
www.allitebooks.com

http://www.allitebooks.org

Building Microservices with
ASP.NET Core

Develop, Test, and Deploy Cross-Platform Services in the
Cloud

Kevin Hoffman

www.allitebooks.com

http://www.allitebooks.org

Building Microservices with ASP.NET Core
by Kevin Hoffman

Copyright © 2017 Kevin Hoffman. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com/safari). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Nan Barber and Brian Foster

Production Editor: Shiny Kalapurakkel

Copyeditor: Kim Cofer

Proofreader: Rachel Head

Indexer: Wendy Catalano

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest

September 2017: First Edition

Revision History for the First Edition

2017-08-31: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491961735 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building
Microservices with ASP.NET Core, the cover image, and related trade dress
are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained
in this work is at your own risk. If any code samples or other technology this

www.allitebooks.com

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491961735
http://www.allitebooks.org

work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-491-96173-5

[LSI]

www.allitebooks.com

http://www.allitebooks.org

Preface

The handwriting is on the wall—most people building software and services
today are rushing to embrace microservices and their benefits in terms of
scale, fault tolerance, and time to market.

This isn’t just because it’s a shiny new fad. The momentum behind
microservices and the concepts driving them is far more important, and those
looking for the pendulum to swing back away from the notion of smaller,
independently deployed modules will be left behind.

Today, we need to be able to build resilient, elastically scalable applications,
and we need to do it rapidly to satisfy the needs of our customers and to keep
ahead of our competition.

What You’ll Build
Unlike other more reference-style books that are all about showing you each
and every API, library, and syntax pattern available to you in a given
language, this book is written and meant to be consumed as a guide to
building services, with ASP.NET Core simply being the framework in which
all the code samples are built.

This book will not teach you every single nuance of low-level C# code; there
are far thicker books written by other people if that’s what you’re looking
for. My goal is that by the end of the book, creating, testing, compiling, and
deploying microservices in ASP.NET Core will be muscle memory for you.
You’ll develop good, practical habits that will help you rapidly build stable,
secure, reliable services.

The mentality I’d like you to have is that after reading this book, you’ll have
learned a lot about how to build services that are going to be deployed in
elastically scalable, high-performance cloud environments. ASP.NET Core in
C# is just one of many languages and frameworks you can use to build
services, but the language does not make the service—you do. The care,
discipline, and diligence you put into building your services is far more a
predictor of their success in production than any one language or tool ever
could be.

The paintbrushes and canvas do not make the painting, the painter does. You
are a painter of services, and ASP.NET Core is just one brush among many.

In this book, you’ll start with the basic building blocks of any service, and
then learn how to turn them into more powerful and robust services. You’ll
connect to databases and other backing services, and use lightweight
distributed caches, secure services, and web apps, all while keeping an eye on
the ability to continuously deliver immutable release artifacts in the form of

www.allitebooks.com

http://www.allitebooks.org

Docker images.

Why You’re Building Services
Different teams work on different release cadences with different
requirements, motivations, and measures of success. Gone are the days of
building monoliths that require a custom, handcrafted, artisanal server in
order to run properly. Hopefully, gone as well are the days of gathering a
hundred people in conference rooms and on dial-in lines to hope and pray
for the successful release of a product at 12:01 on a Sunday morning.

Microservices, if done properly, can give us the agility and drastically
reduced time to market that our companies need in order to survive and thrive
in this new world where nearly every vertical, regardless of its domain, seems
to need software running in the cloud to make money.

As you progress through the book you’ll see the rationalizations for each
decision made. From the individual lines of code to the high-level
architectural “napkin drawings,” I’ll discuss the pros and cons of each choice.

What You’ll Need to Build Services
First and foremost, you’ll need the .NET Core command-line utilities and the
appropriate software development kit (SDK) installed. In the first chapter I’ll
walk you through what you’ll need to get that set up.

Next, you’re going to need Docker. Docker and the container technology that
supports it are ubiquitous these days. Regardless of whether you’re deploying
to Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform
(GCP), or your own infrastructure, Docker provides the portable and
immutable release artifacts that you crave (and I’ll get more into the details of
why this is the case throughout the book).

The development and build pipeline for the services in this book is the
creation of Docker images running on Linux infrastructure in the cloud. As
such, the path of least friction for readers of this book is likely a Mac or a
Linux machine. You’ll be able to work with Windows, but some things may
be higher-friction or require extra workarounds. The new Linux subsystem
for Windows 10 helps with this, but still isn’t ideal.

Docker on Windows and the Mac will use virtual machines to host a Linux
kernel (required for Docker’s container tech), and as such you may find your
machine struggling a bit if you don’t have enough RAM.

If you’re using Linux (I used Ubuntu to verify the code), then you don’t need
any virtual machines as Docker can run directly on top of a Linux kernel.

Online Resources

www.allitebooks.com

http://www.allitebooks.org

Microsoft’s website

This book’s GitHub repo

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/microservices-aspnetcore.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re

www.allitebooks.com

https://www.microsoft.com/net/core/
https://github.com/microservices-aspnetcore
https://github.com/microservices-aspnetcore
http://www.allitebooks.org

reproducing a significant portion of the code. For example, writing a program
that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: Building Microservices
with ASP.NET Core by Kevin Hoffman (O’Reilly). Copyright 2017 Kevin
Hoffman, 978-1-491-96173-5.

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based training and
reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths,
interactive tutorials, and curated playlists from over 250 publishers, including
O’Reilly Media, Harvard Business Review, Prentice Hall Professional,
Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning,
New Riders, McGraw-Hill, Jones & Bartlett, and Course Technology, among
others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

www.allitebooks.com

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://www.oreilly.com/safari
http://www.allitebooks.org

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at http://oreil.ly/2esotzv.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book would not have been possible without the superhuman patience
and tolerance of my family. Their support is the only thing that helped take
this book from a concept to a published work. I honestly don’t know how
they put up with my stress and quirks and awful schedule of travel,
maintaining my day job, and devoting an absurd amount of hours to this
book.

For every chapter and sample in a book like this, there are countless hours of
coding, testing, research, consulting with experts, and the mandatory
smashing of the head on the desk. I need to thank the open source community
at large for their involvement and engagement with .NET Core, especially the
advocates and developers at Microsoft.

And as always, I must thank the other members of the A-Team (Dan, Chris,
and Tom) for continuing to be a source of inspiration that keeps
programming fun and interesting.

www.allitebooks.com

http://oreil.ly/2esotzv
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.allitebooks.org

Chapter 1. ASP.NET Core Primer

.NET Core is not just yet another .NET version. It represents a complete
overhaul of everything we may have learned as .NET developers. This is a
brand new, “1.0” product that is finally going to bring .NET development
into the open source community as a fully cross-platform development stack.

This chapter will break down the essential components of ASP.NET Core
and .NET Core. In classic Microsoft fashion, there are a dozen new terms and
labels to learn, and those have changed multiple times between the betas and
release candidates, so the internet is awash with confusing, misleading, or
downright incorrect information.

By the end of the chapter, you’ll have a better idea of what ASP.NET Core is
and how it fits into the new cross-platform framework architecture. You will
also have set your workstation up with all of the prerequisites so that you’ll
be ready to dive into the rest of the book.

Distilling the Core
I’d love to be able to jump straight to the canonical and mandatory “hello
world” application using .NET Core. However, Core (I will use “.NET Core”
and “Core” interchangeably throughout the book) represents such an
enormous shift in architecture, design, and tooling that we need to take a
minute to at least cover some of the terminology that has changed from
previous versions of .NET.

Even if you’ve never used .NET before and Core is your first exposure,
you’ll find this terminology everywhere you search, so knowing what it all
means is essential.

CoreCLR
The CoreCLR is a lightweight, cross-platform runtime that provides many of
the same features that the Common Language Runtime (CLR) provides on
the Windows desktop or server, including:

Garbage collection

A garbage collector is responsible for the cleanup of unused object
references in a managed application. If you’ve used any of the previous
versions of .NET (or Java), then you should be familiar with the concept.
Despite the differences between the CLR and CoreCLR, they both follow
the same fundamental principles when it comes to garbage collection.

JIT compilation

www.allitebooks.com

http://www.allitebooks.org

As with previous versions of .NET, the Just-in-Time (JIT) compiler is
responsible for compiling the Intermediate Language (IL) code in the
.NET assemblies into native code on demand. This holds true now for
Windows, Linux, and macOS.

Exception handling

For a number of reasons beyond the scope of this book, exception
handling (e.g., try/catch statements) is a part of the runtime and not the
base class library.

In the first version of .NET, the CLR was a large, monolithic thing that
provided the basic services required by .NET applications. Over time it grew
larger and more tightly coupled to Windows. It eventually grew so large that
Microsoft had to split the CLR in two, allowing developers to choose full or
light versions because the whole thing was usually too bloated for most
practical uses. Here, developers generally chose based on whether they were
building server or client applications.

With .NET Core, the CoreCLR is now the smallest possible thing that can
provide runtime services to .NET Core applications. It is essentially a
bootstrapper. Everything not responsible for the most primitive parts of the
cross-platform runtime are part of CoreFX (discussed next) or available as
completely separate add-on libraries.

CoreFX
People who have been developing .NET applications for some time now
should be familiar with the concept of the base class library (BCL)—the sum
total of all .NET libraries that comprise the framework. If you installed
something like “.NET Framework v3.5” on a server, then you would
get every possible class that came with the framework. This led to developers
expecting everything to exist on their servers, and unfortunately to developers
treating their servers like pets (more on why this is bad later).

The legacy .NET Framework is an enormous beast, with thousands of
classes. When deploying applications to a server, the entire framework has to
be installed, regardless of how much of it your application actually uses.

CoreFX is a set of modular assemblies (available as NuGet packages and
completely open source, available on GitHub) from which you can pick and
choose. Your application no longer needs to have every single class library
assembly installed on the target server. With CoreFX, you can use only what
you need, and in true cloud-native fashion you should vendor (bundle) those
dependencies with your application and expect nothing of your target
deployment environment. The burden of dependency management is now
reversed—the server should have nothing to do with it.

This represents an enormous shift in the way people think about .NET
development. Building .NET applications is no longer about closed-source,

https://github.com/dotnet/corefx

vendor-locked development on Windows. Today, it’s a lean, use-only-what-
you-need model that is absolutely in line with patterns and practices of
modern microservice development and how the open source community at
large views the art of building software.

.NET Platform Standard
Prior to .NET Core, .NET developers were familiar with the concept of
Portable Class Libraries (PCLs). These allowed developers to compile their
assemblies to target an intersection of architecture and platform (e.g., a
Windows Phone 8 DLL and a DLL that could be used by an ASP.NET app
on the server). This resulted in multiple different DLLs that were each tagged
with where they could be deployed.

The .NET Platform Standard (often just called .NET Standard) aims to
simplify this process and allow for a more manageable architecture to support
.NET Core’s cross-platform goals for binary portability. For more
information on .NET Standard, check out the documentation on GitHub.

It may also help to think of .NET Standard in terms of interfaces. You can
think of each version of .NET Standard as a collection of interfaces that can
either be implemented by the traditional .NET Framework (v.4x–vNext) or
by the .NET Core libraries. As you evaluate which NuGet packages you want
to use, you’ll be looking at which version of the standard they use. If
they don’t conform to some version of .NET Standard, they’re not compatible
with .NET Core.

Table 1-1 shows the compatibility and equivalencies between .NET Standard,
.NET Core, and the existing .NET Framework versions at the time of writing
this book (table contains data taken from the official Microsoft
documentation).

Table 1-1. .NET Standard compatibility

Platform

netstandard 1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0

netcoreapp

(.NET Core) 1.1 2.0

net

(.NET Framework)
 4.5 4.5.1 4.6 4.6.1 4.6.2 vNext 4.6.2

ASP.NET Core
ASP.NET Core is a collection of small, modular components that can be
plugged into your application to let you build web applications and
microservices. Within ASP.NET Core you will find APIs for routing, JSON
serialization, and rigging up MVC controllers and views.

Historically, ASP.NET came with the .NET Framework—you could not

https://github.com/dotnet/standard
https://docs.microsoft.com/en-us/dotnet/articles/standard/library

separate the two. After the split between lightweight and heavyweight
frameworks, you could install versions of the .NET Framework that did not
include ASP.NET.

Now, much in line with the way the rest of the open source software (OSS)
community has been doing things for years, all of the components you need
to convert a console app into a web app or service are simply modules you
add as dependencies. As with everything that is part of Core, it is 100% open
source. You can find all of the source code to ASP.NET Core at
https://github.com/aspnet.

Installing .NET Core
As mentioned before, you no longer need to install ASP.NET as it is nothing
more than a collection of modules from which you can choose to add
functionality to your Core app. What you’ll need to install is the .NET Core
command-line tools as well as an SDK. The distinction between the tooling
and the SDK is important, because you can have more than one SDK (e.g.,
v1.0 and v1.1) installed and managed by a single version of the command-
line tools.

This new modular design is a more modern approach to open source
frameworks and is exactly how you’ll see frameworks for other languages
managed and distributed. For folks coming to .NET Core from the OSS
world, this should feel natural and second-nature. For developers who have
spent a good portion of their careers installing ASP.NET on server after
server, this is a new (and hopefully refreshing) experience.

To install .NET Core, simply follow the instructions at the main website.
Make sure you install the newest version of the SDK (the tooling) and the
newest version of the runtime.

There are different instructions for each operating system, but when you’re
done, you should be able to execute the following command without error:

$ dotnet --version
1.0.3

Your version may vary slightly from the preceding output, but the executable
should be in your path and it should produce a version number. This book
was written against version 1.0.3 of the SDK and version 1.1.1 of the
runtime.

.NET Core has a very active community and a pretty rapid release cycle, so
it’s quite possible that newer versions of the tooling and runtime will be
available by the time you read this.

If this works, then you can be reasonably confident that you’ve got the basic
requirements for .NET Core installed on your workstation. Double-check this

https://github.com/aspnet
https://www.microsoft.com/net/core

with Microsoft’s installation instructions to make sure you have the latest
version of the tools.

All of the samples in this book assume that your projects will be managed
with project files in the form of <project name>.csproj. Note that if you do
some basic internet searching for .NET Core samples, you may run into
samples that use the project.json file format. These are old and deprecated
and not compatible with the 1.x versions of the SDK.

If you ended up with a version of dotnet that is earlier than the one shown
in the preceding snippet, you may need to download a specific version
manually from GitHub.

The requirements for this book are that you have a runtime version of 1.1 or
greater and an SDK/tools version of 1.0.2 or better.

TOOL VERSIONS
Depending on what directory you’re in when you run the dotnet
command, the version output may vary. If a global.json file is a peer or in a
parent directory and specifies a fixed SDK version, you will see this
version, even if the dotnet command-line tool is a higher version. To see
the highest version of the tooling/SDK you have available, run the dotnet
--version command from a root or temporary directory that has no nearby
global.json file.

One side effect of the modularity of .NET Core that many developers may
take some time getting used to is the difference between the SDK (tools/CLI)
version and the runtime version. The latest runtime version at the time this
book was written was 1.1.1. On a Mac, you can use the following command
to see which versions of the runtime are available to you:

$ ls -F /usr/local/share/dotnet/shared/Microsoft.NETCore.App/
1.0.1/ 1.0.3/ 1.0.4/
 1.1.0/ 1.1.0-preview1-001100-00/ 1.1.1/

If you see 1.1.1 in this directory, and you’re using 1.0.2 or newer of the SDK,
then you should be fine for the rest of this book.

If you do not see 1.1.1 in the directory, you’re going to want to download it.
The list of runtimes is available directly on Microsoft’s .NET Core page.

If you’re using a Windows machine, you should be able to find your installed
runtimes in the following directory: Program
Files\dotnet\shared\Microsoft.NETCore.App.

.NET Core is extremely lightweight and, as I mentioned earlier, only includes
the bare minimum necessary to get you going. All of the dependencies your

https://github.com/dotnet/core
https://www.microsoft.com/net/download/core#/runtime

applications need are going to be downloaded via the dotnet restore
command by examining your project file. This is essential for cloud-
native application development because having vendored (locally bundled)
dependencies is mandatory for deploying immutable artifacts to the cloud,
where you should assume virtually nothing about the virtual machine hosting
your application.

Building a Console App
Before we can get to any of the really interesting stuff, we need to make sure
that we can create and build the world’s simplest sample—the oft-derided yet
canonical “hello world.”

The dotnet command-line tool has an option that will create a bare-bones
scaffold for a simple console application. If you type dotnet new without
any parameters, it will give you a list of the templates you can use. For this
sample, we’re going to use console.

Note that this will create project files in the current directory. So, make sure
you’re where you want to be before you run the command:

$ dotnet new console

Welcome to .NET Core!

Learn more about .NET Core @ https://aka.ms/dotnet-docs.
Use dotnet --help to see available commands or go to
https://aka.ms/dotnet-cli-docs.

Telemetry

The .NET Core tools collect usage data in order to improve your
experience.
The data is anonymous and does not include commandline arguments.
The data is collected by Microsoft and shared with the community.
You can opt out of telemetry by setting a DOTNET_CLI_TELEMETRY_OPTOUT
environment variable to 1 using your favorite shell.
You can read more about .NET Core tools telemetry @
https://aka.ms/dotnet-cli-
telemetry.

Configuring...

A command is running to initially populate your local package cache, to
improve restore speed and enable offline access. This command will take
up
to a minute to complete and will only happen once.
Decompressing 100% 2828 ms
Expanding 100% 4047 ms

Created new C# project in /Users/kevin/Code/DotNET/sample.

If this isn’t your first time using the latest version of the command-line tools
you will see far less spam. Worth noting is the telemetry opt-out message. If
you’re uncomfortable with Microsoft collecting information about your
compilation habits anonymously, then go ahead and modify the profile for
your favorite shell or terminal to include setting
DOTNET_CLI_TELEMETRY_OPTOUT to 1.

Once the project is created, you can type dotnet restore, which analyzes
the project dependencies and downloads whatever packages are necessary.
This step is required every time you modify the project file:

$ dotnet restore
 Restoring packages for
/Users/kevin/Code/DotNET/sample/sample.csproj...
 Writing lock file to disk. Path: /Users/kevin/Code/DotNET/sample/obj/
 project.assets.json
 Restore completed in 743.6987ms for /Users/kevin/Code/DotNET/sample/
 sample.csproj.

 NuGet Config files used:
 /Users/kevin/.nuget/NuGet/NuGet.Config

 Feeds used:
 https://api.nuget.org/v3/index.json

Assuming nothing went wrong, you can now run the application and you’ll
see the text “Hello World!” emitted to your terminal window (you may
experience a delay of a few seconds if this is the first time you’ve compiled
this app to a binary):

$ dotnet run

Hello World!

Our project consists of two files: the project file (which defaults to
<directory name>.csproj) and Program.cs, listed in Example 1-1.

Example 1-1. Program.cs
using System;

namespace ConsoleApplication
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

Make sure that you can run all of the dotnet commands and execute the
application and see the expected output before continuing. On the surface this
looks just like any other console application written for previous versions of
.NET. In the next section, we’ll start to see immediate differences as we
incorporate ASP.NET Core.

If you looked at the .csproj file, you might’ve noticed that it declares which
version of netcoreapp it’s targeting (1.0).

To make sure that your tools are working properly and your environment is
suitable for all of the rest of the code samples in the book (which use v1.1 of
the runtime), let’s edit this .csproj file so that it looks like this:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

</Project>

We’ve upped the NET Core version to 1.1 and changed the dependency on
Microsoft.NETCore.App to version 1.1.0. One muscle memory you’ll want
to start building right away is the need to run dotnet restore after every
.csproj file change:

$ dotnet restore
 Restoring packages for
/Users/kevin/Code/DotNET/sample/sample.csproj...
 Generating MSBuild file /Users/kevin/Code/DotNET/sample/obj/ \
 sample.csproj.nuget.g.props.
 Writing lock file to disk. Path: /Users/kevin/Code/DotNET/sample/obj/
\
 project.assets.json
 Restore completed in 904.0985ms for /Users/kevin/Code/DotNET/sample/
\
 sample.csproj.

 NuGet Config files used:
 /Users/kevin/.nuget/NuGet/NuGet.Config

 Feeds used:
 https://api.nuget.org/v3/index.json

Now you should be able to run the application again. There should be no
visible change and there should be no problem compiling it.

If you’ve been following along, take a look at your bin/Debug directory. You
should see one subdirectory called netcoreapp1.0 and another one called
netcoreapp1.1. This is because you built your application for two different

target frameworks. If you were to remove the bin directory and rerun
restore and then run, you’d only see the netcoreapp1.1 directory.

Building Your First ASP.NET Core App
Adding ASP.NET Core functionality to a console application is actually quite
easy. You could start off with a template from inside Visual Studio, or you
could use Yeoman on the Mac to create a new ASP.NET project.

However, I want to show just how small the gap is from a console “hello
world” to a web-based “hello world” without using any templates or
scaffolding. My opinion is that templates, scaffolding, and wizards should be
useful, but if your framework requires these things then it has too high a
complexity burden. One of my favorite rules of thumb is:

However inconvenient, if you cannot build your entire app with a simple text
editor and command-line tools, then you’re using the wrong framework.

Adding ASP.NET Packages to the Project
First, we’re going to want to add a few package references to our project:

Microsoft.AspNetCore.Mvc

Microsoft.AspNetCore.Server.Kestrel

Microsoft.Extensions.Logging (three different packages)

Microsoft.Extensions.Configuration.CommandLine

Whether you choose to edit the project file on your own or use Visual Studio
or VSCode to add the references is up to you.

Throughout the early history of .NET Core, the format of the project file
changed. Everything from the initial alphas all the way up through the release
candidates and 1.0 general availability made use of a file called project.json.
During the “preview3” release of v1.0 of the tools, Microsoft created a cross-
platform version of the MSBuild tool and embedded that in the command-
line tools. As a result, at the time this book went to print, we now have
a <project>.csproj project file format that works with this new MSBuild.

Here’s what our hellobook.csproj file looks like with the new dependencies:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.Mvc"

 Version="1.1.1" />
 <PackageReference Include="Microsoft.AspNetCore.Server.Kestrel"
 Version="1.1.1"/>
 <PackageReference Include="Microsoft.Extensions.Logging"
 Version="1.1.1"/>
 <PackageReference Include="Microsoft.Extensions.Logging.Console"
 Version="1.1.1"/>
 <PackageReference Include="Microsoft.Extensions.Logging.Debug"
 Version="1.1.1"/>
 <PackageReference
 Include="Microsoft.Extensions.Configuration.CommandLine"
 Version="1.1.1"/>
 </ItemGroup>
</Project>

Adding the Kestrel Server
We’re going to extend the existing sample so that whenever you issue an
HTTP request, you get “Hello, world” in response. We will return that phrase
regardless of what URL is requested or what HTTP method is used.

Let’s take a look at our new Program.cs main entry point, in Example 1-2.

Example 1-2. Program.cs
using System;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.Configuration;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 var config = new ConfigurationBuilder()
 .AddCommandLine(args)
 .Build();

 var host = new WebHostBuilder()
 .UseKestrel()
 .UseStartup<Startup>()
 .UseConfiguration(config)
 .Build();

 host.Run();
 }
 }
}

In this new Main method, the first thing we do is initialize the configuration
sub-system. We can use the ConfigurationBuilder to accept configuration
settings from JSON files, from environment variables, and, as our sample

shows, from the command line. Samples in forthcoming chapters will show
more varied use of the configuration system.

Once we’ve got our configuration built, we then use
the WebHostBuilder class to set up our web host. We’re not using Internet
Information Services (IIS) or the Hostable Web Core (HWC) on Windows.
Instead, we’re using a cross-platform, bootstrapped web server called Kestrel.
For ASP.NET Core, even if you deploy to Windows and IIS, you’ll still be
using the Kestrel server underneath it all.

Adding a Startup Class and Middleware
In classic ASP.NET, we had a global.asax.cs file that we could use to
accomplish work during the various startup phases of the application. With
ASP.NET Core, we can use the UseStartup<> generic method to define a
startup class that handles the new startup hooks.

The startup class is expected to be able to support the following methods:

A constructor that takes an IHostingEnvironment variable

The Configure method, used to configure the HTTP request pipeline and
the application

The ConfigureServices method, used to add scoped services to the
system to be made available via dependency injection

As hinted at by the .UseStartup<Startup>() line in Example 1-2, we need
to add a Startup class to our project. This class is shown in Example 1-3.

Example 1-3. Startup.cs
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Logging;
using Microsoft.AspNetCore.Http;

namespace HelloWorld {
 public class Startup
 {
 public Startup(IHostingEnvironment env)
 {
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory)
 {
 app.Run(async (context) =>
 {
 await context.Response.WriteAsync("Hello, world!");
 });
 }
 }
}

The Use method adds middleware to the HTTP request processing pipeline.
Everything about ASP.NET Core is configurable, modular, and extremely
extensible. This is due in large part to the adoption of the middleware pattern,
which is embraced by web frameworks for many other languages. Developers
who have built web services and applications using other open source
frameworks will likely be familiar with the concept of middleware.

ASP.NET Core middleware components (request processors) are set up as a
chain or pipeline and are given a chance to perform their processing in
sequence during each request. It is the responsibility of the middleware
component to invoke the next component in the sequence or terminate the
pipeline if appropriate.

As we’ve shown in Example 1-3, the simplest possible ASP.NET application
has a single middleware component that handles all requests.

Middleware components can be added to request processing using the
following three methods:

Map

Map adds the capability to branch a request pipeline by mapping a specific
request path to a handler. You can also get even more powerful
functionality with the MapWhen method that supports predicate-based
branching.

Use

Use adds a middleware component to the pipeline. The component’s code
must decide whether to terminate or continue the pipeline.

Run

The first middleware component added to the pipeline via Run will
terminate the pipeline. A component added via Use that doesn’t invoke
the next component is identical to Run, and will terminate the pipeline.

We’ll be playing with middleware components extensively throughout the
rest of this book. As I’ve mentioned, this modular ability to manipulate the
HTTP request handling pipeline is key to our ability to make powerful
microservices.

Running the App
To run this sample, you can simply type dotnet run from the command line.
You should see something very similar to the following when you’ve run the
app. Make sure you’ve done a dotnet restore prior to this:

$ dotnet run
Hosting environment: Production
Content root path:

https://docs.asp.net/en/latest/fundamentals/middleware.html

 /Users/kevin/Code/DotNET/sample/bin/Debug/netcoreapp1.1
Now listening on: http://localhost:5000
Application started. Press Ctrl+C to shut down.

You can exercise this service easily using the following terminal commands.
Note that any URL you try, as long as it’s a valid URL that curl understands,
will invoke the middleware and give you a response:

$ curl localhost:5000
Hello, world!
$ curl localhost:5000/will/any/url/work?
Hello, world!

Out of the box, Windows doesn’t come with the curl command. If you have
Windows 10 and have enabled the Linux subsystem, then you can use curl
from a bash prompt running within Windows. Otherwise, you can just open
this URL in a browser or use your favorite REST client testing tool, like the
Chrome plug-in Postman.

If you weren’t playing the home game and typing the sample as you read the
chapter, you can get the full code from the GitHub repo.

Summary
This chapter got you started with .NET Core. You were able to download and
install the latest tools (despite the confusing difference between tooling
versions and runtime versions), and you created a console app.

We then converted this console application into a simple web application
using middleware that responds with “Hello, world!” to all requests. This was
easy to do with just a few changes to a project file and adding a few lines of
code. Don’t worry if not all of the code made sense yet; it’ll get much clearer
as subsequent chapters go into more detail.

At this point, you should have most of the tools you need for the rest of the
book and be ready to dive in!

https://github.com/microservices-aspnetcore/hellobook

Chapter 2. Delivering
Continuously

One of the driving reasons why developers choose to build microservice
ecosystems over traditional monoliths is the ability to rapidly deploy
enhancements and fixes to small, independently scalable pieces of the
system.

This only works if you have confidence that those services are going to work
in production before you deploy them.

Introducing Docker
Lately Docker has been gathering momentum and becoming increasingly
popular both as a tool to aid development and as one to aid deployment and
operations. It is a container tool that utilizes Linux kernel features
like cgroups and namespaces to isolate network, file, and memory resources
without incurring the burden of a full, heavyweight virtual machine.

There are countless platforms and frameworks available today that either
support or integrate tightly with Docker. You can deploy Docker images to
AWS (Amazon Web Services), GCP (Google Cloud Platform), Azure, virtual
machines, and combinations of those running orchestration platforms like
Kubernetes, Docker Swarm, CoreOS Fleet, Mesosphere Marathon, Cloud
Foundry, and many others. The beauty of Docker is that it works in all of
those environments without changing the container format.

As you’ll see throughout this book, Docker gives us the ability to create
an immutable release artifact that will run anywhere, regardless of the target
environment. An immutable release means that we can test a Docker image in
a lower environment like development or QA and have reasonable
confidence that it will perform exactly the same way in production. This
confidence is essential to being able to embrace continuous delivery.

For more information on Docker, including details on how to create your own
Docker files and images and advanced administration, check out the book
Docker: Up & Running by Karl Matthias and Sean P. Kane (O’Reilly).

Later in this chapter we will demonstrate publishing Docker images to
dockerhub directly from our CI tool of choice. All of this will be done
online, in the cloud, with virtually no infrastructure installed on your own
workstation.

Installing Docker

1

2

3

https://www.docker.com
http://shop.oreilly.com/product/0636920036142.do

When installing Docker on a Mac, the preferred method is to install the
native Mac application. If you see older documentation referring to
something called Boot2Docker or Docker Toolbox, these are deprecated and
you should not be installing Docker this way. For details on how to install
Docker on your Mac, check out the installation instructions from the Docker
website. Instructions are also available for other operating systems, but I
won’t cover them in depth in this chapter as the online documentation will
always be more current than this book.

When I started writing this book, I had Docker version 17.03.0-ce, build
60ccb22 installed. Make sure you check the documentation to ensure you’re
looking at the newest installation instructions before performing the install.

You can also manually install Docker and all prerequisites via Homebrew.
It’s slightly more involved and, honestly, I can see little use in installing it
this way on a Mac. The Docker app comes with a nice icon that sits in your
menu bar and automatically manages your environment to allow
terminal/shell access.

If you’ve managed to install Docker properly, it should start up automatically
on the Mac. Since Docker relies on features specific to the Linux kernel,
you’re really starting up a VirtualBox virtual machine that emulates those
Linux kernel features in order to start a Docker server daemon.

It may take a few minutes to start Docker, depending on the power of your
computer.

Now you should be able to run all Docker commands in the terminal to
examine your installation. One that you’ll find you may run quite often is
docker images. This command lists the Docker images you have stored in
your local repository.

Running Docker Images
Now that you can examine the Docker version and the IP address of a
running Docker machine, and you can see the list of installed Docker images,
it’s time to put it to use and run a Docker image.

Docker lets you manually pull images into your local cache from a remote
repository like docker hub. However, if you issue a docker run command
and you haven’t already cached that image, you’ll see it download in the
terminal.

If you run the following command, it will launch our “hello world” web
application developed in the previous chapter. It will fetch the Docker image
from docker hub if you don’t have it, and it will then invoke the Docker
image’s start command. Note that you need to map the port from the inside
of the container to the outside port so you can open up a browser from your
desktop:

4

https://docs.docker.com/docker-for-mac/install/

$ docker run -p 8080:8080 dotnetcoreservices/hello-world
Unable to find image 'dotnetcoreservices/hello-world:latest' locally
latest: Pulling from dotnetcoreservices/hello-world
693502eb7dfb: Pull complete
081cd4bfd521: Pull complete
5d2dc01312f3: Pull complete
36c0e9895097: Pull complete
3a6b0262adbb: Pull complete
79e416d3fe9d: Pull complete
6b330a5f68f9: Pull complete
Digest:
sha256:0d627fea0c79c8ee977f7f4b66c37370085671596743c42f7c47f33e9aa99665
Status: Downloaded newer image for dotnetcoreservices/hello-
world:latest
Hosting environment: Production
Content root path: /pipeline/source/app/publish
Now listening on: http://0.0.0.0:8080
Application started. Press Ctrl+C to shut down.

The output shows what it looks like after that image has been cached locally.
If you’re doing this for the first time, you will see a bunch of progress reports
indicating that you’re downloading the layers of the Docker image. This
command maps port 8080 inside the Docker image to port 8080 outside the
Docker image.

Docker provides network isolation, so unless you explicitly allow traffic from
outside a container to be routed inside the container, the isolation will
function just like a firewall. Since we’ve mapped the inside and outside
ports, we can now hit port 8080 on localhost.

We can see that this application is running with the following Docker
command:

$ docker ps
CONTAINER ID IMAGE
COMMAND CREATED STATUS
PORTS NAMES
61a68ffc3851 dotnetcoreservices/hello-world
"/pipeline/source/..." 3 minutes ago Up 2 minutes
0.0.0.0:8080->8080/tcp priceless_archimedes

So let’s hit our application with an HTTP client to make sure it’s working:

$ curl http://localhost:8080/will/it/blend?
Hello, world!

This shows that we can download a fully functioning piece of software from
docker hub, cache the image locally, and execute the Docker image’s run
command. Even if we didn’t install a single tool for ASP.NET Core or
configure our workspace, we could still use this Docker image to launch our

sample service. This functionality will be essential to us when we start to run
tests in our continuous integration server and need to ensure that the artifact
we tested is the exact same artifact that we deploy.

The Ctrl-C key combination may not be enough to kill the ASP.NET Core
application we’re running because we ran it noninteractively. To kill a
running Docker process, just find the container ID from the docker ps
output and pass it to docker kill:

$ docker kill 61a68ffc3851

Continuous Integration with Wercker
Depending on your background, you may already have experience with
continuous integration servers. Some of the more popular ones in the
Microsoft world are Team Foundation Server (TFS) and Octopus, but many
developers are also familiar with applications like Team City and Jenkins.

In this part of the chapter, we will be learning about a CI tool called Wercker.
Wercker and its ilk all attempt to provide a software package that helps
developers and operations people embrace CI best practices. This section of
the chapter provides a brief overview of CI, and then a walkthrough of setting
up Wercker to automatically build an application.

Wikipedia has an excellent section covering the best practices for continuous
integration. I’ve already discussed some of the why for CI/CD, but it
essentially boils down to one key mantra:

If you want more stable, predictable, and reliable releases, then you have to
release more often, not less.

In order to release more frequently, in addition to testing everything, you
need to automate builds and deployments in response to code commits.

Building Services with Wercker
Of all the available choices for cloud-hosted, Docker-based builds I chose
Wercker for a number of reasons. First and foremost, I didn’t have to supply
a credit card. Frankly, if a cloud service requires a purchase up front, it might
be compensating for a high turnover and departure rate. Free trials, on the
other hand, are a marketing bet that you’ll like a service enough to keep using
it.

Secondly, Wercker is absurdly easy to use, the interface is intuitive, and its
tight integration with Docker and support for spinning up multiple attached
Docker images for integration testing are outstanding, as you’ll see in
upcoming chapters.

With Wercker, there are three basic steps to get going, and then you’re ready

http://wercker.com
https://en.wikipedia.org/wiki/Continuous_integration#Best_practices

for CI:

1. Create an application in Wercker using the website.

2. Add a wercker.yml file to your application’s codebase.

3. Choose how to package and where to deploy successful builds.

The first thing you’ll need to do before you can create an application in
Wercker is to sign up for an account (you can log in with your existing
GitHub account). Once you’ve got an account and you’re logged in, click
the Create link in the top menu. This will bring up a wizard that should look
something like the one in Figure 2-1.

Figure 2-1. Creating an application in Wercker

The wizard will prompt you to choose a GitHub repository as the source for
your build. It will then ask you whether you want the owner of this
application build to be your personal account or an organization to which you
belong. For example, all of the Wercker builds for this book are both public
and owned by the dotnetcoreservices organization.

Once you’ve created the application, you need to add a wercker.yml file to
the repository (we’ll get to that shortly). This file contains most of the
metadata used to describe and configure your automatic build.

Installing the Wercker CLI
You will want to be able to invoke Wercker builds locally so you can have a
reliable prediction of how the cloud-based build is going to go before you
push to your Git remote. This is helpful for running integration tests locally
as well as being able to start your services locally in interactive mode while
still operating inside the Wercker-generated Docker image (again, so you’re
always using an immutable build artifact).

Your code is added to a Docker image specified in your wercker.yml file, and

then you choose what gets executed and how. To run Wercker builds locally,
you’ll need the Wercker CLI.

For information on how to install and test the CLI, check out the Wercker
developer center documentation.

Skip to the section of the documentation entitled “Getting the CLI.” Here you
will likely be told to use Homebrew to install the Wercker CLI:

$ brew tap wercker/wercker
$ brew install wercker-cli

If you’ve installed the CLI properly, you should be able to ask the CLI for the
version:

$ wercker version
Version: 1.0.643
Compiled at: 2016-10-05 14:38:36 -0400 EDT
Git commit: ba5abdea1726ab111d2c474777254dc3f55732d3
No new version available

If you are running an older version of the CLI, you might see something like
this, prompting you to automatically update:

$ wercker version Version: 1.0.174
Compiled at: 2015-06-24 10:02:21 -0400 EDT Git commit:
ac873bc1c5a8780889fd1454940a0037aec03e2b
A new version is available: 1.0.295 (Compiled at: 2015-10-23T10:19:25Z,
Git commit: db49e30f0968ff400269a5b92f8b36004e3501f1)
Download it from: https://s3.amazonaws.com/downloads.wercker.com/ \
 cli/stable/darwin_amd64/wercker
Would you like update? [yN]

If you have trouble performing an automatic update (which happened to me
several times), then it’s just as easy to rerun the curl command in Wercker’s
documentation to download the latest CLI.

Adding the wercker.yml Configuration File
Now that you’ve got an application created via the Wercker website, and
you’ve got the Wercker CLI installed, the next thing to do is create a
wercker.yml file to define how you want your application built and deployed.

Take a look at the wercker.yml file that we use in our “hello world” sample,
shown in Example 2-1.

Example 2-1. wercker.yml

box: microsoft/dotnet:1.1.1-sdk

http://devcenter.wercker.com/docs/home

no-response-timeout: 10
build:
 steps:
 - script:
 name: restore
 code: |
 dotnet restore
 - script:
 name: build
 code: |
 dotnet build
 - script:
 name: publish
 code: |
 dotnet publish -o publish
 - script:
 name: copy binary
 code: |
 cp -r . $WERCKER_OUTPUT_DIR/app
 cd $WERCKER_OUTPUT_DIR/app
deploy:
 steps:
 - internal/docker-push:
 username: $USERNAME
 password: $PASSWORD
 repository: dotnetcoreservices/hello-world
 registry: https://registry.hub.docker.com
 entrypoint: "/pipeline/source/app/docker_entrypoint.sh"

The box property indicates the base docker hub image that we’re going to use
as a starting point. Thankfully, Microsoft has already provided an image that
has the .NET Core bits in it that we can use for testing and execution. There
is a lot more that can be done with wercker.yml, and you’ll see this file grow
as we build progressively more complex applications throughout the book.

We then run the following commands inside this container:

1. dotnet restore to restore or download dependencies for the .NET
application. For people running this command inside a firewalled
enterprise, this step could potentially fail without the right proxy
configuration.

2. dotnet build to compile the application.

3. dotnet publish to compile and then create a published, “ready to
execute” output directory.

One command that’s missing from this is dotnet test. We don’t have any
tests yet because we don’t have any functionality yet. In subsequent chapters,
you’ll see how to use this command for integration and unit test invocation.
After this chapter, every build needs to execute tests in order to be considered
successful.

With all of those commands run, we then copy the published output to an

environment variable provided by Wercker called WERCKER_OUTPUT_DIR.
When Wercker completes a build, the build artifact will have a filesystem
that looks exactly as we want it to inside a Docker image.

Assuming we’ve successfully built our application and copied the output to
the right directory, we’re ready to deploy to docker hub.

Running a Wercker Build
The easiest way to run a Wercker build is to simply commit code. Once
Wercker is configured, your build should start only a few seconds after you
push. Obviously, we still want to use the regular dotnet command line to
build and test our applications locally.

The next step after that is to see how the application builds using the Wercker
pipeline (and therefore, within an isolated, portable Docker image). This
helps to eliminate the “works on my machine” problem that arises regularly
during development projects. We usually have a script with our applications
that looks like this to invoke the Wercker build command:

rm -rf _builds _steps _projects
wercker build --git-domain github.com \
 --git-owner microservices-aspnetcore \
 --git-repository hello-world
rm -rf _builds _steps _projects

This will execute the Wercker build exactly as it executes in the cloud, all
within the confines of a container image. You’ll see a bunch of messages
from the Wercker pipeline, including fetching the latest version of the .NET
Core Docker image and running all of the steps in our pipeline.

Note that even though the Git information is being specified, the files being
used for the local build are the local files, and not the files as they exist in
GitHub.

You can be reasonably confident that if the build executes locally, it will also
execute in the cloud and you know you’ll be deploying the same artifact. This
is a level of confidence that you cannot get from traditional, non-CI build
processes.

It’s worth repeating that you didn’t have to spend a dime to get access to this
CI functionality, nor did you have to invest in any of the resources required
to perform these builds in the cloud. At this point, there is no excuse for not
setting up a CI pipeline for all of your GitHub-based projects.

Continuous Integration with CircleCI
Wercker isn’t the only tool available to us for CI in the cloud, nor is it the
only free tool. Where Wercker runs your builds inside a Docker image and

www.allitebooks.com

http://www.allitebooks.org

produces a Docker image as an artifact output, CircleCI offers control at a
slightly lower level.

If you go to http://circleci.com you can sign up for free with a new account or
log in using your GitHub account.

You can start with one of the available build images (which include macOS
for building iOS apps!) and then supply a configuration file telling CircleCI
how to build your app.

For a lot of relatively common project types (Node.js, Java, Ruby), CircleCI
can do a lot of guesswork and make assumptions about how to build your
app.

For .NET Core, it’s not quite so obvious, so we need to set up a configuration
file to tell CircleCI how to build the app.

Here’s a look at the circle.yml file for the “hello world” project:

machine:
 pre:
 - sudo sh -c 'echo "deb [arch=amd64] https://apt-
mo.trafficmanager.net/repos/
 dotnet-release/ trusty
main" > /etc/apt/sources.list.d/dotnetdev.list'
 - sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --
recv-keys
 417A0893
 - sudo apt-get update
 - sudo apt-get install dotnet-dev-1.0.1

compile:
 override:
 - dotnet restore
 - dotnet build
 - dotnet publish -o publish

test:
 override:
 - echo "no tests"

The key difference between this build and Wercker is that instead of being
able to run the build inside an arbitrary Docker image that already has .NET
Core installed on it, here we have to use tools like apt-get to install the
.NET tools.

You may notice that the list of shell commands executed in the pre phase of
the machine configuration is exactly the same set of steps listed on
Microsoft’s website to install .NET Core on an Ubuntu machine. That’s
basically what we’re doing—installing .NET Core on the Ubuntu build
runner provided for us by CircleCI.

CircleCI 2.0 (in beta during the time this was written) is advertising full and

http://circleci.com

native Docker support, so it’s possible that by the time you read this the build
process will have gotten simpler.

Figure 2-2 shows a piece of the CircleCI dashboard for the “hello world”
application.

