
Business Process
Automation with
ProcessMaker 3.1

A Beginner’s Guide
—
Dipo Majekodunmi

www.allitebooks.com

http://www.allitebooks.org

Business Process
Automation with
ProcessMaker 3.1

A Beginner’s Guide

Dipo Majekodunmi

www.allitebooks.com

http://www.allitebooks.org

ISBN-13 (pbk): 978-1-4842-3344-3 ISBN-13 (electronic): 978-1-4842-3345-0
https://doi.org/10.1007/978-1-4842-3345-0

Library of Congress Control Number: 2017962072

Copyright © 2018 by Dipo Majekodunmi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando
Copy Editor: James A. Compton, Compton Editorial Services

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484233443. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Dipo Majekodunmi
Lagos, Nigeria

Business Process Automation with ProcessMaker 3.1: A Beginner’s Guide

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3345-0
http://www.allitebooks.org

iii

Table of Contents

Chapter 1: An Introduction to Workflow and Business Process Management ��������� 1

What Is a Workflow? ��� 1

A Sample Workflow ��� 2

What Is a Business Process? ��� 5

What Is BPM? �� 6

What Is ProcessMaker? �� 7

Chapter 2: Getting Started with ProcessMaker �� 9

Installation Steps �� 11

For Mac OS X Users ��� 11

For Windows Users �� 20

The Bitnami Application Manager ��� 32

The Welcome Screen ��� 32

The Manage Servers Screen ��� 33

The Server Events Screen ��� 34

Exploring the ProcessMaker Interface �� 35

ProcessMaker Concepts ��� 36

Chapter 3: The ProcessMaker Workflow Designer ��� 39

Process List Actions �� 40

New ��� 40

Edit �� 42

About the Author ��� xiii

Acknowledgments ���xv

Foreword ���xvii

Introduction ��xxi

www.allitebooks.com

http://www.allitebooks.org

iv

Status �� 42

Export �� 42

Delete and Delete Cases �� 43

Import �� 43

Category Filter and Search �� 44

Debug �� 44

Process List Columns �� 45

Process Designer �� 47

Top Toolbar �� 47

Process Map Area �� 50

Shapes Toolbox �� 51

Chapter 4: Modeling a Process ��� 73

Create a New Process ��� 74

Add Tasks to the Process �� 75

Connecting Tasks in the Process �� 76

Chapter 5: Making the Process Comprehensible �� 79

The Shapes Toolbox, Continued �� 79

Data Elements ��� 79

Pools and Lanes �� 81

Artifacts ��� 82

Tying It All Together ��� 83

Complete the Process Model �� 86

Chapter 6: Building the Process ��� 93

Variables ��� 94

Variable Name ��� 96

Variable Type ��� 97

Database Connection ��� 99

SQL �� 99

Define Accepted Variable Values ��� 99

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Create the Variables �� 100

Dynaforms ��� 101

Chapter 7: The Responsive Dynaform Designer �� 103

Dynaform Title ��� 104

Dynaform Designer Menu ��� 104

Save ��� 104

Export �� 104

Import �� 105

Preview �� 105

Clear �� 105

Language ��� 105

Close �� 106

Dynaform Control and Properties Panel �� 106

Web Controls ��� 106

Properties �� 107

History of Use �� 107

Dynaform Container �� 107

Form Control Properties �� 108

Row Control Properties �� 109

Chapter 8: Dynaform Web Controls �� 111

Creating Variables from the Dynaform Designer ��� 112

Textbox �� 114

Textarea �� 121

Dropdown �� 122

Checkbox �� 125

Checkgroup ��� 127

Radio ��� 128

Datetime�� 129

Repositioning a Row ��� 135

Suggest ��� 136

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vi

Dividing a Row �� 137

Hidden ��� 139

Title and Subtitle ��� 140

Label ��� 141

Link ��� 141

Image �� 142

File �� 143

Multiple File Uploader ��� 146

Submit and Button �� 147

Grid ��� 150

Adding Controls to the Grid ��� 151

Adding and Deleting Rows �� 153

Paging Records in the Grid �� 154

Modifying the Grid Layout ��� 155

Validating Required Fields ��� 157

Mathematical Functions in Grids ��� 157

Panel ��� 159

Subform �� 163

Chapter 9: Adding Forms to the Process �� 167

Building the Form�� 168

Adding Comments to the Form ��� 175

Debugging Errors in JavaScript �� 180

Cloning the Form ��� 183

Adding Approval Functionality��� 184

Approval without Code �� 184

Approval with Code�� 184

Another Variant of the Form �� 189

Assigning a Form to a Task ��� 190

Default Steps in a Task: Assignment and Routing ��� 191

Adding a Dynaform Step �� 192

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vii

Chapter 10: Administering Users in ProcessMaker �� 199

Users ��� 201

Adding a New User �� 201

Editing a User �� 204

Disabling a User �� 204

Deleting a User �� 206

User Summary, Group and Authentication ��� 206

Groups ��� 206

Creating a Group �� 206

Editing a Group �� 207

Deleting a Group �� 207

Assigning Users to a Group ��� 208

Assigning Groups to a User ��� 209

Departments ��� 211

Adding a New Department �� 211

Assigning Users to a Department �� 212

Setting a Department Manager ��� 213

Deleting a Department �� 215

Roles ��� 215

Default Roles ��� 215

Creating New Roles ��� 216

Viewing and Editing Role Permissions �� 216

Assigning Users to Roles ��� 218

Authentication Sources ��� 220

Setting Up an Authentication Source ��� 220

Importing Users from an Authentication Source�� 222

User Experience �� 225

Changing the User Experience for a User �� 225

Chapter 11: Assigning Users to Tasks in a Process �� 229

Assigning Users and Groups ��� 230

Cyclical Assignment �� 232

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

viii

Manual Assignment �� 235

Comparing Cyclical, Manual, and Value-Based Assignment ��� 237

Value-Based Assignment �� 241

Reports To ��� 245

Self Service ��� 247

Self-Service Value-Based Assignment �� 251

Chapter 12: Triggers ��� 257

Trigger Timing ��� 258

Before a Step ��� 258

After a Step �� 258

Before Assignment �� 258

Before Routing ��� 259

After Routing ��� 259

Case and System Variables ��� 259

Case Variable Prefixes ��� 260

System Variables ��� 260

Variable Selector ��� 262

Creating Triggers ��� 262

Predefined Triggers ��� 263

Custom Triggers ��� 267

Copying Triggers �� 269

Testing the Triggers ��� 270

Debugging Triggers ��� 272

Enabling and Disabling Debug Mode ��� 273

ProcessMaker Debugger ��� 274

Identifying Errors ��� 276

Chapter 13: Input and Output Documents �� 277

Input Documents ��� 277

Creating an Input Document �� 278

Adding Input Documents to a Dynaform �� 280

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

ix

Adding Input Documents as a Step ��� 281

Viewing the Documents in the Document Management System �� 286

Output Documents �� 287

Creating an Output Document ��� 287

Chapter 14: Completing the Process �� 301

Building the Additional Forms ��� 302

Modifying the Imported Form �� 303

Clone the Form �� 307

Assign the Forms to Tasks �� 311

Define the Routing Rule �� 312

Configure Assignment Rules ��� 312

Set Up Receipt Upload �� 313

Generate the Expense Report ��� 314

Add Some Triggers �� 319

Test the Changes ��� 322

Chapter 15: Enhancing the Process �� 331

Feedback �� 331

Finance Officers �� 331

Supervisors ��� 332

Employees ��� 332

Case Labels ��� 333

Email Notifications �� 334

Using the Task Notification Property�� 334

Creating a Template for Email Notification �� 336

Using PMFSendMessage in a Trigger �� 338

Assign the Triggers to Tasks �� 342

Check that Email Sending is Configured ��� 342

Prefilling Form Fields with Triggers �� 344

Setting Datetime Control Properties ��� 347

Dynaform Logic in JavaScript ��� 348

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

x

Case Permissions and Case Notes �� 350

Escalating Unclaimed Cases ��� 354

Testing the Enhancements �� 356

Chapter 16: Complex Routing with Gateways �� 363

Exclusive (XOR) Gateway �� 365

Parallel (AND) Gateway ��� 365

Sample Process ��� 365

Testing the Process ��� 375

The Inclusive (OR) Gateway �� 378

Cloning the Process ��� 378

Changing the Gateway ��� 379

Applying the Conditions ��� 380

Testing the Process ��� 381

Default Flow �� 383

Chapter 17: Admin Features ��� 385

Settings ��� 385

Logo ��� 386

Email Servers �� 387

Calendar �� 387

Process Categories �� 389

Language ��� 391

Skins �� 394

Environment �� 395

Cases List Cache Builder ��� 395

Clear Cache ��� 396

PM Tables �� 396

Login �� 401

Dashboards ��� 402

System ��� 404

System Information, Check PM Requirements and PHP Information ���������������������������������� 404

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-3345-0_16#Sec3

xi

Plugins �� 404

Logs �� 406

Chapter 18: Going Mobile ��� 407

ProcessMaker Mobile Apps ��� 407

Install the App �� 407

Install ngrok for Remote Access �� 411

Configure Mobile App Settings �� 414

Create a Case �� 415

Deploying to Production �� 416

Chapter 19: Installing ProcesMaker on a Cloud Server �� 419

Getting a DigitalOcean Account ��� 419

Register for Your Account �� 419

Confirm Your Email Address �� 420

Account Verification ��� 421

Creating Your Droplet (Virtual Private Server) ��� 423

Connecting to the Droplet ��� 426

Using Mac or Linux �� 426

Using Windows �� 427

Installing ProcessMaker �� 430

Remove MariaDB ��� 431

Install Apache �� 431

Install PHP 5�6 ��� 432

Install MySQL 5�5�X �� 433

Secure the MySQL Installation �� 436

Disable SELINUX �� 437

Enable Firewall and Open ProcessMaker ports ��� 437

Download and Extract ProcessMaker Installer �� 438

Configure Apache Web Server ��� 441

Complete the Installation ��� 443

Take a Snapshot �� 448

Table of ConTenTs

xii

Chapter 20: Deploying to Production �� 451

Get a Free Domain Name �� 451

Set Up DNS �� 454

Install SSL Certificate �� 457

Create a non-Root Super User ��� 457

Install the Required Software �� 457

Request a Certificate from Let’s Encrypt ��� 458

Deploying the Process �� 462

Configuring the Mobile App ��� 463

What Next? �� 464

Index ��� 465

Table of ConTenTs

xiii

About the Author

Dipo Majekodunmi is a Certified ProcessMaker Architect and Developer with 7

years of experience building and automating business processes using ProcessMaker.

He has implemented ProcessMaker for a number of banks and financial service

providers in Nigeria, integrating ProcessMaker with banking applications and other

enterprise systems. His background as a business analyst gives him the unique ability to

understand and address business needs through technology. Dipo is an AIIM Certified

Information Professional and holds a Post Graduate Diploma in Advanced IT and

Business Management from the University of Wales. He is the founder and managing

partner at dipoleDIAMOND in Lagos, Nigeria, where he helps businesses leverage

technology to solve problems.

xv

Acknowledgments

I would like to thank Amos B. Batto, ProcessMaker Technical Documentation Writer &

Forum Manager, for reviewing the code in the book and giving valuable feedback and

insights to make this book better.

I have added some of his feedback about JavaScript in Chapter 9 verbatim in a

section there labeled “Notes from Amos.”

xvii

Foreword

The rate of technological change in the workplace is increasing every day at a faster pace.

Business leaders that hope to maintain a competitive edge for their businesses have no

choice but to embrace this technological change. According to one study, two-thirds of

the CEOs of Global 2000 companies will have digital transformation at the center of their

corporate strategy by the end of 2017 (source: IDC).

Current and future CEOs will not have the luxury of letting their CIOs make key

technology decisions alone. The role of the CIO and will grow in importance, but the

CEO will be expected to take a more active role in technology decision-making. In more

and more industries business strategy will become inextricably linked to technology

strategy.

I interpret the concept of digital transformation as the merger of business strategy

with technology strategy. In particular I see three important factors that contribute to

digital transformation:

 1. Technology

 2. Data

 3. Process

Some businesses will need to focus on just one of these factors to achieve true digital

transformation. Others will need to focus on two or all three of these factors.

The digital transformation caused by technological change is often obvious. These

technological changes are things like autonomous vehicles, RFID/IoT, and CRISPR for

gene editing. These technologies are literally shaking industries to the ground. It is easy

to see the transformative nature offered by these pure technology breakthroughs.

The transformation being caused by data is a little subtler. Businesses that can

produce big data sets have the opportunity to create new business models based around

the monetization of their big data. Google has already developed several billion-dollar

businesses based off of all the search data they collect. Amazon and its clients are

another big winner thanks to big data. Amazon’s Mechanical Turk gathers big data sets

by paying people to perform discrete tasks called HITs (Human Intelligence Tasks). The

xviii

results of these HITs make platforms smarter and more valuable at things like image

recognition that require lots of data to be smart enough to be valuable.

The third leg of digital transformation is process. Every type of software today

manages some type of process. CRM and ERP systems have been slowly transforming

most businesses for the past several decades. However, processes are changing at a

faster rate today than they did just a few years ago. The effects of technology changes and

changes caused by big data are rippling across all industries. The result is that more and

more businesses need to automate processes even faster than before.

And once automated, the work is not done. There is no such thing as automate and

forget. Critical business processes not only require faster automation; they also require

faster reconfiguration.

ProcessMaker is a modern, intelligent Business Process Management and Workflow

suite designed to connect systems and people to make processes run faster and smarter.

With the ProcessMaker visual process designer, it is simple to build process apps that

connect system APIs, web forms, data, and people into a single process.

Examples of some of the custom processes that our customers model and automate

in ProcessMaker include the following:

• Credit Applications

• Change Order Requests

• Purchase Requests

• CAPEX Requests

• AFE Requests

• Employee On-boarding Processes

• System Access Requests

• New Product Development

We are very excited to be able to recommend to our users Dipo’s Business Process

Automation with ProcessMaker 3.1: A Beginner’s Guide. I have personally had the chance

to work with Dipo over several years, and I have always been extremely impressed by

both his technical knowledge and his business acumen. I believe that to be able to write

a truly useful guide to ProcessMaker and BPM, a writer must have knowledge in both

foreword

xix

areas. Dipo has just that. Dipo’s years of working in banking and other industries have

given him deep first-hand experience implementing real processes for real businesses.

I am sure that ProcessMaker users all around the world will benefit enormously from

this guide.

So enjoy the guide, and happy process automation!

Brian S. Reale, Co-Founder ProcessMaker

foreword

xxi

Introduction

I first came across ProcessMaker in 2010 when researching for an alternative BPM

application at work to replace the current one we used. Even though I had no previous

experience working with the solution, I was able to build a process in a matter of hours.

Within a week I had a demo ready to show my boss.

Over the past seven years, I have worked on automating more complex business

processes, integrating ProcessMaker with enterprise applications and building custom

plugins. When I’m passionately proselytizing ProcessMaker, my new converts are not

always sure where to start. This book is my effort to help those new to ProcessMaker

understand the concepts and get started automating business processes.

I have learned a lot writing this book and would appreciate your feedback about it.

You can leave your feedback, comments, questions and suggestions on the Learning

BPM blog: https://learningbpm.com/books/beginners-guide-feedback

While on the subject of the blog, I will also post new insights, tips, and tricks on the

blog, and you can also suggest topics you would like to see covered.

Once again, thank you for purchasing this book and all the best in automating your

business processes.

—Dipo Majekodunmi

https://learningbpm.com/books/beginners-guide-feedback

1
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_1

CHAPTER 1

An Introduction
to Workflow and Business
Process Management
Every organization has its way of doing things: making purchases, attending to

customers’ and employees’ requests, keeping track of inventory, and so on. More

often than not, these tasks involve more than one person, and the need for someone

in authority to approve the request or a person assigned the responsibility to carry out

the task. This is often documented using forms or documents that are passed around

as the task or request progresses. The documents contain the details of the request and

signatures of those who have worked on it.

Usually, these documents are printed and filled out. When there are supporting

documents such as receipts, invoices and so on, they are also attached to the document.

When the request is completed, the documents are filed and stored for future references.

In other scenarios, to avoid printing documents and also save time when the person

required to work on a task cannot be reached or works in a different location, the

documents are scanned and emailed. The other party then prints it out, endorses the

document, scans it and emails it back so that the work can continue.

 What Is a Workflow?
The scenarios just described illustrate what can be referred to as a “workflow.” A quick

Google search for “What is a workflow?” (https://www.google.com?q=What+is+a+workflow)

gives us this definition: “the sequence of industrial, administrative, or other processes

through which a piece of work passes from initiation to completion.”

https://www.google.com/?q=What+is+a+workflow
https://www.google.com/?q=What+is+a+workflow

2

There are many more complex definitions of what a workflow is, but I would rather

we keep things simple. Another definition I like is from SearchCIO (http://searchcio.

techtarget.com/definition/workflow), which defines a workflow as “the series of

activities that are necessary to complete a task.” Putting it all together, we can think

of a workflow as the various activities that must be carried out in a specific order to

accomplish a set business/organizational objective.

 A Sample Workflow
For example, a common activity in most organizations is cash requisition and reporting

expenses; and this process can be regarded as a workflow. This workflow consists of a

series of steps such as these:

 1. An employee makes a request: Initiation.

 2. Her supervisor approves the request.

 3. Finance gives her an advance for the amount requested.

 4. The employee makes the purchase or expense.

 5. The employee reports the expense and attaches a receipt.

 6. The supervisor approves the report.

 7. Finance reimburses the employee or receives the balance of the

advance.

 8. Finance updates the accounting system with appropriate

accounting entries.

 9. The expense report is signed as treated by finance and filed:

Completion.

The workflow just described can be documented in Cash Advance Requisition and

Expense Retirement forms similar to the ones that follow.

Chapter 1 an IntroduCtIon to WorkfloW and BusIness proCess ManageMent

http://searchcio.techtarget.com/definition/workflow
http://searchcio.techtarget.com/definition/workflow

3

Sample expense retirement form

Chapter 1 an IntroduCtIon to WorkfloW and BusIness proCess ManageMent

4

Sample cash advance requisition form

Chapter 1 an IntroduCtIon to WorkfloW and BusIness proCess ManageMent

5

 What Is a Business Process?
Before we proceed further, I would like to also draw your attention to another term

commonly used to describe workflows: business processes. SearchCIO defines a business

process (http://searchcio.techtarget.com/definition/business-process) as “an

activity or set of activities that will accomplish a specific organizational goal. Business

process management (BPM) is a systematic approach to improving those processes.”

You can see that this definition of a business process is very similar to the

definition of a workflow. The definition also introduces a new concept: business process

management, which we will explore later. This shows that a workflow in our context is

basically a business process, and this book will often use the terms interchangeably.

Returning to our example of the Expense Reporting business process, can you think

of a number of problems that might be encountered in the day-to-day utilization of the

process in your organization? A few that readily come to mind are these:

 1. How do you ensure that employees fill out all required fields on

the form?

 2. How can you enforce that Finance does not treat any request

without a properly filled out and approved form or avoid requests

being sent by email that omit important details?

 3. How do you ensure that supervisors do not approve advances

above their authorized limits?

 4. How can you easily track expenses based on approved budgets?

 5. How do you make sure that reports must contain a receipt or other

supporting documents?

Do any of these questions above resonate? If your organization is also

environmentally conscious, a key concern would be reducing the amount of paper

utilized. It is questions like these that business process management (BPM) attempts to

address. So let us look at a couple of definitions of BPM.

Chapter 1 an IntroduCtIon to WorkfloW and BusIness proCess ManageMent

http://searchcio.techtarget.com/definition/business-process

6

 What Is BPM?
According to AIIM (http://www.aiim.org/What-is-BPM), BPM refers to how we study,

identify, change, and monitor business processes to ensure that they run smoothly and

can be improved over time.

In a similar vein, SearchCIO describes BPM (http://searchcio.techtarget.com/

definition/business-process-management) as “a systematic approach to making an

organization’s workflow more effective, more efficient and more capable of adapting to

an ever-changing environment.”

From this definition, we see that BPM is a way of improving our workflows or

business processes—that is, standardizing them, eliminating inefficiencies, and

positioning them to generate more business value. We can also see that it is not a one-off

activity, but rather a cycle of activities:

 1. Identify what objectives need to be achieved.

 2. Define the tasks or activities required to achieve them.

 3. Standardize these activities into a process.

 4. Utilize the process within the organization.

 5. Observe how the process is being used.

 6. Identify the bottlenecks and problem areas.

 7. Redesign the process to eliminate the bottlenecks and remove the

identified problems.

We then repeat the cycle of observation, identification, and modification adapting to

the changing demands of the organization and its stakeholders while ensuring that the

best value is delivered by the business process.

BPM often consists of two parts, the methodology and the software. What we have

described is the methodology, and you will agree that doing this without any form of

automation would be a herculean task. BPM software enables us to automate the process

of defining and creating workflows, monitoring and optimizing them.

Early in my professional career, I was fortunate to work in an organization that

utilized BPM software in its day-to-day operations. While I knew that it made the

organization and its employees more efficient and productive, I did not really grasp the

magnitude of the benefits until I worked with other organizations that did not use BPM.

Chapter 1 an IntroduCtIon to WorkfloW and BusIness proCess ManageMent

http://www.aiim.org/What-is-BPM
http://searchcio.techtarget.com/definition/business-process-management
http://searchcio.techtarget.com/definition/business-process-management

7

Valuable human hours were spent on mundane tasks such as capturing data from

paper forms into Excel to generate management reports, verifying that forms were

filled correctly, or searching storage archives looking for supporting documents for an

approved request so they can be scanned and emailed to auditors, to mention a few.

You might be wondering, “all this sounds good, but BPM software is way too

expensive for us to afford and too complex for our team to master,” and my response will

be “you are both right and wrong.” A lot of BPM solutions are quite expensive, costing

hundreds of thousands of dollars and requiring very complex procedures to set up and

build processes with.

However, there are also free or open source solutions that are quite easy to set up and

can be used to begin the first steps toward building and optimizing your organization’s

business processes without costing an arm and a leg. One such solution is ProcessMaker,

and my goal is to help you see how you can use it to build and automate your first

business process, deploy it to your organization, and become proficient in implementing

BPM in your organization.

ProcessMaker also has a paid enterprise edition that comes with support and

additional features, but we will be focusing on the free open source edition, which I think

is more than enough to help any organization start its BPM journey.

 What Is ProcessMaker?
ProcessMaker is an open source workflow and business process management solution

developed by ProcessMaker Inc., previously known as Colosa Inc. ProcessMaker allows

you to model and build your business processes and workflows easily using an intuitive

and easy-to-learn designer. It also allows you to run these processes with a user-friendly-

interface for the users within your organization. ProcessMaker helps businesses improve

their efficiency by automating the flow of data, forms, and information across the

organization.

I first discovered ProcessMaker in 2010, and one of the first things that attracted me

to it as my preferred choice of a BPM solution was the simplicity and how quickly I was

able to build a process without any previous training. Over the years, the product has

improved significantly, with new features added with every new release.

ProcessMaker is a web-based application, meaning that all your end users require

only a modern browser to access the application. ProcessMaker also comes with mobile

apps for iOS and Android, allowing you to access your business processes on the go.

Chapter 1 an IntroduCtIon to WorkfloW and BusIness proCess ManageMent

8

The application is built on the AMP (Apache, MySQL, and PHP) stack and runs

on both Unix and Windows operating systems. ProcessMaker also comes with a full-

featured REST API, which makes integration with other applications a breeze.

Rather than bore you with technical jargon, I think the best way to learn about

ProcessMaker is to get our hands dirty, exploring it and building something with it.

Fortunately for us, the folks at Bitnami (https://bitnami.com) have put together a

Bitnami ProcessMaker Stack for the three common operating systems: Windows, MacOS

(also called OS X), and Linux, allowing us to dive into ProcessMaker without having to

deal with setting up a web server and database ourselves on our systems.

According to the Bitnami documentation, a Bitnami Stack is

an integrated software bundle that includes a web application and all of its
required components (web server, database, language runtime), so it is
ready to run out of the box. The Stacks can be deployed as traditional Native
Installers, Virtual Machine Images or Cloud Images.

In this chapter, we defined a workflow and learned about business processes

and business process management in general. We also introduced ProcessMaker as

a powerful open source BPM solution that you can use to automate your business

processes. In the next chapter, we will install ProcessMaker using the Bitnami Stack

installer, explore the interface, and introduce some basic ProcessMaker concepts.

 Bitnami Installations Bitnami installations are generally only used for
testing and developing processes. a manual installation is recommended when
using processMaker in production, because Bitnami installations cannot be
upgraded to later versions, and they are generally slower and use more resources
than manual installations.

Chapter 1 an IntroduCtIon to WorkfloW and BusIness proCess ManageMent

https://bitnami.com/

9
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_2

CHAPTER 2

Getting Started
with ProcessMaker
The following steps will walk you through installing ProcessMaker on your Mac or

Windows computer using the Bitnami installer. Again, the purpose of this installation

is simply to get started quickly exploring the features of ProcessMaker. When deploying

ProcessMaker to production in your organization, you should instead deploy it on a

server either on-premise or in the cloud using the manual installation. Later chapters in

this guide will show how to install ProcessMaker manually on a cloud server, secure it

with SSL, and access it using the ProcessMaker mobile app.

To begin, head over to https://bitnami.com/stack/processmaker/installer to

download the ProcessMaker Open Source Edition installer for your system.

https://bitnami.com/stack/processmaker/installer

10

We will use the Open Source edition for this book. To learn more about the

difference between the Open Source and Enterprise editions, you can visit http://wiki.

processmaker.com/ProcessMaker_Enterprise_Editionv.3.0.

Bitnami ProcessMaker Installer page

Chapter 2 GettinG Started with proCeSSMaker

http://wiki.processmaker.com/ProcessMaker_Enterprise_Editionv.3.0
http://wiki.processmaker.com/ProcessMaker_Enterprise_Editionv.3.0

11

On the Bitnami ProcessMaker Installer page, click the Download button for your

operating system. You will be presented with a prompt requesting you to log in to

Bitnami. This is optional, and you can proceed by clicking the “No thanks, just take me to

the download” link at the bottom of the pop-up modal. If you are interested in learning

more about Bitnami, you can log in with any of the social media accounts displayed.

 Installation Steps
Once the download is completed, double-click the downloaded installation file to begin

the installation.

 For Mac OS X Users
MacOS (OS X) users should take the following steps to install ProcessMaker:

 1. Double-click the bitnami-processmaker-3.x-x-osx-x86_64-

installer.dmg file.

 2. The following screen is displayed, requesting you to double-click

to install.

Chapter 2 GettinG Started with proCeSSMaker

www.allitebooks.com

http://www.allitebooks.org

12

 3. If you see a warning sign like the following, click Open to

continue.

 4. You should now see the ProcessMaker setup wizard. Click

the Next button to walk through the wizard and complete the

installation.

Chapter 2 GettinG Started with proCeSSMaker

13

 a) In the next screen, Select Components, leave the ProcessMaker

and PhpMyAdmin options checked. PhpMyAdmin is a web

application that provides you with a graphical user interface

(GUI) that will allow you manage the MySQL database that will be

installed by the installer.

 b) In the next screen, Installation Folder, you can choose a location

to install the application or leave the default selection.

Chapter 2 GettinG Started with proCeSSMaker

14

 c) In the Create Admin Account screen, fill in the required details for the

admin account. Be sure to remember the password entered here, as it

is the password for the admin account and the database root account.

(In MySQL, the root account is the super user for the database.)

 d) In the next screen, Web Server Port, enter a port number to use.

You can leave the default port selected by the installer. The next

screen after that prompts for the SSL port. Leave the default

selected and click Next.

Chapter 2 GettinG Started with proCeSSMaker

15

 e) In the next screen, Configure SMTP Settings, you can choose

to allow ProcessMaker to send emails. Though this setting

is optional, I recommend checking the box “Do you want to

configure mail support?” With this box checked, select Gmail as

the default email provider if you have a Gmail account. This is the

easiest option, and you can set up a generic Gmail account for the

purpose of this guide. Alternatively, if you do not have a Gmail

account, select Custom and click Next.

Chapter 2 GettinG Started with proCeSSMaker

16

 f) If you selected Gmail, the next screen prompts for your Gmail

address and Password. If you selected Custom, the next screen

prompts you to enter your SMTP configuration details. You can

get this information from your email service provider. When done,

click Next.

 g) In the next screen, Deploy ProcessMaker to the Cloud in One

Click, uncheck “Launch ProcessMaker in the Cloud with Bitnami”

as we will be working with a local installation. Click Next.

Chapter 2 GettinG Started with proCeSSMaker

17

 h) In the next screen, Ready to Install, you are all set for the

automated installation. Click Next and wait for the installer to

complete.

Chapter 2 GettinG Started with proCeSSMaker

18

 5. Once the installation is completed, the wizard shows you the

option to “Launch Bitnami ProcessMaker Open Source Edition

Stack.” Leave the option checked and click the Finish button.

Chapter 2 GettinG Started with proCeSSMaker

19

The installer should launch your default browser and display the following screen. You

have now successfully set up ProcessMaker on your Mac. Check “Don’t show me again”

at the bottom of the Welcome to ProcessMaker pop-up and close it to display the login

form.

Also, you will notice in the Docker a new icon which opens the Bitnami

Application Manager, discussed later in this chapter. The Application Manager is where

you can launch the application, PhpMyAdmin, configure and manage the bundled

MySql and Apache Servers, and view the server events, which can be useful when

troubleshooting issues with starting the servers.

ProcessMaker is now installed on your Mac. You can skip the instructions for the

Windows installation and move to the next section.

Chapter 2 GettinG Started with proCeSSMaker

20

 For Windows Users
Windows users should take the following steps to install:

 1. Double-click the downloaded installer (bitnami-processmaker-

3.x-x-windows-x64-installer for 64-bit) file to launch the

installation wizard.

 2. If you see a warning from the User Account Control dialog like the

following, select Yes.

Chapter 2 GettinG Started with proCeSSMaker

21

 3. You should now see the ProcessMaker setup wizard, shown

following. Click the Next button to walk through the wizard and

complete the installation.

 a) In the next screen, Select Components, leave the ProcessMaker

and PhpMyAdmin options checked. PhpMyAdmin is a web

application that provides you with a graphical user interface

(GUI), with which you manage the MySQL database that will be

installed by the installer.

Chapter 2 GettinG Started with proCeSSMaker

22

 b) In the next screen, Installation Folder, you can choose a location

to install the application or leave the default selection.

 c) In the next screen, Create Admin Account, fill in the required

details for the admin account. Be sure to remember the password

entered here, as it is the password for the admin account and the

database root account. (In MySQL, the root account is the super

user for the database.)

Chapter 2 GettinG Started with proCeSSMaker

23

 d) In the next screen, Web Server Port, enter a port for the web

server to listen on. This is port 80 by default. If you already have

an application on your system listening on that port, you will be

shown a different port number. The important thing is to select a

free port number.

Using the default port allows you access the web server without having to specify

a port number (http://localhost/…) but with a non- default port number, the URL

will have to be suffixed with the port number when accessing the web server from

the browser (for example, http://localhost:81/… if using port 81 as in the previous

screenshot)

Chapter 2 GettinG Started with proCeSSMaker

24

 e) In the next screen, Web Server Port, you select the SSL port. You

can leave the default 443, unless you already have an application

listening on that port; if so, you can change it to a free port as we

did in the previous step. An alternative value is 8443.

Chapter 2 GettinG Started with proCeSSMaker

25

 f) In the next screen, Configure SMTP Settings, you can choose

to allow ProcessMaker to send emails. Although this setting

is optional, I recommend checking the box “Do you want to

configure mail support?” With this box checked, select Gmail as

the default email provider if you have a Gmail account. This is the

easiest option, and you can set up a generic Gmail account for the

purpose of this guide. Alternatively, if you do not have a Gmail

account, select Custom and click Next.

Chapter 2 GettinG Started with proCeSSMaker

26

 g) If you selected Gmail, the next screen prompts for your Gmail

address and Password. If you selected Custom, the next screen

prompts you to enter your SMTP configuration details. You can

get this information from your email service provider. When done,

click Next.

Custom SMTP configuration

Using Gmail configuration

Chapter 2 GettinG Started with proCeSSMaker

27

 h) In the next screen, Deploy ProcessMaker to the Cloud in One

Click, uncheck the option to Launch ProcessMaker in the cloud

with Bitnami, as we will be installing and learning locally. Click

Next.

 i) In the next screen, Ready to Install, you are all set for the

automated installation. Click Next and wait for the installer to

complete.

Chapter 2 GettinG Started with proCeSSMaker

28

 j) If you are prompted with a firewall warning like the following,

click Allow Access to grant ProcessMaker permission through the

firewall.

Chapter 2 GettinG Started with proCeSSMaker

29

 4. Once the installation is completed, you will see the Installation

Information screen showing you information about the

installation. Click Next to proceed to the last screen. Leave the

checkbox for “Launch Bitnami Open Source ProcessMaker Stack”

checked and click the Finish button to complete the installation.

Chapter 2 GettinG Started with proCeSSMaker

30

 5. If prompted, select a browser, preferably Chrome or Firefox. You

might also see a User Account Control dialog warning asking you

to allow manager-windows.exe to make changes to your computer.

Select Yes.

Chapter 2 GettinG Started with proCeSSMaker

31

 6. You should now see a Welcome to ProcessMaker modal displayed

in your browser. Check the “Don’t show me again” box at the

bottom of the modal and close it to display the login page.

Also, you will notice a new icon in the task bar, which opens the Bitnami

Application Manager. The application manager is where you can launch the

ProcessMaker application, PhpMyAdmin, configure and manage the bundled MySql and

Apache Servers and view the server events, which can be useful when troubleshooting

issues with starting the servers.

Chapter 2 GettinG Started with proCeSSMaker

www.allitebooks.com

http://www.allitebooks.org

32

 The Bitnami Application Manager
The ProcessMaker installation process just described also installs the Bitnami

Application Manager, which you can use to launch ProcessMaker should you restart your

PC.

To launch the Application Manager on Mac OS X, simply type manager-osx into

Spotlight to find it and click on it. If you have more than one Bitnami installation on your

Mac, look for the one with a description matching the ProcessMaker version installed.

You can also go to the folder you selected during the install process above or search

Applications to launch it.

To launch the application manager in Windows, simply look for the Bitnami

ProcessMaker folder in the Windows Start menu. Expand it and select the Bitnami

ProcessMaker Open Source Edition Stack Manager Tool.

The Application Manager has three top menu buttons : Welcome, Manage Servers,

and Server Events.

 The Welcome Screen
The components of the Welcome screen are as follows.

Welcome screen of the Application Manager

Chapter 2 GettinG Started with proCeSSMaker

33

Go to Application: This is used to launch the default browser

to open the ProcessMaker login page. To launch ProcessMaker,

ensure that the web server and database services are up and

running. You can click the Manage Servers button on top of the

Application Manager interface to check the status of the services.

Open phpMyAdmin: This is used to launch the phpMyAdmin

application in the default browser. phpMyAdmin is a web GUI for

administering MySQL databases.

Open Application Folder: This opens the folder where

ProcessMaker is installed on your system.

Visit Bitnami: This opens the Bitnami website in your browser.

You can use this to learn more about Bitnami and their offerings.

Get Support: This opens the Bitnami documentation

(https://wiki.bitnami.com) in your browser. You can find

detailed information about the different Bitnami stacks. For

example, details of the Bitnami ProcessMaker stack information

can be found here (https://wiki.bitnami.com/Applications/

Bitnami_- ProcessMaker).

 The Manage Servers Screen
The Manage Servers screen provides an interface for configuring, starting, stopping and

restarting the MySQL database and Apache web server on which ProcessMaker runs.

You can select a server by clicking on it and then use the buttons on the right to start,

stop, restart or configure it.

The Configure button allows you to change the ports of the servers and edit their

config files. At the bottom of the screen are the Start All, Stop All, and Restart All buttons,

which allow you to start, stop, or restart both servers at once., The indicators are green

when the servers are running and red when they are stopped.

Chapter 2 GettinG Started with proCeSSMaker

https://wiki.bitnami.com/
https://wiki.bitnami.com/Applications/Bitnami_ProcessMaker
https://wiki.bitnami.com/Applications/Bitnami_ProcessMaker
https://wiki.bitnami.com/Applications/Bitnami_ProcessMaker

34

 The Server Events Screen
The Server Events screen logs the status messages of the MySQL database and Apache

web server as they are stopped and started. The messages logged can provide useful

information for troubleshooting issues when the web server or database fails to start or

stop.

To prevent the ProcessMaker installation from using resources on your system when

it’s not in use, it is highly recommended that you stop the MySQL Database and Apache

Web Server services from the Bitnami Application Manager.

Manage Servers screen of the Application Manager

Chapter 2 GettinG Started with proCeSSMaker

35

 Exploring the ProcessMaker Interface
Now that you have ProcessMaker installed, let us dive in to see how it looks and how it

works. In the login screen displayed (you might need to close the Welcome pop-up screen

to see the form), enter the username and password you used when installing the application

and click the Login button. Remember, you can always use the Bitnami Application

Manager to launch ProcessMaker later if you close your browser or restart your system.

Server Events screen of the Application Manager

Chapter 2 GettinG Started with proCeSSMaker

36

On successful login, the following screen is displayed. You can see that the Designer

main menu is selected, and the Process List is empty; we currently do not have any

processes in our installation.

We will begin our exploration of ProcessMaker from the Designer, which is where

you will model, build, and configure your first ProcessMaker business process. It is

highly recommended to use a modern browser for the following chapters. ProcessMaker

currently supports the following browsers as of versions 3.1, 3.1.1 and 3.1.2:

Internet Explorer Google Chrome Mozilla Firefox Microsoft Edge

ie 11 two latest stable releases two latest stable releases two latest stable releases

 ProcessMaker Concepts
In our exploration of the ProcessMaker interface over the course of this book, you will

encounter the following terms used to explain the features. I will end this chapter with a

set of working definitions you can use to understand what the terms mean as we progress.

Process: This is a representation of a business process, such as

“Employee Leave Request.” It consists of tasks, which accept input

and produce an output.

Case: A case is an instance of a process. For example, a leave

request for John Doe for 5 days is a case. It is an instance of the

Employee Leave Request Process.

Chapter 2 GettinG Started with proCeSSMaker

37

Task: A task is a sequence of logically related steps carried out in

a process. In ProcessMaker, a task is made up of steps, conditions,

input or output documents and triggers. A sample task in the

Employee Leave Request process will be “Apply for leave.”

Steps: A step is a piece of work that forms a clearly defined action.

It could be filling a Dynaform or uploading a document.

Triggers: Custom code to perform specific business logic and add

additional functionality to processes.

Conditions: Conditions can be defined to skip specific steps or

triggers. The conditions are evaluated on a case by case basis.

Dynaforms: Dynamic Forms are the custom forms which can be

designed in ProcessMaker to capture data from the user while

running a case.

Input and output documents: When executing a case, users can

upload attachments (input documents) and ProcessMaker can

generate formatted .pdf or .doc documents (output documents)

using values captured or computed during a case.

Routing: This determines which task (or tasks in parallel) should

be done next by evaluating the set of defined conditions.

Assignment: This determines which user or group of users should

carry out a task after it has been routed. This is determined by

assignment rules and users/groups assigned to a task.

Process map: A process map is a dynamic visual representation of

the tasks and derivation rules associated with a business process.

It is the workflow diagram.

Plugin: This refers to modules that extend ProcessMaker features.

Role: A role is a set of permissions to access specified

functionalities and resources in ProcessMaker.

Group: Groups are a way to organize users and to simplify the

assignment of tasks to multiple users. Groups can also be used to

assign process permissions.

Chapter 2 GettinG Started with proCeSSMaker

38

In this chapter, we set up a local installation of ProcessMaker using Bitnami

Stack installers and learned about the Bitnami Application Manager for managing

the installation. We also introduced ProcessMaker concepts that will aid us in our

understanding of the topics we will be covering in the following chapters. In the next

chapter we explore the ProcessMaker Workflow Designer and learn about the tools we

can use in modeling a business process.

Chapter 2 GettinG Started with proCeSSMaker

39
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_3

CHAPTER 3

The ProcessMaker
Workflow Designer
ProcessMaker Designer is a BPMN 2.0–compliant process designer with drag-and-

drop functionality that lets you easily model your business processes, create forms for

capturing data when running the process, set up business rules or conditions, and assign

users to tasks making up the process, among other things.

If you are wondering what BPMN 2.0 compliance means, BPMN (Business Process

Model and Notation) is a global standard for business process modelling, which provides

a set of graphical notations for the specification of a business process in a Business

Process Diagram. The current version of the standard is 2.0, and it is maintained by the

Object Management Group (OMG). More information about BPMN 2.0 can be found at

http://www.bpmn.org/.

BPMN 2.0 provides a uniform means for business owners to describe their business

processes clearly, in a standard manner that can readily be understood without any

familiarity with the nuances of the business or organization. By being BPMN 2.0

compliant, the ProcessMaker designer allows us to model a process in any BPMN 2.0–

compliant application and import it into ProcessMaker, and vice versa.

 Please note that the import and export between applications refers to the
process diagram only and not the entire process itself.

When you click the Designer tab in the main menu, the Process List screen is

displayed as shown in the final illustration of Chapter 2. This screen displays a paged

list of all the processes currently in the system. At the moment we have none. The menu

bar on the page gives us options for creating, editing, enabling or disabling, importing,

exporting, deleting and searching for processes.

http://www.bpmn.org/

40

 Process List Actions
We will briefly explore the available actions in the Process List as we proceed to create

our first ProcessMaker process.

 New
This option allows us to create a new project in ProcessMaker. (The term project is used,

even though at this point we are creating only a single process, because a project can

contain more than one process, such as a main process with sub-processes.) Let us see

how this works:

 1. Click the New button in the menu bar and the following modal

pop-up is displayed.

 2. Enter a name for the project and a description. Leave the category

as No Category for now. You will see how to create categories

when we explore the Admin features.

 3. Click the Create button.

Process List menu bar

ChaPter 3 the ProCessMaker WorkfloW Designer

41

 4. The new project is created, and the Process Designer screen

is displayed. The screen is overlaid with an introductory

walkthrough that shows you the key features of the designer and

what they do. Click the Next button on the walkthrough to quickly

explore the designer, and click the Done button at the end.

 5. Click the Close button in the top-right corner to close the project

and return to the list of processes. Your newly created process

should now be displayed in the list.

ChaPter 3 the ProCessMaker WorkfloW Designer

42

 Edit
The Edit option allows you to edit the processes you create in ProcessMaker. To edit a

process, you select it from the list and click the Edit button from the menu bar. When

a process is selected from the list, it is highlighted in yellow. Clicking the Edit button

launches the Process Designer, allowing you to make the required changes to the

process.

 Status
The Status option displays the status of a process and toggles between Deactivate (for

Active processes) and Activate (for Inactive processes) when a process is selected from

the list. Newly created processes are active by default, as shown in the previous image.

When a process is deactivated, users will no longer be able to work on the process. To

deactivate a process, select it and click the Deactivate button.

The process status changes to Inactive as shown here, and the Status button now

shows the option to Activate. Select the process and click Activate.

 Export
The Export option allows you to export your projects outside of ProcessMaker. This is

useful for copying a project from one ProcessMaker instance to another. Let us see how

it works. Select your project and click the Export button. The Save dialog is displayed,

choose a location on your system and save the project. The project will be saved with a

.pmx extension.

ChaPter 3 the ProCessMaker WorkfloW Designer

43

 Delete and Delete Cases
The Delete option allows you to delete a project. A project can, however, only be deleted

if it has no cases. The Delete Cases option is a feature introduced in version 3.0.18 that

allows you to delete all the cases of a process. You will learn more about what cases are in

a bit, but basically, a case is an instance of a process.

Right now, your process does not have any case, so go ahead and select it and click

the Delete button. You should see a confirmation dialog asking if you are sure you want

to delete the selected process; click Yes. You should now have a blank process list.

I intentionally put the Export operation before the Delete, so that we can continue

with the exported project after deleting it by importing it again as described next.

 Import
The Import option allows us to import projects into a ProcessMaker instance. To see how

this works, let’s import the project we exported earlier. Click the Import button and, in

the modal that appears, click the folder icon to browse to the location on your system

where you saved the exported project. Select it and click the Upload button.

A modal is displayed asking if you want to keep the imported process UID or create a

new one. Leave the option as “Keep imported process UID” and click the Save button.

The Process Designer is opened, with your process successfully imported. Close

the designer by clicking the close button in the top-right corner. The imported process

is now displayed in the process list. Select the process and activate it if it is inactive, as

described in the Status section earlier.

ChaPter 3 the ProCessMaker WorkfloW Designer

44

 in case you are wondering what UiD means, it refers to the Unique identifier
for the process, which is a string of 32 hexadecimal numbers generated by
ProcessMaker. if you are familiar with database terminology, it is similar to a
primary key. objects in ProcessMaker such as users, groups, processes, tasks,
cases, Dynaforms, database connections, and so on are identified by their UiD.

 Category Filter and Search
On the right side of the menu bar on the listing page are the Category filter and Search

box. The Category filter allows us to filter the list of processes by category. This is

useful when you have a lot of processes. Similarly, the Search box allows us to search

for a process by entering the name. Try entering a phrase in the Search box that is not

included in the name of the process you just created and click the Search button.

 Debug
The actions just described, with the exception of New, Import and Delete Cases, can also

be accessed by right-clicking on a process from the list.

Right-click the process and you will notice an option to Enable Debug Mode. This

option allows us to debug (troubleshoot) the processes we build when they do not run as

expected. When the debug mode is enabled, you can see the values stored in system and

case variables and how they are being modified by triggers, which are basically custom

code written in PHP. You are also able to see any errors that might have occurred when

executing triggers.

ChaPter 3 the ProCessMaker WorkfloW Designer

45

 Process List Columns
The list of processes is displayed in a tabular form with the columns described in the

following list. The columns displayed in the Process List can be toggled by mousing

over any column title, clicking the down arrow on the right to display a context menu

and selecting Columns. This displays the list of columns with checkboxes that can be

checked or unchecked to toggle the visibility of the columns as shown here.

Process Title: The title of your BPMN project or process with the

project type in brackets and colored green.

Type: The type of process, which can be either BPMN, meaning

that the BPM project uses the BPMN 2.0 notation, or Classic, for

imported processes created in previous versions of ProcessMaker.

From ProcessMaker 3, it is only possible to create BPMN projects.

ChaPter 3 the ProCessMaker WorkfloW Designer

46

Category: This refers to the category of the process. Categories are

useful for organizing processes and can extend across business

lines, for example HR Processes, Finance Processes and so on. The

default is-No Category if no category is selected when creating the

process. The category of a process can always be changed from the

process properties, as we shall see later.

Status: The status of the process, which is either Active or Inactive.

No cases can be executed in a process that has Inactive status.

User owner: The user who created the process.

Create date: The date when the process was created.

Inbox: The number of cases of the process that are currently

pending and appear in users’ inboxes to be worked on.

Draft: The number of cases in the process that are in draft mode.

A case is in draft mode when the currently assigned user has

initiated a new case, but is yet to complete the first task in the

process and route it to the next task.

Completed: The number of completed cases in the process. A case

is completed when the final task in the process has been reached

and the case can no longer be worked on.

Canceled: The number of canceled cases in the process.

Total Cases: The total number of cases that have been created in

the process (including any canceled cases).

Debug: This shows the debug status off the process and can be

either On or Off.

Update Date: This shows the date and time the process was last

updated.

ChaPter 3 the ProCessMaker WorkfloW Designer

47

 Process Designer
The Process Designer is where you model your process, build the forms for capturing

data, configure it with the necessary business rules and conditions, assign users and

grant them permissions on the process. The designer is where the action happens. In the

following sections you will explore the designer and start building your first process.

On the following screen, the four major components of ProcessMaker Designer are

highlighted: the Top Toolbar, Shapes Toolbox, Main Toolbox and Process Map area. To

access the designer, select your process and click the Edit button. You can also access the

designer by double-clicking the process.

 Top Toolbar
The Top Toolbar is the blue horizontal toolbar located in the top section of the designer.

The toolbar shows the title of the process being worked on at the moment (in the

following image, the title of the process is “My first process”) on the left followed by a

series of buttons described next.

ChaPter 3 the ProCessMaker WorkfloW Designer

48

 Full Screen

The Full Screen option allows you display the designer in full screen mode. This can be

useful when trying to work free of distractions or when presenting to a screen. To leave

the full screen mode, press the Esc key on your keyboard.

 Undo and Redo

The Undo and Redo options, as the names imply, allow you to undo or redo an action

made on the Process Map. This is useful for correcting mistakes while building your

processes. Only the most recent twenty (20) actions can be undone or redone. The arrow

pointing to the right is the redo action, while the arrow pointing left is the undo action.

 Zoom

The Zoom option allows you to scale the size of the Process Map using predefined values

of 50%, 75%, 100%, 125% and 150%. This can be very useful for very complex processes

with lots of intersecting lines.

 Export Diagram

The Export Diagram option allows you export your designed process as a .bpmn file that

can be imported into any BPMN 2.0 compliant tool. Simply click the Export Diagram

option and, in the Save file dialog that appears, select a location to save the file to.

 Export Process

This works the same as the Export option described earlier under the Process list section.

It allows you to save a copy of the process to your system. The exported file will be saved

as a .pmx file, which can be imported back into ProcessMaker.

ChaPter 3 the ProCessMaker WorkfloW Designer

49

 Save and Save As

The Save option allows you save all changes to your process as you work on it.

ProcessMaker will automatically save the changes you make every 15 seconds to help

prevent losing valuable work. When you have unsaved changes, the Save option changes

to green.

Clicking the down arrow beside the Save option displays the Save As option, which

allows you to save a copy of the process open in ProcessMaker. This can be useful when

creating a new process that is very similar to an existing process.

Click the Save As option to create a copy of the process. In the modal window that

appears, enter a new title for the process and click Save.

The process title in the Top Toolbar should now show the title of the newly copied

process, which means you are now editing a copy of the process. To close the Save As

modal without creating a copy, simply click the Cancel button.

ChaPter 3 the ProCessMaker WorkfloW Designer

50

 Help

Clicking the Help option displays the walkthrough you saw when you first created the

process. This is useful for reminding yourself of the key components of the designer

when getting started.

 Close

The Close option closes the designer and returns you to the process list. Go ahead and

click the Close option, and if you created a copy of your process as described in the Save

and Save As sections, you should now see two processes in the list as shown here.

 Process Map Area

In the Process Designer shown earlier, the Process Map is the large area in the lower left.

Think of it as the canvas on which you draw out your process model. You can edit the

properties of your process by right-clicking on any free area of the Process Map to display

a context menu (right now, the map is blank, but once you start building your process, be

sure to click outside the design elements).

ChaPter 3 the ProCessMaker WorkfloW Designer

51

Clicking Enable Grid Lines displays grid lines across the Process Map, which can

serve as a guide when placing elements of your process on the map. This also toggles the

menu item name to Disable Grid Lines, which you can click to clear the grid lines.

To update the properties of your process, click Edit Process from the context menu.

This shows the Process Information modal containing properties of the process which

you can modify as desired.

 Shapes Toolbox
If the Process Map is the canvas, the elements in the Shapes Toolbox are the brushes and

paints with which you draw on the canvas.

The Shapes Toolbox consists of the BPMN elements that you can use to model

your process in ProcessMaker. Some of the elements contained in the Shapes Toolbox

are currently for design purposes only and not yet implemented in the BPM engine of

ProcessMaker at the time of this writing. I will point out these shapes as we look at each

of them in detail in the following sections.

If you are already wondering when you will get to start building something

and testing it, we are almost there, and the shapes we are about to look at form the

foundation for building your process. Once we walk through all the elements in the

Shapes Toolbox, we will proceed to model our Cash Advance and Expense Retirement

process described earlier in the guide. For a quick reference on all BPMN elements, see

http://www.bpmnquickguide.com/view-bpmn-quick-guide/.

 Task

The first shape in our toolbox is the Task element. A task is an activity that cannot be

divided into other activities. A task typically consists of one or more sequential steps

working toward a common goal. Using our Cash Advance process as an example, a task

will be initiating a cash advance request or approving a request. A task can be assigned

to a user or can be a script run by the system.

ChaPter 3 the ProCessMaker WorkfloW Designer

http://www.bpmnquickguide.com/view-bpmn-quick-guide/

52

To add a task to your Process Map, drag and drop the task icon from the Shapes

Toolbox to a free area on the Process Map. A task will be created on the Process Map with

the name of the task highlighted in blue and editable. Enter a new name for your task

and click outside the task on the Process Map to apply the new name.

Next, click the newly created task. This will display a quick toolbar (in the lower

right of the preceding image) that shows the available elements that can be added to

the Process Map from the task. You can hover over each element in the quick toolbar to

display its name. To use an element from the quick toolbar, click it to select it, and then

click on a location on the Process Map to place it. The delete icon in the quick toolbar

will delete the task, while the properties icon will display its properties.

Let’s go ahead and add a new task to our Process Map using the quick toolbar. Click

the task if you do not have it selected, to display the quick toolbar. Click the task icon in

the quick toolbar and then click a location on the Process Map to place the new task. You

should now have two tasks on your Process Map as shown next. Double-click the task to

make the name editable and enter a new name for the task.

ChaPter 3 the ProCessMaker WorkfloW Designer

53

You can reposition your task on the Process Map by clicking and dragging it to the

desired position. For finer control over the position, you can also use the arrow keys on

your keyboard to move the task when it is selected (a selected task will have the small

green boxes on the edges as in Task 1 in the preceding image). You can also resize the

task by dragging the green boxes in any direction.

Right-clicking the task displays a context menu with the following items:

• Task Type: This allows you set the type of task and by default a newly

created task is set to Empty task type. The available options are:

• Empty Task: The default, represents an action in the process.

• Send Task: A task that sends a message.

• Receive Task: A task that receives a message.

• User Task: A task to be performed by a user.

• Service Task: A task performed by a web service or application.

• Script Task: A task that executes a trigger (custom code).

• Manual Task: A task that is to be executed manually outside the

application.

• Business Rule Task: A task representing the implementation of a

business rule.

Apart from the Script Task type, all other task types are for design

purposes and treated as an Empty Task by the BPM engine when

running the process. A task with Script Task type executes a trigger

(custom code) when a case in the process reaches that task.

You can see how the task types are applied to the task on the

Process Map by clicking on any of them. For example, changing

our first task to a User Task type by right-clicking it and selecting

User Task from Task Type in the context menu should make our

task similar to the following image.

ChaPter 3 the ProCessMaker WorkfloW Designer

54

• Marker Type: This is used to provide a visual indication of how the

task will be executed. By default, newly created tasks have no marker

(None). The available options are:

• Loop: This indicates that the task will be run repeatedly until a

certain condition is met. If you have a programming background,

you can think of this as a DO-WHILE loop. This marker is

purely for design purposes and is not yet implemented in the

ProcessMaker BPM engine at the time of this writing.

• Parallel: This indicates that parallel or multiple instances of the

task will be executed, and the task is only completed after all the

instances of the tasks have been completed. This is useful for

cases where multiple users need to sign off on a document. This

is implemented in the ProcessMaker BPM engine and when a

task is marked as Parallel, you are able to assign multiple users to

the same task, and the task is not completed until all the assigned

users have acted on the task.

• Sequential: This indicates that the task will execute a series of

scripts sequentially. This marker is purely for design purposes

and is not yet implemented in the ProcessMaker BPM engine at

the time of this writing.

ChaPter 3 the ProCessMaker WorkfloW Designer

55

• Steps: This is used to define the specific actions or work that must

be done to complete a task. A step can be filling a form, uploading a

document, generating a document, or executing some custom code

or an external functionality added to ProcessMaker by a plugin.

• Assignment Rules: This is used to define how the task will be

assigned to users or groups when running the process.

• Edit Label: This is used to edit the name of the task and has the same

effect as double-clicking the task.

• Delete: This is used to delete the task.

• Properties: This is used to view and edit properties of the task.

 Sub-Process

The next element in our Shapes Toolbox is the Sub-process element. This is used to

embed a process within a process. The embedded process is the sub-process and the

containing process is referred to as the master process. A sub-process is basically another

process within the organization and is created just as you would any other process.

Sub-processes are useful for simplifying process diagrams so that you don’t have too

many tasks in a process model. Using them makes the process diagram much easier to

read and understand. Another benefit of sub-processes is that they allow you to re-use

existing processes within other processes that encompass them.

ChaPter 3 the ProCessMaker WorkfloW Designer

56

For example, let us assume that the IT department in MSB Corporation has a

process for assigning PCs to users, titled “IT System Request.” The HR department also

has a process, titled “Employee On-boarding” for on-boarding new employees into the

organization, and this process involves IT assigning PCs to the new employees.

