Build
Android-Based
Smart Applications

Using Rules Engines, NLP
and Automation Frameworks

Chinmoy Mukherjee

ApPress’

http://www.allitebooks.org

Build Android-Based
Smart Applications

Using Rules Engines, NLP and
Automation Frameworks

Chinmoy Mukherjee

Apress’

vww . allitebooks.con

http://www.allitebooks.org

Build Android-Based Smart Applications

Chinmoy Mukherjee
Bangalore, Karnataka, India

ISBN-13 (pbk): 978-1-4842-3326-9 ISBN-13 (electronic): 978-1-4842-3327-6
https://doi.org/10.1007/978-1-4842-3327-6

Library of Congress Control Number: 2017963550

Copyright © 2018 by Chinmoy Mukherjee

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Celestin John Suresh
Development Editor: Matthew Moodie
Technical Reviewer: Jojo John Moolayil
Coordinating Editor: Divya Modi

Copy Editor: April Rondeau

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, email
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please email rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3326-9.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-3327-6
http://www.allitebooks.org

Table of Contents

About the AUthOrcccciriisemmmmmsssssmmmssssssnmssssssnmsssssne s s ix
About the Technical REVIEWETccuusseesssssnsssssnsssssnsssssnsssssnsssssnnssssnnssss Xi
Acknowledgments.......cccermssssssssnnnnsmmsssssssssssnnsssssssssssssnssnnsssssssssnnnnnns Xiii
INtroductionccccumssssennmmssssnnnnsssssnsnnnssssnnnnsssssnnnnssssnnnnnssssnnnnnnssnnnnnnnssn XV
Part I: Rules ENGINES.......cccussemenmmssssssssnnmsssssssssnssssssssnsnnnsssssnnnnnnnns 1
Chapter 1: Which Rules Engine Is Best for Building Smart
APPHCAtiONS?..cccvissneemnennrrrrssssssssssssnnsseesssssssssssnnssssssssssssnnnnnnsnsnessssssnnnnnnn 3
What IS @ RUIES ENQINE?ceveeeereerese s ssssesennes 5
L S 6
JRUIBENQINEeeveteererte st sas e s sa s s s e s sae st e s saesae e s sne s 7
DTIUIES ..t r e e r e e s 8
A1 [0] 1 OSSOSO 9
TEIMWAIE ... e s s e e s b e e e e ne s 10
ROOKE ...t e e 10
OPENRUIES ...t e 1
UXBREL.......o ot 13
JEOPS... .ot 13
Chapter 2: Steps to Port Rules ENginescccusesmsssmssssssssssssnssssnnssnns 15
CLIPS ...ttt ettt et s e e e 15
B 1] 1=] = o1 TSR 17
DTIUIES .t s e p e nne s 18
iii

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

A1 (0] 20
TEIMWAE ... e e se e e nne e 21
3100 2 21
OPENRUIES ... e 21
UXBRE ... ot e e e 22
JEOPS.....cee s 23
Sample Code SNIPPEL......ccverirrrrr e e 24
CLIPS ...t se e 24
JRUIEENQINE....cveieireriestesersere e s sse s s e s s sse e s sae s e e s e snesaesassenaesnens 34
DTFUIES. ...t 36
0] 37
TEIMWAE. ... 38
ROOMIE.....citieiccie i 39
OPENRUIES ...t s e s s a e e e 4
UXBRE ...ttt 44
JEOPS ... s 50
Chapter 3: Issues Faced While Porting Rules Engines..........ccceusssnnnnes 51
Porting Issues for Other Rules ENGIiNescccoovvvvnennsensenennsinsessesessssesensens 52
Chapter 4: Comparison of Rules Engines for Mobile Platforms.......... 55
Summarizing the Rules ENGINESccocveeerrenrereree e 55
Comparison of RUIES ENQINESccovrererenmrrnsmsensesesesesessesessssessssesessssessssessssesenns 55

Chapter 5: Requirements and Challenges Faced in Knowledge

Application Development.......cccccerrmimmmmmmssssssssnmmmmmmssssssssssnssmnnsnnnn. 57
Introducing SmartAppGen and AUTOQUIZ.........cccvvernernenene e 57
Developing Knowledge Applications............ccccvivnininiennsnsnens s se s 58

iv

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Part Il: SmartAppGen: Automatically Generate Knowledge

Application from Structured Knowledgeoccmmmmnssssnnnnnnnnsns 61
Chapter 6: Design and Implementation of SmartAppGencccccueuee. 63
Chapter 7: Architecture of SmartAppGenccccivssnnmmmnssssnnnsssssnnnns 65
Model Code GENEratorc.cccoverrencrnerere e 66
View Code GENEIALONccveeerrrerrsesesese s se s ssnss 66
Controller Code GENErator..........cuueseseresssssesessssssse s 67
QUESTION EXIFACTON ...t 67
Context Manager GENEIator........ccvevererrerieresessersesesss s s ssesessessessessessssensesees 67
RUIES GENEIALONcceeeeereeceree e e 67
Language TranSIator........c.ccoveenerenerescrnese s s 67
Persistence HEIPEr ... s s 68
Interaction t0 XML CONVEITETccccvvvevneresenmnsse e e sese s srsse e 68
[AT1 LR o] | o L] OSSR 68
{81 T 0] 68
V0ICE-T0-TEXE CONVEITENceeeeccererreeccre e 68
Text-t0-V0iCe CONVEIENccoveeeeereereecrerese e 68

o 0T (O O 0] (1 SO 69
AUCIO CAPTUIEL ...ttt 69
Chat FrameWOrK........c.corurrinmninirsssse s s 69
Edge Intelligence FrameWOrKccoccvvrrvrerinnensensesessssessessessesessessessessssessessens 69
REST ClIENT......cccieeeeceeeeesss s iss e e e e sssssssssssnenes 69
Installation Manager ..o 69
v

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 8: Example of Generating Knowledge Application from

KNOWIEUYE ...ceeerrrrrrssssssnnnnnnnssssssssssssnnnnnnssssssssssnsnnnnnssssssssssssnnnnnnnsssssssnnn A
Android Layout Corresponding to Knowledge...........ccvveerrienerenerrnsesensesessnnenennes 73
CLIPS Rules File Corresponding to Knowledgeccoovvermrenerrnsernsesesesessnsenenns 80
Knowledge Processing by Applicationc.ccocevvvvvenennsnsenennsensessesesessensenaens 83
Knowledge Application Supporting-Feature Generation.........c.c.ccvvvverievenserienens 83
Generate Database HEIPEKccvevevvrenrererenes s s sessesse e ssssessesseseessssessesees 85
How t0 Use SMartAPPGEN........ccvcvvreresrrre s sss e sse s 89
Benefits of SMartAPPGEN.........covvviiirr e 89

Chapter 9: AutoQuiz: Automatically Generate Quiz from Unstructured

KNOWIEAYE....ccutmrrrrsssssssnnmnnnmmmsssssssssnnnnnnnnssssssssssnnnnnnnssssssssssnnnnnnnnsssssssns 91
QUESTION GENEIATONcvvveeerere e 92
QUIZ APPLICALION ...t 95
Benefits Of AUTOQUIZ.........ccoceerereecrcrrresie s 98
KNOWN ISSUEScveeeerreerieer s s 99
FULUPE WOTK...... et s 100

Chapter 10: iEMErgeNncCycuucerrrmsssnnnmrssssssnsssssssnnsssssssnnsssssssnnsssssnnns 103
MEENOM........ceeeeeeeccee s 104
AICRITECIUNE ... 105
Implementation of the System ... 106
Requester Application iIRESCUEcccevvrrrriernsinnne s 107
Helper Application iIRESCUETccccevevrininiernsinsen s 107
USEE INTEITACEcveveeriecriseer s 108
IEMEIQENCY SEIVEL.....citictriererie e st s e sa s sae s s s ae e e 114

Vi

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Part lll: Android Applications for Solving Real-Life Problems115
Chapter 11: ASSIigNMENtscccccnrnsssmnnmmmsssssnnmsssssssnessssssssesssssnsssssssnns 117
iEnCrypt and iDECIyPL........cco v ————— 117
IFINESS. .t —————————— 122
IPOCKET ... s 123
o | 124

1 T] 0L SOOI 124
IS ATBLY vt ——————————— 125
RefEreNCES . .cuuerrrrrrrssssssnnnnnnnssssssssssnnnnnnssessssssssnnnnnnnssssssssssnnnnnnnnnsssssssnn 127
1T L 131
vii

vww . allitebooks.con

http://www.allitebooks.org

About the Author

Chinmoy Mukherjee has worked in the
software industry for the past 17 years in India,
Canada, the United States, and Australia. He
has written more than 100,000 lines of code
and worked on 17 software projects as an
“individual contributor” for 12 companies
(Motorola, HP, Infineon, Cisco, etc.). He holds
few interesting patents, new smartphone

design, locating anonymous objects, etc. He
has published many international papers

on Smart application to solve “healthcare delivery” issue for developing
countries, information security, and other topics. By writing this book,

he wants to help 30+ million software developers to shift gears from
traditional application development to smart application development.
Please feel free to contact him at http://www.linkedin.com/in/chinmoym.

ix

vww . allitebooks.con

http://www.linkedin.com/in/chinmoym
http://www.allitebooks.org

About the Technical Reviewer

Jojo Moolayil is an artificial intelligence
professional and published author of the
book Smarter Decisions: The Intersection

of IoT and Decision Science. With over five
years of industrial experience in Al, machine
learning, decision science, and IoT, he has
worked with industry leaders on high-impact

and critical projects across multiple verticals.
He is currently working with General Electric,
the pioneer and leader in data science for industrial IoT, and lives in
Bengaluru—the Silicon Valley of India.

He was born and raised in Pune, India, and graduated from the
University of Pune with a major in information technology engineering.
He started his career with Mu Sigma Inc.—the world's largest pure-play
analytics provider—and then Flutura, an IoT analytics startup, and has
worked with the leaders of many Fortune 50 clients.

In his present role with General Electric, he focuses on solving Al
and decision-science problems for industrial IoT use cases as well as on
developing data-science products and platforms for industrial IoT.

Apart from authoring books on decision science and IoT, Jojo has
also been technical reviewer for various books on machine learning and
business analytics with Apress. He is an active data-science tutor and
maintains a blog at http://www. jojomoolayil.com/web/blog/.

vww . allitebooks.con

http://www.jojomoolayil.com/web/blog/
http://www.allitebooks.org

ABOUT THE TECHNICAL REVIEWER

You can reach out to Jojo at:
e http://www.jojomoolayil.com/
o https://www.linkedin.com/in/jojo62000

I'would like to thank my family, friends, and mentors for their kind
support and constant motivation throughout my life.

—Jojo John Moolayil

xii

http://www.jojomoolayil.com/
https://www.linkedin.com/in/jojo62000

Acknowledgments

Examples available at rules engines websites are modified as required, and
the modified code snippets are provided. Thanks to Abhishek Chander
(Bachelor of Computer Science Cambridge University) for developing the
AutoQuiz prototype under the guidance of author Chinmoy Mukherjee.

xiii

Introduction

This book describes how to build smart applications using cutting-edge
technologies like rules engines, code automation frameworks, and natural
language processing (NLP).

Note A smart application is an application embedded with
intelligence. The intelligence can be updated on the fly.

This book provides step-by-step guidance on porting nine rules engines
(CLIPS, JRuleEngine, DTrules, Zilonis, Termware, Roolie, OpenRules,
JxBRE, and JEOPS) to the mobile platform. Then, it describes how to use
each rules engine to build a smart application. Sample code snippets are
provided so that the reader can get started with programming their smart
application immediately. The book also describes porting issues with other
popular rules engines (Drools, JLisa, Take, Jess, and OpenRules).

This book will guide the reader on how to automatically generate an
working smart application based on requirement specifications.

This book concludes with showing the reader how to generate a smart
application from unstructured knowledge using the NLP framework
Stanford POS (part of speech) tagger.

PART |

Rules Engines

CHAPTER 1

Which Rules Engine
Is Best for Building
Smart Applications?

Let us now evaluate rules engines based on agility, scalability, and usability
and decide which is best suited for developing smart applications. We’ll
start by defining what a rules engine is.

Rules engines help embed intelligence into an application. The
intelligence can be updated on the fly. Readers should be aware of
programming calculators. Rules engines can be thought of as much more
sophisticated versions of such calculators. CLIPS can be downloaded from
Source Forge [24].

java -jar CLIPSINI.jar
CLIPS> (+ 3 4)

7

CLIPS> (defglobal ?*x* = 3)
CLIPS> ?*x*

3

CLIPS> red

red

CLIPS> (bind ?a 5)

5

© Chinmoy Mukherjee 2018
C. Mukherjee, Build Android-Based Smart Applications,
https://doi.org/10.1007/978-1-4842-3327-6_1

CHAPTER 1 WHICH RULES ENGINE IS BEST FOR BUILDING SMART APPLICATIONS?

CLIPS> (+ ?a 3)

8

CLIPS> (reset)

CLIPS> ?a

[EVALUATN1] Variable a is unbound
FALSE

CLIPS>

Sample code is taken from [23]. There are diverse types of rules engines
written in Java that vary widely in functionality and concept. The revenue
from business rules engines exceeded $460 million in 2011 [1]. The total
market size for the mobile application market will be as big as $25 billion
by 2015 [2]. As per Gartner, developing context-aware mobile applications
is one of the top trends [3].

Mobile applications are becoming increasingly complex. This is
making way for rules engines on mobile platforms. Rules engines can
help keep business logic separate from application logic. At this point in
time, not many rules engines are known to work on mobile platforms. We
have ported and evaluated nine rules engines: CLIPS, OpenRules, JXBRE,
JEOPS, Roolie, Termware, JRuleEngine, Zilonis, and DTRules in Android.
This chapter provides a detailed description, step-by-step porting guides,
and sample working code for each of the rules engines. We also discuss
the issues faced while attempting to port other popular rules engines,
like Drools, JLisa, “Take,” and Jess. We compared the rules engines based
on licensing, language used to develop, rules syntax, reasoning method,
multi-threading support, scalability, and so on in Android [4]. If you are
trying to use a rules engine in a mobility project, this chapter can save
more than four staff weeks of effort.

CHAPTER 1 WHICH RULES ENGINE IS BEST FOR BUILDING SMART APPLICATIONS?

What Is a Rules Engine?

A rules engine is software that executes one or more rules in a runtime
production environment, and each rules engine has its own proprietary
rule-storage formats with varying features. Today, rules engines are used in
domains such as finance, healthcare, retail, manufacturing, and so on.

Rules engines are becoming increasingly popular for the following
reasons:

e Separation of business logic from application
e Rules can be managed separately from application code.
o Ease of writing rules for domain experts

Rules engines allow more flexibility in applications. Applications can
be rolled out much faster using rules engines. Other advantages include
understandable rules, tool integration, speed, scalability, and declarative
programming.

Android has become the number one mobile platform (Figure 1-1) [5].
As the need for context-aware intelligent applications grows, rules engines
are bound to be integrated into more and more Android applications.

The main contribution of this chapter is the evaluation of nine rules
engines on the Android platform. This chapter describes each of the rules
engines in detail and provides a summary of each. Nine rules engines
are evaluated and compared against each other for various aspects like
license, language, rules, reasoning, multi-threading support, scalability,
and so on. The chapter concludes with our recommendation about the
rules engine best suited for Android platform.

CHAPTER 1 WHICH RULES ENGINE IS BEST FOR BUILDING SMART APPLICATIONS?

60.00%
USSmartphone Sales

50.00%

40.00%

30.00%
M Seriesl

20.00%

10.00%

0.00%

Android i0s Other

Figure 1-1. Smartphone sales

CLIPS

CLIPS [6] is a rules engine written in C language. It is the most widely used
rules engine as it is fast and free.

