
Notifications implement a mechanism to present new information to the user when the app is not running.
Typically, remote notifications are sent to the mobile or wearable end-points from a dedicated push notification
service running in the cloud. Notifications can be also sent locally. In this section, we will learn how to create a
local notification in the parent iOS app. This notification will be automatically routed to the watchOS app when
the iPhone is locked. Starting from iOS 10, Apple introduced a new mechanism for raising notifications. This is
based on the UserNotifications API. An older API for raising local notifications (available for iOS 8 and iOS 9) is
implemented within the UILocalNotification class. In this section, I will use the UserNotifications API.

Figure 8-14. A UI of the HelloWatchKit iOS app and local notification in the iPhone X simulator

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ watChOS

182

To raise a local notification with this API, I use the HelloWatchKit iOS project. First, I open the
storyboard designer and modify the view associated with the default view controller to add a button.
I open the Properties pad of this button, where I set the button’s caption to Push notification and name
to ButtonLocalNotification (Figure 8-14). Afterward, I open the Events tab to create the handler for
the TouchUpInside event. Finally, I define this event handler according to Listing 8-14. This code requires
me to import the UserNotifications namespace.

Listing 8-14. Pushing a Local Notification

partial void ButtonLocalNotification_TouchUpInside(UIButton sender)
{
 // Notification content
 var notificationContent = new UNMutableNotificationContent()
 {
 Title = "Hello",
 Body = "Local notification was fired",
 };

 // Notification will be fired after 10 seconds
 var notificationTrigger = UNTimeIntervalNotificationTrigger.
 CreateTrigger(10, false);

 // Notification request
 var notificationRequest = UNNotificationRequest.FromIdentifier(
 Guid.NewGuid().ToString(), notificationContent, notificationTrigger);

 UNUserNotificationCenter.Current.AddNotificationRequest(
 notificationRequest, null);
}

As shown in Listing 8-14, to create a local notification you use the UNMutableNotificationContent
class. Here, I instantiate this class using a default constructor and then set the title and body of the
notification using the corresponding properties of the UNMutableNotificationContent class. Subsequently,
I request that the iOS fire the notification after ten seconds using UNTimeIntervalNotificationTrigger.
Finally, I add the notification to the user notification center using the UNUserNotificationCenter class.

To enable your app to send local notifications, you also need to obtain user permission. To do so, I
open the AppDelegate.cs file of the HelloWatchKit. Then, I import the UserNotifications namespace and
modify the FinishedLaunching event handler as shown in Listing 8-15.

You can now run the HelloWatchKit app in any iPhone simulator. The app will display an alert
requesting permission to send notifications. Accept this alert, then press the Push notification button and
lock the iPhone screen. To lock the simulator, I press COMMAND+L on the keyboard. After a short while, a
local notification will be presented (Figure 8-14).

Listing 8-15. Displaying a Notification in the watchOS App

public override bool FinishedLaunching(UIApplication application,
 NSDictionary launchOptions)
{
 UNUserNotificationCenter.Current.RequestAuthorization(
 UNAuthorizationOptions.Alert, (approved, error) => {
 });

 return true;
}

Chapter 8 ■ watChOS

183

To test the notification on the watchOS simulator, I run the HelloWatchKit.Watch app. Subsequently,
I go to the iPhone simulator, where I open the HelloWatchKit app. After the app is executed, I tap the Push
Notification button and then lock the iPhone screen to ensure that the local notification will be routed to
the Apple Watch. The notification will appear about ten seconds after tapping the button in the iOS app
(Figure 8-15).

Figure 8-16. A default notification controller

Figure 8-15. A local notification received by the watchOS app

Note that you can also execute the app such that it will present a notification controller on start.
To do so, choose a corresponding item in the debug target drop-down list; for example, HelloWatchKit.
Watch – Notification. You will quickly see the results shown in Figure 8-16. If you now open the Interface.
storyboard from the HelloWatchKit.Watch bundle, you will see that the view of the notification controller
does not reflect what you see on the simulator. This is because the visual appearance of the local
notification is determined by the payload declared in the PushNotificationPayload.json file of the
HelloWatchKit.Watch app.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ watChOS

184

ClockKit and Complication Controller
The ClockKit is a set of classes and objects that lets you create complications. These are visual elements
that appear on the watch face. Complications are somewhat similar to notifications and give the user
access to important data provided by your app but in a less obstructive way than notifications. To create
a complication, you use the complication controller, which was added to the Watch Extension bundle. A
definition of this controller is stored in the ComplicationController.cs file. If you open this file, you will
see that the ComplicationController class derives from CLKComplicationDataSource. The latter comes
from the ClockKit framework and is the key ingredient in implementing the complication. Specifically, you
override methods from the CLKComplicationDataSource in the derived class to control the appearance of
complications. At the very least, you need to implement these methods:

•	 GetPlaceholderTemplate – provides a visual template for your complication. The
result of this method is used by the ClockKit to present the sample appearance of the
complication to the user during configuration. You typically use fake data to create
such a template to give the user an idea of what your complication will look like. This
method is available for watchOS 2 only.

•	 GetLocalizableSampleTemplate – works like GetPlaceholderTemplate with a
difference being that it is used by the ClockKit to get a localizable (language-
dependent) complication template. This method is available for watchOS 3 or
later only.

•	 GetCurrentTimelineEntry – ClockKit uses this method to obtain the actual data for
the complication.

•	 GetSupportedTimeTravelDirections – This informs the ClockKit whether your app
can provide future or past data entries for the complication.

Because the preceding methods are invoked by the ClockKit, you return data to this framework
through callbacks. Namely, each of these methods accepts two arguments. The first one, complication,
is an instance of the CLKComplication class and is an abstract representation of the complication. The
other argument, handler, is the action (callback) that you invoke to pass data for a complication. You
typically use an instance of the CLKComplication class to infer the type of complication by reading its
Family property. Depending on this, you perform custom logic and finally invoke a handler, in which
you pass data for the ClockKit. Let’s see how this works in practice. To this end, I extend the definition of
the ComplicationController class from the HelloWatchKit.WatchExtension app by a method shown in
Listing 8-16.