Whether you decide to use CircleCI, Wercker, or some other CI tool not
mentioned in this book, you should definitely look for one with deep and
easy-to-use Docker integration. The ubiquity of Docker support in
deployment environments and the ability to create and share portable,
immutable release artifacts are incredibly beneficial to enabling the kind of
agility needed in today’s marketplace.

Figure 2-2. CircleCI build history

Deploying to Docker Hub
Once you have a Wercker (or CircleCI) build that is producing a Docker
image and all your tests are passing, you can configure it to deploy the
artifact anywhere you like. For now, we’re going to deploy to docker hub.

We’ve already seen a hint of how this works in the wercker.yml file listed
previously. There is a deploy section that, when executed, will deploy the
build artifact as a docker hub image. We use Wercker environment variables
so that we can store our docker hub username and password securely and not
check sensitive information into source control.

This deploy step is shown in Example 2-2 to refresh your memory.

Example 2-2. Docker hub deploy in wercker.yml

deploy:
 steps:
 - internal/docker-push:
 username: $USERNAME
 password: $PASSWORD
 repository: dotnetcoreservices/hello-world
 registry: https://registry.hub.docker.com
 entrypoint: "/pipeline/source/app/docker_entrypoint.sh"

Assuming our docker hub credentials are correct and the Wercker
environment variables are set up properly, this will push the build output to

docker hub and make the image available for pulling and executing on
anyone’s machine—including our own target environments.

This automatic push to docker hub is how the sample Docker image you
executed earlier in the chapter was published.

In Figure 2-3, you can see a sample Wercker workflow. After we
successfully build, we then deploy the artifact by executing the deploy step in
the wercker.yml file. The docker hub section of this pipeline is easily created
by clicking the “+” button in the GUI and giving the name of the YAML
section for deployment (in our case it’s deploy).

Figure 2-3. Deployment pipelines in Wercker

Summary
We’ve managed to get through an entire chapter without writing any new
code. Ordinarily, something like this would give me the shakes, but it is in
service of a worthy cause.

Even if we were the best developers on the planet, and unicorns appeared in
the sky floating beneath rainbow parachutes every time we compiled our
microservices, we would likely have unreliable products with brittle,
unpredictable, error-prone production deployments. We need to
be continuously building, testing, and deploying our code. Not once per
quarter or once per month, but every time we make a change.

In every chapter after this, we will be building microservices with testing and
CI in mind. Every commit will trigger a Wercker build that runs unit and
integration tests and deploys to docker hub.

Before you continue on to the next chapter, I strongly recommend that you
take a simple “hello world” ASP.NET Core application and set up a CI build
for it on whatever CI host you choose. Put your code in GitHub, commit a
change, and watch it go through the build, test, and deploy motions; then
verify that the docker hub image works as designed.

This will help build the muscle memory for tasks that should become second
nature to you. Hopefully the idea of starting a development project without an
automated build pipeline will seem as crazy as the idea of building an

unmaintainable monolith.

 This is true for real Linux OS hosts. macOS and Windows both require a
Linux virtual machine to host the Docker runtime.

 While the container itself is ubiquitous, some Docker features may or may
not be available, depending on the host environment.

 This book will regularly use acronyms like CI (continuous integration) and
CD (continuous delivery). It’s best to become familiar with these now.

 It’s able to do this because we’ve already published it as a docker hub
image. Later in this chapter you’ll see how this particular sausage is made.

1

2

3

4

Chapter 3. Building a
Microservice with ASP.NET Core

Up to this point in the book we have only been scratching at the surface of
the capabilities of .NET Core. In this chapter we’re going to expand on the
simple “hello world” middleware we’ve built and create our first
microservice.

We’ll spend a little time defining what a microservice is (and is not), and
discuss concepts like API First and Test-Driven Development. Then we’ll
build a sample service that manages teams and team membership.

Microservices Defined
Today, as I have been quoted to say, we can’t swing a dead cat without
hitting a microservice.

The word is everywhere, and unfortunately, it is as overloaded and
potentially misleading as the acronym SOA was years ago. Every time we see
the word, we’re left with questions like, “What is a service, really?” and “Just
how micro is micro?” and “Why don’t we just call them ’services'?”

These are all great questions that we should be asking. In many cases, the
answer is “It depends.” However, in my years of building modular and highly
scalable applications, I’ve come up with a definition of microservice:

A microservice is a standalone unit of deployment that supports a specific
business goal. It interacts with backing services, and allows interaction
through semantically versioned, well-defined APIs. Its defining characteristic
is a strict adherence to the Single Responsibility Principle (SRP).

This might seem like a somewhat controversial definition. You’ll notice it
doesn’t mention REST or JSON or XML anywhere. You can have a
microservice that interacts with consumers via queues, distributed messaging,
or traditional RESTful APIs. The shape and nature of the service’s API
is not the thing that qualifies it as a service or as “micro.”

It is a service because it, as the name implies, provides a service. It
is micro because it does one and only one thing. It’s not micro because it
consumes a small amount of RAM, or because it consumes a small amount of
disk, or because it was handcrafted by artisanal, free-range, grass-fed
developers.

The definition also makes a point to mention semantic versioning. You
cannot continually grow and maintain an organically changing microservice
ecosystem without strict adherence to semantic versioning and API

1

compatibility rules. You’re welcome to disagree, but consider this: are you
building a service that will be deployed to production once, in a vacuum, or
building an app that will have dozens of services deployed to production
frequently with independent release cycles? If you answered the latter, then
you should spend some time considering your API versioning and backward
compatibility strategies.

When building a microservice from scratch, ask yourself about the
frequency of changes you expect to make to this service and how much of
the service might be unrelated to the change (and thus potentially a
candidate for being in a separate service).

This brings to mind Sam Newman’s golden rule of microservices change:

Can you make a change to a service and deploy it by itself without changing
anything else?

—Sam Newman, Building Microservices (O’Reilly)

There’s no magic to microservices. In fact, most of us simply consider the
current trend toward microservices as just the way Service-Oriented
Architecture (SOA) should have been done originally.

The small footprint, easy deployment, and stateless nature of true
microservices make them ideal for operating in an elastically scaling cloud
environment, which is the focus of this book.

Introducing the Team Service
As fantastic as the typical “hello world” sample might be, it has no practical
value whatsoever. More importantly, since we’re building our sample with
testing in mind, we need real functionality to test. As such, we’re going to
build a real, semi-useful service that attempts to solve a real problem.

Whether it’s sales teams, development teams, support, or any other kind of
team, companies with geographically distributed team members often have a
difficult time keeping track of those members: their locations, contact
information, project assignments, and so forth.

The team service aims to help solve this problem. The service will allow
clients to query team lists as well as team members and their details. It should
also be possible to add or remove teams and team members.

When designing this service, I tried to think of the many different team
visualizations that should be supported by this service, including a map with
pins for each team member as well as traditional lists and tables.

In the interest of keeping this sample realistic, individuals should be able to
belong to more than one team at a time. If removing a person from a team
orphans that person (they’re without a team), then that person will be
removed. This might not be optimal, but we have to start somewhere and

http://shop.oreilly.com/product/0636920033158.do

starting with an imperfect solution is far better than waiting for a perfect one.

API First Development
Before we write a single line of code we’re going to go through the exercise
of defining our service’s API. In this section, we’ll talk about why API
First makes sense as a development strategy for teams working on
microservices, and then we’ll talk about the API for our sample team
management service.

Why API First?
If your team is building a “hello world” application that sits in isolation and
has no interaction with any other system, then the API First concept isn’t
going to buy you much.

But in the real world, especially when we’re deploying all of our services
onto a platform that abstracts away our infrastructure (like Kubernetes, AWS,
GCP, Cloud Foundry, etc.), even the simplest of services is going to consume
other services and will be consumed by services or applications.

Imagine we’re building a service used by the services owned and maintained
by two other teams. In turn, our service relies upon two more services. Each
of the upstream and downstream services is also part of a dependency chain
that may or may not be linear. This complexity wasn’t a problem back in the
day when we would schedule our releases six months out and
release everything at the same time.

This is not how modern software is built. We’re striving for an environment
where each of our teams can add features, fix bugs, make enhancements, and
deploy to production live without impacting any other services. Ideally we
also want to be able to perform this deployment with zero downtime, without
even affecting any live consumers of our service.

If the organization is relying on shared code and other sources of tight,
internal coupling between these services, then we run the risk of breaking all
kinds of things every time we deploy, and we return to the dark days where
we faced a production release with the same sense of dread and fear as a
zombie apocalypse.

On the other hand, if every team agrees to conform to published, well-
documented and semantically versioned APIs as a firm contract, then it frees
up each team to work on its own release cadence. Following the rules of
semantic versioning will allow teams to enhance their APIs without breaking
ones already in use by existing consumers.

You may find that adherence to practices like API First is far more important
as a foundation to the success of a microservice ecosystem than the
technology or code used to construct it.

2

If you’re looking for guidance on the mechanics of documenting and sharing
APIs, you might want to check out API Blueprint and websites like Apiary.
There are innumerable other standards, such as the OpenAPI Specification
(formerly known as Swagger), but I tend to favor the simplicity offered by
documenting APIs with Markdown. Your mileage may vary, and the more
rigid format of the OpenAPI Spec may be more suitable for your needs.

The Team Service API
In general, there is nothing requiring the API for a microservice to be
RESTful. The API can be a contract defining message queues and message
payload formats, or it can be another form of messaging that might include a
technology like Google’s Protocol Buffers. The point is that RESTful APIs
are just one of many ways in which to expose an API from a service.

That said, we’re going to be using RESTful APIs for most (but not all) of the
services in this book. Our team service API will expose a root resource called
teams. Beneath that we will have resources that allow consumers to query
and manipulate the teams themselves as well as to add and remove members
of teams.

For the purposes of simplicity in this chapter, there is no security involved, so
any consumer can use any resource. Table 3-1 represents our public API
(we’ll show the JSON payload formats later).

Table 3-1. Team service API

Resource Method Description

/teams GET Gets a list of all teams

/teams/{id} GET Gets details for a single team

/teams/{id}/members GET Gets members of a team

/teams POST Creates a new team

/teams/{id}/members POST Adds a member to a team

/teams/{id} PUT Updates team properties

/teams/{id}/members/{memberId} PUT Updates member properties

/teams/{id}/members/{memberId} DELETE Removes a member from the team

/teams/{id} DELETE Deletes an entire team

Before settling on a final API design, we could use a website like Apiary to
take our API Blueprint documentation and turn it into a functioning stub that
we can play with until we’re satisfied that the API feels right. This exercise
might seem like a waste of time, but we would rather discover ugly smells in
an API using an automated tool first rather than discovering them after we’ve
already written a test suite to certify that our (ugly) API works.

For example, we might use a mocking tool like Apiary to eventually discover
that there’s no way to get to a member’s information without first knowing

3

https://apiblueprint.org/
https://apiary.io/

the ID of a team to which she belongs. This might irritate us, or we might be
fine with it. The important piece is that this discovery might not have
happened until too late if we didn’t at least simulate exercising the API for
common client use cases.

Test-First Controller Development
In this section of the chapter we’re going to build a controller to support our
newly defined team API. While the focus of this book is not on TDD and I
may choose not to show the code for tests in some chapters, I did want to go
through the exercise of building a controller test-first so you can experience
this in ASP.NET Core.

To start with, we can copy over a couple of the scaffolding classes we created
in the previous chapter to create an empty project. I’m trying to avoid using
wizards and IDEs as a starting point to avoid locking people into any one
platform that would negate the advantages of Core’s cross-platform nature. It
is also incredibly valuable to know what the wizards are doing and why.
Think of this like the math teacher withholding the “easy way” until you’ve
understood why the “hard way” works.

In classic Test-Driven Development (TDD), we start with a failing test. We
then make the test pass by writing just enough code to make the light go
green. Then we write another failing test, and make that one pass. We repeat
the entire process until the list of passing tests includes all of our API design
that we’ve done in the preceding table and we have a test case that asserts the
positives and negatives for each of the things the API must support.

We need to write tests that certify that if we send garbage data, we get an
HTTP 400 (bad request) back. We need to write tests that certify that all of
our controller methods behave as expected in the presence of missing,
corrupt, or otherwise invalid data.

One of the key tenets of TDD that a lot of people don’t pick up on is that a
compilation failure is a failing test. If we write a test asserting that our
controller returns some piece of data and the controller doesn’t yet exist,
that’s still a failing test. We make that test pass by creating the controller
class, and adding a method that returns just enough data to make the test pass.
From there, we can continue iterating through expanding the test to go
through the fail–pass–repeat cycle.

This cycle relies on very small iterations, but adhering to it and building
habits around it can dramatically increase your confidence in your code.
Confidence in your code is a key factor in making rapid and automated
releases successful.

If you want to learn more about TDD in general, then I highly recommend
reading Test Driven Development by Kent Beck (Addison-Wesley
Professional). The book is old but the concepts outlined within it still hold

true today. Further, if you’re curious as to the naming conventions used for
the tests in this book, they are the same guidelines as those used by the
Microsoft engineering team that built ASP.NET Core.

Each of our unit test methods will have three components:

Arrange

Perform any setup necessary to prepare the test.

Act

Execute the code under test.

Assert

Verify the test conditions in order to determine pass/fail.

The “arrange, act, assert” pattern is a pretty common one for organizing the
code in unit tests but, like all patterns, is a recommendation and doesn’t apply
universally.

Our first test is going to be very simple, though as you’ll see, it’s often the
one that takes the most time because we’re starting with nothing. This test
will be called QueryTeamListReturnsCorrectTeams. The first thing this
method does is verify that we get any result back from the controller. We’ll
want to verify more than that eventually, but we have to start somewhere, and
that’s with a failing test.

First, we need a test project. This is going to be a separate module that
contains our tests. Per Microsoft convention, if we have an assembly called
Foo, then the test assembly is called Foo.Tests.

In our case, we are building applications for a fictitious company called
the Statler and Waldorf Corporation. As such, our team service will be in a
project called StatlerWaldorfCorp.TeamService and the tests will be in
StatlerWaldorfCorp.TeamService.Tests. If you’re curious about the
inspiration for this company, it is a combination of the appreciation of cranky
old hecklers and the Muppets of the same name.

To set this up, we’ll create a single root directory that will contain both the
main project and the test project. The main project will be in
src/StatlerWaldorfCorp.TeamService and the test project will be in
test/StatlerWaldorfCorp.TeamService.Tests. To get started, we’re just going
to reuse the Program.cs and Startup.cs boilerplate from the last chapter so
that we just have something to compile, so we can add a reference to it from
our test module.

To give you an idea of the solution that we’re building toward, Example 3-1
is an illustration of the directory structure and the files that we’ll be building.

Example 3-1. Eventual project structure for the team service

├── src

https://github.com/aspnet/Home/wiki/Engineering-guidelines#unit-tests-and-functional-tests
https://en.wikipedia.org/wiki/Statler_and_Waldorf

│ └── StatlerWaldorfCorp.TeamService
│ ├── Models
│ │ ├── Member.cs
│ │ └── Team.cs
│ ├── Program.cs
│ ├── Startup.cs
│ ├── StatlerWaldorfCorp.TeamService.csproj
│ └── TeamsController.cs
└── test
 └── StatlerWaldorfCorp.TeamService.Tests
 ├── StatlerWaldorfCorp.TeamService.Tests.csproj
 └── TeamsControllerTest.cs

If you’re using the full version of Visual Studio, then creating this project
structure is fairly easy to do, as is creating and manipulating the relevant
.csproj files. A point on which I will continue to harp is that for automation
and simplicity, all of this needs to be something you can do with simple text
editors and command-line tools.

As such, Example 3-2 contains the XML for the
StatlerWaldorf.TeamService.Tests.csproj project file. Pay special attention to
how the test project references the project under test and how we do not have
to redeclare dependencies we inherit from the main project.

Example 3-2. StatlerWaldorfCorp.TeamService.Tests.csproj
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference
 Include
="../../src/StatlerWaldorfCorp.TeamService/StatlerWaldorfCorp.TeamService
.csproj"/>
 <PackageReference Include="Microsoft.NET.Test.Sdk"
 Version="15.0.0-preview-20170210-02" />
 <PackageReference Include="xunit"
 Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio"
 Version="2.2.0" />
 </ItemGroup>
</Project>

Before we create a controller test and a controller, let’s just create a class for
the Team model, as in Example 3-3.

Example 3-3. src/StatlerWaldorfCorp.TeamService/Models/Team.cs
using System;
using System.Collections.Generic;

namespace StatlerWaldorfCorp.TeamService.Models
{

 public class Team {

 public string Name { get; set; }
 public Guid ID { get; set; }
 public ICollection<Member> Members { get; set; }

 public Team()
 {
 this.Members = new List<Member>();
 }

 public Team(string name) : this()
 {
 this.Name = name;
 }

 public Team(string name, Guid id) : this(name)
 {
 this.ID = id;
 }

 public override string ToString() {
 return this.Name;
 }
 }
}

Since each team is going to need a collection of Member objects in order to
compile, let’s create the Member class now as well, as in Example 3-4.

Example 3-4. src/StatlerWaldorfCorp.TeamService/Models/Member.cs
using System;

namespace StatlerWaldorfCorp.TeamService.Models
{
 public class Member {
 public Guid ID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public Member() {
 }

 public Member(Guid id) : this() {
 this.ID = id;
 }

 public Member(string firstName,
 string lastName, Guid id) : this(id) {
 this.FirstName = firstName;
 this.LastName = lastName;
 }

 public override string ToString() {
 return this.LastName;
 }
 }

}

In a complete, 100% pure TDD world, we would have created the failing test
first and then gone and created all of the things we need to allow it to
compile. Since these are just simple model objects, I don’t mind skipping a
few steps.

Now let’s create our first failing test, shown in Example 3-5.

Example 3-5.
test/StatlerWaldorfCorp.TeamService.Tests/TeamsControllerTest.cs
using Xunit;
using StatlerWaldorfCorp.TeamService.Models;
using System.Collections.Generic;

namespace StatlerWaldorfCorp.TeamService
{
 public class TeamsControllerTest
 {
 TeamsController controller = new TeamsController();

 [Fact]
 public void QueryTeamListReturnsCorrectTeams()
 {
 List<Team> teams = new List<Team>(
 controller.GetAllTeams());
 }
 }
}

To see this test fail, open a terminal and cd to the
test/StatlerWaldorf.TeamService.Tests directory. Then run the following
commands:

$ dotnet restore
...
$ dotnet test
...

The dotnet test command invokes the test runner and executes all
discovered tests. We use dotnet restore to make sure that the test runner
has all the dependencies and transitive dependencies necessary to build and
run. As expected, the test command will fail if either the test code or the
project being tested fails to compile.

This test doesn’t compile because we’re missing the controller we want to
test. To make this pass, we’re going to need to add a TeamsController to
our main project that looks like Example 3-6.

Example 3-6.
src/StatlerWaldorfCorp.TeamService/Controllers/TeamsController.cs
using System;

using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;
using StatlerWaldorfCorp.TeamService.Models;

namespace StatlerWaldorfCorp.TeamService
{
 public class TeamsController
 {
 public TeamsController() {
 }

 [HttpGet]
 public IEnumerable<Team> GetAllTeams()
 {
 return Enumerable.Empty<Team>();
 }
 }
}

With this first test passing (it just asserts that we can call the method), we
want to add a new assertion that we know is going to fail. In this case, we
want to check that we get the right number of teams in response. Since we
don’t (yet) have a mock, we’ll come up with an arbitrary number:

List<Team> teams = new List<Team>(controller.GetAllTeams());
Assert.Equal(teams.Count, 2);

Now let’s make this test pass by hardcoding some random nonsense in the
controller. A lot of people like to skip this step because they’re in a hurry,
they’re over-caffeinated, or they don’t fully appreciate the iterative nature of
TDD.

You don’t need those kinds of people in your life.

The small iterations of writing just enough code to make a test pass is the part
of the discipline that not only makes it work, but builds high confidence
levels in tested code. I also find that the practice of writing just enough code
to make something pass allows me to avoid creating bloated APIs and lets me
refine my APIs and interfaces as I test.

Example 3-7 shows the updated TeamsController class to support the new
test.

Example 3-7. Updated
src/StatlerWaldorfCorp.TeamService/Controllers/TeamsController.cs
using System;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;

using StatlerWaldorfCorp.TeamService.Models;

namespace StatlerWaldorfCorp.TeamService
{
 public class TeamsController
 {
 public TeamsController() {
 }

 [HttpGet]
 public IEnumerable<Team> GetAllTeams()
 {
 return new Team[] { new Team("one"), new Team("two") };
 }
 }
}

There are very few negative tests we can do for a simple GET method that
operates on a collection without parameters, so let’s move on to the method
for adding a team.

To test this, we’re going to query the team list; we’ll then invoke a new
CreateTeam method, and then we’re going to query the team list again. Our
assertion should be that our new team is in the list.

In the strictest adherence to TDD, we wouldn’t preemptively change things
unless we did so to make a test pass. However, to keep the listings in the
book down to a reasonable size I decided to bypass that. So far, our controller
hasn’t inherited from a base class, nor has it been returning anything that
allows us to control the HTTP response itself (it’s been returning raw values).

This isn’t going to be sustainable, so we’re going to change the way we’re
defining our controller methods and reflect our desire for this new pattern in
the failing test shown in Example 3-8.

Example 3-8. TeamsControllerTest.cs—the CreateTeamAddsTeamToList test
 [Fact]
 public async void CreateTeamAddsTeamToList()
 {
 TeamsController controller = new TeamsController();
 var teams = (IEnumerable<Team>)
 (await controller.GetAllTeams() as ObjectResult).Value;
 List<Team> original = new List<Team>(teams);

 Team t = new Team("sample");
 var result = await controller.CreateTeam(t);

 var newTeamsRaw =
 (IEnumerable<Team>)
 (await controller.GetAllTeams() as ObjectResult).Value;

 List<Team> newTeams = new List<Team>(newTeamsRaw);
 Assert.Equal(newTeams.Count, original.Count+1);
 var sampleTeam =
 newTeams.FirstOrDefault(

 target => target.Name == "sample");
 Assert.NotNull(sampleTeam);
 }

The code here looks a little rough around the edges, but that’s okay for now.
While tests are passing, we can refactor both our tests and the code under
test.

To make this test pass, we need to create the CreateTeam method on the
controller. Once we get into the thick of that method, we’ll need some way to
store teams. In a real-world service, we don’t want to do that in memory
because that would violate the stateless rule for cloud-native services.

However, for testing it’s ideal because we can easily manufacture any state
we like for testing. So, we’ll create the CreateTeam method that is a no-op,
and we’ll see that our test now compiles but fails. To make this pass, we’re
going to need a repository.

Injecting a Mock Repository
We know that we’re going to have to get our CreateTeamAddsTeamToList
test to pass by giving the test suite control over the controller’s internal
storage. This is typically done through mocks or through injecting fakes, or a
combination of both.

I’ve elided a few of the iterations of test-driven development necessary to get
us to the point where we can build an interface to represent the repository and
refactor the controller to accept it.

We’re now going to create an interface called ITeamRepository (shown in
Example 3-9), which is the interface that will be used by our tests for a fake
and eventually by the service project for a real persistence medium, but we
won’t code that yet. Remember, we’re not going to code anything that
doesn’t convert a failing test into a passing one.

Example 3-9.
src/StatlerWaldorfCorp.TeamService/Persistence/ITeamRepository.cs
using System.Collections.Generic;

namespace StatlerWaldorfCorp.TeamService.Persistence
{
 public interface ITeamRepository {
 IEnumerable<Team> GetTeams();
 void AddTeam(Team team);
 }
}

We could probably try and predict something more useful than a void return
value for AddTeam, but right now we don’t need to. So let’s create an in-
memory implementation of this repository interface in the service project, as
in Example 3-10.

Example 3-10.
src/StatlerWaldorfCorp.TeamService/Persistence/MemoryTeamRepository.cs
using System.Collections.Generic;

namespace StatlerWaldorfCorp.TeamService.Persistence
{
 public class MemoryTeamRepository : ITeamRepository {
 protected static ICollection<Team> teams;

 public MemoryTeamRepository() {
 if(teams == null) {
 teams = new List<Team>();
 }
 }

 public MemoryTeamRepository(ICollection<Team> teams) {
 teams = teams;
 }

 public IEnumerable<Team> GetTeams() {
 return teams;
 }

 public void AddTeam(Team t)
 {
 teams.Add(t);
 }
 }
}

If you’re cringing at the sight of a static collection as a private member of a
class, then that’s a good thing—you can smell bad code when you’re within
range. This is, however, code just good enough to make a test pass. If we
were intending to use this class for anything other than tests, we’d include
multiple rounds of refactoring after we had a complete test suite.

Injecting this interface into our controller is actually quite easy. ASP.NET
Core already comes equipped with a scope-aware dependency injection (DI)
system. Using this DI system, we’re going to add the repository as
a service in our Startup class, as shown in the following snippet:

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();
 services.AddScoped<ITeamRepository, MemoryTeamRepository>();
}

Using the services model, we can now use constructor injection in our
controllers and ASP.NET Core will automatically add an instance of the
repository to any controller that wants it.

We use the AddScoped method because we want the DI subsystem to create a
new instance of this repository for every request. At this point we don’t really

know what our actual backing repository is going to be—SQL Server, a
document database, or maybe even another microservice. We do know that
we want this microservice to be stateless, and the best way to do that is to
start with per-request repositories and only switch to singletons if we have no
other alternative.

PROPERTY VERSUS CONSTRUCTOR INJECTION
The debate over which method is best will continue raging until long after
human beings are even writing code. I prefer constructor injection because
it makes the dependencies of a class explicit. There’s no magic, no
detective work involved, and constructor injection is much easier to test
with mocks and stubs.

Now that we’ve got a class we can use for our repository, let’s modify the
controller so that we can inject it by adding a simple constructor parameter:

public class TeamsController : Controller
{
 ITeamRepository repository;

 public TeamsController(ITeamRepository repo)
 {
 repository = repo;
 }

 ...
}

Note that there are no attributes or annotations required to enable this
parameter for dependency injection. This may seem like a triviality, but I’ve
grown quite fond of this fact when working with large codebases.

Now we can modify our existing controller method so that it uses the
repository instead of returning hardcoded data:

[HttpGet]
public async virtual Task<IActionResult> GetAllTeams()
{
 return this.Ok(repository.GetTeams());
}

Next we can make our existing tests pass by going back into our test module
and pre-populating the repository with a set of test teams (our tests assume
two teams). The test for the collection’s getter method will use whatever we
supply in the repository so we can make reliable assertions.

It’s worth reiterating that our goal with controller tests is to test only the
responsibility of the controller. At this point, that means we’re only testing to

make sure that the appropriate methods are being called on the repository.
We could have used a mocking framework to avoid creating a custom
repository, but the in-memory version is so simple we decided not to incur
the overhead of mocking.

MOCKING FRAMEWORKS
While I don’t use mocks much in this book, I have played around with
various mocking frameworks available for .NET Core. At the time of this
writing my favorite was Moq, but feel free to explore on your own to find
one that suits your needs.

Just remember the cardinal rule of tools also applies to libraries. They
should make your life easier, but you should be able to get by without
them. If you can’t test something without a complicated mock and simple
fakes won’t do, maybe the class design needs to be refactored.

Completing the Unit Test Suite
I’m not going to bloat the pages in this book by listing every line of code in
all of the tests. To finish the unit test suite, we’re going to continue with our
iterative process of adding a failing test and then writing just enough code to
make that test pass.

The source code for the full set of tests can be found in the master branch on
GitHub.

The following is an overview of some of the features of the code enabled
through TDD:

You cannot add members to nonexistent teams.

You can add a member to an existing team, verified by querying the team
details.

You can remove a member from an existing team, verified by querying
team details.

You cannot remove members from a team to which they don’t belong.

One thing you’ll note about these tests is that they don’t dictate
the internal manner of persisting teams and their members. Under the current
design, the API doesn’t allow independent access to people; you have to go
through a team. We might want to change that in the future, but for now
that’s what we’re going with because a functioning product can be refactored,
whereas a beautiful yet nonexistent product cannot.

To see these tests in action, first build the main source project, then go into
the test/StatlerWaldorfCorp.TeamService.Tests folder and issue the following
commands:

https://github.com/Moq/moq4/wiki/Quickstart
http://bit.ly/2ukuf82

$ dotnet restore
...
$ dotnet build
...
$ dotnet test
Build started, please wait...
Build completed.

Test run for /Users/kevin/Code/microservices-aspnetcore/ \
teamservice/test/StatlerWaldorfCorp.TeamService.Tests/bin/Debug/ \
netcoreapp1.1/StatlerWaldorfCorp.TeamService.Tests.dll(
 .NETCoreApp,Version=v1.1)
Microsoft (R) Test Execution Command Line Tool Version 15.0.0.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...
[xUnit.net 00:00:01.1279308] Discovering:
StatlerWaldorfCorp.TeamService.Tests
[xUnit.net 00:00:01.3207980] Discovered:
 StatlerWaldorfCorp.TeamService.Tests
[xUnit.net 00:00:01.3977448] Starting:
 StatlerWaldorfCorp.TeamService.Tests
[xUnit.net 00:00:01.6546338] Finished:
 StatlerWaldorfCorp.TeamService.Tests

Total tests: 18. Passed: 18. Failed: 0. Skipped: 0.
Test Run Successful.
Test execution time: 2.5591 Seconds

Happily, it appears that all 18 of our unit tests have passed!

Creating a CI Pipeline
Having tests is great, but they don’t do anyone any good if they aren’t run all
the time, every time someone commits code to a branch. Continuous
integration is a key aspect of being able to rapidly deliver new features and
fixes, regardless of your team size or geographic makeup.

In the previous chapter, we created a Wercker account and we went through
all of the steps necessary to use the Wercker CLI and Docker to automate
testing and deploying our applications. It should now be incredibly easy to
take our fully unit-tested codebase and set up an automated build pipeline.

Let’s take a look at the wercker.yml file for the team service, shown in
Example 3-11.

Example 3-11. wercker.yml

box: microsoft/dotnet:1.1.1-sdk
no-response-timeout: 10
build:
 steps:

www.allitebooks.com

http://www.allitebooks.org

 - script:
 name: restore
 cwd: src/StatlerWaldorfCorp.TeamService
 code: |
 dotnet restore
 - script:
 name: build
 cwd: src/StatlerWaldorfCorp.TeamService
 code: |
 dotnet build
 - script:
 name: publish
 cwd: src/StatlerWaldorfCorp.TeamService
 code: |
 dotnet publish -o publish
 - script:
 name: test-restore
 cwd: test/StatlerWaldorfCorp.TeamService.Tests
 code: |
 dotnet restore
 - script:
 name: test-build
 cwd: test/StatlerWaldorfCorp.TeamService.Tests
 code: |
 dotnet build
 - script:
 name: test-run
 cwd: test/StatlerWaldorfCorp.TeamService.Tests
 code: |
 dotnet test
 - script:
 name: copy binary
 cwd: src/StatlerWaldorfCorp.TeamService
 code: |
 cp -r . $WERCKER_OUTPUT_DIR/app
deploy:
 steps:
 - internal/docker-push:
 cwd: $WERCKER_OUTPUT_DIR/app
 username: $USERNAME
 password: $PASSWORD
 repository: dotnetcoreservices/teamservice
 registry: https://registry.hub.docker.com
 entrypoint: "/pipeline/source/app/docker_entrypoint.sh"

The first thing to notice is the choice of box in the configuration. This needs
to be a docker hub image that already contains the .NET Core command-line
tooling. In this case, I chose microsoft/dotnet:1.1.1-sdk. This may
change depending on which version is the most current as you’re reading this,
so be sure to check the official Microsoft docker hub repository for the latest
tags and check the GitHub repository for this book to see what boxes are
being used for tests.

In some cases we can skip certain steps and go directly to testing, but if a step
is going to fail, we want it to be as small as possible so we can troubleshoot

https://hub.docker.com/r/microsoft/dotnet/

it. You can execute all of these build steps on your development workstation,
assuming you have the Wercker CLI installed and a running Docker
installation. Just execute the buildlocal.sh script that you can find in this
chapter’s GitHub repository. This script contains the following code and will
execute the same build locally that Wercker will execute remotely:

rm -rf _builds _steps _projects _cache _temp
wercker build --git-domain github.com \
 --git-owner microservices-aspnetcore \
 --git-repository teamservice
rm -rf _builds _steps _projects _cache _temp

Integration Testing
The most official definition of integration testing that I’ve been able to find
indicates that it is the stage of testing when individual components are
combined and tested as a group. This phase occurs after unit testing
and before validation (also called acceptance) testing.

There are some subtleties about this definition that are important. Unit tests
verify that your modules do what you expect them do. An integration test
should not verify that you get the right answers from the system; it should
verify that all of the components of the system are connected and you get
suitable responses. In other words, if you’re performing complex calculations
using components already covered by unit tests, your integration tests need
not retest those components. Integration tests would simply verify that you
can invoke your web server, trigger the right RESTful endpoint, invoke the
complex calculator, and get an appropriate response.

One of the hardest parts of integration testing usually ends up being the
technology or code involved in spinning up an instance of the web hosting
machinery so that you can send and receive full HTTP messages.

Thankfully, this has already been taken care of for us with
the Microsoft.AspNetCore.TestHost.TestServer class. We can
instantiate one of these and build it with whatever options we like and then
use it to create an instance of an HttpClient that is preconfigured to talk to
our test server. The creation of these two classes is usually done in an
integration test’s constructor, as shown in this snippet:

testServer = new TestServer(new WebHostBuilder()
 .UseStartup<Startup>());
testClient = testServer.CreateClient();

Note that the Startup class we’re using here is the exact same one we’re
using in our main service project. This means that the dependency injection
setup, configuration sources, and services will all be exactly as they would be
if we were running the real service.

https://github.com/microservices-aspnetcore/hello-world

With the test server and test client in place, we can test various scenarios, like
adding a team to the teams collection and querying the results to ensure that
it’s still there. This gives us a chance to fully exercise the JSON
deserialization and use our service the way a completely external consumer
might, as shown in Example 3-12.

Example 3-12.
test/StatlerWaldorfCorp.TeamService.Tests.Integration/SimpleIntegrationTests.cs
public class SimpleIntegrationTests
{
 private readonly TestServer testServer;
 private readonly HttpClient testClient;

 private readonly Team teamZombie;

 public SimpleIntegrationTests()
 {
 testServer = new TestServer(new WebHostBuilder()
 .UseStartup<Startup>());
 testClient = testServer.CreateClient();

 teamZombie = new Team() {
 ID = Guid.NewGuid(),
 Name = "Zombie"
 };
 }

 [Fact]
 public async void TestTeamPostAndGet()
 {
 StringContent stringContent = new StringContent(
 JsonConvert.SerializeObject(teamZombie),
 UnicodeEncoding.UTF8,
 "application/json");

 HttpResponseMessage postResponse =
 await testClient.PostAsync(
 "/teams",
 stringContent);
 postResponse.EnsureSuccessStatusCode();

 var getResponse = await testClient.GetAsync("/teams");
 getResponse.EnsureSuccessStatusCode();

 string raw = await getResponse.Content.ReadAsStringAsync();

 List<Team> teams =
 JsonConvert.DeserializeObject<List<Team>>(raw);
 Assert.Equal(1, teams.Count());
 Assert.Equal("Zombie", teams[0].Name);
 Assert.Equal(teamZombie.ID, teams[0].ID);
 }
}

Once we’re satisfied that this test works properly, we can continue adding

more complex scenarios to ensure that various scenarios are supported and
working properly.

With our integration tests ready to roll we can update our wercker.yml file to
execute the integration tests by adding a few script executions:

- script:
 name: integration-test-restore
 cwd: test/StatlerWaldorfCorp.TeamService.Tests.Integration
 code: |
 dotnet restore
- script:
 name: integration-test-build
 cwd: test/StatlerWaldorfCorp.TeamService.Tests.Integration
 code: |
 dotnet build
- script:
 name: integration-test-run
 cwd: test/StatlerWaldorfCorp.TeamService.Tests.Integration
 code: |
 dotnet test

For such a simple service as this one, it might seem like we’ve gone to some
needless trouble in creating a separate project for our integration tests and
using separate CI pipeline build steps.

However, developing habits and practices that you use even on the smallest
projects will pay off in the long run. This is one of them. When we get to the
stage where we’re building services that rely on other services, we’re going
to want to start up versions of those services while running integration tests.
We want the ability to selectively only run unit tests versus integration tests
in our pipelines so we can have a “slow build” and a “fast build” if we want.
Also, separating the integration tests into their own project gives us a little bit
more cleanliness and organization—some of the integration tests I’ve written
in the past have gotten very large, especially when it comes to fabricating test
data and expected response JSON payloads for complex services.

Running the Team Service Docker Image
Now that the CI pipeline is working for the team service, it should
automatically be deploying a Docker image to docker hub for us. With this
Docker image in hand, we can deploy it to Amazon Web Services, Google
Cloud Platform, Microsoft Azure, or regular virtual machines. We could
orchestrate this image inside Docker Swarm or Kubernetes or push it to
Cloud Foundry.

Our options are nearly endless, but they’re endless because we’re using
Docker images as deployment artifacts.

Let’s run this using a command you should be pretty familiar with by now:

$ docker run -p 8080:8080 dotnetcoreservices/teamservice
Unable to find image 'dotnetcoreservices/teamservice:latest' locally
latest: Pulling from dotnetcoreservices/teamservice
693502eb7dfb: Already exists
081cd4bfd521: Already exists
5d2dc01312f3: Already exists
36c0e9895097: Already exists
3a6b0262adbb: Already exists
79e416d3fe9d: Already exists
d96153ed695f: Pull complete
Digest:
sha256:fc3ea65afe84c33f5644bbec0976b4d2d9bc943ddba997103dd3fb731f56ca5b
Status: Downloaded newer image for
dotnetcoreservices/teamservice:latest
Hosting environment: Production
Content root path: /pipeline/source/app/publish
Now listening on: http://0.0.0.0:8080
Application started. Press Ctrl+C to shut down.

With the port mapping in place, we can treat http://localhost:8080 as the
host of our service now. The following curl command issues a POST to the
/teams resource of the service. (If you don’t have access to curl, I highly
recommend the Postman plug-in for Chrome.) Per our test specification, this
should return a JSON payload containing the newly created team:

$ curl -H "Content-Type:application/json" \
 -X POST -d \
 '{"id":"e52baa63-d511-417e-9e54-7aab04286281", \
 "name":"Team Zombie"}' \
 http://localhost:8080/teams

{"name":"Team Zombie","id":"e52baa63-d511-417e-9e54-7aab04286281",
 "members":[]}

Note that the reply in the preceding snippet contains an empty array for the
members property. To make sure that the service is maintaining state between
requests (even if it is doing so with little more than an in-memory list at the
moment), we can use the following curl command:

$ curl http://localhost:8080/teams
 [{"name":"Team Zombie",
 "id":"e52baa63-d511-417e-9e54-7aab04286281",
 "members":[]}]

And that’s it—we’ve got a fully functioning team service automatically tested
and automatically deployed to docker hub, ready for scheduling in a cloud
computing environment in response to every single Git commit.

Summary
In this chapter we took our first step toward building real microservices with
ASP.NET Core. We took a look at the definition of a microservice and we
discussed the concept of API First and how it is an essential part of building
the discipline and habits necessary to allow multiple teams to have
independent release cadences.

Finally, we built a sample service in a test-first fashion and looked at some of
the tools we have at our disposal for automatically testing, building, and
deploying our services.

In the coming chapters, we’re going to expand on these skills as we build
more complex and powerful services.

 Origins of the “can’t swing a dead cat” phrase are as morbid as they are
plentiful. I have been unable to discover a single credible source for the
original quote.

 For more information on semver, check out http://semver.org/.

 Protocol Buffers, or “protobufs” for short, are a platform-neutral, high-
performance serialization format documented at
https://developers.google.com/protocol-buffers/.

1

2

3

http://semver.org/
https://developers.google.com/protocol-buffers/

Chapter 4. Backing Services

In Chapter 3 we built our first microservice with ASP.NET Core. This service
exposed some simple endpoints backed by an in-memory repository to
provide consumers with the ability to query and manipulate teams and team
membership. While it was enough to get started, it’s far from an example of a
production-grade service.

In this chapter we’re going to make our first foray into the world
of microservice ecosystems. Services never exist in a vacuum, and most of
them need to communicate with other services in order to do their jobs. We
call these supporting services backing services, and we’ll explore how to
create and consume them by creating a new service and modifying the
original team service to communicate with it.

Microservice Ecosystems
As we saw in Chapter 3, it’s pretty easy to fire up a quick set of middleware
to host some RESTful resources on an HTTP server. These are just
implementation details. The real work lies in designing ecosystems of
microservices, where, within a larger community of interconnected
services, each service can have its own release cadence, can be deployed on
its own, and can scale horizontally on demand.

To achieve this, we need to put a little thought into what we’re doing. While
classic “hello world” samples all exist in a vacuum and rely on no other
services, we’re rarely going to see a lone service in production (with a few
exceptions). This was the driving factor behind the discussion of the concept
of API First in the previous chapter.

Once we accept the idea that we’re going to need multiple services, it
becomes far too easy to oversimplify the problem. We assume that we’ll have
a nice, direct, easy-to-follow dependency chain of services like the one in
Figure 4-1.

Figure 4-1. An overly simplistic microservice ecosystem

In this completely unrealistic scenario, service A depends on B, which in turn
depends on C. With this clear hierarchy in mind, organizations can often
make assumptions about processes for developing, deploying, and supporting
services like these. These assumptions are dangerous because they can worm
their way through an organization until they are no longer assumptions—
they’ve become requirements.

Never assume that there is ever going to be a clear dependency chain or
hierarchy of services. Instead, plan for something that looks more like
Figure 4-2.

Figure 4-2. A more realistic microservice ecosystem

In this ecosystem, we have a better representation of reality. However, even
this diagram is trivial compared to some large enterprises that build and
maintain hundreds or even thousands of services. To further complicate
things, some of these lines might represent traditional HTTP calls while
others might represent asynchronous, Event Sourcing–style communication
(discussed in Chapter 6).

Bound Resources
Every application we build needs resources. In the traditional world of
deploying apps and services to specific servers (virtual or physical), we’re
used to our applications needing things like files on disk. These apps also
have configuration, credentials, and URLs for accessing other services, and
any number of other dependencies that often tightly couple the application to
the server on which it is supposed to run.

When we’re running our services in the cloud, we need to build our
applications with a slightly more abstract notion. Every resource needed by
our application should be considered a bound resource, and accessed in a
way that doesn’t violate any of the rules of cloud-native applications.

For example, if our application needs to read and write binary files, we can’t
assume that we can use System.IO.File to read and write bytes to disk. This
is because the disk in the cloud must be considered ephemeral. It is subject to
complete removal without our application knowing. This is part of what
allows our services to rapidly and dynamically scale—instances can be
brought up and shut down anywhere in the world on demand. If it expects a
file to exist on a local disk between requests or process starts, our app is
going to fail in unpredictable and potentially catastrophic ways.

The solution is to assume that everything, including the filesystem, is a
service. Backing services are bound to our application through some
mechanism likely facilitated by a cloud provider (PaaS, or Platform as a
Service). Instead of opening a file, we communicate with a generalized
persistence service. This could be something we build ourselves, or it could
be an Amazon Web Services S3 bucket, or it could be any number of other
brokered persistence services available.