It is portable and can easily be integrated with software written in
C, Java, FORTRAN, and ADA. Wide varieties of complex knowledge can
be represented using CLIPS rules. The software is available in the public
domain, making it the choice of the industry. Here is a summary of the
rules engine (Figure 1-2).

CHAPTER 1 WHICH RULES ENGINE IS BEST FOR BUILDING SMART APPLICATIONS?

FACTS RULES

Y e
o

RESULTS ACTIONS

Figure 1-2. CLIPS rules engine

o License type: Public domain
e Language: C

e Works on Android: Yes

e Rules Syntax: Lisp-like

¢ Memory Footprint: 0.83 MB

e Reasoning Method: Rete [22]
e Supports multi-threading: No

o Easyto scale the rules engine: Yes, with average time to
run being 17.4 milliseconds

JRuleEngine

JRuleEngine [7] is a Java-based rules engine that employs a forward-
chaining algorithm and is designed as per JSR 94 specifications. Rules are
defined in an XML file.

CHAPTER 1 WHICH RULES ENGINE IS BEST FOR BUILDING SMART APPLICATIONS?

There are two kinds of rules. One is a stateful rules session that
remembers the state of facts and can be queried repetitively. The other
is a stateless rules session, which gives good performance but does not
remember the state of facts.

The rules engine uses a set of input objects and generates a set of
output objects. Here is a summary of the rules engine:

o License type: Open source, LGPL

o Language: Java

e Works on Android: Yes

e Rules Syntax: Condition-action pattern

o Memory Footprint: 0.062660217 MB

o Reasoning Method: Forward-chaining algorithm
e Supports multi-threading: Yes

o Easyto scale the rules engine: Yes, with average time to
run being 0.24163 seconds

DTrules

DTrules [8] is a Java-based high-performance rules engine.

Rules are in the form of decision tables, which provide a simple
way to describe logic in a tabular form. Unbalanced decision tables are
supported, which reduces the effort required to build them. DTRules can
be easily integrated into Java applications.

It supports domain-specific language (DSL). It has a small memory
footprint. Here is a summary of the rules engine:

e License type: Open source (Apache 2.0 Open Source
License)

o Language: Java

CHAPTER 1 WHICH RULES ENGINE IS BEST FOR BUILDING SMART APPLICATIONS?

Works on Android: Yes
Rules Syntax: Decision table
Memory Footprint: 0.540092468 MB

Reasoning Method: Uses a structured set of data and a
set of decision Tables to implement policy rules

Supports multi-threading: Yes

Easy to scale the rules engine: No

Zilonis

Zilonis [9] is a multi-threaded rules engine. It is based on a variation of

the forward-chaining Rete algorithm. Its rules representation language

is similar to LISP. It also provides a scripting environment for Java-based

applications.

Here is a summary of the rules engine:

License type: GPL

Language: Java

Works on Android: Yes

Rules Syntax: Similar to Lisp
Memory Footprint: 0.683494568 MB

Reasoning Method: A variation of the forward-chaining
Rete algorithm

Supports multi-threading: Yes

Easy to scale the rules engine in cloud: Yes, with
average time to run being 0.65863 seconds

CHAPTER 1 WHICH RULES ENGINE IS BEST FOR BUILDING SMART APPLICATIONS?

Termware

Termware [9] is a rule-processing framework that can be easily embedded
in Java applications. It has a formal semantic model based on the concept
of a term system with actions. It allows extreme flexibility in applications
for high adaptability to a changeable environment, easy re-engineering,

and component reuse. Here is a summary of the rules engine:
o License type: Other
o Language: Java
e Works on Android: Yes
o Rules Syntax: Proprietary
e Memory Footprint: 0.195205688 MB

e Reasoning Method: One object, many patterns
matching approach

e Supports multi-threading: Yes

o Easyto scale the rules engine: Yes, with average time to
run being 11.3892 seconds.

Roolie

Roolie [11] is an extremely simple Java rules engine. It is a non-JSR 94 rule
engine designed particularly to use rules created in Java. Basic rules are
written in separate Java files and are chained together in an XML file to
create more-complex rules. Here is a summary of the rules engine:

o License type: Open source LGPL
o Language: Java

¢ Works on Android: Yes

10

CHAPTER 1 WHICH RULES ENGINE IS BEST FOR BUILDING SMART APPLICATIONS?

e Rules Syntax: XML

e Memory Footprint: 0.594 MB (608 KB)
e Reasoning Method: Proprietary

e Supports multi-threading: No

o Easyto scale the rules engine: Yes, with average time to
run being 2.87 seconds

OpenRules

OpenRules [12] is a business decision management system (BDMS) that
provides rules-based application development. It works in a simple Java
“OpenRules” API or the standard JSR-94 interface. It is used to create
decision support systems that can be used to create, execute, and maintain
business rules in applications. Rules are specified in Excel files in the form
of decision tables, removing the learning part for its users as it just requires
familiarity with MS Excel. It allows you to change the business rules/logic
in the Excel sheet at runtime without the need to deploy it again. It supports
parallelism, enabling it to work in multi-threaded environments. Figure 1-3
depicts the OpenRules workflow.

11

CHAPTER 1

[

ONLINE PROBLEM

RESOLUTION

]

|

RULE SOLVER

1

Selected problem

1

RULE ENGINE

Problem
Solving
Constraints &
Algorithms

WHICH RULES ENGINE IS BEST FOR BUILDING SMART APPLICATIONS?

Optimization
Expert

Rules
Management
Tools

Configuration
Rules

=
Problem

.| Business

Decision Service

Figure 1-3. OpenRules rules engine

b

Rules Repository

Here is a summary of the rules engine:

12

Analysts

License type: Both open source (GPL) and commercial

(Non-GPL)

Language: Java

Works on Android: Yes

Rules Syntax: Decision tables in Excel files

Memory Footprint: 2 MB

Reasoning Method: Proprietary

Supports multi-threading: Yes

Easy to scale the rules engine: No

CHAPTER 1 WHICH RULES ENGINE IS BEST FOR BUILDING SMART APPLICATIONS?

JXBRE

JxBRE [13] is a lightweight Java-based business rules engine (BRE).

Rules are written in an XML file along with logic defining the flow of the
application based on the execution of rules. It is both a forward-chaining,
data-driven inference engine and an XML-driven flow-control engine.
Here is a summary of the rules engine:

o License type: GPL

o Language: Java

e Works on Android: Yes

e Rules Syntax: XML

e Memory Footprint: 1.44 MB (1474 KB)
e Reasoning Method: Proprietary

e Supports multi-threading: No

o Easy to scale the rules engine: Yes, with average time to
run being 2.57 seconds

JEOPS

JEOPS [14] is a Java-based rules engine for embedding forward-chaining
production rules into Java applications. It provides artificial intelligence
capabilities to the application.

JEOPS production rules can be written in a text file (.rules file). The
interaction with the knowledge base is performed by four methods,
Tell (object), Flush (), Retract (object), and Modified (object). The time

13

CHAPTER 1 WHICH RULES ENGINE IS BEST FOR BUILDING SMART APPLICATIONS?

required for Java programmers to learn JEOPS is minimized by its using
Java expressions in the rule definitions. Here is a summary of the rules
engine:

o License type: Open Source LGPL
o Language: Java
e Works on Android: Yes

¢ Rules Syntax: “Condition-action” patterns in any text
editor

e Memory Footprint: 0.03 MB (31.5 KB)
e Reasoning Method: RETE
e Supports multi-threading: No

o Easyto scale the rules engine: Yes, with average time to
run being 120ms

14

CHAPTER 2

Steps to Port Rules
Engines

This chapter will cover how to port major rules engines in android
platform.

CLIPS

Android-ndk and Eclipse Helios were used to port CLIPS into Android. It is
better to use a Linux machine for porting. Here are the steps to port CLIPS

into Android:

e Download CLIPSJNI source code from Source Forge
and build an Android library project from the
source code.

o Export the library project to CLIPSINI. jar.

e Create a dummy Android project and create a JNI
directory under your project directory.

e Copy all source (*.c) and header (*.h) files from CLIPS
to JNI directory.

o Add all source files except main.c in Android.mk.

© Chinmoy Mukherjee 2018
C. Mukherjee, Build Android-Based Smart Applications,
https://doi.org/10.1007/978-1-4842-3327-6_2

15

CHAPTER 2 STEPS TO PORT RULES ENGINES

e Your Android.mk should look like the following:

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE CLIPSINI
LOCAL_SRC_FILES := agenda.c \
analysis.c \

argacces.c \

CLIPSINI_Environment.c
LOCAL_LDLIBS := -1m -1log -ljnigraphics
include $(BUILD_SHARED LIBRARY)

e Search for setlocale function in JNI directory.
Wherever setlocale is expected to return a value,
hardcode it to C and comment out all other setlocale
calls, as Android’s setlocale returns a hard-coded 0!

e Comment out main function (just to be on the safe
side).

e Runndk-build -b.

e Copy libCLIPSINI.soto libs/armeabi and 1ibs/
armeabi-v7a.

e Add CLIPSINI.jar to your Android project as an

external jar.

16

CHAPTER 2 STEPS TO PORT RULES ENGINES

JRuleEngine

Here are the steps to port JRuleEngine into Android:

Download jsr172.jar.

o Remove all packages from this jar file except
java.rmi.

Repackage the jar using jarjar.jar utility as follows:

o Create rulefile.txt containing the following line:
rule java.rmi.**
com.<yourcompany>.java.rmi.@1.

e Oncommand prompt, run java -jar jarjar.jar
process rulefile.txt <input jar>
<output jar>.

Download jsr94-1.1.jar.

Repackage the jar using jarjar.jar utility.

o Create arulefile.txt file containing the following
line: rule java.rmi.** com.<yourcompany>.
java.rmi.@1.

e Oncommand prompt, run: java -jar jarjar.jar
process rulesfile.txt <input jar> <output jar>.

Download Apache Harmony awt. jar and remove all
java.* packages from the jar.

Download jruleengine. jar with source code.

Comment all the else if statements containing a
Component.getName() function call; also remove the
import java.awt.Component; statement.

17

CHAPTER 2 STEPS TO PORT RULES ENGINES
o Repackage jruleengine.jar using jarjar.jar utility.
o Create rulefile. txt file containing the following rule:

o rule java.rmi.** com.<yourcompany>.java.
rmi.@1 rulejava.awt.Component**org.apache.
harmony.awt.ComponentInternals@1

e runjava -jar jarjar.jar process rulefile.txt
<input jar> <output jar>
o Create an Android project and add all these jars to the

build path of the project.

e Copy XML file containing rules to sdcard in emulator.

DTrules

The jar files work in Android but the following steps need to be executed to
use DTrules in Android applications:

o Write rules as decision tables in an Excel
sheet. Sample Excel sheets are available at
sampleprojects/<projectname>/DecisionTables.

e Create afile structure as follows:

/DecisionTables/excel_sheet_containing decision_
tables.xls

/edd/file_containing_edd.xls

/xml/

/DTRules.xml

o Convert Excel sheet containing rules to XML by using
code like the following:

Excel2XML.compile("root path", "DTRules.xml",
"name_of ruleset", "path to repository");

18

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 STEPS TO PORT RULES ENGINES

To generate the mapping file automatically, use
something like this:

String [] maps = {"main" };
Excel2XML.compile(path,"DTRules.xml",

"<rule name>","D:/XLS2XML/repository",maps);

Create an Android project.

Add the following jars to the build path: java-cup-11a.
jar, poi-3.6-20091214.jar, dtrules.jar.

Create a mapping file (if not generated automatically)
to map XML file with data into the entities.

Add the required entities to the initialization section,
which needs to be pushed to the entity stack before the
first decision table is executed. As an example:

<initialization>

<initialentity entity="constants" epush="true" />
<initialentity entity="job" epush="true" />
<initialentity entity="value" epush="true" />
</initialization>

Modify the number of each entity required to be
created. For example:

<entities>
<entity name="constants" number="1" />
<entity name="job" number="1" />
<entity name="value" number="1" />
</entities>

19

CHAPTER 2 STEPS TO PORT RULES ENGINES

e Create afile structure in sdcard as follows:

e /sdcard/xml/mapping file.xml,edd file.
xml,dt file.xml

o /sdcard/repository/DTRules.xml
e /sdcard/DTRules.xml
o /sdcard/testfiles/testcase.xml

o Copy the generated files into appropriate directory of
sdcard.

Zilonis
Zilonis jar works in Android without any issue. Here are the steps to add
Zilonis into your Android project:

o Create an Android project.

o Copy the .clp file containing rules into a folder, say the
temp folder in sdcard in emulator.

e Addzilonis0.97b.jar and antlr. jar to the project’s
build path.

While writing rules files (.clp) for Zilonis, please ensure the following:

o In.clpfile, only one statement can be added in one
line, unlike CLIPS.

e No space should be between lines.

20

CHAPTER 2 STEPS TO PORT RULES ENGINES

Termware

Porting Termware in Android was easy. Here is the one step:

e Remove all debug stub-related items from Java files
belonging to ua.gradsoft.termware and ua.gradsoft.
termware.util in the TermWare.jar.

Roolie

No effort was required to port Roolie onto Android—you just need to add
the jar file to the Android project and get going.

OpenRules

o Download the source code for org.apache.commons.
beanutils, recompile it, and export it to jar after
removing the following packages, to fix multiple
definition issues:

org.apache.commons.logging
org.apache.commons.logging.impl

o Then, repackage it using the jarjar.jar utility:

e Create rulefile.txt containing the following
rule: rule java.beans.** com.googlecode.
openbeans.@1

e Run the following command in command prompt
to repackage: java -jar jarjar-1.4.jar process
rulefile.txt <input jar> <output jar»

21

CHAPTER 2 STEPS TO PORT RULES ENGINES

o Download poi-3.6-20091214.jar for Excel-sheet
processing.

o Download openbeans-1.0. jar for using com.
googlecode.openbeans, as OpenRules uses Java beans
extensively, which is not supported by Android.

o Download commons-lang-2.3.jar and remove the
org.apache.commons.lang.enum package, then
recompile it.

e Create an Android project and add all these jars to the
build path of the project.

e OpenRules seems to have hard coded the path of
openrules.config dir, in which template files need to
be stored. Create a directory openrules. config under
sdcard and put the rule and template files there.

JXBRE

The following steps need to be followed to port JXBRE into Android:
o Download the source code of Xerces 1.4.4 (XML Parser).
o Change the name of package javax to anything else.
e Recompile the source code and build the project.
o Exportitto jar file xerces. jar.
o Download jxbre.jar and ideaityUtil. jar.

o Create an Android project and add all these jars to the
build path of the project.

22

CHAPTER 2 STEPS TO PORT RULES ENGINES

Download the XML Schema file businessRules.xsd.

Copy the rule file (.xml) and businessRules.xsd into
emulator, from which it can be accessed in the project.

JEOPS

JEOPS can be ported into Android as follows:

Create a new Java project.

Add the JavaBean file (declaring the variables being
used and their accessor methods) to it. Compile it and
copy the .class file from bin.

Create a new directory and paste the .class file just
generated there in appropriate folders according to the
package name specified in the . class file.

Also, copy the rule-base file (.rules) to this directory.
Download JEOPS.jar and put it in the directory.

In command prompt, go to the location/path of this
new directory and execute the following command to
generate a Java file from the rule-base file:

java -cp JEOPS.jar;. jeops.compiler.Main <rule file>

Create an Android project and add the generated rule-base
java file in the project.

Create a new jar with the JavaBean . java file (by
compiling it and exporting it to jar) and add it to the
build path of your Android project.