The Sub-Process element allows us to embed the IT System Request process within

the Employee On-boarding process (the master process) without having to rebuild all

the logic of the sub-process in the master process. In the future, if IT makes a change to

its process of assigning PCs to employees, we will not need to modify HR’s Employee On-

boarding process.

ProcessMaker supports two types of sub-processes, asynchronous and synchronous,

and they differ primarily in how they are executed in context of the master process.

When a case is run in a process that contains a sub-process, when the case reaches

the sub-process task, a new case is created for the sub-process. If the sub-process is

asynchronous, the master-process continues to the next task in the process without

waiting for the sub-process to complete. On the other hand, if the sub-process is

synchronous, the execution of the master process is paused and is resumed when the

execution of the sub-process is completed.

Let us add a sub-process to our Process Map. Drag and drop the Sub-process

element from the Shapes Toolbox onto the Process Map. Just as with the Task element,

you can double-click it to edit the name, or click it once to display the quick toolbox.

Right-click the sub-process to display the context menu. You’ll see the following options:

Edit Label: This has the same effect as double-clicking the sub-

process.

Delete Routing Rules: This is used to delete the rules defined for

routing the case from the sub-process. We will learn more about

routing later.

ChaPter 3 the ProCessMaker WorkfloW Designer

57

Delete: This is used to delete the sub-process from the Process

Map.

Properties: This is used to configure the properties such as

selecting the linked sub-process and its starting task, the type of

sub-process, Asynchronous or Synchronous, and defining which

variables (data) will be exchanged between the master process

and the sub-process.

Click the Properties option in the context menu displayed to explore further. In the

properties modal that is displayed, you can edit the name of the sub-process and select

the process that should be run as the sub-process.

This is a drop-down list showing the processes defined in ProcessMaker. If you

created a copy of the process earlier, you should see the process displayed in the list.

Next is the starting task in that process. We currently do not have any starting task (or any

task for that matter) defined in the second process. If we did, it would show in the

drop- down list.

The Type is currently set to Asynchronous; beneath it is Variables Out, which allows

us to specify which variables (data) will be passed to the sub-process when it is started.

Change the Type to Synchronous, and you should now see a Variables In list beneath the

Variables Out. This is used to define the variables (data) that will be passed back to the

master process from the sub-process when it is completed. The Variables In option is

displayed only for Synchronous sub-processes, as the master-process does not wait for

Asynchronous processes and thus cannot receive data back from it on completion.

Click the Cancel button to close the properties modal, and proceed to delete the

sub-process from the Process Map. In the example we gave earlier of making IT System

Request process a sub-process of HR’s Employee on-boarding process, should it be

configured as an Asynchronous or Synchronous sub-process, and why?

 Gateways

The next three elements in the Shapes Toolbox are Gateway elements, and they are used

to determine the flow of a process. They are used to fork (split) and merge (join) paths in

a process.

ChaPter 3 the ProCessMaker WorkfloW Designer

58

In ProcessMaker, we have three types of gateways; the following sections briefly

describe them; we will dive into more elaborate examples later in this book.

 Exclusive (XOR) Gateway

This gateway is used to select only one path from two or more paths in the flow of the

process. In the following diagram, the process can only be routed to either Task 1 or Task 2.

When using an Exclusive gateway, you add conditions that are evaluated to

determine which task to route the case to next. You should ensure that only one of the

routing conditions evaluates to True; otherwise, the path to take cannot be determined,

causing the case to display an error and stop execution.

 Parallel (AND) Gateway

This gateway is used when all paths at a process fork must be taken. The Parallel gateway

does not evaluate any condition and creates multiple instances of the case that are

routed to all following tasks after the fork. In the following diagram using a Parallel

gateway, the case is routed to both Task 1 and Task 2 at the same time.

An Exclusive gateway

A Parallel gateway

ChaPter 3 the ProCessMaker WorkfloW Designer

59

When using a Parallel gateway, the process flow must be merged (joined) back using

a converging Parallel Gateway element (the fork and merge gateways are circled in the

preceding image). In this previous diagram, Task 3 cannot begin until both Task 1 and

Task 2 have been completed.

 Inclusive (OR) Gateway

This gateway can be thought of as a hybrid of Exclusive and Parallel gateways; it allows

us to create parallel flows, just like the Parallel gateway, and it does so by evaluating

conditions, like the Exclusive gateway. The Inclusive gateway can be used to route the

flow to one or more following tasks after the fork. The process will flow through all tasks

whose routing conditions evaluate to True at the same time. Just as with the Parallel

gateway, the fork and merge gateways (circled in red in the following image) must be of

the same type; that is, an Inclusive gateway.

In this diagram using an Inclusive gateway, the process can flow through Task 1 only,

or Task 2 only, or both Tasks 1 and 2. However, Task 3 cannot begin until all paths taken

are completed. If the case is routed to both Tasks 1 and 2, they must both be completed

before Task 3 can begin. If it is routed to only one of them, then Task 3 begins when that

task is completed.

An Inclusive gateway

ChaPter 3 the ProCessMaker WorkfloW Designer

60

 Events

Next in the Shapes Toolbox are the Events elements. These fall into three broad

categories: Start events (green), Intermediate events (dark yellow) and End events (red).

An event is used at a given point to indicate that something occurs at that point in the

flow of a process.

Start events, as the name implies, are used to start a process. Intermediate events are

used to indicate something that occurs between the start and the end of a process, and

End events are used to terminate a process.

In the Shapes Toolbox, you will notice that we have two of each category of events,

which might be a bit confusing at first. Right now, just think of them as the same thing,

and the icons (or lack of icons) in the elements are just indicators of the specific type

of events. To clarify, we have three categories of events—Start, Intermediate and End—

which have different event types, which we shall explore in the following sections.

As you can do with the other elements we have seen, you can add an event to the

Process Map by dragging and dropping it. To connect the event to other elements on the

Process Map, click it to display the quick toolbar, and click the connect icon in the quick

toolbar. Your mouse cursor should change to an arrow line, which you can drag and click

on the element you want to connect the event to.

 Start Events

As mentioned earlier, Start events are used to indicate the beginning of a process.

A process can have more than one Start event. Using our Cash Advance and Expense

Retirement process as an example, the process can start either with the employee

requesting an advance, or with the employee retiring the expense, which might be the

case if no advance was received before the expense was incurred.

If you have been following along, your Process Map should contain a single task that

we created when we looked at the Task element earlier. If your Process Map is blank, no

worries. Just drag and drop the Task element from the Shapes Toolbox unto the Process

Map and give it a name. If you have been exploring on your own and have added other

elements to the Process Map, that’s fine.

ChaPter 3 the ProCessMaker WorkfloW Designer

61

Let’s now explore the properties and different types of Start events in ProcessMaker.

Drag and drop the Start Event element from the Shapes Toolbox to the Process Map on

the left side of the task we created earlier. Click the Start event you just added to display

the quick toolbar. Click the Connect icon in the quick toolbar and drag the line until you

are hovering over the Task element (“My first task” in the diagram), and click the Task

element to connect it with the Start event.

By connecting the Start event to “My first task,” we have made it a starting task. To

better understand what this means, let us explore the Home menu. This is where the

users of our ProcessMaker instance will be able to start cases and interact with them.

Click on Home in the ProcessMaker main menu at the top of the page. In the left

menu, click New Case. You are shown the message “You can’t start a case because you

don’t have a starting task assigned.”

Go back to the Process Designer to continue editing the process. Even though we

have created a starting task, it is not yet available to users, because we have not assigned

the task to any user or group. You may recall the Assignment Rules menu option in

the context menu of the Task element; we will explore the intricacies of configuring

assignment rules later, but for the purpose of understanding Start events, we will simply

assign “My first task” to ourselves.

ChaPter 3 the ProCessMaker WorkfloW Designer

62

Right-click “My first task” to display the context menu and select Assignment Rules.

In the Assignment modal dialog that appears, you will see a list of available users. Click

the green arrow icon beside the name of the user you are currently logged on as, which

should be Administrator. This moves the user to the Assigned Users list. Click the Save

button.

Now, go back to Home ➤ Cases ➤ New Case as we did earlier, and you’ll see that

“My first task” is now displayed as a starting task for the process titled “My first process.”

ChaPter 3 the ProCessMaker WorkfloW Designer

63

I mentioned earlier that a process can have more than one Start event and used the

example of the Cash Advance and Expense Retirement Process. To demonstrate this,

rename “My first task” to “Request Cash Advance” (You can edit a task label by double-

clicking it or right-clicking and selecting Edit Label).

Next, add a new Start event on the Process Map. Click it to display the quick toolbar

and click the Task icon. Drag the mouse cursor to a location on the Process Map and

click to place the new task. Label the newly created task Report Expense. Right-click the

task and select Assignment Rules to assign it to yourself as we did for the first task. Your

Process Map should look like the following image.

Now go to Home ➤ Cases ➤ New Case, and you should see that the process now has

two starting tasks. Right now our process does not do anything, and we are still learning

to model the process. With an understanding of the effect of Start events, let us head

back to the designer to explore the properties and the different types.

With your process opened in the designer, right-click any of the Start event elements

to display the context menu with the following options:

ChaPter 3 the ProCessMaker WorkfloW Designer

64

Start Event Type: This is used to select the type of Start event, which

could be:

• Empty: This is the default Start event type and is supported by the

ProcessMaker BPM engine. This type of Start event simply starts the

process. The Web Entry feature is available only to this Start event type.

• Receive Message: This Start event type is used to start a process from

a message received from another process. The messages are sent

from either intermediate or end events in the sending process.

• Timer: The Timer Start event type is used to automatically start a

process at a specified time or interval. Right-click the Start event and

set the Start Event Type to Timer. Right-click the Start event again and

select Properties. You should see a modal that allows you to specify

the time interval or specific date and time to start the process. Click

the Cancel button to return to the Process Map.

• Conditional: The Conditional Start event type is purely for design

purposes and is used to indicate that the process should only start

once certain conditions are satisfied. These conditions ideally are

external to the process.

ChaPter 3 the ProCessMaker WorkfloW Designer

65

• Signal: The Signal Start event type is also purely for design purposes.

It is used to indicate that the process is started by a signal from

another process.

Edit Label: This is used to add a label to the Start Event type and

can be useful when a process has multiple start events.

Delete: This is used to delete the Start Event element from the

Process Map.

Web Entry: This is used to set up the ProcessMaker Web Entry

feature for the process. The Web Entry feature allows you to set

up a form that can be embedded on an external web site or web

page that anonymous users can fill in and submit to start a case in

ProcessMaker. This can be useful for processes that are triggered

by information received from users outside your organization

such as customers.

Properties: This is used to configure additional properties of the

Start event as we saw in the Timer Start event type above. This

option is available for only the Receive Message and Timer Start

event types.

 Intermediate Events

Events in this category are used to indicate something happening in the flow of the

process, between the start and end. Intermediate events in ProcessMaker have been

implemented as two broad types: Intermediate Throwing events and Intermediate

Catching events.

ChaPter 3 the ProCessMaker WorkfloW Designer

66

Intermediate Throwing Events

You can think of Intermediate Throwing events as intermediate events in which the

process initiates an action. To add an Intermediate Throwing event to your Process Map,

drag and drop the Intermediate Email Event element from the Shapes Toolbox into the

Process Map. The types Of Intermediate Throwing events are the following:

Email Message Intermediate Event Type: This event type is used

to send an email message when a process is being run. To use this

event type, drag and drop the element to the Process Map, and set

the Intermediate Event Type to Email Message. Then right-click

the event and select the Properties option. This displays the Email

Event dialog box as shown next, where you can select a sender

(this is available only if you have configured SMTP settings during

the installation), and specify the recipient, message, and content

of the email message to be sent.

ChaPter 3 the ProCessMaker WorkfloW Designer

67

Send Message Intermediate Event Type: This event type is

used to send a message to another process that requires the

message. The sent message will be caught or received by the other

process using a Receive Message Start event or Receive Message

Intermediate event. To see how this is configured, right-click

the Email Message Intermediate Event element just created and

change the Intermediate Event Type to Send Message. Right-

click it again and select the Properties option to display the

Intermediate Send Message Event dialog shown next. The dialog

allows you to select the Message Type and define the data that will

be sent by the message to the receiving process. Click Cancel to

return to the Process Map.

ChaPter 3 the ProCessMaker WorkfloW Designer

68

Signal Intermediate Event Type: This event type is purely for

design purposes and is used to indicate that the process is sending

a signal to another process.

Intermediate Catching Events

These are intermediate events that are used to represent events that occur in response

to other events. For example, when the Send Message Intermediate event type just

described is thrown, it can be responded to with the Receive Message Intermediate

event type. The available Intermediate Catching events in ProcessMaker are:

ChaPter 3 the ProCessMaker WorkfloW Designer

69

Receive Message Intermediate Event Type: This event type

is used to receive a message sent from another process. To add

a Receive Message Intermediate event to the Process Map,

drag and drop the Intermediate Timer Event element from the

Shapes Toolbox to the Process Map. Right-click it and change the

Intermediate Event Type to Receive Message. Right-click the event

again and select the Properties option to display the Intermediate

Receive Message Event dialog, which can be used to configure

how the received message will be processed. Click the Cancel

button on the dialog to return to the Process Map.

Timer Intermediate Event Type: This event type is used to

represent a delay or pause in the process for a specified period of

time. This can be useful in a process where you have to wait for a

period to elapse before continuing the process. For example, let us

assume MSB Corporation has a vendor onboarding process which

involves publishing the name of the new vendor on the intranet,

where employees have 7 days to submit any objections before the

vendor is confirmed. The Timer Intermediate event type can be

used to pause the process for this period before continuing.

To see how the event is set up, right-click the Receive Message event element and

change the type to Timer. Right-click it again and select the Properties option to display

the Timer Event Properties dialog, shown next, which can be used to specify how long to

pause the process.

ChaPter 3 the ProCessMaker WorkfloW Designer

70

Conditional Intermediate Event Type: This event type is purely

for design purposes and is used to indicate that the process flow

can continue once a condition is satisfied; otherwise, the process

should be stopped.

Signal Intermediate Event Type: This event type is purely for

design purposes and is used to indicate that the process is sending

a signal to another process.

 End Events

This category of events is used to indicate the end of the process and show that the

process has been completed. Let us look at the different types of End events available

in ProcessMaker. Drag and drop the End Event element onto the Process Map from the

Shapes Toolbox. Right-click the element to display the context menu with the following

options: End Event Type, Edit label, Delete and Properties. Just as in the other event

elements we have explored, you can use the End Event Type option to specify the type of

End event you want to use in the process.

ChaPter 3 the ProCessMaker WorkfloW Designer

71

Empty End Event Type: This is the default end event and is what

you will use most often to indicate the end of the process. This

End event type is fully supported by the ProcessMaker engine

and indicates that the process is ended. You can have more than

one end event in a process if there are different flows a process

can take to completion. For example, if you have an IT helpdesk

process, the process can either end if the reported issue is resolved

at the first-level support task, or it can be escalated to a second-

level support officer and end when it is resolved.

Email Message End Event Type: This End event type is used

to send an email message once the process ends. The sender,

recipient, subject and message to be sent are defined by clicking

the Properties option from the element’s context menu just like we

saw in the Email Message Intermediate event type earlier.

ChaPter 3 the ProCessMaker WorkfloW Designer

72

Message End Event Type: This End event type is used to send a

message to another process at the end of the process. The message

sent by this event type must be caught by either a Receive Message

Start event or Receive Message Intermediate event in the other

process. It is important to keep in mind that the term message in

this context refers to the inbuilt ProcessMaker Message Types (a

type of data used for communication between processes), which

you will learn about later.

Error End Event Type: This End event type is purely for design

purposes and is not supported by the BPM engine. It is used

to indicate that the process flow might have encountered an

exception or error causing it to come to an end.

Signal End Event Type: This End event type is purely for design

purposes and indicates that a signal will be sent out to other

processes at the end of the process.

Terminate End Event Type: This End event type is also for design

purposes only and is used to illustrate a situation in which all

flows in a process having parallel flows should be terminated once

the flow/path that ends at this endpoint is reached irrespective of

whether the other parallel flows have been completed or not.

Before we continue with the other elements in the Shapes Toolbox in later chapters,

let us take a moment in Chapter 4 to try to model a process to see how these elements all

fit together.

In this chapter, we learned about the Process List, how to manage the columns

displayed, and what each column does. We also began our exploration of the

ProcessMaker Workflow Designer, creating our first process and learning about the

BPMN shapes in the toolbox. In the next chapter, we will put the knowledge we have

acquired into practice and begin modeling the Cash Advance and Expense Retirement

Process, which we will use in examples throughout this book.

ChaPter 3 the ProCessMaker WorkfloW Designer

73
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_4

CHAPTER 4

Modeling a Process
So far you have seen a lot of theoretical discussion of some of the BPMN elements in the

Designer Shapes Toolbox. Before we continue to the remaining elements, let us use what

we have learned so far to model our Cash Advance and Retirement process introduced

as an example at the beginning of the book.

When modeling a process, we usually begin by identifying the different activities to

be carried out in order to accomplish the objectives of the process. These activities are

then represented as tasks in the Process Map. Our earlier example listed the different

tasks that make up the process, and I’ll summarize them again here:

 1. An employee makes a request: the starting task.

 2. Her supervisor approves the request.

 3. Finance gives her an advance for the amount requested.

 4. The employee makes the purchase or expense (a manual task,

done outside the system).

 5. The employee reports the expense and attaches receipts to the

report.

 6. The supervisor approves the report.

 7. Finance reimburses the employee or receives the balance of the

advance.

 8. Finance updates the accounting system with appropriate

accounting entries (a manual task, done outside the system).

 9. The expense report is signed as treated by Finance and filed: the

ending task.

74

Our process description here makes a general assumption that the supervisor will

always approve the request or report. My experience with supervisors has shown this is

not always the case. Our description of the process has not accounted for what should

happen if a request is rejected by the supervisor. There are other improvements we could

also consider at this point, but for the sake of simplicity, we will leave it at that for now.

The way to account for this possibility is to introduce an alternative flow or path into

the process, for requests that are rejected by the supervisor. We will do that with the use

of gateways, as you shall see shortly. Let us begin by modeling the Cash Advance Request

part of our process. We will add the Expense Retirement part later.

 Create a New Process
Click on Design in the ProcessMaker main menu to display the Process List. Click the

New button. In the dialog that appears, enter the following values:

Title: Cash Advance and Expense Retirement

Description: This process is used to request cash advances and
retire expenses.

Leave the default selection of No Category for the Category field for now. Click the

Create button.

Chapter 4 Modeling a proCess

75

Our new process is opened in the designer with the introductory walkthrough

overlayed. Click the Quit button on the walkthrough to reveal the Start event on the

Process Map. The Start event should be selected and displaying the quick toolbar on its

right, as shown in the image here. If the Start event on your Process Map is not showing

the quick toolbar, you can display it by clicking once on the Start event.

 Add Tasks to the Process
Add the first task to the process by clicking the task icon in the quick toolbar (your cursor

should change to a pointer with the task icon attached) and then click to the right of the

Start Event element on the Process Map to place the task. Rename the task by editing its

label to “Request Advance.”

Add the second task by dragging and dropping a task element from the Shapes

Toolbox to the right of the first task. (We can add tasks to the Process Map from the

quick toolbar of an element already on the map or by dragging and dropping it from the

Shapes Toolbox). Label this new task as “Approve Advance.”

Now add a third task to the map. You can either drag and drop the task from the

Shapes Toolbox or use the quick toolbar of the Approve Advance task to add it. If you use

the quick toolbar, the newly created task is automatically connected to the preceding

task sequentially as we saw with the Request Advance task, which is connected to the

Chapter 4 Modeling a proCess

76

Start event. If you drag and drop the task from the Shapes toolbox, however, the new

task is not connected to any other element on the Process Map and we can define the

connection later as we please.

Name the third task Disburse Advance. Click on it to display its quick toolbar and

click the End icon. Click in an area of the map to the right of the task to place the End

event. Your Process Map should now look like the following image.

We can now connect the Request Advance task to the Approve Advance task. We will

also connect the Approve Advance task to the Disburse Advance and Request Advance

tasks. The first connection will be sequential, and the second will be a decision gateway;

that is, the process flow will continue to Disburse Advance if the request is approved

or return to the Request Advance task otherwise. From our discussion of the different

gateway types earlier, which gateway element would you use for this decision gateway:

Exclusive, Parallel or Inclusive?

 Connecting Tasks in the Process
A sequential connection between two elements on the Process Map is created by clicking

the FROM element to display its quick toolbar, and then clicking the Connect icon in

the quick toolbar and dragging it onto the TO element. The TO element is highlighted

in green as shown next. With the TO element highlighted, click on it to create the

connection. Go ahead and connect the Request Advance task to the Approve Advance

task.

If your answer to the earlier question about which gateway to use for the second

connection was Exclusive, you answered correctly. We use an Exclusive gateway because

the flow can go in only one of the two directions, and the direction to go is decided by

Chapter 4 Modeling a proCess

77

evaluating a condition. The condition in this case is “Request has been approved by

supervisor.” If True, we proceed to the Disburse Advance task. If False, we return to the

Request Advance task.

To add the Exclusive gateway to your process, click the Approve Advance task to

display its quick toolbar, click the gateway icon in the quick toolbar to select it, and

click Process Map just to the right of the Approve Advance task to add it to the map. The

default Gateway element added using the quick toolbar is the Exclusive Gateway type,

so we do not need to change its type. Next, click the newly added Gateway element to

display its quick toolbar and select the Connect icon. Drag it over the Disburse Advance

task and click the task to connect the Gateway element to the task. Click the Gateway

element again to display its quick toolbar. Select the Connect icon again, but this time

drag it over the Request Advance task and click it to connect the gateway to the Request

Advance task. We have now successfully modelled the first part of our process, and your

Process Map should look like the following image.

But wait a minute, our Process Map looks a bit weird. The connecting line from the

gateway to the Request Advance task passes through the Approve Advance task. To make

the Process Map easier to read, we would prefer that the line goes above the task and not

through it. This can easily be remedied.

Click the arrow end of the connecting line that terminates at the top of the Request

Advance task. This highlights the line and displays a yellow circle on both ends of the

line, as shown here.

Next, click and drag the yellow circle on the gateway end of the connecting line.

As you do so, the gateway element changes to display all the possible endpoints for the

connecting line as black circles, as shown here.

Chapter 4 Modeling a proCess

78

Drag the yellow circle of the connecting line to the top endpoint on the gateway

element and drop it. Our Process Map should now be easier to read and look as

displayed next.

This chapter, though quite short, has allowed us to practice the basics of modeling

a process. In the next chapter, we continue our exploration of the BPMN shapes in the

Shapes Toolbox and use the additional knowledge to complete the process model.

Chapter 4 Modeling a proCess

79
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_5

CHAPTER 5

Making the Process
Comprehensible
Now that we have created the first part of our process, we will proceed to look at the

remaining elements in the Shapes Toolbox. These elements are mostly for adding

more information to the process model or grouping related tasks and events in order

to make the process easier to read and comprehend. We will describe them and where

applicable, we will use them to modify the process model we have created so far.

 The Shapes Toolbox, Continued
To complete our tour of the Shapes Toolbox, we need to look at the data elements, pools

and lanes, artifacts, and the Lasso.

 Data Elements
The next elements we will look at in the Shapes Toolbox are the data elements, which are

used to show data inputs and outputs in a process.

80

 Data Object

The Data Object element is used to show information flowing through the process.

For example, in the Cash Advance and Expense Retirement process, the receipts to

be uploaded by the employee when retiring the expenses can be denoted with a data

object. This helps to show someone reading the process model that at a particular task,

additional information or data is introduced into the process.

You can add a data object to the Process Map by dragging and dropping it from the

Shapes Toolbox to the desired location on the Process Map. You can indicate the type of

the data object by right-clicking it and selecting Data Type from the context menu. Data

objects in ProcessMaker are of three types:

 1. Empty: This is the default type used when a data element is added

to the Process Map.

 2. Input: This is used to indicate that the data or information is

external to the process. For example, the information provided by

the receipts uploaded by an employee in the Cash Advance and

Expense Retirement process is external to the process.

 3. Output: This is used to indicate that the data or information

is generated by the process. For example, if the Cash Advance

and Expense Retirement process generated a confirmation slip

for reimbursed or refunded funds after retirement, that will be

marked as an Output Data Object.

Chapter 5 Making the proCess CoMprehensible

81

 Data Store

The Data Store element is used to show an external source of data from which a process

might read or save data. This can be an external database or physical filing system.

Continuing with our Cash Advance and Expense Retirement example, the Accounting

system to which the Finance department posts the accounting entries can be indicated

as a data store. A data store can be added to the Process Map the same way as every

other element in the Shapes Toolbox, by dragging and dropping it on the Process Map.

 Pools and Lanes
A pool is used to partition processes, especially processes from different organizations.

Our earlier discussions of event types mentioned that certain event types such as the

Send Message Intermediate Event and the Receive Message Intermediate Event are used

to send messages between processes. This is because objects in different pools cannot be

connected directly and can only send messages. For processes in the same organization,

these messages are usually represented as sub-processes within the same process and

will be placed in the same pool as the other elements of the master process. However,

when we are representing a process from another organization, it will be in a separate

pool, and any communication between the processes will be done via messages and

events.

In addition, we use lanes to categorize or group related activities in a pool. The

grouping can be along departmental, functional, or geographical lines. Using our

Cash Advance example, we could create lanes by functional lines such as employee,

supervisor, and finance.

There are two types of pools that can be used in a Process Map. The default is a

normal pool, which shows its elements and their connections. We can add elements to

this type of pool and connect them as we please. We can also add lanes to this type of

pool. This is the type of pool we will be using most of the time.

Chapter 5 Making the proCess CoMprehensible

www.allitebooks.com

http://www.allitebooks.org

82

The second type of pool is a black box pool. As you might have guessed from the

name, this type of pool is used to indicate a process for which we have no knowledge of

its constituent elements or their connections. The black box pool in ProcessMaker at the

time of this writing is purely for design purposes.

 Artifacts
The next elements in the Shapes Toolbox are referred to as artifacts and can be thought

of as annotation elements. They are used to add descriptive information to the Process

Map about the elements making up the map to make it easier to read and understand.

 Group

The Group artifact is used to highlight portions of the Process Map and label them. For

example, you can group together the tasks that make up the advance part of the Cash

Advance and Expense Retirement process as shown here (the group is indicated by the

dotted rectangle).

A Group artifact is added to the Process Map by dragging and dropping it onto

the map and using the green arrows on the edges to expand the rectangle to cover the

elements to be grouped. You can edit the label by double-clicking it and giving the group

an appropriate name.

 Text Annotation

A Text Annotation artifact, as the name implies, can be used to add text descriptions to

the Process Map. This is very useful for providing additional information that cannot be

readily captured by the elements or their labels. To use the text annotation, simply drag

and drop it on the Process Map and type in the text to be added to the map.

Chapter 5 Making the proCess CoMprehensible

83

 Tying It All Together
The last item in the Shapes Toolbox is the Lasso. It is not an element but is used for

selecting multiple elements for the purpose of moving them together on the Process Map.

Let us proceed to use what we have learned to complete modeling the Cash Advance

and Expense Retirement process we began earlier. We will create a pool for our process,

add the retirement part of the process, group the activities to lanes, add data elements

for receipts and accounting system and text annotations for more details.

Drag and drop a Pool element from the Shapes Toolbox to an empty area of the

Process Map below the process model we have built so far. Edit the label of the pool and

name it “Cash Advance and Expense Retirement.” Click the pool to show the green boxes

on its edges and expand the pool so that it is large enough to contain the process model

built earlier as shown next.

Before we add our existing process model to the pool, we will add the lanes.

Currently, ProcessMaker only allows the first lane to be added to an empty pool. That

is, you cannot divide your pool into lanes if you have already added any element to the

pool. Attempting to do so will display the error shown here.

Chapter 5 Making the proCess CoMprehensible

84

Now we will proceed to add lanes to the pool to group the activities by functionality

or responsibility. Remember that we identified three possible lanes for the process

earlier, namely Employee, Supervisor, and Finance. Let’s go ahead and add the lanes.

Ensure the pool is empty and then drag a lane element from the Shapes toolbox unto the

pool. The lane label is activated and editable. Rename it to “Employee” and click outside

the label to save the changes.

Next drag another lane to the pool and name it “Supervisor.” Repeat the process one

more time and add a lane labeled “Finance.” You should now have three lanes in your

pool as shown next. You can use the Zoom dropdown in the Top toolbar to zoom out

(set it to 75% or 50%) and see all the elements on the Process Map in one glance.

Chapter 5 Making the proCess CoMprehensible

85

With the pool divided into lanes, let us move our existing process model into the

pool. Click in an empty area of the Process Map to make sure no element is selected.

Then click the Lasso tool to select it. The tool background becomes highlighted to a

darker shade of gray, as shown in the following image. With the Lasso tool activated,

click and drag around the designed process model to select all the elements as shown

here (you can see the selection boxes showing on all the elements).

With all the elements selected, drag it into the Employee lane of the pool we just

created as shown next.

We now have our process in a pool, and next we will move the tasks to their

appropriate lanes. First, let us delete the Group artifact (the dotted rectangle with

the label “Cash Advance part of the process”) for now. Click any free area within the

rectangle and then the Delete icon in its quick toolbar.

Chapter 5 Making the proCess CoMprehensible

86

The Request Advance task will remain in the Employee lane because the task is

performed by the employee. We drag the Approve Advance task and the gateway element

to the Supervisor lane and the Disburse Advance task to the Finance lane. To drag an

element, click it to select it—selection is indicated by the green boxes on the edges—and

then use the mouse cursor to drag it to the desired location.

Delete the End event element by clicking it to display its quick toolbar and then

clicking the Delete icon in the toolbar. We are deleting the End event because we will be

adding the expense retirement part of our process shortly.

You can click the endpoint of the connecting arrows to reposition them so as to make

the Process Map neater as we saw earlier when showing how to connect tasks. Your

Process Map should now look like the following image.

 Complete the Process Model
Let us now add the Expense Retirement part of our process to the model. From our

description of the process earlier, we can identify three tasks for the expense retirement

process: Report Expense, Approve Expense Report, and Process Expense Report. The

Report Expense task will be done by the Employee, the Approve Expense Report task by

Chapter 5 Making the proCess CoMprehensible

87

the Supervisor, and the Process Expense Report task by Finance. This last task involves

refunding or reimbursing the employee, posting the transaction on the Accounting

system, and sending an acknowledgement document to the employee.

Remember that the process can start either from a request for cash advance or from

reporting an expense. This means that the Report Expense task will be a starting task.

Can you try to add the tasks to the Process Map on your own?

To continue from where we stopped, click the Disburse Advance task to display its

quick toolbar and select the Task icon. Next, click in the Employee lane of the process

to add a new task. Name the task “Report Expense.” Now drag and drop a Start Event

element from the Shapes toolbox to the area above the newly created task. Click the

Start Event element to display its quick toolbar and select the connect icon. Click on the

Report Expense task to make it a starting task. Your Process Map should now look like

the following image.

One of the requirements of the Report Expense task is that the employee will have

to upload receipts as supporting documents for the expense being reported. To indicate

this sub-task in the process model, drag and drop a Data Object element from the Shapes

Toolbox to the right side of the Report Expense task. Click the data object to display its

Chapter 5 Making the proCess CoMprehensible

88

quick toolbar, click the Connect icon, and click the Report Expense task to connect the

object to the task. Right-click the data object and set the Data Type to Input. Also edit the

label and name it Receipts.

Next, we add the Approve Expense Report task in the Supervisor lane by clicking the

Report Expense task to display its quick toolbar and selecting the Task icon. Click in the

Supervisor lane to add the task and edit the label to “Approve Expense Report.” Just as we

did for the Cash Advance leg of the process, we will add an Exclusive gateway to this task

with one route going back to the Report Expense task and the other proceeding to the

Process Expense Report task, which we will add to the Finance lane.

Click the Approve Expense Report task and, using the quick toolbar, click the

Gateway icon and add an Exclusive gateway to the right of the task. Click on the Gateway

element and from its quick toolbar select the Connect icon and click the Report Expense

task. Next, click the Gateway element again and this time, select the Task icon from the

quick toolbar. Click in the Finance lane to add the new task and label it “Process Expense

Report.” Click the Process Expense Report task you just added and add an end event to

the map from its quick toolbar on the right side of the task.

This last task will require the Finance officer to store details of the transaction in an

Accounting system (external data store) and also generate a soft copy of the approved

report. Let us show these in our process model. Drag and drop a Data Object and a Data

Store element from the Shapes Toolbox to the bottom of the task. Connect the Process

Expense Report task to the Data Object and Data Store elements by using its quick

toolbar, selecting the connect icon and clicking on the Data Store and repeating the same

steps for the Data Object.

Chapter 5 Making the proCess CoMprehensible

89

Right-click the Data Object and change its Data Type to Output. Also, edit its label to

“Expense Report.” Finally, edit the Data Store label to “Accounting System.” Your Process

Map should now look like the following image.

You can click the endpoints of the connecting arrows to reposition them so that the

Process Map is easy to read. You can also drag the other elements to reposition them on

the Process Map if they are not well aligned when you drop them on the map. As you

drag the elements around, you will see dotted blue guidelines appear when the element

aligns with other elements on the map.

Our process model is now practically complete. We can look at it and have an idea

at a glance of how the process works. However, it appears to be missing something. Can

you guess what? The decision gateways that diverge the flow do not tell us what informs

the decision to take one route or the other. To fix that, let us add some annotation to the

Process Map.

Chapter 5 Making the proCess CoMprehensible

90

Right-click the Gateway element beside the Approve Advance task and edit its label

to “Cash advance approved?” Next, edit the label of the second Gateway element beside

the Approve Expense Report task and change it to “Expense report approved?”

Now drag and drop a Text Annotation element from the Shapes Toolbox to the side of

the line connecting the Approve Advance task to the Request Cash Advance task and set

the text to No as shown here.

The Text Annotation element can be resized by clicking and dragging the green boxes

on its edges that are displayed when it is selected. Repeat this process to add annotation

(set the value to Yes) for the other connecting arrow from the Approve Advance task

to the Disburse Advance task. Also add annotations for the Gateway element for the

Expense Report leg of the process. Your final process should now look like the following

image.

Chapter 5 Making the proCess CoMprehensible

91

Congratulations! You have successfully created a BPMN 2.0–compliant business

process model. Using all we have learned so far, you can now effectively create standard

process models for the processes in your business or organization that can be easily read

and understood by others. In the next chapter we begin our exploration of the building

tools ProcessMaker offers to build the process.

Chapter 5 Making the proCess CoMprehensible

93
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_6

CHAPTER 6

Building the Process

What we have now is a blueprint of our process, which is good for explaining what it

does and how it should work. It is like a blueprint of a building prepared by an architect.

However, we need to translate that blueprint into a building before it can be used.

Similarly, we need to build out our modeled process in order to automate it.

94

ProcessMaker not only allows you to model your business processes in a standards-

compliant way as we have done, it also enables you to automate your forms-based

business processes. Automating the process allows the participants/actors in the process

to log in to ProcessMaker to fill out the forms, and to assign and route them to other

users to work on, instead of printing and filling out paper forms and taking them around

to be signed and processed. Automation also allows you to enforce business rules, and

so gain insight into how the process works, such as how long particular tasks take on the

average.

To automate the process, we have to build the objects, such as forms, that the users

of the process will interact with, define conditions for determining how cases in the

process are routed, assign users to tasks, set up email notifications, and design templates

for output documents to be generated, among other things.

When we looked at the Process Designer earlier, we identified four major

components: the Top Toolbar, the Shapes Toolbox, the Main Toolbox, and the Process

Map area. So far we have worked with the Top Toolbar, Shapes Toolbox, and Process

Map. To bring our process to life, we will now look at the Main Toolbox, which contains

the objects we will use in building our process.

 Variables
The first type of object in our toolbox is the variable. You can think of a variable as a

container for storing the data input by users or generated by the system for every case

(a case is an instance of a process) of the process. The Variables button in the Main

Toolbox allows us to create and edit the variables we want to use for our process. In

addition to the variables we create, ProcessMaker also automatically adds a set of variables

to all processes. These are referred to as System Variables and we shall see them later.

Referring back to our Cash Advance and Expense Retirement forms from Chapter 1,

let us try to identify the fields to be filled out on the forms. These fields are some of the

data that will be input into our process. We will therefore need to create variables to store

these data.

Chapter 6 Building the proCess

95

Cash Advance Form Fields Expense Retirement Form Fields

1. request date 1. report date

2. employee name 2. employee name

3. department 3. department

4. reason for expenses 4. reason for expenses

5. requested amount 5. expense Breakdown

a) description

b) receipt attached (Y/n)

c) amount

6. requestor name 6. total amount spent

7. requestor signature 7. amount advanced

8. approved By 8. amount to Be reimbursed

9. approver signature 9. amount to Be refunded

10. amount advanced 10. prepared By

11. date advanced 11. signature (prepared By)

12. disbursed by 12. approved By

13. Finance officer signature 13. signature (approved by)

14. received by 14. amount refunded

15. receiver’s signature 15. Cash/Check(amount refunded)

16. Cash/Check (amount reimbursed)

17. transaction reference

18. processed By

19. Finance officer signature

In addition to the variables whose values will be supplied in the forms, we can also

have variables that we use to hold other types of data, such as which decision to take

on a task. For example, we will require a variable where we can store the decision of the

supervisor to approve or reject a cash advance request or expense report.

Chapter 6 Building the proCess

96

If you are wondering if you have to create all the variables your process will require

before you can proceed to building your process, the answer is No. You can also create

variables from the Dynaform Designer. This comes in handy when you realize while

building a form that you need additional fields.

Hovering over the plus (+) icon in the Process objects toolbox highlights it in green

and shows the Create label. When using this toolbox, clicking the (+) icon opens the

Create form for that option, and clicking the option name displays the list of the objects.

To see how this works, let us create our first variable. Click the plus icon (+) beside the

Variables option. This displays the Create Variable form, shown next. The following

sections briefly explain each of the form fields.

 Variable Name
This is a required field, and you use it to give a name to the variables. Variable names

follow the standard PHP variable naming rules: “A valid variable name starts with a letter

or underscore, followed by any number of letters, numbers, or underscores”. The name

you give your variable must be unique.

You can use camel case, Pascal case or snake case when naming your variables;

however, try to be consistent and not mix it up. This makes it easier for others to work

on your processes. The following definitions of the different case types are adapted from

Wikipedia (https://en.wikipedia.org/wiki/Camel_case):

Chapter 6 Building the proCess

https://en.wikipedia.org/wiki/Camel_case

97

Camel Case: The practice of writing compound words or phrases

such that each word or abbreviation in the middle of the phrase

begins with a capital letter and omits hyphens. Camel case may

start with a capital letter or with a lowercase letter. Examples:

EmployeeName, requestDate.

Pascal Case: The practice of writing compound words or phrases

such that the first letter of each concatenated word is capitalized.

No other characters are used to separate the words, like hyphens

or underscores. Examples: EmployeeName, RequestDate.

Snake Case: The practice of writing compound words or phrases

in which the elements are separated with one underscore

character (_) and no spaces, with each element’s initial letter

usually lowercased within the compound and the first letter either

upper or lower case. Examples: employee_name, Request_date.

Also ensure that the names of the variables are descriptive enough to let you know

what it does. Looking at the following two variables, can you guess what data we intend

to store in them?

• atbr

• amount_to_refund

The second variable is clearly more descriptive, and if you return to this process

weeks or months later, you will not have to wonder what data the second variable stores,

as you would with the first variable.

Throughout this guide, we will adopt the lower snake case for our variable names.

 Variable Type
This is a required field and is used to indicate the type of data that will be stored in the

variable. The available options are as follows:

String: This is ideally used for storing text data but can also be

used for letters, numbers, symbols and spaces. An example of data

we would store as a string variable is a name or address.

Chapter 6 Building the proCess

98

Integer: This is used for whole numbers between –2147483648

and 2147483647. The number can be either positive or negative.

An example of data we would store in an integer variable is a

quantity of items.

Float: This is used for real numbers with decimal points between

-3.402823466E+38 and 3.402823466E+38. If the number has 9 or

more decimal points, it will be rounded up to the nearest whole

number. An example of data we would store as float is Amount

(currency).

Boolean: This is used to store True or False values, which can

be used for logic evaluation. The system casts the number zero

or empty string as False. An example of data we would store in a

Boolean variable is the answer to a YES/NO question.

Datetime: This is used to store date and time values. The date

format is YYYY-MM-DD or YYYY- MM-DD HH:MM:SS. An

example of data we would store in a Datetime variable is a request

date.

Grid: This is used to store tabular data. It is stored in ProcessMaker

as an array. An example of data we would store in a grid is the list

of items in an expense report.

Array: This is used to store a collection of values. An example

of data we would store in an array variable is the payment type,

which would be a collection of the different payment options, like

cash, check, or bank transfer.

File: This is used to store files that are uploaded into the process.

An example of data we would store in a file variable is a receipt.

When using a file variable, an additional field for the related input

document will be displayed. We will learn more about input

documents later.

Multiple File: This is used to store multiple files and can only be

used with the new Multiple File control introduced in version 3.1.

An example of data we would store in a multiple file variable is a

collection of receipts.

Chapter 6 Building the proCess

99

 Database Connection
This field is used to specify the database connection that will be used when executing

SQL queries for variables that have specified an SQL Query. It is set to PM Database

by default, which is the ProcessMaker database. If you have created other database

connections, as you will learn how to do later, those connections will be available for

selection in this field.

 SQL
This field is used to specify an SQL query that can be used to fetch data to be stored in

the variable. If the variable is used in a text box or text area, the result of the query will be

the default value of the field. For checkboxes, radio buttons, or dropdowns, the result of

the query will be available as options to select. The database connection selected in the

Database Connection field earlier will be used for the query and should not be stated as

part of the query.

For portability of processes between Windows and Linux environments,

ProcessMaker recommends using UPPERCASE for table and field names in the query.

Windows is case-insensitive, while Linux is case-sensitive. This is good advice that

should be adhered to. I have spent hours trying to figure out why a process that was

working fine on my system stopped showing drop-down options when deployed to the

live server only to realize later that the query was written in lowercase.

 Define Accepted Variable Values
If you want to provide users with a limited set of options to choose from when using a

dropdown box, radio button, suggest box, or checkgroup field in a form, check the box

to define these options. This field is available for string, integer, float, Boolean and array

variable types. Clicking on the checkbox exposes input fields for you to enter a key and

label for each of the options. For example, suppose we want users of an application form

to select the type of employment (full time, part time, or contract) from the options in a

field instead of filling in whatever they like. Here we would enter a key and label for each

option and click the Create button to add it to the list of accepted variable values. The

key must be unique and is what will be stored in the database. The label is the text that

will be displayed to the user. You can edit and delete the values added to the list.

Chapter 6 Building the proCess

100

 Create the Variables
Now that we are familiar with the Create Variable form, let us create the variables for the

Cash Advance Request form. The following table shows the variable name and variable

type for the variables we will be creating and the associated fields from our form.

Two things to note: first, we have replaced the signature fields with Datetime fields.

This is because we will not be capturing user signatures on the forms that will be filled

on the system. Instead, we will capture the name of the user that is currently logged in

when an action was performed (for example, the user who approved a request) and take

a timestamp of the time the action was performed and that will serve as “signature.” This

timestamp will be displayed in a text field, so we can store them in a variable of type

string and not Datetime as we did for the other datetime fields.

In case you are wondering if it is possible to capture signatures electronically, the

Enterprise edition of ProcessMaker has plugins that you can use to capture electronic

signatures from signature pads or add digital signatures to the forms. It also enables

finger signature from the ProcessMaker mobile app.

The second thing you will notice is that our process model does not include a task

for the employee to acknowledge the receipt of the funds as shown on the form with the

Received by and Receiver’s Signature fields. We will be leaving the acknowledgement

part of the form out of the process as it is not included in the model. As an exercise, can

you think of how this can be added to our process model?

S/N Form Field Variable Name Variable Type

1 request date request_date datetime

2 employee name employee_name string

3 department department string

4 reason for expenses expense_reason string

5 requested amount amount_requested Float

6 requestor name requestor_name string

7 requestor signature requestor_datetime string

8 approved By approver_name string

(continued)

Chapter 6 Building the proCess

101

9 approver signature approver_datetime string

10 amount advanced amount_advanced Float

11 date advanced date_advanced datetime

12 disbursed by disbursed_by string

13 Finance officer signature disbursed_datetime string

14 received by -

15 receiver’s signature -

Click the (+) icon for the Variables option in our toolbox to display the Create

Variable form. Enter request_date in the Variable Name field and change the variable

type to Datetime. Click the Save button. The newly created variable should be displayed

in the Variables modal as shown here.

Click the Create button in the top-right corner and proceed to create the remaining

variables according to the table above. Once you are done, the Variables modal should

display the list of all the variables we have created. The modal has a Search box on the

top left that you can use to find a variable. This comes in handy when we have a process

with so many variables. We will now proceed to create our first form and see how the

variables we created are used in the form.

 Dynaforms
The next tool we will explore in our main toolbox is Dynaforms (dynamic forms). As you

may have guessed, this is where we create the forms that users will fill in when using

the process. Just as we did with the Variables option, let us begin by clicking the (+) icon

Chapter 6 Building the proCess

S/N Form Field Variable Name Variable Type

102

beside the Dynaforms option to create our first dynaform. This displays the Create Blank

Dynaform modal with fields for the Title and Description of the form.

Let us create the Cash Advance Request form. In the Title enter Cash Advance
Request Form and in the Description field, enter This form will be filled by an
employee requesting a Cash Advance. It is good practice to give your forms meaningful

names and provide descriptions, especially when working on a process with others. It is

a means of documenting what you are doing to make it easier for others and your future

self to understand how the different pieces fit into the overall process.

With the title and description filled in, click the Save & Open button to create the

blank form and open the form in the Dynaform Designer. The Dynaform Designer is

where you lay out the design of your form, adding fields and associating them with

variables.

Before we return to add fields to the Cash Advance Request Form in Chapter 9, in

the next chapter we’ll take a quick detour to explore the Dynaform Designer and then in

Chapter 8 explore the different types of form controls available to us when designing our

form.

Chapter 6 Building the proCess

103
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_7

CHAPTER 7

The Responsive
Dynaform Designer
Designing forms in ProcessMaker is quite easy with the new Responsive Dynaform

Designer, introduced in ProcessMaker version 3. The Designer allows to you drag and

drop controls such as text boxes, dropdowns, and grids to build a form without writing

any code. You can also add third-party libraries to the forms you build. The forms are

responsive by default and use the popular bootstrap framework to divide each row into

multiple columns allowing us to create different layouts for our forms. Let’s familiarize

ourselves with the Designer workspace, as we will be spending a lot of time here when

building our process.

The Dynaform Designer is divided into the segments shown here, explained

throughout this brief chapter.

The Dynaform Designer

104

 Dynaform Title
The title is displayed in the top-left corner of the Dynaform Designer (labeled 1 in the

image). This is the same title we defined when creating the dynaform. The title can be

changed by editing the properties of the dynaform.

 Dynaform Designer Menu
The Designer menu is located in the top-right corner of the Designer (labeled 2 in the

image). The menu lists actions that can be performed on the dynaform. Let us quickly

look at what each option does.

 Save

Click this icon to save the changes to the dynaform. A green “toast” message is shown

when the form is successfully saved.

 Export

Use this option to export the dynaform and save it to your system. The dynaform is

exported as a .json file that contains the definition of the form, form fields, and their

properties. This is very useful for backing up your dynaform before making changes that

might break the form or creating another form with very similar fields.

Chapter 7 the responsive Dynaform Designer

105

 Import

Use this option to import a previously exported dynaform .json file to overwrite

the current dynaform. If the dynaform already has fields in it, you will be prompted

to confirm that you want to overwrite the form with the imported form. We will see

examples of import and export later in this book.

 Preview

This is used to see how the dynaform will render on a user’s screen when running a

case. The preview has three modes: Desktop, Tablet, and Mobile. We will illustrate this

when we add a few controls to our form. Also, the Preview mode allows us to test form

validations, such as required fields and fields such as dropdowns that use SQL queries to

populate their options.

 Clear

This is used to remove all controls from the dynaform and reset it to a blank form.

A prompt is displayed, requiring you to confirm the action before the form is cleared.

 Language

The Language option allows you to define translation files for the dynaform, so you

can change the labels displayed on the dynaform based on the selected language.

The default language is English.

Chapter 7 the responsive Dynaform Designer

106

 Close

Clicking this closes the Dynaform Designer and takes us back to the Process Designer. If

there are unsaved changes in the form, you will be prompted to either save or discard the

changes. To return to the Dynaform Designer, click Dynaforms (click the label and not

the plus icon) in the Main Toolbox to display the list of dynaforms in the process. Click

the Edit button for the dynaform to open the Dynaform Designer.

 Dynaform Control and Properties Panel
On the left side of the Dynaform Designer is the control and properties panel (labeled

3 in the image earlier). The panel is divided into three panels, Web Controls, Properties

and History of Use, in the open source edition of ProcessMaker. The Enterprise edition

includes a fourth section, Mobile Controls, which includes additional controls for the

mobile app, such as the signature, image, audio and video controls.

 Web Controls
This displays the different controls that we can use to build our form. The panel contains

the following controls that can be added to the form:

textbox

textarea

dropdown

checkbox

checkgroup

radio

datetime

suggest

hidden

Chapter 7 the responsive Dynaform Designer

107

title

subtitle

label

link

image

file

fileupload

submit

button

grid

panel

subform

We will explore the web controls in detail in the next chapter.

 Properties
This option displays the properties of the selected control in the form. We can use it to

configure and change the properties of the control as required.

 History of Use
This appears to be a placeholder for a yet-to-be-implemented functionality. It is likely to

show the different versions of the dynaform with an option to revert to a specific version.

 Dynaform Container
This is the container for the different controls that will be added to the form (labeled

4 in the image of the Dynaform Designer earlier). The container is made up of the form

control and one row control when the form is created. Additional rows are added to the

form by dragging web controls onto the empty row control.

Chapter 7 the responsive Dynaform Designer

108

 Form Control Properties
Clicking the gray portion of the container selects the form and displays its properties in

the properties window in the left panel of the Designer as shown in the following image.

The properties of the form are explained next:

Type: The type of control. This property is displayed for every

control.

Id: The unique identifier of the form.

Name: The title of the dynaform that was set when the form

was created. The title of the form can be changed by editing this

property.

Description: The description of the dynaform that was provided

when the form was created. The form description can be edited by

changing this property.

Display mode: This is used to indicate the default display mode for

controls on the form. The options are Edit, View, and Disabled. The

Edit mode allows controls on the form to be editable; users will be

Chapter 7 the responsive Dynaform Designer

109

able to enter and change their values. With the View and Disabled

modes the controls will be read-only. The View mode replaces the

input control with a plain white space showing only the label and

entered value, while the disable mode still shows the input control,

but greyed-out. By default all controls on the form inherit the display

mode of the form, but this can be overridden for each control.

Javascript: This is used to add custom JavaScript code to the

dynaform to enhance the form and add custom logic to the form

such as hiding and showing fields or performing a calculation

based on values entered by a user.

Language: This is used to select the display language for the

form. The options available depend on whether other language

translation files have been added for the form.

External libs: This is used to add third-party JavaScript and

custom style sheets to your form. This extends the possibilities of

the functionality that we can add to a dynaform and allows us to

also change the look and feel as we desire.

Print dynaform: This option adds a print icon to the dynaform

that can be used by users to print the form.

 Row Control Properties
The row control is key in laying out the fields in our form. Clicking on the white part

of the dynaform container selects the row and displays its properties in the properties

panel on the left. The control has only one editable property, col-span, which allows us

to divide the row into columns and set the size of each column.

Chapter 7 the responsive Dynaform Designer

110

Each row consists of 12 columns and the col-span setting is used to group them together

to divide the row. It is recommended that each column have a col-span value of at least 3 to

render properly on all devices. The concept is very similar to Bootstrap’s grid system.

 Bootstrap is one of the most popular front-end/Ui frameworks for building
mobile-first, responsive web applications. you can learn more about the grid
system here: http://www.w3schools.com/bootstrap/bootstrap_grid_
system.asp.

To help you understand the system, the following examples show different values set

for the col-span property of a row and the resulting effect in dividing the row into columns.

Setting col-span to 1 1 1 1 1 1 1 1 1 1 1 1 we have 12 columns of 1 span each.

Setting col-span to 3 3 3 3 we have 4 columns of 3 spans each.

Setting col-span to 2 3 6 1 we have 4 columns, the first with 2 spans, the next with 3

spans, followed by a 6 span column and a single span column.

The value of the col-span property must add up to 12. If it is more than 12, the last

column is automatically reduced to make the value 12, and if less than 12, an additional

column is added to make up the difference.

Go ahead and experiment trying different values to get comfortable with dividing the

rows into columns.

In the next chapter, we explore the web controls, which serve as the building blocks

for creating our dynaforms.

Chapter 7 the responsive Dynaform Designer

http://www.w3schools.com/bootstrap/bootstrap_grid_system.asp
http://www.w3schools.com/bootstrap/bootstrap_grid_system.asp

111
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_8

CHAPTER 8

Dynaform Web Controls
The dynaform web controls allow users of our process to interact with the form. Before

we start building out our form, let us quickly learn more about the different web controls

available to us. Our approach will be to add one of each type of control available to the

form and then proceed to explore them one after the other. To add a control to the form,

simply drag and drop it in an empty row on the form.

You will be prompted to Create/Select a variable to associate with the control.

112

 Creating Variables from the Dynaform Designer
Our lesson on variables mentioned that you can also create variables from the Dynaform

Designer. In the prompt displayed when adding a new control to the form (see the

following image), we can see two options:

Create Variable: This allows you to create a new variable by

entering the variable name. Below the Variable Name field is

a Settings link, which you can click to edit the settings for the

variable, such as the variable type or associated input document.

The fields available in Settings depend on the type of control you

are adding to the form. For example, if adding a textbox, you will

see options to define whether the variable is a string, integer or

float. If adding a file control, however, the options displayed in

the settings will be what input document to associate with the

variable.

Chapter 8 Dynaform Web Controls

113

Select Variable: This allows you to choose from the variables

created earlier. The only variables that will be listed will however

be those that match the control being added to the form. For

example, only string, integer, or float variables will be available for

selection when selecting a variable for a textbox control.

If you have the Create/Select Variable dialog open, click the Cancel button. This will

still add the control to the form but not create a new variable. We don’t want to pollute

our workspace with needless variables in the Cash Advance process, so for the examples

in this chapter we will use the first process we created earlier as a playground to explore

the web controls. Click the Clear button in the Dynaform menu to clear the form, save

it, and then close the dynaform. Close the Workflow Designer to return to the list of

processes.

Open the process titled “My first process” (the name could be different if you used

a different name when creating it earlier). Click the Create icon for Dynaforms in the

Main Toolbox to create a new dynaform. Title it My first form and give it the description

Chapter 8 Dynaform Web Controls

114

A playground to learn about form web controls. Click the Save & Open button to open

the new form in the Dynaform Designer. With our form all set up, we can start adding

controls to it and learning about them.

 Textbox

We begin with the textbox. This is a control you will use a lot in many of the forms you

create. Drag and drop the textbox control from the web controls panel on the left onto

the empty row in the dynaform container on the right. The Create/Select variable dialog

is displayed. Change the variable name to my_textbox and click the Save button to add

the textbox to the form. This creates a new variable for us and adds a new empty row

control to the dynaform container below the row where we placed the textbox control.

The textbox control has a label, text_1, as we can see in the image. Click the textbox

control to select it. This displays its properties in the Properties panel on the left. Let us

look at the properties of the textbox.

type: This is set to text by default and cannot be changed. It’s a

“text” box, after all.

variable: This is the variable that is associated with the control; in

other words, the value entered in this textbox will be stored in this

variable. Remember from the discussion of variables that you can

think of them as a container. Whatever the end user of this form

enters in this control will be stored in that container.

Chapter 8 Dynaform Web Controls

115

To change the variable associated with a control, click the variable name. If there is

no variable associated, there will be an ellipsis (…) where the name should be. Clicking

the ellipsis or variable name displays the Select/Create Variable dialog, which allows you

to select a variable or create a new one as we have seen. You can also clear the variable

associated with the control by clicking the Close button beside the variable name.