Likely one of the most common types of bound resources is a database
connection. The binding of this resource contains things we should all be
familiar with, such as a connection string and credentials. We’ll see more
about bound resources and database connections in Chapter 5.

Lastly, as we’ll see in the samples in this chapter, other microservices are
also bound resources. The URLs and credentials to the services on which our
own service depends should be considered part of the resource binding.

I should note that the concept of a resource binding is an abstraction, and the
implementation of it will vary depending on what cloud platform is hosting
your application. These service bindings could just as easily come from
environment variables injected by your platform or from an external
configuration provider.

Whether you’re using Google Cloud Platform, AWS, Azure, Heroku, or just
running a bunch of Docker images manually, the key to enabling
communications between services is the combination of externalized
configuration and treating everything as a bound resource.

Strategies for Sharing Models Between Services
There are a few things that are required for an environment to be considered a
microservice ecosystem. The first, obviously, is that you need more than one
service. The second is that the services within this ecosystem communicate
with each other. Without the latter, you’re just standing up an array of
isolated and unrelated services.

If we’re being diligent about following some cloud-native best practices like
API First, then all of our services will have documented, versioned, well-
understood public APIs. We might be using a YAML standard like Swagger
to document our APIs, or we could be using one based on Markdown, like

API Blueprint. The mechanism of defining and documenting our APIs is not
nearly as important as the discipline we put into designing our
APIs before we write our code.

With a well-defined, versioned API that we know isn’t going to break out
from underneath us, the services within our ecosystem can be built by
different teams. Consuming the API from those services then becomes
merely a matter of writing simple REST clients.

If it’s so simple, then why are we dedicating a section of the chapter to the
concept of model sharing? The reason is because as people build ecosystems
following the API First rule, once they get into writing the code, they often
allow the API boundary to become a soft or blurred boundary.

Teams frequently make some architectural decisions early on during a project
that won’t cause trouble until far into the future, when the cost of untangling
the mess can get exorbitant.

As an example, let’s say that you’ve got two services in your suite that both
operate on invoices. One accepts an invoice from a queue, performs
processing, and then submits an updated invoice to another downstream
service.

When we look at this solution on paper, it’s very easy to say something like,
“Let’s just extract the invoice model and share it among services.” Seems like
a great idea, and it’s used frequently enough that it is a named pattern, often
called the canonical model pattern.

Fast-forward a few months, and developers on both service teams have been
adding features. The invoice model and its validation rules and
(de)serialization code have been factored out into a nice shared module.
Because it’s easy and gets the job done, both services eventually end up
performing their internal processing against the canonical or public model.

Now when one service changes the model in order to accommodate what
should be an internal concern, the other service is affected and potentially has
builds and tests broken as a result. They’ve lost the flexibility of true
independence, and instead of being a source of flexibility, the canonical
model is now a source of tight coupling and is preventing independent team
deployment schedules.

It is entirely possible to maintain a canonical model without internal
pollution, but you absolutely must be ruthless about maintaining a “pure”
canonical model and forcing the internals of a service to use an internal
model and convert back and forth with an anti-corruption layer (ACL). This
is often perceived as a lot of work for little to no benefit, so many teams skip
this discipline and lapse into tightly coupling internals to a public model, the
consequences of which grow worse exponentially as more and more services
adopt this anti-pattern.

Put another way, two services that are tightly coupled to the same shared

internal model are as tightly coupled as if they resided within the same
monolith.

In my opinion, based on years of building new software and untangling the
messes of legacy software, the real answer is to share nothing. A
microservice is an embodiment of the Single Responsibility Principle (SRP)
and the Liskov Substitution Principle (LSP). A change to one service should
never have any impact on any other service. A change to the internal model
should be possible without corrupting the service’s public API or any
external models.

Lastly, before getting into the nuts and bolts of the code for this chapter, I
leave you with this quote from Sam Newman about the perils of sharing in
microservices:

The evils of too much coupling between services are far worse than the
problems caused by code duplication

—Sam Newman, Building Microservices

Building the Location Service
In Chapter 3, we wrote some code as a simplified example of a service
designed to manage team information. It allowed for the querying of teams
and team members, as well as assignation of members to teams.

We’ve decided that we also want to maintain and query the locations of all of
our team members. We’re hoping to eventually build in some map
integrations, so as a first step we want to upgrade the team service to contain
locations.

But is that really the right way to go? On the surface, it would be really
simple to just add a location field to the data store we’re using for
members. We could probably have that change written in short order.

What happens, however, if we decide in the near future to change how we
manage locations without changing how we manage team memberships?
Someone could decide they want to convert all of the location data to a graph
database. If location and team membership are part of the same microservice,
we’re violating the SRP and forcing the team service to change every time we
modify location management.

It makes more sense to put the responsibility of location management into its
own service. This service will manage the location history of individuals
(without regard for their team membership). We can add location events to a
person, query location history, and as a convenience we can also query for
the current location of any individual for whom we have location data.

In keeping with our policy of API and test-first development, Table 4-1
describes the public API for the location service. In our domain, a member is
a user of the team management application.

Table 4-1. REST API for the location service

Resource Method Description

/locations/{memberID}/latest GET Retrieves the most current location of a member

/locations/{memberID} POST Adds a location record to a member

/locations/{memberID} GET Retrieves the location history of a member

If you want to browse the full code for this solution, check it out on GitHub
by looking at the no-database branch.

First, let’s create a model class to hold location records, which are records of
events in which a team member was “spotted” at a location or his mobile
device reported his current location (Example 4-1).

Example 4-1.
src/StatlerWaldorfCorp.LocationService/Models/LocationRecord.cs
public class LocationRecord {
 public Guid ID { get; set; }
 public float Latitude { get; set; }
 public float Longitude { get; set; }
 public float Altitude { get; set; }
 public long Timestamp { get; set; }
 public Guid MemberID { get; set; }
}

Each location record is uniquely identified by a GUID called ID. This record
contains a set of coordinates for latitude, longitude, and altitude; the
timestamp for when the location event took place; and the GUID of the
individual involved (memberID).

Next we need an interface representing the contract for a location repository
(Example 4-2). For this chapter our repository is just going to be a simple in-
memory system. In the next chapter we’ll talk about replacing it with a real
database.

Example 4-2.
src/StatlerWaldorfCorp.LocationService/Models/ILocationRecordRepository.cs
public interface ILocationRecordRepository {
 LocationRecord Add(LocationRecord locationRecord);
 LocationRecord Update(LocationRecord locationRecord);
 LocationRecord Get(Guid memberId, Guid recordId);
 LocationRecord Delete(Guid memberId, Guid recordId);

 LocationRecord GetLatestForMember(Guid memberId);

 ICollection<LocationRecord> AllForMember(Guid memberId);
 }

Now that we have a model, an interface for a repository, and a repository
implementation (it’s just a wrapper around a collection, so to save space in
the book I left that code on GitHub), we’re going to create a controller that

http://bit.ly/2wx6goe

exposes this public API. As with all controllers, it is extremely lightweight
and defers all of the real work to separately testable components. The code in
Example 4-3 illustrates that the controller accepts an
ILocationRecordRepository instance via constructor injection.

Example 4-3.
src/StatlerWaldorfCorp.LocationService/Controllers/LocationRecordController.cs
 [Route("locations/{memberId}")]
 public class LocationRecordController : Controller {
 private ILocationRecordRepository locationRepository;

 public LocationRecordController(
 ILocationRecordRepository repository) {
 this.locationRepository = repository;
 }

 [HttpPost]
 public IActionResult AddLocation(Guid memberId,
 [FromBody]LocationRecord locationRecord) {

 locationRepository.Add(locationRecord);
 return this.Created(
 $"/locations/{memberId}/{locationRecord.ID}",
 locationRecord);
 }

 [HttpGet]
 public IActionResult GetLocationsForMember(Guid memberId) {

 return this.Ok(locationRepository.AllForMember(memberId));
 }

 [HttpGet("latest")]
 public IActionResult GetLatestForMember(Guid memberId) {
 return this.Ok(
 locationRepository.GetLatestForMember(memberId));
 }
}

Making the repository available for dependency injection is just a matter of
adding it as a scoped service during startup, as in Example 4-4.

Example 4-4. Startup.cs
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddScoped<ILocationRecordRepository,
 InMemoryLocationRecordRepository>();
 services.AddMvc();
 }

Before moving on to the next section, I suggest you build and test out the
location service yourself. Grab the latest code from GitHub and issue the
following commands:

https://github.com/microservices-aspnetcore/locationservice

$ cd src/StatlerWaldorfCorp.LocationService
$ dotnet restore
...
$ dotnet build

Note that the code in GitHub has more than one branch. The code for this
chapter contains only an in-memory repository and is under the no-database
branch. If you check out the master branch, you’ll be peeking ahead at the
code for the next chapter.

You can run the application as shown here:

$ dotnet run
Hosting environment: Production
Content root path: [...]
Now listening on: http://localhost:5000
Application started. Press Ctrl+C to shut down.

With the server running, we can POST a new location record using the
following syntax. Note that I’ve added newlines to this to make it more
readable. The curl command you type will all be on a single line:

$ curl -H "Content-Type: application/json" -X POST
 -d '{"id": "55bf35ba-deb7-4708-abc2-a21054dbfa13", \
 "latitude": 12.56, "longitude": 45.567, \
 "altitude": 1200, "timestamp" : 1476029596, \
 "memberId": "0edaf3d2-5f5f-4e13-ae27-a7fbea9fccfb" }'
 http://localhost:5000/locations/0edaf3d2-5f5f-4e13-ae27-a7fbea9fccfb

{"id":"55bf35ba-deb7-4708-abc2-a21054dbfa13",
 "latitude":12.56,"longitude":45.567,
 "altitude":1200.0,"timestamp":1476029596,
 "memberID":"0edaf3d2-5f5f-4e13-ae27-a7fbea9fccfb"}

We receive back the location record we submitted to indicate that the new
record was created. Now we can query the location history for our member
(the same memberId we used in the preceding command) with the following
command:

$ curl http://localhost:5000/locations/0edaf3d2-5f5f-4e13-ae27-
a7fbea9fccfb

[
{"id":"55bf35ba-deb7-4708-abc2-a21054dbfa13",
 "latitude":12.56,"longitude":45.567,"altitude":1200.0,
 "timestamp":1476029596,
 "memberID":"0edaf3d2-5f5f-4e13-ae27-a7fbea9fccfb"}
]

Satisfied that our location service is working, we can move on to updating the
team service.

Enhancing the Team Service
Now that we’ve created a location service, let’s extend the team service we
created in the previous chapter. We’ll modify the service so that when we
query the details for a particular team member, we will also include their
most current location and when they were spotted or checked into that
location.

To do this, we have two main tasks:

1. Bind the URL for the location service to our team service.

2. Consume the location service once we have the URL.

To see the full implementation of the enhanced team service, check out the
location branch of the team service repository.

Configuring Service URLs with Environment Variables
As mentioned, there are a number of different ways we can “bind”
connection information for backing services to our application. The most
important thing for us to remember when doing this is that this information
must come from the environment. It cannot be information checked in with
our codebase.

The simplest way to do this is to set some reasonable defaults in an
appsettings.json file, and then allow those defaults to be overridden with
environment variables. The defaults are here only to make it easier to work on
the code from our workstations, and should never be left intact in real
environments:

{
 "location": {
 "url": "http://localhost:5001"
 }
}

With this in place, we can override this setting with an environment variable
called LOCATION__URL. Note that there are two underscores in this
environment variable. Regardless of how the variable was set by the
environment, we can query it by checking for the "location:url"
configuration setting, thanks to ASP.NET Core’s configuration system
creating a universal abstraction around the data hierarchy.

We can modify our startup so that we register an HttpLocationClient
instance with the appropriate URL (we’ll see the implementation of this class

http://bit.ly/2w6382L

shortly):

var locationUrl = Configuration.GetSection("location:url").Value;
logger.LogInformation("Using {0} for location service URL.",
 locationUrl);
services.AddSingleton<ILocationClient>(
 new HttpLocationClient(locationUrl));

With just a single URL that never changes, this kind of environment-fed
configuration is pretty easy. We’ll talk about more robust methods of
configuring your applications later in the book.

Consuming a RESTful Service
Now that we know how to set up the order of precedence configuration
settings allowing our file settings to be overridden with environment
variables, we can focus on implementing a location client that talks to our
location service.

Since we want to be able to unit test a controller method in our team service
without making HTTP calls, we know we’re going to start off with creating
an interface for our location client (Example 4-5).

Example 4-5.
src/StatlerWaldorfCorp.TeamService/LocationClient/ILocationClient.cs
public interface ILocationClient
{
 Task<LocationRecord> GetLatestForMember(Guid memberId);
}

And Example 4-6 is our implementation of a location client that makes
simple HTTP requests. Note that the URL to which this client connects is
passed in the constructor we saw in our Startup class earlier.

Example 4-6.
src/StatlerWaldorfCorp.TeamService/LocationClient/HttpLocationClient.cs
using System;
using System.Net.Http;
using System.Net.Http.Headers;
using System.Threading.Tasks;
using StatlerWaldorfCorp.TeamService.Models;
using Newtonsoft.Json;

namespace StatlerWaldorfCorp.TeamService.LocationClient
{
 public class HttpLocationClient : ILocationClient
 {
 public String URL {get; set;}

 public HttpLocationClient(string url)
 {
 this.URL = url;
 }

 public async Task<LocationRecord>
 GetLatestForMember(Guid memberId)
 {
 LocationRecord locationRecord = null;

 using (var httpClient = new HttpClient())
 {
 httpClient.BaseAddress = new Uri(this.URL);
 httpClient.DefaultRequestHeaders.Accept.Clear();
 httpClient.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue(
 "application/json"));

 HttpResponseMessage response =
 await httpClient.GetAsync(
 String.Format("/locations/{0}/latest",
 memberId));

 if (response.IsSuccessStatusCode) {
 string json =
 await response.Content.ReadAsStringAsync();
 locationRecord =
 JsonConvert
 .DeserializeObject<LocationRecord>(json);
 }
 }
 return locationRecord;
 }
 }
}

With a location service client available, we can now modify the controller
method in the team service responsible for querying member details. I didn’t
explicitly cover the code for this controller in the previous chapter, so if you
didn’t write your own you can find a copy in the GitHub repository.

We’ll modify the controller to invoke the location client so we can append
the most recent location for the member to the response (Example 4-7).

Example 4-7.
src/StatlerWaldorfCorp.TeamService/Controllers/MembersController.cs
[HttpGet]
[Route("/teams/{teamId}/[controller]/{memberId}")]
public async virtual Task<IActionResult>
 GetMember(Guid teamID, Guid memberId)
{
 Team team = repository.GetTeam(teamID);

 if(team == null) {
 return this.NotFound();
 } else {
 var q = team.Members.Where(m => m.ID == memberId);
 if(q.Count() < 1) {
 return this.NotFound();
 } else {

https://github.com/microservices-aspnetcore/teamservice

 Member member = (Member)q.First();

 return this.Ok(new LocatedMember {
 ID = member.ID,
 FirstName = member.FirstName,
 LastName = member.LastName,
 LastLocation =
 await this.locationClient.GetLatestForMember(member.ID)
 });
 }
 }
}

It’s also worth pointing out here that the LocationRecord model class we’re
using is private to the team service. Per the earlier discussion on model
sharing, the team service and location service are not sharing models, which
allows the team service to remain coupled only to the public API of the
location service, and not the internal implementation.

We’re getting away with what could almost be called an implicit anti-
corruption layer here because we’re using the fact that two JSON payloads
look the same on both sides of a conversation.

In more typical scenarios, we would invoke some form of translation utility
to convert from the location service’s public API format to the type of
information we need for our own internal model.

Running the Services
Before we continue, here’s a quick recap of what we’ve done so far. We
decided that we wanted to add the ability to maintain a history of location
check-ins for each person using our application. To do this, we created a
location service that is the sole owner of location data and exposes a
convenience endpoint for checking a member’s most recent location.

The new location service is in GitHub, in the no-database branch. The team
service we modified to consume the location service can be found at the team
service’s location branch.

You can also run both of these branches directly from tagged Docker images
on docker hub:

Team service: dotnetcoreservices/teamservice:location

Location service: dotnetcoreservices/locationservice:nodb

First let’s start up the team service. We need to give it two different
configuration parameters via environment variables:

Port number, using the PORT variable. We will have to give our services
two different ports if we’re running them locally so they don’t collide.

Location URL, using the LOCATION__URL variable (remember, two

http://bit.ly/2w6tLVd
http://bit.ly/2w6382L

underscores).

Run the following command:

$ docker run -p 5000:5000 -e PORT=5000 \
 -e LOCATION__URL=http://localhost:5001 \
 dotnetcoreservices/teamservice:location
...
info: Startup[0]
 Using http://localhost:5001 for location service URL.
Hosting environment: Production
Content root path: /pipeline/source/app/publish
Now listening on: http://0.0.0.0:5000
Application started. Press Ctrl+C to shut down.

BACKSLASHES IN MAC TERMINAL LISTINGS
If you’re a Windows user and you’re wondering why there are lots of
backslashes in the various listings for terminal commands issued at a Mac
or Linux command prompt, this is a line continuation character. It lets the
user type multiple lines of input, delaying processing until the final carriage
return.

This starts the team service on port 5000, maps port 5000 inside the container
to port 5000 on localhost, and tells the team service that it can find the
location service at http://localhost:5001.

If you’re on a Mac, you can also pass a one-time environment variable
straight through to the dotnet run command as shown here:

LOCATION__URL=http://localhost:5001 dotnet run

With the team service up and running, let’s start the location service:

$ docker run -p 5001:5001 -e PORT=5001 \
 dotnetcoreservices/locationservice:nodb
...
Status: Downloaded newer image for
dotnetcoreservices/locationservice:nodb
starting
Hosting environment: Production
Content root path: /pipeline/source/app/publish
Now listening on: http://0.0.0.0:5001
Application started. Press Ctrl+C to shut down.

Now we’ve got two services running. You can see the Docker configuration
for both of those services by using the docker ps command. Next we’re
going to need to run a series of commands to see everything working:

1. Create a new team.

2. Add a member to that team.

3. Query the team details to see the member.

4. Add a location to that member’s location history.

5. Query the member’s details from the team service to see their location
added to the response.

If you’re using Windows, you can achieve the same effect by using your
favorite REST client.

Create a new team:

$ curl -H "Content-Type:application/json" -X POST -d \
 '{"id":"e52baa63-d511-417e-9e54-7aab04286281", \
 "name":"Team Zombie"}' http://localhost:5000/teams

Add a new member by posting to the /teams/{id}/members resource:

$ curl -H "Content-Type:application/json" -X POST -d \
 '{"id":"63e7acf8-8fae-42ce-9349-3c8593ac8292", \
 "firstName":"Al", \
 "lastName":"Foo"}' \
 http://localhost:5000/teams/e52baa63-d511-417e-9e54-
7aab04286281/members

To confirm that everything has worked so far, query the team details
resource:

$ curl http://localhost:5000/teams/e52baa63-d511-417e-9e54-7aab04286281

{"name":"Team Zombie",
 "id":"e52baa63-d511-417e-9e54-7aab04286281",
 "members":[{"id":"63e7acf8-8fae-42ce-9349-3c8593ac8292",
 "firstName":"Al","lastName":"Foo"}]}

Now that the team service has been properly primed with a new team and a
new member, we can add a location to the location service. Note that
we could have just added an arbitrary location, but the team service wouldn’t
be able to find it without at least one team with one member with a location
record:

$ curl -H "Content-Type:application/json" -X POST -d \
 '{"id":"64c3e69f-1580-4b2f-a9ff-2c5f3b8f0e1f", \
 "latitude":12.0,"longitude":12.0,"altitude":10.0, \
 "timestamp":0, \

 "memberId":"63e7acf8-8fae-42ce-9349-3c8593ac8292"}' \
 http://localhost:5001/locations/63e7acf8-8fae-42ce-9349-3c8593ac8292

{"id":"64c3e69f-1580-4b2f-a9ff-2c5f3b8f0e1f",
 "latitude":12.0,"longitude":12.0,
 "altitude":10.0,"timestamp":0,
 "memberID":"63e7acf8-8fae-42ce-9349-3c8593ac8292"}

Finally everything is set up to truly test the integration of both the team and
the location service. To do this, we’ll query for the member details from the
teams/{id}/members/{id} resource:

$ curl http://localhost:5000/teams/e52baa63-d511-417e-9e54-7aab04286281
\
/members/63e7acf8-8fae-42ce-9349-3c8593ac8292

{
 "lastLocation":
 {"id":"64c3e69f-1580-4b2f-a9ff-2c5f3b8f0e1f",
 "latitude":12.0,"longitude":12.0,
 "altitude":10.0,"timestamp":0,
 "memberID":"63e7acf8-8fae-42ce-9349-3c8593ac8292"},
 "id":"63e7acf8-8fae-42ce-9349-3c8593ac8292",
 "firstName":"Al",
 "lastName":"Foo"
}

I apologize for the lack of a shiny interface to these services. This book is all
about building services and not about presentation to users. Additionally,
given my lack of artistic ability, you really are better off not being subjected
to my user interfaces and sticking with curl or generic REST clients.

Summary
Microservices are services that do one thing. This implies that services are
going to have to talk to each other in order to accomplish multiple things or
to join forces to accomplish a “big thing.” While there are those who dislike
the idea of deploying dozens or hundreds of tiny services, the payoff is worth
it when you are able to build, update, and release services independently
without affecting others.

In this chapter we talked about some of the complexities of building
ecosystems of microservices, and discussed at length some of the technical
challenges involved in allowing one service to communicate with another
while not violating any of the rules of cloud-native application development.

In the coming chapters, we’ll start looking into more complexities and more
challenges with microservice ecosystems and discuss patterns and code to
solve those problems.

Chapter 5. Creating a Data
Service

If you’ve been doing any reading lately about cloud-native services and
applications, then you’re probably getting sick of hearing that these services
all need to be stateless.

Stateless in this case doesn’t mean that state can’t exist anywhere; it just
means that it cannot exist in your application’s memory. A truly cloud-native
service does not maintain state between requests.

To build stateless services, we really just need to kick the state responsibility
a little further down the road. In this chapter, we’ll talk about how to build a
microservice that depends on an external data source. Our code in this
chapter will work with Entity Framework (EF) Core, and we’ll upgrade the
team and location services we’ve been working with to true data persistence.

Choosing a Data Store
There are many risks associated with embracing a 1.0-level technology. The
ecosystem is generally immature, so support for your favorite things may be
lacking or missing entirely. Tooling and integration and overall developer
experience are often high-friction. Despite the long and storied history of
.NET, .NET Core (and especially the associated tooling) should still be
treated like a brand new 1.0 product.

One of things we might run into when trying to pick a data store that is
compatible with EF Core is a lack of available providers. While this list will
likely have grown by the time you read this, at the time this chapter was
written, the following providers were available for EF Core:

SQL Server

SQLite

Postgres

IBM databases

MySQL

SQL Server Lite

In-memory provider for testing

Oracle (coming soon)

For databases that aren’t inherently compatible with the Entity Framework

relational model, like MongoDB, Neo4j, Cassandra, etc., you should be able
to find client libraries available that will work with .NET Core. Since most of
these databases expose simple RESTful APIs, you should still be able to use
them even if you have to write your own client.

For the most up-to-date list of databases available, check the docs.

Because of my desire to keep everything as cross-platform as possible
throughout this book, I decided to use Postgres instead of SQL Server to
accommodate readers working on Linux or Mac workstations. Postgres is
also easily installed on Windows.

Building a Postgres Repository
In Chapter 3, we created our first microservice. In order to get something
running and focus solely on the discipline and code required to stand up a
simple service, we used an in-memory repository that didn’t amount to much
more than a fake that aided us in writing tests.

In this section we’re going upgrade our location service to work with
Postgres. To do this we’re going to create a new repository implementation
that encapsulates the PostgreSQL client communication. Before we get to the
implementation code, let’s revisit the interface for our location repository
(Example 5-1).

Example 5-1. ILocationRecordRepository.cs
using System;
using System.Collections.Generic;

namespace StatlerWaldorfCorp.LocationService.Models {

 public interface ILocationRecordRepository {
 LocationRecord Add(LocationRecord locationRecord);
 LocationRecord Update(LocationRecord locationRecord);
 LocationRecord Get(Guid memberId, Guid recordId);
 LocationRecord Delete(Guid memberId, Guid recordId);

 LocationRecord GetLatestForMember(Guid memberId);

 ICollection<LocationRecord> AllForMember(Guid memberId);
 }
}

The location repository exposes standard CRUD functions like Add, Update,
Get, and Delete. In addition, this repository exposes methods to obtain the
latest location entry for a member as well as the entire location history for a
member.

The purpose of the location service is solely to track location data, so you’ll
notice that there is no reference to team membership at all in this interface.

https://docs.efproject.net/en/latest/providers/index.html
https://www.postgresql.org/download/windows/

Creating a Database Context
The next thing we’re going to do is create a database context. This class will
serve as a wrapper around the base DbContext class we get from Entity
Framework Core. Since we’re dealing with locations, we’ll call our context
class LocationDbContext.

If you’re not familiar with Entity Framework or EF Core, the database
context acts as the gateway between your database-agnostic model class
(POCOs, or Plain-Old C# Objects) and the real database. For more
information on EF Core, check out Microsoft’s documentation. We could
probably spend another several chapters doing nothing but exploring its
details, but since we’re trying to stay focused on cloud-native applications
and services, we’ll use just enough EF Core to build our services.

The pattern for using a database context is to create a class that inherits from
it that is specific to your model. In our case, since we’re dealing with
locations, we’ll create a LocationDbContext class (Example 5-2).

Example 5-2. LocationDbContext.cs
using Microsoft.EntityFrameworkCore;
using StatlerWaldorfCorp.LocationService.Models;
using Npgsql.EntityFrameworkCore.PostgreSQL;

namespace StatlerWaldorfCorp.LocationService.Persistence
{
 public class LocationDbContext : DbContext
 {
 public LocationDbContext(
 DbContextOptions<LocationDbContext> options) :
 base(options)
 {
 }

 protected override void OnModelCreating(
 ModelBuilder modelBuilder)
 {
 base.OnModelCreating(modelBuilder);
 modelBuilder.HasPostgresExtension("uuid-ossp");
 }

 public DbSet<LocationRecord> LocationRecords {get; set;}
 }
}

Here we can use the ModelBuilder and DbContextOptions classes to
perform any additional setup we need on the context. In our case, we’re
ensuring that our model has the uuid-ossp Postgres extension to support the
member ID field.

Implementing the Location Record Repository Interface
Now that we have a context through which other classes can use to

https://docs.microsoft.com/en-us/ef/core/

communicate with the database, we can create a real implementation of the
ILocationRecordRepository interface. This real implementation will take
an instance of LocationDbContext as a constructor parameter. This sets us
up nicely to configure this context with environment-supplied connection
strings when deploying for real and with mocks or in-memory providers
(discussed later) when testing.

Example 5-3 contains the code for the LocationRecordRepository class.

Example 5-3. LocationRecordRepository.cs
using System;
using System.Linq;
using System.Collections.Generic;
using StatlerWaldorfCorp.LocationService.Models;

namespace StatlerWaldorfCorp.LocationService.Persistence
{
 public class LocationRecordRepository :
 ILocationRecordRepository
 {
 private LocationDbContext context;

 public LocationRecordRepository(LocationDbContext context)
 {
 this.context = context;
 }

 public LocationRecord Add(LocationRecord locationRecord)
 {
 this.context.Add(locationRecord);
 this.context.SaveChanges();
 return locationRecord;
 }

 public LocationRecord Update(LocationRecord locationRecord)
 {
 this.context.Entry(locationRecord).State =
 EntityState.Modified;
 this.context.SaveChanges();
 return locationRecord;
 }

 public LocationRecord Get(Guid memberId, Guid recordId)
 {
 return this.context.LocationRecords
 .Single(lr => lr.MemberID == memberId &&
 lr.ID == recordId);
 }

 public LocationRecord Delete(Guid memberId, Guid recordId)
 {
 LocationRecord locationRecord =
 this.Get(memberId, recordId);
 this.context.Remove(locationRecord);
 this.context.SaveChanges();
 return locationRecord;

 }

 public LocationRecord GetLatestForMember(Guid memberId)
 {
 LocationRecord locationRecord =
 this.context.LocationRecords.
 Where(lr => lr.MemberID == memberId).
 OrderBy(lr => lr.Timestamp).
 Last();
 return locationRecord;
 }

 public ICollection<LocationRecord> AllForMember(Guid memberId)
 {
 return this.context.LocationRecords.
 Where(lr => lr.MemberID == memberId).
 OrderBy(lr => lr.Timestamp).
 ToList();
 }
 }
}

The code here is pretty straightforward. Any time we make a change to the
database, we call SaveChanges on the context. If we need to query, we use
the LINQ expression syntax where we can combine Where and OrderBy to
filter and sort the results.

When we do an update, we need to flag the entity we’re updating as a
modified entry so that Entity Framework Core knows how to generate an
appropriate SQL UPDATE statement for that record. If we don’t modify this
entry state, EF Core won’t know anything has changed and so a call
to SaveChanges will do nothing.

The next big trick in this repository is injecting the Postgres-specific database
context. To make this happen, we need to add this repository to the
dependency injection system in the ConfigureServices method of
 our Startup class (Example 5-4).

Example 5-4. ConfigureServices method in Startup.cs

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddEntityFrameworkNpgsql()
 .AddDbContext<LocationDbContext>(options =>
 options.UseNpgsql(Configuration));
 services.AddScoped<ILocationRecordRepository,
 LocationRecordRepository>();
 services.AddMvc();
 }

First we want to use the AddEntityFrameworkNpgsql extension method
exposed by the Postgres EF Core provider. Next, we add our location
repository as a scoped service. When we use the AddScoped method, we’re
indicating that every new request made to our service gets a newly created

instance of this repository.

Testing with the Entity Framework Core In-Memory
Provider
So far we’ve created an interface that represents the contract to which our
repositories must conform. We’ve got an in-memory implementation of a
repository and we’ve got a repository that wraps a DbContext configured to
talk to PostgreSQL.

You might be wondering how (or if) we can test the database context wrapper
in isolation, since we can already test the repository in isolation. Microsoft
does have an in-memory provider for Entity Framework Core. There are a
couple of drawbacks to this provider, however. First and foremost, the
InMemory provider is not a relational database. This means that you can save
data using this provider that might normally violate a real database’s
referential integrity and foreign key constraints.

If you dig a little deeper into this provider, you’ll realize that it is essentially
an EF Core facade around simple in-memory collection storage. We have
already built a repository that works against collection objects, so the only
added value this provider gives us is a little bit of additional code coverage to
ensure that our database context is actually invoked. You should not assume
that the InMemory provider is going to give you confidence that your
database operations will behave as planned.

It is for these reasons, and the fact that this is not a book focused on TDD,
that I decided to skip writing tests using this provider. We’ve got unit tests
for our repositories and, as you’ll see later in the chapter, we’re going to be
building automated integration tests that talk to a real PostgreSQL database.

I’ll leave it up to you to decide whether you think the use of the InMemory
provider will add testing value and confidence to your projects.

Databases Are Backing Services
When we talk about making our services cloud native, one of the things that
always comes up is the notion of backing services. Put simply, this means
that we need to treat everything that our application needs to function as a
bound resource: files, databases, services, messaging, etc.

Every backing service our application needs should be configurable
externally. As such, we need to be able to get our database connection string
from someplace other than our code. If we check a connection string into
source control, then we’ve already violated some of the cardinal rules of
cloud-native application development.

The means by which an application gets its external configuration vary from
platform to platform. For this sample we’re going to use environment

http://bit.ly/2wm0ntt

variables that can override defaults supplied by a configuration file.

This appsettings.json file looks like the one here (newlines inside the
connection string are for book formatting only):

{
 "transient": false,
 "postgres": {
 "cstr": "Host=localhost;Port=5432;Database=locationservice;
Username=integrator;Password=inteword"
 }
}

This scenario makes it very easy to override default configuration in
deployment environments but have a relatively low-friction developer
experience on our development workstations.

Configuring a Postgres Database Context
The repository we built earlier requires some kind of database context in
order to function. The database context is the core primitive of Entity
Framework Core. (This book is not an EF Core reference manual, so if you
want additional information you should consult the official documentation.)

To create a database context for the location model, we just need to create a
class that inherits from DbContext. I’ve also included a DbContextFactory
because that can sometimes make running the Entity Framework Core
command-line tools simpler:

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using StatlerWaldorfCorp.LocationService.Models;
using Npgsql.EntityFrameworkCore.PostgreSQL;

namespace StatlerWaldorfCorp.LocationService.Persistence
{
 public class LocationDbContext : DbContext
 {
 public LocationDbContext(
 DbContextOptions<LocationDbContext> options) :base(options)
 {
 }

 protected override void OnModelCreating(
 ModelBuilder modelBuilder)
 {
 base.OnModelCreating(modelBuilder);
 modelBuilder.HasPostgresExtension("uuid-ossp");
 }

 public DbSet<LocationRecord> LocationRecords {get; set;}
 }

 public class LocationDbContextFactory :
 IDbContextFactory<LocationDbContext>
 {
 public LocationDbContext
 Create(DbContextFactoryOptions options)
 {
 var optionsBuilder =
 new DbContextOptionsBuilder<LocationDbContext>();
 var connectionString =
 Startup.Configuration
 .GetSection("postgres:cstr").Value;
 optionsBuilder.UseNpgsql(connectionString);

 return new LocationDbContext(optionsBuilder.Options);
 }
 }
}

With a new database context, we need to make it available for dependency
injection so that the location repository can utilize it:

public void ConfigureServices(IServiceCollection services)
{
 var transient = true;
 if (Configuration.GetSection("transient") != null) {
 transient = Boolean.Parse(Configuration
 .GetSection("transient").Value);
 }
 if (transient) {
 logger.LogInformation(
 "Using transient location record repository.");
 services.AddScoped<ILocationRecordRepository,
 InMemoryLocationRecordRepository>();
 } else {
 var connectionString =
 Configuration.GetSection("postgres:cstr").Value;

 services.AddEntityFrameworkNpgsql()
 .AddDbContext<LocationDbContext>(options =>
 options.UseNpgsql(connectionString));
 logger.LogInformation(
 "Using '{0}' for DB connection string.",
 connectionString);
 services.AddScoped<ILocationRecordRepository,
 LocationRecordRepository>();
 }

 services.AddMvc();
}

The calls to AddEntityFrameworkNpgsql and AddDbContext are the magic
that makes everything happen here.

With a context configured for DI, our service should be ready to run, test, and
accept EF Core command-line parameters like the ones we need to execute

migrations. You can see the code for the migrations in the location service’s
GitHub repository. When building your own database-backed services, you
can also use the EF Core command-line tools to reverse-engineer migrations
from existing database schemas.

Integration Testing Real Repositories
We’ve unit tested all of our code, and we’ve made the decision to not use the
InMemory EF Core data provider, but we still don’t have full confidence in
our service. The only way we’re going to have full confidence is when we
exercise our repository class against a real Postgres database.

Back in the old days, when developers rode dinosaurs to and from the office,
we would have installed Postgres on our local workstation, configured it
manually, and even manually triggered a test that would exercise the
repository class against this local instance.

This pattern is the antithesis of the kind of agility and automation we want
when building applications for the cloud. No, what we want instead is for our
automated build pipeline to spin up a fresh, empty instance of Postgres every
time we run the build. Then we want integration tests to run against this fresh
instance, including running our migrations to set up the schema in the
database. We want this to work locally, on our teammates’ workstations, and
in the cloud, all automatically after every commit.

This is why I enjoy the combination of Wercker and Docker (though most
Docker-native CI tools support similar functionality). If we just add the
following lines to the top of our wercker.yml file, the Wercker CLI (and the
hosted version in the cloud) will spin up a connected Postgres Docker image
and create a bunch of environment variables that provide the host IP, port,
and credentials for the database (Example 5-5).

Example 5-5. Declaring a backing service for a Wercker build in wercker.yml

services:
 - id: postgres
 env:
 POSTGRES_PASSWORD: inteword
 POSTGRES_USER: integrator
 POSTGRES_DB: locationservice

We can specify the credentials we’re going to use or we can let Wercker pick
them. Either way, the credentials and other relevant information are made
available to our build pipeline in environment variables.

Normally we would throw a fit about checking in credentials, but since these
credentials are only used to configure a short-lived database that only exists
long enough to run integration tests inside a private container, this isn’t
dangerous. If these credentials pointed to a database that existed anywhere in
a semi-permanent environment, that would be a red flag.

https://github.com/microservices-aspnetcore/locationservice

LINE WRAPS IN CODE LISTINGS
This chapter has a lot of connection strings that wrap across lines in the
printed and electronic book. These line wraps don’t exist in the actual
YAML, JSON, or C# files. Please double-check with the files in GitHub if
you’re not sure when there should or should not be a line feed.

Now we can set up some build steps that prepare for and execute integration
tests, as in Example 5-6.

Example 5-6. Integration testing in a Wercker build

integration tests
 - script:
 name: integration-migrate
 cwd: src/StatlerWaldorfCorp.LocationService
 code: |
 export TRANSIENT=false
 export POSTGRES__CSTR=
"Host=$POSTGRES_PORT_5432_TCP_ADDR"
 export POSTGRES__CSTR=
"$POSTGRES__CSTR;Username=integrator;Password=inteword;"
 export POSTGRES__CSTR=
"$POSTGRES__CSTR;Port=$POSTGRES_PORT_5432_TCP_PORT;
 Database=locationservice"
 dotnet ef database update
 - script:
 name: integration-restore
 cwd: test/StatlerWaldorfCorp.LocationService.Integration
 code: |
 dotnet restore
 - script:
 name: integration-build
 cwd: test/StatlerWaldorfCorp.LocationService.Integration
 code: |
 dotnet build
 - script:
 name: integration-test
 cwd: test/StatlerWaldorfCorp.LocationService.Integration
 code: |
 dotnet test

The awkward-looking concatenation of the shell variable is just a way of
making it slightly clearer how that variable is being created, and sometimes
you run into parsing issues with the semicolons that cut off the rest of the
environment variable.

The following is the list of commands being executed by the integration
suite:

dotnet ef database update

Ensures that the schema in the database matches what our EF Core model
expects. This will actually instantiate the Startup class, call

ConfigureServices, and attempt to pluck out the LocationDbContext
class and then execute the migrations stored in the project.

dotnet restore

Verifies and collects dependencies for our integration test project.

dotnet build

Compiles our integration test project.

dotnet test

Runs the detected tests in our integration test project.

You can see the full wercker.yml file in the GitHub repository for the location
service. I cannot stress enough how important it is that you and your team be
able to automatically run all of your unit and integration tests in a reliable,
reproducible environment. This is key to rapid iteration when building
microservices for the cloud.

Exercising the Data Service
Running the data service should be relatively easy. The first thing we’re
going to need to do is spin up a running instance of Postgres. If you were
paying attention to the wercker.yml file for the location service that sets up
the integration tests, then you might be able to guess at the docker run
command to start Postgres with our preferred parameters:

$ docker run -p 5432:5432 --name some-postgres \
 -e POSTGRES_PASSWORD=inteword -e POSTGRES_USER=integrator \
 -e POSTGRES_DB=locationservice -d postgres

This starts the Postgres Docker image with the name some-postgres (this
will be important shortly). To verify that we can connect to Postgres, we can
run the following Docker command to launch psql:

$ docker run -it --rm --link some-postgres:postgres postgres \
 psql -h postgres -U integrator -d locationservice
Password for user integrator:
psql (9.6.2)
Type "help" for help.

locationservice=# select 1;
 ?column?

 1
(1 row)

With the database up and running, we need a schema. The tables in which we

https://github.com/microservices-aspnetcore/locationservice

expect to store the migration metadata and our location records don’t yet
exist. To put them in the database, we just need to run an EF Core command
from the location service’s project directory. Note that we’re also setting
environment variables that we’ll need soon:

$ export TRANSIENT=false
$ export POSTGRES__CSTR="Host=localhost;Username=integrator; \
 Password=inteword;Database=locationservice;Port=5432"
$ dotnet ef database update

Build succeeded.
 0 Warning(s)
 0 Error(s)

Time Elapsed 00:00:03.25
info: Startup[0]
 Using 'Host=localhost;Username=integrator;
Password=inteword;Port=5432;Database=locationservice' for DB
 connection string.
Executed DbCommand (13ms) [Parameters=[], CommandType='Text',
 CommandTimeout='30']
SELECT EXISTS (SELECT 1 FROM pg_catalog.pg_class c
JOIN pg_catalog.pg_namespace n ON n.oid=c.relnamespace WHERE
 c.relname='__EFMigrationsHistory');
Executed DbCommand (56ms) [Parameters=[], CommandType='Text',
 CommandTimeout='30']
CREATE TABLE "__EFMigrationsHistory" (
 "MigrationId" varchar(150) NOT NULL,
 "ProductVersion" varchar(32) NOT NULL,
 CONSTRAINT "PK___EFMigrationsHistory" PRIMARY KEY
("MigrationId")
);
Executed DbCommand (0ms) [Parameters=[], CommandType='Text',
CommandTimeout='30']
SELECT EXISTS (SELECT 1 FROM pg_catalog.pg_class c JOIN
 pg_catalog.pg_namespace n ON n.oid=c.relnamespace WHERE
 c.relname='__EFMigrationsHistory');
Executed DbCommand (2ms) [Parameters=[], CommandType='Text',
CommandTimeout='30']
SELECT "MigrationId", "ProductVersion"
FROM "__EFMigrationsHistory"
ORDER BY "MigrationId";
Applying migration '20160917140258_Initial'.
Executed DbCommand (19ms) [Parameters=[], CommandType='Text',
CommandTimeout='30']
CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
Executed DbCommand (18ms) [Parameters=[], CommandType='Text',
CommandTimeout='30']
CREATE TABLE "LocationRecords" (
 "ID" uuid NOT NULL,
 "Altitude" float4 NOT NULL,
 "Latitude" float4 NOT NULL,
 "Longitude" float4 NOT NULL,
 "MemberID" uuid NOT NULL,
 "Timestamp" int8 NOT NULL,

 CONSTRAINT "PK_LocationRecords" PRIMARY KEY ("ID")
);
Executed DbCommand (0ms) [Parameters=[], CommandType='Text',
 CommandTimeout='30']
INSERT INTO "__EFMigrationsHistory" ("MigrationId",
"ProductVersion")
VALUES ('20160917140258_Initial', '1.1.1');
Done.

At this point Postgres is running with a valid schema and it’s ready to start
accepting commands from the location service. Here’s where it gets
a little tricky. If we’re going to run the location service from inside a Docker
image, then referring to the Postgres server’s host as localhost won’t work
—because that’s the host inside the Docker image.

What we need is for the location service to reach out of its container and
then into the Postgres container. We can do this with a container link that
creates a virtual hostname (we’ll call it postgres), but we’ll need to change
our environment variable before launching the Docker image:

$ export POSTGRES__CSTR="Host=postgres;Username=integrator; \
Password=inteword;Database=locationservice;Port=5432"
$ docker run -p 5000:5000 --link some-postgres:postgres \
 -e TRANSIENT=false -e PORT=5000 \
 -e POSTGRES__CSTR dotnetcoreservices/locationservice:latest

Now that we’ve linked the service’s container to the Postgres container via
the postgres hostname, the location service should have no trouble
connecting to the database.