23

CHAPTER 2 STEPS TO PORT RULES ENGINES

e Add the following lines to the code of the rule-base Java
file for accessing tell():

_knowledgeBase.tell(f1);

_knowledgeBase.tell(f2);

private jeops.AbstractKnowledgeBase knowledgeBase;
_knowledgeBase = knowledgeBase;

o Also add JEOPS. jar to the build path of your project.

Sample Code Snippet

This code snippet will help you understand how to integrate a rules engine
with an Android application.

CLIPS

Let’s build a smart application using the CLIPS rule engine to assess
diarrhea symptoms for a patient.

24

CHAPTER 2 STEPS TO PORT RULES ENGINES

Figure 2-1 shows what the app looks like.

SHOAGPLOO3TL = oY]

0 E a17# 10:08 am

Assessment

Please answer all the questions.
How many days patient is having diarrhea?

Is there blood in stool?

eYes. No

[s patient lethargic or unconscious

.Yese No

Is patient restless or irritable?

.Yese No

[s patient’s eye sunken?

@ @ o

Pinched abdomen becomes normal very slowly?

eYes. No

Pinched abdomen becomes normal slowly?

Figure 2-1. What the app looks like

25

CHAPTER 2 STEPS TO PORT RULES ENGINES

The diarrhea guideline can be easily codified in CLIPS as diarrhoea.clp.

;--- Printout the response code---
;3 If the Remedy(Rx) is asserted, then printout the remedy.

(defrule print_diarrhea_message2
(Rx_diarrhea_signs code(code ?b))

(bind ?*WHODecisionCode* (create$?*WHODecisionCode* ?b))
; (printout t ?*WHODecisionCode* crlf)

)

55 RULES FOR ASSESSMENT OF PATIENT STATE AND TRIGGER THE
DIARRHEA MANAGEMENT

;--- Check if the patient has diarrhea ---

;3 If the patient data has (diarrhea yes) then (check blood in
stool) and (classify dehydration)

;5 If the patient data has (diarrhea no) then (check other disease)

(defrule check-diarrhea yes
(diarrhea_data (diarrhea yes)) ;; Check if the patient
has diarrhea

26

CHAPTER 2 STEPS TO PORT RULES ENGINES

(assert (check blood in stool)) 55 TRIGGER
CHECK BLOOD IN STOOL
(assert (classify dehydration))) 53 TRIGGER

CLASSIFY DEHYDRATION

(defrule check-diarrhea no
(diarrhea_data (diarrhea no))

=>
(assert (check other disease)))

;--- Rule check blood in stool ---
;3 If the patient has (blood in stool) then the patient state
is (dysentery).

(defrule check-blood in stool-yes
(check blood in_stool)
;5 check if the action is triggered from the diarrhea
(diarrhea _data (blood in stool yes))
;5 check if the patient has blood in stool

(assert (Rx_diarrhea_signs code (code "10"))))
55 ASSERT THE Decision Code : 1 which means dysentry

;--- Rule check blood in stool ---
;3 If the patient has (no blood in stool) then the patient
state is (no dysentery).

27

CHAPTER 2 STEPS TO PORT RULES ENGINES

(defrule check-blood in stool-no
(check blood in stool)
55 Check if the action is triggered from the diarrhea rule system
(diarrhea_data (blood in_stool no))
55 Check if the patient has no blood in stool
=>) 55 END THE ASSESSMENT OF DYSENTERY

(defrule classify-severe dehydration

(classify dehydration)

55 Check if the action is triggered from the diarrhea mule system

(diarrhea_data(blood in _stool no))

(diarrhea_data(severe condition count ?w&:(>= ?w 2)))
;5 If more than two of the following
some_dehydration signs are satisfied

(diarrhea_data(how many days ?x&:(<= ?x 14)))

;5 If diarrhea 14days or more

(assert (Rx_diarrhea_signs code (code "5")))
; (assert (check-more than_14days-severe dehydration case))

)

(defrule classify-severe dehydration child able to_drink
(Rx_diarrhea_signs code (code "5"))
(diarrhea_data (not_able to drink or drinking poorly no))
=>

(assert (Rx_diarrhea signs code (code "5A")))

28

CHAPTER 2 STEPS TO PORT RULES ENGINES

(defrule classify-severe dehydration child not able to drink
(Rx_diarrhea_signs code (code "5"))
(diarrhea_data (not_able to drink or drinking poorly yes))
=>

(assert (Rx_diarrhea_signs code (code "5B")))

(defrule classify-some dehydration

(classify dehydration)

55 Check if the action is triggered from the diarrhea rule system

(diarrhea data (blood in stool no))

(diarrhea_data(some condition count ?w&:(>= ?w 2)))

(diarrhea_data (severe condition count ?y&:(< ?y 2)))
;5 If more than two of the following
some_dehydration signs are satisfied

(diarrhea_data (how _many days ?x&:(<= ?x 14)))

;5 If diarrhea 14 days or more

(assert (Rx_diarrhea_signs code (code "6")))
;(assert (check-more than_14days-some_dehydration_case))

2999950599995 0599993999335)59933399933533999333993333399333993333)9)9)

(defrule classify-no_dehydration
(classify dehydration) ;5 Check if the
action is triggered from the diarrhea rule system
(diarrhea_data (blood in_stool no))

29

CHAPTER 2 STEPS TO PORT RULES ENGINES

(diarrhea_data (how_many days ?x&:(<= ?x 14)))
(diarrhea data (severe condition count ?w&:(< ?w 2)))
(diarrhea_data(some_condition count ?y&:(< ?y 2)))

(assert (Rx_diarrhea signs code (code "7")))

2999950509999 55099333)599335)599333)599333)599333)59333)3)3933339993399)9)

;5 RULES FOR DETERMINATION OF TREATMENT OBJECTIVES BASED ON
PATIENT'S STATE

;--- Rules for Assessment of Persistent Diarrhea ---

;--- Check-more than_14days ---

;--- Rules for Check-more_than_i4days - Patient is classified
to either have Severe or Some dehyration + diarrhea is >14

; then it is severe persistent diarrhea

(defrule check-severe persistent diarrhea-severe deh case

; (check-more_than_14days-severe_dehydration case)

;3 Check if the assessment of Persistent Diarrhea is triggered
(or (diarrhea data (some condition count ?w&:(>= ?w 2)))
(diarrhea_data (severe condition count ?y&:(>= ?y 2))))
(diarrhea_data (how many days ?x&:(> ?x 14)))

(diarrhea data (blood in stool no))

;53 If diarrhea 14days or more

=>

(assert (Rx_diarrhea_signs code(code "8"))))

55 ASSERT THE TREATMENT OBJECTIVE :SEVERE PERSISTENT DIARRHEA

30

CHAPTER 2 STEPS TO PORT RULES ENGINES

;--- Rules for Check-more than 14days - Patient has not been
classified to have dehydration but if diarrhea is >14 days then
it is persistent diarrhea

(defrule check-persistent diarrhea-no_deh case

; (check-more_than_14days-no_dehydration_case)

;5 Check if the assessment of Persistent Diarrhea is triggered
(diarrhea_data (some_condition count ?y&:(< ?y 2)))
(diarrhea_data(severe condition count ?w&:(< ?w 2)))
(diarrhea_data(how_many days ?x&:(> ?x 14)))

(diarrhea_data (blood in stool no))

;5 If diarrhea 14days or more

=>

(assert (Rx _diarrhea signs code (code "9"))))

55 ASSERT THE TREATMENT OBJECTIVE :PERSISTENT DIARRHEA

The user input can be modeled as diarrheaData:

public class diarrheaData implements Parcelable {
int iNumberofDays=0;
String sBlood In Stool="no";
String sLethargic Unconscious="no";
String sRestless Irritable="no";
String sSunken Eyes="no";
String sSkin Pinch Veryslow="no";
String sSkin_Pinch_Slow="no";
String sNot Able To Drink or Drinking Poorly="no";
String sDrinking Eagerly or Thirsty="no";
String sOther Severe Disease="no";
String sTrained nurse for iv_immediately="no";
String sIv_available in 30min="no";

31

CHAPTER 2 STEPS TO PORT RULES ENGINES

String sTrained nurse for ng tube immediately="no";

static {
try {
System.loadLibrary("CLIPSINI");
if(clips == null) {
clips = new Environment();
}
}

catch(UnsatisfiedLinkExrror ule) {
Log.e("INI", "Could not load
1ibCLIPSINI.so!");
}
private static Environment clips = null;
static {
try {
if(clips == null) {
clips = new Environment();
}
clips.clear();
clips.load("diarrhoea.clp");
String myassertString = "(diarrhea_data
(diarrhea yes) " +
"(blood_in_stool "+mydiarrheaData.sBlood In_
Stool +") " +
"(how_many_days "+mydiarrheaData.
iNumberofDays+") " +
"(lethargic_unconscious "+mydiarrheaData.
sLethargic_Unconscious+") "+
"(restless_irritable "+mydiarrheaData.sRestless
Irritable+") " +

32

CHAPTER 2 STEPS TO PORT RULES ENGINES

"(sunken_eyes "+ mydiarrheaData.sSunken Eyes+") " +
"(skin_pinch_veryslow "+mydiarrheaData.sSkin_
Pinch Veryslow+") " +

"(skin_pinch_slow "+mydiarrheaData.sSkin Pinch_
Slow+") " +

"(not_able_to_drink_or_drinking_poorly "+mydiarrhea
Data.sNot_Able To Drink or Drinking Poorly+") " +
"(drinking_eagerly_or_thirsty "+mydiarrheaData.
sDrinking Eagerly or Thirsty+") ™ +

"(othexr_severe Vdisease " + otherSevereDisease + "))";

clips.assertString(myassertString);
clips.run();
Multifieldvalue mv = (Multifieldvalue)
clips.eval("?*WHODecisionCode*");

String WHODecision;
List thelList = mv.listValue();
for(Iterator itr = thelist.iterator(); itr.hasNext();)

{
StringValue myValue = (StringValue) itr.next();

WHODecision = WHODecision + myValue.toString() + R

The decision will be available in WHODecision variable.
If the reader could understand the preceding CLIPS example, the rest
of the examples will be straightforward to understand.

33

CHAPTER 2

STEPS TO PORT RULES ENGINES

JRuleEngine

Class.forName("org.jruleengine.RuleServiceProviderImpl");

34

String path = Environment.getExternalStorage
Directory().getAbsolutePath()+"/temp/example3.xml";
InputStream inStream = new FileInputStream(new
File(path));

// Get the rule service provider from the provider
manager.

RuleServiceProvider serviceProvider =

RuleServiceProviderManager.getRuleServiceProvider

("org.jruleengine");
// get the RuleAdministrator
RuleAdministrator ruleAdministrator =

serviceProvider.getRuleAdministrator();
System.out.println("\nAdministration API\n");
System.out.println("Acquired RuleAdministrator: "
+ ruleAdministrator);

// get an input stream to a test XML ruleset

// This rule execution set is part of the TCK.

// InputStream inStream = new FileInputStream(
"example3.xml");

System.out.println("Acquired InputStream to
example3.xml: " + inStream);
// parse the ruleset from the XML document

RuleExecutionSet res1 = ruleAdministrator.

getLocalRuleExecutionSetProvider(
null).createRuleExecutionSet(inStream, null);
inStream.close();

System.out.println("Loaded RuleExecutionSet: " + resi);

CHAPTER 2 STEPS TO PORT RULES ENGINES

// register the RuleExecutionSet
String uri = resi.getName();
ruleAdministrator.registerRuleExecutionSet
(uri, resi, null);
System.out.println("Bound RuleExecutionSet to
URI: " + uri);
// Get a RuleRuntime and invoke the rule engine.
System.out.println("\nRuntime API\n");
RuleRuntime ruleRuntime = serviceProvider.
getRuleRuntime();
System.out.println("Acquired RuleRuntime: " +
ruleRuntime);
// create a StatefulRuleSession
StatefulRuleSession statefulRuleSession =
(StatefulRuleSession) ruleRuntime.
createRuleSession(uri,
new HashMap(),
RuleRuntime.STATEFUL SESSION TYPE);
System.out.println("Got Stateful Rule Session: " +
statefulRuleSession);

// Add some clauses...

ArraylList input = new ArraylList();

input.add(new Clause("Socrate is human"));

// add an Object to the statefulRuleSession
statefulRuleSession.addObjects(input);
System.out.println("Called addObject on Stateful

Rule Session: " + statefulRuleSession);

statefulRuleSession.executeRules();
System.out.println("Called executeRules");

35

CHAPTER 2

DTrules

STEPS TO PORT RULES ENGINES

// extract the Objects from the statefulRuleSession
List results = statefulRuleSession.getObjects();
System.out.println("Result of calling getObjects: " +
results.size() + " results.");
// Loop over the results.
Iterator itr = results.iterator();
while(itr.hasNext()) {
Object obj = itr.next();
System.out.println("Clause Found: "+obj.
toString());
}
// release the statefulRuleSession
statefulRuleSession.release();
System.out.println("Released Stateful Rule Session.");

String path = Environment.getExternalStorageDirectory().
getAbsolutePath()+"/";

String decisionTable = "Compute Eligibility";

//String decisionTable = "Calculate Individual Income";
RulesDirectory rd = new RulesDirectory(

path,

"DTRules.xml");

RuleSet rs

= rd.getRuleSet("KidAid");

IRSession session;

try {

Excel2XML.compile(path,"DTRules.xml","KidAid","sdcard");
session = rs.newSession();

Mapping mapping = session.getMapping();
mapping.loadData(session, path+"testfiles/"+"TestCase 001.xml");

36

CHAPTER 2 STEPS TO PORT RULES ENGINES

session.execute(decisionTable);
printReport(session, System.out);
} catch (RulesException e) {

// TODO Auto-generated catch block
e.printStackTrace();

} catch (Exception e) {

// TODO Auto-generated catch block
e.printStackTrace();

}
}

Zilonis

String fileName = "YOUR RULE FILE";

FileInputStream fstream = new FileInputStream(fileName);
int lineCount = getLines(fileName);
System.out.println("line is "+ lineCount);
DataInputStream dis = new DataInputStream(fstream);
BufferedReader br = new BufferedReader(new

InputStreamReader(dis));
Zilonislexer lexer = new ZilonislLexer(dis);
ZilonisParser parser = new ZilonisParser(lexer);

GenericEventHandler geh = new GenericEventHandler(rete);
parser.setEventHandler(geh);

try {

while(lineCount-- > 0) {
parser.statement();

}

} catch (RecognitionException e) {
// TODO Auto-generated catch block
e.printStackTrace();

37

CHAPTER 2 STEPS TO PORT RULES ENGINES

} catch (TokenStreamException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

} catch (FileNotFoundException e3) {
// TODO Auto-generated catch block
e3.printStackTrace();

} catch (IOException e) {

// TODO Auto-generated catch block
e3.printStackTrace();

}

Termware

String[] args = {"iReduce"};
TermWare.getInstance().init(args);

ITermRewritingStrategy strategy=new FirstTopStrategy();
IFacts facts=new DefaultFacts();

TermSystem termSystem=new TermSystem(strategy,facts,TermhWare.
getInstance());

termSystem.addRule("x->y");

termSystem.addRule("y->z");

Term inputTerm=TermWare.getInstance().getTermFactory().
createAtom("x");

Term outputTerm=termSystem.reduce(inputTerm);

if (outputTerm.getName().equals("z")){

Log.d("iReduce Termware","success");

}
} }catch(TermWareException ex){

Log.e("iReduce Termware", "eror:"+ex.getMessage());
ex.printStackTrace();

1

38

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 STEPS TO PORT RULES ENGINES

Roolie

public class AbdominalRuleArgs extends RuleArgs{
public enum ArgField

{

User

, right lower_abdomen
, left lower abdomen
» pain_nausea

, blood in_stool

, blood in urine
};
public String getUser()

{
return getString(ArgField.User);

}

public void setUser(String user)