Go ahead and try it out. Click the Close button beside the variable name to clear the

variable. In the confirmation dialog that appears, click Yes. Next, click the ellipsis beside

the variable name, and choose the Select Variable radio option in the Create/Select

Variable Name modal that appears. You should see the variable (my_textbox) we created

earlier. Click it to select it.

variable data type: This shows the data type of the variable

associated with the control. Recall that the data type of a variable

can be a string, integer, float, Boolean, datetime, grid, array, or file.

protected value: This is a new property introduced in version

3.0.18 of ProcessMaker; it simply allows us to make the value of

the control immutable. That is, once the value of the variable is

saved, it cannot be changed.

id: This is the unique identifier of the control on the form. It is set

to the name of the associated variable by default if a variable is

associated with the control. The id of every control on the form

must be unique.

label: This is the name of the control that is displayed to the end

users of the form. It should be a meaningful name that helps the

users know what information should be input or displayed in

the control. Our textbox control’s label text_1 doesn’t convey any

meaningful information. Change it to What’s your work email?

You will notice that the label on the control also changes.

Chapter 8 Dynaform Web Controls

116

Chapter 8 Dynaform Web Controls

117

Default value: As the name implies, you can use this property to

define the default value for the textbox. If the user of the form does

not change it, this is the value that will be stored in the associated

variable of the control. Set the default value to no-email@
msbcorp.com or any text you please.

Placeholder: This is used to set the placeholder text for the

control. A placeholder is text that is displayed in the control when

it is empty. The value of the control is not set to the placeholder

if no text is entered into the control. This property is useful for

providing information to the user on how to fill in the textbox; for

example, we could set our placeholder to first-name.lastname@
msbcorp.com.

Hint: This is used to provide hints to the user on filling in the form.

Setting the hint property adds an info icon beside the control,

which when hovered over displays the hint. Set the hint to Enter
your official email address.

Required: This is used to indicate that the field is required and

must be filled. A red asterisk is added to the label of the control

to indicate that it is required if this property is checked. Go ahead

and check the box.

Text transform to: This is used to define what case to use for the

text entered into the control. The available options are None,

lowercase, UPPERCASE, Title Case and Capitalize phrase.

Validate: This is used to define regular expressions that can be

used to validate the value entered into the control. Also referred to

as regex, regular expressions are patterns used to match character

combinations in strings. Regular expressions are beyond the

scope of this book, but you can learn more about them here:

https://developer.mozilla.org/en/docs/Web/JavaScript/

Guide/Regular_Expressions. A common pattern that is validated

in a textbox control is email address, and this is provided for us in

ProcessMaker out of the box. Clicking the Help button displays

the regex for an email address. Click the regex to select it and add

email validation to the textbox.

Chapter 8 Dynaform Web Controls

https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Regular_-Expressions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Regular_-Expressions

118

Validation error message: This is the error message that will be

displayed to the user of the form if the value entered in the textbox

does not pass the validation. Let’s set the error message to Please
enter a valid email address.

Before continuing to the remaining properties, let us see the effect of our changes on

the control. To preview what our control will look like to end users, click the Preview icon

in the dynaform menu in the top right of the screen. If the session has timed out, you will

be redirected to the login screen. There is no need to panic; just enter your username

and password and you will be redirected back to the preview of the form. In the preview

screen, we should see a textbox like the one shown next.

Proceed to delete the default value, no-email@msbcorp.com, from the textbox. This

will display the placeholder we set as shown here.

Now type an invalid text like hroro into the textbox and click outside it to deselect

it. You will see the validation error message we set to check that the value entered by the

user is a valid email address.

Delete the text entered into the textbox, leaving it blank, and click outside the field.

This will show us another error message, telling us that this field is a required field.

Finally enter a valid email address in the field, and the error messages should all

clear up, as shown here.

Chapter 8 Dynaform Web Controls

119

Let us return to the remaining properties of the textbox control. Click the Close

button in the preview window to return to the Dynaform Designer.

Max length: This property is used to define the maximum number

of characters that can be entered into the control.

Formula: This is used to define a formula that will determine

the value of the control. For example, let us assume we wanted

to reimburse expenses based on distance traveled and have a set

rate per kilometer; we can determine the amount to reimburse by

setting the formula property on the amount_to_reimburse field.

You would have a control named cost_per_km where the user

enters an amount for the cost per kilometer traveled and another

control named total_distance for entering the distance covered.

You could then set the formula property on the amount_to_

reimburse field to cost_per_km * total_distance to get the value

automatically.

Display mode: With this property you can define whether the

control should be editable or not. You can also inherit the display

mode of the parent(the containing form or grid). In our formula

example, we would want to make the amount_to_reimburse field

read-only by setting its display mode to View.

To see how the different display modes are rendered on the form, let us change this

property on the textbox. We have already seen what the default parent display mode

looks like when we previewed the form. Change the display mode to View and click the

Preview icon. It should look like the following image.

Close the preview window, select the textbox control, change the display mode

property to Disabled, and preview it again. It should look like this.

Chapter 8 Dynaform Web Controls

120

Close the preview window, select the textbox control, change the display mode

property to Edit, and preview it again. It should look like the following. This is just like

the Parent display mode, which tells us that the display mode of the parent of this control

is also set to Edit.

Datasource: This is used to define the source for possible values

of the control. It can be either a database or an array variable we

created. This property is set to database by default and the value

will only be sourced from the database if an SQL query is defined

in the Sql property of the control.

If the datasource property is changed to array variable, a data

variable property is added to the control’s properties, from which

you can select an array variable containing the list of options.

DB connection: This is used to specify which database connection

to use for the SQL query if any is defined for the control.

Sql: This property is used to set the SQL query that will be used to

fetch possible values for the control from a database. Because this

is a textbox control, only the first returned value will be used; so

when using SQL queries to define the value of the control, make

sure the result of the query is a scalar value.

Wow! That was a lot to take in. Before we continue to look at the properties of

the other controls, I would like to point out that they all have a number of properties

in common with the textbox control, and for those I will simply refer back to this

description of the equivalent textbox property. We will look only at those properties that

are unique to the remaining controls.

Chapter 8 Dynaform Web Controls

121

 Textarea

The textarea control is basically a variant of the textbox control. It allows us provide an

input where users can enter unlimited text. Let us add a textarea to our form to explore

its properties. Drag and drop the textarea control to the empty row below our textbox.

On the Create/Select Variable dialog that appears, set the variable name to my_textarea

and click the Save button. Select the textarea in the dynaform container to display its

properties in the Properties panel on the left.

A quick comparison of the textarea properties with the textbox properties reveals

that the following properties are not available for the textarea:

Text transform to: Because we are entering large text, it is highly

unlikely we want to capitalize everything the user enters.

Max length: There’s no maximum, because using a textarea

implies we want the user to be able to enter an unlimited amount

of text.

Formula: The result of a calculation is most likely numeric, and

this control is for large amount of text.

However, there is a new property not included in the textbox properties—rows. This

property allows you to set how many rows should be displayed when the textarea is

rendered on the form. Let’s see it in action. Change the label property of the textarea to

Tell us something and then click the Preview icon from the dynaform menu to see how

it is rendered on the form. If your session has timed out, you will be redirected to the

login page. Just log in with your username and password, and you will be redirected back

to the preview.

You should see the textarea rendered as shown in the following image.

Chapter 8 Dynaform Web Controls

122

To count the number of rows, click in the textarea and press Enter on your keyboard

five times. The fifth Enter keystroke takes you to the sixth row, and a scroll bar should

appear on the side of the textarea. Close the preview window to return to the Dynaform

Designer. Select the textarea again to display its properties and change the row property

to 10. Preview your form again, and you should see that the displayed textarea control is

now bigger. Note that setting a value higher than 10 does not make the textarea rendered

any larger; it instead adds a scrollbar. Change it back to 3 so it does not fill up our

playground form.

 Dropdown

The dropdown control is used to provide a list of options from which the user can select

a value. The options in a dropdown can be populated from a database or predefined

in the variable associated with the dropdown control. We will explore using database

connections later in the guide, but for now we will stick to defining the options in the

variables. Let us add a dropdown control to our form to explore its properties.

Drag and drop the control to the empty row beneath the textarea. In the Create/

Select Variable modal that is displayed, change the variable name to my_dropdown.

Then click Settings to display the settings of the variable being created. Since we will

be using options and not an SQL query, click the square brackets to display the options

modal.

In the options modal displayed, you will see an empty table with the headings Key

and Label, with a Create button on top. Click this button to define the options that will

be available for users of our form to select. The key is the value that will be stored in

the variable, and the label is what will be shown to the user. The label is usually more

descriptive, with the key being a code. For example, if we wanted users to select their

language, we would put the ISO code of the language as the key and the name of the

language as the label.

Chapter 8 Dynaform Web Controls

123

Let us add some languages to our options. Type de in the Key column, and then click

in the Label column and enter German. Click the Create button again to add another

option and repeat for all the following values.

Key Label

de German

en english

es spanish

fr french

pt portuguese

zh Chinese

Chapter 8 Dynaform Web Controls

124

Once you are done, click the Apply button to save the options. Then click the Save

button on the Create/Select Variable screen to create the variable.

Click the control in the Dynaform container to display its properties. The properties

as we can see are similar to those we have seen in the two previous controls. Change

the label property to Choose your language and proceed to preview it. We can see the

dropdown control rendered as displayed here.

Something seems odd about our dropdown control. Can you guess what it is? The

option German is preselected for us by default. If the user does not pay attention, they can

forget to choose an option and use the default. To correct this, we would rather show a

message indicating that the user has not chosen an option yet. Close the preview, select the

control from the dynaform container and set the placeholder property to Select language….
Preview the form again, and the dropdown control should now render as shown next.

As you can see, this is much better and clearly indicates to the user that this field has

not been filled and they need to choose an option from the dropdown. Remember that

we can also populate our options from a database query as we shall see later on. Close

the preview to return to the Dynaform Designer.

Chapter 8 Dynaform Web Controls

125

 Checkbox

The checkbox control is one you will most likely be familiar with from different forms

you might have filled online, like login forms asking “remember me on this computer?”

or sign-up forms asking to check the box to indicate “you have read and understand the

terms.” A checkbox control allows you offer users of your form a binary choice like yes/

no, on/off, agree/disagree, true/false, and so on.

Let us add a checkbox control to our form and explore its properties. Drag and drop

the checkbox control from the web controls panel to the empty row below the dropdown

control. In the Create/Select Variable modal dialog that opens, change the name of

the variable to my_checkbox. Click Settings to display the settings of the variable. You

will see that the only available type is Boolean. This is because a checkbox can only be

associated with a Boolean variable.

If you click on the options, you will see a Key/Label table similar to the one we saw

for the dropdown control earlier. However, in this options table, there is no Create button

to add options, and we already have two options prefilled for us. Also, we cannot change

Chapter 8 Dynaform Web Controls

126

the values in the Key column, which are 1 and 0 (remember, it gives us binary options).

All we can do is change the labels, which are set to true and false, respectively.

When the checkbox is checked, the variable will be set to 1 and if unchecked, it will

be set to 0. Let us change the labels to something else. Change True to Yes and False to

No. Click the Apply button and save the variable.

With the checkbox added to the form, click it in the dynaform container to select it

and display its properties.

In the properties panel, we can see that all the properties available are the same

as we have seen with other controls. The options property can be edited to change the

labels of the options as we did when creating the variable to associate with this control.

Change the label property to I accept the terms and conditions. If you want a user to

always check the box, you can check the required property. Go ahead and preview the

form to see how the checkbox looks.

Chapter 8 Dynaform Web Controls

127

 Checkgroup

The checkgroup control is used to allow users select multiple options. Each option is

displayed with its own checkbox, and the options that are checked are stored into the

variable associated with the control. To be able to store multiple options, the associated

variable will be an array data type. Let us add a checkgroup to our form and explore its

properties.

Drag and drop the checkgroup control to the row beneath the checkbox on the

form and, on the Create/Select Variable dialog screen, change the variable name to

my_checkgroup. Click Settings to display the settings of the variable. The only variable

type available to select is Array, as just explained. Also, just as we did for the dropdown

control, we will be using the options array to populate available options for the user to

select, even though we can also use database query to select possible options.

Click the square brackets in front of the options settings to display a Key/Label table,

which we will use to define the options. Remember that the key is the value that will

be stored in the variable, while the label is what will be shown to the user. Create the

options as shown in the following table. Click the Apply button and save the variable

created.

Key Label

1 tennis

2 swimming

3 soccer

4 hockey

5 other

Select the checkgroup control from the dynaform container to display its properties.

Change the label property to Which sports do you watch? You will also observe that the

properties are similar to the checkbox properties. If you want the user to select at least

one of the options, check the Required property. Click the preview icon to see how the

Chapter 8 Dynaform Web Controls

128

control is rendered on the form. The labels are displayed beside the checkbox and listed

vertically. One of the properties I would love to see is an option to choose how to display

the options, vertically or horizontally. There is a workaround, however, which we will see

when we look at ways you can enhance the look and feel of your forms later in this book.

 Radio

The radio group control is similar to the checkgroup, with the difference that while the

checkgroup allows you to select multiple options, the radio group allows you to select

only one option from those available. As we have done for the other controls we have

seen so far, let us add a radio control to our form.

Drag and drop the radio control from the web controls panel to the row beneath the

checkgroup. In the Create/Select Variable modal dialog, change the name of the variable

to my_radio. Click Settings to display the settings of the variable. You will see that we

have four different types for our variable, with string selected by default. When using the

radio control for a binary option as we did for the checkbox, the variable type should be

set to Boolean. If you are offering multiple options with custom keys (remember that

the key is the value that will be stored in the variable), however, use a variable type that

matches the data type of the key.

To better see how this works, change the Type under settings to Boolean. You see

that the options setting changes to what we had when exploring the checkboxes. If you

click on the options, you will only be able to edit the labels and not add new options in

the Key/Label table displayed. Click Cancel to close the Options modal. Change the Type

Chapter 8 Dynaform Web Controls

129

setting back to String and then click Options. In the Key/Label table displayed, create the

options as shown here.

Key Label

Csh Cash

ChQ Check

CrD Credit Card

trf Wire transfer

With the options created, click the Apply button and save the variable. Click the radio

control in the dynaform container to select it and display its properties. We can see that

the properties are the same as we have seen in the other controls explored so far. Change

the label to How would you like to be paid? and proceed to preview it. You will observe

that while the radio control is similar to the checkgroup control above it, we can only

select one option, instead of the multiple options we can select in the checkgroup.

Keep in mind that we can also use an SQL query to a database to fetch the options

that can be displayed in a radio control. Close the preview and let us move on to the next

control.

 Datetime

The datetime control is used for providing a calendar that users can use to select dates

when filling in the form. Using a datetime control is the preferred way of capturing dates

Chapter 8 Dynaform Web Controls

130

in forms, instead of using a textbox that allows the user to type freely. The datetime

control helps us ensure that the user has entered a valid date. It also allows us to perform

calculations with the date or check whether the date is in the past or future. The datetime

control in ProcessMaker uses the moment.js library, which is a “full featured date library

for parsing, validating, manipulating, and formatting dates.” You can learn more about

moment.js at http://momentjs.com/.

Let us add a datetime control to our form and check out its properties. As usual, drag

and drop the datetime control from the web controls panel to the empty row on the form.

In the Create/Select Variable modal dialog, change the variable name to my_datetime.

If you click the settings, you will see that the type is a datetime. Save the variable and

select it in the dynaform container to show its properties. A cursory glance reveals

properties we have not seen in the other controls explored so far, which we shall now

learn more about.

To better understand the effect of the different properties, let us change the label

property to Birthday and preview the form to see how the datetime control looks and

works with the default properties (see the following image). The control has a calendar

icon on the right that when clicked displays the calendar with today’s date selected

(I am writing this draft on August 31). You can click the arrows in the calendar displayed

to change the month and click the month to change the year of the calendar.

Let us now look at the properties and change their values to see the effect they have

on the control. Close the preview and select the control from the form to display the

properties again.

Chapter 8 Dynaform Web Controls

http://momentjs.com/

131

Format: This property allows you to change the way the datetime value is formatted.

The default is YYYY-MM-DD, which as we can see from the image translates August 31st

2016 to 2016-08-31. To learn more about the different possible formats, visit

http://momentjs.com/docs/#/displaying/format/. If you also hover over the hint icon

beside the property, you will see a summary of available format options. Let’s change

our controls format to see how it works. Change the property to MMMM Do, YYYY and

preview the control in the form. Pick a date, and it should be formatted as shown next.

This property really comes handy for making sure users select the right date without

having to wonder whether month comes before day or vice versa.

This property is also used to add a time selection to the date. If we wanted users to

select a time we simply include it in the format. For example, change the format property

to HH mm A MMMM Do, YYYY. Preview the form and you will see that a time picker is

added to the calendar as shown here. Click it to select the time and then use the calendar

icon to return to the datepicker.

Close the preview and let us move on to the next property.

Min date: This property is used to define the minimum date that can be selected

from the calendar. The value can be set by using the calendar icon beside it, which

makes it fixed, or by using a variable like @@today or @@min_date, which can be set every

time a case is run, making it more flexible. If you are wondering about the @@ prefix in

front of the variable name, I will explain it when we learn how to work with variables.

Chapter 8 Dynaform Web Controls

http://momentjs.com/docs/#/displaying/format/

132

To see it at work, use the calendar icon and set the value to today’s date (I am using

August 31, 2016). Preview the form and click the calendar icon on the datetime control to

display the datepicker. You will observe that you are unable to select any date before the

date you set as the min date as they will be disabled.

Max date: This property is the opposite of the min date, allowing you to specify

the maximum date a user can select. Just like min date, it can be set using the calendar

beside it or using a variable. Set the max date property to a week from today (September

6, in this example) and preview the form. You will observe that you are unable to select

any date after the date set as the max date.

Chapter 8 Dynaform Web Controls

133

Close the preview and let us look at the next property.

Initial selection date: This property is used to define what date should be selected

by default on the datepicker. The options for this property are:

• True: This is the default and indicates that the initial date be set to the

current date.

• Year: Sets the initial date to the first day of the first month of the

current year.

• Month: Sets the initial date to the first day of the current month.

• Day: Sets the initial date to the current date.

• Hour: Sets the date to the current hour (the format property must

include hour).

• Minute: Sets the date to the current minute (the format property must

include minute).

To try out the effect of this property, you might have to clear the min date and max

date properties (use the Clear icon beside them) if you set them earlier, as the value set

by this property may be outside the range defined by the min and max date properties.

Default date: This property sets the default date to be shown on the datepicker.

You can think of it as an extension of the initial selection date property discussed earlier,

that allows you to specify a date not covered by the options above. It can be set using

the calendar beside it or with the use of a variable just like the min date and max date

properties. Set it to a value using the calendar and preview the form to try it out.

Datepicker view mode: This property sets how the datepicker should be displayed,

and the options are

• Days: This is the default as we have seen in the examples earlier.

• Month: This changes the datepicker to allow users to begin selection

from the month.

• Year: This configures the datepicker to allow users to begin selection

from the year.

Chapter 8 Dynaform Web Controls

134

Show Clear button: This is used to indicate that the Clear button icon should be

displayed in the datepicker. Users can click the Clear button in the datepicker to clear the

value selected. This is set to Hide by default. Change the property to Show and preview

the form. It should display a delete icon on the bottom of the date picker as shown in the

image on the right. Close the preview window to return to the Dynaform Designer.

We have now explored all of the properties particular to the datetime control. Before

we move on to learn about the next control in the web controls panel, Suggest, let’s take

the opportunity to try repositioning a row.

Chapter 8 Dynaform Web Controls

135

 Repositioning a Row
Our controls are beginning to reach the end of the form, meaning we might have to scroll

down to locate the next empty row. Let us quickly see how we can reposition rows before

moving on. Simply click a free portion of the row (our last row is empty at the moment,

so we can click anywhere in it). You’ll see the handle and delete icons, as shown next.

Click and drag the handle to the top of the form as shown in the following image, and

drop it above the row containing the textbox control we created earlier.

Chapter 8 Dynaform Web Controls

136

 Suggest

The suggest control is similar to a textbox and is used to offer suggestions to the user

about the possible values that can be entered into the field. As the user types into the

control, a list of suggestions is displayed and filtered based on the user’s entry. The

user can select one of the options or type a completely new value, as these are just

suggestions. The list of suggestions can come either from a database query or a list of

options, just as in the dropdown control. Let us see how it works.

Drag and drop a suggest control from the web controls panel to the empty row we

just dragged to the top of our form. In the Select/Create Variable dialog that appears,

change the variable name to my_suggest. Expand the settings and click the square

brackets in front of options setting to define the options we will use. As we did with the

dropdown, checkgroup, and radio controls, add the options in the following table below,

click Apply, and save the variable. You might observe that we are using the same values

for the key and label this time, which makes sense as we are suggesting what the user

should enter, and this is more likely to be a phrase as opposed to a code.

Key Label

Computer scientist Computer scientist

Database administrator Database administrator

Data analyst Data analyst

Data scientist Data scientist

network analyst network analyst

network administrator network administrator

software designer software designer

software analyst software analyst

software quality analyst software quality analyst

system administrator system administrator

Web developer Web developer

Chapter 8 Dynaform Web Controls

137

Select the control from the dynaform container to display its properties. Change

the label property to What’s your occupation? and proceed to preview the form. Start

typing one of the values from the table, like data, and the matching values will be

displayed as suggestions which you can click to select as shown in the following image.

We can close the preview and return to the dynaform to learn about the next control.

 Dividing a Row
Before we continue, let us rearrange our form to maximize the space. Right now, we are

putting one control in a row, which is taking up too much screen real estate and forcing

us to scroll down. Remember that earlier we discussed dividing a row into columns;

we will now use that knowledge to improve our form. We will split the rows into two

columns and have the controls render side by side.

Click the first row in the dynaform container (click on a free space in the row and not

the control in the row). With the row selected, change the col-span property from 12 to 6
6 as shown here. This splits the row into two columns.

Chapter 8 Dynaform Web Controls

138

Next, select the textbox control in the second row and drag it into the right column

of the first row. When dragging the control, try selecting it using the label part of the

control.

The next control is a textarea and we will probably want it to span the width of the

form, so we will leave it as it is. You can drag it into the empty row above it (the row we

moved the textbox from). Divide the third row (where we just moved the textarea control

from) into two columns by selecting it and changing its col-span property to 6 6. With the

row divided, drag the dropdown control to the left column and the checkbox control to

the right column.

Repeat the same process to divide the fourth row into two columns and drag the

checkgroup control to the left columns and the radio control to the right column. Divide

the fifth columns also into two and drag the datetime control to the right column. The

dynaform container should now look like the following image, taking up less screen

space.

Chapter 8 Dynaform Web Controls

139

Preview the form. It should look like the next image.

Close the preview and let us move on to the next control in the web controls panel.

 Hidden

The hidden control, as you might have guessed, is hidden; that is, it is not visible on the

form. It is useful for storing information we do not have to display to the user but require

for evaluating logical conditions or performing calculations. For example, we can use the

hidden control to store the value of a variable indicating whether the form was approved

or rejected by the previous user, and then hide or show certain fields based on the value.

Drag and drop a hidden control to the last row and in the Create/Select Variable

modal dialog, change the variable name to my_hidden. Expand the settings to see the

available settings. You will see that the supported data types for the variable include

string, integer, float, Boolean, datetime. Leave the type as string and save the variable.

Select the control in the dynaform container to display its properties. All the properties

are familiar from other controls we have seen. Preview the form. You will notice that

the control is not displayed on the form. We will see how we can use values stored in a

hidden field later in the book. Close the preview.

Chapter 8 Dynaform Web Controls

140

 Title and Subtitle

The next two controls are used to provide headings that can be used to section our

form. The title control adds a Heading 1 title (<h1>Title text</h1>) to the form, while the

subtitle tag adds a Heading 2 title (<h2>Subtitle text</h2>). Let us see how these controls

look on the form. Ideally, the title will be at the top of the form, so let us drag the empty

row from the bottom to the top of the dynaform container as we learnt in the lesson on

repositioning a row. With the row positioned at the top, drag a title control from the web

controls panel to the row. Click the title to select it and display its properties.

The controls has just three properties, of which only two are editable. We are

however only interested in the label property, which is the text displayed as the title. The

id property can be left as the default ID generated by ProcessMaker. Change the label

property to My first form. Go ahead and preview the form. The title should be displayed

at the top of the form.

The subtitle control is practically the same as the title control with the only difference

being that it renders its label in a H2 tag while the title control uses a H1 tag. Drag the

empty row from the bottom of the container and place it below the first row. Drag and

drop a subtitle control into the second row and select it to display its properties. Change

the label to A playground for learning about web controls. Preview the form.

Our newly added title and subtitle might not look fancy at the moment, and it might

be hard to tell them apart from the labels on other controls on the field. You will learn

how to style them to make them visually distinct when we enhance the look and feel of

our forms later in the book.

Chapter 8 Dynaform Web Controls

141

 Label

This control is used for adding text to our forms. For example, we can use it to add the

terms and conditions to a form. Let us rearrange our form. Drag the checkbox control

(the control with the “I accept the terms and conditions” label) to the empty right

column beside the datetime control (the control with the label “Birthday”). Then drag

the datetime control to the column (beside the “Choose your language” dropdown

control) we moved the checkbox from.

Now add a label to the form by dragging a label control from the web controls panel

to the empty column beside the checkbox control. This should be the left column of the

seventh row on the form. Click the label control to select it and display its properties.

Change the text property to Your use of this form is subject to acceptance of the terms
and conditions of MSB Corp. Preview the form to see how the label is displayed.

 Link

The link control is used to add a hyperlink to the form. Continuing with the terms and

conditions example, we can use the link control to add a hyperlink that directs user of

the form to the terms and conditions page on a website or intranet. Let us add one to

the form. Divide the last row in the dynaform container into three columns by selecting

it and setting its col-span property to 4 4 4. Drag and drop a link control from the web

controls panel to the first column. Click the control to select it and display its properties.

The label property is the label that will be shown beside the link. Set it to T&C link.

The display text property is the text that will be displayed and the users can click. Set it

to Click to read our terms and conditions. The href property is the URL that the link

Chapter 8 Dynaform Web Controls

142

will redirect to when it is clicked. Set it to http://www.processmaker.com/terms-of-

service. The hint property is used to provide more details on the link.

Preview the form. Click the link and it should open a new tab or window in your

browser to display the ProcessMaker Terms of Service page. Close the preview to return

to the Dynaform Designer.

 Image

The image control is used to display an image on the form. The image can be loaded

from the web or any external source by providing a URL to the image in the src property

of the image control. To see it in action, drag an image control to the middle column of

the eighth row, beside the link control. Click it to select it and display its properties.

The label property can be used to provide information about the image. Set it to

Placeholder. The hint property, as you’ve seen, is used to provide a hint on the control.

The src field is used to set the URL of the image we want to display. Set it to https://

placehold.it/300x300. This will generate a placeholder image for us from Placehold.it,

a free placeholder image generation site.

The shape property is used to specify how the image should be displayed. There are

three options: thumbnail (this is default) , rounded (adds rounded corners to the image)

and circle. You can try changing it to the different options and previewing the form to see

how it renders (see the following images).

Chapter 8 Dynaform Web Controls

http://www.processmaker.com/terms-of-service
http://www.processmaker.com/terms-of-service
https://placehold.it/300x300
https://placehold.it/300x300

143

The alternate text property is used to define the text that will be displayed if the

image cannot be loaded. Set it to placeholder image. The comment property is used

to add text that can be displayed at the bottom of the image (for example, the text

“Thumbnail shape” in the first image here). The title (mouseover) property is used to

specify text that will be displayed when the user’s mouse is hovered over the image. Set it

to Demonstrating image control. Go ahead and preview the form.

 File

Next in the panel is the file control, which as you might have guessed is used for

uploading a file into our form. This is useful for attachments. Documents can also be

Chapter 8 Dynaform Web Controls

144

added to a case (remember that a case is an instance of a process) by adding an input

documents step to the task in the process. We will explore this alternative approach later

on. For now, let us add a file control to the form to see how it works.

Drag and drop the file control in the last column on the eighth row. Click it to select

it and display its properties. In the Create/Select Variable modal that appears, we will

not be creating or selecting a variable this time around. The file control can only be

associated with a variable with a file data type, and this requires us to select an input

document which we do not yet have. We will learn about input documents later on.

Expand the settings to show the available settings for the variable as shown above.

You will see that the input document setting is required (marked with a red asterisk).

Click the ellipsis in front of it to display a modal from which you can select an input

document. We don’t have any at the moment, so close the modal by clicking the Close

(x) button in the top right corner. If you click the Save button, you will get an error

message :“The input document is required, please select the value.” as expected since we

have not provided one. Click the Cancel button. This will still add the control to our form,

but the control will not be associated with a variable. That means we will not be able to

store the file provided by the user. This is fine for now, as we are just playing around and

exploring the control. Click on the control to select it and display its properties.

Chapter 8 Dynaform Web Controls

145

The label property adds a label to the field. Set it to Attach receipt. The file

extensions property is used to indicate which type of files the user can upload. This is

set to * by default, which is a wildcard implying that the user can upload any type of file.

Ideally, we would want to restrict this to the extensions of the type of files we expect.

For example, if expecting images, we would set it to .jpg, .png, .gif, .bmp which are the

common image file extensions. Note that the extensions are separated by comma. Set it

to .pdf so that the user can only upload .pdf files.

The max file size property, as the name implies, is used to set a limit on the size of

the file that can be uploaded. This is set to 1MB (1024KB) by default. The next property

size unit is related to the max file size property and specifies the unit of the max file size

specified earlier. The options are KB (kilobytes) and MB (megabytes). Let’s change the

max file size to 2MB. Set the max file size property to 2 and change the unit type property

to MB.

Preview the form. The control displays as shown next. Click the control to display

the file selection dialog on your system. Choose a file that is not a pdf file, and it should

display an error message as shown in the second image. If you choose a pdf file larger

than 2MB, it should display an error message as shown in the third image. Choosing a

pdf file that is less than 2MB correctly selects the file, as shown in the fourth image.

Chapter 8 Dynaform Web Controls

146

Let’s close the preview window and look at the next control which, is a new

enhancement added in version 3.1.

 Multiple File Uploader

The multiple file uploader (fileupload) is an enhancement to the File control we just

explored. As you might have guessed, this control allows us upload multiple files to a

dynaform unlike the file control which is limited to just one file.

Unlike the file control, we are able to add the multiple file uploader to a dynaform

without associating it to an Input Document. The association of the control with an input

document can however still be done from the control’s properties.

Drag and drop the fileupload control to the next row and in the Create/Select

variable screen, change the variable name to my_fileupload and save it. Select the

control in the dynaform container to display its properties. You will observe that the

properties are the same with the file control with the exception of an Input document

property which can be used to select the Input Document to link with the control. The

common properties, such as file extensions, max file size, and so on have the same effect

as in the file control.

Change the label property to Upload supporting documents and preview the

dynaform. The control is now displayed as shown in the following image.

Click the green Choose Files button and upload a few documents. The uploaded

documents should be displayed as shown next. When you’re running a case, the

progress bar below the filename will show the upload progress of the file; however,

because we are in the designer preview mode, no progress is shown. The uploaded files

can be deleted by clicking the Delete icon beside each file.

Chapter 8 Dynaform Web Controls

147

Close the preview mode and return to the Dynaform Designer.

 Submit and Button

The submit and button controls are buttons that allow the user to trigger an action on

the form. As you might have guessed, the action triggered by the Submit button is to

submit the form. This action validates the form, and if the form is valid, closes the form,

saves the values entered into the associated variables, and moves the case to the next

step in the process. If the form is invalid, that is, some of the fields have errors, the form

will not be submitted.

The button control provides us a way to trigger actions that do not submit the form.

We can use this trigger to perform a calculation, custom validations, display a message

or update a field. We do this by handling the action triggered with JavaScript code. Let us

see how they both work. Divide the last row into two columns by selecting it and setting

its col-span property to 6 6.

Drag and drop a submit control to the left column. Click the submit control to select

it and display its properties. Change the label to Submit Form. Next, drag a button

control to the right column beside the submit control. Select it to display its properties

and set the label to Display Alert. Before we preview the form, let us make some other

fields required so we can see the validation at work. Select the suggest control (it should

be in the third row) and make it required. Repeat the same for the dropdown control

Chapter 8 Dynaform Web Controls

148

under it (it should be in the fifth row). Once done, proceed to preview the form. The

buttons should be displayed at the bottom of the form as shown here.

Click the Display Alert button. Nothing happens. This is because we have not

handled the action it triggers. Click the Submit Form button. This will trigger a validation

of our form and the fields we marked as required will be highlighted with validation

errors as shown next.

Enter valid values for the fields highlighted and click the Submit button again. The

form should now pass validation, and the fields will be displayed as shown next. The

form is not closed, because we are previewing it. If we were running a case, the form

would be closed on successful validation and proceed to the next step.

Now let us handle the action triggered by the button control. Close the preview and

return to the Dynaform Designer. Click the button control to select it and display its

properties. We will change the id and name properties to something more meaningful.

Set both properties to alert_button. Next click the gray part of the dynaform container

to select the form and display its properties. Click the Edit button beside the JavaScript

Chapter 8 Dynaform Web Controls

149

property. This displays the JavaScript editor for the form. We will add some JavaScript

code to our form to handle the button click action. Copy and paste the following code

into the editor and click the Save button.

$("#alert_button").click(function(){

 alert("The display alert button was clicked");

});

Do not worry if you are not familiar with JavaScript; the ProcessMaker JavaScript

editor supports jQuery, a fast, small, and feature-rich JavaScript library that makes

it easy to use JavaScript to make web pages interactive. We only use it to add custom

functionality to our form, and you do not have to master it to be able to use it. If you are

new to jQuery, Codeschool (https://www.codeschool.com/courses/try-jquery) and

Codecademy (https://www.codecademy.com/learn/jquery) have free jQuery courses

that can get you up to speed on the basics in a matter of hours.

Let me quickly explain what we are doing with this code.

$("#alert_button") This is referred to as a jQuery selector and

simply instructs the program to select the control on our form

with the id alert_button.

.click() This is called an event handler and tells the browser to

execute the function in the bracket when the control we selected

is clicked.

function(){} This is a function, and it encapsulates a set of

statements that perform a task or calculates a value.

alert("The display alert button was clicked"); This is the

only statement in our function and it calls a built-in JavaScript

function called alert, which is used to display an alert message

in the browser. The function expects the message we want to alert,

which we provide in quotes, and the semi-colon signifies the end

of the statement.

Chapter 8 Dynaform Web Controls

https://www.codeschool.com/courses/try-jquery
https://www.codecademy.com/learn/jquery

150

To see the effect of the JavaScript code on the form, preview the form and click the

Display Alert button. The browser should display an alert with the message as shown

next. Click the OK button to dismiss the alert. Close the preview and return to the

Dynaform Designer.

 Grid

The next control we will explore is the grid, which allows us to add a tabular list of

controls to our form. This is useful for capturing a list of items in the form. For example,

if we wanted the users of our form to provide an inventory of items in a store, we would

use a grid. Let us add one to the form to see how it works.

To make our form consistent, move the last empty row above the row containing the

buttons. Next, drag and drop a grid control from the web controls panel to the row you

just placed above the buttons. In the Create/Select Variable modal that appears, change

the variable name to my_grid. If you expand the settings, you will observe that the Type

is grid, which is the only type of variable we can associate with a grid control. Click the

Save button to save the variable. Select the grid control from the dynaform container to

display its properties.

Chapter 8 Dynaform Web Controls

151

 Adding Controls to the Grid
Before we explore the properties, looking at the grid on the form shows the title of the

grid and the different type of controls we can place within our grid. By now, we are

already familiar with all the supported controls, so we will add one of each to the grid to

see how they are rendered in the grid. If you try adding any of the unsupported controls

to the grid, you will be shown an error message. Switch to the web controls panel and

drag a textbox on top of the grid control. If you click the textbox control you just added to

the grid, you will see its properties displayed in the properties panel on the left.

However, you will notice that there is no variable or variable data type property.

This is because the control belongs to the grid, and its value will be stored in the variable

associated with the grid. Also, at the bottom of the properties panel, there is a new

column width property. This is used to define how wide the control will be rendered in

the grid. This property is influenced by the layout property of the containing grid. We will

learn more about it shortly. For now, set the id property of the textbox to my_grid_item

and the label property to Item.

Proceed to add the other controls to the grid. Drag a textarea control and place it

beside the textbox in the grid. Select it to display its properties and set its id property to

my_grid_description and its label property to Description.

Next, drag a dropdown control and place beside the textarea you just added. Select it

to display its properties. Set the id property to my_grid_category and the label property

to Category. We will also need to add the options we want users to be able to choose

from for our dropdown. Click the square brackets in front of the options property to

define the following options and click the Apply button. To prevent an option from being

selected by default we set the placeholder property to Select…

Chapter 8 Dynaform Web Controls

152

Key Label

accessories accessories

Consumables Consumables

electronics electronics

stationeries stationeries

The next control we add is the checkbox. Drag and drop it beside the dropdown

control. Select it to display its properties. Set the id to my_grid_invoice_attached

and the label to Invoice Attached. Next, drag and drop a datetime control beside the

checkbox. Select it to display its properties and set the id to my_grid_purchased and the

label to “Date Purchased.

Next, we add a suggest control to the grid, placing it beside the datetime control.

Select it to display its properties. Set the id to my_grid_supplier and the label to

Supplier. Just like we did with the dropdown control, we need to define options for the

suggest control. Click the square brackets for the options and define the options shown

in the following table. Click the Apply button when done.

Key Label

aCme Corp aCme Corp

office supply Inc office supply Inc

the electronics place the electronics place

XyZ International XyZ International

The next supported control is hidden. Drag and drop the hidden control beside the

suggest control and select it to display its properties. Set the id property to my_grid_
hidden. You will observe that the hidden control does not have a column-width property

like the others. This makes sense, as it will not be displayed on the form. Next, drag a link

control and place it beside the hidden control.

Chapter 8 Dynaform Web Controls

153

You might have to scroll to the right depending on your screen size. Select the link

control and set the id and name properties to my_grid_link and the label and display

text properties to “Demo Link.

Finally, drag and drop a file control after the link control. Select it to display its

properties. Set the id and name properties to my_grid_invoice and the label to Invoice.

Our grid should now look like the following image. To see the grid at once, you might

have to collapse the left panel using the close bar between the dynaform container and

the properties panel (see image on the right). You can click it again to expand the panel.

Before we preview the grid, select it and change its title property to List of inventory
items. Click the Preview button from the dynaform menu and scroll to the end of the

form. You should see the grid displayed, similar to the image shown here.

 Adding and Deleting Rows
In the grid displayed, you will observe that there is a New link at the top of the grid and

a delete icon added to the end of the row of controls. The New icon is used to add a new

row to the grid. Click it and you should see a new row added to the grid. As you might

have guessed, the Delete icon beside each row removes that row from the grid. click the

Delete icon beside the two rows displayed on the form. The grid should display as shown

here, with no records.

Chapter 8 Dynaform Web Controls

154

We can modify the properties of our grid to disable the New and Delete options on

the grid. This can be useful when we are displaying grids in our forms that have been

prepopulated from a database and do not want the users to add new records or delete

records from the grid. To see this at work, close the preview to return to the Dynaform

Designer. Select the grid and in its properties, uncheck the add row and delete row

properties. Go ahead and preview the form again. You will see that the New link and

Delete icon are no longer available.

 Paging Records in the Grid
The next property on the grid that we will look at is the page size property. It is used to

define if we want the records in the grid to be paged. This can be useful when expecting

very long grids. The property is set to none by default which means no paging and all

rows added to the grid will be displayed at once. Let us change it to 5. Then enable the

add row and delete row properties by checking them. Also select the textarea control in

the grid and change its rows property to 2 so that it takes up less space. With that done,

go ahead and preview the form.

The grid is now displayed with a pager at the bottom. Click the New link five or more

times to add enough records that exceed the page limit of 5 we defined in the page size

property. The pager at the bottom should now have a second page. Click on page 2 to

display the additional rows in the grid.

Chapter 8 Dynaform Web Controls

155

 Modifying the Grid Layout
Looking at our grid, we can see some space on the right side of each row, while our Date

Purchased column appears squeezed. This is because we are using the responsive layout

and set each control to take 10% of the size of the grid. The layout property of the grid has

two options, responsive and static. The responsive layout is the default and sets the grid

size to 100% of the form width; the controls inside it are sized based on the percentage

assigned to their column width property.

For example, if we wanted all controls in the grid to have the same width, we would

divide the width of the grid (94%, because 3% is reserved for the serial number of the

rows and another 3% for the Delete icon) by the number of controls (8; because we do

not count the hidden control) to determine the value to set for each controls column

width. Dividing 94% by 8 gives us 11.75%. We will, however, have to round this down to

a whole number (rounding it up will cause us to exceed 94%) to give us 11% per column.

We use whole numbers because ProcessMaker disregards the decimal and rounds the

values to the nearest lower whole number.

If we set each control’s column width property to 11% ,we will be left with an extra

6%, which we can then add to the date purchased control to make it wider. Change the

column width property of the controls in the grid to 11 with the exception of the date

purchased datetime control. Set that to 17 and preview the form. The rows of the grid

should now fill out the grid as shown in the following image.

When you have a sizable number of columns in your grid, the responsive layout

might not be the best option. Imagine we had a grid with 15 columns and we used the

responsive layout. If we made the columns equal in size, we would have to set each

Chapter 8 Dynaform Web Controls

156

column to 6% with a spare 4% to add to other columns. Such a form would appear

squashed. To illustrate this, preview the form and resize your browser window to half the

size. The grid will appear as displayed next.

To work around this, we can change the layout property of the grid to Static.

The static layout allows us to set the pixel size for each column on the grid and if the size

exceeds the browser screen, a scrollbar is added to the grid allowing users to scroll to

view the remaining columns in the grid. Let us change our grid’s layout property to Static

to see how it works.

Close the preview, select the grid, and change its layout property to Static. Now

select the controls in our grid and change their column width property to 140. Since we

are now using the static layout, the column width is now measured in pixels and not

percentages as with the responsive layout. If you hover over the hint icon beside the

property, it will display “Pixel value,” as shown in the image following (if we were using

the responsive layout, it would show “Percentage value”). This can be useful for verifying

what unit of measurement is being used.

 according to WhatIs.com (http://whatis.techtarget.com/
definition/pixel), “the pixel (a word invented from “picture element”) is the
basic unit of programmable color on a computer display or in a computer image.
think of it as a logical—rather than a physical—unit. the physical size of a pixel
depends on how you’ve set the resolution for the display screen.”

With the column width property all set, proceed to preview the form. Resize your

browser to half the width and you will observe that instead of squeezing the columns

Chapter 8 Dynaform Web Controls

http://whatis.techtarget.com/definition/pixel
http://whatis.techtarget.com/definition/pixel

157

together, a scrollbar is added to the bottom (as shown in the image), allowing us to scroll

and display the controls in the grid.

 Validating Required Fields
To end our discussion of the grid control, I would like to point out that you can mark the

controls in a grid as required to make sure that the user fills them before submitting the

form. To try it out, select the textbox (item) and check its required property. Preview the

form and click the Submit button. A validation error is displayed on the field in the grid

as shown here.

 Mathematical Functions in Grids
Another cool feature of the grid control is the function property it adds to textboxes

in the grid. Let us add another textbox control to our grid. You can place it after the

dropdown control. You might have to click and drag it to the position after adding it to

the grid. Set its id property to my_grid_amount and the label to Amount. Scroll down

Chapter 8 Dynaform Web Controls

158

the properties panel and you will see a function property. The default value is None.

Change it to Sum and change the column width property to 140. Proceed to preview the

form.

You will observe a sigma sign (Σ) at the bottom of the column in the grid. Click

the new link to add a couple of rows to the grid, and then enter a numeric value in the

Amount field in the rows added. You will see that the total sum value is automatically

displayed beside the sigma sign as shown in the following image. Close the preview,

select the amount field textbox control, and change the function property to Average.

Preview the form again and add a couple of rows as we did with the sum. The sigma sign

is now replaced with X. Enter numeric values in the amount field, and you will notice the

average is automatically displayed at the bottom as we saw with the sum control.

There is still a lot more we can do with grids, such as prepopulating them from a

database or using JavaScript to perform calculations. Let us now move on to the next

control in the web controls panel.

Chapter 8 Dynaform Web Controls

159

 Panel

The panel control allows us to extend the functionality of ProcessMaker dynaforms by

providing us with a blank canvas to add HTML or HTML5 code to the dynaform. The

control is linked to the form’s external libs property we saw earlier, which allows us add

custom libraries or stylesheets to the form. The code in the panel is also accessible via

the JavaScript editor of the form. This combination allows us to add new and powerful

functionality to dynaforms beyond what is available with the web controls.

Let us add a panel to our form to see how it works and explore some of the things we

can do with it. Drag the empty row at the bottom of the form above the row containing

the buttons to make our form consistent. If you cannot see the handle to drag the row

after selecting it, you might need to scroll to the right of your browser window. With the

row in place, drag a panel control into the row. Select the panel to display its properties.

The content property is where we can put our HTML code, and the border property

allows us to specify the size in pixels of the border that will be drawn around the panel.

Preview the form. You should see a rectangle with rounded corners just above the

buttons and below the grid. That is our panel, It does not look like much at the moment,

but it adds a new set of functionality to our form as we shall soon see.

First, let us see how the border property affects the panel. Close the preview and

change the border property of the panel to 5px. Preview the form again and you should

see that the borders of the panel is thicker making it more pronounced on the form. Now

let us explore some of the types of content we can add to our panel.

Return to the Dynaform Designer, select the panel, and click the Edit button beside

the content property. This displays the content editor, where we can type in our HTML

code. Let us start by embedding a video into our form. Paste the following code into

the editor. It is an embed code for a video from YouTube (You can check this link to

learn how to get the embed code for a YouTube video: https://support.google.com/

youtube/answer/171780?hl=en).

<iframe width="560" height="315"

src="https://www.youtube.com/embed/dyT9XTPfo8s" frameborder="0"

allowfullscreen></iframe>

Chapter 8 Dynaform Web Controls

https://support.google.com/youtube/answer/171780?hl=en
https://support.google.com/youtube/answer/171780?hl=en

160

Click the Save button and preview the form. The video should display in the panel as

shown here.

Let us get more fancy. The Dynaform designer in ProcessMaker 3.0 uses the

Bootstrap UI framework (http://getbootstrap.com/), which allows us to use Bootstrap

components in our form. Remember the alert we displayed with the button control

earlier? Let us add a fancier version using Bootstrap’s modal component. Click the Edit

button beside the content property of the panel and replace the iframe code we added

earlier with the following code. Do not worry if you have no idea what this does. I just

copied the boilerplate code for the modal component from http://getbootstrap.com/

javascript/#modals and changed the text of the button and modal body.

<!– Button trigger modal –>

<button type="button" class="btn btn-primary btn-lg" data-toggle="modal"

data-target="#myModal">

 Launch modal from panel

</button>

<!– Modal –>

<div class="modal fade" id="myModal" tabindex="-1" role="dialog"

 aria-labelledby="myModalLabel" aria-hidden="true">

 <div class="modal-dialog" role="document">

 <div class="modal-content">

 <div class="modal-header">

 <button type="button" class="close" data-dismiss="modal"

aria-label="Close">

Chapter 8 Dynaform Web Controls

http://getbootstrap.com/
http://getbootstrap.com/javascript/#modals
http://getbootstrap.com/javascript/#modals

161

 ×

 </button>

 <h4 class="modal-title" id="myModalLabel">Modal title</h4>

 </div>

 <div class="modal-body">

 The modal button from the panel was clicked.

 </div>

 <div class="modal-footer">

 <button type="button" class="btn btn-secondary" data-

dismiss="modal"> Close

 </button>

 <button type="button" class="btn btn-primary">Save changes

</button>

 </div>

 </div>

 </div>

 </div>

Click the Save button and preview the form. A button is now displayed in our panel.

Click the button and a modal should be displayed on the screen as shown next.

Chapter 8 Dynaform Web Controls

162

Dismiss the modal using the Close button. Close the preview to return to the

Dynaform Designer. Before we move on to the next and last control, let us see how we

can connect other controls on the form to the content of the panel control. Select the

form by clicking the gray part of the dynaform container to display its properties. Click

the Edit button beside the JavaScript property to display the JavaScript editor. Paste the

following code beneath the code already in the editor.

$("#my_textarea").setOnchange(function(newVal, oldVal){

 $(".modal-body").html(newVal);

});

This code is similar to the lines we saw earlier:

$("#my_textarea") This is a selector that selects the my_textarea

control on the form.

.setOnchange() This adds an event listener to the control and

defines the function that will handle the event. This time around

we are listening for the change event; we want to know when the

text in the textarea changes and once it does we will execute the

function in the brackets.

function(newVal, oldVal){} This is the function that will be

executed once the change event is triggered. You will notice that

this function is different from the one we saw earlier as it has

two parameters (newVal and oldVal). When the change event is

triggered, it sends us the new and old values of the control, and

the function we are using to handle the event can take these as

parameters to be passed to the statements it will execute. The new

value of the textarea is stored in the newVal parameter and the old

value in the oldVal parameter.

$(".modal-body").html(newVal); This is the statement we want

to execute in our function. We use the selector again to select the

div (HTML element) with the class modal-body from the code we

placed in our panel. We then use jQuery’s html function to add the

new value of the textarea control inside the div.

Chapter 8 Dynaform Web Controls

163

Do not worry if you do not understand much of this. Going through one of the free

jQuery courses suggested earlier will help clarify things. Now let us see the effect of

this on our form. Click the Save button and preview the form. Click the “Launch demo

modal” button in the panel control, and it should display the message we saw before.

Close the modal and proceed to type some text in the textarea (the “Tell us something”

field) as shown here.

Now click the “Launch demo modal” button in the panel control again and it should

now display the message typed in the textarea as shown next.

Close the modal and the preview window. That concludes our discussion of the

panel control, but there is much more we can do with it than shown. Feel free to try

different ways you can use the panel control to enhance your dynaforms.

 Subform
The last control in the web controls panel is the subform, which allows us to embed a

dynaform in another dynaform (the master dynaform). Before we explore the control,

there are a few things to note. A form can only be added once to a dynaform, the subform

Chapter 8 Dynaform Web Controls

164

cannot be edited within the master form, and a subform cannot contain another

subform. You can, however, have more than one subform in a master form.

To use the subform control, we will need an additional form, so let us create one.

Close the Dynaform Designer to return to the process designer. In the main toolbox on

the right, click the Create icon (+) beside the Dynaforms option. In the Create Blank

Dynaform modal that appears, set the title to My subform and the description to A form
to demonstrate subforms in ProcessMaker. Click the Save & Open button to open the

blank form in the Dynaform Designer.

We will keep this form simple. Add a subtitle control to the first row, select it, and set

its id to subform_subtitle and its label to “This is my subform. We change the id of the

subtitle control because we already have a subtitle with the same id in the first form we

want to embed this form in. If there are controls with duplicate ids, we will not be able to

save the form or preview it after adding the subform.

Select the second row and set its col-span property to 6 6 to divide it into two

columns. Drag a textbox control to the first column of the second row and in the Create/

Select Variable modal, change the variable name to my_subform_text1 and save it.

Select the textbox and change its label property to Subform Text 1. Repeat the process to

add another textbox to the second column of the second row with variable name set to

my_subform_text2 and the label to Subform Text 2. A preview of the form should look

like the following image. Save the dynaform and close the Dynaform Designer.

Now, let us add this new form to our first form. Click Dynaforms from the Main

Toolbox on the right, which displays the list of dynaforms. Click the Edit button beside

the “My first form” dynaform to display it in the Dynaform Designer. Drag the last row

above the row with the buttons so that our form is consistent. Next, drag and drop a

subform control to the newly placed row. A Select a Control modal is displayed as shown

next, with our recently created form available for selection.

Chapter 8 Dynaform Web Controls

165

Click My Subform to select it and add it to the master form, “My first form.” The

subform is now embedded in the master form. Preview the form and the subform should

now display in the master form as shown here.

This brings us to the end of our exploration of the controls available to us when

designing forms in ProcessMaker Open Source edition. The Enterprise edition includes

a set of mobile controls as mentioned earlier, but that is outside the scope of this book.

With all the knowledge we have acquired on dynaforms, we are now more than ready to

continue building our Cash Advance and Expense Retirement process.

Go ahead and close the preview, the Dynaform Designer, and the Process Designer

to return to the list of processes.

In the next chapter, we will build the initial forms to be used in the Cash Advance

and Expense Retirement process, leveraging the knowledge we have acquired in this

chapter.

Chapter 8 Dynaform Web Controls

167
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_9

CHAPTER 9

Adding Forms
to the Process
Having learned a lot about dynaforms and the controls, let us now build the dynaforms

we will need for the Cash Advance leg of the process we modeled earlier. We will be

building three forms—one form each for the requestor, approver, and Finance officer—

which are basically variants of the same form. The forms we will build will look like this.

Cash Advance Requisition form

168

 Building the Form
Open the Cash Advance and Expense Retirement process from the process list. Click on

Dynaforms in the Main Toolbox (process objects) to display the list of dynaforms. You

should have the blank dynaform we created in Chapter 7 before we took a detour to learn

about dynaform controls, Cash Advance Request Form. Click the Edit button beside it to

open the form in the Dynaform Designer.

Add a title control to the first row and change the label to Cash Advance
Requisition. Next add a subtitle control to the second row and change its label to

Request Details. Select the third row and split it into two by setting the col-span

property to 6 6. Now place a datetime control in the left column of the third row. In the

Create/Select Variable modal that appears, choose the Select Variable option, and a list

of the datetime variables we created earlier will be displayed. Select the request_date

variable from the list to associate it with the datetime control. Select the control on the

form to display its properties. Change the label to Request Date and make it required.

Place a textbox control in the right column and in the Create/Select Variable modal

that appears, switch to Select Variable and, from the list of variables shown, select

employee_name to associate it with the textbox. Select the textbox control in the form

and change its label to Employee Name and make it required.

Divide the next row into two by selecting it and changing the col-span property to 6 6.

Add a dropdown control to the left column and in the Create/Select Variable modal,

switch to Select Variable and select department from the list of variables. We are using a

dropdown control because departments are usually a finite set in any organization and

we can improve the user experience of our form by allowing the user to choose from a list

instead of having to type it out. Select the dropdown control from the list and change the

following properties.

Set the label to Department, set the placeholder to Select your department and

make it required. We will also need to define the options that can be selected in the

dropdown control. Ideally, we would store the list of departments in a PM table in the

database so that it can be available to all our processes, and then use an SQL query to

add it to our dropdown control. We have yet to learn about PM tables, so we will just

manually define the options as we did when learning about the dropdown control.

Alternatively, we can also query the list of departments configured in the system. We

will refactor the form later to display the options from the departments we will create in

ProcessMaker.

Chapter 9 adding Forms to the proCess

169

Rather than define the list of departments on the Options property of the dropdown

control, we will define them on the variable. This way, the list of departments will be

readily available everywhere we use the variable, and when we want to refactor the

source of the list of departments to a PM table, we only have to make the change on the

variable and not have to edit every form where the variable is used.

Click on department beside the Variable property of the dropdown control. This

shows the Create/Select Variable modal. Click the Variables button (see the next image)

to display the list of variables for editing.

Next, click the Edit button beside the department variable in the list to edit it.

Chapter 9 adding Forms to the proCess

170

In the Edit Variable modal, check the “Define accepted variable values” option to

display the Key/Label table as shown next. Add the list of departments in the table by

entering the key and label values in the textbox and clicking the Create button. Repeat

until all departments have been added. Click the Save button to close the modal. Also

close the list of variables.

Key Label

administration administration

Finance Finance

human resources human resources

information technology information technology

sales sales

You should now see the departments you just defined in the Options property of the

dropdown control. We could also have done this by closing the Dynaform Designer and

going to Select Variables from the Main Toolbox, but this saves us time because we don’t

leave the Dynaform Designer.

The next field we will add to the form is for the requested amount. Drag a textbox

control to the right column of the fourth row and in the Create/Select Variable modal,

Chapter 9 adding Forms to the proCess

171

switch to Select Variable and choose the amount_requested variable. Select the control

in the form, change the label to Requested Amount, and make it required. You may have

noticed that we have altered the layout of the form a bit from the printed form layout

we saw earlier. What we have done is group the information of the person making the

request and the expense details and subtitled everything as request details.

Next add a textarea to the fifth row and in the Create/Select Variable modal, switch

to the Select Variable option and choose expense_reason. Select the control from the

form and change its label to Reason for Expenses and also make it required. We are

now done with the first section of the form. Let’s preview it to see how it looks. Your form

should look like the following.

Desktop preview of the form

When we explored the dynaform menu earlier, we learned that the preview feature

has three modes, Desktop, Tablet, and Mobile, that give us an idea of how the form will

be displayed on the different screen sizes.