Listing 8-16. Creating a Complication Template

private CLKComplicationTemplate CreateComplicationTemplate(
 CLKComplicationFamily complicationFamily, string complicationText)
{
 CLKComplicationTemplate template = null;

 switch (complicationFamily)
 {
 case CLKComplicationFamily.ModularSmall:
 template = new CLKComplicationTemplateModularSmallRingText()
 {
 TextProvider = CLKSimpleTextProvider.FromText(complicationText),
 FillFraction = 0.75f,

Chapter 8 ■ watChOS

185

 RingStyle = CLKComplicationRingStyle.Open
 };
 break;

 case CLKComplicationFamily.ModularLarge:
 template = new CLKComplicationTemplateModularLargeStandardBody()
 {
 HeaderTextProvider = CLKSimpleTextProvider.
 FromText("My Complication"),
 Body1TextProvider = CLKSimpleTextProvider.
 FromText(complicationText),
 Body2TextProvider = CLKTimeTextProvider.
 FromDate(NSDate.Now)
 };
 break;
 }

 return template;
}

The first method, CreateComplicationTemplate, is used to create two complications using
two separate templates—one for modular small and one for modular large complications. So,
CreateComplicationTemplate accepts two arguments. The first one, complicationFamily, specifies the
complication type and accepts one of the values defined in the CLKComplicationFamily enumeration. The
second argument, complicationText, holds a value to be displayed in the complication.

CreateComplicationTemplate supports only two complications: modular small and modular large. To
create the first one, I use CLKComplicationTemplateModularSmallRingText. This implements a visual style
for the complication in which text is enclosed by a progress ring. You control the appearance of this template
using the following properties of the CLKComplicationTemplateModularSmallRingText class instance:

•	 TextProvider – specifies a text to be displayed

•	 FillFraction – determines the percentage of ring to fill

•	 RingStyle – indicates the style of the ring, either open or closed

In Listing 8-16, I set the fill fraction to 75 percent and ring style to open. Consequently, the code from
Listing 8-16 will generate the modular small complication shown in Figure 8-17.

Figure 8-17. A fragment of the watch face depicting modular small complication

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ watChOS

186

To create the modular large complication, I utilize the CLKComplicationTemplateModular
LargeStandardBody class. It can be parameterized using the following four properties:

•	 HeaderTextProvider – specifies text to display in the complication header

•	 Body1TextProvider – used to configure text displayed in the first line of body text
(right below the header)

•	 Body2TextProvider – specifies an optional second line of body text

•	 HeaderImageProvider – indicates an optional image to be displayed on the left-hand
side of the header

The CreateComplicationTemplate method uses the first three properties. The header displays
a fixed string, My Complication, while the first and second lines depict a value obtained from the
complicationText parameter and current time, respectively. An example of such a complication is
presented in Figure 8-18.

Figure 8-18. A modular large complication

Given the template’s ready, I now extend the definition of the ComplicationController by
another method, CreateComplicationEntry (Listing 8-17). It uses the previously implemented
CreateComplicationTemplate to make a timeline entry with the current date.

Listing 8-17. Creating a Complication Entry

private CLKComplicationTimelineEntry CreateComplicationEntry(
 CLKComplicationFamily complicationFamily, string complicationText)
{
 var template = CreateComplicationTemplate(
 complicationFamily, complicationText);

 if (template != null)
 {
 return CLKComplicationTimelineEntry.Create(NSDate.Now, template);
 }
 else
 {
 return null;
 }
}

I now use the preceding methods to implement functions required by the ClockKit. I start with
the GetPlaceholderTemplate and GetLocalizableSampleTemplate (Listing 8-18). In both methods,
I first call the CreateComplicationTemplate method. Then, I pass its result, an instance of the
CLKComplicationTemplate class, to the ClockKit by invoking a callback (an action handler). This conforms
to the general scheme of communicating with the ClockKit I discussed earlier.

Chapter 8 ■ watChOS

187

Listing 8-18. Providing Complication Templates to the ClockKit

public override void GetPlaceholderTemplate(CLKComplication complication,
 Action<CLKComplicationTemplate> handler)
{
 var template = CreateComplicationTemplate(
 complication.Family, "Sample text");

 handler(template);
}

public override void GetLocalizableSampleTemplate(CLKComplication complication,
 Action<CLKComplicationTemplate> handler)
{
 var template = CreateComplicationTemplate(
 complication.Family, "Sample text");

 handler(template);
}

Given the preceding methods are ready, I now override the GetCurrentTimelineEntry and
GetSupportedTimeTravelDirections methods as shown in Listing 8-19. I disable support for the time-travel
directions because I provide complications for the current date only. In the GetCurrentTimelineEntry
method, I use the ComplicationHelper class, which I will discuss shortly.

Listing 8-19. Providing a Current Timeline Entry and Supported Time-Travel Directions

public override void GetCurrentTimelineEntry(CLKComplication complication,
 Action<CLKComplicationTimelineEntry> handler)
{
 var timelineEntry = CreateComplicationEntry(complication.Family,
 ComplicationHelper.Answer);

 handler(timelineEntry);
}

public override void GetSupportedTimeTravelDirections(
 CLKComplication complication,
 Action<CLKComplicationTimeTravelDirections> handler)
{
 handler(CLKComplicationTimeTravelDirections.None);
}

According to the ClockKit documentation, the use of complications is budgeted for each
app to preserve system resources. When your app reaches the limit, the ClockKit will invoke
RequestedUpdateBudgetExhausted. I override this method, as shown in Listing 8-20, so the information
about the exhausted budget will be presented in the application output. Note that this method requires you
to import the System.Diagnostics namespace.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ watChOS

188

Listing 8-20. Handling Exhaustion of the Complication Update Budget

public override void RequestedUpdateBudgetExhausted()
{
 Debug.WriteLine("RequestedUpdateBudgetExhausted");

 base.RequestedUpdateBudgetExhausted();
}

The communication between my watch extension bundle and the ClockKit is ready. So, now I need to
implement a logic that will force complication updates. To that end, I use another class from the ClockKit,
CLKComplicationServer. An instance of this class represents the complication server, which manages
the complications and in particular can be used to update them on demand. To implement complication
updates in the HelloWatchKit.WatchExtension, I add a ComplicationHelper.cs file, where I import the
ClockKit namespace and then define the ComplicationHelper class, as shown in Listing 8-21.

Listing 8-21. A Definition of the ComplicationHelper

public static class ComplicationHelper
{
 public static string Answer { get; set; } = string.Empty;

 public static void UpdateComplications()
 {
 var server = CLKComplicationServer.SharedInstance;

 foreach (var complication in server.ActiveComplications)
 {
 server.ReloadTimeline(complication);
 }
 }
}

To access the complication server, you use the static property SharedInstance of the
CLKComplicationServer class. Then, to obtain the collection of active complications that are actually
displayed on the watch face, you read the ActiveComplications property. Each element in this collection
is an instance of the CLKComplication class and gives you direct access to the complication. In particular,
you can force it to be updated by passing the corresponding object to the ReloadTimeline method of
the CLKComplicationServer class instance (see the UpdateComplications method in Listing 8-21).
ComplicationHelper also has one static property, Answer, which I use to pass data from the interface
controller to the complication controller. To finish the implementation, I need to obtain data for the
complication. To this end, I modify the DisplayUserResponse method (Listing 8-9) as shown in Listing 8-22.
Namely, I store the value obtained using the text input controller in the ComplicationHelper.Answer property
and then force all active complications to be updated using the ComplicationHelper.UpdateComplications
method.