{
setString(ArgField.User, user);
}
}

public abstract class AbdominalRule implements Rule{
@Override

public boolean passes(RuleArgs ruleArgs) {

// TODO Auto-generated method stub

if (false == (ruleArgs instanceof AbdominalRuleArgs))
{

Log.msg("ruleArgs must be an instance of
AbdominalRuleArgs ");

return false;

}

39

CHAPTER 2 STEPS TO PORT RULES ENGINES

// Cast RuleArgs to AbdominalRuleArgs and validate
AbdominalRuleArgs abArgs = (AbdominalRuleArgs) ruleArgs;
// Muse have all args set

if (false == abArgs.isright lower abdomenSet()

|| false == abArgs.isleft lower_ abdomenSet()

|| false == abArgs.isUserSet()

|| false == abArgs.ispain_nauseaSet()

|| false == abArgs.isblood in_stoolSet()

|| false == abArgs.isblood in_urineSet()

)

{
Log.msg("Not all the arguments in AbdominalRuleArgs are set.");

return false;

}

// If all args are there, let the child class do its

evaluation

return passes(abArgs);

}

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

// Get the config file as an InputStream
InputStream is =
Main.class.getClassLoader().
getResourceAsStream(
"roolie/abdominal/roolie-config.xml");
RulesEngine rules = new RulesEngine(is);
// Create some rule arguments (aka "Facts") to test
for some users
List<AbdominalRuleArgs> abdominalRuleArgsList =
createRuleArgsToTest();
// See if rules pass for each BankingRuleArgs created.
for (AbdominalRuleArgs ruleArgs : abdominalRuleArgsList)

40

OpenRules

CHAPTER 2 STEPS TO PORT RULES ENGINES

msg("\n* Evaluating " + ruleArgs.getUser()+"'s
health:\n");

boolean isUltrasound =rules.passesRule("Ultrasound",
ruleArgs);

boolean isCTScan =rules.passesRule("CTScan", ruleArgs);
boolean isStoolTest1 =rules.
passesRule("StoolTest1", ruleArgs);

boolean isStoolTest2 =rules.
passesRule("StoolTest2", ruleArgs);

boolean isStoolTest3 =rules.
passesRule("StoolTest3", ruleArgs);

boolean isNothing =rules.passesRule("NoTest",
ruleArgs);

UserInput userInput=new UserInput("no","yes","yes","no","yes

Response response=new Response();

String fileName = "file:sdcard/openrules.
config/DecisionOneOrTwo.x1s";

Decision decision = new Decision("DecisionAbdom
inalPain",fileName);

decision.put("userInput”, userInput);
decision.put("response”, response);
decision.execute();

public class UserInput {
String right lower abdomen;
String left lower abdomen;
String pain_nausea;

41

CHAPTER 2 STEPS TO PORT RULES ENGINES

String blood in stool;

String blood_in_urine;

public UserInput(String rla,String 1la,String pn,String

bis,String biu){
this.right lower abdomen =rla;
this.left lower abdomen =1la;
this.pain_nausea =pn;
this.blood in stool =bis;
this.blood in urine =biu;

}

public String getRight lower abdomen() {
return right lower abdomen;

}
public void setRight lower abdomen(String right lower
abdomen) {

this.right lower abdomen = right lower abdomen;
}

public class Response {

String comment;

public Response(){
this.comment="Helllllp";

}

public String getComment() {
return comment;

}

public void setComment(String s) {
comment = s;

42

CHAPTER 2 STEPS TO PORT RULES ENGINES

String[] products;
/**
* @return
*/
public String[] getProducts() {
if (products == null)
products = new String[o];
return products;

}
/**
* @param strings
*/
public void setProducts(String[] strings) {
products = strings;
}
public String toString() {
StringBuffer buf = new StringBuffer(2500);
buf.append("0ffered Products:").append("\n");
for (int i = 0; i < getProducts().length; ++i) {
buf.append("\t").append(getProducts()
[1]).append("\n");
}
if (comment != null)
buf.append("Comment: ").append
(comment).append("\n");

return buf.toString();

43

CHAPTER 2 STEPS TO PORT RULES ENGINES

JXBRE

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
bre = new BREImpl();
args=new String[]{ "/data/data/" +packageName +"/files/
abdominal.xml"};
//args="-s D:\\android_training\\rules\\discount.xml";
setContentView(R.layout.main);
copyCLPFiles("abdominal.xml");
copyCLPFiles("businessRules.xsd");
AbdominalMainLoad(args);
Inputs order = new Inputs();
getTotal(order);
}
private void copyCLPFiles(String fileName) {
try {
File file = getFileStreamPath(fileName);
if(file.exists()) {
return;
}
else {
InputStream myInput =
getAssets().open(fileName);
OutputStream myOutput = new
FileOutputStream(
"/data/data/" +
getPackageName() +"/
files/"+fileName);
//transfer bytes from the

inputfile to the outputfile
byte[] buffer = new byte[1024];

44

CHAPTER 2 STEPS TO PORT RULES ENGINES

int length;

while ((length = myInput.

read(buffer))>0){
myOutput.write(buffer,
0, length);

}
//Close the streams
myOutput.flush();
myOutput.close();
myInput.close();
}
}
catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
public void AbdominalMainLoad(String[] args) {
try {
Document doc = loadFile(args[0]);
// Let's register as a listener....
((BREImpl)bre).addListener(this);
((BREImpl)bre).init(doc);
}
catch (Exception e) {
System.err.println("Could not create
document");
e.printStackTrace();
}
}

45

CHAPTER 2 STEPS TO PORT RULES ENGINES
/**
* Let's pretend that we have an Object called Order and
it has all
* relevant order information including an Object for
the Product that
* is ordered
*/
public void getTotal(Inputs aOrder) {
// Have to do this so the anonymous classes can
get to it..
inp = aOrder;
BRERuleContext aBRC = bre.getRuleContext();
/**
* This is the best way to do this. Better than
wrapper classes.
* Don't know why I didn't think of this earlier....
*/
aBRC.setFactory(BLOOD IN URINE, new
BRERuleFactory() {
public Object executeRule(BRERuleContext
aBrc, Map aMap, Object aStep) {
return inp.getBlood in urine();

;s
aBRC.setFactory(BLOOD IN STOOL, new

BRERuleFactory() {
public Object executeRule
(BRERuleContext aBrc, Map aMap, Object
aStep) {
return inp.getBlood in stool();

};

46

CHAPTER 2 STEPS TO PORT RULES ENGINES

aBRC.setFactory(RIGHT LOWER ABDOMEN, new
BRERuleFactory() {

public Object
executeRule(BRERuleContext aBrc, Map
aMap, Object aStep) {
return inp.getRight lower
abdomen();

;s
aBRC.setFactory(LEFT _LOWER ABDOMEN, new

BRERuleFactory() {
public Object executeRule(BRERuleContext
aBrc, Map aMap, Object aStep) {
return inp.getlLeft lower abdomen();

}s
aBRC.setFactory(PAIN NAUSEA, new BRERuleFactory() {

public Object executeRule(BRERuleContext
aBrc, Map aMap, Object aStep) {
return inp.getPain nausea();

;s
aBRC.setFactory(RECCTEST BLOODURINE, new

BRERuleFactory() {
public Object executeRule(BRERuleContext
aBrc, Map aMap, Object aStep) {
return DecisionString.getDecis

ionString(new String((String)
aMap.get(TEST1)));

};

47

CHAPTER 2 STEPS TO PORT RULES ENGINES

aBRC.setFactory(RECCTEST RIGHTLOWER, new
BRERuleFactory() {
public Object executeRule(BRERuleContext
aBrc, Map aMap, Object aStep) {
return DecisionString.getDecision
String(new String((String)
aMap.get(TEST2)));

;s
aBRC.setFactory(RECCTEST LEFTLOWER, new

BRERuleFactory() {
public Object executeRule(BRERuleContext
aBrc, Map aMap, Object aStep) {
return DecisionString.getDecis
ionString(new String((String)
aMap.get(TEST3)));

};
aBRC.setFactory(NOTHING, new BRERuleFactory() {

public Object executeRule(BRERuleContext
aBrc, Map aMap, Object aStep) {
return DecisionString.get
DecisionString(new String
((String)aMap.get(TEST4)));

};

//bre.process();

bre.process("SET1");
bre.process("SET2");
bre.process("SET3");
bre.process("SET4");

48

CHAPTER 2 STEPS TO PORT RULES ENGINES

//System.out.println(bre.getRuleContext().
toString());
if ((aBRC.getResult(RECCTEST
BLOODURINE))!=null) {
System.out.println((String)aBRC.
getResult(RECCTEST BLOODURINE).getResult());
}
else {}
if ((aBRC.getResult(RECCTEST
RIGHTLOWER))'=null) {
System.out.println((String)aBRC.getResult(RECCTEST_
RIGHTLOWER).getResult());
}
else {}
if ((aBRC.getResult(RECCTEST LEFTLOWER))!=null)
System.out.println(aBRC.getResult
(RECCTEST _LEFTLOWER) .getResult());
}
else {}
if (aBRC.getResult(NOTHING)!=null) {
System.out.println(aBRC.getResult
(NOTHING) .getResult());

}
else {}

49

CHAPTER 2 STEPS TO PORT RULES ENGINES

JEOPS

for(int i=0; i <100; i++) {
Fibonacci f = new Fibonacci(i);

FibonacciBase kb = new FibonacciBase(new
PriorityConflictSet());

kb.tell(f);

kb.xun();

System.out.println(f.getN() + "the number of the fibonacci
series = " + f.getValue());

}

50

CHAPTER 3

Issues Faced While
Porting Rules Engines

We found a few issues while trying to write rules in each of the following

rules engines. The reader should make a note of these issues.

Jruleengine: It does not support OR operator.

Zilonis: It doesn’t support OR, defglobal, or bind
keywords, unlike CLIPS.

DTRules: The facts have to be provided in an XML file,
so running rules in an environment where facts have to
be provided at runtime is complex and tedious.

Termware: Rules have to be written in code itself.

Roolie: Too many rules files need to be developed, and
each rule needs to be coded in a separate Java file.

JXxBRE: ElseIf doesn’t work in XML files (we can use
Set instead). Only one If works in the logic part of
the rules file (.xml). Any one of {Rule, Log, Logic,
While, InvokeSet, ForEach, Retract} isexpected
before an If element.

© Chinmoy Mukherjee 2018
C. Mukherjee, Build Android-Based Smart Applications,
https://doi.org/10.1007/978-1-4842-3327-6_3

51

CHAPTER 3 ISSUES FACED WHILE PORTING RULES ENGINES

o JEOPS: The variables used as arguments for calling a
function need to be initialized in rules file itself (by
calling appropriate setter method).

o OpenRules: There is no document/readme explaining
how to write rules.

Porting Issues for Other Rules Engines

The reader might face the following issues when porting other rules engines:

e Drools: Eclipse runs out of memory (500 MB) while
converting it to dalvik format. Increasing the memory
of Eclipse did not solve the issue. The reader may try to
use high-end machine (RAM > 4 GB).

e JLisa: While running in Android, it throws a stack
overflow issue. Reader may contact JLisa support for a
resolution.

o Take: Need Java compiler at runtime. Reader may
contact Take support for Android compiler support.

e Jess: Development license costs around $15,000 (US).
e OpenRules:

e Method org.apache.poi.hssf.usermodel.
HSSFSheet.autoSizeColumn in poi-3.6-20091214.
jar uses class java.awt.font.FontRenderContext,
which is not available in Android.

e Method com.googlecode.openbeans.
StandardBeanInfo.getIcon uses class java.awt.
image, which is not available in Android.

52

CHAPTER 3 ISSUES FACED WHILE PORTING RULES ENGINES

While processing decisions, garbage collection runs
multiple times, indicating huge memory usage.

Did not receive any response from the company
OpenRules about the type of commercial license
supported and the cost of the license.

53

CHAPTER 4

Comparison of Rules
Engines for Mobile
Platforms

This chapter contains a comparison of rules engines used for developing
on mobile platforms.

Summarizing the Rules Engines

Out of all nine rules engines evaluated for Android, CLIPS is undoubtedly the
most elegant, as it is fastest, free, and supports its own rules programming
language. It is followed by OpenRules, where rules can be easily written in

an Excel sheet, then by JEOPS, since algorithms can be easily represented.
Next would be Termware, since integrating rules with your application is
straightforward. Because of its portability, extensibility, and low cost, CLIPS
has been widely used by governments, private enterprises, and universities.
CLIPS has enabled the embedding of artificial intelligence into a wide range of
applications in diverse computing environments.

Comparison of Rules Engines

Table 4-1 shows a comparison of the rules engines.

55
© Chinmoy Mukherjee 2018
C. Mukherjee, Build Android-Based Smart Applications,
https://doi.org/10.1007/978-1-4842-3327-6_4

CHAPTER 4 COMPARISON OF RULES ENGINES FOR MOBILE PLATFORMS

suJaqed

Luonoe

14 S8A ON 8l18d gIN €0 -uonipuod, BABl 1d91 Sdoar

€ S8A ON Ameudold giN vyt TNX BAEl 1d9 34axr

1d9
7 ON sap Aejandold qgNZ 189ys [99x3 BAB[[R12JBWILWOY/7dY so|nyuadp
€ S8A OoN Arelaudold 9N 6 TINX BAEl 1d91 a1j00y
Buiyaen

v SoA SOA wened dwel eARp eARp [e198dg aJemulis]

€ S8A SO\ 818y 9N 89 Sdid BABl 1d9 siuoljiz

¥ ON sop AMeoudold g PS 189yUS [99X3 eAep 0'Z syordy sa|Ny1q
suJaqed
Luonoe

€ S8A ON 818y gIN €0 -uonipuod, BAB[1d971 suibussnp

14 S8A ON]9y diN €8 M dSIT J ulewoqiqgnd Sdimd

(o) Buipeaiyy
buney Aujqejess -nniy Auluoseay Alowsdpy xejuAs sainy abenbueq asuaoll auibu3 sajny

yoog sy u1 sauidug sajny ayj Jo uostvduwio) v 1-¥ 219qvIL

56

CHAPTER 5

Requirements and
Challenges Facedin
Knowledge Application
Development

Knowledge management is defined as creating, sharing, using, and
managing information for a system or organization.

In this chapter, we will discuss the requirements, challenges,
design, and implementation of two knowledge management systems:
SmartAppGen and AutoQuiz.

Introducing SmartAppGen and AutoQuiz

SmartAppGen automatically generates the corresponding knowledge
application from structured knowledge represented as XML, Excel
sheets, PPT, and so forth. For example, suppose a health worker needs
to undergo training for a few weeks. At the training, they have to go
through hundreds of pages of knowledge materials. What if a knowledge
application is automatically built using the knowledge available and

57
© Chinmoy Mukherjee 2018
C. Mukherjee, Build Android-Based Smart Applications,
https://doi.org/10.1007/978-1-4842-3327-6_5

CHAPTER S REQUIREMENTS AND CHALLENGES FACED IN KNOWLEDGE APPLICATION DEVELOPMENT

then installed on their smartphone? The training time could be reduced
drastically; also, the health worker would not have to remember hundreds
of pages of documentation. They would not have to refer to the printed
guidelines from time to time to execute their daily routine. So, it is clear
that knowledge application can increase the efficiency and accuracy of
healthcare services.

Not all knowledge is so well formatted that a knowledge application
can be automatically developed and installed on a smartphone. So,
people would still have to undergo training and remember the things
learned at training. AutoQuiz comes in handy in cases where knowledge
(for instance, training materials, presentations, and so on) is given in
a text format. It can generate a meaningful quiz from the unstructured
knowledge. At the end of any training or presentation, a quiz can be
automatically generated, and all participants can be asked to take the quiz.
Then, their scores are immediately calculated. This achieves three things:
people would be more alert in training, the trainer would get immediate
feedback on the effectiveness of their training, and the trainer/manager
would know which people were falling short in understanding and take
appropriate measures to bring them up to the mark. This chapter will help
with automating the knowledge management of your company or institute.