The default preview mode is desktop, so the image earlier gives us an idea of how

the form would look on a desktop. In the top-right corner of the preview window, click

on the icon for the other display modes to see how the form would render on a tablet or

mobile (see the images for tablet and mobile preview next).

Chapter 9 adding Forms to the proCess

172

Tablet preview of the form

Close the preview and let us add the remaining sections of the form. The next section

we will add is the Disbursement Details. This section of the form is going to be filled in

by the Finance department, and we could choose to leave it out of this form, which will

be filled by the person requesting the advance. Alternatively, we can add it to the form

and disable the fields so that the person filling the form cannot edit them. We will choose

the latter option, as it allows us to use a copy of the form when creating the form for the

Finance task.

Chapter 9 adding Forms to the proCess

173

Mobile preview of the form

Drag a subtitle control to the next row and set its label to Disbursement Details
(Finance). Divide the next row into two columns by selecting it and setting the col-span

property to 6 6.

Next, drag a textbox to the left column, and in the Create/Select Variable modal,

switch to Select Variable and choose amount_advanced. Select the control in the form

and set its label to Amount Advanced and the display mode to Disabled.

Also add a datetime control to the right column, and in the Create/Select Variable

modal, switch to Select Variable and choose date_advanced. Select the control in the

form, set its label to Date Advanced and change the display mode to disabled.

Chapter 9 adding Forms to the proCess

174

The next section of the form is Signoff/Approval, where we keep track of everyone

who has signed off on the form. The fields in this section will be disabled, since we will

be updating them using triggers when we discuss that tool in Chapter 12.

Define the section by adding a subtitle control to the next row and setting its label to

Signoff/Approval.
Divide the next row into two columns and place a textbox in the left column. Switch

to select variable option in the Create/Select Variable modal that appears and choose

requestor_name from the list of variables. Select the control in the form, set its label to

Requested By, text transform to property to UPPERCASE and display mode to Disabled.

Repeat the same process to add a textbox to the right column, and choose

requestor_datetime as the variable. Select the textbox and change the label to Date and
Time, and its display mode to disabled.

Let’s proceed to add the signoff fields for the approver and Finance officer (disbursed

by). Divide the next row and place a textbox control on the left associating it with the

approver_name variable. Set its label to Approved By, its text transform to property to

UPPERCASE, and its display mode to Disabled.

In the right column, place another textbox associating it with the approver_
datetime variable. Set its label to Date and Time and its display mode to Disabled.

Finally, we add signoff fields for the Finance officer. Divide the next row into two as

before, and place a textbox in the left column associated with the disbursed_by variable.

Set its label to Disbursed By, text transform to property to UPPERCASE, and display

mode to Disabled.

In the right column, place another textbox associating it with the disbursed_
datetime variable. Set its label to Date and Time and its display mode to Disabled.

We are now almost done with our form. All that is left is a Submit button that allows

the user to submit the form and send it to the next step. We could also add a variation of

the acknowledgement part of the printed form to our form. Place a label control in the

next row, select it in the form, and set its text property to the following:

I agree to account for this advance within ten working days of the date
advanced as defined in the preceding section, either with adequate
receipts, cash, or a check for the balance made payable to MSB
Corporation. I understand that my failure to account for advanced funds
in full within sixty days will result in a Payroll deduction for the balance
due. By clicking the Submit button below, I agree to allow MSB
Corporation to make any such deductions from my pay.

Chapter 9 adding Forms to the proCess

175

Finally, to complete the form, add a submit control to the last row and set its label

to Submit Request and its id and name to submit_button. Our form is done, for now at

least. Go ahead and preview your work. The form should look like the following.

Our process still requires additional forms for the approver and Finance officer. The

approver’s form will provide functionality for approving or rejecting the request, and

in the Finance officer’s form, the disbursement details fields we disabled in the request

form will have to be enabled and made required for the Finance officer to input details of

the disbursement.

 Adding Comments to the Form
Considering that the approver might reject the request, we also want a way for the

approver to provide feedback to the requestor on why the request was rejected.

Chapter 9 adding Forms to the proCess

176

There are two ways we can go about this: adding a comments field to the form or using

case notes. We will learn more about case notes later when we run our process. For now,

let us modify our form to accommodate a use-case where we will want the comments

displayed on the form.

A simple way to do this will be to just add a textarea where users can type their

comments, but the drawback here is that we are unable to know who entered the

comment, and a user could overwrite the comments entered by another user. To

safeguard against these shortcomings, we will create a comment section with two

textarea fields, a hidden field, and a button.

The first textarea will contain all the comments entered so far. The second will be

for the current user to add his/her own comment, the hidden field will store the name

of the current user, and the button will trigger the action that will add the current user’s

comment to the comment log. We will use a little JavaScript to handle the click action

and perform the merging of the comments.

Begin by dragging two empty rows above the Approval/Signoff subtitle. Drag the

rows by selecting the last empty row on the form and dragging it using the handle in

the top right corner of the row. In the first of the two rows, place a subtitle control and

change its label to Comments. Divide the next row into three columns, setting its col-

span property to 3 3 6. Add a textarea control to the first column. In the Create/Select

Variable modal, change the variable name to comment and click the Save button to create

a new variable and associate it with the control.

Select the textarea and set its label to Enter your comment and the rows property

to 2. In the middle column, place a button control (not submit). Change its id and name

to comment_button and its label to Add your comment. In the last column, place

another textarea and in the Create/Select Variable modal, change the variable name to

comments and save it. Select the textarea and change its label to Comments and the

display mode to View.

Next, place a hidden control in the last row on the form and save the variable name

when prompted as current_user. With the controls in place, we complete the setup

by adding a little JavaScript to the form. Select the form by clicking the gray area of the

dynaform container and click the Edit button beside the JavaScript property to launch

the editor and paste the following code into it.

Chapter 9 adding Forms to the proCess

177

//Comments handler

function addComments() {

 var currentComment = $('#comment').getValue();

 var currentUser = $('#current_user').getValue();

 var comments = $('#comments').getValue();

 if(currentComment.trim() !== '') {

 comments = currentUser + ': ' + currentComment + '\n' + comments;

 $('#comments').setValue(comments);

 $('#comment').setValue('');

 }

}

//Register comments handler to button events

$("#comment_button").find("button").on("click", addComments);

$("form").submit(addComments);

A quick explanation of what this code does. Lines beginning with // indicate a

comment. Adding comments to the code can be a useful reminder to your future self

and others working with you on what you were thinking when you wrote the code. First

we create a function called addComments. We are taking a slightly different approach this

time in handling the action triggered by clicking the Add Your Comment button. Before,

we used an anonymous function (we did not give it a name) that we defined inside the

brackets of the click function as shown here:

$('#id_of_clicked_button').click(function(){ ... do some

stuff... });

This time we are creating our function first, and we call it addComments.

function addComments() { ... }

This approach allows us to reuse the function in more than one place in the form.

For example, if we wanted to make sure that the comment was saved when the form was

submitted, we would not need to rewrite the statements for saving the comment; instead

we just execute the addComments function again.

Chapter 9 adding Forms to the proCess

178

So what does the addComments function do?

var currentComment = $('#comment').getValue();

This creates a variable called currentComment. We use the jQuery selector to select

the comment textarea and ProcessMaker’s .getValue() helper function to get the text

in the control and store the value in the currentComment variable we just created. Note

that this variable is a JavaScript variable and it is different from the process variables we

created earlier. The values of the JavaScript variables are temporary and available only

when the form is being used.

var currentUser = $('#current_user').getValue();

var comments = $('#comments').getValue();

We are creating two additional variables and storing the value of the hidden

current_user control and the comments textarea control. The currrent_user value will be

populated by a trigger when we run the case, but for now we will put a default value to

test that it works.

if(currentComment.trim() !== '') { ... }

We check that the user has entered a comment using the .trim() function to remove

any leading or trailing spaces from the text in the comment textarea and then checking

that it is not equal to an empty string (!==).

comments = currentUser + ': ' + currentComment + '\n' + comments;

If there is a comment, we concatenate (the + operator is used to join strings in

JavaScript) the value of the current_user hidden control with a colon, then the comment

entered in the comment textarea, then a newline character (\n), which is similar to

pressing Enter on your keyboard, and finally whatever text was already in the comments

textarea. We save it to the comments variable, overwriting it.

$('#comments').setValue(comments);

We use ProcessMaker’s .setValue() function to update the value of the comments

textarea to the concatenated comment:

$('#comment').setValue('');

Chapter 9 adding Forms to the proCess

179

We use ProcessMaker’s .setValue() function again to clear the value of the

comment textarea by setting it to an empty string:

$("#comment_button").find("button").on("click", addComments);

$("form").submit(addComments);

Finally, we use the jQuery selector to select the comment_button control and the

jQuery .find() function to get the actual button element and register the addComments

function as an event handler for its click event. This way, we can register the function to

the submit event of the form without having to rewrite the code for the process of adding

a comment. We use the jQuery selector to select the form and pass the addComments

function as the handler for its submit event.

Click the Save button to close the JavaScript editor. Before testing the comment

feature we just added, select the hidden control and set the default value property to

firstname.lastname. Now preview the form. There should be a comment section on

the form as shown next. Type in some text in the Enter Your Comment field and click

the Add Your Comment button. This should move the text from the first textarea to the

read-only Comments textarea and append the default value we set for current_user to

the comment.

We can make our comments fancier by using a panel with custom HTML and styling

like a chat conversation if we want or use a grid to tabulate the comments. The key

takeaway, however, is that we can add comments and display them on the form. Close

the preview and delete the default value we set in the current_user hidden control. Next,

we will create a copy of the form and modify it for the approval form.

Notes from Amos i personally don’t like using the find() function because
you have to know what htmL element you are searching for (“button”, “div”,
“input”, “select”, “textarea”, and so on) with each type of control, so i directly
select the element through its id form[id], which requires escaping the square
brackets [and] with \: $("#form\\[comment_button\\]").
on("click", addComments);

Chapter 9 adding Forms to the proCess

180

i also don’t see much reason to use .on() instead of .click(), which is a
shorthand that does the same thing: $("#form\\[comment_button\\]").
click(addComments);

some people find escaping with jQuery selectors to be very confusing, so they use
this code: $("[id='form[comment_button]']").click(addComments);

no matter which method you choose, i do recommend using jQuery() in all
instances, so that people get used to using jQuery and won’t try to use document.
getElementById().value and document.getElementById().onchange,
which will cause problems.

 Debugging Errors in JavaScript
Before we continue, let us quickly look at how to troubleshoot errors that might occur

from adding JavaScript to the dynaform. If there is an error in your JavaScript code that is

executed when the form loads, you will be unable to preview the form, and the preview

screen will be stuck in the loading state, as shown in the following image. If the error is in

a section of code that will be executed later, the form will appear in the preview, but the

functionality expected of the JavaScript code will not work.

Chapter 9 adding Forms to the proCess

181

The common causes of error in JavaScript code include incorrect variable names,

syntax errors, and typos. It is important to note that JavaScript is a case-sensitive

language, and you are encouraged to use a consistent case in naming your variables and

controls to help avoid errors.

Let us illustrate this with an example. We will introduce a typo into the code we just

added to our form. Select the form in the Dynaform Designer and click the Edit button

beside the JavaScript property. In the JavaScript editor displayed, make the following

change to the code.

Change the line

$("#comment_button").find("button").on("click", addComments);

to

$("#commentbutton").find("button").on("click", addComments);

We have now added a typo to our JavaScript code (left out the underscore in

comment_button). Click the Save button and proceed to preview the form. You will

observe that the form is stuck in the loading state, indicating an error.

If you’re using the Chrome browser, right-click the loading screen and in the context

menu, select Inspect and the Chrome Developer Tools should appear as shown next.

Click the Console tab in the Developer Tools window to display the error messages

as shown next. Click the link to the right of the error message to view the JavaScript code

Chapter 9 adding Forms to the proCess

182

causing the error. The number prefixing the link is the line number of the section of code

causing the error.

The code is displayed as shown in the following image, and we can see that line 14

contains the section of code where we added the typo.

Armed with this information we can close the preview window and make the

corrections to our JavaScript code. Close the Developer Tools by clicking the Close (x)

icon in the top-right corner and close the preview mode. Select the dynaform in the

editor and correct the code.

Change the line

$("#commentbutton").find("button").on("click", addComments);

back to

$("#comment_button").find("button").on("click", addComments);

Save your changes and preview the form again; it should now load correctly.

To learn more about how to debug JavaScript code in dynaforms, see this article

in the ProcessMaker wiki: http://wiki.processmaker.com/3.0/JavaScript_in_

DynaForms#Debugging_JavaScript

Chapter 9 adding Forms to the proCess

http://wiki.processmaker.com/3.0/JavaScript_in_DynaForms#Debugging_JavaScript
http://wiki.processmaker.com/3.0/JavaScript_in_DynaForms#Debugging_JavaScript

183

 Cloning the Form
Export the form by clicking the Export button in the dynaform menu and save the .json

file to a location on your system. Close the Dynaform Designer. In the Process Designer,

click the Create icon (+) beside Dynaforms in the Main Toolbox (process objects) to

create a new blank dynaform. Set the title to Cash Advance Approval Form and the

description to This form will be used to approve Cash Advance Requests. Click the

Save & Open button to create the dynaform and open it in the Dynaform Designer.

Click the Import button in the dynaform menu and select the file you just exported.

The form is now imported and displayed. One of the features from the 2.x version

of ProcessMaker that has yet to make its way to 3.x is the option to save a copy of a

dynaform. This would have saved us the effort of exporting it and reimporting it. That

does, however, get the job done until the Save As feature makes it to 3.x.

To make this form ready for the approver, we just need a few modifications. First we

disable the fields that were filled by the requester so that they cannot be edited by the

approver. Then we add a way for the approver to indicate if the request is approved or

rejected. We will explore two approaches to doing this: using a dropdown field (no need

for JavaScript) and using two buttons and a confirmation prompt.

Select all the controls in the Request Details section of the form (Request Date,

Employee Name, Department, Requested Amount, Reason for Expenses), and set their

display mode to Disabled. A preview of the section should now look like the following.

Chapter 9 adding Forms to the proCess

184

 Adding Approval Functionality
As mentioned earlier, there are two ways we can add the approval functionality to the

approval form we just created. The first approach requires no code. We simply add a

control (it can be a dropdown, checkbox, or radio) to the form that allows the user select

an approval option and associate the control with a variable.

 Approval without Code
To use this approach, select the row containing the Submit button and divide it into two by

setting its col-span property to 6 6. Move the Submit button to the right column of the row.

Next, place a radio control in the left column beside the Submit button. In the

Create/Select Variable modal shown, change the variable name to is_approved. Expand

the settings and change the variable type to Boolean. Click on the options and change

the Label of the options from true to Yes and from false to No. Click the Apply button

and save the variable. Select the radio control on the form and change its label to

Approve this request? and make it required. Also change the label of the Submit button

to Submit. Preview the form and the bottom should look like this.

With this design, the supervisor can indicate if the request should be approved

or rejected by choosing Yes or No. Let us make a clone of this form to show the other

method we can use to add approval functionality to the form. Export the form by clicking

the Export button in the dynaform menu and save it to a location on your system. Close

the Cash Advance Approval Form to return to the process designer.

 Approval with Code
Click the Create (+) button beside Dynaforms in the Main Toolbox (process objects) to

add a new dynaform. Set the title to Cash Advance Approval Form v2 and the description

to An alternative form for the supervisor to approve Cash Advance Request. Click the

Save & Open button to open the form in the Dynaform Designer. Import the form we just

exported by clicking the Import button in the dynaform menu and selecting the exported

Cash Advance Approval Form.json file you saved to your system.

Chapter 9 adding Forms to the proCess

185

With the form successfully imported, scroll to the bottom of the form and delete the

radio button we added for the approval functionality. To delete a control, click it to select

it and then click the X button in the top-right corner of the control.

Now place a Submit button in the column where the radio control used to be. We

now have two Submit buttons on the form. Select the button in the left column, set its id

and name properties to approve_button and its label to Approve Request. Select the

Submit button on the right and also change its properties. Set its id and name properties

to reject_button and its label to Reject Request. As you may have guessed, the user will

be able to approve or reject the request by clicking the appropriate button.

However, we need a way to store the user’s decision in a variable so we can know

if the request was approved or rejected. To do this, we will use the same is_approved

variable we created earlier for the previous approval form. This time however, we add it

to the form as a hidden control. We already have one hidden control on the form in the

row beneath the Submit buttons. Select the row and split it into two by setting its col-

span to 6 6. Now place a hidden control in the empty column of the row. In the Create/

Select Variable modal, switch to the Select Variable option and select the is_approved

variable.

Our form is now almost ready. All that is left is to define an event handler for the

Approve Request and Reject Request buttons so that they update the is_approved

variable accordingly when clicked. If the user clicks the Approve Request button, we

will set the is_approved variable to 1, which means Yes, and set it to 0 meaning No if the

Reject Request button is clicked. We will also prompt the user with a confirmation dialog

to confirm the action before proceeding to avoid accidental approval or rejection.

Select the form by clicking the gray part of the dynaform container. Click the Edit

button beside the JavaScript property and add the highlighted code following to the form

beneath the code we already added for the comments, as shown.

//Comments handler function addComments() {

var currentComment = $('#comment').getValue();

var currentUser = $('#current_user').getValue();

var comments = $('#comments').getValue();

Chapter 9 adding Forms to the proCess

186

if(currentComment.trim() !== '') {

comments = currentUser + ': ' + currentComment + '\n' + comments;

$('#comments').setValue(comments);

$('#comment').setValue('');

}

}

//Register comments handler to button events

$("#comment_button").find("button").on("click", addComments);

$("form").submit(addComments);

//Approve or Reject handler function approval(action) {

if (confirm('Are you sure you want to ' + action + '?')) {

if (action === 'APPROVE') {

$("#is_approved").setValue(1);

$("form").submit();

}

if (action === 'REJECT') {

$("#is_approved").setValue(0);

$("form").submit();

}

}

else return false;

}

//Approve form

$("#approve_button").find("button").on("click", function()

{ return approval('APPROVE');

});

//Reject form

$("#reject_button").find("button").on("click", function() {

return approval('REJECT');

});

As before, let’s quickly walk through the code and explain what we are doing.

function approval(action) {...}

Chapter 9 adding Forms to the proCess

187

First we create a function called approval that takes a parameter called action.

if (confirm('Are you sure you want to ' + action + '?')) {...} else return

false;

Then we use the built-in JavaScript confirm function to prompt a confirm dialog. We

are, however, wrapping the confirm function execution in an if statement. If the user

clicks OK in the confirm dialog, the result returned is true and we proceed to perform

the statements in the braces. However, if the user clicks CANCEL in the dialog, the result

is false, and we execute the else statement, which returns false. The confirm function

has a message parameter, which is displayed to the user. Here, we create a string asking

the user if they are sure they want to perform the action passed as the argument to the

approval function.

if (action === 'APPROVE') {

$("#is_approved").setValue(1);

$("form").submit();

}

if (action === 'REJECT') {

$("#is_approved").setValue(0);

$("form").submit();

}

If the result of the confirm function is true, we check the value that was passed as the

argument for the action parameter of the approval function. If it is APPROVE, we use the

jQuery selector to select the is_approved hidden control and use ProcessMaker’s built-

in setValue function to set its value to 1. Then we select the form and call its submit

function to submit the form. If the argument passed is REJECT, we set is_approved to 0

and also submit the form.

//Approve form

$("#approve_button").find("button").on("click", function() { return

approval('APPROVE');

});

//Reject form

$("#reject_button").find("button").on("click", function() { return

approval('REJECT');

});

Chapter 9 adding Forms to the proCess

188

Finally, we register the approval function as the handler for the click event of the

approve_button and reject_button submit controls.

Go ahead and preview the form, and the bottom of the form should look like the

following.

Click the Approve Request button and a confirmation dialog like the following

should be displayed. Click the Cancel button and the dialog should close without

submitting the form.

Click the Reject Request button and a confirmation dialog should appear. Click the

OK button this time, and the form should be submitted.

We now have two different forms we can use for the supervisor to approve the

request. When building your own processes, you will need only one, but I wanted to

show you two ways to achieve the same functionality. I prefer the buttons approach,

though; and if you are thinking it is a lot more work than the first approach, remember

that once you have it working in one form, you just have to copy the code to any other

Chapter 9 adding Forms to the proCess

189

form you want to use it and add the submit and hidden controls with the same name. Go

ahead and close the preview and the Dynaform Designer.

We are almost done with the forms for the first part of the process. All that is left is a

form for the Finance officer to enter the disbursement details.

 Another Variant of the Form
For the Finance officer’s form, we begin by creating a new dynaform. Click the Create

(+) button beside dynaforms in the Main Toolbox (process objects) and set the title to

Cash Advance Disbursement Form and the description to Form to be filled by finance
officer providing disbursement details.. Click the Save & Open button to create the

form and open it in the designer. Import the Cash Advance Request Form.json file we

exported earlier. We could also have cloned the Cash Advance Approval Form, since our

goal is to have the same fields replicated in this new form with a few modifications.

With the form successfully imported, proceed to disable all the fields that were filled

by the requester—that is, all the fields in the Request Details section of the form—so that

they cannot be edited. Select each control and set the display mode to Disabled.

Next, we enable the fields that will be filled in by the Finance officer and make them

required. They are the Amount Advanced and Date Advanced fields in the Disbursement

Details (Finance) section. Select the controls in the form, set the display mode to Edit,

and check the Required property. Also change the label of the Submit button at the

bottom of the form, from Submit Request to Submit. Preview the form. The form should

look like the next image.

Chapter 9 adding Forms to the proCess

190

This completes all the forms we require for the Cash Advance part of the process.

To see our forms in action, we have to add them to the corresponding tasks. Close the

Dynaform Designer and return to the Process Designer.

 Assigning a Form to a Task
In order for the forms to be available for a task, we add it as a step in that task.

Remember, we defined a step as an action that must be done to complete a task. In our

sample process, to complete the first task (Request Advance) of the process, the user

must fill out a Cash Advance Request Form.

Chapter 9 adding Forms to the proCess

191

To add the form to the task, right-click on the Request Advance task in the process

map and select the Steps option. This displays the modal shown next. As mentioned

earlier in the book, a step can either be a dynaform, trigger, input or output document

or an external step. As you can see in the image, we do not yet have any triggers, input or

output document defined (available elements are listed on the left). We can, however,

see the forms we have created so far.

 Default Steps in a Task: Assignment and Routing
Before we add the form for this task, let us take a moment to quickly explain the two

default steps already added to the task; namely Assignment and Routing. These are the

last steps that will be performed for every task. The Assignment step evaluates the rule

defined in the Assignment Rules property of the next task to determine the next user

that the case will be assigned to at the end of this task. In the Cash Advance and Expense

Retirement process for example, the assignment step of the Request Advance task will

determine which user to assign as the supervisor that will approve the request in the next

task.

Chapter 9 adding Forms to the proCess

192

The Routing step works alongside the Assignment step and is used by the

ProcessMaker engine to move the case from the current task to the next task. In the

case of a decision gateway between tasks, this step evaluates the routing rule defined

in the gateway to determine which task comes next. In summary, the assignment step

determines the next user, while the routing step determines the next task.

 Adding a Dynaform Step
To place a dynaform as a step in a task, simply drag the name of the form from the

Available Elements on the left of the Steps for Task modal to the Assigned Elements on

the right. Hovering your mouse over the name of the dynaform will display the full name.

Let us go ahead and assign the Cash Advance Request Form to this task by dragging and

dropping it under the assigned elements as shown in the next image.

Chapter 9 adding Forms to the proCess

193

When the form is added to the task, it displays as shown here.

You will observe that the form is automatically moved to the top of the steps and

assigned the number 1. This is expected, as we’ve seen that the Assignment and Routing

steps always come last in the list of steps for a task. You will also notice that unlike the

default Assignment and Routing steps, it also has some action links on the right of the

title (Properties, Edit, and Remove).

Chapter 9 adding Forms to the proCess

194

Click the Properties link to display the following modal, which allows us to define the

Mode the form should be displayed in and the Condition for displaying it.

Changing the Mode property to View will make the form read-only when displayed.

Leave it as the default Form (Edit) mode. If the Condition property is blank, the form

will always be displayed for that task. If we wanted to show the form only under certain

conditions, we could define that condition in this property, and the form would only be

shown if the condition defined evaluates to true. Leave it blank and close the Properties

modal by clicking the Cancel button.

Clicking the Edit button opens the dynaform in the Dynaform Designer, allowing

us to edit the form and its controls. Close the Dynaform Designer. Clicking the Remove

button removes the dynaform from the assigned elements and places it back under the

list of available elements. You will be prompted to confirm that you want to remove the

form step.

The elements (steps) assigned to a task can be reordered by dragging and dropping

them in the list of assigned elements, with the exception of the two default steps—

Assignment and Routing, which are always the last two steps. You can try this out by

dragging and dropping the other forms under Assigned Elements to reposition them.

 do not forget to remove them when done and leave only the Cash advance
request form when done, as that is the only form required for this task.

Chapter 9 adding Forms to the proCess

195

The steps are collapsed by default so that multiple steps can be displayed on the

screen at once without having to scroll. Click the Expand all link at the top of the screen

to expand the steps as shown next. Clicking the Collapse all link will return the screen to

the default compact view.

If you are wondering about the “Before and After” items (such as Before Dynaform or

After Routing) and the “No records found” displayed under the steps, these are locations

where we will place triggers. You will learn more about this in Chapter 12 when we

explore triggers. Go ahead and close the Steps for Task modal.

Now that we know how to add forms to a task, let us add the Cash Advance Approval

Form to the Approve Advance task, and the Cash Advance Disbursement Form to the

Disburse Advance task. To illustrate how the Conditions property of the dynaform works,

we will add the two variants of the Approval forms to the Approve Advance task and

define a condition that shows the first form if the department of the requesting employee

is Finance and the other variant for other departments.

Right-click the Approve Advance task and select Steps from the context menu.

Drag the Cash Advance Approval Form and the Cash Advance Approval Form v2 to the

Assigned Elements.

Chapter 9 adding Forms to the proCess

196

Click the Properties for the Cash Advance Approval Form and in the Conditions

property, paste in the following condition:

@@department == 'Finance'

This means that the form should be displayed if the value stored in the department

variable is equal to Finance. Click the Save button.

Click the Properties for the Cash Advance Approval Form v2 and in the Conditions

property, paste the following condition:

@@department != 'Finance'

This means that the form should be displayed if the value stored in the department

variable is not equal to Finance. Click the Save button.

Close the Steps for Task modal.

Right-click on the Disburse Advance task and select Steps from the context menu.

Drag and drop the Cash Advance Disbursement Form under Assigned Elements and

close the Steps for Task modal.

Chapter 9 adding Forms to the proCess

197

We have now successfully created forms and assigned them to the tasks in the

Advance part of the process. We will create and add the remaining forms later on. The

next stage in building our process will be assigning users to its tasks. In order to do that,

however, we need to create some users, so in the next chapter we will take a quick detour

to learn about administering users before continuing on in Chapter 11 to assign them to

tasks in the process.

Chapter 9 adding Forms to the proCess

199
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_10

CHAPTER 10

Administering Users
in ProcessMaker
Before we can assign users to our process, we first have to create the users in the system.

In this chapter, we will learn about the features available to us in ProcessMaker for

managing users. To begin, head over to the Admin section of ProcessMaker by clicking

Admin in the main menu.

The workspace in the Admin section of the application is divided into two panes. The

left pane contains the Admin menu and submenu, while the right pane displays the view

for the admin menu option selected on the left. The admin menu on the left consists of

four tabs: Settings, Plugins, Users and Logs.

The Settings tab, as the name implies, contain options for configuring ProcessMaker

settings such as the logo, email, and so on. The Plugins tab is used for adding, enabling,

and disabling plugins to ProcessMaker. In the Enterprise Edition, it also displays the

license details and options to enable and disable the Enterprise features. The Logs tab is

where you can view logs from Events, Emails sent, Cron (Scheduled Tasks), and the Case

Scheduler. The Users tab is what we are interested in for now and we will learn about the

Settings, Plugins, and Logs admin options later.

200

Click the Users tab in the left pane to display the submenu options described briefly

next.

Users: This displays the list of users in the system. It also has

options for creating new users, editing existing users, and

assigning the users to groups.

Groups: This displays the list of Groups with options to add new

groups and assign users to the groups. Groups in ProcessMaker

make it easier to assign tasks and process permissions to a set of

users as opposed to doing it one by one. For example, we could

have more than one Finance Officer in the organization. By

creating a group for Finance Officers, we can easily assign that

group to the disbursement task of the Cash Advance and Expense

Retirement process, and any of the officers can work on the

requests routed to that task.

Departments: This allows us to replicate the hierarchical structure

of the organization in ProcessMaker. A user can, however, belong

to only one department.

Roles: This displays the roles available in ProcessMaker and can

be used to add new roles and manage the permissions of the roles.

A user can only have one role in ProcessMaker. The permissions

assigned to a role control what the user can do in ProcessMaker

application. Groups, on the other hand, are used to control what

a user can do in a process. Users are generally given a role of

Chapter 10 administering Users in proCessmaker

201

Operator, which allows them to log in and run cases. You can

always create new roles to give different levels of access to the

application. The System Administrator role has full access to the

system and should be assigned cautiously.

Authentication Sources: This is used to define additional sources

for authenticating users when logging in to ProcessMaker. The

default authentication source is ProcessMaker’s MySQL database.

If you have an existing Active Directory or LDAP directory in the

organization, you can set it up as an authentication source so that

users can use the same credentials to log in to ProcessMaker.

User Experience: This is used to define the way ProcessMaker will

be displayed for a user when they log in. The options are Normal,

Mobile, Switchable and Single Application. We will illustrate these

later after creating a few users.

 Users
Let us now look at the Users submenu in depth. Click the Users submenu in the left

pane under the Users tab. This displays the Users menu and list of users in the system,

as shown here. Currently, we have only one user, which is the admin user (the username

will be what you defined when installing ProcessMaker).

 Adding a New User
To add a new user, click the New button to display the form shown next. The form is

divided into five sections: Personal Information, Change Password, Account Option,

Profile, and Preferences. The required fields for creating a new user are marked with a

red asterisk. Most of the fields are self-explanatory. For now, we will proceed with the

minimum information required to create a user. The following table provides sample

users we will create for illustration purposes. Leave every other field as-is for now and fill

in only the required fields.

Chapter 10 administering Users in proCessmaker

202

We are using a generic password for all the users, since this is just an illustration, in

a live production deployment, stronger and unique passwords should be used. To test

email notifications later in this guide, use your email address for all the users. If you

use Gmail, you can use different aliases of your Gmail address for the users’ emails, so

as to be able to determine which user an email was sent to, when we learn about email

notifications. To learn more about aliases in Gmail, see https://support.google.com/

mail/answer/12096?hl=en.

Chapter 10 administering Users in proCessmaker

https://support.google.com/mail/answer/12096?hl=en
https://support.google.com/mail/answer/12096?hl=en

203

First Name Last Name Username Email Password

Wanda marshall wanda.marshall {your email or email alias} test123

nicholas Williams nicholas.williams {your email or email alias} test123

karen Baker karen.baker {your email or email alias} test123

Justin sanchez justin.sanchez {your email or email alias} test123

steve Bennett steve.bennett {your email or email alias} test123

philip price philip.price {your email or email alias} test123

Billy green billy.green {your email or email alias} test123

Carlos shaw carlos.shaw {your email or email alias} test123

amy alexander amy.alexander {your email or email alias} test123

Julia smith julia.smith {your email or email alias} test123

That was a bit repetitive, but we now have 11 users in the system, which will be useful

in exploring the basics of working with users in ProcessMaker. Our Users view now looks

like the following image.

As you can see, all the new users are given a default role of Operator, have never

logged in to the system, and have no cases. The Due Date column shows when the user’s

account will become inactive and by default is one year from the date created.

Chapter 10 administering Users in proCessmaker

204

 Editing a User
To edit a user, simply select the user by clicking in the list and clicking the Edit button.

The selected user will be highlighted in yellow, as shown in the following image. You can

also right-click the user to display the context menu and select Edit, Or you can double-

click the user from the list to display the Edit form.

This form is similar to the one used when creating the user, the only exception being

that the password fields are no longer required. If you want to reset a user’s password,

you simply edit the user and enter a new password in the password fields. Leaving the

password field blank when editing a user leaves the user’s password unchanged.

Let us go ahead and edit the user Julia Smith and change the Due Date (Expiration

Date) to a different date. Once it is changed, click the Save button at the bottom of the

form and the Due Date for Julia Smith is now updated as shown next.

 Disabling a User
All the users we just created are Active by default. In a real-world organization, there

will often be need to disable a user, either when the user is on vacation or has left the

organization. To disable a user, simply select the user and click the Disable button in

the top menu. Alternatively, you can edit the user and change the status to Inactive or

Vacation.

When the user’s status is Inactive, the user will be unable to log in to the system and

cannot be assigned to work on any case. The Vacation status, however, disables the user

Chapter 10 administering Users in proCessmaker

205

temporarily. The user cannot be assigned a new case until they log in to ProcessMaker

again (implying that the user has returned and status is automatically updated back to

Active).

To see this in action, disable the user Julia Smith. Open ProcessMaker in a different

browser (not a different window or tab of the browser where you are logged in as

Administrator). You can get the login URL by logging out and copying the URL (It should

be similar to http://localhost:8080/sysworkflow/en/neoclassic/login/login) from

the current browser and pasting it in the other browser.

If you try to log in to the other browser as Julia Smith (username: julia.smith and

password: test123) you will see the error message “WARNING: User Inactive!”. Go back to

the browser where you are logged in as the admin user and edit the user Julia Smith and

change the status to Vacation and click the Save button.

Now try to log in as Julia Smith again in the other browser. You should be able to

successfully log in. Returning to the Administrator view, the status of the user should

have been changed from Vacation to Active. You might have to refresh the view (click the

Users submenu option in the left pane) to see the change.

You will also observe that the view for the user is different from that of the

administrator, and there is only one link, Home, in the main menu. This is because the

user’s role is set to Operator with permissions only to log in and create or work on cases.

Chapter 10 administering Users in proCessmaker

206

 Deleting a User
To delete a user, select the user and click the Delete button. You will be prompted to

confirm that you want to delete the user. Clicking Yes deletes the user and No cancels

the delete process. You can, however, only delete users that have no cases assigned or

completed; that is, users who have never participated in any case. It is recommended to

make users inactive rather than deleting them for historical and audit purposes.

 User Summary, Group and Authentication
The Summary button shows the summary information of the selected user, while the

Authentication button shows the authentication source configured for the user. This

is the ProcessMaker MySQL database by default for users created in ProcessMaker. If

the user was imported from another source, such as Active Directory or LDAP, it will

be displayed in this tab. The Group button displays the groups that the user belongs to.

We don’t have any groups set up yet in our ProcessMaker instance. Let us create some

groups and assign the users we have to different groups.

 Groups
As mentioned earlier, we use groups to pool users together to make it easy to assign them

to tasks and grant them permissions in a process, instead of doing it individually for

each user. To begin our exploration of groups, click the Groups submenu in the left panel

under the Users tab.

 Creating a Group
To add a new group, click the New button and enter the name of the group. Leave the

status set to ACTIVE and click the Save button. Go ahead and create in ProcessMaker the

groups in the table for the purpose of our illustration.

Chapter 10 administering Users in proCessmaker

207

Group Name Purpose

employees a general-purpose group for all employees in msB Corp

supervisors a group for supervisors in msB Corp

Finance officers a group for Finance officers in msB Corp

Once you are done, you should now have the groups listed in the view as shown next.

You can see that the groups have no users and no task assigned to them.

 Editing a Group
You can change the name of a group or its status by editing it. Select the group from the

list (this highlights it in yellow) and click the Edit button. You can also double-click the

group from the list or select Edit from the context menu displayed when the group is

right-clicked. This displays the same modal form used when creating the group. Make

the desired changes to the name or status, and click the Save button.

 Deleting a Group
To delete a group, simply select the group and click the Delete button. You will be

prompted to confirm that you want to delete the group. If the group is currently assigned

to a task, you will not be able to delete it. You first have to unassign it from the task before

deleting it.

Chapter 10 administering Users in proCessmaker

208

 Assigning Users to a Group
Now that we have created a few groups and users, we can proceed to assign the users to

groups. This can be done either from the Users or Groups submenu options. To assign

users to a group, select the group and click the Users button in the menu of the groups

view. Let us begin by adding all users to the Employees group. Select Employees in the

list of groups and click the Users button. This displays the following view.

There are currently no users assigned to the group. Next click the Assign Users

button above the list to display this view.

The Available users list (all users in the system that do not belong to the group) is

displayed on the left, and Assigned users (users belonging to the group) are displayed on

the right. Both lists are divided by the following four buttons:

Chapter 10 administering Users in proCessmaker

209

> this is activated when one or more users (you can select multiple users by holding down the

Ctrl/Cmd key on the keyboard and clicking the users) are selected from the available Users list.

Clicking this button moves the selected user(s) to the assigned Users list, effectively assigning

them to the group.

< this button is activated when one or more users are selected from the assigned users list.

Clicking this button moves the selected user(s) to the available Users, list effectively removing

them from the group.

>> this button when clicked moves all the users in the available Users list to the assigned Users

list, assigning them to the group. the list can be filtered using the search box on top of the list.

try typing “b” in the search box and pressing the enter key, only users whose names contain

the letter “b” are displayed. if this button is clicked with a filtered list, only the users displayed

in the filtered list will be assigned to the group (in this example, only the three users matching

the “b” filter will be assigned).

<< this works like the previous button, but in reverse. it removes (unassigns) the users displayed

in the assigned Users list from the group and moves them to the list of available Users.

Because our aim is to add all users to the Employees group, click the >> button to

move all the users from the Available Users list to the Assigned Users list to assign them

to the Employees group. Click the Back button in the top-right corner to return to the list

of groups.

We can now see that we have 11 users in the Employees group.

 Assigning Groups to a User
To add users to the Finance Officers group, we will use the alternative approach. Click

the Users submenu in the left panel to display the list of users. We want to add the users

Amy Alexander and Philip Price to the Finance Officers group. Select Amy Alexander

from the list of users and click the Groups button from the top menu to display the view

Chapter 10 administering Users in proCessmaker

210

shown next. This shows the groups that Amy Alexander currently belongs to, at this point

only Employees.

Click the Assign group button to display the following view. This is very similar to the

view we saw earlier for assigning users to a group. We have a list of Available Groups on

the left and the list of Assigned Groups on the right. Select the Finance Officers group on

the left and click the > button to assign Amy to the Finance Officers group and click the

Back button in the top-right corner to return to the list of users. Repeat the same process

to add Philip Price to the Finance Officers group.

We now have users assigned to two groups. Return to the list of groups by clicking

Groups in the submenu on the left pane. As an exercise, go ahead and assign Steve

Bennett, Amy Alexander, Nicholas Williams, Julia Smith and Administrator to the

Supervisors group. You can use either of the two approaches.

Next we look at setting up Departments in ProcessMaker.

Chapter 10 administering Users in proCessmaker

211

 Departments
The departments feature provides functionality for mirroring the hierarchical

structure of an organization within ProcessMaker. We can create departments and

subdepartments and assign users to these organizational entities and designate

managers for each department. This allows ProcessMaker to automatically assign a case

to the manager/supervisor of a user by checking which department a user belongs to

and routing the case to the manager of that department.

We will demonstrate this when we look at the various assignment rules that can be

configured for a task. For now let us set up the departments we defined earlier in this

guide, assign the users to the different departments, and designate managers for the

departments.

Click the Departments submenu option from the left pane to display the following

view.

 Adding a New Department
To add a new department, click the New button and in the modal dialog displayed,

enter the name of the department and click Save. Create the following departments:

Administration, Finance, Human Resources, Information Technology and Sales.

We can also define subdepartments under a department. To add a subdepartment,

select the department and click the New Sub-Department button. This displays a form

similar to that used to create the departments, enter a name for the sub-department

and click the Save button. Go ahead and add the following subdepartments under the

Information Technology department: Application Development and IT Support. The list

of departments should now look like the next image.

Chapter 10 administering Users in proCessmaker

212

We now have our departments set up. Next we will add users to the departments.

 Assigning Users to a Department
We will illustrate this by assigning our finance officers, Amy Alexander and Philip Price

to the Finance department. To assign users to a department, select the department

(Finance) and click the Users button in the top menu to display the view shown here.

There are currently no users in the department. Click the Assign Users button to

display the list of available users. Select Amy Alexander and Philip Price from the list and

click the > button to assign them to the Finance department.

Chapter 10 administering Users in proCessmaker

213

 Setting a Department Manager
ProcessMaker automatically assigns one of the users as the Manager of the department

as shown next (Philip Price in this case). We can use the Set Manager and No Set

Manager buttons to designate a user as manager and remove the manager designation,

respectively.

To set no manager for the department, select Philip Price (if Amy was automatically

assigned as manager, select Amy) from the Assigned Users list and click the No Set

Manager button. Now, select Amy Alexander and click the Set Manager button to

designate Amy as the manager for the Finance department.

Click the Back button in the top-right corner to return to the list of departments.

We now see that we have two users in the Finance department, and the manager of the

department is Amy Alexander.

Chapter 10 administering Users in proCessmaker

214

Go ahead and assign the remaining users to the departments and designate

managers as shown in the following table.

Department Users Manager

administration Carlos shaw steve Bennett steve Bennett

Finance amy alexander philip price amy alexander

human resources Wanda marshall nicholas Williams nicholas Williams

information technology administrator administrator

application development Billy green none

it support karen Baker none

sales Julia smith

Justin sanchez

Julia smith

We have intentionally not defined any manager for the Application Development

and IT Support subdepartments and made the Administrator user the manager of the

Information Technology department. ProcessMaker uses the manager of the parent

department as the manager of subdepartments that have no managers. In this case,

Administrator will serve as the manager for Billy Green and Karen Baker. Our list of

departments should now look like the following .

Chapter 10 administering Users in proCessmaker

215

 Deleting a Department
To delete a department, select it from the list and click the Delete button. You can,

however, only delete a department that has no users assigned to it. If there are users

already assigned to the department, you will have to unassign them before deleting the

department.

 Roles
Roles in ProcessMaker are used to define a set of permissions available to users. For an

exhaustive list of all permissions available in ProcessMaker, see this link (http://wiki.

processmaker.com/3.1/Roles). A user can have only one role, and this role determines

what that user can do in ProcessMaker.

 Default Roles
ProcessMaker comes with three default roles, described next.

 System Administrator (PROCESSMAKER_ADMIN)

This role is used for system administrators and process designers requiring complete

access to all the features and functionality in ProcessMaker. Users with this role have all

permissions available in ProcessMaker assigned. This includes the ability to configure

the system, design processes, administer users, and much more.

 Operator (PROCESSMAKER_OPERATOR)

The operator role is the default for users who simply need to log in to ProcessMaker and

run cases.

Chapter 10 administering Users in proCessmaker

http://wiki.processmaker.com/3.1/Roles
http://wiki.processmaker.com/3.1/Roles

216

 Manager (PROCESSMAKER_MANAGER)

The manager role is for users who are responsible for overseeing cases and users but do

not design processes or administer the application.

 Creating New Roles
You might find yourself in a situation where the default roles provided do not suffice

for your needs. This is easily resolved by creating a new role and assigning it the

desired permissions. Assuming we wanted Billy Green in the Application Development

subdepartment to be able to design processes but we do not want him to have all the full

privileges of a system administrator, we could readily create a new role called Process

Designer and assign him this role.

To create a new role, click the New button and, in the modal that appears, define the

Code, Name, and Status as shown here.

Code - PROCESSMAKER_DESIGNER

Name - Process Designer

Status - Active

The Code is the unique identifier, and we use All CAPS to be consistent with the

other ProcessMaker roles. The name is a description of the role and we set the status to

Active as we cannot assign an inactive role to users. Click the Save button to create the

role.

 Viewing and Editing Role Permissions
We now have a new role, but the role has no permissions assigned to it, which

means that if we assign a user to this role as-is, they will not be able to do anything

in ProcessMaker. To view the permissions assigned to a role, select the role and click

Chapter 10 administering Users in proCessmaker

217

the Permissions button. Let us see what permissions the default roles have. Select the

PROCESSMAKER_ADMIN role and click Permissions. You should see a long list of

permissions. Click the Back button to return to the list of roles. Repeat the same process

for the other two default roles. The PROCESSMAKER_OPERATOR role has permissions

for logging in, running cases, and editing the user profile.

Now view the permissions of our newly created role PROCESSMAKER_

DESIGNER. We can see that the role has no permissions. Let us proceed to define the

permissions we want to give this role. To edit the permissions of a role, click the Edit

Permissions button to display a list of Available Permissions and Assigned Permissions.

Select the following permissions from the list of Available Permissions (you can select

multiple permissions by holding down the Ctrl or Cmd key):

• PM_LOGIN

• PM_USERS

• PM_FACTORY

• PM_CASES

• PM_FOLDERS_VIEW

• PM_FOLDERS_ADD_FOLDER

• PM_FOLDERS_ADD_FILE

Click the > button to assign these permissions to the role as shown in the next image.

Chapter 10 administering Users in proCessmaker

218

Click the Back button to return to the list of roles. Now that we have our roles set up,

all that is left is to assign the roles to users.

 Assigning Users to Roles
We can assign a user to a role either by editing the user and changing the role field

or by adding the user to the list of assigned users for that role. The latter approach is

appropriate for assigning multiple users at once. Let us assign the department managers

to the Manager role. Select PROCESSMAKER_MANAGER from the list of roles and click

the Users button. This displays the list of Assigned Users, which is currently empty. Click

the Assign Users button to display the list of Available Users. Select Steve Bennett, Amy

Alexander, Nicholas Williams, and Julia Smith from the list of Available Users and click

the > button to assign them to the role. Click the Back button to return to the list of roles.

We do not change the role of the Administrator, because the Administrator’s role already

encompasses all the permissions of the Manager role.

Next, we use the alternative approach to assign Billy Green to the Process Designer

role. Click the Users submenu option in the left pane to display the list of users. Select

Billy Green from the list and click the Edit button. Under the Personal Information

section of the Edit form, change the Role field from Operator to Process Designer and

click the Save button. Return to the list of roles and we should now see that the Process

Designer role has one active user.

Chapter 10 administering Users in proCessmaker

219

To see the effect of the different roles on the level of access the users have in

ProcessMaker, open ProcessMaker in a different browser and log in as the following

users to see the different views.

User Password Role

karen.baker test123 operator

User Password Role

amy.alexander test123 manager

User Password Role

billy.green test123 process designer

Chapter 10 administering Users in proCessmaker

220

 Authentication Sources
ProcessMaker also allows us to import users from other authentication sources such as

an LDAP (Lightweight Directory Access Protocol) or Active Directory user directories.

 a user directory is a system that stores user information like usernames,
passwords, groups, and so on.

If you already have a user directory deployed in your organization, it would make

sense to import the users from the directory into ProcessMaker and allow them use the

same credentials when logging in, rather than creating them again in ProcessMaker and

giving them a new set of credentials.

An extensive discussion of how to set up an LDAP or Active Directory user directory

is outside the scope of this book. We will, however, illustrate this functionality by making

use of a free online LDAP cloud directory provided by zFlex Integrator (http://www.

zflexldapadministrator.com/index.php/blog/82- free-online-ldap) to illustrate

how we can import users from an LDAP directory into ProcessMaker.

For more information on configuring external authentication sources for LDAP and

Active Directory, see http://wiki.processmaker.com/3.0/External_Authentication.

 Setting Up an Authentication Source
To set up a new authentication source, select Authentication Sources from the submenu

option in the left pane under Users tab. The following view is displayed.

Chapter 10 administering Users in proCessmaker

http://www.zflexldapadministrator.com/index.php/blog/82
http://www.zflexldapadministrator.com/index.php/blog/82
http://www.zflexldapadministrator.com/index.php/blog/82-free-online-ldap
http://wiki.processmaker.com/3.0/External_Authentication

221

Click the New button. This displays the form shown here. Select LDAP as the

provider and click the Continue button.

In the Authentication Source Information form displayed, enter the following values

and click the Save button to create the new authentication source.

Name: zFlex LDAP

Type: ldap

Server Address: www.zflexldap.com
Port: 389

Enabled TLS: no Version: 3

Base DN: ou=users,ou=developers,dc=zflexsoftware,dc=com

Anonymous: no

Username: cn=ro_admin,ou=sysadmins,dc=zflexsoftware,dc=com

Password: zflexpass

Identifier for an imported user: uid

Additional Filter:

Chapter 10 administering Users in proCessmaker

http://www.zflexldap.com/

222

 Importing Users from an Authentication Source
With our authentication now set up, let us proceed to import users. Since we are using a

cloud service, your system will have to be connected to the Internet to import the users.

Select the authentication source as shown here and click the Import Users button.

This displays a form to search for users in the directory as shown next.

When setting up the zFlex directory as an authentication source for this illustration,

we limited the organizational unit to look up users from to the developers OU. Without

Chapter 10 administering Users in proCessmaker

223

entering any value in the Keyword field, click the Search button. For a larger directory

of users, you would use the Keyword field to filter the search results. The users in this

organizational unit are displayed as shown next.

Click the [SELECT-ALL] link above the list to select both users, and click the Import

button at the bottom of the list to import the users into ProcessMaker. A successful

import should redirect you to a view of the list of users, similar to the image here. We can

see the two users, TestDev Developer1 and TestDev2 Developer2, in the list.

Chapter 10 administering Users in proCessmaker

224

Select TestDev Developer1 from the list of users and click the Authentication button

at the top of the list to show the Authentication source of the user. We see that the

authentication source is set to zFlex LDAP, as shown next.

Click the Back button in the top-right corner. Now select one of our previous users

(Julia Smith) and click the Authentication button. We see that the authentication source

is set to ProcessMaker (MYSQL).

Click the Back button to return to the list of users. Select the Authentication Sources

sub-menu option from the left pane. We see that we now have two active users.

Finally, let us try to log in with our newly imported users. Open ProcessMaker in

another browser and log in with the following credentials.

User Password

testdev password

testdev2 password

The user should be logged in successfully. The default role for imported users is

Operator and we can see the same view as expected for an Operator, shown next.

Chapter 10 administering Users in proCessmaker

225

 User Experience
To conclude our discussion of user administration in ProcessMaker, we look at the User

Experience submenu option. This feature allows us to define the user experience (UX)

to be displayed for the user when logged in to ProcessMaker. There are four options

available: Normal, Mobile, Switchable, and Single Application.

 Changing the User Experience for a User
To change the User Experience for a user, click the User Experience submenu option

from the left pane. Select the user from the list. We will use Justin Sanchez for our

demonstration of this feature. Click on Normal in the User Experience column to display

the list of options as shown here.

We are already familiar with the Normal option, so proceed to change the UX to

Mobile. Now log in as Justin Sanchez (justin.sanchez) to ProcessMaker in another

browser. The view displayed should look like the following image.

The mobile UX is optimized for users who will be accessing ProcessMaker primarily

from their mobile devices. Click the username in the top-right corner to display the sign

out link. Click it to log out.

Chapter 10 administering Users in proCessmaker

226

In the admin view, select Justin Sanchez again and change the UX to Switchable. As

the name implies, this option allows the user to switch between the Normal UX and the

Mobile UX. Log in again in the other browser as Justin Sanchez. The view displayed is

the same as we saw for the mobile view, with an additional link under the signout link to

Switch Interface as shown here.

Click the Switch Interface link, and the view should change to the Normal view with

the addition of a new Switch Interface link, as shown in the next image. This allows you

toggle the view between the mobile and normal interfaces. Click the Logout button.

Return to the admin view and change the User Experience to Single Application. The

single application UX displays only the next task assigned to the user. Log in as Justin

Sanchez again in the other browser, and the view should look like the following image.

Chapter 10 administering Users in proCessmaker

227

Because we have not yet created any cases and no case is assigned to Justin Sanchez

currently, the view shows a message that the user has no work pending. Click the Exit

icon in the top-right corner to log out Justin Sanchez.

Change the UX for Justin Sanchez back to Normal. Once we have started running

cases, you can try toggling the User Experience for the users to see how they render with

cases.

We have covered a lot in this chapter, and we now have users in the system ready to

be assigned to the tasks in our Process. In the next chapter, we will set up assignment

rules for assigning users and groups to tasks.

Chapter 10 administering Users in proCessmaker

229
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_11

CHAPTER 11

Assigning Users to Tasks
in a Process
Welcome back from the detour. We are now ready to assign the users we have created

to the tasks in the Cash Advance part of the process. We will learn about the various

ways users can be assigned to tasks and start a number of cases with different users to

demonstrate how the different assignment rules work.

Log in as the admin user and head over to the Process List to open the Cash

Advance and Expense Retirement process in the Process Designer. Right-click the

Request Advance task and select Assignment Rules from the context menu to display the

Assignment Rules modal shown here.

230

This is where we define how users will be assigned to tasks. The modal is divided into

three sections: Case assignment method, Users, and Ad-Hoc Users.

• The case assignment method is used to select which type of

assignment should be used for the task. The type of assignment

determines how the specific user who will work on the task for a

specific case will be selected.

• The Users section allows us to choose which users or group of users

should be assigned to the task from the available list of users and the

• The Ad-hoc users section is used for defining additional users or

groups to whom a task can be reassigned.

Assignment rules for a task are a matter of how the user should be selected and

which users can be selected. The Users tab is where we define which users are assigned

to the task, and the Case Assignment method is where we define how the specific user

will be selected from the list of assigned users to work on a specific case. Before we look

at the intricacies of the various case assignment methods, let us quickly see how to

assign users to the task.

 Assigning Users and Groups
The recommended best practice is to assign groups to tasks rather than individual

users. This is because when a process is exported and imported into another instance

of ProcessMaker, the user assignments are discarded, while the group assignments are

preserved. For example, since we want every user to be able to request a Cash Advance,

we would assign the Employees group to the Request Advance task instead of assigning

each individual user. If we decide to export the process from our system to a live server,

we only need to assign users to the Employees group (the group will be created if it does

not exist on the server); we don’t have to go and edit the assignment rules for the process

to assign the users again.

Even if only one user will be assigned to a task, it is still recommended to create a

group and assign that group to the task. The groups can be reused in other processes,

and as you add more processes to ProcessMaker, you can easily manage which users

are assigned to tasks by adding or removing them from the groups instead of editing the

assignment rules for each task in every process.

Chapter 11 assigning Users to tasks in a proCess

231

In the Users tab of the Assignment Rules modal, there is a list of Available Users on

the left and a list of Assigned Users on the right. To assign a user or group, simply drag

and drop the user from the Available Users list to Assigned Users. You can also click the

green arrow icon beside a user or group to move it to the Assigned Users list. Drag and

drop the Employees group to the Assigned Users list. To remove a user or group from the

Assigned Users list, simply drag it back to the Available Users list or click the red close

icon beside it.

The tab also has a search box, which can be very useful for filtering the list in

situations where we have a large number of users and groups in ProcessMaker. You can

also filter the list using the radio options below the search box. The View All option is

selected by default and displays all users and groups. The View Users option filters the

list to show only users, and View Group filters the list to show only the groups.

Ensure that the Employees group is assigned to the task and click the Save button.

Right-click the Approve Advance task and select the Assignment Rules option. Assign the

Supervisors group to the task and click Save. Finally, assign the Finance Officers group to

the Disburse Advance task.

Now that we have defined which users can be assigned to the tasks, we will explore

how the specific user for each case will be selected from the list of assigned users. It is

important to note that for the first task (the starting task) in a process, the assignment

method of the task is not considered when the case is being created, and the user

starting the new case is automatically assigned to the task for that case. If later in the

process, the case is routed back to the starting task, the case assignment method defined

for the task is then used to select the user to assign the case to.

All users assigned to a starting task of a process will be able to initiate a new case

for that process. Because we have assigned the Employees group to the starting task

(Request Advance) of our Cash Advance and Expense Retirement Process, all users in

that group will be able to create a new Cash Advance and Expense Retirement case. But

if the case is rejected by the Supervisor, it might be routed back to a different user and

not the user who started the case, as expected. We also need to be able to determine the

right supervisor to route the case to among the five users in the Supervisors group when

the employee submits the request. The case assignment method helps us address this.

Chapter 11 assigning Users to tasks in a proCess

232

 Cyclical Assignment
This is the default assignment method in ProcessMaker. It assigns users from the

Assigned Users list to a task in a round-robin (sequential) pattern. If we start a new Cash

Advance and Expense Retirement case and submit it to a Supervisor, the case will be

routed to one of the users in the Supervisors group. The next case created will be routed

to the next supervisor, and so on until all supervisors have been assigned a case and then

the sixth case will be assigned to the first supervisor.