To see this all in action, let’s submit a location record (as usual, take the line
feeds out of this command when you type it):

$ curl -H "Content-Type:application/json" -X POST -d \
 '{"id":"64c3e69f-1580-4b2f-a9ff-2c5f3b8f0e1f","latitude":12.0, \
 "longitude":10.0,"altitude":5.0,"timestamp":0, \
 "memberId":"63e7acf8-8fae-42ce-9349-3c8593ac8292"}' \
 http://localhost:5000/locations/63e7acf8-8fae-42ce-9349-3c8593ac8292

{"id":"64c3e69f-1580-4b2f-a9ff-2c5f3b8f0e1f",
 "latitude":12.0,"longitude":10.0,"altitude":5.0,
 "timestamp":0,"memberID":"63e7acf8-8fae-42ce-9349-3c8593ac8292"}

Take a look at the trace output from your running Docker image for the
location service. You should see some very useful Entity Framework trace
data explaining what happened. The service performed a SQL INSERT, so
things are looking promising:

info: Microsoft.EntityFrameworkCore.Storage.

IRelationalCommandBuilderFactory[1]
 Executed DbCommand (23ms)
[Parameters=[@p0='?', @p1='?', @p2='?', @p3='?', @p4='?', @p5='?'],
 CommandType='Text', CommandTimeout='30']
 INSERT INTO "LocationRecords" ("ID", "Altitude", "Latitude",
"Longitude", "MemberID", "Timestamp")
 VALUES (@p0, @p1, @p2, @p3, @p4, @p5);
info: Microsoft.AspNetCore.Mvc.Internal.ObjectResultExecutor[1]
 Executing ObjectResult, writing value Microsoft.AspNetCore
.Mvc.ControllerContext.
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[2]
 Executed action StatlerWaldorfCorp.LocationService.
Controllers.LocationRecordController.AddLocation
(StatlerWaldorfCorp.LocationService) in 2253.7616ms
info: Microsoft.AspNetCore.Hosting.Internal.WebHost[2]
 Request finished in 2602.7855ms 201 application/json;
charset=utf-8

Let’s ask the service for this fictitious member’s location history:

$ curl http://localhost:5000/locations/63e7acf8-8fae-42ce-9349-
3c8593ac8292

[{"id":"64c3e69f-1580-4b2f-a9ff-2c5f3b8f0e1f",
 "latitude":12.0,"longitude":10.0,"altitude":5.0,
 "timestamp":0,"memberID":"63e7acf8-8fae-42ce-9349-3c8593ac8292"}]

The corresponding Entity Framework trace looks like this:

info: Microsoft.EntityFrameworkCore.Storage.
IRelationalCommandBuilderFactory[1]
 Executed DbCommand (23ms) [Parameters=[@__memberId_0='?'],
 CommandType='Text', CommandTimeout='30']
 SELECT "lr"."ID", "lr"."Altitude", "lr"."Latitude",
 "lr"."Longitude", "lr"."MemberID", "lr"."Timestamp"
 FROM "LocationRecords" AS "lr"
 WHERE "lr"."MemberID" = @__memberId_0
 ORDER BY "lr"."Timestamp"

Just to be double sure, let’s query the latest endpoint to make sure we still get
what we expect to see:

$ curl http://localhost:5000/locations/63e7acf8-8fae-42ce-9349-
3c8593ac8292 \
/latest

{"id":"64c3e69f-1580-4b2f-a9ff-2c5f3b8f0e1f",
 "latitude":12.0,"longitude":10.0,"altitude":5.0,
 "timestamp":0,"memberID":"63e7acf8-8fae-42ce-9349-3c8593ac8292"}

Finally, to prove that we really are using real database persistence and that

this isn’t just a random fluke, use docker ps and docker kill to locate the
Docker process for the location service and kill it. Restart it using the exact
same command you used before.

You should now be able to query the location service and get the exact same
data you had before. Of course, once you stop the Postgres container you’ll
permanently lose that data.

Summary
There are no hard and fast rules about microservices that say we must
communicate with a database, but exposure to the real world tells us that a lot
of our microservices are going to sit on top of databases.

In this chapter we talked about some of the architectural and technical
concerns with building a .NET Core microservice that exposes a RESTful
API that interacts with a database. We illustrated how to use dependency
injection to configure our repository service, as well as how to use build
automation tools to run integration tests against clean, private database
instances.

In the coming chapters, we’ll start exploring more advanced topics as we
widen the scope of our coverage of microservices from individual services to
entire service ecosystems.

Chapter 6. Event Sourcing and
CQRS

Technology can solve a lot of problems, but code, libraries, and languages
alone are not enough to solve all of our problems. In this chapter, we’re going
to take a look at some design patterns that will prepare us for the kind of
massive scale that cloud platforms facilitate.

We’ll explore the motivations behind and philosophies of Event Sourcing
(ES) and Command Query Responsibility Segregation (CQRS), and then
we’ll walk through some sample code that illustrates these design principles
in action.

Introducing Event Sourcing
When we build software for a small scale, we tend to make a lot of
assumptions. And when building microservices in a vacuum, especially if
we’re following some classic “hello world"–style samples, we often do things
in a way that might not be conducive to scale.

For example, our location service is synchronous. We submit a new location
to it and it immediately writes that location to a database. When we want to
know location history or the most recent location, we query the same service
and it in turn queries the database. On the surface nothing seems all that bad
about this design, until we ask ourselves how this might hold up against a
million new location records per day for thousands or tens of thousands of
team members. At this scale, these queries and new location submissions are
going to be agonizingly slow, and we’ll quickly get bogged down waiting for
the database.

This type of situation is what we call monolithic thinking. Even though we’re
using microservices in the technical sense, we’re definitely not taking full
advantage of the cloud, or of truly robust distributed computing design
patterns. In short, we’re just making smaller monoliths, or, as some might
call them, microliths.

To help explain how Event Sourcing works, we’ll use an analogy: reality
itself.

Reality Is Event Sourced
Our brains are essentially event-sourced systems. We receive stimuli in the
form of the five senses, and our brains are then responsible for properly
sequencing each stimulus (an event). Every few hundred milliseconds or so,
they perform some calculations against this never-ending stream of stimuli.

1

The result of these calculations is what we call reality.

Our minds process the incoming event stream and then compute state. This
state is what we perceive as our reality; the world around us. When we watch
someone dancing to music, we’re receiving audio and visual events, ensuring
they’re in the proper order (our minds compensate for the fact that we process
audio and visual stimuli at different speeds, giving us the illusion of
synchronized stimuli).

Event-sourced applications operate in a similar manner. They consume
streams of incoming events, perform functions against the inbound streams,
and compute results or state in response. This is a very different model than
microliths that just expose simple, synchronous query and store–type
operations.

Event Sourcing Defined
There are a number of extremely good sources of information available on
Event Sourcing. ES is not a brand new pattern. It is, however, gaining new
traction as a viable way to deal with the types of elastic scaling and reliability
that are required by cloud services.

The goal of this chapter isn’t to provide you with an in-depth doctoral thesis
on the topic, but to give you enough of an overview so that the code we’re
going to write will make sense, both from a technical and an architectural
viewpoint.

In what we think of as traditional applications, state is managed as a discrete
set of data. If a client makes a PUT or POST request to our service, the state
is mutated. This gives us a good sense of how things are right now, but
doesn’t give us any indication of how we got there. Also, remember that the
concept of right now is an illusion, so attempting to bend reality to support
this notion may be counterproductive.

Event Sourcing takes care of that problem, and much more, by separating the
concern of state management from the concern of receiving stimuli that result
in state changes. To make this happen, there are a number of requirements for
an event-sourced system. It must be outlined in the following list:

Ordered

Event streams are ordered. Performing calculations against the same set
of events but in a different sequence will produce different output. For
this reason, ordering and proper time management are essential.

Idempotent

Any function that operates on an event stream must always return the
exact same result for identical ordered event streams. This rule is
absolutely mandatory, and failing to abide by it will cause untold levels of
disaster.

Isolated

Any function that produces a result based on an event stream cannot
make use of external information. All data required for calculations must
be present in the events.

Past tense

Events take place in the past. This should be reflected in your variable
names, structure names, and architecture. Event processors run
calculations against a chronologically ordered sequence of events that
have already happened.

Put mathematically, a function that operates on a stream of events will always
produce the same state and output set of new events. For example:

f(event¹, event², ...) = state¹ + { output event set }

In keeping with the rules of Event Sourcing, this function, given the same
inputs, will always produce the same outputs. This makes the business logic
core of any Event Sourcing system eminently testable and reliable, whereas
in most legacy codebases the business logic layer of the application is the
least tested, darkest and scariest place.

As a corollary to this, you can add that given an existing state and an inbound
event stream, an event processing function will always produce the same
predictable state and set of output events:

f(state¹, event¹, event², ...) = state² + { output event set }

A few concrete examples might help further illustrate how the world looks
when you see problems as event sourced. Let’s take a financial transaction
processing system as a sample. We could have an inbound stream of
transactions, the processing of which results in state changes such as
modifications of account balances, credit limits, and so on. Such a transaction
processing system might also emit new events to different streams as a result
of processing, allowing partner systems to be notified and possibly triggering
push notifications to customers with banking applications on their mobile
devices.

The popular blockchain (e.g., Bitcoin) technology is based on the idea
of secure and trusted sequences of events that occur on some owned
resource.

Let’s take another of our most favorite problem domains: the Internet of
Things (IoT). For the sake of illustration we can assume that we have an
incoming stream of events from our smart devices containing data like GPS
coordinates, weather statistics, and other sensor measurements. This event

processor has two functions. First, it takes the latest recorded measurements,
makes them available for a cache (this applies to CQRS, which we’ll get to
shortly), and monitors the data in the stream for alert conditions. Then, when
these conditions occur, it emits events so that other parts of the system can
react accordingly.

Learning to Love Eventual Consistency
Shifting the paradigm to viewing the world as a series of streams upon which
you place event processors and even more event emitters can be a shock to
even the most seasoned developers.

In an event-sourced system, you don’t get to perform simple CRUD (Create,
Read, Update, Delete) operations in a synchronous fashion against one or
more services. There is no immediate feedback from the system of record that
gives you the concrete state of how things exist in a consistent manner.

Instead, things in this new world are eventually consistent. You probably
experience eventually consistent systems on a daily basis and never give
them much thought because they are so commonplace.

Your banking system is eventually consistent: eventually the transaction
where you just purchased that shiny new computer will show up in your bank
account, eventually causing you pain... but until then you can enjoy that new
laptop smell with no remorse.

Other eventually consistent applications with which we all interact daily are
social networking apps. You’ve probably seen the scenario where a comment
or post you make from one device takes a few minutes to show up in a
friend’s browser or device. This is because the application architects have
decided on a trade-off: by giving up the immediate consistency of
synchronous operation in favor of a tolerable delay in feedback, the
application is able to support enormous scale and traffic volume.

Learning to embrace and trust eventual consistency involves a thorough
analysis of what information your users need and, more
importantly, when they need it. It is up to you and your deep knowledge of
your problem domain to decide on what information needs to be available
immediately and which information can lag.

This leads us to our next pattern: CQRS.

The CQRS Pattern
If we follow some of the patterns we’ve been talking about to a logical
conclusion, we will arrive at the need for the separation of command inputs
from queries in our system, otherwise known as the Command Query
Responsibility Segregation pattern.

The idea is a simple one, but like Event Sourcing, it often results in a

fundamental shift in how we think about distributed systems. Commands are
responsible for submitting inputs into our system, which will likely result in
the creation of events distributed to one or more streams.

We’ve already decided that we’re going to sacrifice immediate consistency
for scale, so we know that the act of submitting a command should be a fire-
and-forget operation. The response from submitting a command is not the
newly altered (consistent) state, it is merely an acknowledgment of whether
or not the command was successfully ingested by the system.

Eventually, the state of the system will be altered to reflect the processing of
this one command. The size of this time lapse depends entirely on the
business process being performed and the criticality of the propagation of the
data change.

The other half of this new segmentation of responsibilities is the query. As a
result of embracing eventual consistency, we’ve already done an in-depth
analysis of the information our clients need.

ACKNOWLEDGING THE IMPERFECTION OF DESIGN
While we might have performed an in-depth analysis of the information
our customers need, when they need it, and why, this knowledge
will never be perfect. We need to gather enough knowledge to get
started building systems.

Once started, we can deploy, gather feedback, and iterate rapidly to
improve the system. If we wait to start building until we have the
mythical “perfect knowledge” of the final state of our system, we will be
doomed to repeat the mistakes of the past and crippled by analysis
paralysis.

Since we know what queries are going to be made of our system, we can
predict those queries and, in many cases, make the data available before the
client queries for it.

This is another fundamental shift in thinking. Traditional backend monolithic
applications involve hitting a query endpoint with some parameters. Those
parameters are then used to perform some amount of lengthy processing and
querying, returning calculated results.

In the world of massive scale, volume, and throughput we simply can’t afford
to tie up the resources of our microservices by making computationally
expensive queries. We’re no longer going to tolerate sitting around twiddling
our thumbs while we wait for our filter and grouping clauses to sift through
millions of rows of data that might be incurring row- or table-level locks in a
database.

The idea is to front-run the expected usage of the system so that the data is
made available as close to the consumer as possible, and in a way that is

queryable as fast as possible, involving the smallest amount of computational
processing as possible. In short, we want the queries to be as dumb as
possible.

Let’s use another example to illustrate this pattern in action. Imagine that
we’re writing some facilities management software for apartment buildings.
Tenants will be accessing a portal that allows for a display of electrical usage.
Depending on who logs in, we’ll be able to see monthly usage values by
apartment, by building, by region, etc.

We’ve got an event stream of events from electrical usage monitoring
devices. Each unit might contribute one usage event every hour (since kWh is
an accepted standard for metered electricity usage). We could build this
system such that every time someone refreshes their portal page, we go out to
some data service and request a roll-up of all the meter events within some
time frame, but that is just unacceptable for modern software development at
cloud scale.

If we’re pushing these calculations off to a database, then our database
immediately becomes a critical point of failure and will gum up our otherwise
smooth machinery.

Knowing the usage pattern of the majority of our customers gives us the
ability to take advantage of Event Sourcing and build a proper CQRS
implementation. Our event processor can recompute cached meter aggregates
every time it receives a new event. With this in place, we’ll have the results
portal users are expecting already sitting in a database or cache when the
query happens. No complex calculations, no ad hoc aggregates and
complicated roll-ups... just a simple query.

The event store (persistent storage of all meter events received since the
system started) is still available if we need more complex calculations or
auditing, but the eventually consistent state (aka reality) is made available for
immediate, super-fast query to all consumers.

Event Sourcing and CQRS in Action—Team
Proximity Sample
Up to this point in the book all of our samples have been fairly simple. We’ve
dealt with simple services that perform simple tasks. They are small and we
can deploy them to the cloud, and we can even scale them up and down so we
can handle larger volumes.

But this type of architecture only gets us so far. For the rest of this chapter
we’re going to expand the scope of our team management application so that
we can illustrate the power (and potential downfalls) of Event Sourcing and
CQRS applied to a real-world problem.

The problem with applying buzzword-ridden patterns to our problems is that

the application of these patterns is often done at too high a level. Most of us
have fallen into the trap of doing some reading, finding a fancy new pattern,
and then slathering it on top of an existing solution without doing much
analysis. This is the classic “I have a hammer and everything looks like nails”
fallacy.

In these situations, we tend to apply shiny new patterns like condiments. We
sprinkle them on top of our legacy applications and hope they will run better,
respond faster, and scale more. The problem is patterns like the ones we’re
discussing in this book aren’t toppings you shake onto existing code; they
require a fundamental change in the recipe. For many organizations that have
built up years of process around the creation of hard-to-scale monoliths,
implementing them might also require building completely new kitchens.

EVENT SOURCING IS NOT A PANACEA
While we’re devoting a lot of time to discussing ES, CQRS, and eventual
consistency, these are patterns that need to be applied when the problem
domain requires it. These patterns, like all patterns, are just some possible
solutions to a problem. Assuming that you can fix all problems with Event
Sourcing is as dangerous as assuming you can solve all real-world
problems with a single hammer.

The samples for our existing team and location services are rudimentary.
They let us update and query team membership as well as member locations.
But let’s say our application now needs to manage a vast number of teams,
each containing hundreds of individuals. Each member of a team is wielding
a mobile device with an application that routinely reports the location of that
member.

While having near-real-time location data on all of the people using our
application is a great feature on its own, the real power comes from what we
can do by processing incoming events. In our case, we want to detect when
two team members are close to each other.

In the new sample we’re going to build, we will be detecting when member
locations occur within some small distance of each other. The system will
then support reacting to these proximity detections. For example, we might
want to send push notifications to the mobile devices of the nearby team
members to alert them to the possibility for catching up in person.

To do this properly, we’re going to embrace Event Sourcing and CQRS, and
we’ll be splitting up the responsibilities of the system among four
components, as follows:

The location reporter service (Command)

The event processor (Event Sourcing)

The reality service (Query)

The proximity monitor (Event Sourcing)

We will discuss the purpose and implementation of each of these services in
detail throughout the rest of the chapter.

The Location Reporter Service
In a CQRS system, the inputs and outputs of the system are decoupled
entirely. For our sample, the inputs take the form of commands sent to the
location reporter service.

The client applications (mobile, web, IoT, etc.) in our system need to submit
new location data on members on a regular basis. They will do so by sending
updates to the location reporter.

You can find the full source code for the location reporter on GitHub.

Since we build everything API First, let’s take a look at the extremely simple
API for the location reporter, shown in Table 6-1.

Table 6-1. Location reporter service API

Resource Method Description

/api/members/{memberId}/locationreports POST Submits a new location report

When we get a new location report, we’ll perform the following tasks:

1. Validate the report object.

2. Convert the command into an event.

3. Emit the event on a message queue.

Recall from the discussion about the requirements of an event sourcing
system that event processing cannot make use of information that exists
outside the event stream.

This sample is designed to detect nearby teammates. This should bring up an
important question: how do we know the team membership of the member
referenced by a location report?

We could include it in the location report, but that would burden the client
with maintaining information that isn’t really part of the client’s
responsibility or domain. Let’s say we have a simple IoT device designed to
emit GPS coordinates every 30 seconds. Should this physical device then also
be required to periodically query a service to discover team membership?

You’ll often hear this problem referred to as a complexity leak. The internal
workings (or limitations) of our system could leak out of our service and
force our clients to bear the burden of additional complexity. There is also an

https://github.com/microservices-aspnetcore/es-locationreporter

important Conway’s law potential for failure here. If the team responsible for
the service and the consuming client are isolated, then it becomes almost too
easy for the service team to foist the complexity on the client and not give the
problem the thought and diligence it requires.

So, if the event processor (we’ll discuss that next) can’t query for team
membership while processing the event stream because of the core rules of
Event Sourcing, and the client/consumers shouldn’t bear the burden of
maintaining team membership, what do we do?

As you work with reactive, distributed systems more and more, you will see
this pattern emerge consistently. Solving this particular problem—gathering
all the necessary information to produce an event—should be the
responsibility of the command processor, the thing that turns commands into
events.

In our case, the command processor needs to create an event with an
appropriate timestamp, and it’s also going to need to fetch the team
membership (which is a volatile quantity, subject to change at any time) to
place that information on the event.

This has the desirable effect of allowing our system to detect nearby team
members only if they were on the same team at the time the events occurred.
Other solutions to this problem that might not utilize Event Sourcing could
produce “false positive” proximity alerts for team members based on stale
caches, out-of-order message processing, client synchronization issues, etc.

While the consequences of a false positive for a harmless alert about a nearby
teammate might be low, think about if this application served a different
business domain. What if this was a financial application processing an event
stream of transactions, or a security system granting or denying physical
access? In these cases, the consequences of a false positive based on out-of-
stream data could be disastrous.

Creating the location reports controller
Now that we know what we’re building and why, let’s take a look at the
simple controller that handles our single-method API (Example 6-1).

Example 6-1. LocationReportsController.cs
using System;
using Microsoft.AspNetCore.Mvc;
using StatlerWaldorfCorp.LocationReporter.Events;
using StatlerWaldorfCorp.LocationReporter.Models;
using StatlerWaldorfCorp.LocationReporter.Services;

namespace StatlerWaldorfCorp.LocationReporter.Controllers
{
[Route("/api/members/{memberId}/locationreports")]
public class LocationReportsController : Controller
{
 private ICommandEventConverter converter;

https://en.wikipedia.org/wiki/Conway%27s_law

 private IEventEmitter eventEmitter;
 private ITeamServiceClient teamServiceClient;

 public LocationReportsController(
 ICommandEventConverter converter,
 IEventEmitter eventEmitter,
 ITeamServiceClient teamServiceClient) {

 this.converter = converter;
 this.eventEmitter = eventEmitter;
 this.teamServiceClient = teamServiceClient;
 }

 [HttpPost]
 public ActionResult PostLocationReport(Guid memberId,
 [FromBody]LocationReport locationReport)
 {
 MemberLocationRecordedEvent locationRecordedEvent =
 converter.CommandToEvent(locationReport);
 locationRecordedEvent.TeamID =
 teamServiceClient.GetTeamForMember(
 locationReport.MemberID);
 eventEmitter.EmitLocationRecordedEvent(
 locationRecordedEvent);

 return this.Created(
 $"/api/members/{memberId}/locationreports/
 {locationReport.ReportID}",
 locationReport);
 }
}
}

The controller is really just responsible for handling the incoming JSON
payload, delegating the work, and replying with an appropriate JSON
response. As you can see in the code, we’ve made a couple of utilities
available for injection at runtime and during testing, like
the ICommandEventConverter, the IEventEmitter, and
the ITeamServiceClient.

While this pattern may not have been commonplace in the past with legacy
ASP.NET applications, you will see this all over modern ASP.NET
(especially ASP.NET Core) code. We inject the objects to which we will
delegate and we leave our controller methods as simple and small as possible.
This makes our controllers and our utilities far easier to test and maintain.

The command converter creates a basic event from an input command while
the team service client allows us to fetch the ID of the team to which the
member belongs (our system only allows people to belong to one team at a
time). Finally, the event emitter is responsible for sending the event to the
right place.

Because all of these things are injectable via DI and available for constructor

injection during unit tests, we can very easily make our code simple,
readable, and easy to maintain.

Building an AMQP event emitter
The location reporter service is actually pretty small, and other than the
controller, the most interesting stuff is in the event emitter. Our sample emits
events to an Advanced Message Queuing Protocol (AMQP) queue supported
by RabbitMQ. Take a look at the code for our AMQP event emitter
(Example 6-2).

Example 6-2. AMQPEventEmitter.cs
using System;
using System.Linq;
using System.Text;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Options;
using RabbitMQ.Client;
using StatlerWaldorfCorp.LocationReporter.Models;

namespace StatlerWaldorfCorp.LocationReporter.Events
{
 public class AMQPEventEmitter : IEventEmitter
 {
 private readonly ILogger logger;
 private AMQPOptions rabbitOptions;
 private ConnectionFactory connectionFactory;

 public AMQPEventEmitter(ILogger<AMQPEventEmitter> logger,
 IOptions<AMQPOptions> amqpOptions)
 {
 this.logger = logger;
 this.rabbitOptions = amqpOptions.Value;

 connectionFactory = new ConnectionFactory();

 connectionFactory.UserName = rabbitOptions.Username;
 connectionFactory.Password = rabbitOptions.Password;
 connectionFactory.VirtualHost =
 rabbitOptions.VirtualHost;
 connectionFactory.HostName = rabbitOptions.HostName;
 connectionFactory.Uri = rabbitOptions.Uri;

 logger.LogInformation(
 "AMQP Event Emitter configured with URI {0}",
 rabbitOptions.Uri);
 }
 public const string QUEUE_LOCATIONRECORDED =
 "memberlocationrecorded";

 public void EmitLocationRecordedEvent(
 MemberLocationRecordedEvent locationRecordedEvent)
 {
 using (IConnection conn = connectionFactory.
 CreateConnection()) {
 using (IModel channel = conn.CreateModel()) {

 channel.QueueDeclare(
 queue: QUEUE_LOCATIONRECORDED,
 durable: false,
 exclusive: false,
 autoDelete: false,
 arguments: null
);
 string jsonPayload =
 locationRecordedEvent.toJson();
 var body =
 Encoding.UTF8.GetBytes(jsonPayload);
 channel.BasicPublish(
 exchange: "",
 routingKey: QUEUE_LOCATIONRECORDED,
 basicProperties: null,
 body: body
);
 }
 }
 }
 }
}

As with our controller, we’re injecting the supporting classes we need by
interface as parameters to our constructor. None of this would work properly
if we didn’t configure dependency injection in our startup class.

Configuring and starting the service
The AMQP event emitter class gets the information needed to configure a
RabbitMQ connection factory from an options instance. You can see how
these options are configured by looking at the location
reporter’s Startup class (Example 6-3).

Example 6-3. src/StatlerWaldorfCorp.LocationReporter/Startup.cs
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using System;
using Microsoft.Extensions.Logging;
using System.Linq;
using StatlerWaldorfCorp.LocationReporter.Models;
using StatlerWaldorfCorp.LocationReporter.Events;
using StatlerWaldorfCorp.LocationReporter.Services;

namespace StatlerWaldorfCorp.LocationReporter
{
 public class Startup
 {
 public Startup(IHostingEnvironment env,
 ILoggerFactory loggerFactory)
 {
 loggerFactory.AddConsole();
 loggerFactory.AddDebug();

 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json",
 optional: false, reloadOnChange: false)
 .AddEnvironmentVariables();

 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 services.AddOptions();

 services
 .Configure<AMQPOptions>(
 Configuration.GetSection("amqp"));
 services
 .Configure<TeamServiceOptions>(
 Configuration.GetSection("teamservice"));

 services.AddSingleton(typeof(IEventEmitter),
 typeof(AMQPEventEmitter));
 services.AddSingleton(typeof(ICommandEventConverter),
 typeof(CommandEventConverter));
 services.AddSingleton(typeof(ITeamServiceClient),
 typeof(HttpTeamServiceClient));
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory,
 ITeamServiceClient teamServiceClient,
 IEventEmitter eventEmitter)
 {
 // Asked for instances of singletons during startup
 // to force initialization early.

 app.UseMvc();
 }
 }
}

The most important lines of code are in bold. The first two calls to
Configure tell the configuration subsystem that it should make options
instances available for dependency injection based on
the amqp and teamservice sections, respectively.

Remember that these sections can be supplied by an appsettings.json file but
can also be overridden by environment variables. This environment variable
overriding is what we would do in a production environment to point the app
at the right Rabbit server and team service URL.

You may also notice that we’re reading in an appsettings.json file. This file

www.allitebooks.com

http://www.allitebooks.org

contains a default set of values to configure our RabbitMQ service as well as
the URL to the team service for our queries. It’s important to remember that
the order of precedence is defined by the order in which you add
configuration sources, so make sure that you always add your local/default
JSON settings first so they can be overridden.

Here’s what our appsettings.json file looks like:

{
 "amqp": {
 "username": "guest",
 "password": "guest",
 "hostname": "localhost",
 "uri": "amqp://localhost:5672/",
 "virtualhost": "/"
 },
 "teamservice": {
 "url": "http://localhost:5001"
 }
}

Consuming the team service
Before we get to running the location reporter, let’s take a look at the HTTP
implementation of the ITeamServiceClient (Example 6-4). Note that we’re
getting the URL of the team service from injected configuration options, the
same way we configured our Rabbit client.

Example 6-4. HttpTeamServiceClient.cs
using System;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Options;
using System.Linq;
using System.Net.Http;
using System.Net.Http.Headers;
using Newtonsoft.Json;
using StatlerWaldorfCorp.LocationReporter.Models;

namespace StatlerWaldorfCorp.LocationReporter.Services
{
 public class HttpTeamServiceClient : ITeamServiceClient
 {
 private readonly ILogger logger;

 private HttpClient httpClient;

 public HttpTeamServiceClient(
 IOptions<TeamServiceOptions> serviceOptions,
 ILogger<HttpTeamServiceClient> logger)
 {
 this.logger = logger;

 var url = serviceOptions.Value.Url;

 logger.LogInformation(
 "Team Service HTTP client using URL {0}",
 url);

 httpClient = new HttpClient();
 httpClient.BaseAddress = new Uri(url);
 }
 public Guid GetTeamForMember(Guid memberId)
 {
 httpClient.DefaultRequestHeaders.Accept.Clear();
 httpClient.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue(
 "application/json"));

 HttpResponseMessage response =
 httpClient.GetAsync(
 String.Format("/members/{0}/team",
 memberId)).Result;

 TeamIDResponse teamIdResponse;
 if (response.IsSuccessStatusCode) {
 string json = response.Content
 .ReadAsStringAsync().Result;
 teamIdResponse =
 JsonConvert.DeserializeObject<TeamIDResponse>(
 json);
 return teamIdResponse.TeamID;
 }
 else {
 return Guid.Empty;
 }
 }
 }

 public class TeamIDResponse
 {
 public Guid TeamID { get; set; }
 }
}

In this example we’re using the .Result property to force a thread to block
while we wait for a reply from the asynchronous method. For production-
quality code, we would probably refactor this and ensure that we’re carrying
asynchronous results all the way to the service boundary.

The code in bold shows the most important piece of this client: we’re asking
the team service to tell us the team membership of a member. This REST
resource wasn’t part of the service when we designed it earlier; it was added
later to support the functionality for this chapter.

To see the location reporter in action, we first need to set up a local copy of
RabbitMQ. We could also just go straight to writing integration tests and rely
on the cloud-based Wercker builds to fire up the RabbitMQ testing instance,
but I like being able to play with things locally first to get a feel for how
everything works.

If you’re on a Mac, it should be easy enough to either install RabbitMQ or
just start up a Docker image running Rabbit with the management console
plug-in enabled (make sure to map both the management console port and the
regular port). On Windows, it’s probably easiest to just install RabbitMQ
locally. For details on how to install or run Rabbit, check out the
documentation.

Running the location reporter service
With that running, and our defaults set up to point to a local Rabbit instance,
we can fire up the location reporter service as follows (make sure you’re in
the src/StatlerWaldorfCorp.LocationReporter subdirectory):

$ dotnet restore
...
$ dotnet build
...
$ dotnet run --server.urls=http://0.0.0.0:9090
...

Depending on your setup, you might not need to change the default port.
With the service running, we just need to submit a request to the service. One
of the easiest ways to do that is to install the Postman plug-in for Chrome, or
we can use curl to submit a JSON payload like this one:

$ curl -X POST -d \
 '{"reportID": "...", \
 "origin": "...", "latitude": 10, "longitude": 20, \
 "memberID": "..."}' \
 http://...1e2 \
/locationreports

When we submit this, we should get an HTTP 201 reply from the service,
with the Location header set to something that looks
like /api/members/4da420c6-fa0f-4754-9643-
8302401821e2/locationreports/f74be394-0d03-4a2f-bb55-
7ce680f31d7e. If everything else is working properly, we should be able to
use our RabbitMQ management console to see that there’s a new message
sitting in the memberlocationrecorded queue, as shown in Figure 6-1.

http://rabbitmq.com/

Figure 6-1. A new message in the queue

And if we use this same management console to examine the contents of the
message, we should see that it is a faithful JSON conversion of the event we
created, including the augmentations of the timestamp and the team
membership of the member, as shown in Figure 6-2.

Figure 6-2. Getting a message from the queue

The Event Processor
The main purpose of the sample we’re building in this chapter is to detect
team members within some range of each other. The bulk of this work is
done by the event processor. The event processor is the part of the system
that is as close to a pure function as we can get.

It is responsible for consuming events from the stream and taking the
appropriate actions. These actions could include emitting new events on new
event streams or pushing state changes to the reality service (discussed next).

While there are many important pieces to the event processor, the core of it is
the ability to detect nearby teammates. To perform that detection, we need to

know how to compute the distance between their GPS coordinates.

GEOLOCATION CALCULATIONS
We actually don’t need to know how to compute the distance between GPS
coordinates. Redis comes with a special type of list that stores GPS
coordinates, and you can use commands like GEORADIUS and GEODIST to
detect list members within a given radius and determine the distance
between members.

In order to illustrate the role of an event processor, we’re doing this
calculation in the C# code, but in a production scenario we might defer this
to Redis. Its geohashing calculations can detect nearby teammates far faster
than we can do this in C#.

If you want to implement this for yourself as a fun experiment, you might
want to try storing member locations in sets that correspond to their team
membership; that way, querying GEORADIUS on a team’s location set has
the desired effect.

Rather than showing you the details of the math involved, Example 6-5
shows the unit test that proves the math we borrowed from the smart people
on the internet works (if the Earth was flat, this math would be much easier!).

Example 6-5. GPS utility unit test
[Fact]
public void ProducesAccurateDistanceMeasurements()
{
 GpsUtility gpsUtility = new GpsUtility();

 GpsCoordinate losAngeles = new GpsCoordinate() {
 Latitude = 34.0522222,
 Longitude = -118.2427778
 };

 GpsCoordinate newYorkCity = new GpsCoordinate() {
 Latitude = 40.7141667,
 Longitude = -74.0063889
 };

 double distance =
 gpsUtility.DistanceBetweenPoints(losAngeles, newYorkCity);
 Assert.Equal(3933, Math.Round(distance)); // 3,933 km
 Assert.Equal(0,
 gpsUtility.DistanceBetweenPoints(losAngeles, losAngeles));

}

In order to keep the code clean and testable, we want to separate the
responsibilities of event processing into the following:

Subscribing to a queue and obtaining new messages from the event stream

Writing messages to the event store

Processing the event stream (detecting proximity)

Emitting messages to a queue as a result of stream processing

Submitting state changes to the reality server/cache as a result of stream
processing

As with all of this book’s samples, you can find the full code for this on
GitHub. To save your eyes the agony of scanning through a dozen pages of
code listings, I’ll try and limit the listings to the most important pieces.

To detect proximity events, I’ve written a proximity detector that makes use
of the GPS utility class (Example 6-6). It takes as input the event pulled from
the stream, a list of teammates and their locations, and a radius threshold.

Example 6-6. ProximityDetector.cs
using System.Collections.Generic;
using StatlerWaldorfCorp.EventProcessor.Location;
using System.Linq;
using System;

namespace StatlerWaldorfCorp.EventProcessor.Events
{
 public class ProximityDetector
 {
 public ICollection<ProximityDetectedEvent>
 DetectProximityEvents(
 MemberLocationRecordedEvent memberLocationEvent,
 ICollection<MemberLocation> memberLocations,
 double distanceThreshold)
 {
 GpsUtility gpsUtility = new GpsUtility();
 GpsCoordinate sourceCoordinate = new GpsCoordinate() {
 Latitude = memberLocationEvent.Latitude,
 Longitude = memberLocationEvent.Longitude
 };

 return memberLocations.Where(
 ml => ml.MemberID != memberLocationEvent.MemberID &&

 gpsUtility.DistanceBetweenPoints(
 sourceCoordinate, ml.Location) <
 distanceThreshold)
 .Select(ml => {
 return new ProximityDetectedEvent() {
 SourceMemberID = memberLocationEvent.MemberID,
 TargetMemberID = ml.MemberID,
 DetectionTime = DateTime.UtcNow.Ticks,
 SourceMemberLocation = sourceCoordinate,
 TargetMemberLocation = ml.Location,
 MemberDistance =
 gpsUtility.DistanceBetweenPoints(
 sourceCoordinate, ml.Location)
 };

https://github.com/microservices-aspnetcore/es-proximitymonitor

 }).ToList();
 }
 }
}

We can then take the results of this method and use them to create the
appropriate side effects, including the optional dispatch of a
ProximityDetectedEvent and the writing of an event to the event store.

In all of our code, we are embracing the principles behind clean object-
oriented design and injecting dependencies into our classes by interface
wherever possible. This makes the code readable, easier to maintain, and
easier to test.

Case in point: the high-level code responsible for responding to an incoming
message, detecting proximity events, and emitting proximity events and
updating the reality cache is written so all of the real work is delegated to
smaller classes that embody the Single Responsibility Principle.

Example 6-7 shows the code for our main event processor.

Example 6-7. Events/MemberLocationEventProcessor.cs
using System;
using System.Collections.Generic;
using Microsoft.Extensions.Logging;
using StatlerWaldorfCorp.EventProcessor.Location;
using StatlerWaldorfCorp.EventProcessor.Queues;

namespace StatlerWaldorfCorp.EventProcessor.Events
{
public class MemberLocationEventProcessor : IEventProcessor
{
 private ILogger logger;
 private IEventSubscriber subscriber;
 private IEventEmitter eventEmitter;
 private ProximityDetector proximityDetector;
 private ILocationCache locationCache;

 public MemberLocationEventProcessor(
 ILogger<MemberLocationEventProcessor> logger,
 IEventSubscriber eventSubscriber,
 IEventEmitter eventEmitter,
 ILocationCache locationCache)
 {
 this.logger = logger;
 this.subscriber = eventSubscriber;
 this.eventEmitter = eventEmitter;
 this.proximityDetector = new ProximityDetector();
 this.locationCache = locationCache;

 this.subscriber.
 MemberLocationRecordedEventReceived += (mlre) => {
 var memberLocations =
 locationCache.GetMemberLocations(mlre.TeamID);
 ICollection<ProximityDetectedEvent> proximityEvents =
 proximityDetector.DetectProximityEvents(mlre,

 memberLocations, 30.0f);
 foreach (var proximityEvent in proximityEvents) {
 eventEmitter.
 EmitProximityDetectedEvent(proximityEvent);
 }

 locationCache.Put(mlre.TeamID,
 new MemberLocation {
 MemberID = mlre.MemberID,
 Location = new GpsCoordinate {
 Latitude = mlre.Latitude,
 Longitude = mlre.Longitude
 }
 });
 };
 }

 public void Start()
 {
 this.subscriber.Subscribe();
 }

 public void Stop()
 {
 this.subscriber.Unsubscribe();
 }
}
}

The dependencies of this class are not only evident, but made mandatory
through the use of the constructor parameters. They are:

An instance of a logger appropriate for this class.

An event subscriber (responsible for telling the processor when new
MemberLocationRecordedEvents arrive).

An event emitter, allowing the processor to emit
ProximityDetectedEvents.

A location cache, allowing us to quickly store and retrieve current
locations of team members as discovered by the event processor.
Depending on how you design your “reality” service, this cache can be
shared by the reality service or a duplication of it.

The only other responsibility of the event processing service is that it should
store every event it receives in the event store. There are a number of reasons
for this, including providing a history for other services to search. The event
store can also be used to reseed the reality cache if the cache crashes and
loses data.

If you’re feeling adventurous, you can look at the code created so far and
follow the patterns used to add an event store interface to the
MemberLocationEventProcessor class, making sure it’s unit tested and the

integration test verifies that events are being recorded.

CACHES ARE ONLY CONVENIENCES
Remember that caches serve the architectural role of a convenience, and
you should never have any data in a cache that you can’t reconstitute from
somewhere else. If your code encounters a cache miss, it should know how
to go calculate what should have been in the cache and update the cache.

If your code won’t work unless it gets a cache hit, then you might need to
reevaluate your architecture or choose a different tool, like a full database
for long-term persistence.

Since we’ve already covered how to build Entity Framework repositories in
the book, I’ll leave that code listing for you to check out on GitHub if you’re
curious.

The Redis location cache
The location cache interface has the following methods defined on it:

GetMemberLocations(Guid teamId)

Put(Guid teamId, MemberLocation location)

For our implementation of this cache I decided upon Redis, for a number of
reasons. First and foremost, it’s a very easy to use distributed cache. It’s also
incredibly powerful, and has very wide adoption and a thriving open source
community around it. Finally, it is usually available in some form as a cloud-
hosted solution, making it ideal for a backing service for our reality cache.

Redis is also quite a bit more than just a cache, and it includes a number of
features that could dramatically improve the samples for this chapter that are
out of scope of this book and better left to a book on Redis.

We’re creating a Redis hash for each of the teams in our service. The JSON
payload for a serialized member location is then added as a field (keyed on
member ID) to this hash. This makes it easy to update multiple member
locations simultaneously without creating a data-overwrite situation and
makes it easy to query the list of locations for any given team, since the team
is a hash.

Take a look at the following redis-cli session that was taken just moments
after running some integration tests against a local instance on one of my
development workstations:

127.0.0.1:6379> KEYS *
 1) "0145c13c-0dde-446c-ae8b-405a5fc33c76"
 2) "d23d529f-0c1e-470f-a316-403b934b98e9"
 3) "58265141-1859-41ef-8dfc-70b1e65e7d83"

 4) "26908092-cf9a-4c4f-b667-5086874c6b61"
 5) "679c3fdb-e673-4e9d-96dd-9a8388c76cc5"
 6) "f5cb73c5-f87c-4b97-b4e6-5319dc4db491"
 7) "56195441-168d-4b19-a110-1984f729596e"
 8) "49284102-36fd-49e6-a5fa-f622ee3708f1"
 9) "a4f4253b-df79-4f79-9eff-5d34a759f914"
10) "d13a6760-8043-408d-9a05-dd220988a655"
127.0.0.1:6379> HGETALL 0145c13c-0dde-446c-ae8b-405a5fc33c76
1) "7284050e-f320-40a5-b739-6a1ab4045768"
2) "{\"MemberID\":\"7284050e-f320-40a5-b739-6a1ab4045768\",
 \"Location\":{\"Latitude\":40.7141667,\"Longitude\":-74.0063889}}"
3) "2cde3be8-113f-4088-b2ba-5c5fc3ebada8"
4) "{\"MemberID\":\"2cde3be8-113f-4088-b2ba-5c5fc3ebada8\",
 \"Location\":{\"Latitude\":40.7282,\"Longitude\":-73.7949}}"

There are 10 hash keys displayed. Each of these hash keys is a team that has
received at least one member location recorded event. Using the HGETALL
command, we can get a list of all of the member location objects for that
team.

For the full source code of the integration test that produced this data, take a
look at the GitHub repository

The Reality Service
Reality is subjective, and, as we discussed earlier, even reality as you
perceive it in your mind is an approximation and actually occurs slightly in
the past. In an effort to name our components in a way that respects this truth
and the concept of eventual consistency, we’ve decided to call this service the
reality service.

If we called it a state service or something else that implied that you could
query it at any time and get a live, real-time, exact set of information that
describes the state of the entire system at that moment, we would be
misleading our consumers and the developers.

The reality service is responsible for maintaining the location of each team
member, but that location will only be the most recently received location
from some application. We will never know exactly where someone is; we
can only tell where they were when they last submitted a command that
produced a successfully processed event.

Again, this reinforces the notion that reality is really a function of stimuli
received in the past.

Let’s take a look at the API we want to expose from the reality service
(Table 6-2).

Table 6-2. Reality service API

Resource Method Description

/api/reality/members

Retrieves the last known location of all

https://github.com/microservices-aspnetcore/es-eventprocessor

GET members that are known to the reality service

/api/reality/members/{memberId} GET Retrieves the last known location of a single
member

/api/reality/members/{memberId} PUT Sets the last known location of a member

There are two important things to remember about a reality service like this:

Reality is not the event store.

Reality is merely a representation of the state you expect your consumers
to need, a prebuilt set of data designed to support the query operations in
a CQRS pattern.

Reality is disposable.

The reality cache that supports the query operations of the system is
disposable. We should be able to destroy all instances of reality and
reconstitute them simply by running our event processing algorithm
against either an entire event stream, or the events occurring since the last
snapshot.