Listing 8-22. Updating Complications

private void DisplayUserResponse(NSArray result)
{
 var answer = "No answer";

Chapter 8 ■ watChOS

189

 if (result != null)
 {
 if (result.Count > 0)
 {
 answer = result.GetItem<NSObject>(0).ToString();
 }
 }

 LabelAnswer.SetText(answer);

 ComplicationHelper.Answer = answer;
 ComplicationHelper.UpdateComplications();
}

To test the preceding example, you need to quit the iPhone and Watch simulators and then re-run the
app. Subsequently, go to the watch face, set touch pressure to deep, and tap the watch screen. This activates
the mode where you can adjust the watch face. Swipe to the modular (left part of Figure 8-18) and then
hit the Customize button after reverting the touch pressure to shallow. Once in the customization mode,
swipe to the second screen and then use the green rectangle to switch between complications. Go to the
complication shown in the top left corner. Subsequently, you need to place the mouse cursor on the digital
crown and then scroll the mouse or touch pad until you see the HelloWatchKit.Watch complication. Do the
same thing for the large complication below it (right part of Figure 8-19). Once you are done, press the digital
crown button. You can now go back to the app and choose any item from the text input controller so you can
see your updated complications on the home screen.

Figure 8-19. Configuring complications

Glance Controller
The last element of the HelloWatchKit.WatchExtension bundle is the glance controller, which is used to
present static information to the user. The default glance controller was generated by Visual Studio during
app creation. When the user taps the view associated with the glance controller, the corresponding app
is activated. Because glances are unavailable in watchOS 3 and above, we cannot test them using default
simulators. So, I will only show how to detect if the app was activated from the glance. If so, the title of the

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ watChOS

190

interface controller will change to the appropriate value. To implement such a functionality, I add to the
HelloWatchKit.WatchExtension app another file, GlanceHelper.cs, where I define the static class seen in
Listing 8-23. This class has only one property, Key, which is used to identify the value passed between the
glance and interface controllers.

Listing 8-23. A Helper Class for Handling Glance Activation

public static class GlanceHelper
{
 public static NSString Key { get; } = new NSString("GlanceKey");
}

To show how to pass data from the glance to the interface controller to indicate that it was activated
through the glance, I first implement the WillActivate view event handler of the GlanceController, as
shown in Listing 8-24. I create the NSDictionary object, implementing the collection of key–value pairs. In
this case, a dictionary contains just one element with the key GlanceKey and a value of Glance-activated.
Then, I pass the dictionary along with the appIdentifier to the UpdateUserActivity method. This method
is used to pass the glance state to the actual app.

Listing 8-24. Passing Data to the App When It Is Activated from the Glance Controller

public override void WillActivate()
{
 var appIdentifier = NSBundle.MainBundle.BundleIdentifier;

 using (var nsDictionary = new NSDictionary
 (GlanceHelper.Key, "Glance-activated"))
 {
 UpdateUserActivity(appIdentifier, nsDictionary, null);
 }
}

Then, to obtain the glance state, you implement HandleUserActivity in your initial interface controller.
An example of how to retrieve a value for the key GlanceKey in the InterfaceController class of the
HelloWatchKit.WatchExtension is shown in Listing 8-25.

Listing 8-25. Receiving Data Passed from the Glance Controller

public override void HandleUserActivity(NSDictionary userActivity)
{
 if (userActivity != null)
 {
 if (userActivity.ContainsKey(GlanceHelper.Key))
 {
 SetTitle(userActivity.ValueForKey(GlanceHelper.Key).ToString());
 }
 }
}

Chapter 8 ■ watChOS

191

Summary
In this chapter, we learned how to implement apps for smartwatches. We covered a broad range of topics,
starting from project creation, using the watch simulator, and handling view and app events through to
collecting user input with dedicated controllers, creating force touch menus, and navigating between
interface controllers up to notifications, glances, and complications. This collection of tutorials enables
you to independently write complete apps for the watchOS. In the following chapter, we will work with
tvOS apps.

www.allitebooks.com

http://www.allitebooks.org

193© Dawid Borycki 2018
D. Borycki, Beginning Xamarin Development for the Mac, https://doi.org/10.1007/978-1-4842-3132-6_9

CHAPTER 9

tvOS

TV is yet another part of everyday life that has been revolutionized by electronics and software. Devices like
Apple TV turn your display into a smart device that you can use beyond just watching TV. You do not need to
worry about missing your favorite TV show. Instead, you are the boss, deciding when and what you watch.
Moreover, your TV becomes even more smart with dedicated apps and games. This chapter will show how to
build such custom apps for Apple TV. Specifically, I will tell you how to create the complete tvOS app shown
in Figure 9-1. This app will utilize the OpenWeatherMap API to display the current weather conditions for
the city name you type into the text field.

Figure 9-1. A custom weather app for the Apple TV

http://dx.doi.org/https://doi.org/10.1007/978-1-4842-3132-6_9

Chapter 9 ■ tvOS

194

Creating a Project
I start by creating a new tvOS project named HelloTV. To that end, I utilize the new Single View App from the
tvOS tab of the New Project dialog in Visual Studio (Figure 9-2).

Figure 9-2. Creating a tvOS project

Subsequently, Visual Studio displays another screen, which is where you can configure your tvOS app.
Basically, you do much the same thing as you did for the iOS and watchOS apps. Namely, you specify the app
name, organization identifier, team, and target. Here, I configure the HelloTV app as shown in Figure 9-3 and
proceed to the next step, where I confirm the location of my project.

Once the project is created, you will quickly recognize that the structure of the HelloTV app resembles
the organization of iOS projects. The entry point of the HelloTV app is implemented within the static
Main method of the Program class (Main.cs file). A default implementation of this method utilizes the
AppDelegate class to launch and manage the lifecycle of the tvOS app at runtime. AppDelegate derives from
UIApplicationDelegate, exactly the same one used in all iOS apps. So, you handle the app-related events of
the tvOS app the same as you did in the iOS apps. For this reason, actual examples are omitted.