Developing Knowledge Applications

To design, develop, and deploy a knowledge application, the steps shown
in Figure 5-1 are executed.

Digitize Codify Develop

application

< i Deploy
Knowledge Knowledge tesuntl

application

Figure 5-1. Knowledge application development

58

CHAPTER 5 REQUIREMENTSAND CHALLENGES FACED IN KNOWLEDGE APPLICATION DEVELOPMENT

Here are the main requirements and challenges associated with a

knowledge application:

Representing knowledge in a digitized format and
converting it into rules is a cumbersome and time-

consuming process.

The user interface can vary based on user profile. For
example, a user interface can be text based for tech
savvy, icon based for semi-literate, or voice based for
illiterate users.

Data persistence and maintenance is cuambersome
and if not managed properly may result in application
outage.

The same application may need to be developed for
multiple mobile phone platforms; e.g., Android, iOS,
and so forth.

Common features get implemented again and again
in such mobile applications, wasting thousands of
development hours.

Multiple languages may need to be supported.

Application installable may need to be customized
based on user profile.

Upgrading knowledge application should be feasible

over the air.

Let us see in the next chapter how SmartAppGen can automatically

generate a knowledge application. We will also address the challenges

faced by knowledge application developers.

59

PART li

SmartAppGen:
Automatically
Generate Knowledge
Application from
Structured Knowledge

CHAPTER 6

Design and
Implementation
of SmartAppGen

SmartAppGen is a set of frameworks to help generate knowledge-based
applications from structured knowledge automatically. Structured
knowledge can be provided in various formats, like an Excel sheet, text,
and XML.

¢ Questions, rules, information, and so forth are
extracted from the document and saved as XML.

e From the generated XML(s), the corresponding
Android layout, Android activity, CLIPS rules, and
decision engine are generated.

e Various frameworks, like speech-to-text, audio
capturer, photo capturer, upload manager, and so forth
are also automatically embedded into the project.

e Generated code frameworks are glued together to
generate a full-fledged Android project from a new
Android project.

© Chinmoy Mukherjee 2018
C. Mukherjee, Build Android-Based Smart Applications,
https://doi.org/10.1007/978-1-4842-3327-6_6

CHAPTER 7

Architecture
of SmartAppGen

We came up with a three-tier high-level and low-level architecture for
SmartAppGen. See Figure 7-1.

' Al
Voice Processor Image Processor Social Networking

L A
g ~N
Knowledge Extractor Knowledge Processor Application Generator
Lo ot

C]

Figure 7-1. High-level SmartAppGen architecture

A complex knowledge application needs to support social networking,
image and voice processing, over-the-air upgrade capabilities, and
persistence-management functionalities. So, SmartAppGen must be able
to generate such functionalities.

65
© Chinmoy Mukherjee 2018
C. Mukherjee, Build Android-Based Smart Applications,
https://doi.org/10.1007/978-1-4842-3327-6_7

CHAPTER 7 ARCHITECTURE OF SMARTAPPGEN

Based on the application workflow, we came up with a low-level
architecture for SmartAppGen.
Figure 7-2 describes all components of SmartAppGen present in the

presentation, application, and data tiers.

Voice to Text Converter

Photo Capturer

Cwac-updater

Audio Capturer
Chat Framework

S EGELE \
Question extractor Model code generator
Context Manager Language Translator

Generator

Installation Manager Registration Manager
Alarm Manager Edge Intelligence
Framework
\ Rest Client /

4 '
J

Text to Voice Converter View code generator

’lultilanguage Support License Manager

Rules generator

Control code generator

Rules Updater

Interaction to XML
Converter

Persistence Helper

\

Figure 7-2. Low-level architecture

Let us describe each of the components in detail.

Model Code Generator

This framework generates the code representing the model for the
knowledge/guideline (e.g., GuidelineData.java).

View Code Generator

This framework generates the user interface code (e.g., Guidelinescreen.
java) for the knowledge/guideline.

66

CHAPTER 7 ARCHITECTURE OF SMARTAPPGEN

Controller Code Generator

This framework generates the controller code for the knowledge guideline
(e.g., Mainactivity.java).

Question Extractor

This block extracts the guideline type (decisive/informative), questions,
answer types, and answer values and builds question.xml automatically.

Context Manager Generator

This framework generates a context manager corresponding to the
knowledge application.

Rules Generator

This framework converts the digitized guidelines to rules. For each
guideline, a set of rules files are generated. In the DTRules rules engine,
decisions are represented in an Excel sheet. Excel2XML converts decisions
to XML files that are processed by the rules engine. In CLIPS, a rules
header can easily be generated from the registration information and
questions. The developer would have to just codify the remaining part of
the rules.

Language Translator

This framework provides support for translating the application text into
multiple languages.

67

CHAPTER 7 ARCHITECTURE OF SMARTAPPGEN

Persistence Helper

This framework will help with persisting the application data to a local
database.

Interaction to XML Converter

This framework converts the user interactions (e.g., model) to XML.

Rules Upgrader

This framework will help upgrade rules over the air.

Cwac-updater

This open source framework [1] can be used to upgrade Android
applications over the air.

Voice-to-Text Converter

This framework will convert a user’s voice to text.

Text-to-Voice Converter

This framework will help convert text to voice and help the application
interact with users via voice.

68

CHAPTER 7 ARCHITECTURE OF SMARTAPPGEN

Photo Capturer

This is a generic framework to capture photos.

Audio Capturer

This is a generic framework for capturing audio for voice recording or any
other purpose.

Chat Framework

This framework enables the chat functionality.

Edge Intelligence Framework

This framework needs to be built on top of the rules engine and helps the
application communicate with the rules engine with ease.

REST Client

This framework will help the application make use of restful web services
exposed by any JAX-RS-compliant server.

Installation Manager

This framework ensures that the appropriate components and accessories
are packaged in the installable based on the profile of the user.

69

CHAPTER 8

Example of Generating
Knowledge Application
from Knowledge

Figure 8-1 represents knowledge from which one can derive a list of
medical tests a patient needs to undergo based on the symptoms of the
patient.

71
© Chinmoy Mukherjee 2018
C. Mukherjee, Build Android-Based Smart Applications,
https://doi.org/10.1007/978-1-4842-3327-6_8

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

Chief Complaint - Chest Pain |
|
;Btuod
|Tests/
|Blood
iOxygen
EKG |Level No Tes chest x-ray

Does the pain occur with exertion? :yns

Does the pain radiate to
the neck,
jaw, andfor arms? yes

Does the pain have a
"squeezing" or
"tightness" quality? \yes

Can the pain be
reproduced by
movement of the arms or
torso or by

pushing on a certain area
of the chest? No yes

Is the pain made worse by
deep
breathing? |No \yes

Is the pain brought on by
eating or

lying down? Is it relieved
with antacids? No yes

Is it accompanied by

shortness of

breath, sweating, a

feeling of "clamminess,"”

nausea or indigestion? \yes

If the pain is anginal in

nature, does

it last more than 15 to 30

minutes? | |yes

Figure 8-1. Knowledge in Excel sheet

From the Excel sheet depicted in Figure 8-1, corresponding Android
layout and CLIPS rules files are generated.

72

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

Android Layout Corresponding
to Knowledge

The Android layout XML is provided here for the sake of completeness.

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/
android”
android:layout width="match _parent"
android:layout_height="fill parent">
<LinearlLayout xmlns:android="http://schemas.android.com/apk/
res/android"
android:id="@+id/com test DummyProject chief complaint_
chest_painscreen layout1”
android:orientation="vertical”
android:layout width="fill parent"
android:layout_height="fill parent"”>
<TextView android:text="Does the pain occur with exertion?"
android:id="@+id/com_test DummyProject chief complaint chest_
painscreen__exertion” android:layout width="wrap content”
android:layout_height="wrap content”>
</TextView>
<RadioGroup android:layout width="wrap content” android:orien
tation="horizontal" android:id="@+id/com test DummyProject
chief complaint chest painscreen _exertionRadioGroup1”
android:layout_height="wrap content">
<RadioButton android:text="yes" android:layout height="wrap _
content” android:checked="false" android:id="@+id/com test
DummyProject chief complaint chest painscreen__exertion yes"
android:layout width="wrap content">
</RadioButton>

73

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

<RadioButton android:text="no" android:layout height="wrap_
content"” android:checked="true" android:id="@+id/com test_
DummyProject chief complaint chest painscreen _exertion no"
android:layout width="wrap content">

</RadioButton>

</RadioGroup>

<TextView android:text="Does the pain radiate to the neck,
jaw, and/or arms?" android:id="@+id/com test DummyProject_
chief complaint chest painscreen radiate neck jaw _arms”
android:layout width="wrap content" android:layout_
height="wrap content">

</TextView>

<RadioGroup android:layout width="wrap content"” android:orienta
tion="horizontal" android:id="@+id/com test DummyProject chief
complaint chest painscreen radiate neck jaw _armsRadioGroup2"
android:layout_height="wrap content”>

<RadioButton android:text="yes" android:layout height="wrap_
content” android:checked="false" android:id="@+id/com test_
DummyProject chief complaint chest painscreen radiate neck
jaw__arms_yes" android:layout width="wrap content">
</RadioButton>

<RadioButton android:text="no" android:layout height="wrap_
content” android:checked="true" android:id="@+id/com test_
DummyProject chief complaint chest painscreen_radiate neck _
jaw__arms no" android:layout width="wrap content">
</RadioButton>

</RadioGroup>

<TextView android:text="Does the pain have a squeezing or
tightness quality?" android:id="@+id/com test DummyProject
chief complaint chest painscreen squeezing tightness"
android:layout width="wrap content" android:layout
height="wrap content”>

74

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

</TextView>

<RadioGroup android:layout width="wrap content” android:orienta
tion="horizontal" android:id="@+id/com test DummyProject chief
complaint_chest painscreen_squeezing tightnessRadioGroup3"
android:layout_height="wrap content">

<RadioButton android:text="yes" android:layout height="wrap_
content” android:checked="false" android:id="@+id/com test
DummyProject chief complaint chest painscreen_squeezing_
tightness yes" android:layout width="wrap content"”>
</RadioButton>

<RadioButton android:text="no" android:layout height="wrap_
content"” android:checked="true" android:id="@+id/com test_
DummyProject chief complaint chest painscreen squeezing_
tightness no" android:layout width="wrap content">
</RadioButton>

</RadioGroup>

<TextView android:text="Can the pain be reproduced by movement
of the arms or torso or by pushing on a certain area of the
chest?" android:id="@+id/com_test DummyProject chief complaint_
chest_painscreen reproduced movement arms torso pushing area_
chest" android:layout width="wrap content"” android:layout
height="wrap content">

</TextView>

<RadioGroup android:layout width="wrap content" android:orienta
tion="horizontal" android:id="@+id/com test DummyProject chief
complaint _chest painscreen_reproduced movement arms torso pushing_
area_chestRadioGroup4"” android:layout height="wrap content">
<RadioButton android:text="yes" android:layout height="wrap
content” android:checked="false" android:id="@+id/

com_test _DummyProject chief complaint chest painscreen_
reproduced movement_arms_torso pushing area chest yes"
android:layout_width="wrap_content">

</RadioButton>
75

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

<RadioButton android:text="no" android:layout height="wrap_
content” android:checked="true" android:id="@+id/

com_test DummyProject chief complaint chest painscreen
reproduced movement arms_torso pushing area chest no"
android:layout_width="wrap_content">

</RadioButton>

</RadioGroup>

<TextView android:text="Is the pain made worse by deep breathing?"
android:id="@+id/com test DummyProject chief complaint chest_
painscreen worse deep breathing" android:layout width="wrap_
content” android:layout_height="wrap content">

</TextView>

<RadioGroup android:layout width="wrap content"” android:orienta
tion="horizontal" android:id="@+id/com test DummyProject chief
complaint chest painscreen worse deep breathingRadioGroup5s"
android:layout_height="wrap content”>

<RadioButton android:text="yes" android:layout height="wrap_
content” android:checked="false" android:id="@+id/com test_
DummyProject chief complaint chest painscreen worse deep
breathing yes" android:layout width="wrap content">
</RadioButton>

<RadioButton android:text="no" android:layout height="wrap_
content” android:checked="true" android:id="@+id/com test_
DummyProject chief complaint chest painscreen_worse_deep
breathing no" android:layout width="wrap content">
</RadioButton>

</RadioGroup>

<TextView android:text="Is the pain brought on by eating or
lying down? Is it relieved with antacids?" android:id="@+id/
com_test _DummyProject chief complaint chest painscreen_
brought _eating lying down relieved antacids" android:layout
width="wrap content"” android:layout height="wrap content”>

76

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

</TextView>

<RadioGroup android:layout width="wrap content” android:orienta
tion="horizontal" android:id="@+id/com test DummyProject chief
complaint_chest painscreen brought eating lying down relieved_
antacidsRadioGroup6"” android:layout_height="wrap content”>
<RadioButton android:text="yes" android:layout height="wrap_
content"” android:checked="false" android:id="@+id/

com_test _DummyProject chief complaint chest painscreen_

brought eating lying down relieved antacids yes"
android:layout width="wrap content">

</RadioButton>

<RadioButton android:text="no" android:layout height="wrap _
content” android:checked="true" android:id="@+id/

com_test _DummyProject chief complaint chest painscreen_

brought eating lying down relieved antacids no"
android:layout_width="wrap_content">

</RadioButton>

</RadioGroup>

<LinearLayout xmlns:android="http://schemas.android.com/apk/
res/android"

android:orientation="horizontal"

android:layout weight="1"

android:layout width="fill parent”

android:layout_height="wrap content">
<Button android:text="saveButton" android:layout weight="0.5"
android:id="@+id/com test DummyProject chief complaint chest
painscreen_saveButton" android:layout width="wrap content”
android:layout_height="wrap content"></Button>
<Button android:text="cancelButton" android:layout weight="0.5"
android:id="@+id/com _test DummyProject chief complaint chest

77

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

painscreen_cancelButton" android:layout width="wrap content”
android:layout height="wrap content"></Button>

=== SNIPPEd- - - mm e mm e
</LinearLayout>

</LinearLayout>

</ScrollView>

Figure 8-2 depicts the Android screen corresponding to the preceding
layout code.