The code for the reality service is made up of things we’ve covered already in
this book:

Basic microservice scaffolding (middleware, routing, configuration,
bootstrapped web server)

Reliance upon dependency injection to provide configuration options and
implementation instances

A class that talks to the Redis cache to query the current locations

A consumer of the team service to query the list of teams

I’m not going to cover the specific code for the reality service because, as I
said, everything in it is something that has been done elsewhere in the book.
If you would like to build your own reality service as a reader exercise, I
strongly encourage you to do so as this will help build your muscle memory
for building out services from scratch in ASP.NET Core.

The Proximity Monitor
The output of the event processor is a stream of proximity detected events. In
a real-world, production system, we would have some kind of application or
service sitting on the end of this stream.

It would await the arrival of these events and then notify appropriate
downstream components that the events have occurred. This could be a
notification to a website to let a single-page app update its UI, or it could be a
notification that gets sent to the mobile devices of both the source and target
team members that are part of the event.

The code for a proximity monitor would include:

Basic microservice scaffolding (this should be old hat to you by now)

A queue consumer subscribed to the arrival of ProximityDetectedEvent
messages

Consumption of some third-party or cloud provider to deal with push
notifications

Chapter 11 covers real-time applications, where we’ll talk about some
options for publishing and reacting to push notifications and integrating
client-side applications with server applications in real time. We don’t need
to go into the code for a real proximity monitor for this chapter.

Running the Samples
There are a number of ways you can run the sample services created in this
chapter to exercise everything you’ve learned so far. The easiest is to set it all
up on your development workstation using locally installed services.

The following are the prerequisites for running the samples in this chapter:

A RabbitMQ server

You can install this locally on your machine, you can run a copy of the
Docker image available on docker hub (ensuring you bind the right
ports), or you can point to a cloud-hosted RabbitMQ server.

A Redis server

As with Rabbit, you can install this locally, run the Docker image, or
point to a cloud-hosted Redis server.

The appsettings.json files for the services are checked into GitHub such that
the default operating mode is to assume the prerequisites are running locally
either through direct install or through ports exposed and mapped from
running Docker images.

Refer to the instructions on the appropriate websites for either installing the
servers or running the docker hub images. You do not need to do any
configuration or setup beyond the defaults—the services all create their own
hashes and queues.

Starting the Services
Once you’ve got your prerequisites up and running, check out the code for
the services es-locationreporter and es-eventprocessor from GitHub.
You’ll also need to grab a copy of teamservice. Make sure you grab the
master branch since you just want an in-memory repository for testing (the
location branch requires a Postgres database).

As per usual procedure, make sure you do a dotnet restore and a dotnet
build on the main service application for each of them from inside their
respective src/<project> directories.

To start the team service, issue the following command in a terminal from the
src/StatlerWaldorfCorp.TeamService directory:

$ dotnet run --server.urls=http://0.0.0.0:5001
Hosting environment: Production
Content root path: (...)
Now listening on: http://0.0.0.0:5001
Application started. Press Ctrl+C to shut down.

To start the location reporter, issue the following command at your terminal
from the src/StatlerWaldorfCorp.LocationReporter directory:

$ dotnet run --server.urls=http://0.0.0.0:5002
info: StatlerWaldorfCorp.LocationReporter.Services
.HttpTeamServiceClient[0]
 Team Service HTTP client using URL http://localhost:5001
info: StatlerWaldorfCorp.LocationReporter.Events.AMQPEventEmitter[0]
 AMQP Event Emitter configured with URI amqp://localhost:5672/
Hosting environment: Production
Content root path: (...)
Now listening on: http://0.0.0.0:5002
Application started. Press Ctrl+C to shut down.

Note that it defaults to looking for the team service on port 5001. Because
we’re going to be running both microservices and both are ASP.NET services
(even though the event processor just listens on queues), we need to make
sure they don’t try and grab the same server port.

Now start the event processor (from the
src/StatlerWaldorfCorp.EventProcessor directory):

$ dotnet run --server.urls=http://0.0.0.0:5003
info: StatlerWaldorfCorp.EventProcessor.Queues.AMQP
.AMQPConnectionFactory[0]
 AMQP Connection configured for URI : amqp://localhost:5672/
info: StatlerWaldorfCorp.EventProcessor.Queues.AMQP
.AMQPEventSubscriber[0]
 Initialized event subscriber for queue memberlocationrecorded
info: StatlerWaldorfCorp.EventProcessor.Queues.AMQP
.AMQPConnectionFactory[0]
 AMQP Connection configured for URI : amqp://localhost:5672/
info: StatlerWaldorfCorp.EventProcessor.Queues.AMQP
.AMQPEventEmitter[0]
 Emitting events on queue proximitydetected
info: StatlerWaldorfCorp.EventProcessor.Location.Redis
.RedisLocationCache[0]

 Using redis location cache - 127.0.0.1:6379,
allowAdmin=False,ssl=False,abortConnect=True,resolveDns=False
info: StatlerWaldorfCorp.EventProcessor.Queues.AMQP
.AMQPEventSubscriber[0]
 Subscribed to queue.
Hosting environment: Production
Content root path: (...)
Now listening on: http://0.0.0.0:5003
Application started. Press Ctrl+C to shut down.

The event processor has a number of dependencies, and you’ll see a bunch of
diagnostic information during startup that lets you know where it is
attempting to find those dependencies.

At this point you should have the microservices and servers listed in Table 6-
3 running (the italicized servers are third-party apps not written in this book).

Table 6-3. Event Sourcing sample processes

Service Docker image Port

RabbitMQ rabbitmq:3.6.6 5672

Redis Cache redis:3.2.6 6379

Team service dotnetcoreservices/teamservice 5001

Location reporter dotnetcoreservices/locationreporter 5002

Event processor dotnetcoreservices/es-eventprocessor 5003

Reality service (optional) dotnetcoreservices/es-reality 5004

If your workstation is anything like mine, this kind of workload running on a
laptop’s small memory footprint can grind it to a halt. If you find yourself in
a crunch for resources, you should try using dotnet run for all of the .NET
Core services built for this book and just leaving Redis and RabbitMQ for
Docker.

Submitting Sample Data
First of all, if you have made it through to this point in the chapter, then
congratulations and thank you for sticking with it! There is a lot of material
in this chapter—a lot of code, and a ton of concepts that might have been new
to you.

The reward now comes at the hand of your favorite REST client. All the
samples in the book were tested with the Postman plug-in for Chrome, but
you can use the curl command-line application or any other tool for sending
custom HTTP payloads to services.

Use the following steps to exercise the entire Event Sourcing/CQRS system
from end to end:

1. Issue a POST to http://localhost:5001/teams to create a new team.

Refer to the source code in earlier chapters for the format, but the fields in
the JSON that you’ll need are id and name. Make sure you keep the GUID
for the newly created team handy.

2. Issue a POST to http://localhost:5001/teams/<new guid>/members
to add a member to the team. Make sure you keep the GUID for the new
member handy.

3. Issue a POST to http://localhost:5002/api/members/<member
guid>/locationreports. A location report requires the following fields:
ReportID, Latitude, Longitude, Origin, ReportID, and MemberID.

4. Watch the location report being converted to a
MemberLocationReportedEvent and placed on the appropriate queue
(the default is memberlocationrecorded). If you need some reference
coordinates for latitude and longitude, you can find several of them in the
GpsUtilityTest class in the event processor unit test project.

5. Repeat step 3 a few times for locations that are far away from each other
that will not trigger a proximity detected event.

6. Repeat step 2 to create a new member that belongs to the same team as
your first test member.

7. Now repeat step 3 for this second team member at a location within a few
kilometers of the most recently supplied location for the first team
member.

8. You should now be able to see a new message in the proximitydetected
queue (you can use the RabbitMQ management plug-in to view the queues
without having to write code).

9. Either query the Redis cache directly or talk to the reality service to see
the most up-to-date locations for members.

After having done this manually a few times, most teams building
applications like this will then immediately devote some time to automating
this process. Ideally you would automate the deployment of all of these
services into an integration testing environment with a tool like docker
compose or by creating deployments to Kubernetes or some other container
scheduling environment.

The test script would then make all of the REST calls mentioned previously
(probably many, many more of them) and then, when the test run is finished,
assert that the right number of proximity detections showed up with the right
values.

I recommend doing this as frequently as possible, either nightly or some time
after the most recent check-in. Test suites like this will not only help prepare
you for running in production, but will give you a baseline and alert you

when new code causes a regression failure.

Summary
Code-wise, this chapter didn’t introduce anything all that powerful or
complex. It did, however, introduce several architectural concepts designed to
allow multiple microservices to collaborate in support of an application that
can scale elastically and react to internet-scale throughput.

Treating a system as event sourced has consequences—good and bad. In this
chapter we built out a sample system that accepts commands requesting that a
member’s location be recorded. The command system then translates,
augments, and ultimately injects events to be handled by an event processor.
The event processor is responsible for detecting proximity events and
emitting those to allow the rest of the system to notify team members when
they are near each other.

ES/CQRS certainly will not solve all of your problems. In some situations it
is clearly overkill, and in others it might not be enough. There are also many
third-party products that allow data to flow through a system in a very ES-
like fashion. Having built your own custom Event Sourcing suite of services,
you should now know how these products work and, more importantly, why
people choose to use them.

Throughout the chapter I recommended a few things that might make for
useful reader exercises. I strongly recommend that you do these exercises, if
for no other reason than to further build your muscle memory for building
cloud-native, scalable services in ASP.NET Core.

 These are services that are micro in nature but don’t embrace the Single
Responsibility Principle.
1

Chapter 7. Building an ASP.NET
Core Web Application

It is generally accepted that microservices are standalone applications that
often expose RESTful APIs over HTTP(S). We’ve also seen microservices
that are message-driven in nature and don’t expose RESTful APIs, but rather
operate by receiving and publishing messages.

Another type of microservice is a web application. This might seem like an
odd assertion to those of you who have spent some time maintaining bloated,
legacy web app monoliths. However, I believe that, when built properly, a
web application is nothing more than a microservice that has an explicit
contract to expose HTML over some subset of its endpoints.

In this chapter we’ll take a look at how ASP.NET Core allows us to build
web applications, but we’ll examine this functionality with an eye toward
how we can build high-performance, scalable, highly available web
applications designed to thrive in the cloud rather than simply using a new
technology to build an upgraded version of a legacy monolith.

All of the code for this chapter can be found in the GitHub repository.

ASP.NET Core Basics
In this section of the chapter we’re going to take a tour of the basics of
building web applications with ASP.NET Core. This will look very familiar
to people who have built applications based on the Open Web Interface for
.NET (OWIN) in the past and may look very alien to readers coming from a
purely Web Forms–based development background.

A lot of what you’ll see in this section should also look very familiar to you if
you’ve been building the code samples for this book up until this point. There
is a very noticeable (and intentional) overlap between defining routes and
controllers for microservices and doing the same for view-based web
applications.

Those of you with experience building .NET applications in the past might
remember how difficult it was to migrate from one project template to
another. For example, you couldn’t start with a console application and then
magically convert it into a web application. You’d have to copy out all of
your useful code and paste it into a newly created project from the
appropriate template. This problem plagued and irritated developers and
thankfully no longer exists in the world of .NET Core.

In this chapter we’re going to start with a command-line application and we’ll
finish with a fully functioning web app, without once using a template,

https://github.com/microservices-aspnetcore/webapp

scaffolding, or a wizard. Of course, Visual Studio wizards will make things
easier and you can use them if you wish, but I’m going to show you how to
do it by hand to stick to our approach of using the smallest amount of code to
solve any given problem.

If you’re interested in seeing the type of scaffolding Microsoft provides out
of the box, you can type dotnet new mvc --auth none.

For the rest of this section, we’ll start from scratch so you can see clearly
how to get from a truly empty application to the autogenerated scaffolding.

If you recall from the first “hello world” sample we built in Chapter 1, we
initially get a Program.cs file that contains the following code after we issue
a dotnet new console command:

public class Program
{
 public static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
}

We then modified the Program.cs file to add configuration support as well as
enable the Kestrel web server, as shown here:

public static void Main(string[] args)
{
 var config = new ConfigurationBuilder()
 .AddCommandLine(args)
 .Build();

 var host = new WebHostBuilder()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseKestrel()
 .UseStartup<Startup>()
 .UseConfiguration(config)
 .Build();

 host.Run();
}

Note the use of the UseContentRoot method. We have to do this so that
when the application starts it can find all of the supporting files, like the
.cshtml files for views.

Next we added a Startup class that configures the default middleware that
responds with “Hello, world!” to all HTTP requests:

public class Startup
{
 public Startup(IHostingEnvironment env)
 {

 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory)
 {
 app.Run(async (context) =>
 {
 await context.Response.WriteAsync("Hello, world!");
 });
 }
}

We also added the following NuGet packages as dependencies for our
project:

Microsoft.AspNetCore

The basic building blocks for all ASP.NET applications.

Microsoft.AspNetCore.Server.Kestrel

The Kestrel web server.

Microsoft.Extensions.Configuration.CommandLine

Extensions for parsing command-line parameters. This will be required to
change the port number on which our application runs via command-line
argument.

At this point, we technically have a functioning ASP.NET web application,
but it is really just simple middleware that does nothing of value. While
we’ve already got plenty of experience with controller routing for our
microservices, we’re going to finally delve into the “M” and “V” aspects of
MVC: the model and view.

With the simplified syntax of the project file, we can simply indicate that we
want to use the Web SDK (Microsoft.NET.Sdk.Web) at the opening of the
project file, and that saves us from having to explicitly declare certain
dependencies:

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore"
 Version="1.1.1" />
 <PackageReference Include="Microsoft.AspNetCore.Mvc"
 Version="1.1.2" />
 <PackageReference Include="Microsoft.AspNetCore.StaticFiles"
 Version="1.1.1" />
 <PackageReference Include="Microsoft.Extensions.Logging.Debug"
 Version="1.1.1" />

 <PackageReference Include="Microsoft.VisualStudio.Web.BrowserLink"
 Version="1.1.0" />
 <PackageReference Include="Microsoft.Extensions.Configuration"
 Version="1.1.1"/>
 <PackageReference
 Include="Microsoft.Extensions.Options.ConfigurationExtensions"
 Version="1.1.1"/>
 <PackageReference Include="Microsoft.Extensions.Configuration.Json"
 Version="1.1.1"/>
 <PackageReference
Include="Microsoft.Extensions.Configuration.CommandLine"
 Version="1.1.1"/>
 </ItemGroup>

</Project>

Adding ASP.NET MVC Middleware
In this next section of the chapter we’re going to talk about how to go from a
simple console application that is using “hello world” middleware in
conjunction with the Kestrel web server to the more familiar MVC
middleware.

Let’s enhance our existing sample by adding support for the MVC framework
with the default routing scheme that we’re familiar with. To do this, we
simply replace the app.Use middleware configuration with the UseMvc
extension in the Startup class, as shown in our new class (Example 7-1).

Example 7-1. Startup.cs
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.DependencyInjection;

namespace StatlerWaldorfCorp.WebApp
{
 public class Startup
 {
 public Startup(IHostingEnvironment env)
 {

 }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory)
 {
 app.UseMvc(routes =>
 {
 routes.MapRoute("default",
 template:
 "{controller=Home}/{action=Index}/{id?}");

 });
 }
 }
}

For this to work, we’ll also need to add a dependency on the NuGet
package Microsoft.AspNetCore.Mvc.

This is in keeping with .NET Core’s modular philosophy. Everything we
need is available à la carte, and we no longer need to rely on a single
mammoth framework that includes mountains of code we’ll never use.

The default route that we added should look familiar to you if you’ve done
any ASP.NET MVC development in the past. Go ahead and run this
application with the usual command-line tools (dotnet restore, dotnet
run) and see what happens. You should simply get 404s on every possible
route because we have no controllers.

Adding a Controller
We’ve seen controllers already throughout the book—it’s how we’ve been
exposing our RESTful APIs. We’re going to create a default (home)
controller that just returns some text, and we’ll move on from there.

There are many areas within ASP.NET applications that are commonly
referred to as “disputed areas,” or areas in which conflict between developers
and architects often arises. The role and size of controllers is one of those
debates that will continue until the end of time, though my personal view on
this is that controllers should be as small as possible.

Controllers should do the following and nothing more:

1. Accept input from HTTP requests.

2. Delegate the input to service classes that are written without regard for
HTTP transport or JSON parsing.

3. Return an appropriate response code and body.

In other words, our controllers should be very, very small. They should do
little more than wrap highly tested components that can operate outside the
context of a web request if necessary.

To add a controller to our project, let’s create a new folder called Controllers
and put a class in it called HomeController (Example 7-2).

Example 7-2. HomeController.cs
using Microsoft.AspNetCore.Mvc;

namespace StatlerWaldorfCorp.Controllers
{
 public class HomeController : Controller
 {

 public string Index()
 {
 return "Hello World";
 }
 }
}

With the simple addition of this file, the route we created earlier will
automatically pick up the existence of this controller and let us use it. If you
run the app from the command line and hit the home URL (e.g.,
http://localhost:5000 or whatever port you’re running on) you’ll see the
text “Hello World” in your browser.

Adding a Model
The role of the model is, as you might have guessed, to represent the data
required by the controller and the view to present some form of interaction
between the user and the application. This isn’t a book on building ASP.NET
MVC web applications (there are far more detailed references available), so
we won’t go into all of the things that you can do with models, like automatic
validation and so on.

To keep things simple, in Example 7-3 we’ll just create a model representing
a simple stock quote (created in a new Models folder).

Example 7-3. StockQuote.cs
namespace StatlerWaldorfCorp.WebApp.Models
{
 public class StockQuote
 {
 public string Symbol { get; set; }
 public int Price { get; set; }
 }
}

A NOTE ON STORING CURRENCY VALUES IN A MODEL
You might have noticed that I decided to represent the price in the stock
quote as an integer. There are a number of reasons for this, but most of
them stem from catastrophic system failures that have happened at two in
the morning during a vacation. Most of the languages we use daily do a
terrible job of preserving significant digits while doing “financial
arithmetic” on decimals. A long-standing tradition is to do all the math on
straight-up integers (where the last two digits are cents) and only convert
the value into something that looks like dollars and cents when it finally
reaches the end user.

Adding a View
Now that we’ve got a controller and a model, let’s build a view to render that

data to the user via server-side templating. Just like with the controller and
the model, there is a default convention for locating the views that correspond
to controllers.

For example, if we wanted to create a view for the HomeController’s Index
method, we would store that view as Index.cshtml in the Views/Home
directory. Example 7-4 is a sample view that renders a stock quote model.

Example 7-4. Views/Home/Index.cshtml
<html>
<head>
 <title>Hello world</title>
</head>
<body>
 <h1>Hello World</h1>
 <div>
 <h2>Stock Quote</h2>
 <div>
 Symbol: @Model.Symbol

 Price: $@Model.Price

 </div>
 </div>
</body>
</html>

Now we can modify our home controller to render a view instead of returning
simple text:

using Microsoft.AspNetCore.Mvc;
using System.Threading.Tasks;
using webapp.Models;

namespace webapp.Controllers
{
 public class HomeController : Controller
 {
 public async Task<IActionResult> Index()
 {
 var model = new StockQuote { Symbol = "HLLO",
 Price = 3200 };
 return View(model);
 }
 }
}

Of course it won’t really be this easy, and if you go run the application now,
you will probably get an HTTP 500 response. Since we’re building a web
application, we’re definitely going to want to have stack traces of errors that
show up, so we can add a line that invokes the
UseDeveloperExceptionPage method to our Startup class, in the
Configure method.

Here is our new and complete Startup class:

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;

namespace StatlerWaldorfCorp.WebApp
{
 public class Startup
 {
 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddEnvironmentVariables();

 Configuration = builder.Build();
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory)
 {
 loggerFactory.AddConsole();
 loggerFactory.AddDebug();

 app.UseDeveloperExceptionPage();
 app.UseMvc(routes =>
 {
 routes.MapRoute("default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 app.UseStaticFiles();
 }
 }
}

For a complete list of all of the dependencies required for the ASP.NET
application, take a look at the .csproj file in the GitHub repository.

With this new Startup class, we should be able to do a dotnet restore and
a dotnet run to start our application. Hitting the home page should combine
our controller, our view, and our model to produce a rendered HTML page
for the browser, as shown in Figure 7-1.

https://github.com/microservices-aspnetcore/webapp

Figure 7-1. ASP.NET Core model, view, and controller in action

Invoking REST APIs from JavaScript
Historically, ASP.NET applications were written such that a request gets
submitted to the server, the server does a ton of work, and the user is
presented with prerendered HTML. The dynamic portions of the page were
all taken care of server-side through the use of templating.

In the past this was done either through legacy Web Forms (.asmx files) or
through the type of rendering we’ve shown so far in this chapter—MVC
templating. Both of these types of server-side templating and rendering are
considered “old school” by most web application developers these days.
Today, the most common type of web application is a single-page application
(SPA) that just loads up in the browser and communicates with one or more
APIs—no server-side templating is involved.

In a single-page app, the server renders an HTML page along with links to
include a mountain of JavaScript. The JavaScript loads in the client browser
and then interacts with a RESTful API exposed by the web application in
order to provide the end users with the type of experience they’ve come to
expect from modern web and mobile applications.

Throughout the book so far we’ve seen a number of examples of how to
expose a RESTful API, so it should be a pretty easy exercise to add an API
endpoint to the project we’re building in this chapter. First, let’s create an
API endpoint to use by adding a new controller, the ApiController
(Example 7-5).

Example 7-5. Controllers/ApiController.cs
using Microsoft.AspNetCore.Mvc;
using webapp.Models;

namespace webapp.Controllers
{
 [Route("api/test")]
 public class ApiController : Controller
 {
 [HttpGet]
 public IActionResult GetTest()
 {
 return this.Ok(new StockQuote
 {
 Symbol = "API",
 Price = 9999
 });
 }
 }
}

If you run the application again right now, then you can hit
http://localhost:5000/api/test with your favorite browser and you’ll see a
JSON payload (with lowercased property names by default) that looks like
this:

{
 "symbol" : "API",
 "price" : 9999
}

This represents a typical scenario where our single-page app (whether we’ve
written it in Angular 1, Angular 2, React/Flux, or whatever framework is hip
and trendy at the time) will make JavaScript client calls.

Again, the controller exposing the API should be simple and small. These
API controllers should delegate all the real work to other components and,
ideally, those components, and are delegating to backing services in our
ecosystem.

THE SINGLE RESPONSIBILITY PRINCIPLE AND
SERVICES

We should never need to push a new version of the GUI portion of our
application (the ASP.NET MVC application and the facade API layer that
comes with it) as a result of changing the implementation of some core
piece of business logic or data functionality. Our GUI is a microservice,
and should abide by the same rules about “what is micro?” to which all our
other services adhere.

Now that we’ve got an API to consume, let’s modify our single view so that

it grabs some JavaScript to consume it (Example 7-6).

Example 7-6. Views/Index.cshtml (modified)
<html>
<head>
 <title>Hello world</title>
 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js">
 </script>
 <script src="/wwwroot/Scripts/hello.js"></script>
</head>
<body>
 <h1>Hello World</h1>
 <div>
 <h2>Stock Quote</h2>
 <div>
 Symbol: @Model.Symbol

 Price: $@Model.Price

 </div>
 </div>

 <div>
 <p class="quote-symbol">The Symbol is </p>
 <p class="quote-price">The price is $</p>
 </div>
</body>
</html>

Note that I’ve decided to include JQuery here as well as a new script, hello.js.
We’re going to add this to a new directory called wwwroot by convention.
The goal is to keep the samples simple and focused squarely on our goals for
the book—building services for the cloud. We’re hoping to stay out of the
religious war that is the battle of client-side JavaScript frameworks.

Our hello.js script just waits for the page to be ready and then consumes our
API and appends the result of the data call to the new paragraph elements
we’ve added to the page. The source code for hello.js is shown in Example 7-
7.

Example 7-7. wwwroot/Scripts/hello.js
$(document).ready(function () {
 $.ajax({
 url: "/api/test"
 }).then(function (data) {
 $('.quote-symbol').append(data.symbol);
 $('.quote-price').append(data.price);
 });
});

This is just some straightforward jQuery that makes an Ajax call to our API
endpoint. The object that comes back will have the symbol and price
properties, which we’ll use to append to the new paragraph elements.

The static files, like our image assets, stylesheets, and JavaScript files, are all
made available to browsers through the use of the UseStaticFiles

extension method we used in our Startup class. Without this, attempts to
access files we’ve stored in the wwwroot directory would return a 404 Not
Found error code to the browser.

We’ve established the content root (you can see it show up in the debug
output when you run the application) with the call to SetBasePath in the
Startup class’s constructor, which allows our static files to default to the
wwwroot directory. If we wanted a different relative path we could configure
it as an option in the extension method.

Now when we launch the application, we should get what we’re expecting
when we try and load http://localhost:5000. The output is shown in Figure 7-
2.

Figure 7-2. JavaScript consuming an API endpoint inside a view

Building Cloud-Native Web Applications
In this chapter we’ve spent most of our time and effort going through the
low-level details of starting with a console application in .NET Core and
progressively adding the smallest amount of code possible to iteratively reach

a point where we have built something that resembles an ASP.NET web
application.

Giving you the technical details of building a web application is not the
ultimate goal of this book. The ultimate goal of this book is to teach you how
to use .NET Core to build powerful, fast, highly scalable, resilient
microservices that thrive in the cloud. The remaining chapters of this book
will be dedicated to implementing cloud-native patterns and the concerns of
building applications that are “good citizens” in a cloud-native ecosystem.

Keeping in mind that a web GUI is nothing more than a specialized form of
microservice, there are some guidelines inspired by my Beyond the Twelve-
Factor App mini-book (O’Reilly) that have specific ramifications for
ASP.NET Core developers, and they are outlined in this section for you to
read and swear you will adopt under penalty of bloody, violent death prior to
continuing with the rest of the book.

API First
When building applications that consume services, you cannot build that
application unless you know the public contract for that service’s API. There
are a number of technologies available to us, like API Blueprint, that allow
for the publication and documentation of APIs.

Regardless of the tool you use, adopting the discipline of always starting at
the seams of your services by agreeing on fixed public APIs will do your
organization a ton of good and save you a mountain of headaches in the long
run.

Later in the book we will discuss some techniques for dynamically
discovering the location (URL) of backing services, a problem common to
nearly every organization building microservices.

Configuration
So far we haven’t seen that much configuration other than the occasional
database connection string or URL of a backing service. When we move
toward real production pipelines for continuously delivering microservices in
multiple environments as well as resilient green/blue delivery of applications
visible to the outside world, the need to store our configuration outside the
application becomes a mandate for all teams.

In the mini-book I refer to this need by suggesting that you treat code,
configuration, and credentials as volatile substances that explode when
combined. Later in this book we’ll take a look at a number of tools available
to you for taking configuration data that might otherwise have lived in a
web.config or appsettings.json file and externalizing it somewhere more
secure and robust, ideally in a location that audits all changes and has
multiple layers of security.

http://oreil.ly/2vpkhpY

Logging

In the cloud, no one can hear you log to disk.
—Kevin Hoffman, author

The filesystem on which your application is running in the cloud needs to be
treated as though it is ephemeral. At any time, the disk supporting your
application can be taken away, and that instance of your application torn
down and restarted on another coast, country, or even continent.

As a result, you cannot rely on the existence or examination of physical files
to troubleshoot your application and analyze activity.

Nearly all PaaS solutions advise application developers to log all
informational messages to stdout (or, as .NET developers view it, the
console). The PaaS will then be responsible for collecting those logs and
shipping them off to some endpoint where you can then perform all the
aggregation, historical archiving, and analysis you require.

This essentially simplifies the job of a service and application developer. We
don’t need complex logging systems or file rollover and purging logic
embedded in our applications. We just write to stdout or stderr and leave
the grunt work to some other component of our overall topology.

Session State
Just as we needed to change our mindsets and some of our code and
configuration when we went from running a single instance of our application
to running multiple instances on a physical or virtual “web farm,” so too do
we need to change our thinking when running in the cloud.

This essentially bars us from using in-memory session state for our cloud-
native web applications. We must use an out-of-process provider. Whether
it’s the easy-to-use and favorite wizard target of the SQL Server session state
or a different technology like Redis or Gemfire, the requirement remains the
same: if we’re deploying our application to the cloud, it cannot use in-
memory session state.

Carrying the state discussion even further, we should never store anything in
memory that will last beyond the lifetime of an individual HTTP request. If
something needs to live longer than that, it should probably be the
responsibility of a backing service or an out-of-process cache.

Data Protection
One of the things that is often done implicitly on behalf of our applications is
data protection. Middleware that we use will encrypt and decrypt data for us
without ever really getting in our way.

This works great, and we rarely have to worry about it...until we try and run
our applications in the cloud.

Let’s assume that some bit of state is encrypted by an instance (call it
instance 0) of our application and returned to the client. The next time the
client calls our app, it is directed at instance 1 (a very common round-robin
routing protocol used when instances of an application are sitting behind a
reverse proxy or load balancer in the cloud). The client hands over the
encrypted data, but the instance of our application or service is unable to
decrypt it. Why? What went wrong?

What often happens is that the application, or some piece of middleware
working on behalf of the application, creates a brand new encryption key and
stores it locally, on the local filesystem. Remembering that storing things on
the local filesystem is a quick way to screw up all kinds of cloud-native
behavior, we know that instance 1 will never be able to see data written to the
filesystem of instance 0, even if they happen to be on the same virtual
machine, because PaaS solutions deal almost exclusively with isolated
containers.

So now we need to keep in mind that if we’re going to involve data
protection, we need to apply the same out-of-process mentality to the storage
of keys. We need to use an off-the-shelf key vault, a cloud-based key vault,
or roll our own solution with storage like Redis or another database.

This hammers home one of our key points: that working in a cloud-native
manner is far more of a shift in process and paradigm than it is in simple
tooling.

Backing Services
I’ve said it before and I’ll say it again—we never have the luxury of building
a single service in a vacuum. Up to this point in the book, we’ve been
“discovering” our backing services the hard way, either through hacks,
hardcoding URLs, or sticking them in configuration files.

The location and nature of our backing services should be exposed to us
through the environment, and never through configuration or code (see the
previous comment about credentials, code, and configuration being volatile
substances that explode when combined).

I’ll show you a number of ways to deal with backing service discovery and
monitoring throughout the book, and there’s an upcoming chapter dedicated
entirely to the topic of dynamic service discovery with a Netflix OSS tool
called Eureka.

Environment Parity
At some point in the past, the .NET developer community of which we were
proud members decided that it would be a fantastic thing to allow for the use
of multiple Web.config files, essentially one per environment.

We could have a developer workstation config file, a shared development

environment config file, one for staging, one for quality assurance, one for
user acceptance testing, and finally one or more files for production.

We’d end up with a solution that contained a Web.DEV.config file, plus
Web.QA.config, Web.UAT.config, and so on. This solution was so ingrained
in how everyone did things that Visual Studio’s Solution Explorer even had
native support for this notion, and would collapse all of the environment-
specific configuration files up under a single Web.config file.

This is now considered an anti-pattern. This is not externalizing your
configuration or getting your configuration data from the environment itself.
This is violating the cardinal rule of allowing code, credentials, and
configuration to all touch each other.

The only configuration values that should be checked into source control with
your main application code are values that never change across
environments; values that, when they change, actually warrant the release of
a new version of your application. In most real-world cases, applying this
rule reduces the size of an application’s configuration file to either nothing,
or some really tiny artifact.

In terms of how this impacts the average .NET Core developer, it means that
directly or indirectly, your application must invoke both the
AddCommandLine method and the AddEnvironmentVariables method
during startup.

You also need to store environment-specific configuration data external to the
application, and we will devote an entire upcoming chapter to discussing one
technique for solving this problem.

Port Binding
Port binding refers to your application being a passive participant in the
acquisition of a port on which to run the app. In other words, the PaaS
environment needs to tell your application which port has been reserved for it
within the isolated container currently hosting your application.

This port can (and almost always does) change from one startup to another
for your application. Legacy code like Windows Communication Foundation
port bindings that specifically try and grab actual ports on a virtual or
physical machine are incompatible with the idea of container-based port
mappings.

To support container-assigned ports in any cloud environment, your
application needs to allow for command-line override of the server URLs,
with the server.urls property, as shown here:

dotnet run --server.urls=http://0.0.0.0:90210

PaaS platforms often make available the port to which your application must
bind as an environment variable called PORT. This means your application
will need to ingest environment variables and make them available inside the
IConfiguration instance injected into your app. To do this, you’ll need to
make sure your app invokes both AddCommandLine and
AddEnvironmentVariables.

Whether you’re using docker compose, deploying to Kubernetes, or using
AWS, Azure, or GCP, your app will need to be able to accept whatever port
number has been predetermined for it in order to play nice in the cloud.

Telemetry
Monitoring your application in the cloud is vastly different from how you
monitor it when it is up close and you can attach all kinds of debuggers and
diagnostic equipment to it. This applies to ASP.NET legacy applications as
well as .NET Core services.

I’m not going to recommend which monitoring tools you should use. Rather,
I’ll instead ask that you try and view your applications as satellites that are
going to be launched into orbit when deployed to your favorite PaaS.
Viewing them this way will guide the choices you make for monitoring tools
as well as the type of information you emit to stdout and stderr logs
(knowing you’ll have aggregate access to those via yet another tool, like
Splunk or SumoLogic).

Authentication and Authorization
Securing applications and services in the cloud shouldn’t be all that different
from securing legacy web applications running in your own data centers.
Unfortunately, the luxuries afforded to us by running applications that we
know are physically close to our center of operations let us take a number of
shortcuts.

The easiest shortcut for intranet applications is to simply embrace Windows
authentication and pull the user’s information from a Kerberos-based browser
identity challenge. This isn’t going to work when our services are running on
an ephemeral operating system that is probably not Windows (since we’re
using .NET Core) and, even if it was Windows, isn’t joined to a particular
workgroup or domain that would allow for normal Windows authentication
to work.

Fear not; there is an entire forthcoming chapter dedicated to the topic of
securing web applications and microservices in the cloud, so we’ll have
plenty of examples on how to solve this problem.

Summary

In this chapter we learned that an ASP.NET Core MVC application is really
nothing more than a microservice with a specialized form of middleware that
knows how to render templated HTML on endpoints in addition to simple
text and JSON endpoints.

The purpose behind this wasn’t to teach you how to build fancy web
applications; it was instead to show you how to progress from a console
application to a web application without the use of a wizard or special IDE-
based template. Knowing how to add the necessary dependencies,
configuration, and middleware really illustrates how little difference there is
between a web application and a microservice.

We also discussed a number of problems and issues inherent in building apps
and services destined for the cloud. At this point you should be ready for the
rest of the book, which will immediately dive into the deep end of the cloud-
native pool to start addressing the problems that arise as part of building an
entire ecosystem of services rather than simply building a single service in
isolation.

Chapter 8. Service Discovery

Up to this point in the book, we have discussed the concepts and code
required to build basic microservices, configure and consume backing
services, talk to databases, and build web applications. We’ve even spent a
great deal of time and effort discussing the Event Sourcing and CQRS
patterns and how they can be applied to build massive-scale applications out
of a suite of related microservices.

In this chapter we’re going to continue to build on the idea that we don’t
simply build single services in a vacuum; that everything we build is
consumed by or consumes other services.

To keep the configuration and management of large numbers of services as
simple as possible, I’m going to introduce the concept of service discovery.

Refresher on Cloud-Native Factors
Before we get into the details of service discovery, I thought it would be
worth a quick refresher on some of the original twelve factors of cloud-native
applications that are important and relevant to the sample we’ll be building:
external configuration and backing services.

External Configuration
As discussed throughout this book and on the original Twelve-Factor App
website, properly handling configuration is key to building applications that
thrive in the cloud.

Let’s start with a review of what it looks like when we aren’t properly
externalizing our configuration. How many times have you seen (or written)
code that looks like this in your application?

using (var httpClient = new HttpClient())
{
 httpClient.BaseAddress = new Uri("http://foo.bar/baz");
 ...
}

The address of the backing service is hardcoded in your application code.
When you commit this to your version-control system, the URL is sitting
there, unaltered. This is even more problematic if you’ve embedded
credentials in the URL. This value can’t easily change from one environment
to the next, and you have to recompile every time you decide to change
hostnames.

When people see how problematic this is, they often move the URL out of

https://12factor.net/config

the C# code and into a web.config file or a web.<environment>.config
environment-specific configuration file. These are then checked into revision
control repositories, and we naively think our problems have been solved.

Unfortunately, any configuration checked into source control might as well
be hard-coded. You should consider any values sitting in a configuration file
(web.config, appsettings.json, whatever) as part of your code. As such,
credentials and URLs and other environment-specific settings
should never be included in these files.

The next logical step in this evolutionary process is to move the URLs and
credentials out of configuration files, out of C# files, and into environment
variables. Written this way, our code makes it obvious what configuration
parameters it needs in order to function, but it leaves the responsibility of
supplying those values up to the environment.

Whether we’re using raw virtual machines, Docker images, or a higher-level
PaaS, we should always have ways to securely inject environment variables
into our applications.

Backing Services
I’ve harped on this concept enough in this book that you’re probably getting
sick of seeing it. It is actually worth repeating this point, though everything
your application needs must be treated as though it is a backing service.

Whether you need binary storage for files, a database, another web service, a
queue service, or anything else, the thing you need should be loosely coupled,
and configured from the environment.

There are two ways to bind a resource that is a backing service: static binding
and dynamic (runtime) binding. So far in this book we’ve only discussed
static binding.

Statically bound resources
Statically bound resources are the ones we’ve been using in all of our sample
code up to this point. While we’ve been careful to allow for environment-
based replacement of default values to connect to databases, web services,
and queuing services, this binding is fixed by the environment.

Whether defined by automation tools or DevOps personnel, the binding
between the service and its resource is persistent and made available to the
application at start time, and it does not change.

While this certainly satisfies the external configuration requirement for
cloud-native applications, it might not be flexible enough for your needs.
Maybe you want something a little more dynamic and powerful.

Dynamically bound resources
A dynamically bound resource is one where the binding occurs at runtime.

Moreover, this binding is not fixed and can actually change at runtime
between requests to the application.

In addition to freeing up the developers of the application from a little bit of
complexity, it also allows for even looser coupling. This dynamic, loose
runtime coupling between apps and bound resources facilitates more
advanced functionality like failover, load balancing, fault tolerance—all with
no visible impact to the application code.

Dynamic resource binding will be the focus of the rest of this chapter.

DYNAMIC BINDING MAY REQUIRE ONE STATIC
BINDING

Dynamic resource binding is often managed through a broker or some
central point of management that keeps a catalog of services. For this to
work, your application needs to know how to find the broker/manager. This
is usually done, oddly enough, through a static resource binding. It is for
this reason and additional complexity that you should evaluate the number
of services you have and how much you need the dynamic binding before
you implement discovery.

Introducing Netflix Eureka
In order to discover services at runtime, you’re going to need something that
serves as a service registry; a central catalog of services. This registry and the
features it offers can vary from product to product, but by and large most
service registries provide at the basic level a list of services, metadata about
the services, and their endpoint(s). You may also be able to get status or
heartbeat information to help you determine if a service that claims to be
online really is online.

Netflix’s infrastructure is predominantly run on top of Amazon Web
Services. As you might imagine from the size and complexity of the product
Netflix offers and the sheer volume of concurrently connected customers,
Netflix’s microservice ecosystem is vast, to say the least.

While AWS has plenty of functionality available for load balancing at the
edge, and it has a naming service (Route 53) that can function as a full DNS
service, neither of these services are entirely appropriate for mid-tier service
naming, registry, and load balancing.

With Eureka, Netflix built its own internal product to manage the service
registry that allowed for failover and load balancing. It’s still using a far more
advanced version of this product internally, but to our gain and enjoyment,
Netflix has open sourced the core of its functionality. You can find this code
on GitHub.

From a developer’s perspective, your service code interacts with a Eureka

https://github.com/Netflix/eureka

server by registering itself when it starts up. If you need to discover and
consume other backing services, then you can ask the Eureka server for some
or all of the service registry. Your service also emits a heartbeat to the
Eureka service at some interval (usually 30 seconds). If your service fails to
send a heartbeat to Eureka after some number of intervals, it will be taken out
of the registry.

If there are multiple instances of your service running, and consumers of your
service are talking to Eureka to find your service, then they will stop getting
the URL of the service that was taken out of the registry due to heartbeat
failure and will simply refer to the service instances that are up and running.

Figure 8-1, available on the Eureka at a Glance documentation page on
GitHub, illustrates how Netflix has deployed Eureka and how it expects it to
be deployed in a typical organization.

Figure 8-1. Typical Eureka deployment within AWS

Eureka is a powerful product with a lot of features that we simply don’t have
the room to discuss at length in this book. I encourage you to read up on the
documentation and more advanced features if you think your project or
organization might benefit from these features.

Eureka is also not the only player in the service registry and discovery game.
There are a number of other companies and products available that provide
everything from the bare-bones service registry to more full-featured registry,
discovery, and fault-tolerance functionality.

Just a few of the more popular products are:

etcd

Pronounced “etsee-dee,” etcd is a low-level distributed key-value store

https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance
https://coreos.com/etcd

accessible via HTTP. As such, you actually need to bolt on additional
tools to make it serve as a service discovery and registry mechanism.
You’ll often see tools like etcd combined with registrator and confd
to bring them up to par with other products like Consul and Eureka.

Consul

Consul is full-featured service discovery tool that and also provides a
key-value store for configuration. It uses a gossip protocol to form
clusters.

Marathon

Marathon is a full-fledged container orchestration system for Mesos and
DC/OS. As such, it does a lot more than just service discovery. Service
discovery is more like a free benefit you get by using Marathon as your
container orchestration layer.

ZooKeeper

Originally born of the Hadoop project, ZooKeeper is one of the oldest of
this family of products and is mature and stable, though many argue it is
showing its age and you may be better off with other products.

If you want to try out Eureka (and use it for the code later in this chapter)
without the commitment of having to build it from source or install a full
copy on a server, you can just run it from a docker hub image, as shown in
the following command:

$ docker run -p 8080:8080 -d --name eureka \
 -d netflixoss/eureka:1.3.1

This will run a default, nonproduction copy of the server in your Docker
virtual machine and map port 8080 from inside the container to your local
machine. This means, assuming port 8080 is available, that when you
statically bind an application to this Eureka server, you’ll use the URL
http://localhost:8080/eureka.

Discovering and Advertising ASP.NET Core
Services
Now that we’ve spent some time discussing the concepts and real-world
scenarios that drive the need for service discovery, let’s take a look at some
sample code that communicates with a Eureka server to do just that.

In our somewhat contrived sample, we’re going to be building a suite of
services that support an ecommerce application. The edge service is
responsible for exposing a product catalog. This catalog has standard API
endpoints for exposing a list of products as well as product details. There is

https://www.consul.io
https://mesosphere.github.io/marathon/
https://zookeeper.apache.org

also an inventory service that is responsible for exposing the real-time status
of physical inventory. The product service will need to discover the inventory
service and make calls to it in order to return enriched data when asked for
product details.

To keep things simple, our sample has just these two services. In a real, large-
scale application that supports mobile clients, and internal customers,
communicates with multiple third-party vendors, and orchestrates multiple
data flows, you could see communication between dozens or hundreds of
services. As you saw in Netflix’s diagram earlier in the chapter, the need to
provide high availability, failover, and load balancing across regions and
within regions is satisfied by multiple installations of Eureka.