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ tvOS

195

User Interface
To design the UI for the HelloTV app, I open the Solution Explorer and double-click the Main.storyboard
file. This opens the iOS designer, in which I modify the scene of the default view controller. Specifically, from
the toolbox I drag the following controls: a text field, a button, an image view, and four labels. As shown in
Figure 9-4, I stack all the controls vertically and then use the Properties pad to configure each control as
follows:

•	 Text Field:

•	 Name: TextFieldCityName

•	 Width: 500 px

•	 Alignment: Center

•	 Font: Headline

•	 Text: Type city name

•	 Button:

•	 Name: ButtonGetCurrentWeather

•	 Width: 500 px

•	 Alignment: Center

•	 Font: Headline

•	 Title: Get current weather

Figure 9-3. Project configuration

Chapter 9 ■ tvOS

196

•	 Image View:

•	 Name: ImageViewWeatherIcon

•	 Width and Height: 200 px

•	 First Label:

•	 Name: LabelTemperature

•	 Text: Temperature:

•	 Second Label:

•	 Name: LabelPressure

•	 Text: Pressure:

•	 Third Label:

•	 Name: LabelHumidity

•	 Text: Humidity:

•	 Fourth Label:

•	 Name: LabelDescription

•	 Text: Description:

Additionally, I set the width, font, and alignment of all labels to 1920 px, headline, and center,
respectively.

Figure 9-4. Designing the user interface of the tvOS app

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ tvOS

197

OpenWeatherMap API
Given the UI is ready, I start implementing the logic responsible for obtaining the current weather conditions.
To that end, I use the API exposed by the OpenWeatherMap web service (https://openweathermap.org/).
OpenWeatherMap provides free and paid plans. The free plan is limited to 60 calls per minute (https://
openweathermap.org/price) and has some other specific limitations but is more than enough to implement
the HelloTV sample. To access the OpenWeatherMap API, you will need to sign up for the free account. You will
receive via email your app identifier, which you use to access the REST service of OpenWeatherMap. Once this
is done, you can start testing OpenWeatherMap in your browser by typing the following URL in the address bar:

http://api.openweathermap.org/data/2.5/weather?q=<cityname>&appid=<your app id>

As a result, OpenWeatherMap will return a JSON object with the structure shown in Listing 9-1.
Namely, there are twelve properties, which in particular contain information about the geolocation of a
weather station and report the weather conditions (coord), the actual weather conditions (weather, main,
visibility, wind, clouds), and calculation date (dt).

Listing 9-1. A Sample JSON Response from the OpenWeatherMap API

{
 "coord": {
 "lon": -74.01,
 "lat": 40.71
 },
 "weather": [
 {
 "id": 800,
 "main": "Clear",
 "description": "clear sky",
 "icon": "01d"
 }
],
 "base": "stations",
 "main": {
 "temp": 290.14,
 "pressure": 1016,
 "humidity": 77,
 "temp_min": 287.15,
 "temp_max": 292.15
 },
 "visibility": 16093,
 "wind": {
 "speed": 2.92,
 "deg": 272.003
 },
 "clouds": {
 "all": 1
 },
 "dt": 1504527300,
 "sys": {
 "type": 1,
 "id": 1969,

https://openweathermap.org/
https://openweathermap.org/price
https://openweathermap.org/price
http://api.openweathermap.org/data/2.5/weather?q=<cityname>&appid=<your app id>

Chapter 9 ■ tvOS

198

 "message": 0.0186,
 "country": "US",
 "sunrise": 1504520803,
 "sunset": 1504567326
 },
 "id": 5128581,
 "name": "New York",
 "cod": 200
}

To consume the preceding JSON response in the HelloTV app, I need to map the JSON object to the
C# classes. As in Chapter 7, I do this mapping with the help of the JSON Utils service (https://jsonutils.
com/). In particular, I paste the JSON response into the JSON Test or URL text field, set the class name to
WeatherInfo, check “Pascal Case,” and click the Submit button. Consequently, a set of classes is generated.
I save all of these classes in separate files under the Models folder of the HelloTV app (see companion code:
Chapter_09/HelloTV/Models).

A detailed description of each autogenerated class is not warranted. So, I will describe the most
important elements only. The main class representing the top-level properties of the JSON response is
WeatherInfo. The definition of this class appears in Listing 9-2. Accordingly, WeatherInfo contains twelve
autogenerated properties, which you can use to read weather conditions.

Listing 9-2. A Definition of the WeatherInfo Class

public class WeatherInfo
{
 public Coord Coord { get; set; }
 public IList<Weather> Weather { get; set; }
 public string Base { get; set; }
 public Main Main { get; set; }
 public int Visibility { get; set; }
 public Wind Wind { get; set; }
 public Clouds Clouds { get; set; }
 public int Dt { get; set; }
 public Sys Sys { get; set; }
 public int Id { get; set; }
 public string Name { get; set; }
 public int Cod { get; set; }
}

In particular, in the HelloTV app I use only two properties of the WeatherInfo class instance: Main and
Weather. The first one stores the temperature, pressure, and humidity (Listing 9-3). These values will then
be displayed in corresponding labels of the UI. An instance of the Main class also has two other properties:
TempMin and TempMax. You can use them to obtain the minimum and maximum temperatures. They indicate a
deviation from the current temperature, which according to the OpenWeatherMap documentation can appear
for large cities. The second element of the WeatherInfo class I will use is the collection called Weather. Each
element of this collection is an instance of the Weather class (Listing 9-4). A Weather class has four properties:

•	 Id – represents an identifier of the element in the collection

•	 Main – group of weather parameters

•	 Description – text description of current weather conditions

•	 Icon – an identifier of the icon that graphically illustrates the weather

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-3132-6_7
https://jsonutils.com/
https://jsonutils.com/
http://www.allitebooks.org

Chapter 9 ■ tvOS

199

In the HelloTV app, I use the last two; a description is displayed in the last label, while the icon identifier
is used to create an image displayed right above the temperature (refer back to Figure 9-1). I will tell you how
I get this image.

Listing 9-3. Main Object Stores the Temperature, Pressure, and Humidity Readings

public class Main
{
 public double Temp { get; set; }
 public double Pressure { get; set; }
 public double Humidity { get; set; }
 public double TempMin { get; set; }
 public double TempMax { get; set; }
}

Listing 9-4. A Weather Object Stores Description and Icon Identifier

public class Weather
{
 public int Id { get; set; }
 public string Main { get; set; }
 public string Description { get; set; }
 public string Icon { get; set; }
}

Retrieving the Weather Report
Given an established mapping between JSON and the C# objects, I proceed to implement the class that
sends HTTP GET requests to the OpenWeatherMap API. This class, WeatherServiceHelper (see Helpers
subfolder of the HelloTV app in the companion code), uses an HttpClient object, which I explained in
Chapter 7. To use the HttpClient class in the HelloTV project, I reference the System.Net.dll and then install
the Newtonsoft.JSON NuGet package. Subsequently, I implement the class constructor to instantiate the
HttpClient, with the BaseAddress property pointing to the OpenWeatherMap URL (Listing 9-5).