Does the pain occur with exertion?

e pain radiate to the neck Jaw and/for

@

2 pain have a squeezing or

Figure 8-2. Generated Android screen

78

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

An XML file is automatically generated using, with results as follows:

<Fules rule-name="chestpain">
<conditions name="EKG">
<or>

<condition name="Is severe palmar pallor present?" value="yes"™>
idition>
iition name="Dces the pain radiate to the neck, jaw, and/or arms?" value="yes"™>
diti
<condition name="Doces the pain have a squeezing or tightness quality?" value="yes"™>
</condition>

</or>

on>

Using the XML, a CLIPS rule is generated automatically. The code
snippet that generates the CLIPS rule is as follows:
public static void write ()

File file = new File(ruleName + ".clp");

// if file does not exists, then create it
System.out.printin("Writing rule file ...");

try {

file.createNewFile();

FileWriter fw = new FileWriter(file.getAbsoluteFile());

BufferedWriter out = new BufferedWriter(fw);

out.write("(defglobal ?*"+ ruleName +"DecisionString® = (creates))");

out.write("(deftemplate " + ruleName +"_message\n\t(slot "+
decisionName[0] +")\n)");

out.write("(deftemplate " + ruleName +"_data\n")

List«<String> uniqueVars=new ArrayList<String=>();

int ind=0;

for(int j=0;j<cnlength;j++)

for(int i=0;i<gdinQuestions[j].length;i++)
iE(i.uniqueVars.contains(varNamesArr[j][i]))
uniqueVars.add(ind, varNamesArr{j][i]);
if('gdInQuestions[j][il.equals("null")) {
out.write("(slot "+varNamesArr[j1[i] + ")\n");
H
L
out.write(")\n\n");

out.write("(defrule print_message_" + ruleName + "\n");
out.write("\t("+ruleName+"_message(" +decisionName[0]+" 7a))\n");

79

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE
out.write(" ==\n\t(bind ?*"+ ruleName +"DecisionString* (create$?*"+ ruleName
+"DecisionString* ?a))\n)\n\n");
For(int j=0;j<cnlength;j++)
{ out.write("(defrule " + ruleName + "_" + conditionsName[j] + "\n");

if(isOrPresent[j] == true) {
out.write("(or\n");

H
for(int i=0;i<gdinQuestions[j].length;i++)
if('adinQuestions[j1[il.equals("null")) {

out.write("(" + ruleName +"_data("+varNamesArr[j][i] + " "
+ ansStrings[j1[i] + ")\n");
3

}

if(isOrPresent[j] == true) {
out.write(")\n");
}

out.write("==>\n (assert ("+ ruleName +"_message(" + decisionName[j] + "
\"" + decisionValue[j] + "\"))))\n\n");
¥

out.close();
System.out.printin("Done");

}

CLIPS Rules File Corresponding
to Knowledge

The reader is advised to go through the CLIPS basic programming guide to
get a good grasp of CLIPS rules syntax [23].

(defglobal ?*Chief Complaint Chest Pain DecisionString* =
(create$))
(deftemplate Chief Complaint Chest Pain_message
(slot decisionString)
)
(deftemplate Chief Complaint Chest Pain data
(slot pain_exertion)
(slot pain_radiate neck jaw_arms)
(slot pain_squeezing tightness quality)

80

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

(slot it accompanied shortness breath sweating feeling
clamminess_nausea_indigestion)
(slot If pain_anginal nature it last more than 15 30_
minutes)
(slot Can_pain_be reproduced movement arms torso
pushing certain area chest)
(slot pain_made worse deep breathing)
(slot pain_brought eating lying down it relieved
antacids)

)

(defrule print message Chief Complaint_ Chest Pain
(Chief Complaint Chest Pain_message(decisionString ?a))

=>
(bind ?*Chief Complaint Chest Pain DecisionString*
(create$?*Chief Complaint Chest Pain DecisionString*
?2a))

)

(defrule Chief Complaint Chest Pain EKG

(or

(Chief Complaint Chest Pain data(pain_exertion yes))
(Chief_Complaint_ Chest Pain data(pain radiate neck jaw arms yes))
(Chief Complaint_ Chest Pain data(pain_squeezing tightness
quality yes))

(Chief Complaint Chest Pain data(it_accompanied shortness
breath sweating feeling clamminess nausea indigestion yes))
(Chief Complaint Chest Pain data(If pain anginal nature it
last_more than 15 30 minutes yes))

)

=>

(assert (Chief Complaint Chest Pain message(decisionString
"EKG")))

)

81

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

(defrule Chief Complaint Chest Pain No Test

(Chief Complaint Chest Pain data(pain_exertion no))

(Chief Complaint Chest Pain data(pain_radiate neck jaw_arms no))
(Chief Complaint Chest Pain data(pain_squeezing tightness
quality no))

(Chief Complaint_ Chest Pain_data(Can_pain be reproduced
movement_arms_torso pushing certain area chest no))

(Chief Complaint Chest Pain data(pain_made worse deep
breathing no))

(Chief Complaint Chest Pain data(pain brought eating lying
down it relieved antacids yes))

(Chief Complaint_ Chest Pain data(it_accompanied shortness
breath sweating feeling clamminess nausea indigestion no))
(Chief_Complaint_ Chest Pain data(If pain_anginal nature it
last more than 15 30 minutes no))

=>

(assert (Chief Complaint Chest Pain message(decisionString
"No Test")))

)

(defrule Chief Complaint Chest Pain chest x-ray

(or

(Chief Complaint_ Chest Pain _data(Can_pain be reproduced
movement_arms_torso_pushing certain area chest yes))

(Chief Complaint Chest Pain data(pain_made worse deep
breathing yes))

)

=>

(assert (Chief Complaint Chest Pain message(decisionString
"chest x-ray")))

)

82

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

Knowledge Processing by Application

When the user selects the “chest pain” guideline in the knowledge
application, a set of questions is presented (Figure 8-2). When the user
answers the questions, a context manager constructs a CLIPS assert
string and asserts it to the rules engine. The generated CLIPS rules files
are already loaded into the rules engine at the time of application startup.
The rules engine comes up with the result based on the rules files and
user input. The context manager then reads the result back from the rules
engine and sends it to the main activity for display.

Knowledge Application Supporting-Feature
Generation

From the information present in the registration and settings files
(Figures 8-3 and 8-4), SmartAppGen automatically generates a
corresponding Android layout and activity file for the application.

registration regl

field-text field-type field-subType field-value default-value
Patient's Age: EditText numeric -

Patient's Weight: EditText numeric

Select Gender Spinner Prefer not to say:Male:Female Prefer not to say
Area Name: EditText text -~

Pin Code: EditText Numeric e

Figure 8-3. User registration information

settings MainSetting

field-text field-type field-input field-value default-vifield-editablfield-maxlength
Server IP EditText Phone Default 10
Select Language Spinner English:Hin English 10
Language Selected EditText FALSE 10
Asha registration EditText 10

Figure 8-4. Knowledge management app settings

83

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

Figures 8-5 and 8-6 show the generated app.

m
e

Figure 8-5. Generated Registration screen

Server 1P

Default

Select Language

asha registration Number
Figure 8-6. Generated Settings screen

84

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

Generate Database Helper

SmartAppGen can also generate a database helper class automatically.

The database helper class is required to persist application information.

Database settings are depicted in Figure 8-7.

database examplel woman :configuration:pk
field-name field-type field-null
woman id
id varchar(60) not null
Wname varchar(40) not null
Wage int(2) not null

update=WName:WAge, detail=WAge, WName:Weight prune=WAage<20

configuration Component

Component varchar(50) not null
version varchar(40) not null
update=version detail=version

Figure 8-7. Knowledge application database settings

Here is a snippet of the generated database helper:

public class examplel DataHelper {

private static final String DATABASE NAME = "example1";
private static final int DATABASE VERSION = 4;
private static final String TABLE REG1 = "regl";
private Context context;

private SQLiteDatabase db;

public examplel DataHelper(Context context) {
this.context = context;

OpenHelper openHelper = new OpenHelper(this.context);
this.db = openHelper.getWritableDatabase();

}

public long insert regl(String values)

{

long returnValue = 1;

String executeString = "insert into " + TABLE REG1 +
(" + values +");";

values

85

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

Log.d("insert",executeString);

try {
db.execSQL(executeString);

}

catch(SQLiteException e) {

Log.e("Database error while inserting",e.toString());
returnValue = 0;

}

return returnValue;

}

public long update regli(String pk, String Age, String Weight,
String Gender, String Area, String Pincode)

{

long returnValue = 1;

String executeString = "update " + TABLE REG1 + " set "+

"Age = '" + Age + "'," + "Weight = '" + Weight + "'," +
"Gender = '" + Gender + "'," + "Area = '" + Area + "'," +
"Pincode = '"" + Pincode + "'" + " where Id = '" + pk + "' ;";
Log.d("update",executeString);

try {

db.execSQL (executeString);

}

catch(SQLiteException e) {
Log.e("Database error while updating”,e.toString());
returnValue = 0;

}

return returnValue;

}
public String getName regi(String pk)

{
String str = "";

86

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

Cursor cursor = this.db.query (TABLE REG1, new String[]
{"Name"}, "Id" + "="+"?", new String[]{pk}, null, null, "ID
desc");

if (cursor.moveToFirst())

{

str = cursor.getString(0);

}

if (cursor != null 88 !cursor.isClosed()) {
cursor.close();

}

return str;

}

public void deleteAll regi()

{

this.db.delete(TABLE REG1, null, null);
}

public List<String> selectAll regi()

{

List<String>list = new ArraylList<String>();

Cursor cursor = this.db.query (TABLE REG1, new String[]
{ "Id" }, null, null, null, null, "ID desc");

if (cursor.moveToFirst()) {

do {

list.add(cursor.getString(0));

} while (cursor.moveToNext());

}

if (cursor != null 88 !cursor.isClosed()) {
cursor.close();

}

return list;

}

87

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

public void prune(String tableName, String condition)

{

String sql="delete from "+ tableName + " where " + condition;
db.rawQuery(sql, null).moveToFirst();

}

public void pruneAll(String[] tableName, String[] condition)
{

for(int i=0;i<tableName.length;i++){
prune(tableName[i],condition[i]);

}

}

private static class OpenHelper extends SQLiteOpenHelper {
OpenHelper(Context context) {

super (context, DATABASE NAME, null, DATABASE VERSION);
}@0verride

public void onCreate(SQLiteDatabase db) {

try {

String execStr;

execStr = "CREATE TABLE " + TABLE REG1 + " (Id varchar(60) not
null, Name varchar(60) not null, Age int(3) not null, Weight
int(3) not null, Gender varchar(60) not null, Area varchar(60)
not null, Pincode int(6) not null, PRIMARY KEY (Id))";
Log.d("examplel DataHelper \n",execStr);

db.execSQL(execStr);

}catch(SQLiteException e) {

Log.e("Database error",e.toString());

}
}

@verride
public void onUpgrade(SQLiteDatabase db, int oldVersion, int
newVersion) {

88

CHAPTER 8 EXAMPLE OF GENERATING KNOWLEDGE APPLICATION FROM KNOWLEDGE

Log.w("Example", "Upgrading database, this will drop tables and
recreate.");

db.execSQL("DROP TABLE IF EXISTS " + TABLE REG1);

onCreate(db);

}

}

}

How to Use SmartAppGen

Create a new Android project and provide main Android layout, main
activity Java file, AndroidManifest.xml, Excel sheet/text file containing
knowledge, and application configuration as runtime argument to
SmartAppGen and run it. All codes get generated and copied along with
reusable frameworks developed as part of SmartAppGen to the Android
project. Just refresh the project and do a clean build and run it. Your
knowledge application is ready for deployment.

Benefits of SmartAppGen

The following benefits can easily be observed:

o The SmartAppGen accelerator frameworks will
significantly reduce time to develop any knowledge
applications by 30 to 50 percent.

o The generic frameworks (audio capturer, text to speech,
photo capturer, upload manager, rules updater, etc.)
can be reused in any Android project.

89

CHAPTER 9

AutoQuiz:
Automatically
Generate Quiz
from Unstructured
Knowledge

In this chapter, we will show how to automatically build a quiz application
from knowledge using natural language processing (NLP) techniques. NLP
provides a way to process, understand, and derive meaning from human
language. Apple’s SIRI, Google’s Home, Amazon’s Echo, and Microsoft’s
Cortana are few examples of NLP systems.

To validate a user’s learning from a training, he or she needs to
undergo a test corresponding to the training material and score above a
threshold decided by the company or institute.

One of the most time-consuming aspects of such testing is the generation
of questions. They usually have to be constructed manually by experts in
the subject. Furthermore, the validation of answers is time-consuming too,
depending on the nature of the questions and the number of users.

91
© Chinmoy Mukherjee 2018
C. Mukherjee, Build Android-Based Smart Applications,
https://doi.org/10.1007/978-1-4842-3327-6_9

CHAPTER9 AUTOQUIZ: AUTOMATICALLY GENERATE QUIZ FROM UNSTRUCTURED KNOWLEDGE

AutoQuiz solves this problem by automating the generation of
questions. We extract the knowledge from the training materials and then
validate the users’ learning by presenting them with the quizzes.

AutoQuiz accepts text-based training material as input, which serves
the purpose in most cases, since text can be easily extracted from various
types of documents like PPT, PDF, Word doc, and so forth and fed into the
AutoQuiz knowledge-management system.

The AutoQuiz system has two components: the question generator and
the knowledge application that displays the quiz and the score of the user.

Question Generator

It takes a text-based article in a .txt file and outputs an XML file containing
the questions, answers, options, and so forth. Upon initiating the
program, the user enters the file name of article (including pathname if
not in current directory). The program uses the Stanford NER (Named
Entity Recognition) tagger to tag words of the following categories: Time,
Location, Organization, Person, Money, Percent, and Date.

The program then uses the Stanford POS (Part of Speech) tagger [16],
v.3.2.0, which is open source. It uses the API of the Penn Treebank tag
set [20] to tag words according to their POS. It uses 60-200 MB to run a
trained tagger with this API, which is fairly low compared to other taggers
like OpenNLP [17], which uses about 3-4 GB to run, with the trainer
provided by default. However, OpenNLP also provides other tools, like
sentence segmentation and named entity extraction, which are not
supported by the Stanford POS tagger but that would be useful to our
application. After tagging the words, the tagged words are stored in a text
file, from which each sentence is parsed and converted into one of four
different types of questions:

92

CHAPTER9 AUTOQUIZ: AUTOMATICALLY GENERATE QUIZ FROM UNSTRUCTURED KNOWLEDGE

e Keyword questions: These are “fill in the blank”
questions where there are no options and the right
answer is a keyword from the sentence. This keyword
is a proper noun detected by the POS tagger. Generally,
proper nouns are good keywords, because they are
usually the subject of the sentence. An extension would
be to use the OpenNLP tools to detect the head of the
sentence and make that the keyword.

¢ Noun questions: This is another “fill in the blank”
question where nouns are detected via the POS tagger
but options are provided for the answer. Options are
nouns from other sentences. A key factor in the quality
of these questions is the sense and relevance of the
questions and options. We plan to provide options with
attributes and scan through the pool of all answers to
look for the same attribute when selecting the options.
For example:

Input sentence:

e “An Engineer is trying to develop lightweight, ‘air
breathing’ hypersonic vehicles that can travel at rocket-
like speeds while taking oxygen from the atmosphere.”

Noun: engineer
Attribute: profession

e We use WordNet [18] to find its siblings in a tree
of professions; for example, scientist, electrician,
technologist, and so forth.

o Investigative questions (first kind): These are questions
that are of an investigative nature; for example:

93

CHAPTER9 AUTOQUIZ: AUTOMATICALLY GENERATE QUIZ FROM UNSTRUCTURED KNOWLEDGE
Input sentence: “Jake was the one who took the car”

Question: “Who was the one who took the car?”

o These questions look for verbs in the third person, past
tense. This is because most descriptive articles use
sentences in the third person past tense. In addition,
the answer must contain a proper noun to avoid trivial
cases like: “Tt was lying on the table.”

Without this rule, the answer would be “It,” which is not a
meaningful question.

“Who/what” questions can be refined to be either who or what
(or even when, how much, and so forth) using named entity
recognition software, for example, Stanford Named entity
recognizer [21], or OpenNLP tools [17].

o Investigative questions (second kind): These questions
are similar to investigative questions of the first kind.
Instead of starting with the questioning words, they end
with the questioning words. For example:

Input sentence: “Jake was the one who took the car”

Question: “Jake was the one who took the what?”

Similarly, a named entity recognizer can be used to refine the
wording of the questions.

These questions are stored in an XML file under the following format:

<questions guideline-name=Quiz name>

<question>
<question-text>question</question-text>
<answer-type>RadioButton/Text</ answer-type>

94

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER9 AUTOQUIZ: AUTOMATICALLY GENERATE QUIZ FROM UNSTRUCTURED KNOWLEDGE

<answer-value>answer</answer-value>
<option-value>optioni:option2...</option-value>
</question>
<question>

This XML file is stored in the second project—the Android application
project. The exact location is a user input to the first project. The field
is encrypted using a simple variation of the Caesar cipher: in the ASCII
table, all the characters are shifted by a certain index. This would prevent
the visibility of the answer if a user decided to extract the files from the
installed application.