Registering a Service
The first part of our sample is the inventory service, a service that needs to be
dynamically discovered at runtime to provide real-time inventory status.

If you felt like it, you could communicate directly with the Eureka API
yourself as it’s just a set of RESTful API calls. However, it’s always good to
look around and see if someone else is actively maintaining a solution to the
problem at hand. This saves you the trouble of reinventing the wheel.

In our case, the Steeltoe project maintains a number of client libraries for
Netflix OSS projects, including Eureka. While the samples throughout this
chapter will rely on the Steeltoe discovery client library, I strongly encourage
you to go looking for other libraries as you read this. If you find one that suits
your needs better, by all means use that one. At the time this book was
written, Steeltoe was basically the only game in town for .NET Core
discovery clients.

The Steeltoe library allows us to supply some configuration information
using the standard .NET Core configuration system. The key things that we
need to declare are the name of our application (this is how it will be
identified in the registry) and the URL pointing to the Eureka server, as
shown here:

{
 "spring": {
 "application": {
 "name": "inventory"
 }
 },
 "eureka": {
 "client": {
 "serviceUrl": "http://localhost:8080/eureka/",
 "shouldRegisterWithEureka": true,
 "shouldFetchRegistry": false,
 "validate_certificates": false
 },
 "instance": {

https://github.com/steeltoeoss

 "port": 5000
 }
 }
}

Another key part of this configuration is the value
shouldRegisterWithEureka. If we want our service to be discoverable then
we must choose true here. The next setting, shouldFetchRegistry,
indicates whether we want to discover other services.

Put another way, we need to indicate whether we’re consuming registry
information or producing it—or both. Our inventory service wants to be
discovered and does not need to discover anything else; therefore it will not
fetch the registry, but it will register itself.

We’ll build our configuration the same way we always do, ensuring that we
load the appsettings.json file with our discovery client configuration:

var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false,
 reloadOnChange: true)
 .AddEnvironmentVariables();

Configuration = builder.Build();

Then we’ll use Steeltoe’s AddDiscoveryClient extension method in our
Startup class’s ConfigureServices method:

services.AddDiscoveryClient(Configuration);

Finally, we just need to add a call to UseDiscoveryClient in our Configure
method:

app.UseDiscoveryClient();

That’s it! Since we’re not actually consuming any services from inside the
inventory service, we’re pretty much done. Obviously we need controllers
and an API and to return some fabricated data, but we’ve covered all of those
techniques extensively throughout the book. If you want to look at the rest of
the code, just grab the ecommerce-inventory repository from the book’s
GitHub.

We will come back to this service later, after we’ve created our next service.

Discovering and Consuming Services
With a service ready to be discovered, let’s turn our attention to the next

https://github.com/microservices-aspnetcore/ecommerce-inventory

service we’re going to build: the catalog. This service exposes a product
catalog and then augments product detail requests by querying the inventory
service.

The key difference between this service and the others we’ve built so far is
that this one will dynamically discover the URL of the catalog service at
runtime.

We’ll configure the client almost the same way we configured the inventory
service:

 "spring": {
 "application": {
 "name": "catalog"
 }
 },
 "eureka": {
 "client": {
 "serviceUrl": "http://localhost:8080/eureka/",
 "shouldRegisterWithEureka": false,
 "shouldFetchRegistry": true,
 "validate_certificates": false
 }
 }

The difference is that the catalog service doesn’t need to register (since it
does not need to be discovered), and it should fetch the registry so it can
discover the inventory service.

Your patience going through this chapter is about to be rewarded. Take a
look at the code for the HttpInventoryClient class, the class responsible
for consuming the inventory service:

using StatlerWaldorfCorp.EcommerceCatalog.Models;
using Steeltoe.Discovery.Client;
using System.Threading.Tasks;
using System.Net.Http;
using Newtonsoft.Json;

namespace StatlerWaldorfCorp.EcommerceCatalog.InventoryClient
{
 public class HttpInventoryClient : IInventoryClient
 {
 private DiscoveryHttpClientHandler handler;
 private const string INVENTORYSERVICE_URL_BASE =
 "http://inventory/api/skustatus/";

 public HttpInventoryClient(IDiscoveryClient client)
 {
 this.handler = new DiscoveryHttpClientHandler(client);
 }

 private HttpClient CreateHttpClient()
 {

 return new HttpClient(this.handler, false);
 }

 public async Task<StockStatus> GetStockStatusAsync(int sku) {
 StockStatus stockStatus = null;

 using (HttpClient client = this.CreateHttpClient())
 {
 var result =
 await client.GetStringAsync(
 INVENTORYSERVICE_URL_BASE + sku.ToString());
 stockStatus =
 JsonConvert.DeserializeObject<StockStatus>(
 result);
 }

 return stockStatus;
 }
 }
}

The .NET Core HttpClient class has a variant of its constructor that lets you
pass in an instance of your own HttpHandler. The
DiscoveryHttpClientHandler provided by Steeltoe is responsible for
swapping the service name in your URL with the actual, runtime-discovered
URL. This is what allows our code to rely on a URL like
http://inventory/api/skustatus, which can then be converted by
Steeltoe and Eureka to something like
http://inventory.myapps.mydomain.com/api/skustatus.

Check out the full sample code for the catalog service and the inventory
service.

To run the inventory service, the catalog service, and Eureka all at the same
time on your computer, use the following steps.

First, start the Eureka server:

$ docker run -p 8080:8080 -d --name eureka \
 -d netflixoss/eureka:1.3.1

Then start the inventory service on port 5001:

$ cd <inventory service>
$ dotnet run --server.urls=http://0.0.0.0:5001

Depending on your computer and what’s installed, you might see an error
message like this:

 Steeltoe.Discovery.Eureka.DiscoveryClient[0]

http://bit.ly/2vlcaqV
http://bit.ly/2wjtlh8

 Register failed, Exception:
System.PlatformNotSupportedException: The libcurl library in use
(7.51.0)
and its SSL backend ("SecureTransport")
do not support custom handling of certificates.
A libcurl built with OpenSSL is required.

If this happens and you cannot update your version of curl with openssl
and are still having trouble on your Mac, then you can just run the Linux
version of the inventory service right from the book’s published docker hub
image.

This particular problem adds ammunition to my argument against tightly
coupled service discovery libraries; I will discuss that in more depth in the
next section of the chapter.

To run the service in Docker, use the following docker run command:

$ docker run -p 5001:5001 -e PORT=5001 \
 -e EUREKA__CLIENT__SERVICEURL=http://192.168.0.33:8080/eureka/ \
 dotnetcoreservices/ecommerce-inventory

When you provide the configuration overrides here, make sure you use your
actual machine’s IP address. When running inside the Docker image,
referring to localhost doesn’t do anyone any good.

And finally, start the catalog service on port 5001:

$ cd <catalog service>
$ dotnet run --server.urls=http://0.0.0.0:5002

Now you can issue the appropriate GET requests to the product API for the
product list and product details:

GET http://localhost:5002/api/products

Retrieve product list

GET http://localhost:5002/api/products/{id}

Retrieve product details, which will invoke the inventory service, whose
URL is dynamically discovered via Eureka

DNS and Platform Supported Discovery
This chapter has basically showed you that through the use of an open source
server product and a few client libraries, you can write code to consume
URLs in the format http://service/api and assume that the library code
will swap the word service for a fully qualified domain name or an IP
address.

The main problem I have with this pattern is that it has the side effect of
tightly coupling application code with a particular server and client
implementation of service discovery. For example, using Eureka (including
the helper classes that come with Steeltoe), there’s still code that has to
manually replace logical service descriptors (e.g., inventory) with IP
addresses or fully qualified domain names like
inventory.mycluster.mycorp.com.

Service discovery, registration, and fault detection are all things that I feel
should be nonfunctional requirements. As such, application code shouldn’t
contain anything that tightly couples it to some implementation of service
discovery.

Obviously, reality and pragmatism must prevail and the decision is ultimately
yours, but there are ways to do service discovery without incurring some of
the baggage you might get from diving into the deep end with Netflix OSS
and Eureka.

Platforms like Kubernetes have plug-ins like SkyDNS that will automatically
synchronize information about deployed and running services with a
network-local DNS table. This means that without any client or server
dependencies, you can simply consume a service at a URL
like http://inventory and your client code will automatically resolve to an
appropriate IP address.

When evaluating how you’re going to do discovery, you should see if there
might be a way to accomplish it without creating a tight coupling or
dependency in your application code.

Summary
If you’re building microservices today, then you’re likely not building just
one that runs in isolation. Figuring out a reliable way of allowing one service
to be aware of the URLs and status of all the services on which it depends is
no small task. If the idea of dynamic runtime service discovery and of using
such discovery to support failover and fault tolerance appeals to you, then a
registry like Eureka might be for you.

Keep in mind, though, that a dynamic service registry like Eureka is just one
tool among many in the vast arsenal at our disposal these days for building
service ecosystems. Hopefully this chapter will have given you an idea of
some of the possibilities available and provided enough details for you to
decide whether you’re going to use discovery with your project.

https://github.com/skynetservices/skydns

Chapter 9. Configuring
Microservice Ecosystems

Configuration is one of the areas of architecture and implementation that are
often overlooked by product teams. A lot of teams just assume that the legacy
paradigms for configuring applications will work fine in the cloud. Further,
it’s easy to assume that you’ll “just” inject all configuration through
environment variables.

Configuration in a microservice ecosystem requires attention to a number of
other factors, including:

Securing read and write access to configuration values

Ensuring that an audit trail of value changes is available

Resilience and reliability of the source of configuration information

Support for large and complex configuration information likely too
burdensome to cram into a handful of environment variables

Determining whether your application needs to respond to live updates or
real-time changes in configuration values, and if so, how to provision for
that

Ability to support things like feature flags and complex hierarchies of
settings

Possibly supporting the storage and retrieval of secure (encrypted)
information or the encryption keys themselves

Not every team has to worry about all of these things, but this is just a hint as
to the complexity of configuration management lying below the surface
waiting to strike those who underestimate this problem.

This chapter will begin by talking about the mechanics of using environment
variables in an application and illustrate Docker’s support for this. Next,
we’ll explore a configuration server product from the Netflix OSS stack.
Finally, we’ll dive deeper into etcd, an open source distributed key-value
store often used for configuration management.

Using Environment Variables with Docker
It is actually fairly easy to work with environment variables and Docker. This
book has harped on this point a number of times. Cloud-native applications
need to be able to accept configuration through environment variables. While
you might accept more robust configuration mechanisms (we’ll discuss those

shortly), environment variables supplied by the platform on which you
deploy should the minimal level of configuration support your applications
have.

Even if you have a default set of configuration available, you should figure
out which settings can be overridden by environment variables at application
startup.

You can explicitly set configuration values using name-value pairs as shown
in the following command:

$ sudo docker run -e SOME_VAR='foo' \
 -e PASSWORD='foo' \
 -e USER='bar' \
 -e DB_NAME='mydb' \
 -p 3000:3000 \
 --name container_name microservices-aspnetcore/image:tag

Or, if you want to avoid passing explicit values on the command line, you
can forward environment variables from the launching environment into the
container by simply not passing values or using the equals sign, as shown
here:

$ docker run -e PORT -e CLIENTSECRET -e CLIENTKEY [...]

This will take the PORT, CLIENTSECRET, and CLIENTKEY environment
variables from the shell in which the command was run and pass their values
into the Docker container without exposing their values on the command line,
preventing a potential security vulnerability or leaking of confidential
information.

If you have a large number of environment variables to pass into your
container, you can give the docker command the name of a file that contains
name-value pairs:

$ docker run --env-file ./myenv.file [...]

If you’re running a higher-level container orchestration tool like Kubernetes,
then you will have access to more elegant ways to manage your environment
variables and how they get injected into your containers. With Kubernetes,
you can use a concept called ConfigMap to make external configuration
values available to your containers without having to create complex launch
commands or manage bloated start scripts.

A deep dive into container orchestration systems is beyond the scope of this
book, but this should reinforce the idea that no matter what your ultimate
deployment target is going to be, all of them should have some means of

injecting environment variables so your application must know how to accept
those values.

By supporting environment variable injection and sticking with Docker as
your unit of immutable artifact deployment, you’re well positioned to run in
any number of environments without becoming too tightly coupled to any
one in particular.

Using Spring Cloud Config Server
One of the biggest difficulties surrounding configuration management for
services lies not in the mechanics of injecting values into environment
variables, but in the day-to-day maintenance of the values themselves.

How do we know when the ultimate source of truth for the configuration
values has changed? How do we know who changed them, and how do we
implement security controls to prevent these values from being changed by
unauthorized personnel and keep the values hidden from those without
appropriate access?

Further, if values do change, how do we go back and see what the previous
values were? If you’re thinking that we could use a solution like a Git
repository to manage configuration values, then you’re not alone.

The folks who built Spring Cloud Config Server (SCCS) had the same idea.
Why reinvent the wheel (security, version control, auditing, etc.) when Git
has already solved the problem? Instead they built a service that exposes the
values contained in a Git repository through a RESTful API.

This API exposes URLs in the following format:

/{application}/{profile}[/{label}]
/{application}-{profile}.yml
/{label}/{application}-{profile}.yml
/{application}-{profile}.properties
/{label}/{application}-{profile}.properties

If your application is named foo, then all of the {application} segments in
the preceding template would be replaced with foo. To see the configuration
values available in the development profile (environment), you would issue a
GET request to the /foo/development URL.

To find out more about Spring Cloud Config Server, you can start with the
documentation.

While the documentation and code are targeted at Java developers, there are
plenty of other clients that can talk to SCCS, including a .NET Core client
that is part of the Steeltoe project (discussed in the previous chapter).

To add client-side support for SCCS to our .NET Core application, we just
need to add a reference to

http://bit.ly/2wkeZNF

the Steeltoe.Extensions.Configuration.ConfigServer NuGet package.

Next, we need to configure our application so it can get the right settings
from the right place. This means we need to define a Spring application name
and give the URL to the configuration server in our appsettings.json file
(remember every setting in this file can be overridden with environment
variables):

{
 "spring": {
 "application": {
 "name": "foo"
 },
 "cloud": {
 "config": {
 "uri": "http://localhost:8888"
 }
 }
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 }
}

With this configuration set up, our Startup method looks almost exactly like
it does in most of our other applications:

public Startup(IHostingEnvironment env)
{
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false,
 reloadOnChange: false)
 .AddEnvironmentVariables()
 .AddConfigServer(env);

 Configuration = builder.Build();
}

The next changes required to add support for the configuration server come
in the ConfigureServices method. First, we call AddConfigServer, which
enables the client through dependency injection. Next, we call
Configure with a generic type parameter. This allows us to capture the
application’s settings as retrieved from the server in an IOptionsSnapshot,
which is then available for injection into our controllers and other code:

public void ConfigureServices(IServiceCollection services)

{
 services.AddConfigServer(Configuration);

 services.AddMvc();

 services.Configure<ConfigServerData>(Configuration);
}

The class we’re using here to hold the data from the config server is modeled
after the sample configuration that can be found in the Spring Cloud server
sample repository:

public class ConfigServerData
{
 public string Bar { get; set; }
 public string Foo { get; set; }
 public Info Info { get; set; }

}

public class Info
{
 public string Description { get; set; }
 public string Url { get; set; }
}

We can then inject our C# class as well as the configuration server client
settings if we need them:

public class MyController : Controller
{
 private IOptionsSnapshot<ConfigServerData>
 MyConfiguration { get; set; }

 private ConfigServerClientSettingsOptions
 ConfigServerClientSettingsOptions { get; set; }

 public MyController(IOptionsSnapShot<ConfigServerData> opts,
 IOptions<ConfigServerClientSettingsOptions>
 clientOpts)
 {
 ...
 }

}

With this setup in place, and a running configuration server, the opts
variable in the constructor will contain all of the relevant configuration for
our application.

To run the config server, we can build and launch the code from GitHub if
we want, but not all of us have a functioning Java/Maven development

https://github.com/spring-cloud-samples/config-repo

environment up and running (and some of us simply don’t want a Java
environment). The easiest way to start a configuration server is to just launch
it from a Docker image:

$ docker run -p 8888:8888 \
 -e SPRING_CLOUD_CONFIG_SERVER_GIT_URI=https://github.com/spring-cloud-
samples/ \
 config-repohyness/spring-cloud-config-server

This will start the server and point it at the sample GitHub repo mentioned
earlier to obtain the “foo” application’s configuration properties. If the server
is running properly, you should get some meaningful information from the
following command:

$ curl http://localhost:8888/foo/development

With a config server Docker image running locally and the C# code
illustrated in this section of the chapter, you should be able to play with
exposing external configuration data to your .NET Core microservices.

Before continuing on to the next chapter, you should experiment with the
Steeltoe configuration server client sample and then take stock of the options
available to you for externalizing configuration.

Configuring Microservices with etcd
Not everyone wants to use the Netflix OSS stack, for a number of reasons.
For one, it is noticeably Java-heavy—all of the advanced development in that
stack occurs in Java first, and all of the other clients (including C#) are
delayed ports of the original. Some developers are fine with this; others may
not like it.

Others may also take umbrage with the size of the Spring Cloud Config
Server. It is a Spring boot application but it consumes a pretty hefty chunk of
memory, and if you’re running multiple instances of it to ensure resilience
and to prevent any of your applications from failing to obtain configuration,
you could end up consuming a lot of the underlying virtual resources just to
support configuration.

There is no end to the number of alternatives to Spring Cloud Config Server,
but one very popular alternative is etcd. As mentioned briefly in the previous
chapter, etcd is a lightweight, distributed key-value store.

This is where you put the most critical information required to support a
distributed system. etcd is a clustered product that uses the Raft consensus
algorithm to communicate with peers. There are more than 500 projects on
GitHub that rely on etcd. One of the most common use cases for etcd is the

http://bit.ly/2u0WUzF
https://raft.github.io/

storage and retrieval of configuration information and feature flags.

To get started with etcd, check out the documentation. You can install a
local version of it (it really is a small-footprint server) or you can run it from
a Docker image.

Another option is to use a cloud-hosted version. For the sample in this
chapter, I went over to compose.io and signed up for a free trial hosting of
etcd (you will have to supply a credit card, but they won’t charge you if you
cancel within the trial period).

To work with the key-value hierarchy in etcd that resembles a simple folder
structure, you’re going to need the etcdctl command-line utility. This
comes for free when you install etcd. On a Mac, you can just brew install
etcd and you’ll have access to the tool. Check the documentation for
Windows and Linux instructions.

The etcdctl command requires you to pass the addresses of the cluster peers
as well as the username and password and other options every time you run it.
To make this far less annoying, I created an alias as follows:

$ alias e='etcdctl --no-sync \
 --peers https://portal1934-21.euphoric-etcd-
31.host.host.composedb.com:17174,\
 https://portal2016-22.euphoric-etcd-31.host.host.composedb.com:17174
\
 -u root:password'

You’ll want to change root:password to something that actually applies to
your installation, regardless of whether you’re running locally or cloud-
hosted.

Now that you’ve got the alias configured and you have access to a running
copy of etcd, you can issue some basic commands:

mk

Creates a key and can optionally create directories if you define a deep
path for the key.

set

Sets a key’s value.

rm

Removes a key.

ls

Queries for a list of subkeys below the parent. In keeping with the
filesystem analogy, this works like listing the files in a directory.

https://coreos.com/etcd/
http://compose.io

update

Updates a key value.

watch

Watches a key for changes to its value.

Armed with a command-line utility, let’s issue a few commands:

$ e ls /
$ e set myapp/hello world
world
$ e set myapp/rate 12.5
12.5
$ e ls
/myapp
$ e ls /myapp
/myapp/hello
/myapp/rate
$ e get /myapp/rate
12.5

This session first examined the root and saw that there was nothing there.
Then, the myapp/hello key was created with the value world and the
myapp/rate key was created with the value 12.5. This implicitly created
/myapp as a parent key/directory. Because of its status as a parent, it didn’t
have a value.

After running these commands, I refreshed my fancy dashboard on
compose.io’s website and saw the newly created keys and their values, as
shown in Figure 9-1.

Figure 9-1. Compose.io’s etcd dashboard

This is great—we have a configuration server and it has data ready for us to
consume—but how are we going to consume it? To do that we’re going to
create a custom ASP.NET configuration provider.

Creating an etcd Configuration Provider
Throughout the book we’ve gone through a number of different ways to

consume the ASP.NET configuration system. You’ve seen to how add
multiple different configuration sources with the AddJsonFile and
AddEnvironmentVariables methods.

Our goal now is to add an AddEtcdConfiguration method that plugs into a
running etcd server and grabs values that appear as though they are a native
part of the ASP.NET configuration system.

Creating a configuration source
The first thing we need to do is add a configuration source. The job of a
configuration source is to create an instance of a configuration builder.
Thankfully these are pretty simple interfaces and there’s already a
starter ConfigurationBuilder class for us to build upon.

Here’s the new configuration source:

using System;
using Microsoft.Extensions.Configuration;

namespace ConfigClient
{
 public class EtcdConfigurationSource : IConfigurationSource
 {
 public EtcdConnectionOptions Options { get; set; }

 public EtcdConfigurationSource(
 EtcdConnectionOptions options)
 {
 this.Options = options;
 }

 public IConfigurationProvider Build(
 IConfigurationBuilder builder)
 {
 return new EtcdConfigurationProvider(this);
 }
 }
}

There is some basic amount of information that we’ll need in order to
communicate with etcd. You’ll recognize this information as mostly the
same values we supplied to the CLI earlier:

public class EtcdConnectionOptions
{
 public string[] Urls { get; set; }
 public string Username { get; set; }
 public string Password { get; set; }
 public string RootKey { get; set; }
}

Creating a configuration builder

Next we can create a configuration builder. The base class from which we’ll
inherit maintains a protected dictionary called Data that stores simple key-
value pairs. This is convenient for a sample, so we’ll use that now. More
advanced configuration providers for etcd would probably want the
flexibility of maybe splitting keys on the / character and building a hierarchy
of configuration sections, so /myapp/rate would
become myapp:rate (nested sections) rather than a single section
named /myapp/rate:

using System;
using System.Collections.Generic;
using EtcdNet;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Primitives;

namespace ConfigClient
{
 public class EtcdConfigurationProvider : ConfigurationProvider
 {
 private EtcdConfigurationSource source;

 public EtcdConfigurationProvider(
 EtcdConfigurationSource source)
 {
 this.source = source;
 }

 public override void Load()
 {
 EtcdClientOpitions options = new EtcdClientOpitions()
 {
 Urls = source.Options.Urls,
 Username = source.Options.Username,
 Password = source.Options.Password,
 UseProxy = false,
 IgnoreCertificateError = true
 };
 EtcdClient etcdClient = new EtcdClient(options);
 try
 {
 EtcdResponse resp =
 etcdClient.GetNodeAsync(source.Options.RootKey,
 recursive: true, sorted: true).Result;
 if (resp.Node.Nodes != null)
 {
 foreach (var node in resp.Node.Nodes)
 {
 // child node
 Data[node.Key] = node.Value;
 }
 }
 }
 catch (EtcdCommonException.KeyNotFound)
 {

 // key does not
 Console.WriteLine("key not found exception");
 }
 }
 }
}

The important part of this code is highlighted in bold. It calls GetNodeAsync
and then iterates over a single level of child nodes. A production-grade
library might recursively sift through an entire tree until it had fetched all
values. Each key-value pair retrieved from etcd is simply added to the
protected Data member.

This code uses an open source module available on NuGet called EtcdNet.
At the time I wrote this book, this was the most stable and reliable of the few
I could find that were compatible with .NET Core.

With a simple extension method like this:

 public static class EtcdStaticExtensions
 {
 public static IConfigurationBuilder AddEtcdConfiguration(
 this IConfigurationBuilder builder,
 EtcdConnectionOptions connectionOptions)
 {
 return builder.Add(
 new EtcdConfigurationSource(connectionOptions));
 }
 }

We can add etcd as a configuration source in our Startup class:

 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false,
reloadOnChange: true)
 .AddEtcdConfiguration(new EtcdConnectionOptions
 {
 Urls = new string[] {
 "https://(host1):17174",
 "https://(host2):17174"
 },
 Username = "root",
 Password = "(hidden)",
 RootKey = "/myapp"
 })
 .AddEnvironmentVariables();
 Configuration = builder.Build();
}

For obvious reasons, I’ve snipped out the root password for the instance.
Yours will vary depending on how you installed etcd or where you’re
hosting it. If you end up going this route, you’ll probably want to “bootstrap”
the connection information to the config server with environment variables
containing the peer URLs, the username, and the password.

Using the etcd configuration values
There’s just one last thing to do, and that’s make sure that our application is
aware of the values we’re getting from the configuration source. To do that,
we can add a somewhat dirty hack to the “values” controller you get from
the webapi scaffolding:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using EtcdNet;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Configuration;

namespace ConfigClient.Controllers
{
 [Route("api/[controller]")]
 public class ValuesController : Controller
 {
 private ILogger logger;

 public ValuesController(ILogger<ValuesController> logger)
 {
 this.logger = logger;
 }

 // GET api/values
 [HttpGet]
 public IEnumerable<string> Get()
 {
 List<string> values = new List<string>();
 values.Add(
 Startup.Configuration.GetSection("/myapp/hello").Value);
 values.Add(
 Startup.Configuration.GetSection("/myapp/rate").Value);

 return values;
 }

 // ... snip ...
 }
}

To keep the code listing down I snipped out the rest of the boilerplate from
the values controller. With a reference to EtcdNet in the project’s .csproj file,
you can dotnet restore and then dotnet run the application.

Hitting the http://localhost:3000/api/values endpoint now returns
these values:

["world","12.5"]

These are the exact values that we added to our etcd server earlier in the
section. With just a handful of lines of code we were able to add a rock-solid,
remote configuration server as a standards-conforming ASP.NET
configuration source!

Summary
There are a million different ways to solve the problem of configuring
microservices, and this chapter only showed you a small sample of these.
While you’re free to chose whichever you like, keep a close eye on how
you’re going to maintain your configuration after your application is up and
running in production. Do you need audit controls, security, revision history,
and other Git-like features?

Your platform might come with its own way of helping you inject and
manage configuration, but the single most important lesson to learn from this
chapter is that every single application and service you build must be able to
accept external configuration through environment variables, and anything
more complicated than a handful of environment variables is likely going to
require some kind of external, out-of-process configuration management
service.

Chapter 10. Securing
Applications and Microservices

Developers’ perception of security concerns can range from true love to pure
evil. In some organizations, security is a checklist that happens after an
application has been developed, and in others it is such a burden that it often
doesn’t get done properly or is simply skipped altogether.

When building applications for the cloud—applications built around the
assumption that they might not run on infrastructure you own—security
cannot be an afterthought or some mindless checkbox on a to-do list. Security
must be a first-class citizen in all development efforts for user-facing
applications and services alike.

In this chapter we’ll discuss security topics as they relate to cloud-native
applications and develop samples that illustrate some ways we can secure our
ASP.NET Core web applications and microservices.

Security in the Cloud
Securing applications that run at scale in the cloud is not as straightforward as
it is when you deploy applications to a local data center where you have full
control over the operating system and the installation environment.

In this section, we’ll cover some of the main issues that developers often run
into when trying to adapt their existing ASP.NET skills or legacy codebases
to running securely in the cloud. Some of these problems might be obvious
(like the lack of Windows authentication), whereas others are more subtle.

Intranet Applications
Intranet applications are everywhere and are often as complex (or more so!)
than customer-facing applications. Companies build these support or line-of-
business applications all the time, but when we think about building such
applications running on a PaaS on top of scalable, cloud infrastructure, some
of our old patterns and practices fall short.

The most notable issue is the inability to do Windows authentication.
ASP.NET developers have been spoiled by a long history of built-in support
for securing web applications with Windows credentials. In these
applications, the browser-based challenge replies with details about the
currently logged-in user, and the server knows how to deal with that
information and the user is implicitly logged in. This is extremely effective
and very handy for building apps secured against a company’s internal Active
Directory.

The reason this works is because the client browser and the server application
are part of the same domain, or workgroup, or interoperable domains. The
presence of Windows on the server and client as well as the presence of
Kerberos in the middle facilitate this seamless exchange of credentials.

Whether you’re running in a public cloud or your own on-premise PaaS,
these platforms operate very differently from traditional physical or virtual
machine Windows deployments.

The operating system that underpins your application needs to be considered
ephemeral. It is subject to periodic and random destruction. You cannot
assume that it will have the ability to join a domain; in fact, it is highly
unlikely that domain joining will be a practical option. In a lot of cases, the
operating systems supporting your cloud applications are frequently and
deliberately destroyed. Some companies have security policies where all
virtual machines are destroyed and rebuilt during rolling updates to reduce
the potential surface area exposed for persistent attacks.

In the case of the code we’re writing for this book, we’re restricting ourselves
to the cross-platform variant of .NET Core, so we can’t rely on any facilities
that are only available to Windows applications. This rules out integrated
Windows authentication, so we’ll need to find a different alternative for our
cloud services.

Cookie and Forms Authentication
Anyone who has worked with legacy ASP.NET web applications should be
familiar with forms authentication. This mode of authentication is where an
application presents a custom UI (a form) to prompt the users for their
credentials. The credentials are transmitted directly to the application and
validated by the application. When users successfully log in, they receive a
cookie that marks them as authenticated for some period of time.

There is nothing about running your application on PaaS that is intrinsically
good or bad for cookie authentication. However, it does create a few
additional burdens for your application.

First and foremost, forms authentication requires your application to maintain
and validate credentials. This means you’ll have to deal with securing,
encrypting, and storing confidential information. As we’ll see later in the
chapter, there are other options available that let us defer the maintenance and
validation of identity to third parties, allowing our apps to focus solely on
their core business value.

Encryption for Apps in the Cloud
Encryption is usually something that we worry about on a per-application
basis. Some services use encryption and others don’t. In the days of legacy
ASP.NET applications, we would find the most common use of encryption in

the creation of secure authentication and session cookies.

This form of encryption would make use of the machine key in order to
encrypt cookies. It would then use the same machine key to decrypt cookies
sent to the web application from the browser.

The simple phrase “machine key” should scare us to death as developers of
cloud-native services. In the cloud, we can’t rely on specific machines or on
specific files sitting on those machines. Our application can start up inside
any container at any time, hosted by any number of virtual machines on any
number of continents. We simply cannot rely on the fact that a single
encryption key will be distributed across every machine on which our
application runs.

As we’ll discuss throughout the rest of the chapter, there are a number of
other areas where encryption is used. For example, tokens are often
cryptographically signed, requiring the use of asymmetric keys for validation.

Where do you store your keys if you cannot rely on the existence of a
persistent filesystem, nor can you rely on those keys being available in the
memory of every running instance of your service?

The answer is to treat the storage and maintenance of cryptographic keys as a
backing service. In other words, this service is external to your application, in
the same way that state, the filesystem, databases, and additional
microservices are.

Bearer Tokens
If an application isn’t the central authority on the identity and authorization
of its users, then it needs to be coded in such a way that it can accept proof of
identity and proof of authorization. There are a number of different standards
that define various methods for accepting proof of identity, including OAuth
and OpenID Connect (usually just referred to as OIDC) that we’ll be
illustrating in this chapter’s samples.

The most common way to transmit proof of identity in an HTTP-friendly,
portable manner is through the use of bearer tokens. Ideally, when an
application accepts a bearer token it does so through the Authorization
header. The following shows an example of what a bearer token might look
like in an HTTP trace:

POST /api/service HTTP/1.1
Host: world-domination.io
Authorization: Bearer ABC123HIJABC123HIJABC123HIJ
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (X11; Linux x86_64) etc...etc...etc...

The value of the Authorization header takes the form of a single word that
indicates the type of authorization, followed by some sequence of characters

that contains the value of the credentials. You might be more familiar with
other commonly used authorization types: Digest and Basic.

In a normal service flow that utilizes bearer tokens, the service will extract
the token from the Authorization header. Many token formats, like OAuth
2.0 (JWT), are usually encoded in a Base64, URL-friendly format, so the first
step toward validating those tokens is decoding them to get at the original
content. If a token was encrypted with a private key, a service will then use a
public key to validate that the token was produced by the appropriate
authority.

For a detailed discussion of the JSON Web Token (JWT) format and
specifications, feel free to check out the original RFC. The code samples
we’re going to be looking at in this chapter will make extensive use of the
JWT format.

Securing ASP.NET Core Web Apps
Securing an ASP.NET Core web application involves deciding on
authentication and authorization mechanisms and then using the appropriate
 middleware. Authentication middleware examines incoming HTTP requests,
determines if the user is authenticated, and, if not, issues the appropriate
challenge and redirects.

One of the most reliable ways to perform authentication in the cloud and keep
your applications as focused on business logic as possible is through the use
of bearer tokens.

For the samples in this chapter, we’ll be focusing on OpenID Connect and
bearer tokens using the JWT standard.

OpenID Connect Primer
Depending on the type of application we’re building and the security
requirements of that application, we have a wide variety of authentication
flows that we can utilize. OpenID Connect (we’ll just refer to it as OIDC
from now on) is a superset of the OAuth2 standard and contains
specifications and standards for the ways identity providers (IDPs), users, and
applications communicate securely.

There are authorization flows that are designed specifically for single-page
web applications, for mobile applications, and for traditional web
applications. One of the simpler flows available for web applications is the
one shown in the sequence diagram in Figure 10-1.

https://tools.ietf.org/html/rfc7519

Figure 10-1. Simple OpenID Connect flow

In this flow, an unauthenticated user makes a request for a protected resource
on a website. The site then redirects the user to the identity provider, giving it
instructions on how to call the site back after authentication. If all goes well,
the identity provider will supply to the site a short string with a very short
expiration period called a code. The site (also referred to as the protected
resource in this scenario) will then immediately make an HTTP POST call to
the identity provider that includes a client ID, a client secret, and the code. In
return, the IDP gives back an OIDC token (in JWT format).

Once the site has received and validated the token, it knows that the user is
properly authenticated. The site can then write an authentication cookie and
redirect to a home page or the original protected resource. The presence of
the cookie is now used so the site can bypass the round-trip to the IDP.

There are more complex flows that include the concept of resources and
obtaining access tokens with more chatty redirect loops, but for our sample
we’re going to be using the simplest flow. This flow is also one of the more
secure because the claims-bearing token is never exposed on a URL, only as

a short-lived string that is immediately swapped over a secure connection for
a token.

OIDC REFERENCES AND RESOURCES
For a more thorough examination of OpenID Connect, its history beginning
with the original OAuth standard, and many other security and
authentication concepts, I recommend you check out the book Identity &
Data Security for Web Development by Jonathan LeBlanc and Tim
Messerschmidt (O’Reilly). The code samples are in Node.js, but they’re
easy enough to read and the book is worth the read for the explanations of
authentication standards alone.

It might seem a little complex now, but as you get more exposure to OIDC
and you see how little code you have to implement (thanks to readily
available open source middleware), it becomes less intimidating.

Securing an ASP.NET Core App with OIDC
For our first code sample in this chapter, we’re going to take a simple
ASP.NET Core MVC web application and secure it with OIDC. To do this,
we’re going to need a few things:

An empty web application

An identity provider

Some OIDC middleware

Creating an empty web application
The first of the three is easily taken care of with the following command at a
terminal:

$ dotnet new mvc

This creates a starter web application using MVC with a stock controller and
some basic layouts, CSS, and JavaScript. We’re going to use this as a starting
point to add security. If you want to see the completed code sample, you can
find it on GitHub.

Setting up an identity provider with an Auth0 account
Now that we have an unsecured application, we need to figure out what we’re
going to use as our identity provider. In an enterprise situation, we might use
something like Active Directory Federation Services (ADFS). If we’re
already invested in Azure and running an Active Directory there, we might
secure our application with Azure AD. We could also use other IDPs, like

http://shop.oreilly.com/product/0636920044376.do
http://bit.ly/2hqSa4w

Ping Federate or Forge Rock. There are plenty of open source samples for
standing up super-simple IDPs for experimentation and testing, too.

For the purposes of giving you a sample that you can use without investing in
a pile of infrastructure or shelling out a bunch of money in upfront costs, we
want an easy-to-use identity provider that includes a free trial period. I
decided on Auth0 for this chapter, but other providers are available, like
Google and Stormpath (which is merging with Okta). Using Google as an
IDP will only accept Google identities, whereas Auth0, Stormpath, and their
ilk can be configured to use a private database of users or accept other
common OIDC identities, like Facebook and Twitter.

Take a moment now to go over to http://auth0.com. Once you’ve signed up
and are at your dashboard, click the Create Client button. Make sure you
choose Regular Web Application as the application type. If you choose
ASP.NET Core as the implementation language, you will be taken to a quick-
start tutorial with code that looks very similar to what we’re going to build in
this chapter.

CONFIGURING YOUR AUTH0 CLIENT
It is important that you follow all of the directions at the beginning of the
Auth0 .NET Core tutorial. This means changing the OAuth JWT signature
algorithm under Advanced Settings to RS256.

For the sample client used in this chapter I created a connection to a private
database of users, but you can choose what you like, including accepting
identities from Facebook or Twitter.

Using the OIDC middleware
Thankfully we have been spared the burden of having to write all of the code
that implements the redirects and the other low-level details of the OIDC
standard. All we have to do is decide when we want to initiate a challenge
(force a user to authenticate against the IDP) and configure the OIDC
middleware.

Take a look at the modified Startup.cs file from our previously empty web
application, shown in Example 10-1. We’ll analyze what’s going on next.

Example 10-1. src/StatlerWaldorfCorp.SecureWebApp/Startup.cs
using System;
using System.Collections.Generic;
using System.Linq;
using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;

https://stormpath.com/blog/stormpaths-new-path
http://auth0.com

using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Options;
using Microsoft.AspNetCore.Authentication.Cookies;
using Microsoft.AspNetCore.Authentication.OpenIdConnect;
using Microsoft.AspNetCore.Http;

namespace StatlerWaldorfCorp.SecureWebApp
{
 public class Startup
 {
 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json",
 optional: true, reloadOnChange: false)
 .AddEnvironmentVariables();
 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddAuthentication(
 options => options.SignInScheme =
 CookieAuthenticationDefaults.AuthenticationScheme);

 // Add framework services.
 services.AddMvc();

 services.AddOptions();

 services.Configure<OpenIDSettings>(
 Configuration.GetSection("OpenID"));
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory,
 IOptions<OpenIDSettings> openIdSettings)
 {
 Console.WriteLine("Using OpenID Auth domain of : " +
 openIdSettings.Value.Domain);
 loggerFactory.AddConsole(
 Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseStaticFiles();

 app.UseCookieAuthentication(
 new CookieAuthenticationOptions
 {
 AutomaticAuthenticate = true,
 AutomaticChallenge = true
 });

 var options =
 CreateOpenIdConnectOptions(openIdSettings);
 options.Scope.Clear();
 options.Scope.Add("openid");
 options.Scope.Add("name");
 options.Scope.Add("email");
 options.Scope.Add("picture");

 app.UseOpenIdConnectAuthentication(options);

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }

 private OpenIdConnectOptions CreateOpenIdConnectOptions(
 IOptions<OpenIDSettings> openIdSettings)
 {
 return new OpenIdConnectOptions("Auth0")
 {
 Authority =
 $"https://{openIdSettings.Value.Domain}",
 ClientId = openIdSettings.Value.ClientId,
 ClientSecret = openIdSettings.Value.ClientSecret,
 AutomaticAuthenticate = false,
 AutomaticChallenge = false,

 ResponseType = "code",
 CallbackPath = new PathString("/signin-auth0"),

 ClaimsIssuer = "Auth0",
 SaveTokens = true,
 Events = CreateOpenIdConnectEvents()
 };
 }

 private OpenIdConnectEvents CreateOpenIdConnectEvents()
 {
 return new OpenIdConnectEvents()
 {
 OnTicketReceived = context =>
 {
 var identity =
 context.Principal.Identity as ClaimsIdentity;

 if (identity != null) {
 if (!context.Principal.HasClaim(
 c => c.Type == ClaimTypes.Name) &&
 identity.HasClaim(c => c.Type == "name"))
 identity.AddClaim(
 new Claim(ClaimTypes.Name,
 identity.FindFirst("name").Value));
 }
 return Task.FromResult(0);
 }
 };
 }
 }
}

The first thing that looks different from the samples in previous chapters is
that we’re making an options class called OpenIDSettings available as a
service by reading it from the configuration system. This is a plain class that
just exposes properties for holding the four pieces of metadata needed for
every OIDC client:

Authorization domain

The root hostname of the IDP.

Client ID

An ID issued by the IDP. You can see this on your client configuration
page in Auth0.

Client secret

There is a button on your Auth0 client configuration page to copy this
value to the clipboard.

Callback URL

This tells the IDP how to redirect the user back to your site after
authentication. This value must be configured in the list of authorized
callback URLs in your Auth0 client configuration.

Because of the sensitive nature of this information, we haven’t checked our
appsettings.json file into GitHub, but Example 10-2 shows what it looks like.

Example 10-2. appsettings.json

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 },
 "OpenID": {

 "Domain" : "bestbookeverwritten.auth0.com",
 "ClientId" : "<client id>",
 "ClientSecret": "<client secret>",
 "CallbackUrl": "http://localhost:5000/signin-auth0"
 }
}

The next two things we do in our new startup class are tell ASP.NET Core
that we want cookie authentication and that we want OpenID Connect
authentication. Remember that we use OIDC to determine who the users are
and if they’re authenticated, and we’ll use cookies to remember who they are
until the cookies expire.

Another key piece of code is in the CreateOpenIdConnectEvents method.
Here we define a function that is invoked after we get an authentication ticket
back from the IDP. We use this to sift through the claims on the ticket, and if
we find a name claim, we add it to the current claims identity using a well-
known constant for the appropriate claim type. This has the effect of
translating the OIDC token name claim into the Name property on the
ClaimsIdentity. Without this bit of code, we would appear to authenticate
but the user’s name would be null.

MICROSOFT CLAIMS VERSUS OPENID CLAIMS
The issue at hand is that the identity system for ASP.NET Core relies on
the ClaimTypes.Name constant
(http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name) to
determine the name of the user. However, the name of the claim that
corresponds to user name on an OpenID JWT token is simply name. Any
time we merge OIDC identity and ASP.NET identity, we have to translate
claims like this.

If we were to run the application right now, it would appear as though we’ve
done nothing. The application still accepts anonymous authentication and
there’s nothing that triggers an authentication flow with the Auth0 IDP.

To facilitate this new functionality, we’re going to add an account controller
as shown in Example 10-3. This controller exposes actions for logging in,
logging out, and rendering a view that displays all of the claims on the user
identity.