Listing 9-5. Creating the HTTP Client for the OpenWeatherMap API

private static HttpClient httpClient;

static WeatherServiceHelper()
{
 httpClient = new HttpClient()
 {
 BaseAddress = new Uri("http://api.openweathermap.org/data/2.5/weather")
 };
}

After configuring the HTTP client, I can start sending weather requests. To do so, in the
WeatherServiceHelper I implement the static asynchronous method GetWeatherInfo (Listing 9-6). This
method accepts two arguments. The first one stores the city name, while the second defines the units in
which OpenWeatherMap returns weather conditions. Clearly, OpenWeatherMap can return the temperature
using different scales: Kelvin, Celsius, or Fahrenheit. To specify the scale, you use one of the values that I

http://dx.doi.org/10.1007/978-1-4842-3132-6_7

Chapter 9 ■ tvOS

200

defined in the custom enumeration type, TemperatureUnit (see the Enums\TemperatureUnit.cs file of the
HelloTV app):

•	 Default – indicates that default units shall be used. In that case, the temperature is
expressed in Kelvins (see Listing 9-1, for example).

•	 Metric – instructs the OpenWeatherMap API to use metric units, which means that
temperature will be given in degrees Celsius

•	 Imperial – represents imperial units, in which temperature is expressed in degrees
Fahrenheit

The values you pass to the GetWeatherInfo method are then used to create the Uniform Resource Identifier
(URI) of the request (Listing 9-7). This request is then sent to the OpenWeatherMap API. After the response is
received, I analyze its status code (CheckStatusCode method). Similarly, as in Chapter 7, I raise an exception
when the status code differs from 200 (OK). Otherwise, I convert the response body to JSON format and
deserialize it with the JsonConvert class.

Listing 9-6. Getting the Weather Info

public static async Task<WeatherInfo> GetWeatherInfo(
 string cityName, TemperatureUnit unit)
{
 var getRequestUri = GetRequestUri(cityName, unit);
 var response = await httpClient.GetAsync(getRequestUri);

 CheckStatusCode(response.StatusCode);

 var jsonString = await response.Content.ReadAsStringAsync();

 return JsonConvert.DeserializeObject<WeatherInfo>(jsonString);
}

private static void CheckStatusCode(HttpStatusCode statusCode)
{
 if (statusCode != HttpStatusCode.OK)
 {
 throw new Exception($"Unexpected status code: {statusCode}");
 }
}

Constructing the request URI imposes additional comments. As Listing 9-7 shows, I supplement the
base address with a query string containing three parameters:

•	 appId – used to authenticate the request with the identifier obtained from the
OpenWeatherMap service

•	 q – indicates the city or location for which weather conditions should be returned

•	 units – specify units

The value for the first parameter is obtained from the private field appId (Listing 9-7), so you need to
update this field to the value you obtained during registration for the OpenWeatherMap service. Other query
string parameters are achieved from the GetRequestUri function parameters. Note that to specify units I use
TemperatureUnit enumeration. To convert values of this type to actual query string parameters, I wrote a
helper method, TemperatureUnitToQueryString, shown in Listing 9-8.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-3132-6_7
http://www.allitebooks.org

Chapter 9 ■ tvOS

201

Listing 9-7. Preparing the Request URI

private static string appId = "<type your app id here>";

private static string GetRequestUri(string cityName, TemperatureUnit unit)
{
 return $"?appId={appId}"
 + $"&q={cityName}"
 + $"&{TemperatureUnitToQueryString(unit)}";
}

Listing 9-8. Creating Units Query String Parameter

private static string TemperatureUnitToQueryString(TemperatureUnit unit)
{
 var queryString = "units=";

 switch(unit)
 {
 case TemperatureUnit.Imperial:
 queryString += "imperial";
 break;

 case TemperatureUnit.Metric:
 queryString += "metric";
 break;
 }

 return queryString;
}

The very last element of the WeatherServiceHelper class is the GetTemperatureUnitString method. It
determines the textual representation of the unit in which temperature is expressed. For imperial and metric
units, I use °F and °C, respectively, while for default scale I use the K symbol (Listing 9-9).

Listing 9-9. Obtaining Symbols Representing Temperature Scale

public static string GetTemperatureUnitString(TemperatureUnit unit)
{
 var unitString = string.Empty;
 var degSymbol = (char)176;

 switch (unit)
 {
 case TemperatureUnit.Imperial:
 unitString = $"{degSymbol}F";
 break;

 case TemperatureUnit.Metric:
 unitString = $"{degSymbol}C";
 break;

Chapter 9 ■ tvOS

202

 case TemperatureUnit.Default:
 default:
 unitString = "K";
 break;
 }

 return unitString;
}

Presenting the Weather
We now have everything prepared to get and display the weather conditions, so let’s combine the UI layer
with the WeatherServiceHelper. To achieve this functionality, I implement the ViewController class. First,
I define the DisplayWeatherInfo method, shown in Listing 9-10. This method takes an instance of the
WeatherInfo class (weatherInfo argument) and displays the values of its selected properties in the default
view. It is also possible to pass a null for the weatherInfo argument. In such cases, DisplayWeatherInfo
displays alternate symbols (--) instead of the actual values of the temperature, humidity, pressure, and
description.

Listing 9-10. Displaying Weather Conditions

private async Task DisplayWeatherInfo(WeatherInfo weatherInfo)
{
 var alternateSymbol = "--";
 var tempUnit = WeatherServiceHelper.GetTemperatureUnitString(
 temperatureUnit);
 var pressureUnit = "hPa";

 if(weatherInfo == null)
 {
 LabelTemperature.Text = $"Temperature: {alternateSymbol}";
 LabelHumidity.Text = $"Humidity: {alternateSymbol}";
 LabelPressure.Text = $"Pressure: {alternateSymbol}";
 LabelDescription.Text = $"Description: {alternateSymbol}";
 }
 else
 {
 LabelTemperature.Text = "Temperature: "
 + $"{weatherInfo.Main.Temp} {tempUnit}";
 LabelHumidity.Text = "Humidity: "
 + $"{weatherInfo.Main.Humidity} %";
 LabelPressure.Text = "Pressure: "
 + $"{weatherInfo.Main.Pressure} {pressureUnit}";
 LabelDescription.Text = "Description: "
 + $"{weatherInfo.Weather.FirstOrDefault().Description}";
 ImageViewWeatherIcon.Image = await IconHelper.GetIcon(weatherInfo);
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ tvOS

203

Displaying text in labels is straightforward. I just rewrite the properties of the WeatherInfo class
instance to the Text property of the label. To display an icon, a little bit more effort is necessary. The
OpenWeatherMap API returns icon identifiers, which you can use to get the URLs of the actual bitmaps in
PNG format. The general structure of such a URL is the following:

http://openweathermap.org/img/w/<iconId>.png

where the <iconId> is the value you obtain when you request that the OpenWeatherMap API provides the
current weather conditions for the selected city. The icon identifier is stored in the Icon property of the
Weather object.