Let us illustrate this initiating a number of Cash Advance and Expense Retirement

cases and submitting them to a supervisor. Log in to ProcessMaker in another browser

as Justin Sanchez. In the Cases menu on the left, click the New Case button. This displays

the Cash Advance and Expense Retirement process in the list of processes. Select it and

click the Start Case button on the right to start a new case. You can also double-click the

process to start a new case.

The new case is created, and the Cash Advance Request Form we added as a step

for the Request Advance task is displayed as shown next. Fill in the required fields and

click the Submit Request button at the bottom of the form. The form could use a few

improvements, such as prefilling information such as the Employee’s name, request

date, and department. We will learn how to enhance the form to prefill these details after

we learn about triggers. Right now, we just want to demonstrate the Cyclical assignment

method.

Chapter 11 assigning Users to tasks in a proCess

233

The form is submitted and the routing screen is displayed as shown next. The next

task is Approve Advance as expected, and the Employee assigned to work on the task is

Julia Smith (the user might be different on your system). Click the Continue button to

submit the request.

Start another Cash Advance and Expense Retirement case using different values

from the first case. For the second case, set the department to Finance. We will use this to

illustrate the conditional display of forms in a task as discussed earlier, when we set the

condition property, for the forms we added to the Approve Advance task. You will recall

Chapter 11 assigning Users to tasks in a proCess

234

that we defined a condition to display a different form if the department is Finance. With

the required fields filled in, click the Submit Request button to submit the form.

The routing screen is displayed as shown next, and this time, we see that a different

employee (Steve Bennett in my case) is being assigned as the Supervisor to approve the

request.

Go ahead and create four additional requests with different request details (we have

five supervisors, so the sixth request should be assigned to the same user as the first

request) to complete the cycle. When you have created the six cases, click the Participated

menu under Cases in the left sidebar to display the list of all the cases as shown next.

Chapter 11 assigning Users to tasks in a proCess

235

We can see that the first and sixth cases have been assigned to the same user,

completing the cycle. This is not, however, an ideal method for selecting a supervisor

to approve a request. The Cyclical assignment method is better suited for situations

where we have a pool of users assigned to work on a task and we want to distribute

cases evenly. A good example is a help desk with a group of technicians. The cyclical

assignment method will distribute incoming cases sequentially, ensuring that the

workload is evenly distributed.

For our Cash Advance and Expense Retirement process, we want employees to

be able at least to choose the specific supervisor to submit their request to. The next

assignment method allows us to do this.

 Manual Assignment
The manual assignment method allows the user completing a previous task to choose

the user to assign the task to from the list of assigned users for that task. Continuing with

our example, changing the case assignment method for the Approve Advance task to

manual assignment will enable the employee submitting the request to choose which

supervisor to send the request to from the list of supervisors.

In the browser you are logged in as the admin user, go ahead and change the case

assignment method for the Approve Advance task to manual assignment. Right-click the

task and select Assignment Rules. Select the Manual Assignment radio option and click

Save.

Chapter 11 assigning Users to tasks in a proCess

236

Now log in to ProcessMaker as Justin Sanchez and start a new Cash Advance and

Expense Retirement case. Fill in the required fields and submit the form. The routing

screen displayed is quite different from what we saw with cyclical assignment. Instead

of seeing a user automatically assigned as supervisor, we are shown a dropdown list

of supervisors from which we can select the one to assign the case, as shown in the

following image. Justin Sanchez is in the Sales department, and his manager is Julia

Smith. Select Julia Smith from the list of Supervisors and click the Continue button.

The request is submitted, and if you go to the Participated menu, you will see that the

case has been routed to Julia Smith.

We can see that the manual assignment method provides us with better control in

choosing how to route a request. There are, however, scenarios where we want the user

to select not only the user to assign the next task, but also other tasks after that. The next

assignment method—Value Based Assignment—helps us address this scenario.

Chapter 11 assigning Users to tasks in a proCess

237

 Comparing Cyclical, Manual, and Value-Based
Assignment
Before we look at the value-based assignment method in detail, you need to see a

limitation of the cyclical and manual assignment methods and how value based

assignment can help address it.

Assuming that in MSB Corp. a request had to be approved by more than one

manager, we want the user to be able to choose which managers to send the request to.

But the routing screen for the manual assignment method allows them only to select the

user for the next task. We can resolve this by storing the UID (unique identifier) of the

users we want to route the case to in variables, which ProcessMaker can then check to

determine which user to send the request to.

In our earlier illustration, Justin Sanchez has sent his request to managers he does

not report to. If these managers decide to return the case, the case will be routed to just

about any employee because the Request Advance task uses cyclical assignment and

as we have seen, the cases for the task will be assigned sequentially. If we change the

assignment rule for the Advance Request task to manual assignment, the supervisor

will be able to select Justin Sanchez from the list of employees before returning the

case. While this is a better alternative to just returning the case blindly, it could be quite

cumbersome in situations where there are many users. Also, the returning supervisor

can make a mistake and select another employee.

The ideal solution would be to automatically return the case to the user that initiated

the request. To do this, we store the UID of the user starting the case in a variable, change

the assignment method of the Request Advance task to Value Based Assignment, and

set the variable containing the UID as the variable for the value based assignment field.

Let us demonstrate the limitation of the current setup and implement the value-based

assignment approach.

Log in to ProcessMaker as Amy Alexander in another browser. You should see the

request sent by Justin Sanchez in the inbox as shown next. Select the case and click the

Open button to open the request.

Chapter 11 assigning Users to tasks in a proCess

238

The Cash Advance Approval form is displayed with the request details shown as

read-only. Scroll to the bottom of the form and click the Reject Request button to send

the request back to Justin Sanchez. Click OK in the confirm dialog that asks “Are you sure

you want to REJECT?” and BOOM! An error message is displayed.

ProcessMaker is telling us that it cannot determine which way to route the request.

This is because the Approve Advance task uses an Exclusive Gateway and we have two

routes (return to Request Advance or proceed to Disburse Advance) defined for the

gateway in our Process Map, but we have not defined the condition for determining

which route to take.

We need to define the condition for the routes in the gateway. We will explore routing

in ProcessMaker in more detail later, when we illustrate how to use the different gateway

types.

For now, log in as the admin user and in the Cash Advance and Retirement Process

Map, right-click the Exclusive Gateway beside the Approve Advance task and select

the Properties option. The Routing Rule screen is displayed, as shown next. Define the

conditions for the next task in the routing rule as shown here and click the Save button.

Also save the process.

Next Task Condition

Disburse advance @@is_approved == '1'

request advance @@is_approved == '0'

Chapter 11 assigning Users to tasks in a proCess

239

We have told the routing engine that if the value stored in the is_approved variable is

TRUE, the case should be routed to the Disburse Advance task and if the value is FALSE,

the case should be routed to the Request Advance task. The is_approved variable is of

type Boolean and when set to TRUE, the string representation is 1 and if set to FALSE, the

string representation is 0. You will recall that we created this variable when we learned

how to add approval functionality to our forms, and the value of the variable is set when

the supervisor approves or rejects the request.

Chapter 11 assigning Users to tasks in a proCess

240

With our routing rule sorted out, return to the browser where you are logged in as

Amy Alexander and click the inbox menu. Open the case again and reject the request.

The routing screen is displayed, and we can see that the request is being returned to the

Request Advance task as expected, but the assigned user should not be Justin Sanchez.

(Note that because the Request Advance task is using cyclical assignment, the next user

on your screen could be Justin Sanchez. If this is the case, go ahead and click Continue,

and then log in as another manager and reject the request in that manager’s inbox. The

assigned user will be a different user from Justin Sanchez.)

Click the Continue button to send the request back (to Nicholas Williams in this

case) and log out Amy Alexander. We have clearly seen that the cyclical assignment

method is inappropriate for the Request Advance task.

In the Process Map, right-click the Request Advance task and change its assignment

method to manual assignment. Now log in as the other managers (Administrator, Julia

Smith, Steve Bennett, and Nicholas Williams), and go to the inbox and reject the requests

sent from Justin Sanchez. The Task column of the cases will be Approve Advance and

the Sent By column will be Sanchez, Justin (justin.sanchez). The routing screen should

display the list of employees. Select Justin Sanchez from the list and click the Continue

button.

While returning the cases, you will observe that the form displayed for Case #2 is

different from the others. Instead of the Approve Request and Reject Request buttons, we

have radio options. This is because we defined the condition property of the dynaform

to show a different form if the department is Finance, when we added dynaforms to the

step earlier. Select No and click the Submit Request button to reject the request.

Chapter 11 assigning Users to tasks in a proCess

241

When done, log in as Justin Sanchez and you should see all the returned requests

in the inbox. We will now demonstrate how the same situation would be handled using

value-based assignment for the Request Advance task.

 Value-Based Assignment
Log in as the admin user and open the Cash Advance and Expense Retirement process in

the Process Designer. Before we can use the value based assignment, we have to create a

variable to store the UID of the user that starts the task and a trigger to help us fetch the

value and store it in the variable. We will learn more about triggers later, but for now, just

follow along.

Click the Create (+) icon beside Variables in the Main Toolbox (process objects) in

the Process Map and, in the modal that appears, set the variable name to case_owner.

Leave other fields unchanged and click Save.

Next, click the Create (+) icon beside Triggers in the Main Toolbox again. The

Triggers modal is displayed. Click the Create button in the top right of the screen, and a

Chapter 11 assigning Users to tasks in a proCess

242

Create Custom Trigger modal should be displayed as shown next. Set the fields as shown

here and click the Save button. Close the modal to display the list of triggers.

Title: SetCaseOwner

Description: A trigger for storing the UID of the user starting a case.

Code: @@case_owner = @@USER_LOGGED;

The code in our trigger is very basic. It copies the value of the system variable

USER_LOGGED, which contains the UID of the currently logged-in user and assigns it to the

case_owner variable we just created. Next we need to set up the trigger to execute when a

new case is created. To do this, we add it as a step to the starting task of the process.

Right-click the Request Advance task in the Process Map and select Steps in the

context menu. This displays the Steps modal for the Request Advance task, and we can

see the Cash Advance Request Form we added as a step earlier. We can also see that

our newly created trigger is displayed in the list of Available Elements. Click the Expand

All link to show the Before and After sections of the steps. You can also use the right

arrow beside the Cash Advance Request Form step to expand the view. Drag and drop

the SetCaseOwner trigger to the Before Dynaform section of the Cash Advance Request

Form step as shown in the following image. This sets up the trigger to be executed before

the first step of the process, Cash Advance Request Form, is loaded.

Chapter 11 assigning Users to tasks in a proCess

243

The trigger when successfully assigned displays as shown next. We can use the

Condition button to define a condition to be evaluated before executing the trigger.

Ideally, we would want to execute the SetCaseOwner trigger only once, when the case

is started, and not every time the Cash Advance Request Form is opened in the Request

Advance task. We will see how to do this in the next chapter when we discuss triggers,

but for now, we will let it execute repeatedly so that we can set the case_owner variable

for the cases already in Justin Sanchez’s inbox. The Edit button displays the code for the

trigger in an editor and the Remove button can be used to remove the trigger. Close the

Steps window.

Now that we have our missing pieces, let us proceed to change the assignment rule of

the Request Advance task to Value Based Assignment. Right-click the Request Advance

task and select Assignment Rules. In the Assignment Rules modal displayed, change the

case assignment to Value Based Assignment. This causes a new field, Variable for Value

Based Assignment, to be displayed. Delete the @@SYS_NEXT_USER_TO_BE_ASSIGNED

Chapter 11 assigning Users to tasks in a proCess

244

value in the field and replace it with @@case_owner, the variable we just created as

shown in the following image. Save the changes by clicking the Save button.

The Request Advance task is now configured to use the Value Based Assignment

method. A supervisor should now be able to reject the request without having to

manually select the employee to return it to, and the request will be correctly assigned

to the employee who sent the request. To demonstrate this, log in as Justin Sanchez in

another browser. Open three of the cases in the inbox and submit the requests. Select

Julia Smith as the supervisor in the routing screen and click Continue to submit the

requests.

Log out and log in as Julia Smith. The requests should be displayed in the inbox.

Open each one and reject the requests. The routing screen should show that each

request is now being assigned correctly to Justin Sanchez, the case owner, without the

supervisor having to manually select who to return the case to or ProcessMaker cyclically

assigning the case to users in the Employees group. Click the Continue button and return

all requests back to Justin Sanchez.

Chapter 11 assigning Users to tasks in a proCess

245

Just as we have helped Julia avoid the hassle of manually selecting the user to return

a case to, we can also help Justin avoid the hassle of choosing the supervisor to send a

request to. The next assignment method helps us do just that.

 Reports To
This assignment method automatically assigns a task to the manager of the department

to which the user assigned the previous task belongs. In our example, using a Reports To

assignment method for the Approve Advance task will automatically assign the task to

the manager of the user assigned to the Request Advance task (the previous task) of the

case.

If the previous user is the manager of his department, the task will be assigned to the

manager of the parent department if the user’s department is a subdepartment. If the

department is not a subdepartment, or the parent department does not have a manager,

the task will be assigned to the same user.

It is therefore important to ensure that the organizational hierarchy is properly

configured in the Departments setup in ProcessMaker before using this assignment

method. Let us see how it works with a couple of examples. Right-click the Approve

Advance task, select Assignment Rules and change the case assignment method to

Reports to. Save your changes.

Log in as Justin Sanchez in another browser and open one of the cases in the inbox.

Submit the request and you will now observe that in the routing screen, we no longer

see a drop-down list to select a user, but the request is being correctly routed to Justin

Sanchez’s supervisor—Julia Smith. Click the Continue button and log out.

Chapter 11 assigning Users to tasks in a proCess

246

Next, let us see a scenario where the user belongs to a subdepartment (IT Support)

that does not have a manager.

Log in as Karen Baker (karen.baker) and start a new Cash Advance and Expense

Retirement case. Fill in the required fields and submit the request. In the routing screen,

we can see that the Approve Advance task is being assigned to Administrator, who is the

manager of the parent department, Information Technology. Click the Continue button

to submit the request and log out.

Chapter 11 assigning Users to tasks in a proCess

247

Finally, let us see one more example of a scenario where the user is a manager of a

department without a parent department. Log in as the manager of the Administration

Department, Steve Bennett (steve.bennett), and start a new Cash Advance and Expense

Retirement case. Fill in the required fields and submit the request. In the routing screen,

we can see that the Approve Advance task is being assigned to the same user—Steve

Bennett—making the request. Click the Continue button to submit the request and log

out.

That concludes our discussion of the Reports To assignment method.

 Self Service
The Self-Service assignment method allows a user from the pool of assigned users for a

task to claim a case to work on it. Rather than the system choosing a user to assign the

case to, the case is displayed to all the users in the assigned users list of the task, and one

of the users can claim the case to work on it, thereby assigning it to herself or himself.

Once a user claims the case, other users will no longer be able to see or claim the case.

Chapter 11 assigning Users to tasks in a proCess

248

This assignment method is ideal for situations where any member of a group of users

can work on a case, for example a help desk with a group of technicians. However, unlike

the cyclical assignment, new cases are not distributed among the group cyclically, but

placed in a general pool where the technicians can pick cases to work on. This can be

useful for days when a member of the group is unavailable and cannot work on cases as

it avoids cases being assigned to the user, but rather placed in the general pool where the

technicians available can work on it.

We illustrate how this assignment method works by applying it to the Disburse

Advance task. We want any of the finance officers to be able to work on the Disburse

Advance task. Right-click the Disburse Advance task, select Assignment Rules, and

change the case assignment method to Self Service. A “Set a timeout” field is displayed.

Checking this box allows us to set a time limit for the case to be claimed by one of the

assigned users and define a trigger that will be executed if the case is not claimed when

the time elapses. Leave the field unchecked for now. We will return to it later in the book

to send a reminder to the Finance manager when a case has not been claimed within a

specified period. Save your changes.

Now log in as Julia Smith and open the Cash Advance request sent by Justin Sanchez.

This time around, click the Approve Request button to approve the request it and route it

to the Disburse Advance task. The routing screen displayed shows that the task is being

Chapter 11 assigning Users to tasks in a proCess

249

routed to the Disburse Advance task, but the Employee is unassigned. Click the Continue

button and log out.

Unlike the other assignment methods we have seen so far, there is no employee

assigned for us and we are not choosing an employee to assign the case to. Rather we

are sending it to all employees assigned to the task (the Finance Officers group in this

instance), and any of them can claim the case to work on it. Before we log in as the

Finance Officers, let us approve two more requests so we can have more requests in

the pool. Log in as the administrator and click Home in the main menu to display the

inbox. Open the case sent by Karen Baker and approve the request. It should route to the

Disburse Advance task with Employee unassigned. Log out and log in as Steve Bennett

to approve the request in the inbox. We should now have three requests waiting for our

Finance officers to disburse.

Log in as the first finance officer, Amy Alexander. Surprise! The cases are not in

the inbox even though they have been routed to the finance officer group which Amy

belongs. In the left pane, we can however see that the Unassigned link has (3) suffixed to

it. The number in the brackets indicates the number of cases in that link. The inbox only

shows cases to which a user is currently assigned.

Chapter 11 assigning Users to tasks in a proCess

250

Click the Unassigned link under Cases in the left pane to display the list of

unassigned cases as shown next.

Log out and log in as the second finance officer, Philip Price. You will see that the

inbox is also empty, but there are three cases in the Unassigned list. Click the Unassigned

link and you will see that they are the same three cases we saw when we logged in as

Amy Alexander.

Let us claim one of the cases to work on. Select the case sent by Julia Smith from

the list to highlight it and click the Open button. (You could also right-click it and select

Open from the context menu or double-click the case to open it.) Instead of opening a

form as we have seen before, we are shown a Claim Case screen like the following.

To claim the case, click the Claim This Case button. Clicking the Cancel button

closes this screen and returns to the list of unassigned cases. Go ahead and claim the

case. The Cash Advance Disbursement Form is now opened and we can see the details

of the request. We will not be submitting the request yet as we have not set up steps or

assignment rules for the next task (Report Expense) in the process and submitting the

form now will throw an error. Click the Inbox link on the left pane and the request we just

Chapter 11 assigning Users to tasks in a proCess

251

claimed should be listed in the inbox. You will also notice that the Unassigned list is now

reduced to two cases.

Log out and log in again as Amy Alexander. Go to the Unassigned list and you will see

that the list is also reduced to two cases, and the case claimed by Philip Alexander is no

longer in the list. Claim the case sent by Administrator to reduce the unassigned cases to

one. Do not submit it after claiming it. Return to the Inbox and you should see the case

listed there. Go ahead and log out.

 Self-Service Value-Based Assignment
The last assignment method we will look at is a hybrid between the Value-Based and

Self-Service assignment methods. It allows us to store the UID of a specific user or group

of users that can claim the case from the unassigned pool. Let us assume that we have

two groups of Finance Officers in MSB Corp.—one group for requests sent from the sales

team, and a separate group for other departments’ requests. We still want to retain the

Self-Service method of assigning the cases, but we also want only a specific group or user

to be able to claim the case, that is, assign it to themselves.

To illustrate this assignment method, we need to do some ground work. First

we create two new Finance groups and assign users to the groups. Log in as the

administrator and go to Admin. Select the Users tab and the Groups submenu. Create

two groups and assign users to the group as shown here:

Group Name Users

Finance – sales amy alexander

Finance – general philip price

Return to the designer and open the Cash Advance and Expense Retirement process.

We will create a variable to store the UID of the group to use, just as we did when

exploring Value-Based assignment. Click the Create (+) icon beside Variables in the main

menu and create a variable named finance_group with a string variable type.

Next we create a trigger that will update this variable with the right group UID based on

the department selected in the request form.

Click the Create (+) icon beside Triggers in the main menu and create a trigger with

the following properties and save it:

Title: SetFinanceGroup

Chapter 11 assigning Users to tasks in a proCess

252

Description: Sets the finance group based on department selected

Code:

if (@@department == "Sales") {

 @@finance_group = PMFGetGroupUID("Finance - Sales");

}

else {

 @@finance_group = PMFGetGroupUID("Finance - General");

}

This code checks the value stored in the department variable. If it is Sales, we use

the built-in ProcessMaker function PMFGetGroupUID to get the UID of the new Finance –

Sales group we just created and store it in the finance_group variable. Otherwise, we

store the group UID of the Finance – General group. We will explore the ProcessMaker

built-in functions when we explore triggers in the next chapter.

Finally, we need to execute the trigger in a step that occurs before the case is routed

to the Disburse Advance task and after the department has been selected. Can you think

of an appropriate step to put this trigger? There are a number of options available to us,

such as these:

• After the Cash Advance Request Form step in the Request Advance

task

• Before or after the Cash Advance Approval Form step in the Approve

Advance task

• Before the Assignment step in the Approve Advance task

The goal is to ensure that the department variable has been set and the assignment

rule has not yet been evaluated. We will place it before the Assignment step in the

Approve Advance task. Right-click the Approve Advance task and select Steps option.

Drag and drop the SetFinanceGroup trigger to the Before Assignment step as shown in

the following image and close the modal.

Chapter 11 assigning Users to tasks in a proCess

253

That concludes the preparatory ground work required for the Self Service Value

Based assignment method. Right-click the Disburse Advance task and change the

Assignment Rule to Self Service Value Based Assignment. A new field, Variable for Self

Service Value Based Assignment is displayed. Set the value to @@finance_group. Leave

the Set a Timeout field unchecked. We also need to add the newly created groups to the

Assigned Users list in the Users section. Drag the Finance – General and Finance – Sales

groups from the Available Users list to the Assigned Users list. Click the Save button.

BOOM! An error message is displayed, reading “Bad Request. Current Activity has cases

and cannot be deleted.”

What is going on? Remember that we still have an unclaimed case in the Disburse

Advance task, and changing the assignment rule could leave us unable to assign the case if

the case does not match the requirements for the new rule. In this example, the unclaimed

case in the Disburse Advance task does not have a value set for the finance_group

variable we just created, and ProcessMaker will not be able to assign the case.

All hope is not lost. Simply log in as Amy Alexander or Philip Price and claim the

case. Return to the Process Designer and change the assignment rule again to Self

Service Value Based Assignment, ensure that the new groups (Finance – General and

Finance – Sales) are assigned, and save the changes. The Assignment rule should now be

correctly saved.

Chapter 11 assigning Users to tasks in a proCess

254

Let us see the effect of our changes. Log out as Amy Alexander in the other browser

and log in as Justin Sanchez. Open one of the cases in the inbox and ensure the

department is set to Sales. Note the case number (Case #2) and submit the request. Open

another case and make sure the department is not Sales. Note the case number (Case #4)

and submit the request. Log out and log in as Julia Smith and Approve the two requests.

The routing rule should still show the next employee is Unassigned.

Now we have two unassigned cases in the Disburse Advance task. Log out as Julia

Smith and log in as the first finance officer Amy Alexander, who is assigned to the

Finance – Sales group. Go to the Unassigned menu under Cases, and there should be

only one case (Case #2) in the list – —the case with the department set to Sales. Even

though we have two unassigned cases at the Disburse Advance task, only the users

in the group stored in the finance_group variable will be able to see the case in their

unassigned and be able to claim the case. Go ahead and claim the case but do not

submit it yet. Log out as Amy Alexander.

Chapter 11 assigning Users to tasks in a proCess

255

Log in as Philip Price, and you should see the case with the department not set to

Sales (Case #4) in the unassigned cases list. Go ahead and claim the case but do not

submit it yet.

We can now see that the case is being assigned using a combination of Self Service

and Value Based assignment as expected.

Now that we are familiar with the different case assignment methods available to us

in ProcessMaker, we can apply that knowledge to address the different case assignment

requirements we encounter when automating business processes. We have also been

able to route a case as expected in the Cash Advance part of the Cash Advance and

Expense Retirement process. Before we proceed to build the second half and complete

the process, let us take a closer look at triggers to understand them better as we will be

using more complex ones in the second half of the process. We will also explore input

and output documents, as we will also be using them in the other half of the process.

Chapter 11 assigning Users to tasks in a proCess

257
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_12

CHAPTER 12

Triggers
As robust and flexible as ProcessMaker is, it cannot do everything we will require in

building a business process right out of the box as we have seen in some of the scenarios

in the earlier chapters of this guide. Fortunately, it provides us a powerful tool for adding

the necessary custom behavior, called triggers. We saw in the previous chapter how

triggers can be helpful in adding custom logic to the business process in the Self-Service

Value-Based Assignment method example. We were able to fetch and assign a specific

group based on input filled in by the user.

Triggers are basically snippets of PHP code that we use to perform complex

calculations and add custom functionality to processes such as fetching data from a

remote web service or evaluating complex business logic. The triggers have access to

the case variables and can read and manipulate their values. They can also access the

system variables created by ProcessMaker for every case such as the UID of the case, the

current task, and so on.

Because it is basically a PHP script, we can also create regular PHP variables in a

trigger and import PHP libraries, including access to the Gulliver Framework used to

build ProcessMaker. Gulliver is a high-quality open source framework for developing

web applications and web services with PHP, based on the MVC pattern. We should

note, however, that the PHP variables created in a trigger are temporary and are

discarded once the trigger execution completes. To retain a value after the execution of a

trigger, you should store it in a process variable.

Once a trigger has been created, it must be added to a step in the process to be

executed. A trigger can be reused several times in a step and in multiple tasks in the

same process. When setting up the Self Service Value Based assignment, we identified

three possible locations where we could place the SetFinanceGroup trigger for the same

result. It is important to understand the lifecycle of a step in order to time the execution

of a trigger properly.

258

 Trigger Timing
For a trigger to be executed, it has to be added to a step, and this can be in any of the

following positions in the task lifecycle.

 Before a Step
A step here refers to a dynaform, input document, output document, or external step

assigned to a task. Placing a trigger before a step is useful when the trigger will be

used to set values of variables that will be used in the step. For example, in our Cash

Advance and Expense Retirement case, we would like to set the Employee Name and

Request Date when a new case is initiated, without the employee having to fill out

the information on the form. To achieve that, we will need a trigger to get the values,

assign them to the appropriate variables, and then set the trigger to execute before the

dynaform.

 After a Step
Placing a trigger after a step causes the trigger to be executed when the step is

completed. Triggers placed here have access to the values (if any) set by the just

concluded step and can use them. For example, suppose we had two dynaform steps,

Form A and Form B, and we wanted to show form B only if a condition is met. However,

we need to fetch a value to be evaluated in the condition from an external source based

on input entered in Form A. We could use a trigger placed after Form A to fetch the value

and set it so that it can be available to be evaluated as a condition for displaying Form B.

 Before Assignment
Before assignment is a good place to put a trigger that sets the values of variables that are

used in determining the next user to assign a case. We saw an example of this when we

used a trigger for the Self-Service Value-Based assignment in the previous chapter.

Chapter 12 triggers

259

 Before Routing
Triggers placed before routing will be executed before the case is routed to the next task.

This is therefore a good location for placing triggers that will set variables that will be

evaluated to determine what task or sub-process the case will be routed to next.

 After Routing
This is the point after which the next user and task for the case have been determined

and saved to the database. Any trigger requiring this information should be placed

after routing. For example, if we wanted to send an email to the next assigned user that

includes the title of the task the user has been assigned to, we could use a trigger placed

here to get the information about the user and next task and send the mail.

 Case and System Variables
Earlier in the book, we learned about variables and how to create them. These variables

are case variables and are used to store data for a case such as values entered in

Dynaform controls or data fetched from a database or web service. We can read and

manipulate the values stored in case variables in a trigger. We have seen examples of this

in the triggers we created in earlier chapters. Just as PHP variables are identified by a $

prefix (PHP variables are written as $variable_name), case variables are identified with a

prefix, which can be any of the following:

 @@

 @%

 @#

 @?

 @$

 @=

Chapter 12 triggers

260

 Case Variable Prefixes
The prefixes determine the data type in which the value stored in the variable will be

parsed before it is rendered.

Prefix Type Sample Notes

@@ string @@name this parses the value stored in the variable as a string.

@% integer @%count this parses the value stored in the variable as an integer. if the value

stored in the variable is a decimal number, it will be rounded up. For

example, if you have a variable named amount containing a value

24.50, using it as @%amount in a trigger will return 25.

@# Float @#amount this parses the value stored in the variable as a float. this will be the

appropriate prefix to use in the amount variable example earlier.

@? UrL @?params this parses the value as a UrL encoded string using php’s

urlencode function. For example when passing parameters in a UrL,

spaces should be rendered with a + sign. if we had a variable params,

containing a UrL parameter with value “user=justin sanchez”,

using it as @?params would return “user%3Djustin+sanchez”.

@$ sQL

Query

@$query this parses the value stored in the variable as an sQL string escaping

any quotes. if we had a variable title with value Gulliver’s

Travels, using it as @$ would return Gulliver\’s Travels.

@= Original

type

@=grid this returns the value stored in the variable as the original type. it is

ideal for objects and arrays.

 System Variables
In addition to the case variables, ProcessMaker provides us with a default set of variables

whose values are automatically set for every case and hold information about the

system, process, case, and its status. The following system variables are available in

ProcessMaker.

Chapter 12 triggers

261

System Variable Description

@@SYS_LANG stores the current system language in two letter isO 639-1 code, which by

default is “en” (english).

@@SYS_SKIN stores the current system skin (the theme), which by default is “neoclassic” in

processMaker 3.0.x.

@@SYS_SYS stores the current workspace name, which by default is “workflow”.

@@PROCESS stores the UiD of the current process.

@@TASK stores the UiD of the current task.

@@APPLICATION stores the UiD of the current case.

@@APP_NUMBER stores the current case number. available Version: From 3.0.1.8 on.

@@USER_LOGGED stores the UiD of the current user.

@@USR_USERNAME stores the username of the current user.

@%INDEX stores the delegation index number, which is a positive integer which counts

tasks in a process, starting from 1. if multiple tasks are operating in parallel,

then each task will have a different index number.

@@PIN stores a four-character piN, which can be used to access information about

the case without being a registered user when accessing the processMaker

Case tracker UrL.

@@ ERROR if a processMaker error occurs, this system variable will be created,

containing the error message. Note that this system variable only exists after

a processMaker exception occurs. it will not be created by syntax errors in

php or Javascript or by errors which processMaker doesn’t know how to

handle.

Chapter 12 triggers

262

 Variable Selector
You might have noticed buttons labeled @@ in earlier chapters of this book and

wondered what they are. These are variable selectors that allow you select a variable to be

used in the specified context. They come in very handy when we have a sizable amount

of variables in our process and help us find the variable we need. The feature also helps

avoid typographical errors when entering a variable name in a trigger or other use cases.

We will illustrate how to use the variable selector by creating a few triggers and exploring

them.

 Creating Triggers
There are two types of triggers in ProcessMaker, predefined triggers and custom triggers.

Predefined triggers are a set of triggers already defined in ProcessMaker and are created

using a wizard that allows us select the type of trigger, and fill in the required parameters,

and set a variable to hold the result. The wizard then automatically generates the code

for the trigger. Custom triggers, on the other hand, are triggers for which we write

the code ourselves and are used for functionality not provided out of the box or by

predefined triggers.

Let us return to the playground we used when we learned about dynaform controls.

Log in as Administrator to ProcessMaker and from the list of processes, open “My first

process.” Click on Triggers in the Main Toolbox (Process Objects) to display the Triggers

screen as shown next. We currently have no triggers. Let us create a predefined trigger.

Chapter 12 triggers

263

 Predefined Triggers
Click the Wizard button in the top-right of the Triggers screen to display the different

categories of predefined triggers as shown here.

We can see the number of triggers available under each category on the right. Click

the ProcessMaker Functions category to expand it and display the list of triggers. This

category of triggers consists of PHP functions predefined in ProcessMaker to help

with common tasks. For a detailed list of the functions and what they do, see http://

wiki.processmaker.com/3.1/ProcessMaker_Functions. For the purpose of this

demonstration, we will keep it simple. Select PMF Get Group UID from the list and the

Create ProcessMaker Function screen should be displayed.

Chapter 12 triggers

http://wiki.processmaker.com/3.1/ProcessMaker_Functions
http://wiki.processmaker.com/3.1/ProcessMaker_Functions

264

Fill in the following fields:

Title: GetGroupUID

Description: Sample predefined trigger that gets the UID of a Group and stores it in

a variable.

This predefined trigger requires the name of the group as a parameter. We can see

a variable selector beside the Name group and Variable to hold return value fields, so

instead of typing, let us set it using the variable selector. Click the @@ button to display

the selector, which shows a list of the system and case variables.

Chapter 12 triggers

265

The selector has a search box for filtering the list of variables. A Prefix dropdown lets

you choose the type of prefix to add to the variable name. Beside the Prefix dropdown is

a hint about what each prefix does. Once the desired variable is found, click it to select it

and click the Insert Variable button at the bottom (it will be enabled when a variable is

selected) to insert it into the field.

For the Name Group field, select the my_subform_text2 variable with a @@ prefix

and for the “Variable to hold return value” field select my_textarea with a @@ prefix.

Click the Save button to create the trigger and close the wizard. The trigger is now

displayed in the list of triggers.

Click the Edit button beside the trigger to view the code that was generated by

ProcessMaker. We see a similar form to the one filled when creating the trigger, but with

an additional Edit Source Code button in the bottom-right corner. Click this button, and

you should see the code generated by ProcessMaker.

Chapter 12 triggers

266

If we make changes to the code and save it, the trigger will become a custom trigger.

Try entering a new line in the code by placing your cursor after the semicolon on line 12

and pressing the Enter key. Click the Save button, and you will see a confirmation dialog

as shown next. Clicking Yes will change the predefined trigger to a custom trigger. Click

No to preserve it as a Predefined trigger and discard the changes by clicking Cancel in

the Edit trigger screen.

This shows us that we can always use the predefined functions as a starting point for

our own custom triggers when necessary, instead of starting from scratch. Now let us

create a custom trigger.

Chapter 12 triggers

267

 Custom Triggers
We have already seen how to create custom triggers in earlier chapters, when we created

triggers to set the case owner and the finance groups in the Cash Advance and Expense

Retirement process. We did so by clicking the (+) Create button in the Triggers screen.

This opens the code Create Custom Trigger screen as shown next. As we already

know, we can make use of ProcessMaker’s functions in our custom triggers. These

functions can be easily accessed by pressing the Ctrl+Space keys. This displays the list

of functions, and double-clicking a function from the list adds it to the code. Pressing

Ctrl+Space again immediately after the function is added displays the parameters for the

function, if any. Let us try it out.

Click the Create button in the Triggers screen and, in the Create Custom Trigger

screen, set the Title to MyCustomTrigger and Description to Sample custom trigger
that uses a ProcessMaker function. Place your cursor in the code field and press

Ctrl+Space. In the list of functions displayed, double-click generateCode. Then press

Ctrl+Space again. This will display the parameters required for the function as PHP

variables, as shown next.

Chapter 12 triggers

268

The generateCode function generates a random string of letters and/or numbers of a

specific length and requires two parameters. Size determines the length of the code, and

type determines whether the code should consist of only letters (ALPHA), only numbers

(NUMERIC), or a mixture of both (ALPHANUMERIC).

ProcessMaker triggers also allow us to create case variables on demand by assigning

the variable in the trigger. Variables created this way are not added to the variable

selector but can still be used in other parts of the process, such as conditions. Let

us modify the code section of the trigger to create a new case variable and store the

generated code in it. We also use the variable selector to select the my_subform_text1

variable and store another generated code in it.

$size = 8;

$type = 'ALPHANUMERIC';

@@my_subform_text1 = generateCode($size,$type);

@@on_demand = generateCode($size,$type);

Chapter 12 triggers

269

In this code, we are creating a PHP variable named $size and assigning it a numeric

value of 8. We also create another PHP variable named $type and assign it a string value

of 'ALPHANUMERIC'. Next we use the variable selector to choose the my_suggest variable

and assign the result of the ProcessMaker generateCode function, which uses the PHP

variables created as its parameters. We then create a new case variable on_demand and

assign it another generated code from the generateCode function.

Click the Save button to create the custom trigger, and it should appear in the list of

triggers as shown next.

 Copying Triggers
When building processes, we often need to reuse the same logic defined in triggers for

multiple processes. We may also have triggers that are simply variations of others. The

Copy button in the trigger list allows us to easily create a copy of any custom trigger that

exists in the system. To illustrate, let us create a copy of the SetCaseOwner trigger from

the Cash Advance and Expense Retirement process for use in My First process.

Click the Copy button, and the Copy Trigger screen is displayed as shown next.

Select Cash Advance and Expense Retirement in the Process field and SetCaseOwner in

the Trigger field. The title, description, and code fields are immediately populated with

the values defined in the SetCaseOwner trigger created earlier. Click the Copy Trigger

button to create a copy of the trigger in My first process.

Chapter 12 triggers

270

 Testing the Triggers
When designing a process that uses triggers, it is important to test the triggers and ensure

that they work as expected. Let us run a case to execute the triggers created so far and

see the effect they have.

First we need to assign the triggers to the process. Right-click the Request Cash

Advance task we created in My First Process and select the Steps option. Assign the

My First Form Dynaform to the task, expand it, and place the SetCaseOwner and

MyCustomTrigger triggers to execute before the form, and GetGroupUID to execute after

it. Do you know why we place the GetGroupUID to execute after the form and not before,

like the others? You will see why soon. Close the Steps screen.

Chapter 12 triggers

271

Next click the Request Cash Advance task and, in the quick toolbar, select the End

event as shown in the image on the right. This is to avoid errors when we submit the

form in the task, as ProcessMaker will not know how to route the case. For now we just

want the case to end when we submit the form.

Go to the Home section of the main menu and select New Case under Cases. Select

My First Process (Request Cash Advance) and start a new case. The My First Form we

created earlier in the guide is displayed and if you scroll to the bottom of the form, you

should see a generated code in the Subform Text 1 field as shown here.

We can see that MyCustomTrigger that we set to execute before the form executed

successfully. In the Subform Text 2 field, type the name of any of the groups we created

earlier, such as Supervisors; also fill out any other field marked as required and submit the

form. The routing screen is displayed and shows that the Next Task is End of Process. We

would like to know if the GetGroupUID trigger was executed successfully by retrieving the

UID of the group we typed in the Subform Text 2 field and storing it in Tell me something

textarea. Click the Previous Step link in the routing screen to return to the form.

Chapter 12 triggers

272

We should now see the UID of the group displayed in the Tell Us Something textarea,

as shown next. Submit the form again and click the Finish button to end the case.

Remember that we also created a new variable in the trigger called on_demand.

However, we do not have any control on our form associated with it and could not see

the value set by the trigger just executed. We also executed the SetCaseOwner trigger that

set the case_owner variable. It would be nice to see that these values were set correctly.

ProcessMaker provides a means for us to see what is happening behind the scenes by

debugging the process.

 Debugging Triggers
The ability to debug a process is very valuable and can provide insights into why a

process is not behaving as expected. This could be as a result of a trigger not executing

or throwing an error, or a wrong value being set in a variable. Debug mode should only

be enabled when designing the process and not in production, as it would affect the user

experience and can expose data that should not be seen by the user.

Chapter 12 triggers

273

 Enabling and Disabling Debug Mode
Debug mode can be enabled on a process by right-clicking the process from the list of

processes and selecting Enable Debug Mode. The Debug column is updated to On. To

disable the debug mode, right-click it again and select Disable Debug Mode.

Alternatively, open the process in the designer and right-click in a blank area of the

process map. Select Edit Process in the context menu to display the Process Information.

Check the Debug field and click the Save button. You can also disable debug mode by

unchecking the Debug field. Enable debugging for My First Process.

Chapter 12 triggers

274

 ProcessMaker Debugger
With debugging enabled, start a new My First Process (Request Cash Advance) case as

before. You will notice that the ProcessMaker Debugger window is now opened beside

the form as shown here.

The debugger has two tabs, Variables and Triggers. The details of the variables whose

values have been set so far in the case are displayed in this tab. Clicking Dynaform under

Variables filters the list to show only variables specific to the case. Click it and you should

see that the variables we set in our triggers have been assigned values. Clicking on the

variables displays the values in the box at the bottom of the debugger. This is useful for

variables with long values, like case_owner. Next click the Triggers tab and you should

see the two triggers that were executed before the form. Click the trigger and the code is

displayed in the box at the bottom of the debugger. The box has an Open in New Window

button to display the code in a popup. This can be useful for triggers with many lines of

code.

Chapter 12 triggers

275

Just as we did with the previous case, fill in the required fields and enter the name of

a Group in the Subform Text 2 field and submit the form.

Instead of moving straight to the routing screen, we see a ProcessMaker Debugger

Breakpoint. This allows us to examine triggers that were fired after the form. In this case,

we can see the GetGroupUID trigger that we set to execute after the form. We can also

click the Variables tab and lookup the my_textarea variable. We will see that its value

has been set to an array containing the group UID, which shows that our trigger executed

successfully.

We can also see the values set for the other variables in the form. Click the Continue

button on the breakpoint to continue to the routing screen. Click the Finish button to

end the case. We also see another breakpoint displayed which can be used to see the

effect of triggers executed after routing. Click the Continue button.

Chapter 12 triggers

276

 Identifying Errors
The ProcessMaker Debugger also helps identify the cause of errors in a trigger. When

an error is encountered, the execution of the trigger is halted and an error message is

displayed if the error is fatal.

In these cases, a system variable _ERROR_ will be added to the variables list in the

debugger and contain information about the error.

As we have seen, triggers play an integral role in adding business-specific

functionality and logic to the processes built in ProcessMaker. To learn more about

triggers in ProcessMaker, see http://wiki.processmaker.com/3.1/Triggers.

Chapter 12 triggers

http://wiki.processmaker.com/3.1/Triggers

277
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_13

CHAPTER 13

Input and Output
Documents
Business processes often require supporting documents to aid the users assigned to

a task perform the task. For example, in our Cash Advance and Expense Retirement

process, we will require users to provide receipts for the expenses, which serve as

proof of transaction and help the Supervisor and Finance officers ascertain that the

transaction indeed took place. This class of documents is referred to as input documents

in ProcessMaker.

Also, other processes produce documents that are either stored for record purposes

or shared with other parties within and outside the organization. For example, an Asset

Requisition process will need to produce a Purchase Order that will be sent to the vendor

or supplier. Documents that are generated in the course of a process are referred to as

output documents in ProcessMaker.

Let us return to our playground process and explore how input and output

documents are created and used in ProcessMaker.

 Input Documents
We begin our discussion with input documents. These are basically files or documents

that contain information that serves as input to the process. Input documents can

be digital or printed (hard copy). Digital input documents can be uploaded into

ProcessMaker while for printed documents, the user will be asked to provide a

description of the document. Let us create a couple of input documents to explore them

in detail. Open My First Process in the Process Designer.

278

 Creating an Input Document
To create an input document, click the Create (+) icon beside Input Documents in the

Main Toolbox. The Create Input Document screen is displayed, as shown next. The form

allows us to define and configure the behavior of the input document. Let us briefly look

at each field.

Title: This is the title of the input document.

Document Type: This refers to the type of input document to

be created. The options are Digital, Printed, or both. Digital

documents are expected to be uploaded along with the case, while

only a description of the printed document is required. If the

Printed or Digital/Printed option is selected, you will be shown an

additional field to specify the format of the document, whether it

is the Original, Legal Copy, or Copy.

Description: This field is to enter a description of the document

that will be displayed to the user when requesting the document

to be uploaded. This can help the user know what type of

document is expected.

Chapter 13 Input and Output dOCuments

279

Enable Versioning: This is used to indicate whether versioning

should be enabled for the document. If versioning is enabled,

different copies of the input document uploaded for a case will

be preserved. If versioning is disabled, new uploads of the input

document for a particular case will overwrite the documents

previously uploaded for the case. Versioning can be used when

you want to preserve an audit trail of all documents uploaded as

the input document for the case, especially if different users in the

life cycle of the case can upload the input document.

Destination Path: This is used to define the path in the

built- in ProcessMaker Document Management system where the

uploaded document will be stored. This is useful for organizing

documents being uploaded into the system. You will observe that

there is a variable selector beside the field. This allows us to select

variables to make up the path to store the document.

For example, if we have an input document for receipts, we might

want to separate it by the department and the case the receipt

belongs to. We can therefore specify the path as Receipts/@@
department/@@APP_NUMBER. This way, if a user in Sales

uploads a receipt saved as taxi.jpg for case #12, the document

will be stored in Receipts/Sales/12/taxi.jpg in the Document

Management System.

Tags: As the name implies, this is used to specify a comma-

separated list of tags to associate with the input document. This

can be useful when searching for the document later. The tags can

be plain text or obtained from case variables.

Allowed file extensions: This is used to restrict the type of files

that can be uploaded as the input document. For example, we

would expect receipts to be either a picture (.jpg, .png, .bmp,

.gif) or PDF (.pdf) document. The file extensions are prefixed

with an asterisk (*) and separated by commas. To allow any file

type, simply use an asterisk.

Maximum file size and Unit: These are useful fields for restricting

the size of the document that can be uploaded. It is important

Chapter 13 Input and Output dOCuments

280

to set this to a reasonable limit, but not too large to avoid users

uploading files that are too large and can slow down the system.

To remove the size limit, enter 0 in the maximum file size field.

Go ahead and create an input document as specified in the following table. Fill in the

fields and click the Save button.

Title my input doc one

Document Type digital

Format

Description sample digital input document

Enable Versioning Yes

Destination Path playground/input/@@my_radio/@@app_numBer

Tags digital,doc one

Allowed File Extensions *.jpg,*.pdf

Maximum File Size 1000

Unit KB

With our input document created, the next thing we have to do before we can use it

is assign it to the process. There are two ways we can make input documents available for

use within a process. We can assign the input document to a file or multiple files control

in a dynaform, or add it as a step to a task. Let us try out both.

 Adding Input Documents to a Dynaform
Click on Dynaforms in the main toolbox (Process Objects) and in the list of dynaforms

displayed, click the Edit button beside “My First Form” to open it in the dynaform editor.

You will recall that when we added a file control to this form earlier in the guide, we

were unable to associate it with a variable because the variable had to be a file type and

required an input document. Now we have an input document, so we can associate the

file control with a variable.

Chapter 13 Input and Output dOCuments

281

Select the file control (Attach Receipt) from the dynaform by clicking it, and in the

properties panel on the left, click the ellipsis beside the Variable property and in the

Create/Select Variable modal displayed, enter my_file as the variable name. Expand the

settings and click the ellipsis to select My input doc one as the input document. Click the

Save button.

Also select the multiple files upload control (Upload supporting documents), and

in the properties panel, click the ellipsis in front of the Input document property. In the

modal that appears, select My input doc one. Save the dynaform and close the Dynaform

Designer.

Now when a file is uploaded to either control, it will be saved to the input

document—My input doc one.

 Adding Input Documents as a Step
We can also make an input document available for use in the process by making it a step

for the task. This is similar to the way we add dynaforms as steps to a task. Let us proceed

to add the input documents as steps to the Request Cash Advance task. Right-click the

task and select Steps. The input document is displayed in the list of available elements.

Drag and drop the input document to the Assigned Elements on the right, placing My

input doc one before My First Form, as shown here.

Chapter 13 Input and Output dOCuments

282

All done. Let us initiate a new case to see how the input documents work. We will

also illustrate versioning in input documents.

Still logged in as the Administrator, go to Home in the main menu and under Cases,

select New Case. Select My first process (Request Cash Advance) and click Start Case.

The input document upload screen is displayed as shown next. We can see the title and

description we specified for the first input document we created.

Chapter 13 Input and Output dOCuments

283

Click the Attach link to display the interface for uploading the document. You can

see the specified max file size and allowed extensions displayed. Try uploading a file that

is not .jpg or .pdf, and an error message will be displayed as shown in the image on the

left. Dismiss the error message and proceed to upload a .jpg or .pdf file less than 1000

KB, also type a comment in the Comments field and save the document.

You can upload more than one input document. Upload one .pdf and .jpg file each,

and the documents should be displayed as shown next. Note that if you still have debug

mode enabled for the process, you will notice that a breakpoint is encountered every

time a document is uploaded. If we had any trigger placed after the input document step,

it will be executed every time a document is uploaded.

Looking at the image here, we observe that there is a New Version button beside the

uploaded documents. This is because we have versioning enabled. If we want to upload

a new version of any of the documents uploaded, we should use the New Version button.

Uploading a file with the same name does not update the already uploaded file but is

Chapter 13 Input and Output dOCuments

284

added as a new document as shown in the image, where we have uploaded the input_

doc.jpg file again.

Let us create a new version by clicking the New Version button beside the document.

This displays the input document upload screen; select the file, enter comments, and

upload it. The document version is updated to 2 and a Version History button is placed

beside it as shown here.

Click the Version History button to see the different versions of the document as

shown in the following image. To view the contents of the uploaded documents, click

the Download button beside it. Now that we have seen how versioning works, let us

proceed to see how the input document attached to a file control works. Close the input

Document History screen and click the Next Step button below the table to open the

dynaform.

In the displayed dynaform, click the Attach Receipt file control and upload a .pdf or

.jpg file. Also upload a couple of files to the Upload supporting document multiple file

control. Select an option from “How would you like to be paid” field (my_radio control),

fill out the other required fields in the form, and submit it. The end of process routing

screen is displayed. Before we close the case, how can we view the input document we

uploaded using the file control?

Chapter 13 Input and Output dOCuments

285

Click the Previous Step link on the Routing Screen and also on the dynaform to

return to the input document screen we saw at the beginning of the case. We should now

see the form uploaded via the file and multiple file controls as shown next.

This is not the ideal way, however. ProcessMaker provides us with an Information

menu with which we can view information about a case. Click the Information button as

shown in the image on the right and select Uploaded Documents from the

drop- down displayed. This displays a list of the uploaded documents for the case

as shown in the next image . To return to the case, click the Close button beside the

Uploaded Documents tab or click the tab with the Case number.

In a process with multiple steps, as will be the case most of the time, users in other

tasks where the input document is not available as a step can always view the documents

that have been uploaded for a case using this approach.

Go ahead and complete the case by clicking the Next Step button, submitting the

dynaform, and clicking the Finish button.

Chapter 13 Input and Output dOCuments

286

 Viewing the Documents in the Document Management
System
When defining the input document, we specified a destination path for the uploaded

documents to be stored in the basic Document Management System (DMS) built into

ProcessMaker. Let us check how the files we uploaded were stored.

Chapter 13 Input and Output dOCuments

287

Click on Documents in the left menu to display the DMS directory structure. Expand

the Playground directory and you should see that the files we uploaded were saved

based on the path specified when creating the Input Document. We can also see that the

case variables @@my_radio and @@APP_NUMBER were correctly read and used in creating

the folder structure, as shown in the following image. The documents we uploaded

before filling the form do not have a value for @@my_radio and are placed in the “” folder,

while the one uploaded in the form after we had set a value for the variable CHQ is placed

in a folder with the matching name.

We have seen how input documents can be created, used, and stored in

ProcessMaker. Next we will look at output documents and then use that knowledge to

complete our Cash Advance and Expense Retirement process.

 Output Documents
As we mentioned earlier, output documents are those generated by a process. The

document can either be a .doc or a .pdf document. Let us return to the Process

Designer and select My First Process to create an output document to see how it works.

 Creating an Output Document
We begin by clicking the Create (+) icon beside Output Documents in the Main Toolbox

to display the form as shown here.

Chapter 13 Input and Output dOCuments

288

The fields in the form allow us to configure how the output document will be

generated. Let us look at each field.

Title: This is the title of the output document used to identify it in

the list of output documents.

Filename generated: This is the name of the file that will be

generated by the output document, and it can be composed using

variables from the variables selector or just given a static name.

Description: A description of the output document that will

be shown to users to give a general idea of the content of the

document that has been generated.

Report Generator: This is used to select the library that will be

used to generate the PDF document. There are two options, TCPDF

and HTML2PDF. The HTML2PDF version was used in earlier versions

of ProcessMaker but had a number of limitations such as large

file size and limited number of pages. For version 3.0 and above it

is recommended to use the TCPDF library, which addresses these

challenges.

Chapter 13 Input and Output dOCuments

289

Media: This is used to specify the page size of the document that

will be generated. The options consist of common paper sizes

such as Legal, Letter, A1, A2, A3, A4, and so on.

Orientation: Used to specify if the document should be portrait or

landscape.

Margin: This is used to specify the distance of the content of the

document from the edges of the paper in all directions. The value

of the margin is measured in millimeters.

Output Document to generate: This indicates the format in which

the document will be generated and the options are PDF, Doc or

both.

PDF Security: This allows you enable security features for the

generated PDF document if required. When set to Enabled, the

following additional fields are displayed to set up the security

features:

• Open Password: sets a password required for opening the

document.

• Owner Password: sets a password for changing the

document permissions.

• Allowed Permissions: sets the default permissions for the

document..

Enable versioning: Just like the input documents, this is used to

allow multiple versions of the document to be generated. This is

useful when the document is generated multiple times during a

case with changing data. With versioning enabled, you will be able

to see the different versions and the changes in the document over

time.

Destination Path: This is also the same as we saw for input

documents. It specifies the path in the DMS (Document

Management System) to store the generated document and can

be composed with variables from the case using the variable

selector.

Chapter 13 Input and Output dOCuments

290

Tags: Also like the input document, these are useful for adding

metadata to the document to make it easier to find during

searches.

By clicking on the generated file link: This is used to specify the

default behavior of the browser when the link to the generated

document is clicked. The options are to either download or open

the file. With the latter option, the browser must have a default

application configured for the file type, such as Adobe Acrobat for

PDF files. It is generally recommended to set it to download file.

If you are wondering how the output document gets its content, that is defined after

the document is created. Let us create an output document using the details in the

following table, and then we will see the editor for defining the content of the generated

document. In My first process, click the Create (+) icon beside Output Documents in the

Main Toolbox and fill in the following values:

Title my Output document

Filename generated demo-@@my_suggest

Description sample output document

Report Generator tCpdF

Media a4

Orientation portrait

Margin Leave all as 20

Output document to generate Both

PDF Security enabled

Open Password test123

Owner Password test123

Allowed Permissions Leave all unchecked

Enable Versioning Yes

Destination Path playground/output/@@my_radio/@@app_numBer

Tags demo, output doc

By clicking on the generated file link download the file

Chapter 13 Input and Output dOCuments

291

When you’re done, click the Save button to create the output document. The output

document is displayed in the Output Documents list as shown here.

Beside it are three buttons. The Edit button opens the form we filled when creating

the document and can be used to edit the settings of the document. The next button,

Open Editor, opens a WYSIWYG (What you see is what you get) editor that is used to

define the contents of the output document as shown next.

The content of the document can be interpolated with the values stored in the

variables for the case. To access the variables, click the variable selector in the editor

toolbar and a list of variables available in the process will be displayed. You can also

upload an HTML file as a template by clicking the Upload File button.

Since the template is basically an HTML file, you can click the HTML button in the

editor to open the HTML source code and edit as desired. The other icons in the toolbar

should be familiar from common editors. They include formatting options for the text

such as font type, font size, bold, underline, and so on. There are also icons for inserting

tables and images.

Chapter 13 Input and Output dOCuments

292

In the list of output documents, click the Open Editor button if you have not already

done so, and click the HTML icon in the toolbar of the editor. Paste the following code in

the HTML Source Editor and click the Update button.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.

w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

 <head>

 </head>

 <body>

 <p>My Output Document</p>

 <p>These are some of the form fields and their values</p>

 <p>What's your occupation: @@my_suggest</p>

 <p>What's your work email: @@my_textbox</p>

 <p>Tell us something: @@my_textarea</p>

 <p>Choose your language: @@my_dropdown</p>

 <p>Birthday: @@my_datetime</p>

 <p>Which sports do you watch: @@my_checkgroup</p>

 <p>How would you like to be paid: @@my_radio</p>

 <p></p>

 <p>

 List of inventory items

 (This demonstrates outputting a grid in an output document)

 </p>

 <table border="1" cellpadding="5"

 style="border-color: #000000; border-width: 1px; border-style: solid;">

 <thead>

 <tr>

 <th>Item</th>

 <th>Description</th>

 <th>Category</th>

 <th>Amount</th>

 </tr>

 </thead>

 <tbody>

 <!--@>my_grid-->

Chapter 13 Input and Output dOCuments

293

 <tr>

 <td>@@my_grid_item</td>

 <td>@@my_grid_description</td>

 <td>@@my_grid_category</td>

 <td>@@my_grid_amount</td>

 </tr>

 <!--@<my_grid-->

 </tbody>

 </table>

 <p></p>

 <p></p>

 </body>

</html>

The editor should display the template of the output document as shown next. It

is important to note that you do not need to use the HTML editor when creating your

output document. We are using the HTML editor because we want to display a grid in

the output document. Unlike other variables, the value in a grid variable is nested, and

we require a special syntax in order for the output document to recognize it and render it

appropriately.