Quiz Application

The application reads the XML files and creates a separate quiz for each file.
The user can determine the number of questions per page. A progress bar
indicates what fraction of the quiz has been completed. At the end, the user
is given his or her score for that quiz. The screenshots in Figures 9-1 to 9-3
will help you better understand the application workflow.

95

CHAPTER9 AUTOQUIZ: AUTOMATICALLY GENERATE QUIZ FROM UNSTRUCTURED KNOWLEDGE

DM@ 1:35em

Policies Quiz

Economist Article Quiz

Figure 9-1. AutoQuiz application

96

CHAPTER9 AUTOQUIZ: AUTOMATICALLY GENERATE QUIZ FROM UNSTRUCTURED KNOWLEDGE

AR @ 1:59m

.thought
Ocost

10) Who/what be kept away from
the wall of the combustion
chamber?
Carried by Rafale and Mirage fighter
jets, they are thought to

But reaching hypersonic speeds of
Mach 5 and above with an air-
breathing engine means getting
combustion to

. Scramjet fuel must also

Figure 9-2. Quiz questions

97

CHAPTER9 AUTOQUIZ: AUTOMATICALLY GENERATE QUIZ FROM UNSTRUCTURED KNOWLEDGE

DR @ 2:15m

You scored 84.61%,
(11/13).

Back to main screen

Figure 9-3. Quiz score

Benefits of AutoQuiz

We can easily observe the following benefits of the AutoQuiz system:

e Automatically generate quizzes based on training/
presentation materials, saving hours of effort to prepare
quiz manually

e Automatically validate quiz answers, again saving
hours of effort to validate answers manually

o Makes training/presentation more effective, as
people attending training would have to answer quiz
generated by AutoQuiz, and they and their manager get
to know the score immediately

o Measure effectiveness of trainer and training materials

98

CHAPTER9 AUTOQUIZ: AUTOMATICALLY GENERATE QUIZ FROM UNSTRUCTURED KNOWLEDGE

Known Issues

We still need to resolve the following issues for AutoQuiz system:

In the “fill in the blanks” and “nouns” questions, the
options may not always make sense, making it easy for
the test taker to answer the question correctly without
having knowledge of the article. We intend to tackle this
problem by tagging the words in the options-pool with
attributes.

Investigative questions of both kinds can become too
monotonous and robotic if they only use who/what.
These are used because of AutoQuiz'’s inability to
recognize the subject in the sentence.

Focus of sentence: The current prototypes are unable
to recognize the subject of the sentence and give more

meaningful questions. For example:
Input sentence: “Only the thief wears a black hat.”

Here, the focus is on “thief” and not, say, the color of
the hat.

Suitable question: “Who wears a black hat?”

Less suitable question: “What color hat does the

thief wear?”

Extracting knowledge: The current prototypes only
extract knowledge on a high level and not in detail.
They do not use rules to store the knowledge, so they
cannot be used to make derivations. For example:

99

CHAPTER9 AUTOQUIZ: AUTOMATICALLY GENERATE QUIZ FROM UNSTRUCTURED KNOWLEDGE

Input:

“Joe is the brother of John. John is the brother of
Jake.

Possible derivation: “Joe is a brother of Jake.”
We present possible solutions to these issues in the next section.

Future Work

Named Entity Recognition software can be used to refine the “who/what”
questions to be more specific. This would aid in adding clarity for the user
and would also improve the quality of the questions. This data can be used
to highly specialize questions; for example, who, what, when, how much,
and so forth. Furthermore, it would also aid in recognizing the head of the
sentence.

Another refinement that could be made is allowing the person creating
the quiz to select the sentences for which to generate questions, rather
than using every sentence. A key criterion could be the presence of words
with a particular POS that is crucial to the question.

Furthermore, compound sentences could either be split into two
separate sentences or be used as questions and answers. For example:

Input sentence:

“Joe went to the kitchen because he was hungry.”
(“Joe went to the kitchen.”) + (“He was hungry.”)
Possible questions:

“Who went to the kitchen?”

“Who was hungry?”

“Why did Joe go to the kitchen?” (Answer: “because
he was hungry”)

100

CHAPTER9 AUTOQUIZ: AUTOMATICALLY GENERATE QUIZ FROM UNSTRUCTURED KNOWLEDGE

However, questions like these require a greater understanding of the
sentences by the program. A first step would be to parse the sentence in
such a way that we can recognize the head and the body of the sentence.
The OpenNLP parser can be used to determine the structure of a sentence.
For example:

Input sentence: “The quick brown fox jumps over the lazy dog.”

Output:

(TOP

(NP

(NP

(DT The)

(33 quick)

(33 brown)

(NN fox)

(NNS jumps)

)

(PP

(IN over)
(NP

(DT the)
(33 lazy)
(NN dog)

)

)

. .)

PP, IN, JJ, etc. are the POS tags from the Penn Treebank tagset [20].
Sentences parsed in this way can aid in computers’ understanding of the
structure of the sentence and help them generate questions that are more

inventive than simply manipulating the original sentence.

101

CHAPTER9 AUTOQUIZ: AUTOMATICALLY GENERATE QUIZ FROM UNSTRUCTURED KNOWLEDGE

Furthermore, sentences parsed in this way can aid in extracting the
knowledge from the sentence. Knowledge can be stored in the form of
rules (for example, CLIPS [19], which is a rules engine). These rules can act
as predicates that can be used to derive conclusions. These conclusions
will be stored as new rules, and they can also be output as questions.

Knowledge-management automation needs to be planned by
corporates. “Knowledge application” can be automatically generated from
the available structured knowledge. Such application can help knowledge
workers perform their daily job better. This would significantly reduce the
time needed to train people and increase the efficiency and accuracy of
the knowledge workers.

When training employees on unstructured knowledge, companies
continue to spend millions of dollars; many of the trainings are not
effective and waste those dollars. Implementing AutoQuiz can ensure
that employees actually understand the knowledge shared in a training
or presentation. Project managers can assess the effectiveness of the
training or presentation (for example, which training is redundant, which
employee is a slow learner, which trainer is not effective, and so forth) and
take appropriate action.

102

CHAPTER 10

IEmergency

In most of the developing world, if a person faces an emergency situation—
like getting mugged, being beaten, getting molested, getting lost in an
unknown place, meeting with an accident, needing a safety guide, and so
on—there is hardly any help available. The longer the person stays in the
emergency situation, the more the probability of losing life or belongings
increases. In countries like India, the ratio of people to police personnel is
125:100000, and the roads are heavily congested with traffic during peak
hours. Hence, most of the time police are unable to attend to the crime
quickly. It generally takes more than two hours for the police to reach

the crime scene! Also, it has been observed that the common public is
either not interested or too afraid to provide emergency help to the needy,
fearing attack by the culprits. This results in major physical, emotional, and
economical damage to the victim, and may even lead to death.

The proposed system, iEmergency, aims to provide on-the-spot
emergency help to victims via a network of registered emergency help
providers. The victim can initiate a request for emergency help using
their smartphone. The mobile network finds nearby emergency help
providers using location-based services and notifies them. Emergency
help providers reach out to the victim and provide required assistance. On
completion of the help to the satisfaction of the victim, a fixed amount of
money is deducted from the victim’s account and distributed among the
emergency help providers who responded to the request and provided
help on the spot within the specified timeframe.

103
© Chinmoy Mukherjee 2018
C. Mukherjee, Build Android-Based Smart Applications,
https://doi.org/10.1007/978-1-4842-3327-6_10

CHAPTER 10 IEMERGENCY

Method

When a person is facing an emergency situation, he or she can initiate a
request for emergency help using the application installed in his or her
smartphone. The requester needs to choose the type of emergency help
required. The emergency situation details along with the requester’s
location (e.g., GPS/GPRS) are uploaded to the iEmergency server. A person
can select and register for various types of emergency services depending
upon his or her capabilities. For example, a person residing near a highway
can register as an accident relief service provider, retired military or police
personnel can register themselves as petty crime-prevention service
providers, social service-minded persons can register as companions for
hospital trips, and so forth. The server identifies the emergency helper(s)
available within a specified radius from the location of the requester who
match the type of help that he or she is looking for. The server determines
the number of emergency helpers required for the type of emergency faced
by the person and sends details about the emergency and the requester
(name, location, and photo) to the emergency helper(s). Emergency
helper(s) receive a message such as “Mr. <name> <mobile number> is
facing emergency situation of type <type> at <location>." The emergency
helper can visualize the requester’s current position on the map. The
emergency helper(s) can either accept or reject the service request.

If an emergency helper accepts the request, he or she can retrieve
the audio/video file(s) associated with the requester and gather more
information about their location and type of emergency. The requester
side of the application has the ability to upload audio or video files. He or
she may record an emergency message and upload the audio to the server
so it can be downloaded by the helper. The emergency helper tries to
come as near as possible to the requester’s location and either shouts the
name of the person or calls him or her using the mobile phone. The server
periodically receives location details of the available emergency helper(s)
so that, in case of any emergency event, the server knows their location.

104

CHAPTER 10 IEMERGENCY

Architecture

The architecture of the proposed system with a high-level work flow is
illustrated in Figure 10-1. The system consists of Requester and Helper
applications and a centralized server. The requester sends a request for
emergency service by starting the Requester application installed on

his or her Smartphone. The application sends a request to the server

to send helpers to the spot. The server notifies nearby helpers about

the emergency. The helpers reach the spot and provide requester with
required service. The requester then proceeds to pay the helpers. The
server responds back with the list of helpers who had accepted the request.
The requester identifies the helpers from the list to select the helpers who
actually came to help, and the requester pays those helpers (Figure 10-6).
The payment server authenticates the requester and sends payment to the
helper.

The Helper application scans for requests from nearby requesters. The
server retrieves details of the person waiting for help in the vicinity of the
helper and sends the details in response. The Helper application displays
the requester as well as helper on a map. The helper accepts or rejects the
request. The helper helps the requester and, after receiving the payment
notification, he or she marks the job complete and provides feedback
(Figure 10-7).

105

CHAPTER 10 IEMERGENCY

d
Accept request |

em b complete |

Payment Server

Figure 10-1. iEmergency architecture

Implementation of the System

The system consists of Requester (iRescue) and Helper (iRescuer) Android
applications, used by the requester and helpers respectively, and a
centralized server. Any individual can register on the portal as a requester

106

CHAPTER 10 IEMERGENCY

and/or a helper. At the time of registration, the person has to provide
details such as mobile number that will be used for the service, recent
photograph, and email ID as well as upload copies of identity and address
proof. The submitted information will be verified either automatically
(mobile number and email ID) or manually (address) to ensure that the
helpers are genuine persons. Help from law enforcement authorities may
be sought for manual verification of the helpers.

Requester Application iRescue

This application is installed on the requester’s mobile phone. When he or
she faces an emergency situation, he or she starts the application, enters
a PIN, and records his or her voice to provide more details about the
emergency faced. Details of the emergency situation and related audio
or any media file(s) are uploaded to a central server HTTP POST request.
In addition to that, when the server finds that a helper associated with
the requester has reached within an audible distance, the application
starts beeping loudly. When the helper reaches the person and provides
the required emergency service, the application retrieves the list of
helpers who had accepted the request and displays it to requester. The
photo, name, and mobile number of the helpers are displayed in the
application. The requester can choose one or more helpers from the list
and authenticate payment. Feedback can also be left for the helpers. The
feedback for the helpers is uploaded to the server.

Helper Application iRescuer

This application is installed on the helper’s mobile phone. By using
location-based services (LBS), it periodically sends the helper’s location
information to the server. It retrieves details of the nearest requester
waiting to receive emergency help. It shows the helper as well as the

107

CHAPTER 10 IEMERGENCY

requester on a map. It also displays the current distance of the requester
from the helper. The helper can either accept or reject the request. If the
request is rejected, the server updates the record of helper. If the helper
decides to accept the request, further details of the person in need (name,
mobile number, and photo) are displayed. The helper can also download
any audio associated with the requester and play it to gather additional
information about the emergency.

Once the helper reaches the requester, provides emergency service,
and receives payment, he or she marks the job as complete in the
application and provides feedback on the requester.

User Interface

Some of the main screens of the iRescue and iRescuer applications have
been depicted in Figures 10-2 to 10-7, which display the different type
of emergencies that the iEmergency system supports. As an example,
Figure 10-5 displays a map where both helper and victim are plotted.
Figure 10-6 displays a photo of the requester, and Figure 10-7 displays
photo and details of helpers who actually provided the service.

108

CHAPTER 10 IEMERGENCY

ype of Emergency?
Accident

Mugging Attempt

Need Escort

Vehicle Wrenched

Other Emergency

Settings

Figure 10-2. iRescue type of emergency

109

CHAPTER 10 IEMERGENCY

our GPS co-ordinates
Latitude:12.852414
Longitude:77.664116

Waiting for call...

Settings

Figure 10-3. iRescuer waiting

110

CHAPTER 10

Distance from Victim (meters): 124

P
W 4
P

W

s YO
L '“L'.\

Accept Reject

Figure 10-4. iRescuer accept/reject

IEMERGENCY

111

CHAPTER 10 IEMERGENCY

iIctim Details

Name: Rocky

Mobile No: 1234567890
Latitude:12.849873
Longitude:77.665217

Download Audio

Play Audio

Job Complete

Abort Rescue

Figure 10-5. iRescuer victim details

112

CHAPTER 10 IEMERGENCY

. Select All

Ted v

9876543210

9876540123

Figure 10-6. iRescue payment

113

CHAPTER 10 IEMERGENCY

ob Complete

Feedback:

Figure 10-7. iRescuer job complete

IEmergency Server

The iEmergency server is built on top of the Apache XAMPP platform. It
consists of one Apache server and one MySQL server. The server receives
various requests from helper(s) and requester(s) via HTTP POST and HTTP
GET and sends HTTP responses to both iRescue and iRescuer applications.
It maintains various details of registered requester(s) and helper(s). The
server sends nearby victim details to the iRescuer application. It also stores
audio details of the requester and allows the helper to download the audio.
In addition to that, feedback for the transaction between requester and
helper is recorded in the server.

114

PART il

Android Applications
for Solving Real-Life
Problems

CHAPTER 11

Assignments

This chapter contains multiple assignments that will test what you have
learned from previous chapter.

iIEncrypt and iDecrypt

Come up with two android applications—say, iEncrypt and iDecrypt.
iEncrypt will take a password and image file to encrypt and the type of
context/rule to be added while encrypting.

The following screenshots (Figures 11-1 to 11-5) will help you
understand the application requirements.

117
© Chinmoy Mukherjee 2018
C. Mukherjee, Build Android-Based Smart Applications,
https://doi.org/10.1007/978-1-4842-3327-6_11

CHAPTER 11 ASSIGNMENTS
Mobile Number:
9811098110
IP Address:
10.66.9.155
PIN Code:
560000

Latitude:

12.849758

Longitude:

Figure 11-1. iEncrypt setting

118

CHAPTER 11 ASSIGNMENTS

Enter File Name

Location

Settings

Figure 11-2. iEncryptinput

119

CHAPTER 11 ASSIGNMENTS

Mobile Number:

9911199111

10.76.6.145

560100

Latitude:

12.849873

Longitude:

| 77.665217

Save Cancel

Figure 11-3. iDecrypt setting

120

CHAPTER 11 ASSIGNMENTS

Enter File Name

| encrypteda bc.jpd

Settings

Figure 11-4. iDecrypt input

121

CHAPTER 11 ASSIGNMENTS

Figure 11-5. iDecrypt decrypted content

iFitness

Many times, when a user is exercising—for example, running on a
treadmill—he or she either runs too slow or runs too fast, making the
workout ineffective or harmful.