Once given the icon URL, I must download the icon and then convert it to an instance of the UIImage
class so it can be displayed in the Image View control. To implement such a functionality, I add to the
HelloTV project the IconHelper class (see IconHelper.cs file under the Helpers folder). A full definition of
the IconHelper class appears in Listing 9-11. As shown there, the IconHelper has three private static fields:
httpClient, baseAddress, and iconExtension. The first one stores a reference to the HttpClient class
instance, which is used to actually download a byte array representing the bitmap from the OpenWeatherMap
service. The second one, baseAddress, stores the main part of the URL from which the icons are retrieved, and
the last one, iconExtension, is a constant storing the .png extension. The values retrieved from baseAddress
and iconExtension—along with the icon identifier obtained from the WeatherInfo class instance—are
combined into the final URL (see the GetIconUrl method in Listing 9-11). The resulting URL is then used in the
GetIcon method, where I pass that URL as an argument of the GetByteArrayAsync method of the HttpClient
class instance. GetByteArrayAsync returns an array of bytes representing the image data, which I use to
instantiate the UIImage class with the LoadFromData static method (last statement of the GetIcon method in
Listing 9-11). Note that to convert an array of bytes returned by the GetByteArrayAsync to an NSData object
accepted by UIImage.LoadFromData, I must use the FromArray static method of the NSData class.

Listing 9-11. Definition of the IconHelper Class

public static class IconHelper
{
 private static HttpClient httpClient;

 private static string baseAddress = "http://openweathermap.org/img/w/";
 private static string iconExtension = ".png";

 static IconHelper()
 {
 httpClient = new HttpClient();
 }

 public static async Task<UIImage> GetIcon(WeatherInfo weatherInfo)
 {
 var iconUrl = GetIconUrl(weatherInfo);

 var imageData = await httpClient.GetByteArrayAsync(iconUrl);

 return UIImage.LoadFromData(NSData.FromArray(imageData));
 }

http://openweathermap.org/img/w/<iconId>.png

Chapter 9 ■ tvOS

204

 private static string GetIconUrl(WeatherInfo weatherInfo)
 {
 var iconName = weatherInfo.Weather.FirstOrDefault().Icon;

 return $"{baseAddress}{iconName}{iconExtension}";
 }
}

Afterward, I invoke DisplayWeatherInfo with a null argument within the ViewDidLoad event handler
(Listing 9-12). This is done to set the Text properties of all labels to initial values. In the ViewDidLoad
event handler, I also wire the ButtonGetCurrentWeather_PrimaryActionTriggered method with the
PrimaryActionTriggered event of the button. This action is raised when the user taps the button.

Listing 9-12. Configuring a View

public async override void ViewDidLoad()
{
 base.ViewDidLoad();

 await DisplayWeatherInfo(null);

 ButtonGetCurrentWeather.PrimaryActionTriggered
 += ButtonGetCurrentWeather_PrimaryActionTriggered;
}

Listing 9-13 shows a definition of the ButtonGetCurrentWeather_PrimaryActionTriggered method.
This function works as follows. When the user taps the button, I first read the city name that he or she
entered into the text field. If the city name is empty, I display the modal window with the following message,
Please enter the city name. To display an alert, I wrote the DisplayOkAlert method. As Listing 9-14 shows,
this method employs the same classes (UIAlrtController and UIAlertAction) as we used previously to
display alerts in iOS apps. However, the alert window looks different (see Figure 9-5).

Listing 9-13. Retrieving and Displaying Weather Conditions

private TemperatureUnit temperatureUnit = TemperatureUnit.Metric;

private async void ButtonGetCurrentWeather_PrimaryActionTriggered(
 object sender, EventArgs e)
{
 var cityName = TextFieldCityName.Text;

 if(string.IsNullOrEmpty(cityName))
 {
 DisplayOkAlert("Please enter the city name");
 }
 else
 {
 try
 {
 var weatherInfo = await WeatherServiceHelper.GetWeatherInfo(
 cityName, temperatureUnit);

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ tvOS

205

 await DisplayWeatherInfo(weatherInfo);
 }
 catch(Exception ex)
 {
 DisplayOkAlert(ex.Message);
 }
 }
}

Figure 9-5. Although tvOS uses the same classes to display alerts as iOS, appropriate tvOS windows look
differently (refer back to Chapter 1).

Listing 9-14. Presenting an Alert

private void DisplayOkAlert(string message)
{
 var controller = UIAlertController.Create(
 "HelloTV", message, UIAlertControllerStyle.Alert);

 var okAction = UIAlertAction.Create(
 "OK", UIAlertActionStyle.Default, null);

 controller.AddAction(okAction);

 PresentViewController(controller, true, null);
}

If the user provides a valid city name, ButtonGetCurrentWeather_PrimaryActionTriggered sends
a request to the OpenWeatherMap API using the WeatherServiceHelper.GetWeatherInfo method. This
function returns an instance of the WeatherInfo class, which is afterward passed to the DisplayWeatherInfo
method to update the UI with the received weather conditions.

Temperature Units
To specify units in the ViewController class, I declared a private field, temperatureUnit. Its default value is
set to TemperatureUnit.Metric. Therefore, when you run the app it displays temperature in degree Celsius.
To get temperature readings in a different scale you need to change the value of the temperatureUnit field.
For instance, if you change it to TemperatureUnit.Imperial you will get results similar to those presented in
Figure 9-6.

http://dx.doi.org/10.1007/978-1-4842-3132-6_1

Chapter 9 ■ tvOS

206

Testing the App in a Simulator
To test the HelloTV app, you can use a simulator. To launch the app, you proceed similarly to in previous
chapters. Just use the Target/Debug pad to set the app to HelloTV, pick the Apple TV tvOS 11.0 simulator,
and then run the app. After a short while, you will see the app running in the simulator (Figure 9-7). The
app displays a text field, button, and four labels with alternate symbols. You will also note that you cannot
directly click or tap any visual control with the mouse or a touchpad. Instead, to control the simulator, you
use either the Apple TV Remote or the keyboard of the Mac you use for development.

Figure 9-6. Presenting weather conditions with imperial units (compare with Figure 9-1)

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ tvOS

207

To enable both options, you use the Hardware menu of the simulator. Go to Hardware ➤ Show Apple
TV Remote to activate the remote control, or ensure that the following option—Hardware ➤ Keyboard ➤
Connect Hardware Keyboard—is on (to use the keyboard). Once the remote control is enabled, you use its
pad to move the cursor within the screen of the simulator. To tap any control, you press the ALT/OPTION key
and then tap the virtual controller’s pad. If you want to use the keyboard, then you navigate between controls
using arrows. Use the Enter key to perform an action and the ESC key to get back from a menu or to dismiss
windows. You will see that once you navigate between visual items they become highlighted.