Example 10-3.
src/StatlerWaldorfCorp.SecureWebApp.Controllers.AccountController
using Microsoft.AspNetCore.Authentication.Cookies;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http.Authentication;
using Microsoft.AspNetCore.Authorization;
using System.Linq;
using System.Security.Claims;

namespace StatlerWaldorfCorp.SecureWebApp.Controllers
{
 public class AccountController : Controller
 {
 public IActionResult Login(string returnUrl = "/")
 {
 return new ChallengeResult("Auth0",
 new AuthenticationProperties() {
 RedirectUri = returnUrl
 });
 }

 [Authorize]
 public IActionResult Logout()
 {
 HttpContext.Authentication.SignOutAsync("Auth0");
 HttpContext.Authentication.SignOutAsync(
 CookieAuthenticationDefaults.AuthenticationScheme);

 return RedirectToAction("Index", "Home");
 }

 [Authorize]
 public IActionResult Claims()
 {
 ViewData["Title"] = "Claims";
 var identity =
 HttpContext.User.Identity as ClaimsIdentity;
 ViewData["picture"] =
 identity.FindFirst("picture").Value;
 return View();
 }
 }
}

Take a look at the code for the Logout action. ASP.NET Core supports
multiple authentication schemes simultaneously. For our sample, we’re
supporting both cookies and a scheme called “Auth0” (we could have easily
named it something more generic, like “OIDC”). When the user logs out of
the application, we want to ensure that awareness of both logins is purged.

There’s also a new action called Claims. This action searches through the
user identity (which is castable to ClaimsIdentity) for the claim named
picture. Once this method finds the picture claim, it puts the value in the
ViewData dictionary.

VARYING SUPPORT FOR CLAIMS
Not all IDPs are going to give you a claim called picture. Auth0 will give
us one if it has been able to figure out the user’s picture from the sign-in
method (e.g., when users sign in with custom accounts that have email
addresses that match registered Gravatars, as in the upcoming example).

Always make sure you get a list of all of the claims guaranteed to be
available from your IDP before you write any code that relies on those
claims.

Example 10-4 contains the code for the Claims view that iterates through the
claims collection and renders the claim type and value in a table, as well as
displaying the user’s picture.

Example 10-4. Claims.cshtml
<div class="row">
 <div class="col-md-12">

 <h3>Current User Claims</h3>

 <table class="table">
 <thead>
 <tr>
 <th>Claim</th><th>Value</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var claim in User.Claims)
 {
 <tr>
 <td>@claim.Type</td>
 <td>@claim.Value</td>
 </tr>
 }
 </tbody>
 </table>
 </div>
</div>

And finally, Figure 10-2 shows what the /Account/Claims page looks like
when I log in to the application with an account bearing my email address.

Figure 10-2. Enumerating claims in an OIDC-secured web application

At this point we’ve gone from the empty scaffolding of an ASP.NET Core
web application and connected it to a cloud-friendly third-party identity
provider. This relieves our application of the burden of manually managing
authentication and allows us to take advantage of bearer tokens and the OIDC
standard.

While I normally advocate avoiding scaffolding and templates because of
their long-storied history of bloat, in this case it wasn’t so bad because the
template contained stylesheets and layouts we would have had to create
anyway.

OIDC Middleware and Cloud Native
I’ve mentioned a few times how reliance on OS-specific security features will
end up causing you a lot of problems in the cloud. There are a number of
things that can cause problems when trying to run an application on an
elastically scaling platform, and even our shiny new OIDC middleware is
subject to some of these issues.

If you’re not running this application on Windows, then you might have seen
a warning message that looks something like this during startup:

warn:
Microsoft.Extensions.DependencyInjection.DataProtectionServices[59]
 Neither user profile nor HKLM registry available.
 Using an ephemeral key repository.

 Protected data will be unavailable when application exits.
warn:
Microsoft.AspNetCore.DataProtection.Repositories.EphemeralXmlRepository
[50]
 Using an in-memory repository.
 Keys will not be persisted to storage.

The core of this problem is the use of encryption keys and data protection. In
the traditional world of big, bloated Windows servers for .NET applications,
we could rely on things like the OS for managing encryption keys.

Imagine that instead of running 1 instance of this application on your laptop,
you’re running 20 instances of it in the cloud. Unauthenticated users hit
instance 1 with no code or token. They get redirected to the IDP, and when
they come back to the application they hit instance 2. If information used in
the OIDC flow is encrypted by instance 1 and cannot be decrypted by
instance 2, you’re going to have some catastrophic application failures at
runtime.

The solution is to treat the storage and retrieval of security keys as a backing
service. There are a number of third-party products, like Vault, that specialize
in this functionality, or you can use a distributed cache like Redis and store
short-lived keys there.

You’ve already seen how to use the Steeltoe libraries for application
configuration and service discovery when working with the Netflix OSS
stack. You can also use a NuGet module from Steeltoe called
Steeltoe.Security.DataProtection.Redis. This module is designed
specifically to move the storage used by the data protection APIs off of the
local disk (which is not cloud native) and into an external Redis distributed
cache.

Using this library, we can configure external data protection in our Startup
class’s ConfigureServices method as follows:

services.AddMvc();

services.AddRedisConnectionMultiplexer(Configuration);
services.AddDataProtection()
 .PersistKeysToRedis()
 .SetApplicationName("myapp-redis-keystore");

services.AddDistributedRedisCache(Configuration);

services.AddSession();

And then we just call app.UseSession() in our Configure method to finish
setting up external session state.

To see this in action without the rest of the security integration in this
chapter, check out the sample in the Steeltoe GitHub repository.

http://bit.ly/2fcdKsD

Securing ASP.NET Core Microservices
Securing a microservice with no UI (usually called “headless”) automatically
rules out any authentication flow that requires direct interaction with a user or
a browser capable of facilitating a redirection flow.

In this section, we’ll talk about the options available for securing
microservices and we’ll illustrate one of these options by building a secured
service with bearer tokens.

Securing a Service with the Full OIDC Security Flow
One commonly used option for securing a service that supports an OIDC-
secured website is to simply implement one of the OIDC authentication flows
designed specifically for services.

In this flow, illustrated in Figure 10-3, the user goes through the
authentication flow we’ve already discussed, using browser redirects and
interaction with the website and IDP. Once the website establishes a validated
claims identity, it will then request an access token from the IDP by
presenting the identity token as well as information about the desired
resource.

Figure 10-3. OpenID Connect flow securing site and backing service

Essentially, the site will be asking the IDP, “Can user X access resource Y? If
so, give me a token asserting this.” The token we get back can be validated
by a service. If the access token presented by the site doesn’t grant the user

the permission to do what is desired with the resource in question, the service
will reject the HTTP call with a 401 Unauthorized or a 403 Forbidden.

If you don’t need every single service call to come embedded with the
concept of an interactive user as well as whether or not that person has read
or write access to the resource, then this authorization flow may be more than
you need. A major disadvantage.

The first is that every single access token requires validation. Some of this
can be done simply by opening up the token, but in many scenarios the access
token is sent directly to the IDP for verification. This makes the IDP an even
more integral part of every transaction flowing through your system, which
also makes it qualify as a risk and central point of failure.

It’s up to you whether you adopt this strategy, but if you just need to know if
the consuming application (be it a service or GUI) is permitted to make calls
against the backing service API, then there is a much simpler approach that
I’ll cover next.

Securing a Service with Client Credentials
The client credentials pattern is one of the simplest ways to secure a service.
First, you communicate with the service only via SSL, and second, the code
consuming the service is responsible for transmitting credentials. These
credentials are usually just called a username and password, or, more
appropriate for scenarios that don’t involve human interaction, a client key
and a client secret. Any time you’re looking at a public API hosted in the
cloud that requires you to supply a client key and secret, you’re looking at an
implementation of the client credentials pattern.

It is also fairly common to see the client key and secret transmitted in the
form of custom HTTP headers that begin with the X- prefix; e.g., X-MyApp-
ClientSecret and X-MyApp-ClientKey.

The code to implement this kind of security is actually pretty simple, so we’ll
skip the sample here. There are, however, a number of downsides to this
solution that stem from its simplicity.

For example, what do you do if a particular client starts abusing the system?
Can you disable its access? What if a set of clients appear to be attempting a
denial of service attack? Can you block all of them? Perhaps the scariest
scenario is this: what happens if a client secret and key are compromised and
the consumer gains access to confidential information without triggering any
behavioral alerts that might get them banned?

What we need is something that combines the simplicity of portable
credentials that do not require communication with a third party for
validation with some of the more practical security features of OpenID
Connect, like validation of issuers, validation of audience (target), expiring
tokens, and more.

Securing a Service with Bearer Tokens
Through our exploration of OpenID Connect, we’ve already seen that the
ability to transmit portable, independently verifiable tokens is the key
technology underpinning all of its authentication flows.

Bearer tokens, specifically those adhering to the JSON Web Token
specification, can also be used independently of OIDC to secure services
without involving any browser redirects or the implicit assumption of human
consumers.

The OIDC middleware we used earlier in the chapter builds on top of JWT
middleware that we get from
the Microsoft.AspNetCore.Authentication.JwtBearer NuGet package.

To use this middleware to secure our service, we can first create an empty
service using any of the previous examples in this book as reference material
or scaffolding. Next, we add a reference to the JWT bearer authentication
NuGet package.

In our service’s Startup class, in the Configure method we can enable and
configure JWT bearer authentication, as shown in Example 10-5.

Example 10-5. Startup.cs
 app.UseJwtBearerAuthentication(new JwtBearerOptions
 {
 AutomaticAuthenticate = true,
 AutomaticChallenge = true,
 TokenValidationParameters = new TokenValidationParameters
 {
 ValidateIssuerSigningKey = true,
 IssuerSigningKey = signingKey,
 ValidateIssuer = false,
 ValidIssuer = "https://fake.issuer.com",

 ValidateAudience = false,
 ValidAudience = "https://sampleservice.example.com",

 ValidateLifetime = true,
 }
});

We can control all of the different types of things we validate when receiving
bearer tokens, including the issuer’s signing key, the issuer, the audience, and
the token lifetime. Validation of things like token lifetime usually also
requires us to set up options like allowing some range to accommodate clock
skew between token issuer and the secured service.

In the preceding code, we’ve got validation turned off for issuer and
audience, but these are both fairly simple string comparison checks. When we
validate these, the issuer and the audience must match exactly the issuer and
audience contained in the token.

Let’s say our service is a stock management service running in support of a

store called alienshoesfrommars.com. We might see an issuer value of
https://idp.alienshoesfrommars.com and the audience would be the
service itself,
https://stockservice.fulfillment.alienshoesfrommars.com. While
convention dictates that the issuer and audience are both URLs, they do not
need to be live websites that respond to requests in order to validate the
token.

You may have noticed that we are validating the issuer signing key. This is
basically the only way that we can ensure that a bearer token was issued by a
known and trusted issuer. To create a signing key that we want to match the
one that was used to sign the token, we take a secret key (some string) and
create a SymmetricSecurityKey from it, as shown here:

 string SecretKey = "seriouslyneverleavethissittinginyourcode";
 SymmetricSecurityKey signingKey =
 new SymmetricSecurityKey(
 Encoding.ASCII.GetBytes(SecretKey));

As the string indicates, you should never store the secret key directly in your
code. This should come from an environment variable or some other external
product like Vault or a distributed cache like Redis. An attacker who is able
to obtain this secret key will be able to fabricate bearer tokens at will and
have unfettered access to your no-longer-secure microservices.

SECURITY AND KEY ROTATION
If the keys used to sign your bearer tokens change every couple of
minutes or every hour, then even if someone were to be able to capture
this key and fabricate tokens, they would only be able to do so for a short
period of time.

Both off-the-shelf and custom-built products usually contain some
strategy for keeping a shallow key history around so that validators can
check bearer tokens against the current key as well as the previous key, or
a consumer retry is built into the client code that fetches a new key upon
getting a 401 or 403 from a service.

An intruder gaining access to your system may be inevitable, but using
techniques like key rotation, short token expiration periods, and minimal
allowances for clock skew can mitigate the risk or eliminate the damage
someone can do with captured keys.

That’s pretty much all we need to start securing our services with bearer
tokens. All we need to do is drop the [Authorize] attribute on controller
methods that need this, and the JWT validation middleware will be invoked
for those methods. Undecorated methods will allow unauthenticated access
by default (though you can change this behavior as well).

To consume our secured service, we can create a simple console application
that creates a JwtSecurityToken instance from an array of Claim objects,
then sends those as an Authorization header bearer token:

 var claims = new[]
 {
 new Claim(JwtRegisteredClaimNames.Sub, "AppUser_Bob"),
 new Claim(JwtRegisteredClaimNames.Jti,
 Guid.NewGuid().ToString()),
 new Claim(JwtRegisteredClaimNames.Iat,
 ToUnixEpochDate(DateTime.Now).ToString(),
 ClaimValueTypes.Integer64),
 };

var jwt = new JwtSecurityToken(
 issuer: "issuer",
 audience: "audience",
 claims: claims,
 notBefore: DateTime.UtcNow,
 expires: DateTime.UtcNow.Add(TimeSpan.FromMinutes(20)),
 signingCredentials: creds);

var encodedJwt = new JwtSecurityTokenHandler().WriteToken(jwt);

httpClient.DefaultRequestHeaders.Authorization =
 new AuthenticationHeaderValue("Bearer", encodedJwt);

var result =
httpClient.GetAsync("http://localhost:5000/api/secured").Result;
Console.WriteLine(result.StatusCode);
Console.WriteLine(result.Content.ToString());

Here’s a secured controller method in our service that enumerates the claims
sent by the client. Note that this code would never even be executed if the
bearer token hadn’t already been validated according to our middleware
configuration:

 [Authorize]
 [HttpGet]
 public string Get()
 {
 foreach (var claim in HttpContext.User.Claims) {
 Console.WriteLine($"{claim.Type}:{claim.Value}");
 }
 return "This is from the super secret area";
 }

Since the JWT validation middleware has already been written for us, there’s
very little work for us to do in order to support bearer token security for our
services. If we want to have more control over which clients can call which
controller methods, we can take advantage of the concept of a policy. Policies
are just custom bits of code that are executed as predicates while determining
authorization.

For example, we could define a policy called CheeseburgerPolicy and
create a secured controller method that not only requires a valid bearer token,
but it also requires that said token meets the criteria defined by the policy:

[Authorize(Policy = "CheeseburgerPolicy")]
[HttpGet("policy")]
public string GetWithPolicy()
{
 return "This is from the super secret area w/policy enforcement.";
}

Configuring this policy is done easily in the ConfigureServices method. In
the following sample, we create CheeseburgerPolicy as a policy that
requires a specific claim (icanhazcheeseburger) and value (true):

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 services.AddOptions();

 services.AddAuthorization(options => {
 options.AddPolicy("CheeseburgerPolicy",
 policy =>
 policy.RequireClaim("icanhazcheeseburger", "true"));
 });
 }

Now if we modify our console application to add a new claim of this type
with a value of true, we will be able to invoke regular secured controller
methods as well as controller methods secured with the
CheeseburgerPolicy.

The policy can require specific claims, usernames, assertions, or roles. You
can also define your own requirement that implements
IAuthorizationRequirement so that you can add your own validation logic
while not polluting your individual controllers.

Summary
Security isn’t an afterthought. It’s also something that cannot be condensed
into a single chapter with complete coverage. This chapter provided you with
some basic guidance around securing web applications with OIDC and how
to secure microservices with JWT bearer token technology.

In both cases the middleware is already written for us, so all we had to do
was figure out how to configure and invoke the appropriate code and
understand how the various security technologies work. If you have more
than a passing interest in identity and secure communications in the cloud, I
strongly suggest that you check out some books and online references on the

subject.

Chapter 11. Building Real-Time
Apps and Services

Throughout the book we have been looking at various ways microservices
accept input and produce output. We’ve seen the traditional RESTful services
and we’ve seen services that consume and produce messages in queues.

Users of modern web and mobile applications often demand more than the
eventual consistency we discussed in Chapter 6 (ES/CQRS). They want to
know about things that are important to them, and they want to know about
them immediately.

This brings us to the topic of this chapter: real-time services. This chapter
will discuss what the phrase “real-time” means and the types of applications
most consumers consider to be within that category. Then we’ll look at
websockets and how traditional websocket programming models fall short in
the cloud, and build a sample real-time application that demonstrates the
power of adding real-time messaging to an event-sourced system.

Real-Time Applications Defined
Before we can define a real-time application we need to define real-time. Just
like the term microservices, real-time is overloaded, overused, and usually
has at least two different meanings for every person in the room discussing it.

Definithing.com defines it as:

A term used to describe computer systems that update information at the same
rate as they receive data.

Other definitions of real-time suggest that something is real-time if it can
process input and produce output within a few milliseconds. To me this
seems like a fairly arbitrary value. Some systems with ultra-low latency
requirements might consider real-time to be a processing time of a few
hundred microseconds, not milliseconds.

The event processor we created in Chapter 6 is more than capable of
processing input (member location events), detecting proximity, and emitting
proximity detected events within a few milliseconds. By either of the
definitions we’ve covered so far, our location event processor can be
considered a real-time system.

I think a slightly broader definition of real-time might be to say that events
occur with little to no delay between receipt and processing. The definition of
“little” here has to be one that is agreed upon by the development team based
on the system requirements and application domain and can’t be some

arbitrary value of some randomly chosen unit of measure.

One source says that examples of real-time applications might be a missile
guidance system or an airline booking application. I can completely
understand the real-time nature of a missile guidance system—an embedded
processor performing millions of calculations per second based on input from
dozens or hundreds of sensors in order to control the flight of a projectile and
report feedback to the ground. Other real-time applications that fall into a
similar category might be autonomous cars, hobby and commercial drone
autopilot software, and pattern recognition software applied to live video
feeds.

But what about an airline booking system? I think this is a step too far. Most
of us have experienced the eventual consistency (or rarely consistent) nature
of these systems. You can book a ticket, and your mobile device might take
24 hours to receive your boarding pass. You may get notifications of a flight
delay or gate change an hour after that information might have been relevant
to you. There are exceptions of course, but for a large number of cases, these
are batch mode systems and time-polling systems that rarely exhibit the traits
of a real-time application.

This brings up another anti-pattern of real-time systems. Here are some
characteristics of applications that disqualify them from the real-time
category:

Your application collects input and waits before producing output.

Your application only produces output on timed intervals or upon external
stimuli that occur on any kind of schedule or are random in nature.

A really common trait or characteristic of real-time systems is that interested
parties are notified of events concerning them via push notification, rather
than the interested party performing a poll or timed query to check for
updates. We’re going to be talking about push notifications of various kinds
throughout the rest of the chapter.

Websockets in the Cloud
We’ve already covered one form of messaging extensively throughout this
book—the use of message queues via a messaging server like RabbitMQ.
When developers think about real-time applications, one thing that often
comes to mind is the use of websockets to push data and notifications to a
live (real-time) web-based UI.

Just a few years ago, using a website that would update and react to you
dynamically would have seemed remarkable and been labeled as “the future.”
Nowadays we take this kind of thing for granted.

When we go to a website that sells products, we take it as given that we
should be able to have a live chat with support people. It’s no big surprise

when Facebook pops up notifications letting us know that someone’s
commented on our post or we see the site change and react dynamically when
someone retweets one of our tweets.

While not all of this functionality is supported explicitly through websockets,
most of it was a few years ago and much of it is still supported through either
websockets or something designed to appear like a websocket to developers.

The WebSocket Protocol
The WebSocket protocol showed up around 2008 and defines the means by
which a persistent, bidirectional socket connection can be made between a
browser and a server. This allows data to be sent to a server from a web
application running in the browser, and it allows a server to send data down
without requiring the application to “poll” (periodically check for updates,
usually on a sliding/exponential fall-off scale).

At a low level, the browser requests a connection upgrade of the server. Once
the handshake finishes, the browser and server switch to a
separate, binary TCP connection for bidirectional communication.

From the specification, and the corresponding Wikipedia page, an HTTP
request asking for a connection upgrade looks something like this:

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13
Origin: http://example.com

The websockets are then used to do everything from pushing pop-up
notifications on social media websites to updating live, streaming dashboards
and monitoring consoles and even playing interactive multiplayer games with
little more than HTML and clever use of graphics and CSS.

Deployment Models
What does any of this have to do with the cloud? In a traditional deployment
model, you spin up a server (physical or virtual), you install your hosting
product (an IIS web server or some J2EE container like WebSphere, for
example) and then you deploy your application. If your application is
scalable and works on a farm, you then repeat this process over again for
each server in your farm or cluster.

When a user connects to a page on your site that opens a websocket
connection, that connection stays open with whatever server was chosen to
handle the initial request. Until the user hits refresh or clicks another link,

https://tools.ietf.org/html/rfc6455
https://en.wikipedia.org/wiki/WebSocket

that websocket should work just fine, though there are other issues that might
come up with proxies and firewalls.

Let’s say now that all of your servers are running on EC2 instances in AWS.
When a cloud-based infrastructure is hosting your virtual machines, they are
subject to relocation, destruction, and reconstruction at any moment. This is
a good thing, and designed to allow your application to scale virtually
without limit. Unfortunately, this means that these “live” websocket
connections can be broken or become stale and unresponsive without notice.

Furthermore, the use of always-up TCP connections to individual servers can
impact your own application’s ability to scale. Depending on the volume of
requests and data your application code is servicing, also managing these
connections and the data exchange for them can become a troublesome
burden.

The solution here is usually to externalize the use of websockets—to offload
the management of websocket connections and data transfer to something
that exists (and scales) outside your application code. Another solution that
helps with scaling is avoiding websockets entirely and using HTTP-based
messaging systems.

In short, rather than your application managing websockets on its own, you
should let the experts manage websockets and use a cloud messaging
provider. It’s worth remembering that you’re building an application for your
business; you’re not (usually) planning on specializing in the art of
websocket management.

Whether you host your own cloud messaging server within your
infrastructure or your use a separate messaging provider hosted elsewhere in
the cloud is up to you and will depend on your requirements and business
domain.

Using a Cloud Messaging Provider
We know that we want our application to have real-time capabilities. We
want our microservices to be able to push data down to clients, knowing that
those clients will not have a live TCP connection to the microservice. We
also want applications to be able to use the same or a similar message
pipeline to send messages into our back-end.

In order for our microservices to remain cloud native and retain the ability to
scale and move around freely in the cloud, we need to pick a messaging
provider to manage some of our real-time capabilities out of process.

The list of companies that provide messaging services is enormous and
growing every day. The following are just a few of the many companies that
offer cloud messaging either as a standalone product or as part of a larger
suite of services:

Apigee (API gateway and real-time messaging)

PubNub (real-time messaging and presence)

Pusher (real-time messaging and presence)

Kaazing (real-time messaging)

Mashery (API gateway and real-time messaging)

Google (Google Cloud Messaging)

ASP.NET SignalR (real-time messaging hosted in Azure)

Amazon (Simple Notification Service)

The criteria you use to select your messaging provider will be based entirely
on your needs, the type of application you’re building, budget, expected
volume, whether you’re incorporating mobile devices or IoT components,
and so on.

Regardless of which mechanism you choose, you should invest a little time in
insulating your code from the exact provider so that you can change this
without having too much of a far-reaching impact. An anti-corruption layer
(ACL) would be a pretty good recommendation here to insulate your app
from implementation models from specific providers bleeding into your
codebase.

In this chapter, we’re going to use PubNub. I chose it somewhat arbitrarily,
but also because of the simple SDK, excellent documentation, ready
availability of public samples, and the fact that we can use it for
demonstration purposes without having to hand over a credit card number.

Building the Proximity Monitor
In Chapter 6, in the course of our discussion of Event Sourcing and the
Command Query Responsibility Segregation pattern, we built an application
made up of multiple microservices that detected whenever teammates moved
within range of each other.

When this system detects two nearby teammates, it emits a
ProximityDetectedEvent onto a queue—but that’s where we stopped
designing and coding. What we want to do now is build a monitor that
updates in real time whenever the backend system detects one of these
proximity events.

For the purposes of our example, we’ll be keeping the UI to something
simple, but it shouldn’t take much imagination to envision some of the
potential real-time user interfaces that might be possible here. We could
create a maps integration where the current positions of all of the team
members are plotted, and we might bounce or animate team members’

avatars when the system has detected that they are within range of each other.
These team members might also receive notifications on their mobile devices
at the same time.

Creating a Proximity Monitor Service
Our proximity monitor sample will have a couple of different components.
The first thing that we want to do is consume the ProximityDetectedEvent
that comes off of the queue from the services written in Chapter 6.

Once we do that, we want to grab the raw information on this event and make
calls to the team service (written earlier in the book as well) to grab user-
friendly information like team and member names. Finally, once we’ve
obtained this augmented data, we want to send a new message out on our
real-time messaging system (in our case, this will be PubNub).

The code for the entire proximity monitor is available on GitHub.

In another implementation of a pattern used a few times in this book, we’re
going to create a broad-scoped processor class. This class will have a bunch
of other subordinate utilities injected into it. The single main “processing”
function of this class should read almost like documentation of the high-level
logic flow gleaned from our requirements.

Example 11-1 shows the code for our ProximityDetectedEventProcessor,
the high-level coordinator behind the proximity monitor.

Example 11-1. ProximityDetectedEventProcessor.cs
using System;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Options;
using StatlerWaldorfCorp.ProximityMonitor.Queues;
using StatlerWaldorfCorp.ProximityMonitor.Realtime;
using StatlerWaldorfCorp.ProximityMonitor.TeamService;

namespace StatlerWaldorfCorp.ProximityMonitor.Events
{
public class ProximityDetectedEventProcessor : IEventProcessor
{
 private ILogger logger;
 private IRealtimePublisher publisher;
 private IEventSubscriber subscriber;

 private PubnubOptions pubnubOptions;

 public ProximityDetectedEventProcessor(
 ILogger<ProximityDetectedEventProcessor> logger,
 IRealtimePublisher publisher,
 IEventSubscriber subscriber,
 ITeamServiceClient teamClient,
 IOptions<PubnubOptions> pubnubOptions)
 {
 this.logger = logger;
 this.pubnubOptions = pubnubOptions.Value;

http://bit.ly/2vbe6Di

 this.publisher = publisher;
 this.subscriber = subscriber;

 logger.LogInformation("Created Proximity Event Processor.");

 subscriber.ProximityDetectedEventReceived += (pde) => {
 Team t = teamClient.GetTeam(pde.TeamID);
 Member sourceMember =
 teamClient.GetMember(pde.TeamID, pde.SourceMemberID);
 Member targetMember =
 teamClient.GetMember(pde.TeamID, pde.TargetMemberID);

 ProximityDetectedRealtimeEvent outEvent =
 new ProximityDetectedRealtimeEvent
 {
 TargetMemberID = pde.TargetMemberID,
 SourceMemberID = pde.SourceMemberID,
 DetectionTime = pde.DetectionTime,
 SourceMemberLocation = pde.SourceMemberLocation,
 TargetMemberLocation = pde.TargetMemberLocation,
 MemberDistance = pde.MemberDistance,
 TeamID = pde.TeamID,
 TeamName = t.Name,
 SourceMemberName =
 $"{sourceMember.FirstName} {sourceMember.LastName}",
 TargetMemberName =
 $"{targetMember.FirstName} {targetMember.LastName}"
 };
 publisher.Publish(
 this.pubnubOptions.ProximityEventChannel,
 outEvent.toJson());
 };
 }

 public void Start()
 {
 subscriber.Subscribe();
 }

 public void Stop()
 {
 subscriber.Unsubscribe();
 }
}
}

The first thing to notice in this code listing is the long list of dependencies
that we’ll be injecting into the constructor from the DI service provider:

Logger

Real-time event publisher

Event subscriber (queue-based)

Team service client

PubNub options

The logger is self-explanatory. The real-time event publisher, a class that
conforms to the IRealtimePublisher interface, allows us to publish a string
message on a given channel (also specified by a string). We will be
publishing events of type ProximityDetectedRealtimeEvent on this
channel, serializing the data into JSON.

The event subscriber listens to our queue (RabbitMQ), awaiting messages of
type ProximityDetectedEvent. When we start and stop our event processor,
we subscribe and unsubscribe the event subscriber accordingly.

The team service client is used to query the team service for team and
member details. We use the team and member service details to populate the
member properties (first and last name) and the team name property on the
real-time event.

Finally, the PubNub options class holds information like the name of the
channel on which the message will be published. While our underlying
implementation is PubNub, the vast majority of cloud messaging providers
have some concept of a channel for message publishing, so we should be
relatively safe swapping PubNub out for a different provider if we choose.

Creating a real-time publisher class
A good refactor for the future might be to create another small class that is
responsible for creating a new instance of
a ProximityDetectedRealtimeEvent class from
every ProximityDetectedEvent received. This is not just an anti-corruption
function, but also augmentation that grabs the team member’s name and other
user-friendly information. From a functional purist’s perspective, this code
doesn’t really belong in the high-level processor, but rather should be
delegated to a supporting tool that’s been tested in isolation.

Moving on from the high-level processor, let’s take a look at the
implementation of our IRealtimePublisher interface in Example 11-2, one
that uses the PubNub API.

Example 11-2. PubnubRealtimePublisher.cs
using Microsoft.Extensions.Logging;
using PubnubApi;

namespace StatlerWaldorfCorp.ProximityMonitor.Realtime
{
public class PubnubRealtimePublisher : IRealtimePublisher
{
 private ILogger logger;

 private Pubnub pubnubClient;

 public PubnubRealtimePublisher(
 ILogger<PubnubRealtimePublisher> logger,

 Pubnub pubnubClient)
 {
 logger.LogInformation(
 "Realtime Publisher (Pubnub) Created.");
 this.logger = logger;
 this.pubnubClient = pubnubClient;
 }

 public void Validate()
 {
 pubnubClient.Time()
 .Async(new PNTimeResultExt(
 (result, status) => {
 if (status.Error) {
 logger.LogError(
 $"Unable to connect to Pubnub
{status.ErrorData.Information}");
 throw status.ErrorData.Throwable;
 } else {
 logger.LogInformation("Pubnub connection established.");
 }
 }
));
 }

 public void Publish(string channelName, string message)
 {
 pubnubClient.Publish()
 .Channel(channelName)
 .Message(message)
 .Async(new PNPublishResultExt(
 (result, status) => {
 if (status.Error) {
 logger.LogError(
 $"Failed to publish on channel {channelName}:
 {status.ErrorData.Information}");
 } else {
 logger.LogInformation(
 $"Published message on channel {channelName},
{status.AffectedChannels.Count}
 affected channels, code: {status.StatusCode}");
 }
 }
));
 }
 }
}

The code here is pretty straightforward. It is just a simple wrapper around the
PubNub SDK. The instance of the Pubnub class from the SDK is configured
through some extensions I wrote that register a factory with ASP.NET Core.

Injecting the real-time classes

You can see how the Pubnub client and other classes are enabled through DI
in the Startup class in Example 11-3.

https://www.pubnub.com/docs/dot-net/pubnub-c-sharp-sdk-v4

Example 11-3. Startup.cs
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using StatlerWaldorfCorp.ProximityMonitor.Queues;
using StatlerWaldorfCorp.ProximityMonitor.Realtime;
using RabbitMQ.Client.Events;
using StatlerWaldorfCorp.ProximityMonitor.Events;
using Microsoft.Extensions.Options;
using RabbitMQ.Client;
using StatlerWaldorfCorp.ProximityMonitor.TeamService;

namespace StatlerWaldorfCorp.ProximityMonitor
{
 public class Startup
 {
 public Startup(IHostingEnvironment env,
 ILoggerFactory loggerFactory)
 {
 loggerFactory.AddConsole();
 loggerFactory.AddDebug();

 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json",
 optional: false, reloadOnChange: false)
 .AddEnvironmentVariables();

 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(
 IServiceCollection services)
 {
 services.AddMvc();
 services.AddOptions();

 services.Configure<QueueOptions>(
 Configuration.GetSection("QueueOptions"));
 services.Configure<PubnubOptions>(
 Configuration.GetSection("PubnubOptions"));
 services.Configure<TeamServiceOptions>(
 Configuration.GetSection("teamservice"));
 services.Configure<AMQPOptions>(
 Configuration.GetSection("amqp"));

 services.AddTransient(typeof(IConnectionFactory),
 typeof(AMQPConnectionFactory));
 services.AddTransient(typeof(EventingBasicConsumer),
 typeof(RabbitMQEventingConsumer));
 services.AddSingleton(typeof(IEventSubscriber),

 typeof(RabbitMQEventSubscriber));
 services.AddSingleton(typeof(IEventProcessor),
 typeof(ProximityDetectedEventProcessor));
 services.AddTransient(typeof(ITeamServiceClient),
 typeof(HttpTeamServiceClient));

 services.AddRealtimeService();
 services.AddSingleton(typeof(IRealtimePublisher),
 typeof(PubnubRealtimePublisher));
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory,
 IEventProcessor eventProcessor,
 IOptions<PubnubOptions> pubnubOptions,
 IRealtimePublisher realtimePublisher)
 {
 realtimePublisher.Validate();
 realtimePublisher.Publish(
 pubnubOptions.Value.StartupChannel,
 "{'hello': 'world'}");

 eventProcessor.Start();

 app.UseMvc();
 }
 }
}

The AddRealtimeService method is a static extension method that I created
to simplify the injection of the implementation of
an IRealtimePublisher by the service provider.

So far in the book we’ve been using only the simplest and most basic features
of ASP.NET Core’s dependency injection. What we’re trying to do now is
make sure that we can create a class (like the PubnubRealtimePublisher)
that can have a ready-made instance of the PubNub API injected into it.

To do this cleanly and still allow all of our configuration to be injected,
including the secret API keys, we need to register a factory. The factory is
going to be a class that dispenses configured instances of the Pubnub class
from the PubNub SDK.

Example 11-4 shows the relatively simple factory class.

Example 11-4. PubnubFactory.cs
using Microsoft.Extensions.Options;
using PubnubApi;
using Microsoft.Extensions.Logging;

namespace StatlerWaldorfCorp.ProximityMonitor.Realtime
{
public class PubnubFactory
{

 private PNConfiguration pnConfiguration;

 private ILogger logger;

 public PubnubFactory(IOptions<PubnubOptions> pubnubOptions,
 ILogger<PubnubFactory> logger)
 {
 this.logger = logger;

 pnConfiguration = new PNConfiguration();
 pnConfiguration.PublishKey =
 pubnubOptions.Value.PublishKey;
 pnConfiguration.SubscribeKey =
 pubnubOptions.Value.SubscribeKey;
 pnConfiguration.Secure = false;
 }

 public Pubnub CreateInstance()
 {
 return new Pubnub(pnConfiguration);
 }
}
}

Given PubNub options (we have these in our appsettings.json file, which can
be overridden via environment variables), this class creates a new instance of
the Pubnub class. The real trick, and the code that will likely come in handy
in your development projects, is the static extension method to plug this
factory into the DI mechanism, shown in Example 11-5.

Example 11-5. RealtimeServiceCollectionExtensions.cs
using System;
using Microsoft.Extensions.DependencyInjection;
using PubnubApi;

namespace StatlerWaldorfCorp.ProximityMonitor.Realtime
{
public static class RealtimeServiceCollectionExtensions
{
 public static IServiceCollection AddRealtimeService(
 this IServiceCollection services)
 {
 services.AddTransient<PubnubFactory>();

 return AddInternal(services,
 p => p.GetRequiredService<PubnubFactory>(),
 ServiceLifetime.Singleton);
 }

 private static IServiceCollection AddInternal(
 this IServiceCollection collection,
 Func<IServiceProvider, PubnubFactory> factoryProvider,
 ServiceLifetime lifetime)
 {
 Func<IServiceProvider, object> factoryFunc = provider =>
 {

 var factory = factoryProvider(provider);
 return factory.CreateInstance();
 };

 var descriptor = new ServiceDescriptor(
 typeof(Pubnub),
 factoryFunc, lifetime);
 collection.Add(descriptor);
 return collection;
 }
}
}

A good rule of thumb when trying to work within the constraints of a DI
system is to ask yourself what your class needs to work. If it needs a thing
that you cannot yet inject, create something (a wrapper, perhaps) that allows
it to be injectable, and then reevaluate. This process usually results in several
small wrapper classes but a pretty clean and easy-to-follow injection path.

The key bit of work in the preceding code was creating a lambda function
that accepts an IServiceProvider as input and returns an object as output.
This is the factory function that we pass into the service descriptor when we
register the factory.

Hereafter, any time any object requires an instance of a Pubnub object, it will
be dispensed through the factory we registered in the line:

var descriptor = new ServiceDescriptor(
 typeof(Pubnub),
 factoryFunc, lifetime);

This descriptor indicates that a request for Pubnub will be satisfied by
invoking the factory function in the variable factoryFunc, with the given
object lifetime.

Putting it all together
To see this in action and make sure everything is working, we can fake the
output of the services from Chapter 6 by manually dropping
a ProximityDetectedEvent JSON string into
the proximitydetected queue, as shown in the following screenshot from
the RabbitMQ console (Figure 11-1).

Figure 11-1. Manually submitting a proximity detected event

If our proximity monitor service is running and subscribed to the queue when
this happens, and our team service is running and has all the appropriate data
in it (there are some sample shell scripts in the GitHub repository that show
you how to seed the team service with test data), then the proximity monitor
will pick up the event, augment it, and then dispatch a real-time event
through PubNub.

Using the PubNub debug console, we can see the output of this process show
up immediately (technically it’s almost immediate) after processing
(Figure 11-2).

Figure 11-2. PubNub channel view in the debug console

You can copy and modify the script file in the GitHub repository that
populates the team service with sample data as well as a sample JSON file
containing a test proximity event so you can run through this yourself without
having to start any of the code from Chapter 6.

Creating a Real-Time Proximity Monitor UI
Having a microservice that picks up proximity events, augments them, and
then sends them out for dispatch to our real-time messaging system is great,
but at this point we haven’t done anything meaningful with the real-time

http://bit.ly/2vXnRs9

message.

As mentioned earlier, we could use this message to move thumbtacks on a
map UI, we could dynamically update tables or charts, or we could simply
create little toasts or pop-up notifications in a web UI. Depending on our
messaging provider, we could also have these messages automatically
converted into push notifications and sent directly to team members’ mobile
devices.

To keep things simple and to hide the fact that I have no artistic skills
whatsoever, I’ll just use a very simple HTML page that has no graphics and
doesn’t require a server of any kind.

For a full set of details on how to interact with PubNub messages and
channels using JavaScript, please check out their JavaScript SDK
documentation.

Example 11-6 is our very simple example that listens for proximity events
and adds the information to a div element dynamically and in real time.

Example 11-6. realtimetest.html
<html>
<head>
<title>RT page sample</title>
<script src="https://cdn.pubnub.com/sdk/javascript/pubnub.4.4.0.js">
</script>
<script>
var pubnub = new PubNub({
 subscribeKey: "yoursubkey",
 publishKey: "yourprivatekey",
 ssl: true
});

pubnub.addListener({
 message: function(m) {
 // handle message
 var channelName = m.channel;
 var channelGroup = m.subscription;
 var pubTT = m.timetoken;
 var msg = JSON.parse(m.message);
 console.log("New Message!!", msg);
 var newDiv = document.createElement('div')
 var newStr = "** (" + msg.TeamName + ") " +
 msg.SourceMemberName + " moved within " +
 msg.MemberDistance + "km of " + msg.TargetMemberName;
 newDiv.innerHTML = newStr
 var oldDiv = document.getElementById('chatLog')
 oldDiv.appendChild(newDiv)
 },
 presence: function(p) {
 // handle presence
 },
 status: function(s) {
 // handle status
 }

http://bit.ly/2w0Q2nO

});

console.log("Subscribing..");
pubnub.subscribe({
 channels: ['proximityevents']
});
</script>
</head>
<body>
<h1>Proximity Monitor</h1>
<p>Proximity Events listed below.</p>

<div id="chatLog">
</div>
</body>
</html>

Here we have an HTML div called chatLog. Every time we receive a
message from the PubNub channel proximityevents we create a new div
and append it as a child. This new div has the name of the team as well as the
names of the source and target members, as shown in Figure 11-3.

Figure 11-3. Receiving real-time messages via JavaScript

It’s worth pointing out that you don’t need to host this file on a server; you
can open it in any browser and the JavaScript just runs. When you look at the
documentation for PubNub’s other SDKs (including mobile), you’ll see how
easy it is to achieve real-time communication between backend services, end
users using web browsers, mobile devices, and other integration points. This
ease of use isn’t limited to just PubNub, either; most cloud messaging
providers (including Amazon, Azure, and Google) have very easy to use
SDKs and their documentation is typically rich and full of good examples.

Summary
In this chapter we added some clarity to the definition of real-time—what it
means and what it doesn’t. We also talked about how we’ve already done
some near-real-time programming in this book in Chapter 6, with our use of
queues and immediate subscriptions.

This chapter showed you how to build on the knowledge you’ve accumulated
so far to seamlessly integrate third-party cloud messaging providers into your
codebase. The use of cloud messaging providers can give you dynamic and
real-time-updating UIs for web and desktop as well as enabling fully
interactive mobile applications that run on semi-connected devices.

Real-time messaging systems are often the glue that makes the independent
components of a highly scalable, distributed, and eventually consistent
system work.

There are even messaging providers that have special accommodations for
the IoT, so you could use the patterns in this chapter to integrate your army of
evil robots (or a smart fridge, whichever you prefer) with your ASP.NET
Core backend.

Personally, I would go with the army of robots.

Chapter 12. Putting It All
Together

I started this book by showing you how to build a console application
(“Hello, world!”) in Microsoft’s new cross-platform development framework,
.NET Core. From there, you simply added package references and method
calls to gradually progress from a console app to a fully functioning web
server capable of hosting RESTful endpoints with the Model–View–
Controller pattern fully supported.

While I don’t want to belittle the importance of learning syntax and the
details of which lines of code to write and when, there is an important lesson
to learn here: code won’t solve all your problems.

Building microservices isn’t about learning C#, or Java, or Go—it’s about
learning how to build applications that thrive in elastically scaling
environments, that do not have host affinity, and that can start and stop at a
moment’s notice. In other words, it’s about building cloud-
native applications.

As we’ve progressed from chapter to chapter, we’ve deferred some important
discussions in service of explaining the details. Now that we’re done with the
details, I’d like to use this chapter to revisit some patterns, discuss areas
where we may have cut corners, and even present a few philosophical ideas
likely to fuel debates that might cause riots within your development team.

Identifying and Fixing Anti-Patterns
Every author has to walk the fine line between providing real-world samples
and providing samples that are small and simple enough to digest in the
relatively short medium of a single book or chapter.

This is why there are so many “hello world” samples in books: because
otherwise you’d have 30 pages of prose and 1,000 pages of code listings. A
balance has to be struck, and compromises have to be made in order to focus
the reader’s attention on solving one problem at a time.

Throughout the book we’ve made some compromises in order to maintain
this balance, but I want to go back now and revisit some ideas and
philosophies to help better inform your decision-making process now that
you’ve had a chance to build, run, and tinker with all of the code samples.

Cleaning Up the Team Monitor Sample
You may recall from multiple chapters earlier in the book that we’ve been

building pieces of a large application consisting of multiple microservices.

In this sample, we started with a simple service that managed information
about teams and team members. We expanded that concept later to add
location tracking with a backing service. Then, in Chapter 6, we built a
solution that looks like the diagram in Figure 12-1.

Figure 12-1. Team monitoring solution with anti-patterns

In this more involved scenario, we start with mobile devices submitting the
GPS coordinates of team members to the location reporter service. From
there, these commands are converted into events with augmented data from
the team service. Information then flows through the system, eventually
causing notifications of proximity events (team members who move within
range of each other) to arrive at some consumer-facing interface like a web
page or mobile device.

At first glance this looks nice, and it served the purpose of demonstrating the
code we wanted to show. But if we look a little bit closer, we’ll see that the
event processor and the reality service are actually sharing a data store. For
our sample, this was a Redis cache.