Chapter 13 Input and Output dOCuments

294

To quickly explain the content of the output document, we have a title in the first line

with a larger font and bold text. In the following lines, we have the labels of some of the

controls in My First Form, written in plain text, and we use the variable selector to add

the variable name to the line. When the output document is generated, the variables

(such as @@my_suggest) will be replaced by the actual value filled in the case.

At the bottom of the document, we insert a table with columns representative of

some of the field in the my_grid variable in the form. The header for each column is

typed as plain text and we add a row for the actual values that will be filled in the form.

Since a grid can have multiple rows, we need to be able to represent that data in an

iterative manner.

ProcessMaker provides us a syntax for representing grids in dynaform, and you will

observe that in the code sample earlier, we have highlighted a section. This is the portion

that displays the table that renders the grid. If you are familiar with HTML, the code is

basically the same for a table, but the only difference is the <!--@>my_grid--> and <!-

-@<my_grid--> tags that we use to wrap the row containing the variables for the field in

the grid. These wrappers tell ProcessMaker that the variables between these two tags are

grid variables and should be iterated through the number of rows in the grid.

The opening tag is @>NAME_OF_GRID ,and the closing tag is @<NAME_OF_GRID. However,

because the HTML editor does not recognize incomplete tags like < or >, the tags are

wrapped as HTML comments, making it <!--@>NAME_OF_GRID--> and <!--@<NAME_OF_

GRID-->.

Click the Save button to save the changes and complete the output document setup.

Return to the Process Map and add the output document as a step after the dynaform in

the Request Cash Advance task as shown in the following image. With that done, we are

all set to test out the output document.

Chapter 13 Input and Output dOCuments

295

Go to Home in the main menu and under Cases select New Case and initiate a new

case for My First Process (Request Cash Advance). Disregard the upload document step

and click the Next button. On the dynaform, fill out all the fields in the form with the

exception of the file controls. For the grid, add a couple of rows and fill in values for the

item, description, category and amount columns. Click the Submit Form button and

if you still have debug mode enabled, click Continue. You should now see the output

document screen as shown next.

We can see that both .doc and .pdf versions of the document were generated. Click

the Open link beside each type to download the generated document. The name of the

Chapter 13 Input and Output dOCuments

296

downloaded file should include the value entered in the my_suggest variable. If you

try opening the PDF document, you should be prompted to enter a password. This is

expected, since we enabled security for the output document. You will also notice that

the values are all being wrapped in double quotes. That is because we used the @@ prefix

for the variable names. To display the variable values without the quotes, use the @=

prefix to return the values in their original format.

You will also observe that the values for @@my_checkgroup and @@my_textarea were

not interpolated in the template.

Chapter 13 Input and Output dOCuments

297

If we check the values of these variables in the debugger, we will notice that they

are arrays (the textarea shows as an array because we are setting its value in a trigger—

GetGroupUID—that is returning an array). You will also observe in the debugger that

most of the variables in our form have an associated label variable that contains a text

description of the values stored in the variable. For example, the my_radio variable in

the following image has a value CRD, and the associated label variable, my_radio_label,

stores the label of the value stored in the variable, Credit Card.

Armed with this new knowledge, it is obvious that we can improve the documents

generated in the output document by making a few changes to the output document

template. Click the Next Step and Finish buttons to close the current case.

Open My First Process in the designer and click Output Documents in the main

toolbox. Open the output document we just created in the editor and change the prefix

for the variables to @= and use the associated label variable variant for the first section

of the document as shown in the following image. For example, @@my_suggest becomes

@=my_suggest_label. When you’re done, save your changes.

Chapter 13 Input and Output dOCuments

298

Now return to Home and run another case. Disregard the input document step as

before and in the dynaform, fill out the fields we have listed on the output document.

Create multiple rows for the grid and fill out the item, description, category, and amount

columns in the grid as we did before. When done, click the Submit Form button, and the

output document step is displayed. Click the Open links to download the files. Open the

files (enter the password for the .pdf document) and you will see that all the variables

are now properly interpolated and the double quotes are gone, as shown in the next

image.

Chapter 13 Input and Output dOCuments

299

Chapter 13 Input and Output dOCuments

300

You will agree that this is a better output than the previous one. Before completing

the case, click the Previous Step link to go back to the form and make changes to the

value of the fields in the form and submit it again. This will generate a new version of

the output document. Click the Next Step, Finish, and Continue buttons to complete the

case.

We set up the output document to be saved to the Playground folder in the DMS just

as we did for the input document. Click Documents in the left sidebar and expand the

Playground folder. You should see a new output folder created as shown here.

If you changed the value of my_radio variable when we went back to make changes

to the form, there will be more than one folder with the same case number, but the

document will be stored in the folder with the most recent value of my_radio variable.

We can also see that the version of the generated document has been updated to 2.

That concludes our discussion of output documents, but you can explore the topic

further on the ProcessMaker wiki, at http://wiki.processmaker.com/3.0/Input_

Documents and http://wiki.processmaker.com/3.0/Output_Documents. In the next

chapter, we will return to our Cash Advance and Expense Retirement process and use

the knowledge we have gained from this detour into triggers, input documents, and

output documents to complete the design of the process.

Chapter 13 Input and Output dOCuments

http://wiki.processmaker.com/3.0/Input_Documents
http://wiki.processmaker.com/3.0/Input_Documents
http://wiki.processmaker.com/3.0/Output_Documents

301
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_14

CHAPTER 14

Completing the Process
A quick recap of what we have done so far. We began by modeling the Cash Advance and

Expense Retirement process. In our model, we split the process into two parts: the Cash

Advance Request and the Expense Reporting. We then proceeded to build the forms for

the cash advance part of the process and assign them to the tasks. We also set up users,

groups, and departments in the system to explore the different case assignment methods

and ran a few cases to see how they worked.

In the process, we created a couple of basic triggers to help us with some of the

scenarios we explored. We stopped the cases we initiated at the Disburse Advance task,

however, because the next task, Report Expense, is the first task in the second half of the

process and was yet to have any steps or users assigned to it.

When designing the process, one consideration was that we will want a user to be

able to report an expense without having requested an advance. To make this possible,

we made the Report Expense task a starting task too by linking it to a start event in the

Process Map. To complete the process, we will build the forms for the remaining tasks,

define additional triggers, and setup assignment rules.

You might have noticed that as we progressed through the test cases, we were not

updating the Signoff/Approval section of the form with the details of the user. We will

create triggers to help do this and set conditions to make sure that the triggers only

execute when the user has approved the request. In addition, we will use triggers to

pre- fill some of the information on the form such as the requesting officer and date of

the request. We will also setup input documents for the user to upload receipts and

generate Expense Reports as output documents. Once we have completed the process,

we will add a few enhancements like email notifications, escalations, theming, and more.

Let us dive in.

302

 Building the Additional Forms
By now, you are already proficient with working with dynaforms, so we will not be as

explicit with the instructions as we were in earlier chapters. We will be building three

additional forms for the Expense Reporting tasks:

Expense Report Form: This will be filled in by the user to report

expense details.

Expense Report Approval Form: This will be used by the

supervisor to approve the expense report.

Expense Report Processing Form: This will be used by the

Finance officers to process the expense report.

The forms will be based on the Expense Retirement form we saw in the Sample

workflow at the beginning of the book.

Since the Expense retirement may be a continuation of a cash advance request, we

will provide a way for data already filled when requesting the cash advance to be readily

available for the expense report but not editable. We will not be creating the variables in

advance as we did with the Cash Advance forms; rather we will create them as needed in

the Dynaform Designer. Let us get started.

Open the Cash Advance and Expense Retirement process in the Process Designer

and click the Create (+) icon beside Dynaforms in the Main Toolbox. Create a new

dynaform with the following properties and open it in the Dynaform Designer:

Title: Expense Report Form

Description: This form will be filled in by the employee reporting

an expense

Next, import the Cash Advance Request form we exported earlier so we don’t have

to start from scratch. This way, we already have the comments functionality and a basic

layout in place for the new form.

Chapter 14 Completing the proCess

303

 Modifying the Imported Form
With the form successfully imported, make the following changes to the form to convert

it to the Expense Report Form:

 1. Select the title control in the first row and change the id

property to expense_form_title and label property to Expense

Retirement.

 2. Select the subtitle control in the second row and change the id

property to expense_subtitle1 and label property to Expense

Details.

 3. Select the Request Date datetime control in the third row and in

the properties panel on the left, clear the request_date variable

associated with the control by clicking the X icon beside it. Click

Yes in the confirm dialog displayed. Next, click the ellipsis beside

the Variable property and create a new datetime variable named

report_date. Save the variable. Lastly, change the label property

to Report Date.

 4. Leave the Employee Name and Department fields unchanged.

 5. Delete the Requested Amount field in the right column of the

fourth row.

 6. Drag the Amount Advanced field from the Disbursement Details

section to the right column of the fourth row where we just deleted

the Requested Amount field. Change the display mode property of

the Amount Advanced field to Edit and make it required.

 7. Leave the Reason for Expenses text area unchanged.

 8. Place a new row below the Reason for Expense row by dragging

and dropping the empty row at the bottom of the row and above

the Disbursement Details section.

 9. Place a grid control in the row you just added (it should be

the sixth row). In the Create/Select Variable modal, name the

variable expense_grid and save it. Select the grid and change its

Chapter 14 Completing the proCess

304

Title property to Expense Breakdown. Also change the Layout

property to Static.

 10. Place a textarea control in the grid and set the id property to

item_description. Change the label to Description, make it required,

and set the Rows property to 2 and the column width to 500.

 11. Place a checkbox control beside the textarea in the grid and set

the id property to item_receipt. Change the label to Receipt
Attached? and the column width to 150.

 12. Place a textbox control beside the checkbox in the grid and set the

id property to item_amount. Change the label to Amount, make

it required, and change the Function property to Sum and the

column width to 150.

 13. Place a new row under the grid and set its col-span property to 6 6.

 14. Place a textbox control in the left column of the newly added row.

In the Create/Select Variable modal, create a new float variable

named amount_to_reimburse and save it. Set the label to Amount
to be reimbursed and make it required.

 15. Place a textbox control in the right column of the new row. In the

Create/Select Variable modal, create a new float variable named

amount_to_refund and save it. Set the label to Amount to be
refunded and make it required.

 16. Select the Disbursement Details (Finance) subtitle and

change its id property to expense_subtitle2 and its label to

Reimbursement/Refund Details (Finance).

 17. Place a textbox control in the left column of the ninth row (the row

below the subtitle) and in the Create/Select Variable modal, create

a float variable named amount_reimbursed and save it. Set the

label to Amount Reimbursed and the display mode to Disabled.

 18. Delete the Date Advanced datetime control in the right column.

Chapter 14 Completing the proCess

305

 19. Place a textbox control in the right column and in the

Create/Select Variable modal, create a float variable named

amount_refunded, and save it. Set the label to Amount Refunded

and the display mode to Disabled.

 20. Place another empty row above the Comments subtitle and set its

col-span property to 6 6.

 21. Place a radio control in the left column and in the Create/Select

Variable modal create a string variable named payment_mode and

in the variable settings, create two options as shown here and

save it.

Key Label

Csh Cash

ChQ Cheque

Set the label to Payment Mode and the display mode to Disabled.

 22. Place a textbox control in the right column beside the Payment

Mode field and in the Create/Select Variable modal, name the

variable transaction_ref and save it. Set the label to Transaction
Reference and its display mode to Disabled.

 23. Scroll down to the Signoff/Approval section of the form and

select the Requested By field. In the properties panel, clear the

requestor_name variable associated with the control. Click the

ellipsis beside the Variable property, create a new string variable

named prepared_by and save it. Change the label of the control to

Prepared By.

 24. Select the Date and time field in the same row and clear the

requestor_datetime variable associated with it. Click the

ellipsis, create a new string variable named preparer_datetime,

and save it.

Chapter 14 Completing the proCess

306

 25. Select the Approved By field and in the properties panel, clear

the approver_name variable associated with the control. Click the

ellipsis, create a new string variable named approved_by, and

save it.

 26. Select the Date and time field in the same row and clear the

approver_datetime variable associated with it. Click the ellipsis,

create a new string variable named approved_datetime, and

save it.

 27. Select the Disbursed By field and in the properties panel, clear

the disbursed_by variable associated with the control. Click the

ellipsis, create a new string variable named processed_by, and

save it. Change the label to Processed By.

 28. Select the Date and Time field in the same row and clear the

disbursed_datetime variable associated with it. Click the ellipsis,

create a new string variable named processed_datetime and

save it.

 29. Delete the label control above the Submit button and its

containing row.

 30. Select the Submit Request button and change the label to Submit

Report.

Save your changes and preview the form. It should now look like the following image.

Close the preview mode and export the form. Save the Expense Report Form.json file

to your system. We will be importing it shortly to create the remaining two forms. Close

the Dynaform Designer.

Chapter 14 Completing the proCess

307

 Clone the Form
Just as we did with the forms we created for the Cash Advance part of the process, we

will create the other two forms by cloning the first and making a few modifications to it.

Create a new dynaform with the title Expense Report Approval Form and description

This form will be used by the supervisor to approve or reject the expense report. Save

the form and open it in the Dynaform Designer.

Import the Expense Report Form.json file we just exported. With the form

successfully imported, we will proceed to make all the fields in the Expense Details

section read-only by setting their display mode to Disabled. This is to ensure that the

Chapter 14 Completing the proCess

308

supervisor cannot change the information entered by the employee submitting the

report. Select the following fields in the form and change their display mode property to

Disabled:

 1. Report Date (datetime).

 2. Employee Name (textbox).

 3. Department (dropdown).

 4. Amount Advanced (textbox).

 5. Reason for Expense (textarea).

 6. Expense Breakdown (grid): We only have to disable the grid and

the child controls will be disabled, since their display mode is set

to inherit the parent display mode.

 7. Amount to be reimbursed (textbox).

 8. Amount to be refunded (textbox).

Next we need to add functionality for the supervisor to be able to approve or reject

the report. We will be using the button-and-JavaScript approach.

 1. Select the row containing the Submit button at the bottom of the

dynaform and change its col-span property to 6 6.

 2. Select the row under it containing the hidden control and change

its col-span property to 6 6.

 3. Select the Submit Report button and change its id and name

properties to approve_button and its label to Approve Report.

 4. Place a submit control in the right column beside the Approve

Report button. Select it and change its id and name properties to

reject_button and its label to Reject Report.

 5. Split the row containing the current_user hidden control in to two.

Place a hidden control in the right column beside the current_user

hidden control. In the Create/Select Variable modal, switch to the

Select Variable option and select the is_approved variable.

Chapter 14 Completing the proCess

309

 6. Select the form by clicking the gray border of the dynaform

and click the Edit button beside its JavaScript property to open

the JavaScript editor. Append the following code after the code

already in the editor and click the Save button.

//Approve or Reject handler

function approval(action) {

 if (confirm('Are you sure you want to ' + action + '?'))

{

 if (action === 'APPROVE') {

 $("#is_approved").setValue(1);

 $("form").submit();

 }

 if (action === 'REJECT') {

 $("#is_approved").setValue(0);

 $("form").submit();

 }

 }

 else return false;

}

//Approve form

$("#approve_button").find("button").on("click", function() {

 return approval('APPROVE');

});

//Reject form

$("#reject_button").find("button").on("click", function() {

 return approval('REJECT');

});

Click the Preview button to view and save the changes, and the form should display

as shown next.

Chapter 14 Completing the proCess

310

Close the preview and close the Dynaform Designer. Create another dynaform with

the title Expense Report Processing Form and description This form will be used by
the finance officers to process the expense report. Save it and open it in the designer.

Import the Expense Report Form.json file again and make the following modifications

to the form.

Disable all the fields in the Expense Details section of the form as we did for the

Expense Report Approval Form earlier. Next, change the display mode of the following

fields in the Reimbursement/Refund Details section to Edit and make them required.

 1. Amount Reimbursed (textbox)

 2. Amount Refunded (textbox)

Chapter 14 Completing the proCess

311

 3. Payment Mode (radio)

 4. Transaction Reference (textbox)

Preview the form to view and save the changes. Close the preview and close the

Dynaform Designer. Our forms are ready, and the next step is to use them as steps in the

appropriate tasks.

 Assign the Forms to Tasks
In the Process Map, right-click the Report Expense task and select Steps. In the Steps

for Task screen, drag the Expense Report Form under Assigned Elements and it should

be the first step in the task. Since the Report Expense task can also be a starting task,

we will want to set the case_owner variable for cases that start at this task and are not

a continuation of the Cash Advance Request. To do that, we will set the SetCaseOwner

trigger to execute before the Expense Report Form.

However, we do not want to execute the trigger if the case_owner variable is already

set. To ensure that the trigger is only fired if case_owner is empty, we add a condition

to the trigger. Click the Condition button beside the SetCaseOwner trigger in the Before

Dynaform section of the Expense Report Form step, and in the modal that appears, enter

the following code and click Save.

@@case_owner == ''

Remember that a trigger or step with a condition will only be executed or performed

if the condition evaluates to True. In this case, the SetCaseOwner trigger will only be

executed if the case_owner variable is empty. Triggers with a condition are identified

with an asterisk on the Condition button. Close the Steps for Task screen.

Next, right-click the Approve Expense Report task and select Steps. Drag the Expense

Report Approval Form under Assigned elements and close the modal. Repeat the same

process and assign the Expense Report Processing Form to the Process Expense Report

task.

Chapter 14 Completing the proCess

312

 Define the Routing Rule
This part of the process also has a decision gateway after the Approve Expense Report

task, and we need to define the conditions for each route. Right-click the Exclusive

Gateway element beside the Approve Expense Report task and select properties. Set the

condition for the Report Expense route to

@@is_approved == '0'

And the condition for the Process Expense Report route to

@@is_approved == '1'

Click the Save button.

 Configure Assignment Rules
Next we define which users can work on each task and how the specific user for each

case should be selected. Beginning with the Report Expense task, we will set the Case

Assignment method to Value Based Assignment and the variable for value based

assignment field to @@case_owner just as we did for the Request Cash Advance task.

This is to ensure that the case is always returned to the user who started the case if it is

rejected. We also make the task available to all users by assigning the Employees group

to the task under Users. Click the Save button.

Chapter 14 Completing the proCess

313

With the assignment rule for the task set up as shown here, let us proceed to the next

task. For the Approve Expense Report task, set the Case Assignment method to Reports

to, and under the Users tab, place the Supervisors group in the Assigned users list. Save

your changes.

Finally, for the Process Expense Report task, set the case assignment method to

Self- Service and in the Users tab, place the Finance Officers group in the Assigned Users

list. Save your changes. We now have a process that can be run from start to finish,

but we are not yet done. We need to provide a way for the users to attach receipts as

supporting documents to their expense reports.

 Set Up Receipt Upload
To enable receipt uploads for the process, we first have to create an input document for

the purpose. In the Main Toolbox of the Process Map, click the Create (+) icon beside

Input Documents and create a new input document with the following properties.

Title receipts

Document Type Digital

Description Digital (scanned/images) copies of receipts for

items listed in the expense report.

Enable Versioning no

Destination Path expense reports/Case @=app_nUmBer/receipts

Tags receipt

Allowed File Extensions *.jpg,*.png,*.pdf

Maximum File Size 1000

Unit KB

With the input document created, we need to assign it to the Report Expense task

as a step. Right-click the Report Expense task, select Steps, and drag the Receipts input

document to Assigned Elements after the Expense Report Form, making it the second

step for the task.

Chapter 14 Completing the proCess

314

 Generate the Expense Report
With our input document all set up, let us configure the output document. As per our

requirement, we want to generate a soft copy of the processed report. To do so, we will

require an output document. Create a new output document from the Main Toolbox

with the following properties.

Title expense report

Filename generated expensereport- Case-@=app_nUmBer

Description generated expense report for filing

Report Generator tCpDF

Media a4

Orientation portrait

Margin leave all as 20

Output document to generate pdf

PDF Security Disabled

Enable Versioning no

Destination Path expense reports/Case @=app_nUmBer

Tags report

By clicking on the generated file link Download the file

Once the output document is created, proceed to edit the template by clicking the

Open Editor button. We will be getting a bit fancy here. The objective is to replicate

the fields on the form in the output document as shown next. We also add a logo and

background colors to the subtitles. Can you try to create this output document using the

editor? You can get the URL of the logo by right-clicking it in the browser and select Copy

Image Address (in Chrome) or Copy Image Location (in Firefox) from the context menu.

Also remember to wrap the grid variables with the special syntax.

Chapter 14 Completing the proCess

315

Alternatively, you can click the HTML button in the editor and paste the following

code into the HTML Editor and save your changes. Remember to update the logo URL to

match the URL for your installation if different.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.

w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

 <head>

 </head>

 <body>

 <p>

 <img align="right" width="225" height="49" src="/images/processmaker.

logo.jpg" alt="ProcessMaker Logo"/>

 </p>

 <p></p>

 <p>Expense Report @#APP_NUMBER</p>

 <table border="0" cellpadding="5" style="width:100%;">

Chapter 14 Completing the proCess

316

 <tbody>

 <tr style="background-color: #3397e1;">

 <td colspan="4">

 Expense Details

 </td>

 </tr>

 <tr>

 <td>Report Date</td>

 <td>@=report_date_label</td>

 <td>Employee Name</td>

 <td>@=employee_name_label</td>

 </tr>

 <tr>

 <td>Department</td>

 <td>@=department_label</td>

 <td>Amount Advanced</td>

 <td>@=amount_advanced_label</td>

 </tr>

 <tr>

 <td>Reason for Expenses</td>

 <td colspan="3">@=expense_reason_label</td>

 </tr>

 <tr>

 <td colspan="4">Expense Breakdown</td>

 </tr>

 <tr>

 <td colspan="4">

 <table border="1" cellpadding="5">

 <tbody>

 <tr style="background-color: #eeeeee;">

 <td>Description</td>

 <td>Receipt Attached</td>

 <td>Amount</td>

 </tr>

 <!--@>expense_grid-->

Chapter 14 Completing the proCess

317

 <tr>

 <td>@=item_description_label</td>

 <td>@=item_receipt_label</td>

 <td>@=item_amount_label</td>

 </tr>

 <!--@<expense_grid-->

 </tbody>

 </table>

 </td>

 </tr>

 <tr>

 <td>Amount to be reimbursed</td>

 <td>@=amount_to_reimburse_label</td>

 <td>Amount to be refunded</td>

 <td>@=amount_to_refund_label</td>

 </tr>

 <tr style="background-color: #3397e1;">

 <td colspan="4">

 Reimbursement/Refund Details (Finance)

 </td>

 </tr>

 <tr>

 <td>Amount Reimbursed</td>

 <td>@=amount_reimbursed_label</td>

 <td>Amount Refunded</td>

 <td>@=amount_refunded_label</td>

 </tr>

 <tr>

 <td>Payment Mode</td>

 <td>@=payment_mode_label</td>

 <td>Transaction Reference</td>

 <td>@=transaction_ref_label</td>

 </tr>

 <tr style="background-color: #3397e1;">

 <td colspan="4">

Chapter 14 Completing the proCess

318

 Signoff/Approval/Comments

 </td>

 </tr>

 <tr>

 <td>Prepared By</td>

 <td>@=prepared_by_label</td>

 <td>Date and Time</td>

 <td>@=preparer_datetime_label</td>

 </tr>

 <tr>

 <td>Approved By</td>

 <td>@=approved_by_label</td>

 <td>Date and Time</td>

 <td>@=approved_datetime_label</td>

 </tr>

 <tr>

 <td>Processed By</td>

 <td>@=processed_by_label</td>

 <td>Date and Time</td>

 <td>@=processed_datetime_label</td>

 </tr>

 <tr>

 <td>Comments</td>

 <td colspan="3">@=comments_label</td>

 </tr>

 </tbody>

 </table>

 </body>

</html>

With the output document created, we then set it up as a step after the Expense

Report Processing Form in the Process Expense Report task. Right-click the Process

Expense Report task, select Steps, and drag the Expense Report Output document under

Assigned Elements, ensuring that it is the second step.

We now have a complete process that can be run from beginning to end, but it is still

missing an important component. We need to be able to update the forms with the name

Chapter 14 Completing the proCess

319

of the user who performed a specific task and when. This information is automatically

logged by ProcessMaker, but we would also like to display it on the form as a kind of

signature.

 Add Some Triggers
To update the signoff/approval sections of the form, we will use a trigger to get the

name of the currently logged-in user and the current date and time, and update the

appropriate fields in the form with the values. For the Approval tasks, we will only

execute the triggers if the is_approved variable is set to true (1). Go ahead and create the

following triggers in the process.

Title: UpdateCashAdvanceRequestor
Description: Timestamps the date and time a request is submitted and the name of

the requestor.

Code:

 $data = userInfo(@@USER_LOGGED);

 @@requestor_name = $data['firstname'] . ' ' . $data['lastname'];

 @@requestor_datetime = getCurrentDate() . ' ' . getCurrentTime();

Title: UpdateCashAdvanceApprover
Description: Timestamps the date and time a request is approved and the name of

the approver.

Code:

$data = userInfo(@@USER_LOGGED);

 @@approver_name = $data['firstname'] . ' ' . $data['lastname'];

 @@approver_datetime = getCurrentDate() . ' ' . getCurrentTime();

Title: UpdateCashAdvanceDisburser
Description: Timestamps the date and time a request is disbursed and the name of

the disburser.

Code

$data = userInfo(@@USER_LOGGED);

 @@disbursed_by = $data['firstname'] . ' ' . $data['lastname'];

 @@disbursed_datetime = getCurrentDate() . ' ' . getCurrentTime();

Chapter 14 Completing the proCess

320

Title: UpdateExpenseReportPreparer
Description: Timestamps the date and time a report is prepared and the name of the

preparer.

Code

$data = userInfo(@@USER_LOGGED);

 @@prepared_by = $data['firstname'] . ' ' . $data['lastname'];

 @@preparer_datetime = getCurrentDate() . ' ' . getCurrentTime();

Title: UpdateExpenseReportApprover
Description: Timestamps the date and time a report is approved and the name of

the approver.

Code

$data = userInfo(@@USER_LOGGED);

 @@approved_by = $data['firstname'] . ' ' . $data['lastname'];

 @@approved_datetime = getCurrentDate() . ' ' . getCurrentTime();

Title: UpdateExpenseReportProcessor
Description: Timestamps the date and time a report is processed and the name of

the processor.

Code

$data = userInfo(@@USER_LOGGED);

 @@processed_by = $data['firstname'] . ' ' . $data['lastname'];

 @@processed_datetime = getCurrentDate() . ' ' . getCurrentTime();

You will observe that the triggers are pretty much the same, the only difference being

the variables in which we are storing the values. The code uses the built-in UserInfo

function, which takes the UID of the currently logged-in user to get the details of the

user and stores it in a temporary PHP variable $data. The result of the function is

an array, and we then look up the firstname and lastname of the user, concatenate

them and store it in a case variable (e.g. processed_by). Finally, we use the built-in

getCurrentDate and getCurrentTime functions to get the current date and time,

concatenate them and store it in another case variable (processed_datetime).

We will also need a trigger to update the value of the current_user variable used

for the comments on our forms to the firstname and lastname of the logged-in user for

every task. Create another trigger with the following details:

Chapter 14 Completing the proCess

321

Title: SetCurrentUser
Description: Sets the name of the currently logged on user for use in comments.

Code:

$data = userInfo(@@USER_LOGGED);

 @@current_user = $data['firstname'] . ' ' . $data['lastname'];

With our triggers ready, we need to add them as steps in the respective tasks.

Since the triggers are signoff triggers, we want them to be executed as the last step in

the task, so we will place them to execute After Routing. Right-click the Request Cash

Advance task and place the SetCurrentUser trigger in the Before Dynaform step and the

UpdateCashAdvanceRequestor trigger in the After Routing step as shown next.

Next, for the Approve Advance task, place the SetCurrentUser trigger in the Before

Dynaform step of the two dynaforms. Remember that we have two dynaforms for this

task, and either of them could be used, so in order to ensure that the trigger is executed

for both forms, we have to place it in both Before Dynaform steps.

Then place the UpdateCashAdvanceApprover trigger in the After Routing step of the

Approve Advance task. Because we want to update the approver only if the advance was

approved, click the Condition button beside the UpdateCashAdvanceApprover trigger,

enter the following condition, and save it:

Chapter 14 Completing the proCess

322

@@is_approved == '1'

Next, we place the SetCurrentUser trigger in the Before Dynaform step and the

UpdateCashAdvanceDisburser trigger in the After Routing step of the Disburse Advance

task.

Moving to the Expense Reporting tasks, place the SetCurrentUser trigger in the

Before Dynaform step and the UpdateExpenseReportPreparer trigger in the After

Routing step of Report Expense task.

Just as we did with the Cash Advance Approval, place the SetCurrentUser trigger in

the Before Dynaform step and the UpdateExpenseReportApprover trigger in the After

Routing task of the Approve Expense Report task and set the following condition for the

UpdateExpenseReportApprover trigger.

@@is_approved == '1'

Finally, place the SetCurrentUser trigger in the Before Dynaform step and the

UpdateExpenseReportProcessor trigger in the After Dynaform step of the Process

Expense Report task.

We are placing the trigger after the form because we want the name of the processor

to be displayed on the output document generated in the next step. And we are done!

That was quite repetitive, but on the brighter side, we are now ready to give our process

another spin and this time, run the cases to completion.

 Test the Changes
Returning to where we left off at the end of the first part of the process, log in in another

browser as Amy Alexander and open one of the cases in the inbox with the Disburse

Advance task. If you scroll to the bottom of the form, you will see that the signoff/

approval section has not been updated. We have, however, fixed this with the triggers we

just created. To confirm that our fix works, let us run a new case from the beginning.

Log out as Amy Alexander and log in as Justin Sanchez and open one of the returned

cases in the inbox. Alternatively, you can also start a new Cash Advance and Expense

Retirement (Request Advance) case. With the case open, ensure that all required fields

are filled. Also set the department to Sales (Justin Sanchez is in the Sales department,

and it would be nice to automatically set this without the user filling it out.). Type a

comment in the field labeled “Enter your comment” and click the Add Your Comment

Chapter 14 Completing the proCess

323

button beside it. The comment should be added to the Comments box with the name

of the current user (Justin Sanchez in this case) prefixed to it, as shown here. This

demonstrates that our SetCurrentUser trigger works as expected.

First test passed. Submit the request, click the Continue button on the routing

screen, and log out as Justin Sanchez. Log in as Julia Smith, the supervisor, and open the

case just sent by Justin Sanchez in the inbox. Scroll to the bottom of the form and you

should see that the Requested By field in the Signoff/Approval section has been updated.

Enter a comment stating a reason for rejection and reject the request to send it back

to Justin Sanchez. Log out as Julia Smith. We want to test that the Approved By field is not

updated when the request is rejected. Log in again as Justin Sanchez and open the case

that was rejected by Julia Smith. Scroll to the bottom ,and the Approved By field should

still be empty and in the comments section, we should see the rejection reason entered

by the supervisor as shown next. Second test passed. Submit the request again and log

out as Justin Sanchez.

Chapter 14 Completing the proCess

324

Log in as Julia Smith, open the case from the inbox, enter some comments and this

time, approve the request. The request should be routed to the Finance - Sales group as

we configured earlier. Log out as Julia Smith and log in as Amy Alexander.

Go to the Unassigned Cases list and claim the case just sent by Julia Smith. Once the

case opens, scroll to the bottom and you should see that the Approved By field is now

updated when the request is approved. This shows that the condition set on the trigger

works as expected. Fill in the required fields (Amount Advanced and Date Advanced),

add comments, and submit the request. The routing screen should show that the case is

now being routed back to Justin Sanchez to fill out an expense report. Click the Continue

button and log out Amy Alexander.

So, we assume Justin Sanchez has received the advance, made some expenses and

is now ready to submit an expense report. Log in as Justin Sanchez, go to the inbox, and

open the case with the task set to Report Expense sent by Amy Alexander. We should

see the Expense Report Form we designed earlier. You will also notice that some of the

fields have been prefilled with the details from the Cash Advance such as the Amount

Advanced and the Reason for Expenses. However, the user can edit these fields and

make changes, which should not be the case. We will fix that when we explore ways to

enhance the process in the next chapter. For now, we will trust that Justin will not alter

any figures.

Fill in the remaining required fields in the Expense Details section of the form,

entering a couple of values in the Expense Breakdown grid. The total amount is

automatically calculated and displayed. If the total amount is less than amount

advanced, then Justin Sanchez should fill the difference in the Amount to be refunded

field, else the difference should be entered in the Amount to be reimbursed field. You

might be wondering if this calculation should not be done automatically to avoid errors,

and you are right. We will enhance our forms later to do that.

Chapter 14 Completing the proCess

325

With the fields filled in, add some comments if desired and submit the report.

We should now see the Receipts upload screen. This shows that the configured input

document step works as expected. Go ahead and upload some receipts and add the

comments as shown next.

Chapter 14 Completing the proCess

326

Even though a user may have indicated that receipts were attached in the grid, the

user can move past this step without uploading any documents. We could use a trigger

to check whether any input documents have been uploaded and show an error message.

Alternatively, we could add the input document as file controls to the grid and use some

JavaScript to check if a file is uploaded for rows where the receipt uploaded checkbox is

checked. All that, however, is outside the scope of this book. Click the Next Step button,

and the case should be routed to the supervisor to Approve the report. Click Continue

and log out as Justin Sanchez.

Before we approve the report, you will recall that we also made the Report Expense

task a starting task. This is to allow users to report out-of-pocket expenses for which

an Advance was not given. Let us log in as Wanda Marshall in HR and report such an

expense. Once logged in, start a new Cash Advance and Expense Retirement (Report

Expense) case. We can see that the Expense Retirement form is displayed, just like the

one we saw for the continued cash advance, with the only difference being that the fields

from the cash advance are not pre-filled. Leave the form unfilled for now and log out

as Wanda Marshall. We will return to complete the form later when we have added the

enhancements.

Log in as Julia Smith and open the case with the Approve Expense Report task

sent by Justin Sanchez. The Expense Report Approval form is displayed with buttons

to approve or reject the report at the bottom. To view the uploaded documents, click

the Information button at the top of the case and select Uploaded Documents in the

dropdown. This displays the uploaded documents tab, but—Surprise!—there are no

uploaded documents. This is because the supervisor does not have permission to view

the documents. We will remedy this later when we explore case permissions. Go ahead

and close the Uploaded documents tab and approve the report. The routing screen

should show that the case is being routed to the Process Expense Report task and is

unassigned. Click Continue and log out as Julia Smith.

Finally, log in as Amy Alexander and claim the case from the Unassigned cases

list. We are assuming that the Finance officer will have posted the transaction on the

accounting system and then filled out the transaction reference from the accounting

system on the form. Go ahead and fill in the required fields for the Finance officer:

Amount Reimbursed, Amount Refunded, Payment Mode, and Transaction Reference.

You can enter comments if desired and click the Submit button. The Output Document

screen for our generated expense report is displayed as shown here.

Chapter 14 Completing the proCess

327

Click the Open link to download the generated PDF file. The generated output

document should look like the following image.

Chapter 14 Completing the proCess

328

Chapter 14 Completing the proCess

329

Click the Next Step and then Finish buttons to complete the process. The generated

and uploaded documents for the case should also have been successfully saved to

the DMS, and if you click the Documents menu in the left pane, you should see a new

Expense Reports folder, which when expanded should show a folder with the case

number containing the generated document and the uploaded receipts in a receipts

folder.

We have now successfully run the Cash Advance and Expense Retirement process

from beginning to the end. At this point, you should be able to think of some processes

you can try your hands at to practice what you have learned so far. Although the process

we have built is complete, it could use a number of improvements, and I am sure you can

think of some already. In the next chapter, we will add the improvements we hinted at

when testing and more.

Chapter 14 Completing the proCess

331
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_15

CHAPTER 15

Enhancing the Process
Now that we have a complete Cash Advance and Expense Retirement process designed

on ProcessMaker, there has been an eager adoption of the process as employees are able

to make requests and report expenses from the comfort of their seats without having to

carry forms around seeking approvals. We have, however, received some feedback on

what users feel are the shortcomings of the new process. Some of the feedback follows.

 Feedback
Feedback came from Finance Officers, supervisors, and employees.

 Finance Officers
We have no way of knowing a particular employee’s request just by looking at the cases

in our queue, and when there is a need to treat a specific request urgently, we have

to open each case one after the other to find the exact case. We would like to be able

to know the owner of a request and the amount without having to claim or open the

request.

Also, when disbursing cash advances, some of our officers mistakenly pick a date

in the future as date advanced. We would like to ensure that an officer cannot select a

future date. Lastly, some employees reporting expense on a cash advance make changes

to the expense reason and amount advanced, making it difficult to reconcile. Can we

make the fields carried over from the cash advance request immutable in the expense

report form?

332

 Supervisors
We would like to be notified when a case is assigned to us. We often have our direct

reports calling us to let us know that there is a case they need us to approve. Also,

when reviewing expense reports, we are unable to see the documents uploaded by the

employee.

We would also like to know if it is possible to send a message to the requesting

employee without having to send back the request or report. Sometimes we just need

some clarification, and it would be great if the correspondence can be linked to the case,

just like the comments on the form.

 Employees
It would be nice if some of the fields, such as employee name and department, can

be automatically filled when making a request or submitting a report. Also, when

submitting the expense report, can the calculations for reimbursement/refund be done

automatically? Finally, we notice that Finance officers sometimes do not claim cases on

time. We would like an escalation email to be sent to the Finance manager if a case is not

claimed by an officer within the stipulated SLA (Service Level Agreement).

Reviewing the feedback from our users, we can distill the required improvements to

the process into the following areas:

 1. Case labels: adding information to cases in the case list

 2. Email notifications: notifying the next assigned user

 3. Prefilling form fields with triggers

 4. Setting datetime control properties

 5. Dynaform logic in JavaScript: performing calculations and

conditionally disabling fields

 6. Case Permissions and Case Notes

 7. Escalating unclaimed cases

Let us proceed to look at these areas in detail and address the feedback from our

users. We will add the enhancements first and when done, test them together.

Chapter 15 enhanCing the proCess

333

 Case Labels
Case labels are used to add customizable title and description to cases to make them

easy to identify in a list of cases. The label of a case can change over the life of the case,

but is often left unchanged for most processes. In our Cash Advance and Expense

Retirement process, we will set an initial case label for the Cash Advance part of the

process and then change it for the Expense Report part.

Let us set the case label for the Cash Advance request. Right-click on the Request

Advance task and select the Properties option. In the Activity properties screen, select

the Case Label tab as shown here.

Enter the following values for the title and description and click the Save button:

Title: Cash Advance Request for @=amount_requested by @=employee_name

Description: @=employee_name is requesting @=amount_requested for this purpose:

@@expense_reason

Chapter 15 enhanCing the proCess

334

Now when a Cash Advance request is submitted, we should be able to see the name of

the employee and amount requested directly from the case list. Next, let us update the

case label for the Expense Report part of the process. Right-click on the Report Expense

task and select the Properties option. In the Activity properties screen, select the Case

Label tab and enter the following values for the title and description:

Title: Expense Report for @=employee_name

Description: Report on expense incurred for the following purpose prepared by

@=employee_name:@@expense_reason Click the Save button.

 Email Notifications
We truly cannot automate business processes without email notifications. We need to be

able to inform users when cases are assigned to them so that they can log in and treat the

cases. The Enterprise edition of ProcessMaker also has plugins integrating ProcessMaker

directly with email clients like GMail, Outlook, and Zimbra that allow users to see and

treat cases assigned to them directly from their email clients.

There are two ways we can send email notifications to users assigned to a task. The

first is to use the Notification property of the task, and the second is using a trigger that

executes the built-in PMFSendMessage function. We shall explore both approaches.

 Using the Task Notification Property
The simplest way to send a notification to a user assigned to a task is to use the

Notification property of the previous task. Let us set up a notification message to

the supervisor using this approach. Right-click the Request Advance task and select

properties. In the Activity properties screen, select the Notifications tab and check the

“After routing notify the next assigned user(s)” field to display the settings as shown next.

Chapter 15 enhanCing the proCess

335

The first field, Email From Format, allows us select which user the notification

email should be sent from. The options are Assigned User and Email Account Settings.

If set to Assigned User, the email notification sender will be the user currently assigned

to the task, while Email Account Setting will use the email address we set up in the

SMTP configuration. We will set it to Assigned User so the supervisor can know which

employee the notification is from.

The message content can either be plain text or HTML. If using HTML, you will need

to set up a template for the message. Let us use plain text for now. Leave the Content

Type as Plain Text and enter the following values for the Subject and Message:

Subject: Cash Advance Request for @=amount_requested by @=employee_name

Message: A Cash Advance Request for @=amount_requested by @=employee_

name has been assigned to you for approval on ProcessMaker. Please log in

to treat.

You can see how we have used the case variable selector to add variables to be

interpolated into the subject and message of the notification. Click the Save button. Now

when a Cash Advance Request is submitted, a notification will automatically be sent to

the supervisor’s email.

Chapter 15 enhanCing the proCess

336

 Creating a Template for Email Notification
The notification message shown earlier is very basic, which is why we can use plain text.

If we had a requirement to include the company’s logo in the message or details of a grid

in the notification message, we would not be able to do so with a plain text message. We

can use an HTML template for this purpose; however, we must create the template first.

To create a template, click the Create (+) icon beside Templates in the Main Toolbox,

and the Create Template screen is displayed as shown next.

It is very similar to the editor we used when creating the template for the

output document earlier. Let us create a template for notifying the supervisor of

an expense report containing the expense breakdown. In the Filename field, enter

ExpenseReportNotifySupervisor. Click the HTML button in the Content toolbar and

paste in the following code, which displays the grid in a message to the supervisor.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.

w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

 <head>

 </head>

 <body>

 <p>An Expense Report by @=employee_name has been assigned to you.</p>

 <p>Expense Breakdown</p>

Chapter 15 enhanCing the proCess

337

 <table border="1" cellpadding="5">

 <tbody>

 <tr style="background-color: #eeeeee;">

 <td>Description</td>

 <td>Receipt Attached</td>

 <td>Amount</td>

 </tr>

 <!--@>expense_grid-->

 <tr>

 <td>@=item_description_label</td>

 <td>@=item_receipt_label</td>

 <td>@=item_amount_label</td>

 </tr>

 <!--@<expense_grid-->

 </tbody>

 </table>

 <p>Please log in to ProcessMaker to treat.</p>

 </body>

</html>

Click the Update button and then save the template. The list of templates is displayed

as shown next. Since it is basically an HTML file, the file can be downloaded by clicking

the Download button beside a template. The Upload button can also be used to create

additional templates by uploading an HTML file with the content of the message.

If using an image in a template, the URL of the image must be publicly available on

the Internet for the image to be rendered in the email message.

With the template created, let us use it for the notification sent to the supervisor

when an expense is reported. Right-click the Report Expense task and select Properties.

In the Activity Properties screen, select the Notifications tab and check the “After routing

Chapter 15 enhanCing the proCess

338

notify the next assigned user(s)” field. Enter the following value for the fields and click

the Save button.

Email From Format: Assigned User

Subject: Expense Report for @=employee_name

Content Type: HTML Template

Template: ExpenseReportNotifySupervisor.html

 Using PMFSendMessage in a Trigger
We sometimes have situations where the notification property of a task might not suffice,

such as if we need to send different messages based on the path a case is routed. For

example, we might want to send a different message to the requesting employee when

a request is rejected and another message to the Finance officers when a request is

approved. In this scenario, we can use triggers to send the notifications and determine

which trigger to execute after routing the case by evaluating conditions.

The PMFSendMessage function (learn more about the parameters of the function

here: http://wiki.processmaker.com/3.0/ProcessMaker_Functions#PMFSendMes

sage.28.29) requires a template for the message content, so we must first create two

templates—one for the rejected request and another for the approved request. Go ahead

and create two templates with the following details. You do not need to use the HTML

button, since we are not working with grids. You can use the WYSIWYG editor to format

as desired.

Filename Content

CashAdvanceNotifyRejection Your Cash Advance Request for @=amount_

requested has been rejected by your manager.

Please log in to ProcessMaker to view.

CashAdvanceNotifyFinance A Cash Advance Request for

@=amount_requested by

@=employee_name has been approved and

assigned to your group for disbursement on

ProcessMaker.

Please log in to claim case and treat.

Chapter 15 enhanCing the proCess

http://wiki.processmaker.com/3.0/ProcessMaker_Functions#PMFSendMessage.28.29
http://wiki.processmaker.com/3.0/ProcessMaker_Functions#PMFSendMessage.28.29

339

Next, we need to create the triggers to send the message. We will be using two

separate triggers for simplicity and use conditions to determine which trigger to execute,

but the logic can also be combined into a single trigger. Create two triggers; details for

the first are shown here:

Title: NotifyCashAdvanceRejection

Description: Send a message to user when cash advance is rejected

Code:

if (isset(@@case_owner) and !empty(@@case_owner)) {

 $aUserTo = userInfo(@@case_owner);

 $aUserFrom = userInfo(@@USER_LOGGED);

 PMFSendMessage(@@APPLICATION, $aUserFrom['mail'], $aUserTo['mail'], '',

 '', 'Cash Advance Request Rejected', 'CashAdvanceNotifyRejection.html');

}

This code checks to see if we have a value stored in the case_owner variable (you will

recall that the variable stores the UID of the user that started the case). If the variable

is set, we use the userInfo function to get the user’s details and store the information

in the $aUserTo variable. We also get the details of the currently logged-in user (which

would be the supervisor) and store them in the $aUserFrom variable.

We then call the PMFSendMessage function and pass the following parameters:

the case UID (@@APPLICATION), the sender email address ($aUserFrom['mail']),

the recipient email address ($aUserTo['mail]), the CC and BCC are set to empty,

the subject of the message (‘Cash Advance Request Rejected’) and the name of the

template containing the message to be sent (‘CashAdvanceNotifyRejection.html’).

The sender email address could also have been set to a default email address, such as

processmaker@domainname.com or notifications@domainname.com if such addresses

exist.

For the second trigger, we will need the UID of the Disburse Advance task to get a list

of users assigned to the task dynamically from the database. To get the UID, right-click

the Disburse Advance task and select Properties. In the Activity properties screen the

UID of the task is displayed as shown next. Copy the UID and paste it in a text editor for

reference later. Close the screen and proceed to create the trigger.

Chapter 15 enhanCing the proCess

340

In the following trigger code, replace the value of the $taskId variable

(81314875657b73ebd090951086683553) with the UID you just copied and pasted in the

text editor before saving the trigger.

Title: NotifyCashAdvanceApproval

Description: Send a message to users in finance officers group when cash advance is

approved

Code:

$taskId = "81314875657b73ebd090951086683553";

$assignedUsers = array();

$userQuery = "SELECT USR_UID FROM TASK_USER

WHERE TAS_UID = '$taskId' AND TU_RELATION = 1";

$groupQuery = "SELECT GU.USR_UID FROM GROUP_USER GU, TASK_USER TU

WHERE TU.TAS_UID = '$taskId' AND TU.TU_RELATION = 2

AND TU.USR_UID = GU.GRP_UID";

$users = executeQuery($userQuery);

if (is_array($users) and count($users) > 0) {

 foreach ($users as $user)

 $assignedUsers[] = $user['USR_UID'];

}

$users = executeQuery($groupQuery);

if (is_array($users) and count($users) > 0) {

 foreach ($users as $user)

Chapter 15 enhanCing the proCess

341

 $assignedUsers[] = $user['USR_UID'];

}

$assignedUsers = array_unique($assignedUsers);

$emailTo = "";

foreach ($assignedUsers as $assignedUser) {

 $aUser = userInfo($assignedUser);

 $emailTo .= (empty($emailTo) ? "" : ",") . $aUser['mail'];

}

$aUserFrom = userInfo(@@USER_LOGGED);

if (!empty($emailTo)) {

PMFSendMessage(@@APPLICATION, $aUserFrom['mail'], $emailTo, '', '',

"New Cash Advance Request case to be claimed", 'CashAdvanceNotifyFinance.

html');

}

Now a quick walkthrough of the code. We begin by storing the UID of the Disburse

Advance task in the $taskId variable. Then we create an empty array and store it in

$assignedUsers variable. Then we compose an SQL query to look up the UID of all users

that have been assigned to the task and store the query in the $userQuery variable. We

also compose a similar query to get the UIDs of the users in the groups assigned to the

task and store them in the $groupQuery variable.

We then use the executeQuery function to execute the query against the

ProcessMaker database and store the result in the $users variable. We check to see if

there are any records returned by the database query; if any, we loop through the results

and store the UIDs in the $assignedUsers array we created in line 2. We then repeat

the process for the $groupQuery, also storing the resulting UIDs in the $assignedUsers

variable.

Now that we have all the UIDs, we use the PHP function array_unique to eliminate

duplicates in the array. We then create a new variable $emailTo and assign it an empty

string. Next we loop through the UIDs stored in the $assignedUsers array and use the

ProcessMaker userInfo function to get the details of each of the users and storing it in

the $aUser variable. Then we check whether the $emailTo variable is empty using the

ternary operator (?). If it is empty, we append an empty string to it before concatenating

Chapter 15 enhanCing the proCess

342

it with the user’s email; if not, we append a semicolon, which serves as a separator for

the email addresses.

With all the assigned users’ email addresses extracted, we get the details of the

currently logged-in user and store them in $aUserFrom. Finally, we check to see we have

email addresses in the $emailTo variable and if so, use the PMFSendMessage function to

send a message to the users, as we did in the previous trigger.

The code in the triggers just shown is adapted from the ProcessMaker wiki, and

you can learn more about notifications in ProcessMaker and explore different triggers

that can be used in different scenarios here: http://wiki.processmaker.com/3.0/

Notifications.

 Assign the Triggers to Tasks
To use the triggers, we have to assign them to the appropriate task. Right-click

the Approve Advance task and place the NotifyCashAdvanceApproval and

NotifyCashAdvanceRejection triggers in the After Routing step of the task. The

NotifyCashAdvanceApproval trigger should only be executed if the request was

approved by the supervisor, so we need to set the condition accordingly. Click the

Condition button for NotifyCashAdvanceApproval and set the condition to

@@is_approved == '1'

Save your changes. Repeat the same process for the NotifyCashAdvanceRejection

trigger, setting the condition to

@@is_approved == '0'

and save your changes.

 Check that Email Sending is Configured
In concluding our discussion of email notifications, we need to verify that email sending

is configured and working in ProcessMaker to ensure that the messages will be sent.

Click on Admin in the main menu and in the Settings tab, select Email Servers. If you

configured SMTP settings during the installation, then you should have an email server

configured similar to the image shown here; otherwise, the fields will be blank.

Chapter 15 enhanCing the proCess

http://wiki.processmaker.com/3.0/Notifications
http://wiki.processmaker.com/3.0/Notifications

343

Click the Edit button and if you do not have a server configured, proceed to fill in the

details in the Edit Email Server screen displayed. The ProcessMaker wiki has a detailed

explanation of the settings and examples of configuring the common Email providers—

Google, Yahoo, Hotmail and Outlook—at http://wiki.processmaker.com/3.0/Email_

Settings.

Next click the Test button at the bottom of the form. If the email settings are properly

configured, you should see a success message similar to the following . Your system must

be connected to the Internet for emails to be successfully sent.

Click the Accept button and Save Changes. You should receive a test email at the

address used for the test. And that is a wrap. Let us move on to the next enhancement to

our process.

Chapter 15 enhanCing the proCess

http://wiki.processmaker.com/3.0/Email_Settings
http://wiki.processmaker.com/3.0/Email_Settings

344

 Prefilling Form Fields with Triggers
The next improvement we want to make to the process is to save employees some time

when filling in the Cash Advance Request form or the Expense Report Form by prefilling

the following fields:

• Request/Report Date (defaults to current date)

• Employee Name (defaults to currently logged in user’s firstname and lastname)

• Department (defaults to current user’s department)

To achieve this, we will create a trigger that executes before the form is loaded and

looks up these values and stores them in the corresponding variables. We will, however,

need to make a change to the department variable to use an SQL query to fetch the

list of department instead of defining them statically in the list of accepted values.

Click Variables in the Main Toolbox to display the list of variables and search for the

department variable. Click the Edit button beside it and in the Edit Variable screen, paste

the following SQL query in the Sql field and uncheck the “Define accepted variable

values” field as shown in the screen and save your changes.

SELECT DISTINCT CON_VALUE, CON_VALUE FROM CONTENT

WHERE CON_CATEGORY = 'DEPO_TITLE' ORDER BY 1

Chapter 15 enhanCing the proCess

345

This SQL query simply selects the distinct name of departments from the database

table where they are stored (CONTENT). We are selecting the name (CON_VALUE) twice

because we are using it as both the Key and the Label for the field. Ideally, we should

select the UID of the department as the key and the name of the department as the label

so that if the name of the department is edited, the value stored in a case would still be

valid. We are, however, using the name as the key to be consistent with the initial design

and not affect cases that are already running.

With that out of the way, we are now ready to create the triggers. Click the Create (+)

icon beside Triggers in the Main Toolbox and create the following custom trigger.

Title: SetCashAdvanceInitialData

Description: Prefills the request date, employee name and employee

department in the Cash Advance Request form

Code:

@@request_date = getCurrentDate();

$data = PMFInformationUser(@@USER_LOGGED);

@@employee_name = $data['firstname'] . ' ' . $data['lastname'];

$query = "SELECT DISTINCT CON_VALUE FROM CONTENT

WHERE CON_CATEGORY = 'DEPO_TITLE'

AND CON_ID = '" . $data['department'] ."'";

$aDepartment = executeQuery($query);

@@department = $aDepartment[1]['CON_VALUE'];

The trigger code here uses the built-in ProcessMaker function getCurrentDate to

get the current date and stores the value in the request_date variable. We then use

the PMFInformationUser function to get the details of the currently logged-in user. The

function returns an array of the user’s information.

We then concatenate the firstname and lastname and store the result in the

employee_name variable. Next, we compose an SQL query to look up the name of the

user’s department and execute the query, storing the result in $aDepartment. Finally, we

store the returned result in the department variable.

The second trigger for prefilling the expense report fields we will create is similar, but

we will only look up the employee name and department if the case is not a continuation

of a cash advance. We can determine whether a case is a continuation by checking the

Chapter 15 enhanCing the proCess

346

value of a variable that can only be set during the Cash Advance part of the process, such

as the disbursed_by variable. Let us create the trigger with these details:

Title: SetExpenseReportInitialData

Description: Pre-fills the report date, employee name and employee

department in the Expense Report form.

Code:

@@report_date = getCurrentDate();

if(@@disbursed_by == ""){

 $data = PMFInformationUser(@@USER_LOGGED);

 @@employee_name = $data['firstname'] . ' ' . $data['lastname'];

 $query = "SELECT DISTINCT CON_VALUE FROM CONTENT

 WHERE CON_CATEGORY = 'DEPO_TITLE'

AND CON_ID = '" . $data['department'] ."'";

$aDepartment = executeQuery($query);

@@department = $aDepartment[1]['CON_VALUE'];

}

With the triggers created, proceed to add them to the respective tasks. Place the

SetCashAdvanceInitialData trigger in the Before Dynaform step of the Cash Advance

Request Form in the Request Advance task.

Next, place the SetExpenseReportInitialData trigger in the Before Dynaform step

of the Expense Report Form of the Report Expense task. And that’s a wrap. Now when

a user starts a Cash Advance and Expense Retirement case, the request/report date,

employee name and department will be automatically prefilled.

We can take this a step further by making these fields noneditable, so that the user does

not make any changes to what the system automatically generates. Edit the Cash Advance

Request Form and change the display mode property of the following fields to Disabled:

• Request Date

• Employee Name

• Department

Chapter 15 enhanCing the proCess

347

Also edit the Expense Report Form, changing the display mode property of the

following fields to Disabled:

• Report Date

• Employee Name

• Department

 Setting Datetime Control Properties
The next enhancement we want to add to our process is the request from the

Finance department to enforce that Finance officers cannot choose a future date

for disbursement. To achieve this, we need to set the max date property for the Date

Advanced field to the current date. We will create a trigger that stores the current date

in a max_date variable and execute it before the Cash Advance Disbursement Form in

the Disburse Advance task. We will also set the max date property of the Cash Advance

Disbursement Form to the max_date variable.

Create a new trigger with the details shown here:

Title: SetMaxDisburseDate

Description: Sets the value of the max_date variable to limit the date

value for Date Advanced.

Code: @@max_date = getCurrentDate();

With the trigger created, edit the Cash Advance Disbursement Form, select the Date

Advanced field and set its max date property to @@max_date as shown next and save your

changes.

Finally, place the SetMaxDisburseDate trigger in the Before Dynaform step of the

Cash Advance Disbursement Form in the Disburse Advance task. That’s all.