Now, whichever method you choose, tap the text field. This activates the window in which you can type
the city name (Figure 9-8). Replace the default value with a city name and confirm your selection by pressing
the Done button. After getting back to the main view of the HelloTV app, press the Get current weather
button. An app displays values obtained from the OpenWeatherMap API, as shown in Figure 9-9.

Figure 9-7. A default view of the HelloTV app right after the app is launched in the tvOS simulator

Chapter 9 ■ tvOS

208

Figure 9-9. Current weather in San Francisco obtained with the HelloTV app

Figure 9-8. A default tvOS screen you use to enter text into a text field

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ tvOS

209

Summary
In this chapter, we learned how to start implementing apps for tvOS. Using the OpenWeatherMap API,
I showed you how to develop an app that presents the weather conditions for the selected city. You can
easily extend this functionality to display the weather forecast. To that end, you will need to modify the base
address of the request such that weather is replaced by forecast. Afterward, map the JSON response to
the appropriate C# objects and display their properties in the UI. To display a forecast, you might consider
using different controls, like the Table View. It will be a good exercise for you to practice the knowledge you
learned in this and all previous chapters.

This chapter also ends the book. I hope you enjoyed all the content, and I am more than sure that the
presented material will help you jumpstart developing mobile apps for iOS, watchOS, and tvOS. Although
I did not cover many advanced features of each platform, you should be able to use these features with
the help of the Apple SDK documentation because, as I explained in Chapter 2, the corresponding API is
mapped by Xamarin.iOS to C# classes and interfaces. So, I wish you good luck in your development and am
looking forward to seeing your apps in the Apple Store.

http://dx.doi.org/10.1007/978-1-4842-3132-6_2

211© Dawid Borycki 2018
D. Borycki, Beginning Xamarin Development for the Mac, https://doi.org/10.1007/978-1-4842-3132-6

��������� A, B, C
AppDelegate class, 29, 31–32
Apple Watch simulator, 169–171
AutoLayout app

constraints, 74, 76
iOS designer, 74
T-shaped and double T-shaped icons, 75

��������� D
Data persistence

archiving and unarchiving, 45
decoding and encoding, 44–45
Person class, 42, 43
storing and restoring, person data, 45
string properties, 44
view lifecycle, 46
ViewWillDisappear and ViewWillAppear

events, 42

��������� E, F
Edit References… option, 122
Entitlements property list, 35–36

��������� G
Geolocation, 68–73
Google geocoding API, 64–65

��������� H
HelloTV app

ButtonGetCurrentWeather_PrimaryAction
Triggered method, 204

configuration, 194–195
create, 194
display alerts, 204–205
displaying weather conditions, 202–204
GetWeatherInfo method, 200

HttpClient class, 199–200
IconHelper class, 203
OpenWeatherMap API

JSON response, 197–198
WeatherInfo class, 198–199

query string, 200
simulator testing, 206–208
symbols representing temperature scale, 201
temperature units, 205–206
UI, 195–196

HelloWatchKit.Watch app, see watchOS app,
Apple Watch

Hello world app
action sheet, 25–26
add action to alert view, 23–25
AlertViewController, 20–23
project creation

iOS app configuration, 14
master-detail app, 10
page-based navigation, 13
project summary window, 14–15
tabbed iOS application, 12
templates, 10–13
Visual Studio, 16

storyboard designer, 16–17
user interface, 17, 19–20

��������� I
Information property list, 34–35

��������� J, K, L
JavaScript functions, 66–67

��������� M
Map view

arguments, 72
custom property, 71
to display user’s location, 72

Index

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3132-6
http://www.allitebooks.org

■ INDEX

212

event handlers, 73
initialization, 69
instantiating CLLocationManager, 70
styles, 68
UpdateMap method, 71

Model View Controller (MVC), 41

��������� N, O, P, Q
Navigation

editing, segue, 97–98
pages

color caption, 94
DataViewController class, 93–94
default page-based application, 91
GetViewController method, 92
iOS project template, 91
KeyValuePair objects, 95
ModelController class, 92
page view controller, 95
RootViewController.cs file, 91
UIPageViewControllerDataSource class, 93

preparing, segues, 99–100
unwind segue, 98–99
view controllers, 95–97

��������� R
REST web service

create row actions, 156
delete user, 156
displaying user details, 157, 159–160
displaying user’s geolocation on map, 160–161
JSONPlaceholder, 143
PinMapAnnotation, 161–162
presenting list of users, 157–158
REST API

definition of User class, 147–148
deleting user, 147
Geo class, 148
Newtonsoft.Json NuGet package, 145, 146
retrieve list of user, 147
retrieving users by ID, 149
System.Net.Http, 145
updating user data, 148
UsersServiceHelper class, 146

TouchUpInside event handlers, 160
UserDetailsViewController, 158–159
UsersListViewController, 158
Users.MobileClient app, 143, 144
users repository, 152–155
UsersRepository and map configuration, 159
UsersServiceHelper class, 150–152
UsersTableSource class, 155–156

��������� S
Size classes

iOS apps, 77
types, 77
wChC installation, 79
wCompacthCompact class, 77

Static method, 133
Storyboard

designer, 16–17
image view, 37
information property list, 36
launch screen, 38
Main.storyboard, 39
outlets collection, 41
resource file, 37
resources collection, 41
scene, 38
segues, 38
subviews collection, 40
UIKit.UIViewContentMode, 37
view controller, 39

��������� T
Tab bar

AddLabel method, 89
BaseViewController, 88
creation, tab relationship, 86
dedicated template, 84
default tabbed app, 85
FirstViewController and SecondView

Controller, 88
label dynamically, 88–89
Navigation.Tabs app, 90
properties pad, 86
ThirdViewController class, 88
view controller, 87
Visual Studio, 83

Table View, 50–51
Test-driven development (TDD), 125
TestFixtureAttribute class, 123, 132
Touch screen

AddRotationAndPinchGestureRecognizers
method, 113–114

affine transformation, 111–113
detecting gesture location, 109–110
and gesture recognizers, 101, 103–106
manipulate controls, 107
pan gesture recognizer, 107–108
private members, ViewController class, 108
RotateSquare and ScaleSquare

methods, 115
rotating and scaling, control, 113–114
rotation and pinch gesture recognizers, 111

Map view (cont.)