One of the rules of microservices often quoted during architecture and design
meetings is “never use a database as an integration layer.” It is an offshoot of
the share nothing principle. We often talk about this rule but we rarely spend
enough time discussing the reasons why it’s a rule.

One common side effect of using a database as an integration tier is that you
end up with two (or more!) services that require a certain data structure or
schema to exist in order to function. This means you can no longer change
the underlying data store independently, and these services often end up in a
lockstep release cadence rather than allowing for independent releases as they
should.

While this might not be a problem for Redis, multiple services reading and
writing the same data can often cause performance problems due to locking
or, worse, can even cause data corruption.

Of course opinions on this vary wildly, so it’s entirely up to you to decide
whether you think this kind of sharing is viable. For a microservices purist
like myself, I would try to avoid any architecture that tightly couples two
services to each other, including the sharing of a data store that creates tight
coupling to an actual persistence schema.

To correct this problem, we can redesign our architecture as shown in
Figure 12-2.

Figure 12-2. Team monitoring solution corrected

In this new design, the event processor and reality service are not using the
same data store. In the old design, the event processor wrote the location data
directly to the “reality cache” (our Redis server). In the new design, the event
processor invokes the reality service, asking it to write the current location.

In this architecture, the reality service is the sole owner of the reality cache
data. This frees the service up to change its underlying persistence
mechanism and schema whenever the team wants, and allows both the reality
service and the event processor to remain on independent release cadences so
long as they adhere to best practices when it comes to semantic versioning of
public APIs.

Another optimization is to allow the reality service to maintain its own
private data, but to also maintain an external cache. The external cache would
conform to a well-known specification that should be treated like a public
API (e.g., breaking changes have downstream consequences). An illustration
of this is shown in Figure 12-3.

Figure 12-3. Treating a cache as a versioned, public API

We might not need this optimization, but it is just one of many ways around
the problem of using a data store as an integration layer between services.
There’s nothing wrong with using a cache to provide a subset of functionality
or as an optimization, so long as the shared cache doesn’t become a reason to
force different development teams into a lockstep release cadence or create
release dependencies.

Continuing the Debate over Composite
Microservices
Before we talk about the pros and cons of composite services, we should
probably define that phrase. A composite service is any service that depends
on invoking another service in order to satisfy a request. This is almost
always a synchronous call, which blocks the original call until one or more
nested calls complete.

We’ve seen this pattern a few times in this book while demonstrating various
aspects of ASP.NET Core. First, we saw the pattern when an early version of
the team service invoked the location service when a caller asked for details
on a specific team member.

Later, we saw this same pattern when discussing service discovery and
registration. In Chapter 8, we built a solution that has a data flow like the one
illustrated in Figure 12-4.

Figure 12-4. Synchronous, composite service usage

In this scenario, a client that requests product details must wait while the
catalog service makes a synchronous call to the inventory service to fetch the
stock status of a particular item.

This is a relatively simple scenario, but let’s imagine that this pattern
propagates throughout an enterprise. Suppose the inventory service gets
modified a few months after release to depend on some new service. That
new service then gets split because people think it’s “too big.” The team that
built the original product service might be blissfully unaware that their one
seemingly harmless, synchronous call to inventory is now a chain six deep of
synchronous calls. Without the product team doing anything, their average
response time could have gone from a few hundred milliseconds to longer
than a full second.

Worse, in this hypothetical scenario, the failure rate of the product service has
skyrocketed. It used to work all the time, and now clients are reporting
timeouts and strange server errors. This happens because somewhere in the
deeply nested pile of synchronous calls, something fails and that low-level
failure creates a cascade that bubbles back up to the client.

There are microservice design purists who firmly believe that a true
microservice should never call another service synchronously. While I don’t
think this rule applies to all situations all the time, we should definitely be
keenly aware of the risks involved in making synchronous calls out of our
services.

Mitigating Risk with Circuit Breakers
One potential way to deal with the nesting of synchronous calls is to come up
with a fallback mechanism; a way to deal with failures anywhere in the call
chain. The pattern of providing a fallback instead of either crashing or
blocking indefinitely in the presence of a failing backing service is usually
called implementing a circuit breaker.

A full dissertation on circuit breakers and common implementations could
potentially take up a book on its own. Microsoft has a decent introductory
article, and you can read more about the original driving philosophy in
Martin Fowler’s post. According to Fowler, the circuit breaker pattern was
originally popularized in Michael Nygard’s book Release It! (Pragmatic
Press).

When we make calls to other services, those calls can fail. The reasons for
these failures are nearly infinite. The service could return unexpected data,
causing our process to crash. The service could not respond within an
appropriate time, blocking our callers. The network could do all kinds of
terrible things to our request, preventing it from being handled.

Rather than letting these failures happen over and over and cause untold
destruction, after some threshold is crossed, the circuit breaker is tripped.
Once it’s tripped, we no longer attempt to communicate with the broken
service, and we instead return some appropriate fallback value.

Just like in our houses, if a circuit fails for whatever reason (a short, too much
current draw, etc.), the circuit breaker trips and power is no longer supplied
to the failing circuit for fear of the potential damage that could be caused.

The sequence diagram in Figure 12-5 shows the synchronous flow when the
circuit is tripped between the catalog and inventory services.

https://msdn.microsoft.com/en-us/library/dn589784.aspx
https://martinfowler.com/bliki/CircuitBreaker.html

Figure 12-5. Composite service calls with a broken circuit

In this scenario, we never attempt to call the inventory service. Rather than
returning live inventory data in the product details, we could simply return
“N/A” for stock information, or some other metadata to indicate the failure.

Without this circuit breaker, the inventory service failing could completely
take down the catalog service, even though the catalog service is functioning
properly. If we think back to Chapter 6 and our goal of embracing eventual
consistency, the idea of building our systems around the idea that the tripped
circuit breaker will eventually go back to normal shouldn’t scare us.

As Fowler illustrates in his pseudocode, we usually set up a circuit breaker as
a wrapper around the client that communicates with the backing service. It is
within this wrapper that the state of the circuit (open/bad, closed/good) is

maintained, as well as the metadata identifying the conditions under which
the circuit should be tripped. You can see this illustrated in his definition of
the state variable:

 def state
 (@failure_count >= @failure_threshold) ? :open : :closed
 end

As with so many of the other common problems we encounter when building
microservice ecosystems, there is a Netflix OSS solution for this. This
product is called Hystrix. You can find an overview of the Hystrix product on
Netflix’s GitHub wiki.

Netflix’s implementation is only for Java, but there are plenty of libraries
available for you to evaluate if you think circuit breakers are what you need.
A library worth looking at is Polly. Polly provides a very elegant, fluent
syntax for declaring policies for retries, timeouts, circuit breakers, and more.

Here’s a sample of Polly’s declarative circuit breaker syntax taken from its
documentation:

Policy
 .Handle<DivideByZeroException>()
 .CircuitBreaker(2, TimeSpan.FromMinutes(1));

Action<Exception, TimeSpan> onBreak = (exception, timespan) =>
 { ... };
Action onReset = () => { ... };
CircuitBreakerPolicy breaker = Policy
 .Handle<DivideByZeroException>()
 .CircuitBreaker(2, TimeSpan.FromMinutes(1), onBreak, onReset);

If Polly seems a little heavy-handed or seems to solve too many problems for
you, there are some other lightweight alternatives available on GitHub that
can be found with a quick search for “C# circuit breaker.”

The one piece of advice I want to impart here is that you should spend the
bulk of your time figuring out if you need circuit breakers,
not which implementation you need. Circuit breakers come with their own
added complexity and maintenance costs, and can often increase the amount
of nested synchronous calls in a design because their presence can lull
developers and architects into a false sense of security.

Eliminating the Synchronous Composite Pattern
The most important decision to make about circuit breakers or composite
services isn’t how to implement them, but whether we need them at all.
Obviously, we don’t always live in the land of unicorns, rainbows, and ideal
service architectures. However, if we spend a little time analyzing our

https://github.com/Netflix/Hystrix/wiki
https://github.com/App-vNext/Polly

problems and potential solutions, looking for ways around common pitfalls,
we might be able to avoid service composition.

Let’s take a look at the example we’ve been using: the catalog and inventory
services. Do we really need to know the exact, real-time inventory status of
any product at all times? If we take a look at how frequently that data might
change, then we realize that we probably don’t need to compose these
services the way we have.

What if the inventory service updated a cache every time a significant change
occurred in the status of an item? In this scenario, the catalog service doesn’t
need to make a synchronous call to the inventory service; it can just query the
cache keyed by product ID. If there’s no cache data, then we can try and call
the inventory service. If the inventory service fails temporarily, then the
worst-case scenario is the catalog service will report the last known inventory
status. When the inventory service recovers, it can refresh the cache
accordingly.

With this pattern, we don’t need to implement any retry logic, and we don’t
need to build in exponential back-off polling or use a heavyweight circuit
breaker framework. Instead, we take advantage of the fact that in this case,
the expectations of consumers can be met with a simpler, asynchronous
solution.

This won’t always be the case, and complexity is always lurking around the
corner. The moral of the story here is to always question complexity. Every
time something looks complicated, or seems as though it adds a weakness or
a critical point of failure to your architecture, reexamine the needs that drove
you to that design and see if there’s something simpler and less tightly
coupled that can solve the same problem.

What Next?
First and foremost, question everything. Take every piece of advice and every
line of code you’ve seen in this book and put it to the test. Start writing your
own services, build incredible applications, and improve upon everything you
found here. If there are ways to improve this book’s code samples, submit a
pull request to the GitHub repositories. If you find something wrong with
.NET Core itself, submit a pull request. Everyone can contribute now.

This book is a starting point. Hopefully it’s provided you with inspiration and
enough technical foundation to build powerful, elastically scalable, cross-
platform microservices with C# and .NET Core.

If you build something incredible with .NET Core, share it. Write blog posts,
write books, present at user groups and conferences, go on a tweetstorm
about how amazing it is that you can build microservices in C# on your Mac,
or go on an epic rant about how .NET Core falls short of your expectations
and then suggest ways to fix it.

.NET Core is definitely a 1.0 product, and it is still in its infancy. It needs
advocates and critics, people who will use it in production and find real ways
to improve and solidify it to make it a dominant platform for building cloud-
native microservices.

Index

A

AddCommandLine, Environment Parity

AddConfigServer, Using Spring Cloud Config Server

AddDbContext, Configuring a Postgres Database Context

AddDiscoveryClient, Registering a Service

AddEntityFrameworkNpgsql, Implementing the Location Record Repository
Interface, Configuring a Postgres Database Context

AddEnvironmentVariables, Environment Parity

AddRealtimeService, Injecting the real-time classes

AddScoped, Injecting a Mock Repository, Implementing the Location Record
Repository Interface

Amazon Web Services (AWS), Introducing Netflix Eureka

AMQP event emitter, Building an AMQP event emitter-Building an AMQP
event emitter

anti-corruption layer (ACL), Using a Cloud Messaging Provider

API First development, API First Development-The Team Service API,
Strategies for Sharing Models Between Services, API First

Apiary, Why API First?

ApiController, Invoking REST APIs from JavaScript

appsettings.json file, Databases Are Backing Services, Configuring and
starting the service, Using Spring Cloud Config Server

arrange, act, assert pattern, Test-First Controller Development

ASP.NET Core

basics, ASP.NET Core Primer-Summary

defined, ASP.NET Core

installing .NET Core, Installing .NET Core-Installing .NET Core

microservices (see microservices)

Microsoft scaffolding for, ASP.NET Core Basics-Adding ASP.NET MVC
Middleware

terminology, Distilling the Core-ASP.NET Core

tooling, Installing .NET Core-Installing .NET Core

web apps (see web apps)

Auth0, Setting up an identity provider with an Auth0 account-Using the
OIDC middleware

authentication and authorization, Authentication and Authorization

(see also security)

Authorization header, Bearer Tokens

B

backing services, Backing Services-Summary, Backing Services, Backing
Services-Dynamically bound resources, Encryption for Apps in the Cloud

bound resources, Bound Resources

databases as, Databases Are Backing Services-Configuring a Postgres
Database Context

location service, Building the Location Service-Building the Location
Service

team service updating, Enhancing the Team Service-Running the Services

base class library (BCL), CoreFX

bearer tokens, Bearer Tokens, Securing a Service with Bearer Tokens-
Securing a Service with Bearer Tokens

blockchain technology, Event Sourcing Defined

bound resources, Bound Resources-Bound Resources

box property, Adding the wercker.yml Configuration File

C

caches, The Event Processor-The Redis location cache

canonical model pattern, Strategies for Sharing Models Between Services-
Strategies for Sharing Models Between Services

CircleCI, Continuous Integration with CircleCI-Continuous Integration with

CircleCI

circuit breakers, Mitigating Risk with Circuit Breakers-Mitigating Risk with
Circuit Breakers

Claims, Using the OIDC middleware-Using the OIDC middleware

ClaimsIdentity, Using the OIDC middleware

ClaimTypes.Name, Using the OIDC middleware

client credentials, Securing a Service with Client Credentials

cloud security, Security in the Cloud-Bearer Tokens

app encryption, Encryption for Apps in the Cloud

bearer tokens, Bearer Tokens

cookie and forms authentication, Cookie and Forms Authentication

intranet applications, Intranet Applications

cloud-native factors, Creating a Data Service-Summary, Building Cloud-
Native Web Applications

(see also data service creation)

API First development, API First

authentication and authorization, Authentication and Authorization

(see also security)

backing services, Backing Services, Backing Services-Dynamically bound
resources

configuration, Configuration, External Configuration

data protection, Data Protection

(see also security)

environment parity, Environment Parity

logging, Logging

OIDC middleware, OIDC Middleware and Cloud Native-OIDC
Middleware and Cloud Native

port binding, Port Binding

session state, Session State

telemetry, Telemetry

code, OpenID Connect Primer

command converter, Creating the location reports controller

command processor, The Location Reporter Service

complexity leaks, The Location Reporter Service

composite services, Continuing the Debate over Composite Microservices-
Eliminating the Synchronous Composite Pattern

ConfigMap, Using Environment Variables with Docker

configuration, Configuration, External Configuration, Configuring
Microservice Ecosystems-Summary

configuration builder, Creating a configuration builder-Creating a
configuration builder

configuration provider, Creating an etcd Configuration Provider-Using the
etcd configuration values

configuration source, Creating a configuration source

configuration values, Using the etcd configuration values-Using the etcd
configuration values

considerations overview, Configuring Microservice Ecosystems

etcd, Configuring Microservices with etcd-Using the etcd configuration
values

Spring Cloud Config Server (SCCS), Using Spring Cloud Config Server-
Using Spring Cloud Config Server

ConfigurationBuilder, Adding the Kestrel Server

Configure, Adding a Startup Class and Middleware, Using Spring Cloud
Config Server

ConfigureServices, Adding a Startup Class and Middleware, Implementing
the Location Record Repository Interface, Using Spring Cloud Config Server

console app, Building a Console App-Building a Console App

constructor injection, Injecting a Mock Repository

Consul, Introducing Netflix Eureka

container links, Exercising the Data Service

Continuous Integration (CI), Creating a CI Pipeline-Creating a CI Pipeline

Continuous Integration (CI) servers, Continuous Integration with Wercker-
Continuous Integration with CircleCI

(see also Wercker; CircleCI)

controllers, Adding a Controller-Adding a Controller

Conway's law, The Location Reporter Service

cookie authentication, Cookie and Forms Authentication

CoreCLR, CoreCLR

CoreFX, CoreFX

CQRS (Command Query Responsibility Segregation)

CQRS pattern, The CQRS Pattern-The CQRS Pattern

event sourcing and, Event Sourcing and CQRS in Action—Team
Proximity Sample-Submitting Sample Data

(see also event sourcing)

CreateOpenIdConnectEvents, Using the OIDC middleware

CreateTeam, Test-First Controller Development-Test-First Controller
Development

credentials

checking in, Integration Testing Real Repositories

client, Securing a Service with Client Credentials

CRUD operations, Learning to Love Eventual Consistency

cryptographic keys, Encryption for Apps in the Cloud

curl, Running the App, Installing the Wercker CLI, Running the Team
Service Docker Image, Running the location reporter service, Submitting
Sample Data

currency values, Adding a Model

D

data protection, Data Protection

(see also security)

data service creation, Creating a Data Service-Summary

backing services, Databases Are Backing Services-Configuring a Postgres
Database Context

choosing a data store, Choosing a Data Store-Choosing a Data Store

integration testing, Integration Testing Real Repositories-Integration
Testing Real Repositories

location repository, Building a Postgres Repository-Testing with the Entity
Framework Core In-Memory Provider

(see also Postgres repository creation)

running the service, Exercising the Data Service-Exercising the Data
Service

data stores, choosing, Choosing a Data Store-Choosing a Data Store

database connections, Bound Resources

database context, Creating a Database Context

databases as integration layer, Cleaning Up the Team Monitor Sample

DbContext, Creating a Database Context, Configuring a Postgres Database
Context

DbContextFactory, Configuring a Postgres Database Context

dependency chains, Microservice Ecosystems

dependency injection (DI), Injecting a Mock Repository, Injecting a Mock
Repository, Configuring a Postgres Database Context

deploy, Deploying to Docker Hub

deploying to Docker hub, Deploying to Docker Hub

discovery (see service discovery)

Docker, Introducing Docker-Running Docker Images

deploying to Docker hub, Deploying to Docker Hub

environment variable injection with, Using Environment Variables with
Docker-Using Environment Variables with Docker

images, Running Docker Images-Running Docker Images, Running the
Team Service Docker Image

installing, Installing Docker

with Wercker, Integration Testing Real Repositories-Integration Testing
Real Repositories

docker kill, Exercising the Data Service

docker ps, Exercising the Data Service

dotnet build, Adding the wercker.yml Configuration File

dotnet new, Building a Console App

dotnet publish, Adding the wercker.yml Configuration File

dotnet restore, Installing .NET Core, Building a Console App, Building a
Console App, Running the App, Adding the wercker.yml Configuration File,
Test-First Controller Development, Using the etcd configuration values

dotnet run, Running the App, Starting the Services, Using the etcd
configuration values

dotnet test, Adding the wercker.yml Configuration File, Test-First Controller
Development

dynamic resource binding, Dynamically bound resources

E

encryption of cloud apps, Encryption for Apps in the Cloud

Entity Framework Core, Creating a Data Service

data store providers, Choosing a Data Store

database context, Creating a Database Context, Configuring a Postgres
Database Context

documentation, Creating a Database Context

InMemory provider, Testing with the Entity Framework Core In-Memory
Provider

environment parity, Environment Parity

environment variable overriding, Configuring and starting the service

environment variables, External Configuration

with Docker, Using Environment Variables with Docker-Using
Environment Variables with Docker

environment-specific settings, External Configuration

etcd, Introducing Netflix Eureka, Configuring Microservices with etcd-Using
the etcd configuration values

basic commands, Configuring Microservices with etcd

documentation, Configuring Microservices with etcd

etcdctl, Configuring Microservices with etcd

EtcdNet, Creating a configuration builder

Eureka, Introducing Netflix Eureka-Summary

ecommerce site example, Discovering and Advertising ASP.NET Core
Services-Discovering and Consuming Services

event processor, The Event Processor-The Redis location cache

GPS utility unit test, The Event Processor

location cache, The Redis location cache

proximity detection, The Event Processor-The Event Processor, Cleaning
Up the Team Monitor Sample

event sourcing, Event Sourcing and CQRS-Summary

with CQRS, Event Sourcing and CQRS in Action—Team Proximity
Sample-Submitting Sample Data

event processor, The Event Processor-The Redis location cache

location reporter service, The Location Reporter Service-Running the
location reporter service

proximity monitor, The Proximity Monitor

reality service, The Reality Service-The Reality Service

overview, Reality Is Event Sourced-Event Sourcing Defined

requirements of event-sourced systems, Event Sourcing Defined

eventual consistency, Learning to Love Eventual Consistency

exception handling, CoreCLR

external configuration, External Configuration

F

factory, Injecting the real-time classes, Injecting the real-time classes

forms authentication, Cookie and Forms Authentication

G

garbage collection, CoreCLR

geolocation calculations, The Event Processor

GetNodeAsync, Creating a configuration builder

GitHub repository, Building Services with Wercker

Google IDP, Setting up an identity provider with an Auth0 account

GPS coordinates, The Event Processor

H

heartbeat failure, Introducing Netflix Eureka

Homebrew, Installing Docker, Installing the Wercker CLI

Hystrix, Mitigating Risk with Circuit Breakers

I

ICommandEventConverter, Creating the location reports controller

IConfiguration, Port Binding

identity providers (IDPs), Setting up an identity provider with an Auth0
account

IEventEmitter, Creating the location reports controller

IHostingEnvironment, Adding a Startup Class and Middleware

immutable release artifact, Introducing Docker

integration testing, Integration Testing-Integration Testing, Integration
Testing Real Repositories-Integration Testing Real Repositories

Internet of Things (IoT), Event Sourcing Defined

intranet security, Intranet Applications

IRealtimePublisher, Creating a Proximity Monitor Service, Injecting the real-
time classes

IServiceProvider, Injecting the real-time classes

ITeamServiceClient, Creating the location reports controller

J

JavaScript, and REST APIs, Invoking REST APIs from JavaScript-Invoking
REST APIs from JavaScript

JIT compilation, CoreCLR

JSON Web Token (JWT) specification, Bearer Tokens, Securing a Service
with Bearer Tokens-Summary

K

Kerberos, Intranet Applications

Kestrel server, Adding the Kestrel Server, ASP.NET Core Basics

key rotation, Securing a Service with Bearer Tokens

Kubernetes, DNS and Platform Supported Discovery, Using Environment
Variables with Docker

L

Liskov Substitution Principle (LSP), Strategies for Sharing Models Between
Services

location cache, The Redis location cache-The Redis location cache

location records, Building the Location Service

location reporter service, The Location Reporter Service-Running the
location reporter service

AMQP event emitter, Building an AMQP event emitter-Building an
AMQP event emitter

configuring and starting, Configuring and starting the service-Configuring
and starting the service

consuming the team service, Consuming the team service-Consuming the
team service

location reports controller, Creating the location reports controller-Creating
the location reports controller

running, Running the location reporter service-Running the location
reporter service

location services, Building the Location Service-Building the Location
Service

LocationDbContext, Creating a Database Context

LocationRecordRepository, Implementing the Location Record Repository
Interface

logging, Logging

M

machine key, Encryption for Apps in the Cloud

Map, Adding a Startup Class and Middleware

Marathon, Introducing Netflix Eureka

members, Running the Team Service Docker Image

messaging

cloud messaging providers, Using a Cloud Messaging Provider

websockets in the cloud, Websockets in the Cloud-Deployment Models

microservices

defined, Microservices Defined-Microservices Defined

ecosystems of, Microservice Ecosystems-Strategies for Sharing Models
Between Services

bound resources in, Bound Resources-Bound Resources

configuring (see configuration)

dependency chains in, Microservice Ecosystems

sharing models, Strategies for Sharing Models Between Services-
Strategies for Sharing Models Between Services

securing, Securing ASP.NET Core Microservices-Summary

bearer tokens, Securing a Service with Bearer Tokens-Securing a
Service with Bearer Tokens

client credentials, Securing a Service with Client Credentials

OIDC-secured, Securing a Service with the Full OIDC Security Flow-
Securing a Service with the Full OIDC Security Flow

middleware, Adding a Startup Class and Middleware

authentication, Securing ASP.NET Core Web Apps

MVC, Adding ASP.NET MVC Middleware

OIDC, Using the OIDC middleware-OIDC Middleware and Cloud Native

mocking frameworks, Injecting a Mock Repository

models, Adding a Model-Adding a Model

monolithic thinking, Introducing Event Sourcing

MVC middleware, Adding ASP.NET MVC Middleware

N

Name, Using the OIDC middleware

.NET Core, Distilling the Core

console app, building, Building a Console App-Building a Console App

.NET Core

installing, Installing .NET Core-Installing .NET Core

.NET Platform Standard, .NET Platform Standard

netcoreapp versions, Building a Console App

Netflix Eureka, Introducing Netflix Eureka-Summary

Netflix Hystrix, Mitigating Risk with Circuit Breakers

Netflix OSS stack, Configuring Microservices with etcd

O

OAuth, Bearer Tokens

OpenAPI Specification, Why API First?

OpenID Connect (OIDC), Bearer Tokens

OIDC middleware, Using the OIDC middleware-OIDC Middleware and
Cloud Native

references and resources, OpenID Connect Primer

securing microservices with, Securing a Service with the Full OIDC
Security Flow-Securing a Service with the Full OIDC Security Flow

web app security with, OpenID Connect Primer-OIDC Middleware and
Cloud Native

OpenIDSettings, Using the OIDC middleware

opts, Using Spring Cloud Config Server

OSS stack, Configuring Microservices with etcd

P

PaaS solutions, Logging, Port Binding

packages, adding, Adding ASP.NET Packages to the Project

policies, Securing a Service with Bearer Tokens

Polly, Mitigating Risk with Circuit Breakers

port binding, Port Binding

Portable Class Library (PCL), .NET Platform Standard

Postgres repository creation, Building a Postgres Repository-Testing with the
Entity Framework Core In-Memory Provider

database context, Creating a Database Context, Configuring a Postgres
Database Context-Configuring a Postgres Database Context

location record implementation, Implementing the Location Record
Repository Interface-Implementing the Location Record Repository
Interface

Postman, Running the location reporter service, Submitting Sample Data

processor class, Creating a Proximity Monitor Service

proximity events, Cleaning Up the Team Monitor Sample

proximity monitoring, The Proximity Monitor, Building the Proximity
Monitor

ProximityDetectedEventProcessor, Creating a Proximity Monitor Service

ProximityDetectedRealtimeEvent, Creating a Proximity Monitor Service

PubNub, Using a Cloud Messaging Provider, Creating a Proximity Monitor
Service-Creating a Real-Time Proximity Monitor UI

push notifications, Real-Time Applications Defined

R

RabbitMQ, Consuming the team service, Running the location reporter
service

Raft consensus algorithm, Configuring Microservices with etcd

real-time apps and services, Building Real-Time Apps and Services-
Summary

cloud messaging providers, Using a Cloud Messaging Provider

proximity monitoring, Building the Proximity Monitor-Creating a Real-
Time Proximity Monitor UI

real-time publisher class, Creating a real-time publisher class

websockets, Websockets in the Cloud-Deployment Models

reality service, The Reality Service-The Reality Service

Redis location cache, The Event Processor, The Redis location cache

resource binding, Bound Resources-Bound Resources, Statically bound
resources

RESTful APIs, The Team Service API, Choosing a Data Store, Invoking
REST APIs from JavaScript-Invoking REST APIs from JavaScript

.Result, Consuming the team service

Run, Adding a Startup Class and Middleware

S

SDK/tools, Installing .NET Core-Installing .NET Core

security

using bearer tokens, Securing a Service with Bearer Tokens-Securing a
Service with Bearer Tokens

using client credentials, Securing a Service with Client Credentials

cloud apps, Security in the Cloud-Bearer Tokens

and key rotation, Securing a Service with Bearer Tokens

microservices, Securing ASP.NET Core Microservices-Securing a Service
with Bearer Tokens

OpenID Connect (OIDC), OpenID Connect Primer-Securing a Service
with the Full OIDC Security Flow

web apps, Securing ASP.NET Core Web Apps-OIDC Middleware and
Cloud Native

security policies, Securing a Service with Bearer Tokens

semantic versioning, Microservices Defined, Why API First?

server.urls, Port Binding

service discovery, Service Discovery

discovering and consuming services, Discovering and Consuming
Services-Discovering and Consuming Services

DNS and platform supported discovery, DNS and Platform Supported
Discovery

error message, Discovering and Consuming Services

registering a service, Registering a Service-Registering a Service

service registries, Introducing Netflix Eureka-Introducing Netflix Eureka

session state, Session State

SetBasePath, Invoking REST APIs from JavaScript

Single Responsibility Principle (SRP), Strategies for Sharing Models
Between Services, Invoking REST APIs from JavaScript

Spring Cloud Config Server (SCCS), Using Spring Cloud Config Server-
Using Spring Cloud Config Server

Startup, Adding a Startup Class and Middleware, ASP.NET Core Basics,
Invoking REST APIs from JavaScript, Using Spring Cloud Config Server

startup class, Adding a Startup Class and Middleware

stateless services, Creating a Data Service

static resource binding, Statically bound resources

stderr, Logging

stdout, Logging

Steeltoe, Registering a Service, Using Spring Cloud Config Server, OIDC
Middleware and Cloud Native

Stormpath, Setting up an identity provider with an Auth0 account

synchronous calls, Continuing the Debate over Composite Microservices

synchronous composite pattern, Eliminating the Synchronous Composite
Pattern-Eliminating the Synchronous Composite Pattern

T

team service, Introducing the Team Service, Enhancing the Team Service-
Running the Services

team service API, The Team Service API, Running the Team Service Docker
Image, Cleaning Up the Team Monitor Sample-Cleaning Up the Team
Monitor Sample

TeamsController, Test-First Controller Development

telemetry, Telemetry

terminology, Distilling the Core-ASP.NET Core

Test-Driven Development (TDD), Test-First Controller Development-
Completing the Unit Test Suite

test-first controller development, Test-First Controller Development-
Completing the Unit Test Suite

tooling, Installing .NET Core-Installing .NET Core

U

unit tests, Integration Testing

Use, Adding a Startup Class and Middleware, Adding a Startup Class and
Middleware

UseContentRoot, ASP.NET Core Basics

UseDiscoveryClient, Registering a Service

UseStartup<>(), Adding a Startup Class and Middleware

UseStaticFiles, Invoking REST APIs from JavaScript

V

Vault, OIDC Middleware and Cloud Native

vent emitter, Building an AMQP event emitter-Building an AMQP event
emitter

versioning, Microservices Defined, Why API First?

views, adding, Adding a View

W

web apps

building, Building an ASP.NET Core Web Application-Summary

adding a controller, Adding a Controller-Adding a Controller

adding a model, Adding a Model

adding a view, Adding a View-Adding a View

adding MVC middleware, Adding ASP.NET MVC Middleware-Adding
ASP.NET MVC Middleware

basics, ASP.NET Core Basics-Invoking REST APIs from JavaScript

cloud native apps, Building Cloud-Native Web Applications-
Authentication and Authorization

(see also cloud-native factors)

invoking REST APIs from JavaScript, Invoking REST APIs from
JavaScript-Invoking REST APIs from JavaScript

building basics, Building Your First ASP.NET Core App-Running the App

real-time apps and services (see real-time apps and services)

securing, Securing ASP.NET Core Web Apps-OIDC Middleware and
Cloud Native

(see also cloud security; security)

with OIDC, OpenID Connect Primer-OIDC Middleware and Cloud
Native

WebHostBuilder, Adding the Kestrel Server

websockets, Websockets in the Cloud, Deployment Models

Wercker, Continuous Integration with Wercker-Running a Wercker Build,
Creating a CI Pipeline-Creating a CI Pipeline

adding wercker.yml file, Adding the wercker.yml Configuration File-
Adding the wercker.yml Configuration File

with Docker, Integration Testing Real Repositories-Integration Testing
Real Repositories

installing the CLI, Installing the Wercker CLI

and integration testing, Integration Testing Real Repositories-Integration
Testing Real Repositories

overview, Continuous Integration with Wercker-Building Services with
Wercker

running a build, Running a Wercker Build

WERCKER_OUTPUT_DIR, Adding the wercker.yml Configuration File

Windows, CoreCLR, Installing .NET Core, Adding the Kestrel Server,
Running the App

Windows authentication, Intranet Applications

X

X- prefix, Securing a Service with Client Credentials

Z

Zookeeper, Introducing Netflix Eureka

About the Author
Kevin Hoffman has been programming since he was 10 years old, when he
was left alone with a rebuilt Commodore VIC-20 and a BASIC programming
manual. Ever since then, he has been addicted to emerging technologies,
languages, and platforms.

He has written code for just about every industry, including biometric
security, waste management, guidance systems for consumer-grade drones,
financial services, and a bunch more. He’s written over a dozen books on
computer programming and has presented at a number of user groups and
conferences, including Apple’s WWDC and ScalaDays.

These days Kevin teaches development teams how to migrate and modernize
their enterprise applications to thrive in the cloud with the latest cloud-native
patterns, practices, and technology. Kevin is currently building cloud-native
applications, patterns, and practices for Capital One.

Colophon
The animals on the cover of Building Microservices with ASP.Net Core are
various birds of the tit family (Paridae). These birds can be found throughout
Africa and the Northern Hemisphere. All tits are small, social, and prefer
woodland environments where they can nest in tree cavities.

The great tit (Parus major) is a fairly colorful bird with white plumage on its
cheeks surrounded by black on the rest of the head and neck. Upper plumage
is a dirty green, while the undersides are of a more yellow tint. Like most tits,
the great tit’s diet consists mainly of insects. But when the insects become
scarce in the winter months, the great tit has been known to consume smaller
hibernating bats.

The blue tit (Cyanistes caeruleus) is even more colorful than the great tit,
with more shades of blue, yellow, white, and streaks of black in plumage.
They are, on average, 4 to 5 inches in length, with a wingspan of about 7
inches. Also known as the Eurasian tit, these birds can be found in Europe
and Asia, and have a number of subspecies within the family.

The crested tit (Lophophanes cristatus) is less colorful than its previously
mentioned relatives, but has distinctive facial plumage and crest (hence its
name). The head is mostly white, with broken pieces of black through the
forehead and crest. The chin is completely black. The upper body is of a
green olive color, sides are a shade of yellow, and undersides are white.

The willow tit (Poecile montanus) is much more muted in colors than the
previously mentioned tits. The top half of its head is completely black, while
the cheeks and neck are white (but back to black on its chin). Also found in
Europe and northern Asia, the willow tit’s body colors vary in shading. Some
appear to have wing plumage of a dark brown color, with lighter beige
undersides, while others have more gray wings and white undersides. These
birds are often mistaken for marsh tits, which have a very similar appearance.

The coal tit (Periparus ater) is found in parts of Europe, Asia, and northern
Africa. Like many of the tits already mentioned, the coal tit’s head is mostly
black, with the back of the neck and cheeks being of white plumage.
Undersides are shades of white, flanked by a pale yellow-brown coloring.
These colorings and overall appearances vary through the many subspecies of
coal tits.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world. To learn more about how you can help, go to
animals.oreilly.com.

The cover image is from Wood’s Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

http://animals.oreilly.com

Inhaltsverzeichnis

Preface 5
What You’ll Build 5
Why You’re Building Services 6
What You’ll Need to Build Services 6
Online Resources 7
Conventions Used in This Book 7
Using Code Examples 8
O’Reilly Safari 8
How to Contact Us 8
Acknowledgments 9

1. ASP.NET Core Primer 10
Distilling the Core 10

CoreCLR 10
CoreFX 11
.NET Platform Standard 12
ASP.NET Core 13

Installing .NET Core 13
Building a Console App 15
Building Your First ASP.NET Core App 18

Adding ASP.NET Packages to the Project 18
Adding the Kestrel Server 19
Adding a Startup Class and Middleware 20
Running the App 21

Summary 22
2. Delivering Continuously 23

Introducing Docker 23
Installing Docker 24
Running Docker Images 24

Continuous Integration with Wercker 26
Building Services with Wercker 26

Installing the Wercker CLI 27
Adding the wercker.yml Configuration File 28
Running a Wercker Build 30

Continuous Integration with CircleCI 31
Deploying to Docker Hub 32
Summary 33

3. Building a Microservice with ASP.NET Core 35
Microservices Defined 35
Introducing the Team Service 36

API First Development 37
Why API First? 37
The Team Service API 38

Test-First Controller Development 39
Injecting a Mock Repository 46
Completing the Unit Test Suite 49

Creating a CI Pipeline 50
Integration Testing 52
Running the Team Service Docker Image 54
Summary 56

4. Backing Services 57
Microservice Ecosystems 57

Bound Resources 59
Strategies for Sharing Models Between Services 60

Building the Location Service 62
Enhancing the Team Service 66

Configuring Service URLs with Environment Variables 66
Consuming a RESTful Service 67
Running the Services 69

Summary 72
5. Creating a Data Service 73

Choosing a Data Store 73
Building a Postgres Repository 74

Creating a Database Context 75
Implementing the Location Record Repository Interface 76
Testing with the Entity Framework Core In-Memory Provider 78

Databases Are Backing Services 78
Configuring a Postgres Database Context 79

Integration Testing Real Repositories 81
Exercising the Data Service 83
Summary 87

6. Event Sourcing and CQRS 88
Introducing Event Sourcing 88

Reality Is Event Sourced 89
Event Sourcing Defined 89
Learning to Love Eventual Consistency 91

The CQRS Pattern 92
Event Sourcing and CQRS in Action—Team Proximity Sample 93

The Location Reporter Service 95
The Event Processor 104
The Reality Service 110
The Proximity Monitor 111

Running the Samples 112

Starting the Services 113
Submitting Sample Data 114

Summary 116
7. Building an ASP.NET Core Web Application 117

ASP.NET Core Basics 117
Adding ASP.NET MVC Middleware 120
Adding a Controller 121
Adding a Model 122
Adding a View 122
Invoking REST APIs from JavaScript 125

Building Cloud-Native Web Applications 128
API First 129
Configuration 129
Logging 130
Session State 130
Data Protection 131
Backing Services 131
Environment Parity 132
Port Binding 132
Telemetry 133
Authentication and Authorization 133

Summary 134
8. Service Discovery 135

Refresher on Cloud-Native Factors 135
External Configuration 135
Backing Services 136

Introducing Netflix Eureka 137
Discovering and Advertising ASP.NET Core Services 139

Registering a Service 140
Discovering and Consuming Services 141

DNS and Platform Supported Discovery 145
Summary 145

9. Configuring Microservice Ecosystems 146
Using Environment Variables with Docker 147
Using Spring Cloud Config Server 148
Configuring Microservices with etcd 151

Creating an etcd Configuration Provider 153
Summary 158

10. Securing Applications and Microservices 159
Security in the Cloud 159

Intranet Applications 159
Cookie and Forms Authentication 160

Encryption for Apps in the Cloud 161
Bearer Tokens 161

Securing ASP.NET Core Web Apps 162
OpenID Connect Primer 162
Securing an ASP.NET Core App with OIDC 164
OIDC Middleware and Cloud Native 172

Securing ASP.NET Core Microservices 174
Securing a Service with the Full OIDC Security Flow 174
Securing a Service with Client Credentials 175
Securing a Service with Bearer Tokens 176

Summary 179
11. Building Real-Time Apps and Services 181

Real-Time Applications Defined 181
Websockets in the Cloud 182

The WebSocket Protocol 183
Deployment Models 183

Using a Cloud Messaging Provider 184
Building the Proximity Monitor 185

Creating a Proximity Monitor Service 186
Creating a Real-Time Proximity Monitor UI 196

Summary 198
12. Putting It All Together 199

Identifying and Fixing Anti-Patterns 199
Cleaning Up the Team Monitor Sample 199

Continuing the Debate over Composite Microservices 202
Mitigating Risk with Circuit Breakers 204
Eliminating the Synchronous Composite Pattern 207

What Next? 207
Index 209

	Preface
	What You’ll Build
	Why You’re Building Services
	What You’ll Need to Build Services
	Online Resources
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	1. ASP.NET Core Primer
	Distilling the Core
	CoreCLR
	CoreFX
	.NET Platform Standard
	ASP.NET Core

	Installing .NET Core
	Building a Console App
	Building Your First ASP.NET Core App
	Adding ASP.NET Packages to the Project
	Adding the Kestrel Server
	Adding a Startup Class and Middleware
	Running the App

	Summary

	2. Delivering Continuously
	Introducing Docker
	Installing Docker
	Running Docker Images

	Continuous Integration with Wercker
	Building Services with Wercker
	Installing the Wercker CLI
	Adding the wercker.yml Configuration File
	Running a Wercker Build

	Continuous Integration with CircleCI
	Deploying to Docker Hub
	Summary

	3. Building a Microservice with ASP.NET Core
	Microservices Defined
	Introducing the Team Service
	API First Development
	Why API First?
	The Team Service API

	Test-First Controller Development
	Injecting a Mock Repository
	Completing the Unit Test Suite

	Creating a CI Pipeline
	Integration Testing
	Running the Team Service Docker Image
	Summary

	4. Backing Services
	Microservice Ecosystems
	Bound Resources
	Strategies for Sharing Models Between Services

	Building the Location Service
	Enhancing the Team Service
	Configuring Service URLs with Environment Variables
	Consuming a RESTful Service
	Running the Services

	Summary

	5. Creating a Data Service
	Choosing a Data Store
	Building a Postgres Repository
	Creating a Database Context
	Implementing the Location Record Repository Interface
	Testing with the Entity Framework Core In-Memory Provider

	Databases Are Backing Services
	Configuring a Postgres Database Context

	Integration Testing Real Repositories
	Exercising the Data Service
	Summary

	6. Event Sourcing and CQRS
	Introducing Event Sourcing
	Reality Is Event Sourced
	Event Sourcing Defined
	Learning to Love Eventual Consistency

	The CQRS Pattern
	Event Sourcing and CQRS in Action—Team Proximity Sample
	The Location Reporter Service
	The Event Processor
	The Reality Service
	The Proximity Monitor

	Running the Samples
	Starting the Services
	Submitting Sample Data

	Summary

	7. Building an ASP.NET Core Web Application
	ASP.NET Core Basics
	Adding ASP.NET MVC Middleware
	Adding a Controller
	Adding a Model
	Adding a View
	Invoking REST APIs from JavaScript

	Building Cloud-Native Web Applications
	API First
	Configuration
	Logging
	Session State
	Data Protection
	Backing Services
	Environment Parity
	Port Binding
	Telemetry
	Authentication and Authorization

	Summary

	8. Service Discovery
	Refresher on Cloud-Native Factors
	External Configuration
	Backing Services

	Introducing Netflix Eureka
	Discovering and Advertising ASP.NET Core Services
	Registering a Service
	Discovering and Consuming Services

	DNS and Platform Supported Discovery
	Summary

	9. Configuring Microservice Ecosystems
	Using Environment Variables with Docker
	Using Spring Cloud Config Server
	Configuring Microservices with etcd
	Creating an etcd Configuration Provider

	Summary

	10. Securing Applications and Microservices
	Security in the Cloud
	Intranet Applications
	Cookie and Forms Authentication
	Encryption for Apps in the Cloud
	Bearer Tokens

	Securing ASP.NET Core Web Apps
	OpenID Connect Primer
	Securing an ASP.NET Core App with OIDC
	OIDC Middleware and Cloud Native

	Securing ASP.NET Core Microservices
	Securing a Service with the Full OIDC Security Flow
	Securing a Service with Client Credentials
	Securing a Service with Bearer Tokens

	Summary

	11. Building Real-Time Apps and Services
	Real-Time Applications Defined
	Websockets in the Cloud
	The WebSocket Protocol
	Deployment Models

	Using a Cloud Messaging Provider
	Building the Proximity Monitor
	Creating a Proximity Monitor Service
	Creating a Real-Time Proximity Monitor UI

	Summary

	12. Putting It All Together
	Identifying and Fixing Anti-Patterns
	Cleaning Up the Team Monitor Sample

	Continuing the Debate over Composite Microservices
	Mitigating Risk with Circuit Breakers
	Eliminating the Synchronous Composite Pattern

	What Next?

	Index