Chapter 15 enhanCing the proCess

348

 Dynaform Logic in JavaScript
Our next task is to automatically calculate the values for the amount to be reimbursed/

refunded based on the total amount of the items in the expense breakdown grid, and

to make the amount advanced field noneditable if the case is a continuation of a cash

advance when reporting an expense. Let us get down to it. Open the Expense Report

Form in the Dynaform Designer.

First we add a hidden control to the form and, in the Create/Select Variable

screen, switch to the Select option and select the disbursed_by variable. We know

that this variable will be empty if the case is a fresh expense report, but if the case is a

continuation of the cash advance, then the value will be set to the name of the Finance

officer who disbursed the advance. Check the Protected Value property of the hidden

control.

Next, select the form and click the Edit button beside the JavaScript property. Leave

one or two lines after the code already in the editor and append the following code:

if ($("#disbursed_by").getValue() !== ""){

 $("#amount_advanced").getControl().attr('disabled', true);

}

 function computeReimburseRefund(fieldId, newVal, oldVal) {

 if (fieldId.search(/^\[expense_grid\]/) == 0 ||

 fieldId == 'amount_advanced') {

 var amountAdvanced = parseFloat($("#amount_advanced").getValue() ?

 $("#amount_advanced").getValue() : 0);

 var totalExpense = $("#expense_grid").getSummary("item_amount");

 var diff = amountAdvanced - totalExpense;

 if (diff > 0){

 $('#amount_to_reimburse').setValue(0);

 $('#amount_to_refund').setValue(diff);

 }

Chapter 15 enhanCing the proCess

349

 else {

 $('#amount_to_reimburse').setValue(Math.abs(diff));

 $('#amount_to_refund').setValue(0);

 }

 }

 }

 $("form").setOnchange(computeReimburseRefund);

A quick explanation of the code. We get the value of the disbursed_by hidden

control and if it is not an empty string, we get the amount_advanced control and disable

it.

Then we create a function computeReimburseRefund, which serves as a handler for

the onChange event of the form. The function takes three parameters: fieldId (the id

of the field that changed), newVal (the new value of the field) and oldVal (the old value

of the field). In the function, we check that the fields that changed is either the amount_

advanced field or a field in the expense grid to avoid executing the code for every change

in the form.

We then get the value of the amount_advanced field. Here, we use a ternary operator

to check if the field has a value and if not, we return 0 as the value. We then use the

JavaScript parseFloat function to convert it to a number and store it in amountAdvanced

variable. We also use the ProcessMaker getSummary function to get the total amount of

the items in the grid and store it in the totalExpense variable.

Next, we get the difference of the two amounts and save it in the diff variable.

We check whether the difference is greater than zero and if so, we set the value of the

amount_to_reimburse field to 0 and the amount_to_refund field to the difference. If the

difference is greater than zero, we get the absolute value of the difference (remove the

negative) and set it as the amount_to_reimburse value and the amount_to_refund is set

to 0.

Finally, we make the computeReimburseRefund function the event handler for the

form’s onChange event.

Save the code and set an arbitrary value as the default value of the disbursed_by

hidden control. Proceed to preview the form. Enter a couple of rows in the expense grid

and enter different amounts. You should see the values of the Amount to Be Reimbursed

and Amount to Be Refunded fields updated as the value of the grid total changes. Also,

the Amount Advanced field is disabled because we have set a value in the disbursed_by

field.

Chapter 15 enhanCing the proCess

350

Since we are now computing the Amount to Be Reimbursed and Amount to Be

Refunded values automatically, let us make the fields read-only so that users cannot

change the computed values.

Select the fields in the Dynaform Designer and set their display mode property to

Disabled. Also delete the default value set for the disbursed_by hidden control.

Now our form is all set. Save the form and close the Dynaform Designer. Our next

task is to enable permissions for the supervisors to be able to view uploaded documents

and add case notes.

 Case Permissions and Case Notes
Case permissions in ProcessMaker enable us to determine what access users have to a

case and its associated objects, such as uploaded and generated documents, case notes,

message history, and dynaforms. As noted in the supervisor’s feedback, supervisors were

unable to view the documents uploaded by the employee. To remedy this, we will grant

the supervisors the permission to view uploaded documents and add case notes.

To set up case permissions, click the Create (+) icon beside Permissions in the Main

Toolbox (Process Objects), and the case permissions screen is displayed as shown next.

Chapter 15 enhanCing the proCess

351

ProcessMaker offers a lot of flexibility when creating permissions which enables

us to set up fine-grained access control to cases and its related objects. Let us quickly

explain each field in the case permissions form and then proceed to grant supervisors

the required access.

Status Case: This indicates the status the case must be in order

for the permission to be activated. The options are All, DRAFT,

TO DO, PAUSED and COMPLETED. Draft cases have not yet

been sent out by the initiator, while To Do cases are currently in

progress. Paused cases are those in which the workflow has been

temporarily suspended, and Completed cases have reached the

end of the workflow.

Target Task: This is the task where the case must currently be

for the permission to be activated. The options are All Tasks and

a list of every task defined in the process. For example, selecting

Approve Expense task will make the permission active only when

the case is at the Approve Expense task. To grant the permission

irrespective of the current task, select All Tasks.

Chapter 15 enhanCing the proCess

352

Group or User: This is the group or user to which the permission

is being granted. The field is a suggest box, and you type in the

name of the group or user and select it from the options shown in

the suggestions.

Origin Task: This indicates the task that the object (dynaform,

input document, and so on) for which the permission is being

configured must be assigned. For example, to grant access to the

Receipts input document, we would select the Report Expense

task, as that is the task the input document is assigned to. To grant

the permission irrespective of the task the object is assigned to,

use All Tasks.

Participation Required: this is used to indicate whether the user

needs to have participated in the case. Selecting Yes requires the

user to have had the case assigned to him/her at one point in

the process flow, while No allows the user to access the object

whether he/she was involved in the case or not.

Type: Indicates which object the permission is being defined

for; the options are All (for all the objects), Dynaform, Input

Document, Output Document, Case Notes ,and Message History.

If Dynaform, Input Document, or Output Document is selected,

a field is displayed allowing you select a specific dynaform/input

document/output document or All.

Permission: Indicates which permission to grant on the object;

the options are View and Block. View grants the user access to the

object, while block denies access. If the object selected is an input

or output document, there is an additional option, Delete, which

allows the user to delete the document. If the selected object is

Message History, there is an additional option, Resend, which

allows the user resend a message. If the object selected is Case

Notes, the Permission field is not displayed, and access to case

notes is implicitly granted.

We want the supervisors to be able to view only the documents in a case they

participate in, but also be able to view those documents after the case is completed.

Create the permission with the following values and click Save when done.

Chapter 15 enhanCing the proCess

353

status Case all

target task all tasks

group or User supervisors

origin task all tasks

participation required Yes

type input Document

input Document receipts

permission View

The newly created permission is now displayed, as shown next. Now when the

supervisor checks the uploaded documents tab for a case, they should see all uploaded

receipts.

We also want the supervisors to be able to send case notes. This will also require the

requesting employee to respond to the case notes. We will therefore grant the permission

to everyone participating in the case. Create a permission granting access to case notes

with the following values.

status Case all

target task all tasks

group or User employees

origin task all tasks

participation required Yes

type Case notes

Chapter 15 enhanCing the proCess

354

 Escalating Unclaimed Cases
The final enhancement required by our users is the ability to send an escalation email to

the Finance Manager when a case is not claimed on time by a Finance Officer. To achieve

this we will create a trigger that looks up the email address of the Finance Manager and

sends them an email containing the case details. This trigger will then be set to execute

using the Set a Timeout fields of the Disburse Advance and Process Advance task

assignment rules.

Finally, we will need to set up or execute the ProcessMaker cron script when the time

elapses to execute the trigger. Sounds like a lot of complex stuff, but trying it out will help

us better understand the concepts involved, so let us get started.

We begin by creating the email notification template, which contains the message to

be sent to the manager. In the Main Toolbox, click the Create (+) icon beside templates

and create a template with the following details and save it.

Filename: EscalateFinanceUnclaimed
Content: Dear Manager,

A Cash Advance and Expense Retirement case with case number @=APP_NUMBER

assigned to your department has not been claimed. Kindly assign a member of

your team to claim and treat the case.

Next create a trigger with the following details:

Title: EscalateFinanceUnclaimedCase
Description: Sends an email to the Finance Department Manager for unclaimed

cases. Used together with the Self-Service assignment rule.

Code:

$query = "SELECT DEP_MANAGER FROM DEPARTMENT WHERE DEP_UID =

 (SELECT DISTINCT CON_ID FROM CONTENT

 WHERE CON_CATEGORY = 'DEPO_TITLE' and CON_VALUE = 'Finance')";

$result = executeQuery($query);

$managerUID = $result[1]['DEP_MANAGER'];

$manager = userInfo($managerUID);

$caseOwner = userInfo(@@case_owner);

PMFSendMessage(@@APPLICATION, $caseOwner['mail'], $manager['mail'], '', '',

'Unclaimed Case for Finance Department','EscalateFinanceUnclaimed.html');

Chapter 15 enhanCing the proCess

355

In the trigger we compose an SQL query to get the UID of the Finance department

from the CONTENT table and then use the returned UID to look up the department in

the DEPARTMENT table and get the UID of the manager. We execute the query and store

the resulting UID in the $managerUID variable. We then use ProcessMaker’s userInfo

function to look up the details of the manager. We also look up the details of the user

who initiated the case. Finally, we use the PMFSendMessage function to send the message

to the manager, using the email address of the case owner as the sender.

With the template and trigger in place, the next line of action is to configure the

assignment rule to execute the trigger if the case is not claimed after a while. For the

purpose of our illustration, we will set the timeout to five minutes. In a real use case,

this will be a longer period and be dependent on the SLA (Service Level Agreement) the

department has agreed to for attending to requests.

Right-click the Disburse Advance task and select Assignment Rules. Check the set

timeout checkbox to display additional configuration fields as shown in the following

image.

The displayed fields allow us define how much time to wait, what trigger to execute

when the time elapses, and how often to execute the trigger. In this case, we will set the

timeout to 5 minutes and select the newly created EscalateFinanceUnclaimedCase

as the trigger to be executed. We also want the trigger to be executed every time the

scheduled cron is run. Update the assignment rule as shown in the image and save your

Chapter 15 enhanCing the proCess

356

changes. We also want to apply the escalation to the Process Advance task too. Right-

click the task and select Assignment Rules. Check the Set a Timeout field and set the

Time to 5, Time Unit to minutes, Trigger to execute to EscalateFinanceUnclaimedCase,

and Execute trigger to “Every time scheduled by cron.” Save your changes.

We are done setting up the escalation as requested by the employees. However,

because ProcessMaker is a web application, actions such as trigger executions are done

in response to user interactions. To handle actions that do not require any actions from

the user, such as the timeout we just configured, ProcessMaker provides a number

of cron scripts that can be executed in the background to trigger these actions. In a

production instance, these scripts will be set up to run as scheduled tasks in a Windows

installation or cron jobs in a Unix/Linux installation. To learn more about executing cron

scripts in ProcessMaker, see http://wiki.processmaker.com/3.0/Executing_cron.php.

For the purposes of this book, we will execute the cron scripts manually to test that

our configured escalation script works as intended. When deployed to production, the

scheduled cron will execute periodically (say every 15 minutes) and trigger different

actions such as resending pending emails, timer events, timeout triggers, and so on.

We have made quite a number of changes to the process, and it is now time to see the

effect of these changes.

 Testing the Enhancements
Log in using another browser as Justin Sanchez and initiate a new Cash Advance and

Expense Retirement(Request Advance) case. When the dynaform is loaded, you will observe

that the Request Date, Employee Name, and Department fields have been filled in and are

disabled. This shows that the SetCashAdvanceInitialData trigger works as expected.

Chapter 15 enhanCing the proCess

http://wiki.processmaker.com/3.0/Executing_cron.php

357

You will also notice that the case title now shows the text we entered in the Case

Labels property of the Request Advance task, although incomplete (the values of the

variables have not been interpolated into the case title). Fill in the form and submit it

to the Supervisor. This should trigger an email notification to be sent to the assigned

supervisor (Julia Smith in this case).

In the browser where you are logged in as administrator, click Admin in the main

menu and go to the Logs tab in the side-menu. Select Emails and you should see a log

of the email that was generated to be sent to the supervisor. You will also notice that the

case title is now showing the requested amount and the name of the employee that made

the request. (There appears to be a bug affecting alias email addresses, like dipo+julia@

domainname.com, of the recipient resulting in the email not being sent.)

Log out as Justin Sanchez and log in as Julia Smith. Open the case from the inbox and

proceed to reject the request. This should execute the NotifyCashAdvanceRejection

trigger, generating an email notification to Justin Sanchez that the request was rejected. If

you check the email log as we did earlier, you should see the record of the email that was

generated. Log out Julia Smith and log in as Justin Sanchez. Resubmit the request that

was rejected and log out as Justin Sanchez. Log in as Julia Smith and approve the request

this time. This should trigger the NotifyCashAdvanceApproval trigger, generating an

email to the members of the Finance Group. A quick look at the email logs should show

the generated email message in the log.

Log out as Julia Smith and log in as Amy Alexander in the Finance department. Once

logged in, claim the case from the list of unassigned cases. When the dynaform loads,

click the datepicker for the Date Advanced field and you will notice that the future dates

cannot be selected. The max date property we set is working as expected. Select a date,

enter amount advanced and submit the case.

The case is now routed back to Justin Sanchez for the Retirement part of the process.

Log in as Justin Sanchez and go to the inbox; you will observe that the case title has

been updated to “Expense Report for Justin Sanchez” from “Cash Advance Request

for {amount} by Justin Sanchez”. Open the case and you will see that the Amount

Chapter 15 enhanCing the proCess

358

Advanced field is disabled and its value cannot be changed. Enter values in the expense

breakdown grid, and the Amount to Be Reimbursed and Amount to Be Refunded should

be calculated automatically. Submit the report when done and in the Receipts input

document screen displayed next, upload a document. Click the Next step and Continue

buttons to send the request to the supervisor and log out.

Log in as Julia Smith and open the case from the inbox. Click the Information button

at the top of the case and select Uploaded Documents to display the tab. We can now see

the receipt uploaded by Justin Sanchez, as shown next.

Let us assume that Julia Smith requires some clarification on the case and does not

want to send it back to Justin to add comments. She can use the Case Notes feature in

ProcessMaker for just that. Click the Case Notes button on top of the form as shown in

the following image. This displays the Case Notes screen.

Chapter 15 enhanCing the proCess

359

Click the comment icon in the top-right corner of the screen to add a new note.

When adding a case note, you can choose to send an email to everyone that has

participated in the case by checking the “Send email (Case Participants)” checkbox

under the Notes textarea. Type in a message, leave the Send Email option checked, and

click the Post button. The note is added to the case as shown next.

Close the Case Notes screen and without approving or rejecting the case, log out Julia

Smith. If you check the email log, you will see that an email was sent to Justin Sanchez.

Chapter 15 enhanCing the proCess

360

Now log in as Justin Sanchez and reply to the case note. Since the case is still in Julia’s

inbox, Justin will have to view the case from the participated cases list. Click Participated

under Cases menu in the left pane and click the Case Notes icon for the case as shown

next.

The Case Notes screen is displayed. Add a reply, post it, and log out as Justin

Sanchez. Log in as Julia Smith and open the case from the inbox. Click the Case Notes

button on top of the case and you should see the reply sent by Justin. This way, users can

communicate on a case without having to send it back and forth.

Close the Case Notes screen and approve the Report to send it to the Finance

department for processing. We will wait for at least 5 minutes after sending the case to

the Finance department and then we will manually execute the cron script to escalate

the case to the Finance Manager. As we mentioned earlier, in a production deployment,

the cron will be scheduled to run automatically periodically and we will not have to

manually execute the script.

To execute the script on a Windows installation, open the command prompt and

enter the following command, replacing processmaker-3.x.x.x with the actual folder

name in your installation (the command should be entered on a single line):

"C:\Bitnami\processmaker-3.x.x.x\php\php.exe" -f

"C:\Bitnami\processmaker-3.x.x.x\apps\processmaker\htdocs\workflow\engine\

bin\cron.php"

On Mac, open a terminal and enter the following command, replacing

processmaker-3.x.x.x with the actual folder name in your installation:

php -f /Applications/processmaker-3.x.x.x/apps/processmaker/htdocs/

workflow/engine/bin/cron.php

This should cause the escalation trigger to be executed and send the email to

the Finance department manager, Amy Alexander. (This appears to work only in the

Enterprise Edition).

Chapter 15 enhanCing the proCess

361

Finally, log in as Amy Alexander and claim the case. Fill in the fields for the Finance

department and submit the case. Download the generated output document if desired

and click Continue. Click the Finish button to complete the case.

Our Cash Advance and Expense Retirement Process is now a much improved version

with the enhancements we have added in this chapter. Try thinking of ways you can

improve the process and try implementing them. In the next chapter, we take a deep dive

to explore more complex routing scenarios.

Chapter 15 enhanCing the proCess

363
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_16

CHAPTER 16

Complex Routing
with Gateways
At this point, you have become proficient in designing and building processes in

ProcessMaker. So far we have built a complete process using only one type of gateway

element: the exclusive gateway. You will recall from our discussions of gateways in

Chapter 3 that we identified three gateway types:

• Exclusive (XOR) gateway

• Parallel (AND) gateway

• Inclusive (OR) gateway

In the course of designing and building processes in ProcessMaker, we will

encounter more complex workflows that will require us to use the other gateway types or

a combination of the different gateway types.

To demonstrate, let us assume that the HR department at MSB Corp. has been very

impressed with the Cash Advance and Expense Retirement Process we have built and

is considering using ProcessMaker to automate aspects of the employee onboarding

process.

Currently, the HR officer has to follow up with different stakeholders in different

departments to put the necessary things in place for a new employee’s first day. This

process is currently managed by a checklist that the HR officer ticks as the steps are

completed. Following are some of the items on the checklist:

 1. IT Department

• Assign PC to employee

• Set up employee email account

• Grant employee access to necessary software

364

 2. Admin Department

• Print employee business cards

• Set up employee desk and chair

 3. HR Department

• Collate required forms to be filled by employee

• Set up employee on payroll

• Create employee’s ID badge

 4. Employee’s Department Supervisor

• Assign peer buddy to new employee

• Define employees first tasks

Our HR officer would like to have a process that is routed from HR to the other

departments or stakeholders for them to confirm that the task is completed and fill in

details such as the employee’s email address or staff ID, and when done is routed back to

the HR department for use when the new employee starts.

Looking at the process just described, we observe that a lot of these tasks will have to be

done concurrently to make it efficient. If we had to wait for each department to complete

their tasks before routing to the next department, the process would take much longer.

The Parallel Gateway in ProcessMaker provides us with just the right tool to address

such a problem. We could also consider that some departments might have no input for

certain employees (an employee that will not be using any PC or require an email). For

such scenario, the inclusive gateway helps us choose which of the tasks to run in parallel.

Our focus in this chapter is on the gateway types and how they can help us handle

complex routes, so the process we will design will not be as detailed as the Cash Advance

and Expense Retirement process. In the following sections of this chapter, we explore the

different gateway types in more detail.

Chapter 16 Complex routing with gateways

365

 Exclusive (XOR) Gateway
In the Cash Advance and Expense Retirement Process we have been working on in the

preceding chapters, we used the Exclusive Gateway type when routing the workflow

from the Approve Advance and Approve Expense tasks.

As we saw, the exclusive gateway allows us to determine the next route in a workflow

by evaluating a set of conditions. This gateway type is ideal for situations where we

need to select exactly one route from two or more route options. The route to take is

determined by evaluating conditions defined for each possible route and selecting the

one that evaluates to True. When using this gateway type, it is important to ensure that

only one condition evaluates to True; otherwise, an error will be thrown and the case will

not be routed.

Since we are already familiar with this routing option and have used it in the Cash

Advance and Expense Retirement process, we will not be elaborating further on it.

 Parallel (AND) Gateway
The parallel gateway is used to split the flow into multiple parallel tasks. It is often

referred to as a fork. Let us illustrate the use of a Parallel gateway using the employee

onboarding process described earlier.

 Sample Process
Log in as the Admin user and create a new process with the following details:

Title: Employee Onboarding (Parallel)
Description: A sample process to illustrate Parallel Gateway Routing.

 Process Map

Design the Process Map for the process as shown next. We begin by adding a pool

labeled Employee Onboarding. We then add four lanes—HR Officer, Administration, IT

and Employee Supervisor—to the pool. In the HR officer lane, add a Start event and link

it to a task labeled New Employee Details.

Chapter 16 Complex routing with gateways

366

Next add a gateway element to the New Employee Details task using the quick

toolbar, and right-click it as shown next to change the Gateway Type to Parallel.

Alternatively, you can drag a parallel gateway from the Shapes toolbox and then link the

New Employee Details task to it. This is the Diverging (Fork) gateway.

With the gateway in place, use its quick toolbar to add a task to each of the lanes

as shown in the Process Map image and label the tasks accordingly as shown in the

following table. Next, add another parallel gateway, the converging gateway, after the ID

Badge/Payroll task and join the tasks in the other lanes to it.

Chapter 16 Complex routing with gateways

367

Lane Task

hr officer iD Badge/payroll

administration provision Desk/Cards

it provision it access

employee supervisor assign Duties

Finally add a task labeled Employee Welcome Document to the converging gateway

and add an End event to it. That completes our Process Map.

When working with gateways, it is important that the diverging gateway and

converging gateway are of the same type. Next we create a few simple forms for the

process. Remember, we are keeping things very simple. At this point, you should be

comfortable working with forms, so we are just going to display the images of the forms

and you will create them as an exercise.

 Process Dynaforms

Go ahead and create the forms described as follows. When designing the form, assign

the fields to variables as shown here.

Field Variable

employee name emp_name

resumption Date resumption_date

Department department

employee type employee_type

iD Badge printed? id_badge_printed

iD Badge no. id_badge_no

added to payroll? payroll_account

Business Cards printed? cards_printed

assigned email address email_address

pC provided? pc_provided

assigned peer Buddy peer_buddy

First tasks first_tasks

(continued)

Chapter 16 Complex routing with gateways

368

Field Variable

hr officer hr_officer

Date and time hr_date

admin officer admin_officer

Date and time admin_date

it officer it_officer

Date and time it_date

supervisor supervisor

Date and time supervisor_date

Title: Employee Details
Description: A form to capture the new employee’s details

The Department dropdown field should select the list of departments from the

database as we did in the Cash Advance and Expense Retirement process. The Employee

Type dropdown field should use the following predefined options set on the variable. All

the fields should be required.

Key Label

Full Full time

part part time

Vol Volunteer

The next form we will create will be used by the departments and supervisor of the

employee to provide feedback on the onboarding tasks assigned to them. The form will

Chapter 16 Complex routing with gateways

369

contain the data from the Employee Details form in read-only and then add a section for

the user or department to provide feedback on the on-boarding task assigned to them.

Because we will be reusing fields from the Employee Details form, we can save time

by exporting the form and importing it into the next form we create. We will create a

general form with sections for all the tasks which will serve as a master form that will be

displayed in the final task to be printed, Employee Welcome Document.

Title: General Onboarding Feedback

Description: A form showing feedback from assigned users on on-boarding
tasks.

Chapter 16 Complex routing with gateways

370

Quick notes on the form just shown. We made all the fields disabled and removed

the Required property on the fields in the Employee Details section. For the Assigned

Peer Buddy field in the Employee Supervisor section, the dropdown is associated with a

variable that uses an SQL Query to select all users from the database. The query to use is

this:

SELECT USR_UID, CONCAT(USR_FIRSTNAME, ' ', USR_LASTNAME) FROM USERS

We use a number of checkboxes and for those checkboxes, we set the label of the

Boolean options to Yes and No, replacing the default True and False.

If you are wondering how we got the subtitles to have a dark background, we used

a little JavaScript to add some CSS styling. In your form’s JavaScript editor, add the

following code:

$('.pmdynaform-field-subtitle').css('background', '#666').css('color',

'#fff');

The code uses the jQuery selector $('.pmdynaform-field-subtitle') to select all

subtitles on the form, and we use the .css function to add a gray background:

.css('background', '#666')

and set the font color:

.css('color', '#fff')

Next, we will clone the general form we just created for the forms to be used by the

various departments and supervisor. On the cloned forms, we will make the respective

field for each task editable. Alternatively, we could use the same form and toggle the

display property from Disabled to Edit using JavaScript. We are keeping things simple,

though, so we will go the route of cloning the forms.

First export the General Onboarding Feedback form and save it to your PC. When

done, go ahead and create the following forms and import the exported General

Onboarding Feedback form into the newly created forms.

Title: HR Onboarding Feedback
Description: A form showing feedback from assigned HR officer on on-

boarding tasks.

Chapter 16 Complex routing with gateways

371

After importing the General Onboarding Feedback form, change the display mode

of the fields in the Human Resources section to Edit and make them required as shown

here.

Title: Administration Onboarding Feedback

Description: A form showing feedback from assigned Admin officer on on-
boarding tasks.

After importing the General Onboarding Feedback form, change the display mode of

the fields in the Administration section to Edit and make them required as shown next.

Title: IT Onboarding Feedback
Description: A form showing feedback from assigned IT officer on on-

boarding tasks.

After importing the General Onboarding Feedback form, change the display mode

of the fields in the Information Technology section to Edit and make them required as

shown here. Also enable email validation for the Assigned Email field.

Title: Supervisor Onboarding Feedback
Description: A form showing feedback from assigned Supervisor on on-

boarding tasks.

After importing the General Onboarding Feedback form, change the display mode of

the fields in the Employee Supervisor section to Edit and make them required as shown

next.

Chapter 16 Complex routing with gateways

372

With our forms ready, the next thing we need to do is create triggers that we will

use to update the user who completed a task in the Sign Off section of the General

Onboarding Feedback Form.

 Process Triggers

Go ahead and create the following triggers in the process.

Title: UpdateHROfficer
Description: Timestamps the date and time a request is processed by the

HR Officer.

Code:

$data = userInfo(@@USER_LOGGED);

@@hr_officer = $data['firstname'] . ' ' . $data['lastname'];

@@hr_date = getCurrentDate() . ' ' . getCurrentTime();

Title: UpdateAdminOfficer
Description: Timestamps the date and time a request is processed by the

Admin Officer.

Code:

$data = userInfo(@@USER_LOGGED);

@@admin_officer = $data['firstname'] . ' ' . $data['lastname'];

@@admin_date = getCurrentDate() . ' ' . getCurrentTime();

Title: UpdateITOfficer
Description: Timestamps the date and time a request is processed by the

IT Officer.

Code:

$data = userInfo(@@USER_LOGGED);

@@it_officer = $data['firstname'] . ' ' . $data['lastname'];

@@it_date = getCurrentDate() . ' ' . getCurrentTime();

Title: UpdateSupervisor
Description: Timestamps the date and time a request is processed by the

Supervisor.

Chapter 16 Complex routing with gateways

373

Code:

$data = userInfo(@@USER_LOGGED);

@@supervisor = $data['firstname'] . ' ' . $data['lastname'];

@@supervisor_date = getCurrentDate() . ' ' . getCurrentTime();

 Assign Forms and Triggers to Tasks

The next step is to assign the forms and triggers we have created to the tasks in our

process. Remember that we assign forms and triggers to a task by right-clicking the task

and selecting Steps.

 1. Assign the Employee Details form to the New Employee Details

task.

 2. Assign the HR Onboarding Feedback form to the ID Badge/
Payroll task. Also assign the UpdateHROfficer trigger to the After

Routing step of the task.

 3. Assign the Administration Onboarding Feedback form to the

Provision Desk/Cards task. Also assign the UpdateAdminOfficer

trigger to the After Routing step of the task.

 4. Assign the IT Onboarding Feedback form to the Provision IT
Access task. Also assign the UpdateITOfficer trigger to the After

Routing step of the task.

 5. Assign the Supervisor Onboarding Feedback form to the Assign
Duties task. Also assign the UpdateSupervisor trigger to the After

Routing step of the task.

 6. Finally, assign the General Onboarding Feedback form to the

Employee Welcome Document task.

 Assign Users/Groups to the Tasks

With our forms and triggers all assigned, the next step is to assign users to the tasks. As you

will recall, we do this by selecting Assignment Rules from the context menu of each task.

First let us create user groups for HR, IT, and Admin. We are doing this because

it is best practice to assign tasks to groups rather than specific users. There are two

benefits to this. First, we can manage the users that can work on a task by assigning

Chapter 16 Complex routing with gateways

374

or unassigning them from a group. This is good for separation of concerns as in most

organizations, user access and control is often managed by a different team and they can

carry out their duties without having to edit the process.

The second benefit is that this approach allows us to move processes easily from one

instance to another without having to reassign the users to the tasks. When a process is

imported, the group assignments are preserved, but user assignments are discarded.

Go to Admin in the main menu, create the following groups, and assign the users

shown here to the corresponding group.

Group Users

human resources wanda marshall nicholas williams

administration steve Bennett Carlos shaw

it Billy green Karen Baker

With our groups in place, return to the process and set the assignment rules as

described here.

 1. Set the Assignment rule for Employee Details task to Cyclical, and

assign it to the Human Resources group.

 2. Set the Assignment rule for the ID Badge/Payroll task to Self

Service and assign it to the Human Resources group.

 3. Set the Assignment rule for the Provision Desk/Cards task to Self

Service and assign it to the Administration group.

 4. Set the Assignment rule for the Provision IT Access task to Self

Service and assign it to the IT group.

 5. Set the Assignment rule for the Assign Duties task to Manual

Assignment and assign it to the Supervisors group.

 6. Set the Assignment rule for the Employee Welcome Document

task to Self Service and assign it to the Human Resources group.

Our process is now ready to be run. Let us add one more detail to make it better. Set

the Case Label of the New Employee Details task to Employee Onboarding for

@=emp_name.

Chapter 16 Complex routing with gateways

375

 Testing the Process
Now that our process is complete, let us run a case and see the parallel gateway routing

in action. In another browser, log in as one of the users in the Human Resources group.

Go to New Case and you should see our newly created Employee Onboarding (Parallel)

process. Start a new case.

Fill in the form as shown here and submit it. You should next see the parallel routing

screen, as shown here.

Chapter 16 Complex routing with gateways

376

As you can see, this is different from the usual routing screen, as the case is being

routed at the same time to the next four tasks. Since we are using manual assignment for

the Assign Duties task, we select the supervisor of the department we have chosen for

the new employee. In this case I am selecting Amy Alexander, the Finance department

manager. When done, click the Continue button.

If you go to the Advance Search screen as the Admin user and search for cases for the

Employee Onboarding (Parallel) process, you will see that we have four instances of the

same case as shown next.

The next thing to do is to log in as a user for each assigned task and update the case.

When all four tasks have been completed, the case should converge back to a single

instance for the final task.

Since we are still logged in as an HR officer, go to Unassigned Cases and claim the

case. Fill in the fields in the Human Resources section of the form and submit it. The next

task is displayed as Employee Welcome Document, which is the task after the parallel

tasks have completed. Click Continue to submit the task. If you look at the cases in

Advanced Search now, you will see that only three instances are listed.

Chapter 16 Complex routing with gateways

377

Log in as an IT officer (Billy Green or Karen Baker), claim the case from unassigned,

update the form, and submit it. Next we will repeat the same process, logging in as an

Administration Officer (Steve Bennett or Carlos Shaw). However, this time, to further

illustrate that the different tasks are being run in parallel, after claiming the case, open

the Process Map to see the current status of the case on the map. To view the Process

Map, click the Information button on top of the case and select Process Map. The Process

Map is shown as displayed next.

As we can see in the Process Map, the two tasks we updated are shown as completed,

while the other two are shown as in progress. The key thing to note is that all four tasks

are being run concurrently. Go back to the case form, and update and submit it. Finally

log in as the Supervisor (Amy Alexander in this case) and complete the last parallel task.

When all four tasks have been completed, look up the case in the Advanced Search

screen and you should now see that the instances of the case have now converged into

one case, and the current task is Employee Welcome Document. Log in as an HR Officer

and you should now see the completed form containing all the updates from the various

tasks. Go ahead and complete the case.

As you can see, using the parallel routing gateway allows us to design processes that

enable multiple tasks to run concurrently and can be an effective tool in the process

Chapter 16 Complex routing with gateways

378

design toolbox for creating efficient processes that significantly reduce the turnaround

time for completing a process.

Looking at our process, let us consider a situation where some new employees do

not need a desk or IT access. For the sake of simplicity, let us assume that onboarding

cases for Volunteers require only HR and Supervisor review, but we still want the tasks to

run in parallel. We can quickly see that the parallel gateway will not be a fit. Fortunately

for us, there is a tool for the job: the inclusive gateway.

 The Inclusive (OR) Gateway
The inclusive gateway is used to split the flow of a case into one or more parallel routes

based on the evaluation of a condition. If the condition for a route evaluates to True,

the route will be run concurrently with any other path in the gateway whose condition

evaluates to True.

To illustrate this, let us make a clone of our previous process and change the

gateways to the inclusive type.

 Cloning the Process
Log in as an administrator and click Designer in the main menu. Select the Employee

Onboarding (Parallel) process and export it. Still on the list of processes page, click

the Import button in the top menu and browse to the location you saved the exported

process to import it. Click the Upload button and you should be prompted with a screen

asking if you want to update the existing process or create a new process, as shown here.

Chapter 16 Complex routing with gateways

379

Choose the option to create a completely new process without changing the current

process and click Save. A copy of the process is created and opened in the Process

Designer. Right-click on an area in the designer outside the process map and select

Edit Process. Rename the process to Employee Onboarding (Inclusive) and update the

description as shown next.

Now that we have a copy of our process, let us proceed to change the gateways to

inclusive.

 Changing the Gateway
In the Process Map, right click on the gateway after the New Employee Details task and

select Gateway Type ➤ Inclusive (OR) Gateway as shown in the image on the right.

Repeat the same process for the gateway after the ID Badge/Payroll task, changing the

Gateway Type also to Inclusive (OR) Gateway. The HR Officer lane of the Process Map

should now be similar to the following.

Chapter 16 Complex routing with gateways

380

It is important to reiterate that when using an inclusive gateway, the diverging

gateway and the converging gateway must be of the same type.

 Applying the Conditions
For the purpose of our illustration, as stated earlier, we need to define a condition to

omit the Provision Desk/Cards and Provision IT Access tasks for Volunteer employees.

To accomplish this, right-click on the diverging inclusive gateway and select Properties.

This displays the Inclusive Routing Rule screen shown here.

Chapter 16 Complex routing with gateways

381

Set the Condition for the Provision Desk/Cards and Provision IT Access tasks to

@@employee_type != "Vol"

This condition will evaluate to True only if the new employee is not a Volunteer. Save

the changes.

 Testing the Process
Let us take our new process for a spin and see how the inclusive gateway differs from the

parallel gateway. Log in as an HR Officer (Wanda Marshall or Nicholas Williams) and

create two cases for our new process, Employee Onboarding (Inclusive). In the first case,

set the Employee Type to Volunteer and for the second case, use either Full Time or Part

Time as the Employee Type.

You will observe that after you submit the case with Employee Type set to Volunteer,

the routing screen shows that the case will be routed to two tasks concurrently, as shown

next.

However, for the second case with Employee Type set to Full Time or Part Time,

the case is routed to all four tasks concurrently just as we had with the Parallel routing

in the previous section of this chapter. Also, if you go to Advanced Search and search

for Employee Onboarding (Inclusive) process cases, you will see that the case with

Employee Type set to Volunteer has two instances while the other has four instances, as

shown next.

Chapter 16 Complex routing with gateways

382

Still logged in as the HR Officer, go to the Unassigned menu and claim the case for

the Volunteer employee. Go to the Process Map and you will observe that the ID

Badge/Payroll and Assign Duties tasks are being run concurrently, as shown next.

Update the case and submit it. Log in as the assigned supervisor (Julia Smith in my

case) and submit the case. If you look in Advanced Search thereafter, you will see that the

case has now converged into a single instance without going through the other two tasks.

Log in as the HR Officer and complete the case.

As you have seen, the inclusive gateway is a very useful tool in our arsenal for

optimizing business processes by allowing tasks to run concurrently while still allowing

us to assign tasks conditionally as the business case may require.

Chapter 16 Complex routing with gateways

383

 Default Flow
When using the exclusive gateway or the inclusive gateway, ProcessMaker provides us

with an option to define a default flow. For the parallel gateway, this is not required as all

paths in the flow are taken by default.

The default flow sets up the path to be taken when all routing conditions evaluate to

False. This can be useful in preventing errors where all routing rules route to False.

In this chapter, we have explored the various ways we can route a process and the

different gateway types that can help get the job done. In the next chapter we will explore

the ProcessMaker Admin settings to learn more about some of the settings that can be

configured in ProcessMaker.

Chapter 16 Complex routing with gateways

385
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_17

CHAPTER 17

Admin Features

Earlier in this book when exploring the Process Designer and creating our first process,

we did not specify a category for the process, and I promised you would learn how to

create categories when we explore the Admin features. Well, here we are. We previously

explored the Users section of the Admin features when we learned how to administer

users in ProcessMaker, and in this chapter we will explore the Settings, Plugins, and Logs

tab. To begin, log in as the admin user and click Admin in the main menu at the top of

the page.

 Learning More For more in-depth coverage of the Admin features, visit
http://wiki.processmaker.com/3.1/sys_administration.

 Settings
The first tab in the Admin section is Settings, which as the name implies provides us with

features for configuring the settings in ProcessMaker. We will walk through each option

in the Settings tab sequentially, providing a broad overview of what it does and in some

cases illustrate with examples.

http://wiki.processmaker.com/3.1/sys_administration

386

 Logo
As you might have guessed, this allows us to change the default logo displayed in the

top left of the ProcessMaker application when logged in. Click on the Logo menu in the

Settings tab to display the page as shown next.

The default logo setting

To change the logo, click the Upload button to upload an image file (the supported

formats are JPEG, PNG and GIF). A file selection modal is displayed. Browse to the file

on your system to select it and click the Upload button. A “file uploaded successfully”

message is displayed, and the uploaded logo is now listed in the Photo Gallery as shown

next. Note that ProcessMaker automatically converts the uploaded image to a JPEG file

with 80px height, so some skewing may occur in the process. For best results, upload an

image with height of 80px or similar proportions.

The logo setting with a logo uploaded

Even though the logo has been uploaded, it is not yet applied to the application. To

set the logo, select it and click the Apply button. The applied logo is now displayed as

shown next.

ChApter 17 Admin FeAtures

387

The logo applied to ProcessMaker

To restore the default ProcessMaker logo, simply click the Restore Default button.

 Email Servers
The Email Servers setting allows us to configure the system for sending email

notifications. ProcessMaker provides two options for configuring the email engine,

SMTP and Mail. We have already explored how to test whether the email configuration is

properly set up in a previous chapter so we will not be going into it again.

You can explore the ProcessMaker wiki for detailed explanations of the settings and

examples of how to configure the common Email providers: Google, Yahoo, Hotmail,

and Outlook (http://wiki.processmaker.com/3.0/Email_Settings).

 Calendar
The Calendar settings allow administrators to define work hours for users, tasks, and

processes. This is especially important for computing task due dates. For example, most

countries have a five-day work week and eight- to nine-hour work days. So if a task is

assigned to a user at the close of business at the end of the work week, and the task

duration is one day, if the Calendar is not configured to account for the weekend break,

the task will appear as overdue when the user resumes work at the beginning of the next

week.

Let us take a look at the default calendar defined out of the box in ProcessMaker.

Click the Calendar menu in the Settings tab, and the Default Calendar should be shown

as displayed in the following image.

ChApter 17 Admin FeAtures

http://wiki.processmaker.com/3.0/Email_Settings

388

Select the calendar and click the Edit button to see the values defined for the

calendar. The Calendar Configuration screen is displayed as shown here.

ChApter 17 Admin FeAtures

389

As we can see in this image, the defined work days are Monday to Friday and work

hours are from 9:00 am to 5:00 pm. The system also provides us the option to define

Holidays. This comes in handy when Public Holidays are declared and the users will be

absent from work during the regular work days. Unlike the work days and work hours,

the Holidays are not recurrent and have to be defined for each holiday every year.

 Calendars Order of Precedence

A calendar can be assigned to a user, task, or process. If no calendar is specified for a

user, the calendar assigned to the task is used. If the task has no calendar assigned, the

process calendar is used. If neither process, task, nor user has a calendar assigned, the

default calendar is used. The order of precedence is

User ➤ Task ➤ Process ➤ Default

To learn more about configuring and assigning calendars, check out the

ProcessMaker wiki (http://wiki.processmaker.com/3.0/Calendars).

 Process Categories
Process Categories provides a handy feature for categorizing processes in ProcessMaker.

As more and more processes are added to the system, the New Case screen can become

cluttered, making it hard for users to find the processes they need.

Remember that for all the processes we have created so far, we have left the category

set to No Category. To illustrate Process Categories, log in as Wanda Marshall (wanda.

marshall) in the Human Resources Group in another browser and go to New Case. The

list of processes (starting tasks) available to the user is displayed as shown next. We can

see that all the processes are listed under the No Category folder.

ChApter 17 Admin FeAtures

http://wiki.processmaker.com/3.0/Calendars

390

Let us create some categories and see the effect. In the browser where you are

logged-in as Admin, click the Process Categories menu in the Settings tab. The page is

displayed as shown here.

Click the New button and in the dialog that pops up enter Administration as the

Category Name. Click Save. Repeat the process and add another category named

Human Resources.

The next step is to assign the categories to the processes we created earlier. Go to the

Designer tab and edit the Cash Advance and Expense Retirement Process. Right-click

on an area outside the Process Map and select Edit Process from the context menu. The

Process Information screen is shown.

We can see that the defined categories are now included in the dropdown options

of the Process Category field. Set the category to Administration and save. Repeat the

process for the Employee Onboarding (Parallel) and Employee Onboarding (Inclusive)

ChApter 17 Admin FeAtures

391

processes, setting their category to Human Resources. When done, refresh the New Case

page in the other browser where you are logged in as Wanda Marshall, and the processes

should now be categorized as shown next.

 Language
Though the default language for ProcessMaker is English, the Language setting allows

us to add other language translations. To try this, let us add another translation to our

instance of ProcessMaker. Click the Language menu in the Settings tab to display the

page as shown here.

As we can see, we have just one language available in the system, English. The

language translations are stored as .po files and ProcessMaker provides translations for

other languages that can be downloaded from Sourceforge (https://sourceforge.net/

projects/processmaker/files/Translations/).

Head to the Sourceforge page and select the folder matching your version of

ProcessMaker (3.1 in this case), and the list of translation files should be displayed as

shown next.

ChApter 17 Admin FeAtures

https://sourceforge.net/projects/processmaker/files/Translations/
https://sourceforge.net/projects/processmaker/files/Translations/

392

Let’s install the Spanish translation. Click the processmaker.es.po link to download

the translation file and save it to your system. Once the file is downloaded, click the

Install/Update button in the Language Settings page and locate the downloaded file to

select it. Click the Upload button to import the new translation. When done, a message

showing the result of the import should be displayed as shown next.

We can see the number of records that were successfully imported and the errors

for those that failed. For the purpose of our demonstration we can disregard the errors

(in a production instance, you would definitely want to review the errors and update the

translation file to fix the identified issues). Click OK, and our new language is now listed

on the page as shown here.

ChApter 17 Admin FeAtures

393

In another browser, open the login page and you should observe that the login

language field of the form now includes Spanish as one of the language options.

Log in as Wanda Marshall (wanda.marshall) from Human Resources, but this time,

select Spanish as the language. The New Cases screen is now displayed in Spanish as

shown next.

ChApter 17 Admin FeAtures

394

 Skins
The Skins setting allows us to change the look and feel of the ProcessMaker application.

The application comes with two skins out-of-the box, Neoclassic and Classic. You can

also create your own custom skin and import it into the system, but that is beyond the

scope of a beginner’s guide.

Let’s try switching between the two skins available. Go to the Skins Setting page and

the two skins should be displayed.

To change the skin to Classic, double-click the Classic skin. The ProcessMaker

application should now be wearing the Classic look, as shown next.

Feel free to keep the Classic look or switch back to the Neoclassic.

ChApter 17 Admin FeAtures

395

 Environment
The Environment settings provide options for configuring how the names of users, date

formats, and case lists are displayed. You can try toggling some of the options to see the

resulting effect.

ProcessMaker Environment Settings page

 Cases List Cache Builder
The information displayed in the list of cases for a user is aggregated from multiple

tables, and since this data is frequently accessed, querying all the tables frequently can

create performance issues. To prevent this problem, ProcessMaker stores all this data in

a table called APP_CACHE_VIEW. However, in rare instances, this data can become out

of sync, resulting in inaccurate information displayed in the users’ cases list. The Cases

List Cache Builder setting allows the administrator to rebuild the cache at the click of a

button.

ChApter 17 Admin FeAtures

396

 Clear Cache
ProcessMaker is a web application, and the user interface is built from a large number

of PHP, HTML, CSS and JavaScript files. To speed up the application performance,

these files are precompiled and stored in the application’s compiled directory. After an

upgrade or change to the source code, it is recommended to clear the compiled files.

This setting provides the interface for clearing the precompiled files.

 PM Tables
The ProcessMaker PM Tables screen provides an interface for us to create tables in the

ProcessMaker database directly from the web application. This is a very useful feature

as it allows us to maintain data that can be shared across multiple processes and even

external applications such as Business Intelligence Reporting tools.

There are two types of PM tables that can be created in ProcessMaker:

 1. PM table

 2. Report table

The PM table is an empty table to which we can add our own data while report tables

are created from case data of the selected process. Let us create one of each to illustrate

the difference and use cases. Head over to the PM Tables menu in the Settings tab.

 Creating a Report Table

Let us create a report table showing the list of expenses from the Cash Advance and

Retirement Process. Click the New button, and in the context-menu select New Report

Table. The New Report Table screen is displayed. Select Cash Advance and Expense

Retirement from the list of processes to display the dynaform fields as shown here.

ChApter 17 Admin FeAtures

397

 1. Set the table name to EXPENSE_REPORT.

 2. Give it a description.

 3. Leave the type as Global. The other option is Grid; it allows us to

create a table of the grid data, which is not included in the report

table by default, because of the data structure.

 4. Leave the DB Connection as Workflow.

 5. From the Dynaform fields, select the following fields and move

them to the Report Table by clicking the > button in the middle:

• employee_name

• department

ChApter 17 Admin FeAtures

398

• request_date

• amount_requested

 6. Click the Create button.

The newly created report table is now displayed as shown next.

Select the newly created table and click the Data button above it. The data from the

cases we have run so far are displayed. Go ahead and close the data screen.

 Creating PM Table

Next let us create a PM table. Click the New button and in the context menu select New

PM Table. The New PM Table screen is displayed as shown here.

ChApter 17 Admin FeAtures

399

 1. Set the table name to EMPLOYEE_TYPE.

 2. Give it a description.

 3. Click the Add Field button.

This displays the Add Field interface.

Create the fields as specified in the following table. After filling in the fields, click the

Update button to save your changes. When done, click the Create button.

Field Name Field Label Type Size Null Primary Key Auto Increment

id id BiGint 11 uncheck check check

COde Code VArChAr 20 uncheck uncheck uncheck

LABeL Label VArChAr 255 uncheck uncheck uncheck

ChApter 17 Admin FeAtures

400

The newly created table should now be displayed as shown here.

To add data to our table, select it and click the Data button. The following screen is

displayed. Unlike the Report table, its data is empty.

Let us add some sample employee types to our table as depicted in the next image.

Click the Add Row button to add a new row and fill in a value for the Code and Label

columns. The ID column is auto-generated by the database because we checked the

Auto Increment option when creating the column.

ChApter 17 Admin FeAtures

401

This data can now be incorporated into our processes by using an SQL Query to fetch

the data. That way, we can reuse the same data across multiple processes. As an exercise,

try modifying the Employee Onboarding processes to use the data from the PM Table

instead of defining values in the options of the employee_type variable.

 Login
The Login settings allow us enable the Forgot Password feature on the login page and set

the default language.

ChApter 17 Admin FeAtures

402

Try changing the default language to Spanish and enabling the Forgot Password

option. Remember to click the Save Settings button. Log out, and the login form should

now show the default language as Spanish with a link to Forgot Password below the

Login button, as shown here.

 Dashboards
The Dashboards settings are used to configure the dashlets displayed on the Dashboards

page of the main menu.

As an example, let us configure the Open Cases vs Completed Cases dashlet. In the

Dashboard Settings page, select the Open Cases vs Completed Cases dashlet and click

the Edit button to display the Dashlet Instance Configuration as shown next.

ChApter 17 Admin FeAtures

403

Set the Title to Case Report for This Year and the Period to This Year. Save your

changes. Now return to the Dashboard page, and the dashlet should be updated and

show a comparison report similar to the one shown here.

ChApter 17 Admin FeAtures

404

 System
The System settings page provides an interface for defining system settings such as the

default Time Zone used when working with dates and the memory limit available to

each logged-in session. The Cookie Lifetime setting controls how long a session can be

idle before being logged out. Other settings include the Default user expiry date, Default

Skin, and Default language.

 System Information, Check PM Requirements and PHP
Information
The remaining three settings are informational and provide insights into the

environment in which ProcessMaker is being run. This can be useful for troubleshooting

issues when administering the system. Click on each of the settings to view the

information displayed.

That concludes our exploration of the Admin Settings tab; up next is the Plugins tab.

 Plugins
ProcessMaker is a very extensible system, and the way to extend the features is by adding

new plugins. A plugin can add a new menu to the ProcessMaker interface or modify the

database. To learn more about developing plugins, visit the ProcessMaker Wiki (http://

wiki.processmaker.com/3.0/Plugin_Development).

To illustrate how the plugins work, we will import a sample plugin that manages draft

cases. Download the plugin file using the link https://github.com/dipolediamond/

draftManager/raw/master/draftManager-1.tar.

 DraftManager Plugin the code for the plugin is available on Github
(https://github.com/dipolediamond/draftManager). Feel free to clone
and improve it.

ChApter 17 Admin FeAtures

http://wiki.processmaker.com/3.0/Plugin_Development
http://wiki.processmaker.com/3.0/Plugin_Development
https://github.com/dipolediamond/draftManager/raw/master/draftManager-1.tar
https://github.com/dipolediamond/draftManager/raw/master/draftManager-1.tar
https://github.com/dipolediamond/draftManager

405

Now let us proceed to import the plugin. In the Admin section, go to the Plugins tab,

the Plugin Manager is displayed.

Click the Import button to display the Import Plugin form as shown here.

Browse to the draftManager-1.tar file downloaded earlier to select it and click the

Import button. The imported plugin is shown.

Next thing we need to do is enable the plugin. Select the plugin and click the Enable

button. The plugin status should change from Disabled to Enabled.

Our plugin is now enabled, but we cannot see any visible change in the system. The

draft plugin we are using for this illustration creates a new permission and allows only

users belonging to roles that have that permission to access the plugin page. To remedy

this, let us add the newly created permission to the PROCESSMAKER_ADMIN role. Go

to the Users tab and select Roles from the menu. Select the PROCESSMAKER_ADMIN

role and click Permissions. In the Permissions page click the Edit Permissions button to

display the new permission as shown next.

ChApter 17 Admin FeAtures

406

Proceed to add the permission to the Assigned Permissions list. When done, reload

the page or log out and log in again. You should now see the plugin page added by our

new plugin as shown here.

 Logs
The last tab in the Admin features is the Logs tab, and it provides an interface for users

with the PM_SETUP_LOGS permission to view the following logs generated by the system.

• Events Log

• Case Scheduler Log

• Cron Log

• Email Log

We have seen an example of the email log in an earlier chapter of this book and a

deeper exploration of configuring the other logs is beyond our scope.

That brings us the end of our exploration of the ProcessMaker Admin features. At

this point, you should be pretty comfortable finding your way around ProcessMaker and

automating processes to meet business needs. In wrapping up this guide, we will explore

the ProcessMaker mobile app in the next chapter and beginner options for deploying

ProcessMaker to a production environment.

ChApter 17 Admin FeAtures

407
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_18

CHAPTER 18

Going Mobile
It has been an enlightening journey thus far, and we have seen how ProcessMaker can

help automate paper-based approval processes. All we have done so far has been on

our local PC, but in a real use case, we would deploy our business processes to a system

that can be accessed by others. In this chapter, we begin with a look at the ProcessMaker

mobile app and how it allows us to access our processes on the go and then in Chapter 19

we’ll set up ProcessMaker on a cloud server so it can be accessed from anywhere with

Internet access. Let’s get started.

 ProcessMaker Mobile Apps
ProcessMaker comes with mobile apps for both iOS and Android devices. The mobile

apps allow users to run cases on the go. The mobile apps are limited to running cases

for end users and do not include the administrative features. These are only available in

the web app. We begin our exploration of the mobile apps by downloading the app from

the Google Play store or the Apple App store, depending on the operating system of your

mobile device.

 Install the App
On the store for your platform, search for ProcessMaker and install the app. For this

guide, I will be using an Android device, but the configuration steps are similar for both

Android and iOS. The app page is shown as in the following image. Click the Install

button and accept the permissions requested.

408

Installing the app

Once the app is installed, the intro slide is displayed as shown next. Swipe to the

last slide, which displays the options to log in or register. The Register option allows

you to sign up for a trial of the ProcessMaker Enterprise Edition in the cloud. However,

for the purpose of our exploration, we will be connecting to our already installed local

instance.

Chapter 18 GoinG Mobile

409

Newly installed app intro slides

Click the Login button to display the login screen as shown here.

Chapter 18 GoinG Mobile

410

Login and Settings Configuration

The Sign In with Google button allows you log in with a Google account that is

already registered on the ProcessMaker instance the app is connecting to and is only

available in the Enterprise edition.

The Settings button launches the setting screen shown on the left in the image above

that allows us configure the instance (that is, the ProcessMaker installation) to which

the app should be connected. By default, this is set to the ProcessMaker Enterprise trial

URL. We can also configure the workspace on the instance which is set to the default

workflow workspace.

To connect to our local ProcessMaker installation, we will change the Server URL

in the settings to the URL of our installation. You might be wondering how we make

our local PC available over the Internet for the mobile app to connect to. We will use a

nifty service called ngrok that allows us “create a secure public URL (https://yourapp.

ngrok.io) to a local webserver on your machine.”

Chapter 18 GoinG Mobile

https://yourapp.ngrok.io/
https://yourapp.ngrok.io/

411

 Install ngrok for Remote Access
Ngrok is a service that allows you make a local web server or app running on your local

computer, just like our installed Bitnami ProcessMaker stack, available over the Internet.

By using ngrok, we will be able to configure our mobile app to access all the processes

we have built on our local ProcessMaker installation. You can also share your work with

friends and colleagues over the Internet.

To install ngrok, open the ngrok download page (https://ngrok.com/download)

and this displays the links to download the installer for a variety of operating systems

and architecture as shown next.

The ngrok download page

Download the appropriate installer for your Operating System. Save the downloaded

installer to a path on your system and unzip it.

 Launch ngrok on Mac OS X

If you’re using Mac OS X, in a terminal change to the directory to which you unzipped

ngrok and enter the command ./ngrok http {port number}, replacing {port_number}

with your corresponding port number and pressing Enter. In my case, the ProcessMaker

web app is running on port 8080, as shown in the following image.

Chapter 18 GoinG Mobile

https://ngrok.com/download

412

This launches ngrok as shown next.

Once launched, ngrok provides us with a forwarding address that we can use to access

the web server. In the screen shot, the assigned URL is https://2338b185.ngrok.io and

we can see it can be accessed on both HTTP and HTTPS protocols.

To verify that our ProcessMaker instance is now available over the Internet, open a

web browser on any device with an Internet access and enter the URL assigned by ngrok.

Chapter 18 GoinG Mobile

https://2338b185.ngrok.io/

413

 Opening the URL on a Nonstandard Port if you’re using a port other than
port 80, the Url might try redirecting to the port on the ngrok-assigned Url,
http://2338b185.ngrok.io:8080/sysworkflow/en/neoclassic/
login/login. if this happens, remove the port portion (:8080) of the Url.

 Launch ngrok on Windows

If you’re using Windows, unzip the downloaded installer and launch the Command

Prompt. In the Command Prompt window, change directory to the folder where you

unzipped ngrok and enter the command ngrok.exe http {port number}, replacing

{port_number} with the corresponding port number and pressing Enter.

This launches ngrok as shown next.