■ INDEX

213

simultaneous gesture recognition, 114–116
TranslateSquare, 108
ViewDidLoad method, 109

��������� U
UI thread

pool, 81
updating text property, 81

Unit testing
AreEqual method, 124
Assert.AreEqual method, 134
automatic testing, 117
creation, 119–120
implementing, 120–126
IsEmailValid static method, 125
MakeKeyAndVisible method, 122
mobile apps, 117
.NET Framework Class Library, 118, 131
.NET Standard Library project, 117
NUnit.Framework.Assert class, 124
NUint.Framework.AssertionException

class, 124
Person.Default method, 133
Person.IsEmailValid method, 126
Persons app, 117, 118
PersonTests class, 124
running, 118, 126–127
SetUpAttribute method, 133
ShouldRecognizeSimultaneously property, 114
TouchUpInside event, 135
UnitTestAppDelegate class, 122
VerifyDisplayDataButton test method, 134
Xamarin.Calabash.Start(), 129
Xamarin.iOS framework, 117
Xamarin Test Cloud, 119

UpdateSquareTransform method, 112
User interface (UI)

button-control properties, 18
event handler, 19
tests

creation, 128, 130–134
Xamarin Test Cloud Agent, 128–130

UIApplication class, 27

��������� V
View lifecycle, 32, 34
Visual Studio for Mac, installation

components choosing, 7
confirmation dialog, 3
welcome screen, 9
Xcode installation, 5
Xcode page, 6

��������� W
watchOS app, Apple Watch

application output, 173–175
checking watchOS version, 173
ClockKit and complication controller

ComplicationHelper class, 188
configuration, 189–190
CreateComplicationEntry, 186
CreateComplicationTemplate, 186
definition, 184
DisplayUserResponse, 189
GetCurrentTimelineEntry and

GetSupportedTimeTravel
Directions, 184, 187–188

GetPlaceholderTemplate and
GetLocalizableSample
Template, 184, 187

modular large complication, 186
modular small complication, 185–186
RequestedUpdateBudget

Exhausted, 188
template, 185
UpdateComplications, 189

configuration, 164
default storyboard, 165
force touch and navigation

CityGeolocationController, 180
geolocation, 177–178
latitude and longitude, 181
LocationHelper, and custom

enumeration, 179
menu items, 178–179
Visual Studio, 179

generations, 163
glance controller, 190–191
Hello, Watch!

ConfigureTimer and UpdateTimer
methods, 168

current time, 167
custom timer, 166
private field and methods, 167
simulators, 168–169
start and stop, timer, 168
System.Timers.Timer class, 167
watch extension bundles, 166

and iOS, 163
notification controller, 182–184
project templates, 163–165
SDK, 163
simulator, 169–171
text input, 176–178
tracking, lifecycle, 174
view lifecycle, 171–173

www.allitebooks.com

http://www.allitebooks.org

■ INDEX

214

watch app bundle, 165
watch extension, 166

Weather app
ButtonGetCurrentWeather_PrimaryAction

Triggered method, 204
configuration, 194–195
create, 194
displaying weather conditions, 202–205
GetWeatherInfo method, 200
HttpClient class, 199–200
IconHelper class, 203
OpenWeatherMap API

JSON response, 197–198
WeatherInfo class, 198–199

query string, 200
simulator testing, 206–208
symbols representing temperature

scale, 201
temperature units, 205–206
UI, 195–196

Web view
configuration, 64
contents, map.html file, 62–63
creating and displaying, 64
CSS file, 62
helper methods, 63

��������� X, Y, Z
Xamarin.iOS

basic controls
adjustment, slider range, 49–50
switch and slider, 48, 50
ViewController class, 48

entry point, 28
tables

color class, 51–52
CommitEditingStyle method, 57
C# reflection mechanism, 52
deletion, 58–59
predefined cell layouts, 53
predefined iOS colors, 51
UIAlertController, 55
UITableViewCellStyle enumeration, 52
UITableViewRowAction, 59–60
UITableViewRowAnimation enumeration, 57
UIViewController class, 56
ViewController class, 55

Xamarin Test Cloud (XTC), 118, 127
Xamarin UI testing

cloud-based service, 135
framework, 127
provisioning profile, 136–140
running tests, XTC, 140–142

watchOS app, Apple Watch (cont.)

	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	1
	Chapter 1: Fundamentals
	Setting Up the Development Environment
	Hello, World! App
	Creating the Project
	Storyboard Designer
	User Interface
	AlertViewController
	Actions
	Action Sheet

	Summary

	2
	Chapter 2: App Structure and Lifecycle
	An Entry Point
	AppDelegate
	View Lifecycle
	Information Property List
	Entitlements Property List
	Launch Storyboard
	Storyboards Under the Hood
	Model View Controller
	Persisting Data
	Summary

	3
	Chapter 3: Views
	Basic Controls
	Tables
	Displaying Items
	Selecting Items
	Deleting Items

	Web View
	Google Geocoding API
	Invoking JavaScript Functions

	Map View and Geolocation
	Auto-Layout
	Size Classes
	UI Thread
	Summary

	4
	Chapter 4: Navigation
	Tab Bar
	Pages
	Navigation Between View Controllers
	Editing a Segue
	Unwind Segue
	Preparing for Segues

	Summary

	5
	Chapter 5: Touch
	Touches and Gesture Recognizers
	Swipe and Long-Press Gesture Recognizers
	Manipulating Controls with Gestures
	Pan Gesture Recognizer
	Detecting Gesture Location
	Rotation and Pinch Gesture Recognizers
	A Total Affine Transformation
	Rotating and Scaling the Control
	Simultaneous Gesture Recognition

	Summary

	6
	Chapter 6: Unit Testing
	Creating a Model to Test
	Implementing Unit Tests
	Running Unit Tests
	User Interface Tests
	Creating an App
	Xamarin Test Cloud Agent
	Creating UI Tests

	Xamarin Test Cloud
	Provisioning Profile
	Running Tests in the XTC

	Summary

	7
	Chapter 7: Consuming RESTful Web Services
	REST Service Client
	Updating Data
	Getting a Specific User

	Testing the REST Client
	Users Repository
	Presenting a List of Users
	Displaying User Details
	Summary

	8
	Chapter 8: watchOS
	Creating the Project
	Watch App Bundle
	Watch Extension
	Hello, Watch!
	Watch Simulator
	View Lifecycle
	App Lifecycle
	Text Input
	Force Touch and Navigation
	Notification Controller
	ClockKit and Complication Controller
	Glance Controller
	Summary

	9
	Chapter 9: tvOS
	Creating a Project
	User Interface
	OpenWeatherMap API
	Retrieving the Weather Report
	Presenting the Weather
	Temperature Units
	Testing the App in a Simulator
	Summary

	Index
	Index