Develop an Android application to help the user measure the
effectiveness of his or her fitness program. Let the user wear a strap
(Figure 11-6) that transmits vital parameters, like number of steps,
speed, heart rate, and so forth, to an Android application over Bluetooth.
Configure the exercise mode as depicted in Figure 11-7).

122

CHAPTER 11 ASSIGNMENTS

Figure 11-6. Zephyr strap

FAT BURN
JUST GO
SETTINGS

Figure 11-7. iFitness main screen

In the settings, configure upper and lower thresholds of speed for each
of the categories. For example, “FAT BURN” speed can be between 10 and
20 km/hour. Also define what is considered the “above normal” threshold
for heart rate. In addition to that, advise the user based on his or her
speed and selected exercise mode. Also, advise the user to stop exercising
immediately if his or her heart rate crosses the upper threshold defined.

iPocket

The pick-pocketing of mobile phones is a huge menace in developing
countries, and even developed countries like Spain, Italy, and France are
severely affected by it. Millions of mobile phones are lost every year due

123

CHAPTER 11 ASSIGNMENTS

to pick-pocketing. How can we detect a phone getting pick-pocketed in
real-time?

When someone pick-pockets a phone, the accelerometer data pattern
is significantly different than that of the pattern that occurs when a person
picks his/her phone from pocket for making/receiving calls. Develop an
Android service to monitor the accelerometer pattern. Identify the pick-
pocketing pattern by collecting 10-12 data points any time phone is picked
up and comparing the accelerometer data with the normal as well as the
pick-pocketing data points.

iFall

Elderly people often fall down, and it can happen while they are home alone;
they can even fall unconscious following the fall. Can an Android application
detect such emergencies and inform a concerned emergency contact?
Collect 10-12 accelerometer readings when a person falls down with a
phone inside his or her pocket as well as in his or her hand. Run a service
in the phone to check for such accelerometer patterns. When a similar
pattern is detected, wake up the iFall Android application and ask the
user, “Are you Okay?” If the user says yes, the application exits; otherwise,
the application retries to get a response from user. If no response is
received, the app sends a text message with location, time details, and a
message like “User seems to have fallen down, not responding for past X
minutes” to preconfigured mobile numbers. The mobile numbers must be
configured using the settings of the iFall application.

iPrescribe

Patients often forget to take medicine on time. Also, once the symptoms
subside, patients stop taking their medicines altogether, due to which they
do not recover completely and may fall sick again.

124

CHAPTER 11 ASSIGNMENTS

Feed the prescription along with the dosing schedule into the
iPrescribe application. Remind the user, saying things like, “It’'s 9 p.m.,
please take 1 crocin tablet, and also take 1 teaspoon of zedex syrup at five
past 9 p.m.” After a configurable number of minutes, the application will
ask the patient, “Did you take medicines as prescribed?” The patient can
answer “yes” or “no”; if the patient says “no,” iPrescribe will ask them the
reason for not taking the medicine, then it records the reason and stores it
along with the prescription schedule.

At the end of the schedule, the data can be uploaded to a central server
and analyzed for studying the effectiveness of the medicines prescribed.
iPrescribe should also be able to come up with a health negligence
quotient for the patient based on how religiously they followed the
prescription schedule.

Think about whether prescriptions could be fed into the iPrescribe
Android application automatically.

iSafety

In developing countries, crimes against children (on the way to school/
home) have increased significantly in recent years. How can we ensure the
safety of kids and family when they are out from sight?

Develop a safe-zone application and install it on the child’s phone.
Configure safe zones, like school, home, and so forth. If the person
happens to stay out of a safe zone for more than a configurable number of
minutes, start sending SMS along with GPS location details of the person
periodically. The person receiving the SMS and location details can plot
the locations in a map and determine a further course of action.

In this chapter, we learned how to design and develop a complete
system using Android applications and a backend server to solve real-life
problems. We also hope that after going through the problems, readers will
be able to come up with new Android project ideas.

125

References

1. John R. Rymer and Mike Gualtieri, “Market
Overview: Business Rules Platforms 2011, July 5,
2011. Available at: http://www.forrester.com/
Market+Overview+Business+Rules+Platforms+
2011/fulltext/-/E-RES58570?aid=AST152422

2. “World Mobile Applications Market Worth US$25
Billion by 2015, Press Release. Available at: http://
www.marketsandmarkets.com/PressReleases/
mobile-applications-market.asp.

3. “10 Cutting-Edge Mobile Application Trends for
2012,” ItBusinessEdge.com. Available at: http://
www. itbusinessedge.com/slideshows/show.
aspx?c=87261.

4. http://www.android.com/

5. Heather Leonard, “So, Who Is Winning—iOS or
Android?” Business Insider, April 18, 2013. Available
at: http://www.businessinsider.com/so-who-is-
winning-ios-or-android-2013-44.

6. http://clipsrules.sourceforge.net/
7. http://jruleengine.sourceforge.net/
8. http://dtrules.com/

9. http://sourceforge.net/projects/zilonis

127
© Chinmoy Mukherjee 2018
C. Mukherjee, Build Android-Based Smart Applications,
https://doi.org/10.1007/978-1-4842-3327-6

https://doi.org/10.1007/978-1-4842-3327-6
http://www.forrester.com/Market+Overview+Business+Rules+Platforms+2011/fulltext/-/E-RES58570?aid=AST152422
http://www.forrester.com/Market+Overview+Business+Rules+Platforms+2011/fulltext/-/E-RES58570?aid=AST152422
http://www.forrester.com/Market+Overview+Business+Rules+Platforms+2011/fulltext/-/E-RES58570?aid=AST152422
http://www.marketsandmarkets.com/PressReleases/mobile-applications-market.asp
http://www.marketsandmarkets.com/PressReleases/mobile-applications-market.asp
http://www.marketsandmarkets.com/PressReleases/mobile-applications-market.asp
http://www.itbusinessedge.com/slideshows/show.aspx?c=87261
http://www.itbusinessedge.com/slideshows/show.aspx?c=87261
http://www.itbusinessedge.com/slideshows/show.aspx?c=87261
http://www.android.com/
http://www.businessinsider.com/so-who-is-winning-ios-or-android-2013-44
http://www.businessinsider.com/so-who-is-winning-ios-or-android-2013-44
http://clipsrules.sourceforge.net/
http://jruleengine.sourceforge.net/
http://dtrules.com/
http://sourceforge.net/projects/zilonis

REFERENCES

128

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

http://www.gradsoft.ua/products/termware
eng.html

http://roolie.sourceforge.net/
http://openrules.com/
http://sourceforge.net/projects/jxbre/
http://www.cin.ufpe.br/jeops/
https://github.com/commonsguy/cwac-updater

The Stanford Natural Language Processing Group,
“Stanford Log-linear Part-Of-Speech Tagger,”
available at: http://nlp.stanford.edu/software/
tagger.shtml

OpenNLP software tools: http://wordnet.
princeton.edu/

Princeton University, “WordNet: A Lexical Database
for English,” available at: http://wordnet.
princeton.edu/

“CLIPS: A Tool for Building Expert Systems,”
available at: http://clipsrules.sourceforge.
net/.

Penn Treebak tagset: http://www.mozart-oz.org/
mogul/doc/lager/brill-tagger/penn.html

The Stanford Natural Language Processing Group,
“Stanford Named Entity Recognizer (NER),”
available at: http://nlp.stanford.edu/software/
CRF-NER.shtml.

“Rete Algorithm,” https://en.wikipedia.org/
wiki/Rete_algorithm.

http://www.gradsoft.ua/products/termware_eng.html
http://www.gradsoft.ua/products/termware_eng.html
http://roolie.sourceforge.net/
http://openrules.com/
http://sourceforge.net/projects/jxbre/
http://www.cin.ufpe.br/jeops/
https://github.com/commonsguy/cwac-updater
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/tagger.shtml
http://wordnet.princeton.edu/
http://wordnet.princeton.edu/
http://wordnet.princeton.edu/
http://wordnet.princeton.edu/
http://clipsrules.sourceforge.net/
http://clipsrules.sourceforge.net/
http://www.mozart-oz.org/mogul/doc/lager/brill-tagger/penn.html
http://www.mozart-oz.org/mogul/doc/lager/brill-tagger/penn.html
http://nlp.stanford.edu/software/CRF-NER.shtml
http://nlp.stanford.edu/software/CRF-NER.shtml
https://en.wikipedia.org/wiki/Rete_algorithm
https://en.wikipedia.org/wiki/Rete_algorithm

23.

24.

25.

REFERENCES

“CLIPS Reference Manual, Volume 1: Basic
Programming Guide,” version 6.30, March 17, 2015.
Available at: http://clipsrules.sourceforge.
net/documentation/v630/bpg.pdf.

https://sourceforge.net/projects/clipsrules/
files/CLIPS/6.30/clips_jni_050.zip/download

“Knowledge Management,” https://en.wikipedia.
org/wiki/Knowledge_management.

129

http://clipsrules.sourceforge.net/documentation/v630/bpg.pdf
http://clipsrules.sourceforge.net/documentation/v630/bpg.pdf
https://sourceforge.net/projects/clipsrules/files/CLIPS/6.30/clips_jni_050.zip/download
https://sourceforge.net/projects/clipsrules/files/CLIPS/6.30/clips_jni_050.zip/download
https://en.wikipedia.org/wiki/Knowledge_management
https://en.wikipedia.org/wiki/Knowledge_management

Index

A, B

Assignments
iDecrypt, 117, 120-121
iEncrypt, 117-119
iFall, 124
iFitness, 122-123
iPocket, 123
iPrescribe, 124-125
iSafety, 125

Audio capturer, 69

AutoQuiz
benefits, 98
issues, 99
knowledge-management,

58, 102

OpenNLP parser, 101
question generator, 92-95
quiz application, 95, 97
text-based training material, 92
user’s learning, 91

C

Chat framework, 69

CLIPS, 6-7, 15-16, 24, 80, 83
Context manager generator, 67
Controller code generator, 67
Cwac-updater, 68

© Chinmoy Mukherjee 2018

D

DTrules, 8-9, 18-20, 36

E,FG,H

Edge intelligence framework, 69

iEmergency
architecture, 105-106
helper application
iRescuer, 107-108
method, 104
requester application
iRescue, 107
server, 114
system implementation,
106-107
user interface, 108-114
Installation manager, 69
Interaction to XML converter, 68

J

JEOPS, 13-14, 23, 50
JRuleEngine, 7-8, 17-18, 34
JXBRE, 13, 22, 44

131

C. Mukherjee, Build Android-Based Smart Applications,

https://doi.org/10.1007/978-1-4842-3327-6

https://doi.org/10.1007/978-1-4842-3327-6

INDEX

K

Knowledge application
Android layout XML, 73
CLIPS rules, 80, 83
database settings, 85
development, 58-59
Excel sheet, 72
generated app, 84
list of medical tests, 71-72
processing, 83
registration and

settings, 83-84

L

Language translator, 67

Model code generator, 66

N

Named Entity Recognition, 100

Named Entity Recognition
(NER), 92

Natural language processing
(NLP), 91

O

OpenRules, 11-12, 21-22, 41

132

P

Persistence helper, 68
Photo capturer, 69

Q

Question extractor, 67

R

REST client, 69

Roolie, 10, 21, 39

Rules engines
Android platform, 5
calculators, 3
CLIPS, 3, 6-7
definition, 5
DTrules, 8-9
flexibility, 5
issues, 51-53
JEOPS, 13-14
JRuleEngine, 7-8
JXBRE, 13
mobile applications, 4
mobile platforms, 5, 55
OpenRules, 11-12
Roolie, 10
sample code, 4
smartphone sales, 6
Termware, 10
Zilonis, 9

Rules generator, 67

Rules upgrader, 68

INDEX

S photo capturer, 69
question extractor, 67

S le code snippet
ampre code siippe REST client, 69

CLIPS, 24
DTrules, 36 rules generator, 67
: rules upgrader, 68
EOPS, 50 .
iRuleEn ine, 34 text-to-voice converter, 68
JxBRE 4%1 ' user interaction to XML
0] enfy{ules 41 converter, 68
Rtr))olie 39 , view code generator, 66

voice-to-text converter, 68
Termware, 38

Zilonis, 37-38
SmartAppGen
Android project, 89
audio capturer, 69
benefits, 89
chat framework, 69
context manager generator, 67 T, U
controller code generator, 67
cwac-updater, 68
database helper class, 85
description, 57-58
design and implementation, 63 VWXY
edge intelligence framework, 69 o
high-level architecture, 65
installation manager, 69
low-level architecture, 66
language translator, 67 V4
model code generator, 66
persistence helper, 68

database helper class, 85

description, 57-58

design and implementation, 63

high-level and low-level
architecture, 65, 66

Termware, 10, 21, 38
Text-to-voice converter, 68

View code generator, 66
Voice-to-text converter, 68

Zilonis, 9, 20, 37-38

133

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Rules Engines
	Chapter 1: Which Rules Engine Is Best for Building Smart Applications?
	 What Is a Rules Engine?
	 CLIPS
	 JRuleEngine
	 DTrules
	 Zilonis
	 Termware
	 Roolie
	 OpenRules
	 JxBRE
	 JEOPS

	Chapter 2: Steps to Port Rules Engines
	 CLIPS
	 JRuleEngine
	 DTrules
	 Zilonis
	 Termware
	 Roolie
	 OpenRules
	 JxBRE
	 JEOPS
	 Sample Code Snippet
	 CLIPS
	 JRuleEngine
	 DTrules
	 Zilonis
	 Termware
	 Roolie
	 OpenRules
	 JxBRE
	 JEOPS

	Chapter 3: Issues Faced While Porting Rules Engines
	 Porting Issues for Other Rules Engines

	Chapter 4: Comparison of Rules Engines for Mobile Platforms
	 Summarizing the Rules Engines
	 Comparison of Rules Engines

	Chapter 5: Requirements and Challenges Faced in Knowledge Application Development
	 Introducing SmartAppGen and AutoQuiz
	 Developing Knowledge Applications

	Part II: SmartAppGen: Automatically Generate Knowledge Application from Structured Knowledge
	Chapter 6: Design and Implementation of SmartAppGen
	Chapter 7: Architecture of SmartAppGen
	 Model Code Generator
	 View Code Generator
	 Controller Code Generator
	 Question Extractor
	 Context Manager Generator
	 Rules Generator
	 Language Translator
	 Persistence Helper
	 Interaction to XML Converter
	 Rules Upgrader
	 Cwac-updater
	 Voice-to-Text Converter
	 Text-to-Voice Converter
	 Photo Capturer
	 Audio Capturer
	 Chat Framework
	 Edge Intelligence Framework
	 REST Client
	 Installation Manager

	Chapter 8: Example of Generating Knowledge Application from Knowledge
	 Android Layout Corresponding to Knowledge
	 CLIPS Rules File Corresponding to Knowledge
	 Knowledge Processing by Application
	 Knowledge Application Supporting-Feature Generation
	 Generate Database Helper
	 How to Use SmartAppGen
	 Benefits of SmartAppGen

	Chapter 9: AutoQuiz: Automatically Generate Quiz from Unstructured Knowledge
	 Question Generator
	 Quiz Application
	 Benefits of AutoQuiz
	 Known Issues
	 Future Work

	Chapter 10: iEmergency
	 Method
	 Architecture
	 Implementation of the System
	 Requester Application iRescue
	 Helper Application iRescuer
	 User Interface
	 iEmergency Server

	Part III: Android Applications for Solving Real-Life Problems
	Chapter 11: Assignments
	 iEncrypt and iDecrypt
	 iFitness
	 iPocket
	 iFall
	 iPrescribe
	 iSafety

	References
	Index