Chapter 18 GoinG Mobile

http://2338b185.ngrok.io:8080/sysworkflow/en/neoclassic/login/login
http://2338b185.ngrok.io:8080/sysworkflow/en/neoclassic/login/login

414

Once launched, ngrok provides us with a forwarding address that we can use to access

the web server. In the screen shot, the assigned URL is https://26ecca99.ngrok.io, and

we can see that it can be accessed on both HTTP and HTTPS protocols.

 Configure Mobile App Settings
Now that our ProcessMaker instance is available over the Internet, the next step is to

configure the settings of the mobile app to use the new URL.

Open the mobile app on your device and, on the login screen, click the Settings

button to display the Settings page as shown here. Change the Server URL to the

ngrok- assigned URL and save the settings.

With the settings saved, return to the login screen and enter the username

and password of the Admin user or any other user in ProcessMaker. On successful

authentication, the inbox is displayed as shown next. Click the navigation icon to display

the menu options. We are now mobile!

Chapter 18 GoinG Mobile

https://26ecca99.ngrok.io/

415

Go ahead and explore the other menu options.

 Create a Case
You can try creating a new case by tapping the Create (plus) icon in the bottom-right

corner of the inbox screen. This displays the available list of starting tasks. Tap one of

the displayed tasks and start a new case. The dynaform is displayed, showing the fields

similar to the mobile responsive preview in the Dynaform Designer. Go ahead and

submit the case.

Chapter 18 GoinG Mobile

416

 Deploying to Production
You might be thinking, “This is cool, but I definitely don’t want everyone connecting

to my system to run their cases. What if I shut down my system or I lose network

connectivity?” I agree with you 100%. What we have so far is good for developing and

testing that the process we have designed works, but to make it available to others, we

need to deploy it to a server that can be accessed by everyone in the organization.

Depending on your organization’s policies, you might want to deploy it to a cloud

server so that it can be accessed over the Internet or you might want to deploy it to an

on-premise server in your local network and have it accessible only from devices on the

network.

Irrespective of your choice, the next chapter explores the options for installing

ProcessMaker on a cloud server, and most of the steps we will cover are applicable to

both cloud and on-premise deployments.

Chapter 18 GoinG Mobile

417

Another option for deployment is to sign up for the ProcessMaker cloud. This

requires no installation on your part, and you can dive right into creating your users,

importing your processes from your local PC and start using it straight away. It comes

with a 30 day free trial (https://www.processmaker.com/etrialreg) and you can sign

up at no cost.

Chapter 18 GoinG Mobile

https://www.processmaker.com/etrialreg

419
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_19

CHAPTER 19

Installing ProcesMaker on
a Cloud Server
For the purpose of our demonstration, we will be deploying to Digital Ocean, where we

will set up a VPS (Virtual Private Server) and install ProcessMaker. We will then be able

to access our ProcessMaker installation over the Internet from anywhere and make it

available to our colleagues at MSB Corp. Let’s get started.

 What is DigitalOcean? DigitalOcean is a simple and robust cloud computing
platform, designed for developers. It allows developers easily spin up a Virtual
Private Server (called a droplet) within a minute and add other features for easily
managing the servers.

 Getting a DigitalOcean Account
First we need to create an account. You can sign up on the DigitalOcean website,

https://www.digitalocean.com.

 Register for Your Account
The landing page for Digital Ocean is displayed as shown next. Enter your email address

and a password and click the Create an Account button.

https://www.digitalocean.com/

420

DigitalOcean landing page

 Confirm Your Email Address
The next step is to confirm your email address by clicking the link sent to the email

address used to register.

DigitalOcean Email Confirmation page

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

421

 Account Verification
Once you confirm your email, the next step is to verify your account. DigitalOcean

requires you to provide your billing info as a means of verification as shown next. If you

have a credit card, enter the details and click the Save Card button.

DigitalOcean verification page

 Debit and Pre-Paid Cards Are Not Accepted DigitalOcean does not
currently accept debit or pre-paid cards for billing info verification. If you do not
have a credit card, you can use the PayPal option. this will, however, require you to
make a deposit of at least $5.

Alternatively, you can make a deposit of a minimum of $5 via PayPal to verify your

account, as shown here.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

422

DigitalOcean PayPal option

Once verification is done, you are now ready to create a droplet as shown in the

following screen. Click the Create a New Droplet button to get started.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

423

 Creating Your Droplet (Virtual Private Server)
The Create Droplets page is displayed, and we can see a variety of Linux distribution

images to choose from. For this guide, we will be using CentOS 7 as it is one of the

officially supported ProcessMaker stacks (http://wiki.processmaker.com/3.1/

Supported_Stacks). Select CentOS as shown here.

Next, we choose a size for our droplet. The droplets are billed per hour, let’s choose

the $10 per month droplet.

Our next line of action is to choose the data center where our droplet should be

located. Depending on your location, you will want to select a data center nearest to you

or your potential users. I will be using the London data center as shown here.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

http://wiki.processmaker.com/3.1/Supported_Stacks
http://wiki.processmaker.com/3.1/Supported_Stacks

424

The next section presents a set of options such as Private Networking, Backups,

IPv6, User Data, and Monitoring. You can mouse over each option to learn more about

it. For example, Private Networking allows you to set up a private network between

your droplets hosted in the same data center. In a larger deployment, we would have a

separate droplet or droplets (if using a cluster) for the database and another droplet or

droplets (if using a web farm) for the application.

For the purpose of this book, we will be keeping things simple and will only need one

droplet. We can choose the Monitoring option to keep a tab on resource usage on our

droplet.

In addition to the options, we can also add SSH Keys, which allow us to log in to

the droplet without a username and password. We will be sticking with the traditional

username and password approach, but you can learn more about securing your droplets

with SSH keys here: https://www.digitalocean.com/community/tutorials/how-to-

use-ssh-keys-with-digitalocean-droplets.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-digitalocean-droplets
https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-digitalocean-droplets

425

 SSH Keys an SSh key is an access credential in the SSh protocol. Its
function is similar to that of usernames and passwords, but the keys are primarily
used for automated processes and for implementing single sign-on by system
administrators and power users. Source: https://www.ssh.com/ssh/key/.

Finally, specify a hostname for the droplet (I am using processmaker) and click the

Create button. The droplet creation is initialized as shown next and should take less than

a minute.

Once ready, the IP address of the droplet is displayed as shown in this screen. You

will also get an email containing the IP address of your new droplet, along with the

username and password.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

https://www.ssh.com/ssh/key/

426

 Connecting to the Droplet
We now have a server in the cloud on which we can install ProcessMaker, but in order to

do so, we have to connect to it first.

 Using Mac or Linux
If using a Mac or Linux system, simply open a terminal window and enter the following

command as shown in the screen: ssh root@ip_address, where ip_address is the IP

address of the newly created droplet, and press Enter.

You will be prompted to confirm the authenticity of the host. Type yes and press

Enter. Next you are prompted for the root password. Enter the password you received via

email after creating the droplet. Since this is the first time you are logging in, you will be

prompted to change the password. If you enter a weak password, the droplet will display

a BAD PASSWORD message as shown in the following image.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

427

Enter a strong and secure password and retype it to confirm it. Make sure it is a

password you can remember. Once accepted, you are logged in to the droplet. Type the

clear command and press Enter to clear the screen.

 Using Windows
For Windows users, you will need to install PuTTY, an open source SSH and Telnet

client for Windows that allows you securely connect to remote Linux servers from a local

Windows computer.

Go to the PuTTY download page (https://www.chiark.greenend.org.

uk/~sgtatham/putty/latest.html). Go to the Alternative Binary section as shown next

and download the putty.exe version that matches the architecture of your computer.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

http://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

428

Once it is downloaded, double-click the executable to launch the PuTTY client. If

prompted with a security warning like the following, click Run.

This launches the PuTTY client as shown next. Enter the IP address of your droplet

and ensure that the port is set to 22. You can click the Save button to store the settings.

Click the Open button to connect to the droplet.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

429

This prompts a security alert to confirm the authenticity of the host, as shown next.

Click the Yes button to trust the host and connect.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

430

This launches the PuTTY terminal, as shown next. Enter the username root and

press Enter. You should be prompted for the root user password. Enter the password

sent to you via email when the droplet was created. Since this is your first login, you will

be prompted to change the password. Enter a strong and secure password. Once that is

accepted, you should be logged in to the server.

 Securing your Droplet to secure your droplet, you can check out these
additional guides on DigitalOcean: “Initial Server Set up with CentOS 7” (https://
www.digitalocean.com/community/tutorials/initial-server-set
up-with-centos-7), or “additional recommended Steps for new CentOS 7
Servers” (https://www.digitalocean.com/community/tutorials/
additional-recommended-steps-for-new-centos-7-servers).

 Installing ProcessMaker
Now that we are connected to our server, the next thing to do is install the Apache,

PHP, and MySQL stack required by ProcessMaker. The steps we will follow are from the

ProcessMaker wiki (http://wiki.processmaker.com/3.1/ProcessMaker_CentOS_RHEL_

Installation), with a few tweaks. Let’s get started.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

https://www.digitalocean.com/community/tutorials/initial-server-set
https://www.digitalocean.com/community/tutorials/initial-server-set
https://www.digitalocean.com/community/tutorials/additional-recommended-steps-for-new-centos-7-servers
https://www.digitalocean.com/community/tutorials/additional-recommended-steps-for-new-centos-7-servers
http://wiki.processmaker.com/3.1/ProcessMaker_CentOS_RHEL_Installation
http://wiki.processmaker.com/3.1/ProcessMaker_CentOS_RHEL_Installation

431

 Remove MariaDB
MariaDB is a distribution of MySQL installed by default on CentOS and can conflict with

the MySQL database we will install later. To remove it, type the following command in

the terminal connected to your droplet and press Enter:

yum -y remove mariadb*

This removes the MariaDB packages from the server and when it’s done, a Complete!

message is shown.

 Install Apache
Next we install the Apache web server with mod_ssl. As before, in the terminal, type the

following command and press Enter:

yum -y install httpd mod_ssl

When it’s completed, we start the Apache service with the following command:

service httpd start

Next we also configure the service to start automatically after a server reboot with the

following command.

chkconfig httpd on

Finally, let us check that the Apache (httpd) service is running. Enter the following

command to check the status of the service.

systemctl status httpd

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

432

The service status should be displayed as active (running) as shown here.

 Install PHP 5.6
Centos 7 uses the EPEL repository, which comes with PHP 5.4 by default. ProcessMaker

however requires PHP 5.6. To get PHP 5.6, we add the Webtatic Yum Repository

(https://webtatic.com/projects/yum-repository/) using the following commands:

rpm -Uvh https://dl.fedoraproject.org/pub/epel/epel-

release- latest-7.noarch.rpm

rpm -Uvh https://mirror.webtatic.com/yum/el7/webtatic-

release.rpm

With our repos updated, we then proceed to install PHP 5.6 and the extensions

required by ProcessMaker using these commands:

yum -y install php56w

yum -y install php56w-mysqlnd php56w-gd php56w-soap php56w-ldap php56w-xml

php56w-mbstring php56w-cli php56w-curl php56w-mcrypt php56w-devel

 php56w- pecl- apcu

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

https://webtatic.com/projects/yum-repository/

433

Once installation is complete, you can verify that the PHP version installed with the

command php -v and also check that the required PHP modules were installed with rpm

-qa |grep php as shown next.

 Install MySQL 5.5.X
Our next step is to download and install the MySQL database, and the recommended

version is 5.5.X.

 Unsupported MySQL STRICT Mode ProcessMaker is not compatible with
MySQl StrICt mode, which is turned on by default in MySQl 5.7. this version of
MySQl is nOt part of any official ProcessMaker stack.

To download the MySQL installer, go to the MySQL Downloads page (https://dev.

mysql.com/downloads/mysql/5.5). For the Operating System, select Red Hat Enterprise

Linux /Oracle Linux and set the Select OS Version to Red Hat Enterprise Linux 7/Oracle

Linux 7 (x86, 64-bit). Click the Download button displayed as shown here.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

https://dev.mysql.com/downloads/mysql/5.5
https://dev.mysql.com/downloads/mysql/5.5

434

This redirects to the download page as shown next. There are options to log in or sign

up for an Oracle web account. At the bottom, there’s a direct download link (No thanks,
just start my download). We will skip the login/signup option and use the direct link.

To download the link directly to the server, right-click the link and in the context

menu, select Copy Link Address. The address should be something like https://dev.

mysql.com/get/Downloads/MySQL-5.5/MySQL-5.5.56-1.el7.x86_64.rpm-bundle.tar.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

https://dev.mysql.com/get/Downloads/MySQL-5.5/MySQL-5.5.56-1.el7.x86_64.rpm-bundle.tar
https://dev.mysql.com/get/Downloads/MySQL-5.5/MySQL-5.5.56-1.el7.x86_64.rpm-bundle.tar

435

Now in the terminal, enter the command wget download_url, replacing download_

url with the copied link address as in the following:

wget https://dev.mysql.com/get/Downloads/MySQL-5.5/MySQL-5.5.56-1.

el7.x86_64.rpm-bundle.tar

This downloads the MySQL installer archive to the server as shown in the screen

capture. To view the downloaded file, enter the command ll or ls -lrt. This displays

the installation file we just downloaded. Next we extract the installer using the command

tar -xvf installer_archive, replacing installer_archive with the name of the

downloaded file as shown here:

tar -xvf MySQL-5.5.56-1.el7.x86_64.rpm-bundle.tar

This extracts a number of RPM files to the server. We will install the MySQL Server

and MySQL Client RPM files. First we install a dependency required by the installer,

using the following command:

yum install libaio

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

436

Once the dependency is installed, enter the next commands to install the MySQL

Server and MySQL client, ensuring that the file name matches the MySQL version you

have downloaded.

rpm -ivh MySQL-server-5.5.56-1.el7.x86_64.rpm

rpm -ivh MySQL-client-5.5.56-1.el7.x86_64.rpm

Once the installation is complete, use the next commands to start the MySQL service

and configure it to start automatically after a reboot:

systemctl start mysql

chkconfig mysql on

To confirm that the MySQL service is running, use this command:

systemctl status mysql

 Secure the MySQL Installation
Before using the installed MySQL, it is recommended to secure the installation. We do

this by running the mysql_secure_installation command from the terminal. The

resulting installer prompts with a series of questions that help set a password for the root

user and other security settings. Go ahead and enter the command in the terminal and

answer the prompted questions as shown here.

 1. Enter current password for root (enter for none): Press Enter,

since we do not have a root password yet.

 2. Set root password? [Y/n]: Choose Y.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

437

 3. New password: Enter a strong and secure password you will

remember. Please note that ProcessMaker does NOT support

special characters (such as: @ # $ % ^ & (/) in the root password.

 4. Re-enter new password: Confirm the password just entered.

 5. Remove anonymous users? [Y/n]: Choose Y.

 6. Disallow root login remotely? [Y/n]: Choose Y.

 7. Remove test database and access to it? [Y/n]: Choose Y.

 8. Reload privilege tables now? [Y/n]: Choose Y.

 Disable SELINUX
Next we disable SELINUX using the following commands:

echo "SELINUX=disabled" > /etc/selinux/config

echo "SELINUXTYPE=targeted" >> /etc/selinux/config

 Enable Firewall and Open ProcessMaker ports
Our next line of action is to enable the firewall. To do so, enter these commands to start

the firewall service and set it to start automatically after a reboot:

systemctl start firewalld chkconfig firewalld on

To confirm that the service is running, enter the following command, and you should

see the status displayed as active similar to the image.

systemctl status firewalld

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

438

With our firewall in place, we need to permit the ports used by ProcessMaker so that

it can be accessible. The ProcessMaker web application will use port 80 by default and

we will also add port 443 for SSL support. Enter the following commands to permit the

ports and reload the firewall service.

firewall-cmd --zone=public --add-port=80/tcp --permanent

firewall-cmd --zone=public --add-port=443/tcp --permanent

firewall-cmd --reload

 Download and Extract ProcessMaker Installer
So far we have been getting our server environment ready for ProcessMaker. At this point

we need to download the ProcessMaker installer to our server. Let us head over to the

ProcessMaker Sourceforge page (https://sourceforge.net/projects/processmaker/

files/ProcessMaker/) to download ProcessMaker.

 Working with Newer Versions the steps described next should work for
newer versions of ProcessMaker, but we will be using version 3.1.x for this guide.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

https://sourceforge.net/projects/processmaker/files/ProcessMaker/
https://sourceforge.net/projects/processmaker/files/ProcessMaker/

439

The page displays a list of folders for the different ProcessMaker versions, starting

with the most recent release. Click the folder for the most recent release of version 3.1 to

display the page listing the installers as shown here.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

440

Look for the TAR archive installer as shown in the image, right-click it, and select

Copy Link Address. Open a text editor and paste the address copied. It should look

similar to the following address:

https://sourceforge.net/projects/processmaker/files/ProcessMaker/3.1/

processmaker-3.1.3-community.tar.gz/download

Remove the /download at the end of the URL so that the link ends with the tar.gz

portion. Next use the wget command in your terminal to download the file:

wget https://sourceforge.net/projects/processmaker/files/ProcessMaker/3.1/

processmaker-3.1.3-community.tar.gz

This downloads the ProcessMaker installer, and if you enter ll or ls -lrt in the

terminal you should now see a file named processmaker-3.1.3-community.tar.gz.
Next extract the downloaded archive to the /opt folder using the command

tar -C /opt -xzvf processmaker-3.1.3-community.tar.gz

Once the archive is extracted, change directory to the extracted folder using the

command cd /opt/processmaker and list the contents of the directory with ll or ls

-lrt. The list of extracted folders should be displayed as in the next screen.

Next, we set the permissions on the files and folders so that they can be accessed by

ProcessMaker.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

441

Enter the following commands:

chmod -R 770 shared workflow/public_html

chmod -R 770 gulliver/js gulliver/thirdparty/html2ps_pdf/cache

cd workflow/engine/

chmod -R 770 config content/languages plugins xmlform js/labels

Finally, we change the owner of the files to the apache user, which is the user

account that will be used to run the Apache web server service and requires read and

write permissions to the ProcessMaker application files. To do so, enter the following

command in the terminal:

chown -R apache:apache /opt/processmaker

 Configure Apache Web Server
We now have the ProcesssMaker files on our server, but the Apache web server is

unaware of the ProcessMaker installation files. We need to configure the Apache web

server to point to the ProcessMaker files. First we remove the default website config file.

Go to the Apache config folder using the command cd /etc/httpd/conf.d/. Display

the list of config files using the ll or ls -lrt command as shown here.

Remove the welcome.conf file with the command

rm -rf welcome.conf

Next we copy the ProcessMaker config file from the ProcessMaker folder we

extracted earlier to the Apache config folder

cp /opt/processmaker/pmos.conf.example /etc/httpd/conf.d/pmos.conf

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

442

Using a text editor like vim or nano, edit the pmos.conf file to match the code shown

next, replacing your_ip_address with the IP address of the droplet and save your

changes. We will set the ServerName to the IP address for now and when we get a domain

name later on, we will update it to the domain name.

 Using Text Editors You can install the vim text editor on the server using the
command yum install -y vim. to edit a file, use the command vim path_
to_filename for example vim /etc/httpd/conf.d/pmos.conf.

You can grasp the basic concepts with this quick guide “Vim 101: a Quick-
and-Dirty guide to Our Favorite Free File editor” (https://www.engadget.
com/2012/07/10/vim- how- to/), or “getting Started with Vim: an Interactive
guide” (https://scotch.io/tutorials/getting-started-with-vim-
an-interactive-guide).

#processmaker virtual host

<VirtualHost your_ip_address>

 ServerName "your_ip_address"

 DocumentRoot /opt/processmaker/workflow/public_html

 DirectoryIndex index.html index.php

 <Directory /opt/processmaker/workflow/public_html>

 Options Indexes FollowSymLinks MultiViews

 AddDefaultCharset UTF-8

 AllowOverride All

 Require all granted

 ExpiresActive On

 <IfModule mod_rewrite.c>

 RewriteEngine On

 RewriteCond %{REQUEST_FILENAME} !-f

 RewriteRule ^.*/(.*)$ app.php [QSA,L,NC]

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

https://www.engadget.com/2012/07/10/vim-how-to/
https://www.engadget.com/2012/07/10/vim-how-to/
https://www.engadget.com/2012/07/10/vim-how-to/
https://www.engadget.com/2012/07/10/vim-how-to/
https://www.engadget.com/2012/07/10/vim-how-to/
https://scotch.io/tutorials/getting-started-with-vim-an-interactive-guide
https://scotch.io/tutorials/getting-started-with-vim-an-interactive-guide

443

 </IfModule>

 #Deflate filter is optional.

 #It reduces download size, but adds slightly more CPU processing:

 AddOutputFilterByType DEFLATE text/html

 </Directory>

</VirtualHost>

Next we verify that the following Apache modules required by ProcessMaker have

been enabled: expires, filter, rewrite, deflate and vhost_alias. To do so, enter the

command httpd -M, which lists all the enabled modules, and verify that those modules

are included.

 Enabling Apache Modules If any of the modules are not enabled, you can
enable them by uncommenting them in the module config file.

Open the file with the command vim /etc/httpd/conf.modules.d/00-
base.conf and remove the # in front of the module name.

Finally restart the Apache web server with the command systemctl restart httpd.

 Complete the Installation
All is now set, and we can complete the installation by opening a browser and entering

the IP address of the droplet as the URL; that is, http://00.00.00.00, replacing

00.00.00.00 with the IP address of your droplet. If all is well configured, you should be

redirected to the ProcessMaker Pre-Installation Check window shown here.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

444

Ensure that all items in the checklist are checked and click the Next button. If the file

permissions show an access denied error, try restarting the server.

Ensure that ProcessMaker can read and write the required files and folders as shown

and click the Next button.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

445

Accept the ProcessMaker Open Source License by checking the I Agree box and click

the Next button.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

446

Enter the MySQL database root user password that was set during the Secure

MySQL Installation step earlier and click the Test Connection button. When successfully

connected, click Next.

Enter a strong password that you will remember in the Admin Password field and

confirm the password. Click the Check Workspace Configuration button. When the

“configuration is correct” message is displayed, click the Finish button.

The ProcessMaker installation is completed and the success message is displayed.

Click the OK button to display the Welcome screen as shown here.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

447

Check the “Don’t show me again” checkbox and log in with the admin username

and password. This displays the Designer menu.

Congratulations. You now have ProcessMaker set up and running in the cloud that

can be accessed from anywhere with an Internet access. All that is left for us to do is

configure the settings, add our users, and import the processes from our local instance to

production.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

448

 Take a Snapshot
You will agree that getting this all set up took considerable effort and it would be great

to save a copy of this blank and clean install such that if you need to deploy another

ProcessMaker server, you could just use that copy.

Luckily for us, DigitalOcean allows us to take a snapshot. “Snapshots copy an image

of your entire VPS and store it on the DigitalOcean servers.” Snapshots can also help

you save costs such that you can take a snapshot of your droplet and destroy the droplet

when you are done using it.

When next you need to work with the server, you just create a new droplet from the

snapshot and resume from where you left off. To take a snapshot of your droplet, you

must shut it down first. In the terminal, enter the shutdown command.

Once the server is shut down, log in to DigitalOcean and click the droplet. Click

Snapshots in the left sidebar navigation and the Snapshots page is displayed.

Enter a meaningful name for the snapshot and click the Take Snapshot button. When

it’s done, the snapshot is displayed as follows, showing the size and the data center

where it is located.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

449

With our snapshot done, we can power on the droplet by clicking Power in the

sidebar navigation and clicking the Power On button.

We have covered a lot in this chapter and learned how to install ProcessMaker in

a cloud deployment, and in the next and final chapter we will deploy our processes

from the local instance to our production instance after configuring it and securing

communication with SSL.

ChaPter 19 InStallIng PrOCeSMaker On a ClOuD SerVer

451
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0_20

CHAPTER 20

Deploying to Production
We now have ProcessMaker running in the cloud and we are ready to share our new

process with others. However, you might have noticed that we access the server using the

IP address, which might not always be easy to remember. We will want to give our server

a domain name that can be easily remembered. Also, it is recommended to encrypt data

between public web servers and the clients accessing them using SSL.

In the next sections, we will get a free domain name for our server from Freenom and

a free SSL certificate from Let’s Encrypt. Once we have that all set up, we will import our

Cash Advance and Retirement Process from our desktop, deploying it to the production

server, and we’ll configure our mobile app to access it. Let’s get started.

There are other methods of obtaining domain names and SSL certificates, but we
will be using Freenom and Let’s Encrypt for tutorial purposes only.

 Get a Free Domain Name
To get our free domain name, head over to the Freenom web site (http://www.freenom.

com), and on the landing page enter a name you would like to use. I am using pmguide

as shown next. Click the Check Availability oval button to see if your preferred name is

available.

http://www.freenom.com/
http://www.freenom.com/

452

If the domain name you have entered is available, you will see a list of available free

TLDs (Top Level Domains) you can use. If the domain you have entered is not available

or is a paid one, you can search for another name.

Click the Get It Now! button beside the domain name you would like to use to select

it as shown here. Once you’ve selected, click the green Checkout button.

On the order review page shown next, click the Use DNS button.

ChapTEr 20 DEpLoying To proDuCTion

453

This displays an option to use either Freenom DNS or our own DNS. We will use our

own DNS because we want to manage the DNS on DigitalOcean. Select the Use Your

Own DNS tab and in the Nameserver fields, enter the following values as shown in the

image:

• ns1.digitalocean.com

• ns2.digitalocean.com

You can choose to extend the period from 3 months if desired. Once you are done,

click the Continue button.

This displays the checkout page as shown here. Complete the checkout process by

registering and verifying your email address.

Once verification is done, you will be presented with an Order Confirmation page

similar to the following.

ChapTEr 20 DEpLoying To proDuCTion

454

We now have a free domain name ready to be used on DigitalOcean. You can log in

to the Client Area and from the menu select Services ➤ My Domains to view the newly

registered domain.

 Set Up DNS
Our next step is to set up DNS hosting for our new domain on DigitalOcean. Log in to

your DigitalOcean account and select Networking from the top menu. In the Domains

tab, enter the name of your newly registered domain and click the Add Domain button.

ChapTEr 20 DEpLoying To proDuCTion

455

This displays the domain page, listing the DNS records for the domain. You will

notice at the top of the page a “What’s Next” message, stating “You need to update your

nameservers with your domain registrar for the records below to take effect.” We have

already done this when we set the nameservers to DigitalOcean nameservers at the point

of registering the domain. This saves us the hassle of waiting for the domain name to

propagate if changed later.

Next, we need to add a DNS record pointing the domain name to our server. In the

Create New Record section of the page, enter @ for the hostname and select your droplet

as the server to redirect to, as shown next. Click the Create Record button.

We might also want users to be able to access the server using www.{domainname},

for example www.pmguide.tk. To allow that, we can also add a www record as shown next.

Please note that this can be any name that suits your purpose.

With our DNS set up, open a browser and enter your new domain name. This should

open up your ProcessMaker instance. It looks like we are all set. Not quite. If you look at

the address bar in your browser, you will notice it is marked as insecure.

Chrome address bar

ChapTEr 20 DEpLoying To proDuCTion

http://www.pmguide.tk/

456

Mozilla address bar

To make our users more comfortable and secure when using the application, we will

get an SSL certificate to make the site secure.

One last thing we need to do is modify our web server configuration to use the new

domain name. You will recall that in the previous chapter we set this to the IP address,

since we did not have a domain name then. Open the pmos.conf file using the following

command:

vim /etc/httpd/conf.d/pmos.conf

Once it is opened, find the line with ServerName "your_ip_address" and change it

to ServerName "your_domain_name" as in the following image, using the domain name

you registered. If you also included a www or other subdomain, add it as an alias using the

ServerAlias "your_subdomain_name" directive.

Because we also now have a domain name, we can change the virtual host to match

any IP address; this allows us to restore our droplet to a new server without having to

change the IP address. Your configuration should be similar to the following screen

when done, the only difference being the domain name.

Modifying ServerName to domain name

When you are done, save the file and restart the Apache web server using the

command

systemctl restart httpd

ChapTEr 20 DEpLoying To proDuCTion

457

 Install SSL Certificate
The folks at DigitalOcean have put together a detailed guide called “How to Secure

Apache with Let’s Encrypt on CentOS 7” (https://www.digitalocean.com/community/

tutorials/how-to-secure-apache-with-let-s-encrypt-on-centos-7), which we will

adapt for our needs.

 Create a non-Root Super User
First we begin by creating a non-root super user account as follows. SSH to the server

and log in as root and create a new user using the following command, replacing

username with the name of the user as in the next image.

adduser username

Next set a password for the user using the command

passwd username

Finally, grant the user super privileges by adding the user to the Wheel group using

this command:

gpasswd -a username wheel

 Install the Required Software
We will use Certbot to request a certificate from Let’s Encrypt. “Certbot is an easy-to-use

automatic client that fetches and deploys SSL/TLS certificates for your webserver.”

In a new terminal or puTTY session, SSH to the server using the new username and

password created.

ChapTEr 20 DEpLoying To proDuCTion

https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-centos-7
https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-centos-7
https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-centos-7

458

Once you are logged in, enter the following command to install the Certbot

executable:

sudo yum -y install python-certbot-apache

When prompted, enter the password for the newly created user and wait for the

Certbot installation to complete.

 Request a Certificate from Let’s Encrypt
With Certbot in place, we will request a certificate for our domain name. In my case, I am

using pmguide.tk. You should replace this with the name you registered for your server.

Since I also added a www subdomain, I will include it in the request. If you used a different

subdomain, modify it as appropriate in the command.

Still logged in as the new super user, enter the following command, remembering to

use your correct domain name:

sudo certbot --apache -d pmguide.tk -d www.pmguide.tk

ChapTEr 20 DEpLoying To proDuCTion

459

ChapTEr 20 DEpLoying To proDuCTion

460

This generates an interactive dialog as shown in the above image. Enter your email

and agree to the terms. You can optionally choose to subscribe to the EFF mailing list.

Certbot generates a certificate for each specified domain and prompts whether to

make HTTPS access compulsory. I am making it compulsory by choosing the second

option, Secure.

Once the certificate is installed, restart the web server using the sudo systemctl

restart httpd command. In a browser, navigate to your domain name with https://

prefixed to the URL, and the site should load with secure encryption as shown here.

Chrome address bar

Mozilla address bar

However, if you’re browsing to the site without HTTPS, it does not redirect as

expected. To fix this, open the web server config file

sudo vim /etc/httpd/conf.d/pmos.conf

Enter the password if prompted. In the config, scroll to the bottom just before the

closing <\VirtualHost> tag. You will notice the rewrite rules added by the Certbot as

shown here.

Edit the config and add the RewriteEngine On line highlighted in the image to your

config file. Save the file and restart the web server with the command

sudo systemctl restart httpd

Now try browsing to the server without HTTPS, and you should be automatically

redirected.

ChapTEr 20 DEpLoying To proDuCTion

461

Finally, let us set up a cron job (scheduled task) to renew the certificate

automatically when it expires.

Enter the following command

sudo crontab -e

This opens the crontab editor. Edit the file by pasting the following on one line:

0 2 * * * /usr/bin/certbot renew >> /var/log/le-renew.log

Save your changes. This sets the cron job to execute the Certbot renew command at

2:30 every day.

With our production environment all set and secured, we can now deploy our

process to make it available to our users.

 Additional Steps Before the production environment can be used by others,
you will need to add them as users and configure the departments, roles, and
authentication sources as required, as we did in the chapter on user
administration.

The groups, however, will be imported along with processes that use them, but you
will still have to add users to the groups.

you will also need to set up the email settings for notifications.

ChapTEr 20 DEpLoying To proDuCTion

462

 Exercise as an exercise, use the knowledge gained so far to set up the
production environment with users, groups, roles, authentication sources,
departments, and email notifications matching the local instance.

 Deploying the Process
To deploy our process, launch your local ProcessMaker Bitnami instance and log in as an

administrator. Then take the following steps:

 1. Export the Cash Advance and Expense Retirement Process.

 2. Export the Schema and Data from the EMPLOYEE_TYPE PM

Table.

 3. Export the Schema for the EXPENSE_REPORT Report Table.

 4. Next, log in to the cloud instance as the administrator.

 5. Import the Cash Advance and Expense Retirement Process. When

prompted, keep the imported Process UID.

 6. Import the EMPLOYEE_TYPE and EXPENSE_REPORT tables.

 7. Create the process category and edit the imported process to use

the category.

 8. Add the admin user to the Employees group.

Ensure that you have created the other users as required in the earlier exercise and

assigned them to the appropriate groups.

 Alternative Deployment Method it is also possible to copy a local
installation to another server and restore the database.

ChapTEr 20 DEpLoying To proDuCTion

463

 Configuring the Mobile App
With our process deployed, we can now give users a more permanent URL for the mobile

app settings unlike the temporary ngrok.io tunnels we used in an earlier chapter. On

your mobile device, launch the ProcessMaker app. You might get an error message

stating that the app is misconfigured. This is because the app can no longer reach the

ngrok.io URL.

Follow these steps to update the configuration:

 1. Open the Settings tab from the menu.

 2. Enter the URL with your new domain and HTTPS as shown in the

next image in the Server URL. Save the settings.

 3. Log in as the admin user and try to create a case.

 4. Select the Cash Advance and Expense Retirement (Request

Advance) task.

 5. The dynaform should load as displayed next.

That brings us to the end of this guide. It has been a learning experience for me, and

I do hope your curiosity flame has been ignited and you will go on to learn more about

ProcessMaker and how you can use it to automate business processes.

ChapTEr 20 DEpLoying To proDuCTion

464

 What Next?
Now that you have the basics (and a little more) covered, what comes next? Try thinking

of some processes you can automate on your own. You can ask colleagues or your boss

for ideas about what processes to try your hands on. If you get stuck, here are some

resources you can consult:

• The ProcessMaker forum: https://forum.processmaker.com/.

• The ProcessMaker wiki: http://wiki.processmaker.com/.

• The ProcessMaker bug tracker: http://bugs.processmaker.com/. If

you run into a bug, you can submit a bug report here. It can also be a

good place to check if others have had similar issues and if there is a

known workaround or resolution.

• The ProcessMaker webinars page: https://www.processmaker.

com/webinar. I also recommend visiting here to learn more about

other features and register for upcoming webinars showcasing new

features in ProcessMaker.

You are welcome to also visit the companion blog for the book, Learning BPM

(https://www.learningbpm.com), for articles showing tips and tricks on ProcessMaker.

ChapTEr 20 DEpLoying To proDuCTion

https://forum.processmaker.com/
http://wiki.processmaker.com/
http://bugs.processmaker.com/
https://www.processmaker.com/webinar
https://www.processmaker.com/webinar
https://www.learningbpm.com/

465
© Dipo Majekodunmi 2018
D. Majekodunmi, Business Process Automation with ProcessMaker 3.1,
https://doi.org/10.1007/978-1-4842-3345-0

Index

A
Accounting system, 81, 87
Ad-hoc users, 230
Admin

calendar, 387, 389
Cases List, 395
clear cache, 396
Dashboards, 402, 404
email servers, 387
environment, 395
language, 391–393
login, 401–402
logo, 386–387
logs, 406
plugins, 404–406
PM table, 398–401
Process Categories, 389–390
report table, 396–398
skins, 394
system, 404

Apache, 431
Apache, MySQL, and PHP (AMP), 8
Apache web server, 441–443
Array variable, 98

B
Bitnami Application Manager, 32

Manage Servers screen, 33–34
Welcome screen, 32–33

Bitnami installations, 8
Bitnami ProcessMaker Installer page, 11

for Mac OS X users, 11, 19
Configure SMTP Settings, 15–16
Create Admin Account screen, 14
Deploy ProcessMaker, 16
Installation Folder, 13
Installation Information, 18
PhpMyAdmin, 13
Ready to Install, 17
setup wizard, 12
Web Server Port, 14

for Windows users, 20
Configure SMTP Settings, 25–26
Create Admin Account, 22
Deploy ProcessMaker, 27
firewall warning, 28
Gmail configuration, 26
Installation Folder, 22
Installation Information, 29
PhpMyAdmin, 21
Ready to Install, 27
setup wizard, 21
User Account Control dialog, 20, 30
Web Server Port, 23–24
Welcome to ProcessMaker

modal, 31
Bitnami Stack, 8
Boolean variable, 98
Bootstrap’s grid system, 110

https://doi.org/10.1007/978-1-4842-3345-0

466

BPMN 2.0, 39 see also Shapes
Toolbox, BPMN

Business process, 5
Business process management

 (BPM), 5–7
Business Process Model and Notation

(BPMN) see BPMN 2.0

C
Camel case, 97
Case, 36
Case assignment method, 230
Case labels, 333
Case permissions and notes

creation, 350
group/user, 352
origin task, 352
participation required, 352
permission, 352
status Case, 351
target task, 351
type, 352

Cash Advance and Expense Retirement
process, 51, 80, 83, 231, 232

approve/reject report, 308–309
assignment rules, 312–313
Case Notes, 358–360
Comments, 323
computeReimburseRefund, 349–350
display mode property, 347
Edit Variable, 344
EscalateFinanceUnclaimedCase,

354–356
feedback, 331–332
HTML Editor, 315–318
imported form, 303–307
JavaScript, 348–349
mode property, 308

NotifyCashAdvanceApproval, 357
NotifyCashAdvanceRejection, 357
properties, 314
receipts, 325–326
receipt uploads, 313
Reimbursement/Refund Details, 310
Request Advance, 356–357
routing rule, 312
SetCashAdvanceInitialData, 345–346
SetCurrentUser, 322
SetExpenseReportInitialData, 346
Signoff/Approval, 323–324
task and select, 311
total amount, 324
transaction, 326, 329
UpdateCashAdvanceApprover, 319, 321
UpdateCashAdvanceDisburser, 319
UpdateCashAdvanceRequestor, 319
UpdateExpenseReportApprover, 320
UpdateExpenseReportPreparer, 320
UpdateExpenseReportProcessor, 320

Cash Advance Requisition
add, comments, 176–179
approval functionality

approval with code, 184–189
approval without code, 184

Assigned Elements, 192–197
assignment and routing, 191–192
Create/Select Variable, 169–171
export, 183–184
JavaScript, 181–182
Request Details, 168
Signoff/Approval, 174–175
tablet/mobile, 171–173

Colosa Inc., 7
Conditions, 37
Custom triggers, 262, 267–269
Cyclical assignment method, 232–235

Index

467

D
Datetime Control, 347
Datetime variable, 98
Default flow, 383
DigitalOcean

account register, 419
account verification, 421
definition, 419
email confirmation, 420
PayPal option, 422

DNS
Check Availability, 451
Checkout, 452
mobile app, 463
networking, 454
ProcessMaker Bitnami, 462
record, 455
registering and verifying, 453
SSL certificate (see SSL)

Droplet
additional options, 424
data center, 423
hostname, 425
ProcessMaker

Mac/Linux system, 426–427
Windows, 427–428, 430

size selection, 423
snapshots, 449
SSH Keys, 424

Dynaforms, 37
Dynaform Designer, 103

container, 107
form control properties, 108–109
row control properties, 109–110

control and properties panel, 106
history to use, 107
properties, 107

web controls, 106–107
menu, 104

close, 106
export, 104
import, 105
Language option, 105
preview, 105
save, 104
to clear, 105

title, 104
Dynaforms (dynamic forms), 95, 101–102

adding input documents, 280–281
Dynaform web controls

Cash Advance and Expense Retirement
(see Cash Advance Requisition)

checkbox, 125–126
checkgroup, 127–128
datetime

Clear button, 134
datepicker view, 133
default date, 133
format, 131
max date, 132
min date, 131–132
selection date, 132–133

dividing, row, 137–139
dropdown, 122–124
file, 143–146
grid (see Grid layout)
hidden, 139–140
image, 142–143
label, 141
link, 141
multiple file uploader, 146–147
panel, 159–163
radio, 128–129
reposition rows, 135–136
subform, 163, 165

Index

468

submit and button, 147–149
suggestions, 136–137
textarea, 121–122
textbox

display modes, 119–120
Dynaform Designer, 119
properties, 114–115, 117–118

title and subtitle, 140
variables, 112–113

E
Email notifications

creating, template, 336–337
NotifyCashAdvanceApproval, 342
NotifyCashAdvanceRejection, 342
PMFSendMessage, 338–342
SMTP, 342
task notification property, 334–335

EscalateFinanceUnclaimedCase, 354–356
Exclusive (XOR) gateway, 365

F
Feedback

employees, 332
finance officers, 331
supervisors, 332

File variable, 98
Float variable, 98

G, H
generateCode function, 268
Graphical user interface (GUI), 13
Grid layout

adding and deleting rows, 153

controls, 151–153
mathematical functions, 157, 159
modifying, 155–157
page size property, 154
validation error, 157

Grid variable, 98
Group artifact, 82

I, J, K
Inclusive (OR) gateway

conditions, 380–381
Edit Process, 379
HR Officer, 379–380
import, 378–379
testing, 381–382

Input documents, 277
creating, 278–280
Document Management System,

viewing in, 286–287
to dynaforms, 280–281
as a step, 281–285

Integer variable, 98

L
Lightweight Directory Access

Protocol (LADP), 220

M, N
MacOS (OS X) users, 11, 19

Configure SMTP Settings, 15–16
Create Admin Account screen, 14
Deploy ProcessMaker, 16
Installation Folder, 13
Installation Information, 18
PhpMyAdmin, 13
Ready to Install, 17

Dynaform web controls (cont.)

Index

469

setup wizard, 12
Web Server Port, 14

Manual assignment
method, 235–236

MariaDB, 431
Master process, 55
Mobile apps

configuration, 414–415
deployment, 416–417
installation, 407–410
ngrok

download, 411
Mac OS X, 411–412
Windows, 413–414

Modeling a process, 73, 86–91
adding tasks

Approve Advance task, 75
Disburse Advance, 76
dragging and dropping, 75
Request Advance, 75

connecting tasks, 76–78
creating new process, 74–75
tasks, 73

Multiple file variable, 98
MySQL 5.5.X, 433–436

O
Object Management Group (OMG), 39
OS X, 8
Output documents, 287

creating, 287, 297–298, 300
description, 288
destination path, 289
enable versioning, 289
filename generated, 288
to generate, 289
generated file link, 290

grids, 294
HTML editor, 293
margin, 289
media, 289
orientation, 289
PDF security, 289
prefix, 296
report generator, 288
Submit Form button, 295
tags, 290
title, 288
Upload File button, 291–292
values, 290

P, Q
Parallel (AND) gateway

Administration, 371
assign forms, 373
assign users/groups, 373–374
Employee Onboarding, 369–370
Employee Supervisor, 371–372
Human Resources, 371
Information Technology, 371
Process Map, 365–366
testing, 375–378
UpdateAdminOfficer, 372
UpdateHROfficer, 372
UpdateITOfficer, 372
UpdateSupervisor, 372
variables, 367–368

Pascal case, 97
PHP 5.6, 432–433
PMFSendMessage

CashAdvanceNotifyFinance, 338
CashAdvanceNotifyRejection, 338
NotifyCashAdvanceApproval, 340–342
NotifyCashAdvanceRejection, 339–340

Index

470

Predefined triggers, 262–266
Process, 36
Process Designer, 47

Process Map, 50
Process Map area, 50–51
Shapes Toolbox, 51

End events, 70–72
Events elements, 60
Exclusive (XOR) gateway, 58
Gateway element, 57
Inclusive (OR) gateway, 59
Intermediate Catching

events, 68–70
Intermediate Throwing

events, 66–68
Parallel (AND) gateway, 58–59
Start events, 60–63, 65
Sub-process element, 55–57
Task element, 51–55

Top Toolbar, 47
Close option, 50
Export Diagram option, 48
Export option, 48
Full Screen option, 48
Help option, 50
Save and Save As option, 49
Undo and Redo options, 48
Zoom option, 48

Process List
actions

Category filter and Search
box, 44

debug, 44
Delete and Delete Cases

option, 43
Edit option, 42
Export option, 42
Import option, 43

New option, 40
Status option, 42

columns
canceled cases, 46
category, 46
completed cases, 46
create date, 46
debug status, 46
draft, 46
inbox, 46
status, 46
title, 45
total cases, 46
type of process, 45
update date, 46
user owner, 46

ProcessMaker, 7–9
Apache, 431
Apache web

server, 441–443
authentication sources

importing users, 222–224
LDAP, 220
setting up, 220–222

concepts, 36–38
deletion, 215
departments

add, 211–212
assigning users, 212–213
Set Manager and No Set

Manager, 213–214
firewall enable, 437–438
groups

assigning groups, 209–210
assigning users, 208–209
creation, 206–207
deletion, 207
editing, 207

Index

471

installer, 438–440
interface, 35–36
list (see Process List)
MariaDB, 431
MySQL database, 446
MySQL 5.5.X, 433–436
mysql_secure_installation, 436
objects, 44
password confirmation, 446–447
PHP 5.6, 432–433
Pre-Installation Check, 443, 445
roles

assigning users, 218, 220
default, 215–216
viewing and editing, 216, 218

SELINUX disable, 437
user experience, 225–227
users

delete, 206
disable, 204–205
editing, 204
new user, 201, 203
summary, group and

authentication, 206
Process Map, 81, 89
Process model see Modeling a process

R
Request Advance task, 75

S
Self-service assignment

method, 247–251
SetCurrentUser, 321
Shapes Toolbox, 79

artifacts, 82

Group, 82
Text Annotation, 82

data elements, 79
Data Object element, 80
Data Store element, 81

Lasso, 83–86
pools and lanes, 81–82

Shapes Toolbox, BPMN, 51
End events, 70

email message, 71
empty, 71
error, 72
message, 72
signal, 72
terminate, 72

Events elements, 60
Exclusive (XOR) gateway, 58
Gateway element, 57
Inclusive (OR) gateway, 59
Intermediate Catching events, 68

conditional, 70
receive a message, 69
signal, 70
timer, 69

Intermediate Throwing events, 66
email message, 66
send message, 67
signal, 68

Parallel (AND) gateway, 58–59
Start events, 60–61, 63

Assigned Users list, 62
Assignment Rules, 61
Cash Advance and Expense

Retirement Process, 63
delete, 65
edit label, 65
properties, 65
types, 63

Index

472

Web Entry feature, 65
Sub-process element

asynchronous process, 56
Cancel button, 57
context menu, 56
IT System Request process, 56
master process, 55
synchronous process, 56

Task element
assignment rules, 55
Cash Advance process, 51
delete, 55
edit label, 55
marker type, 54
properties, 55
quick toolbar, 52
steps, 55
type of task, 53

Snake case, 97
Snapshots, 448–449
SSH key, 425
SSL

Certbot, 458, 460–461
non-root super user, 457
puTTY, 457

String variable, 97

T
Task, 37
Text Annotation artifact, 82
Triggers, 37, 257

case variables
prefixes, 260
system variables, 260–261

variable selector, 262
creating, 262

copying triggers, 269
custom triggers, 267–269
predefined triggers, 263–266

debugging, 272
enabling and disabling Debug

mode, 273–274
identifying errors, 276
ProcessMaker Debugger

window, 274–276
testing, 270–272
timing, 258

before assignment, 258
after a step, 258
after routing, 259
before routing, 259
before a step, 258

U
Unique Identifier (UID), 44
Users, tasks

Ad-hoc users, 230
case assignment

method, 230
cyclical assignment, 232–235
cyclical, manual and value-based

assignment, comparing, 237–241
and groups, 230–231
manual assignment, 235–236
reports, 245–247
self-service assignment, 247–251
self-service value-based assignment,

251–255
value-based assignment, 241–245

Shapes Toolbox, BPMN (cont.)

Index

473

V
Value-based assignment, 241–245
Variables

accepted variable values, 99
creating, 100–101
database connection, 99
name, 96–97
plus (+) icon, 96
SQL, 99
to store data, 94–95
System, 94
type, 97

array, 98
Boolean, 98
Datetime, 98
file, 98
float, 98
grid, 98
integer, 98
multiple file, 98
string, 97

W, X, Y, Z
Web controls, 106–107
Windows users, 20

Configure SMTP Settings, 25–26
Create Admin Account, 22
Deploy ProcessMaker, 27
firewall warning, 28
Gmail configuration, 26
Installation Folder, 22
Installation Information, 29
PhpMyAdmin, 21
Ready to Install, 27
setup wizard, 21
User Account Control dialog, 20, 30
Web Server Port, 23–24
Welcome to ProcessMaker modal, 31

Workflow, 1
sample cash advance requisition

form, 4
sample expense retirement form, 3
steps, 2

Index

	Table of Contents
	About the Author
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: An Introduction to Workflow and Business Process Management
	 What Is a Workflow?
	 A Sample Workflow
	 What Is a Business Process?

	 What Is BPM?
	 What Is ProcessMaker?

	Chapter 2: Getting Started with ProcessMaker
	 Installation Steps
	 For Mac OS X Users
	 For Windows Users

	 The Bitnami Application Manager
	 The Welcome Screen
	 The Manage Servers Screen
	 The Server Events Screen

	 Exploring the ProcessMaker Interface
	 ProcessMaker Concepts

	Chapter 3: The ProcessMaker Workflow Designer
	 Process List Actions
	 New
	 Edit
	 Status
	 Export
	 Delete and Delete Cases
	 Import
	 Category Filter and Search
	 Debug

	 Process List Columns
	 Process Designer
	 Top Toolbar
	 Full Screen
	 Undo and Redo
	 Zoom
	 Export Diagram
	 Export Process
	 Save and Save As
	 Help
	 Close

	 Process Map Area
	 Shapes Toolbox
	 Task
	 Sub-Process
	 Gateways
	 Exclusive (XOR) Gateway
	 Parallel (AND) Gateway
	 Inclusive (OR) Gateway
	 Events
	 Start Events
	 Intermediate Events
	Intermediate Throwing Events
	Intermediate Catching Events

	 End Events

	Chapter 4: Modeling a Process
	 Create a New Process
	 Add Tasks to the Process
	 Connecting Tasks in the Process

	Chapter 5: Making the Process Comprehensible
	 The Shapes Toolbox, Continued
	 Data Elements
	 Data Object
	 Data Store

	 Pools and Lanes
	 Artifacts
	 Group
	 Text Annotation

	 Tying It All Together
	 Complete the Process Model

	Chapter 6: Building the Process
	 Variables
	 Variable Name
	 Variable Type
	 Database Connection
	 SQL
	 Define Accepted Variable Values

	 Create the Variables
	 Dynaforms

	Chapter 7: The Responsive Dynaform Designer
	 Dynaform Title
	 Dynaform Designer Menu
	 Save
	 Export
	 Import
	 Preview
	 Clear
	 Language
	 Close

	 Dynaform Control and Properties Panel
	 Web Controls
	 Properties
	 History of Use

	 Dynaform Container
	 Form Control Properties
	 Row Control Properties

	Chapter 8: Dynaform Web Controls
	 Creating Variables from the Dynaform Designer
	 Textbox
	 Textarea
	 Dropdown
	 Checkbox
	 Checkgroup
	 Radio
	 Datetime
	 Repositioning a Row
	 Suggest
	 Dividing a Row
	 Hidden
	 Title and Subtitle
	 Label
	 Link
	 Image
	 File
	 Multiple File Uploader
	 Submit and Button
	 Grid
	 Adding Controls to the Grid
	 Adding and Deleting Rows
	 Paging Records in the Grid
	 Modifying the Grid Layout
	 Validating Required Fields
	 Mathematical Functions in Grids

	 Panel
	 Subform

	Chapter 9: Adding Forms to the Process
	 Building the Form
	 Adding Comments to the Form
	 Debugging Errors in JavaScript
	 Cloning the Form
	 Adding Approval Functionality
	 Approval without Code
	 Approval with Code

	 Another Variant of the Form
	 Assigning a Form to a Task
	 Default Steps in a Task: Assignment and Routing
	 Adding a Dynaform Step

	Chapter 10: Administering Users in ProcessMaker
	 Users
	 Adding a New User
	 Editing a User
	 Disabling a User
	 Deleting a User
	 User Summary, Group and Authentication

	 Groups
	 Creating a Group
	 Editing a Group
	 Deleting a Group
	 Assigning Users to a Group
	 Assigning Groups to a User

	 Departments
	 Adding a New Department
	 Assigning Users to a Department
	 Setting a Department Manager
	 Deleting a Department

	 Roles
	 Default Roles
	 System Administrator (PROCESSMAKER_ADMIN)
	 Operator (PROCESSMAKER_OPERATOR)
	 Manager (PROCESSMAKER_MANAGER)

	 Creating New Roles
	 Viewing and Editing Role Permissions
	 Assigning Users to Roles

	 Authentication Sources
	 Setting Up an Authentication Source
	 Importing Users from an Authentication Source

	 User Experience
	 Changing the User Experience for a User

	Chapter 11: Assigning Users to Tasks in a Process
	 Assigning Users and Groups
	 Cyclical Assignment
	 Manual Assignment
	 Comparing Cyclical, Manual, and Value-Based Assignment
	 Value-Based Assignment
	 Reports To
	 Self Service
	 Self-Service Value-Based Assignment

	Chapter 12: Triggers
	 Trigger Timing
	 Before a Step
	 After a Step
	 Before Assignment
	 Before Routing
	 After Routing

	 Case and System Variables
	 Case Variable Prefixes
	 System Variables
	 Variable Selector

	 Creating Triggers
	 Predefined Triggers
	 Custom Triggers
	 Copying Triggers

	 Testing the Triggers
	 Debugging Triggers
	 Enabling and Disabling Debug Mode
	 ProcessMaker Debugger
	 Identifying Errors

	Chapter 13: Input and Output Documents
	 Input Documents
	 Creating an Input Document
	 Adding Input Documents to a Dynaform
	 Adding Input Documents as a Step
	 Viewing the Documents in the Document Management System

	 Output Documents
	 Creating an Output Document

	Chapter 14: Completing the Process
	 Building the Additional Forms
	 Modifying the Imported Form
	 Clone the Form

	 Assign the Forms to Tasks
	 Define the Routing Rule
	 Configure Assignment Rules
	 Set Up Receipt Upload
	 Generate the Expense Report
	 Add Some Triggers
	 Test the Changes

	Chapter 15: Enhancing the Process
	 Feedback
	 Finance Officers
	 Supervisors
	 Employees

	 Case Labels
	 Email Notifications
	 Using the Task Notification Property
	 Creating a Template for Email Notification
	 Using PMFSendMessage in a Trigger
	 Assign the Triggers to Tasks
	 Check that Email Sending is Configured

	 Prefilling Form Fields with Triggers
	 Setting Datetime Control Properties
	 Dynaform Logic in JavaScript
	 Case Permissions and Case Notes
	 Escalating Unclaimed Cases
	 Testing the Enhancements

	Chapter 16: Complex Routing with Gateways
	 Exclusive (XOR) Gateway
	 Parallel (AND) Gateway
	 Sample Process
	 Process Map
	 Process Dynaforms
	 Process Triggers
	 Assign Forms and Triggers to Tasks
	 Assign Users/Groups to the Tasks

	 Testing the Process

	 The Inclusive (OR) Gateway
	 Cloning the Process
	 Changing the Gateway
	 Applying the Conditions
	 Testing the Process

	 Default Flow

	Chapter 17: Admin Features
	 Settings
	 Logo
	 Email Servers
	 Calendar
	 Calendars Order of Precedence

	 Process Categories
	 Language
	 Skins
	 Environment
	 Cases List Cache Builder
	 Clear Cache
	 PM Tables
	 Creating a Report Table
	 Creating PM Table

	 Login
	 Dashboards
	 System
	 System Information, Check PM Requirements and PHP Information

	 Plugins
	 Logs

	Chapter 18: Going Mobile
	 ProcessMaker Mobile Apps
	 Install the App
	 Install ngrok for Remote Access
	 Launch ngrok on Mac OS X
	 Launch ngrok on Windows

	 Configure Mobile App Settings
	 Create a Case

	 Deploying to Production

	Chapter 19: Installing ProcesMaker on a Cloud Server
	 Getting a DigitalOcean Account
	 Register for Your Account
	 Confirm Your Email Address
	 Account Verification

	 Creating Your Droplet (Virtual Private Server)
	 Connecting to the Droplet
	 Using Mac or Linux
	 Using Windows

	 Installing ProcessMaker
	 Remove MariaDB
	 Install Apache
	 Install PHP 5.6
	 Install MySQL 5.5.X
	 Secure the MySQL Installation
	 Disable SELINUX
	 Enable Firewall and Open ProcessMaker ports
	 Download and Extract ProcessMaker Installer
	 Configure Apache Web Server
	 Complete the Installation

	 Take a Snapshot

	Chapter 20: Deploying to Production
	 Get a Free Domain Name
	 Set Up DNS
	 Install SSL Certificate
	 Create a non-Root Super User
	 Install the Required Software
	 Request a Certificate from Let’s Encrypt

	 Deploying the Process
	 Configuring the Mobile App
	 What Next?

	Index

